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Elżbieta Michalak, Katarzyna Bilska, Katarzyna Drabko, Joanna Depciuch, Ewa Kaznowska 
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Over the last few decades, near-infrared (NIR) spectroscopy has distinguished itself as one of
the most rapidly advancing spectroscopic techniques [1]. Mainly known as an analytical tool useful
for sample characterization and content quantification, NIR spectroscopy is essential in various other
fields, e.g., NIR imaging techniques in biophotonics, medical applications, or in characterization
of food products, to name the few [2]. Its contribution to basic science and physical chemistry
should be noted as well, e.g., in exploration of the nature of molecular vibrations or intermolecular
interactions [3]. One of the current development trends involves the miniaturization and simplification
of instrumentation [4], creating prospects for the spread of NIR spectrometers at a consumer level, e.g.,
in the form of smartphone attachments—a breakthrough not yet accomplished by any other analytical
technique. NIR spectroscopy has been developing in conjunction with advanced methods of data
analysis; recent years have highlighted the role of anharmonic quantum mechanical computations in
shedding light on the complex nature of NIR spectra as well [5].

The importance of NIR spectroscopy is well demonstrated by a remarkable interest it receives
among scientific and professional communities. Such observation can be roughly quantified using
the statistical data collected by Web of Science [6]. A query for “near infrared spectroscopy” returns
over 2200 records for 2018 year alone, out of this number almost 1800 records being scientific articles
(Figure 1). This clearly evidences the maturity level that NIR spectroscopy has achieved nowadays.
At the same time, statistical data evidences a steady progress in popularity of the eponymous technique
as the number of articles published annually almost doubled over the last decade comparing 2009 to
2018 (Figure 1). However, one may also notice some adverse effects of such popularity. As unveiled by
Web of Science query, this technique is used throughout various fields of application in a true myriad
of contexts (Figure 2) [6]. The mentioned trend also resulted in a growing diversity of the methods
and applications related to NIR spectroscopy and has led to a dispersion of the contributions among
disparate scientific communities.

For this reason, we recognized the need to propose the Special Issue “Advances in Near Infrared
Spectroscopy and Related Computational Methods” in Molecules journal. Our aim was to bring together
these diverse communities, which may perceive NIR spectroscopy from different perspectives. Besides,
we welcomed research topics not directly focused on the NIR region, however, which remained relevant
by employing the methodologies essential in NIR spectroscopy. A number of other spectroscopic
methods of analysis share methods and tools common with NIR spectroscopy. We believe such scope
of the Special Issue promoted the exchange of ideas and thus was helpful in pushing the frontier of
this discipline of science. Moreover, we hoped to create a formidable opportunity for the readership to
obtain a thorough overview of state-of-the-art NIR spectroscopy, current development trends, and
future prospects with no artificial limits or strict categorization. This way, we also put faith in offering
an appropriate opportunity to all the contributors to make their results and techniques more visible,
and to present the most recent accomplishments in their respective fields that have become possible
with the use of NIR spectroscopy.

Molecules 2019, 24, 4370; doi:10.3390/molecules24234370 www.mdpi.com/journal/molecules1
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Figure 1. Results analysis for Web of Science query “near infrared spectroscopy” for publication years
(2009–2018) [6].

Figure 2. Results analysis for Web of Science query “near infrared spectroscopy” following the
classification of Web of Science Categories. The figure presents only the 25 most significant categories [6].

The Special Issue has met a remarkably positive feedback with many contributions submitted by
numerous scholars and professional spectroscopists performing their active research in academia and
industry, resulting in a collection of 30 publications including two exhaustive review articles [7–36].
The diversity in the application field has been well represented by the submitted manuscripts. These
articles discuss a variety of aspects relevant to NIR spectroscopy in a markedly broad context.

Many of these articles have a cross-field character and it would be difficult to ascribe them
arbitrarily to certain disciplines of science. However, for sake of clarity a tentative and brief overview
of these contributions may be helpful to present the Special Issue to the readership. The majority of the
articles focuses on applied qualitative and quantitative analyses in a variety of fields [9,11,12,17–34].
Roughly, half of these may be associated with pharmaceutical and medical applications [17–24]. Most
of the remaining applied studies were directed at agricultural applications [25–34], well reflecting the
ever-growing significance of NIR spectroscopy in this area; a good perspective of this topic is included
in a focused review article published in the Special Issue [30]. Modern strategies for food analysis also
rely on this technique, and few contributions touched that field as well [9,12,33,34]. State-of-the-art
analytical spectroscopy is based on sophisticated data-analytical methods. Development of new
methods is, therefore, essential and benefits multiple applications [10,11,13–16]. Several articles
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focused on this direction, and the importance of research and development of calibration transfer
methods is well reflected in this Special Issue [13,16]. Interestingly, Beganović et al. demonstrated
that there exists room for improvement in fundamental aspects of analytical spectroscopy such
as wavenumber region selection for subsequent calibration [3]. On the other hand, progress in
technology and instrumentation is indispensable as well. The growing applicability and importance of
miniaturized, portable NIR spectrometers is reflected by several focused articles [10–12]. The differences
in design principles and emerging novel technologies that become applied in order to obtain affordable
and ultra-miniaturized devices raise concerns about the resulting analytical performance of such
spectrometers; therefore, comparative evaluation studies are critical [11,12]. Likewise, the potential of
hyperspectral imaging can be recognized on the basis of the articles collected in this Special Issue as
well [29–32]. The importance of NIR spectroscopy as a potent tool in exploring the complex nature of
water, the elementary substance, is reflected in an exhaustive review article [36]. Finally, contributions
focused on fundamental principles of NIR spectroscopy including theoretical NIR spectra simulation
and physicochemical research should be mentioned, highlighting the significance of pushing the
frontier of the underlying basic science [7,8]. One may note that these contributions reflect well the
diversity and dynamics of contemporary development trends in NIR spectroscopy.

This special issue is accessible through the following link: https://www.mdpi.com/journal/
molecules/special_issues/infrared_computational

As Guest Editors for this Special Issue, we would like to thank all the authors and co-authors
for their contributions and all the reviewers for their effort in carefully evaluating the manuscripts.
Last but not least, we would like to appreciate the editorial office of Molecules journal for their kind
assistance in preparing this Special Issue.
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Abstract: Background: Hyperspectral Imaging (HSI) has a strong potential to be established as a
new contact-free measuring method in medicine. Hyperspectral cameras and data processing have to
fulfill requirements concerning practicability and validity to be integrated in clinical routine processes.
Methods: Calculating physiological parameters which are of significant clinical value from recorded
remission spectra is a complex challenge. We present a data processing method for HSI remission
spectra based on a five-layer model of perfused tissue that generates perfusion parameters for every
layer and presents them as depth profiles. The modeling of the radiation transport and the solution
of the inverse problem are based on familiar approximations, but use partially heuristic methods for
efficiency and to fulfill practical clinical requirements. Results: The parameter determination process
is consistent, as the measured spectrum is practically completely reproducible by the modeling
sequence; in other words, the whole spectral information is transformed into model parameters which
are easily accessible for physiological interpretation. The method is flexible enough to be applicable
on a wide spectrum of skin and wounds. Examples of advanced procedures utilizing extended
perfusion representation in clinical application areas (flap control, burn diagnosis) are presented.

Keywords: hyperspectral image processing; perfusion measurements; clinical classifications

1. Introduction

Hyperspectral Imaging (HSI, imaging remission spectroscopy, or diffuse reflectance spectroscopy)
as a non-contact, stressless imaging measuring method is currently an intensively developing area
for diverse medical applications [1,2]. Despite the limited penetration depth in biological tissue
in the visible (VIS) and near infrared (NIR) spectral range, the effect of the specific scattering and
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absorption by tissue components in this “diagnostic window” makes it possible to retrieve information
of significant clinical value [3–11].

In perfused tissue like human skin, the remission spectra are mainly influenced by hemoglobin
(oxygenated and reduced) absorption. Additional components such as the collagen matrix, melanin, fat,
and water contribute by specific scattering and absorption processes. The main focus is the estimation
of the perfusion-related parameters of skin or similar tissue systems. Those parameters make it possible
to evaluate local (for instance wounds) and regional (for instance PAD, diabetic foot) perfusion quality,
and often also systemic attributes of the blood supply and oxygen usage [12–14]. Normally in clinical
practice, no other methods are available to gain such information in a quick and simplified manner.

For the estimation of perfusion parameters (volume fraction blood, oxygen saturation hemoglobin),
sample one- or two-layer models of the tissue with infinite depth and homogeneous distribution of the
components are frequently used. Additionally, from the NIR-part of the spectrum, the volume fraction
of water can be estimated [15]. The drawback from this is the substantial simplification of the normally
complex layered structure of skin and similar tissue systems. The penetration depth of the light, and
therefore the measuring volume, depends on the spectral range (VIS: <1 mm, NIR: 4–6 mm in skin)
caused by the specific spectral scattering and absorption in the tissue layers. In real layered tissue
systems, different layers contribute to a remission signal, depending on the wavelength. Thus, the
remission spectrum is a heterogeneous spectrum in relation to the measured volume. The perfusion
parameters estimated by these models are values averaged over different layers with unknown weights.
With these models and estimated model parameters, normally, the measured spectrum cannot be
reproduced, indicating a loss of information.

Nevertheless, even those parameters have been proven to represent a considerable information
profit, and to provide additional value for diverse clinical application areas [9–11,13,15–17].

Recently, compact and cost-efficient hyperspectral cameras for routine clinical practice have been
made available. The practicability for clinical use is accomplished by means of a simple measuring
process with laminar illumination, direct imaging by an integrated scanning process generating a
“3D-data cube“(x-y-λ), fast acquisition of a large area (i.e., approximately 5 seconds for 20 × 30 cm), and
no special measuring conditions (beside the avoidance of external light on the measuring area) [14].

In order to establish such easy-to-use cameras, and therefore, hyperspectral imaging technology in
a clinical environment, the potentially high information content of the measurement has to be exploited
and presented to the clinical user in an informative manner.

Only clinical applications concerning the skin are considered. Mainly quantitative information
about the perfusion situation should be generated. In this context, the estimation of the delivered
arterial blood quantity and oxygen saturation, as well as the oxygen consumption in the capillary
system of the measured area, are of special interest. The imaging measurement additionally allows
for the analysis of regional distributions of the perfusion quality and the identification of regional
perfusion distortions.

Besides the assessment of the intact skin, perfusion analyses of wounds generally are of special
interest, because their quality is an essential factor in wound healing processes. Therefore, the parameter
estimation method should be applicable to a wide variety of perfused tissue systems.

Although analytical solutions of the light transport equations in the diffusion approximation in
tissue systems are available [18,19], the measuring geometries often do not correspond to the use of a
HSI-camera in a clinical environment [20,21]. Simple models like two- or three-layer systems cannot
adequately represent the complexity and variability of real skin systems and generate parameters
of limited comparability. Solution procedures of the inverse problem (calculation of the model
parameters from the measured spectrum) for more realistic multilayer models are still computationally
expensive [20]. Also, solution procedures based on artificial neural networks (for instance, seven-layer
models require the reduction of the number of parameters) to be efficient, and therefore, do not always
adequately describe physiological conditions [22].
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We present an evaluation procedure for the remission spectra of skin and wounds, which
transforms all the information about the spectrum consistently into model parameters, which are
then easily accessible to physiological interpretation. However, we do not claim to generate an exact
solution to the problem of the realistic modeling of actual tissue systems.

Consistent transformation means that the measured spectrum should be completely reproduced
by the model and the determined model parameters. The consistently-determined model parameters
should be used as a more interpretable basis for further clinical estimations, as, for instance, in
classification procedures.

The objective is to exploit the information of HSI-measurements in consideration of clinical
demands and to create data processing of high practicability.

2. Results

2.1. D-Physiological Perfusion Imaging

The model-based processing described in Section 4 provides “depth profiles” for perfusion
parameters vHb and xHbO2 (with six values in each case), one value for vH2O, and one for vFat,
calculated from Λ5 and Λ6. Furthermore the depth profiles of the intrinsic structure parameters (s0,
s1), as well as the relative “layer thickness“ di (di = Di −Di−1, relative to D0

1), are available.
The profiles are presented independently from the layer thickness as a series of parameter values

(bars) (see Figure 6). The values of vHb are scaled according to the layer thicknesses determined by the
procedure. This form of presentation has been proved to be the most informative in practice.

From the perfusion profiles (for every image pixel), four survey images are generated, depicting
vHb and xHbO2 for the upper layers 1 and 2 (vHb_1, xHbO2_1) and for the deeper layers 5 and 6
(vHb_2, xHbO2_2). The values are color-coded in blue (low), via green (normal) to red (high).

To evaluate the physiological interpretation and validity of the model parameters, the spectra of
normal perfused skin (healthy volunteers) and from patients in different clinical areas are recorded
and the depth profiles analyzed and proved in terms of their physiological plausibility.

2.1.1. Example: Occlusion Test

As a first example, the data from an occlusion test with healthy volunteers are presented. The left
arm has been occluded (venous and arterial) and the hands were measured with a HSI camera with
the right hand as a reference (Figure 1). The occlusion test contains four phases: normal perfusion,
venous occlusion, arterial occlusion, and reperfusion after arterial occlusion. The survey images are
shown in Figure 2, and the depth profiles from the test areas in Figure 3.

Figure 1. (a) Measurements of the hands in an occlusion test; right: hand of the occluded arm, left:
reference hand; the white quadrates indicate the tested areas from which the profiles in Figure 3 were
determined; (b) color scale vHb [0...2], c: color scale xHbO2 [0 . . . 1].
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Figure 2. Survey images; color-coded parameters from left to right: vHb_1, xHbO2_1 (superficial),
vHb_2, xHbO2_2 (deep); (a) normal perfusion, (b) venous occlusion, (c) arterial occlusion, (d) reperfusion
after arterial occlusion. Color scales for vHb and xHbO2, as depicted in Figure 1.

 

Figure 3. Perfusion profiles averaged over the test areas in Figure 1; the profiles depict the vHb- and
HbO2-values for 6 depth layers (layer 3 in Figure 8 has been split into 2 layers 3.1 and 3.2) from left
to right; the thickness of the layers are not depicted; vHb are index values [0 . . . 2.5], xHbO2: [0...1];
left column: reference hand; right column: test hand; (a) normal perfusion, (b) venous occlusion, (c)
arterial occlusion, (d) reperfusion after arterial occlusion.

9



Molecules 2019, 24, 4164

The survey images (Figure 2) clearly show the reaction of vHb and xHbO2 in the different phases.
The depth profiles of the parameters can be plausibly explained as follows:
“Normal“ perfusion (a): the profiles from the reference and the test hand are similar; vHb shows

the normal distribution over the layers 1–6; xHbO2 in the superficial layers (1 and 2) is approx. 0.36
due to oxygen consumption in the capillary system; xHbO2 in the deep layers (5 and 6) are a mixture
of arterial (approx. 98%) and venous blood (0.36) from the capillary system; in the reticular system, the
volume fraction of both arterial and venous blood are principally equal (in stationary states), so that
xHbO2 is the mean value of venous and arterial xHbO2;

Venous occlusion (b): vHb increases in all layers, but mainly in 5 and 6, because blood cannot
flow off; xHbO2 decreases due to consumption and because the arterial supply is also hindered by
venous occlusion, but there is still an arterial pressure in the capillary system;

Arterial occlusion (c): no blood flow; the available blood is gathered in the deeper vessels (layers
5 and 6); vHb in layers 1 and 2 is lower than for venous occlusion because of a lower arterial pressure;
xHbO2 strongly decreases due to consumption;

Reperfusion (d): expansion of all vessels, high blood flow; due to the high flow xHbO2 increases
in the capillary system because (stationary state) xHbO2 in the superficial layers depends of the
blood flow.

It is interesting to note the systemic reaction on the occlusion observable in the reference hand; the
systemic blood flow increases in the deeper vessel system, while the superficial vHb (layers 1 and 2)
decreases in the reference hand; due to the high flow, xHbO2 increases.

After the reperfusion phase, the perfusion returns to normal values.

2.1.2. Example: Flap Transplant for Wound Coverage

In the following example, the perfusion evolution of a skin graft over twelve days is shown
(measurement each second day).

The depth profiles are available for every point on the flap, and can be used to analyze the
perfusion quality and distribution over the flap in detail over time. With close-meshed measurements,
over time, developing perfusion problems can be detected and evaluated very early.

The survey images show the decreasing blood supply from the right side of the flap (Figure 4
vHb_2 and Figure 5a,b vHb_2), clearly indicating a distortion of the arterial conjunction already
observable at day 5 (Figure 5b).

 

Figure 4. Transplant at day 1; survey images vHb_1, xHbO2_1, vHb_2, xHbO2_2; the arterial influx is
on the right side of the flap; color scales for vHb and xHbO2, as depicted in Figure 1.
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Figure 5. Same transplant measured at the following days (a) day 3, (b) day 5, (c) day 7, (d) day 9, (e)
day 11, (f) day 13); vHb_1, xHbO2_1, vHb_2, xHbO2_2; color scales for vHb and xHbO2, as depicted in
Figure 1.

The survey images (Figure 5) clearly show the abated arterial blood supply over time.
The automated analysis is supported by image registration transforming the flap in every image

to the same position and dimension. For automated analyses, the complete depth profiles are used.
With this methodology, an advanced procedure for describing and analyzing the perfusion

dynamics in flaps is realizable.

2.1.3. Burn Wounds

The extended parameters have been used in a first attempt to generate a classification process for
burn wounds.

Fundamental to the degree of skin damage by heat impact for the healing potential is the remaining
perfusion quality in the wound area. With depth profiles, the perfusion situation can be depicted and
evaluated on a new, higher level.

The example shows typical depth profiles of burn wounds with different degrees of damage (burn
degrees: superficial, partial-thickness, full-thickness) (see Figure 6), as well as the classification of a
burn wound on a hand, clinically assessed to be of partial-thickness (see Figure 7).
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Figure 6. Depth profiles vHb, xHbO2 for normal skin (a) and different burn degrees (b) superficial, (c)
intermediate (superficial/partial), (d) partial-thickness, (e) full-thickness).

Figure 7. (a) Burn wound on a hand, (c) perfusion survey images (color scales for vHb and xHbO2

as depicted in Figure 1) and (b) fuzzy classification (blue: superficial, green: partial-thickness, red:
full-thickness); (d) perfusion profile from the burn area.

This first attempt of a classification process was constructed based on a small number of burn
wounds (i.e., approx. 20). Additional to the perfusion parameters, the intrinsic structure parameters
of the model were evaluated, and showed characteristic differences between the burn degrees. Also,
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spectral features, for instance, quantitatively describing the degree of tissue necrosis, are used in the
classification process.

The perfusion profiles show significant differences between the burn degrees; for instance, a
strong hyperemic reaction for superficial and intermediate partial degrees. With increasing degrees
of damage, vHb decreases in all layers; the damage of the deeper vessels is obvious in Figure 6e
(full thickness).

Theoretically, with these parameters, an efficient classification can be constructed, but the time
after the burn has to be included as a fundamental factor. Especially for intermediate burn degrees, the
development of the perfusion in the first 2–3 days is essential for the assessment of the healing potential.

With this methodology, a significant increase in terms of the quantitative and qualitative nature of
descriptions and evaluations of burn wounds and wound processes seems to be achievable; therefore,
a reliable diagnosis and treatment supporting procedure for burn medicine is foreseeable.

2.2. Comparison with Perfusion Parameters Based on a One-Layer Model

Actual standard data processing of hyperspectral imaging spectra involves the calculation of
perfusion parameters based on a model consisting of a homogeneous, infinite, one-layer system with
hemoglobin as the main component [14,15]. These parameters are comparable, and were validated
with other parameters from standard tissue oximetry systems. The perfusion parameters are THI,
StO2, and NIR-perfusion. THI (tissue hemoglobin index) denotes the relative volume content of
hemoglobin/blood in the measuring volume, StO2 the oxygen saturation of the hemoglobin, and
NIR-perfusion a measure of perfusion quality calculated from the NIR-spectral region. The algorithms
for THI and StO2 as described in [14] and [15] use wavelength segments from 500 to 800 nm, restricting
the depth sensitivity. In the NIR-region (NIR-perfusion), there is no separation of relative volume
content and oxygen saturation.

Because the remission spectra can be completely reproduced by the five-layer model parameters,
the THI-, StO2-, and NIR parameters can be principally calculated from the model parameters. THI
and StO2 are related to a mixture of the vHb resp. xHbO2 of layers 1–4, the NIR-perfusion parameter
is a function of (vHb � xHbO2), and vHb and xHbO2 of layers 4–5.

Although these one-layer model parameters have been shown to be of high clinical value, the
new five-layer model represents a description of the perfusion situation, especially differentiating
between the superficial capillary blood volume and oxygen saturation and the parameters of the deeper
vessel system. This gives rise to better clinical estimations of perfusion quality, or disturbances of the
perfusion system. This additional clinical value will be described for different application areas in
subsequent publications.

2.3. Wound Healing Disorders

Objective diagnostics in wound healing disorders is a long-term problem with no implications
in daily life. The intra- and inter- observer difference is often discussed in the literature [23,24]. A
validated, computer-assisted measurement tool based on conventional RGB-imaging has been available
for some fifteen years [25,26]. Based on color segmentation, the software is able to quantify the
surface, wound borderline, diameter, numeric and percentile part of necrotic tissue, and the fibrin
and granulation tissue. Based on this quantification, we are able to analyze the progress of surface
reduction, the progression of granulation tissue, and part of the fibrin and necrotic tissue. If the
progress of granulation tissue is reduced, we have to check the local therapeutic concept or identify the
underlying reasons, e.g., perfusion, edema, oxygenation, infection, etc.

Additionally, perfusion can be measured by ultrasound and oxygenation with TcPO2; however,
the examination is time consuming, and edema can only be measured with the circumferences of
lower legs.

With hyperspectral imaging, all the following parameters are available within one measurement:
perfusion, as described above; based on the characteristic features of the remission spectra, a detailed
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and quantified segmentation and classification of the wound area, providing portions of necrotic tissue,
fibrin, granulation and epithelial tissue; and tissue which is endangered by insufficient perfusion.

The advanced and specific methodology for the clinical application areas addressed in the
examples will be described in detail in separate articles.

3. Discussion

The requirements for the development of the data processing were:

- The tissue model should describe the physiological structure in a manner which is sufficiently
detailed to enable information retrieval, especially concerning the perfusion situation with high
clinical value (adequacy);

- The modeling should be able to reproduce real measured remission spectra from skin and wounds
over the complete spectrum in detail; the variety of spectra is described in the confidence range,
and should sufficiently cover a variety of clinical problems (consistency);

- The solution of the inverse problem should be practicable for imaging measurements with the
described measuring geometry in clinical routine environment; the processing should be fast for
imaging measurements (practicability).

The challenge is to find a reasonable compromise between the flexibility and adaptivity of the
tissue model (many parameters), the physiological informative value, and the physical–mathematical
correctness of the solution of the inverse problem.

The described tissue model seems to be sufficiently detailed to offer insights into the perfusion
situation, and fulfills the adequacy requirement. The determined model parameters represent perfusion
values of the capillary system and the deeper vessel system, and seem to be more informative concerning
the perfusion situation.

The values have been proved to be physiologically and clinically plausible (up to now), and the
multitude of parameters constitute a better basis for classification processes.

The processing also fulfills the consistency and the practicability requirement. A complete
processing of a measurement image with a 50% tissue content needs approx. 10–15 seconds for the 3D
physiological perfusion imaging result to be determined.

Many details of the spectrum forms are explainable by the modeling and the dynamics of measuring
depth variation over the spectral range. In Λ3, the measuring depth changes very dynamically with the
wavelength. Structures such as those at 650nm and 715nm, the rise at 600nm, as well as in Λ5 and Λ6,
are only explainable by the dynamic transition between different layers, and have to be distinguished
from biochemical contributions to the spectrum.

The other side of the compromise is that the modeling of the radiation transfer through the system
is not physically stringent:

The spectral segments are selected by simple plausibility arguments based on knowledge about
the penetration depth in perfused human tissue. By this predetermined dependence upon measuring
depth, the spectral segments define the layer thickness relative to the standard value D0

1.
The heuristic visibility function, enabling the layer separation and differentiation in the successive

procedure is based on a theoretical and simulative analysis. The specification of this function, as well
as the dependence of the mean path length on the wavelength, is accessible to further refinement
and optimization, for instance by expanding to higher orders (taking into account the nonlinearity of
the “visibility”). The globally fixed function D = f A

D (A) could be empirically diversified for different
spectrum forms and different layer structures.

The use of globalized heuristic functions does not sufficiently correspond to the variety of
individual forms of skin systems; the interpretation of the results has to assessed with respect to
these limitations.

The parameters have to be empirically validated concerning their physiological interpretation
and clinical information content (in consideration of the different clinical context).
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Clinically-validated classification processes based on the model parameters will account for
gaining confidence in the usability and adequacy of the parameters.

The data processing of HSI remission spectra based on a five-layer model of perfused tissue
generates perfusion parameters for every layer and presents them as depth profiles. The evaluation
procedure transforms the whole information of the spectrum consistently into model parameters so
that the measured spectrum can be completely reproduced.

For the first time, we present a complete system of powerful hyperspectral imaging data acquisition
and data processing with high applicability in clinical practice. The main advance of the data processing
method is its enhanced information content with highly plausible physiological interpretation and
high clinical relevance, which is currently not available with other methods.

The data processing is integrated into a piece of software running on a computer which is
associated with the hyperspectral camera. The data processing requires approx. 10–15 seconds, so that
directly after data acquisition, the perfusion parameters are presented to the physician and the patient
(bedside diagnostics).

4. Methods and Materials

4.1. Hyperspectral Measuring System

All measurements were performed with a HSI-camera TIVITA® Tissue (Diaspective Vision GmbH;
Am Salzhaff, Germany) with written consent from volunteers. Data acquisition from patients was
conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics
Committee of the Ärztekammer Sachsen-Anhalt, Germany (35/17). All patients gave informed consent.

The camera was a compact measuring system certified for clinical use [27]. Remission spectra
were recorded in the spectral range of 500 to 1000 nm with a resolution of 5 nm; the measuring area
was approx. 20 × 30 cm, standard image size was 640 × 480 Pixel, and the recording needed approx.
5 seconds.

4.2. Hyperspectral Imaging Data Analysis and Processing

To ensure good qualitative and undisturbed measuring data, the following tests were performed:

- Regular tests of the camera calibration and comparison of spectra from reference objects with
corresponding reference spectra.

By software:

- Quality tests of the spectra concerning wavelength-dependent noise to ensure that relevant
spectral details for parameter estimation are presented in sufficient quality;

- Tests concerning disturbing influences on the spectra, such as reflection, external light, and strong
inclination of parts of the measuring area.

To define adequate quality measures, experimental tests and numerical Monte Carlo
simulations [28] were performed.

In the preprocessing procedure of the measuring data, the data quality was tested; data of
insufficient quality were excluded from further processing.

4.2.1. Model-Based Analysis

The skin is modeled as a five-layer-system (Figure 8). Every layer is regarded as homogenous,
and is provided with the relevant components:

- Layer 1 (stratum corneum, epidermis): melanin, vHb, and xHbO2; vHb denotes the relative
volume fraction of total hemoglobin, xHbO2 the oxygen saturation of hemoglobin; layer 1 contains
also blood and xHbO2, because this layer cannot be sufficiently separated from the next;
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- Layer 2 (upper dermis: papillary or capillary system): vHb, xHbO2, and collagen structure;
- Layer 3 (reticular dermis): vHb, xHbO2, and collagen structure;
- Layer 4 (deep dermis, subcutis): vHb, xHbO2, vH2O, vFat, collagen structure, and connective

tissue; vH2O and vFat denote the volume fractions for water and fat;
- Layer 5 (subcutis): vHb, xHbO2, vH2O, vFat, and connective tissue.

 

Figure 8. Five-layer skin model.

For every layer, the absorption of hemoglobin, water, and fat is explicitly described in a linear
approximation; the background absorption and scattering by the collagen matrix, vessels, and
connective tissue is jointly described by a linear function containing the so-called intrinsic structure
parameters:

“Absorbance” A = ln
(

R
I0

)
= s0 + s1l + L

∑
i

ϑi εi (1)

where R: remission, I0
: incident intensity, S(L) = s0 + s1(L): intrinsic contributions to absorption and

scattering; ϑi: volume fraction, and εi extinction coefficient of component i; L denotes a mean path
length, which could be calculated from the path length distribution [29].

Especially for hemoglobin, the derivates Hb ad HbO2 are represented in the form

ϑH (εHbO2 + x εHb) (2)

with ϑH as the volume fraction of the total haemoglobin and x as the oxygen saturation of the
haemoglobin.

The measuring geometry used with this HSI-camera with laminar illumination precludes the
separation of different layers by technical control of the path length distribution. The remission at one
measuring point is given by an integral over many path length distributions; the measuring volume
defined by this distribution varies with the wavelength, depending on the scattering and absorption.

The form of the spectra is mainly determined by the absorption spectra of hemoglobin (mainly
in the range 500–600nm and around 760 nm), as well as by the water and fat absorption spectra
increasingly from approx. 700 nm (see Figure 9). The remission spectra contain contributions from the
different layers in the measuring volume with a measuring depth depending on the wavelength.
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Figure 9. Remission spectrum represented in the “absorbance“ mode. Spectral segments Λi and
schematic: skin layers and approximate measuring depth in the spectral segments.

4.2.2. Transformation of the HSI-Remission Spectra

In this modeling, the parameters in L ϑ cannot be determined separately (the scattering is not
described explicitly in the model), and depending on the wavelength, L(Λ) may have different values.

Because layer thickness and path length distributions are not explicitly determinable parameters
in this model, a depth scale cannot be defined. To obtain a depth profile, we have to make concrete
statements about the measuring depth and the path length.

Basis is an analysis of the path length distribution which is dependent on the wavelength to
estimate L(Λ); therefore, the measuring depth D is defined as the maximal depth with minimal intensity
Imin: path length distribution h(l, L) Þ L(L) = f (s(L), a(L)); s: scattering; a: absorption; measuring

depth D: I
I0

= e−a L = IminÞ Lmin =
− ln(Imin)

a ; without further knowledge about the dependencies
between D and L, the measuring depth D corresponding to the path length Lmin is supposed to be
D = f a

D Lmin.
Because the actual path length distribution is not known, as a first approach, a global function

D(L) = f A
D (A(L)) (≈ 1

a0(L)
) is used, including a globally fixed a0(λ). Thereby, the measuring depth D for

a spectral segment Λ becomes determinable using the total absorbance A of the system (corresponding
to the assumption of a homogenous system and the dependence of the measuring depth on μa

(absorption) and μs (scattering)).
Thereby, different measuring depths can be assigned to different spectral segments:
In the segment 535–585nm (Λ2), the measuring depth is least and defines layer 1. The segment

500–535 (Λ1) comprises layers 1 and 2, 585–595nm (Λ3) layers 1, 2 and 3. The segment 595–690nm (Λ4)
additionally comprises layer 4. The segment 690–825nm (Λ5) comprises all layers (1–5), and segment
825–1000nm (Λ6) layers 1–4.

In Λ3, the measuring depth changes very dynamically from layers 3 to 5; therefore, the segment is
further subdivided in Λ3a und Λ3b.

Due to the higher absorption of H2O and fat, the measuring depth is reduced in Λ5 und Λ6 in
comparison to Λ4. Water and fat fractions can only be determined in Λ5, and especially Λ6, with
sufficient reliability.

It has to be emphasized once again that the layers are defined by the measuring depths of the
spectral segments.
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The spectral segments are not strictly fixed, but may be adapted to the actual form of the total
absorbance spectrum, and are therefore overlapping.

The different layers contribute differently to the resulting remission spectrum depending on the
spectral segments. The nonlinear relation between the layer contributions and the remission spectrum
is not explicitly modeled in this framework. Instead, to achieve a separation of the layers, a heuristic
function is introduced describing the “visibility” of a lower layer (layer 2) underlying an upper layer
(layer 1) in a first order linear approximation:

Visibility function fV = f 0
v

(
D2 −D1

D1

)α
R1
βe−a1L1 (3)

where D1 denotes the measuring depth (layer thickness) of layer 1 and D2 of layers 1 and 2, L1 is the
mean path length corresponding to the measuring depth D1, and R1 the remission of layer 1.

In a first approximation, the pathways through layer 2 are only affected in layer 1 by absorption
a1, and therefore, by path length L1 (β = 0). The exponent α, determining the volume portion of layer
2 relative to layer 1, is globally fixed.

The determination of the parameter of the visibility function is based on comparison with Monte
Carlo simulations of two-layer systems.

Because D1 resp. L1 are not known for individual measurements, standard values are defined: L0
1 =

D0
1

f A
D

.

In the first step, for every spectral segment, a numerical adaptation to a homogenous equivalent
system (i.e., a homogeneous, one-layer model with the relevant components) is performed. The
adaptation quality is a measure of the appropriateness of the segment selection, and therefore, for the
layer structure. Inside the segment, the dependence on the measuring depth should be low.

For the approximate determination of the layer contributions, two-layer modeling is performed
successively for the underlying layers:

1. The volume captured by Λ2 is defined as layer 1. From the remission R1(Λ2), the parameters
S1(L2) and ϑ1 L1(L2) (L1(L2) = L0

1) are determined.

2. In Λ1, layer 2 is also captured; the combined remission R12(Λ1) can be presented in the form
R12(L1) = R1(L1) + fV(L1)·R2(L1), with fV as the visibility function. R1(Λ1) results from
S1(L1) and ϑ1 L1(L1), with L1(L1) = fL(L) L0

1.

From the remission spectrum R2(L1) =
R12(L1)−R1(L1)

fV(L1)
, the parameters of layer 2 are determined.

The parameters refer to the path length ΔL2 = L2(L1) − L1(L1) (approximately), and are finally scaled
with respect to the standard value L0

1. a1 L1 in the visibility function is determined using the total
absorbance A(Λ1).

3. In the further segments, i.e., Λ3 etc., the further layers (3, etc.) are successively captured. The
processing is analogue to 2. (R123 = R12 + fV(L3) R3, etc.).

From this result, the component parameters of the layers are (s0, s1, {ϑi L0
1

}
) and the visibility

function fV(Li) (parameter D) for the actual spectral segments is Λi. D is the mean measuring depth of
the actual layer. A depth range [Dmin . . . Dmax] for every layer is stored. With these values and the
global function f A

D (A), the spectral segments can be reconstructed, with A as the absorbance of the
total HES.

4.2.3. Reconstruction of the Spectrum

With the spectral segments, the layer parameters and the visibility function, the complete spectrum
can be reconstructed successively:

1. With Λ2 and the parameters of layer 1, R1(Λ2) is calculated.
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2. With Λ1, the parameters of layer 2, D2(Λ1), R2(Λ1), and A1(Λ1), R12(Λ1) is calculated.

Based on R12, the parameters of HES12(Λ1) are determined.

3. With Λ3 and the parameters of layer 3, R3(Λ3) is calculated from D2(Λ3) and D3(Λ3), as well as
R12(Λ3) and A12(Λ3). With HES12, R123(Λ3) is calculated.

Analogue processing for the further layers.
Consistency: With the model parameters determined by this process, the measured spectrum

can be reproduced nearly perfectly (see Figure 10). This means that the information contained in the
spectrum is practically completely transformed into the model parameters.

Figure 10. Measured spectrum (absorbance) (red) and reproduced spectrum by the model (black).

Uniqueness: Generally, there is no unique adaptation maximum in the (model) parameter space,
especially for the spectral segments, except Λ2 and partially Λ5 and Λ6. To reduce potential ambiguity,
the pathway between the actual maximum and the successively following maximum for the next
spectral segment is estimated by additional intermediate segments (not fulfilling the requirement of
quasi-stationarity with respect to the measuring depth). Thereby, the actual valid maximum can be
selected with a higher level of probability.

Principally, in each case, even the global maximum of adaptation cannot be regarded as the “true“
solution due to the limited reality of the modeling system.

4.2.4. Parameters and Confidence Range of Modeling

The parameters vHb und xHbO2 named in the layer model are related to the model parameters:
vHb = ϑH1 L0

1; xHbO2 ≡ x in formula (2).
Because L0

1 is a globally fixed parameter, vHb represents an index value (range [0...2.5]); the
x-values are in the range [0...1].

The physiologically-acceptable variation ranges of the model parameters define the variety of
spectrum forms representable by the model. In the processing procedure, every real spectrum is
proved to be within this confidence range before further processing.

The reproduction quality of the spectrum is a test of consistency.

5. Conclusions

Despite the aforementioned limitations, the presented processing method provides a more
differentiated outcome in relation to the perfusion situation in the layered tissue structure, and
comprehensively utilizes the information content of hyperspectral measuring data.

19



Molecules 2019, 24, 4164

The examples show the potential for creating a new, valuable, clinical procedural and investigative
category in different medical fields. The processing is a further step for establishing hyperspectral
imaging in medicine, and considers the measuring conditions and essential requirements for
clinical practicability.

To create a supporting powerful diagnosing system using hyperspectral imaging technology,
model-based data processing has to be complemented by an efficient, knowledge-based method.

6. Further Validations and Developments

A fundamental problem is the lack of reliable and accurate reference methods for detailed
perfusion values in the layers. A systematic comparison with a Monte-Carlo simulation is in progress,
as well as a comparison with spectroscopic measurement methods, enabling control of the measuring
depth, and other methods depicting the layer structure, e.g., OCT.

Methodical progressions concern the improvement of the modeling of radiation transport, the
separation of the layers, and more generally, a reduction of the described limitations.
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Abstract: Melamine (IUPAC: 1,3,5-Triazine-2,4,6-triamine) attracts high attention in analytical
vibrational spectroscopy due to its misuse as a food adulterant. Vibrational spectroscopy [infrared
(IR) and Raman and near-infrared (NIR) spectroscopy] is a major quality control tool in the detection
and quantification of melamine content. The physical background for the measured spectra is
not interpreted in analytical spectroscopy using chemometrics. In contrast, quantum mechanical
calculations are capable of providing deep and independent insights therein. So far, the NIR
region of crystalline melamine has not been studied by quantum mechanical calculations, while
the investigations of its IR spectra have remained limited. In the present work, we employed
fully anharmonic calculation of the NIR spectrum of melamine based on finite models, and also
performed IR spectral simulation by using an infinite crystal model—periodic in three dimensions.
This yielded detailed and unambiguous NIR band assignments and revised the previously known IR
band assignments. We found that the out-of-plane fundamental transitions, which are essential in the
IR region, are markedly more sensitive to out-of-plane inter-molecular interactions of melamine than
NIR transitions. Proper description of the chemical surrounding of the molecule of melamine is more
important than the anharmonicity of its vibrations. In contrast, the NIR bands mostly arise from
in-plane vibrations, and remain surprisingly insensitive to the chemical environment. These findings
explain previous observations that were reported in IR and NIR analytical studies of melamine.

Keywords: melamine; FT-IR; NIR spectroscopy; quantum chemical calculation; anharmonic
calculation; overtones; combination bands

1. Introduction

Melamine (IUPAC: 1,3,5-Triazine-2,4,6-triamine) has wide industrial importance, nowadays being
used e.g., in the manufacture of polymers and resin [1], concrete [2], flame-resistant materials [3], and it
may be utilized in the production of nanomaterials (e.g., N-doped carbon nanotubes) [4]. In the past,
it was even more widely applied in industry and agriculture [5]. It was unfortunate that melamine
has become infamous worldwide as a dairy adulterant after it caused a milk safety crisis in 2008
with severe casualties (290,000 people affected with 51,900 hospitalized in China only) [6]. That event
had a global impact on the food industry, food production, supply chains, and corresponding legal
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regulations [7,8]. It strongly echoed in the field of food quality control, leading to a strong stimulus for
development and the adaptation of adequate analytical routines [8–10]. A number of other food safety
incidents in recent years have induced particular pressure on this area of analytical chemistry [11,12].
The methods that are based on vibrational spectroscopy [infrared (IR), Raman and near-infrared (NIR)]
have become particularly important elements of this effort in controlling the food safety at every stage
of its production and supply [13–15].

Vibrational spectroscopy stands out as a non-invasive, widely applicable, low-cost, and quick
time-to-result analytical method. Therefore, it combines advantages that are highly valued in
analytical chemistry. Despite being grouped together, the key differences among these three kinds of
techniques should be noted. IR (4000–400 cm−1) spectroscopy elucidates chemical information from the
fundamental vibrational transitions. In contrast, the signal that was measured in NIR (10,000–4000 cm−1)
spectroscopy originates from the excitations of higher quanta transitions, mostly first overtones and
binary combinations [16–18]. Raman spectroscopy also provides information regarding fundamental
vibrations, but through a distinctly different working principle than IR spectroscopy. The differences
in the wavelength regions and underlying physical background translate into distinct differences
in the instrumentation and applicability of these methods. Each of these techniques offer unique
advantages, but for the detection/quantification of melamine content in milk, NIR spectroscopy may
be favored [9]. A number of factors contribute to this fact [19]. Higher sample volume resulting from
low NIR absorptivity of matter in general, and water, in particular, allows for more straightforward
measurement of transmittance or reflectance of the milk sample. The same may be achieved with ATR-IR
(Attenuated Total Reflection IR) approach; however, the fiber probe compatibility of NIR instrumentation
gives it superior flexibility in high-volume analysis. NIR spectroscopy also benefits from the largest
tolerance for the sample inhomogeneity. Raman spectroscopy is suitable for the measurement of aqueous
samples, but for similar analytical applications Raman instrumentation is often more expensive. Finally,
in NIR spectroscopy, a strongly stimulated development for miniaturization [20,21] has culminated in
highly affordable micro-spectrometers, which are available under 300 USD nowadays [22]. In a strict
application to melamine detection/quantitation, all three techniques have been successfully used in the
literature 9]. However, NIR spectroscopy demonstrates the best analytical performance in this case [9],
on top of its practical advantages [23,24].

The nature of NIR spectra (overlaying overtones and combinations) [16–18] largely limits their
interpretability [25,26]. Chemometric methods do not provide physical insights on the analyzed
sample, and NIR spectroscopy is often used as a “black-box”. In contrast, for IR and Raman
spectroscopy, this limitation is less severe due to its more simple spectra with milder fundamental
band overlapping [27,28]. Coincidently, quantum chemistry offers affordable methods (harmonic
approximation) for the adequately accurate simulation of IR and Raman spectra [29,30]. In contrast,
prediction of NIR bands require resource intensive anharmonic methods [31,32]. The difference in
resource demand (harmonic vs. anharmonic approximation) is significant, and theoretical NIR studies
of complex molecules have only recently appeared [33–38]. Lately, we have reported the quantum
mechanical calculations of NIR spectra of various molecules in solution, liquid, and solid state,
including short- [34], medium- [35], and long-chain [36] fatty acids. These studies could have been
used, e.g., for the interpretation of the meaningful NIR bands that influence the chemometric models
used in quantification of the content of phytopharmaceutical compounds in natural drugs [37–39].
On the other hand, simulations of IR spectra in crystalline phase that use a proper representation of
infinite crystal lattice by a three-dimensional (3D) periodic model remain equally rare.

In the literature so far, quantum chemical calculation vibrational studies of melamine have been
limited to finite models and harmonic approximation [40,41]. Mircescu et al. have harmonically
calculated IR and Raman spectra of melamine [40]. They have used the single molecule model,
and cluster of 10 melamine molecules. They have compared the spectra that were calculated with these
two approaches and judged that the 10 molecule cluster model leads to a better quality of the calculated
IR and Raman spectra of melamine. They concluded that the hydrogen-bonding of melamine in crystal

23



Molecules 2019, 24, 1402

needs to be taken into account in order to yield accurate calculated vibrational spectra. Accordingly,
the calculations that are based on the 10 molecule cluster have led to much improved simulated IR
and Raman spectra. Yuan et al. have drawn similar conclusions [41] in their quantum mechanical
calculations of IR spectra of melamine. They have used a single molecule model, a four-molecule
cluster with two hydrogen-bonds, and a large cluster consisting of 32 molecules of melamine featuring
30 intermolecular hydrogen-bonds. They have compared the IR spectra that were calculated on the
basis of these models and concluded that proper representation of the hydrogen-bonded structure of
melamine is essential in improving the quality of the calculated IR spectrum [40,41].

Therefore, the earlier studies [40,41] have recognized the importance for spectra calculation of the
proper description of the chemical neighborhood in crystalline melamine, in particular, the hydrogen
bonding network. However, the methodology in these studies has been limited to finite models,
clusters of melamine molecules (10 to 32 molecules). Although improved vs. single molecule models,
the finite boundary of these model clusters has led to the distortions of the molecular structure as
compared with the structure of the crystal lattice of melamine. This has resulted in a number of
“phantom bands” appearing in the calculated IR and Raman spectra, which could not be observed in
the experimental spectra [40,41]. Additionally, these previous studies have been limited to harmonic
approximation, which made any calculations of NIR bands unavailable. Accordingly, there are no
NIR spectra simulations of melamine of any kind reported so far. On the other hand, melamine was
intensively focused on in analytical near-infrared reflectance spectroscopy (NIRS) [9,42–46]; however,
these studies have not been able to derive insightful physicochemical information on melamine.

The purpose and novelty of the present study is to explore NIR vs. IR spectra correspondences in
crystalline melamine. To achieve this, for the first time, we employ anharmonic quantum mechanical
calculations of NIR spectra of melamine, by using two different approaches, which we directly compare.
Moreover, we improve the previous investigations of IR spectra in a well-defined crystalline lattice
by employing an infinite three-dimensional (3D) periodic model of the crystalline melamine, for the
first time as well. This yields more accurate calculated IR spectrum, but it also is essential in obtaining
good comprehension of a number of relevant effects. In example, the impact of anharmonicity may
become well separated from the influence of the chemical neighborhood. The distinct difference in the
importance of inter-molecular interactions for the accurate reproduction of IR and NIR transitions of
melamine is found and explained. This means that, in contrast to IR bands, the accurate reproduction
of NIR bands requires significantly less attention in describing the long-range, and in particular,
inter-plane, interactions in crystalline melamine.

2. Results and Discussion

2.1. Experimental and Simulated IR Spectra of Crystalline Melamine

The simulation of the IR spectrum of melamine in polycrystalline state requires a proper
representation of the long-range ordered structure (Figure 1). There exists a decisive decrease in the
accuracy for the IR spectrum calculated on the basis of finite model, even in anharmonic approximation
(Figure 2). Such spectra are markedly poor and numerous bands are missing (Figure 2C,D). In contrast,
the spectrum that was calculated for infinite (3D periodic) model (Figure 2B) correctly reproduces
all of the major experimental bands (Figure 2A). The overestimation of the calculated peak positions,
particularly noticeable above 3000 cm−1, likely results foremost from neglecting the anharmonic effects
that are typically strong in the X-H stretching region. However, this may be accurately corrected by
employing wavenumber scaling. This observation may appear obvious; however, in light of NIR
simulations (as discussed in Sections 2.2 and 2.3), it leads to farer-reaching conclusions. In Section 2.4,
we will explore this topic in detail.

Therefore, the discussion of the IR bands will be based on harmonic periodic system calculations.
The neglecting of anharmonicity in the case of periodic system calculations did not decrease noticeably
the agreement with the experimental spectrum. We have carried out two separate calculations of IR
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spectra for the lattice model (B3LYP/Gatti and B3LYP/TZVP; Figures S2 and S3 in Supplementary
Materials). The differences between these two simulated spectra are qualitatively negligible, with the
exception of the low-lying bands in the region of 900–650 cm−1 (Figure S3 in Supplementary Materials).
Accordingly, the overhead computing cost that is introduced by the larger TZVP basis set did not
return any profit in the case of melamine. The accuracy of scaled B3LYP/Gatti allows for unambiguous
band assignments in the entire 4000–650 cm−1 region of crystalline melamine (Figure 3A,B; Table 1).

Figure 1. Molecular structure of melamine. (A) single molecule; (B) the content of a unit cell; (C) 3 × 3
× 3 supercell. The structure after optimization (B3LYP\Gatti) is presented in Figure S1 (Supplementary
Materials).

A good comprehension of all IR bands in the crystalline melamine was accomplished; the resulting
assignments are presented in Figure 3A,B and in Table 1. The upper IR region (X-H stretching region) is
mostly populated by νasNH2 bands; three of them are separated, while the fourth one (at ca. 3188 cm−1)
overlaps with the neighboring strong νsNH2 peak. That single νsNH2 band at 3122 cm−1 has the highest
intensity in this region. These features are very well reflected in the calculated spectrum. The broadening
that was observable just below 3000 cm−1 in the experimental spectrum Figure 3A) originates from the
strong anharmonic effects that occur because of the long-range ordering of hydrogen-bonded melamine
molecules, which exists in the crystal lattice [47,48]. These effects have well-known impact on IR
spectra [47–50].
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Figure 2. Comparison of the experimental Attenuated Total Reflection IR (ATR-IR) spectrum of
polycrystalline melamine (a) with the calculated spectra (b–d). The spectra were calculated in harmonic
((b) B3LYP/Gatti for periodic (3D, infinite) model; (c) B3LYP-GD3BJ/SNST for single molecule model)
and anharmonic ((d) GVPT2//DFT-B3LYP-GD3BJ/SNST) approximation. For the calculated spectra,
no scaling was applied in this figure.

The lower IR region (fingerprint region; 1700–650 cm−1 in the present case; Figure 3B) of melamine
features rather well separated bands. The most notable group of the intense bands in the region of
1650–1430 cm−1 primarily arises from in-plane NH2 deformations (scissoring and rocking modes of
NH2; in-plane ring modes and C-N(H2) stretching modes). The internal coordinates corresponding
to these vibrations are rather highly mixed (Table 1). In contrast, the bands appearing at 1194 and
1174 cm−1 stems from relatively “clean” NH2 rocking modes. However, the intensities of those two
bands are weak. These observations will find good confirmation in the subsequent analysis of the NIR
spectrum of melamine. The next band (1024 cm−1) has a moderate intensity and it corresponds to two
transitions; δrockNH2 mixed with δipring (at calc. position of 1035 cm−1) and δrockNH2 mixed with
νC-N(H2) and δipring (at calc. position of 1021 cm−1). The very strong band at 810 cm−1 originates from
the out-of-plane deformations. The transitions corresponding to less mixed δrockNH2 and δrockNH2

give rise to weak bands at 768 and 675 cm−1 (calc. 755 and 661 cm−1), respectively (Figure 3B and
Table 1). Thus, the mixing of internal coordinates can consistently be noted for the corresponding
bands with stronger intensities.
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Figure 3. Band assignments in the ATR-IR spectrum of polycrystalline melamine based on scaled
periodic//B3LYP/Gatti calculated spectrum. Band numbers correspond to those that are presented in
Table 1. (A) 4000–2500 cm−1 region; (B) 2000–650 cm−1 region.
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Table 1. Band assignments in the experimental ATR-IR spectrum of crystalline melamine. Band numbers
correspond to those presented in Figure 3A,B.

Band Number
Wavenumber/cm−1

Assignment
Experimental Scaled Calc. Non-Scaled Calc.

1 3468 3454 3669 νasNH2
2 3416 3423 3634 νasNH2
3 3324 3296 3491 νasNH2
4 ~3188 3252 3441 νasNH2
5 3121.7 3179 3360 νsNH2
6 1647.7 1627 1705 δscissNH2
7 1624.9 1599 1675 δscissNH2
8 ~1574 1553 1624 δscissNH2; δipring

9 1527.7 1528
1523

1597
1591

δscissNH2; δrockNH2; δipring
δrockNH2; δipring

10 1465.6 1449 1511 δscissNH2; νC-N(H2)
11 1431.6 1417 1476 νC-N(H2); δipring
12 1194.3 1197 1238 δrockNH2

13 1173.5 1177
1167

1217
1206 δrockNH2

14 1024.1 1035
1021

1066
1051

δrockNH2; δipring
δrockNH2; νC-N(H2); δipring

15 810.1 811
801

830
819

δoopring; δtwistNH2
δwaggNH2

16 768.4 755 771 δtwistNH2
17 674.5 661 673 δwaggNH2

2.2. Experimental and Simulated NIR Spectra of Crystalline Melamine

In decisive contrast to the IR region (Section 2.1), and as evidenced in Figure 4, the NIR bands
of crystalline melamine are accurately reproduced on the basis of a finite model. In this case, even
the calculations that are based on a single molecule of melamine provide good agreement between
the calculated and experimental spectra (Figure 4). If further studies will allow for generalizing
this observation, a lower requirement for the model complexity in modeling of NIR spectra could
open other opportunities for refining the theoretical approach. For example, a hybrid approach
combining higher-level harmonic computations augmenting DVPT2/GVPT2 anharmonic analysis
could be used. Barone and co-workers have reported evidences of accurate and affordable hybrid
B3LYP(harmonic)/B2PLYP(anharmonic) computations [51,52], as also seen in our previous studies [53].
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Figure 4. Comparison of the experimental diffuse reflectance near-infrared (NIR) spectrum of
polycrystalline melamine with the calculated spectra. The spectra were calculated at B3LYP-GD3BJ/SNST
level for an isolated molecule in two different anharmonic approximations (DVPT2 and GVPT2). In the
GVPT2 calculation second overtones and ternary combinations were also included. (A) 7150–5750 cm−1

region; (B) 5400–4000 cm−1 region.

The principle difference between the DVPT2 and GVPT2 approaches is the treatment of vibrational
resonances; the latter method features an advanced correction for Fermi and Darling-Dennison
resonances by the variational method [54]. The improvement does not seem to significantly affect
the major NIR bands of melamine (Figure 4). However, improved method allows for calculations
of three quanta transitions (i.e., second overtones, 3ν; and ternary combinations, 2νx + νy, and νx +
νy + νz). The addition of these minor bands slightly enhances the agreement, for example, below
6500 cm−1 and in the region of 4400–4150 cm−1 (Figures 4 and 5). This observation remains similar
to our previous estimations that were based on the anharmonic study of methanol molecule and its
deuterated isotopomers [55]. We have therein concluded that the bands due to three quanta transitions
are only responsible for minority (ca. 20%) of the NIR spectra of methanol [55]. These higher order
bands are weak, overlapping bands, and the corresponding spectral information is “diffused” along
the wavenumber axis [55]. A similar case may be reported for melamine, and it is probably shared by
other molecules. There are some exceptions, e.g., in the literature, 3νC=O has been reported to appear
near 5150–5160 cm−1 in gas phase (and near 5122–5076 cm−1 in various solvents), as a well resolved
band in some molecules with a C=O group [56,57]. No such exceptions were observed for melamine,
and close inspection of the theoretical spectra confirms that the majority of the experimental bands
were reproduced by both approximations (Figure 4). The more comprehensive, but also resource
intensive, calculations of additional three quanta transitions of melamine allowed for explaining finer
features that were observed in its NIR spectrum (Figure 4). Primarily, the influence of higher order
bands may be seen throughout the 6500–5200 cm−1 region and in the vicinity of 4300–4100 cm−1

(Figure 4A,B). In the former case (6500–5200 cm−1 region), these bands remain very weak. For the latter
(4300–4100 cm−1 region), there appears a marked band overlapping that gives rise to a broadened
feature of moderate intensity at 4300–4200 cm−1, and also a similar one appearing at the high-frequency
wing of the ~4090 cm−1 band (Figure 4B). The present study of NIR spectra of crystalline melamine
may be compared with our earlier calculations of NIR spectra of medium-chain fatty acids [35].
In contrast to the previously observed significance of the hydrogen-bonding interaction for the NIR
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region of crystalline sorbic acid [35], NIR bands of melamine reveal surprisingly low sensitivity to the
hydrogen-bonding. This occurs despite the fact that melamine interacts strongly and it forms multiple
hydrogen-bonds in crystalline states, as recently demonstrated by Yuan et al. [41]. We will discuss in
detail the reasons for such distinctiveness of NIR region of melamine in Section 2.3.

The agreement with the experimental spectrum is slightly lower in the 5200–4000 cm−1 region, as
the level of band overlapping is very high there. In contrast, the upper NIR region (ca. 6900–6450 cm−1)
was accurately reproduced in the calculation (Figure 4A). The first overtones and the binary
combinations bands of NH2 stretching modes populate this region (as the primary contributions).
Similar to other kinds of X-H vibrations (e.g., OH), these modes are expected in the literature to be
sensitive to the molecules’ chemical neighborhood, e.g., prone to red-shifting in hydrogen-bonded
complexes. This effect has been clearly observed for alcohols [58] or in our recent NIR investigation of
thymol [37]. Surprisingly, in the case of melamine it may be concluded that the first overtones and
binary combinations bands of NH2 stretching modes are properly reproduced, even in the simplified
case of an isolated molecule, for which the inter-molecular interactions are not reflected (Figure 4A).

2.3. An In-Depth Analysis of the Origin of NIR Bands of Crystalline Melamine

Numerous overlapping bands populate NIR spectra of even relatively simple molecules [16,31].
This makes their detailed analysis difficult, and the interpretation of the leading contributions is not as
straightforward as it is for the corresponding IR spectra. To better elucidate these influences and to
present them in a clear manner, we have developed a density map (colormap) of spectral contributions
to highlight the modes of interest in a straightforward way (Figure 5). The color range corresponds
to the square rooted intensity ratio of the selected simulated bands to the total intensity of modeled
spectrum at any given wavenumber νi and additionally proportionalized to the calculated intensity at
that point. The yielded value ranges from 0 (no contribution) to 1 (the NIR spectrum is influenced
by the selected mode/modes entirely). The corresponding color varies from black to white, and it
may be directly interpreted as the intensity of a given mode at a given wavenumber; the colortable is
presented underneath the figure. The square root allows for elucidating less pronounced contributions.
The density maps that are determined for various selections of modes-of-interest allow for unequivocal
and thorough analysis of the influential determinants in the NIR spectrum of crystalline melamine
(Figure 5), while keeping the figure compact and easy to read.

The upper NIR region (ca. 6900–6500 cm−1) is almost entirely populated by the first overtones
and the binary combination bands of NH2 stretching modes (Figure 5). Other than this exception, the
overtone bands of melamine may be described as non-essential for the other regions of NIR spectrum.
Instead, the combination bands (binary combinations the most, ternary combinations to a bit lesser
degree) play the primary role there. Again, the combinations that involve stretching NH2 modes are
the most important factor. The corresponding binary combinations provide very strong influence in
the 6900–6500 cm−1 region and throughout a broad 5100–4000 cm−1 region. Ternary combinations
that involve NH2 stretching modes only give weak influence in the region of 6500–6000 cm−1, where
the spectral lineshape is rather flat. The highly populated region between 5100–4000 cm−1 is mostly
influenced by the combinations of stretching modes with deformation modes of NH2 groups. The other
influential factor is νC-N mode (both in ring as well as between C atoms in ring and NH2 groups).
However, the wagging NH2 modes are largely suppressed. The modes that do not influence NIR region
are as follows; overtones of δipring, δipC-N(H2), δoopring, δoopC-N(H2), δrockNH2, δtwistNH2, δwaggNH2.

The analysis of the NIR modes reveals a structural pattern. The modes that involve in-plane atoms
displacements tend to impact NIR spectrum relatively stringer than those that involve out-of-plane
motions. This observation will be discussed in detail in Section 2.4, together with the conclusions
drawn from the analysis of IR spectrum of melamine (Section 2.1).
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Figure 5. Analysis of the contributions to NIR spectrum of polycrystalline melamine based on the
calculated spectrum (GVPT2//B3LYP-GD3BJ/SNST).
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2.4. The Relationships Between IR and NIR Bands, and the Structural Features of Crystalline Melamine

Important conclusions may be drawn from the detailed comprehension of both IR and NIR spectra
of crystalline melamine. The vibrational modes involving out-of-plane atomic motions are much more
essential in the IR region (Figure 3 and Table 1), and thus a proper reflection of the inter-plane structure
of crystalline melamine is required. Therefore, calculations that are based on a 3D infinite model of
crystal lattice allows for the best description of these vibrations, even with harmonic approximation.
However, in the NIR spectrum the most influential modes are those that involve in-plane atomic
displacements. Thus, the neighboring planes of crystalline lattice do not impact these motions as much.
Therefore, the NIR modes calculated for a single molecule are largely enough to accurately reflect the
experimental spectrum.

This also makes perfect sense by comparing the IR vibrations calculated in periodic system to
the ones calculated for a single molecule (also refer to Table S1 in Supporting Materials presenting
the potential energy distribution calculated for melamine). In the calculations that are based on a
single molecule (vs. the model of crystalline lattice), the out-of-plane deformation vibrations (e.g.,
δtwistNH2, δwaggNH2, δoopring) are positioned at higher calculated wavenumbers, while the in-plane
deformation vibrations are positioned at the lower calculated wavenumbers. Thus, the oscillators
with the out-of-plane atomic motions have lower calculated force constants because of neglecting
the surrounding crystalline planes. The neglecting of intra-plane interactions of melamine lead to
a surprisingly miniscule decrease of the accuracy of the calculated NIR modes. The corresponding
vibrations with in-plane atomic motions (primarily νNH2, but also δipring, νC-N[H2]) were mostly
overestimated in the calculated frequencies, which was easily corrected by applying scaling. These
modes are seemingly less affected by the intermolecular interactions of melamine in crystal lattice,
including the effects of hydrogen-bonding.

2.5. New Insights on the Quantitative Analytical Spectroscopy of Melamine

Melamine is known food adulterant, and for this reason, it has been frequently focused on
analytical IR and NIR spectroscopy [9,42–46]. After reproducing the spectra of melamine, we can more
deeply discuss some of the observations that were reported in these previous contributions.

NIR bands of melamine remain at relatively similar positions throughout various kinds of samples,
unlike its IR bands, which are prone to shifting in response to the chemical environment [43]. This can
be fully confirmed by our conclusions from quantum mechanical calculations. Lu et al. [42] have
reported that the most relevant spectral region of milk powder useful for the detection of melamine
is 5300–4900 cm−1. This region contains the binary and ternary combinations of NH2 stretching with
NH2 deformation modes of melamine; however, no overtone bands can be found there (Figure 5).
Cantor et al. [9] have found that the most meaningful region for the analysis of melamine content in
gelatin by IR spectroscopy is at around 800 cm−1; the melamine bands therein stem from δoopring,
δtwistNH2, and δwaggNH2 (Figure 3 and Table 1). On the other hand, the chemometric models that are
based on NIR spectra of gelatin contaminated by melamine have been found to recognize the most the
7000–6500 cm−1 region. The NIR bands of melamine due to the first overtones and binary combinations
of both symmetric and asymmetric NH2 stretching modes can be exclusively found there (Figure 5).
Our study allows for correcting Haughey et al. [45], who ascribed the NIR region of melamine in the
vicinity of 6800 cm−1 to only overtone bands.

In more detail, the influential spectral regions in chemometric analysis of melamine content in
milk powders based on NIR spectroscopy has been reported by Lim et al. [46]. They have found
that the partial least squares regression (PLSR) models have recognized 6763 and 6808 cm−1 as the
most meaningful in the analysis. They have concluded that these regions correspond to 6676 and
6529 cm−1 peaks of melamine observed in the spectrum of milk powder. We may now confirm that
these two bands arise from the first overtones and binary combinations of νasNH2 and νsNH2 modes
of melamine, respectively. These previous chemometric analyses consistently indicate that for the
detection and quantification of melamine, its NH2 stretching vibrations are the most meaningful;
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however, we may now indicate that not only the first overtones, but also binary combinations equally
contribute. On the other hand, the lower NIR region, where combination bands due to NH2 stretching
and deformation modes of melamine are present, is less essential.

Balabin et al. [43] have concluded that, for the samples with high content of melamine, NIR
spectroscopy yields better analytical performance than IR spectroscopy. It may be now confirmed that
this occurs due to relatively much lower sensitivity of NIR bands to intermolecular interactions with
the matrix molecules when compared to IR bands. The hydrogen-bonding influences the IR region of
melamine much stronger than the NIR region, in which only minor band shifts and negligible intensity
variations occur due to this effect. In such sense, this feature of pure melamine in crystal evidenced
here (lower sensitivity of NIR bands than IR bands to the chemical environment of molecules of
melamine), seems to also be universally preserved in complex samples consisting of various other
molecules and biomolecules, e.g., in milk powder [43]. Thus, analytical IR and NIR spectroscopy can
evidence the structural and vibrational properties of melamine that were unveiled in our study to have
a direct impact on the detection and quantification of melamine content.

3. Materials and Methods

3.1. Experimental

Melamine was purchased from Alfa Aesar (A11295; ≥99% purity) and used without further
purification. The measurement of IR spectra was carried out on a Perkin Elmer Spectrum 100 FT-IR
spectrometer that was equipped with an ATR accessory and a diamond prism (PerkinElmer, Inc.
Waltham, MA, USA). The spectrometer was controlled by Perkin Elmer Spectrum software (version
10.4.00). The spectra were measured in the 4000–650 cm−1 region with a spectral resolution of
4 cm−1. The number of accumulated scans was 16, and the measurement procedure was triplicated.
The measurement was carried out at room temperature (~298 K). Sample preparation and spectra
recording procedures were triplicated for each sample.

The measurement of NIR spectra was performed on a Büchi NIR Flex N-500 FT-NIR benchtop
spectrometer that was controlled by the manufacturer’s NIRWare 1.4.3010 software (BUCHI® AG,
Flawil, Switzerland). The spectrometer was equipped with Büchi accessory for solid samples and
operated in diffuse reflectance (DRIFT) mode and at room temperature (~298 K). The following recording
parameters were selected; spectral resolution, spectral range, and scan number were 8 cm−1 (resulting in
the interpolated 4 cm−1 of data spacing and 2 cm−1 of absolute accuracy), 10,000–4000 cm−1, and 64,
respectively. Sample preparation and spectra recording procedures were triplicated for each sample.

The experimental spectra in this work presented adequate quality for qualitative assessment,
with no need for preprocessing of any kind.

3.2. Quantum Mechanical Calculations

3.2.1. IR spectrum Calculation in 3D Periodic Approximation

The simulation of IR spectra of crystalline melamine was based on harmonic analysis that was
executed in three-dimensional periodic representation of crystal structure in Crystal 09 software
(Aethia Srl, Italy) [59]. An infinite 3D model of crystal lattice of melamine was constructed by defining
the primitive cell, in accordance with the experimental structural data obtained from the Cambridge
Structural Database (CSD) [60,61]. An unconstrained and full geometry optimization was performed,
in which both the atomic centers and cell parameters underwent the treatment prior to all subsequent
calculations. The following procedural parameters were set throughout the geometry and vibrational
computing steps. The Monkhorst–Pack reciprocal space was sampled over a shrinking factor that
was equal to eight. The self-consistent field (SCF) direct procedure was iteratively converged with a
tolerance of 10−13 atomic units per unit cell; the truncation of Coulomb and exchange sums in direct
space was controlled by setting the Gaussian overlap tolerance criteria to 10−8, 10−8, 10−8, 10−8, and
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10−16. With the objective of accelerating the convergence of the SCF procedure, a linear mixing of
Fock matrices by 25% between adjacent steps and an energy shifting of 0.8 hartree for the first SCF
cycle were employed. The electron integrals were numerically calculated over a dense (XL) integration
grid. The periodic Density Functional Theory (DFT) computations were performed with the use of
B3LYP (Becke, three-parameter, Lee-Yang-Parr) [62] single-hybrid density functional, as implemented
in Crystal 09 software.

Two separate calculations each using different basis sets were carried out. In the first one,
we applied the following basis sets for the respective atomic centers: 3-1p1G for hydrogen, and
6-31d1G for carbon and nitrogen. Since Gatti et al. have jointly proposed these basis sets [63], for sake
of clarity in the present work we will refer to them as “Gatti” basis sets. For the second calculation,
we used triple-ζ valence basis set with polarization (TZVP), applied uniformly for all atomic centers
(C, N, H). The employment of the TZVP basis set substantially increased the computational expense.
Section 2.1 discusses the quality of IR simulation obtained at B3LYP/TZVP and B3LYP/Gatti levels.

Harmonic vibrational frequencies and intensities were obtained at the Gamma point in each
case. The frequencies are numerically obtained in Crystal 09; to ensure the high stability of this
procedure, numerical derivation (in the calculation of the second derivatives of the potential energy)
was based on two-point finite difference scheme. The convergence criterion for the vibrational analysis
was successfully achieved, as the sonic modes of the crystal lattice approached near zero values
(not exceeding −0.5 cm−1). The calculated band positions were overestimated; the overestimation
was decreasing towards lower wavenumbers. Few factors contribute to this; the key ones are likely
overestimation of bond strengths, imperfect molecular structure, and neglecting of anharmonicity. To
account for this fact, the calculated wavenumbers were scaled while using linear scaling (Equation (1)).

νscal = νcalc − sν2
calc (1)

The best fit was achieved with the scaling parameter s equal to 2.7 × 10−5 (in the 4000–2500 cm−1

region) and 1.6 × 10−5 (in the 2500–650 cm−1 region). This scheme resembles the Wavenumber Linear
Scaling (WLS), as developed by Yoshida et al. [64] Adjustments were necessary to fit the need of the
study in a crystalline state. The calculated NIR spectra were scaled accordingly, while using scale
factor s equal to 5.1 × 10−6 (Equation (1)). NIR scaling was significantly lesser; this is reasonable as the
anharmonicity of the corresponding vibrations was already accounted for in the calculations. This is
further explained in detail elsewhere (refer to Results and Discussion Section).

3.2.2. Anharmonic Calculation of NIR Spectra

The prediction of NIR bands requires multi-modal anharmonic vibrational analysis. The methods
that were based on Vibrational Second-order Perturbation Theory (VPT2) offer superior cost/accuracy
factor therein [65–67]. In this work, we employed and compared the deperturbed (DVPT2) and
generalized (GVPT2) variants [66]. The implementation of the latter one allowed for simulating second
overtones and ternary combination bands. For the determination of the basic electronic properties at the
DFT level, B3LYP functional and triple-ζ SNST basis set [67] were selected; this method has repeatedly
been evidenced to deliver good results [31,33,65]. Long-range interactions were refined by Grimme’s
D3 variant of empirical correction for dispersion with Becke–Johnson damping (GD3BJ) [68]. Prior to
vibrational analysis, the molecular geometry optimization procedure was performed with very tight
convergence criteria. The calculations were performed with the use of Gaussian 16 A.03 software [69].

The final spectra were simulated with the band broadening being obtained through a
four-parameter Lorentz–Gauss product function [34,70] being applied to the quantum mechanically
calculated IR and NIR band positions and intensities. The necessary data processing and assembly of
figures were carried out in MATLAB R2016b [71].
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4. Conclusions

Quantum mechanical calculations of IR spectra of crystalline melamine were successfully carried
out for an infinite (3D periodic) lattice model. All of the experimental IR bands were accurately
reproduced, even when using reasonably affordable harmonic approximation. On the other hand,
finite models gave very inaccurate calculated IR spectra. In contrast, the NIR spectrum of crystalline
melamine was accurately modeled by anharmonic calculations that are based on the model of a single
molecule. It is a striking difference in the dependence of the quality vs. model complexity, between
these two spectral regions. This result may be explained based on direct comparison of the molecular
motions corresponding to the vibrations being influential for the IR and NIR regions.

Vibrations involving out-of-plane atomic motions strongly affect the IR region of melamine.
Therefore, it is essential to incorporate a proper description of the inter-plane interactions of melamine
molecules as they appear in the crystalline lattice. The neglecting of the neighboring molecules in
proximity planes leads to a completely incorrect calculated IR spectrum. In contrast, the in-plane
vibrations of melamine are less affected by inter-molecular interactions. The vibrations involving
in-plane atomic displacements are the most essential for the NIR spectrum of melamine. On the other
hand, the out-of-plane motions are either suppressed in intensity or they are located outside of the
NIR region. Hence, the calculated NIR spectrum of melamine is not significantly affected by a radical
simplification of the molecular model. Even a single molecule model provides accurate reproduction
of NIR spectrum of crystalline melamine. It may be concluded that the long-range ordering and,
in particular, inter-plane interactions in the crystal lattice of melamine are significantly less important
factors for NIR modes than for IR modes. From this observation, another important conclusion may be
drawn. Due to the very significant computational cost of anharmonic calculations, the possibility to
reduce the complexity of the molecular model (i.e., non-necessity to use 3D infinite model, which is
also computationally costly) in the simulation of NIR spectra offers promising possibilities for similar
studies of other crystalline materials.

Our findings shed light on the spectral features of melamine that have been reported in analytical
spectroscopic studies of melamine as contaminant. In particular, the concluded in literature superiority
of NIR spectroscopy in the analysis of the samples with relatively higher content of melamine
was explained.
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wrapped to the cell (E–H). Figure S2: Comparison of the experimental ATR-IR spectrum of polycrystalline
melamine (4000–2500 cm−1 region) with the spectra calculated for periodic (3D, infinite) model of crystal
lattice in harmonic approximation at B3LYP/Gatti and B3LYP/TZVP levels. Figure S3: Comparison of the
experimental ATR-IR spectrum of polycrystalline melamine (2000–650 cm−1 region) with the spectra calculated
for periodic (3D, infinite) model of crystal lattice in harmonic approximation at B3LYP/Gatti and B3LYP/TZVP
levels. Table S1: Projection of normal coordinates of melamine onto natural internal coordinates. Based on
Potential Energy Distribution (PED) analysis carried out for single molecule model vibrationally analyzed at
B3LYP-GD3BJ/SNST level.
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31. Beć, K.B.; Grabska, J.; Ozaki, Y. Advances in anharmonic methods and their applications to vibrational
spectroscopies. In Frontiers of Quantum Chemistry; Wójcik, M.J., Nakatsuji, H., Kirtman, B., Ozaki, Y., Eds.;
Springer: Singapore, 2017.
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Molecular structure and vibrational spectra of quercetin and quercetin-5′-sulfonic acid. Vib. Spectrosc. 2017,
88, 94–105. [CrossRef]

50. Kucharska, E.; Bryndal, I.; Lis, T.; Lorenc, J.; Hanuza, J. Influence of methyl and nitro group
substitutions on the structure and vibrational characteristics of the hydrazo-bridge in 6,6′-dimethyl-3,3′,5,5′-
tetranitro-2,2′-hydrazobipyridine. Vib. Spectrosc. 2016, 83, 70–77. [CrossRef]

51. Latouche, C.; Barone, V. Computational chemistry meets experiments for explaining the behavior of bibenzyl:
A thermochemical and spectroscopic (Infrared, Raman, and NMR) investigation. J. Chem. Theory Comput.
2014, 10, 5586–5592. [CrossRef]

52. Vazart, F.; Latouche, C.; Cimino, P.; Barone, V. Accurate infrared (IR) spectra for molecules containing the
C≡N moiety by anharmonic computations with the double hybrid B2PLYP density functional. J. Chem.
Theory Comput. 2015, 11, 4364–4369. [CrossRef]
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58. Grabska, J.; Beć, K.B.; Ozaki, Y.; Huck, C.W. Temperature drift of conformational equilibria of butyl alcohols
studied by near-infrared spectroscopy and fully anharmonic DFT. J. Phys. Chem. A 2017, 121, 1950–1961.
[CrossRef]

59. Dovesi, R.; Saunders, V.R.; Roetti, C.; Orlando, R.; Zicovich-Wilson, C.M.; Pascale, F.; Civalleri, B.; Doll, K.;
Harrison, N.M.; Bush, I.J.; et al. CRYSTAL09 User’s Manual; University of Torino: Torino, Italy, 2009.

60. Cambridge Structural Database. CSD Entry: MELAMI05. Available online: https://www.ccdc.cam.ac.uk/
structures/search?id=doi:10.5517/cc7yptn&sid=DataCite (accessed on 10 April 2019).

61. Kooijman, H.; Beijer, F.H.; Sijbesma, R.P.; Meijer, E.W.; Spek, A.L. CCDC 237082: Experimental Crystal
Structure Determination. CSD Commun. 2004. [CrossRef]

62. Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98,
5648–5652. [CrossRef]

63. Gatti, C.; Saunders, V.R.; Roetti, C. Crystal-field effects on the topological properties of the electron-density
in molecular-crystals. The case of urea. J. Chem. Phys. 1994, 101, 10686–10696. [CrossRef]

64. Yoshida, H.; Ehara, A.; Matsuura, H. Density functional vibrational analysis using wavenumber-linear scale
factors. Chem. Phys. Lett. 2000, 325, 477–483. [CrossRef]
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Abstract: The effect of isotopic substitution on near-infrared (NIR) spectra has not been studied in
detail. With an exception of few major bands, it is difficult to follow the spectral changes due to
complexity of NIR spectra. Recent progress in anharmonic quantum mechanical calculations allows
for accurate reconstruction of NIR spectra. Taking this opportunity, we carried out a systematic
study of NIR spectra of six isotopomers of ethanol (CX3CX2OX; X = H, D). Besides, we calculated
the theoretical spectra of two other isotopomers (CH3CD2OD and CD3CH2OD) for which the
experimental spectra are not available. The anharmonic calculations were based on generalized
vibrational second-order perturbation theory (GVPT2) at DFT and MP2 levels with several basis
sets. We compared the accuracy and efficiency of various computational methods. It appears that
the best results were obtained with B2PLYP-GD3BJ/def2-TZVP//CPCM approach. Our simulations
included the first and second overtones, as well as binary and ternary combinations bands. This way,
we reliably reproduced even minor bands in the spectra of diluted samples (0.1 M in CCl4). On this
basis, the effect of isotopic substitution on NIR spectra of ethanol was accurately reproduced and
comprehensively explained.

Keywords: near-infrared spectroscopy; ethanol; anharmonic quantum mechanical calculations;
isotopic substitution; overtones; combinations bands

1. Introduction

Near-infrared (NIR) spectra are appreciably more complex and difficult for interpretation than
IR or Raman spectra [1–6]. This results from a large number of strongly overlapping overtones
and combination bands, numerous resonances between different modes and anharmonicity of
vibrations [1–6]. Interpretation of vibrational bands has been aided by studies of a series of similar
compounds (including isotopomers), or by reconstruction of the spectra by using quantum mechanical
calculations [5]. The former way may provide highly speculative assignments, while the latter method
has limitations that prevent their common use in NIR spectroscopy. From the point of view of applied
spectroscopy, there exists an essential difference in the applicability of quantum mechanical calculation
of mid-infrared (MIR) [7–9] and NIR spectra. A simplistic and computationally inexpensive harmonic
approximation fails to predict the overtones and combination modes [10]. Because of a considerable
computational cost of anharmonic calculations, simulations of NIR spectra are rare. Nevertheless, in the
literature one can find examples of application of different approaches used for calculation of overtones
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and combination bands, including variational approaches, which are expensive but useful in selected
cases [11,12]. However, the studies using a vibrational self-consistent field (VSCF) approach [13,14]
and its refined variants—e.g., PT2-VSCF—are more common [15–17]. Recently, a number of theoretical
reconstructions of NIR spectra by means of efficient vibrational second-order perturbation (VPT2)
method have been reported [18]; e.g., carboxylic acids [19], fatty acids [20–22], aminoacids [23],
nucleobases [24], nitriles [25], azines [26], phenols [27,28], and alcohols [29,30]. Considerable efforts
have been undertaken in order to develop anharmonic approaches applicable to even larger molecular
systems [31–34]. On the other hand, meticulous probing of vibrational potential capable of yielding
nearly-exact results is also available [35–38]. Recent advances in this field include the development
of multi-dimensional approaches that provide complete information on mode couplings in linear
triatomic molecules [39].

The isotopic effect appears to be helpful for the analysis of NIR spectra [10]. By shifting a part of
overlapped contributions, one can reduce their complexity and reveal individual bands. Time-resolved
NIR spectroscopy of deuterated alcohols has also been successfully used for elucidating the diffusion
coefficients [40]. In our previous work, the effect of isotopic substitution on NIR spectra of methanol
has been accurately reproduced by anharmonic calculations [41]. In particular, we were able to
predict the vibrational contributions from non-uniformly substituted CX3OX (X = H, D) species,
which are not available from the experiment [41]. Further studies on molecules more complex than
methanol are still necessary. A reasonable progress in this field is expected by examination of ethanol
and all its isotopomers [42,43]. Ethanol has eight major isotopomers resulting from deuteration
(CX3CX2OX; X = H, D), as compared to four in methanol. Moreover, the internal rotation around
C-O(H) bond leads to rotational isomerism (gauche, trans) in molecules of ethanol, which adds additional
origin of spectral variability in NIR spectra [42,43].

To enable detailed examination of the impact of various effects on NIR spectra of ethanol
isotopomers, at first it is necessary to perform reliable theoretical reproduction of NIR spectra for eight
isotopomers of ethanol (CX3CX2OX; X =H, D). We are interested in accurate reproduction of subtle
effects observed in NIR spectra. Therefore, a combination of several electronic methods underlying
VPT2 vibrational analysis will be useful for establishing the best approach capable of reproducing fine
features in NIR spectra. The determination of electronic structure underlying the geometry optimization
and harmonic analysis will be based on Møller–Plesset second-order perturbation (MP2) and density
functional (DFT) theories. The efficiency and accuracy of reproduction of NIR bands by MP2 and
DFT with single-hybrid B3LYP and double-hybrid B2PLYP density functionals will be overviewed.
MP2 and DFT calculations included basis sets of increasing quality (6-31G(d,p), SNST, def2-TZVP,
and aug-cc-pVTZ). Moreover, the impact of solvent cavity model will be evaluated. The anharmonic
vibrational analysis will be carried out by means of generalized VPT2 (GVPT2). In our previous studies
on methanol, it has been demonstrated that the relative contributions from the second overtones
and ternary combinations are different for various isotopomers [41]. This work will provide detailed
information on contributions from different vibrational modes and the trends observed with increasing
of the alkyl chain length in going from methanol to ethanol. In addition, we will elucidate the accuracy
of prediction of the three quanta transitions in NIR spectra.

2. Results and Discussion

2.1. Accuracy of Reproduction of NIR Spectra by Selected Approaches

Anharmonic calculations are significantly more challenging compared to harmonic
approximation [1–4]. This holds even for efficient anharmonic approaches based on VPT2 method.
At the same time, the higher quanta transitions are more prone to inaccuracies than the fundamental
ones [44]. An insufficient accuracy of the ground state geometry and potential energy surface may easily
propagate into inaccuracy of prediction in VPT2 calculation step. Thus, the theoretical prediction of NIR
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spectra is usually a compromise between the cost and accuracy. Effects like isotopic substitution [41]
and conformational isomerism [29,30] may further complicate the vibrational analysis of NIR spectra.

One of the aims of this work was assessment of the efficiency of several combinations of the
electronic theory methods and basis sets (Table 1). In addition, we examined the effect of the solvent
model on the anharmonic vibrational energies. An efficient single-hybrid B3LYP functional is commonly
used tool for spectroscopic studies [10]. Empirical correction for dispersion has been introduced to
overcome one of the major weaknesses of DFT method [45]. In some cases, this approach markedly
improves the robustness of calculation of primary parameters (i.e., energy). Therefore, recent literature
suggests employing empirical correction for dispersion in DFT calculations [46]. Our previous studies
have shown that, even for small and isolated molecules, this correction is advantageous in spectra
modeling [29]. For molecules in solution an approximation of the solvent cavity often improves
the quality of the simulated NIR spectra [28]. However, in the present work this advantage is less
important (Table 1). We observed an improvement of RMSE from 45 to 35 cm−1 for CH3CH2OH, and
from 27 to 24 cm−1 for CH3CH2OD. However, considering small additional cost of CPCM (ca. 10% of
total CPU time in the case of GVPT2//B3LYP-GD3BJ/6-31G(d,p) calculations), it is advisable to include
this correction step in the calculations.

Switching from B3LYP to B2PLYP density functional with a small basis set (6-31G(d,p)) leads to
an increase in the RMSE value (Table 1). However, B2PLYP method overestimated the band positions
in a systematic manner. In contrast, B3LYP approach provides irregular results. Some of the band
positions (δCH) are blue-shifted, while the others (νOX and νCX; X = H, D) are red-shifted. Thus,
more uniform band shift from B2PLYP method (Figures 1 and 2) resulted in better interpretability
of NIR spectra as compared with B3LYP results. It has a peculiar effect in NIR spectra of aliphatic
alcohols, as it reduces RMSE of NIR band positions, particularly for the νOX + δCH, and νCX + δCH
combination bands. However, this apparent gain does not improve the true interpretability of
the spectra. It is likely that simulated NIR spectra of larger molecules may suffer even more due
to binary combinations involving the stretching and deformation of the C-H and O-H vibrations.
Similar inconsistency of B3LYP as compared to B2PLYP has been noted before [29,41]. Due to electron
correlation being computed effectively at the MP2 level, it is commonly accepted that B2PLYP functional
requires larger basis sets. B2PLYP coupled with large def2-TZVP basis set noticeably improves the
quality of simulated NIR spectra (Figures 1 and 2). This improvement is particularly evident in the
reproduction of minor bands originating from the three quanta transitions (Figures 3 and 4). This effect
is nicely illustrated by reduction of RMSE from 72–83 cm−1 for B2PLYP/6-31G(d,p) to 18–19 cm−1 for
B2PLYP/def2-TZVP. SNST basis set, less complex than def2-TZVP but still of triple-ζ quality, leads to
worse results. An exception was observed for the prominent doublet from the νCH combination bands
(at ca. 4400 cm−1), where B2PLYP/SNST calculations reproduced the peak shapes more resembling
the experimental ones. However, the position of this doublet was also overestimated by this method.
Hence, B2PLYP/def2-TZVP method appears to be the better tool for reliable reconstruction of NIR
spectra. A similar conclusion was obtained for butyl alcohols [30].

In contrast, MP2 method does not appear to be particularly useful for anharmonic calculations of
NIR spectra of ethanol isotopomers due to significant redshift of the νCX frequencies (Figures 1 and 2).
It is an interesting observation, as the tendency of MP2 to describe incorrectly repulsive forces is
known in the literature [47]. In this work, however, an insufficient basis set (6-31G(d,p)) may strongly
deviate the results. Here, MP2 method seems to be more sensitive to the effect of a small basis
set than DFT-B2PLYP method. As expected, an application of a larger basis set, e.g., aug-cc-pVTZ,
improves the accuracy of calculations. However, these results are not as good as those obtained from
B2PLYP/def2-TZVP method. Moreover, this improvement is accompanied by a substantial increase of
computing time (by ca. 4 times). Nevertheless, selected spectral ranges (νOH + δCH ≈ 5050–4800 cm−1

and νCH + δCH doublet ≈ 4400 cm−1) were better reproduced by MP2/aug-cc-pVTZ computations.
Therefore, MP2 approach may be recommended as a reference method in selected cases. Our results
demonstrate that different computational methods achieve different accuracy for particular regions of
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NIR spectra, and these regions do not overlap. Thus, comparison of the spectra simulated by different
methods (e.g., resulting from VPT2 calculations at DFT or MP2 levels) appears to be the best way for
reliable interpretation of the experimental spectra.

Particular attention should be paid to 2νOH/OD band, which is the most characteristic peak for
alcohols and the other important compounds like, e.g., phenols [27], terpenes [28], and polyphenols [48].
This peak is very sensitive to the chemical environment and inter- and intra-molecular interactions, and
is frequently used for studies of the structure and physicochemical properties [49–53]. Hence, its proper
theoretical reproduction is of essential importance. As shown in Figures 1–4, and Figures S1–S6 in
SM, most of the methods did not reproduce correctly the shape of this band. The experimental band
from 2νOH/OD vibration reveals a slight asymmetry. This asymmetry is a result of convolution of
two components due to trans and gauche conformers. The lower-frequency gauche component has
also the lower intensity. Among isotopomers of ethanol, this feature was reproduced correctly only
by B2PLYP/def2-TZVP method. MP2/6-31G(d,p) and MP2/aug-cc-pVTZ methods predicted correct
shape of the 2νOH/OD peak only for CH3CD2OH and CD3CD2OD. As can be seen (Table 1), the peak
position was overestimated by all used methods, but B2PLYP calculations give the best agreement.

In comparison with other modes, large amplitude motions (LAMs)—e.g., torsion modes and
hindered rotations—are more difficult for accurate description in harmonic approximation and also by
anharmonic approaches that probe the potential curve relatively shallow (e.g., VPT2) [54]. We did not
find any evidence that these low-frequency modes influence NIR bands directly (i.e., their overtone
and combination modes do not appear in NIR region). However, a NIR spectrum provides some
insights on LAMs as well. In our case, the shape of the 2νOH/OD band is an indirect probe of
the accuracy of prediction of the low-frequency modes. The shape of this band results from two
components due to gauche and trans rotational conformers. Unreliable theoretical abundances of
these forms would result in biased relative intensities of the 2νOH/OD components (Table S1). Gibbs
free energies may be affected by erroneous LAMs, which would propagate into incorrect relative
abundances of gauche and trans conformers. Because it is an isolated band of strong intensity,
the simulated 2νOH/OD may be used to assess the reliability of prediction of LAMs and the related
Gibbs free energies. This kind of error would manifest itself as a distorted shape of simulated
2νOH/OD band. Above effect can be seen for some of the methods used in this study, e.g., for
B3LYP (B3LYP-GD3BJ/6-31G(d,p); B3LYP-GD3BJ/6-31G(d,p)//CPCM; B3LYP-GD3BJ/SNST//CPCM;)
and B2PLYP coupled with an insufficient basis set (B2PLYP-GD3BJ/6-31G(d,p)//CPCM;). However,
the methods which yielded the most accurate spectra in the other regions (B2PLYP/def2-TZVP;
MP2/6-31G(d,p); MP2/aug-cc-pVTZ) also reproduced 2νOH/OD peak accurately (Figures 1 and 2).
Therefore, we conclude that the LAMs of ethanol and its derivatives were determined adequately by
MP2 method. B2PLYP method also provides correct results, but it is more sensitive to the selection of a
basis set. On the other hand, B3LYP tends to falsify the Gibbs free energies corrected by anharmonic
ZPE. Further studies are needed to determine, whether this effect occurs because of an unreliable
description of LAMs. On the other hand, inaccuracy of the 2νOH/OD frequencies prediction by VPT2
may also be considered as another contributing factor, as we have evidenced such occurrence in the
case of the conformers of cyclohexanol [27]. Note that B3LYP functional coupled with a relatively
simple basis set yields reasonable reproduction of NIR spectra and correctly predicts the effects of
isotopic substitution at a relatively modest computational expense (Figures 1–4 and Figures S1–S6 in
SM). However, a tendency to over- and underestimate the position and intensity of some bands may
be unfavorable for the reliable interpretation of theoretical NIR spectra. For exploration of more subtle
effects, B2PLYP functional seems to be more suitable. In the present study of isotopic substitution and
the other effects (e.g., rotational isomerism) on NIR spectra of ethanol, we used B2PLYP/def2-TZVP
method with additions of GD3BJ and CPCM.
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Figure 1. NIR spectra of CH3CH2OH calculated with GVPT2 method at different levels of electronic
theory; (a) B3LYP-GD3BJ/6-31G(d,p); (b) B3LYP-GD3BJ/6-31G(d,p)//CPCM; (c) B2PLYP-GD3BJ/
6-31G(d,p)//CPCM; (d) MP2/6-31G(d,p)//CPCM; (e) B3LYP-GD3BJ/SNST//CPCM; (f) B2PLYP-GD3BJ/
def2-TZVP//CPCM; (g) MP2/aug-cc-pVTZ//CPCM; (exp.) Experimental spectrum of CH3CH2OH in
CCl4 (0.1 M).
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Figure 2. NIR spectra of CH3CH2OD calculated with GVPT2 method at different levels of electronic theory;
(a) B3LYP-GD3BJ/6-31G(d,p); (b) B3LYP-GD3BJ/6-31G(d,p)//CPCM; (c) B2PLYP-GD3BJ/ 6-31G(d,p)//CPCM;
(d) MP2/6-31G(d,p)//CPCM; (e) B3LYP-GD3BJ/SNST//CPCM; (f) B2PLYP-GD3BJ/def2-TZVP//CPCM;
(g) MP2/aug-cc-pVTZ//CPCM; (exp.) Experimental spectrum of CH3CH2OD in CCl4 (0.1 M).
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Figure 3. Contributions from minor bands in NIR spectra of CH3CH2OH calculated with GVPT2 method
at different levels of electronic theory; (a) B3LYP-GD3BJ/6-31G(d,p); (b) B3LYP-GD3BJ/ 6-31G(d,p)//CPCM;
(c) B2PLYP-GD3BJ/6-31G(d,p)//CPCM; (d) MP2/6-31G(d,p)//CPCM; (e) B3LYP-GD3BJ/SNST//CPCM;
(f) B2PLYP-GD3BJ/def2-TZVP//CPCM; (g) MP2/aug-cc-pVTZ//CPCM; (exp.) Experimental spectrum
of CH3CH2OH in CCl4 (0.1 M).

46



Molecules 2019, 24, 2189

Figure 4. Contributions from minor bands in NIR spectra of CH3CH2OD calculated with GVPT2 method
at different levels of electronic theory; (a) B3LYP-GD3BJ/6-31G(d,p); (b) B3LYP-GD3BJ/ 6-31G(d,p)//CPCM;
(c) B2PLYP-GD3BJ/6-31G(d,p)//CPCM; (d) MP2/6-31G(d,p)//CPCM; (e) B3LYP-GD3BJ/SNST//CPCM;
(f) B2PLYP-GD3BJ/def2-TZVP//CPCM; (g) MP2/aug-cc-pVTZ//CPCM; (exp.) Experimental spectrum
of CH3CH2OD in CCl4 (0.1 M).
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2.2. Origins of NIR Bands of CX3CX2OX (X = H, D)

The simulations of NIR spectra of ethanol isotopomers in CCl4 solutions by GVPT2 anharmonic
method at B2PLYP-GD3BJ/def2-TZVP//CPCM level accurately reproduced most of the experimental
bands (Figures 5 and 6). On this basis, we performed detailed and reliable band assignments
(Tables 2–9). The consistency of these assignments was positively verified by comparison with the
experimental spectra of six isotopomers. High accuracy of simulations allows to analyze the theoretical
spectra of CH3CD2OD and CD3CH2OD (Figure 6C,D and Tables 8 and 9) which are not available
commercially. All assignments were supported by an analysis of the potential energy distributions
(PEDs; Tables S2–S9).

NIR spectra of ethanol isotopomers mainly consist of the combinations of stretching and bending
OX and CX (X =H, D) modes (Figures 1–6 and Tables 2–9). The region below 5500 cm−1 for CH3CH2OH
is almost entirely contributed by the combination bands, while absorption from the overtones dominates
above 5500 cm−1. NIR spectrum of ethanol may be roughly divided into four regions, but only two
of them contain meaningful contributions from overtones. These regions are contributed mainly
by vibrations from: (1) 2νOX; (2) 2νCX and νCX + νCX; (3) νOX + δCX; (4) νCX + δCX; (X = H, D).
The other combination bands like νOX + νCX, and 2δCX + νCX have low intensity. Isotopic substitution
introduces significant band shift, strongly affecting the appearance of NIR spectra (Figures 5 and 6 and
Figures S1–S6). It should be noted, that the region of 5700–5400 cm−1 for ethanols containing CH3 and
CH2 groups is strongly affected by the anharmonic effects. This effect is well seen for CH3CH2OH
(Figure 1) and CH3CH2OD (Figure 2). The most meaningful contributions in this region originate from
νCH + νCH (νasCH2 + νsCH2), 2δCH + νCH, and 2νasCH2 vibrations as well.

One can notice the overestimated intensities of the 2νCH and νCH + νCH bands appearing in the
6000–5500 cm−1 region (Figures 5 and 6 and Figures S1–S6). The magnitude of this effect varies between
the different methods; however, it is present in all cases. A similar overestimation we have observed
for butyl alcohols [30]. At present, we are unable to explain the reasons for these overestimations.
Unexpectedly, B2PLYP functional (regardless of basis set; 6-31G(d,p), SNST, and def2-TZVP yielded
similar results) significantly overestimates the frequencies of 2δCH + δCH transitions, shifting them to
the 5500 cm−1 region. In contrast, the most of other transitions in NIR region is accurately reproduced
by this approach. In the case of the 2δCH + δCH modes, large positive anharmonic constants appeared
in GVPT2 vibrational analysis. Consequently, positions of the corresponding bands were predicted
far from a simple combination of the harmonic frequencies. This shift has not been observed for the
remaining approaches. Presently, the reason of this behavior is not clear. Because of very low intensity
of 2δCH + δCH bands, these erroneous predictions do not provide meaningful contributions to NIR
spectra. However, this occurrence demonstrates the need for using more than one method during
examination of the fine spectral effects.

The deuteration of the OH group leads to a noticeable shift of the νOD + δCH band. In contrast,
the other bands do not shift meaningfully, as can be easily seen from comparison of CH3CH2OH
and CH3CH2OD spectra (Figure 5A,B). In particular, the absorption from the νCH + δCH in the
4600–4000 cm−1 region remains unaffected. This region can be used to monitor the isotopic substitutions
of the CH3 and CH2 groups, as it leads to highly specific spectral changes. Obviously, simultaneous
deuteration of both groups implies more significant changes. However, the most interesting effects
result from the selective substitution of one of these groups. The presence of the CH3 group gives rise
to a prominent doublet near 4395 and 4330 cm−1. This doublet has a complex structure resulting from
overlapping of the contributions from the CH2 (Figure S7 in Supplementary Material), leading to a
broadening of the high-frequency wing of the doublet. As expected, this contribution is not present
in the spectrum of CH3CD2OH (Figure S7B). On the other hand, the isotopic substitution of the CH3

reveals a part of the overlapping contributions, as observed more clearly in the second derivative
spectrum of CD3CH2OH (Figure S7C). This effect is well seen in the calculated spectra (Figure S7C).

The higher frequency NIR region (>7000 cm−1) is also very sensitive to the isotopic effect. A weak
absorption from the higher order overtones and combination bands creates difficulties in the analysis
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of this region. The deuteration of the OH group significantly reduces the number of the bands as a
result of red-shift of the combination bands. The simulated spectra confirmed the high isotopic purity
of the samples, except of CD3CD2OD which shows the 2νOH peak near 7100 cm−1 in the experimental
spectrum (Figure 6B). This is in contrast to previously studied methanol, in which various non-uniform
substitutions have been identified [41]. Contrary to -CX bonds, the H or D atoms in -OX bonds are
labile, therefore, the OD group tends to exchange into the OH even by exposition of the deuterated
alcohol to air. Since this band has a high absorptivity, therefore even small impurities due to the OH
appear in NIR spectrum as a clear band at 7100 cm−1. In contrast, no -CH bands are observed in the
spectrum of CD3CD2OD (Figure 6B). NIR spectroscopy is particularly sensitive and selective for the
isotopic effect, although the theoretical calculations are necessary for proper spectra interpretation.
The spectral manifestations of the OH group in OD derivatives are obscured by ternary combinations
from the CH vibrations that appear in the same region. For example, the δas’CH3 + νsCH2 + νasCH2

bands in CH3CH2OD (Figure 5B), and δscissCH2 + νsCH2 + νasCH2 bands in CD3CH2OD (Figure 6D)
are observed.

One can speculate that the isotopic substitution and conformational isomerism lead to convoluted
spectral changes. This phenomenon will be a subject of our next paper (in preparation).

 

Figure 5. Band assignments in NIR spectra of deuterated ethanols based on GVPT2//B2PLYP-GD3BJ/
def2-TZVP//CPCM calculations. (A) CH3CH2OH; (B) CH3CH2OD; (C) CH3CD2OH; (D) CD3CH2OH.
Band numbering corresponds to that presented in Tables 2–5.
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Figure 6. Band assignments in NIR spectra of deuterated ethanols based on GVPT2//B2PLYP-GD3BJ/
def2-TZVP//CPCM calculations. (A) CD3CD2OH; (B) CD3CD2OD; (C) CH3CD2OD; (D) CD3CH2OD.
Band numbering corresponds to that presented in Tables 6–9.

Table 2. Band assignments in NIR spectra of CH3CH2OH based on GVPT2//B2PLYP-GD3BJ/
def2-TZVP//CPCM calculations. Band numbering corresponds to that presented in Figure 5A.

Peak Number νExp νCalc Assignment (Major Contribution)

1 8718.0 8739 2νasCH2 + νasCH3
2 8430.0 8526 3νasCH2
3 8329.0 8416 3νsCH2
4 8131.0 8329 2νsCH2 + νasCH2

5 7400–7300 7400–7300

δsCH3 + νasCH3 + νas’CH3
[δas’CH3, δasCH3] + νasCH3 + νas’CH3
δscissCH2 + νasCH2 + νas’CH3

[δrockCH2, δrockCH3] + νasCH2 + νOH

6 7300–7200 7300–7200

δtwistCH2 + νasCH3 + νas’CH3
δsCH3 + νsCH3 + νas’CH3

[δasCH3, δas’CH3] + νsCH3 + νasCH3
[δasCH3, δas’CH3] + νsCH3 + νas’CH3

7 7099.0 7125 2νOH
8 6610.0 6609 νsCH3 + νOH
9 6565.0 6540 2δasCH3 + νOH

10 6520.4 6513 νsCH2 + νOH
11 6331.0 6314 2δtwistCH2 + νOH
12 6271.8 6275 δipCOH + δwaggCH2 + νOH
13 6193.0 6178 [τCC, δoopCOH] + νasCH3 + νas’CH3
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Table 2. Cont.

Peak Number νExp νCalc Assignment (Major Contribution)

14 6063.0 6085 2δipCOH + νOH
15 6051.0 6021 [νCC, δipCOH] + δtwistCH2 + νOH
16 5936.0 5948 2νas’CH3, νasCH3 + νas’CH3
17 5886.1 5889 2δas’CH3 + νOH
18 5809.0 5846 [δasCH3, δas’CH3] + δscissCH2 + νasCH2
19 5765.7 5790 2νasCH2
20 5665.1 5681 2νsCH2; 2νsCH3 + δsCH3
21 5634.0 5632 δipCOH + δwaggCH2 + νsCH3
22 5287.6 5277 δipOH + δCCO +νOH
23 5111.0 5128 δscissCH2+ νOH
24 5071.0 5118 [δasCH3, δas’CH3] + νOH
25 5013.8

5029 [δwaggCH2, δsCH3] + νOH
26 4996.2
27 4954.2 4979 [δtwistCH2, δipCOH, δwaggCH2] + νOH
28 4873.0 4868 δipCOH + νOH
29 4724.3 4763 δsCH3 + 2[δasCH3, δas’CH3]
30 4677.0 4726 [νCO, δrock’CH3] + νOH
31 4582.9 4648 [δoopCOH, τCC] + δas’CH3 + νsCH3
32 4454.0 4450 3δscissCH2
33 4409.0 4396 δscissCH2 + νasCH2
34 4394.8 4366 δsCH3 + νas’CH3
35 4333.5 4331 [δoopCOH, τCC] + νOH
36 4232.6 4269 δtwistCH2 + νas’CH3
37 4162.0 4177 δipCOH + νsCH2
38 4131.7 4137 δtwistCH2 + νsCH2
39 4057.4 4020 [δrockCH2, δrockCH3] + νsCH2
40 4024.0 3997 [νCO, δrock’CH3] + νasCH2

Table 3. Band assignments in NIR spectra of CH3CH2OD based on GVPT2//B2PLYP-GD3BJ/
def2-TZVP//CPCM calculations. Band numbering corresponds to that presented in Figure 5B.

Peak Number νexp νcalc Assignment (Major Contribution)

1 8428.0 8334 2νsCH2 + νasCH2
2 7777.5 7796 3νOD
3 7260.0 7227 δtwistCH2 + νasCH3 + νas’CH3
4 7099.1 7112 δas’CH3 + νsCH2 + νasCH2
5 6133.4 6200 τCC + νasCH3 + νas’CH3
6 5935.0 5946 2νas’CH3
7 5885.2 5895 2νasCH3
8 5850.0 5847 [δasCH3, δas’CH3] + δscissCH2 + νasCH2
9 5765.6 5788 2νasCH2

10 5665.7 5669 2δwaggCH2 + νsCH2
11 5564.3 5559 νOD + νsCH2
12 5494.3 5498 νasCH2 + δtwistCH2 + δwaggCH2
13 5277.1 5289 2νOD
14 4947.0 4963 [δrockCH2, δrockCH3] + δtwistCH2 + νsCH2
15 4873.0 4846 [δrockCH2, δrockCH3] + [δrockCH2, δrockCH3] + νsCH2
16 4720.8 4717 [νCO, δrock’CH3, δipCOD] + [δrock’CH3, δipCOD, δscissCH2CO] +νOD
17 4393.7 4397 δscissCH2 + νasCH2
18 4331.8 4364 [δsCH3, δwaggCH2] +νasCH3
19 4253.4 4275 δtwistCH2 + νas’CH3
20 4155.1 4127 [δrock’CH3, δipCOD, δscissCH2CO] +νasCH3
21 4105.0 4063 [δrock’CH3, δipCOD, δscissCH2CO] + νsCH3
22 4054.1 4037 [δrockCH2, δrockCH3] + δsCH2
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Table 4. Band assignments in NIR spectra of CH3CD2OH based on GVPT2//B2PLYP-GD3BJ/
def2-TZVP//CPCM calculations. Band numbering corresponds to that presented in Figure 5C.

Peak Number νexp νcalc Assignment (Major Contribution)

1 8717.0 8788 3νasCH3
2 8434.1 8728 νsCH3 + νasCH3 + νas’CH3
3 8337.0 8665 2νsCH3 + νasCH3
4 7345.0 7324 [δrockCD2, δtwist CD2] + νas’CH3 + νOH
5 7251.0 7255 [δasCH3, δas’CH3] + νsCH3 + νasCH3
6 7098.2 7126 2νOH
7 6590.4 6618 νas’CH3 + νOH
8 6205.8 6257 2δipCOH + νOH
9 6158.0 6198 2δipCOH + νOH
10 5929.9 5943 2νasCH3
11 5895.4 5892 2νas’CH3
12 5828.0 5844 νsCH3 + νas’CH3
13 5763.8 5744 νsCD2 + νOH
14 5669.1 5595 νsCH3 + 2νasCH3
15 5449.0 5496 δrockCH3 + δsCH3 + νas’CH3
16 5439.4 5449 δscissCD2CO + 2νasCH3
17 5282.0 5309 νasCD2 + 2[δasCH3, δas’CH3]
18 5070.1 5094 νsCD2 + νasCH3
19 5017.0 5018 [τCC, δoop COH] + 2[δasCH3, δas’CH3]
20 4927.0 4954 δipCOH + νOH
21 4898.3 4930 δipCOH + νOH
22 4792.1 4806 [νCO, δwaggCD2] + νOH
23 4737.2 4744 δscissCD2 + νOH
24 4650.2 4641 [νCC, δrock’CH3] + νOH
25 4591.7 4600 [νCO, δwaggCD2] + νOH
26 4513.3 4525 δipCOH + νOH
27 4404.6 4437 [δasCH3, δas’CH3] + νas’CH3
28 4338.0 4373 δsCH3 + νas’CH3
29 4275.7 4285 δipCOH + νasCH3
30 4238.1 4218 νsCD2 + νasCD2
31 4129.6 4147 [νCO, δwaggCD2] + νas’CH3
32 4079.7 4117 δrockCH3 + νasCH3
33 4056.2 4052 δrockCH3 + νsCH3, δscissCD2CO + νOH

Table 5. Band assignments in NIR spectra of CD3CH2OH based on GVPT2//B2PLYP-GD3BJ/
def2-TZVP//CPCM calculations. Band numbering corresponds to that presented in Figure 5D.

Peak Number νexp νcalc Assignment (Major Contribution)

1 8405.0 8511 3νasCH2
2 8307.6 8323 2νsCH2 + νasCH2

3 7098.5 7124 (t)
7100 (g) 2νOH

4 6841.1 6897 [νCO, δas’CD3] + νsCH2 + νasCH2
5 6517.6 6510 νsCH2 + νOH
6 6324.0 6261 [δipCOH, δtwistCH2] + δwaggCH2 + νOH
7 6268.0 6111 [δrock’CD3, νCC] + νas’CD3 + νOH
8 6070.4 6059 2[δipCOH, δtwistCH2] + νOH
9 5966.3 5966 [δsCD3, νCC] + δwaggCH2 + νOH

10 5839.1 5825 2νasCH2
11 5772.1 5793 2νasCH2
12 5628.0 5686 2νsCH2
13 5533.0 5641 2νsCH2
14 5427.9 5419 2δtwistCH2 + νasCH2
15 5358.0 5367 [νCO, δas’CD3] + νsCD3 + νas’CD3
16 5286.8 5287 δsCD3 + δtwistCH2 + νasCH2
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Table 5. Cont.

Peak Number νexp νcalc Assignment (Major Contribution)

17 5190.0 5188 2[δsCD3, νCC] + νsCH2
18 5102.7 5084 δoopCOH + 2δwaggCH2
19 5007.1 5028 δwaggCH2 + νOH
20 4955.8 4987 [δtwistCH2, δipCOH, δwaggCH2] + νOH
21 4853.8 4853 [δipCOH, δtwistCH2] + νOH
22 4764.7 4768 [δsCD3, νCC] + νOH
23 4676.7 4676 νCO + νOH
24 4558.4 4511 δas’CD3 + [δtwistCH2, δipCOH] + νas’CD3
25 4443.0 4429 δscissCH2 + νasCH2
26 4390.5 4390 δscissCH2 + νasCH2
27 4329.0 4356 δscissCH2 + νsCH2
28 4263.8 4332 δscissCH2 + νsCH2
29 4174.6 4180 2[δtwistCH2, δipCOH, δwaggCH2] + δscissCH2
30 4100.0 4107 τCC + δoopCOH + νOH

Table 6. Band assignments in NIR spectra of CD3CD2OH based on GVPT2//B2PLYP-GD3BJ/
def2-TZVP//CPCM calculations. Band numbering corresponds to that presented in Figure 6A.

Peak Number νexp νcalc Assignment (Major Contribution)

1 7099.0 7126 (t)
7102 (g) 2νOH

2 6444.0 6495 νsCD2 + [νasCD2, νasCD3] + [νas’CD3, νasCD2]
3 6232.1 6244 2δipCOH +νOH
4 6162.9 6224 2[νCC, δwaggCD2] + νOH
5 6063.0 6059 [δscissCD2, νCO] + [νCC, δwaggCD2] + νOH
6 5838.3 5861 [νasCD2, νasCD3] + νOH
7 5732.3 5746 [δrockCD2, δrockCD3] + [δsCD3, δwaggCD2] + νOH
8 5478.7 5488 [νCC, δwaggCD2] + νsCD3 + [νasCD2, νasCD3]
9 5285.8 5247 νsCD3 + νasCD2 + νCO

10 5160.0 5103 [δtwistCD2, δrockCD3, δrockCD2] + 2[νCC, δwaggCD2]
11 4903.7 4947 δipCOH + νOH
12 4769.2 4766 [δscissCD2, νCO] + νOH
13 4701.4 4714 [δas’CD3, δasCD3] + νOH
14 4598.4 4604 [νCO, δwaggCD2] + νOH
15 4525.0 4539 [δtwistCD2, δrockCD3, δrockCD2] + δipCOH + [νas’CD3, νasCD2]
16 4506.9 4499 2δscissCD2CO + νasCD3
17 4430.0 4447 [νasCD2, νasCD3] +νasCD3, 2[νas’CD3, νasCD2]
18 4409.6 4420 [νasCD2, νasCD3] + [νas’CD3, νasCD2]
19 4332.0 4334 2νasCD2
20 4267.4 4235 [νsCD2, νsCD3] + νasCD2
21 4156.8 4140 2δoopCOH +νOH
22 4013.0 4012 δscissCD2CO +νOH

Table 7. Band assignments in NIR spectra of CD3CD2OD based on GVPT2//B2PLYP-GD3BJ/
def2-TZVP//CPCM calculations. Band numbering corresponds to that presented in Figure 6B.

Peak Number νExp νCalc Assignment (Major Contribution)

1 7771.0 7799 3νOD
2 6468.0 6525 νsCD3 + [νas’CD3, νasCD2] + νasCD3
3 6450.0 6447 3νasCD2
4 6290.1 6267 2νsCD2 + νasCD2
5 5276.0 5289 2νOD
6 4948.0 5020 [νCO, δtwistCD2] + 2[δscissCD2, νCO]
7 4902.2 4929 [δtwistCD2, δrockCD2] + 2[δscissCD2, νCO]
8 4779.2 4795 νsCD2 + νOD
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Table 7. Cont.

Peak Number νExp νCalc Assignment (Major Contribution)

9 4509.0 4510 [δasCD3, δas’CD3] + [νCC, δwaggCD2] +νasCD3
10 4437.4 4465 2νas’CD3, νasCD3 + νas’CD3
11 4409.3 4434 2νasCD3, νasCD2 + νas’CD3
12 4325.2 4381 2[δscissCD2, νCO] + νsCD3
13 4269.5 4337 2νasCD2
14 4170.2 4241 [νsCD2, νsCD3] + νasCD2

Table 8. Band assignments in NIR spectra of CH3CD2OD based on GVPT2//B2PLYP-GD3BJ/
def2-TZVP//CPCM calculations. Band numbering corresponds to that presented Figure 6C.

Peak Number νCalc Assignment (Major Contribution)

1 8781 3νas’CH3
2 8722 νsCH3 + νasCH3 + νas’CH3
3 8666 2νsCH3 + νasCH3, 2νsCH3 + νas’CH3
4 7802 3νOD
5 7257 [δasCH3, δas’CH3] + νsCH3 + νasCH3
6 6445 3νasCD2
7 6188 τCC + νasCH3 + νas’CH3
8 5943 2νasCH3, νasCH3 + νas’CH3
9 5890 2[δas’CH3, δasCH3] + νas’CH3, 2νas’CH3

10 5845 νsCH3 + νasCH3
11 5728 2δsCH3 + νasCH3
12 5288 2νOD
13 5182 νasCD2 + νas’CH3
14 5120 νasCD2 + νsCH3
15 5097 νsCD2 + νasCH3
16 5046 τCC + 2[δasCH3, δas’CH3]
17 4796 δoopCOD + 2[δas’CH3,δasCH3]
18 4434 τCC + [δwaggCD2, νCC] + νas’CH3
19 4372 δsCH3 +νasCH3, δsCH3 +νas’CH3
20 4341 2νasCD2
21 4289 τCC + δscissCD2 + [δscissCD2,νCO]
22 4233 νsCD2 + νasCD2
23 4190 2νsCD2, [δwaggCD2, νCC] + νasCH3
24 4149 [δscissCD2, νCO] + νasCH3, [δscissCD2, νCO] +νas’CH3
25 4113 δrockCH3 + νas’CH3
26 4089 [δscissCD2, νCO] + νsCH3
27 4056 δrockCH3 + νsCH3

Table 9. Band assignments in NIR spectra of CD3CH2OD based on GVPT2//B2PLYP-GD3BJ/
def2-TZVP//CPCM calculations. Band numbering corresponds to that presented Figure 6D.

Peak Number νcalc Assignment (Major Contribution)

1 8560 3νasCH2, 2νsCH2 + νasCH2
2 8508 3νasCH2
3 8305 2νsCH2 + νasCH2
4 7802 3νOD
5 7088 δscissCH2 + νsCH2 + νasCH2
6 6736 δrockCH2 + νsCH2 + νasCH2
7 6706 [νCO, δas’CD3] + νsCH2 + νasCH2
8 6614 3νas’CD3
9 6505 νsCD3 +νasCD3 +νas’CD3

10 6382 2νsCD3 + νasCD3, 2νsCD3 + νas’CD3
11 5821 [δoopCOD, τCC] + νasCH2 + νsCH2
12 5785 2νasCH2, δwaggCH2 + δscissCH2 + νasCH2
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Table 9. Cont.

Peak Number νcalc Assignment (Major Contribution)

13 5638 2νsCH2, νsCH2 + νasCH2
14 5547 νOD + νsCH2
15 5473 δrockCH2 + δscissCH2 + νasCH2
16 5288 2νOD
17 5106 [τCC, δoopCOD] + 2δwaggCH2
18 4986 2[νCC, δsCD3] + νOD
19 4585 δrock’CD3 + 2δwaggCH2
20 4503 [τCC, δoopCOD] + δwaggCH2 + νasCH2
21 4459 2νasCD3
22 4431 [δas’CD3, νCO] + [νCC, δsCD3] + νas’CD3
23 4385 δscissCH2 + νasCH2
24 4324 2νas’CD3, δscissCH2 + νsCH2
25 4237 δwaggCH2 + νsCH2
26 4167 δtwistCH2 + νasCH2
27 4112 δtwistCH2 + νsCH2
28 4015 [δrockCD3, δrockCH2] + δrockCH2 + νas’CD3

Another insight, which becomes possible only through theoretical simulation of NIR spectra,
is estimation of the relative contributions from different kinds of vibrational transitions (Table 10).
As compared with methanol [41], ethanol offers better opportunity to analyze these contributions,
because of higher number of isotopomers and more complex NIR spectra. The effect of various kinds
of isotopic substitution of the CH3, CH2, and OH groups on NIR spectra may be elucidated. In the
10,000–4000 cm−1 region two quanta transitions, first overtones (2νx) and binary combinations (νx + νy),
are the most meaningful components of the spectra. In particular, binary combinations from the
CH3 group have significant contribution—e.g., for CH3CH2OH they are responsible for 47% of NIR
intensity—while upon deuteration of the CH3 group this contribution decreases to 32.6%. An even
more pronounced effect is observed for OD derivatives, the analogous values for CH3CH2OD and
CD3CH2OD are 51.2% and 35.5%, respectively. Simultaneously, the isotopic substitution of the methyl
group increases the relative intensity of the first overtones, while the intensity of the second overtones
remains insignificant. As expected, the importance of the second overtones increases in the upper
NIR region (10,000–7500 cm−1). Interestingly, this trend is not observed for the ternary combinations
(νx + νy + νz and 2νx + νy), although for OD derivatives the 2νx + νy contribution increases and the
νx + νy + νz contribution decreases upon deuteration of the CH3 group. The isotopic substitution of
the CH2 group provides similar changes, but is noticeably less significant.

As can be seen (Table 10), the region above 7500 cm−1 is contributed only by three and higher
quanta transitions. Therefore, in this region the effect of isotopic substitution is even more visible.
The deuteration of the CH3 group increases the contributions from the second overtones at the expense
of νx + νy + νz combinations, while the contributions from 2νx + νy remain similar. Interestingly, NIR
spectrum of CD3CD2OD above 7500 cm−1 includes the second overtones only.

These observations remain in agreement with our previous findings on methanol isotopomers [41].
However, the contributions from the three quanta transitions are more important for ethanol.
For CH3CH2OH these transitions involve 25.9% of total intensity (10,000–4000 cm−1), while for
CH3OH this value was found to be 19.2%. The difference between CD3OD and CD3CD2OD is even
larger (23.5% vs. 36.7%).
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Table 10. Contributions (in %) from the first and second overtones as well as binary and
ternary combinations into NIR spectra of ethanol isotopomers based on GVPT2//B2PLYP-GD3BJ/
def2-TZVP//CPCM calculations. a

10,000–4000 cm−1

2νx 3νx νx + νy νx + νy + νz 2νx + νy

CH3CH2OH 26.1 1.7 47.0 14.3 10.9
CH3CH2OD 18.0 2.2 51.2 17.4 11.1
CH3CD2OH 35.8 1.7 41.5 11.8 9.2
CD3CH2OH 40.9 1.2 32.6 15.1 10.1
CD3CD2OH 46.0 0.3 23.7 15.8 14.2
CD3CD2OD 43.1 2.0 19.2 17.8 17.9
CH3CD2OD 27.9 3.2 44.7 15.0 9.2
CD3CH2OD 36.0 2.5 35.5 10.8 15.2

10,000–7500 cm−1

2νx 3νx νx + νy νx + νy + νz 2νx + νy

CH3CH2OH 0.0 39.7 0.0 22.3 38.0
CH3CH2OD 0.0 55.5 0.0 15.4 29.1
CH3CD2OH 0.0 43.9 0.0 30.5 25.6
CD3CH2OH 0.0 66.9 0.0 1.4 31.7
CD3CD2OH 0.0 0.0 0.0 43.0 57.0
CD3CD2OD 0.0 100.0 0.0 0.0 0.0
CH3CD2OD 0.0 69.9 0.0 16.7 13.4
CD3CH2OD 0.0 76.3 0.0 0.5 23.2

7500–4000 cm−1

2νx 3νx νx + νy νx + νy + νz 2νx + νy

CH3CH2OH 26.5 1.2 47.6 14.2 10.5
CH3CH2OD 18.4 1.0 52.4 17.5 10.7
CH3CD2OH 36.0 1.4 41.8 11.7 9.1
CD3CH2OH 41.4 0.4 33.0 15.3 9.9
CD3CD2OH 46.0 0.3 23.7 15.8 14.2
CD3CD2OD 43.7 0.5 19.5 18.0 18.2
CH3CD2OD 28.4 2.0 45.5 15.0 9.1
CD3CH2OD 37.0 0.5 36.4 11.1 15.0

a The comparison is based on integrated intensity (cm−1) summed over simulated bands, convoluted with the use of
Cauchy−Gauss product function (details in the text) in relation to the total integrated intensity.

3. Experimental and Computational Methods

3.1. Materials and Spectroscopic Measurements

In Table 11 are collected the details on the samples used in this work. The experimental spectrum of
CH3CH2OH was taken from our previous work [29]. All samples were used as received, while solvent
(CCl4) was distilled and additionally dried using freshly activated molecular sieves (Aldrich, 4A).
All ethanols were measured in CCl4 solution (0.1 mol dm−3). NIR spectra were recorded on Thermo
Scientific Nicolet iS50 spectrometer using InGaAs detector, with a resolution of 2 cm−1 (128 scans), in a
quartz cells (Hellma QX, Hellma Optik GmbH, Jena, Germany) of 100 mm thicknesses at 298 K (25 ◦C).

57



Molecules 2019, 24, 2189

Table 11. Samples used in this study

Sample Purity D Atom Content Other Remarks

1 CH3CH2OD 99% ≥99.5%
2 CH3CD2OH 99% 98%
3 CD3CH2OH 99% 99%
4 CD3CD2OH 99% 99.5%
5 CD3CD2OD >99% ≥99.5% anhydrous
6 CCl4 >99% -

Samples were purchased from Sigma-Aldrich Chemie GmbH (Taufkirchen, Germany).

3.2. Computational Procedures

Our calculations were based on density functional theory (DFT) with double-hybrid B2PLYP
density functional [55] (unfrozen core) coupled with Karlsruhe triple-ζ valence with polarization
(def2-TZVP) [56] basis set. Grimme’s third formulation of empirical correction for dispersion with
Becke-Johnson damping (GD3BJ) was applied [57]. To better reflect solvation of molecules, CCl4 cavity
in solvent reaction field (SCRF) [58] was included at conductor-like polarizable continuum (CPCM) [59]
level. Very tight criteria for geometry optimization and 10−10 convergence criterion in SCF procedure
were set. Electron integrals and solving coupled perturbed Hartree-Fock (CPHF) equations were
calculated over a superfine grid. The selected method provided good reproduction of NIR spectra of
various molecules in CCl4 solution [19,29,30].

We carried out the anharmonic vibrational analysis at generalized vibrational second-order
perturbation theory (GVPT2) [60,61] level. In this approach, the anharmonic frequencies and intensities
of the vibrational transitions up to three quanta were obtained. This allows to simulate fundamental,
first and second overtones, as well as binary and ternary combination bands. Quantum mechanical
calculations were carried out with Gaussian 16 (A.03) [62]. One of the major features implemented in
GVPT2 approach is the automatic treatment of tight vibrational degenerations, i.e., resonances [63].
In this work the search for resonances included Fermi (i.e., 1-2) of type I (ωi ≈ 2ωj) and type II
(ωi ≈ ωj + ωk), and Darling–Dennison (i.e., 2-2, 1-1, and 1-3) resonances. All possible resonant terms
within search thresholds were included in the variational treatment. The resonance search thresholds
(respectively, maximum frequency difference and minimum difference PT2 vs. variational treatment;
in (cm−1)) were: 200 and 1 (for the search of 1–2 resonances), 100 and 10 (for 2-2, 1-1, and 1-3).

To display the simulated spectra we applied a four-parameter Cauchy–Gauss (Lorentz–Gauss)
product function [20]. The theoretical bands were modelled with a2 and a4 parameters equal to 0.055
and 0.015, resulting with full-width at half-height (FWHH) of 25 cm−1. Exception was made for better
agreement with the weaker and broader experimental bands, which are presented in Figures 3 and 4.
In this case the values were 0.075, 0.015, and 35 cm−1, respectively. The final theoretical spectra were
obtained by combining the spectra of trans and gauche conformers, mixed in accordance with the
calculated abundances of each form [64]. The relative abundances of the gauche (ng) and trans (nt)
conformers were determined as following equation [65].

ng

nt
=

At

Ag
e
−ΔG298

RT

where Gibbs free energy (ΔG) corresponds to the value calculated at 298 K corrected by anharmonic
(VPT2) zero-point energy (ZPE); At and Ag are the degeneracy prefactors of the Boltzmann term for the
gauche (1) and trans (2) conformers.

The band assignments were aided by calculations of potential energy distributions (PEDs). PEDs
were obtained with Gar2Ped software [66], using natural internal coordinate system defined in
accordance with Pulay [67]. The numerical analysis of the theoretical results and the processing of the
experimental spectra were performed with MATLAB R2016b (The Math Works Inc.) [68].
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4. Conclusions

Isotopic substitution leads to much higher variability in NIR spectra as compared with IR spectra,
due to significant contribution from the combination bands. The pattern of OH/OD, CH3/CD3, and
CH2/CD2 groups in ethanol often leads to fine spectral changes, which may be monitored and explained
in detail by anharmonic quantum mechanical simulations. Our studies were devoted to NIR spectra
of eight isotopomers of ethanol (CX3CX2OX (X = H, D)) by using anharmonic GVPT2 vibrational
analysis. The calculations were performed at several levels of electronic theory, including DFT and
MP2 to find accurate and efficient theoretical approach for studies of isotopic effect in NIR spectra. Our
results indicate that DFT approach using double-hybrid B2PLYP functional, coupled with def2-TZVP
basis set, and supported by GD3BJ correction with CPCM solvent model yielded the best results.
The theoretical spectra obtained by this approach enabled us to assign most of NIR bands, including
two (2νx and νx + νy) and three quanta (3νx, νx + νy + νz, and 2νx + νy) transitions. Accuracy of these
calculations permitted us to analyze theoretical NIR spectra of CH3CD2OD and CD3CH2OD for which
the experimental spectra are not available. The effect of the isotopic substitution of the OH, CH3,
and CH2 groups was satisfactory reproduced and explained. Moreover, the relative contributions of
selected groups and kinds of transitions were elucidated and discussed. The contributions from the
CH3 group appear to be more important than those from the CH2 group. The isotopic substitution
in the CH3 group leads to the most prominent intensity changes in NIR spectra as compared to the
changes due to the substitution of the other groups. The bands from the three quanta transitions are
more important for isotopomers of ethanol than for derivatives of methanol.
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20. Grabska, J.; Ishigaki, M.; Beć, K.B.; Wójcik, M.J.; Ozaki, Y. Structure and near-infrared spectra of saturated
and unsaturated carboxylic acids. An insight from anharmonic DFT calculations. J. Phys. Chem. A 2017, 121,
3437–3451. [CrossRef]
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30. Grabska, J.; Beć, K.B.; Ozaki, Y.; Huck, C.W. Temperature drift of conformational equilibria of butyl alcohols
studied by near-infrared spectroscopy and fully anharmonic DFT. J. Phys. Chem. A 2017, 121, 1950–1961.
[CrossRef]

31. Pele, L.; Gerber, R.B. On the mean accuracy of the separable VSCF approximation for large molecules. J. Phys.
Chem. C 2010, 114, 20603–20608.

32. Otaki, H.; Yagi, K.; Ishiuchi, S.; Fujii, M.; Sugita, Y. Anharmonic Vibrational Analyses of Pentapeptide
Conformations Explored with Enhanced Sampling Simulations. J. Phys. Chem. B 2016, 120, 10199–10213.
[CrossRef]

33. Yagi, K.; Otaki, H.; Li, P.-C.; Thomsen, B.; Sugita, Y. Weight Averaged Anharmonic Vibrational Calculations:
Applications to Polypeptide, Lipid Bilayers, and Polymer Materials; Ozaki, Y., Wójcik, M.J., Popp, J., Eds.; Wiley:
Hoboken, NJ, USA, 2019; in press.

34. Yagi, K.; Yamada, K.; Kobayashi, C.; Sugita, Y. Anharmonic Vibrational Analysis of Biomolecules and
Solvated Molecules Using Hybrid QM/MM Computations. J. Chem. Theory Comput. 2019, 15, 1924–1938.
[CrossRef]

35. Gonjo, T.; Futami, Y.; Morisawa, Y.; Wójcik, M.J.; Ozaki, Y. Hydrogen bonding effects on the wavenumbers
and absorption intensities of the OH fundamental and the first, second and third overtones of phenol and
2,6-dihalogenated phenols studied by visible/near-infrared/infrared spectroscopy and density functional
theory calculations. J. Phys. Chem. A 2011, 115, 9845–9853.

36. Futami, Y.; Ozaki, Y.; Hamada, Y.; Wójcik, M.J.; Ozaki, Y. Solvent dependence of absorption intensities
and wavenumbers of the fundamental and first overtone of NH stretching vibration of pyrrole studied by
near-infrared/infrared spectroscopy and DFT calculations. J. Phys. Chem. A 2011, 115, 1194–1198. [CrossRef]

37. Kuenzer, U.; Sorarù, J.-A.; Hofer, T.S. Pushing the limit for the grid-based treatment of Schrödinger’s equation:
A sparse Numerov approach for one, two and three dimensional quantum problems. Phys. Chem. Chem. Phys.
2016, 18, 31521–31533. [CrossRef]

38. Kuenzer, U.; Klotz, M.; Hofer, T.S. Probing vibrational coupling via a grid-based quantum approach-an
efficient strategy for accurate calculations of localized normal modes in solid-state systems. J. Comput. Chem.
2018, 39, 2196–2209. [CrossRef]

39. Kuenzer, U.; Hofer, T.S. A four-dimensional Numerov approach and its application to the vibrational
eigenstates of linear triatomic molecules—The interplay between anharmonicity and inter-mode coupling.
Chem. Phys. 2019, 520, 88–89.

40. Wu, P.; Siesler, H.W. The diffusion of alcohols and water in polyamide 11: A study by FTNIR-spectroscopy.
Macromol. Symp. 1999, 143, 323–336. [CrossRef]
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Anel Beganović, Vanessa Moll and Christian W. Huck *

Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine,
Innrain 80/82, 6020 Innsbruck, Austria; anel.beganovic@uibk.ac.at (A.B.);
vanessa.moll@student.uibk.ac.at (V.M.)
* Correspondence: christian.w.huck@uibk.ac.at; Tel.: +43-512-507-57304

Received: 3 September 2019; Accepted: 10 October 2019; Published: 15 October 2019

Abstract: The predictive power of the two major water bands centered at 6900 cm−1 and 5200 cm−1

in the near-infrared (NIR) region was compared to carbohydrate-related spectral areas located in
the first overtone (around 6000 cm−1) and combination (around 4500 cm−1) region using glucose in
aqueous solutions as a model substance. For the purpose of optimal coverage of stronger as well as
weaker absorbing NIR regions, cells with three different declared optical pathlengths were employed.
The sample set consisted of multiple separately prepared batches in the range of 50–200 mmol/L.
Moreover, the samples were divided into a calibration set for the construction of the partial least
squares regression (PLS-R) models and a test set for the validation process with independent samples.
The first overtone and combination region showed relative prediction errors between 0.4–1.6% with
only one PLS-R factor required. On the other hand, the errors for the water bands were found between
1.6–8.3% and up to three PLS-R factors required. The best PLS-R models resulted from the cell with
1 mm optical pathlength. In general, the results suggested that the carbohydrate-related regions in
the first overtone and combination region should be preferred over the regions of the two dominant
water bands.

Keywords: FT-NIR spectroscopy; PLS-R; water; glucose; test set validation; RMSEP

1. Introduction

Glucose is of great importance in physiological systems, medicine, and health care, as well as in
the food and beverage industry. Besides other analytical methods, glucose and other carbohydrates
are often quantitatively determined enzymatically or via chromatographic methods such as high
performance liquid chromatography (HPLC) or gas chromatography (GC) [1–3]. However, these
methods are rather time-consuming and expensive as they usually require sample preparation, long
measurement time (incubation of enzymes, separation on column, etc.), and qualified personnel.
Considering these drawbacks of conventional analytical techniques, near-infrared spectroscopy
(NIRS) is of increasing interest as an alternative method for the quantification of glucose and other
carbohydrates in aqueous solutions. NIRS mostly does not require any sample preparation, offers
fast and non-invasive analyses, and multiple sample characteristics are accessible with one single
measurement. Moreover, NIR spectrometers are cheap to run and can be operated by relatively
untrained personnel. Alongside the mentioned advantages, NIRS comes with a few downsides.
One is that the information contained in NIR spectra often needs to be extracted using multivariate
data analysis tools such as principal component analysis (PCA) or partial least squares regression
(PLS-R). The other is, in order to establish a robust model for a reliable prediction of future samples,
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sufficient reference measurements with known target parameters need to be provided to the calibration.
Both mentioned drawbacks make NIRS time-consuming and require highly skilled personnel in the
calibration phase, and therefore might be cost-intensive initially [4–6].

Glucose in water and in various other water-based matrices like buffer and serum solutions,
blood anticoagulants, fruit juices, and alcoholic beverages was extensively studied in the field of
NIRS. Furthermore, non-invasive blood glucose monitoring and glucose quantifications in other body
fluids (e.g., urine) using NIRS is a matter of great interest in literature. The aqueous NIR spectrum of
glucose is dominated by intense water bands centered at around 6900 cm−1 and 5200 cm−1, which
are assigned to combinations of water OH stretching and bending modes [7–10]. Depending on the
utilized optical cell pathlength (distance of interaction between sample and light), these bands can
become unusable due to the complete absorption of NIR radiation by water [11–13]. Clearly visible
glucose-related bands usually do not appear at lower concentrations in the NIR spectrum of aqueous
glucose without spectral pre-treatments (e.g., derivative functions) [14], but become apparent at higher
concentrations [15]. However, prominent absorption features of dissolved carbohydrates are located in
the combination region around 4500 cm−1, the first overtone region around 6000 cm−1, as well as in
the short wavelength NIR region around 9500 cm−1 [16–18]. In case of carbohydrates, vibrations in
these regions are mostly due to C−H-based combination and overtone vibrations [8,19]. The available
literature is primarily concerned with the combination and first overtone region.

Addition of glucose or other carbohydrates may have a similar effect on the liquid water structure
(hydrogen bond network) as an addition of inorganic salts [20–22] or changes in temperature [10,23,24].
Thereby, changes in the appearance of the water bands in the NIR region are induced [13,25–27].
Furthermore, carbohydrates in aqueous solution can act on the water cluster as structure breakers
or structure makers [26]. The extent of the changes in the water structure is connected to the
concentration of the corresponding solute and thus the water bands can be utilized for quantitative
analyses [13,25,27]. As already mentioned, glucose and other carbohydrates exhibit characteristic NIR
spectral features in the combination, first overtone, and short wavelength NIR region, next to the two
dominant water bands. The direct relation between the concentration of dissolved carbohydrates
and the spectral response allowed successful applications of these regions in previous quantification
studies [14,16–18,28,29].

Chen et al. [17] compared the predictive power of the combination and first overtone region
for glucose and other biomolecules in aqueous solutions in the range of approximately 0–35 mM.
The authors optimized the optical pathlength for each of the two regions and concluded that the
combination region was superior relative to the first overtone NIR region. Beganović et al. [13]
investigated the performance of the two major water bands in the NIR centered at around 6900 cm−1

and 5200 cm−1. In order to overcome the issue of complete absorption of NIR light most commonly
occuring at the water band located around 5200 cm−1, they utilized a cell with 0.1 mm optical
pathlength. By this, the authors demonstrated rich information content of the so-called combination
band of water at 5200 cm−1, which is often not taken into consideration in literature. Compared to the
water band at 6900 cm−1, the authors reported lower prediction errors for the more intense water band
at 5200 cm−1. To best of our knowledge, no previously conducted study compared the performance
of all these NIR regions directly—the water-based, as well as the carbohydrate-based regions. The
present study intends to point out the NIR regions with the maximum of relevant information content
for the analysis of carbohydrate-based aqueous solutions. This is of particular interest for applications
working close to the limits of detection (LOD) as well as limits of quantification (LOQ).

Therefore, this work aims at the comparison of the two dominating waterbands in the NIR
centered at around 6900 cm−1 and 5200 cm−1 to the sugar-related spectral regions located in the first
overtone and combination region around 6000 cm−1 and 4500 cm−1, respectively. Glucose in aqueous
solutions is used as a model substance. In addition, cells with different optical pathlengths are utilized
in order to access the whole NIR region from 10,000–4000 cm−1 (thinner cell pathlength) and to account
for the lower absorption in the first overtone region (thicker cell pathlength).

64



Molecules 2019, 24, 3696

2. Material and Methods

2.1. Samples

D-(+)-glucose (≥99.5%) was purchased from Carl Roth (Karlsruhe, Germany) and Milli-Q water
with a resistivity of 18.2 MΩ cm was used for the preparation of the glucose solutions. The calibration
set was composed of pure Milli-Q water and glucose concentrations ranging from 50–200 mmol/L
in steps of 30 mmol/L. For the test set, samples with glucose concentrations of 60.2, 130.5 and
186.0 mmol/L were prepared.

In order to avoid any effects of measurement time, multiple independent batches for both
calibration and test samples were prepared. The calibration and test set consisted of three and two
batches per sample, respectively. The preparation and measurement of the samples were randomized.
Furthermore, all samples were measured on the day they were prepared.

2.2. FT-NIR Measurements

The Büchi NIRFlex N-500 FT-NIR spectrometer (Büchi, Flawil, Switzerland) equipped with the
liquids measurement cell was used to acquire NIR spectra of the glucose solutions. The spectra
were recorded in transmission mode in the range of 10,000–4000 cm−1 with a spectral resolution
of 8 cm−1, while each sample was scanned 64 times. In order to account for the lower absorption
towards increasing wavenumbers, the measurements were performed using three cell types with
different declared optical pathlengths. The cells were purchased from Hellma GmbH & Co. KG
(Müllheim, Germany) and specified as follows: one 106-QS quartz SUPRASIL® cell with 0.1 mm
optical pathlength and demountable cell windows, and multiple 100-QX quartz SUPRASIL® cells
with 1 mm and 2 mm optical pathlength, respectively. Spectrometer reference measurements were
performed in the beginning, as well as in the middle of each measurement day. Data acquisition was
accomplished using the NIRWare 1.4.3010 software package (Büchi, Flawil, Switzerland).

Samples were always freshly prepared and measured randomly over a period of four weeks.
In contrast to the 1 mm and 2 mm cells—which were simply filled with a certain amount of sample
solution—the 0.1 mm cell is demountable and thus had to be filled differently. For the 0.1 mm cell,
approximately 40 μL of glucose solution was applied onto the sample recess of one optical cell window,
followed by the careful attachment of the second cell window. Excessive sample solution was displaced
and collected with a tissue. Sticky glucose residues on the outside surface of the cell were removed.

The NIR measurements were performed at 35 °C due to the fact that the NIRFlex N-500 liquids
measurement cell was subjected to significant fluctuations at lower temperatures. However, at
35 °C, the temperature fluctuation stabilized at ±0.1 °C [13]. In order to avoid the introduction
of temperature-driven shifts in the NIR spectrum, each cell filled with sample solution was tempered
to 35 °C before the measurements were started. The 0.1 mm cell was thermally equilibrated for 30 s,
while the 1 mm and the 2 mm cells were thermally equilibrated for 1 min and for 2 min, respectively.
To avoid water evaporation, the 1 mm and 2 mm cells were covered with a lid, whereas the 0.1 mm
cell did not offer any cover possibility since the two cell windows were kept together by adhesion. The
only possibility to prevent the evaporation of water out of the 0.1 mm cell was to minimize the time
between the filling of the cell with sample solution and the actual sample measurement.

All samples were measured nine times, while the cells were refilled with fresh solution for each
of the nine repeat measurements. The cells were cleaned thoroughly after every single measurement
using Milli-Q water and ethanol. Lint-free tissues, as well as a conventional compressed air system,
were used in order to dry the cells and remove potential dust particles.

2.3. Band Assignment and Division of Spectral Regions

In this study, the two water bands at around 6900 cm−1 and 5200 cm−1, as well as two regions of
glucose-related vibrations located at around 5900 cm−1 and 4400 cm−1, were used for the comparison
of the predictive power of each region separately at different cell pathlengths. Since water is known
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to be a strong absorber in the near-infrared [8,30], complete absorption of the NIR light can occur in
certain spectral regions—depending on the cell pathlength, infrared source, and detector [30]. As a
consequence, the water band centered at 5200 cm−1 could not be utilized for the purpose of any
quantitative analysis using both the 1 mm and 2 mm cells. This region was only accessible using the
0.1 mm cell.

The NIR regions related to water were selected in such a way that they ranged from the beginning
to the end of the corresponding NIR band while the regions related to glucose were chosen according
to the spectral pattern after the application of the second derivative discussed later (Section 3). For the
water band at around 6900 cm−1 a spectral range of 7692–6248 cm−1 was selected in order to match
the region frequently used in aquaphotomics [27], and was labeled as W1 in this study. This band is
commonly referred to as the first overtone of water [27,31], although it is actually a combination of
symmetric and antisymmetric stretching vibration modes of water [8,9]. The spectral region for the
second water band—labeled as W2—was set to 5400–4600 cm−1 and is assigned to the combination of
bending and antisymmetric water stretching modes [7,8].

The two regions at around 5900 cm−1 and 4400 cm−1 related to glucose vibrations in water were
labeled as G1 and G2, respectively. For G1, the spectral region was set to 6100–5800 cm−1 and is
assigned to first overtone vibrations of C−H compounds [8,16,32]. The spectral region for G2 was set to
4520–4300 cm−1 and is assigned to combinations of C−H stretching and CH2 deformation vibrations,
as well as combinations of stretching vibrations of glucose-related O−H and C−O compounds [8,16].
Figure 1 shows an exemplary NIR spectrum of water containing glucose with the described division of
spectral regions. Note that the small band around 4500 cm−1 (marked with an asterisk in Figure 1)
is caused by O−H residues in the quartz windows of the 0.1 mm cell (probably due to water
impurities [33]) and is assigned to a combination of an O−H stretching vibration and one of the
SiO2 fundamental vibrations [8,34].

Figure 1. Illustration of the division of the spectral regions W1, W2, G1, and G2 using an exemplary
spectrum collected with the 0.1 mm cell. The O−H residue in the cell’s quartz windows at around
4500 cm−1 is marked with an asterisk. It is assigned to a combination of an O−H stretching vibration
and one of the SiO2 fundamental vibrations [8,34].

2.4. Multivariate Data Analysis

The Unscrambler X Ver. 10.5 (Camo Software AS, Oslo, Norway) was used for the pre-treatment
of the NIR spectra as well as the construction and validation of the multivariate regression models.
Due to the occurrence of interference fringes using the 0.1 mm cell, the frequency filtering technique
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fast Fourier transform filter (FFT-filter) [13] was applied to these NIR spectra using OriginPro Ver.
9.1G (OriginLab Corporation, Northampton, MA, USA). Thereby, the NIR spectra were first Fourier
transformed, followed by the application of a filter function and finally retransformed by inverse
Fourier transformation. In order to only eliminate the disturbing interferences and leave the regular
spectra containing the targeted information untouched, the parabolic low-pass filter was chosen
as an FFT filter function. This filter blocks all frequencies above a certain threshold value (cutoff
frequency), while lower frequency elements are allowed to pass [13]. The cutoff frequency was set to
0.02625 Hz—all frequencies above were eliminated before the spectra were inverse Fourier transformed.
The suitability of this approach has been validated before [13]. Afterward, the spectra of all three cell
pathlengths were transformed from transmittance to absorbance.

The NIR spectra were reduced batchwise from nine spectra to one representative spectrum for
each batch. All previously defined spectral regions were subjected to an individual optimization of
pre-treatments (see Table 1). However, in case of the regions W1 and W2, the pre-treatments were
chosen as proposed in aquaphotomics literature [27] with an additional application of a standard
normal variate (SNV) transformation [35]. For the regions G1 and G2, it was found that a second order
Savitzky–Golay derivative [36] with a second order polynomial and a varying number of smoothing
points was optimal. Second order derivative spectra were also calculated for the two water-related
regions W1 and W2. The results were inferior compared to the pre-treatments mentioned above and
will therefore not be discussed any further.

Table 1. Details of spectral pre-treatments applied to each spectral region.

Cell Region Pre-Treatments

0.1 mm

W1 FFT-filter, SavGol smoothing (25 SP, second polynomial order), SNV

W2 FFT-filter, SavGol smoothing (25 SP, second polynomial order), SNV

G1 FFT-filter, SavGol smoothing (13 SP, second polynomial order), SNV,
second SavGol derivative (15 SP, second polynomial order)

G2 FFT-filter, second SavGol derivative (11 SP, second polynomial order)

1 mm

W1 SavGol smoothing (second polynomial order, 25 SP)

G1 second SavGol derivative (19 SP, second polynomial order)

G2 second SavGol derivative (25 SP, second polynomial order)

2 mm

W1 SavGol smoothing (25 SP, second polynomial order), SNV

G1 second SavGol derivative (9 SP, second polynomial order)

G2 second SavGol derivative (7 SP, second polynomial order)

SavGol—Savitzky-Golay; SP—smoothing points.

For each spectral region, regression models were calculated using partial least squares regression
(PLS-R) along with the NIPALS algorithm. The calibration process incorporated 21 calibration samples
from three batches, whereas the performance of the calibration models was evaluated with six
completely independent samples from two batches (test set validation). Note that these samples
were never employed in any calibration [37,38]. The performances of the PLS-R models were assessed
using the root mean square error (RMSE), which was calculated according to Equation (1), where yi
and ŷi represent the reference and predicted values, respectively. Furthermore, in order to enable a
more straightforward interpretation of the RMSE’s scale, a percentage error called normalized RMSE
(NRMSE) was introduced, which refers to the calibration range of 0–200 mmol/L (see Equation (2)).
The errors of the calibration (CAL) and test set validation (TSV) were referred to as root mean square
error of calibration (RMSEC) and root mean square error of prediction (RMSEP), respectively:
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RMSE =

Ã
1
n

n∑
i=1

(yi − ŷi)2, (1)

NRMSE =
RMSE

ymax − ymin
× 100. (2)

The RMSE’s magnitude is closely associated with the number of PLS-R factors (or latent variables),
which is a crucial parameter for a satisfactory performing PLS-R model [37,38]. Since the glucose-water
system used in this study is rather simple, the number of PLS-R factors employed in the PLS-R
models should be kept quite low in order to avoid modeling of noise and thus non-relevant spectral
information (overfitting). However, using too few PLS-R factors can lead to poor model performance
due to the lack of explained variance in the NIR spectra (underfitting). The optimal number of PLS-R
factors was determined by the examination of the regression coefficients, the loadings and correlation
loadings of each PLS-R factor as well as the explained variances.

3. Results and Discussion

The full-range raw NIR spectra of the calibration and test set for all three utilized cell pathlengths
are depicted in Figure 2. The artifacts occuring in the region around 5200 cm−1 in the raw NIR spectra
of the 1 mm and 2 mm cells in Figure 2 are caused by the complete absorption of NIR light in this
spectral region [11].

Figure 2. Raw NIR spectra (calibration and test set) of all three utilized cell pathlengths. The spectra
were only transformed from transmittance to absorbance.

The pre-treated NIR calibration set spectra of the regions W1, W2, G1 and G2 for all three
cell pathlengths are presented in Figure 3. Since each of the three batches per concentration was
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averaged from nine spectra to one representative spectrum, three spectra per concentration are shown
in Figure 3. The glucose-related regions G1 and G2 showed an evident pattern towards increasing
glucose concentrations (Figure 3e,f,j–l), while such an obvious pattern was missing in the NIR spectra
of the water-related regions W1 and W2 at first glance (Figure 3a–c,g). However, a closer look revealed
that there actually was a certain concentration dependent pattern, although it was not as pronounced
as in the regions associated with glucose vibrations. An example of this is shown in Figure 4.
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Figure 3. Pre-treated NIR spectra of the calibration set. The spectral regions W1 (a–c), W2 (g), G1
(d–f), and G2 (j–l) are shown for all three utilized cell pathlengths separately. Each concentration is
represented by three representative NIR spectra (one per batch). No spectra were available in region
W2 for the 1 mm and 2 mm cells (h,i) due to the complete absorption of the NIR light.
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In the course of data analysis, the number of smoothing points for the second derivative in the first
overtone and combination region was individually optimized prior to the PLS-R. As a consequence,
the exact spectral range used for the PLS-R varied for each cell. Nevertheless, the spectral regions
subjected to the calculation of the derivative spectra did not vary in between the three cell pathlengths.
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Figure 4. Illustration of the glucose concentration dependent pattern in the water band located at
around 6900 cm−1 (region W1). NIR spectra of the calibration set recorded with the 0.1 mm cell are
shown here exemplarily.

3.1. Measurements with 0.1 mm Cell Pathlength

The results of the PLS-R calibration and test set validation procedure is presented in Table 2. The
0.1 mm cell allowed the evaluation of the performance of all four investigated regions. Comparing the
results for the 0.1 mm cell in Table 2, probably the most noticeable value is the relatively high prediction
error of RMSEP = 22.6 mmol/L of the first overtone region G1. This error’s magnitude of more than 11%
employing three PLS-R factors was hardly surprising, considering the lack of a distinct concentration
dependent pattern in Figure 3d. The reason for this was that a small amount of interference fringes
was still present in this spectral region and that there was insufficient spectral information content
due to the short pathlength [30]. These remaining fringes were hardly noticeable in the regular
absorption spectrum but became evident after the application of the second derivative—despite
previous smoothing of the NIR spectra. Considering the PLS-R scores of the calibration set of region
G1 in Figure 5d–f, the first PLS-R factor mostly accounted for the changes in glucose concentration.
Despite that, the PLS-R calibration model was not able to predict the test set adequately.

The models for the two water-related regions W1 and W2 both showed similar percentage errors
of around NRMSEP = 4% for the prediction of unknown samples from the test set using two PLS-R
factors, respectively. A consideration of more than two PLS-R factors for each model would have
further reduced the prediction error; however, a closer look at the model statistics gave no justification
for the use of a third PLS-R factor. In case of region W1, the validation model’s explained Y-variance
(variance in glucose concentration) comparably increased from PLS-R factor 1 to 2 and from PLS-R
factor 2 to 3 (see Table 3), and therefore suggested a model based on three PLS-R factors. In contrast, the
correlation loadings of PLS-R factor 3 showed very low values with a maximum of 0.2 (see Figure 6a),
which led to the exclusion of PLS-R factor 3 from the PLS-R model due to the risk of modeling
glucose-unrelated spectral information. For the combination band of water (region W2), two PLS-R
factors were considered as optimal as the explained Y-variance in the PLS-R validation model increased
by 2.4% from PLS-R factor 1 to 2 (see Table 3) and the correlation loadings indicated many X-variables
with strong contributions to the second PLS-R factor (see Figure 6g).
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Figure 5. PLS-R score plots of the calibration set for the regions W1 (a), W2 (b), G2 (c), and G1 (d–f)
obtained by measurements with the 0.1 mm cell. Each data point corresponds to one batch. The
featured factors were chosen according to the required number of PLS-R factors in Table 2.

Among all prediction errors of the measurements conducted with the 0.1 mm cell, the
glucose-related combination region G2 yielded by far the lowest prediction error. The model required
only one PLS-R factor to yield an NRMSEP as low as 0.7% along with an R2

TSV of 0.9993. The explained
Y-variance of the test set already reached 99.9% in the first PLS-R factor (see Table 3), and thus made
the use of more PLS-R factors invalid. This remarkable prediction performance of region G2 can be
attributed to the very distinct concentration pattern in the second derivative NIR spectra (see Figure 3j),
which was not observed in the regular (untreated) spectra. In addition to that, the concentrations in
the PLS-R score plot of region G2 in Figure 5c were perfectly separated along PLS-R factor 1. This
demonstrated that PLS-R factor 1 exclusively accounted for changes in glucose concentration and thus
allowed the exclusion of further PLS-R factors.
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72



Molecules 2019, 24, 3696

T
a

b
le

2
.

R
es

ul
ts

of
th

e
PL

S-
R

ca
lib

ra
ti

on
an

d
te

st
se

tv
al

id
at

io
n

fo
r

al
lt

hr
ee

ce
ll

pa
th

le
ng

th
s

as
w

el
la

s
fo

r
ea

ch
sp

ec
tr

al
re

gi
on

.

C
e

ll
R

e
g

io
n

T
y

p
e

o
f

P
L

S
-R

R
M

S
E

C
N

R
M

S
E

C
R

M
S

E
P

N
R

M
S

E
P

S
E

C
S

E
P

B
ia

s
R

2
V

a
li

d
a

ti
o

n
F

a
ct

o
rs

in
m

m
o

l/
L

in
%

in
m

m
o

l/
L

in
%

in
m

m
o

l/
L

in
m

m
o

l/
L

in
m

m
o

l/
L

0.
1

m
m

W
1

C
A

L
2

4.
7

2.
3

-
-

4.
8

-
2.

1
×

10
−5

0.
99

5
TS

V
-

-
7.

6
3.

8
5.

6
5.

6
0.

98

W
2

C
A

L
2

2.
7

1.
4

-
-

2.
8

-
5.

5
×

10
−5

0.
99

8
TS

V
-

-
8.

3
4.

1
-

9.
0

0.
5

0.
98

G
1

C
A

L
3

5.
2

2.
6

-
-

5.
3

-
0

0.
99

4
TS

V
-

-
22

.6
11

.3
-

23
.1

−8
.0

0.
83

G
2

C
A

L
1

1.
6

0.
8

-
-

1.
6

-
0

0.
99

94
VA

L
-

-
1.

4
0.

7
-

1.
5

0.
1

0.
99

93

1
m

m
W

1
C

A
L

2
2.

1
1.

0
-

-
2.

1
-

2.
3
×

10
−5

0.
99

89
TS

V
-

-
3.

2
1.

6
-

3.
2

1.
1

0.
99

7

G
1

C
A

L
1

1.
2

0.
6

-
-

1.
3

-
0

0.
99

96
TS

V
-

-
1.

8
0.

9
-

1.
9

0.
4

0.
99

89

G
2

C
A

L
1

0.
6

0.
3

-
-

0.
6

-
0

0.
99

99
2

TS
V

-
-

0.
7

0.
4

-
0.

8
0.

2
0.

99
98

2
m

m
W

1
C

A
L

3
4.

0
2.

0
-

-
4.

1
-

1.
5
×

10
−5

0.
99

6
TS

V
-

-
10

.1
5.

1
-

9.
5

–5
.3

0.
97

G
1

C
A

L
1

1.
1

0.
6

-
-

1.
1

-
0

0.
99

97
TS

V
-

-
1.

5
0.

8
-

1.
6

–0
.6

0.
99

92

G
2

C
A

L
1

3.
1

1.
6

-
-

3.
2

-
0

0.
99

8
TS

V
-

-
3.

3
1.

6
-

3.
0

1.
8

0.
99

6

C
A

L—
ca

lib
ra

ti
on

;T
SV

—
te

st
se

tv
al

id
at

io
n.

73



Molecules 2019, 24, 3696

3.2. Measurements with 1 mm Cell Pathlength

The performance of the three exploitable regions of the 1 mm cell was remarkable. The PLS-R
calibration model of the so-called first overtone of water (region W1) predicted the independent test
set samples with an error of RMSEP = 3.2 mmol/L and a relative error of NRMSEP = 1.6% (see Table 2).
These errors were achieved using the first two PLS-R factors and together accounted for 99.7% of the
Y-variance (see Table 3), which, as a consequence, did not allow the consideration of further PLS-R
factors in the model for region W1.

The pre-treated NIR spectra of the glucose-related regions G1 and G2 in Figure 3e,k, respectively,
showed the same concentration dependent pattern from pure water towards increasing glucose content.
This clearly evident pattern indicated that glucose in aqueous solution produces own NIR bands.
This finding is in contrast to the frequently found view in the literature [26,39], according to which
carbohydrates do not exhibit own NIR bands in aqueous solutions, but rather characteristically disturbs
the water structure. Actually, at low concentrations, these bands are more like tiny changes in the
untreated spectra’s path line, which cannot be recognized by the eye, but are rather revealed and
highlighted by calculating derivative spectra. The high predictive power of the two glucose-related
regions is best represented by the low errors in the prediction of the independent test set: the PLS-R
model for the first overtone region G1 yielded an NRMSEP value of 0.9%, whereas the NRMSEP for
the combination region G2 was as low as 0.4% (see Table 2). The fact that for each PLS-R model only
one PLS-R factor was necessary to achieve the mentioned prediction errors using the two regions
associated with glucose vibrations showed the distinct glucose-related nature of these regions. The
use of only one PLS-R factor for the two glucose-related regions was further confirmed by the fact
that the concentrations in the PLS-R score plots in Figure 7a,b were clearly separated along the first
PLS-R factor.
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Figure 7. PLS-R score plots of the calibration set for the regions W1 (a), G1 (b), and G2 (c) obtained by
measurements with the 1 mm cell. Each data point corresponds to one batch. The featured factors were
chosen according to the required number of PLS-R factors in Table 2.

However, these findings allow for reconsidering the statement of Chen et al. [17], according to
which a 1 mm cell pathlength is too thin for satisfactory glucose quantification from NIR spectra in
the first overtone region in an aqueous matrix. The authors of the aforementioned study did not use
derivative spectra. In contrast to Chen et al. [17], the results presented herein rather suggest that a
cell pathlength of 1 mm is perfectly suitable. By applying a second derivative function to the first
overtone region, a clear concentration dependent pattern becomes evident (see Figure 3e) and thus
allows the construction of highly accurate PLS-R models for glucose quantifications. Our study did
not investigate the exact cell pathlength at which it becomes too thin for high-quality NIR spectra.
Nevertheless, considering the relatively high prediction error of the 0.1 mm cell in region G1, it can be
concluded that this limit is below a cell pathlength of 1 mm.
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3.3. Measurements with 2 mm Cell Pathlength

For the 2 mm cell, the test set validation for the so-called first overtone of water (region W1) yielded
an NRMSEP of around 5% utilizing three PLS-R factors (see Table 2). An additional consideration of
PLS-R factor 4 would have reduced the relative error by nearly half, but, from the interpretation of the
model statistics, it was concluded that this would have led to the modeling of noise or glucose-unrelated
spectral information. Although the explained Y-variance of the validation model increased by 2.4%
from PLS-R factor 3 to PLS-R factor 4 (see Table 3), the correlation loadings showed negligibly small
values for PLS-R factor 4 (see Figure 6c). This suggested that the X-variables modeled in PLS-R factor
4 were not of importance for the regression model and therefore might have contained non-relevant
spectral information for the quantification of the target solute.

In direct comparison to the two glucose-related regions, the predictive power of region W1 was
inferior. Using a pathlength of 2 mm, the PLS-R calibration models for the regions G1 and G2 predicted
the independent test set samples with prediction errors of NRMSEP = 0.8% and NRMSEP = 1.6%,
respectively, whereas both models required only one PLS-R factor (see Table 2). The second derivative
spectra in Figure 3f,l showed a clear glucose concentration dependent pattern towards increasing
glucose content, which was also reflected in the PLS-R score plots in Figure 8d,e. However, compared
to the derivative spectra of the 1 mm cell in the combination region G2 (Figure 3k), the spectra in
Figure 3l appeared noisy to some extent. This noisy pattern could be removed with a higher number
of smoothing points in the second derivative, but the test set validation yielded poorer RMSEP values
and required more PLS-R factors. It is conceivable that the high absorption of the adjacent water
combination band and the associated spectral artifacts (see Figure 2) had an impact on region G2 and
consequently led to the somewhat higher prediction error in this region.
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Figure 8. PLS-R score plots of the calibration set for the regions W1 (a–c), G1 (d), and G2 (e) obtained
by measurements with the 2 mm cell. Each data point corresponds to one batch. The featured factors
were chosen according to the required number of PLS-R factors in Table 2.
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3.4. Comparison between Cell Pathlengths

An overall comparison between the predictive power of water- and glucose-based PLS-R models
indicated that the glucose-related regions G1 and G2 considerably outperformed the two water bands
W1 and W2. The glucose regions yielded far lower prediction errors with NRMSEP values as low as
0.4% along with the utilization of only one PLS-R factor. This emphasizes the dominant presence of
glucose-related spectral information in these two NIR regions at around 5900 cm−1 and 4400 cm−1.
The only exception with poor predictive power was the 0.1 mm cell in region G1 due to the reasons
described earlier. With regard to the pathlength, the 1 mm cell turned out to give the most accurate
PLS-R models for both water and glucose related regions. This optical pathlength seemed to have
a favorable ratio between transmitted and absorbed NIR light for quantitative analyses of aqueous
glucose solutions and most probably for carbohydrate solutions in general.

Table 3. Explained Y-variances for each spectral region and utilized cell. The type of validation
(calibration or test set validation) and the number of PLS-R factors are specified. The values for the
explained variances are given in %.

PLS-R Factor

Region Cell Type 1 2 3 4

W1

0.1 mm CAL 95.5 99.5 99.8 99.9
TSV 96.4 98.1 99.7 99.7

1 mm CAL 96.8 99.9 99.9 100
TSV 97.7 99.7 99.8 99.5

2 mm
CAL 48.1 98.8 99.6 99.9
TSV 22.7 93.8 96.6 99.0

W2

0.1 mm
CAL 99.4 99.8 99.9 100
TSV 95.3 97.7 97.9 99.2

1 mm CAL - - - -
TSV - - - -

2 mm
CAL - - - -
TSV - - - -

G1

0.1 mm
CAL 96.8 99.2 99.4 99.6
TSV 79.2 71.7 83.0 80.3

1 mm CAL 100 100 100 100
TSV 99.9 99.9 99.9 99.9

2 mm
CAL 100 100 100 100
TSV 99.9 99.9 99.9 99.9

G2

0.1 mm
CAL 99.9 100 100 100
TSV 99.9 99.9 99.9 99.9

1 mm CAL 100 100 100 100
TSV 100 99.9 100 99.9

2 mm CAL 99.8 99.9 99.9 99.9
TSV 99.6 99.6 99.4 99.6

CAL—calibration; TSV—test set validation.

4. Conclusions

The good predictive performance of the PLS-R models with the water-related regions W1 and
W2 confirmed the well documented fact, in which sugars (in this case glucose) in aqueous solutions
affect the water bands in the NIR region by disturbing the structure of the hydrogen bond network
of liquid water [26,39]. On the other hand, considering the significantly higher predictive power of
the PLS-R models based on the regions G1 and G2, it must be concluded that the regions associated
with carbohydrate vibrations (i.e., C−H, O−H, C−O) are even better suited for highly accurate
quantifications. These vibrations cause rather small bands in the NIR spectrum, thus derivative
functions need to be applied in order to reveal the concentration dependent patterns.
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The validity of the results obtained herein was further confirmed by the fact that multiple batches
were used for the construction of the PLS-R calibration models. Moreover, independent test set
samples were utilized in the process of PLS-R model validation. Therefore, a certain robustness of the
constructed PLS-R models can be assumed.

This study demonstrated the superiority of characteristic glucose bands over the dominant and
intense water bands in the NIR spectrum in terms of quantitative predictive power. Relative prediction
errors lower than 1% were obtained while only one PLS-R factor was required. Further investigations
need to be carried out in order to determine reliable values for the limit of detection (LOD) and the limit
of quantification (LOQ) of both the water- and glucose-related regions. However, despite the promising
predictive power of the glucose bands, it has to be noted that the sample matrix employed in the present
study was rather simple. The establishment of reliable PLS-R models based on NIR data obtained
from more complex matrices like body fluids such as blood or urine, or food products like beverages,
is undoubtedly much more challenging. Nevertheless, the findings reported herein can support the
selection of the most informative NIR regions for investigations of aqueous carbohydrate systems.

Author Contributions: A.B. and C.W.H. conceived the study; A.B. and V.M. performed the experiments and data
analysis; A.B. prepared the original draft (text, figures and tables); C.W.H. was in charge of supervision; and all
authors reviewed the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CAL Calibration
FFT Fast Fourier-Transform
FT-NIR Fourier-Transform Near-Infrared
LOD Limit of Detection
LOQ Limit of Quantification
NIPALS Nonlinear Iterative Partial Least Squares
NIR Near-Infrared
NIRS Near-Infrared Spectroscopy
NRMSE Normalized Root Mean Square Error
NRMSEC Normalized Root Mean Square Error of Calibration
NRMSEP Normalized Root Mean Square Error of Prediction
PCA Principal Component Analysis
PLS-R Partial Least Squares Regression
RMSE Root Mean Square Error
RMSEC Root Mean Square Error of Calibration
RMSEP Root Mean Square Error of Prediction
SavGol Savitzky-Golay
SEC Standard Error of Calibration
SEP Standard Error of Prediction
SNV Standard Normal Variate
SP Smoothing Points
TSV Test Set Validation
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10. Segtnan, V.H.; Šašić, Š.; Isaksson, T.; Ozaki, Y. Studies on the structure of water using two-dimensional
near-infrared correlation spectroscopy and principal component analysis. Anal. Chem. 2001, 73, 3153–3161.
[CrossRef]

11. Rambla, F.J.; Garrigues, S.; De La Guardia, M. PLS-NIR determination of total sugar, glucose, fructose and
sucrose in aqueous solutions of fruit juices. Anal. Chim. Acta 1997, 344, 41–53. [CrossRef]

12. Jung, Y.; Hwang, J. Near-infrared studies of glucose and sucrose in aqueous solutions: water displacement
effect and red shift in water absorption from water-solute interaction. Appl. Spectrosc. 2013, 67, 171–180.
[CrossRef] [PubMed]
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Abstract: Recent developments in compact near infrared (NIR) instruments, including both handheld
and process instruments, have enabled easy and affordable deployment of multiple instruments
for various field and online or inline applications. However, historically, instrument-to-instrument
variations could prohibit success when applying calibration models developed on one instrument to
additional instruments. Despite the usefulness of calibration transfer techniques, they are difficult to
apply when a large number of instruments and/or a large number of classes are involved. Direct
model transferability was investigated in this study using miniature near-infrared (MicroNIR™)
spectrometers for both classification and quantification problems. For polymer classification, high
cross-unit prediction success rates were achieved with both conventional chemometric algorithms
and machine learning algorithms. For active pharmaceutical ingredient quantification, low cross-unit
prediction errors were achieved with the most commonly used partial least squares (PLS) regression
method. This direct model transferability is enabled by the robust design of the MicroNIR™ hardware
and will make deployment of multiple spectrometers for various applications more manageable.

Keywords: NIR; direct model transferability; MicroNIR™; SVM; hier-SVM; SIMCA; PLS-DA;
TreeBagger; PLS; calibration transfer

1. Introduction

In recent years, compact near infrared (NIR) instruments, including both handheld and
process instruments, have attracted considerable attention and received wider adoption due to
their cost-effectiveness, portability, ease of use, and flexibility in installation. These instruments
have been used for various applications in different industries, such as the pharmaceutical industry,
agriculture, the food industry, the chemical industry, and so on. [1–5] They enable point-of-use analysis
that brings advanced laboratory analysis to the field [6,7] and online and inline analysis that permits
continuous process monitoring [8,9]. Moreover, scalability of NIR solutions has become possible. It is
common that users of compact NIR instruments would desire more than one instrument to be used for
their applications. Sometimes a large number of instruments are deployed.

Intrinsically, NIR solutions require multivariate calibration models for most applications due to
the complexity of the spectra resulting from vibrational overtones and combination bands. Usually a
calibration data set is collected using an NIR instrument to develop a calibration model. However,
when multiple instruments are deployed for the same application, it is too time and labor consuming to
collect calibration sets and develop calibration models for these instruments individually. It is also very
inconvenient to manage different calibration models for different instruments. Therefore, it is highly
desirable that calibration development is performed only once, and that the calibration model can be
used on all these instruments successfully. In practice, when multiple instruments are involved for a
particular application, the calibration model is often developed on one instrument and then applied
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to the rest of the instruments, especially when a project starts with one instrument for a feasibility
test and then multiple instruments are procured. When a large number of instruments are involved,
a global model approach can be taken in which calibration data from at least two to three instruments
are pooled to develop the calibration model, in order to minimize noncalibrated variations from the
instruments [10]. For any of the cases, model transferability from one or multiple instruments to the
others is critical.

Historically, instrument-to-instrument variations could prohibit the success of the direct use of
calibration models developed on one instrument with the other instruments. To avoid full recalibration,
various calibration transfer methods have been developed to mathematically correct for instrument-to-
instrument variations [10,11]. Common methods include direct standardization [12], piecewise direct
standardization (PDS) [12–14], spectral space transformation [15], generalized least squares (GLS) [16],
and so on. These methods have been extensively used to transfer quantitative calibration models [17–20],
but very few studies were focused on the transfer of classification models [21,22]. Although these
methods are very useful, they can only deal with calibration transfer from one instrument to another at a
time and require transfer datasets to be collected from the same physical samples with both instruments.
This is practical when there are only a few instruments involved. One instrument can be designated as
the master instrument to develop the calibration model. Then data collected by the other instruments
can be transformed into the master instrument’s approximate space via the respective pair of transfer
datasets. Thus, the master calibration model can be used by the other instruments. Alternatively, the
master calibration data can be transferred to the other target instruments and calibration models can
be developed on these target instruments. However, in the new era of handheld and process NIR
instrumentation, a large number of instruments (e.g., > 20) could be deployed for one application.
It would be difficult to perform calibration transfer in this way, especially when these instruments are
placed in different locations. Other calibration transfer methods have been developed without using
the transfer datasets from both instruments [23–25]. But unlike the commonly used methods, these
methods have not been extensively studied and made easily available to general NIR users. Moreover,
calibration transfer of classification models typically requires transfer data to be collected from every
class. When a large number of classes are included in the model, the efforts required would be close to
rebuilding a library on the secondary instrument. This may explain why very few studies have been
conducted on transfer of classification models.

Considering all the advantages and potentials the handheld and process NIR instruments can
offer and the challenges for calibration transfer when a large number of instruments and/or a large
number of classes are involved, it is intriguing to understand if advances in instrumentation and
modeling methods could make direct use of the master calibration model acceptable. However, to the
best of our knowledge, little research has been done in this area.

The authors have demonstrated in the past that the use of miniature near-infrared (MicroNIR™)
spectrometers with the aid of support vector machine (SVM) modeling can achieve very good
direct transferability of models with a large number of classes for pharmaceutical raw material
identification [26]. In the current study, using MicroNIR™ spectrometers, direct model transferability
was investigated for polymer classification. Five classification methods were tested, including two
conventional chemometric algorithms, partial least squares discriminant analysis (PLS-DA) [27] and
soft independent modeling of class analogy (SIMCA) [28], and three machine learning algorithms
that are burgeoning in chemometrics, bootstrap-aggregated (bagged) decision trees (TreeBagger) [29],
support vector machine (SVM) [30,31] and hierarchical SVM (hier-SVM) [26]. High cross-unit prediction
success rates were achieved. Direct transferability of partial least squares (PLS) regression models was
also investigated to quantify active pharmaceutical ingredients (API). Low cross-unit prediction errors
were obtained.
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2. Results

2.1. Classification of Polymers

Polymers are encountered in everyday life and are of interest for many applications. In this study
polymer classification was used as an example to investigate direct model transferability. Resin kits
containing 46 materials representing the most important plastic resin used in industry today were used.
Each material was treated as one class. Three resin kits were used to show prediction performance
on different physical samples of the same material. The samples were measured by three randomly
chosen MicroNIR™ OnSite spectrometers (labeled as Unit 1, Unit 2 and Unit 3).

2.1.1. Spectra of the Resin Samples

Spectra collected by the three spectrometers were compared in Figure 1. For clarity, example spectra
of two samples were presented. The same observations were obtained for the other samples. The raw
spectra in Figure 1a only show baseline shifts between measurements using different spectrometers
for the same sample. These shifts were mainly due to different measurement locations, since these
resin samples are injection molded and are not uniform in thickness and molecular orientation. In fact,
baseline shifts were also observed when using the same spectrometer to measure different locations of
the same sample. These shifts can be corrected by spectral preprocessing, and the preprocessed spectra
from the same sample collected by different spectrometers were very similar as shown in Figure 1b.

(a) (b) 

Figure 1. Spectra of example polymer samples by three instruments: (a) raw spectra; (b) preprocessed
spectra by Savitzky-Golay 1st derivative (5 smoothing points and 3rd polynomial order) and standard
normal variate (SNV).

2.1.2. Direct Model Transferability of the Classification Models

The performance of the polymer classification models was evaluated at four levels, the same-unit-
same-kit performance, the same-unit-cross-kit performance, the cross-unit-same-kit performance, and
the cross-unit-cross-kit performance. To account for the most variation in sample shape and thickness,
each resin sample was scanned in five specified locations. In addition, at each position the sample was
scanned in two orientations with respect to the MicroNIR™ lamps to account for any directionality in
the structure of the molding. For each position and orientation, three replicate scans were acquired,
totaling thirty scans per sample, per spectrometer. Prediction was performed for every spectrum in the
validation set. For the same-unit-same-kit performance, the models built with data collected from four
locations on each sample in one resin kit by one spectrometer were used to predict data collected from
the other location on each sample in the same resin kit by the same spectrometer. The total number of
predictions was 276 for all 46 materials for each case. For the same-unit-cross-kit performance, the
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models built with all the data collected from one resin kit by one spectrometer were used to predict all
the data collected from a different resin kit by the same spectrometer. The total number of predictions
was 1380 for all 46 materials for each case. For the cross-unit-same-kit performance, the models built
with all the data collected from one resin kit by one spectrometer were used to predict all the data
collected from the same resin kit by a different spectrometer. The total number of predictions was 1380
for all 46 materials for each case. For the cross-unit-cross-kit performance, the models built with all
the data collected from one resin kit by one spectrometer were used to predict all the data collected
from a different resin kit by a different spectrometer. The total number of predictions was 1380 for
all 46 materials for each case. Five different classification algorithms were used to build the models,
which were PLS-DA, SIMCA, TreeBagger, SVM and hier-SVM.

The prediction performance was evaluated in terms of prediction success rates and the number
of missed predictions. The representing results were summarized in Tables 1 and 2, respectively.
The prediction success rates were calculated by dividing the number of correct predictions with the
number of total predictions. The number of missed predictions is presented to make the difference
clearer, since with a large number of total predictions a small difference in prediction success rate
would mean a conceivable difference in the number of missed predictions. It should be noted that in
a few cases the total number of predictions was not exactly 276 or 1380, because extra spectra were
collected unintentionally during experiments and no spectra were excluded from analysis. To make
the comparison consistent, in these tables all the models were developed using data from Kit 1 for
different spectrometers. The prediction data were collected using different resin kits and different
spectrometers for the four levels of performance.

The same-unit-same-kit cases were control cases and presented as the diagonal elements for each
algorithm in the left three columns of the tables. As expected, 100% prediction success rates and 0
missed predictions were obtained for all algorithms except for one PLS-DA case (Unit 1 K1 for modeling
and testing) where there was only 1 missed prediction. The same-unit-cross-kit cases showed the true
prediction performance of the models for each spectrometer, since independent testing samples were
used. The results are presented as the diagonal elements for each algorithm in the right three columns
of the tables. All the models showed very good same-unit-cross-kit predictions. Although SIMCA
showed the best performance, the differences in performance were very small between algorithms.
It should be noted that samples made of the same type of material but with different properties are
included in the resin kits, indicating that the MicroNIR™ spectrometers have the resolution to resolve
minor differences between these polymer materials. For the cross-kit cases, Kit 2 was used for Unit 1 and
Unit 2, while Kit 3 was used for Unit 3, because at the time of data collection using Unit 3, Kit 2 was no
longer available. Nonetheless, conclusions about the cross-kit performance were not impacted by this.

Table 1. Prediction success rates (%) of polymer classification.

Algorithm Unit# Kit# for
Modeling

Unit# Kit# for Testing

Unit1 K1 Unit2 K1 Unit3 K1 Unit1 K2 Unit2 K2 Unit3 K3

PLS-DA
Unit 1 K1 99.64 89.68 83.99 95.87 88.91 82.39
Unit 2 K1 91.96 100 81.52 90.87 99.57 84.49
Unit 3 K1 76.74 75.32 100 75.07 73.12 99.20

SIMCA
Unit 1 K1 100 99.42 96.45 99.35 97.32 96.81
Unit 2 K1 98.77 100 95.43 97.68 99.93 95.80
Unit 3 K1 96.30 93.29 100 96.09 92.17 100

TreeBagger
Unit 1 K1 100 97.11 95.80 98.04 95.94 96.30
Unit 2 K1 97.83 100 93.55 94.49 98.26 96.16
Unit 3 K1 95.14 98.41 100 96.09 98.84 98.84

SVM
Unit 1 K1 100 99.86 97.54 98.26 97.90 97.83
Unit 2 K1 98.70 100 97.03 94.93 98.26 98.26
Unit 3 K1 97.83 96.18 100 96.30 95.00 99.57

Hier-SVM
Unit 1 K1 100 100 97.97 97.83 97.83 97.25
Unit 2 K1 99.93 100 98.26 98.26 99.13 99.13
Unit 3 K1 99.13 100 100 96.88 97.83 100
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Table 2. Number of missed predictions of polymer classification in the format of number of missed
predictions/total number of predictions.

Algorithm Unit# Kit# for
Modeling

Unit# Kit# for Testing

Unit1 K1 Unit2 K1 Unit3 K1 Unit1 K2 Unit2 K2 Unit3 K3

PLS-DA
Unit 1 K1 1/276 143/1386 221/1380 57/1380 153/1380 243/1380
Unit 2 K1 111/1380 0/277 255/1380 126/1380 6/1380 214/1380
Unit 3 K1 321/1380 342/1386 0/276 344/1380 371/1380 11/1380

SIMCA
Unit 1 K1 0/276 8/1386 49/1380 9/1380 37/1380 44/1380
Unit 2 K1 17/1380 0/277 63/1380 32/1380 1/1380 58/1380
Unit 3 K1 51/1380 93/1386 0/276 54/1380 108/1380 0/1380

TreeBagger
Unit 1 K1 0/276 40/1386 58/1380 27/1380 56/1380 51/1380
Unit 2 K1 30/1380 0/277 89/1380 76/1380 24/1380 53/1380
Unit 3 K1 67/1380 22/1386 0/276 54/1380 16/1380 16/1380

SVM
Unit 1 K1 0/276 2/1386 34/1380 24/1380 29/1380 30/1380
Unit 2 K1 18/1380 0/277 41/1380 70/1380 24/1380 24/1380
Unit 3 K1 30/1380 53/1386 0/276 51/1380 69/1380 6/1380

Hier-SVM
Unit 1 K1 0/276 0/1386 28/1380 30/1380 30/1380 38/1380
Unit 2 K1 1/1380 0/277 24/1380 24/1380 12/1380 12/1380
Unit 3 K1 12/1380 0/1386 0/276 43/1380 30/1380 0/1380

The direct model transferability was first demonstrated by the cross-unit-same-kit results, which
are presented by the non-diagonal elements for each algorithm in the left three columns of the tables.
Except the PLS-DA algorithm, all the other algorithms showed good performance. In general, the
order of performance was Hier-SVM > SVM > SIMCA > TreeBagger >> PLS-DA. When the hier-SVM
algorithm was used, the worst case only had 28 missed predictions out of 1380 predictions, and 1/3 of
the cases showed perfect predictions.

The direct model transferability was further demonstrated by the most stringent cross-unit-cross-kit
cases, which are often the real-world cases. The results are presented by the non-diagonal elements for
each algorithm in the right three columns of the tables. Other than the PLS-DA algorithm, all the other
algorithms showed good performance, but which was slightly worse than the cross-unit-same-kit
results with some exceptions. In general, the order of performance was hier-SVM > SVM > TreeBagger
≈ SIMCA >> PLS-DA.

Besides the representing results shown in these tables, all possible combinations of datasets were
analyzed, including 6 same-unit-same-kit cases, 6 same-unit-cross-kit cases, 8 cross-unit-same-kit cases,
and 16 cross-unit-cross-kit cases in total for each algorithm. The conclusions were similar to those
presented above. For the most stringent cross-unit-cross-kit cases, the mean prediction success rates
of all the cases were 98.15%, 97.00%, 96.74%, 95.83%, and 80.19% for hier-SVM, SVM, TreeBagger,
SIMCA, and PLS-DA, respectively. The high prediction success rates for hier-SVM, SVM, TreeBagger
and SIMCA indicate good direct model transferability for polymer classification with MicroNIR™
spectrometers. To achieve the best result, hier-SVM should be used. But the conventional SIMCA
algorithm that is available to most NIR users is also sufficient.

2.2. Quantification of Active Pharmaceutical Ingredients

Quantitative analysis of an active pharmaceutical ingredient is important in several different steps
of a pharmaceutical production process and it was proved that NIR spectroscopy is a good alternative
to other more time-consuming means of analysis [32]. As one of the process analytical technology (PAT)
tools adopted by the pharmaceutical industry, compact NIR spectrometers can be installed for real-time
process monitoring, enabling the quality by design (QbD) approach that is now accepted by most
pharmaceutical manufacturers to improve manufacturing efficiency and quality [33,34]. In this context,
multiple NIR spectrometers will be needed for the same application. It is important to understand the
direct transferability of calibration models to determine APIs quantitatively.
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To investigate this, a five-component pharmaceutical powder formulation including three APIs,
acetylsalicylic acid (ASA), ascorbic acid (ASC), and caffeine (CAF), as well as two excipients, cellulose
and starch, was used. A set of 48 samples was prepared by milling varying amounts of the three APIs
in the concentration range of 13.77–26.43% w/w with equal amounts (40% w/w) of a 1:3 (w/w) mixture
of cellulose and starch [4]. The set of samples was measured by three randomly chosen MicroNIR™
1700ES spectrometers (labeled as Unit 1, Unit 2 and Unit 3).

2.2.1. Spectra of the Pharmaceutical Samples

The spectra were first compared across the three instruments. Raw spectra of two samples with
the lowest ASA concentration and the highest ASA concentration collected by all three instruments
are shown in Figure 2a. Only slight baseline shifts can be seen between spectra collected by different
instruments. The preprocessed spectra collected by different instruments became almost identical,
as shown in Figure 2b. However, spectral differences between the high concentration sample and the
low concentration can be clearly seen. Similar observations were obtained for the other two APIs, ASC
(Figure 2c,d) and CAF (Figure 2e,f). It should be noted the optimized preprocessing steps were chosen
to generate the preprocessed spectra for each API, respectively.

(a) (b) 

 
(c) (d) 

Figure 2. Cont.
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(e) (f) 

Figure 2. Spectra of samples with the highest and the lowest active pharmaceutical ingredient (API)
concentrations measured by three instruments: (a) selected raw spectra based on the acetylsalicylic
acid (ASA) concentration; (b) selected preprocessed spectra based on the ASA concentration by
Savitzky-Golay 1st derivative (5 smoothing points and 2nd polynomial order) and SNV; (c) selected raw
spectra based on the ascorbic acid (ASC) concentration; (d) selected preprocessed spectra based on the
ASC concentration by Savitzky-Golay 2nd derivative (7 smoothing points and 3rd polynomial order)
and SNV; (e) selected raw spectra based on the caffeine (CAF) concentration; (f) selected preprocessed
spectra based on the CAF concentration by Savitzky-Golay 1st derivative (17 smoothing points and 3rd
polynomial order) and SNV.

2.2.2. Direct Model Transferability of the Quantitative Models

To develop the quantitative calibration models, 38 out of the 48 samples were selected as the
calibration samples via the Kennard-Stone algorithm [35], based on the respective API concentration,
which was determined by the amount of API added to the powder sample. The remaining 10 samples
were used as the validation samples. Twenty spectra were collected from each sample with every
spectrometer. Thus, 760 spectra from the 38 calibration samples were used to build every model
and 200 spectra from the 10 validation samples were used to validate each model. For each API,
an individual model was developed on each instrument by partial least squares (PLS) regression.
Different preprocessing procedures with different settings were tested and the optimal one was
determined based on the cross-validation statistics using the calibration set. The same optimal
preprocessing procedure was selected on all three instruments for the same API. The API models were
developed using the corresponding preprocessed spectra.

The model performance was first evaluated in terms of normalized root mean square error of
prediction (NRMSEP), which is root mean square error of prediction (RMSEP) normalized to the mean
reference value of the validation set. NRMSEP was used to provide an estimate of how big the error
was relative to the value measured. Since the mean reference value was the same for all the validation
sets, it is equivalent to comparing RMSEP. Two types of prediction performance were examined, the
same-unit performance and the cross-unit performance. Using a calibration model developed on one
instrument, the same-unit performance was determined by predicting the validation set obtained with
the same instrument, and the cross-unit performance was determined by predicting the validation
set obtained with a different instrument. The cross-unit performance is the indicator of direct model
transferability. The results were reported under the No Correction section in Tables 3–5 for ASA, ASC
and CAF, respectively. The unit number in the row title represents which of the instruments was used
to develop the calibration model, and the unit number in the column title represents which instrument
was used to collect the validation data. Therefore, the NRMSEP values on the diagonal indicate the
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same-unit performance, while the other values indicate the cross-unit performance. The data show
that cross-unit performance was close to the same-unit performance, all below 5%.

Table 3. The normalized root mean square error of prediction (NRMSEP, %) for ASA.

Test Sets
No Correction Bias PDS GLS

Unit 1 Unit 2 Unit 3 Unit 1 Unit 1 Unit 1

Unit 1 3.4 3.5 3.5 - - -
Unit 2 4.0 4.2 3.9 3.7 3.3 3.6
Unit 3 4.3 4.5 4.2 4.1 3.5 4.4

Table 4. The normalized root mean square error of prediction (NRMSEP, %) for ASC.

Test Sets
No Correction Bias PDS GLS

Unit 1 Unit 2 Unit 3 Unit 1 Unit 1 Unit 1

Unit 1 3.0 2.6 2.7 - - -
Unit 2 2.7 2.7 2.6 2.3 3.5 2.6
Unit 3 2.5 2.5 2.7 2.2 3.1 2.4

Table 5. The normalized root mean square error of prediction (NRMSEP, %) for CAF.

Test Sets
No Correction Bias PDS GLS

Unit 1 Unit 2 Unit 3 Unit 1 Unit 1 Unit 1

Unit 1 4.0 4.6 3.7 - - -
Unit 2 4.1 4.7 4.2 4.2 4.3 3.2
Unit 3 4.2 4.9 4.0 4.1 6.2 3.9

In another independent study, the same samples were measured by a benchtop Bruker Vector
22/N FT-NIR spectrometer. The reported mean absolute bias based on 3 validation samples was 0.28,
0.62 and 0.11 for ASA, ASC and CAF, respectively [36]. In the current study, the mean absolute bias of
the three same-unit cases based on 10 validation samples was 0.21, 0.35 and 0.22 for ASA, ASC and
CAF, respectively. The mean absolute bias of the six cross-unit cases based on 10 validation samples
was 0.14, 0.30 and 0.25, respectively. These results indicate that both the same-unit and the cross-unit
MicroNIR™ performance is comparable with the benchtop instrument performance. However, it
should be noted in the current study 38 samples were used for calibration and 10 samples were used
for validation, while in the other study 45 samples were used for calibration and 3 samples were used
for validation.

The model performance was further examined by the predicted values of the validation set versus
the reference values. Using calibration models developed on Unit 1, the same-unit predicted results
and the cross-unit predicted results for ASA, ASC and CAF are shown in Figure 3. It can be seen that
most of the predicted values stay close to the 45-degree lines, explaining the good model performance.
Moreover, the cross-unit results (red circles) are very close to the same-unit results (blue circles),
explaining the similar cross-unit performance to the same-unit performance.
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Unit 1 
Bias: -0.14 
R2: 0.91 
RMSEP: 0.71 

Unit 2 
Bias: -0.28 
R2: 0.89 
RMSEP: 0.81 

Unit 1 
Bias: -0.14 
R2: 0.91 
RMSEP: 0.71

Unit 3 
Bias: -0.25 
R2: 0.87 
RMSEP: 0.87 

Unit 1 
Bias: 0.38 
R2: 0.93 
RMSEP: 0.59 

Unit 2 
Bias: 0.31 
R2: 0.94 
RMSEP: 0.55 

Unit 1 
Bias: 0.38 
R2: 0.93 
RMSEP: 0.59 

Unit 3 
Bias: 0.28 
R2: 0.95 
RMSEP: 0.52 

Unit 1 
Bias: 0.27 
R2: 0.95 
RMSEP: 0.73 

Unit 2 
Bias: 0.00 
R2: 0.95 
RMSEP: 0.76 

Unit 1 
Bias: 0.27 
R2: 0.95 
RMSEP: 0.73 

Unit 3 
Bias: 0.31 
R2: 0.95 
RMSEP: 0.78 

Figure 3. Predicted values versus reference values using models developed on Unit 1: (a) validation
sets by Unit 1 and Unit 2 for ASA prediction; (b) validation sets by Unit 1 and Unit 3 for ASA prediction;
(c) validation sets by Unit 1 and Unit 2 for ASC prediction; (d) validation sets by Unit 1 and Unit 3 for
ASC prediction; (e) validation sets by Unit 1 and Unit 2 for CAF prediction; (f) validation sets by Unit 1
and Unit 3 for CAF prediction. The corresponding bias, R2 for prediction, and root mean square error
for prediction (RMSEP) are presented in each plot.

88



Molecules 2019, 24, 1997

The corresponding Bland-Altman plots were used to illustrate the agreement between the
cross-unit prediction results and the same-unit prediction results in Figure 4. The Bland-Altman
analysis is a well-accepted technique for method comparison in highly regulated clinical sciences [37]
and shows good visual comparison between two instruments [11]. The x-axis shows the mean predicted
value and the y-axis shows the difference between the cross-unit predicted value and the same-unit
predicted value. The limits of agreement (LOA) were calculated by Equation (1):

LOA = d± 1.96× SD (1)

where d is the bias or the mean difference, and SD is the standard deviation of the differences. It can be
seen from Figure 4 that with only a few exceptions, all data points stayed within the LOA, indicating that
at a 95% confidence level, the cross-unit prediction results agreed well with the same-unit prediction
results. LOA relative to the mean of the mean predicted values (x-axis) was below 3% for all three APIs.

(a) (b) 

(c) (d) 

Figure 4. Cont.
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(e) (f) 

Figure 4. The Bland-Altman plots comparing the cross-unit prediction results and the same-unit
prediction results using models developed on Unit 1: (a) validation sets by Unit 1 and Unit 2 for ASA
prediction; (b) validation sets by Unit 1 and Unit 3 for ASA prediction; (c) validation sets by Unit 1 and
Unit 2 for ASC prediction; (d) validation sets by Unit 1 and Unit 3 for ASC prediction; (e) validation
sets by Unit 1 and Unit 2 for CAF prediction; (f) validation sets by Unit 1 and Unit 3 for CAF prediction.

The corresponding reduced Hotelling’s T2 and reduced Q residuals are shown in Figure 5.
The reduced statistics were calculated by normalizing Hotelling’s T2 and Q residuals to their respective
95% confidence limit. The black circles represent the calibration data, the blue circles represent the
same-unit validation data, and the red circles represent the cross-unit validation data. It can be clearly
seen that the cross-unit validation data stayed close to the same-unit validation data, further explaining
the similar cross-unit performance to the same-unit performance. It was noticed that 20 calibration
data points (from the same physical sample) and 20 cross-unit validation data points (from another
physical sample) are in the high reduced Hotelling’s T2 and high reduced Q residuals quadrant for
ASA (Figure 5a,b). These explained why the prediction results of one sample significantly deviated
from the 45-degree lines in Figure 3a,b. However, to keep the analysis consistent with the other two
APIs and data available in literature [4,36] for comparison, no sample was excluded from calibration
or validation.

 
(a) 

 
(b) 

Figure 5. Cont.
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(d) 

 
(e) (f) 

Figure 5. Reduced Q residuals versus reduced Hotelling’s T2 for models developed on Unit 1:
(a) validation sets by Unit 1 and Unit 2 for ASA prediction; (b) validation sets by Unit 1 and Unit 3 for
ASA prediction; (c) validation sets by Unit 1 and Unit 2 for ASC prediction; (d) validation sets by Unit 1
and Unit 3 for ASC prediction; (e) validation sets by Unit 1 and Unit 2 for CAF prediction; (f) validation
sets by Unit 1 and Unit 3 for CAF prediction.

2.2.3. Calibration Transfer

To check how direct model transfer compared with calibration transfer, three types of calibration
transfer methods were tested. The first method was bias correction by standardizing the predicted
values, which is probably the simplest method. The second method was PDS by mapping spectral
responses of the slave instrument to the master instrument, which is probably the most commonly
used method. The third method was GLS by removing the differences between instruments from both
instruments. To perform the calibration transfer, 8 transfer samples were selected from the calibration
samples with the Kennard-Stone algorithm. The calibration transfer results using Unit 1 as the master
instrument were summarized in Tables 3–5 for ASA, ASC and CAF, respectively. It should be noted
that different settings for PDS and GLS were tested. The results presented were obtained under the best
settings based on RMSEP. By comparing these results with the corresponding same-unit and cross-unit
results (Column 1 under No Correction), there was not a single method that could improve cross-unit
results for all three APIs. Choosing the best method for individual API, only slight improvement
(decrease of 0.3–0.9% in RMSEP%) of cross-unit performance was observed. Calibration transfer could
sometimes damage the performance when a certain method was applied to a certain API. In addition,
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for ASC and CAF, the cross-unit performance was already close to or slightly better than the same-unit
performance. For ASA, although the same-unit performance was better than the cross-unit performance
using the calibration model on Unit 1 (Column 1 under No Correction in Table 3), it was similar to the
cross-unit performance using calibration models on Unit 2 and Unit 3 (Row 1 under No Correction
in Table 3). All these observations indicate that the instrument-to-instrument difference was small.
Therefore, calibration transfer may not be necessary for this application.

3. Discussion

The good direct model transferability demonstrated in this study was enabled by the minimal
instrument-to-instrument differences owing to the robust design of the MicroNIR™ hardware.
The MicroNIR™ spectrometer utilizes a wedged linear variable filter (LVF) as the dispersive element
on top of an InGaAs array detector, which results in an extremely compact and rugged spectral engine
with no moving parts [4]. The operation of the on-board illumination allows for a steady output of
optical power and an extended lamp-life. Thus, a very stable performance can be achieved without the
need for realignment of hardware over time. In addition to the hardware design, the performance
of every MicroNIR™ spectrometer is evaluated and calibrated at the production level. The accuracy
of the MicroNIR™ wavelength calibration enables precise spectral alignments from instrument to
instrument. The repeatability of the photometric response ensures the consistency of signal amplitude
from instrument to instrument. The unit-specific temperature calibration stabilizes the MicroNIR™
response over the entire operating temperature range. In the Supplementary Material, the wavelength
reference plots and the photometric response plots are shown for the MicroNIR™ OnSite units used
for the polymer classification example (Figure S1) and the MicroNIR™ ES units used for the API
quantification example (Figure S2), respectively. Very small instrument-to-instrument differences were
observed. It should be noted that findings from the handheld MicroNIR™ OnSite and ES units could
be extended to the MicroNIR™ PAT units for process monitoring, since the spectral engine and the
calibration protocol at the production level are the same.

In this study, both a classification example and a quantification example were investigated.
For the quantification example, the good direct model transferability was demonstrated with the
most commonly used regression method, PLS. For the classification example, the good direct model
transferability was demonstrated with both the commonly used chemometric algorithm, SIMCA, and
the machine learning algorithms, SVM, hier-SVM and TreeBagger. It should be noted the PLS-DA
performance could be improved to about 90% prediction success rate by manually optimizing the
number of PLS factors. The results presented in Tables 1 and 2 were based on automatically selected
PLS factors. This automatic selection procedure sometimes causes overfitting. However, since all the
other algorithms were also using automatic model building, which may not always generate the best
results, for a fair comparison no manual intervention was introduced to PLS-DA. In fact, even with the
improved performance, PLS-DA still didn’t perform as well as the other algorithms for this specific
application. Although the direct model transferability was good with conventional SIMCA, it can be
further improved with the use of SVM algorithms. SVM has found increasing interest in chemometrics
in recent years, since it is such a sound methodology, where geometric intuition, elegant mathematics,
theoretical guarantees, and practical algorithms meet [38]. Among SVM’s many appealing features,
generalization ability, that is the ability to accurately predict outcome values for previously unseen data,
can help minimize cross-unit prediction errors. The basic principle of SVM is to construct the maximum
margin hyperplanes to separate data points into different classes. Maximizing the margin reduces
complexity of the classification function, thus minimizing the possibility of overfitting. Therefore,
better generalization can be achieved intrinsically for SVM [38]. When many classes are involved, like
the polymer classification example in this study, the hier-SVM algorithm was shown to be beneficial,
because this multilevel classification scheme facilitates refined classification for chemically similar
materials to achieve more accurate prediction [26]. In addition, the TreeBagger algorithm is based on
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random forest, which is one of the most powerful classifiers in machine learning [39]. However, for the
current study, the cross-unit performance of TreeBagger was not as good as the SVM algorithms.

The combination of the hardware design and implementation of advanced calibration techniques
results in a repeatable and reproducible performance between different MicroNIR™ spectrometers,
allowing effective direct model transferability. However, it is not intended to say that this will be the
ultimate solution that eliminates all problems that necessitate calibration transfer. The scope of the
current study was limited to model transferability only involving instrument-to-instrument differences,
not very heterogeneous samples, and data collected with sound sampling and measurement protocols.
For example, when different instruments are placed in different environments, environmental changes
may have to be corrected for the model via calibration transfer. Very heterogeneous samples, such as
biological samples, will be more difficult to handle in general. Even very small instrument-to-instrument
differences could cause unsatisfactory cross-unit prediction results. A global model approach using
data from samples with all expected sources of variance and/or measured with multiple instruments
for calibration could significantly minimize prediction errors. Model updating techniques will also be
very helpful [40]. Direct model transferability will be evaluated for very heterogeneous materials in
our future studies. In addition, poor cross-unit model performance often results from nonqualified
calibration data that are not collected with a careful sampling plan and a proper measurement protocol.
The success of a multi-instrument NIR project must start with reliable NIR data that are collected with
best practices in sampling [41,42] and measurement [43,44].

The current study demonstrated the possibility of direct model transfer from instrument to
instrument for both classification and quantification problems, which has laid a good foundation for
the use of a large number of compact NIR instruments. More studies should be encouraged in wider
applications and using all kinds of instruments from various manufacturers. Scalability of handheld
and process NIR solutions can become more manageable when the number of times that calibration
transfer has to be performed between instruments can be minimized.

4. Materials and Methods

4.1. Materials

For the polymer classification study, 46 injection molded resins were obtained from The ResinKit™
(The Plastics Group of America, Woonsocket, RI, USA). The set of resins contains a variety of polymer
materials, as well as various properties within the same type of material (for example different densities
or strengths). Each resin was treated as an individual class in this study. All the resins used in this study
are listed in Table 6 and detailed properties of these materials are available upon request. To evaluate
the cross-kit prediction performance, three resin kits were used.

For the API quantification study, 48 pharmaceutical powders consisting of different concentrations
of three crystalline active ingredients, as well as two amorphous excipients were provided by Prof.
Heinz W. Siesler at University of Duisburg-Essen, Germany [4]. The active ingredients used were
acetylsalicylic acid (ASA, Sigma-Aldrich Chemie GmbH, Steinheim, Germany), ascorbic acid (ASC,
Acros Organics, NJ, USA), and caffeine (CAF, Sigma-Aldrich Chemie GmbH, Steinheim, Germany),
and the two excipients used were cellulose (CE, Fluka Chemie GmbH, Buchs, Switzerland) and starch
(ST, Carl Roth GmbH, Karlsruhe, Germany). The concentration of the active ingredients ranged from
13.77–26.43% (w/w), and all samples consisted of 40% (w/w) of a 3:1 (w/w) mixture of cellulose and starch.
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Table 6. Polymer materials used for the classification study.

No. Polymer Type No. Polymer Type

1 PolyStyrene-General Purpose 24 Polyethylene-High Density
2 PolyStyrene-High Impact 25 Polypropylene-Copolymer
3 Styrene-Acrylonitrile (SAN) 26 Polypropylene-Homopolymer
4 ABS-Transparent 27 Polyaryl-Ether
5 ABS-Medium Impact 28 Polyvinyl Chloride-Flexible
6 ABS-High Impact 29 Polyvinyl Chloride-Rigid
7 Styrene Butadiene 30 Acetal Resin-Homopolymer
8 Acrylic 31 Acetal Resin-Copolymer
9 Modified Acrylic 32 Polyphenylene Sulfide

10 Cellulose Acetate 33 Ethylene Vinyl Acetate
11 Cellulose Acetate Butyrate 34 Urethane Elastomer (Polyether)
12 Cellulose Acetate Propionate 35 Polypropylene-Flame Retardant
13 Nylon-Transparent 36 Polyester Elastomer
14 Nylon-Type 66 37 ABS-Flame Retardant
15 Nylon-Type 6 (Homopolymer) 38 Polyallomer
16 Thermoplastic Polyester (PBT) 39 Styrenic Terpolymer
17 Thermoplastic Polyester (PETG) 40 Polymethyl Pentene
18 Phenylene Oxide 41 Talc-Reinforced Polypropylene
19 Polycarbonate 42 Calcium Carbonate-Reinforced Polypropylene
20 Polysulfone 43 Nylon (Type 66–33% Glass)
21 Polybutylene 44 Thermoplastic Rubber
22 Ionomer 45 Polyethylene (Medium Density)
23 Polyethylene-Low Density 46 ABS-Nylon Alloy

4.2. Spectra Collection

4.2.1. Resin Samples

Three MicroNIR™OnSite spectrometers (Viavi Solutions Inc., Santa Rosa, CA, USA) in the range of
908–1676 nm were randomly picked to collect the spectra of the resin samples. The spectral bandwidth
is ~1.1% of a given wavelength. Three kits of samples were measured in the diffuse reflection mode.
A MicroNIR™ windowless collar was used to interface with the samples, which optimized the sample
placement relative to the spectrometer. Each sample was placed between the windowless collar of the
MicroNIR™ spectrometer and a 99% diffuse reflection standard (Spectralon®, LabSphere, North Sutton,
NH, USA). The reason for using the Spectralon® behind each sample was to return signal back to the
spectrometer, particularly for very transparent samples, in order to improve the signal-to-noise ratio.

Each sample was scanned in five specified locations to account for the most variation in sample
shape and thickness. In addition, at each position the sample was scanned in two orientations with
respect to the MicroNIR™ lamps to account for any directionality in the structure of the molding.
For each position and orientation, three replicate scans were acquired, totaling thirty scans per sample,
per spectrometer. The MicroNIR™ spectrometer was re-baselined after every ten samples, using a 99%
diffuse reflectance reference scan (Spectralon®), as well as a lamps-on dark scan, in which nothing was
placed in front of the spectrometer. Each sample was measured by all three spectrometers following
the same protocol.

4.2.2. Pharmaceutical Samples

Each of the 48 samples were placed in individual glass vials, and their spectra were collected
by three randomly picked MicroNIR™ 1700ES spectrometers in the range of 908–1676 nm using the
MicroNIR™ vial-holder accessory. The spectral bandwidth is ~1.1% of a given wavelength. In this
measurement setup, the samples were scanned from the bottom of the vial in the diffuse reflection mode.

Each sample was scanned twenty times using each MicroNIR™ spectrometer. The sample was
rotated in the vial-holder between every scan to account for sample placement variation, as well as
the non-uniform thickness of the vial. Before every new sample, the MicroNIR™ spectrometer was
re-baselined by scanning a 99% diffuse reflectance reference (Spectralon®), as well as a lamps-on dark
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scan, which consisted of an empty vial in place of a sample. Each sample was measured by all three
spectrometers following the same protocol.

4.3. Data Processing and Multivariate Analysis

4.3.1. Polymer Classification

All steps of spectral processing and chemometric analysis were performed using MATLAB
(The MathWorks, Inc., Natick, MA). All spectra collected were pretreated using Savitzky-Golay first
derivative followed by standard normal variate (SNV).

PLS-DA, SIMCA, TreeBagger, SVM and hier-SVM were applied to preprocessed datasets.
Autoscaling was performed when running these algorithms. To implement PLS-DA, the number of
PLS factors was chosen by training set cross validation and the same number was used for all classes.
To implement SIMCA, the number of principal components (PC) was optimized for each class by
training set cross validation. No optimization was performed for TreeBagger, SVM and hier-SVM, and
the default settings were used. For TreeBagger, the number of decision trees in the ensemble was set to
be 50. Since random selection of sample subsets and variables is involved when running TreeBagger,
there are small differences in the results from run to run. To avoid impacts from these differences, all
the TreeBagger results were based on the mean of 10 runs. For SVM algorithms, the linear kernel with
parameter C of 1 was used.

For the same-unit-same-kit performance, the models built with data collected from four locations
on each sample in one resin kit by one spectrometer were used to predict data collected from the other
location on each sample in the same resin kit by the same spectrometer. For the same-unit-cross-kit
performance, the models built with all the data collected from one resin kit by one spectrometer were
used to predict all the data collected from a different resin kit by the same spectrometer. For the
cross-unit-same-kit performance, the models built with all the data collected from one resin kit by
one spectrometer were used to predict all the data collected from the same resin kit by a different
spectrometer. For the cross-unit-cross-kit performance, the models built with all the data collected
from one resin kit by one spectrometer were used to predict all the data collected from a different resin
kit by a different spectrometer.

4.3.2. API Quantification

All steps of spectral processing and chemometric analysis were performed using MATLAB. Some
functions in PLS_Toolbox (Eigenvector Research, Manson, WA, USA) were called in the MATLAB
code. To develop the calibration models, 38 out of the 48 samples were selected as the calibration
samples via the Kennard-Stone algorithm based on the respective API concentration. The remaining
10 samples were used as the validation samples. The preprocessing procedure was optimized for each
API separately based on the calibration set cross validation. The same preprocessing procedure was
used on all three instruments for the same API. PLS models were developed using the corresponding
preprocessed datasets for each API.

To evaluate the same-unit performance, the model built on one instrument was used to predict
the validation set collected by the same instrument. To evaluate the cross-unit performance without
calibration transfer, the model built on one instrument was used to predict the validation set collected
by the other instruments.

For calibration transfer demonstration, Unit 1 was used as the master instrument, and Unit 2 and
Unit 3 were used as the slave instruments. Eight transfer samples were selected from the calibration
samples with the Kennard-Stone algorithm. To perform bias correction, bias was determined using the
transfer data collected by the slave instrument, and the bias was applied to the predicted values using
the validation data collected by the slave instrument. To perform PDS, the window size was optimized
based on RMSEP, and the corresponding lowest RMSEP was reported in this study. To perform GLS,
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parameter a was optimized based on RMSEP, and the corresponding lowest RMSEP was reported in
this study.

5. Conclusions

In this study, direct model transferability was investigated when multiple MicroNIR™
spectrometers were used. As demonstrated by the polymer classification example, high prediction
success rates can be achieved for the most stringent cross-unit-cross-kit cases with multiple algorithms
including the widely used SIMCA method. Better performance was achieved with SVM algorithms,
especially when a hierarchical approach was used (hier-SVM). As demonstrated by the API
quantification example, low prediction errors were achieved for the cross-unit cases with PLS models.
These results indicate that the direct use of a model developed on one MicroNIR™ spectrometer on the
other MicroNIR™ spectrometers is possible. The successful direct model transfer is enabled by the
robust design of the MicroNIR™ hardware and will make deployment of multiple spectrometers for
various applications more manageable and economical.

Supplementary Materials: The supplementary materials on reproducibility of MicroNIR™ products are available
online http://www.mdpi.com/1420-3049/24/10/1997/s1. Figure S1: MicroNIR™ OnSite manufacturing data
demonstrating instrument-to-instrument reproducibility, Figure S2: MicroNIR™ 1700ES manufacturing data
demonstrating instrument-to-instrument reproducibility.
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Abstract: The performance of a newly developed pocket-sized near-infrared (NIR) spectrometer
was investigated by analysing 46 cheese samples for their water and fat content, and comparing
results with a benchtop NIR device. Additionally, the automated data analysis of the pocket-sized
spectrometer and its cloud-based data analysis software, designed for laypeople, was put to the test by
comparing performances to a highly sophisticated multivariate data analysis software. All developed
partial least squares regression (PLS-R) models yield a coefficient of determination (R2) of over 0.9,
indicating high correlation between spectra and reference data for both spectrometers and all data
analysis routes taken. In general, the analysis of grated cheese yields better results than whole
pieces of cheese. Additionally, the ratios of performance to deviation (RPDs) and standard errors of
prediction (SEPs) suggest that the performance of the pocket-sized spectrometer is comparable to
the benchtop device. Small improvements are observable, when using sophisticated data analysis
software, instead of automated tools.

Keywords: NIR; SCiO; pocket-sized spectrometer; cheese; fat; moisture; multivariate data analysis

1. Introduction

A wide variety of cheese and cheese products can be purchased in stores around the world.
Cheese is an important source of nutrients, such as fat and protein [1], and is consumed worldwide
with an annual production of approximately 23 million tonnes in 2014 [2]. Quality control is vital,
to ensure food safety and to protect consumer interest. Hence, a wide variety of physico-chemical
analyses were developed to determine pH, fat, nitrogen fractions, volatile fatty acids and others [3,4].
Traditional methods to determine these nutrients have some disadvantages. They are often time
consuming, expensive and have a limited sample throughput [3,5]. Furthermore, trained personnel is
needed to operate the machines and execute the analyses [6].

That is why, fast and non-destructive spectral methods were developed to measure main
components, such as fat, protein and moisture, of cheese [3,7–9]. More recent approaches also
focus on minor components, like vitamins, minerals and carotenoids [10,11]. But lately, near-infrared
spectroscopy (NIRS) was also used to identify sensory properties, as well as the origin of cheese [12–16].
Cheese is not spatially homogeneous, which poses a challenge for spectral analysis [10].

NIRS is widely applied in food analyses [17–20], as well as in other fields including pharmaceutical
sciences and petrochemistry [21–24]. NIR excites molecular vibrations and thus overtones and
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combination bands can be observed in a NIR spectrum [15]. The main advantages of NIRS
are its comparatively low cost, fast measurements and easy handling [25,26]. Furthermore, it is
possible to miniaturize NIR technology and thus reduce costs and weight, as well as improve
consumer-friendliness [27,28]. With the miniaturization process beginning already a decade ago,
its main challenge was to preserve spectral performance in terms of wavenumber range and
resolution [28]. Thanks to technical advances, like the micro electro-mechanical system (MEMS) and the
linear variable filter (LVF) technology, the performance of miniaturized devices increased greatly [29].
These technologies are implemented in various miniaturized devices designed for pharmaceutical and
chemical industries. But currently, the miniaturization process is even more sophisticated, which makes
a pocket-sized NIR spectrometer possible for the first time. Multiple companies (e.g., Tellspec,
Consumer Physics and others) have launched NIR spectrometers so small, they fit into the palm
of a hand. Additionally, the implementation of those spectrometers into mobile phones is not a fantasy
of the future, but already possible now [30]. Small spectrometers like that are usually not targeted
to industries, but to consumers, who want to make educated, science-based food choices. But this
device could also be used at food competitions, where the judges usually have to rely on the claims of
producer and who were, until now, unable to verify those claims. Hence, the operation of this new
generation of miniaturized spectrometers is easy and intuitive. The devices can be operated without
any knowledge in the field of chemistry or physics.

But the question of the performance of those pocket-sized spectrometers remains. Since they
are not targeted at scientists and researchers, there is little knowledge about the performance of
these spectrometers. This is why the present study aims at shedding light upon some aspects of
the performance of a pocket-sized molecular sensor—The SCiO (Consumer Physics, Tel Aviv, Israel).
Only few studies have been published using this device and thus more information is needed [31,32].

SCiO is operated with a smartphone via Bluetooth. SCiO can be controlled using either the SCiO
or the SCiO Lab app. The SCiO app contains a set of pre-established calibration models for, for example,
calories and water content of fruits and vegetables; and sugar, fat and calories for chocolates. It also
contains a pre-established app for water, protein and fat content of dairy products like cheese, yoghurts
and puddings. Hence, once a sample is measured all values are directly given to the user, without
presenting a spectrum or a model. The main advantage of this app is its easy handling and intuitiveness.
A disadvantage of the SCiO app is that only products for which a calibration model already exists
can be measured. If the user wants to measure another product, the SCiO Lab app has to be used.
There, spectra can be recorded and later be analysed using the cloud-based web application, SCiO Lab.

The current study investigates different cheese samples in terms of their fat and moisture content
using a benchtop NIR spectrometer, as well as SCiO. The performance of both devices is compared using
statistical parameters, such as the standard error of prediction and the coefficient of determination (R2).

2. Results

2.1. Near-Infrared Spectroscopy

The NIR region is often divided into three sub-regions: Region I ranges from 800–1200 nm
(12500–8500 cm−1) and is also called the “Herschel” region. It is the only region where
electronic transitions can be observed. Furthermore, the Herschel region contains overtones and
combination bands. Region II is located from 1200–1800 nm (8500–5500 cm−1) and mainly comprises
first overtones. Region III ranges from 1800–2500 nm (5500–4000 cm−1), where the combination band
can be found [23].

As shown in Figure 1, the spectral range of the benchtop NIRFlex N-500 is 2500–1000 nm
(10000–4000 cm−1) and thus it mainly includes vibrations in region II and III. The benchtop
device also reaches into the Herschel region; however, it does not cover it completely. SCiO on
the other hand exclusively records spectra in region I, as its wavelength range reaches from
740–1070 nm (13514–9346 cm−1). This also means that SCiO reaches into the visible part of the
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electromagnetic spectrum. This makes a comparison between the two devices interesting, as the
recorded vibrations influence the performance of each spectrometer. The NIR region was chosen as
the reference range for various reasons. First of all, molecular vibrations corresponding to water and
fat are quite pronounced in this region. Secondly, the different colours of the cheese are irrelevant in
this region. Thirdly, using SCiO and the NIRFlex N-500, the same measurement setup and mode could
be used. Table 1 lists important peaks in the respective spectra and the corresponding vibrations.

Figure 1. Averaged spectra of whole pieces of cheese of spectra recorded with SCiO (red) and NIRFlex
N-500 (blue).

Table 1. Important peaks and their respective vibrations in the spectra recorded with the NIRFlex
N-500 and SCiO [5,33].

Device Vibration Wavenumber/cm−1 Wavelength/nm

NIRFlex N-500

C-H str. 2nd overtones 8888–8068 1125–1240
O-H str. 1st overtones
N-H str. 1st overtones 7264–6068 1377–1648

C-H str. 1st overtones 5856–5604 1708–1784
Combination of O-H str.
and O-H def., C=O str.

2nd overtones
5404–4784 1850–2090

SCiO
C-H str. 3rd overtones 10,834–10,660 923–938
N-H str. 2nd overtones

and O-H str.
2nd overtones

10,616–9506 942–1052

2.2. Multivariate Data Analysis

First, all models developed using The Unscrambler X version 10.5 are presented and evaluated.
Then the data generated with the SCiO web-application will be examined in detail and, lastly,
the performance of the pre-established models from the SCiO app will be discussed.

2.2.1. Regression Models Established with The Unscrambler X Version 10.5

For spectral data pre-treatment, the descriptive statistics tool, which is implemented in The
Unscrambler X, was consulted and then a fitting pre-treatment was applied (see Section 4.3.1). Table 2
lists the important statistical parameters for the cross- and test set-validated models, calculated using
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the respective calibration sets for fat content. Figure 2 shows the PLS regressions for whole pieces of
cheese for SCiO and the NIRFlex N-500.

Figure 2. PLS regression of fat content of whole pieces of cheese, established using data of NIRFlex
N-500 (a) and SCiO (b).

102



Molecules 2019, 24, 428

Table 2. Parameters of the established PLS-R models for fat content. CV denotes cross-validated
models, whereas TV refers to test set-validated regressions.

Spectrometer
State of

the Cheese
R2 (CV) RMSECV/% PC (CV) R2 (TV) RMSEP/% Bias (TV)

PC
(TV)

RPD

NIRFlex N-500
Whole pieces 0.9726 1.5711 2 0.9431 1.8964 −0.3369 2 5.109
Grated cheese 0.9930 0.7845 2 0.9913 0.7676 0.3719 2 14.022

SCiO
Whole pieces 0.9801 1.2466 2 0.9838 1.1874 0.1634 2 7.754
Grated cheese 0.9838 1.0527 2 0.9940 0.8194 0.1776 2 10.398

R2—Coefficient of determination; RMSECV—Root mean square error of cross validation; PC—Principle component;
RMSEP—Root mean square error of prediction; RPD—Ratio of performance to deviation.

For whole pieces of cheese and grated cheese measured with the NIRFlex N-500 and SCiO,
two principle components (PCs) were needed to develop calibration models for fat content. Cheese has
a high fat content, which is why a low number of principle components for calibration models can
be expected. The number of PCs used was determined using the variance plot, which showed how
much of the original information is included in the respective PC. Since the same number of PCs were
used for calibrations established with SCiO and the benchtop device, as well as for grated and whole
pieces of cheese, the results had a high comparability.

The coefficients of determination for all models were between 0.9431 and 0.9940. This indicated
a high correlation between the spectra and the reference data. The errors of the cross-validated
calibration models, called root mean square errors of cross validation (RMSECV), were between 0.78%
and 1.57%, which was acceptable, considering that the average of the reference data was 29.17%.
When investigating the test set-validated models, it immediately meets the eye that the Biases were
not zero, which is to be expected when using an independent test set. Furthermore, the root mean
square error of prediction (RMSEP) values were between 0.77% and 1.90%. All but one RMSEPs
were lower than their respective RMSECV. This was most likely due to the Kennard–Stone sample
selection, whereby a set of samples was chosen to best represent the multivariate space of the data.
Because of that, high value samples, as well as low value samples, were selected in order to best
describe the multivariate space. Hence, the error of the calibration set was higher, since it included
more extreme values. The independent test set, on the other hand, could then easily be fitted into the
well-described multivariate space. Furthermore, all RMSECV values were close to their respective
RMSEP values, indicating a robust model.

In general, the best model for the estimation of fat content was the model developed for NIRFlex
N-500 data when measuring grated pieces of cheese. The cross-validation and the independent test
set-validation both had a coefficient of determination of over 0.99, and the RMSECV and RMSEP were
both under 1%. Furthermore, the RMSECV and RMSEP values were close, indicating a robust model.
Additionally, the statistical parameters suggested that the analysis of fat content for grated pieces of
cheese was slightly better. This was most likely due to the fact that whole pieces of cheese can be
spatially inhomogeneous.

Table 3 lists the results for moisture content for grated cheese and whole pieces measured with
the NIRFlex N-500 and SCiO. Figure 3 shows the PLS regressions for whole pieces of cheese for SCiO
and the NIRFlex N-500.
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Figure 3. PLS regression of moisture content of whole pieces of cheese, established using data of
NIRFlex N-500 (a) and SCiO (b).

Table 3. Statistical parameterd of the established PLS-R models for moisture content. CV denotes
cross-validated models, whereas TV refers to test set validated regressions.

Spectrometer
State of the

Cheese
R2 (CV) RMSECV/% PC (CV) R2 (TV) RMSEP/% Bias (TV)

PC
(TV)

RPD

NIRFlex N-500
Whole pieces 0.9598 1.2239 3 0.9376 1.0960 0.0408 3 5.597
Grated cheese 0.9873 0.6868 3 0.9561 0.9337 −0.1843 3 6.697

SCiO
Whole pieces 0.9659 1.0407 2 0.9394 1.1357 −0.3763 2 4.341
Grated cheese 0.9637 1.0400 2 0.9327 1.7147 0.1297 2 3.208

R2—Coefficient of determination; RMSECV—Root mean square error of cross validation; PC—Principle component;
RMSEP—Root mean square error of prediction; RPD—Ratio of performance to deviation.

For measurements with the NIRFlex N-500, three principle components were needed to develop
models for moisture content for whole pieces and grated cheese. For data recorded with SCiO,
two principle components were needed to develop models for moisture content. The benchtop device
recorded spectra in a broader range than the SCiO, which is why multiple O-H vibrations could
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be found. However, these vibrations did not only stem from water, but also from other components.
The SCiO on the other hand, recorded spectra in a very narrow range, hence only one O-H vibration
was visible. Since the spectra of the NIRFlex N-500 were more complex, more principle components had
to be used. The number of PCs did not differ greatly though, hence the results could still be compared.

The coefficients of determination for all models were between 0.9327 and 0.9873. This indicated
a high correlation between the spectra and the moisture content. The RMSECV values of the
cross-validated models were around 1%, with the highest being 1.22%, and the lowest being 0.69%.
The RMSEP values for the test set-validated models were also around 1%, with the exception of RMSEP
for data recorded with SCiO for grated cheese, which gave a value of 1.71%. Only one RMSEP value
was lower than the respective RMSECV value. In general, an error of about 1% for moisture content
was quite low, considering that the mean of the reference data was 38.42%.

The difference in prediction accuracy for moisture content of grated cheese and whole pieces of
cheese was smaller than for fat content. The prediction of moisture content seemed to work better
on grated cheese when working with the NIRFlex N-500; however, when using SCiO, whole pieces
showed better prediction results.

2.2.2. Regression Models Established with the SCiO Lab Web Application

SCiO only offers a limited amount of statistical properties. It does not list coefficients of
determination for test set-validated models or the Bias of any model. The algorithm for the validation
process is proprietary and is; therefore, not accessible for users. The calibration model was validated
using leave-one-out cross-validation (LOOCV) and then a test set was also used to validate the model.
Table 4 lists the result for the analysis of SCiO data, recorded with the SCiO Lab app, using the SCiO
Lab web application.

Table 4. Statistical parameters of the established PLS-R models for moisture and fat content. CV
denotes cross-validated models.

Content State of the Cheese PC (CV) R2 (CV) RMSE/% SEP/% RPD

Moisture
Whole pieces 4 0.972 0.949 1.050 5.453
Grated cheese 4 0.977 0.834 1.102 5.034

Fat
Whole pieces 4 0.988 0.950 0.785 11.448
Grated cheese 4 0.982 1.118 0.779 10.779

PC—Principle components; R2—Coefficient of determination; RMSE—Root mean square error; SEP—Standard
error of prediction; RPD—Ratio of performance to deviation.

The coefficients of determination for all cross-validated models were between 0.972 and 0.988,
indicating a high correlation between spectra and reference values. Additionally, all root mean
square errors (RMSEs) were around 1%, with the lowest being 0.834% and the highest being 0.950%.
All but one standard errors of prediction (SEPs) were lower than their respective RMSEs. The lowest
SEP was achieved for the prediction of fat content in grated cheese, at 0.779%. The highest SEP
was 1.102%. These results were in accordance with the analysis of the same data set using the
software The Unscrambler X version 10.5. However, interestingly, the prediction of the fat content
with the benchtop device yielded a much higher SEP. Furthermore, different spectral pre-treatments
were needed. This is most likely due to the limited options in SCiO Lab. Additionally, SCiO
Lab suggested four principle components for all models. Conducting a manual analysis with the
Unscrambler X; however, showed that only two PCs explain over 90% of the variance of the original
data set. This suggests that the automated algorithm in SCiO Lab takes in too many PCs. This might
also be the reason why some of the SEPs were lower for the SCiO Lab web application.

Additionally, it was attempted to imitate the results from the SCiO Lab web application with
the Unscrambler X. However, since it was unknown how many smoothing points the SCiO Lab web
application applies, results could not be duplicated. The SEP for fat content for whole pieces of cheese
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was 0.844%, and for water content, 0.825%. This means that for moisture the imitated results, using
Unscrambler X, yielded better results, but for fat content the SCiO Lab web application yielded better
results. Looking at grated cheese, the SEP for fat content was 0.771% and for moisture content it was
1.400%. This means that the SEP for moisture content was higher than predicted with the SCiO Lab
web application, but the fat content was almost the same.

2.2.3. Results from the Pre-Established Model in the SCiO App

For the analysis of the performance of the pre-established model in the SCiO app, all values were
registered in Microsoft Excel and then SEPs and Biases were calculated (Table 5).

Table 5. SEPs and Biases for the pre-established "dairy products" model in the SCiO app.

Content State of the Cheese SEP/% Bias/% RPD

Moisture
Whole pieces 1.349 2.266 4.021
Grated cheese 1.159 2.443 4.681

Fat
Whole pieces 1.064 −0.826 7.832
Grated cheese 1.218 −0.789 6.844

SEP—Standard error of prediction; RPD—Ratio of performance to deviation.

The Biases for moisture content were quite high, indicating a systematic shift between the data in
the pre-established model and the recorded data. The SEPs were all around 1%, but slightly higher
than for the self-developed models. This is most likely due to the fact that the model of the SCiO app
was developed for “dairy products”, including yoghurt, cheese and puddings.

3. Discussion

Reviewing all SEPs and RPDs in Tables 2–5, the qualities of the calibration model can be estimated.
In the Supplementary Material, a table that compresses the most important information can be found.
With the help of RPD, the quality of the model can be estimated. RPDs below 2 are not sufficient,
whereas an RPD between 2 and 3 is adequate for screening. RPDs between 3 and 5 are satisfactory.
If a value over 5 is achieved, the model is estimated to be good. A RPD over 10 indicates an excellent
model [34].

Four models reached an RPD value of over 10: The model developed using the SCiO data for data
analysis with The Unscrambler X for fat content of grated cheese (10.398); and the models developed
using SCiO data for data analysis with the SCiO Lab web application for fat content of whole pieces
and grated cheese (11.448 and 10.799, respectively). The highest RPD was yielded for data of fat
content collected with the NIRFlex N-500 of grated cheese (14.022). Furthermore, four models had a
value between 3 and 5: The models developed using data recorded with SCiO for moisture content of
whole pieces of cheese (4.341) and grated cheese (3.208). Additionally, the RPDs for the SCiO data,
recorded and evaluated using the SCiO App, was around 4 for moisture content of whole pieces of
cheese (4.021) and grated cheese (4.681). All remaining models had an RPD of 5 or higher, indicating
that the performances were satisfactory or even good.

Regarding the SEP values, the results for fat content were, overall, better than for moisture.
Figure 2 in Section 2.2.1 shows a gap between cheeses with a low and a high fat content. This may have
contributed to an enhancement of results because the range of fat content was broadened, which was
beneficial, considering how the SEP was calculated. Unfortunately, cheese with a fat content between
12% and 25% were unavailable.

Overall, the measurements of grated cheese seemed to work better, most likely due to the more
homogenous nature of grated cheese. However, results did not improve too much, which leads to the
question as whether or not the sample preparation is really necessary.
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4. Materials and Methods

4.1. Sample Management and Reference Data

Forty-six cheese samples were analysed for their fat and moisture content using NIRS, as well
as traditional wet chemical methods. Twenty samples were classified as hard cheese according to
their water content of the fat-free mass, the other 26 samples were classified as semi-hard cheese [35].
Upon receipt, a part of each sample was grated and prepared for reference analysis. The remaining
whole piece, as well as some grated cheese, was passed on for spectral analysis. The reference data for
fat was collected using the Van Gulik method [36], and the moisture content was calculated from dry
mass, which was determined using gravimetry [37]. Great care was taken to always uphold the cold
chain and thus keep the samples fresh and unaltered. NIR measurements were conducted for grated
cheese, as well as whole pieces using two different NIR spectrometers.

4.2. Near-Infrared Spectroscopy

All samples were measured, as grated cheese and whole pieces, with the NIRFlex N-500 (Büchi,
Flawil, Switzerland) and SCiO (Consumer Physics, Tel Aviv, Isreal). The latter is a pocket-sized
molecular sensor and was launched in 2016. The former is a modular benchtop device.

For measurements of the whole pieces of cheese, the NIRFlex N-500 was operated with the Fibre
Optics Solids module. The fibre had an outer diameter of 4 mm and a spectral resolution of 8 cm−1.
The digital resolution was 4 cm−1. All samples were measured at four spots three times, in the range
800–2500 nm (10000–4000 cm−1), with 64 scans in diffuse reflection mode. Hence, a total of twelve
spectra were received for each sample.

With SCiO, the pieces of cheese were measured at six spots one time in diffuse reflection mode,
in the wavelength range 740–1070 nm (13514–9346 cm−1), with the SCiO Lab app. The medium
resolution of SCiO was 13 cm−1, with the lowest resolution (18 cm−1) being found at high
wavenumbers and the highest resolution (9 cm−1) at low wavenumbers.

For measurements of grated cheese, a cylindrical quartz cuvette (h = 25 mm, inner diameter = 31.6 mm)
was filled with cheese and used for measurements. Thus, a constant measuring angle and method
was assured. Grated cheese was analysed with the NIRFlex N-500 in diffuse reflection mode, with 64 scans
in the wavelength range 800–2500 nm (10000–4000 cm−1). The spectral resolution was again 8 cm−1 and
the digital was 4 cm−1. The cuvette was constantly rotated during measurement and each sample was
analysed six times.

For analysis of grated cheese using SCiO, the quartz cuvette was put onto SCiO and each
sample was measured six times using the SCiO Lab app. The cuvette was manually rotated between
measurements. Spectra were recorded in the range 740–1070 nm (13514–9346 cm−1) and the medium
resolution was again 13 cm−1. All measurements were taken in diffuse reflection mode.

Additionally, grated cheese and whole pieces were also measured with SCiO, using the
pre-establish model from the SCiO app. Samples were again measured six times in the same manner
as before.

4.3. Multivariate Data Analysis

Spectra recorded with the benchtop NIRFlex N-500 were analysed using the external
multivariate data analysis software, The Unscrambler X version 10.5 (Camo Software, Oslo, Norway).
Spectra recorded with SCiO, using the SCiO Lab app, were also evaluated using The Unscrambler X
version 10.5; however, in addition, they were also analysed using the cloud-based web-application
SCiO Lab (Consumer Physics, Tel Aviv, Israel). It offers a limited amount of multivariate data analysis
options and was developed for laypeople. SCiO Lab, itself, suggests a certain set of pre-treatments;
however, the user can also, him- or her-self, decide which pre-treatments to use when turning on the
expert mode. In SCiO Lab it is possible to conduct a standard normal variate (SNV) and to calculate
first and second derivatives. Furthermore, the average spectrum can be subtracted and the logarithm
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can be calculated. It is also possible to select a wavelength range. Additionally, the results given by
the SCiO app were transferred to Microsoft Excel (Microsoft Corporation, Redmond, WA, USA) for
statistical analysis.

4.3.1. Spectral Pre-Treatments

Spectra recorded with the benchtop device were evaluated using The Unscrambler X version
10.5. For whole pieces of cheese, the twelve spectra of one sample were first averaged by a factor of
four, in order to obtain three representative spectra per sample. Next, descriptive statistics, which is
an implemented tool in the software, was applied to identify necessary spectral pre-treatments.
Standard normal variate (SNV) was applied to reduce multiplicative scatter effects. No other
pre-treatments were necessary as they did not improve the model much. Regression models for
fat and moisture content were then established. The regression model for fat content considered only
the regions in the spectrum where C-H vibrations occur. The two regions considered reached from
6040 to 5440 cm−1 (1656–1838 nm) and from 8548 to 8076 cm−1 (1170–1238 nm). For moisture content,
no wavenumber range was selected, as this did not improve results.

Evaluating spectra of grated cheese recorded with the benchtop NIRFlex N-500, the same route
of identifying necessary spectral pre-treatments was taken. First, the six spectra of one sample were
averaged by a factor of two, in order to again receive three spectra per sample. Next, descriptive
statistics was applied and SNV was again used to remove scatter effects. The same wavenumber region
as before was used to establish a regression model for fat content. For moisture content, the whole
spectral range was used.

Spectra of whole pieces of cheese and grated cheese recorded with SCiO were first analysed with
The Unscrambler X version 10.5. All spectra were first averaged by a factor of two, in order to obtain
three spectra per sample. Next, descriptive statistics was applied. Like before, SNV was identified
as necessary spectral pre-treatment to remove scatter noise. For fat and moisture content, the whole
spectral range (740–1070 nm, 13514–9346 cm−1) was used.

When using SCiO Lab for multivariate data analysis, different combinations of the provided
spectral pre-treatment options were tried. For moisture and fat content for whole pieces and grated
cheese, the same spectral pre-treatments were used, namely 1st derivative followed by SNV.

4.3.2. Regression Models

Using the software, The Unscrambler X version 10.5, for model development, the data sets for
whole pieces of cheese and grated cheese, recorded with the NIRFlex N-500 and SCiO, were split into
a calibration and a test set using Kennard–Stone sample selection [38], respectively. All calibration sets
comprised two thirds of the data (31 samples, 93 spectra), and the test sets consisted of the remaining
third (15 samples, 45 spectra). As SCiO Lab does not offer sophisticated data selection algorithms,
the same samples as given in The Unscrambler X version 10.5 were selected in the cloud-based
web application.

In The Unscrambler X version 10.5, partial least squares regression (PLS-R) with cross-validation
was applied to the respective calibration sets to establish calibration models. The models were then
validated using test set-validation with the pre-established test sets.

In the SCiO Lab web application, the calibration set was also used to build a PLS-R.
Therefore, the data set was manually split into a calibration and validation set. Samples selected
corresponded to the sample set created using the Kennard–Stone algorithm in The Unscrambler X
version 10.5. Afterwards the developed model was validated using the test set.

For the evaluation of the established PLS-R models, different statistical quality parameters
were consulted. R 2 is a measure of the linearity, RMSECV and RMSEP are indicators of the accuracy
of the established model and the Bias can point to methodical errors. The RMSECV is similar to
a standard deviation, showing how great the differences between expected and actual values are.
The RMSEP denotes the difference between the actual reference value and the predicted value by the
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established calibration model. Additionally, the RPDs [34] can be used to evaluate the applicability
of established models. All mentioned parameters are listed in the result section for all developed
PLS-R models.

5. Conclusions

This study examines the performance of a new hand-held NIR spectrometer, called SCiO,
in comparison to a benchtop device. Forty-six different cheese samples—Grated cheese and whole
pieces—were investigated in terms of their moisture and fat content. Additionally, different data
analysis routes were taken in order to investigate if a deeper knowledge of chemometrics is necessary
for the operation of SCiO, or if the limited tools implemented in the SCiO app and the SCiO Lab web
application are sufficient to yield acceptable results.

In general, the analysis of cheese worked better when investigating grated cheese, instead of
whole pieces. Furthermore, all calibration models showed high correlation between spectra and
reference data. All RPDs indicated that the developed models for whole pieces of cheese were
satisfactory to excellent.

This study shows that although overall results do improve by applying more sophisticated
multivariate data analysis, the difference is only marginal. This implies that, in the near
future, companies could easily use small and cheap NIR devices, with pre-established apps,
for quality analysis. This is especially important for small businesses, as often appear in the cheese
industry, because they are often unable to afford large instruments or an expert in data analysis.
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Abstract: Nowadays, near infrared (NIR) spectroscopy has experienced a rapid progress in
miniaturization (instruments < 100 g are presently available), and the price for handheld systems
has reached the < $500 level for high lot sizes. Thus, the stage is set for NIR spectroscopy to become
the technique of choice for food and beverage testing, not only in industry but also as a consumer
application. However, contrary to the (in our opinion) exaggerated claims of some direct-to-consumer
companies regarding the performance of their “food scanners” with “cloud evaluation of big data”,
the present publication will demonstrate realistic analytical data derived from the development of
partial least squares (PLS) calibration models for six different nutritional parameters (energy, protein,
fat, carbohydrates, sugar, and fiber) based on the NIR spectra of a broad range of different pasta/sauce
blends recorded with a handheld instrument. The prediction performance of the PLS calibration
models for the individual parameters was double-checked by cross-validation (CV) and test-set
validation. The results obtained suggest that in the near future consumers will be able to predict
the nutritional parameters of their meals by using handheld NIR spectroscopy under every-day
life conditions.

Keywords: handheld near-infrared spectroscopy; pasta/sauce blends; partial least squares calibration;
nutritional parameters

1. Introduction

The miniaturization of vibrational spectrometers has started more than two decades ago, but
only within the last decade have real hand-held Raman, MIR (mid-infrared) and near infrared (NIR)
scanning spectrometers become commercially available and been utilized for a broad range of analytical
applications [1–6]. While the weight of the majority of Raman and MIR spectrometers is still in the
1 kg range, the miniaturization of NIR spectrometers has advanced down to the < 100 g level, and
developments are under way to integrate them into mobile phones [7,8]. Furthermore, most of the
Raman and MIR handheld spectrometers are still in the price range of several ten thousand US$,
whereas miniaturized NIR systems have reached the < 500 US$ level. In view of the high price level
of Raman and MIR instruments in the near future, only the acquisition of NIR systems can be taken
into consideration for private use, whereas handheld Raman and MIR spectrometers will be restricted
to industrial, military and homeland security applications, as well as public use, by first responders,
customs or environmental institutions.

Because vibrational spectroscopy is a non-invasive technique that allows a rapid and non-
destructive analysis [9,10], its use is increasing in analytical applications of food science [11]. In recent
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years, primarily handheld near-infrared spectroscopy has demonstrated an immense potential in
this respect for different purposes such as authentication [12–14], classification [15–17], quality
control [18–21], the detection of adulteration [22–24], and the determination of food parameters [25]
such as the preliminary investigations of pasta/sauce mixtures [26,27].

Over the last years public health awareness has grown strongly, and the control of nutritional
parameters of everyday life food is just one aspect of this issue. Beyond body weight control, nutritional
parameters are directly related to quality of life and disease control, such as as obesity, high cholesterol,
gastritis, diabetes and high blood pressure. Thus, in the present study the quantitative analysis
of nutritional parameters by handheld NIR spectroscopy is exemplarily demonstrated in detail for
different pasta/sauce blends in combination with a chemometric data evaluation. The objective of these
investigations is to prove how feasible it will be for consumers in the near future to be able to predict
the nutritional parameters of their meals by using handheld NIR spectroscopy [8].

2. Experimental Section

2.1. Experimental Set-Up

For each pasta/sauce-type blend five different combinations (ranging from a 0% to 100% (w/w)
sauce addition) were investigated. Each pasta/sauce mixture was prepared “ready-to-eat” on a plate,
and the NIR spectra were recorded at room temperature (22 ± 1 ◦C) at a distance of 1–2 mm above the
sample surface at five different positions of the plate in order to compensate inevitable compositional
and surface heterogeneities (Figure 1). Previous investigations have shown that the effective pathlength
of NIR radiation for diffuse reflection measurements varies (wavelength and material dependent) from
several hundred micrometers to millimeters [28–30].

 

Figure 1. Different morphologies of the investigated pastas and a typical experimental set-up for the
measurement of a pasta (here without sauce) with the handheld NIR spectrometer.

2.2. Instrumentation

Near-infrared spectra were measured in diffuse reflection with a Viavi MicroNIR 1700
(formerly JDSU, Santa Rosa, CA, USA) handheld spectrometer, based on a linear variable filter
(LVF) monochromator.

The five replicate spectra were recorded with an integration time of 8.8 ms by averaging 1000
scans in the wavelength range of 908–1676 nm with an uncooled 128 pixel InGaAs array detector
at a spectral resolution of 12.5 nm at 1000 nm. The S/N ratio derived from the 100% line, recorded
with the parameters given above, was 5067:1. As reference, a 99% Spectralon reflectance standard
(Labsphere Inc., North Sutton, NH, USA) was used.
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2.3. Materials

Five different commercial pastas (Farfalle—Edeka, Italy; Tortiglioni—Birkel, Germany;
Penne—GutBio, Germany; Fusilli de lentilles corail—Barilla, Italy; Casarecce de pois chiches—Barilla,
Italy) and five different commercial tomato sauces (Ricotta—Barilla, Italy; Gorgonzola—Barilla, Italy;
Zucchini & Aubergine—Barilla, Italy; Siciliana—Bertolli, Italy; Kräuter—Knorr, Germany) were used
for the preparation of the samples. Both the pastas and the sauces were carefully selected to represent
a large variation of nutritional parameters and morphologies, in order to develop representative
chemometric PLS [31,32] models for the individual parameters of energy, fat, protein, carbohydrates,
sugar and fiber. The nutritional parameter values of the calibration mixtures were calculated from the
package labels of the pastas and sauces according to the mixture compositions and are summarized in
Table 1. The mutual assignment of the five sauces to the five pastas established 25 basic combinations,
and for each combination five different proportions of pasta and sauce were prepared by mixing
75 g of dry pasta with five different weights of sauce (0.00 g, 18.75 g, 37.50 g, 56.25 g and 75.00 g).
These proportions correspond to pasta/sauce blend ratios (%(w/w)) of 100/0, 100/25, 100/50, 100/75, and
100/100. Before mixing, the dry pastas were cooked by boiling in water for 10 min, and after draining
for a defined time period of 5 min they were put on the plate, and the sauces were added and mixed
with the pastas. Thus, 125 plates in total were prepared, and five replicate spectra were measured for
each plate, yielding 625 NIR spectra for further processing and analysis.

Table 1. Nutritional parameter values calculated for 100 g of dry pasta and 100 g of sauce.

Sample Energy (kcal) Carbohydrate (g) Fat (g) Fiber (g) Protein (g) Sugar (g)

Pasta

1 374.0 75.0 1.8 3.0 13.5 3.0

2 347.0 69.0 2.1 4.0 12.0 6.0

3 360.0 61.0 2.8 6.5 21.0 3.4

4 335.0 47.4 2.9 12.0 25.0 1.8

5 348.0 45.1 7.3 14.0 21.0 2.9

Sauce

1 97.0 6.8 7.7 1.8 3.4 5.0

2 136.0 8.6 11.3 2.0 3.0 6.5

3 74.0 6.6 4.7 2.1 1.5 4.8

4 91.0 6.0 7.4 1.4 1.5 5.4

5 33.0 4.8 0.9 1.0 1.0 3.9

2.4. Spectral Preprocessing Treatment

In Figure 2, the sample preparation and spectra acquisition scheme is exemplarily demonstrated
with specific reference to the pasta-1/sauce-1 blends. Thus, in a first step, the average spectra of the
replicate measurements were calculated, and the resulting 125 spectral datasets were then concatenated
in a matrix. In the matrix containing the average spectra, Savitzky-Golay (SG) smoothing [33] was
applied by using a window-size 7 and 2nd degree polynomial, followed by an extended multiplicative
scatter correction (EMSC) [34–36]. Finally, the spectral range was truncated to 950–1350 nm. The effects
of the subsequent pretreatment steps on the original 625 raw spectra are demonstrated in detail in
Figure 3.
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Figure 2. Sample preparation and spectra acquisition scheme demonstrated exemplarily for Pasta 1
and Sauce 1.

Figure 3. Pretreatments applied to the NIR spectra recorded for the pasta/sauce mixtures.

2.5. Chemometric Data Analysis

Individual PLS calibrations with mean centering and leave-one-out cross validation (CV)
were developed for the different nutritional parameters with MatLab software (version R2016a,
The MathWorks, Inc., Natick, MA, USA) and the PLS toolbox (version 8.6., Eigenvector Inc., Manson,
WA, USA).

For the separation of the available pasta/sauce mixtures into calibration and test samples for the
different nutritional parameters, the 125 samples were arranged by increasing order of the respective
parameter, and one sample was removed randomly from each consecutive group of five samples.
The 100 remaining samples were used as the calibration set, whereas the 25 removed samples were
used as the test set. The test set samples were finally used for an additional validation step and the
demonstration of the predictive capability for “unknown” samples.
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3. Results and Discussion

The choice of the number of latent variables (factors) is a critical point in the PLS model
development and should be based on the relation to other statistical parameters such as RMSEC and
RMSECV [37]. Figure 4 shows plots of the RMSEC/RMSECV values versus the latent variable number
for the individual calibrations of the nutritional parameters. Basically, the selection is a compromise
between the magnitude of error, robustness of calibration and overfitting. In the present case, eight
factors were chosen for energy, carbohydrate, sugar, fiber and protein, respectively, and only seven
factors for fat, because the graphs of the RMSEs versus the number of latent variables flatten out
beyond these numbers of latent variables (red arrows in Figure 4).

Figure 4. RMSEC (red) and RMSECV (blue) versus the latent variable number for the individual
calibrations of the nutritional parameters.

The comparatively high number of factors can be readily explained by the complexity of the
samples under investigation. Apart from the fact that six parameters are determined, the samples were
prepared with five different types of pastas with varying morphologies and sauces, with considerable
variations of ingredients (vegetables, cheese, etc.). Furthermore, residual amounts of water lead
to hydrogen bonding interactions with carbohydrates, sugars, fibers, and proteins. In Table 2, the
content ranges and selected calibration parameters such as root mean square error of calibration
(RMSEC), root mean square error of cross validation (RMSECV), root mean square error of prediction
(RMSEP), bias, slope, offset and correlation, have been summarized. The residual predictive deviation
(RPD) was also included to estimate how well the calibration model can predict the compositional
data [37,38]. Generally, the RMSEs and RPDs shown in Table 2 furnish evidence that, at best, medium
quality calibrations have been achieved that can be used for the screening purposes of the nutritional
parameters under investigation. In Figure 5, the predicted versus actual concentration graphs are
shown for the calibration and test set samples for all nutritional parameters, with a linear regression fit.

116



Molecules 2019, 24, 2029

As an additional feature, this figure also reflects two classes of calibration samples for the parameters
of carbohydrate, protein and fiber.

Figure 5. Graphs of the predicted versus actual content of the respective nutritional parameter
per serving (calibration fit ( ), prediction fit ( ), calibration samples ( ) and predicted test set
samples ( )).

Table 2. Content Range and statistical parameters obtained for the individual PLS models of the
nutritional parameters.

Parameter Energy Carbohydrate Fat Fiber Protein Sugar

# LVs 8 8 7 8 8 8

RMSEC 11.15 a 2.97 b 0.83 b 1.10 b 1.36 b 0.65 b

RMSECV 13.10 a 3.43 b 0.94 b 1.27 b 1.56 b 0.74 b

RMESEP 10.64 a 3.59 b 0.95 b 1.11 b 1.39 b 0.61 b

Content
Range

248.67–378.54 a 33.55–62.13 b 1.34–14.06 b 2.23–12.03 b 8.89–21.67 b 1.34–9.15 b

R2 Cal 0.85 0.89 0.91 0.89 0.87 0.86

R2 CV 0.80 0.85 0.88 0.85 0.83 0.82

R2 Pred 0.86 0.85 0.89 0.90 0.86 0.88

RPD 2.02 2.54 2.77 2.45 2.26 2.19

Slope CV 0.85 0.89 0.91 0.89 0.87 0.86

Offset CV 43.12 a 5.21 b 0.46 b 0.73 b 1.92 b 0.62 b

Slope Pred 0.80 0.83 0.84 0.99 0.91 0.87

Offset Pred 55.0 a 8.81 b 0.75 b 0.37 b 1.40 b 0.38 b

a = kcal; b = g.
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An overview of the prediction results for the test set samples is provided in Tables 3 and 4.
The predictions for energy and carbohydrate of the test set samples were obtained with R2Cal 0.85 and
0.89, respectively, and average relative prediction errors of 2.7 and 6.4 %(w/w), respectively. Protein
had an R2Cal of 0.87 and an average relative prediction error of 8.3 %(w/w). The calibrations for sugar
and fat led to R2Cal values of 0.86 and 0.91, respectively, and average relative prediction errors of 11.4
and 16.1 %(w/w), respectively. With an R2Cal of 0.89, the largest average relative prediction error of
18.2 %(w/w) was obtained for the fiber calibration model. The comparatively large relative prediction
errors for fat, sugar and fiber are not really unexpected and are partly due to the much lower content of
these components and, for sugar and fiber, they are a consequence of the structural similarity with the
main component carbohydrate. A comparison of the regression vectors of carbohydrate and sugar (not
shown here), for example, highlighted an almost identical pattern of important wavelength variables
for their calibration models. However, although the NIR spectra contain overlapping features, the PLS
method takes into account both the spectral information and the reference nutritional values when
building the quantification models. Thus, despite the addressed structural similarity, it is still possible
to reasonably quantify the sugar and fiber parameters, as shown in Tables 2–4.

Table 3. The actual and predicted nutritional parameter content and relative error obtained for the test
set samples per serving via the individual PLS models developed for energy, carbohydrates and fat.

Energy (kcal) Carbohydrate (g) Fat (g)

Actual Predicted
Relative
Error (%)

Actual Predicted
Relative
Error (%)

Actual Predicted
Relative
Error (%)

299.8 307.9 2.7 60.1 54.1 9.9 1.4 1.0 25.3

355.2 346.3 2.5 59.1 61.1 3.4 6.8 7.1 4.4

281.4 275.7 2.0 60.7 59.8 1.3 4.8 6.5 35.1

331.9 315.8 4.9 57.8 61.3 6.2 1.6 1.8 16.7

285.7 282.0 1.3 56.0 56.2 0.3 5.7 5.5 2.8

260.8 254.4 2.5 51.7 54.0 4.5 3.2 2.6 17.9

279.3 277.7 0.6 56.6 59.3 4.7 7.3 5.8 20.5

330.9 340.5 2.9 54.5 50.0 8.3 1.7 1.6 9.2

289.4 287.4 0.7 56.7 56.4 0.5 3.6 4.7 27.9

258.6 258.4 0.1 53.3 51.6 3.2 5.1 5.6 10.0

271.2 272.2 0.4 45.5 44.2 3.0 4.3 5.0 15.2

307.5 299.7 2.5 47.2 52.0 10.3 2.1 2.3 8.4

344.2 321.6 6.6 48.8 49.0 0.4 2.2 1.5 32.8

325.6 323.5 0.7 50.4 48.3 4.2 3.6 3.6 1.0

303.1 288.7 4.8 51.9 45.7 12.0 10.6 9.8 8.1

320.6 300.2 6.4 45.7 44.7 2.3 5.6 7.0 23.7

267.7 274.8 2.7 50.1 45.6 8.9 2.2 2.2 1.8

293.6 291.8 0.6 35.5 36.2 2.0 7.6 7.8 3.8

302.3 290.5 3.9 37.2 39.4 5.8 2.5 2.3 9.4

278.5 290.8 4.4 40.3 39.1 3.1 2.8 4.7 67.4

271.2 268.7 0.9 37.9 40.2 6.1 6.3 5.8 8.4

311.6 296.4 4.9 36.1 39.9 10.6 8.0 7.6 5.2
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Table 3. Cont.

Energy (kcal) Carbohydrate (g) Fat (g)

Actual Predicted
Relative
Error (%)

Actual Predicted
Relative
Error (%)

Actual Predicted
Relative
Error (%)

313.0 313.3 0.1 38.4 45.4 18.1 5.5 5.0 8.9

261.4 282.3 8.0 37.2 40.7 9.4 9.6 8.1 15.5

286.0 282.5 1.2 34.1 41.3 21.1 10.9 8.5 21.6

Average Relative
Error (%)

2.7
Average Relative

Error (%)
6.4

Average Relative
Error (%)

16.1

Table 4. The actual and predicted nutritional parameter content and relative error obtained for the test
set samples per serving via the individual PLS models developed for fiber, protein and sugar.

Fiber (g) Protein (g) Sugar (g)

Actual Predicted
Relative
Error (%)

Actual Predicted
Relative
Error (%)

Actual Predicted
Relative
Error (%)

3.2 5.5 70.2 12.6 13.5 7.1 3.2 2.6 17.9

3.4 3.8 12.3 10.0 8.7 13.4 3.4 3.2 5.6

2.6 3.1 22.2 10.6 9.5 10.3 6.3 5.1 18.6

2.4 1.9 20.7 11.3 11.5 2.3 2.2 2.1 5.6

2.8 2.4 14.8 10.8 12.6 16.4 8.1 7.1 12.4

4.0 4.4 12.0 10.3 12.2 18.6 4.5 3.6 18.6

3.7 2.7 26.2 9.3 10.5 12.5 5.6 6.1 8.1

3.0 1.9 36.7 9.6 10.0 4.4 6.9 6.9 0.1

3.4 2.2 35.0 9.1 8.6 4.7 7.4 6.1 18.2

4.6 2.3 49.7 10.2 10.8 6.0 5.4 5.3 3.0

5.9 6.9 16.4 15.8 14.9 5.4 6.3 6.3 1.5

5.1 6.1 17.9 18.4 14.9 19.1 3.6 3.9 7.9

5.0 5.2 3.9 16.9 16.1 4.4 4.6 4.1 10.9

5.4 4.7 12.9 16.0 15.3 4.2 2.6 2.2 14.3

10.1 10.3 1.4 15.6 14.2 9.3 3.2 3.9 21.0

10.5 11.4 8.8 19.3 17.5 9.4 4.9 4.3 11.2

9.4 11.1 18.8 19.9 20.5 3.2 2.4 1.8 25.3

8.9 9.6 7.5 20.4 18.5 9.5 2.1 1.9 7.9

9.3 8.0 13.6 18.6 20.5 10.3 4.3 4.4 2.9

9.7 10.4 7.2 18.9 19.2 1.2 6.0 5.3 10.6

10.8 11.0 2.2 16.3 15.7 4.2 2.2 2.3 8.7

11.1 10.4 6.0 17.5 18.2 4.0 4.0 4.7 18.8

11.7 12.6 8.1 16.2 17.5 8.1 4.2 4.9 18.0

10.8 9.4 13.4 16.3 17.5 7.4 5.2 5.3 1.8

11.6 9.7 16.2 16.5 18.6 12.7 5.1 4.2 16.8

Average Relative
Error (%)

18.2
Average Relative

Error (%)
8.3

Average Relative
Error (%)

11.4
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4. Conclusions

In combination with chemometric evaluation routines, NIR spectroscopy has proved a powerful
analytical tool for authentication, adulteration and quality control in food science. The presented
method, using a miniaturized spectrometer and PLS calibration models to quantify nutritional
parameters of pasta/sauce mixtures, is simple, fast and non-destructive. The achieved calibration
results provide an overview of the realistically expectable prediction accuracy for quantifying
energy, carbohydrate, fat, fiber, protein and sugar via the application of handheld instruments.
However, the results also demonstrate that the “cloud-derived” concentration data reported by several
direct-to-consumer companies in commercial videos and advertising papers are beyond any realistic
accuracy that is achievable with their relatively simple food-scanners.
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Abstract: Calibration transfer is an important field for near-infrared (NIR) spectroscopy in practical
applications. However, most transfer methods are constructed with standard samples, which are
expensive and difficult to obtain. Taking this problem into account, this paper proposes a calibration
transfer method based on affine invariance without transfer standards (CTAI). Our method can be
utilized to adjust the difference between two instruments by affine transformation. CTAI firstly
establishes a partial least squares (PLS) model of the master instrument to obtain score matrices
and predicted values of the two instruments, and then the regression coefficients between each
of the score vectors and predicted values are computed for the master instrument and the slave
instrument, respectively. Next, angles and biases are calculated between the regression coefficients
of the master instrument and the corresponding regression coefficients of the slave instrument,
respectively. Finally, by introducing affine transformation, new samples are predicted based on
the obtained angles and biases. A comparative study between CTAI and the other five methods was
conducted, and the performances of these algorithms were tested with two NIR spectral datasets.
The obtained experimental results show clearly that, in general CTAI is more robust and can also
achieve the best Root Mean Square Error of test sets (RMSEPs). In addition, the results of statistical
difference with the Wilcoxon signed rank test show that CTAI is generally better than the others,
and at least statistically the same.

Keywords: near-infrared (NIR) spectroscopy; calibration transfer; affine invariance; multivariate
calibration; partial least squares (PLS)

1. Introduction

With the characteristics of high efficiency, low cost and non-destructivity, near-infrared
(NIR) spectroscopy has been widely used in control of food and pharmaceutical quality [1–4].
Multivariate calibration methods are commonly used to obtain quantitative or qualitative information
from near-infrared spectra, such as principal component regression (PCR) [5,6] and partial least squares
(PLS) [7–10]. Since changes of the instruments and measurement conditions may result in poor
applicability of the model. Recalibration can be utilized to solve this problem, but recalibration is time
consuming and takes an immense amount of work. In order to reduce consumption of the recalibration,
calibration transfer has been widely studied and applied [11]. There are two main situations about
calibration transfer: (1) The uniform calibration model is used to predict spectra being measured on
multiple instruments; (2) the new spectra are measured on the same instrument after a period of time.

Molecules 2019, 24, 1802; doi:10.3390/molecules24091802 www.mdpi.com/journal/molecules123
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A number of related methods for calibration model transfer have been proposed, which are
divided into two categories. Ones require transfer standards and ones not require transfer standards.
The first category of methods has the characteristic that a set of samples are separately measured on
the master and slave instrument. A great variety of transfer methods with standard samples have
been proposed. For examples, SBC [12,13] assumes a linear relationship between predicted values of
different instruments. First, the regression coefficient between the spectra and the response values
on the master instrument is calculated. Then the predicted values of the master and slave setting are
computed based on the regression coefficient. Finally, a linear equation is fitted between the predicted
values. PDS proposed by Wang et al. is employed to correct the spectral differences [14]. In PDS [15–18],
each wavelength of the master instrument is related to the wavelength window of the slave instrument,
and a band transfer matrix is finally formed based on the regression coefficients of each window.
The observation is consistent with this assumption that in various transfer methods the spectral
correlation between master and slave is limited to smaller regions. The keys to PDS are the selection
of window size and the number of standard samples. Due to the construction of multiple regression
models, a huge amount of calculations are desired. The calibration model transfer for near-infrared
spectra based on canonical correlation analysis [19] is proposed by Liang et al. The PLS model is
built using the master instrument calibration set, and a part of the calibration set of master and slave
instrument is taken as standard samples. Then, the features extracted respectively by canonical
correlation analysis (CCA) [20,21]. The relationship between master and slave data is established with
ordinary least squares (OLS) [22,23], and the test set is finally corrected. For CCA, SBC and PDS, a good
result can be achieved with standard samples, but standard samples are difficult to obtain in some
cases. For the transfer methods such as calibration transfer via extreme learning machine auto-encoder
(TEAM) [24] method, calibration transfer by generalized least squares (GLSW) [25] method and spectral
space transform (SST) [26,27] and so on, standard samples are also required, although the principles of
these methods are different.

The second category is the methods without transfer standards. For examples, multiplicative
scatter correction (MSC) [28–30] proposed by Bouveresse et al. first calculates the mean spectra
of the calibration set as the reference spectra, then the linear relationship is found between every
spectra and the reference spectra, and the slope and bias are obtained; finally, the slope and bias
are utilized to correct slave spectra. While the standard samples are not required in MSC, it is
difficult to handle complex situations. MSC is a transfer method using pre-processing techniques,
and more pre-processing approaches include finite impulse response (FIR) [31] filtering and multivariate
filtering via orthogonal signal correction (OSC) [32,33], etc. TCR [34] is also a standard-free method
which combines transfer component analysis (TCA) [35] and ordinary least squares (OLS). The basic
idea of TCA is to project the data of two instruments in a Reproducing Kernel Hilbert Space, where
the data are distributed as close as possible at the same time preserving the key attributes of the original
data. TCR is a robust model with good generalization abilities, but does not achieve more accurate
predictions. Other techniques belonging to this category include kernel principal component analysis
(KPCA) [36,37], domain generalization via invariant feature representation (DICA) [38] and so on.

Different from the above methods, this paper studies the relationship of regression coefficients
between the feature vector and predicted values on two spectrometers. Samples of the calibration
transfer method based on affine invariance without transfer standards (CTAI) are shown in Figure 1A.
The response values of the slave spectrometer are not required, and the map is not necessary between
master and slave samples. The samples are further processed under the PLS model. The spectral
features and prediction values are respectively obtained, and the processed samples are shown in
Figure 1B. We obtain the linear models between the feature vector and the predicted values respectively.
According to the linear models of two instruments, the relationship between the predicted values
is further obtained. Firstly, the PLS model is built on the master instrument; secondly, the score
matrices and predicted values are extracted according to the PLS model, respectively; further, the angles
and biases are calculated between two regression coefficients; finally, the prediction values are corrected
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by affine transformation. If the concentration information of the master spectra and the slave spectra
are in the same range, CTAI can achieve more accurate predicted results and more robust model even
without standard samples compared with other methods. The predictive performance of CTAI is
verified by two near-infrared (NIR) datasets.

 
Figure 1. Data setting of the calibration transfer method based on affine invariance without transfer
standards (CTAI). We assume the data to be available in (A), and the data after being processed based
on PLS model of the master instrument is shown in (B).

2. Results and Discussion

2.1. Analysis of the Corn Dataset

The training errors, prediction errors, cross-validation errors, biases and the correlation coefficients
for the predicted vs. actual results about the PLS model of the corn dataset are shown in Table 1.
Large correlation coefficients and small biases can be seen in all results. The results reflect a good linear
relationship between the spectra and measured values of the corn dataset. There are no significant
differences between Root Mean Square Error of calibration set (RMSEC), Minimum Root Mean Square
Error of Cross-Validation (RMSECV) and Root Mean Square Error of test set (RMSEP), indicating that
there is no over-fitting and under-fitting phenomenon, which can explain the reasonable selection of
the number of latent variables. Moreover, we can see that RMSEPm of the PLS on the instrument m5spec
are smaller than the RMSEPm of the instrument mp6spec. For most calibration transfer methods, it is
important that the master instrument has more accurate prediction results. Thus, m5spec as the master
instrument and mp6spec as the slave instrument is a more reasonable choice.

In order to more fully assess the predicted performance of CTAI, the methods MSC, TCR, CCA,
SBC and PDS are tested. In this work, when PDS was performed, PLS was utilized to compute
the transformation function. For the PLS model, the optimal number of latent variables is shown in
Table 1. The optimal dimensionality of the subspace in TCR is 4, 6, 10 and 10. In addition, optimal
window sizes of PDS are all 3. We set the standard samples in range [5,30]. When the model is stable,
the number of standard samples is selected for modeling based on the smallest RMSEC criteria.

As shown in Table 2, we can see the correlation coefficients rpre and corresponding ppre values,
which indicate the prediction values between the master instrument and the slave instrument are
linearly correlated. We can also see that the tpre is greater than the t critical value. We then know the bias
adjustment in predicted results should be implemented. Furthermore, the RMSE of prediction without
any correction for the slave instrument shows more error of prediction than the master instrument.
The corrected results of CTAI result in a significant reduction in RMSE of prediction. The same situation
can be found between ym and ỹn in Table 2. The absolute value of t in each component is 15.437,
19.657, 19.408 and 8.762, respectively. The critical value of t is 2.131, and all results are greater than it.
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It is further proved that the adjustment of bias is very important. For the corn dataset, the effect of
correction in CTAI is vividly described in Figure 2. It can be seen that the corrected predicted values of
CTAI more close to the straight line, and RMSEP is greatly reduced.

Table 1. Summary of the partial least squares (PLS) models and properties.

Instrument Reference Values RMSECm RMSEPm RMSECVmin (LV) Biasm rm pm

m5spec moisture 0.00599 0.00764 0.01066(14) 0.0008 0.99973 2.6 × 10−24

m5spec oil 0.02686 0.05664 0.05049(15) −0.01327 0.9332 1.3 × 10−7

m5spec protein 0.0507 0.10066 0.11012(15) 0.02814 0.97632 1 × 10−10

m5spec starch 0.09539 0.18993 0.19227(15) 0.01789 0.97464 1.6 × 10−10

mp6spec moisture 0.09991 0.15637 0.14775(10) −0.02678 0.92083 4.2 × 10−7

mp6spec oil 0.06052 0.09098 0.09872(12) 0.01868 0.87697 8.2 × 10−6

mp6spec protein 0.10101 0.13338 0.15043(12) 0.02128 0.96659 1.1 × 10−9

mp6spec starch 0.27636 0.26723 0.35978(9) 0.02124 0.93136 1.6 × 10−7

B1 protein 0.3288 0.33254 0.50337(15) 0.00906 0.98508 2.3 × 10−38

B2 protein 0.21636 0.83755 0.32441(15) −0.13124 0.8485 7.2 × 10−15

B3 protein 0.30288 0.51567 0.43896(15) −0.034 0.96009 3.2 × 10−28

RMSECm: Root Mean Square Error of calibration set; RMSEPm: Root Mean Square Error of test set; RMSECVmin:
Minimum Root Mean Square Error of Cross-Validation; LV: The optimal number of latent variables is selected
only with the lowest RMSECV; rm: Pearson correlation coefficient for predicted vs. actual values; pm: p values
corresponding to the Pearson correlation coefficient is obtained by test.

Figure 2. The relationship between the uncorrected and the corrected predict values for corn dataset
by (A) moisture, (B) oil, (C) protein and (D) starch. The blue and red dots represent the uncorrected
and the corrected predicted results for each sample, respectively.

Moreover, the results listed in Tables 3 and 4 show the difference between the 16 predictive
corn samples by different methods. In general, the results of CTAI exhibit the best performance for
prediction compared to other five methods. When moisture is used as the property, CTAI achieves
the lowest RMSEP (0.21095). More specifically, the RMSEP improvements provided by CTAI with
respect to MSC, TCR, CCA, SBC and PDS are as high as 87.35%, 46%, 9.48%, 50.45% and 12.96%,
respectively. Though there are no statistically significant differences, CTAI is greatly improved
in predictive accuracy compared with CCA and TCR. There is a significant difference at the 95%
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confidence level between CTAI and MSC, SBC and PDS. When oil is used as the property, it can be
seen that there is no significant difference between RMSEC and RMSEP in different transfer methods,
so the over-fitting phenomenon does not appear. CTAI also produces the lowest RMSECV (0.08141)
and RMSEC (0.08233). The results by Wilcoxon signed rank test reveal that CTAI is significantly
different from MSC and TCR and has similar performance compared with CCA, SBC and PDS. It is
noticeable that the RMSEP improvement rates of CTAI compared with CCA, SBC and PDS are 27.98%,
1.52% and 13.28%, respectively. Other properties are similar with the property of oil; CTAI achieves
better predictive performance.

Table 2. Summary of the relevant results between uncorrected and CTAI corrected.

Instrument Reference
Values

m5spec*-mp6spec B1*-B2 B1*-B3 B3*-B2

Moisture Oil Protein Starch Protein

ŷmvs ỹs

RMSEPu
pre 1.60705 0.7989 2.06797 2.11743 0.69894 2.92541 1.23368

RMSEPpre 0.21255 0.06922 0.13195 0.33358 0.31537 0.62632 0.65398
kpre 0.6498 0.77129 0.94553 0.82527 0.88809 0.76290 0.86909
rpre 0.81644 0.89598 0.96286 0.92197 0.97594 0.87695 0.93715
ppre 1.1 × 10−4 2.6 × 10−6 2.3 × 10−9 3.8 × 10−7 2 × 10−33 6.8 × 10−17 1.3 × 10−23

tpre −15.429 19.335 −19.147 8.838 2.292 10.684 −3.826

ymvs ỹs

RMSEPu 1.60762 0.81532 2.09665 2.10291 0.71977 2.90011 1.08008
RMSEP 0.21095 0.08233 0.16614 0.34714 0.41419 0.68215 0.38446

k 0.65191 0.53297 0.98736 0.79329 0.96898 0.85693 0.93896
r 0.81922 0.78858 0.95844 0.91487 0.96770 0.89517 0.97796
p 1.0 × 10−4 2.8 × 10−4 5.1 × 10−9 6.9 × 10−7 2.2 × 10−30 1.8 × 10−18 2.5 × 10−34

t −15.437 19.657 −19.408 8.762 2.256 10.649 −3.701

tcritical_value 2.131 2.131 2.131 2.131 2.01 2.01 2.01

*: The master instrument; RMSEPu
pre: RMSEP of uncorrected slave instrument relative to primary instrument

prediction; RMSEPpre: RMSEP of CTAI corrected slave instrument relative to primary instrument prediction; kpre:
The slope between predicted values of uncorrected slave instrument and primary prediction; rpre: Correlation
coefficient of uncorrected slave prediction relative to master prediction; ppre: p values corresponding to the Pearson
correlation coefficient are obtained by test; tpre: The result of One-Sample t-Test between uncorrected slave prediction
and master prediction; RMSEPu: RMSEP of uncorrected slave instrument relative to primary actual values; RMSEP:
RMSEP of CTAI corrected slave instrument relative to primary actual values; k: The slope between predicted values
of uncorrected slave instrument and primary actual values; r: Pearson correlation coefficient of uncorrected slave
prediction relative to primary actual values; p: p values corresponding to the Pearson correlation coefficient are
obtained by test; t: The result of One-Sample t-Test between uncorrected slave prediction and master actual values;
tcritical_value: The t critical value for n–1 degrees of freedom at the significance level alpha = 0.05.

Table 3. Summary of Root Mean Square Error of test set (RMSEP) and Root Mean Square Error
of calibration set (RMSEC) of different methods. The m5spec was used as the master spectra,
and the mp6spec was used as the secondary spectra for corn dataset. The protein content was chosen
as the property for wheat dataset.

Method CTAI MSC TCR CCA SBC PDS

moisture
RMSEC 0.22646 1.92839 0.61873 0.15996(14a) 0.18506(5a) 0.14742(17a)
RMSEP 0.21095 1.6689 0.39066 0.23304(14a) 0.42574(5a) 0.24238(17a)

oil
RMSEC 0.08141 1.21647 0.14543 0.15764(6a) 0.08423(23a) 0.10794(28a)
RMSEP 0.08233 1.23209 0.14225 0.11432(6a) 0.08361(23a) 0.09495(28a)

protein RMSEC 0.17247 1.77294 0.28297 0.27860(14a) 0.17422(6a) 0.24662(23a)
RMSEP 0.16614 1.80087 0.35223 0.39535(14a) 0.19101(6a) 0.28193(23a)

starch
RMSEC 0.39517 1.89165 1.21093 0.33937(10a) 0.38426(23a) 0.62099(23a)
RMSEP 0.34714 1.93129 0.79852 0.85704(10a) 0.36969(23a) 0.78977(23a)

B1*-B2
RMSEC 0.55682 1.31153 0.99246 1.11889(5a) 0.48509(6a) 1.3676(7a)
RMSEP 0.41419 0.92194 0.86881 2.68469(5a) 0.4677(6a) 4.09019(7a)

B1*-B3
RMSEC 0.81895 2.91695 0.84682 0.68529(15a) 1.00007(8a) 0.57858(5a)
RMSEP 0.68215 2.40587 0.72996 1.10564(15a) 0.79294(8a) 1.33547(5a)

B3*-B2
RMSEC 0.54753 1.25096 0.76972 1.57073(14a) 0.56236(5a) 2.1039(8a)
RMSEP 0.38446 1.38468 0.63689 2.29856(14a) 0.53534(5a) 1.83564(8a)

a: Number of standard samples; the number of samples for slave instrument with labels is 20 in TCR.
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Table 4. RMSEP comparison of CTAI and other methods, RMSEP improvements and p values by
the Wilcoxon signed rank test (α = 0.05). The m5spec was used as the master spectra, and the mp6spec
was used as the secondary spectra for corn dataset. The protein content was chosen as the property for
wheat dataset.

MSC TCR CCA SBC PDS

h(%) p h(%) p h(%) p h(%) p h(%) p

moisture 87.35 4.3 × 10 −4 46 0.53 9.48 0.43 50.45 0.01 12.96 0.04

oil 93.31 4.3 × 10 −4 42.12 0.01 27.98 0.32 1.52 0.23 13.28 0.46
protein 90.77 4.3 × 10 −4 52.83 0.09 57.97 0.03 13.02 0.23 41.06 0.01

starch 82.02 4.3 × 10 −4 56.52 0.23 59.49 0.83 6.09 0.02 56.04 0.75

B1*-B2 55.07 0.11 52.32 0.79 84.57 5.3 × 10 −9 11.44 2.6 × 10 −9 89.87 9.2 × 10 −3

B1*-B3 71.64 7.5 × 10 −10 6.55 0.11 38.3 1.8 × 10 −5 13.97 1 × 10 −5 48.92 9.8 × 10 −5

B3*-B2 72.23 3.1 × 10−9 39.63 4.6 × 10−3 83.27 0.02 28.18 7.5 × 10 −10 79.05 0.06

In order to compare the predictive stability of various methods, Figures 3–6 show the plots of
measured vs. predicted values for the calibration set and the test set. If the model predicts better,
the point will be closer to the straight line. When moisture is used as the property, it is observed
from Figure 3 that CTAI is in general closer to the straight line than the other models. It confirms that
the CTAI achieves the best overall performance. When oil is used as the property, it is clear that CTAI
provides satisfactory results not only in the calibration set but also in the test set. It reconfirmed that
CTAI achieves more accurate prediction results. In addition, the standard error has also achieves good
results in CTAI compared with others. From the discussion above, one can easily conclude that CTAI
can achieve the best performance in all models and has better generalization ability.

Figure 3. Moisture content predicted for corn dataset as determined by (A) CTAI, (B) MSC, (C) TCR,
(D) CCA, (E) SBC and (F) PDS. The blue and red dots represent the results for each sample in the train
set and test set, respectively.
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Figure 4. Oil content predicted for corn dataset as determined by (A) CTAI, (B) MSC, (C) TCR, (D) CCA,
(E) SBC and (F) PDS. The blue and red dots represent the results for each sample in the train set and test
set, respectively.

Figure 5. Protein content predicted for corn dataset as determined by (A) CTAI, (B) MSC, (C) TCR, (D) CCA,
(E) SBC and (F) PDS. The blue and red dots represent the results for each sample in the train set and test
set, respectively.

129



Molecules 2019, 24, 1802

Figure 6. Starch content predicted for corn dataset as determined by (A) CTAI, (B) MSC, (C) TCR, (D) CCA,
(E) SBC and (F) PDS. The blue and red dots represent the results for each sample in the train set and test
set, respectively.

2.2. Analysis of the Wheat Dataset

The RMSEP of the PLS model is listed in Table 1. We can see that the predicted performance of
the instrument B1 is better than B3 and the instrument B3 is better than B2. Thus, three combinations
(B1-B2; B1-B3; B3-B2) of the instruments B1, B2 and B3 are used to analyze the wheat dataset. The first
instrument of every combination stands for master instrument and the second instrument stands for
slave instrument. For PLS model, the optimal number of latent variables is 14, 15 and 15, respectively,
and the corresponding optimal dimensionality of the subspace in TCR is 17, 12 and 17, respectively.
Moreover, the optimal number of window sizes for B1-B2, B1-B3 and B3-B2 is 3, 9 and 13, respectively.

For the three combinations of instruments (B1-B2; B1-B3; B3-B2), we can see between ym and ỹn

the correlation coefficients rpre are large and ppre are close to zero in Table 2. Hence, there is a linear
relationship between the predicted values of the two instruments for wheat dataset. For all combinations,
the absolute value of t is greater than tcritical_value. So there is a significant bias between uncorrected
predicted values of the slave instrument and predicted values of the master instrument. So we can
correct the predicted values of the slave instrument by affine transformation. The experimental
results show that the prediction performance of CTAI is significantly enhanced. We found the same
phenomenon for the uncorrected prediction values of the slave instrument relative to the master
instrument actual values. Furthermore, for the predicted performance of CTAI, Figure 7 shows
the difference between uncorrected and corrected predicted values for B1-B2, B1-B3 and B3-B2. It can
be seen that CTAI plays an important role in the correction of predicted values.

In addition, Table 3 lists the results of different methods for calibration set and test set. For the B1-B2,
CTAI produces the lowest RMSEP (0.41419) and the second lowest RMSEC (0.55682). For PDS and CCA,
it is worth noting that RMSEP is significantly larger than RMSEC. Therefore, the predictive performance
of PDS and CCA are poor under this setting. Further, a statistical testing is utilized to evaluate the RMSEP
difference between the CTAI and other methods for the wheat dataset. The Wilcoxon signed rank sum
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test was performed and at the significance level alpha = 0.05. It can be seen from Table 4 that there is
a statistically significant difference compared with CCA, SBC and PDS. In addition, the improvement
rates of prediction provided by CTAI for MSC and TCR are up to 55.07% and 52.32%, respectively.
For the combination (B1-B3), CTAI displays the lowest RMSEP (0.68215), followed by TCR (0.72996)
and SBC (0.79294). For PDS, we can see that under-fitting still existed under this setting, and for
CCA, this phenomenon also exists, but it is not particularly serious. The results by Wilcoxon signed
rank test show that CTAI is significantly different from MSC, CCA, SBC and PDS (shown in Table 4).
Compared with TCR, RMSEP improvement rates of CTAI can reach 6.55%. For the last combination,
both RMSEP and RMSEC achieve the best predicted results. Further, except for PDS, the differences
between CTAI and other models are statistically significant at the 95% confidence level. Compared with
PDS, the RMSEP improvements of CTAI are as high as 79.05%. It is also worth noting that there is no
under-fitting phenomenon in PDS under the current setting, but the predicted results are still poor.
Therefore, the predictive performance of PDS is worse for wheat datasets under the current model.

Figure 7. The relationship between the uncorrected and the corrected predict values for wheat dataset
by (A) B1-B2, (B) B1-B3 and (C) B3-B2. The blue and red dots represent the uncorrected and the corrected
predicted results for each sample, respectively.

To further display the predictive abilities of different models, the correlation between measured
and predicted values obtained in Figures 8–10. Zero differences between measured and predicted
values result in points over the straight line of the plot. It can be seen that good correlations are
found between expected and predicted concentrations, which confirm the good performance of CTAI.
CTAI achieved the lowest standard error for three combinations. Moreover, the predictive abilities of
PDS and CCA are poor for wheat dataset. For SBC, PDS and CCA, they require standard samples
and TCR requires reference values of the slave instrument samples, both of which are expensive
and difficult to obtain. Obviously, this means that CTAI shows much more outstanding performance.
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Figure 8. Protein content predicted between instruments B1 and B2 for wheat dataset as determined by
(A) CTAI, (B) MSC, (C) TCR, (D) CCA, (E) SBC and (F) PDS. The blue and red dots represent the results
for each sample in the train set and test set, respectively.

Figure 9. Protein content predicted between instruments B1 and B3 for wheat dataset as determined by
(A) CTAI, (B) MSC, (C) TCR, (D) CCA, (E) SBC and (F) PDS. The blue and red dots represent the results
for each sample in the train set and test set, respectively.
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Figure 10. Protein content predicted between instruments B3 and B2 for wheat dataset as determined
by (A) CTAI, (B) MSC, (C) TCR, (D) CCA, (E) SBC and (F) PDS. The blue and red dots represent
the results for each sample in the train set and test set, respectively.

3. Materials and Methods

3.1. Dataset Description

3.1.1. Corn Dataset

The corn dataset, which contains 80 samples, was measured on three NIR spectrometers (m5, mp5
and mp6). Each sample consists of four components: Moisture, oil, protein, and starch. The wavelength
range is 1100–2400 nm with interval 2 nm (700 channels). The spectra measured in m5spec were used
as the master spectra, and the spectra measured by mp6spec were used as the secondary spectra. The data
can be obtained from http://www.eigenvector.com/data/Corn/. The dataset was divided into a calibration
set of 64 samples and a test set of 16 samples based on Kennard-Stone (KS) algorithm. The NIR spectra
are shown in Figure 11A, which represents the difference between m5 and mp6.

3.1.2. Wheat Dataset

The wheat dataset was used as the shootout data for the International Diffuse Conference 2016,
and the protein content was chosen as the property. Related information about the wheat dataset
at http://www.idrc-chambersburg.org/content.aspx?page_id=22&club_id=409746&module_id=191116
can be easily accessed. 248 samples of the wheat dataset from three different NIR instrument
manufacturers (B1, B2 and B3) were analyzed. According to KS algorithm, 198 samples were chosen
as the calibration set and the remainder of samples formed the test set. The wavelength range is
570–1100 nm with an interval of 0.5 nm. The spectral difference between B1 and B2 is shown in
Figure 11B. The spectral difference between B1 and B3 is shown in Figure 11C. The spectral difference
between B2 and B3 is shown in Figure 11D.
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Figure 11. (A) Spectral differences between m5 and mp6 of corn samples; (B) spectral differences
between B1 and B2 of wheat samples; (C) spectral differences between B1 and B3 of wheat samples;
(D) spectral differences between B2 and B3 of wheat samples.

3.2. Determination of the Optimal Parameters

Latent variables of PLS in CTAI are allowed to take values in the set [1,15], and it is determined
by the 10-fold cross-validation. The optimal number of latent variables is selected only when
the lowest RMSECV.

Five methods were used for comparison, where the latent variable range and parameter
optimization all of SBC, CCA, PDS and MSC in PLS are consistent with CTAI. In particular,
the window size in PDS is searched for from 3 to 16 in increments of 2, and is selected by 5-fold
cross-validation. In addition, the dimensionality of the TCA space in TCR is estimated in the range [1,24]
and the optimization criteria are consistent as described in [24].

3.3. Model Performance Evaluation

In this experiment, root mean squared error RMSE is employed as indicators for parameter selection
and model evaluation. Furthermore, RMSEC is the training error, RMSECV denotes the cross-validation
error and RMSEP indicates the prediction error of the test set. The RMSE calculation method is written
as:

RMSE =

√
(y− ŷ)T(y− ŷ)/n (1)

where ŷ is the predict value, y is the measured value and n represents the number of samples.
Bias and standard error (SE) are also utilized as reference indicators for model evaluation. The bias

and SE are as follows: ⎧⎪⎪⎨⎪⎪⎩ bias =
∑n

i (yi − ŷi)/n

SE =
√(

(y− ŷ)T(y− ŷ) − bias
)
/n

(2)
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Moreover, the Pearson correlation coefficient and corresponding test is used to determine if there
is a linear relationship between the master instrument and the slave instrument. One-Sample t-Test is
also utilized to determine whether a bias adjustment in predicted results should be implemented [11].

In order to compare CTAI and other methods further, another important parameter (h) is cited in
order to compare the rate of improvement, defined as follows:

h =

(
1− RMSEP

RMSEPother

)
× 100% (3)

where RMSEP represents the prediction error of CTAI and RMSEPother represents the others.
In addition, the Wilcoxon signed rank sum test at the 95% confidence level is used to determine

whether there is a significant difference between CTAI and the others.

3.4. Computational Environment

All experimental procedures were implemented on a personal computer by python language,
software version python 2.7, and run on an acer notebook with a 2.60 GHz Intel (R) Core (TM)
i5-3230M CPU, 8 GB RAM and a Microsoft Windows 7 operating system (Acer Incorporated,
Taiwan, China). Normalization and cross-validation are performed using the sklearn package.
The Wilcoxon signed rank test is implemented using the scipy package and other programs are
implemented by the individual.

3.5. Calibration Transfer

3.5.1. Notation

In the following text, matrices are represented by bold capital letters (e.g., X), column vectors by
bold lower case letters (e.g., y) and scalars by italic letters (e.g., empha). The transposition operation is
indicated by superscript T.

3.5.2. Overview of PLS

PLS is used to establish the linear relationship between the input space and the response space.
The purpose of the PLS model is to ensure the optimal number of latent variables. The latent variables
are linear combinations of the primitive variables. The latent variables are calculated in this way
so that they contain a maximum of relevant information concerning the relation between X and y.
Mathematically, this is shown by the following objective function.

H = argmax
w

cov〈Xw, y〉
subject to ||w||2 = 1

(4)

where w represents the weight vector. This objective is a maximization problem under one constraint,
which can be settled in virtue of the Lagrange multiplier method.

Assuming a PLS model is built between spectral matrix X ∈ 
n×p and concentration vector
y ∈ 
n×1, the model is named PLS1 (n denotes the number of samples and p represents the optimal
numbers of latent variables). In the algorithm, the first weighting vector must be the primary
eigenvector of the matrix XTyyTX. From the second latent variable on, it requires the following latent
variables to be orthogonal (uncorrelated) to the former ones. Hence, the following weighting vectors
will be the dominant eigenvectors of the matrix XTyyTX; also, repeat a sequence of the steps until
convergence. The PLS1 is built using the following model:⎧⎪⎪⎪⎨⎪⎪⎪⎩ Xn×p = Tn×A

(
Pp×A

)T
+ En×p

yn×1 = Tn×A
(
Q1×A

)T
+ Fn×1

(5)
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where T is the score matrix and P and Q represent the X-loading matrix and y-loading vector,
respectively; E and F denote the matrix of residuals; A is the optimal number of principal components
over the master instrument PLS model.

Finally, the regression coefficient β of the model can be written as follows:

β = W
(
PTW

)−1
QT (6)

where W = [w1, w2, . . . , wA] represents the weight matrix.

3.5.3. Affine Transformation

This paper focuses on the rotation and translation properties of two-dimensional affine
transformation [39]. After transformation, the original line is still a straight line and the original parallel
line is still parallel. Affine transformation is a transformation of coordinates. Based on Figure 12,
the derivation is written as follows:

θ

θ

x

x

y
y

Figure 12. Derivation of affine transformation. In the coordinate system, the counterclockwise rotation
of P is equivalent to the clockwise rotation of the coordinate system.

Point P in the original coordinate system (black) is (x, y). A counterclockwise rotation of the point
P is equivalent to clockwise rotation of the coordinate system. Thus, the point P in the black coordinate
system is equivalent with the point P in the red coordinate system after the rotation. Based on this
conclusion, we can determine the coordinates of the point P by simple stereo geometry, and then add
the offset of the X-axis and the Y-axis based on this position; the formula is as follows:{

x′ = x cosθ− y sinθ+ Δx
y′ = y cosθ+ x sinθ+ Δy

(7)

where θ is the angle of rotation, Δx is the offset on the X axis and Δy is the offset on the Y axis; x′ and y′
are coordinate in the new coordinate system.

3.5.4. Calibration Transfer Method based on Affine Transformation

Based on the inputs and outputs
{
Xm, ym}

from the master instrument, and the inputs
{
Xs} from

the slave instrument, our task is to predict the unknown outputs
{
ŷs} in the slave instrument. We assume

that Xm and Xs are the spectra of two similar substances, and ym and ŷs are in the same range. Due to
the difference between two instruments, the observed spectral data are different. The observations
from the perspective of the master instrument model are as follows:⎧⎪⎪⎨⎪⎪⎩ ŷm = F(Xm,βm) =

∑A
i = 1 tm

i qm
i

ỹs = F
(
Xs,βm) =

∑A
i = 1 t̃s

i qm
i

(8)
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where F is the linear prediction function, which is obtained by partial least squares in this paper; βm

is the coefficient of the master model and ŷm, tm
i and qm

i are the predicted values, the i-th column

score vector and the loading vector, respectively. Accordingly, ỹs and t̃
s
i are the biased predicted values

and the i-th biased column score vector for the slave instrument, respectively.
Therefore, the score vectors and predicted values both of the two instruments are different.

As a result, there is a certain bias that needs to be corrected in the coefficient between the score vector
and predicted values.

When correcting the bias, direct calculation will produce large errors. In order to solve this problem,
we need to transform the score vectors and predicted values of the master and slave instrument into
the range [0, 1] and thus keep the same scale between different values. The corresponding equations
are given as follows: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

tm−norm = (tm
i −min(tm

i ))/(max( tm
i

)
−min

(
tm
i ))

ŷm−norm = (ŷm −min(ŷm))/(max( ŷm) −min(ŷm))

t̃
s−norm

= (̃t
s −min(̃t

s
i ))/(max( t̃

s
i

)
−min

(̃
t
s
i ))

ỹs−norm = (ỹs −min(ỹs))/(max( ỹs) −min(ỹs))

(9)

where tm−norm
i and ŷm−norm are the normalized score vector and the predicted values of the master

instrument, respectively; t̃
s−norm
i and ỹs−norm are the normalized and biased score vector and predicted

values, respectively.
Two linear regression equations between score vector and predicted values are as follows:⎧⎪⎨⎪⎩ ŷm−norm = tm−norm

i tanθm
i + bm

i
ỹs−norm = t̃

s−norm
i tan θ̃s

i + b̃s
i

(10)

where tanθm
i and tan θ̃s

i are the regression coefficients (slopes) computed on the two instrument;

bm
i and b̃s

i are the intercepts.
In order to more intuitively reflect the difference between two instruments, it can be better

understood from Figure 13. The blue line is the regression coefficient between the score vector
and predicted values. The black and red coordinate systems are the observations of the master
and slave instrument, and there is a difference from different observations.

θ

θ

Figure 13. Theory of CTAI. tanθ is the coefficient between the feature vector and the predicted values.
The angles and deviations observed under different instruments are different. We correct the predicted
value of the slave instrument with the rotation and translation of affine transformation.

The unknown angles and biases between two instruments are solved as follows:
Firstly, the regression coefficient βm, the weight Wm and loading Pm matrix of PLS are obtained.
Secondly, a linear regression both of master and slave instrument is performed and slopes

and intercepts are determined, respectively.
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On the grounds of the PLS model, the score matrices and predicted values are calculated as shown
below: ⎧⎪⎪⎨⎪⎪⎩ Tm = XmWm(PmWm)−1, ŷm = Xmβm

T̃
s

= XsWm(PmWm)−1 , ỹs = Xsβm (11)

where Tm and T̃
s

represent the score matrices of two instruments.
The score matrix Tm, predicted values ŷm, the score matrix T̃

s
and predicted values ỹs are

pre-processed using Equation (9).
According to score vector of each column and predicted values, the least square is used to compute

the corresponding slopes and intercepts, respectively. The equations are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
min
θm

i ,bm
i

‖ŷm−norm −Tm
aug ∗

[
tanθm

i
bm

i

]
‖

min
θ̃s

i ,̃bs
i

‖̃ys−norm −Ts
aug ∗

⎡⎢⎢⎢⎢⎣ tan θ̃s
i

b̃s
i

⎤⎥⎥⎥⎥⎦‖2
2

(12)

where Tm
aug is an augmented matrix

[
tm−norm
i , 1

]
; Ts

aug is an augmented matrix
[

t̃
s−norm
i , 1

]
;

1 is the column vector with all ones.
Finally, the angle and biases between the two instruments are obtained. The equations for calculating

the angles and biases are as follows: ⎧⎪⎪⎨⎪⎪⎩ Δθi = θm
i − θ̃s

i
Δbi = bm

i − b̃s
i

(13)

where Δθi is the angle of the two coefficients; Δbi is the corresponding bias.
The score matrix and predicted values of the test set are extracted by Equation (11).
The angles and biases obtained by Equation (13) are brought into the affine transformation

to correct the predicted values. Since the rotation angle is relative to the origin of the coordinate,
each sample needs to be adjusted before rotation. The equation is shown as follows:

Ûi = ŨiMi (14)

where the matrix Mi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
λt cos Δθi λt sin Δθi 0
−λy sin Δθi λy cos Δθi 0

0 bm
i 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,Ũi =
[̃
t
s−test
i , ỹs−test, 1

]
and Ûi =

[
t̂
s−test
i , ŷs−test, 1

]
. In addition, λt =

[
(̃t

s−test
i −min(̃t

s
i

)
)/ (max( t̃

s
i

)
−min

(̃
t
s
i )) + min(̃t

s
i )
]
×

(max(̃t
s
i ) −min(̃t

s
i )) and λy =

[
(ỹs−test

i −min(ỹs))/ (max( ỹs) −min(ỹs)) + min(ỹs
)]
× (max( ỹs

)
−

min(ỹs)) represent the corresponding scaling factors for feature vector and predicted values,

respectively; t̃
s−test
i and ỹs−test are biased score vector and predicted values of the test set, respectively;

ŷs−test is corrected predicted values; t̂
s−test
i is corrected score vector.

Each column score vector and predicted values are solved separately, and a prediction matrix is
obtained. The mean of the prediction matrix is the final predicted values.

Therefore, according to the expansion of the predicted values, βs is as follows:

βs = ((Xs)TXs)
−1
(Xs)T(

A∑
i

(̃ts−test
i ∗ λt ∗ sin Δθi+(ỹs−test − b̃s

i ∗ 1) ∗ λy ∗ cos Δθi + bm
i )/A) (15)
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3.5.5. Summary of CTAI

Given calibration set of the master (Xm
cal, ym

cal), calibration set of the slave Xs
cal and test set (Xs

test, ys
test).

1. The PLS model is built on the calibration set (Xm
cal, ym

cal) and the coefficient βm; the weight matrix Wm

and the loading matrix Pm can be obtained.
2. Modeling of affine transformation; it consists of the two datasets (Xm

cal, ym
cal) and Xs

cal.

(a) Computing (Tm
cal, ŷm

cal) and (T̃
s
cal, ỹs

cal) of master and slave instrument by Equation (11).

(b) (Tm
cal, ŷm

cal) and (T̃
s
cal, ỹs

cal) are normalized separately by Equation (9).

(c) (tanθm
i , bm

i ) and (tan θ̃s
i , b̃s

i ) are calculated by Equation (12).

(d) Computing Δθi angle and Δbi bias between master and slave instrument by Equation (13).

3. Prediction.

(a) (T̃
s
test, ỹs

test) is obtained by Equation (11).
(a) The matrix Mi is introduced to correct predicted values by Equation (14).
(c) The corrected prediction values are accumulated. The mean values are the last result.

4. Conclusions

In this study, the relationship of regression coefficients between feature vector and predicted
values on different instruments was investigated and CTAI was proposed for calibration transfer
based on affine invariance without transfer standards (CTAI). Based on the PLS model of the master
instrument, the score matrix and the predicted values of the master spectra, the pseudo score matrix
and the pseudo predicted values of the slave spectra are obtained. Then, angles and biases between
the coefficients of the master instrument and the corresponding coefficients of the slave instrument are
computed. Finally, new samples are corrected by affine transformation. Different transfer methods are
tested with two NIR datasets, CTAI achieves the lowest RMSEP and standard error, and the results
of statistical difference indicate that CTAI is generally better than other methods, which proves that
CTAI is successfully used to correct the difference on different instruments. Hence, the proposed
method may provide an efficient way for calibration transfer when standard samples are unavailable
in practical applications.
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Abstract: Wavelength selection is an important preprocessing issue in near-infrared (NIR)
spectroscopy analysis and modeling. Swarm optimization algorithms (such as genetic algorithm,
bat algorithm, etc.) have been successfully applied to select the most effective wavelengths in
previous studies. However, these algorithms suffer from the problem of unrobustness, which means
that the selected wavelengths of each optimization are different. To solve this problem, this paper
proposes a novel wavelength selection method based on the binary dragonfly algorithm (BDA),
which includes three typical frameworks: single-BDA, multi-BDA, ensemble learning-based BDA
settings. The experimental results for the public gasoline NIR spectroscopy dataset showed that:
(1) By using the multi-BDA and ensemble learning-based BDA methods, the stability of wavelength
selection can improve; (2) With respect to the generalized performance of the quantitative analysis
model, the model established with the wavelengths selected by using the multi-BDA and the ensemble
learning-based BDA methods outperformed the single-BDA method. The results also indicated that
the proposed method is not limited to the dragonfly algorithm but can also be combined with other
swarm optimization algorithms. In addition, the ensemble learning idea can be applied to other
feature selection areas to obtain more robust results.

Keywords: wavelength selection; NIR spectroscopy; binary dragonfly algorithm; ensemble learning;
quantitative analysis modeling

1. Introduction

Over the past decades, near-infrared (NIR) spectroscopy has been successfully applied in many
areas, such as agriculture, medicine, environment [1]. Compared with traditional laboratory methods,
NIR has the advantages of rapid speed and noninvasiveness. Usually, the NIR spectra collected from
samples have the following several characteristics. Firstly, the number of necessary wavelengths is far
higher than the number of samples, which, from the point of view of multivariate equations, means that
the number of X factors (wavelengths) is far higher than the number of equations (samples). Hence, it is
impossible to obtain a unique solution. Secondly, the contribution of each wavelength to quantitative
analysis is different, since some wavelengths may be strongly correlated with the target content,
while others may show little or no correlation. Obviously, it is not possible to consider the whole range
of NIR spectra to perform subsequent qualitive or quantitative analysis. Hence, wavelength selection
(also called “feature selection” and “variable selection”) is an essential preprocessing step to find the
most representative wavelengths and eliminate uninformative wavelengths.

In recent years, many researchers have focused on the wavelength selection issue and proposed a
series of algorithms which have been proven effective in many areas. For example, Norgaard et al. [2]
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proposed the interval PLS (iPLS) method, which first divides the whole range of spectrum into
several intervals and then adopts a forward/backward stepwise selection algorithm to choose the
most effective interval combinations. However, in how many intervals should the whole range of the
spectrum be divided? Should it be divided equally or non-equally? These factors have a great influence
on the wavelength selection results. Centner et al. [3] proposed a novel feature selection method called
uninformative variable elimination (UVE), which brings in some random variables as the criterion
of evaluating the correlation between wavelength and output target component. If the correlation
coefficient of a certain wavelength is smaller than the random variables, the wavelength variable can be
eliminated as an uninformative variable. The idea of the UVE algorithm is ingenious and intuitionistic.
However, the disadvantage of this method is that the number of selected wavelengths is commonly
large because this approach can only eliminate the uninformative wavelengths without selecting the
most representative wavelengths [4]. Our group previously proposed an L1 regularization-based
wavelength selection method [5], which considered the wavelength selection problem as a sparsity
optimization issue. By adjusting the value of the sparsity parameter λ, we can freely control the
number of selected wavelengths, which is reduced while the value of λ increases. Detailed information
can be found in reference [5].

Besides the above-mentioned methods, evolution and swarm optimization methods (such as
genetic algorithm [6], bat algorithm [7], particle swarm optimization [1], etc.) have also been applied to
solve the wavelength selection problem. The main idea at the basis of these methods is similar. Firstly,
they imply the generation of an initial population which is comprised of some individuals, each of
which is a binary sequence. The length of each binary sequence is equal to the number of wavelengths,
and the value of each point in the binary sequence is “1” or “0”, indicating if the corresponding
wavelength is selected or not. Secondly, the iterative searching is implemented by a series of heuristic
strategies (for example, selection, crossover, mutation operators in genetic algorithm). However, due to
the fact that there are some random mechanisms in swarm optimization methods (such as roulette
wheel selection, Lévy flight, etc.), the wavelength selection results of each optimization are variable;
hence, it is often confusing which wavelength variables should be taken into account. In 2016, Mirjalili
et al. [8,9] proposed a novel swarm optimization method called “dragonfly algorithm (DA)” based on
the observation, summary, and abstraction of the behaviors of the dragonfly in nature. Hence, the main
contribution of this paper is to apply the binary dragonfly algorithm to solve the wavelength selection
problem and improve its stability on the basis of the ensemble learning method.

The paper is organized as follows. Section 2 introduces the principles of the dragonfly algorithm
and the basic idea of the transition dragonfly algorithm from continuous domain to binary domain.
The proposed algorithm is introduced in detail in Section 3. The experimental results and discussion
are presented in Section 4. Finally, Section 5 summarizes the contribution of this work and suggests
some directions for future studies.

2. Dragonfly Algorithm

In the following section, we will introduce the principles of the dragonfly algorithm in continuous
and discrete domains.

2.1. Continuous Dragonfly Algorithm

Biologists found that dragonflies have two interesting swarming behaviors: static and dynamic.
This observation inspired the design of the dragonfly algorithm because there are two similar phases
(called exploration and exploitation) in traditional swarm optimization methods. In the static swarm
mode, dragonflies fly over different directions in a small area, which corresponds to the exploration
phase; in the dynamic swarm mode, dragonflies fly in a bigger area along one direction, which is the
main objective of the exploitation phase.

The main task of dragonflies is trying their best to survive; hence, they should be attracted towards
food sources while avoiding enemies. Biologists observed that dragonflies usually change their position
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through five main strategies: separation, alignment, cohesion, attraction to food, and distraction from
enemy, as shown in Figure 1.

 
Figure 1. Five main strategies by which dragonflies change their position [8].

The strategies to change position are mathematically modeled, as shown in Table 1.

Table 1. Mathematical modeling of the five main position-changing strategies of dragonfly [8].

Position Updating
Strategies

Equations Description

Separation Si = − N
∑

j=1
X − Xj X: position of the current individual

Xj: position of the j-th neighboring
individual
N: number of the neighboring
individuals
Vj: velocity of the j-th neighboring
individual
X+: position of the food source
X−: position of the enemy
(s, a, c, f , e): separation, alignment,
cohesion, food, and enemy factors
w: inertia weight
t: current iteration

Alignment Ai =
∑N

j=1 Vj

N

Cohesion Ci =
∑N

j=1 Xj

N − X

Attraction to food Fi = X+ − X

Distraction from enemy Ei = X− + X

Position updating ΔXt+1 = (sSi + aAi + cCi + f Fi + eEi) + wΔXt
Xt+1 = Xt + ΔXt+1

Position updating with
Lévy flight

Xt+1 = Xt + Levy(d)× Xt
Lévy(x) = 0.10 × r1×σ

|r2|
1
β

σ =

(
Γ(1+β)×sin

(
πβ
2

)
Γ
(

1+β
2

)
×β×2(

β−1
2 )

) 1
β

Γ(x) = (x − 1)!

d: dimension of the position vectors
r1, r2: random numbers in [0, 1]
β: constant

As seen from the above table, dragonflies tend to align their flying while maintaining proper
separation and cohesion in the dynamic swarm manner. However, while in the static swarm manner,
alignments are very low, and cohesion is high to attack preys. Hence, we can assign high alignment and
low cohesion weights to dragonflies exploring the search space, and low alignment and high cohesion
to dragonflies exploiting the search space. In the transition between exploration and exploitation,
the radius of the neighborhood is increased proportionally to the number of iterations. Another
way to balance exploration and exploitation is to adaptively tune the swarming factors (s, a, c, f ,
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e, and w) during the optimization. Additionally, to improve the randomness, stochastic behavior,
and exploration of artificial dragonflies, dragonflies are required to fly around the search space using
a random walk (Lévy flight) when there are no neighboring solutions. More detailed information can
be found in reference [8].

2.2. Binary Dragonfly Algorithm (BDA)

In the continuous domain, dragonflies are able to update their positions through adding the
step vector ΔX to the position vector X. However, in the discrete domain, the position of dragonflies
cannot be updated in this way, because the position vectors X can only be 0 or 1. There are many
transition methods described in the literature mapping the transition from continuous domain to
discrete domain. Among them, the easiest and most effective method is to employ a transfer function
which receives velocity values as inputs and returns a number in [0, 1], representing the probability of
the changing positions.

There are two types of transfer functions: s-shaped and v-shaped. According to Saremi et al. [10],
the v-shaped transfer functions outperform the s-shaped transfer functions because they do not force
particles to take values of 0 or 1. In this paper, the following transfer function is utilized [11]:

T(Δx) =
∣∣∣∣ Δx√

Δx2 + 1

∣∣∣∣ (1)

After calculating the probability of changing position for all dragonflies, the following
position-updating formula is employed to update the position of dragonflies in binary search spaces:

Xt+1 =

{
−Xt, r < T(Δxt+1)

Xt, r ≥ T(Δxt+1)
(2)

where r is a number in [0, 1].

3. Wavelength Selection Framework Based on BDA and Ensemble Learning

The flowchart of BDA-based wavelength selection method is illustrated in Figure 2. The main
procedures are as follows.

Step 1: Mapping the wavelength selection problem to the BDA optimization problem.
More precisely, initialize the binary dragonfly population. Without loss of generality, suppose there
are K wavelengths in the whole range, hence the individuals in the initialized population are in binary
series whose length is equal to K, in which the values of “1” and “0” indicate if the corresponding
wavelength is selected or not.

Step 2: Evaluating the “goodness” or “badness” of each individual in the initialized population.
For each individual, find the selected wavelength combinations and then establish the quantitative
analysis model to predict the content of octane by using the partial least-squares (PLS) method. In this
paper, the cost function (similar to the fitness function in the genetic algorithm) is defined as the
root-mean-square error of cross validation (RMSECV) of the quantitative analysis model, which means
that the individual with the smallest RMSECV has a good wavelength combination.

Step 3: Judging whether the stop criteria are satisfied or not. If yes, output the best individual in
the population as the selected wavelength. If no, go to step 4. Generally, there are two approaches to
design the stop criteria. The first takes the maximum iterations as the stop criteria, while the second
takes the absolute error between two successive iterations as the stop criteria.

Step 4: According to Table 1, each individual in the population updates its position through five
strategies, including separation, alignment, cohesion, attraction to food, and distraction from enemy.
Finally, a new binary dragonfly population will be generated.

Step 5: Go back to Step 2, calculate the cost function of each individual in the new population,
then execute the loop until the stop criteria are satisfied.
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Figure 2. The flowchart of the binary dragonfly algorithm (BDA)-based wavelength selection method.

In this paper, we propose three typical wavelength selection methods based on BDA, as illustrated
in Figure 3.

Similar to traditional swarm optimization methods, the wavelength section algorithm was
designed on the basis of the single BDA. Figure 3a shows the procedure, which consists in using
the BDA only once to search the most representative wavelengths. As mentioned above, because there
are some random mechanisms in BDA, the wavelength selection results of each search are different.

To solve this problem, Figure 3b illustrates a possible solution which was designed on the basis
of the multi-BDA. Differently from the single-BDA method, in this case the BDA is used many times,
and then all the resulting selected wavelengths are aggregated by a voting strategy; those wavelengths
with high votes are selected as the final wavelengths. However, an issue needs to be considered,
that is, what is the quantitative criterion of “high votes”? Should it be 60%, 70%, 80%, or higher?
The higher the vote percentage, the lower the number of selected wavelengths. If the number of
selected wavelengths is too small, the performance of the subsequent quantitative analysis model may
be reduced. Therefore, reaching a tradeoff between them is a challenge.

Furthermore, we propose a novel wavelength selection framework based on BDA and ensemble
learning, as shown in Figure 3c. Traditionally, ensemble learning is often used to combine several
models to improve the generalized performance of a model. However, in this paper, ensemble learning
was not used to improve the model’s performance. Instead, the idea of traditional ensemble learning
was introduced to improve the stability of the wavelength selection results. Hence, only one PLS
model was used during the wavelength selection period. Compared with the multi-BDA method,
before the BDA searching procedure, Bootstrap sampling is added to randomly generate a series of
different subsets. Suppose there are N samples in the raw dataset: N samples are drawn from the raw
dataset with replacement, and then replicated samples are eliminated; hence, usually, the size of the
subset becomes smaller because of the elimination.

146



Molecules 2019, 24, 421

 
(a) 

 
(b) 

 
(c) 

Figure 3. Three typical wavelength selection methods based on BDA. (a) Wavelength selection based
on the single-BDA method; (b) wavelength selection based on the multi-BDA method; (c) wavelength
selection framework based on the BDA and ensemble learning method.

Similar to the traditional swarm optimization algorithms, the single-BDA method also suffers
from instability. In contrast, the multi-BDA and ensemble learning-based BDA methods can improve
the stability. The key technical skill is to reduce the randomness inherent in the BDA. Even if both
multi-BDA and ensemble learning-based BDA can achieve this, their principles are different. Although
the multi-BDA method has many BDA selectors, they are built on the whole raw dataset. In contrast,
the BDA selectors in the ensemble leaning method are built on different subsets. The variety of subsets
leads to the different wavelength selection results from each BDA. This is the essence of ensemble
learning. Besides, the computational complexity of the ensemble learning-based BDA method is
smaller than that of the multi-BDA method, which mainly reflects in the computation of the cost
(fitness) function RMSECV.
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First of all, let us look at the scenario of the multi-BDA method. For example, consider a raw
dataset with 100 samples and suppose the raw dataset is uniformly divided into five folds, each of
which contains 20 samples. Establish five PLS models, each of which is trained on the basis of four
folds (80) samples and tested on the remaining (20) samples.

Next, let us look at the scenario of the ensemble learning-based BDA method. According to the
theoretical analysis, the size of subsets generated by Bootstrap sampling is approximately 63.2% that of
the raw dataset (the whole theoretical analysis process can be found in reference [12]). Hence, there are
about 63 samples in the subsets, and, similar to the multi-BDA method, the subset is uniformly divided
into five folds, each of which contains about 12 samples. Establish five PLS models, each of which is
trained on the basis of four folds (about 48) samples and tested on the remaining (12) samples.

The experimental results proved that, though the size of the samples in the subset became smaller,
the performance was close to that of the multi-BDA method.

4. Experimental Results and Discussion

To validate the performance of the proposed wavelength selection methods, we applied the
above-mentioned three typical algorithms to the public gasoline NIR spectroscopy dataset. The main
aim was to find the most representative wavelengths to predict the content of octane by NIR
spectrometry on the basis of the binary dragonfly algorithm.

4.1. Dataset Description

This dataset consists of 60 samples of gasoline measured by NIR spectrometry. The wavelength
range was 900–1700 nm at 2 nm intervals (401 channels). The octane value for each of the samples
was also included [13]. The raw whole range of the NIR spectrum of 60 samples is illustrated in
Figure 4. Because this dataset had been embedded into MATLAB software (MathWorks Inc., Natick,
MA, USA), the results were implemented in MATLAB R2017b. The basic source code of the BDA
could be downloaded from the inventor’s personal website (http://www.alimirjalili.com/DA.html)
or MathWorks official website (https://www.mathworks.com/matlabcentral/fileexchange/51032-
bda-binary-dragonfly-algorithm). On the basis of this source code, we implemented the single-BDA,
multi-BDA, and ensemble learning-based wavelength selection codes.

Figure 4. Raw spectrum of 60 gasoline samples.

4.2. Experimental Results

Firstly, the single-BDA method was applied to select the most representative wavelengths. In this
paper, the PLS method was adopted to establish a quantitative analysis model. With respect to each
binary individual, firstly, those wavelengths with value “1” were selected, and then a quantitative
analysis model was established on the basis of these wavelengths. The values of parameters in Table 1
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were adaptively tuned according to references [8–10]; the values of the remaining parameters of the
BDA are listed in Table 2; we determined them by trial and error. The influence of different parameter
values on the performance of the quantitative analysis model will be introduced in detail in the
discussion section. Additionally, the BDA was repeated 10 times in the multi-BDA method; also,
10 parallel BDA wavelength selectors were present in the ensemble learning method. The influence of
the BDA repetition on the wavelength selection results will also be introduced in the discussion section.

Table 2. Values of the BDA parameters.

Parameters Values

Maximum number of iterations 50
Number of dragonflies 10

Number of wavelengths 401
Separation, alignment, cohesion, food, and enemy factors adaptive tuning

Number of principal components 2
Number of folds of cross validation 5

As mentioned above, because of the random mechanism in the BDA, the wavelength selection
results of each search were different. Figure 5 illustrates the wavelength selection results by using
the single-BDA method. We implemented it for 10 times, and the wavelength selection results
of each search are shown in Figure 5a, from which it is evident that the results were different.
The corresponding generalized performances of the quantitative analysis model established with
these selected wavelengths were also different, and the determined coefficient R2 varied from 0.912 to
0.932, as shown in Figure 5b. These results indicated that, similar to traditional swarm optimization
methods, the BDA can also be applied to solve the wavelength selection problem. However, it is often
confusing which wavelength variables should be selected.
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Figure 5. Wavelength selection results using the single-BDA method. (a) Wavelength selection
results by applying a 10 times search; (b) corresponding generalized performance of the quantitative
analysis model.

As mentioned above, the difference between the multi-BDA and the single- BDA methods is that
there as a voting strategy to aggregate the wavelength selection results of the multiple-time search.
The experimental results of the multi-BDA method are shown in Figure 6, from which it is obvious that
by adjusting the value of the votes percentage (VP), we can control the number of selected wavelengths.
Actually, if VP is equal to or smaller than 40%, the number of selected wavelengths is so large that
the dimension is still high; on the contrary, if the VP is equal to or greater than 80%, there might be
no wavelength satisfying this criterion. Hence, here we only show the wavelength selection results
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with VP between 50% and 80%. By comparing Figure 6 to Figure 5b, we can see that the determined
coefficient R2 of the quantitative analysis model established on the basis of the wavelengths selected
with the multi-BDA method outperformed that obtained with the single-BDA method. However,
the case of VP ≥ 80% was an exception, as only 7 wavelengths were selected. This means that if the
number of selected wavelengths is too small, the generalized performance of the quantitative analysis
model may decrease. Hence, a tradeoff has to be reached.
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Figure 6. Wavelength selection results by using the multi-BDA method. VP: votes percentage.
Upper left, upper right, lower left, and lower right represent selected wavelengths while the votes
percentage is equal to or greater than 50%, 60%, 70%, and 80%, respectively.

Figure 7 describes the wavelength selection results by using the BDA and the ensemble learning
method. The difference between this method and the multi-BDA method is that a series of Bootstrap
sampling generators were added before the BDA. Because Bootstrap sampling is a method of random
sampling with replacement, the size of the subset is smaller than the whole dataset. As mentioned
above, the subset only contained about 63.2% samples of the whole set. By comparing Figure 7 to
Figure 6, it is easy to see that, although the sample size was reduced through Bootstrap sampling,
the generalized performance of the quantitative analysis models with selected features was close to
that of the multi-BDA method. Hence, by using this method, we could reduce the computational
complexity. However, similar to the multi-BDA method, if the votes percentage is equal to or greater
than 80%, the generalized performance of the quantitative analysis model decreases. In summary,
we suggest that the votes percentage should be set between 60% and 70%.
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Figure 7. Wavelength selection results by using the BDA and ensemble learning method. VP: votes
percentage. Upper left, upper right, lower left, and lower right represent selected wavelengths with
votes percentage equal to or greater than 50%, 60%, 70%, and 80%, respectively.

4.3. Discussion

4.3.1. Influence of the Values of the BDA Parameters on the Generalized Performance of the Model

Similar to other evolution and swarm optimization algorithms, there are some parameters (as
listed in Tables 1 and 2) inherent in BDA and while the values of these parameters are different,
the corresponding wavelength selection results will different too. Hence, we want to quantitatively
analyze the influence of the values of these parameters on the wavelength selection results.

As mentioned above, in this paper the values of parameters in Table 1 were adaptively tuned
as follows:

w = 0.9 − iter × 0.9 − 0.4
max_iter

(3)

where iter and max_iter is the current and maximum iteration, respectively. It is obviously to see that
w is linearly decreased from 0.9 to 0.4.

With respect to parameter s, a and c, the adaptive tuning formula is:

x = 2 × γ× θ, x ∈ {s, a, c} (4)

where γ is a random between 0 and 1.

θ =

{
0.1 − iter × 0.1−0

max_iter/2 , iter ≤ max_iter/2
0, iter > max_iter/2

(5)

From Equations (4) and (5), we can find that the range of parameter s, a and c is between 0 and 0.2.
Parameter f is a random between 0 and 2, and parameter e is equal to θ.
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The adaptive tuning procedure of parameters (w, s, a, c, f, e) is illustrated in Figure 8. We can
easily find that while the current iteration period is larger than half of maximum iteration, values
of parameters s, a, c and e become zero. In other words, the separation, alignment, cohesion and
detraction from enemy strategies were not included in the position updating procedure, and only
inertia weight w and attraction to food f were considered.
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Figure 8. Adaptive tuning of parameters (w, s, a, c, f, e).

Table 3 shows the influence of different parameter values on the generalized performance
(RMSECV) of quantitative analysis model. The second column means that all of the parameters
were adaptively tuned, and the third and fourth columns mean that the corresponding parameter’s
value were fixed to its maximum or minimum respectively while other parameters were adaptively
tuned. We can find that there is a trend that while these parameters were not adaptively tuned,
the generalized performance (here we use mean RMSECV of 10 times repeated) of quantitative analysis
model will decrease, which is consisting with reference [8].

Table 3. The values of related parameters of BDA.

Parameters
Mean RMSECV of 10 Times Repeated PLS Models with Selected Wavelengths

Adaptive Tuning Fixed (Maximum) Fixed (Minimum)

w (0.4–0.9)

0.3801

0.5196 0.2583
s (0–0.2) 0.5500 0.3700
a (0–0.2) 0.4833 0.4186
c (0–0.2) 0.4955 0.4071
f (0–2) 0.4871 0.5224

e (0–0.1) 0.3796 0.4570

Further, we consider the parameters in Table 2. Previously principal component analysis (PCA)
showed that the cumulative contribution of the first two principal components was higher than 90%,
hence in this paper we take the first two principal components to establish the PLS regression model.
Additionally, 5-fold cross validation is often used so that we can ignore its influence on the model’s
performance. Hence, here we put focus on two parameters: maximum number of iterations and
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number of dragonflies. We implemented a two-dimensional grid to evaluate the influence of these two
parameters, in which the maximum number of iterations and number of dragonflies were range from
10 to 100 and 10 to 50, respectively. Because of the limitation of space, here we only take single-BDA as
an example. At each parameter value pairs, mean RMSECV of 10 times repeated PLS models with
selected wavelengths was computed as the evaluation index. The experimental results were illustrated
in Figure 9, from which we can obviously find that with the increase of maximum number of iteration
and number of dragonflies (population size), mean RMSECV of 10 times repeated PLS models showed
a decrease trend. while the computational complexity increases a lot. Hence, there is a trade-off
between them.

Figure 9. Influence of maximum number of iterations and number of dragonflies on the generalized
performance of quantitative analysis model.

4.3.2. Comparison Between Proposed Methods and Traditional Methods

In order to validate the efficiency of proposed methods, here we compared the proposed
single-BDA, multi-BDA and ensemble learning based BDA methods with traditional methods.
Considering the fact that it is difficult to find a common standard to implement the comparison
between proposed methods with interval PLS, hence here we limit the comparison between proposed
methods with evolution and swarm optimization methods. Because our previous studies have
validated the efficiency of binary bat algorithm and genetic algorithm, here we implemented the
comparison between proposed BDA and binary bat algorithm and genetic algorithm. We set the
population size and maximum of iteration of these methods were all same. As mentioned above,
for each method, mean RMSECV of 10 times repeated PLS models with selected wavelengths was
computed as the evaluation index. The comparison results were listed in Table 4, from which we can
obviously find that compared with genetic algorithm and binary bat algorithm, the performance of
single-BDA method is a little lower. However, there is no significant statistical difference between
them. Additionally, the performance of multi-BDA and ensemble learning based BDA methods were
similar, both outperforms traditional methods and single-BDA.
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Table 4. Comparison between proposed BDA based methods and traditional methods.

Methods
Population

Size
Maximum of

Iteration

RMSECV of 10 Times Repeated PLS
Models with Selected Wavelengths

Mean Std

Genetic algorithm

20 50

0.4016 0.0624
Binary bat algorithm 0.3672 0.0482

Single-BDA 0.3801 0.0549
Multi-BDA 0.3265 0.0215

Ensemble learning based BDA 0.3294 0.0168

5. Conclusions

In terms of the wavelength selection problem in NIR spectroscopy, this paper proposes a novel
method based on binary dragonfly algorithms, which includes three typical frameworks: single-BDA,
multi-BDA, and ensemble learning-based BDA framework. The experimental results for a public
gasoline NIR dataset showed that by using the proposed method, we could improve the stability of
the wavelength selection results through the multi-BDA and ensemble learning-based BDA methods.
With respect to the subsequent quantitative analysis modeling, the wavelengths selected with the
multi-BDA and ensemble learning BDA methods outperformed those selected with the single-BDA
method. When comparing the ensemble learning-based BDA and the multi-BDA methods, it can be
seen that they can provide similar wavelength selection results with lower computational complexity.
The results also indicated that the proposed method is not limited to the dragonfly algorithm but it
can be combined with other swarm optimization algorithms. In addition, the ensemble learning idea
can be applied to other feature selection areas to obtain more robust results.

Besides, during the experimental results analysis, we found that, for the same selected
wavelengths, there were great changes of the generalized performance (RMSECV) between different
subsets. This means that not only the wavelength variables, but also the samples influence the
generalized performance of the quantitative analysis model. Currently, the majority of studies
are focused on the wavelength selection problem; we suggest that sample selection using swarm
optimization methods is an open problem that needs to be studied further.

Additionally, in this study, we found that the votes percentage should be set between 60% and
70%. However, we do not know whether this range is also suitable for other datasets. This should
be validated further. Actually, in general, we should not be concerned by which wavelengths are
selected. Instead, we may want to know how good the quantitative analysis model will be by using
the selected wavelengths. Hence, improving the generalized performance of the quantitative analysis
model is a hot topic in NIR spectroscopy. With the development of artificial intelligence, ensemble
learning methods (such as random forest, adaboost, etc.) and deep learning (such as convolutional
neural networks [14–19]) will be mainstream in the future.
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Abstract: Origin traceability is important for controlling the effect of Chinese medicinal materials
and Chinese patent medicines. Paris polyphylla var. yunnanensis is widely distributed and well-known
all over the world. In our study, two spectroscopic techniques (Fourier transform mid-infrared
(FT-MIR) and near-infrared (NIR)) were applied for the geographical origin traceability of 196 wild P.
yunnanensis samples combined with low-, mid-, and high-level data fusion strategies. Partial least
squares discriminant analysis (PLS-DA) and random forest (RF) were used to establish classification
models. Feature variables extraction (principal component analysis—PCA) and important variables
selection models (recursive feature elimination and Boruta) were applied for geographical origin
traceability, while the classification ability of models with the former model is better than with the
latter. FT-MIR spectra are considered to contribute more than NIR spectra. Besides, the result of
high-level data fusion based on principal components (PCs) feature variables extraction is satisfactory
with an accuracy of 100%. Hence, data fusion of FT-MIR and NIR signals can effectively identify the
geographical origin of wild P. yunnanensis.

Keywords: origin traceability; data fusion; Paris polyphylla var. yunnanensis; Fourier transform
mid-infrared spectroscopy; near-infrared spectroscopy

1. Introduction

The rhizome of Paris polyphylla var. yunnanensis (Franch.) Hand. -Mazz (P. yunnanensis) and P.
polyphylla Smith var. chinensis (Franch.) Hara (P. chinensis), named as “chonglou” in Chinese, is a
renowned and traditional herb with a history of thousands of years in China and plants belong to Paris
genus, Liliaceae family. As an ancient history ethnobotanical medicinal plant, it is used to treat snake
bite and insect sting, innominate toxin swelling, and a variety of inflammatory and traumatic in the folk
in China. Various phytochemical researches have demonstrated that steroidal saponin, phytosterol,
molting hormone, flavone, and pentacyclic triterpene are the major chemical components in Paris [1,2].
Additionally, Paris is considered to have anti-bacterial, anti-myocardial ischemia, anti-tumor, analgesia,
immune-regulation according to numerous pharmacological studies [3–7]. As an important and
precious medicinal plant, the raw material plants of P. yunnanensis are widely spread over southern
China, especially in Yunnan Province [8]. Our previous studies have shown that there are significant
differences in the content of wild P. yunnanensis samples from different geographical sources, and the
saponin content in southern Yunnan is relatively higher than other regions [9,10]. Hence, it is crucial to
the traceable geographical origin of wild P. yunnanensis samples to ensure effective medicinal values,
which helps to ensure the effectiveness of the medication.
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Some techniques have been applied to identify the authenticity and quality of various herbal
medicines, including Fourier transform mid-infrared (FT-MIR), near-infrared (NIR), ultraviolet-visible
(UV-Vis), Raman, liquid chromatography-mass spectrometry (LC-MS), high performance liquid
chromatography (HPLC), etc. [11–16]. In recent years, several researches in classification of P.
yunnanensis have widely used chemometrics models combined with various analytical techniques,
including partial least squares discriminant analysis (PLS-DA), principal component analysis (PCA),
hierarchical cluster analysis (HCA), random forest (RF), support vector machine (SVM), etc. [17–21].
Among them, spectroscopic techniques are fast, lossless, and efficient for the analysis of herbal
medicines. Besides, quality of P. yunnanensis is difficult to identify by one or several chemical
components due to the synergistic effect of TCMs, while the integral chemical information of medicinal
plants can be provided by chromatographic or spectral fingerprints. For example, Yang et al. applied
PCA and cluster analysis combined with FT-MIR to classify the small quantity wild and cultivated P.
yunnanensis samples [21]. PLS-DA and RF models combined with FT-MIR have successfully traced the
cultivated P. yunnanensis samples from Yunnan Province with different cultivation years [17]. Besides,
our previous study has shown that the PLS-DA model combined with different parts (rhizomes and
leaves) FT-MIR information can effectively distinguish the samples of cultivated P. yunnanensis collected
in different cities of Yunnan Province [19].

Only a kind of chemical profile was obtained by the single technique, the relative complete
chemical information would be provided by multiple platforms. The data fusion strategy contains
low-, middle- and high-level, which can effectively fuse the chemical information obtained by different
platforms of samples into one dataset to identification and classification researches [22]. As a case
study, Li et al. found that the discriminant model established by FT-MIR and NIR spectral data
combined with high-level data fusion strategy can effectively identify Panax notoginseng from different
cultivation regions [23]. Wu et al. demonstrated that FT-MIR combined with UV-Vis by data fusion
strategy could obtain a reliable and good result to trace the geographical origins of wild P. yunnanensis
samples [24]. Hence, it is vital to effectively combine multiple techniques datasets of P. yunnanensis to
obtain excellently chemical information to identification analysis and the effective results.

In this study, to obtain further realization of the similarities and differences among wild P.
yunnanensis samples from central, western, northwest, southeast, and southwest Yunnan, we studied
the collected samples using two spectroscopic techniques (FT-MIR and NIR), and fused with data
fusion strategy (low-, mid- and high-level) combined with chemometrics including PCA, PLS-DA, and
RF. The important variables regions among each classification models and the fast-quality assessment
effects for geographical origins of P. yunnanensis were compared. Additionally, the chemical fingerprint
of wild P. yunnanensis samples from different areas at Yunnan Province for FT-MIR and NIR spectra
were analyzed. The results of our study may provide some basis for comprehensive utilization of P.
yunnanensis resources.

2. Results and Discussion

2.1. Macroscopic Chemistry Components in IR Spectra

Averaged raw FT-MIR and NIR spectra of wild P. yunnanensis samples from central, northwest,
western, southeast, and southwest Yunnan Province are shown in Figure 1. Twenty-five major common
peaks were contained in FT-MIR spectra from these five regions, as shown in Figure 1a. The 4000 to
3700 cm−1 and 2620 to 1800 cm−1 absorptions were the FT-MIR spectral baseline area and diamond
crystal spectral region, respectively, which areas provide invalid spectral information for this study [25].
Besides, regions of 3700 to 2620 cm−1 and 1800 to 1300 cm−1 were defined as characteristic areas in
our study, which mainly contained C=O, C=C, and C–H stretching vibration as well as C–H bending
vibration mode [21,26]. In addition, the region of 1300 to 650 cm−1 was the fingerprint region, which
greatly contained C–O stretching vibration, C–C stretching vibration, C–OH bending vibration mode,
as well as sugar skeleton vibration [27,28]. For all above these useful regions, FT-MIR spectra can
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be divided into five distinct ranges, including 3700 to 2000, 1800 to 1500, 1500 to 1200, 1200 to 900,
and 900 to 650 cm−1 [29]. In the region of 3700 to 2000 cm−1, the broad absorption band in the range
3700–3000 cm−1 corresponds to the stretching vibrations of free hydroxyl groups ν(OH) and the groups
involved in intra- and intermolecular hydrogen bonds [29]. Absorption at the peaks of 2928 and
2852 cm−1 were assigned to normal vibration mode such as the CH3 asymmetric normal vibration mode
at 2960 to 2920 cm−1, CH2 asymmetric normal vibration mode at 2930 to 2900 cm−1, CH3 symmetric
normal vibration mode at 2900–2880 cm−1, and CH2 symmetric normal vibration mode at 2860 to
2850 cm−1 [29]. Additionally, the region two to the region four were useful to deconvolute the bands
into Lorentzian components, and the detailed information can be observed in Table 1. Moreover, amide
I band is observed in the region of 1800 to 1500 cm−1 too, which corresponds to the C=C stretching
mode of fatty acids and flavonoids [29].

Table 1. Peak assignments on the FT-MIR and NIR spectra of wild P. yunnanensis.

Spectral Type Wavenumber (cm−1) Base Group and Vibration Mode Contribution

NIR

8347 C–H, N–H and O–H stretching
vibration mode CH2, saccharides, and glycosides

7256 C–H stretching and deformation
vibration mode CH2

6950 C–H, N–H and O–H stretching
vibration mode CH2, saccharides, and glycosides

6324 C–H, N–H and O–H stretching
vibration mode CH2, saccharides, and glycosides

5686 C–H, N–H and O–H stretching
vibration mode CH2, saccharides, and glycosides

5169
C–H, N–H and O–H and

hydrogen bond stretching
vibration mode

CH2, saccharides, glycosides, and
water molecule

FT-MIR

3382 O–H asymmetric and hydrogen
bond stretching vibration mode

Saccharides, glycosides, and water
molecule

3334 O–H asymmetric and hydrogen
bond stretching vibration mode

Saccharides, glycosides, and water
molecule

2930 C–H asymmetric stretching
vibration mode CH2 and CH3

1743 C=O stretching vibration mode Free carboxyl groups of pectins
or/and fatty acids

1653

asymmetric stretching vibrations
of carboxyl groups participating in
the hydrogen bonds and hydrogen

bond scissoring vibration mode

Flavonoids, saccharides, steroid
saponin, and water molecules

1610 COO symmetric normal
vibrations mode

The carboxyl group present in
pectin

1456 CH3 asymmetric deformation and
CH2 scissoring vibration CH2 and CH3

1414
C–H symmetric bending vibration

mode and OH–O in-plane
bending mode

CH2

1370 C–H symmetric deformation
vibration mode CH3

1242 C–O stretching vibration mode Saccharides and oils

1150 C–C and C–O stretching and
C–OH bending vibration mode Saccharides and glycosides

1078 C–C and C–O stretching and
C–OH bending vibration mode Saccharides and glycosides

1020 C–C and C–O stretching and
C–OH bending vibration mode Saccharides and glycosides

922 Sugar skeleton vibration mode Saccharides
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Figure 1. Averaged spectra of P. yunnanensis samples collected from five regions: (a) Fourier transform
mid-infrared (FT-MIR) spectra; (b) near-infrared (NIR) spectra.

Nine major common peaks are obtained in average NIR spectra from five geographical origins, as
shown in Figure 1b. The bands in the region of 9000 to 4500 cm−1 be associated with the first or second
overtones [30]. The peaks in the region 4500 to 4000 cm−1 are so narrow that it was difficult to provide
detailed information [31]. Besides, the peaks at 5169, 3382, 3334, and 1653 cm−1 were considered,
which also may correspond to hydrogen bond stretching and scissoring vibration mode attributed to
water molecules [29]. The fingerprint of FT-MIR and NIR spectra characteristics of P. yunnanensis from
different geographical origins were similar, as shown in Figure 1, which indicated similar chemical
composition among these samples. Additionally, detailed peak positions and assignments were applied
in Table 1.

2.2. Single Block Models

Raw FT-MIR and NIR spectra were pretreated by standard normal variate (SNV), first derivative
(FD), second derivative (SD), SNV-FD, and SNV-SD, and parameters of these pretreatment algorithms
are applied in Table S1, including parameters of cumulative interpretation ability (R2), cumulative
prediction ability (Q2), the root mean square error of estimation (RMSEE), the root mean square error
of cross-validation (RMSECV), and accuracy. For the FT-MIR spectra dataset, the worst classification
ability was by FD algorithms, which also had accuracy worse than the raw dataset. But for the NIR
spectra dataset, the SNV pretreatment algorithm was the worst preprocessing algorithm. However, SD
was the best preprocessing algorithm, both for FT-MIR and NIR, whereby the accuracy even reached
100%. Among all preprocessing algorithms, the best pretreatment algorithm (SD) for each kind of
spectroscopy should be selected and used to establish geographical classification models.

PLS-DA and RF classification models were established on FT-MIR and NIR SD datasets, respectively.
The efficiency for each class and accuracy of the calibration set and validation set of these geographical
origin models are shown in Table 2. The parameter of the root means square error of prediction
(RMSEP) was one important parameter for evaluating model classification ability. The values of
RMSEP were 0.203 and 0.236 of PLS-DA based on FT-MIR and NIR spectra datasets, respectively. With
the higher accuracy and lower RMSEP, the PLS-DA model effect of using FT-MIR data to classify
geographical origins was better than that of NIR.
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The permutation test can be used to determine whether the established PLS-DA model is at risk of
overfitting [32,33]. The intercepts generated by 200 random permutation tests for the FT-MIR PLS-DA
model permutation test with the selected-class 1 variables were R2 = 0.395 and Q2 = −0.861, the values
of R2 and Q2 of permutation tests with the remaining four categories variables are shown in Figure S1.
All these results showed that this model was robust without overfitting. Additionally, the PLS-DA
models involved in this paper were subjected to permutation tests and there was no overfitting.

For the RF model based on the FT-MIR spectra data matrix, the initial number of trees (ntree)
and number of variables (mtry) were set as 2000 and the square root of the number of variables. The
optimal value of ntree was selected based on the lowest total out-of-bag (OOB) classification error
value, meanwhile assured of the lower OOB classification error values of the most classes. Besides,
the optimal ntree should be selected from the smooth region of the curve when the minimum OOB
value was obtained in multiple regions. The optimal mtry was selected according to the lowest OOB
classification error value. As shown in Figure 2a,b, the most suitable values 1780 and 33 were selected
as the best ntree and mtry, respectively, for the RF model based on the FT-MIR spectra data matrix.
Based on the same principle, the optimal values 434 and 39 were the best ntree and mtry, respectively,
for the RF model based on the NIR spectra dataset, as shown in Figure 2c,d.

Figure 2. The parameter optimization of random forest models of independent decision making: (a)
number of trees (ntree) of the FT-MIR dataset; (b) number of variables (mtry) of the FT-MIR dataset; (c)
ntree of the NIR dataset; (d) mtry of the NIR dataset.

2.3. Important Variable Datasets Selected for Mid-Level Data Fusion

Mid-level on principal components (Mid-level-PCs), mid-level on recursive feature elimination
(Mid-level-RFE) and mid-level on Boruta (Mid-level-Bo) dataset matrixes needed to be established to
complete mid-level data fusion. The mid-level-RFE dataset was established as follows:
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RF models were established on FT-MIR and NIR spectra datasets of wild P. yunnanensis samples.
For the two RF models, the initial ntree for both was defined as 2000, and the initial mtry was set as 33
for the FT-MIR dataset and 39 for the NIR dataset. A total of 1033 trees and 529 trees were the optimal
values for ntree of FT-MIR and NIR datasets, respectively, which are shown in Figure S2. Based on the
optimal ntree, the number of mtry was calculated to be 36 and 32 for FT-MIR and NIR spectra data
matrixes, respectively. Next, the optimal ntree and mtry were used to further obtain the importance of
each variable of individual spectra matrix. All variables of FT-MIR and NIR datasets were arranged
from small importance to large importance, respectively. The 10-fold cross-validation error rates of
the RF model, based on FT-MIR and NIR data matrixes, are shown in Figure 3a,b. It was reduced
sequentially by five variables for each step for the sorted important variables of FT-MIR and NIR
spectra data matrixes, respectively. For the FT-MIR dataset (Figure 3a), all variables were divided
into region 1, region 2, and region 3, which represent irrelevant variables, interference variables, and
important variables, respectively [23]. Among them, region 3 remained for further research. In other
words, 45 of the most important variables of the FT-MIR dataset were selected to prepare for mid-level
data fusion. However, all variables of the NIR data matrix were divided into region 1 and region 2
(Figure 3b), which represent irrelevant variables and important variables. Variables of region 1 were
excluded and the other 145 NIR variables of region 2 were used to fuse with important variables
of the FT-MIR dataset to establish Mid-level-RFE models. In other words, these two block datasets
straightforwardly concatenated and reconstituted the independent data matrix named Mid-level-RFE.

 
Figure 3. The 10-fold cross-validation error rates of the Random Forest (RF) model (sequentially
reduced every five variables) based on total P. yunnanensis samples: (a) FT-MIR dataset; (b) NIR dataset.

Basing on the optimal ntree and mtry, important (confirmed and tentative) variables were calculated
to be 304 and 343 for NIR and FT-MIR spectra datasets, respectively. These two block datasets (important
variables) reconstituted the independent data matrix named Mid-level-Bo.

Similarly, two block datasets of 25 PCs NIR variables and 17 PCs FT-MIR variables straightforwardly
concatenated and reconstituted the independent data matrix named Mid-level-PCs.

Besides, the selected variables for establishing mid-level data fusion classification models using
RFE and Bo algorithms are shown in Figure 4. The important (confirmed) and tentative variables are
represented by blue lines and yellow lines, respectively.
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Figure 4. The important variables of Boruta algorithm and RFE algorithm of random forest models
based on total P. yunnanensis samples: (a,b) the FT-MIR dataset; (c,d) the NIR dataset. RFE: Recursive
feature elimination.

2.4. Important Variables Datasets Selected for High-Level Data Fusion

High-level data fusion uses the same PCs as mid-level data fusion as the PCs were selected from
the unsupervised PCA model. Hence, 17 PCs of the FT-MIR spectra dataset (FT-MIR-PCs) and 25 PCs
of the NIR spectra data matrix (NIR-PCs) were used to establish PLS-DA and RF models, respectively.
For FT-MIR-PCs and NIR-PCs RF models, the two parameters of ntree and mtry needed to be optimized
first. As shown in Figure S3, the optimal values 535 and 1030 trees were selected and; furthermore,
calculated the suitable mtry to be 4 and 3 for FT-MIR-PCs and NIR-PCs RF models, respectively. Then,
final RF models were established on the optimal parameters and the most important variables. Besides,
vote results of validation sets and calibration sets of PLS-DA and RF models based on the FT-MIR-PCs
and NIR-PCs datasets were obtained as shown in Tables S2–S5.

For the RF model based on the FT-MIR and NIR spectra datasets, the initial ntree was set as 2000,
and the initial mtry were set as 33 (FT-MIR) and 39 (NIR), respectively. The 1780 trees and 434 trees
are the optimal values for ntree of FT-MIR and NIR datasets (Figure 2). The numbers of mtry were
defined to be 33 and 39 for FT-MIR and NIR spectra data matrixes, respectively, based on the optimal
ntree. Furthermore, all variables of FT-MIR and NIR datasets were sorted, respectively. The 10-fold
cross validation error rates of the RF model, based on the FT-MIR and NIR data matrixes are shown
in Figure S4a,b. For the FT-MIR dataset (Figure S4a), all variables were divided into three regions.
Among them, 80 of the most important variables (region 3) of the FT-MIR dataset were selected to
establish FT-MIR-RFE PLS-DA and RF models. All variables of the NIR data matrix were divided into
two regions (Figure S4b) and 200 NIR variables of region 2 were used to establish NIR-RFE PLS-DA
and RF models. PLS-DA and RF models were based on two important variables datasets (FT-MIR-RFE
and NIR-RFE), respectively. For FT-MIR-RFE and NIR-RFE RF models, 293 and 1459, respectively,
were selected as the suitable trees, as shown in Figure S5. Furthermore, the optimal mtry values were
calculated to be 8 and 14, respectively. Based on the optimal parameters, FT-MIR-RFE and NIR-RFE
datasets were used to establish the RF model. Similarly, vote results of validation sets and calibration
sets of PLS-DA and RF models based on FT-MIR-RFE and NIR-RFE data matrixes could be obtained,
respectively, as shown in Tables S6–S9.

The FT-MIR-Bo and NIR-Bo datasets were obtained by selecting important variables using the
Bo algorithm with FT-MIR and NIR spectra datasets. These two data matrixes were used to establish
PLS-DA and RF models, respectively. As shown in Figure S6, 1143 and 875 trees were selected to be
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the optimal ntree for FT-MIR-Bo and NIR-Bo datasets, respectively. Besides, the suitable mtry values of
the two datasets were calculated to be 12 and 20, respectively. Similarly, vote results of validation sets
and calibration sets of two models were obtained as shown in Tables S10–S13.

Like mid-level data fusion, the comparison of selected variables for establishing high-level data
fusion classification models using two algorithms is shown in Figure S7. In addition, it was found
that both the fingerprint region and characteristic region variables contribute to the classification of P.
yunnanensis from different origins.

The results of PLS-DA and RF models based on RFE, Bo, and PCs selection algorithms are shown
in Table 2. For FT-MIR datasets containing three-variable selection algorithms, the validation set
classification results of the PLS-DA and RF models were similar and slightly lower than that obtained
by models based on the raw FT-MIR data matrix. Among these models, the RF model using the PCs
selection algorithm showed the best ability. Besides, the classification ability of the PLS-DA and RF
models based on NIR (RFE) and NIR (Bo) data matrixes were significantly lower than that based on
the NIR (PCs) dataset. However, the accuracy for the validation sets of the PLS-DA and RF models
based on the NIR (PCs) data matrix were both higher than that based on the FT-MIR (PCs) dataset,
which is contrary to the results based on original FT-MIR and NIR datasets. Additionally, it is not hard
to see that the classification ability of the PLS-DA and RF models based on the RFE algorithm were like
the Bo algorithm, no matter whether based on the FT-MIR or the NIR spectral data. Distribution of
their important variables was almost the same (Figure S7), which may be the reason for the similar
classification results. Bo variables selection algorithm would be the preferred one than RFE algorithm
because it used lesser operation time.

2.5. Low-Level Data Fusion Models

In this case, the low-level data matrix (196 × 2695) was used to establish PLS-DA and RF models.
For the low-level data fusion RF model, 2000 and 51were set as original ntree and mtry values, respectively.
As shown in Figure S8, 802 (ntree) and 51 (mtry) were selected as the optimal parameters to establish the
final low-level data fusion RF model. The results of calibration and validation sets for the two kinds
of models are reported in Table 3. Although the accuracy of the calibration sets of the two models
was quite different, the accuracy of the validation sets was only 3% different. Compared with the
accuracy of individual data source models, the accuracy of low-level data fusion by both models was
similar to that of the FT-MIR dataset, which was higher than that of the NIR data matrix. Besides,
the samples of the second class (Northwest Yunnan) were correctly predicted by both low-level data
fusion models. The low-level data fusion strategy enhanced (to 100%) the accuracy of samples from
Northwest Yunnan.

Variables whose VIP (Variable importance in the projection) score was greater than 1 were selected
as important variables to establish PLS-DA and RF models. The selected variables distribution is shown
in Figure S9 and results of classification models are displayed in Table 3. The important variables were
lesser dispersed in regions 3580 to 3530 cm−1, 3460 to 3150 cm−1, 3000 to 2950 cm−1, 2750 to 2720 cm−1,
1400 to 1200 cm−1, and 1000 to 800 cm−1 of FT-MIR spectra and regions 6540 to 6200 cm−1 and 5070 to
4000 cm−1 of NIR spectra. Many interference and unrelated variables were eliminated by selecting
VIP values. The efficiency and accuracy of each class in the low-level (VIP) data fusion model was
unchanged and even enhanced.
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2.6. Mid-Level Data Fusion Models

In our study, Mid-level-PCs, Mid-level-RFE, and Mid-level-Bo three kinds of data matrixes were
used to establish PLS-DA and RF classification models to prepare for mid-level data fusion. As shown
in Figure S10a,b, 427 (ntree) and 6 (mtry) were selected as optimal parameters to establish the final
mid-level-PCs RF model and obtained a validation set accuracy of 94.12%. The total accuracy of the
validation set of the PLS-DA model was 98.53% (Table 3).

Similarly, 2000 and 13 were set as raw ntree and mtry values for the mid-level-RFE RF model.
According to the principle of parameter optimization of the RF model, the lowest values 262 (ntree) and
13 (mtry) were defined as the suitable parameters to establish the RF model, as shown in Figure S10c,d.
However, the validation set accuracy of the mid-level-RFE was only 69.12%, which was lesser than
that of each individual spectral RF model. Besides, the PLS-DA model based on the mid-level-RFE had
a worse classification ability with an accuracy of only 55.88% (Table 3).

The numbers of 2000 and 25 were set as raw ntree and mtry values, respectively, for the mid-level-Bo
RF model. As shown in Figure S10e,f, the suitable parameters were calculated to be 800 and 15,
to establish the mid-level-Bo RF model, and the obtained validation set accuracy was 95.59%. The
difference of accuracy for both the PLS-DA model and the RF model based on mid-level-RFE and
mid-level-Bo was about 30%. By comparing the regions of important variables between mid-level-RFE
and mid-level-Bo data matrixes (Figure 4), we could find that the number of important FT-MIR variables
for the RFE variable selection algorithm was less than that of the Bo variable selection algorithm,
and there was little difference in the important variables of the NIR spectroscopy selected by the
two algorithms. Hence, we can infer that the RFE selection algorithm had excluded some of the
important variables that may be enhancing the accuracy of classification models. In addition, we can
also extrapolate that the FT-MIR dataset was more important for geographical origin classification of
wild P. yunnanensis samples than the NIR data matrix, which provides more effective information.

2.7. High-Level Data Fusion Models

For high-level data fusion, four fuzzy aggregation operators were chosen as the voting rule for
the voting decision, including minimum, maximum, product, and average [23]. The category that has
the maximum value in each operator is considered to be the selected class. It is worth mentioning that
when the difference between the maximum value and the second largest value is less than 0.01, both
values are considered maximum. Three kinds of vote results would be obtained by high-level data
fusion including correct, false, and multiple discriminated. As shown in Table S14, the true Class of
sample NO. 4 belongs to Class 1 and the four fuzzy aggregation operators were fully accorded with
the true Class. For example, for No. 31 the true category is Class 1, while three voting results are
distinguished into Class 3 and one voting result is defined as Class 5. The high-level data fusion voting
results of this sample is Class 3. Besides, NO. 114 was voted into Class 2 and Class 3 by FT-MIR-PCs
and NIR-PCs RF models. This sample truly belongs to Class 3, while the final data fusion voting result
is distinguished into Class 2. Besides, sample 6 truly belongs to Class 1 while pertained to Class 1 and
Class 4 by voting, which was multiple discriminated. Although multivariate discrimination does not
affect the accuracy of the model, it influences efficiency values of each Class. This explains that the
accuracy of the validation set of RF model is 1, while the efficiency of Class 1 and Class 4 does not
reach 1 (Table S14).

As shown in Table 3, the accuracy of the validation set of the High-level-PCs RF model was
reached at 100% and that of the High-level-PCs PLS-DA model was 98.53%. The high-level data fusion
classification ability based on the PCs selection variables algorithm was better than that based on RFE
and Bo algorithms. Besides, there was little difference between the PLS-DA model and the RF model in
identifying the origin of P. yunnanensis samples based on the same data set.
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3. Materials and Methods

3.1. Samples Preparation

The 196 rhizomes of wild P. yunnanensis samples were obtained from five different origins at central,
western, northwest, southeast, and southwest areas of Yunnan Province, as shown in Figure 5. The
detail collection information is shown in Table S15. All wild samples were identified as P. polyphylla
var. yunnanensis (Franch.) Hand. -Mazz. by Professor Hang Jin (Institute of Medicinal Plants, Yunnan
Academy of Agricultural Sciences, Kunming, China). All rhizome samples were washed with tap water
and were dried in a drying oven at 50 ◦C, then sifted through 100 mesh sieves. Additionally, all samples
were preserved in polyethylene zip-lock bags and kept in a dark and dry environment for further analysis.

Figure 5. Location distribution of wild P. yunnanensis samples in central, western, northwest, southeast,
and southwest areas, Yunnan Province.

3.2. Fourier Transform Mid-Infrared Spectroscopy (FT-MIR)

FT-MIR spectra were collected with an FTIR spectrometer equipped with a deuterated triglycine
sulfate (DTGS) detector and a ZnSe ATR (attenuated total reflection) accessory (Perkin Elmer, Norwalk,
CT, USA). All spectra recorded ranges of 4000 to 650 cm−1 with 4 cm−1 resolution, and 16 scans
were averaged. Three analytical replicates of FT-MIR spectral data of all wild P. yunnanensis samples
were obtained.

3.3. Near-Infrared Spectroscopy (NIR)

NIR analysis was conducted with an Antaris II spectrometer (Thermo Fisher Scientific, Madison,
WI, USA) equipped, combined with a diffuse reflection module. All spectra recorded ranges of 10,000
to 4000 cm−1 with a spectral resolution of 4 cm−1, and 16 scans were averaged for wild samples. Three
scans were repeated for all wild samples.

3.4. Spectral Data Analysis and Software

FT-MIR spectra were converted from transmittance to absorbance and the advanced ATR correction
was completed by OMNIC 9.7.7 software (Thermo Fisher Scientific, Madison, WI, USA). The spectral
linear relation was greatly disturbed by high-frequency random noise, the interference of light scattering,
baseline drift, etc. [34]. Hence, FT-MIR and NIR spectra were processed using SNV, FD, SD, and their
combination (SNV-FD and SNV-SD), to decrease a part of the irrelevant interferences [10,35,36]. All
these pretreatment procedures were performed by SIMAC-P+ (Version 13.0, Umetrics, Umeå, Sweden).
Additionally, the spectral regions of 4000 to 3700 cm−1 and 2620 to 1800 cm−1 were excluded for all
FT-MIR spectra before establishing classification models due to a mass of interference information.

167



Molecules 2019, 24, 2559

Hence, the regions of 3700 to 2620 cm−1 and 1800 to 650 cm−1 formed a data matrix for constructing
classification models.

All samples for each class were separated into calibration sets and validation sets as a rate of 2 to 1
with Kennard-Stone algorithm using MATLAB (Version R2017a, Mathworks, Natick, MA, USA) [37,38].
In other words, the number of calibration sets (128 samples) in one to five categories was 26, 26, 24,
26, and 26, respectively, and the number of validation sets (68 samples) in one to five classes was 14,
14, 12, 14, and 14, respectively. The preprocessing algorithms were estimated by parameters of R2,
Q2, RMSEE, RMSECV, and accuracy of the calibration set [19,39]. The better pretreatment algorithm
required higher values of R2, Q2, and accuracy as well as lower values of RMSEE and RMSECV. Hence,
the best preprocessing algorithm would be selected for identification analysis to establish PLS-DA and
RF classification models.

The groundwork of PLS-DA is the PLS algorithm and it belongs to the binary classification
algorithm from 0 to 1, which has been widely applied to resolve the classification problems for
geographical origins, growth years, and others [40]. For each sample, the probability of being assigned
to each class could be obtained, and the category with the highest probability was seen as the category
of this sample. For the validation samples, RF is based on the assembly classification or regression
trees algorithm and has a better ability to handle the nonlinear and high-order interaction effects data
matrixes [41]. Both of these kinds of class-modeling methods belong to supervised pattern recognition
and require a calibration set for each class in order to establish an individual model to explore their
similarities between samples from the one class and the differences among all classes. Besides, the
validation sets were used to validate the identification ability of supervised models. In our study,
all PLS-DA were completed by SIMAC-P+ (Version 13.0, Umetrics, Umeå, Sweden) and RF were
established by RStudio (version 3.5.2, Boston, MA, USA). The operation of RF was roughly divided
into the following three steps: Firstly, 2000 and the square root of the number of variables were set
as the initial values of ntree and mtry, respectively. Secondly, these two parameters were optimized
according to the lowest OOB classification error values. Thirdly, the RF model was established with
the selected optimal values of ntree and mtry.

The RMSEP and accuracy of the validation set were the two parameters used to estimate the
classification ability of PLS-DA. The lower values of RMSEP shows the better prediction ability of
PLS-DA models. Besides, for the PLS-DA and RF models established by the best preprocessing
algorithm, indices of true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN) were calculated for each class. The sensitivity (SEN) and specificity (SPE) were obtained by the
above indices for each class. The efficiency of values was calculated by the geometric mean of SEN and
SPE to evaluate the effectiveness of each class of PLS-DA and RF models. All formulas for the above
parameters were as follow:

SEN =
TP

TP + FN
(1)

SPE =
TN

TN + FP
(2)

efficiency =
√

SEN× SPE (3)

The map of sample collection information in our study was obtained by Arc Map (version 10),
and all figures were drawn by Origin (version 2018, OriginLab Corporation, Northampton, MA, USA)
and Adobe Photoshop CC (version 2019, Adobe Systems Incorporated, San Jose, CA, USA).

3.5. Data Fusion Strategy

Data fusion strategy was applied in this study, as the comprehensive information of P. yunnanensis
samples were unable to be provided by individual data sources. To compare and select the best data
fusion strategy to trace geographical origins, the low-, mid-, and high- level data fusion strategies
and three algorithms for variable selection were considered. The best preprocessing FT-MIR and NIR
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datasets were used to finish data fusion approaches. The schemes for these three strategies combined
with two kinds of spectral signals are shown in Figure 6.

Figure 6. Scheme of the low-, mid-, and high-level data fusion approaches used to combine the FT-MIR
signals and NIR signals.

In low-level data fusion strategy, the FT-MIR and NIR spectral signals are straightforwardly
concatenated and reconstitute an independent data matrix. This new dataset (low-level data matrix)
was equal to 196 rows and 2695 columns, namely 196 samples and 2695 spectral variables (= 1545 NIR
variables + 1150 FT-MIR variables). Finally, the low-level dataset was used to establish the PLS-DA
and RF models.

Mid-level data fusion strategy, namely feature-level data fusion, was made up of feature important
variables from single data sources including FT-MIR and NIR spectra. PLS-DA and RF classification
models were established by new data matrixes, which were formed by concatenating the feature
important variables from FT-MIR and NIR by different variable selection algorithms. In this case,
important variables were selected based on each Y parameter (spectral datasets of total samples). More
in detail, three different variable selection algorithms were as follows:

• Mid-level-PCs consisted of principal components, which were selected by PCA of FT-MIR and
NIR spectral datasets, respectively. PCs were selected based on values of eigenvalue greater than
1. Hence, the mid-level-PCs data matrix was obtained with 196 rows and 42 columns, namely 196
samples and 42 PCs variables (= 25 NIR PCs variables + 17 PCs FT-MIR variables).

• Mid-level-RFE, which consisted of merging together the important variables of FT-MIR and NIR
spectral datasets, was selected by the recursive feature elimination algorithm based on the RF
model. The mid-level-REF dataset size was equal to 196 rows and 190 columns (= 145 NIR REF
variables + 45 FT-MIR REF variables).

• Mid-level-Bo, which consisted of merging together the important (confirmed and tentative)
variables of FT-MIR and NIR spectral datasets, was selected by the Boruta algorithm based on the
RF model. The mid-level-Bo data matrix consisted of 196 rows and 647 columns (= 153 NIR Bo
confirmed variables + 151 NIR Bo tentative variables + 207 FT-MIR Bo confirmed variables + 136
FT-MIR Bo tentative variables).

High-level data fusion strategy, namely decision-data fusion, fused the vote results from the
models of the FT-MIR and NIR datasets. Additionally, individual spectral matrices were formed by
feature or important variables using variable selection algorithms (PCs, RFE, and Bo) before establishing
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models. In our study, important variables were selected by RFE and Bo for the high-level data fusion
strategy based on the Y parameter of the calibration set, which was different from the mid-level data
fusion variables selection method.

• NIR-PCs data matrix obtained 196 rows and 25 columns (25 NIR PCs variables) and the FT-MIR-PCs
data matrix obtained 196 rows and 17 columns (17 FT-MIR PCs variables).

• NIR-RFE data matrix obtained 196 rows and 200 columns (200 NIR RFE variables) and the
FT-MIR-RFE data matrix obtained 196 rows and 80 columns (80 FT-MIR RFE variables).

• NIR-Bo data matrix obtained 196 rows and 183 columns (83 NIR Bo confirmed variables + 108
NIR Bo tentative variables) and the FT-MIR-Bo data matrix obtained 196 rows and 226 columns
(117 FT-MIR Bo confirmed variables + 109 FT-MIR Bo tentative variables).

Besides, PCs were obtained using MATLAB (Version R2017a, Mathworks, Natick, MA, USA) and
RFE and Bo were completed by RStudio (version 3.5.2).

4. Conclusions

In our study, the use of low-, mid-, and high-level data fusion strategies, combined with feature
extraction and important variable selection algorithms, were researched to fuse the chemical information
from FT-MIR and NIR spectroscopies for the identification and classification of geographical origins of
wild P. yunnanensis samples.

In fact, PCs was the feature extraction algorithm of three kinds of important variable selection
algorithms, which obtained a better ability for establishing classification models no matter whether in
mid- or high-level data fusion. Between the two important variable selection algorithms of RFE and
Bo, the latter can obtain important variables that are similar, or more accurate, to the former and can
complete the calculation in a shorter time.

Besides, the two kinds of IR spectroscopies bring complementary chemical information profiles
about multiple geographical sources of P. yunnanensis. While FT-MIR provides chemical information
among 4000 to 650 cm−1, NIR describes the chemical information from 10,000 to 4000 cm−1. The
data fusion strategy improved the geographical traceability ability of models for P. yunnanensis, while
FT-MIR spectra data provided more contributions than NIR spectra. Besides, thanks to the application
of the high-level data fusion strategy, the identification effect based on the random forest model reached
the best performance level.
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Abstract: In order to enable the calibration model to be effectively transferred among multiple
instruments and correct the differences between the spectra measured by different instruments, a new
feature transfer model based on partial least squares regression (PLS) subspace (PLSCT) is proposed
in this paper. Firstly, the PLS model of the master instrument is built, meanwhile a PLS subspace is
constructed by the feature vectors. Then the master spectra and the slave spectra are projected into
the PLS subspace, and the features of the spectra are also extracted at the same time. In the subspace,
the pseudo predicted feature of the slave spectra is transferred by the ordinary least squares method
so that it matches the predicted feature of the master spectra. Finally, a feature transfer relationship
model is constructed through the feature transfer of the PLS subspace. This PLS-based subspace
transfer provides an efficient method for performing calibration transfer with only a small number
of standard samples. The performance of the PLSCT was compared and assessed with slope and
bias correction (SBC), piecewise direct standardization (PDS), calibration transfer method based on
canonical correlation analysis (CCACT), generalized least squares (GLSW), multiplicative signal
correction (MSC) methods in three real datasets, statistically tested by the Wilcoxon signed rank test.
The obtained experimental results indicate that PLSCT method based on the PLS subspace is more
stable and can acquire more accurate prediction results.

Keywords: calibration transfer; NIR spectroscopy; PLS; quantitative analysis model

1. Introduction

In the past few decades, near-infrared spectroscopy (NIR) has been widely used in various fields,
because of its fast speed and the fact that it does not cause damage to sample characteristics. These areas
include pharmaceutical [1–3], biomedical [4], petrochemical [5], agricultural [6,7], food [8–10]. In the
NIR analysis, the most frequently used multivariate calibration techniques are partial least squares
regression (PLS) [11,12] and principal component regression (PCR) [13,14]. However, the established
calibration model is often outdated or unsuitable for new samples due to factors of the diversity
of measuring instruments and measuring environments, as well as the variability of the materials
being measured. New samples refer to any samples not included in the calibration model, such as
those samples collected at different times or with different instruments. Frequent calibration is not
desirable because a large amount of time and resources are devoted to establishing calibration models.
One advisable option would be to carry out the calibration transfer.

Numerous relevant calibration transfer methods have been proposed in articles. In general,
these methods can be divided into two types: transfer standard and non-standard. The transfer
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standard requires the same standard samples to be measured on the master instrument and the slave
instrument. In this type of method, according to the stages in which the adjustment occurs are further
divided into four types.

The first type is the method of correcting the slave spectra. In the standard samples, the slave
spectra are made as close as possible to the corresponding master spectra by a transfer matrix. The most
widely used are direct standardization (DS) and piecewise direct standardization (PDS) methods [15,16].
In the PDS method, the transfer relationship between the master spectra and the slave spectra from the
sliding window is established at each wavelength of the master spectra, and finally a band-shaped
transfer matrix is formed for correcting the slave spectra.

The second type is the method of simultaneously correcting the master spectra and the slave
spectra. Commonly used is calibration transfer by the generalized least squares (GLSW) method [17,18].
GLSW uses the difference between the standard set of the master instrument and the slave instrument
to build the weight matrix, and then uses the weight matrix to reduce the weight of spectral feature to
be suppressed. A detailed description of the weight matrix is provided in [17] and [18].

The third type is the method of correcting the predicted values. Mainly the slope and bias
correction (SBC) method [19], this method considers that there is a linear relationship between the
predicted values of the slave spectra obtained by the master spectral model and the response variable,
usually using ordinary least squares method to calculate this relationship. The predicted values are
then corrected using this relationship.

The fourth type is the projection method. For example, calibration transfer method based on
canonical correlation analysis (CCACT) [20], which uses CCA to find the set of canonical variables that
are maximally correlated between the standard set of the master instrument and the slave instruments.
Further explore the transfer relationship between the two canonical variables.

In practical applications, it is difficult or even impossible to measure the same samples on two
instruments due to the position of the measuring instrument and the stability of the samples, etc.
At this time, it is necessary to use a method that does not require measurement of the same standard
samples, that is, a non-standard method. These methods are mainly divided into two types.

One is the signal preprocessing method, which removes the baseline offset and the linearly
sloped baselines by simple mathematical operations of the first derivative and the second derivative.
Common methods include multiplicative signal correction (MSC) [21], finite impulse response (FIR)
filtering [22], generalized moving window MSC (W-MSC) [21], OSC [23,24], etc., wherein FIR and
MW-MSC are variants of MSC. However, it must be noted that these simple preprocessing methods do
not handle complex changes between the master spectra and the slave spectra.

The other is the projection method. It includes transfer component analysis (TCA) [25] and kernel
principal component analysis (KPCA) [26]. TCA projects the master spectra and the slave spectra into
a common feature space in which the distribution of the master spectra and the slave spectra are as
similar as possible while retaining the key properties of the spectra. TCA and KPCA use different
kernels, so they can cope with nonlinear and more complex changes in the spectra.

In this paper, a novel projection method is proposed, which is a feature transfer model based on
PLS subspace (PLSCT). PLSCT establishes the PLS model of the calibration set of the master instrument
firstly, constructing a low-dimensional PLS subspace, which is a feature space constructed by the
spectral feature vectors. The PLS model is then used to extract the predicted features of the master
spectra and the pseudo predicted features of the slave spectra, that is, to project all spectra of the
master instrument and slave instrument into this PLS subspace. Then, the ordinary least squares
method is used to explore the relationship between the two features in the identical PLS subspace,
the relationship will then be resorted to construct a feature transfer relationship model.

Notice that the pseudo predicted feature of the slave spectra is acquired by the PLS model
established by the master instrument rather than the PLS model of the slave instrument. And PLSCT
does not need the response variable corresponding to the standard set. In addition, compared with PDS,
PLSCT corrects the feature of the spectra rather than the spectra. In contrast to CCACT, PLSCT uses
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PLS to find the covariance between the spectra and the response variable, instead of using CCA to find
the correlation between the master spectra and the slave spectra.

In order to validate the performance of the PLSCT model, we not only compare its prediction
results against those of the SBC, PDS, CCACT, GLSW, and MSC methods, but also apply the Wilcoxon
signed rank test [27] to determine whether PLSCT is statistically significantly superior to other models.
The experiment was conducted in three real near-infrared datasets. By analyzing all the experimental
results, we conclude that the PLSCT can significantly reduce the prediction error.

2. Results and Discussion

2.1. The Analysis of the Corn Dataset

First of all, Table 1 lists the latent variables (LVs) and the root mean square error of prediction
(RMSEP) of Calibration, Direct transfer and Recalibration. The RMSEP was 0.010156 when using the
calibration model of the master instrument to predict the spectra of the test set measured on the master
instrument. However, when directly using the calibration model of the master instrument to predict
the spectra of the test set measured on the slave instrument, the RMSEP was 1.41931, which indicates
that if the model of the master instrument is directly applied to the slave instrument, a large prediction
error will be generated.

Table 1. Root mean square error of prediction (RMSEP) obtained by Calibration, Direct transfer,
and Recalibration on three spectra datasets.

Instrument Methods LVs RMSEP

Corn
Calibration 1 13 0.010156

Direct transfer 2 1.41931
Recalibration 3 5 0.208522

Wheat
Calibration 1 12 0.258014

Direct transfer 2 0.85131
Recalibration 3 8 0.530799

Pharmaceutical tablet
Calibration 1 7 3.123115

Direct transfer 2 4.514284
Recalibration 3 2 3.31598

1 Calibration: the calibration model of the calibration set of the master instrument; 2 Direct transfer: the calibration
model of master instrument is used on the slave instrument without modification; 3 Recalibration: the calibration
model of the calibration set of the slave instrument.

The number of the factors for constructing the pseudo predicted feature matrix from the standard
set of the slave spectra (T̃

s_m
std ) and the predicted feature matrix from the standard set of the master

spectra (T̂m
std), which is a key parameter in the PLSCT model, was determined by leave-one-out

cross-validation. Figure 1A,B illustrates the effects of selecting the number of factors used to build
T̃

s_m
std and T̂

m
std on the cross-validation error when the number of the samples in the standard set is

set to 25 and 30. From the results in Figure 1A,B, inferring that when the number of the samples in
the standard set is set to 25 and 30, the number of factors should be set to 3. At this time, the root
mean square error of cross-validation (RMSECV) reached the minimum and PLSCT achieves the
best performance.
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Figure 1. The effect of selecting the number of factors when building T̃
s_m
std and T̂

m
std on the

cross-validation error. (A) Corn dataset and the number of the samples in the standard set is 25,
(B) Corn dataset and the number of the samples in the standard set is 30, (C) Pharmaceutical tablet
dataset and the number of the samples in the standard set is 25, (D) Pharmaceutical tablet dataset and
the number of the samples in the standard set is 30.

In addition, the measured values of the moisture content of the corn dataset obtained from
different models are compared with the predicted values when the number of the samples in the
standard set is set to 30 are shown in Figure 2. In this case, the slope of the line was equal to 1. A point
on the line indicates that the predicted value was equal to the measured value. As shown in Figure 2,
PLSCT exhibited the smallest differences between the measured values and predicted values. This is
attributed to the implementation of the feature transfer in the PLS subspace. The detailed description
is shown in Figure 3.

176



Molecules 2019, 24, 1289

Figure 2. Measured values versus predicted values of water content for corn dataset as determined
by (A) piecewise direct standardization with a window size of 3 (PDS(3)), (B) piecewise direct
standardization with a window size of 5 (PDS(5)), (C) piecewise direct standardization with a window
size of 7 (PDS(7)), (D) slope and bias correction (SBC), (E) calibration transfer method based on
canonical correlation analysis (CCACT), (F) generalized least squares (GLSW), (G) multiplicative signal
correction (MSC), (H) Recalibration and (I) partial least squares regression subspace based calibration
transfer (PLSCT).

For comparison, the differences between the feature before and after transfer in the PLS subspace,
the relationship between the first pseudo predicted feature of the slave instrument and the first
predicted feature of the master instrument is displayed in Figure 3. In these two plots, the blue dots
represent the feature before transfer, and the red dots represent the feature after transfer. The closer
the dots are to a straight line, the smaller the differences between the pseudo predicted feature of
the slave instrument and the predicted feature of the master instrument. Figure 3A,B depicts the
differences between features in the standard set and the test set, respectively. Obviously, after transfer,
the differences between the first pseudo predicted feature of the slave instrument and the first predicted
feature of the master instrument was significantly reduced, not only in the standard set, but also in the
test set.
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Figure 3. Plot for the differences between the feature before and after transfer in the partial least squares
regression (PLS) subspace. (A) The differences of the first pseudo predicted feature of slave instrument
standard set before and after transfer in PLS subspace, (B) The differences of the first pseudo predicted
feature of slave instrument test set before and after transfer in PLS subspace.

In order to evaluate the effect of the number of the samples in the standard set on different
calibration methods, 5, 10, 15, 20, 25, and 30, standard samples were considered in the experiment.
As can be seen from Table A1 in the Appendix A, the RMSEP of MSC was relatively large, and the
predictability of CCACT and GLSW were better than that of PDS, SBC and MSC. From 5 samples to
30 samples, the RMSEP of PLSCT was smaller than the RMSEP of PDS, SBC, CCACT, GLSW and MSC.
Moreover, the RMSEP of PLSCT had been gradually stabilized when the number of the samples in the
standard set from 20 to 30. So, we conclude that PLSCT had significantly better predictive performance
than other models.

To further compare PLSCT with other models, the RMSEP improvement and p-value by Wilcoxon
signed rank test are listed in Table A2 in the Appendix A. The RMSEP improvement of PLSCT to
PDS(3), PDS(5), PDS(7), SBC, CCACT, GLSW, MSC, Recalibration2 and Recalibration were as high
as 35.00575%, 34.99841%, 34.98937%, 41.95097%, 37.18537%, 30.21822%, 85.7502%, 8.610493% and
2.26298%, respectively. The Wilcoxon signed rank test shows statistically significant differences
between PLSCT and other models (include Recalibration) at the 95% confidence level.

2.2. The Analysis of the Wheat Dataset

In Table 1, we can note that when no calibration transfer method was used, the difference between
the RMSEP of directly using Calibration and the RMSEP of Recalibration was much smaller than the
difference in corn dataset, in part because the difference between the two instruments in wheat dataset
was relatively small.

Figure 4 displays the comparison of the measured values and the predicted values from different
models. From these plots, it is worth noting that the differences between measured values and predicted
values in PLSCT were only slightly larger than Recalibration and smaller than any other methods.
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Figure 4. Measured values versus predicted values of protein content for wheat dataset as determined
by (A) PDS(3), (B) PDS(5), (C) PDS(7), (D) SBC, (E) CCACT, (F) GLSW, (G) MSC, (H) Recalibration and
(I) PLSCT.

Since the spectra difference between the master instrument and the slave instrument was small in
the wheat dataset, the effect of feature transfer was not obvious in the PLS subspace from Figure 5.
However, the difference between the first pseudo predicted feature after transfer and the first predicted
feature is still slightly smaller. The number of samples of the standard set in Figure 5A was 30.

The performances of the different methods on wheat samples are also shown in Appendix A
Table A1. The Table A2 shows clearly that PLSCT has much lower prediction error than PDS, SBC,
GLSW and MSC when the number of the samples in the standard set is 10, 25 and 30. When the
number of the samples in the standard set was 30, the minimum RMSEP obtained by PLSCT was
0.6604. The RMSEP of Recalibration2 fluctuated greatly, probably because there were outliers in the
standard set of the slave instrument. These outliers also affect the performance of the SBC as shown
in Figure 4D.

The results by Wilcoxon signed rank test reveal that PLSCT is significantly different from
PDS(3), PDS(5), PDS(7), SBC, CCACT, GLSW, MSC and Recalibration2 at 95% confidence level.
The RMSEP improvement resulting from PLSCT compared with these models were 51.77389%,
54.35396%, 57.02112%, 87.45319%, 42.18862%, 61.34526%, 56.43832% and 69.98222%, respectively
(shown in Appendix A Table A2).
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Figure 5. Plot for the differences between the feature before and after transfer in the PLS subspace.
(A) The differences of the first pseudo predicted feature of slave instrument standard set before and after
transfer in PLS subspace. (B) The differences of the first pseudo predicted feature of slave instrument
test set before and after transfer in PLS subspace.

2.3. The Analysis of the Pharmaceutical Tablet Dataset

As in the previous cases, the LVs and RMSEP of Calibration, Direct transfer and Recalibration
are shown in Table 1. The RMSEP of Calibration is 3.123115, the RMSEP of direct transfer is 4.514284,
the RMSEP of Recalibration was 3.31598.

In the PLSCT model, the number of factors for constructing T̃
s_m
std and T̂

m
std was 4 when the number

of the samples in the standard set was set to 25 and 30, as shown in Figure 1C,D. When the number
of the samples in the standard set was set to 30, the comparison between the predicted values and
measured values is shown in Figure 6. The results show that PLSCT has achieved the best performance.

Figure 7 displays the comparison of the first pseudo predicted feature of the slave instrument
standard set and test set before and after transfer in the PLS subspace, where the number of samples of
the standard set in Figure 7A was 30. From the two plots in Figure 7, the first pseudo predicted feature
after transfer was significantly closer to the predicted feature of the master instrument, whether in the
standard set or in the test set of the slave instrument.

From Appendix A Table A1, as the number of the samples in the standard set increases,
the performance of PLSCT gradually got better. The RMSEP of PLSCT gradually became stable
when the number of samples in the standard set was 25 and 30, which were outperformed than PDS,
SBC, CCACT, GLSW and MSC significantly. From the results in Table A2, when the number of the
samples in the standard set was greater than 20, the RMSEP of PLSCT was already less than that
of Recalibration.

Compared with other models, the RMSEP improvement of PLSCT over them can reach up
16.3743%, 15.12146%, 14.35178%, 40.04516%, 16.81376%, 41.83697%, 24.21448%, 23.82937% and
2.908651%, respectively. Furthermore, the differences between PLSCT and other models are all
statistically significant at the 95% confidence level (shown in Appendix A Table A2).
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Figure 6. Measured values versus predicted values of pharmaceutical tablet dataset as determined by
(A) PDS(3), (B) PDS(5), (C) PDS(7), (D) SBC, (E) CCACT, (F) GLSW, (G) MSC, (H) Recalibration and
(I) PLSCT.

Figure 7. Plot for the differences between the feature before and after transfer in the PLS subspace.
(A) The differences of the first pseudo predicted feature of slave instrument standard set before and after
transfer in PLS subspace, (B) The differences of the first pseudo predicted feature of slave instrument
test set before and after transfer in PLS subspace.
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3. Materials and Methods

3.1. Dataset Description

3.1.1. Corn Dataset

The first dataset was corn dataset. We can conveniently access to obtain it at http://www.
eigenvector.com/data/Corn/. The dataset is composed of 80 corn samples. Three near-infrared
spectrometers were used to measure these samples, with wavelength range from 1100 nm to 2498 nm
at 2 nm intervals (700 channels). The property of moisture, oil, protein and starch of corn is contained
in the dataset. In this paper, the moisture content was chosen as the property of interest. We choose
M5 as ‘master instrument’, MP5 as ‘slave instrument’. The difference between the spectra measured
on M5 instrument and MP6 instrument can be observed in Figure 8A.

Figure 8. (A) The difference between the spectra of corn samples measured on M5 and MP5; (B) the
difference between the spectra of wheat samples measured on A1 and A2; (C) the difference between
the spectra of pharmaceutical tablet dataset.

3.1.2. Wheat Dataset

The second dataset was the wheat dataset, which consisted of 248 samples measured by three
instruments of manufacturer A. This dataset was the shootout data of the International Diffuse
Reflectance Conference (IDRC) in 2016. We can obtain it from http://www.idrc-chambersburg.
org/content.aspx?page_id=22&club_id=409746&module_id=191116. The wavelength range of the
manufacturer A was 730 nm–1100 nm and the interval was 0.5 nm. The dataset only provides the
reference protein values. In this paper, we take the first instrument of manufacturer A as ‘master
instrument’ and the second instrument as ‘slave instrument’. Figure 8B shows the difference between
the spectra measured on the A1 and A2 instruments.
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3.1.3. Pharmaceutical Tablet Dataset

The third dataset came from the IDRC shootout 2002, which contains 655 pharmaceutical tablets
measured on two spectrometers, with the range from 600 to 1898 nm, and the interval was 2 nm.
We can obtain it from http://www.eigenvector.com/data/tablets/index.html. There are three reference
values associated with this dataset, but we were only interested in weight content for each sample.
The difference between the spectra in the pharmaceutical tablet dataset is shown in Figure 8C.

3.2. Dataset Division

We adopt the Kennard and Stone algorithm [28] to split the dataset. Firstly, the entire samples
were split into the calibration set and the test set. The test set accounted for 20% of the total samples,
and the remaining 80% was used as the calibration set. The corn dataset was divided into 64 samples
for calibration set and 16 samples for the test set. The wheat dataset was divided into 198 samples
for calibration set and 50 samples for the test set. For the pharmaceutical tablets dataset, we first
integrated the three parts that have been divided, and then divided it into 524 samples for calibration
sets and 131 samples for test sets. The standard samples were selected from the calibration set via the
Kennard and Stone algorithm.

It must be noted that the Kennard and Stone algorithm was applied to the master spectra when
splitting the calibration set and test set, while the Kennard and Stone algorithm was applied to the
slave spectra when extracting the standard samples.

3.3. Determination of the Optimal Parameters

The number of latent variables used in the PLS model was selected by a 10-fold cross-validation.
In order to avoid over-fitting caused by the inclusion of redundant latent variables, the optimal number
of latent variables was achieved based on the statistical F-test [29] (α = 0.05).

The predicted feature from the standard set of slave instrument is a pseudo predicted feature T̃
s_m
std

constructed by the PLS model of the master instrument. Compared with the predicted feature T̃
s
std

constructed by the PLS model of the slave instrument, the T̃
s_m
std may contain some noise, which has

a great influence on the solution of the transfer matrix ξ, further affecting the performance of the
PLSCT model. In order to optimize the model, we used leave-one-out cross-validation to select
the best number of factors in the standard set based on the minimum root mean square error of
cross-validation (RMSECV) criterion. The response variable of the standard set used in cross-validation
was the predicted value of the master instrument standard set obtained by the PLS model of the
master instrument.

For the PDS method, its window sizes were set to 3, 5, and 7, respectively.

3.4. Model Performance Evaluation

In order to verify the prediction performance of different calibration models, we calculated the
root mean square error of prediction (RMSEP). The calculation of RMSEP is as follows:

RMSEP =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
(1)

where yi represents the measured value associated to the i-th test sample, ŷi is its final predicted value,
while n is the number of samples in the test set.
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In order to compare the prediction performance difference between the proposed model and
other models more directly, Equation (2) was used to calculate the RMSEP improvement of the PLSCT
method compared with other methods:

h =

(
1 − RMSEPPLSCT

RMSEPother

)
× 100% (2)

where RMSEPPLSCT represents the prediction error of the PLSCT method, RMSEPother represents the
prediction error of other comparison methods.

In addition, by comparing prediction error of the different models, the Wilcoxon signed rank
test at the 95% confidence level was utilized to point out whether there was a significant difference
between PLSCT and other methods. In python, we used the wilcoxon function in the scipy package
to directly calculate the p-value between the two prediction errors. If p > 0.05, there is no significant
difference between the two methods. Otherwise, there is significant difference.

3.5. Calibration Transfer Method

3.5.1. Notation

In this paper, we define the spectral matrix as X, n× p represents the size of the matrix, n represents
the number of samples, p represents the number of variables, and xi represents the spectral variables
corresponding to the i-th sample of the matrix. The response variables are defined as y and the
predicted values are defined as ŷ. In order to distinguish the spectra collected on the two instruments,
we added a superscript to the back of the matrix, such as defining the spectra from the master
instrument as Xm, defining the spectra from the slave instrument as Xs, the predicted feature matrix of
the master spectra obtained by the master instrument calibration model is T̂

m, the pseudo predicted
feature matrix of the slave spectra obtained by the master instrument calibration model is T̃

s_m
.

At the same time, a subscript was added to the back of the matrix to distinguish different data sets.
For instance, Xm

cal, Xm
std, and Xm

test represent the calibration set, standard set and test set of the master
instrument, respectively. Xs

cal, Xs
std, and Xs

test represent the calibration set, standard set and test set of
the slave instrument, respectively.

3.5.2. Overview of PLS

PLS is a widely used multivariate calibration technique. PLS applies score vectors model the
relationship between X and y. It projects X and y into a PLS subspace, a low-dimensional space defined
by a small number of the score vectors. The mean-centered X and y are decomposed as follows:{

X = TPT + E

y = TqT + F
(3)

where T is the score matrix, P and q represent loadings matrix for X and y, respectively. E and F are
the matrices of residuals corresponding to X and y.

The matrix of regression coefficients is:

β = W
(

PTW
)−1

qT (4)

where W is the weight matrix.
With the regression coefficient matrix β, we can have the predicted values:

ŷ = Xβ (5)
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3.5.3. Proposed PLSCT method

In the PLSCT, the PLS model was built on the calibration set of the master instrument to construct
the PLS subspace, which is also the feature space constructed by the feature vectors of the spectra
of the master instrument calibration set. The number of latent variables (LVs) in the PLS model is
determined by cross-validation.

βm = Wm
(
(Pm)TWm

)−1
(qm)T (6)

On the basis of this PLS model, the predicted feature matrix of standard set in the master
instrument Xm

std can be calculated via it, that is, the spectra of the master instrument can be projected
into the PLS subspace:

T̂
m
std = Xm

stdWm
(
(Pm)TWm

)−1
(7)

Similarly, the pseudo predicted feature matrix of standard set in the slave instrument Xs
std can be

calculated via this PLS model as well as Xm
std, in other words, the spectra of the slave instrument can be

projected into this PLS subspace:

T̃
s_m
std = Xs

stdWm
(
(Pm)TWm

)−1
(8)

The two predicted feature matrices obtained are derived from the same PLS model of the master
instrument, that is to say, all spectra are projected into the identical PLS subspace constructed by the
master instrument. In the identical PLS subspace, there should be a linear relationship between the
two feature matrices. So T̃

s_m
std and T̂

m
std can be built as:

T̃
s_m
std ξ = T̂

m
std (9)

The linear relationship between the two feature matrices can be solved through the ordinary least
squares method, by the following equation:

ξ =

((
T̃

s_m
std

)T
T̃

s_m
std

)−1(
T̃

s_m
std

)T
T̂

m
std (10)

Once ξ is computed, for the test set from the slave instrument Xs
test, applying Equation (11) to

calculate the predicted values corresponding to the spectra:

ŷtest = Xs
testW

m
(
(Pm)TWm

)−1
ξ(qm)T (11)

4. Conclusions

In this paper, an ingenious calibration transfer method based on PLS subspace is proposed.
PLSCT uses the same PLS model to project the spectra into the identical PLS subspace. In the identical
subspace, a feature transfer model is constructed by narrowing the differences between the predicted
feature of master instrument and the pseudo predicted feature of the slave instrument via an ordinary
least squares method. Additional, PLSCT does not need the response variable corresponding to the
standard set. As expected, experimental results on three real datasets show that compared with
PDS, SBC, CCACT, GLSW, and MSC, the PLSCT model is more stable and can obtain more accurate
prediction results. The reason why the PLSCT model can achieve such remarkable results is that
while the spectra of the slave instrument are projected into this subspace, some noise effects such as
scattering that are unrelated to the response variable will be removed from the spectra, and then the
feature transfer in the identical PLS subspace can more accurately narrow the differences between the
predicted feature of master instrument and the pseudo predicted feature of slave instrument.
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Abstract: The present study demonstrates the applicability of at-line monitoring of the extraction
process of Rosmarinus officinalis L. leaves (Rosmarini folium) and the development of near-infrared (NIR)
spectroscopic analysis methods. Therefore, whole dried Rosmarini folium samples were extracted by
maceration with 70% (v/v) ethanol. For the experimental design three different specimen-taking plans
were chosen. At first, monitoring was carried out using three common analytical methods: (a) total
hydroxycinnamic derivatives according to the European Pharmacopoeia, (b) total phenolic content
according to Folin–Ciocalteu, and (c) rosmarinic acid content measured by UHPLC-UV analysis.
Precision validation of the wet chemical assays revealed a repeatability of (a) 0.12% relative standard
deviation (RSD), (b) 1.1% RSD, and (c) 0.28% RSD, as well as an intermediate precision of (a) 4.1% RSD,
(b) 1.3% RSD, and (c) 0.55% RSD. The collected extracts were analyzed with a NIR spectrometer using
a temperature-controlled liquid attachment. Samples were measured in transmission mode with an
optical path length of 1 mm. The combination of the recorded spectra and the previously obtained
analytical reference values in conjunction with multivariate data analysis enabled the successful
establishment of partial least squares regression (PLSR) models. Coefficients of determination (R2)
were: (a) 0.94, (b) 0.96, and (c) 0.93 (obtained by test-set validation). Since Pearson correlation analysis
revealed that the reference analyses correlated with each other just one of the PSLR models is required.
Therefore, it is suggested that PLSR model (b) be used for monitoring the extraction process of
Rosmarini folium. The application of NIR spectroscopy provides a fast and non-invasive alternative
analysis method, which can subsequently be implemented for on- or in-line process control.

Keywords: ultra-high performance liquid chromatography; Folin–Ciocalteu; total hydroxycinnamic
derivatives; phytoextraction; near-infrared spectroscopy

1. Introduction

Plants have been the main source of traditional medicine systems over millennia and are still of
great importance in healthcare today [1,2]. The demand for pharmaceuticals based on natural sources
has even increased in recent times [3,4]. In Europe, herbal substances, preparations, and combinations
are assessed and regulated by the Committee on Herbal Medicinal Products (HMPC), which is part of the

Molecules 2019, 24, 2480; doi:10.3390/molecules24132480 www.mdpi.com/journal/molecules191
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European Medicines Agency (EMA), and the European Pharmacopoeia (Ph. Eur.) [5,6]. Nevertheless,
chemically complex plant-based preparations are in constant competition with chemically defined
products. Therefore, quality assurance and analytics of these so-called “phytopharmaceuticals” is a
big challenge for the manufacturers. Besides the incoming goods, inspection and extraction control of
medicinal plants play an important role in the yield and purity of the product [7]. Furthermore, resource
and cost efficiency can be increased by extraction optimization. Near-infrared (NIR) spectroscopy
and Raman spectroscopy represent attractive analysis techniques for the research demand regarding
the at-line, on-line, or in-line analysis of phytoextraction processes [3,8–14]. In contrast to common
off-line reference analyses, NIR spectroscopic process monitoring as process analytical technology
(PAT) has convincing advantages since its operation is non-destructive, contact-free, pollution-free,
does not require any additional solvents, saves energy, and is highly cost-effective. The recorded NIR
spectra include multiple physical and chemical parameters which can be determined simultaneously.
The use of optical light fibers facilitates a distance of up to several hundred meters between the
measurement probe and the analyzer. Furthermore, NIR spectroscopy fulfills the requirements of fast
real-time process control. Nevertheless, the development of a NIR spectroscopic analysis method is
time- and resource-consuming and has to be undertaken by experienced professionals [15]. As for
reference analytics, the quantification of the total phenolic compound is specified by the European
Pharmacopoeia. The antioxidant properties of certain phytogenic substances are attributed to the
presence of phenol terpens in rosemary [16]. The analysis described in the European Pharmacopoeia is
principally for the analysis of cinnamic acid derivatives. The assay is complicated and another wet
chemical assay (Folin–Ciocalteu) has to be executed to verify the results. The Folin–Ciocalteu analysis
is not that specific but is more reproducible. However, HPLC analysis is currently the method of
choice. It is state-of-the-art, since the analyses can be measured without any major work-up and the
measurement can be automated, in contrast to the wet-chemical investigations [17]. In order to meet
the requirements of the EMA and still be up to date, all three analyses were carried out, calibrated into
the system, and checked for reproducibility, traceability and comparability. Thus, a holistic view of the
system and the determination of the saturation of the extraction could be determined. The present
feasibility study reports the monitoring of the phytoextraction process of Rosmarinus officinalis L. leaves
using common analytical methods as well as newly developed NIR spectroscopic methods applying
partial least squares regression (PLSR) models as multivariate data analysis (MVA) tools. This analysis
was used as the basis for an online fixation of NIR measurements in phytochemical extractions.

2. Results and Discussion

2.1. Wet Chemical Assays (European Pharmacopoeia and Folin–Ciocalteu)

The wet chemical assays for the determination of total hydroxycinnamic derivatives (THCD)
according to Ph. Eur. and gallic acid equivalents (GAE%) referred to as Folin–Ciocalteu (FC)
have similar reaction mechanisms. The chemical background is very complex and not yet fully
understood. Both wet chemical assays are based on the reduction of a mixture composed of tungsten
and molybdenum oxides [18]. In the fully oxidized valence state the isopolyphosphotungstates
are colorless and the molybdenum compounds are yellow. The reagent mixture consists of
heteropolyphosphotungstates-molybdates. In an acidic solution a hydrated octahedral complex
of metal oxides, which is coordinated around a central phosphate, appears. Due to the reversible
reduction of one or two electrons the color of the solution changes. In the case of the Ph. Eur. assay the
solution turns red and in the case of the FC assay it turns blue [19]. The more intense the color the
higher the concentration of the phenolic compounds is in the samples.

The Ph. Eur. assay, which can be assigned to the THCD, is more substance-specific than the FC
assay. This is based on the different chemicals which are added for the assays. FC targets hydroxy
groups, whereas the Ph. Eur. assay targets carboxyl groups which are not as common as hydroxy
groups in the chemistry of natural products [20]. In the present study both assays were applied

192



Molecules 2019, 24, 2480

for monitoring the extraction process of Rosmarini folium. Correlation analyses of the two assays
revealed a Pearson correlation of 0.966 (Table 1). This means that substances which were assessed by
measurement via the Ph. Eur. assay were highly correlated with those measured by the FC assay, and
vice versa.

Table 1. Pearson correlations of the reference analyses.

Ph. Eur. FC UHPLC

Ph. Eur. 1 - -
FC 0.966 1 -

UHPLC 0.955 0.953 1

Looking at the results of the precision studies in Table 2, the repeatability confirmed the high
performance of the Ph. Eur. assay. Nevertheless, determination of the intermediate precision revealed
the superiority of GAE% quantification via the FC assay, with a 1.3% relative standard deviation (RSD),
compared to THCD quantification via the Ph. Eur. assay with a 4.1% RSD. The easier handling of the
FC assay compared to the Ph. Eur. assay could be the reason for the better repeatability of the results
on different days.

Table 2. Parameters of the precision studies of the reference analysis.

Ph. Eur. FC UHPLC

Repeatability in % RSD 0.12 1.1 0.28
Intermediate precision in % RSD 4.1 1.3 0.55

Repeatability (absolute) 16 * 0.028 ** 0.0017 ***
Intermediate precision (absolute) 593 * 0.033 ** 0.0028 ***

* THCD mg/kg, ** GAE%, *** RA%

Both assays were used as reference analyses for the establishment of NIR spectroscopic methods.

2.2. Ultra-High Performance Liquid Chromatography

Nowadays, automatable methods like UHPLC-UV measurements are more common than wet
chemical assays. This is because the sample preparation for UHPLC-UV measurement is often easier
than for a wet chemical assay. Furthermore, fewer mistakes and variations in the analyses occur in
UHPLC-UV. Also, in the present case, precision studies of the UHPLC-UV measurements of Rosmarini
folium extracts obtained good repeatability (0.28% RSD) and excellent intermediate precision (0.55%
RSD) for the determination of rosmarinic acid (RA) compared to the wet chemical assays (see Table 2).
An example of a Rosmarini folium extract chromatogram compared to a RA reference solution,
which was used for external calibration, is illustrated in Figure 1. Although the RA quantification
showed such good results it is important to note that biological extracts are multi- substance mixtures
of secondary metabolites. This is the reason that the Pearson correlations (Table 1) between the
UHPLC-UV measurements and the wet chemical assays (0.955 and 0.953) were lower than the Pearson
correlation between the wet chemical assays (0.966). Nevertheless, a high correlation between all three
reference analysis methods was observed. Based on this fact, the reference analytical method of choice
for the establishment of a NIR spectroscopic method should either be the UHPLC-UV analysis for
the quantification of the single substance, RA, or the FC assay which was the better performing wet
chemical assay (see Section 2.1) representing the plant extract as multi-substance mixture.
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Figure 1. Chromatograms of (a) rosemary extract (red line) in 70% v/v ethanol (50 g/L) after 3 h
continued stirred extraction, and (b) rosmarinic acid reference solution (black line), measured at 330 nm.

2.3. Near-Infrared Spectroscopy

Raw NIR spectra of all 90 samples are shown in Figure 2a. For the establishment of the PLSR
models, uninformative and interfering spectral regions were excluded. Therefore, the best PLSR
models were obtained by using the wavenumber region from 6028 to 5424 cm−1, which is illustrated in
Figure 2b.

Figure 2. (a) Raw near-infrared (NIR) spectra of all 90 samples; (b) section from the raw NIR spectra
showing the wavenumber region used for PLSR model calculation; (c) first derivate (13 smoothing points)
and standard normal variate (SNV)-transformed NIR spectra region used for total hydroxycinnamic
derivatives (THCD) in mg/kg and gallic acid equivalents (GAE)% PLSR model calculation; and (d)
second derivate (23 smoothing points) and SNV-transformed NIR spectra region used for rosmarinic
acid (RA)% PLSR model calculation.

The results of the best PLSR models for THCD in mg/kg, GAE% and RA% are given in Table 3.
The best spectral pretreatment for THCD in mg/kg and GAE% was the first derivative, using 13
smoothing points followed by applying standard normal variate (SNV) transformation to the selected
wavenumber region (see Figure 2c). The best spectral pretreatment for the determination of RA%
was the second derivative, with 23 smoothing points followed by applying SNV transformation to
the selected wavenumber region (see Figure 2d). Predicted versus reference plots, and the regression
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coefficient plots for the three PLSR models are shown in Figure 3a,b for THCD in mg/kg, Figure 3c,d
for GAE%, and Figure 3e,f for RA%.

Table 3. Parameters of the established partial least squares regression PLSR models.

Reference Analysis Ph. Eur. FC UHPLC

Samples 90 90 90
Outliers 0 0 0

CV TSV CV TSV CV TSV
R2

calibration 0.95 0.95 0.97 0.97 0.94 0.95
R2

validation 0.94 0.94 0.96 0.96 0.94 0.93
RMSEC (a) 1425 * 1308 * 0.14 ** 0.13 ** 0.11 *** 0.09 ***

RMSECV (b) or RMSEP (c) 1527 * 1632 * 0.16 ** 0.18 ** 0.12 *** 0.13 ***
Factor 3 4 3 4 4 4

Calibration range 1975–25378 * 0.494–3.660 ** −1.810 ***

* THCD mg/kg, ** GAE%, *** RA%, (a) root mean square error of calibration, (b) root mean square error of cross
validation, (c) root mean square error of prediction.

Figure 3. Predicted versus reference plots (left column) and regression coefficient plots (right column)
for the best test-set validated PLSR models for: (a) and (b) THCD in mg/kg, (c) and (d) GAE%, and (e)
and (f) RA%.
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NIR bands of the wavenumber region used (see Figure 2b) which have an influence on the PLSR
model calculations can be considered mainly as aromatic and unsaturated 2νCH. This is due to the
diverse, but nevertheless chemically similar, structures of the THCD, the total phenolic content, and
the RA content. Therefore, other bands which emerge from overtones or combinations of OH, CC,
and CO vibrations can be excluded for the establishment of the PLSR model [21] The criteria for the
successful end of the extraction process of Rosmarini folium is to access the extraction plateau. This can
be easily achieved by the reference analyses methods (see Figure 4a). However, these need analysis
time and manpower, as well as chemicals, and are therefore not suited for real-time at-line monitoring.
All three NIR spectroscopic PLSR models also showed satisfactory results for the monitoring of the
extraction process of Rosmarini folium. Since the reference analyses were all correlated (see Table 1)
the application of just one of the PSLR models was required to obtain the desired result. Therefore,
it is suggested that the best PLSR model should be applied. The model for GAE% showed the best
performance, as indicated by comparing the values for root mean square error of cross validation
(RMSECV) or root mean square error of prediction (RMSEP) to the given calibration ranges in Table 3.
These values were almost in the range of the lower edge of the calibration line for THCD in mg/kg
and RA%. For GAE%, the RMSECV or RMSEP were much smaller than the minimum value of the
calibration range. Therefore, it is suggested that the PLSR model for GAE% be applied for monitoring
the extraction process of Rosmarini folium. Figure 4b illustrates the extraction monitoring using
NIR spectroscopy for GAE% prediction via the PLSR model. In direct comparison, Figure 4a shows
monitoring via the reference analysis method.

Figure 4. Monitoring of the extraction process of Rosmarini folium via (a) Folin–Ciocalteu reference
analysis and (b) NIR spectroscopy.

Although the reference method has better intermediate precision with 0.033 GAE%, the PLSR
model with a RMSEP of 0.18 GAE% is absolutely satisfactory for monitoring the extraction process
of Rosmarini folium. Furthermore, in contrast to the common off-line reference analyses, NIR
spectroscopic process monitoring has convincing advantages since its operation is non-destructive,
contact-free, pollution-free, does not require any additional solvents, saves energy and is highly
cost-effective [15].

3. Materials and Methods

3.1. Chemicals

Ethanol (99.9%, LiChrosolv for liquid chromatography), acetonitrile (99.9%, LiChrosolv Reag. Ph.
Eur., gradient grade for liquid chromatography) were purchased from Merck Millipore (Darmstadt,
Germany). Hydrochloric acid (0.5 N), sodium nitrite (>98%), sodium molybdate dihydrate (>99.5%)
and sodium hydroxide tablets (>98%) were bought from Carl Roth GmbH + Co. KG (Karlsruhe,
Germany). Rosmarinic acid (>99%), Folin–Ciocalteu′s phenol reagent (2N), gallic acid (>97.5%), formic
acid (98–100%, Suprapur for trace analysis) and sodium carbonate anhydrous (>99.8%) were obtained
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from Sigma Aldrich Handels GmbH (Vienna, Austria). H2O was purified using a Mili-Q® reference
water purification system from Merck Millipore. Rosmarinus officinalis L. leaves (Rosmarini folium)
were collected in the wild at Lake Garda (Italy).

3.2. Extraction and Sampling

Dried Rosmarinus officinalis L. leaves were weighed (25 g ± 1 g) and extracted with 500 mL 70% (v/v)
ethanol. The extraction was done in a 500 mL glass vessel with constant stirring using a color squid
(IKA, Staufen im Breisgau, Germany). The extraction time lasted a maximum of 12 h. Three different
sampling schedules were planned, and each was conducted three times (total: nine batches). For each
sampling 1.5 mL were taken. The specimen-taking schedules are presented in Table 4. The numbering
of the batches was done in following way: #(sampling). #(batch). Therefore, the three batches for each
sampling schedule were denoted as 1.0, 1.1 and 1.2 or 2.0, 2.1 and 2.2 or 3.0, 3.1 and 3.2 for sampling 1,
sampling 2, or sampling 3, respectively.

Table 4. Sampling schedule for extraction experiments.

Sampling 1 Sampling 2 Sampling 3

1.5 min 2 min 2.5 min
3 min 4 min 5 min
6 min 8 min 10 min

12 min 16 min 20 min
24 min 32 min 40 min
45 min 60 min 50 min
90 min 120 min 80 min

180 min 240 min 150 min
360 min 480 min 300 min
720 min 660 min 600 min

3.3. Wet Chemical Assays

3.3.1. European Pharmacopoeia

The THCD of plant extracts were determined according to the procedure reported by the Ph.
Eur. [6] with some modifications: 1.0 mL of sample solution was taken to which 2.0 mL of 0.5 M
hydrochloric acid, 2 mL of nitrite–molybdate solution (10 g of sodium nitrite and 10 g of sodium
molybdate in 100 mL water) and 2 mL of 1 M sodium hydroxide solution were added. The mixture
was made up to 10 mL with water. Absorbance was measured with a Jenway Genova Plus Life Science
Spectrophotometer (Cole-Parmer, Stone, United Kingdom) at 505 nm and quantification was performed
with RA as an external standard calibration. Every extraction sample and calibration sample was
prepared in the same way as described above. The repeatability and intermediate precision were
determined according to ICH (international council for harmonization of technical requirements for
pharmaceuticals for human use) guidelines [22,23]. Therefore, three samples with low, medium, and
high THCD content were analyzed for five days, three times per day.

3.3.2. Folin–Ciocalteu

The total phenolic content of plant extracts in GAE% was determined using FC reagent according
to the procedure reported by Singleton, Orthofer, and Lamuela-Raventos [24] with some modifications.
First, 1.5 mL of H2O was placed in a macrocuvette (PMMA, Brand, Germany). Next, 100 μL of
sample solution, 100 μL of FC′s phenol reagent, and 1.3 mL of Na2CO3 were added. The mixture was
heated to 60 ◦C for 30 min. After the heating procedure the samples were cooled for 20 min to room
temperature. Absorbance was measured with the spectrophotometer at 750 nm. Quantification of the
total phenolic content was performed by an external calibration with gallic acid. All extraction samples
and calibration samples were prepared in the same way as described above. The repeatability and
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intermediate precision were determined according to ICH guidelines [22,23]. Therefore, three samples
with low, medium, and high GAE% were analyzed for five days, three times per day.

3.4. Ultra-High Performance Liquid Chromatography

UHPLC analysis of RA was performed with an Agilent 1290 Infinity II LC Systems (Agilent
Technologies, Santa Clara, CA, USA) equipped with a binary pump (G7120A), an autosampler (G7167B),
a column oven (G7116B), and a DAD (diode array detector) (G7117A). Separation of RA was achieved
by using an Agilent ZORBAX Eclipse Plus C18, Rapid Resolution HD 2.1 × 50 mm, 1.8 μm (Agilent
Technologies, CA, USA) as the analytical column. The mobile phase was a composition of 0.5% formic
acid in water (v/v, eluent A) and 0.5% formic acid in acetonitrile (v/v, eluent B). A gradient program was
performed using the following steps (min/% eluent B): 0/15, 6/70, 6.1/100, 8/100, 8.1/15, and 10/15. The
temperature of the column oven was set to 40 ◦C and detection of RA was performed at 330 nm. The
flowrate was 1 mL/min and the injection volume was 1 μL. Quantification was performed using the
external standard method. The repeatability and intermediate precision were determined according to
ICH guidelines [22,23]. Therefore, three samples with low, medium and high RA% were analyzed for
five days, three times per day.

3.5. Near-Infrared Spectroscopy

NIR spectra were measured using the NIRFlex N-500 FT-NIR spectrometer (Buchi, Flawil,
Switzerland) with the NIRFLex Liquids cell and the cuvette cell add-on. The operating software was
NIR Ware 1.4.3010 (Buchi, Flawil, Switzerland). Spectra of the extracts were recorded using precision
cells (Hellma GmbH & Co. Kg., Müllheim, Germany) made of Quartz SUPRASIL 300 with a light path
of 1 mm at a cell temperature of 35 ◦C. The spectral resolution was set to 8 cm−1 and the measurements
were carried out in the wavenumber region from 10,000 to 4000 cm−1. Three replicates for each sample
were recorded, with 32 scans each. Spectra were averaged to one representative spectrum per sample.

3.6. Multivariate Data Analysis

MVA was performed using The Unscrambler X Version: 10.5 software (CAMO Software, Oslo,
Norway). First, transmittance spectra were transformed to absorbance spectra in order to establish
PLSR models. The following spectral pretreatments were applied, alone or in combination, to identify
the best PLSR model: baseline correction, SNV transformation [25], multiplicative scatter correction
(MSC) [26], and first or second derivative. Savitzky-Golay derivatives [27] (quadratic polynomial) were
optimized by variation of the smoothing points. Furthermore, spectral regions which contained no
relevant information or even worsened the PLSR models were excluded. The NIPALS algorithm [26]
was applied for calculating the PLSR models. For each of the three reference methods (Ph. Eur., FC,
and UHPLC) an optimized model was established. The models were validated by full cross validation
(CV), also known as leave one out cross validation (LOOCV) [28], and test-set validation (TSV). For TSV,
batches 2.0, 2.1, and 2.2 (30 samples) were set as the independent test-set, and batches 1.0, 1.1, 1.2, 3.1, 3.2
and 3.3 (60 samples which included the extreme values) were used as the calibration set. The number
of factors was chosen at the suggestion of the software, The Unscrambler X, and examined by expert
reviewing. The calculated PLSR models were evaluated with the following parameters: root mean
square error of calibration (RMSEC), RMSECV for CV, RMSEP for TSV, coefficient of determination
(R2), regression coefficients, and the number of factors.

4. Conclusions

A fast analysis of the extraction process for the production of phytopharmaceuticals is indispensable
in terms of economic viability and quality assurance. Common analytical methods which can be used
for Rosmarini folium extraction monitoring are time- and resource-intensive and do not fulfill the
requirement for real-time process control. However, the NIR spectroscopic analysis method provides a
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fast and non-invasive alternative analysis method, which can subsequently be implemented for on- or
in-line process monitoring of the phytoextraction of Rosmarini folium.
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Abstract: The fight against counterfeit pharmaceuticals is a global issue of utmost importance, as
failed medication results in millions of deaths every year. Particularly affected are antimalarial tablets.
A very important issue is the identification of substandard tablets that do not contain the nominal
amounts of the active pharmaceutical ingredient (API), and the differentiation between genuine
products and products without any active ingredient or with a false active ingredient. This work
presents a novel approach based on fiber-array based Raman hyperspectral imaging to qualify and
quantify the antimalarial APIs lumefantrine and artemether directly and non-invasively in a tablet
in a time-efficient way. The investigations were carried out with the antimalarial tablet Riamet®

and self-made model tablets, which were used as examples of counterfeits and substandard. Partial
least-squares regression modeling and density functional theory calculations were carried out for
quantification of lumefantrine and artemether and for spectral band assignment. The most prominent
differentiating vibrational signatures of the APIs were presented.

Keywords: Raman spectroscopy; hyperspectral imaging; analytical spectroscopy; counterfeit and
substandard pharmaceuticals; DFT calculations; chemometrics; PLSR; API; lumefantrine; artemether;
antimalarial tablets

1. Introduction

Confidential reports to the World Health Organization (WHO) in the last few years from
20 countries relating to counterfeit drugs revealed that the three highest incidences of fake products
were those without active pharmaceutical ingredients (about 30%), followed by incorrect quantities
of active ingredients and products with wrong ingredients (about 20% each) [1]. It is estimated that
every 10th pharmaceutical product in low- and middle-income countries is substandard or falsified
(SF). Antimalarials are the most frequently falsified medicines, representing about 20% of the overall
SF products reported in 2017 [2]. Out of the 12 major antimalarial drugs used in the world today, 8 are
regularly counterfeited, and more than a third of antimalarial drugs available in sub-Saharan Africa
and southeast Asia are reported to be counterfeit or substandard [3].

A report from 2014 [4] showed that among the over 9000 antimalarials sampled, nearly every
third failed chemical or packaging quality tests, from which about 40% were classified as counterfeit or
substandard and up to 20 wrong active ingredients were found in falsified antimalarials [4].

In 2012 and 2013, one of the most commonly used first-line antimalarials, Riamet®, with active
pharmaceutical ingredients (APIs) lumefantrine and artemether (also commercialized as Coartem®),

Molecules 2019, 24, 3229; doi:10.3390/molecules24183229 www.mdpi.com/journal/molecules201
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has been involved in one of the greatest counterfeit scandals of our time. The producing company,
Novartis, also officially informed customers of the potential counterfeit “dummy tablets”—without
active ingredients—saying “counterfeiting medicines is a serious crime against patients who rely on
safe and quality-assured medicines to prevent and cure disease, alleviate pain and save lives” and
“reports of adverse reactions [ . . . ] could materially affect patient confidence in the authentic product,
and harm the business of companies such as ours” [5].

Since developing countries are especially concerned of falsified antimalarials, there is an urgent
need for low-cost, low-maintenance, easy-to-use, and rapid analytical methods to combat the counterfeit
and substandard problem [2]. The Food and Drug Administration (FDA) developed a handheld
device named CD-3 [6], which compares scanned images with a stored image of the original product,
picking up minute differences in the packaging, pill color, or shape. Although this method is quick and
helps to recognize fake packing, it is not chemically selective and does not detect false APIs or false
concentrations. Standard techniques, such as high-performance liquid chromatography (HPLC) and
mass spectrometry, are highly accurate and reliable, but these methods are strictly lab-based, expensive,
time-consuming, and require trained personal. For a quick check, the pH and crystal morphology of
the products can be analyzed [3], or a colorimetric test using sulfuric and acetic acid can be applied [7].
This method is based on a color-coded reaction for qualification coupled with color intensity analysis
to determine the concentrations of the APIs [7] but chemical selectivity is not ensured.

Raman spectroscopic methods are based on intrinsic molecular vibrations [8–14] and provide
an extremely high chemical selectivity [15–22]. The technique is direct and non-invasive [23–25],
can be miniaturized, and is also available for on-site applications [26–28]. Hence, Raman
spectroscopy has already paved its way in counterfeit detection [29–33]. Handheld Raman devices
are commercially available from Rigaku Raman Technologies [29], Ahura Scientific, Inc. [30], and
B&W Tek, Inc. [32], and all use 785-nm lasers for excitation. These systems are applicable for solid
dosage forms. Still, they are not fully reliable for substandard medicine detection and are used as
semi-quantitative methods [32]. Another approach for solid pharmaceutical analysis is spatial offset
Raman spectroscopy (SORS), where an excitation wavelength also in the near-infrared (NIR) range is
applied (824 nm), focusing on the suppression of signals from colored tablets and capsules’ coating [31].
Recently, a line-scanning Raman imaging technique with an excitation wavelength of 785 nm was also
reported for API quantification [33].

In this work, we present a proof-of-principle study using fiber-array based Raman spectroscopy [34]
with an excitation wavelength in the visible range (532 nm) for multicomponent concentration analysis
and counterfeit testing of the antimalarial tablet Riamet®.

Our method allows us to reliably qualify and quantify the active ingredients lumefantrine and
artemether in tablets without dissolving them, as it is done for the standard HPLC analysis. By using an
8 × 8 fiber array, 64 spectra can be collected simultaneously, thus analyzing a larger area of the tablets
is possible with only one measurement in a time-efficient way. This advantage is of great importance,
as pharmaceutical samples are often heterogeneous. By illuminating the sample surface with a bigger
field-of-view (FOV) instead of a mere spot, variations of the spatial concentration distribution can be
visualized. The fiber array imaging setup presented here operates with an excitation wavelength of λ
= 532 nm, thus the Raman scattering intensity is enhanced in comparison to excitation wavelengths in
the NIR according to Equation (1), where N is the number of scatterers, I0 is the laser intensity, ν0 is the
frequency of the excitation laser, and α is the polarizability of the molecule. This offers the chance to
quantify substandard drugs with lower amounts of API.

ISTOKES ∝ N·I0·(ν0 − νr)
4·|α|2. (1)

2. Results and Discussion

This work reports the simultaneous qualification and quantification of two APIs in a pharmaceutical
tablet by means of fiber array-based hyperspectral Raman imaging for the first time. First, the Raman
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spectra of the pure tablet ingredients, lumefantrine, artemether, and hypromellose, were acquired
(Figure 1). The vibrational band assignments of the active ingredients were performed based on density
functional theory (DFT) calculations and are summarized in Table 1. A comparison of the calculated
Raman spectra with the experimentally acquired FT-Raman spectra confirmed a very good agreement
(Figure S1). The characteristic Raman bands of lumefantrine were assigned to the vibrational modes
from the benzene ring stretching (L3), C=C stretching (L4), and CH deformational vibrations (L1, L2).
The dominant Raman bands of artemether were mostly assigned to different CH vibrations (A1—CH3

wagging, A2—asymmetric stretching of CH2 combined with slight CH-stretching, A3—asymmetric
CH2 stretching). The latter ones overlap with the Raman modes of the excipient hypromellose.
The quantification of artemether in the presence of hypromellose is therefore challenging. To qualify
and quantify the APIs lumefantrine and artemether based on the Raman spectra of the tablets in a
reliable way, it is necessary to apply multivariate data analysis approaches. A very robust quantitative
chemometric method is partial least squares regression (PLSR).

 
Figure 1. Raman spectra of the active pharmaceutical ingredients lumefantrine (A) and artemether (B),
as well as the excipient hypromellose (C), with an excitation wavelength of λ = 532 nm. The spectra of
artemether and hypromellose were scaled with a factor of five for better visibility. The band assignment
of the prominent Raman bands A1–A3 and L1–L4 and their spectral positions are listed in Table 1.
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2.1. Development of Partial Least-Squares Regression Model for Ingredient Quantification

Spectral preprocessing is an essential part of modeling to increase the accuracy of the predictions by
reducing influences that account to noise-related signal contributions. First, a fiber intensity correction
was applied on the hyperspectral image data of the pure substances lumefantrine, artemether,
and the model tablets Lu100Ar100, Lu50Ar100, Lu100Ar0, and Lu0Ar100. Afterwards, unit vector
normalization was used to correct for Raman intensity variations due to technical effects like different
optical path lengths or sample density variations, etc. [35] followed by Savitzky–Golay smoothing.
Multiplicative scatter correction (MSC) was section-wise applied for an expanded baseline correction
to reduce Raman intensity variations due to different particle sizes [36].

PLSR combines a factorial analysis and a regression method. First, a PLSR calibration model
was built, considering simultaneously the responses from the analytes, such that the concentrations
exactly summed up to 100% (PLS2 approach). Afterwards, the PLSR calibration model was applied
to the hyperspectral images of the model tablets. For validation of the model, external validation
is preferred [37]. In case of hyperspectral images, it was possible to use one half of the image for
calibration and the other half for validation [38]. However, this approach was not beneficial in the
case of the tablets, as they are heterogeneous, and thus the spatial variations of concentrations did
not match the input reference values for the model development. Influences caused by outliers and
heterogeneities can be reduced by summarizing a single hyperspectral image as a median spectrum.
To build up a representative data set for calibration and validation, the Kennard–Stone algorithm was
applied in combination with a prior cross validation to remove outliers that would otherwise be taken
as extreme samples [39,40]. A good correlation between the predicted and reference data for both
the calibration (R2 = 0.9829 for lumefantrine and R2 = 0.9989 for artemether) and for the validation
PLSR-model (R2 = 0.9827 for lumefantrine and R2 = 0.9982 for artemether) was achieved. The predictive
error for the validation (RMSE) were 5.00 wt% for lumefantrine and 1.59 wt% for artemether.

2.2. Active Ingredient Concentration Prediction and Interpretation of the Spectral Information of the Model

The prediction model was applied to 30 hyperspectral images of each model tablet and for the
Riamet® tablet, respectively. The predicted concentrations and the corresponding error ranges are
listed in Table 2. The occurrence of outliers was reduced by using median-averaged images.

Table 2. Predictions of the lumefantrine and artemether concentrations in the model tablets and the
genuine tablet as follows: Lu100Ar100 (100% nominal lumefantrine and 100% artemether content,
corresponding to 60% lumefantrine and 10% artemether in the tablet), Lu50Ar100 (50% nominal
lumefantrine and 100% artemether content, corresponding to 30% lumefantrine and 10% artemether
in the tablet), Lu100Ar0 (100% nominal lumefantrine and 0% artemether content), and Lu0Ar100
(0% nominal lumefantrine and 100% artemether content) based on the partial least squares regression
(PLSR) model.

Tablet Lumefantrine Concentration/wt% Artemether Concentration/wt%

Expected Predicted ydev Expected Predicted ydev

Lu100Ar100 60.0 57.8 4.5 10.0 9.5 1.4
Lu50Ar100 30.0 44.1 6.1 10.0 9.1 1.9
Lu100Ar0 60.0 59.8 7.7 0.0 1.0 2.4
Lu0Ar100 0.0 1.2 6.3 10.0 11.4 2.0
Riamet® 50.0 44.1 14.6 8.3 5.6 4.7

ydev describes the deviation of the concentration prediction.

The predicted mean concentrations for lumefantrine were found around the expected 60 wt%,
(4.5–7.7 wt% deviation) (Table 2). For the substandard tablet Lu50Ar100 (containing 50% of the nominal
lumefantrine and 100% of the artemether content), the predicted mean concentration was above the
expected one, whereas for Riamet® it was 5 wt% below the expected value (Table 2). For artemether,
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the predicted concentrations fitted very well to the expected ones, deviating only 0.5 to 1.5 wt% in
the content of the model tablets and 2.7 wt% in the case of Riamet® (1.4–4.7 wt% deviation) (Table 2).
The United States Pharmacopoea requires at least 30 samples for the content uniformity test and allows
a maximum range of 25% for deviation from the reference value of a single dosage unit tested [41].
Thus, our observed deviations are well covered in this range. The observed deviations from the
expected values are partly caused by the inhomogeneous scattering effects of the surface, combined
with limited signal-to-noise ratios, and partly with the uncertainty of the regression model (RMSE of
prediction are 5.00 wt% for lumefantrine and 1.59 wt% for artemether). It should also be noted that
for the model, the target wt% values in the training group were defined based on the nominal added
amounts of the ingredients. This can also lead to some minor errors in the prediction. Lumefantrine
is a strong Raman scatterer, and the absolute Raman signal variations of the different concentrations
of lumefantrine are much higher than those of artemether. Hence, their simultaneous quantification
requires a compromise in the accuracy of the predictions.

For better prediction accuracy for the genuine tablet Riamet®, it would be beneficial to include
more excipients in the calibration and validation model. Only hypromellose was used as an excipient,
but microcrystalline cellulose, croscarmellose sodium, magnesium stearate, polysorbat 80, and highly
dispersed SiO2 were not considered in the calibration model. As the producing company does not
share such detailed information on the exact composition of the tablets, this aspect remains challenging.
However, the comparison between the Raman spectrum of the model tablet Lu100Ar100, containing
the full content of the APIs lumefantrine and artemether, with the spectrum of the genuine Riamet®

tablet show a high similarity (Figure 2) and justifies this approximation.

 
Figure 2. Comparison of the Raman spectra of (A) the genuine Riamet® tablet and (B) the model tablet
Lu100Ar100 with the nominal 100% content of the active ingredients.

The most-representative Raman bands of the active ingredients correlate well to the large
regression coefficients (Figure 3A), which account for a high influence of the respective Raman signal
in the prediction. The prominent Raman bands of both lumefantrine and artemether correlate with
high positive coefficients of their own prediction factors (especially L3 and L4 and A2 and A3).
This underlines that the model differentiated correctly between the active ingredients based on the
respective spectral information.
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Figure 3. (A): Regression coefficients for the prediction of lumefantrine (green, lower part), artemether
(red, middle part), and hypromellose (blue, upper part). The coefficients from the first two factors
for each analyte correlate perfectly to the characteristic Raman bands of lumefantrine and artemether.
Strong contribution for the differentiation is attributed to the peaks L4, L3, A3, and A2. (B): Vibrational
assignment of the peaks that contribute most to the PLSR model: L3: benzene ring stretching + CH
scissoring, L4: C=C stretching vibration + CH scissoring, A2: asymmetric stretching vibration + slight
contribution from CH stretching, A4: asymmetric CH2 stretching vibration.

Hypromellose and artemether have their strongest Raman bands in the same spectral regions
between 2800 and 3000 cm−1 and some spectral overlap occurs. Nevertheless, the developed model
enabled the quantification of artemether in the presence of hypromellose. This is demonstrated by the
high negative coefficients for the prediction of hypromellose at the positions of A2 and A3 (Figure 3A).
For better visualization of the molecular information underneath the Raman bands, the vibrational
assignments of Raman bands L4, L3, A3, and A2 are depicted (Figure 3B). L3 is a combination of a
benzene ring stretching and CH scissoring of lumefantrine. L4 is a C=C stretching vibration combined
with a less-intensive CH scissoring of lumefantrine. A2 is an asymmetric CH2 stretching vibration with
a slight contribution from CH stretching of artemether, whereas A3 is an asymmetric CH2 stretching
vibration of artemether.

The predicted concentration values and the corresponding uncertainty ranges of Riamet® were
presented for 64 random regions from 30 hyperspectral images (Figure 4). Differences of the API
concentrations in different parts of the tablets were revealed. For lumefantrine, the local concentrations
varied between 21.8 and 54.5 wt% and for artemether between 4.1 and 15.2 wt%, most probably
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due to an inhomogeneous API distribution. The active ingredients in the model tablets were more
homogenously distributed (Figure 5). It is easily obvious that the model tablet with 50% of the nominal
lumefantrine and 100% of the artemether content (Figure 5A) has a lower lumefantrine content than
the one with a full nominal content (Lu100Ar100) (Figure 5B), as it was expected. This demonstrates
the suitability of the presented method to gain information about substandard tablets directly and
non-invasively (without dissolution). The concentrations varied on the spot level between 16.1 and
49.6 wt% in the substandard model Lu50Ar100, which corroborates the necessity of acquiring data over
numerous areas of pharmaceutical tablets. This can be done in a very time-efficient manner with the
presented fiber array-based Raman imaging technique, which allows the simultaneous measurement
of 64 sample spots with one measurement. Furthermore, local concentration variations can also be
easily visualized (Figure 5), which will be an extremely helpful ability in non-invasive quality control
of tablets.

Figure 4. Predicted concentrations for 64 random spots from 30 regions (30 hyperspectral images) of
the three constituents in Riamet®: lumefantrine (green line, lower graph), artemether (red line, middle
part), and hypromellose (blue line, upper graph). The respective prediction error ranges are shown.
Local differences in the distribution of the concentrations of active ingredients in the tablet are revealed.
Each region of interest (ROI) indicates the imaged area from a single fiber in the fiber array.
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Figure 5. Predicted concentrations of lumefantrine (green, lower line) and artemether (red, upper line)
in different spots on the model tablets. Each region of interest (ROI) indicates the imaged area from
a single fiber in the fiber array. (A) Lu50Ar100: 50% of the nominal lumefantrine and 100% of the
nominal artemether content, corresponding to 30 wt% lumefantrine and 10 wt% artemether in the
tablet. (B) Lu100Ar100: 100% the nominal content of lumefantrine and artemether, corresponding to
60 wt% lumefantrine and 10 wt% artemether in the tablet).

2.3. Potential of Fiber Array-Based Technique for Counterfeit and Substandard Tablet Testing

The fiber array-based Raman hyperspectral imaging technique provides the following advantages,
which can be exploited for counterfeit and substandard testing of pharmaceutical tablets: The presented
method is non-invasive and non-destructive, without using any aggressive or toxic solvents.
Thus, this method is environment-friendly and cost-effective.

Combining Raman measurements with chemometric modeling, both qualitative and quantitative
information of several analytes are captured in one single measurement procedure, granting high
potential for the efficient investigations of pharmaceutical samples to detect low-quality issues. Using a
high magnification objective with a high NA additionally allows visualization of the API distribution in
a highly resolved way (e.g., lumefantrine in Figure S2A). Another strong advantage is the time-efficient
measurement procedure, as 64 Raman spectra can be acquired simultaneously (Figure S2B). The setup
presented in this proof-of-principle study is flexible and can adapt to different experimental settings,
as the amount of collected spectra in one shot can be further extended using different fiber array
configurations and the dimensions of the FOV at the sample can easily be changed.

3. Materials and Methods

3.1. Chemicals and Tablets

Lumefantrine (Lu), artemether (Ar), and hypromellose were purchased from Sigma Aldrich
(Taufkirchen, Germany). Model fake tablets were manufactured, containing the APIs lumefantrine and
artemether in different concentration ratios by direct compression. The total weight for each model
tablet was 200 mg and the pharmaceutical excipient hypromellose was used to fill up the formulation.
The composition of the analyzed tablets is visualized in Figure 6. Riamet® tablets (Novartis) were
purchased from a local pharmacy (Jena, Germany) and investigated. The coating of this tablet was
removed for better conformity with the model tablets.
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Figure 6. Composition of the anti-malarial model tablets. 100% refers to the nominal content in the
original Riamet® tablet, which are 120 mg lumefantrine and 20 mg artemether, corresponding to 60 wt%
lumefantrine, 10 wt% artemether, and 30 wt% filling excipient hypromellose in the tablet. The total
mass of each tablet is 200 mg. (A) Lu100Ar100: Content of nominal 100% lumefantrine and nominal
100% artemether (60 wt% lumefantrine, 10 wt% artemether and 30 wt% filling excipient hypromellose
in the tablet). (B) Lu50Ar100: Content of nominal 50% lumefantrine and nominal 100% artemether
(30 wt% lumefantrine, 10 wt% artemether, and 60 wt% filling excipient hypromellose in the tablet).
(C) Lu100Ar0: Content of nominal 100% lumefantrine and nominal 0% artemether content (40 wt%
lumefantrine and 60 wt% filling excipient hypromellose in the tablet). (D) Lu0Ar100: Content of
nominal 0% lumefantrine and nominal 100% artemether content (10 wt% artemether and 90 wt% filling
excipient hypromellose in the tablet).

3.2. FT-Raman Spectroscopy

The FT-Raman spectra of the active ingredients lumefantrine and artmether were recorded using
a Bruker FT-Raman spectrometer (Ram II) (Bruker Optik GmbH, Germany) with an Nd:YAG laser
operating at 1064 nm. The spectral resolution was set to 4 cm−1.

3.3. Density Functional Theory Calculation

To better assign and interpret the Raman bands of the active ingredients, the vibrational modes
and Raman scattering activities were calculated with the help of density functional theory (DFT)
using Gaussian 16 [42]. The hybrid exchange correlation functional with Becke’s three-parameter
exchange functional (B3) [43] slightly modified by Stephens et al. [44] coupled with the correlation part
of the functional from Lee, Yang, and Parr (B3LYP) [45] and Dunning’s triple (cc-pVTZ) correlation
consistent basis sets of contracted Gaussian functions with polarized and diffuse functions [46] at
standard conditions were applied. Separate scaling factors for the lower (<2000 cm−1) and for the
higher (>2000 cm−1) wavenumber regions and an intensity correction were estimated [13,47].
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3.4. Fiber-Array Based Hyperspectral Imaging

The spectroscopic measurements of the samples (the powder form APIs lumefantrine and
artemether, the excipient hypromellose, the model tablets, and Riamet®) were carried out with a
hyperspectral imaging setup. The sample area was illuminated with an FOV of 10 × 10 μm2 (Figure 7).
The laser power in the sample plane was 600 mW and an exposure time of 10 s was used with three
accumulations. A specially designed fiber-array bundle was applied for signal collection (Figure 7).
The sample surface was imaged onto the entrance face of the fiber array and the shape of the bundle
was transformed from an 8 × 8 square to a linear array of 64 fibers. The line of fibers was then placed
in the plane of the spectrometer slit (IsoPlane, Princeton Instruments) and enabled the simultaneous
acquisition of 64 spectra (Figure 7). After the acquisition of the spectra, pre-processing tools, such
as baseline correction (rolling-ball algorithm) and spike correction, were applied using LabVIEW.
To provide a representative spectrum of the tablets Riamet® and the model tablet Lu100Ar100
(Figure 2), 10 hyperspectral images per tablet were acquired and for each image the median spectrum
was calculated. From the 10 median spectra, an average spectrum was calculated, and a second
baseline correction was carried out with the SNIP algorithm (2nd order). Each spectrum was assigned
to a specific spot in the sample area and hyperspectral images were built based on the desired
chemical information.

 
Figure 7. The experimental setup for fiber array-based Raman hyperspectral imaging is divided into
an illumination and an imaging part, separated by a beam splitter (BS). The illumination part consists
of a laser for excitation (LASER), two lenses (L1 and L2), a step index multimode fiber (MF), a cleanup
filter (LF), and an objective lens (OL). Light is scattered back from the sample, collected by the same
objective lens (OL), and imaged with the help of a tube lens (TL) onto the entrance face of a fiber array
(FA). A suitable sample region can be chosen by directing the light onto a camera (C) with the help of a
flip mirror (M). A notch filter (NF) removes the laser excitation wavelength and elastically scattered
light. The scattered light is collected by the 8 × 8 array and is transformed with the help of a specially
designed fiber bundle (FB) into a linear fiber array at the distal end and positioned in the slit plane of
the spectrometer (S).

3.5. Partial Least-Squares Regression Model for the Ingredients’ Quantification

For the spectral analysis and modeling, the chemometrics software ‘The Unscrambler® X 10.3’
(Camo Software AS., Oslo, Norway) was used.
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4. Conclusions

In this work a proof-of-principle study using a novel method to qualify and quantify substances in
pharmaceutical tablets that are potentially counterfeit or substandard was presented. Based on a fiber
array-based Raman hyperspectral imaging technique combined with PLSR modeling, the concentrations
of the APIs lumefantrine and artemether were simultaneously determined in model tablets and in the
tablet Riamet®. The analysis was carried out in a non-destructive way, without dissolution, which is
an advantage in comparison to conventional methods. In addition, the concentration distribution of
active ingredients could also be assessed. Being able to identify and quantify counterfeits (Lu100Ar0,
Lu0Ar100) and even substandard (Lu50Ar100) antimalarial tablets fast and directly on the tablet gives
us a new tool for the fight against falsification of pharmaceuticals. The analyzed tablet Riamet® is of
high importance, since antimalarial tablets are the most frequent targets of counterfeiting in the world,
as highlighted by the WHO and the FDA.

In future work, we intend to test “real fake” samples, thus complementing our training model.
It would be highly beneficial to apply the presented easily applicable and flexible technique as a first
test to detect peculiarities or abnormalities before analyzing the tablets with destructive and more
expensive analytical techniques.

In summary, fiber array-based Raman hyperspectral imaging in combination with PLSR analysis
enables a fast and chemically selective, noninvasive, and spatially resolved determination of
multicomponent API concentrations in pharmaceutical tablets, showing high potential as a future
“anti-fake and substandard tool”.
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Figure S1: Comparison of the calculated Raman spectra (DFT) with the experimentally acquired FT-Raman
spectra of the active ingredients lumefantrine and artemether. Figure S2: Exemplary visualization of the spatial
distribution of the lumefantrine concentration along one hyperspectral image in the model tablet Lu100Ar100.
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Abstract: Background: To evaluate the effectiveness/side-effects of osteopathic manipulation
treatment (OMT) performed on the 7th post-natal day, on cerebro–splanchnic oximetry, tissue
activation and hemodynamic redistribution in late preterm (LP) infants by using near infrared
spectroscopy (NIRS). Methods: Observational pretest-test study consisting in a cohort of 18 LPs
who received OMT on the 7th post-natal day. NIRS monitoring was performed at three different
time-points: 30 min before (T0), (30 min during (T1) and 30 min after OMT (T2). We evaluated the
effects of OMT on the following NIRS parameters: cerebral (c), splanchnic (s) regional oximetry (rSO2),
cerebro–splanchnic fractional tissue oxygen extraction (FTOE) and hemodynamic redistribution
(CSOR). Results: crSO2 and cFTOE significantly (P < 0.001) improved at T0-T2; srSO2 significantly
(P < 0.001) decreased and sFTOE increased at T0-T1. Furthermore, srSO2 and sFTOE significantly
improved at T1-T2. Finally, CSOR significantly (P< 0.05) increased at T0-T2. Conclusions: The present
data show that OMT enhances cerebro–splanchnic oximetry, tissue activation and hemodynamic
redistribution in the absence of any adverse clinical or laboratory pattern. The results indicate the
usefulness of further randomized studies in wider populations comparing the effectiveness of OMT
with standard rehabilitation programs.

Keywords: NIRS; osteopathy; late preterm; brain; splanchnic

1. Introduction

Despite recent advances in perinatal therapeutic strategies, prematurity still constitutes one of the
major causes of neonatal mortality and morbidity [1]. Preterm infants are at higher risk for a variety
of complications, of long stays in hospital and of long-term neurodevelopmental disabilities, often
associated with higher economic and social costs [2]. In this regard, it has been reported that average
days of hospitalization can range from 4 to 135 days [3] and the social costs for preterm births are
estimated to be more than US$ 26.2 billion with average first-year medical costs of about US$ 32,325 [4].

In the last decade there has been increasing interest in late preterm infants (LP), who account for
about 70% of total preterm births. Epidemiological data show that the risks for LP of adverse neonatal
outcome are seven times more than those for term infants [5].

The post-critical neurological management of LP infants focuses on complementary and alternative
treatments and on an early rehabilitation program [6]. Osteopathy (OP) is a drug-free treatment that uses a
manual approach to diagnose and treat so-called somatic dysfunctions (SD). SD are commonly considered as
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bodily areas which manifest an altered tissue texture, a restricted range of motion, tenderness and asymmetry.
These areas are characterized by a pro-inflammatory state as well as altered autonomic control [7].

OP is widely practiced in adults, especially in connection with muscular–skeletal problems and,
more recently, osteopathic clinical trials have been conducted to investigate the role and impact of
OP treatment in the care of preterm infants, showing a decrease in the length of hospital stays and in
social costs [7]. The use of OP techniques in a perinatal setting is still a matter of debate. The term
“indirect technique” refers to a gentle manipulative touch (OMT) rather than a passive touch, which
has been shown to improve neonatal behavior in both animal and human models [7,8]. It has been
suggested that OMT modulates autonomic nervous system functions and reduces pro-inflammatory
cytokines [9–12]. However, despite these encouraging findings, data on the possible positive or side
effects on neonatal brain oximetry and function are still lacking.

The purpose of the present study was to investigate whether OMT could improve or affect
brain–splanchnic oximetry and function in LP infants, using near infrared spectroscopy (NIRS)
monitoring before, during and after the OMT procedure.

2. Results

2.1. Main Perinatal Outcomes

Perinatal characteristics, main neonatal outcomes and standard monitoring parameters of the
procedures applied to the 18 recruited infants are reported in Table 1. Gestational age (GA) and
birthweight (BW) were within the 10–90◦ centiles for our population standards, emergency caesarean
section (CS) was necessary in four out of 18 pregnant women, 11 out of 18 newborns were males and
all LP admitted to the study were inborn. Maternal age at delivery was within the reference standard
for our population, none of the mothers had a history of chorioamnionitis or pre-eclampsia (EPH),
seven out of 18 pregnant women received antenatal steroid prophylaxis and premature rupture of
membranes (PROM) occurred in three cases.

Table 1. Perinatal characteristics, main outcome measures and standard monitoring parameters
recorded in late preterm infants. Data are given as mean ± SD.

Late Preterm (N = 18)

Maternal Characteristics

Maternal age (y) 32 ± 2
Chorioamnionitis (n◦/tot) 0/18
Glucocorticoids (n◦/tot) 7/18

PROM (n◦/tot) 3/18
EPH (n◦/tot) 0/10

Neonatal Characteristics

GA (wks) 35 ± 1
BW (g) 1762 ± 111

CS (n◦/tot) 4/18
Gender (M/F) 11/7

Outborn/Inborn (n◦/tot) 0/18
Apgar 1’ 8 ± 1
Apgar 5’ 8 ± 1

Main Outcomes

RDS (n◦/tot) 5/18
Surfactant administration (n◦/tot) 5/18

MV (n◦/tot) 5/18
PDA (n◦/tot) 0/18
IVH (n◦/tot) 0/18
EOS (n◦/tot) 2/18
NEC (n◦/tot) 0/18
ROP (n◦/tot) 0/18
LOS (n◦/tot) 2/18
BPD (n◦/tot) 0/10

Abbreviations: premature rupture of membranes, PROM; EPH, preeclampsia; Gestational age, GA; birthweight, BW;
caesarean section, CS; respiratory distress syndrome, RDS; mechanical ventilation, MV; patent ductus arteriosus,
PDA; intraventricular hemorrhage, IVH; early-onset sepsis, EOS; broncho-pulmonary dysplasia, BPD.
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At birth all LP had an Apgar score>7 and respiratory distress syndrome (RDS) requiring surfactant
administration and mechanical ventilation occurred in five out 18 LP. No LP required drug treatment
for patent ductus arteriosus persistence (PDA); none of them developed intraventricular hemorrhage
(IVH), early onset sepsis (EOS), necrotizing enterocolitis (NEC), retinopathy of prematurity (ROP) or
bronchopulmonary dysplasia (BPD), whilst two out of 18 LP needed antibiotic treatment for late onset
sepsis (LOS).

2.2. Monitoring Parameters

At T0 (before OMT), laboratory parameters such as venous blood pH, bilirubinemia, hemoglobin
levels and hematocrit rate were within reference values. Standard monitoring parameters (heart rate,
HR; respiratory rate, RR; pulsed arterial oxygen saturation, SaO2) at monitoring time-points were
within reference values and no significant differences (P >0.05, for all) were found at T0-T2.

Neurological examination and cerebral ultrasound were normal in all LP admitted to the study
(Table 2).

Table 2. Standard laboratory and monitoring parameters recorded before osteopathic manipulation
treatment and near infrared spectroscopy performance in late preterm infants. Data are given as
mean ± SD.

Late Preterm (N = 18)

Monitoring Parameters

GA (wks) 36 ± 1
BW (g) 1846 ± 265

pH 7.35 ± 0.02
pCO2 (mmHg) 43.9 ± 4.7
pO2 (mmHg) 40.1 ± 2.3
Base excess 0.9 ± 1.1

Bilirubinemia (mg/dL) 4.3 ± 1.5
Hb (g/dL) 13.9 ± 1.3

Hematocrit rate (%) 40.1 ± 2.1
HR (bpm) 146 ± 12

RR (breath pm) 56 ± 9
SaO2 at T0 98 ± 1
SaO2 at T1 98 ± 1
SaO2 at T2 99 ± 1

Neurological Examination

Normal/suspect/abnormal 18/0/0
Cerebral Ultrasound

Normal/abnormal 18/0/0

Abbreviations: gestational age, GA; weeks, wks; birthweight, BW; grams g; venous carbon dioxide partial pressure,
pCO2; millimeter of mercury, mmHg; venous oxygen partial pressure, pO2; hemoglobin, Hb; heart rate, HR;
respiratory rate, RR; arterial oxygen saturation, SaO2.

2.3. NIRS Parameters

NIRS parameters in cerebral district were measurable in all LP infants recruited to the study
(Figure 1).

Cerebral regional oxygen saturation (crSO2) values started to increase from T0 to T2 (P <0.001,
for all). Significant (P <0.001) differences in crSO2 values were found between T1 and T2 (Figure 2).
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Figure 1. Cerebral regional oxygen saturation (crSO2) pattern recorded before, during and after
osteopathic manipulation treatment.

Figure 2. Cerebral (c) and splanchnic (s) regional oximetry (rSO2) values recorded in late preterm
infants before (T0) during (T1) and after (T2) osteopathic manipulation treatment. Data are given as
median and 25–75◦ centiles. crSo2 values at T0 were significantly (P <0.001, for both) lower than those
recorded at T1 and T2. srSO2 values at T0 were significantly (P <0.001, for both) higher than those
recorded at T1 whilst no differences (P <0.05) were found between T0 and T2. srSo2 values at T1 were
significantly (P <0.001) lower than T2.

Identically, after normalizing all NIRS results with T0 values set to 0, crSO2 values started to
increase from T0 to T2 (T0-T1 median: 3.00; 25/75◦ centile: 2.00/4.00; T0-T2 median: 2.00; 25/75◦ centile
2.00/3.00) (P <0.001, for all). Significant (P <0.001) differences in crSO2 values were found between T1
and T2 (T1-T2 median: 0.00; 25/75◦ centile −2.00/1.00).

Cerebral fractional tissue oxygen extraction (cFTOE) values started to decrease from T0 to T1,
reaching their lowest point at T2 (P <0.001, for all). Significant (P <0.001) differences in cFTOE values
were found between T1 and T2 (Figure 3).
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Figure 3. Cerebral (c) and splanchnic (s) fractional tissue oxygen extraction (FTOE) values recorded in
late preterm infants before (T0) during (T1) and after (T2) osteopathic manipulation treatment. Data are
given as median and 25–75◦ centiles. cFTOE values at T0 were significantly (P <0.001, for both) higher
than those recorded at T1 and T2. sFTOE values at T0 were significantly (P <0.001, for both) lower than
those recorded at T1 whilst no differences (P <0.05) were found between T0 and T2 time-points. sFTOE
values at T1 were significantly (P <0.001) higher than T2.

NIRS parameters in splanchnic district were measurable in all LP infants recruited to the study
(Figure 4).

Figure 4. Splanchnic regional oxygen saturation (srSO2) pattern recorded before, during and after
osteopathic manipulation treatment.

The pattern of splanchnic regional oxygen saturation (srSO2) values showed a significant (P< 0.001)
decrease in splanchnic oximetry from T0, reaching their lowest point at the end of the OMT procedure
(T1).From T1 to T2, srSO2 values started to increase, being significantly (P <0.001) higher than T1 and
superimposable (P >0.05) at T0 (Figure 2).

Identically, after normalizing all NIRS results with T0 values set to 0, srSO2 values started to
decrease from T0 to T1 (T0-T1 median: −3.00; 25/75◦ centile: −14.00/6.00; T0-T2 median: −1.00; 25/75◦
centile: −10.00/8.00) (P <0.001, for all). Significant (P <0.001) differences in srSO2 values were found
between T1 and T2 (T1-T2 median: 1.00; 25/75◦ centile: −8.00/11.00).

Splanchnic fractional tissue oxygen extraction (sFTOE) values showed a significant (P <0.001)
increase in sFTOE from T0 reaching their peak at the end of T1. From T1 to T2 sFTOE values started to
decrease being significantly (P <0.001) lower than T1. No differences (P >0.05) in sFTOE values were
found between T0 and T2 (Figure 3).

Cerebral–splanchnic ratio (CSOR) values at TO were significantly lower (P <0.001, for both) than
those recorded at T1 and T2. Lower (P <0.05) CSOR values were found between T1 and T2 (Figure 5).
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Figure 5. Cerebral–splanchnic ratio (CSOR) values recorded in late preterm infants before (T0) during
(T1) and after (T2) osteopathic manipulation treatment. Data are given as median and 25–75◦ centiles.

3. Discussion

Nowadays, thanks to highly advanced medical technology in NICUs, the mortality rate for preterm
infants is significantly reduced. Conversely, the incidence of disability and neurodevelopmental
problems among survivors still remains high and problematic [2,5]. Based on the flat trend of morbidity
rates, it has been suggested that brain injury should be considered as a complex amalgam of diseases
(i.e., damage-related, maturational and trophic disturbances) rather than due to a single agent [13,14].
Alterations in neurological development/damage can occur independently of gestational age and
often in the absence of evident signs of injury [15]. The less mature, healthy or sick preterm newborn
may be unable or only partially able to manage environmental inputs, demonstrating over-reactive
responses and poor tolerance of even minimal input. In addition to standard neuro-therapeutic
strategies performed in neonatal intensive care units (NICU), an important role is played by the early
introduction of individualized rehabilitation treatments [6–8,16]. In this regard, further progresses and
new rehabilitation programs are eagerly awaited.

In the present study we showed, in a cohort of late preterm infants, that cerebral and splanchnic
oximetry and tissue activation levels, evaluated by the fractional tissue oxygen extraction ratio,
significantly changed during and after osteopathic manipulation treatment. Furthermore, significant
hemodynamic changes in the cerebro–splanchnic regions were found during and after OMT.

To the best of our knowledge the present study constitutes the first observation in which brain
oximetry and tissue activation levels were longitudinally monitored during osteopathic treatment.
There are only a few observations on the potential positive effects of OMT on selected outcomes such
as newborns’ hospital stays [7].

The findings of improved cerebral oximetry and tissue activation levels in LP warrant further
consideration. In particular, crSO2 increased soon after the start of OMT and reached its highest peak
30 min after its conclusion; in parallel, cFTOE significantly decreased. This finding is noteworthy, since
crSO2 expresses an adequate cerebral oxygenation status while cFTOE is a reliable indicator of tissue
oxygen extraction, reflecting the balance between delivery and central nervous system (CNS) tissue
consumption [17–20]. Thus, these findings suggest that the “over-oxygenation rate” due to the OMT
procedure increased tissue metabolic activity in the CNS. The issue is of relevance bearing in mind that
at this stage the major metabolic activity of the CNS concerns its growth. In an animal model and in
some patients, it has been shown that the late preterm period is crucial for the development of the
CNS, which reaches 65% of its total weight, and of the cerebral cortex, which reaches 53% of its total
volume, while components of structural and functional brain development such as synaptogenesis
and dendritic arborization reach up to 35% of their total growth [21–24]. These findings are also
corroborated by a significant increase in biological fluids of the concentrations of well-established

220



Molecules 2019, 24, 3221

neurobiomarkers at trophic action [25–27]. Altogether, it is reasonable to argue that OMT improves
oximetry and tissue activation levels in the CNS of newborns throughout the monitoring period and
may have a beneficial effect on CNS development. The issue is also highlighted by the significant
increase in CSOR values, expressing a stable preferential hemodynamic redistribution in favor of the
brain. Of course, additional studies in a wider population are needed to investigate further the possible
short/long term effects of OMT on CNS development and function.

In the present study, we also found that splanchnic NIRS parameters changed during and after
OMT. Briefly, srSO2 decreased and sFTOE increased during the course of the treatment, and this was
followed by a significant increase in srSO2 and a decrease in sFTOE from the end of treatment to the
recovery period.

These findings merit further consideration. In particular, i) the significant changes in NIRS
parameters during OMT seem to suggest a reduction in splanchnic oximetry with a significant change
(increase in sFTOE) in the balance between delivery and splanchnic tissue consumption in favor of
the former. The explanation may lie in the hemodynamic redistribution from the splanchnic to the
brain area following OMT, ii) the strong recovery of NIRS parameters characterized by an increase
in splanchnic oximetry and tissue activation levels (decrease in sFTOE) in the post-OMT period are
suggestive, as shown by the stable improvement in NIRS parameters in the CNS, of later positive
effects of OMT. This finding is also corroborated by increased CSOR ratio values (>1), as expression of
a hemodynamic redistribution from the splanchnic to the brain region. Another explanation may lie
in the delivery of extra blood volume by the liver, as occurs in other intrauterine conditions such as
growth retardation [20,28]. Altogether, it is possible to argue that OMT may reasonably be responsible
for a redistribution from the splanchnic to the brain region followed by a significantly improved
splanchnic oximetry and function in the presence of a stable increased CNS oximetry and tissue
activation levels. In other words, OMT seems to exert beneficial effects both on brain (early) and
splanchnic (late) oximetry and function. Further studies in wider populations are needed to confirm
our observation bearing in mind the variability in NIRS parameters output due to different devices
and last but not least the potential disturbances in splanchnic NIRS oximetry patterns due to stool or
transitional meconium that can affect recordings availability [29,30].

We recognize that the present study has several limitations. In particular: i) the small sample
size, although we were able to record a considerable number of NIRS values (median: 10,500 values),
thereby reducing the possibility of potential bias, ii) external light interference, which can result in
photon scattering, and (iii) movement artifacts as a consequence of problems associated with the fixing
of sensors [31,32].

Lastly, it should be noted that OMT and NIRS recordings were performed at least 1 h before or
after feeding in order to avoid potential bias effects due to feeding regimens [33]. Yet, this possibility
was avoided since each case acted as his or her own control.

In conclusion, the present results on improved CNS and splanchnic oximetry and function in
late preterm infants given OMT offer additional support for the need for new individually tailored
rehabilitation programs. These findings pave the way to further studies in wider populations aimed
at investigating the effectiveness of OMT and standard individualized rehabilitation programs on
short/long term neurological outcome.

4. Materials and Methods

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the local Ethics Committee (n◦ASO.Neonat.12.01; 2630/71).

From December 2017 to December 2018 we conducted an observational pretest–test design
involving 18 LP consecutively admitted to our third-level referral centers for NICU, where they acted
as their own controls. GA was determined by clinical data and by longitudinal ultrasound scan
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monitoring according to the nomograms of Campbell and Thoms [34] and by postnatal confirmation
in agreement with Villar J. et al. [35].

The exclusion criteria were: congenital heart diseases, congenital malformations, gastrointestinal
anomalies and cutaneous diseases impeding the placement of probes.

The perinatal data, neonatal characteristics and main outcomes are reported in Table 1.

4.1. NIRS Monitoring

Hemodynamic and oxygenation changes in the cerebral district/region were monitored using the
Sen Smart X-100 NIRS device (Nonin Medical, Plymouth, MN, USA). Self-adhesive transducers that
contain the light-emitted diodes and two distant Equanox Advance sensors (Nonin Medical, Plymouth,
MN, USA) were fixed on the central region of the neonatal skull. crSO2 and srSO2 and SaO2 were
calculated by the in-built software. Fractional tissue oxygen extraction values in the cerebral and
splanchnic districts were assessed according to the following formula: (SaO2 − c(s)rSO2)/SaO2 [17,18].

We also calculated the CSOR, which is the ratio of cerebral versus splanchnic district oximetry [19],
according to the following formula: crSO2/srSO2. This ratio has been found to be a valuable index of
hemodynamic redistribution in chronic hypoxic infants [20].

All OMT infants were monitored on the 7th day of age at three time-points: 30 min before, 30 min
during and 30 min after completion of the OMT. No differences were observed in the duration of OMT
procedures (P >0.05).

4.2. Standard Monitoring Parameters and Main Outcomes

HR and RR rates and SaO2 monitoring were continuously recorded by MX700 monitors (Philips,
Eindhoven, The Netherlands) at 12” intervals (Figure 6).We also recorded the following main outcome
measures: maternal age; the incidence of chorioamnionitis, PROM or EPH; the need of antenatal
steroid prophylaxis; GA and BW; the incidence of CS, RDS, PDA, IVH, EOS, NEC, ROP, LOS or BPD.

Figure 6. Flowchart of data collection and measurement scenarios. Abbreviations: near infrared
spectroscopy, NIRS; regional oxygen saturation, rSO2; cerebral, c; splanchnic, s; fractional tissue oxygen
extraction, FTOE; cerebro–splanchnic oxygenation ratio, CSOR; heart rate, HR; respiratory rate, RR;
pulsed arterial oxygen saturation, SaO2.
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4.3. Cranial Assessment

Standard cerebral ultrasonography was performed by a real-time ultrasound machine (Acuson
128SP5, Mountain View, CA, USA) using a transducer frequency emission of 3.5 MHz. Cerebral
ultrasound patterns were evaluated at 24 h from birth, at 7 days and before discharge from hospital.

4.4. Neurological Examination

Neurological examination was performed daily according to the method of Prechtl [15]. Each infant
was assigned to one of three diagnostic groups: normal, suspect, abnormal. An infant was considered
to be abnormal when one or more of the following neurological syndromes were unequivocally present:
(a) increased or decreased excitability (hyperexcitability syndrome, convulsion, apathy syndrome,
coma); (b) increased or decreased motility (hyperkinesia, hypokinesia); (c) increased or decreased tonus
(hypertonia, hypotonia); (d) asymmetries (peripheral or central); (e) defects of the central nervous
system; (f) any combination of the above. When indications of the presence of a syndrome were
inconclusive or if only isolated symptoms were present, e.g., mild hypotonia or only a slight tremor,
the infants were classified as suspect.

4.5. Osteopathic Procedure

Osteopathic procedures were performed by osteopaths with experience in the neonatology field.
The procedures included a structural evaluation followed by treatment. The structural evaluation was
performed with the infant lying down in the open crib or incubator and was addressed to diagnose
somatic dysfunctions [16]. It included rigorous and precise manual assessments of the skull, spine,
pelvis, abdomen, and upper and lower limbs to locate bodily areas with an alteration in tissue,
asymmetry, range of motion, and tenderness criteria [7]. The findings of that diagnostic procedure
formed the basis of treatment that included the application of a selected range of manipulative
techniques aimed at relieving the somatic dysfunctions. Techniques used were in line with the
benchmarks on osteopathic treatment available in the medical literature and were limited to indirect
techniques such as: myofascial release and balanced ligamentous/membranous tension. The whole
OMT procedure on infants lasted 30 min, ten minutes for evaluation and 20 min for treatment
and re-evaluation.

4.6. Statistical Analysis

For the calculation of sample size, we used crSO2 change as the main parameter. As no basic data
are available for the studied population, we assumed a decrease of 0.5 SD in crSO2 to be clinically
significant. Indeed, considering an α = 0.05 and using a two-sided test, we estimated a power of 0.80
recruiting 16 preterm infants. We therefore added 2 cases to allow for any dropout.

The sample size was calculated using nQuery Advisor (Statistical Solutions, Saugus, MA,
USA), version 5.0. Main outcome measures are summarized by mean ± SD. NIRS parameters were
summarized by median and interquartile ranges. Comparisons among different groups were analyzed
for statistically significant differences by one way ANOVA followed by Dunn’s test. Categorical data
were analyzed by means of Fisher’s test. A value of P <0.05 was considered statistically significant.

5. Conclusions

The present data offer additional support to the need of an additional and individualized
rehabilitation program in the neurological care of high risk infants. Further randomized controlled
trials comparing OMT with rehabilitation procedures that are considered as standard of care are,
therefore, suggested.
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Abstract: Background: Improved outcome prediction is vital for the delivery of risk-adjusted,
appropriate and effective care to paediatric patients with Ewing sarcoma—the second most common
paediatric malignant bone tumour. Fourier transform infrared (FTIR) spectroscopy of tissues allows
the bulk biochemical content of a biological sample to be probed and makes possible the study and
diagnosis of disease. Methods: In this retrospective study, FTIR spectra of sections of biopsy-obtained
bone tissue were recorded. Twenty-seven patients (between 5 and 20 years of age) with newly
diagnosed Ewing sarcoma of bone were included in this study. The prognostic value of FTIR
spectra obtained from Ewing sarcoma (ES) tumours before and after neoadjuvant chemotherapy were
analysed in combination with various data-reduction and machine learning approaches. Results:
Random forest and linear discriminant analysis supervised learning models were able to correctly
predict patient mortality in 92% of cases using leave-one-out cross-validation. The best performing
model for predicting patient relapse was a linear Support Vector Machine trained on the observed
spectral changes as a result of chemotherapy treatment, which achieved 92% accuracy. Conclusion:
FTIR spectra of tumour biopsy samples may predict treatment outcome in paediatric Ewing sarcoma
patients with greater than 92% accuracy.

Keywords: Ewing sarcoma; Fourier transform infrared spectroscopy; FTIR; chemotherapy;
bone cancer
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1. Introduction

Improved patient outcomes need not only better therapeutic approaches, but also the reduction
of treatment-related complications. Risk-adapted therapeutic approaches have, therefore, been key to
recent improvements in paediatric oncology [1–3]. Central to this are the discovery and application of
prognostic factors for the risk allocation of patients. Consequently, a risk-adapted approach can be
taken whereby treatment may be intensified amongst patients in the high-risk cohort or de-escalated
in those considered to be low-risk, minimising toxicity and late sequelae without compromising
survival [4].

Ewing sarcoma (ES) is the second most common paediatric malignant bone tumour and comprises
3% of all paediatric malignancies [5]. However, this is a rare neoplasm and affects about 2.9 people per
million annually [6]. Overall survival rates for patients with localised disease approach 69%. Treatment
of patients with metastatic, refractory or relapsed ES is more challenging though, with only 42%
surviving five years [7]. Methods that improve the stratification of patients with ES could, therefore,
result in improved therapeutic outcomes whilst reducing toxicity.

Fourier transform infrared (FTIR) spectroscopy is a physicochemical, non-invasive method that
provides information about the bulk chemical composition of a biological sample [8]. The frequency
range of absorption by molecules is correlated with their structure making it amenable for the
study of all classes of biomolecules [9]. Consequently, FTIR spectroscopy can potentially detect
changes in the biochemical composition of tissues that mark the progression from healthy to
cancerous tissue. Driven by applications such as the identification of cancer, endoscopy and
spectral histopathology, FTIR has been applied to many different tumour types; for example,
breast cancer [10,11], lung cancer [12,13], ovarian cancer [14], brain tumours [15], cervical cancer [16],
gastric cancer [17], colon cancer [18], prostate cancer [19] and melanoma [20].

We have previously shown that the peak absorbance maxima in the bio-fingerprinting region
(1000–1100 cm−1) of FTIR spectra of Ewing sarcoma bone sections can be predictive of patient
outcome. [21,22] Following on from this, we considered whether treatment outcome might be better
predicted by the analysis of the whole FTIR spectra. Herein we report a small-cohort retrospective study
into the prognostic value of the whole spectrum obtained from ES tumours before and after neoadjuvant
chemotherapy administration in combination with data-reduction and machine learning approaches.

2. Materials and Methods

2.1. Patients

Twenty-seven patients between 5 and 20 years of age with newly diagnosed Ewing sarcoma of
bone were included in this study. Each patient was treated according to the Euro-EWING protocols
during 2010–2016 and their clinical characteristics are presented in Table 1.

In each case, identical induction neoadjuvant chemotherapy (neoCTX) consisting of six VIDE
cycles (vincristine, ifosfamide, doxorubicin, etoposide) were administrated. Surgery was undertaken at
the Department of Surgical Oncology, Institute of Mother and Child in Warsaw, Poland. Microscopically
complete resection was possible in 26 cases. Each histopathological sample was verified centrally at
the same institution and their response to chemotherapy was measured by the percentage of viable
tumour cells remaining after neoCTX completion. A good response was defined as greater than
or equal to 90% of necrosis. Post-operative treatment was conducted according to Euro-EWING
protocols and depended on the clinical status of the patient. Patients were thus treated uniformly
and relatively contemporaneously. There were no deaths observed for reasons other than cancer
progression. Informed consent was obtained from all patients, or their guardians, before treatment.
This retrospective study was conducted in compliance with international regulations for the protection
of human research subjects and was authorised by the Institutional Review Board of the University of
Rzeszow on June 2014 (Protocol No. KBET/6/06/2014).
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Table 1. The clinical characteristic of patients (n = 27).

Gender Male/Female 12/15

Age (years) range, median 5–20 years
14 years

Localised/disseminated 11/16

Tumour resection complete/incomplete 1/26

Necrosis ≥ 90% vs. <90% 20/7

Local radiotherapy 17

Auto HSCT 9

Relapses (progressions)/deaths 14/10

Follow up time (months)
range (median) 14–74 (34)

HSCT—hematopoietic stem cell transplantation.

2.2. Sample Preparation

Twenty-seven samples consisted of formalin-fixed paraffin-embedded (FFPE) tissues collected
during a diagnostic biopsy prior to neoCTX and after completion of the sixth chemotherapy cycle
(VIDE). All samples were prepared and verified by pathologists experienced in ES.

FFPE bone tissue blocks were sectioned to a thickness of 10 μm using a rotary microtome and
applied to calcium fluoride slides. Sections were placed on the surface of a tub holding warm water
to allow them to flatten and were then gently pulled onto a slide. Samples were then dewaxed by
washing twice in xylene and rehydrated by rinsing in an alcohol series ranging from absolute alcohol
(99.8%) to 96%, 80% and 70% alcohol. Finally, the samples were rinsed with distilled water and dried.

2.3. FTIR Spectroscopy

FTIR spectra were recorded using a Bruker Vertex 70v FTIR spectrometer. Tissue specimens
were applied to the attenuated total reflection (ATR) plate and mid-infrared radiation was passed
through the sample using a single-reflection snap ATR crystal diamond (recorded at 1 cm−1 of spectral
resolution, 32 scans). Spectra were recorded in the range of 800–3500 cm−1. As the samples were
dewaxed, the air was measured as the background. All measurements were recorded in triplicate.
Initial data analysis and baseline corrections were performed using OPUS 7.0 from Bruker Optik
GmbH 2011.

2.4. Statistical Analysis

All models and methods used in the experiments were implemented in Python 3.7 and R 3.5.0.
Specifically, the Python package Pandas v0.23.0 was used to manipulate the data and Scikit-Learn 0.20
was used to implement the machine learning techniques. Prior to analysis spectra were normalised
using Scikit-Learn’s StandardScaler, which removes the means and scales to unit variance. Spectra
were smoothed with Savitzky Golay filter (SciPy). Survival analysis was performed with the R package
‘Survival’ version 2.42-6. Two-sided p values of <0.05 were considered statistically significant. All data
reduction methods were used as implemented in Scikit-Learn.
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3. Results

3.1. Exploratory Data Analysis

Spectra were mean-centred, scaled to unit variance, smoothed using a Savitzky-Golay filter and a
linear detrend was applied. As expected, peaks corresponding to functional groups within nucleic
acids, phospholipids, polysaccharides, proteins and remaining lipids are observable in the FTIR spectra
of bone tissues (Figure 1).

Figure 1. Fourier transform infrared (FTIR) spectrum of normal bone tissue collected outside the area
of Ewing sarcoma (ES) infiltration (red line), ES tumour tissue before chemotherapy (blue line) and ES
tumour tissue after induction chemotherapy (green line). Measuring range: 800–3500 cm−1.

We first considered whether it was possible to differentiate the treatment outcomes for the ES
patients and turned in the first instance to unsupervised dimensionality reduction. Dimensionality
reduction approaches are broadly based on the selection of the informative features, or the generation
of variables, that retain the information present in the original dataset. In principal component analysis
(PCA), this dimensionality reduction is achieved by finding the linear combination of a set of variables
that have maximum variance. When the spectral dataset was analysed by PCA (Figure 2a), we saw
some clustering of the patients who lived vs. those who died due to tumour progression, although
with considerable overlap between these groups in the first two principal components.

Other methods for dimensionality reduction, including non-linear methods, have emerged and
we applied a suite of these, including both matrix deconvolution and manifold learning methods as
implemented in the python library Scikit-Learn (Figure 2 shows the first two components of each
method tested). Many of these methods afforded greater visual separation of the classes than PCA,
although all tested methods resulted in some degree of overlap. Of note were the kernel PCA methods
(Figure 2f,g), which resulted in a clear clustering of the spectra based on patient outcome. Kernel PCA
methods differ from the more commonly used linear PCA in that they use an arbitrary function as
opposed to a linear function [23]. Scikit-Learn implements several functions for use in Kernel PCA
including a sigmoid, polynomial (poly), cosine and a radial basis function (RBF). This analysis was
repeated for the necrosis and relapse responses; however, none of the applied methods resulted in the
visual separation of the classes (please see Supplementary Material).
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Figure 2. Dimensionality reduction methods applied to the FTIR dataset. Throughout, patients who
survived are coloured blue whilst those who did not are coloured red. Matrix decomposition methods:
(a). PCA (b). Factor analysis (c). Fast Independent Components Analysis (FastICA) (d). Incremental
PCA (e). Truncated singular value decomposition (SVD) (f). Kernel PCA using a linear kernel (g).
Kernel PCA using a sigmoid kernel (h). Kernel PCA using a polynomial kernel (i). Kernel PCA using a
radial basis function kernel and (j). Kernel PCA using a cosine kernel. Manifold learning methods: (k).
Locally linear embedding (l). Isomap m. Multidimensional scaling (MDS) (m). Spectral embedding
and (n). t-distributed stochastic neighbour embedding (t-SNE).

3.2. Spectral Changes after Neo-CTX

It is expected that treatment with neo-CTX would result in changes in the biochemical composition
of the tumour tissue. Moreover, we hypothesised that patients who responded positively to neo-CTX
treatment would show a different spectral change than those who did not. To test this hypothesis,
we subtracted the mean standardised-spectra pre-neoadjuvant chemotherapy (preCTX) treatment and
post-neoadjuvant chemotherapy (postCTX) for patients who lived and those who died. As can be seen
in Figure 3, consistent with our hypothesis, differences in the mean spectral changes were observed
between the patient groups. Particularly, these changes included an increase in lipid and nucleic acid
spectral intensity in those who lived as opposed to those who died and an increase in protein amide
signal in those who died, with little change in those who lived.

Figure 3. Spectral changes after neoadjuvant chemotherapy (neoCTX) for patients who lived (blue) and
for those who died (red). Spectral changes were calculated by subtracting the mean, standardised and
normalised spectra after post-neoadjuvant chemotherapy (postCTX) from that of the pre-neoadjuvant
chemotherapy (preCTX) for each group.
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3.3. Generating a Predictive Model for Prognosis

Prognostic and predictive models are particularly important in the clinical decision-making
process. We, therefore, sought to develop a model for the prediction of Ewing sarcoma treatment
outcome. Given the limited number of samples in this study (due to the low incidence of Ewing
Sarcoma) the aim of this study was not to generate a clinically applicable predictive model (which
would require a larger clinical trial) but rather to validate and test the potential of FTIR for the
prediction of Ewing Sarcoma prognosis.

Furthermore, taking into consideration the limited number of patients in our study group we
were mindful of the risk of over-fitting the data (where an overly complex machine learning model
effectively memorises the data and does not generalise to unseen new data). The sample numbers
herein have, however, impeded the use of an external test set for validation and, consequently, we have
throughout used a leave-one-out cross-validation approach to assess model accuracy.

3.4. Feature Generation

Data such as tissue FTIR spectra consists of many variables, with each constituting the absorbance
at different wavenumbers. Given this multivariate nature, it is desirable to simplify or dimensionally
reduce the data [7] prior to the generation of a predictive model or clustering. Any dimensionality
reduction should, however, result in minimal loss of information.

We report four approaches to predicting prognosis. In the first, we use the pre-neo-CTX spectra
alone (henceforth preCTX). In the second we use the post-neo-CTX spectra (postCTX) alone. In the
third, we explore the spectral changes between the preCTX-postCTX spectra changes as predictive
features and, finally, we combine the dimensionally reduced representations of the preCTX and
postCTX data.

Given the multivariate nature of FTIR spectra, and based on our earlier graphical analysis,
the normalised and standardised spectra were dimensionally reduced using both PCA and kernel PCA
(cosine function) (taking the first 15 and 10 principal components respectively). This therefore mapped
the preCTX, postCTX and preCTX-postCTX to a 25-dimensional feature space and mapped the preCTX
and postCTX data to a 50-dimensional feature space. This approach has several advantages. First,
it reduces the contribution of noise to the spectral data. Second, the inclusion of hundreds of potential
variables (from the raw FTIR spectra) into a classification model would likely lead to over-fitting and
reduce the predictive performance against new samples.

3.5. Supervised Learning

The goal of supervised learning is to find a model that will correctly associate the inputs with the
outputs. In the case of Ewing sarcoma diagnosis, it would be clinically useful to be able to determine
the outcome of treatment.

It is not possible to tell a priori which machine learning method will be most suitable for
a predictive task. Linear Support Vector Machine (SVM), Random Forest (RF) Decision Tree,
Linear Discriminant Analysis (LDA) and Gradient Boosted Classifier (GDM) models were, therefore,
trained on the reduced spectral feature sets. All classifiers were used with their default settings as
implemented in SciKit-Learn. Table 2 lists the leave-one-out cross-validation accuracy for these models.

We began by attempting to develop a predictor for patient death based on the reduced spectral
dataset. Of the tested classifiers a Linear Discriminant Analysis (LDA) classifier was able to predict
patient death with an 81% accuracy using only feature sets based on preCTX spectra. Greater success
was seen when the analysis was repeated on the postCTX spectra only with the random forest classifier
able to predict patient death with better than 92% accuracy. Subtracting the preCTX and postCTX
did not typically offer good predictive accuracy, except in the case of the k-nearest neighbours (KNN)
classifier. We observed a general improvement in classification accuracy when both the preCTX and
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postCTX spectra are concatenated with one another. This resulted in an LDA model that was able to
classify 92% of the patients correctly. This corresponded to the misclassification of only two patients.

Table 2. Leave-one-out cross-validation accuracy for models calculated on reduced spectral feature sets.

Death

preCTX postCTX preCTX-postCTX preCTX+postCTX

KNN 0.692 0.692 0.808 0.692
Linear SVM 0.615 0.885 0.538 0.846

Random Forest 0.769 0.923 0.577 0.808
LDA 0.808 0.538 0.692 0.923

GaussianBoosted 0.769 0.769 0.654 0.692

Relapse

KNN 0.615 0.5 0.769 0.615
Linear SVM 0.923 0.808 0.577 0.769

Random Forest 0.692 0.769 0.462 0.808
LDA 0.692 0.654 0.577 0.692

GaussianBoosted 0.615 0.769 0.5 0.654

Necrosis > 90%

KNN 0.769 0.769 0.769 0.731
Linear SVM 0.769 0.538 0.846 0.692

Random Forest 0.654 0.769 0.692 0.654
LDA 0.654 0.808 0.615 0.769

GaussianBoosted 0.577 0.769 0.538 0.538

PreCTX—pre-neoadjuvant chemotherapy; postCTX—post-neoadjuvant chemotherapy; KNN—k-nearest
neighbours; SVM—Support Vector Machine; RF—Random Forest; LDA—Linear Discriminant Analysis. Models
highlighted in bold are those which show the best performance for each task.

Prediction of patient relapse was more challenging with the postCTX reduced spectral dataset
generally being more useful predictively. A Linear SVM classifier trained on the preCTX spectral
data set was, however, found to have the highest accuracy for relapse prediction (92%). Again,
this corresponded to the misclassification of two patients. Concatenating or subtracting the preCTX
and postCTX spectra did not improve classification accuracy as it did for mortality prediction.

Finally, the prediction of patients whose tumours showed greater than 90% necrosis was more
difficult. Specifically, KNN and linear SVM models were able to predict patient outcome in only 77%
of cases from preCTX spectra alone. Accuracy could be improved, however, to 84.6% by training a
linear SVM model on the spectral changes due to CTX treatment. This is consistent with the work of
Bergner et al. who found that, when using FTIR for spectral imaging, tumorous and necrotic tissue
were difficult to distinguish and could be distinguished with a sensitivity of 75.3%. Overall linear SVM
classifiers offered the most consistent performance in prediction accuracy across all classification tasks.

3.6. Survival Analysis

Kaplan Meier curves were used to assess the survival of the patients over three years after
the initial biopsy results. There were no non-cancer related deaths during the assessment period.
The median follow-up for the analysed patients was 29 months (14–74 months). The three-year
progression-free survival rate was 41.36%, and the three-year overall survival (OS) rate was 56.66%.
The Kaplan-Meier plots were calculated for progression-free survival and overall survival according
to leave-one-out cross-validation prediction (i.e., where the patient is not included in the training
set). Figure 4 shows the calculated Kaplan–Meier plots which use the LDA (concatenated preCTX
and postCTX spectra) and RF (postCTX spectra only) for mortality prediction and the Linear SVM
(using preCTX-postCTX difference spectra) model for relapse prediction. For the longitudinal analysis,
hazard ratios (HR) and their 95% confidence intervals (CI) for death were estimated using Cox
proportional-hazard ratios. Log-rank tests were used to estimate survival difference based on the
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model predictions and were calculated using the R package Survival. This analysis indicated that the
survival times are indeed different with each predictive model. Specifically, the preCTX+postCTX
LDA mortality model has a p-value of 0.00023, the postCTX RF mortality model has a p-value of 0.0002
and the linear SVM relapse model has a p-value of 0.0004. In all except one case, patients who were
predicted to die by either the LDA or RF mortality prediction model did so.

Figure 4. Kaplan–Meier plots for (a) overall survival, overall survival according to leave-one-out
cross-validation prediction using the (b) preCTX+postCTX LDA model (p = 0.00023) (c) postCTX RF
model (p = 0.000197), (d) progression-free survival and (e) according to leave-one-out cross-validation
prediction using the linear SVM model (p = 0.000387). In (b) and (c) red indicates those predicted to die,
whilst blue are those predicted to live. In (e) red indicates those patients who are predicted to relapse,
whilst blue are those predicted to not relapse.

4. Discussion

The ability to predict treatment outcome offers significant clinical benefits including the
prescription of effective treatments whilst avoiding costly and hazardous regimens that do not benefit
the patient. In this retrospective study, we described how machine learning methods applied to the
FTIR spectroscopy of bone tissue sections offers a non-destructive, label-free and rapid method for the
prediction of treatment outcome in Ewing sarcoma.

Several prognostic factors have been reported previously for ES, such as patient age, tumour
size and localisation, stage of disease and degree of tumour necrosis after neoCTX [24,25]. Of these,
the extent of necrosis in the resected tumour after neoCTX is a significant predictor of treatment
outcome [26]. Indeed, Albergo et al. [27] have suggested that only patients with 100% necrosis after
chemotherapy should be classified as having a good response as they have significantly better survival
rates compared to those with viable tumour in the surgical specimen.

The effect of CTX on neoplasm depends on many factors including tumour specific biology
and the patient’s particular pharmacogenomics. [28] The chemical composition of a tumour and its
change in response to CTX can be associated with the tumour response to cytostatic drugs [29–31].
FTIR spectra of tissue sections, which reflect this compositional change, may potentially discriminate
tumours susceptible to CTX.

By applying machine learning methods to the interpretation of FTIR spectra of ES tissue we
were able to predict patient outcomes such as relapse, death and the degree of neoadjuvant CTX
response (as a percentage of necrosis) with high accuracy. The risk of death can be predicted with
up to 92% accuracy from post-CTX spectra alone using a Random Forest classifier. There were no
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patient deaths due to toxicity or side effects, with deaths only arising due to tumour progression with
chemotherapy resistance. Patient relapse can be predicted with up to 92% accuracy using preCTX
treatment spectra alone. High tumour necrosis (>90%) after neoadjuvant CTX may be predicted with
76.9% accuracy (using a KNN or linear SVM model) at the time of diagnosis; the more valuable are
spectra from post-CTX specimens and the difference between pre- and post-CTX spectra which achieve
an 84.6% accuracy.

We considered whether the deparaffinisation process may have resulted in changes to the lipid
composition, which may result in a decrease in classification accuracy. Consequently, we reanalysed
the data considering only the absorbances <1800 cm−1. As expected, this resulted in some changes
to the classification accuracy of the individual models. Overall, however, average change across
all models was less than 1%, suggesting that the inclusion or exclusion of the lipid region does not
significantly affect the classification accuracy. The best predictor of patient death using only the
absorbances <1800 cm−1 is a linear SVM classifier that achieved 96.2% accuracy (corresponding to only
one patient misclassified). A linear SVM model was also the best predictor of patient relapse (88.5%)
(see Supplementary Table S3). This was a decrease, however, compared to the predictor which had
access to features calculated from the full collected spectral width (92.3% accuracy) corresponding to a
further misclassified patient.

ES typically presents with systemic metastases, also as invisible foci in standard images
(micrometastases). [32] Consequently, curing them all by local measures alone is highly unlikely.
Curative therapy for Ewing sarcoma thus requires the combination of effective systemic therapy and
local control of all macroscopic tumours [33]. The second aim is achieved by appropriate surgery
and irradiation, which is dependent on tumour and macroscopic metastases localisation and their
proximity to important structures and organs. Effective systemic therapy of ES is therefore crucial for
full recovery except in these cases where a tumour seems to initially form only one visible focus [34].

Our earlier work [21,22] focused on applying statistical approaches to study the prognostic ability
of FTIR. These statistical models are based on assumptions drawn from the underlying problem
and have concentrated on specific changes to peak intensities or wavelength. If these underlying
assumptions are wrong, however, then the predictive power of the model will be poor. In contrast,
machine learning models make no assumptions on the problem itself.

In this study, the spectra obtained from Ewing sarcoma samples were reanalysed without
searching for any specific differences in tissue chemical. We focused on the potential application
of the FTIR spectroscopy as a tool for the rapid and effective selection of patients with good and poor
prognosis before starting chemotherapy. This would be a significant step in personalised therapy.
Every patient in our cohort was treated with neoadjuvant chemotherapy based on VIDE cycles, so our
results should be limited to this scheme. It is also important to note that this study was restricted in
sample size due to the low number of ES cases that arise annually and the practical limitation that
only patients with full clinical data, where specimens were sampled during biopsy and total surgery,
were included. Confirmation of our findings will consequently require a larger sample size and we are
actively following this work, including collecting more samples when new cases arise.

Due to the limited size of our study group, the results presented in this paper should be
interpreted carefully. We believe, though, that spectral changes are not random and reflect
prognostically-meaningful compositional differences in the tissues. While it is not possible for us to
determine the potential levels of specificity and sensitivity when using FTIR to discriminate prognostic
outcome, our results strongly suggest that it is worthy of further research.

5. Conclusions

The FTIR spectra from ES patients treated initially with VIDE-based CTX were analysed using a
variety of machine learning approaches. This analysis demonstrates the possibility that such spectra
may predict patient death or relapse with greater than 92% accuracy. Moreover, some of these data
can be collected before beginning CTX, offering clinically useful information that might aid patient
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treatment. The significance of these results is limited by the small size of the study group, but we
believe that these results point to the potential development of spectroscopic methods for the diagnosis,
prognostication and treatment planning of paediatric Ewing Sarcoma.

Supplementary Materials: Figure S1. Dimensionality reduction methods applied to the FTIR dataset. Patients
who suffer necrosis are coloured red whilst those who do not are coloured blue. Matrix decomposition methods:
(a). PCA (b). Factor analysis (c). Fast Independent Components Analysis (FastICA) (d). Incremental PCA (e).
Truncated singular value decomposition (SVD) (f). Kernel PCA using a linear kernel (g). Kernel PCA using a
sigmoid kernel (h). Kernel PCA using a polynomial kernel (i). Kernel PCA using a radial basis function kernel
and (j). Kernel PCA using a cosine kernel. Manifold Learning methods: (k). Locally linear embedding. (l).
Isomap m. Multidimensional scaling (MDS) (m). Spectral embedding and (n). t-distributed stochastic neighbour
embedding (t-SNE). Figure S2. Dimensionality reduction methods applied to the FTIR dataset. Throughout,
patients who did not relapse are colored blue whilst those who did are coloured red. Matrix decomposition
methods: (a). PCA (b). Factor analysis (c). Fast Independent Components Analysis (FastICA) (d). Incremental
PCA (e). Truncated singular value decomposition (SVD) (f). Kernel PCA using a linear kernel (g). Kernel PCA
using a sigmoid kernel (h). Kernel PCA using a polynomial kernel (i). Kernel PCA using a radial basis function
kernel (j). Kernel PCA using a cosine kernel. Manifold Learning methods: (k). Locally linear embedding (l).
Isomap m. Multidimensional scaling (MDS) (m). Spectral embedding and (n). t-distributed stochastic neighbour
embedding (t-SNE). Supplementary Table S3. The comparison of accuracy for models calculated on all obtained
spectral data and truncated (<1800 cm−1) data.
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Abbreviations

FTIR Fourier Transform Infrared
ES Ewing sarcoma
SVM Support Vector Machine
neoCTX neoadjuvant chemotherapy
preCTX pre-neoadjuvant chemotherapy
postCTX post-neoadjuvant chemotherapy
VIDE vincristine, ifosfamide, doxorubicin, etoposide
FFPE formalin-fixed paraffin-embedded
ATR attenuated total reflection
PCA principal component analysis
poly polynomial
rbf radial basis function
RF Random Forest
LDA Linear Discriminant Analysis
KNN k-nearest neighbours
GDM Gradient Boosted Classifier
CI confidence interval
HR hazard ratio
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Abstract: This paper proposes a sensitive, sample preparation-free, rapid, and low-cost method for
the detection of the B-rapidly accelerated fibrosarcoma (BRAF) gene mutation involving a substitution
of valine to glutamic acid at codon 600 (V600E) in colorectal cancer (CRC) by near-infrared (NIR)
spectroscopy in conjunction with counter propagation artificial neural network (CP-ANN). The NIR
spectral data from 104 paraffin-embedded CRC tissue samples consisting of an equal number of the
BRAF V600E mutant and wild-type ones calibrated and validated the CP-ANN model. As a result, the
CP-ANN model had the classification accuracy of calibration (CAC) 98.0%, cross-validation (CACV)
95.0% and validation (CAV) 94.4%. When used to detect the BRAF V600E mutation in CRC, the model
showed a diagnostic sensitivity of 100.0%, a diagnostic specificity of 87.5%, and a diagnostic accuracy
of 93.8%. Moreover, this method was proven to distinguish the BRAF V600E mutant from the wild
type based on intrinsic differences by using a total of 312 CRC tissue samples paraffin-embedded,
deparaffinized, and stained. The novel method can be used for the auxiliary diagnosis of the BRAF
V600E mutation in CRC. This work can expand the application of NIR spectroscopy in the auxiliary
diagnosis of gene mutation in human cancer.

Keywords: near-infrared spectroscopy; counter propagation artificial neural network; detection;
auxiliary diagnosis; BRAF V600E mutation; colorectal cancer; tissue; paraffin-embedded;
deparaffinized; stained

1. Introduction

Colorectal cancer (CRC) is one of the human malignant tumors with high incidence and mortality
rates [1]. In particular, the mutations in CRC often make the treatment more difficult [2–4]. One of
the most common mutations in CRC is the B-rapidly accelerated fibrosarcoma (BRAF) gene mutation,
which involves a substitution of valine to glutamic acid at codon 600 (V600E) [5]. Figure 1 gives the
structural formulas for valine and glutamic acid. The BRAF V600E mutation in CRC significantly
reduces the efficacy of the drugs that are used in the treatment of patients with BRAF V600E wild
type in CRC. The drug treatment regimen for patients with BRAF V600E mutant in CRC needs to be
redesigned [6,7]. Therefore, it is crucial to detect the BRAF V600E mutation for the targeted therapy
in CRC.
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(a) (b) 

Figure 1. The structural formulas for valine (a) and glutamic acid (b).

The typical methods for the clinical diagnosis of the BRAF V600E mutation in CRC are
immunohistochemistry (IHC) in conjunction with microscopy [8], polymerase chain reaction (PCR) [9],
and gene sequencing [10]. However, in IHC, the staining for target molecules that are associated with
the BRAF V600E mutation is a multistep process. This process is frequently disturbed by many factors,
resulting in staining failures, such as all negatives, all positives, too dark background, the positive
control stained well but positive samples unstained or heterogeneous. Moreover, the diagnostic
accuracy of microscopy is limited by the experience of pathologists. On the other hand, both PCR and
gene sequencing are at least time-consuming and high-cost. Consequently, it is imperative to establish
a sensitive, sample preparation-free, rapid, and low-cost method for the auxiliary diagnosis of the
BRAF V600E mutation in CRC.

Near-infrared (NIR) spectroscopy can be used to characterize the properties of an analyte
containing the X-H groups (X = C, N, O, S). Typically, the vibration of one X-H group absorbs NIR
light at several overtone frequencies, while the absorption intensity at a certain NIR frequency is the
sum of the absorption intensities of a plurality of X-H groups. That is, the NIR absorption bands
are seriously overlapping, so that NIR spectra are not directly interpreted and utilized. Thence, it is
necessary to extract the information on the analytes from the NIR data for the sample by chemometric
techniques [11–13]. NIR spectroscopy, assisted by chemometric techniques, is used to discriminate
cancer from benign tumor, such as breast cancer [14], endometrial cancer [15], gastric cancer [16], and
colorectal cancer [17], because it is easy-to-use, robust, inherently rapid (measuring a NIR spectrum in
seconds), as well as nondestructive and low-cost [18,19].

Therefore, in this work, the feasibility of sensitive, sample preparation-free, rapid, and low-cost
detection of the BRAF V600E mutation in CRC was explored with NIR spectroscopy and counter
propagation artificial neural network (CP-ANN). The specific objectives are: (1) distinguishing the
BRAF V600E mutant from the wild type by a CP-ANN model; (2) exploring the mechanism for
NIR detection of the BRAF V600E mutation in CRC. This work can expand the application of NIR
spectroscopy in the auxiliary diagnosis of gene mutation in human cancer.

2. Results and Discussion

2.1. Samples

Table 1 lists 312 CRC tissue samples. Therein, the paraffin-embedded (Class 1) CRC sample is the
most suitable for auxiliary diagnosis, because it is the most common form of pathological specimen
storage. That is, the preparation of Class 1 samples is free. This means that the method of using Class 1
samples is top-priority, rapid, reagent-free, and nondestructive.

The deparaffinized (Class 2) and stained (Class 3) samples were used to explore the mechanism
for NIR detection of the BRAF V600E mutation in CRC. However, the preparations of the Class 2
and Class 3 samples are both cumbersome and time-consuming. In addition, the samples of the
combination of Class 2 with Class 1 samples (1:1) were named Class 2&1 samples. The Class 2&3
samples were named as similar to the Class 2&1 samples. Both Class 2&1 and Class 2&3 samples were
also used to explore the mechanism for NIR detection of the BRAF V600E mutation in CRC.
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Table 1. The numbers of models calibrated and validated using 312 colorectal cancer (CRC)
tissue samples.

Model
Number

Class of
Samples

Number of Calibration Samples Number of Validation Samples

Mutant Wild-type Mutant Wild-type

1 Class 1 40 40 12 12
2 Class 2 40 40 12 12
3 Class 3 40 40 12 12
4 Class 2&1 20&20 20&20 NA NA
5 Class 2&3 20&20 20&20 NA NA

Note: NA for not available.

The samples in each class consisted of an equal number of the BRAF V600E mutant and wild-type
samples. The models calibrated while using an equal number of the BRAF V600E mutant and wild-type
samples did not have classification biases that were caused by unequal numbers of samples in two
subgroups. The number of validation samples was 30% of the number of calibration samples.

2.2. Spectral Acquisition

The NIR spectra of 312 CRC tissue samples were acquired while using the following means. The
transflectance spectra, rather than transmission spectra, for the thin tissue samples were measured to
increase the detection sensitivity. The sample signal intensity in the transflectance spectrum is twice
that in the transmission spectrum, since the transflectance optical pathlength is twice the transmission
one. Each sample was measured at three tissue locations, as the mutation may occur unevenly. The
mutant and wild-type samples were alternately measured to avoid systematic errors that are caused
by sequential measurement. Both 8 cm−1 resolution and 64 co-added scans were selected to obtain a
spectrum with sufficient sample information and low noise in about 31.39 s.

Figure 2 shows the mean NIR transflectance spectra for the mutant and wild-type samples of
Class 1, Class 2, and Class 3. Red, light red, and dark red represent the mutant samples of Class 1,
Class 2, and Class 3, respectively. Blue, light blue, and dark blue represent the wild-type samples of
Class 1, Class 2, and Class 3, respectively.

 
Figure 2. Mean near-infrared (NIR) transflectance spectra for colorectal cancer (CRC) tissue sections.
Red, light red, and dark red represent, respectively, the mutant samples of Class 1, Class 2, and Class 3.
Blue, light blue, and dark blue represent, respectively, the wild-type samples of Class 1, Class 2, and
Class 3.
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2.3. Data Processing

2.3.1. Selection of the Spectral Preprocessing Strategy

Table 2 lists the vital preprocessing strategies, spectral subranges, numbers of PCs, numbers of
neurons on each side, and corresponding model performances of the CP-ANN models built while
using NIR data for the samples. The models, from Model 1 to Model 1.12, were built while using the
same Class 1 samples, but changing preprocessing strategy, spectral subrange, number of PCs, and/or
number of neurons on each side. Other models are similar to the above. As can be seen from Table 2,
the models that were built using only mean centering (MC) have better model performances than those
using other preprocessing strategies, respectively, for the models that were built using Class 1, Class 2,
and Class 3 samples.

Table 2. Vital preprocessing strategies, spectral subranges, numbers of principal components (PCs),
numbers of neurons on each side, and corresponding model performances of the counter propagation
artificial neural network (CP-ANN) models built respectively using NIR data for Class 1, Class 2,
Class 3, Class 2&1, and Class 2&3 samples.

Model
Number

Preprocessing Spectral Subrange
(cm−1)

Number of PCs/
Cumulative Variance
Contribution Rate (%)

Number of
Neurons on
Each Side

Model Performances

CAC (%) CACV (%) CAV (%)

1 MC 9000–6800, 6500–4000 6/100.0 12 98.0 95.0 94.4
1.1 MSC +MC 9000–6800, 6500–4000 6/99.9 12 97.0 93.0 90.3
1.2 SNV +MC 9000–6800, 6500–4000 6/99.9 12 97.0 94.0 81.9
1.3 FD +MC 9000–6800, 6500–4000 6/98.8 12 93.0 86.0 88.9
1.4 SD +MC 9000–6800, 6500–4000 6/95.7 12 89.0 71.0 73.6
1.5 SGS +MC 9000–6800, 6500–4000 6/100.0 12 98.0 94.0 90.3
1.6 SGS + FD +MC 9000–6800, 6500–4000 6/99.1 12 94.0 88.0 90.3
1.7 NDS + FD +MC 9000–6800, 6500–4000 3/100.0 12 92.0 85.0 87.5
1.8 MSC + SD +MC 9000–6800, 6500–4000 6/ 96.0 12 90.0 74.0 77.8
1.9 SNV +NDS + FD +MC 9000–6800, 6500–4000 6/100.0 12 95.0 88.0 90.3

1.10 MC 9000–4000 6/100.0 12 98.0 94.0 91.7
1.11 MC 9000–6800, 6500–4000 6/100.0 10 97.0 94.0 88.9
1.12 MC 9000–6800, 6500–4000 6/100.0 15 98.0 96.0 88.9

2 MC 9000–6800, 6500–4000 6/100.0 12 97.0 92.0 94.4
2.1 MSC +MC 9000–6800, 6500–4000 6/100.0 12 94.0 85.0 79.2
2.2 SNV +MC 9000–6800, 6500–4000 6/ 99.9 12 89.0 83.0 83.3
2.3 FD +MC 9000–6800, 6500–4000 6/97.2 12 90.0 82.0 86.1
2.4 SD +MC 9000–6800, 6500–4000 20/84.6 12 NA NA NA
2.5 SGS +MC 9000–6800, 6500–4000 6/100.0 12 96.0 94.0 90.3
2.6 SGS + FD +MC 9000–6800, 6500–4000 6/97.8 12 92.0 88.0 81.9
2.7 NDS + FD +MC 9000–6800, 6500–4000 2/100.0 12 88.0 80.0 79.2
2.8 MSC + SD +MC 9000–6800, 6500–4000 20/80.6 12 NA NA NA
2.9 SNV +NDS + FD +MC 9000–6800, 6500–4000 3/100.0 12 90.0 85.0 87.5

2.10 MC 9000–4000 6/100.0 12 96.0 91.0 93.1
2.11 MC 9000–6800, 6500–4000 6/100.0 10 96.0 90.0 87.5
2.12 MC 9000–6800, 6500–4000 6/100.0 15 97.0 92.0 94.4

3 MC 9000–6800, 6500–4000 5/100.0 12 95.0 88.0 93.1
3.1 MSC +MC 9000–6800, 6500–4000 5/99.9 12 86.0 71.0 66.7
3.2 SNV +MC 9000–6800, 6500–4000 5/99.9 12 85.0 72.0 68.1
3.3 FD +MC 9000–6800, 6500–4000 13/85.5 12 90.0 77.0 79.2
3.4 SD +MC 9000–6800, 6500–4000 20/75.0 12 NA NA NA
3.5 SGS +MC 9000–6800, 6500–4000 5/100.0 12 93.0 89.0 90.3
3.6 SGS + FD +MC 9000–6800, 6500–4000 10/ 85.6 12 88.0 79.0 76.4
3.7 NDS + FD +MC 9000–6800, 6500–4000 2/100.0 12 90.0 82.0 77.8
3.8 MSC + SD +MC 9000–6800, 6500–4000 20/74.5 12 NA NA NA
3.9 SNV +NDS + FD +MC 9000–6800, 6500–4000 4/100.0 12 87.0 65.0 72.2

3.10 MC 9000–4000 5/100.0 12 95.0 88.0 87.5
3.11 MC 9000–6800, 6500–4000 5/100.0 10 93.0 89.0 86.1
3.12 MC 9000–6800, 6500–4000 5/100.0 15 95.0 89.0 88.9

4 MC 9000–6800, 6500–4000 5/100.0 12 97.0 97.0 NA

5 MC 9000–6800, 6500–4000 6/100.0 12 95.0 90.0 NA

Notes: MC for mean centering; MSC for multiplicative scatter correction; SNV for standard normal variate; FD for
first derivative; SD for second derivative; SGS for Savitzky-Golay smoothing; NDS for Norris derivative smoothing;
PC for principal component; CAC, CACV and CAV respectively for the classification accuracy of calibration,
cross-validation and validation; NA for not available.
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2.3.2. Selection of the Spectral Subrange for Modeling

Figure 3 indicates the differences between the mean spectra for the mutant and wild-type samples.
The full, long dashed, and short dashed lines represent Class 1, Class 2, and Class 3 samples, respectively.
On the full, long dashed, and short dashed lines, we can see significant changes in the two subranges
9000–6800 cm−1 and 6500–4000 cm−1.

Figure 3. The differences between the mean spectra for the mutant and wild-type samples. The full,
long dashed, and short dashed lines represent respectively Class 1, Class 2, and Class 3 samples.

The differences between the mutant and wild-type samples, in fact, are caused by the substitution
of valine to glutamic acid. Figure 1 indicates that the largest structural difference between valine
and glutamic acid is the difference between (CH3)2CH- in valine and -(CH2)2COOH in glutamic
acid. Consequently, the spectral subranges 9000–6800 cm−1 and 6500–4000 cm−1 can be mainly
attributed to the following overtones: the second overtones of CH3 and CH2 near 8696–8264 cm−1,
CH near 8163 cm−1; the first overtones of CH3 near 5905 and 5872 cm−1, CH2 near 5680 cm−1, CH
near 5882–5555 cm−1; the combination bands of CH3 near 7355, 7263, 4545–4500 and 4395 cm−1,
CH2 near 7186 and 7080 cm−1, CH near 6944 cm−1; the combination bands of O-H in COOH near
4500–4000 cm−1 [20].

Table 2 shows the models that were built while using various spectral subranges. Model 1, Model 2,
and Model 3 were built while using two spectral subranges 9000–6800 cm−1 and 6500–4000 cm−1.
Model 1.10, Model 2.10, and Model 3.10 were built while only using one spectral subrange
9000–4000 cm−1. The two spectral subranges 9000–6800 cm−1 and 6500–4000 cm−1 were selected
to build the detection model since Model 1, Model 2, and Model 3 had better model performances
separately than Model 1.10, Model 2.10, and Model 3.10.

2.3.3. Calibration and Validation of the CP-ANN Model

Principal component analysis (PCA) was used to reduce the redundant dimensionalities of the
spectral data for the samples. The scores of the principal components (PCs, cumulative variance
contribution rate exceeding 85.0%), as selected from both 9000–6800 cm−1 and 6500–4000 cm−1, were
used as the inputs to the CP-ANN model. CP-ANN has the advantages of artificial neural network
(ANN), such as nonlinearity, self-learning, self-organization, and self-adaptation [21]. Table 2 shows
that the optimal structure of the CP-ANN model is 12 × 12, because the performances of the 12 × 12
model are better than the 10 × 10 one and nearly equal to the 15 × 15 one.

In Table 2, Model 1, Model 2, and Model 3 are optimal, respectively, for Class 1, Class 2, and
Class 3 samples, because of the highest classification accuracies of calibration (CAC) and validation
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(CAV). Furthermore, Model 1, Model 2, and Model 3 have successively the best, medium, and worst
classification accuracies. Figure 4a–c illustrate that the mutant and wild-type samples are assigned to
the gray and white regions, respectively, by Model 1, Model 2, and Model 3, not only in the calibration
(uppercase letter), but also in the validation (lowercase letter), although a few samples that are near the
boundary are not correctly assigned.

   
(a) (b) (c) 

Figure 4. Projection maps for the 12 × 12 CP-ANN models: (a) Model 1; (b) Model 2; and (c) Model 3.
The uppercase letter “M” and the lowercase letter “m” for the mutant samples, respectively, in calibration
and validation; “W” and “w” for the wild-type samples, respectively, in calibration and validation; “�”
for the samples assigned incorrectly; the gray region for mutant; the white region for wild type.

2.3.4. Diagnostic Performances of the CP-ANN Model

Table 3 gives the diagnostic performances of five CP-ANN models that were sequentially built
using an equal number of Class 1, Class 2, Class 3, Class 2&1, and Class 2&3 samples.

Table 3. The diagnostic performances of five CP-ANN models built sequentially using an equal number
of Class 1, Class 2, Class 3, Class 2&1, and Class 2&3 samples.

Model Number
Diagnostic Performances

Sensitivity (%) Specificity (%) Accuracy (%)

1 100.0 87.5 93.8
2 100.0 95.0 97.5
3 100.0 82.5 91.3
4 100.0 92.5 96.3
5 100.0 85.0 92.5

As can be seen from Table 3, each model shows a sensitivity of 100.0%. It can be inferred that
the sample information in the acquired NIR transflectance spectra is sufficient for detecting the BRAF
V600E mutation in CRC. That is, the structural differences between valine and glutamic acid on C-H,
N-H, and O-H groups were characterized by NIR spectroscopy. In particular, a sensitivity of 100.0% is
critical for auxiliary diagnosis, because it avoids missing the mutant.

In Table 3, Model 1, Model 2, and Model 3 have, respectively, medium, the best, and the worst
specificities and accuracies. The probable cause is that the NIR spectra for the Class 1 samples are
disturbed by the NIR absorption of paraffin; the NIR spectra for the Class 3 samples are disturbed by
the NIR absorption of hematoxylin and eosin (HE). Moreover, the interference from paraffin is weaker
than HE. However, the NIR spectra for the Class 2 samples are not disturbed by the NIR absorption
of paraffin or HE. These inferences are supported by the following evidences. Model 2 is superior to
Model 4 (built using Class 2&1 samples) and Model 5 (built using Class 2&3 samples) regarding the
specificity and the accuracy; Model 4 and Model 5 are separately superior to Model 1 and Model 3.
In addition, Model 4 is superior to Model 5.
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On the other hand, HE is used to increase the color difference between the cancer and non-cancer
tissues in pathological diagnosis. it is demonstrated that HE increases the absorbance difference
between the mutant and wild-type samples since the color on the stained mutant tissue is darker
than the color on the stained wild-type tissue, as shown in Figure 3. However, Model 3 (built using
the HE-stained samples) has the worst diagnostic performances. A possible explanation is that HE
interferes with the NIR detection and it does not increase the fundamental difference between the
mutant and wild-type samples, that is, between valine and glutamic acid.

There are two kinds of differences in the calibration samples used in Model 4, as shown in
Table 1. The first is the difference between the mutant and wild-type samples, i.e., the difference
between valine and glutamic acid. The second is the difference between the deparaffinized and
paraffin-embedded samples, i.e., the difference between no paraffin and paraffin. In fact, Model 4
distinguishes 80 calibration samples into two subgroups that are based on the difference between
the mutant and wild-type, rather than between deparaffinized and paraffin-embedded. In other
words, Model 4 detects the BRAF V600E mutation in CRC based on the difference between valine and
glutamic acid in the deparaffinized and paraffin-embedded samples, rather than between no paraffin
and paraffin in the mutant and wild-type samples. Similar results are obtained using the calibration
samples in Model 5.

These findings suggest that the CP-ANN models built by the NIR data can detect the BRAF V600E
mutation in CRC based directly on the fundamental difference between mutant and wild type, i.e., the
difference between valine and glutamic acid, rather than among paraffin, HE, and nothing.

3. Materials and Methods

3.1. Samples

312 CRC tissue sections of BRAF V600E mutant or wild type and their reference information were
obtained from the Department of Clinical Pathology and the Molecular Medical Testing Center at
Chongqing Medical University. The Ethics Committee of our university approved the collection and
use of these specimens for current research. Informed consent was obtained from these patients.

These CRC tissue samples include three classes, as shown in Table 1. Class 1 is the
paraffin-embedded sample on a glass slide, which is the most common form of pathological specimen
storage; Class 2 is the deparaffinized sample between a glass slide and a coverslip; Class 3 is the
HE-stained sample between a glass slide and a coverslip. Each class consisted of an equal number of
the BRAF V600E mutant and wild-type samples.

The reference information on the BRAF V600E mutation in the CRC tissue sample was detected by
real-time fluorescent quantitative PCR (RT-qPCR). The detection was performed on a Roche LightCycler
480 II system (Roche, Basel, Switzerland) while using the Human BRAF Gene V600E Mutation Detection
Kit (Wuhan YZY, China). The detection involved not only the PCR reaction, but also the PCR reaction
for quality control (QC).

3.2. Instrument and Spectral Acquisition

The NIR spectra were measured while using a Nicolet iS50 FT-IR analyzer (Thermo Fisher
Scientific, Waltham, MA, USA) that was equipped with an indium gallium arsenide detector and an
integrating sphere. The instrument was controlled by OMNIC 9.2 software (Thermo Fisher Scientific,
Waltham, MA, USA).

A sample (glass slide up) was placed on the detection window of the integrating sphere and was
covered by a lid with a gold inner top. The transflectance spectra for the samples were measured in the
range of 12,000–4000 cm−1 while using the selected resolution and the selected number of co-added
scans. The resolution was selected from 2, 4, 8, and 16 cm−1 to obtain sufficient sample information
in a shorter time; the number of co-added scans was selected from 16, 32, 64, and 128 to reduce the
noise in a shorter time. Each sample was measured at three tissue locations. The mutant and wild-type
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samples were alternatively measured. The background spectrum was measured, prior to the sample
spectra, under the same conditions to eliminate any ambient interferences on the sample spectra.

3.3. Data Processing

In the detection, the sample spectra were preprocessed by a preprocessing strategy that was
selected from MC for subtracting the calculated mean of a variable from the spectral data, multiplicative
scatter correction (MSC) or standard normal variate (SNV) for eliminating the interferences from
granularity and compactness, derivative for deducting the background and separating overlapping
signals, smoothing for denoising, and the combinations of various preprocessing techniques, as shown
in Table 2.

The spectral subrange for modeling was selected from 12,000–4000 cm−1 based primarily on the
differences in characteristic absorptions between the mutant and wild-type samples.

Subsequently, the CP-ANN model was calibrated using the reference value of the calibration
sample and the scores of the selected PCs in the spectral subrange of spectral data for the calibration
sample. The three spectra per sample were all used in modeling. As shown in Table 1, Model 1,
Model 2, Model 3, Model 4, and Model 5 were sequentially calibrated by 40 mutant samples and
40 wild-type samples of Class 1, Class 2, Class 3, Class 2&1, and Class 2&3. Next, Model 1, Model 2,
and Model 3 were sequentially validated by 12 mutant samples and 12 wild-type samples of Class 1,
Class 2, and Class 3. The structure of the CP-ANN model was selected from 10 × 10, 12 × 12, and
15 × 15 based on the model performances CAC, classification accuracy of cross-validation (CACV),
and CAV.

The diagnostic performances of the CP-ANN model were evaluated with sensitivity, specificity,
and accuracy. Sensitivity is defined as the ratio of TP/(TP + FN), where TP and FN are, respectively,
the number of true positive (mutant) and false negative diagnostic results; specificity the ratio of
TN/(TN + FP), TN and FP the number of true negative (wild type) and false positive diagnostic results;
accuracy the ratio of (TP + TN)/(TP + FP + TN + FN). In the calculation of sensitivity, specificity, and
accuracy, the final diagnostic result for the sample was calculated as a wild-type sample when the
three prediction results for three spectra per sample were all wild type; otherwise, as a mutant sample.
In other words, the final diagnostic result for the sample was calculated as a mutant sample when at
least one of three prediction results for three spectra per sample was mutant.

TQ Analyst 8.0 software (Thermo Fisher Scientific, Waltham, MA, USA) was used for spectral
preprocessing, selection of the spectral subrange for modeling, and PCA. Matlab 8.0 software (The
Math Works, Natick, MA, USA) was used for the calibration and validation of the CP-ANN model.

4. Conclusions

The NIR strategy on the basis of the principle different from the clinical diagnostic methods
can be used for the auxiliary diagnosis of the BRAF V600E mutation in CRC. The NIR detection is
directly based on the molecular differences between the BRAF V600E mutant and wild type, so that it
is undisturbed by the factors affecting sample staining in IHC. When compared to the time-consuming
and high-cost PCR and gene sequencing, the NIR detection is sensitive, sample preparation-free,
inherently rapid, and low-cost. This research expanded the application of NIR spectroscopy in the
auxiliary diagnosis of gene mutation in human cancer. In addition, when combined with our previous
work, i.e., the NIR spectroscopy for the auxiliary diagnosis of CRC while using the paraffin-embedded
samples [22], it is expected to simultaneously diagnose CRC and the BRAF V600E mutation using the
NIR spectra for colorectal tissue.
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Abstract: Two near-infrared fluorescent probes (A and B) containing hemicyanine structures appended
to dipicolylamine (DPA), and a dipicolylamine derivative where one pyridine was substituted with
pyrazine, respectively, were synthesized and tested for the identification of Zn(II) ions in live cells.
In both probes, an acetyl group is attached to the phenolic oxygen atom of the hemicyanine platform
to decrease the probe fluorescence background. Probe A displays sensitive fluorescence responses
and binds preferentially to Zn(II) ions over other metal ions such as Cd2+ ions with a low detection
limit of 0.45 nM. In contrast, the emission spectra of probe B is not significantly affected if Zn(II) ions
are added. Probe A possesses excellent membrane permeability and low cytotoxicity, allowing for
sensitive imaging of both exogenously supplemented Zn(II) ions in live cells, and endogenously
releases Zn(II) ions in cells after treatment of 2,2-dithiodipyridine.

Keywords: near-infrared fluorescence; fluorescent probes; Zn(II); di-(2-picolyl)amine; living cells;
cellular imaging

1. Introduction

After iron, zinc is the most abundant metal ion in the human body. Zn occurs strongly bonded
within metalloproteins providing structural support and accomplishing various catalytic functions [1–7].
Zn(II) is essential for biological processes including signal transmission, gene expression, cellular
metabolism, brain function, apoptosis, metalloenzyme regulation, neurotransmission, and mammalian
reproduction [1–7]. Malfunctioning Zn(II) homeostasis can result in various diseases in the human
body ranging from Alzheimer’s disease to cancers and infantile diarrhea [1,8,9]. Therefore, accurate
quantification and imaging of Zn(II) ions are vital for understanding their function in biological,
physiological, and pathological processes [1]. The detection of Zn(II) ions at 10−4 M concentration in
some vesicles and 10−10 M concentration in the cytoplasm has been reported [1,10–14]. Unfortunately,
many of the reported probes suffer from interferences such as the water Raman peak, metal ions such
as Cd2+ ions, autofluorescence from biological samples, and photo-damage to cells and tissues because
the excitation wavelength is usually less than 600 nm. Fluorescent probes have been devised to address
most of these issues and some offer deep tissue penetration in vivo imaging application. However,
only a few near-infrared (NIR) fluorescent probes were reported to achieve sensitive visualization of
Zn(II) in live cells [15–17].

In this study, we report on the syntheses and properties of fluorescent probes for sensitive
identification of Zn(II), see Scheme 1. These probes emit in the near-infrared region and they also
possess excellent photostability and high molar absorptivity [18,19]. We outline the syntheses of
probes A and B, see Schemes 1 and 2, and utilize these to determine Zn(II) concentrations in live cells
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by coordinating different Zn(II)-binding ligands on the hemicyanine platform. We find a significant
reduction in the fluorescence background of the probes if an acetyl group is attached to the hydroxyl
group on the hemicyanine platform. This may be due to less delocalization of the lone pair from the
oxygen atom directly bonded to the acyl/hemicyanine fluorophore resulting in less charge delocalization
via resonance as if there was only a hydroxyl group. The acetyl group is very stable to endogenous
esterases and acetylated probes display an extremely weak and imperceptible fluorescence background
in live cells that do not contain free Zn(II) ions [20]. However when present, Zn(II) ions coordinate
with probe A and promote acetyl hydrolysis that yields a significant increase in the fluorescence of the
hemicyanine fluorophore in both solution and live cells. We demonstrate that probe A can reversibly
monitor Zn(II) ion concentrations in live cells and allows for sensitive detection of free endogenous
Zn(II) released after 2,2-dithiodipyridine is added to cells. In contrast, probe B displays a much smaller
fluorescence increase with the addition of Zn (II) ions.

 

Scheme 1. Drawings of the fluorescent probes and their interactions with Zn(II) ions.

 

Scheme 2. Synthetic approaches to prepare fluorescent probes A and B.

2. Experimental Section

2.1. Instrumentation

Details of equipment utilized for NMR and mass spectrometry are as previously reported [21].
Standard 1 cm path length quartz fluorescence cuvettes were used to collect all absorption and emission
spectra at room temperature. Absorbance spectra were obtained on a Perkin Elmer Lambda 35 UV/Vis
Spectrometer (PerkinElmer, Inc., Maltham, MA, USA). The fluorescence spectra were obtained on a
Horiba (Jobin Yvon, Edison, NJ, USA) Fluoromax-4 Spectrofluorometer equipped with a 150 W CW
ozone-free xenon arc lamp. A buffer of 10 mM HEPES (pH = 7.0) was used to measure the sensing
performance of Zn(II) and for the selectivity measurements of the probe. ZnCl2 was used as the source
of Zn(II) for all optical measurements. For each experiment, zinc chloride stock solutions (10 mM)
were prepared freshly. In the selectivity measurements, individual solutions of different metal ions
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were added to solutions containing 5 μM of either probe A or B in an EtOH/buffer (1/99, v/v) co-solvent
system. Subsequently, a different volume of the zinc stock solution was added to each solution and then
thoroughly mixed. The absorption and fluorescence spectra were obtained 10 min after the addition of
Zn(II) ions. Both the excitation and emission slit widths were set to 5 nm and fluorescence spectra
were obtained at excitation of 640 nm.

In order to explain and confirm the excitation patterns observed experimentally for intermediates
4 and 9, see Scheme 2, probes A and B with and without the presence of a [Zn (OH)]− moiety,
the density functional theory (DFT) was employed as implemented in the Gaussian09 program
package [22]. The solvated environment of aqueous buffer was mimicked via the CPCM continuum
model. Structures were first allowed to geometrically affirm at the PBE/6-311G(d,p) level of theory
which allowed the HOMO/LUMO energy gaps to be calculated at the PBE/6-311++G(d,p) level of
theory. The time-dependent density functional theory (TDDFT) was employed at the level of theory
mentioned above. For the initial calculations, three excited states were explored for all the above
molecular models investigated. In addition, we conducted additional modeling with [Zn(OH2)]2+ and
[Zn(OH2)2]2+moieties attached to probes A and B. These were conducted with the APFD functional [23]
and the 6-311+G(2d,p) basis set for the TDDFT calculation using the Gaussian16 program package [24].
Full details of the calculations are presented in the Supplementary Materials.

2.2. Cell Culture and Fluorescence Imaging

HeLa cells were obtained and prepared for confocal imaging as previously reported [25,26].
This pertains to their initial incubation, addition of either probe, addition of fresh serum free media,
and final washings with PBS [15]. The live cell images were taken by a confocal fluorescence microscope
(Olympus IX 81). The fluorescence images were obtained at 60×magnification and the laser energies
were kept constant for each image series. The red channel fluorescence of the probes was excited at a
wavelength of 635 nm and fluorescence was collected from 650–750 nm.

For the Zn(II) chelate test, after adding the corresponding concentration of Zn(II) plus sodium
pyrithione (Pyr), 100 μM of TPEN (N,N,N’,N’-tetrakis(2-pyridylmethyl)ethylenediamine) was added
to each confocal dish, and the cells were incubated for 10 min at room temperature. The intracellular
level of Zn(II) ions in HeLa cells was evaluated using 2,2’-dithiodipyridine (DTDP). The cells were
serum starved for 3 h at 37 °C with 5% CO2 and then incubated with 1 μM of probe A for 30 min.
Subsequently, 100 μM DTDP was added and cells were further incubated for 30 min at 37 °C with
5% CO2. Then, 100 μM TPEN (N,N,N,N-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine) was added
and the mixture incubated for 10 min at room temperature. Cell images were taken by a confocal
fluorescence microscope (Olympus IX 81, Olympus America Inc., Nelville, NY, USA). The excitation
wavelength was 635 nm and the images were collected at 675–725 nm. The cytotoxicity of the probes
was determined using an MTS assay as previously reported [25,26].

2.3. Materials

Unless indicated, all reagents and solvents were obtained from commercial suppliers and used
without further purification.

Synthesis of compound 3: 2,4-Dihydroxybenzaldehyde (1.086 g, 7.9 mmol) and di-(2-picolyl)amine
(1.57g, 7.9 mmol) were dissolved in 30 mL methanol in a 100-mL round-bottom flask. Acetic acid (5 mL)
and sodium triacetoxyborohydride (1.5 g, 7 mmol) were added and the reaction mixture stirred at
room temperature for 3 days. After the starting materials were depleted (verified by TLC monitoring),
dilute HCl solution was added to quench the unreacted sodium salt, and methanol was removed under
vacuum. The pH of the reaction mixture was adjusted to 9.0. The resulting crude was extracted with
ethyl acetate and washed with water three times, followed by drying over Na2SO4. The residue was
collected by removing the solvent under vacuum and purified by recrystallization with diethyl ether
to afford the product 3, Scheme 2, in the form of a yellow flaky solid (1.2 g, 47%).
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Synthesis of compound 4: Compound 3, Scheme 2, (302 mg, 0.94 mmol) and K2CO3 (130 mg,
0.94 mmol) were dissolved in acetonitrile (10 mL) in a 50 mL round-bottom flask. After the mixture
was stirred at room temperature under a N2 atmosphere for 15 min, a solution of IR-780 iodide (314 mg,
0.47 mmol) in CH3CN (2.5 mL) was added to the mixture via a syringe, and the mixture was heated to
50 ◦C for 5 h. When the solvent was removed under reduced pressure, the crude product was purified
by silica gel chromatography using CH2Cl2/MeOH (15:1, v/v) as eluent, affording compound 4 as an
aquamarine solid (160 mg, 55%). 1H NMR (400 MHz, CDCl3): δ 8.57–8.50 (m, 2H), 7.64–7.61 (m, 1H),
7.42–7.38 (m, 2H), 7.31–7.27 (m, 3H), 7.17–7.14 (m, 2H), 7.10–7.03 (m, 3H), 6.86 (s, 1H), 6.67–6.63 (m,
2H), 6.34–6.29 (m, 1H), 4.26 (s, 2H), 3.87–3.67 (m, 6H), 2.65 (s, 4H), 1.89–1.56 (m, 10H), 1.04–0.97 (s,
3H); 13C NMR (100 MHz, CDCl3) δ 176.1, 163.4, 162.9, 157.9, 155.0, 149.4, 148.6, 145.0, 142.0, 141.5,
137.6, 136.1, 130.0, 129.3, 126.8, 126.3, 123.8, 123.4, 122.8, 122.5, 115.2, 114.7, 112.4, 103.5, 102.7, 58.6, 55.9,
53.7, 50.3, 47.2, 29.2, 28.6, 28.0, 24.7, 21.4, 20.6, 11.9. HRMS (ESI): calculated for C41H43N4O2

+ [M]+:
623.3381; found: 623.3629.

Synthesis of fluorescent probe A: Compound 4, Scheme 2, (100 mg, 0.13 mmol) was added
to a solution of acetyl chloride (0.05 mL, 0.26 mmol) and triethylamine (0.1 mL) in anhydrous
dichloromethane (10 mL) and stirred for 15 min under a nitrogen atmosphere. The solvent was
removed under reduced pressure yielding a blue crude product which was washed with water and
brine thrice. The product was dissolved in dichloromethane and dried over Na2SO4 and subsequently
filtered. The filtrate was collected and the solvent removed affording probe A. 1H NMR (400 MHz,
CDCl3): δ 8.59–8.52 (m, 3H), 7.72–7.63 (m, 2H), 7.51–7.45 (m, 3H), 7.31 (s, 1H), 7.22–7.15 (m, 3H),
7.00–6.93 (m, 3H), 6.82 (s, 1H), 6.68–6.64 (m, 1H), 4.74–4.53 (m, 2H), 3.91–3.63 (m, 6H), 2.71 (s, 4H),
2.31–2.20(m, 3H), 1.90–1.33 (m, 10H), 1.22 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 178.6, 169.2, 160.3, 152.2,
151.3, 150.1, 148.9, 148.7, 146.4, 142.2, 141.6, 137.2, 137.1, 132.3, 132.2, 130.4, 129.6, 129.5, 129.2, 128.7,
128.4, 128.1, 123.6, 122.8, 122.6, 120.2, 115.7, 113.6, 110.3, 106.6, 60.0, 54.1, 52.3, 51.2, 48.2, 32.1, 29.9, 28.5,
24.7, 22.9, 21.8, 21.3, 11.9. HRMS (ESI): calculated for C43H45N4O3

+ [M]+: 665.3486; found: 665.3474.
Synthesis of compound 7: Pyrazine-2-carbaldehyde (1 g, 9.25 mmol) was dissolved in methanol

(90 mL) and yridine-2-methylanamine (0.96 mL, 9.25 mmol) was added by a syringe. This mixture was
stirred at 25 ◦C for 30 min followed by rapid addition of NaBH4 (1.06 g, 27.76 mmol), and then stirred
at 25 ◦C for an additional 2 h. The solvent was evaporated under reduced pressure, water (20 mL)
was added to the residue and the solution pH was adjusted to approximately 10 by adding Na2CO3

solution. The mixture was extracted with CH2Cl2 (3×30 mL) and purified by column chromatography
with CH2Cl2/MeOH (30:1, v/v) to give the product 7, Scheme 2, as a pale-yellow oil (1.6 g, 90% yield).

Synthesis of compound 8: Compound 8, Scheme 2, was prepared using compound 7 (0.9 g,
4.5 mmol) and 2,4-dihydroxybenzaldehyde (0.68 g, 5 mmol) according to the method used for compound
3, affording the product as a yellow flaky solid (0.7 g, 44%). 1H NMR (400 MHz, CDCl3): δ 8.54 (d,
J = 1.6 Hz, 1H), 8.50–8.49 (m, 1H), 8.46–8.45 (m, 1H), 8.36 (d, J = 2.4 Hz, 1H), 7.60–7.56 (m, 1H), 7.27 (d,
J = 7.6 Hz, 1H), 7.14–7.11 (m, 1H), 6.81 (d, J = 8.4 Hz, 1H), 6.40 (d, J = 2.4 Hz, 1H), 6.27–6.24 (m, 1H),
3.87 (s, 4H), 3.66 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 158.4, 158.3, 157.8, 154.5, 148.8, 145.3, 144.0,
143.2, 137.5, 131.1, 123.6, 122.8, 114.2, 106.9, 104.2, 58.9, 56.8. HRMS (ESI): calculated for C18H19N4O2

+

[M + H]+: 323.1530; found: 323.1495.
Synthesis of compound 9: Compound 9, Scheme 2, was carried out using compound 8 (160 mg,

0.25 mmol) and IR-780 (330 mg, 0.49 mmol) in a similar manner to that used for compound 4, affording
130 mg product (46% yield). 1H NMR (400 MHz, CDCl3): δ 8.62–8.42 (m, 7H), 7.69 (s, 1H), 7.43–7.29
(m, 6H), 7.04 (s, 1H), 6.44 (s, 1H), 4.38 (s, 2H), 3.98–3.90 (m, 6H), 2.75 (s, 4H), 1.92–1.76 (m, 10H), 1.23
(s, 3H); 13C NMR (100 MHz, CDCl3) δ 176.5, 158.7, 157.8, 157.1, 155.0, 154.4, 154.1, 149.1, 148.7, 145.5,
143.9, 143.3, 142.0, 141.6, 137.8, 137.2, 135.5, 131.1, 129.8, 129.3, 126.9, 123.4, 122.7, 115.4, 114.6, 112.6,
106.6, 104.1, 58.9, 56.8, 56.1, 50.5, 47.5, 29.3, 28.6, 24.9, 21.8, 21.4, 20.6, 11.9. HRMS (ESI): calculated for
C40H42N5O2

+ [M]+: 624.3333; found: 624.3314.
Synthesis of fluorescent probe B: Probe B, Scheme 2, was carried out by reacting compound 9 with

acetyl chloride in a similar manner to that for probe A. 1H NMR (400 MHz, CDCl3): δ 8.71–8.45 (m, 7H),
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7.68–7.67 (m, 1H), 7.51–7.41 (m, 6H), 7.11 (s, 1H), 6.97 (s, 1H), 4.73 (s, 2H), 3.87–3.71 (m, 6H), 2.86–2.70
(m, 4H), 2.30 (s, 3H), 2.02–1.77 (m, 10H), 1.23 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 178.7, 169.1, 168.8,
152.3, 151.2, 150.8, 146.5, 145.5, 145.4, 144.2, 144.1, 143.6, 142.3, 141.6, 141.5, 132.7, 131.1, 130.6, 129.5,
129.0, 128.1, 122.7, 122.5, 120.4, 120.3, 115.9, 113.5, 110.3, 68.4, 57.9, 52.7, 51.2, 47.9, 32.1, 30.6, 29.9, 28.4,
24.7, 21.3, 20.5, 11.8. HRMS (ESI): calculated for C42H44N5O3

+ [M]+: 666.3439; found: 666.3436.

3. Results and Discussion

3.1. Probe Design and Synthesis

The synthetic route to prepare probes A and B is outlined in Scheme 2. In order
to bind dipicolylamine (DPA) (a ligand known to bind Zn(II) ions) to the hemicyanine
dye, we prepared 4-((bis(yridine-2-ylmethyl)amino)methyl)benzene-1,3-diol (3) by first reacting
2,4-dihydroxybenzaldehyde with DPA and then reducing the enamine intermediate with sodium
triacetoxyborohydride. Compound 3 was reacted with cyanine dye IR-780 (a chloro-substituted
tricarbocyanine dye) under basic conditions in acetonitrile, to afford the hemicyanine dye bearing
the dipicolylamine residue (4). An acetyl group was then bonded to the hydroxyl moiety on
the hemicyanine fluorophore to significantly reduce the probe fluorescence yielding fluorescent
probe A. Probe B was prepared in a similar manner to that of probe A except that the compound
1-(pyrazin-2-yl)-N-(yridine-2-ylmethyl)methanamine, 7, prepared by reacting compounds 5 with 6,
see Scheme 2, was utilized. This should result in weaker binding for the Zn(II) ions due to reduced
basicity and potentially a reduction in probe fluorescence.

3.2. Optical Properties of Fluorescent Probes A and B in Different Solvents

The absorption spectra of intermediates 4 and 9, and probes A and B were investigated in ethanol,
tetrahydrofuran (THF), and buffer (pH 7.0) containing 1% ethanol, see Table 1. Intermediate 4 displays
absorption peaks at 708 nm, 705 nm and 687 nm, and fluorescence peaks at 725 nm, 718 nm and 703 nm
in ethanol, tetrahydrofuran (THF), and buffer (pH 7.0) containing 1% ethanol at 635 nm excitation,
respectively. Increasing solution polarity results in blue shifts of absorption and fluorescence peaks
for intermediate 4 and causes fluorescence quenching as intermediate 4 has the lowest fluorescence
quantum yield of 1.4% in buffer (pH 7.0) containing 1% ethanol. This may be due to fluorescence
quenching photo-induced electron transfer from the tertiary amine of the Zn(II)-binding dipicolylamine
residue to the hemicyanine fluorophore. The fluorescent probe A displays lower fluorescence quantum
yields than intermediate 4 and this may be due to the presence of the acetyl group attached to the
phenolic oxygen atom of the hemicyanine platform in probe A. This significantly reduces the electron
donating ability of the phenolic oxygen atom and decreases fluorescence. Similar results to intermediate
4 and probe A were observed with intermediate 9 and probe B.

3.3. Absorbance Responses of Intermediates and the Probes to Zn(II) Ions

The absorption responses of intermediates 4 and 9, and fluorescent probes A and B to Zn(II) ions
were evaluated in aqueous HEPES buffer (pH 7.0) containing 1% ethanol (Figure 1). Intermediate 4
contains a main absorption peak at 691 nm and a shoulder peak at 636 nm (Figure 1). The addition
of Zn(II) ions from 0.1 μM to 2.0 μM results in gradual increases of the main absorption peak at
691 nm (Figure 1). Probe A at the same concentration shows a lower absorbance than intermediate 4

due to the presence of the acetyl group and for reasons discussed above. However, the addition of
Zn(II) ions from 0.1 μM to 2.0 μM significantly increases the main absorption peak at 691 nm with a
more moderate increase in the shoulder peak at 636 nm (Figure 1). This is because Zn(II) facilitates
hydrolysis of the acetyl group and affords rigidity to the overall structure facilitating the absorption.
Interestingly, both intermediate 9 and probe B are not as sensitive to increasing concentrations of
Zn(II) ions, as addition of up to 20 μM concentration only results in slight increases in both the main
absorption and the shoulder peaks at 691 nm and 636 nm, respectively (Figure 2).
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Table 1. Optical properties of intermediates and fluorescent probes A and B.

Solvent λabs (nm) λem (nm) εmax (104 M−1cm−1) Φf (%)

Compound 4

Buffer (pH7.0) 687 703 3.2 × 104 1.4

Ethanol 705 718 5.5 × 104 6.7

THF 708 725 5.6 × 104 7.0

Probe A

Buffer (pH7.0) 695 701 3.0 × 104 0.6

Ethanol 707 717 4.6 × 104 6.0

THF 710 723 3.1 × 104 6.8

Compound 9

Buffer (pH7.0) 685 712 3.5 × 104 1.6

Ethanol 705 717 6.1 × 104 5.2

THF 706 721 4.2 × 104 7.5

Probe B

Buffer (pH7.0) 688 709 4.1 × 104 0.8

Ethanol 705 714 6.0 × 104 4.1

THF 717 719 5.1 × 104 5.0

μ
μ
μ
μ
μ
μ
μ
μ
μ
μ
μ
μ
μ
μ

Figure 1. (a) UV-Vis absorption spectra of 1.0 μM intermediate 4 and (b) UV-Vis absorption spectra of
probe A upon gradual addition of Zn(II) from 0.1 μM to 2.0 μM to 10 mM HEPES buffer solutions (pH
7.0) containing 1.0 μM probe A.
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Figure 2. (a) UV-Vis absorption spectra of 1.0 μM intermediate 9 and (b) UV-Vis absorption spectra
of 1.0 μM probe B upon gradual addition of Zn(II) from 0.1 μM to 2.0 μM to 10 mM HEPES buffer
solutions (pH 7.0) containing 1.0 μM) probe B.

3.4. Fluorescence Response of the Intermediates and Probes to Zn(II) Ions

Intermediate 4 displays strong fluorescence in the absence of Zn(II) ions, indicating that the
photo-induced electron transfer from the tertiary amine of the dipicolylamine residue to the hemicyanine
fluorophores is unable to completely quench the fluorescence of the hemicyanine platform (Figure 2).
The addition of Zn(II) ions, up to 2.0 μM, cause a moderate increase in the fluorescence peak at 708 nm,
see Figure 3. However, fluorescent probe A exhibits a much weaker fluorescence in the absence of
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Zn(II) ions and its fluorescence dramatically increases upon the addition of Zn(II) ions from 0.1 μM to
2.0 μM (Figure 2). This sensitive response of probe A to Zn(II) ions arises from the quick hydrolysis
of the acetyl group via binding of Zn(II) to the dipicolylamine residue. Probe A displays a linear
fluorescence response to Zn(II) from 0.1 μM to 1.5 μM with a detection limit of 0.45 nM, see Figure S8.
The titration curve fitted well up to a 1:1 stoichiometry and the Hill plot displays a linear relationship
with a slope of 1.0 and the Job’s plot contains a maximum point at a mole fraction of 0.50, see Figure
S11. Probe A shows high affinity for Zn(II) ions with a lower dissociation constant of 9.5 × 105 M−1 as
determined by a fluorescence titration curve, see Figure S7. In contrast, intermediate 9 and probe B

display slight increases in fluorescence if up to 10 times higher concentration of Zn(II) ions is added to
their solutions (Figure 4). This difference may be ascribed to the weaker binding of Zn(II) ions as a
result of the substitution of one pyridine by pyrazine.

 

μ

Figure 3. (a) Fluorescence spectra of intermediate 4, and (b) probe A at 635 nm excitation upon gradual
addition of Zn(II) from 0.1 μM to 2.0 μM to 10 mM HEPES buffer solutions (pH 7.0) containing 1.0 μM
probe A. (c) Intensity dependence on zinc ion concentration of 1.0 μM intermediate 4 and (d) probe
A upon gradual addition of Zn(II) from 0.1 μM to 2.0 μM to 10 mM HEPES buffer solutions (pH 7.0)
containing 1.0 μM probe A.

Figure 4. (a) Fluorescence spectra of 1.0 μM intermediate 9 and (b) probe B at 635 nm excitation upon
gradual addition of Zn(II) from 0.1 μM to 2.0 μM to 10 mM HEPES buffer solutions (pH 7.0) containing
1.0 μM probe B.
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The accuracy of the fluorescence response for probe A was assessed as greater than 92%.
Concentrations of Zn2+ were accurately determined using a calibration curve based on atomic
absorption, Figure S30, and compared to fluorescence measurements using probe A, Figure S32.

3.5. Selectivity Studies

The selectivity of fluorescent probes A and B to Zn(II) over other metal ions was evaluated in a
10 mM HEPES buffer (pH 7.0). No change in fluorescence was observed with probe A if up to 20 μM
alkali and alkaline-earth metal ions, specifically Na+, K+, Ca2+, and Mg2+ ions, and some transition
metal ions, i.e., Mn2+, Fe2+, Ni2+, Cu2+, Cd2+, and Hg2+ ions were added (Figure S9(a)). In contrast
probe B did not display selectivity for Zn)II in a similar comparison (Figure S9(b)). Probe A shows
high selectivity to Zn(II) ions over other metal ions in contrast to the other reported fluorescent probes
for detection of Zn(II) ions which show significant interference from Cd2+ ions.

3.6. Photostability of the Probes

The photostability of the probes was evaluated by comparative assessment of fluorescent intensity
every 10 min under continuous excitation at 635 nm using a 150 W xenon arc lamp. Probe A displays
excellent photostability as its fluorescence intensity decreases by only 3.0% after one hour of excitation
and by 7.6% after three hours excitation (Figure S10). Probe B exhibits similar photostability to probe
A. Fluorescent intensity losses of 4.2% after one hour of excitation and 7.0% under three hours of
excitation are obtained (Figure S10).

3.7. Theoretical Modeling Results

Analysis of the molecular charges allowed for appreciating changes in charge distribution with
the PBE functional calculations. The distal nitrogen atom in the pyrazine moiety (i.e., that which binds
to the Zn atom) has a notable charge change (+0.049|e|) when comparing pyrazine in probe B to the
N atom in pyridine in probe A, which is in agreement with the known lesser basicity for pyrazine.
This change in charge results in an increase in the bond length of 0.046 Å in the N-Zn bond (now
2.0995 Å), indicating a decrease in bond strength. This weaker coordination of the Zn(II) ion may be
responsible for the subdued increase in fluorescence when pyrazine is present (probe B) in place of
pyridine (probe A).

The time dependent excitation patterns for all the compounds investigated is reported in Table S9.
The results for the probes, including the presence of an additional ligand (i.e., OH−), are summarized
in Table S12. The absorption peaks computed for intermediate 4, intermediate 9, and probes A

and B are 699 nm, 701 nm, 693nm, and 699 nm, respectively, and they are in excellent agreement
with experimental evidence (see Table S10). When Zn(II) is added to probe A, a slight shift in the
absorption peak (~+40 nm) is observed. Interestingly, visual inspection of the molecular orbitals
indicates that such a value corresponds to an electron excitation from the HOMO to the LUMO,
instead of the HOMO-1/LUMO transition observed for the other molecules calculated (see Table S11).
The overestimation of the excitation energy may be related to a deficiency in the PBE function in
properly handling the delocalization of the electronic charge of the nitrogen-rich molecular moiety
when forming the Zn complex.

However, the result computed for the binding of probe B to the Zn atom is in excellent agreement
with experimental results with a calculated absorption peak of 702 nm. It is also ascribed to the excitation
that occurs from the HOMO-1 to the LUMO. The lobes for the HOMO orbital for probe A-Zn(OH)
indicate a substantial contribution from the lone pairs on the tertiary amine on the dipicolylamine
moiety in contrast to a lack of such overlap in the HOMO-1 orbital for probe B-Zn(OH). Additionally,
while Zn complex 4, see Table S11, has a HOMO/LUMO transition, delocalization into the tertiary N
atom is not observed, indicating that completing the coordination sphere around Zn is required for this
to occur. An exploration of the geometrical features of the Zn first coordination sphere reveals that the
Zn atom coordinates with the available nitrogen and oxygen atoms of the probes. While the average
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atomic distances are not affected, some individual values do change, in particular, the Zn-N atom
distance for the pyridine and pyrazine rings shows an increase of approximately 0.05 Å from probe A

to probe B. Such a structural change is reflected by a decrease in the negative charge of the nitrogen of
approximately 0.07 |e|. This observation seems to confirm a limitation in the chosen DFT function in
dealing with the Zn complex arising from probe A. It is interesting to note that results obtained in
the presence of the counter anion, confirm the observations reported above with absorption peaks for
Probe A-Zn and Probe B-Zn of 765 nm and 711 nm, respectively.

The coordination sphere bond distance results from the additional calculations, i.e., with the
APFD/6-311+G(2d,p) functional/basis set combination, which consisted of the [Zn(OH2)]2+ and
[Zn(OH2)2]2+ moieties attached to probes A and B, are illustrated in Figure S29, (see supporting
information pages 11–35. As is evident, trigonal bipyramidal and octahedral geometries are obtained
with these various entities and there is crystallographic evidence of the former mode of coordination.
The fact that pyrazole is a weaker ligand is again confirmed by the longer Zn-N (pz) distances obtained
with both probes, i.e., 2.075 Zn(OH2)2+ and 2.120 [Zn(OH2)2]2+ compared to 2.049 and 2.091 Å for
probes B and A, respectively. In these structures the phenolic C-O distances were equivalent, leading
to the conclusion that the conjugation and fluorescence intensities for the hemicyanine platform should
be equivalent. This is also evident in the calculated excited state transitions which consisted of the
HOMO to LUMO transition in all cases, see Table S12. It is noteworthy that this calculation strategy,
i.e., APFD/6-311+G(2d,p), resulted in values for the transitions that were ~140 nm less than those
observed experimentally (and at 0.426 and 0.412 eV for probes A and B, respectively, and were greater
than the expected error range of 0.20–0.25 eV [23]) in contrast to the excellent agreement noted above
for PBE/6-311++G(d,p).

3.8. Cytotoxicity of the Probes

The cytotoxicity of probes A and B was determined by carrying out the MTS assay (Figure 5).
Incubation of the HeLa cells with the probes did not have any significant impact on cell viability even
at 10 μM concentration. Overall, the probe showed insignificant cytotoxicity over 48 h at the test
concentrations, with cell viability of 95%, indicating that the probes have good biocompatibility and
can serve as an excellent staining reagent for live cell.

Figure 5. Cytotoxicity and cell proliferation of probes A and B conducted by MTS assay. HeLa cells
were incubated with 1, 2, 3, 5, and 10 μM of probes for 48 h, and cell viability was measured by
adding MTS reagent and measuring at 490 nm at the average of three times. The black bar represents a
blank control.
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3.9. Live Cell Imaging of Fluorescent Probes

In light of the aforementioned fluorescence analysis, we investigated only probe A to detect Zn(II)
ions in live cells by incubating HeLa cells with different concentrations of probe A (0.1 μM, 0.5 μM,
1.0 μM) for 30 min at 37 ◦C prior to imaging. There was an extremely weak and barely perceptible
fluorescence due to the low level of endogenous auto-fluorescence from the cells in the near-infrared
region and the low fluorescence quantum yield of probe A, see Figure 6. This indicated that the ester
bond of the probe was very stable inside live cells. The addition of 10 μM exogenous Zn(II) to the cells
without the ionophore pyrithione did not cause a noticeable change in the fluorescence background.
However, intracellular fluorescence increased significantly in response to exogenous Zn(II) in the
presence of pyrithione. The cellular fluorescence intensity increased with an increase of the probe
concentration from 0.1 μM to 1.0 μM.

 

Figure 6. Fluorescence images of fluorescent probe A with concentration at 0.1 μM, 0.5 μM, and 1.0
μM in HeLa cells. Cells were incubated with probe A with specific concentration for 30 min. Cells
were then supplemented with either 10 μM of zinc(II) chloride or 10 μM each of zinc(II) chloride plus
sodium pyrithione (Pyr) for 30 min before acquiring images. Scale bar: 50 μm. λex: 635 nm.

The sensitivity of the probe to the intracellular Zn(II) level was also investigated by using a probe
concentration of 1.0 μM, followed by stepwise increases in the concentration of the Zn(II)/ionophore
pyrithione from 0.1 μM, 0.5 μM, 1.0 μM, 5 μM, and 10 μM, see Figure 7. The intracellular fluorescence
increased with an increase of Zn(II) ion concentration from 0.1 to 5μM, and it did not change significantly
with further increases in the Zn(II) ion concentration. Clearly, probe A can sensitively detect intracellular
Zn(II) ion with at least 0.1 μM concentration. The intracellular fluorescence decreased significantly after
a cell-permeable Zn(II) ion chelator N,N,N’,N’-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) was
added to the cells, [27] indicating that the probe responded to intracellular Zn(II) ions reversibly since
TPEN effectively removed Zn(II) ions from the probe because of its much stronger binding affinity.

In addition, we investigated the fluorescent probes to determine if they could be used to
detect Zn(II) ions endogenously released from intracellular metalloproteins after the treatment with
2,2-dithiodipyridine (DTDP), see Figure 8. The DTDP treatment alone was reported to give modest
increases of intracellular Zn(II) ions (nM) in cells. The probe fluorescence has imperceptible background
in cells without DTDP treatment. However, a very strong fluorescence intensity from probe A (1.0 μA)
was observed after DTDP treatment of HeLa cells without the addition of external ionophores,
indicating the accumulation of endogenously released Zn(II) ions. The intracellular fluorescence
was considerably and immediately reduced by TPEN treatment. These results clearly proved that
fluorescent probe A sensitively detected endogenous Zn(II) ions in live cells.
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Figure 7. Fluorescence images of 1.0 μM fluorescent probe A in HeLa cells. Cells were incubated with
probe A with specific concentration for 30 min. Cells were then supplemented with either zinc(II)
chloride with different concentrations or zinc II) chloride with different concentrations plus sodium
pyrithione (Pyr) for 30 mins before acquiring images. Then 100 μM TPEN (zinc chelator) was added for
10 min before acquiring the second set of images. Scale bar: 50 μm. λex: 635 nm.

259



Molecules 2019, 24, 1592

 

Figure 8. Fluorescence images of HeLa cells incubated with probe A. Cells were first incubated with
1.0 μM of probe A for 1 h and then were supplemented with 100 μM of 2,2’-dithiodipyridine (DTDP)
for 30 mins before images were taken. Scale bar: 50 μm. λex: 635 nm.

4. Conclusions

We reported on the rational design, syntheses, and characterization of two novel near-infrared
fluorescent probes for sensing Zn(II) ions based on the hemicyanine fluorophore. The fluorescent
probe A containing the dipicolylamine residue is highly selective and sensitive to Zn(II) ions over other
metal ions. The strong binding of Zn(II) ions to probe A facilitates the cleavage of the acetyl group
and effectively increases the fluorescence of the fluorophore. The fluorescent probe A offers a way
to live cell imaging of both exogenously supplemented Zn(II) ions and free endogenous Zn(II) ions
released from intracellular metalloproteins. In contrast, probe B exhibits selectivity but only moderate
sensitivity to Zn(II) ions, and our theoretical calculations did not provide an answer for this difference.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/8/1592/s1,
The supplementary materials include high-resolution mass spectra of probes A and B in the absence and presence
of Zn(II) ions, Zn(II) binding constants with the probes, probe selectivity over other metal ions, Job’s plot,
fluorescence quantum yields of the probes, and theoretical calculation results.
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Abstract: In this study, a methodology has been proposed to identify the origin of animal DNA,
employing high throughput extension accessory Fourier transform infrared (HT-FTIR) spectroscopy
coupled with chemometrics. Important discriminatory characteristics were identified in the FTIR
spectral peaks of 51 standard DNA samples (25 from bovine and 26 from fish origins), including
1710, 1659, 1608, 1531, 1404, 1375, 1248, 1091, 1060, and 966 cm−1. In particular, the bands at
1708 and 1668 cm−1 were higher in fish DNA than in bovine DNA, while the reverse was true for
the band at 1530 cm−1 was shown the opposite result. It was also found that the PO2

− Vas/Vs

ratio (1238/1094 cm−1) was significantly higher (p < 0.05) in bovine DNA than in fish DNA. These
discriminatory characteristics were further revealed to be closely related to the base content and base
sequences of different samples. Multivariate analyses, such as principal component analysis (PCA)
and partial least squares-discriminant analysis (PLS-DA) were conducted, and both the sensitivity
and specificity values of PLS-DA model were one. This methodology has been further validated
by 20 meat tissue samples (4 from bovine, 5 from ovine, 5 from porcine, and 6 from fish origins),
and these were successfully differentiated. This case study demonstrated that FTIR spectroscopy
coupled with PLS-DA discriminant model could provide a rapid, sensitive, and reliable approach for
the identification of DNA of animal origin. This methodology could be widely applied in food, feed,
forensic science, and archaeology studies.

Keywords: DNA; FTIR spectroscopy; rapid identification; PLS-DA; animal origin

1. Introduction

Deoxyribonucleic acid (DNA) is the genetic material in all living organisms. Many studies
on DNA-specific identification continue to be developed for a range of applications, for example,
differentiating murine from mutton meat [1]; identifying poisonous mushrooms [2]; identifying fish
species in cooked products [3]; detecting meat and poultry species in ground meats, deli meats, canned
meats; and dried meats [4] to ensure food safety. In addition, DNA analysis has also been applied
in identifying pork, beef, chicken and mutton origins in food products [5] and feed products [6,7] to
control adulteration. Besides, it has contributed to the identification of parasite for the rapid detection
of infectious disease [8]. In general, methods for the identification of DNA, such as polymerase
chain reaction (PCR), DNA metabarcoding, and polymerase chain reaction-restriction fragment length
polymorphism (PCR-RFLP) have been commonly used in these studies. These methods are generally
based on specific DNA fragments, and can obtain high accurate rates. However, these methods are
time-consuming, expensive, and require skilled labor [9].

Compared with traditional molecular technologies, Fourier transform infrared (FTIR)
spectroscopy has the advantage of great simplicity, rapidity and cheap. It is widely employed in
the fingerprint identification of molecular composition and structure. Therefore, FTIR spectroscopy
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could provide a new insight into rapid identification based on the difference in DNA molecular
composition and structure. To date, only a few studies have focused on rapid identification using
FTIR. For example, it was used for differentiating japonica from indica rice varieties based on DNA
structural differences [10]. Subsequently, this method has been extended to differentiate other species,
such as varieties of Chinese cabbage [11], and Camellia reticulata Lindl in the Chuxiong population [12].
All these studies deal with plant species. Furthermore, it was used in microorganism identification,
such as enterococci [13], and invertebrate animals, such as nematode [14]. However, investigations
on the rapid identification of vertebrate animal DNA by FTIR spectroscopy can also be helpful in a
range of applications, such as the detection of bovine meat and bone meal in fishmeal, due to that
bovine meat and bone meal were prohibited from feeding animals to control bovine spongiform
encephalopathy crises in Europe [15], differentiating horse meat from beef to control the “European
horsemeat crisis” [5], and the identification of wildlife forensic animal to avoid illegal mammalian
wildlife trafficking [16,17]. To the best of our knowledge, the mechanism and model of animal DNA
discrimination based on FTIR has not been reported previously.

Based on our previous work [18], high throughput extension accessory FTIR (HT-FTIR)
spectroscopy was used in the present study for identification of animal DNA. Bovine and fish standard
DNA samples were involved in a case study. The discrimination analysis was developed by a
combination of principal component analysis (PCA) and partial least squares-discriminant analysis
(PLS-DA). Furthermore, the mechanism of the discrimination was investigated. The methodology
reported herein was also validated by use on 20 market meat tissue samples, with emphasis on the
analysis of discriminatory characteristics.

2. Results and Discussion

2.1. Infrared Spectral Characteristics of Bovine and Fish Standard DNA Samples

Figure 1 shows the FTIR spectra of bovine and fish standard DNA samples, which shared similar
spectral characteristics. FTIR spectra of DNA samples showed major peaks in three regions, including
1800–1500 cm−1, 1500–1250 cm−1, and 1250–800 cm−1. Similar IR spectral peaks have been identified
in related studies [19–24]. The assignment of specific absorption bands in three regions are summarized
in Table 1. Absorption bands in the region between 1800 and 1500 cm−1 were mainly derived from
the vibration of double bonds, such as C=N, C=O and C=C [21,25]. These vibrations might be easily
sensitive to the effects of base stacking and pairing [21,22]. Absorption intensities in the region
from 1500 to 1250 cm−1 were mainly attributed to pyrimidine and purine ring modes [19,21,23].
The vibrations of peaks in this region were easily affected by the sugar puckering modes, glycosidic
bond rotation, and backbone conformation [21]. Finally, absorption bands in the region (1250–800 cm−1)
could mostly be attributed to the vibration of PO2

− groups and deoxyribose stretching, which was
extremely sensitive to DNA backbone conformation [11,21,26].
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Figure 1. FTIR spectra of calf and salmon DNA.

Table 1. Assignment of characteristic peaks of bovine and fish standard DNA samples.

Assignment Comment
Frequencies

References
Bovine Standard DNA Fish Standard DNA

Thymine C=O stretching 1712 1711 [19,21,23,24]
Thymine C=O stretching 1659 1659 [19,20,22]
Adenine Base/in-plane vibration 1608 1608 [20,22]

Cytosine, Guanine Base/in-plane vibration 1529 1529 [19]
Adenine, Guanine Ring vibration, C=N 1489 1489 [21]
Adenine, Guanine Base/in-plane vibration 1420 1420 [19]
Adenine, Guanine dA, dG anti 1371 1371 [23]
Backbone-A form Vas PO2

− 1238 1240 [22]
Backbone Vs PO2

− 1094 1092 [20]
Backbone O-P-O bending 964 964 [19]

Deoxyribose Deoxyribose ring vibration 889 889 [21]
Deoxyribose Deoxyribose-phosphate, B-marker 831 833 [19]

2.2. Multivariate Analysis of FTIR Spectral Data

Multivariate analysis was used for further identifying DNA of different animal origins. Initially,
PCA was used to assess the separation ability of FTIR spectra of bovine and fish standard DNA samples.
The PCA score plot was built using the first two principal components (PCs), as illustrated in Figure 2.
PC1 and PC2 could explain most of the variances in the sample clustering, which accounted for
99.84% and 0.14% of the total variation, respectively. As presented in Figure 2, bovine standard DNA
showed positive values on PC2, while fish standard DNA samples showed negative scores on PC2.
Bovine and fish standard DNA samples were clearly distinguished from each other. It was concluded
from PCA result that bovine and fish standard DNA samples were discriminated explicitly without
false prediction. Furthermore, a PLS-DA discriminant model was developed based on the DNA
characteristics. The calibration model was chosen with leave-one-out cross validation, independent
validation was used to assess model accuracy. The PLS-DA model result is shown in Table 2. For all
data sets, including the calibration model set, the cross validation set and the independent validation
set, both sensitivity and specificity values were 1.00, and the classification error was 0.00. These results
indicate that this PLS-DA model was valid and reliable. From the combined results of PCA and
PLS-DA, it was concluded that FTIR spectroscopy coupled with chemometrics can be successfully
used to differentiate bovine from fish standard DNA samples.
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Figure 2. PCA score plot of FTIR spectral characteristics of DNA.

Table 2. Result of PLS-DA discriminant analysis.

Bovine DNA Standard Samples Fish DNA Standard Samples

Sensitivity (Cal) 1.00 1.00
Specificity (Cal) 1.00 1.00

Classification error (Cal) 0.00 0.00
Sensitivity (CV) 1.00 1.00
Specificity (CV) 1.00 1.00

Classification error (CV) 0.00 0.00
Sensitivity (Val) 1.00 1.00
Specificity (Val) 1.00 1.00

Classification error (Val) 0.00 0.00

The Cal refers a calibration set; The CV refers a cross-validation set; The Val refers an independent-validation set.

2.3. Discussion on the Mechanism of the Discrimination Model

2.3.1. The Average-Difference Profile Analysis

In order to explore the difference between bovine and fish standard DNA samples, the
average-difference profile was constructed in Figure 3. The absorption intensities in the region
between 1740 and 1600 cm−1 were below zero, while the band at around 1530 cm−1 was above zero.
Both bands at 1708 and 1668 cm−1 in the region (1700–1600 cm−1) could be due to C=O stretching
vibration of thymine, while the band at 1530 cm−1 could be associated with the vibration of cytosine
and guanine. A similar result was obtained by Mello and Vidal [27], who suggested that FTIR spectra
of bovine DNA was higher than that of fish DNA at the band at 1661 cm−1, while it showed the
opposite result in the 1600–1500 cm−1. An important cause may be that bovine DNA has higher GC
content, and thus lower AT content, which could have an effect on the vibration of the base pairing,
as well as hydrogen bonds [28]. Besides these characteristic peaks, there were other obvious spectral
differences at 1404 and 1091 cm−1, which may be ascribed to vibration of all bases (adenine, thymine,
cytosine, and guanine) and PO2

− groups [19,24,29].
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Figure 3. A difference profile between bovine (minuend) and fish (subtrahend) DNA standard samples.

2.3.2. Comparison of Spectral Characteristics of DNA of Two Groups

Besides the analysis of mean spectra of bovine and fish standard DNA samples, spectral distances,
including the intergroup and intragroup distances, were analyzed via Euclidian distance. For each
standard DNA sample, the intragroup distance was the average of 21 Euclidian distances, which were
calculated between one sample and the other within the same type. The intergroup distance was the
average of 22 Euclidian distances, between one sample and all the samples in the different group.
The intergroup and intragroup distances of each standard DNA sample are illustrated in Figure 4.
Average intragroup distance was 0.18 ± 0.06, while intergroup distance between bovine and fish
standard DNA samples was 0.48 ± 0.13. More importantly, a nonparametric test of intergroup and
intragroup distances was conducted. This revealed that there was a significant difference (p < 0.05)
between intragroup and intergroup distances, which may explain why bovine and fish standard DNA
samples could be differentiated.

 
Figure 4. Spectral distance of standard DNA samples including intergroup and intragroup distances.

2.3.3. The Contribution of IR Spectral Characteristic Peaks of DNA

As mentioned above, bovine and fish standard DNA samples could be readily separated by
the PCA score plot, especially by PC2 (Figure 2). The PCA loading plot could be used to reveal the
most discriminative peaks [30]. Therefore, the loading plot of PC2 was further analyzed for exploring
the highest contribution in the discrimination model. As illustrated in Figure 5A, several infrared
absorption bands, including 1710, 1531, 1404, 1375, 1248, 1091, and 1060 cm−1, could be considered as
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the highest contribution to the distinction between bovine and fish standard DNA samples. It should
be noted that these peaks at 1710, 1531, 1404, and 1091 cm−1 were discussed previously (seen in
Section 2.3.1). Apart from these bands, the peak at 1375 cm−1 was attributed to anti vibration of
adenine and guanine [23]. It is consistent with a previous study by Qiu [12], who demonstrated that
the band at 1388 cm−1 contributed the most to the differentiation among ten varieties of Camellia
reticulata Lindl. from Chuxiong population. The peak at 1248 cm−1 was ascribed to phosphate
antisymmetric stretching. Furthermore, it was found that the PO2

− Vas/Vs ratio of bovine standard
DNA samples was 0.75 ± 0.0046, while it was 0.70 ± 0.0048 for fish standard DNA samples. It was
further confirmed that the PO2

− Vas/Vs ratio was significantly higher (p < 0.05) in bovine than fish
standard DNA samples, which is in close agreement with a previous finding of Mello and Vidal [27].
It could be speculated that the PO2

− group may play an important role in differentiating two types
of DNA. It was also seen that this ratio was different from that reported by Mello and Vidal [27],
who suggested that the PO2

− Vas/Vs ratio of bovine and fish DNA obtained by using ARO objective
were 0.92 and 0.87, respectively; while they were 0.67 and 0.61, respectively, when obtained by using
ATR objective. The difference may be due to the different sampling techniques used in each case.

To explore the specific contribution of more characteristic peaks in the discriminant model,
an independent samples test-analysis of spectral intensities of bovine and fish standard DNA samples
was conducted at each spectral wavenumber. Moreover, adjusting p values were calculated by false
discovery rates to make multiple testing corrections, as shown in Figure 5B. It was found that there
were significant differences (p < 0.05) in 469 sites of 520 wavenumbers, particularly at 452 sites (p < 0.01).
This indicated the ability of FTIR spectral analysis for differentiating bovine from fish DNA. It may
be speculated that, together, these spectral peaks have an effect on distinguishing bovine from fish
DNA samples.

  
(A) (B) 

Figure 5. Analysis of the mechanism of the discriminant model ((A) loading plot for second principal
component (PC2) loading; and (B) statistical significance of DNA standard samples in different
wavenumbers, based on a t-test).

More importantly, these bands were sensitive to base stacking and base pairing, while the
alteration of base stacking and pairing could be associated with different base sequences of DNA
from different animal origins. Base stacking interactions between pyrimidine and purine bases
in the following trend have been demonstrated: Pyrimidine–pyrimidine < purine–pyrimidine <
purine–purine [31–33]. These interactions could have an influence on absorption intensities of the
DNA bands. It has been found that the degree of propeller twist is sensitive to the base sequence of
DNA [34].
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2.4. Methodology Validation of Market Meat Samples

In order to verify the practical applicability of the method developed, genomic DNA of meat
tissue samples were used for HT-FTIR spectroscopic analysis.

2.4.1. Bovine and Fish Samples

Ten meat tissues (four from bovine and six from fish origins) were used to build a PCA score plot
to verify this developed method. PC2 and PC4 were used, which could account for 1.76% and 0.14% of
the total variation, respectively. As illustrated in Figure 6A, only bovine DNA had negative values
onPC2 and PC4, which indicated that bovine and fish DNA samples were successfully differentiated.
Furthermore, a PLS-DA model with leave-one-out cross-validation has been developed. Results
showed that the sensitivity, specificity and classification error were one, one, and zero, respectively,
which indicated that bovine and fish DNA could be successfully separated. In addition, the PO2

−

Vas/Vs ratio was found to be significantly higher (p < 0.05) in bovine DNA samples than that in fish
DNA samples, which is consistent with results in Section 2.3.3. Thus, it may be concluded that the
PO2

− Vas/Vs ratio could be an important biomarker for differentiation bovine from fish DNA samples.
In order to explore the contribution of characteristic peaks, the difference profile and the loading

plot were analyzed. The difference profile between bovine (minuend) and fish (subtrahend) DNA
samples is shown in Figure 6B. Comparison with the results of standard DNA samples (Figure 3),
there are several similarities. The peaks at around 1676 cm−1 (thymine) and 1604 cm−1 (adenine)
were below zero, while the band at 1530 cm−1 (cytosine and guanine) was above zero (Figure 6B).
This phenomenon was consistently observed in Figure 3. The loading plot of PC2 and PC4 is presented
in Figure 6C. Several high marked bands, including 1699, 1531, 1404, 1375, 1250, 1106, 1070, and
960 cm−1 were identified. All marked bands were in good agreement with Figure 5A. However,
compared with Figure 5A, there were several peak shifts, including 1699, 1250, and 1106 cm−1.
One possible explanation could be that genomic DNA extracted from meat samples was not as pure as
standard DNA. Overall, high marked bands, including 1710, 1659, 1608, 1531, 1404, 1375, 1248, 1091,
1060, and 966 cm−1, were confirmed in DNA spectra of market meat samples.
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(A) (B) 

 
(C) 

Figure 6. Multivariate analysis of FT-IR spectral data on genomic DNA from meat tissues ((A) a PCA
plot; (B) a difference profile between bovine (minuend) and fish (subtrahend) DNA samples; and (C) a
PCA loading plot).

2.4.2. Bovine and Porcine Samples

Nine meat tissues (four from bovine and five from porcine origins) were used to build a PCA score
plot to verify this proposed method. A PCA score plot was established by using PC1 and PC2, which
could account for 91.80% and 7.00% of the total variation, respectively. As presented in Figure 7A,
porcine DNA had positive values, while bovine DNA samples had negative values on PC2, which
indicated that bovine and porcine DNA samples could be clearly separated. In order to explore the
contribution of characteristic peaks, the difference profile and the loading plot were also analyzed.
The difference profile between bovine (minuend) and porcine (subtrahend) DNA samples and the
loading plot of PC2 are presented in Figure 7B,C. Several characteristic peaks at 1670, 1659, 1608, 1110,
1070, and 1042 cm−1 were identified.

270



Molecules 2018, 23, 2842

 
(A) (B) 

 
(C) 

Figure 7. Multivariate analysis of FT-IR spectral data on genomic DNA from meat tissues ((A) a PCA
plot; (B) difference profile between bovine (minuend) and porcine (subtrahend) DNA samples; and (C)
a PCA loading plot).

2.4.3. Bovine and Ovine Samples

Nine meat tissues (four from bovine and five from ovine origins) were used to build a PCA
score plot to verify this established method. A PCA score plot was built using PC1 and PC2,
which could account for 92.09% and 7.41% of the total variation, respectively. As presented in
Figure 8A, ovine DNA had negative values, while bovine DNA samples had positive values on PC2,
which indicated that bovine and ovine DNA samples could be clearly separated. In order to explore
the contribution of characteristic peaks, the difference profile and the loading plot were also analyzed.
The difference profile between bovine (minuend) and ovine (subtrahend) DNA samples are presented
in Figure 8B. The most significant spectral variations were a concentrated distribution in the region
of 1800–1500 cm−1. It may be due to that the characteristics bands in this region, which are sensitive
to DNA base pairing, base stacking, and the propeller twist of the DNA structure. Furthermore,
the loading plot of PC2 was analyzed in Figure 8C. Several high marked bands, including 1650, 1608,
1418, and 1070 cm−1 were revealed.
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(A) (B) 

 
(C) 

Figure 8. Multivariate analysis of FT-IR spectral data on genomic DNA from meat tissues ((A) a PCA
plot; (B) difference profile between bovine (minuend) and ovine (subtrahend) DNA samples; and (C) a
PCA loading plot).

3. Material and Methods

3.1. Materials

Double-stranded DNA derived from calf thymus (bovine standard DNA) and salmon testis
(fish standard DNA) were purchased from Sigma (Sigma-Aldrich, St. Louis, MO, USA). 20 meat
tissue samples (four from bovine, five from ovine, five from porcine, and six from fish origins),
were purchased from a local market in Beijing, China. Minced beef tenderloin, porcine leg, ovine
leg and fish meat tissues were used in our study. TIANamp genomic DNA kit (DP304, supplied
with buffer PW, Rnase A, GD, GB, GA, proteinase K and column CB3) was obtained from Tiangen
(Beijing, China). Ethanol (99.9%) was purchased from Beijing Chemical Co., Ltd. (Beijing, China) and
nucleasefree water was obtained from Promega (Madison, WI, USA) was used.

3.2. Preparation of DNA Samples

Genomic DNA was extracted from 20 meat tissue samples by TIANamp genomic DNA kit
following supplier instructions [35]. Briefly, 20 mg of animal tissue were treated to cells suspension,
which were then centrifuged (10,000 rpm) for one min. The supernatant was discarded and 200 μL of
GA buffer were added to resuspend the cell pellet. Next, 4 μL of RNase A and 20 μL of Proteinase
K were added in succession. The solution was then incubated at 56 ◦C until the tissue is completely
lysed; next, 200 μL of GB buffer were mixed with the solution, and this was incubated at 70 ◦C for 10
min for homogenizing before adding 200 μL of ethanol, mixing and then pipetting into a CB3 spin

272



Molecules 2018, 23, 2842

column. This column was centrifuged at 12,000 rpm for 30 s and then placed into the collection tube.
This procedure was repeated three times, with 500 μL of GD buffer, 600 μL of PW buffer and another
600 μL of PW buffer in succession. After this, the CB3 spin column was centrifuged at 12,000 rpm
for two min to dry the membrane completely. Finally, 50 μL of water were pipetted to the membrane
of the CB3 spin column, which was then incubated at room temperature for two min, and again
centrifuged at 12,000 rpm for two min. The solution was then collected into a new, clean 1.5-mL
microcentrifuge tube.

In all, 71 DNA samples were involved in this study, including 44 standard DNA samples (25 from
bovine and 26 from fish origins) as a calibration set, 7 standard DNA samples (3 from bovine and
4 from fish origins) as an independent validation set, and 20 DNA samples for market meat-tissue
validation. The final concentration of all DNA samples was adjusted 100 ng/μL.

DNA sample purity was evaluated by calculating the absorption ratio at 260/280 nm using a
micro-UV spectrophotometer (Nanodrop, Thermo Fisher Scientific, San Jose, CA, USA) for further
confirmation [36–38].

3.3. HT-FTIR Measurements

The sampling technique and pretreatment temperature in FTIR spectroscopic analysis of DNA
were according to our previous report [18]. Briefly, prior to FTIR measurements, 15 μL of DNA solution
were dried on a 96-well silicon plate (Bruker, Rheinstetten, Germany) at 30 ◦C for 30 min. A Tensor 27
FTIR spectrometer model coupled with a high throughput extension (HTS-XT) accessory (HT-FTIR,
Bruker Inc., Germany) was used in all of the measurements. All spectra were collected between 4000
and 400 cm−1 with a spectral resolution of 4 cm−1. 64 scans were co-added to improve the signal-
to-noise ratio [39]. The IR spectra of each sample were run in triplicate.

3.4. Data Processing and Multivariate Analysis

The FTIR spectral data in the region (1800−800 cm−1) was analyzed using the Matlab version
R2015 (Mathworks, Natick, MA, USA). Multiplicative scattering correction (MSC) was used prior
to the multivariate analysis, including PCA and PLS-DA [40–42]. Preprocessing and multivariate
analysis were performed with the PLS Toolbox 8.0 (Eigenvector Research, Wenatchee, WA, USA).
Moreover, sensitivity (percentage of correct positive results), specificity (percentage of correct negative
results), and classification error (percentage of false results) were used to evaluate the discrimination
model [43].

In addition, the mechanism of differentiation between bovine and fish DNA samples was explored
by a combination of difference profile analysis, the nonparametric test of spectral distances and the
independent samples test analysis of infrared intensities at each wavenumber. The nonparametric test
and the independent samples tests were analyzed by software package SPSS 20.0 for Windows (SPSS
Inc., Chicago, IL, USA).

4. Conclusions

In conclusion, HT-FTIR spectroscopy was demonstrated to be a simple, rapid and sensitivity
method to identify genomic DNA from different animal origins. Both DNA standard samples
and DNA from meat tissues samples were correctly differentiated. Important discriminatory
peaks for bovine/fish model were identified. These peaks were sensitive to base pairing, base
stacking, and glycosidic bond rotation, which were closely associated with the base sequence and GC
contents. These results, combined with literature analysis, allow us to further speculate that HT-FTIR
spectroscopy coupled with PLS-DA discriminant model could identify the DNA of animal origin
within different subspecies. This methodology may be used in a wide array of applications, including
food adulteration, archaeology, and forensic authentication.
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Abstract: Visible-Short Wave Near Infrared (VIS + SW − NIR) spectroscopy is a real alternative
to break down the next barrier in precision viticulture allowing a reliable monitoring of grape
composition within the vineyard to facilitate the decision-making process dealing with grape quality
sorting and harvest scheduling, for example. On-the-go spectral measurements of grape clusters
were acquired in the field using a VIS + SW −NIR spectrometer, operating in the 570–990 nm spectral
range, from a motorized platform moving at 5 km/h. Spectral measurements were acquired along
four dates during grape ripening in 2017 on the east side of the canopy, which had been partially
defoliated at cluster closure. Over the whole measuring season, a total of 144 experimental blocks
were monitored, sampled and their fruit analyzed for total soluble solids (TSS), anthocyanin and total
polyphenols concentrations using standard, wet chemistry reference methods. Partial Least Squares
(PLS) regression was used as the algorithm for training the grape composition parameters’ prediction
models. The best cross-validation and external validation (prediction) models yielded determination
coefficients of cross-validation (R2

cv) and prediction (R2
P) of 0.92 and 0.95 for TSS, R2

cv = 0.75,
and R2

p = 0.79 for anthocyanins, and R2
cv = 0.42 and R2

p = 0.43 for total polyphenols. The vineyard
variability maps generated for the different dates using this technology illustrate the capability to
monitor the spatiotemporal dynamics and distribution of total soluble solids, anthocyanins and total
polyphenols along grape ripening in a commercial vineyard.

Keywords: Vitis vinifera L.; proximal sensing; precision viticulture; near infrared; chemometrics;
non-destructive sensor

1. Introduction

Grape berry ripening is usually described as the accumulation of sugars, and it is measured
in terms of total soluble solids (◦Brix). However, there are other compositional variables taken into
account to determine the optimal maturity for harvest, such as berry acidity, often expressed as pH,
titratable acidity and concentrations of tartaric and malic acids, berry weight, as well as the anthocyanin
and total phenol concentrations (in red varieties) [1]. In red grape varieties, anthocyanins and other
polyphenols are located in berry skins, and their accumulation starts at veraison and continues
during ripening [2]. Anthocyanins are red coloured phenolic compounds or pigments, which are
responsible for the red wine colour [3], while the other phenolic compounds, such as the flavonols,
flavanols, hydroxycinammic acids, and stilbenes may increase and stabilize the wine color by means of
the copigmentation phenomenon [4,5] and contribute to the wine’s mouthfeel and taste perception
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attributes [6]. Both the anthocyanin and total phenolic contents in berries are currently measured
using ‘wet chemistry’ procedures [7,8], which are time-consuming and labour-intensive, while the
total soluble solids (TSS) are more easily measured using a refractometer. Both methodologies are
destructive and require time-consuming berry sampling and sample preparation (for anthocyanins
and total polyphenols content), which hinder their massive application (analysis of a large number of
samples) to assess the spatial variability of grape composition within a given vineyard plot at a specific
date. The occurrence of spatial variability of grape compositional parameters in many vineyards
is nothing new, and most widely used berry sampling procedures [9,10] do attempt to have it into
consideration when defining the trajectories and manual sampling protocols within a plot. However,
these same procedures end up with a berry sample of 100 to 200 berries or 20 to 40 clusters, regardless
the size of the plot, in most cases. Should we consider a 1.0 ha vineyard plot, the estimated number
of total berries could be well beyond 4–5 million berries. Therefore, a 200-berry sample, even if it is
picked across many rows, barely represents less than ~0.005% of the berry production in this 1.0 ha
plot, whose analytical measurements are often used to drive decisions on harvest scheduling or grape
quality classification and pricing, in some cases.

Within the context of precision agriculture, the development of new sensors, especially based on
spectroscopy, enables high resolution data acquisition that could be used to track crop development
and ripening. In this regard, the capability to assess ripening in a fast, non-destructive way would
substantially and positively impact the process of harvest scheduling and classification.

Visible and near-infrared (Vis-NIR) spectroscopy is a well-known technique for the non-destructive
measurement of quality attributes of fruits and vegetables [11,12]. The Vis-NIR region covers the range
of the electromagnetic spectrum between 380 and 2500 nm. Spectroscopy techniques combined with
multivariate analysis have been widely used for quantitative determination of several quality properties
or chemical compounds in fruit, to determine ripeness, and to measure quality indices [13–20].

In the context of grape composition monitoring during the ripening process using NIR spectroscopy,
a variety of works has been published [21–25], but all these were conducted under controlled conditions,
such as illumination, temperature, humidity, and sample positioning, among others-i.e. in a laboratory.
In-field measurements have deserved less attention, and fewer number of works have addressed the
utilization of manual, portable, hand-held spectrometers to assess the composition of grape berries
while they are still on the grapevines [26–28].

One step forward has been recently given by Gutiérrez et al. (2019) [29] who reported the
quantification of TSS and anthocyanins in grape berries under field conditions, using on-the-go
hyperspectral imaging (HSI) between 400 and 900 nm, acquired from a moving platform. HSI is a very
powerful technology, capable of recording the whole spectrum within a given spectral range in each
specific pixel of a two-dimensional image. Its potential to yield a huge amount of relevant information
is well recognized, but the difficulties in analyzing this information are also HSI’s main drawback.

On-the-go VIS-NIR spectroscopy has been successfully used to assess the grapevine water
status [30,31]. Using this technology, an average spectrum of a circular measuring spot with a diameter
of ~1.9 cm is acquired at a rate of acquisition between 15 to 28 measurements per second, which provides
a sufficient amount of spectral measurements, whose analysis is less complex than that of HSI.

Therefore, given the good prediction results that manual VIS-NIR spectroscopy demonstrated
under control conditions, and the experiences of on-the-go VIS-NIR spectroscopy and HSI in the
vineyard, the aim of the present work was to assess and map the grape composition parameters (TSS,
anthocyanins content and total polyphenols) along the ripening period using a proximal VIS + SW-NIR
sensor from a motorized platform in the vineyard.
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2. Results

2.1. Berry Composition

The boxplots for the berry composition analysis in four different dates throughout the field
experiment are shown in Figure 1. This type of graphs provides a convenient way of visually
displaying the data distribution through their quartiles. The boxplots in Figure 1 are not skewed
indicating that the data were normally distributed. Moreover, they illustrate the different ripening
rates among grapevines and inherent variability per measurement date within the vineyard for the
monitored compositional variables, such as TSS (Figure 1A), total anthocyanins (Figure 1B) and
polyphenols (Figure 1C).

Figure 1. Box plots for total soluble solids (A), anthocyanins (B), and total polyphenols (C) during the
four dates of the experimental study. Dashed lines represent mean values.
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The studied parameters were well represented with an adequate variability. Likewise, TSS varied
between 10.7 ◦Brix to 25.2 ◦Brix, while anthocyanins and total polyphenols ranged from 0.09 mg/berry
and 0.14 AU/berry to 4.64 mg/berry and 4.70 AU/berry, respectively. The mean values increased
throughout the season as illustrated in Figure 1.

2.2. Regression Models and Mapping for Grape Composition Parameters

The performance statistics of the best regression models of calibration, cross-validation,
and external validation (prediction) for the prediction of TSS, anthocyanins and total polyphenols in
grape clusters under field conditions from on-the-go Vis + SW −NIR spectroscopy are summarized
in Table 1.

Table 1. Calibration, cross-validation, and external validation (prediction) of the best models obtained
to predict the total soluble solids, anthocyanins and total polyphenols concentrations in grape clusters
under field conditions from on-the-go Vis + SW − NIR spectroscopy (570–990 nm).

Calibration Cross-Validation
External

Validation

Parameters
Spectral

Treatment
N SD Range

PLS
Factor

RMSEC R2
c RMSECV R2

cv RMSEP R2
p

Total soluble
solids (◦Brix) D1W15 116 4.403 10.70–25.20 7 1.119 0.93 1.248 0.92 1.011 0.95

Anthocyanins
(mg/berry)

D1W15 116 1.329 0.09–4.64 6 0.607 0.79 0.664 0.75 0.618 0.79

Total polyphenols
(Au/berry)

SNV + DT
D1W15 116 0.947 0.14–4.70 7 0.642 0.54 0.728 0.42 0.749 0.43

SNV: standard normal variate. DnWm, Savitzky–Golay filter with n-degree derivative, window size of m. N:
number of samples used for calibration and cross-validation models after outlier detection. SD: standard deviation.
RMSEC: root mean square error of calibration. R2

c: determination coefficient of calibration. RMSECV: root mean
square error of cross-validation. R2

cv: determination coefficient of cross-validation. RMSEP: root mean square error
of prediction. R2

p: determination coefficient of prediction.

Diverse pre-processing operations were applied. However, the best models involved the
implementation of the Savitzky–Golay first derivative and a window size of 15. In the case of total
polyphenols, the standard normal variate (SNV) filtering was also applied for spectra pre-processing.
No anomalous spectra were identified following the Residuals (Q) and Hotelling values (T2) and,
moreover, the models were developed with low number of latent variables (Table 1), which calls for
increased robustness and higher capability of generalization.

The best models for cross and external validations (also called prediction) returned determination
coefficient values higher than 0.90 for TSS (R2

cv = 0.92, R2
p = 0.95), higher than 0.75 for anthocyanins

(R2
cv = 0.75, R2

p = 0.79) and more modest values for total polyphenols (R2
cv = 0.42, R2

p = 0.43).
The accuracy of the models in terms of RMSECV and RMSEP values were below 1.24 ◦Brix for TSS,
0.664 mg/berry for anthocyanins and 0.749 AU/berry for total polyphenols, respectively (Table 1).

Figure 2 shows the regression plots for the best prediction models for TSS, anthocyanins and total
polyphenols in grape clusters under field conditions from on-the-go spectral measurements. A greater
scattering of the points around the regression line was observed for the TSS in comparison with the
other two parameters. All the samples from the TSS regression model exhibited a very good fit along
the correlation line and were also inside of the 95% confidence bands, except three of them (Figure 2A).

A wide data range was covered by the samples from anthocyanins and total polyphenols regression
models. The 1:1 line displayed a better fit over the anthocyanins regression line (Figure 2B) than over
the total polyphenols regression line (Figure 2C) Additionally, seven out of 144 samples lied outside the
anthocyanins prediction bands, keeping 95.14% of the samples (Figure 2B), while for total polyphenols
93.75% of the samples lied within prediction bands (Figure 2C).
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Figure 2. Regression plots for the total soluble solids (A), anthocyanins (B) and total polyphenols (C)
using the best Partial Least Squares (PLS) models generated from on-the-go grape clusters spectral
measurements. (blue color) 10-fold cross validation; (red color) external validation. (�: 11 August; *:
24 August; �: 18 September; �: 28 September). Solid line represents the regression line and dotted line
refers to the 1:1 line. Prediction confidence bands are shown at a 95% level (dashed lines).

To analyze the spatial variability of the grape composition parameters in a commercial vineyard
along the different maturity stages (11 August to 28 September), maps for TSS, anthocyanins and total
polyphenols were computed and presented in Figure 3. The highest values of TSS for each stage were
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mainly found at the north and south areas of the vineyard plot, while in the central part of the plot
generally lower values were detected.

Figure 3. Prediction maps of the spatial variability of anthocyanins (A), total soluble solids (B), and total
polyphenols concentrations (C) along the grape ripening period (11 August to 28 September).

The general evolution trend along the vineyard of anthocyanins and total polyphenols
concentrations showed a different pattern than that of TSS, but very similar between them. Along the
four measuring dates, a monotonous increase of the anthocyanin and total phenol concentration was
observed. Since the anthocyanins largely contribute to the phenolic pool of compounds in the berries
the similarity between their spatiotemporal evolution from veraison to harvest is coherent.

3. Discussion

The results presented in this work have demonstrated the capability of contactless VIS + SW
− NIR reflectance spectroscopy in the range of 570–990 nm acquired on-the-go, from a motorized
platform in the field, to estimate key parameters of grape composition. To achieve this, robust and
reliable prediction models were generated for three important grape composition indicators from
spectra of grape clusters acquired non-destructively from a moving vehicle at a speed (5 km/h) similar
to that used for conventional machine operations. Furthermore, on-the-go VIS-SW-NIR spectroscopy
has also been successful in characterizing the spatiotemporal dynamics of the accumulation of total
soluble solids, anthocyanins and total polyphenols along ripening, within a commercial vineyard.

Many authors have reported that the monitoring of grape quality non-destructively
through the ripening process under laboratory conditions is predominantly represented by two
vibrational spectroscopy-related technologies: Near infrared spectroscopy [21–25] and hyperspectral
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imaging [32–35]. Nevertheless, little research has been conducted directly in the field using NIR
spectroscopy [26–28]. In these works, a contact portable instrument was used to determine TSS in
different red varieties, reporting prediction RMSE values of 1.25, 1.24, and 1.68 ◦Brix, respectively.
In terms of the anthocyanin concentrations, [27] reported values of R2

v = 0.624, RMSEV = 0.302 mg/g
using the spectral range between 640 and 1300 nm. These performance numbers are in good agreement
with the RMSEP values obtained in the present work, although in this case, spectral acquisition was
carried out contactless, on-the-go, from a moving vehicle along the vineyard.

Very recently, the capability of in-field, on-the-go hyperspectral imaging for the assessment of
total soluble solids and anthocyanin concentrations in wine grapes in a commercial vineyard has been
tested [29]. In this study, the performance of the models obtained with support vector machines for
TSS and anthocyanin concentrations returned determination coefficients for external prediction R2

of 0.92 and 0.83 with RMSEP values of 1.274 and 0.211 mg/g berry, respectively. The accuracy and
precision of the prediction statistics were in line with the ones presented in the present work.

In terms of the computational time, the processing of the spectral measurements for each block
(five consecutive vines) took approximately 5 minutes. This process, partly automated, divided in four
steps (Section 4.4.1), involved two different software packages. The prediction of the unknown spectra
using PLS models required less than 1 minute per block. Therefore, the total time needed to process
the spectra and to predict these three grape composition parameters (TSS, total anthocyanins, and total
polyphenols) per block would be 6 minutes, that is less than 1.5 minutes per vine. Compared to
hyperspectral imaging, the contactless spectrometer provided the spectra directly, without the need of
computationally expensive processing. This simpler nature of the acquired data accounts for a reduced
computational time (around 3.6 hours for 36 blocks of five vines each vs 5.5 hours for 36 hyperspectral
images [29]). Moreover, since both a light source and the reference (white and dark) measurements are
enclosed in the VIS + SW −NIR system, in-field monitoring and data acquisition becomes less affected
by environmental lighting conditions than measurements with a hyperspectral camera.

The potential of VIS + SW −NIR contactless spectroscopy has also been confirmed through the
development of prediction maps for grape TSS, anthocyanins and total polyphenols concentrations
and their evolution along the four different dates during the ripening process. The mapping of the
grape composition parameters in the vineyard plot can be addressed to classify the vineyard plot into
different grape composition zones during ripening and to determine the optimal timing of harvest
in each delineated zone, enabling the winegrowers with a new monitoring tool towards improved
and optimized decision-making. Moreover, the developed system provides spatial information on
grape composition at each measuring date, which could not be achieved with the traditional manual
sampling protocol of 100 to 200 berries.

One important point to take into account is the need to establish predictive relationships for entire
cluster compositional characters based on the composition of visible berries as a first step towards
the development of non-destructive methods, such as the one presented in this work to measure
grape composition [36]. In this regard, the work of Tang et al. [36] concluded that variation in cluster
compactness could contribute to variation in predictive relationships among varieties. Additionally,
other factors, such as row orientation, or the level of defoliation at the fruiting zone, could potentially
affect in a dissimilar way the grape metabolism of exposed vs non-exposed berries. Therefore, further
research should be conducted involving vineyards planted with different varieties, row orientations,
trellising, subjected to different climates to ensure the robustness of the predictive models using
contactless VIS + SW − NIR spectroscopy on-the-go.

The remarkable outcomes obtained in this study reveal the actual applicability of bringing this
non-destructive methodology based on spectroscopy from indoor applications to the field, either
embedded in agricultural vehicles (during another viticultural operation, e.g., tilling) or mounted on
phenotyping platforms or even robots to monitor agricultural crops directly in the field [37–39].
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4. Materials and Methods

The experimental study involved the on-the-go acquisition of grape cluster spectra from the
fruiting zone of the grapevine canopy using a spectral device for the estimation of chemical grape
composition parameters at several dates during the grape ripening period. The regions of grape
clusters scanned by the device were picked for the analysis of TSS, anthocyanins and total polyphenols
concentrations. Grape cluster spectral measurements were filtered, averaged and analysed to be
modelled using Partial Least Squares (PLS). The last step was the spatiotemporal evaluation of these
composition parameters by mapping them during all the measurement dates.

4.1. Experimental Layout

The experiment was performed in a commercial vineyard located in Ábalos, La Rioja, Spain (Lat.
42◦ 34’ 45.7", Long. −2◦ 42’ 27.78", Alt. 628 m) during four dates from early August to late September
2017, along the grape ripening period. The vineyard was planted in 2010 with grapevines of (Vitis vinifera
L.) Tempranillo, grafted on rootstock R-110. The vines were trained to a vertically shoot-positioned
(VSP) trellis system on a double-cordon Royat with vine spacing of 2.20 m between rows and 1.0 m
between vines in a northeast-southwest orientation.

With the purpose of ensuring an appropriate variability of grape composition, three different
equally-distanced rows were selected and, within each one of them, 12 blocks with five plants each
were chosen for the spectral and grape analyses, making up a total of 36 blocks, that were monitored
during four dates from veraison to harvest. The four dates belong to different phenological stages
according to the modified Eichhorn and Lorenz system [40]: 11 August, stage 36; 24 August, stage 37;
18 September, stage 38; and 28 September, stage 38.

The spectral measurements (a total of 144 throughout the whole experiment) were carried out on
the east side of the canopy. This side was defoliated at the end of July, following a common viticultural
practice in the region, to promote air circulation and sun exposure in the cooler, morning hours of the
day. Hence, 36 blocks were measured each date, making a total of 144 measurements.

4.2. On-The-Go VIS+SW-NIR Measurements

On-the-go spectral measurements in the vineyard were acquired using a VIS + SW − NIR PSS
1050 spectrometer (Polytec GmbH, Waldbronn, Germany) operating in the 570–990 nm spectral range,
at a 2 nm resolution, with 215 datapoints per spectrum.

The spectrometer was an active VIS + SW −NIR optical device with a polychromator as reflection
light source selector, and Silicon (Si) detectors. The system includes a sensor head for light emission (by
an integrated 20W tungsten lamp) and capturing, and a processing unit, both linked by an optical fiber.

The system was mounted in the front part of an all-terrain-vehicle (ATV) (Trail Boss 330, Polaris
Industries, Minnesota, USA), aiming to the left and able to make spectral acquisitions controlled by a
physical trigger while the ATV was in motion. The sensor head was placed at a height of 0.80 m from
the ground, pointed to the canopy on a lateral point of view at 0.30 m of distance in order to cover the
fruiting zone (Figure 4).
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Figure 4. (A) Visible-Short Wave Near Infrared (VIS + SW − NIR) spectral acquisition system installed
on the all-terrain vehicle (ATV) used for contactless on-the-go grape clusters spectral measurements in
the vineyard. (B) Head sensor monitoring the grape cluster in motion.

The circular measuring spot area had a diameter of around 1.9 cm (area of 2.83 cm2). On-the-go
spectral measurements were acquired on the east canopy side at a constant speed of 5 km/h and rate
of spectral acquisition of 18Hz. Spectral measurements were georeferenced using a GPS receiver Ag
Leader 6500 (Ag Leader Technology, Inc., Ames, IA, USA) with RTK correction installed on the ATV.

4.3. Berry Composition Analysis

A total of 200 grape berries from all exposed clusters per block were collected and labeled
immediately after the on-the-go VIS+SW-NIR measurements during the four dates.

The samples were transported to the laboratory of the University of La Rioja in portable refrigerators
where they were stored in a freezer at −20 ◦C until chemical analysis. Once defrosted overnight
in a cold room at 4 ◦C, a subsample of 100 berries was hand crushed and filtered. Total soluble
solids (TSS), anthocyanins and total polyphenols concentrations were measured from the berries
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corresponding to each block. The TSS concentration was determined using a temperature compensating
digital refractometer Quick-Brix 60 (Mettler Toledo, LLC, Columbus, OH, USA), expressed as
◦Brix. The remaining berry sub-sample was homogenized using a high-performance disperser T25
Ultra-Turrax (IKA, Staufen, Germany) at high speed (14,000 rpm for 60 s). Subsequently, anthocyanin
and total polyphenols were analyzed following the Iland method [8]. Anthocyanin concentrations
were expressed as mg/ fresh berry mass, whereas total polyphenols were expressed as absorbance units
(AU) at 280 nm/ fresh berry mass.

4.4. Data Analysis

4.4.1. Spectral Processing

The spectral processing followed four essential steps (Figure 5). The first one consisted on the
allocation of the acquired spectra to the different blocks of vines within each equally-distanced rows in
the field experiment. Within each block the raw on-the-go spectral measurements captured information
from leaves, gaps, wood, metal, etc., so a filtering step to retain only the spectral information of grape
berries was needed.

Figure 5. Design of the spectral processing procedure required to analyze on-the-go spectral
measurements of grape clusters under field conditions.

In order to retain those spectra corresponding to grape clusters, spectra comparison against
manually-taken spectral signatures of grape clusters (Figure 6) was performed using the “Spectra
Comparison & Filtering” tool from the SL Utilities software (version 3.1, Polytec GmbH, Waldbronn,
Germany). Only spectra which passed the “Spectra Comparison & Filtering” thresholds were
considered as valid to be used in calculating the average spectrum per block. The settings Cosine
was the method used to adjust the threshold value to determine the required similarity of the raw
on-the-go spectra to the defined signature of grape clusters spectrum. A higher threshold value (close
to 1) means that greater similarity is required to accept the measured spectrum as a true grape berry
spectrum. The threshold value in the field experiment was set to 0.993.

The third step involved the averaging of the filtered grape cluster spectra per block and removal
of the effects of light scattering. Different combinations of several spectral pre-processing filters were
tested. These filters involved the use of standard normal variate (SNV) [41,42] and the application of
the Savitzky–Golay smoothing and derivative process [43], selecting different values for the window
size and the degree of the derivative. Both SNV and Savitzky–Golay derivative techniques contributed
to the removal of light scattering effects. Figure 7 shows the average absorbance raw (Figure 7A) and
processed (after application of Savitzky–Golay first derivative) for grape cluster spectra from one date
collected on-the-go.
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Figure 6. Spectral signature manually taken and averaged previous to on-the-go acquisitions from
several grape clusters. This signature was used for filtering the on-the-go spectra and to select only
those spectral signals belonging to grape clusters.

Figure 7. Average raw (A), and processed with Savitzky–Golay smoothing filtering (1st derivative,
window size 15) (B) spectra collected on-the-go from grape clusters.
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In the last step principal component analysis (PCA) was used to reduce the dimensionality of
the data structure, to visualize the presence of spectra outliers and also to identify the main sources
of variability in the spectra [44,45]. Outlier detection was performed based on the Residuals (Q) and
Hotelling values (T2) for the detection of samples with atypical spectra [46].

Spectral data manipulation and calibration models were performed with algorithms programmed
in MATLAB (version 8.5.0, The Mathworks Inc., Natick, MA, USA). The partial least squares (PLS)
Toolbox (version 8.1, Eigenvector Research, Inc., Manson, WA, USA) was used for principal component
analysis (PCA) and partial least square regression (PLS).

4.4.2. Calibration and Prediction Models

Once the grape cluster spectra were processed and the chemical grape compositional parameters
were obtained for each block, they were used to build the dataset, in which each spectrum was
linked with its corresponding berry composition analysis (TSS, anthocyanins and total polyphenols
concentrations). Considering 12 blocks per three rows and four different measurement dates, the dataset
comprised a total of 144 samples.

In order to train robust models, capable of predicting totally unknown samples, the original
dataset, was split up into two independent randomized datasets: a calibration one (comprising 80% of
all data), consisting of 116 samples, and an external validation (prediction) set, which comprised the
remaining 28 samples (20%). Samples of both data sets were appropriately distributed and covered the
entire range of the grape composition parameters. The calibration dataset was used to train and to
perform an internal cross-validation of the model, while the external validation (prediction) set was
only utilized for prediction purposes, using the calibration models.

Partial Least Squares (PLS) regression was used as the algorithm for training the grape composition
parameters prediction models. This algorithm has proved to be an accurate, robust, and reliable
chemometric method [47] to analyze spectral data, as it is capable to deal with a vast amount of data,
especially when the number of attributes (wavelengths in this case) largely surpasses the number of
samples. The input independent variables X were the 215 wavelengths within the spectral range of
570–1000 nm, while TSS, anthocyanins and total polyphenols concentrations were used as dependent
variables Y, each one for the training of three different models.

The calibration dataset was used to train the model, and statistics of calibration and cross validation,
using a 10-fold venetian blind approach, were computed to assess the performance of the built models.
The optimal number of latent variables (LVs) was selected as the one yielding the lowest root mean
square error of cross-validation (RMSECV). The validation dataset was never used in the training
process. It was employed only for testing with external samples, also called external validation or
prediction. To evaluate the quality of the obtained models, the determination coefficient of calibration
(R2

c), cross-validation (R2
cv), and prediction (R2

p), the root mean square error of calibration (RMSEC),
cross-validation (RMSECV) and prediction (RMSEP) were calculated.

4.5. Mapping

Based on the developed prediction models, prediction maps of TSS, anthocyanins and total phenol
concentrations were created to monitor and illustrate the spatial variability of a commercial vineyard’s
grape composition using VIS + SW −NIR spectroscopy during the ripening period. Multilevel b-spline
interpolation [48] with QGIS 2.18 (Free Software Foundation, Boston, MA, USA) was used to carry out
the mapping tasks.

5. Conclusions

VIS + SW − NIR technology has proven to be a real alternative to appraise and map the vineyard
grape composition variability in VSP vineyards, with a high spatial and temporal resolution, in a fast
and non-destructive way. The capability to monitor the spatiotemporal evolution and distribution
of total soluble solids, anthocyanins, and total polyphenols along the grape ripening process in a
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commercial vineyard will greatly enhance the decision-making about differential fruit allocation and
harvest according to grape composition and quality.
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Abstract: Seed vitality is one of the primary determinants of high yield that directly affects the
performance of seedling emergence and plant growth. However, seed vitality may be lost during
storage because of unfavorable conditions, such as high moisture content and temperatures. It is
therefore vital for seed companies as well as farmers to test and determine seed vitality to avoid losses
of any kind before sowing. In this study, near-infrared hyperspectral imaging (NIR-HSI) combined
with multiple data preprocessing methods and classification models was applied to identify the
vitality of rice seeds. A total of 2400 seeds of three different years: 2015, 2016 and 2017, were evaluated.
The experimental results show that the NIR-HSI technique has great potential for identifying vitality
and vigor of rice seeds. When detecting the seed vitality of the three different years, the extreme
learning machine model with Savitzky–Golay preprocessing could achieve a high classification
accuracy of 93.67% by spectral data from only eight wavebands (992, 1012, 1119, 1167, 1305, 1402,
1629 and 1649 nm), which could be developed for a fast and cost-effective seed-sorting system for
industrial online application. When identifying non-viable seeds from viable seeds of different years,
the least squares support vector machine model coupled with raw data and selected wavelengths of
968, 988, 1204, 1301, 1409, 1463, 1629, 1646 and 1659 nm achieved better classification performance
(94.38% accuracy), and could be adopted as an optimal combination to identify non-viable seeds from
viable seeds.

Keywords: seeds vitality; rice seeds; near-infrared spectroscopy; hyperspectral image;
discriminant analysis

1. Introduction

Rice (Oryza sativa L.) is one of the three most important crops in the world, with a harvested area
of 167 million ha and 769 million tons of total yield in 2017 [1]. However, the world population is
increasing rapidly, and the total population will grow up to nearly 7.7 billion in 2019, compared with
6.9 billion in 2010, which will affect food security greatly and may lead to a food crisis around the
world [2]. Numerous efforts have been made to satisfy this demand, such as optimizing the agronomic
process, improving post-harvest technologies and biotechnology improvements in seeds and breeding
mechanisms [3]. As an optimization means of agronomic processes, ensuring seed vitality and vigor
is one of the most effective methods to increase crop production, which is particularly important for
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direct seeding, as it can not only enhance crop establishment but also increase the plant’s ability to
compete against weeds [4].

Seed vitality and vigor directly affect the performance of seedling emergence and stand
establishment [5]. Usually, any physical or biochemical damage to seeds can cause reduced or
complete loss of vitality. More specifically, any changes in field conditions (e.g., humidity, temperature,
pests, diseases) and post-harvest processes (e.g., drying, storage) can lead to seed damage, and thus
cause retardation or complete vitality loss if not carefully controlled. These factors are, however,
difficult to control. Therefore, the knowledge of whether a seed is viable or not before sowing is
important both to seed companies and farmers. For seed companies, knowing seed vitality in advance
helps them to determine the quality of their products, while for farmers it plays an important role in
yield increase and prediction [6]. Determination of seed vitality is therefore necessary, and relevant
studies should be conducted to build such a detection system for seed vitality.

Traditional detection methods of seed vitality, such as immunoassay tests, polymerase chain
reaction tests and germination tests, could obtain the seed vigor intuitively, but they are expensive,
time-consuming and destructive, which results in their low application in seed vigor detection [3].
Many research works have been conducted to construct potential rapid and non-destructive methods
to measure seed vigor. Four non-destructive approaches with different techniques or principles,
i.e., nuclear magnetic resonance spectroscopy [7], X-ray [8,9], laser speckle technique [10] and the
measuring technology of seed conductivity [11] were investigated, however, they have not been widely
used because of the low efficiency and complicated operation. Fortunately, recent studies show that
molecular spectroscopic techniques, such as point-based and image-based hyperspectral techniques,
have great potentials in the detection of seed ingredients with the advantages of high detection speed,
non-destructive nature and low cost [12].

Point-based spectroscopic techniques, such as Raman, mid infrared, and Fourier transform-near
infrared spectroscopies, acquire chemical information in a fixed-point area of the sample, and provide
a large number of spectral details, but do not offer the spatial information that is important for seed
detection application [13]. Hyperspectral imaging (HSI) is one of the most feasible methods for
rapidly and non-destructively detecting the substances of agricultural products. It combines the
technologies of spectroscopy and digital imaging, and is able to obtain spectral and spatial information
simultaneously from testing samples in the form of a hypercube with two spatial dimensions and
one spectral dimension [14]. Based on the spatial data, the HSI technique has the ability to collect
hyperspectral information from samples of different sizes and shapes [15]. In addition, the detection
speed of HSI is faster than that of point-based techniques, as many samples can be scanned and
analyzed at the same time by using an HSI camera.

The HSI technique coupled with visible (vis) and/or near infrared (NIR) spectroscopy is generally
used to identify or inspect different substances of seed by recognizing the molecular bonds in the sample.
Many studies have been conducted to detect the vitality of seeds for different species. The corn with a
large grain size and flat shape has been paid more attention for seed vitality detecting. Collins et al.
measured corn seed vitality using short wave infrared line-scan hyperspectral imaging, and the results
indicated that hyperspectral imaging can be used to accurately classify corn based on vitality [3].
Ashabahebwa et al. assessed the performance of testing corn seed vitality by applying the Fourier
transform near-infrared spectroscope [16]. In addition, the detections of vitality and vigor for seeds of
oat [17], muskmelon [18], soybean [19,20] and watermelon [21] were developed with the HSI technique.
Previous studies have shown the potential of using HSI coupled with multivariate data analysis for the
detection of internal conditions of rice seeds, such as origin [22], variety [23–25], nitrogen content [26],
moisture content [27] and heavy metal concentration [28]. To the best of our knowledge, many studies
were conducted only for vitality detection of artificially aged seed, and, so far, no study has been carried
out to detect the vitality of rice seeds under natural ageing conditions by using HSI, even though the
results obtained from natural ageing seeds were more consistent with the actual situation.
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This study was conducted to determine the optimal spectral wavebands and multivariable
classification model to acquire or detect the vigor of rice seeds stored for different years based on the
near-infrared hyperspectral imaging (NIR-HSI) technique, and attempt to build a model to identify
non-viable seeds from viable seeds of different years, and ultimately provide an alternative approach of
rapidly and non-destructively measuring the rice seed vitality for industrial or large-scale application.

2. Results and Discussion

2.1. Spectral Interpretation

A raw spectral data plot and mean raw spectral data plot from selected regions of interest (ROI)
are shown in Figure 1a,b, respectively. The change trends of the spectral reflectance curves of all rice
kernels showed clear similarities. As shown in Figure 1b, the seed spectral curves of three different
years had large differences in the reflectance of wavebands, while the differences were negligible after
all three year seeds were artificially aged to lose vigor. The germination tests on the representative
samples showed a high vitality, with a germination rate of 95%, 92.86% and 80.71%, and vitality index
of 261.26, 225.6 and 154.15 for rice seeds of the years 2017, 2016, and 2015, respectively, as shown in
Table 1. It is obvious that the germination rate and vitality index reduced as the year of preservation
increased, which was consistent with the spectral change of rice seeds, and could be used as a basic
principle for classifying rice seeds of different years. All germination rate values were higher than the
factory labelled 80% germination rate, indicating the seeds stored within three years still have enough
vitality to be used in rice production. The seeds that were subjected to microwave heat treatment were
similar to the non-viable seeds, and their germination rate and vitality index were both tested to be
zero, which resulted in a higher spectral reflectance of artificial aging seeds. Moreover, the spectral
reflectance of aged seeds with non-vitality had high similarity, no matter the year of seeds. Therefore,
it is difficult to identify the year of aged non-viable seeds using hyperspectral imaging; however, it is
highly possible to identify non-viable seeds from common viable seeds of three different years.

 

Figure 1. (a) Raw spectra of all rice simples and (b) mean spectra for rice seeds.
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Table 1. Germination rate and vitality index of all sets of seeds as determined by germination test.

Years of
Seed

Treatment
Germination

Number
Non-Germination

Number
Germination

Rate (GR)
Vitality Index

(VI)

2015
− 113 27 80.71% 154.15

AA 0 140 0 0

2016
− 130 10 92.86% 225.6

AA 0 140 0 0

2017
− 133 7 95% 261.26

AA 0 140 0 0

AA: artificial ageing.

2.2. The Results of Principal Component Analysis

Principal component analysis (PCA) is one of the most popular multivariate statistical techniques
in almost all scientific disciplines. It uses an orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly uncorrelated variables called principal
components [29]. PCA was used in the study for data exploration and classification feasibility analysis.
Figure 2 shows PCA results for raw data based on the spectral data of all groups of seeds. The analysis
of PCA results shows that the first two principal components (PCs) were found in up to 99.58% of all
the variability—PC1 and PC2 had 97.94% and 1.64% variance, respectively. That is to say, these two PCs
showed the most significant variation among samples, and could explain 99.58% of all the variability.
As illustrated in Figure 2, the PCA data of non-viable seeds of three different years in this plane
projection were more concentrated, while an obvious difference occurred for the viable seeds of three
different years. As a result, the viable seeds of different years were more likely to be classified with
each other, while the seeds were difficult to differentiate after the three kinds of seeds were artificially
aged to lose vigor because of the high overlap between the groups shown in Figure 2.

 

Figure 2. Principal component analysis (PCA) results for raw data based on the spectral data of all six
seed groups. AA: artificial ageing.

The PCA technique was utilized to analyze the spectral data of viable seeds of three different
years at the three different preprocessing methods, and the results are illustrated in Figure 3. The PCA
results showed that differences among three samples have better data clustering performance using
Savitzky–Golay (SG) preprocessing algorithms compared with other models (Figure 3b). However,
PCA results for Savitzky–Golay first derivative (SG-D1) and multiplicative scatter correction (MSC)
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showed preprocessed data generated much less distinctive clustering results (Figure 3c,d), which was
worse than the raw data (Figure 3a). It may have been that the noise was overamplified when spectral
data was preprocessed by SG-D1 and MSC methods, thus resulting in a lower signal-to-noise ratio and
less distinctive clustering for the three groups. The raw data obtained a better clustering performance
due to the data being calculated and obtained based on the mean spectral data of the region of one rice
seed, which could remove spectral noises in the seed to some extent.

 

Figure 3. PCA results for (a) raw data and preprocessed data of (b) Savitzky–Golay (SG), (c)
Savitzky–Golay first derivative (SG-D1) and (d) multiplicative scatter correction (MSC), based on the
spectral data of rice seeds of different years.

2.3. Optimal Wavelengths Selection

A classification model established by applying a number of highly correlated variables would
increase the computational complexity for predicting. Thus, selecting important and irrelevant
wavelengths from hyperspectral data is necessary before establishing the discriminant model. In this
study, the successive projections algorithm (SPA) was proposed to determine the optimal wavelengths
for predicting rice seed vitality based on SG, SG-D1 and MSC preprocessed data and the raw data.
The numbers of wavelengths selected by SPA were decreased to 4.2, 3.7, 5.1 and 2.8% of all 216
wavelengths. Then, the selected wavelengths were used to build multivariate classification models
for the determination of rice vigor, including the partial least square-discriminant analysis (PLS-DA),
the least squares support vector machines (LS-SVM) and the extreme learning machine (ELM).

In general, spectral absorptions at the optimum wavelengths had a notable correlation with the
molecular structures of chemical components. Some important wavelengths (988, 1409, 1629 and 1659
nm) were shared by data of raw, SG, SG-D1 and MSC (Figure 4), and may have been responsible for
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the germination ability of the rice seed. The absorption band near 988 nm may be assigned to the
second overtone of the O–H vibration bond overtone of water [18,30]. The wavelength band near
1409 was primarily attributed to the O–H first overtone, which are common in starch and lipids [31].
The wavelengths near 1629 and/or 1659 nm were assigned to the first overtone of O–H stretching, C–H
from the methylene group and the N–H stretch first overtone, which refer to the CONH representing
the protein content [31]. Lipid peroxidation, loss of protein function and hydrolysis of starch have been
suggested as causes for loss of seed vitality [32]. Thus, the selected wavelengths related to starch, lipids
and protein structures were the foundation for discrimination between the three groups. In addition,
wavelengths selected from SG preprocessed data had roughly the same distribution as that of raw
data, and the common wavebands of 1204 nm and 1301 nm were connected to the second overtone of
C–H harmonic stretching [33]. As for the SG-D1 and MSC preprocessing methods, most wavelengths
were located in the range of 1392–1514 nm, which mainly corresponded to the first overtone of C–H
stretching and deformation of CH2 and CH3 groups [33].

Figure 4. Selection of optimal wavelengths by successive projections algorithm (SPA). Distributions
of important variables (marked with ‘filled circle’) for (a) raw data and preprocessed data of (b) SG,
(c) SG-D1 and (d) MSC.

2.4. Classification Model Results

After optimal wavelength selection, the whole spectral data set was reduced to a matrix of
dimensions m × n, where m represents the number of samples (m = 2400) and n was the number
of selected wavelengths including 9, 8, 11 and 6 for raw data, SG, SG-D1 and MSC preprocessed
data, respectively. To determine the suitability of optimal variables selected by SPA, the optimal
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wavelengths were used to build multivariate models, including PLS-DA, LS-SVM and ELM for
classifying the samples.

2.4.1. Assessment of Seed Vitality of Three Different Years

The seed vitality was different in the seeds of three different years, and the seeds stored in later
years could obtain a higher vigor, which was consistent with the change trend of spectral reflectance
of the seeds (i.e., the reflectance of seeds stored in earlier years was generally higher than that of
later years). Based on this principle, three models of PLS-DA, LS-SVM and ELM were built to
identify the vitality of seed samples of different years. The classification accuracy of calibration set
varied from 64.67% to 97.5%, and the accuracy range of prediction set was 67.5–95.67%. The lowest
64.67% accuracy of the calibration set and 67.5% accuracy of the prediction set were obtained by
using the PLS-DA model with MSC preprocessing and the SPA method, while the highest values of
97.5% and 95.67% for the calibration and prediction set, respectively, were achieved when using the
LS-SVM mode with SG preprocessing and full-wave bands. As for the classification results of the
prediction set (Figure 5), the PLS-DA model with selected wavelengths had the lowest classification
accuracy in the three classification models (87.83, 87.5, 75 and 67.5% for raw, SG, SG-D1 and MSC,
respectively). Applying preprocessing and wavelength selection methods before model application
had no improvement in classification accuracy. The LS-SVM model gave the highest accuracy of the
three models with/without data preprocessing procedures—with up to 95.67% accuracy using the
data of SG preprocessing in the full-wave bands—and could reach the high accuracy of 93.33% by
applying the reduced wavelengths selected by SPA. The good performance of the LS-SVM model is
probably because its decision boundaries can become much clearer after transforming the data into
higher dimensions, and as a result it classified different groups more accurately. However, the PLS-DA
models establish decision boundaries based on the thresholds under low dimensions, and thus this
results in misclassifications due to outliers [34]. The ELM model, a simple tuning-free three-step
algorithm with a fast learning speed, achieved a result of accuracy of 93.67% based on the reduced
wavelengths of SPA, along with SG preprocessing, which was even a little higher than the 93.33%
accuracy of LS-SVM under the same condition. Though the accuracy of 93.67% was lower than the
95.67% accuracy of the LS-SVM model with SG preprocessed data in the full-wave bands, its data
processing load with only eight wave bands (992, 1012, 1119, 1167, 1305, 1402, 1629 and 1649 nm)
decreased to 3.7% of the classification model of full wavelengths, which is a significant performance
improvement for an almost 27-fold increase in data processing speed. Therefore, the ELM model
coupled with the variable-selection method of SPA and the preprocessing method of SG could be
adopted as an optimal combination to classify the seed of different years for a fast and cost-effective
seed-sorting system for industrial online application.

2.4.2. Identifying Non-Viable Seeds from Viable Seeds of Different Years.

The seed samples, no matter whether they were stored in year 2015, 2016 or 2017, all lost vitality
completely, with a germination rate of 0% and vitality index of 0 after they underwent artificial aging.
The spectral reflectance of aged seeds increased greatly and differed from that of the seeds of three
years (Figure 1b), which provides a possibility to pick out non-viable seeds from normal viable seeds
stored in different years. Furthermore, 133, 133 and 134 seeds were selected randomly from aged seeds
of the years 2015, 2016 and 2017, respectively. In total, 400 aged seeds were obtained and then used as
a non-viable group with other three viable groups of different years (i.e., 2015, 2016 and 2017) to build
classification models for evaluating the performance of identifying non-viable seeds. The results are
shown in Table 2. The classification accuracy of the calibration set varied from 48.75% to 96.38% and
the accuracy range of the prediction set was 46.63–95.57%. The classification accuracy of the calibration
set was generally higher than the accuracy of the prediction set at the same conditions. As for the
classification results of the prediction set (Figure 5b), PLS-DA with less than 70% accuracy was the
model of lowest classification accuracy, which was even lower than the accuracy of the PLS-DA model
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used for classifying seed vitality of merely three different years. The LS-SVM model gave the highest
accuracy of the three models with/without data preprocessing procedures, with up to 95.57% accuracy
using the raw data in the full-wave bands, and could reach the high accuracy of 94.38%, applying the
reduced wavelengths selected by SPA. The ELM model achieved a result of accuracy of 93.75% based
on the reduced wavelengths of SPA with raw data, which was slightly lower than the accuracy of
94.38% of LS-SVM under the same condition. Though the accuracy of 94.38% of the LS-SVM model was
lower than the 95.57% accuracy of LS-SVM with raw data in the full-wave bands, its data processing
load with nine wave bands (968, 988, 1204, 1301, 1409, 1463, 1629, 1646 and 1659 nm) decreased to 4.2%
of the classification model of full wavelengths, which is a significant performance improvement for an
almost 23.8-fold increase in data processing speed. Therefore, the LS-SVM model coupled with the
variable-selection method of SPA and raw data could be adopted as an optimal combination to identify
non-viable seeds from viable seeds.

Figure 5. The prediction results of classification models for identifying (a) seed vitality of three different
years and (b) non-viable seeds from viable seeds of three different seeds.

Table 2. The results of classification models established by full and selected wavelengths with different
preprocessing methods.

IVY INV

PLS-DA LS-SVM ELM PLS-DA LS-SVM ELM

Full. Sel. Full. Sel. Full. Sel. Full. Sel. Full. Sel. Full. Sel.

Raw
Cal. 92.17 86.83 96.67 95.83 95.5 93.5 69.75 58.38 96 95.13 94.75 94.13
Pre. 88.67 87.83 94.17 93 89.17 93.17 68.5 59.75 95.57 94.38 91.25 93.75

SG
Cal. 87.75 87 97.5 94.33 95.67 94.17 62.63 62.13 96.38 93.5 95.25 93.13
Pre. 88.67 87.5 95.67 93.33 91.83 93.67 64.5 63.25 95.5 93.75 92.38 92.88

SG-D1
Cal. 79.17 73.67 94.67 86.17 90.17 85.5 66.25 61.13 95.75 87.13 91 86.38
Pre. 78.67 75 89.17 86.5 84.33 85.17 64.5 60.63 91.38 86 86 86.38

MSC
Cal. 78.83 64.67 87.33 78 82.83 79 61.25 48.75 94.25 77.88 86.25 80.63
Pre. 75 67.5 83.5 77.33 74.33 76.83 58 46.63 87.13 79.63 80.5 80.88

Cal.: calibration; Pre.: prediction; Raw: raw data; IVY: identification of the seed vitality of three different years;
INV: identifying non-viable seeds from viable seeds; Full.: full wavelengths; Sel.: selected wavelengths by SPA;
PLS-DA: partial least square-discriminant analysis; LS-SVM: least squares support vector machines; ELM: extreme
learning machine.

3. Materials and Methods

3.1. Samples and Sample Preparation

In this study, the rice seeds of ShenLiangYou862 from three different years, including 2015, 2016
and 2017, were selected to be investigated, which were kindly provided by a commercial company
(Jiangsu Tomorrow Seed Technology LLC, Nanjing, China). The seeds were cleaned first, and damaged
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seeds were removed. When acquiring hyperspectral images, three samples in different years could
not be differentiated by the naked eye. For each category, 800 kernels were acquired with 400 seeds
used as the different-year sample and the other 400 seeds used as the aged sample for comparison.
Artificial aging of seeds was induced in the rice simples using microwave heat treatment at 700 W input
power and 60 s exposure time, which was optimized in advance for this experiment in accordance
with the study by Ambrose et al. [35].

3.2. Hyperspectral Image Collection

A line-scan NIR-HSI system was used to acquire the hyperspectral images of rice seeds, as shown
in Figure 6. The system comprised an imaging spectrograph (ImSpector N17E; Spectral Imaging Ltd.,
Oulu, Finland) that covered the spectral range of 874–1734 nm with a spectral resolution at 3.36 nm,
a charge coupled device camera (Xeva 992; Xenics Infrared Solutions, Leuven, Belgium) with the
spatial resolution of 320 × 256 pixels, two line light sources (Fiber-Lite DC950, Dolan Jenner Industries
Inc., Boxborough, MA, USA), a transmission platform (IRCP0076, Isuzu Optics Crop, Taiwan), a dark
box and a computer. In order to acquire clear and non-deformable hyperspectral images, the moving
speed of the transmission platform, the exposure time and the work distance between samples and
the camera were adjusted to 19 mm/s, 3.5 ms and 23.4 cm, respectively. Rice seeds were placed on a
dark-background sampling plate irrespective of whether the germinal side of the kernel was facing the
camera, then the sampling plate was transferred to the transmission platform for scanning seeds line
by line. Spatial and spectral data were obtained from the sample when it was moved into the range of
the camera filed. After scanning the samples for hyperspectral data, the hyperspectral images were
calibrated by the following equation:

Ical = (Iraw − Idark)/(Iref − Idark), (1)

where Ical, Iraw, Idark and Iref are the corrected images, original images, dark current and reference
images, respectively. Iref was measured using a white Teflon tile with the reflectance close to 99%, and
Idark was collected by covering the camera lens completely with the cap provided by the manufacturer.
The calibrated HSI image was ultimately obtained to analyze the spectral data in every single seed
(Figure 7). Spectral data before 941 nm and after 1666 nm were omitted because of low signal-to-noise
ratio, which was mainly caused by bad pixels on the camera detector, lighting characteristics and the
movement of the transmission platform.

Figure 6. Schematic of line-scan near-infrared hyperspectral imaging (NIR-HSI) system and scanning
of seed samples.
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Figure 7. Schematic overview of the analytical procedure for identifying the vitality of different years.
ROI: regions of interest.

3.3. Data Extraction and Preprocessing

A threshold value of 0.15 was used to segment calibrated hyperspectral images to remove the
effect of the background and to obtain only seed pixels. The regions of interest (ROI) were selected by
applying the 1301 nm band image, and then spectral information of the respective rice sample in the
HSI images was extracted relying on the ROI. The spectra of each pixel in the ROI were averaged for
each seed, and, in total, 2400 average spectra representing 2400 scanned seeds were calculated and
saved for further analysis.

Three preprocessing methods were used in this paper to correct the spectral data, including the
Savitzky–Golay smoothing (SG), the Savitzky–Golay first derivative (SG-D1) and multiplicative scatter
correction (MSC).

The SG method is a digital filter that can be applied to a set of digital data points for the purpose
of smoothing the data, which can effectively keep useful information and reduce high-frequency
noise in a hyperspectral image. The polynomial order and number of points in the SG method are
two computation parameters, which were adjusted to 3 and 15, respectively, for a good effect in
spectrum smoothness.

The SG-D1 method is the first derivative form of the SG method. By deriving SG data, it has
the advantages of emphasizing the spectral features of the data and removing the additive baseline;
however, it inevitably amplifies the noise at the same time, which may have a large impact on the
classification results. The polynomial order and number of points was also set to 3 and 15, respectively,
when the SG process was executed.

The MSC method was used to remove physical effects, such as particle size and surface blaze,
from the spectra, which do not carry any chemical or physical information. This method is capable of
correcting differences in the baseline and has an advantage of the transformed spectra being similar to
the original spectra, and optical interpretation is therefore more easily accessible [36].

3.4. Spectral Feature Selection

Hyperspectral images could provide a large amount of spectral and spatial information related to
the vitality properties of the rice seeds; nevertheless, they also contain overlapping and redundant
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information. It is necessary to apply a feature selection algorithm to obtain representative and important
wavelengths for reducing irrelevant information and improving computation speed.

The successive projections algorithm (SPA) is a variable-selection technique that has attracted
increasing interest in the analytical-chemistry community in the past 10 years. In SPA, the selection of
variables is cast in the form of a combinatorial optimization problem with constraints, and projection
operations in a vector space are used to choose subsets of variables with a small degree of
multi-collinearity in order to minimize redundancy and ill-conditioning problems [37]. The algorithm
SPA was applied in this study to select the optimal wavelengths. The selected wavelengths with the
minimum collinearity have the maximum projection value on the orthogonal subspace.

3.5. Construction and Analysis of Classification Models

In this paper, three discriminant models were built and analyzed, including the partial least
square-discriminant analysis (PLS-DA), the least squares support vector machine (LS-SVM) and the
extreme learning machine (ELM).

The partial least squares (PLS) algorithm was first induced for regression tasks and then evolved
into a classification method that is well known as PLS-DA. This method is a popular chemometrics
technique used to optimize the separation between different groups of samples, which is accomplished
by linking raw data and class membership [38], as described in Equation (2):

Y = X·B + F, (2)

where Y is the n × 1 vector of the response variables that relates to the measured sample categories,
B is the regression coefficients matrix for the spectral variables, F is the n × 1 error vector of residuals,
X is the n × j data matrix of the spectral variables for each measured sample category, n is the number
of samples and j is the number of variables. During the model development and updating stages,
the number of main components was optimized by 10-fold cross validation and ultimately 10 main
components were determined.

Known as the least square form of the support vector machine (SVM) approach, LS-SVM applies
an equality constraint instead of an inequality constraint that has been used in SVM to obtain a linear
set of equations. As a result, it simplifies the complex calculation and is easy to train. It has been
reported that the LS-SVM could present a remarkable performance, as it maps the data input space
into a high-dimensional feature space through a kernel function (the radial basis function (RBF) kernel
function was applied in this paper). The two main parameters of the SVM method, including the
penalty factor and the radial width of the kernel function, are optimized using a grid-search algorithm
coupled with 10-fold cross validation during the model development and updating stages [39].

ELM has shown the advantages of fast learning speed and excellent generalization performance
compared to traditional feedforward network learning algorithms such as back-propagation (BP).
In most cases, ELM is used as a simple learning algorithm for single-hidden layer feedforward neural
network (SLFN). Due to its different learning algorithm implementations for regression, classification or
clustering, ELM has also been used to form multi hidden layer networks, deep learning or hierarchical
networks [40]. The hidden node in ELM is a computational element, which is considered as a classical
neuron, and its number was tuned to 100 for high accuracy.

Based on the spectral data with different preprocessing methods—i.e., SG, SG-D1 and MSC—the
performances of the three models above were analyzed and evaluated to classify the vitality of seeds
stored for different years. For 400 samples of each category, 200 seeds were used as the training sample
and the other 200 seeds were used as the testing sample.

3.6. Germination Test

After hyperspectral images of all seeds were collected, 140 seeds were randomly selected from
each group for the germination test following the International Seed Testing Association (ISTA)
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guidelines [41]. Seeds for germination were placed between two wet germination papers and incubated
in a germination chamber for 7 days. The germination chamber was set as day-night mode at 30 ◦C,
80% RH and 10,000 Lx during the day (16 h), and 20 ◦C, 80% RH and 0 Lx during the night (8 h).
Germination results of seeds were recorded daily and seeds with a 1 cm germ length were counted as
germinated according to ISTA standards. The germination rate (GR, %) was calculated by Equation
(3). The seeds high in vigor generally provided early and uniform stands, indicating that the seeds
had the potential to produce vigorous seedlings under favorable conditions. Therefore, in this study,
germination days were considered as a standard for seed vigor, and used as a factor to determine the
vitality index (VI), as shown in Equation (4):

GR = GN/SN·100%, (3)

VI = S·
∑ Gt

Dt
, (4)

where GN and SN are the numbers of germinated and non-germinated rice seeds, respectively, which
were recorded on the last day of the germination test, S is the average value of germ length (cm), Dt is
the number of the day t and Gt is the germination number recorded on the day of Dt.

4. Conclusions

The NIR-HSI technique, combined with multiple preprocessing methods and classification
models, was used to identify the vitality of rice seeds. Spectral data was extracted from the ROI of the
hyperspectral image and three preprocessing methods, including SG, SG-D1 and MSC, were applied
to reduce the effect of irregularities in the spectral data caused by factors such as random noise,
light scattering and sample texture. The SPA algorithm was adopted to obtain optimal wavelengths
for the vitality of seeds, and to reduce computational cost. The numbers of selected wavelengths were
9, 8, 11 and 6 for raw data, SG, SG-D1 and MSC preprocessed data, respectively, which could decrease
data processing load greatly compared to the classification model of full wavelengths. Then, these
optimal wavelengths, as well as full wavelengths, were used to build multivariate models, including
PLS-DA, LS-SVM and ELM, for determinate seed vitality of three different years and non-viable seeds
from viable seeds of three different seeds. As for the detection of seed vitality of the three different
years, better performance could be achieved by using pretreatment SG compared with the other two
preprocessing methods. The classification accuracies for the seed vitality of three different years
obtained using PLS-DA, LS-SVM and ELM with selected wavelengths and SG preprocessing were
87.5%, 93.33% and 93.67%, respectively. The ELM-SG method with spectral data from only eight
wavebands (992, 1012, 1119, 1167, 1305, 1402, 1629 and 1649 nm) had better and faster classification
performance, and could be developed to a fast and cost-effective seed-sorting system for industrial
online application. As for identifying non-viable seeds from viable seeds of different years, the LS-SVM
model coupled with raw data and selected wavelengths of 968, 988, 1204, 1301, 1409, 1463, 1629,
1646 and 1659 nm, achieved a classification accuracy of 94.38%, which decreased the data processing
load to 4.2% of the classification model of full wavelengths and could be adopted as an optimal
combination to identify non-viable seeds from viable seeds.
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Abstract: Near infrared (NIR) spectroscopy with chemometric techniques was applied to discriminate
the geographical origins of crude drugs (i.e., dried ripe fruits of Trichosanthes kirilowii) and prepared
slices of Trichosanthis Fructus in this work. The crude drug samples (120 batches) from four growing
regions (i.e., Shandong, Shanxi, Hebei, and Henan Provinces) were collected, dried, and used and the
prepared slice samples (30 batches) were purchased from different drug stores. The raw NIR spectra
were acquired and preprocessed with multiplicative scatter correction (MSC). Principal component
analysis (PCA) was used to extract relevant information from the spectral data and gave visible cluster
trends. Four different classification models, namely K-nearest neighbor (KNN), soft independent
modeling of class analogy (SIMCA), partial least squares-discriminant analysis (PLS-DA), and support
vector machine-discriminant analysis (SVM-DA), were constructed and their performances were
compared. The corresponding classification model parameters were optimized by cross-validation
(CV). Among the four classification models, SVM-DA model was superior over the other models with
a classification accuracy up to 100% for both the calibration set and the prediction set. The optimal
SVM-DA model was achieved when C =100, γ = 0.00316, and the number of principal components
(PCs) = 6. While PLS-DA model had the classification accuracy of 95% for the calibration set and
98% for the prediction set. The KNN model had a classification accuracy of 92% for the calibration
set and 94% for prediction set. The non-linear classification method was superior to the linear ones.
Generally, the results demonstrated that the crude drugs from different geographical origins and the
crude drugs and prepared slices of Trichosanthis Fructus could be distinguished by NIR spectroscopy
coupled with SVM-DA model rapidly, nondestructively, and reliably.

Keywords: near infrared spectroscopy; Trichosanthis Fructus; geographical origin; chemometric
techniques; crude drugs; prepared slices; support vector machine-discriminant analysis

1. Introduction

Trichosanthis Fructus, the dried ripe fruits of Trichosanthes kirilowii Maxim. or T. rosthornii
Harms (Fam. Cucurbitaceae), has been commonly used in Traditional Chinese Medicine (TCM) for the
treatment of cough with lung heat, sticky phlegm, constipation, thoracic obstruction, and cardiodynia [1].
In modern clinical practice, Trichosanthis Fructus and its TCM prescriptions played a very important
role in treating cardiovascular diseases including angina, cardiac failure, myocardial cinfarction,
arrhythmia during acute myocardial infarction reperfusion, pulmonary heart disease, and cerebral
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ischaemic disease [2–4]. Because of its high medicinal value and good economic benefit, T. kirilowii
has been cultivated widely in China [5], such as Shandong, Shanxi, Henan, and Hebei Provinces [6].
Specially, Trichosanthis Fructus produced from Shandong Province, was considered to be genuine
since it showed the highest curative effect in traditional clinical use and active constituent content [6–8].
However, it was not easy to discriminate the geographical origin by visual inspection. There were a few
studies on the discrimination of Trichosanthis Fructus from different cultivars or geographical origins
using analytical methods including high pressure liquid chromatography (HPLC) fingerprint [9],
seed protein electrophoresis [10], scanning electron microscope [11], and random amplified polymorphic
DNA (RAPD), internal transcribed spacer (ITS), and sequence-related amplified polymorphism (SRAP)
molecular markers [12,13]. However, these methods were time-consuming, costly, and destructive.
Therefore, a fast, accurate, and non-destructive analytical method was established to discriminate the
geographical origins of Trichosanthis Fructus in this work.

Near infrared (NIR) spectroscopy is a fast, accurate, and nondestructive technique requiring
minimal sample processing before analysis. Coupled with chemometric techniques, it appears to be an
effective and powerful analytical tool widely used in different fields, such as agricultural food [14,15],
petrochemical [16], pharmaceutical [17], environment [18], metabolomic profiling [19], etc. The NIR
region spans the wavelength range between 780 and 2500 nm. The absorption bands in this region
correspond mainly to combinations and overtones of the fundamental vibrations of O-H, C-H, S-H,
and N-H bonds, which are the primary structural components of organic chemical constituents [20].
As the environment factors including light, climate, water, soil, planting methods, etc. have great
influences on the growth quality of the medicinal plants, some chemical constituents of the same
crude drug from different geographical origins vary in content. Therefore, NIR spectroscopy has
been also used to determine the geographical origins of TCM, such as Radix Pseudostellariae [21],
Herba Epimedii [22], and Gastrodiae Rhizoma [23] in recent years. However, there has not been any
reports until now on the use of NIR spectroscopy for the discrimination of Trichosanthis Fructus from
different geographical origins, and the discrimination between crude drugs and prepared slices. It has
been found that the concentrations of total saponins, amino acids and total flavonoids were different in
different geographic origins [7,9,24], and the concentrations of 5-hydroxymethylfurfural, vanillic acid,
quercetin, luteolin, and sugar in prepared slices showed significant changes compared with crude
drugs, especially the concentration of 5-hydroxymethylfurfural increased to nearly 26 times as much as
crude drugs of Trichosanthis Fructus (p < 0.05 or p < 0.01) [25–27]. All of the above laid the foundation
for the feasibility of the following experiment.

In this study, four chemometric techniques including K-nearest neighbors (KNN), soft independent
modeling of class analogy (SIMCA), partial least squares discriminant analysis (PLS-DA), and support
vector machine discrimination analysis (SVM-DA) were attempted to discriminate Trichosanthis
Fructus from different geographical origins. Among them, KNN, SIMCA, and PLS-DA were three
linear methods, while SVM-DA was a non-linear method. Principal component analysis (PCA) was
conducted on the NIR data to extract some principal components (PCs) as the inputs of the supervised
pattern classification models. The number of PCs was optimized by cross-validation.

2. Results and Discussion

2.1. Spectra Investigation

The raw NIR spectra of 150 Trichosanthis Fructus samples were shown in Figure 1a. It can
be seen that the raw spectra of Trichosanthis Fructus samples from different geographical origins
and drug stores were similar. The variation of baseline shifts in spectra was wide, which was
attributed to noise, packing density, and particle-size effect. It was difficult to determine specific
bands in the raw spectra based on geographical origin because of the high degree of band overlapping.
Moreover, the background information and noises contained in the raw spectra could weaken the
model performance. Hence, in order to reduce the systematic noise and achieve a reliable model,
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mathematical spectral preprocessing before calibration was necessary. The multiplicative scatter
correction (MSC), as a mathematical transformation method for spectra, was used to remove slope
variation and correct scatter effects on the basis of different particle sizes, and correct for additive and
multiplicative effects in the spectra. The Savitzky–Golay (SG) filter algorithm could be used to avoid
the augmentation of noise which came from the derivatization. Therefore, MSC spectral preprocessing
method with SG smoothing was applied in this research and the preprocessing spectra was presented
in Figure 1b.
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Figure 1. Spectra of Trichosanthis Fructus (a) raw data and (b) with multiplicative scatter correction
(MSC) pretreatment.

As shown in Figure 1b, ten absorption bands in the spectra could be clearly observed.
There was a water absorption band around 5155 cm−1 corresponding to the vibration of O-H
stretching. There were strong absorption bands belonged to the vibration of C-H stretching (4261 and
4333 cm−1), C=O stretching (4673 cm−1), -CH2 (5797cm−1), and N-H stretching (6369 and 6798 cm−1).
These vibrations were caused by the chemical constituents such as lipids, alkaloids, polysaccharides,
free amino acids, proteins, volatile compounds, and so on in Trichosanthis Fructus [28–30].

2.2. Principal Component Analysis

Principal component analysis (PCA) was a widely used technique for exploring and modeling
multivariate data by reducing the dimension of the data matrix and compressing the information
into a smaller number of uncorrelated variables called principle components (PCs), which were linear
combinations of the original variables [31]. The first principal component, PC1, covered the maximum
of the total variance; the second, PC2, was orthogonal to the first one and covered as much of the
remaining variation as possible, and so on, until the total variance was accounted for. By plotting the
PCs, one could view the interrelationships between different variables and interpret sample patterns,
groupings, similarities, and differences. PCA was applied to examine the natural grouping of samples
and develop the SIMCA models [32].

To visualize the data trends, a score plot was obtained by using the top three principal components
(PC1, PC2, and PC3). Figure 2 showed the outcome of the principal component analysis and there
were separations in the geographical origins. Figure 2 showed a three-dimensional (3D) space of
Trichosanthis Fructus samples represented by PC1, PC2, and PC3. The variance interpreted by PC1,
PC2, and PC3 were 64.87%, 15.77%, and 12.69%, respectively. In other words, the top three PCs could
load almost the whole NIR spectral information of the samples. There was a clear separation between
prepared slices and crude drugs. The crude drugs from different origins were separated roughly.
The results indicated that there were differences in the chemical compositions between prepared slices
and crude drugs of Trichosanthis Fructus. Though the PCA analysis gave the cluster trend in the 3D
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space, it could not separate the samples completely. Therefore, effective multivariate classification
models were utilized and optimized in the following studies.

Figure 2. Score cluster plot of the top three principal components (PCs) of Trichosanthis Fructus for the
data set.

2.3. Optimation of Models

2.3.1. The Establishment of the KNN Model

The KNN method was based on the Euclidean distance between neighbors. Parameter K,
the number of neighbors which significantly influenced the model performance, could be determined
by the classification accuracy (%) for each class. The prediction ability of the model for a given set of K
values was evaluated by cross-validation, and the K value which gave the highest prediction rate was
selected as the optimal one. Figure 3 showed the classification accuracy of the KNN model according
to different K values. The optimal K value gave the highest classification accuracy by cross-validation.
As shown in Figure 3, eight K values (K = 1, 2, . . . , 8) were tested simultaneously for building model
and the optimal KNN model was obtained when K = 3. The classification accuracy was 92% in the
calibration set and 94% in the prediction set, respectively.

1 2 3 4 5 6 7 8
50

55

60

65

70

75

80

85

90

95

100

Number of neighbors

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (%

)

Figure 3. Cross-validation classification accuracy of the K-nearest neighbor (KNN) model according to
varying parameter K.
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2.3.2. The Establishment of SIMCA Model

In SIMCA model, after the initial cluster trends by PCA, the samples were divided into the
calibration set and prediction set. Twenty samples were randomly selected from drug stores and each
geographical origin as the calibration set, and five sub-models were established. The remaining 50
samples were used for the prediction set to test reliability and stability of each sub-model. The optimal
number of the principal components (PCs) for each sub-model was selected based on the root mean
square error of cross-validation (RMSECV) by cross-validation. Figure 4 showed an example for the
selection of optimal number of PCs in sub-model 1 construction. As shown in Figure 4, most of the
improvement in error was achieved before six PCs and the addition of another PC did not greatly lower
the RMSECV. These results suggested six PCs for the final sub-model 1. The optimal number of PCs for
another four sub-models was determined based on the same criterion. Table 1 listed the optimization
and results of SIMCA model. The optimal number of PCs selected for the five sub-models was 6 (Hebei),
4 (Shanxi), 4 (Shandong), 5 (Henan), and 5 (Prepared slices). In the calibration set, the classification
accuracy was all above 90% except Shandong and Henan. In the prediction set, the classification
accuracies were all 100%, except for Hebei (90%) and Shandong (90%). The average classification
accuracy was 93% in the calibration set and 96% in the prediction set. Therefore, NIR spectra combined
with SIMCA model had certain feasibility in the discrimination of Trichosanthis Fructus.

Figure 4. Root mean square error of cross-validation (RMSECV) values according to different number
of PCs in sub-model 1.

Table 1. Optimization and results of the soft independent modeling of class analogy (SIMCA) model of
Trichosanthis Fructus samples.

Sub-Models Labels PCs
Calibration Set Prediction Set

Nright/N0 CA% Nright/N0 CA%

1 Hebei 6 19/20 95 9/10 90
2 Shanxi 4 19/20 95 10/10 100
3 Shandong 4 17/20 85 9/10 90
4 Henan 5 18/20 90 10/10 100
5 Prepared slice 5 20/20 100 10/10 100

2.3.3. The Establishment of the PLS-DA Model

Figure 5 showed the classification accuracy according to different number of PCs. The optimal
model was obtained when the number of PCs equaled 8 by cross-validation. Its classification accuracy
was 95% in the calibration set and 98% in the prediction set.
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Figure 5. Classification accuracy of the partial least squares-discriminant analysis (PLS-DA) model
according to different number of PCs.

2.3.4. The Establishment of SVM-DA Model

To obtain the best performance of SVM-DA model, parameters C and γ were optimized by
cross-validation. The term C was the penal parameter, which determined the tradeoff between
minimizing training error and minimizing model complexity. The γ term was the RBF kernel parameter.
In this study, 15 γ values from 10−6 to 10 and 11 C values from 10−3 to 100 spaced uniformly in
log (Log10 (γ) = −6.0, −5.5, −5.0, −4.5, . . . , 1; Log10 (C) = −3.0, −2.5, −2.0, −1.5, . . . , 2) were tested
simultaneously for searching the optimal parameter. Figure 6 showed the classification accuracy
of the SVM-DA model influenced by values of Log10 C and Log10 γ. The optimal SVM-DA model
was obtained according to the highest classification accuracy by cross-validation. It could be found
that the optimal model was achieved when C = 100 and γ = 0.00316 (i.e., Log10 (C) = 2, Log10 (γ) =
−2.5). After parameters C and γ were determined, the optimal number of PCs was obtained according
to the highest classification accuracy by 5-fold cross-validation. Figure 7 showed that the highest
classification accuracy was achieved when PCs = 6. The classification accuracy in the calibration set
and prediction set were both 100%.

Figure 6. Classification accuracy of the support vector machine-discriminant analysis (SVM-DA) model
according to different Log10 (γ) and Log10 (C) values.
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Figure 7. Classification accuracy of the SVM-DA model according to number of PCs.

2.4. Comparison of Four Models

To highlight the good performance in discrimination of Trichosanthis Fructus from different
geographical origins, we attempted to compare the performance of 4 classification models of KNN,
SIMCA, PLS-DA, and SVM-DA. Table 2 showed the optimal parameters and classification results from
the 4 classification models. As shown in Table 2, the classification accuracies of the KNN and SIMCA
models did not show better performance than those of PLS-DA model, presumably due to that they put
the emphasis more on the similarity within a class. The classification accuracies of SVM-DA gave the
best performance compared with KNN, SIMCA, and PLS-DA. The superiority of SVM-DA suggested
its superb ability in solving the nonlinear problem in dataset.

Table 2. Comparison of the classification accuracy of the K-nearest neighbor (KNN), soft independent
modeling of class analogy (SIMCA), partial least squares-discriminant analysis (PLS-DA), and support
vector machine-discriminant analysis (SVM-DA) models.

Classification Models Optimal Parameters
Classification Accuracy

Calibration Set (%) Prediction Set (%)

KNN K = 3 92 94
SIMCA PCs = 6, 4, 4, 5, 5 93 96
PLS-DA PCs = 8 95 98
SVM-DA C = 100, γ = 0.00316, PCs = 6 100 100

3. Materials and Methods

3.1. Sample Preparation

In this experiment, the fresh ripe fruits of T. kirilowii Maxim. were picked up from four geographical
origins including Shandong, Shanxi, Hebei, and Henan Provinces (30 samples from each) in October,
2017. They were strung together with their vines, and hung in a cool and drafty room for 6 months.
The geographic location of the samples from Shandong Province was Zhuangke Village, Mashan
Town, Changqing District, which was acknowledged as the traditional genuine producing area of
Trichosanthis Fructus [33]. The crude drugs were obtained after cutting their vines and carpopodium,
broke, and smashed. Additionally, 30 batches of prepared slices of uncertain geographical origins
were purchased from multiple drug stores from January to March in 2018. The plant materials were
identified by Prof. Zhimao Chao (Institute of Chinese Materia Medica, China Academy of Chinese
Medical Sciences) as the fruits of T. kirilowii Maxim. Voucher specimens were deposited at the 1016
room of Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences.

Before data acquisition, all samples were dried in a DHG-9053A electric thermostatic drying oven
from Shanghai Yiheng Scientific Instrument Co. Ltd. (Shanghai, China) at 60 ◦C for 4 h to remove
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moisture. Considering the heterogeneities of the samples, all the samples were crushed into powder
by a FW-100 high speed universal grinder from Tianjin Taiste Instrument Co. Ltd. (Tianjin, China).
The powder was then screened through a 60-mesh sieve and stored in a glass desiccator for further
analysis. After MSC pretreatment, the 150 spectra data were partitioned into a calibration set and
validation set, respectively. The former was used to build the calibration model, and the latter was
used to test the robustness of the model constructed. About two thirds of the samples were randomly
selected to make up the calibration set, and the rest were used as the prediction set. Table 3 shows the
details of the tested samples.

Table 3. A summary of Trichosanthis Fructus samples.

Sample No. Sample Type Geographic Origins Geographic Location * Harvesting Time

1–30 Crude drug Jinan, Shandong 36◦19′ N, 116◦19′ E, 127–131 m Oct 12, 2017
31–60 Crude drug Anyang, Henan 36◦03′ N, 114◦23′ E, 68–70 m Oct 17, 2017
61–90 Crude drug Anguo, Hebei 38◦21′ N, 115◦16′ E, 32–33 m Oct 1, 2017
91–120 Crude drug Houma, Shanxi 35◦19′ N, 111◦04′ E, 461–466 m Oct 4, 2017
121–150 Prepared slices Uncertain Uncertain Jan-Mar, 2018

* Geographic location is marked in the order of latitude, longitude, and altitude.

3.2. Spectral Measurement

The NIR spectra were collected in the diffuse reflectance mode using an MPA multi-purpose
FT-NIR spectrometer (Bruker Optics, Ettlingen, Germany) with a Pbs detector and an internal gold
background as the reference. Before the sample measurement, the spectrometer needed to be preheated
for about 30 min. The spectral data were recorded as the logarithm of the reciprocal reflectance, i.e.,
log (1/R). Each spectrum was collected by an average of 32 scans performed at 3.857 cm−1 interval
over the wavelength range of 10,000–4000 cm−1. About 5 g of the dried sample powders were densely
packed into the sample cup with the loading height of 2 cm. Each sample was collected 3 times in
the standard procedure. The average of the 3 spectra collected from the same sample was used in the
further analysis. The temperature was controlled at 23 ± 1 ◦C and the relative humidity at ambient
level in the laboratory.

3.3. Data Analysis

An OPUS 7.0 from Bruker was used for instrumental and measurement control of the NIR
spectrometer as well as for data analysis. The software Solo, version 6.7.1 (Eigenvector Research
Inc., Wenatchee, WA, USA) was used for classification methods realization. The NIR spectra (files in
MATLAB format, collected by OPUS 7.0) could be recognized by the software for further calculation.

3.4. Chemometrics Study

3.4.1. KNN

KNN is a linear and non-parametric supervised pattern recognition method which was first
introduced by Fix and Hodges [34]. In this method, distance between the unknown object and each of
the objects of the calibration set is determined. The unknown object is classified in the group which the
majority of K objects belongs [35]. It is of great importance to select the optimal parameter K, which
has a great influence on the classification accuracy of the KNN model. The K value is optimized by
comparing the prediction ability with several K values and the one which gives the highest classification
accuracy is chosen.

3.4.2. SIMCA

SIMCA is a supervised data classification method based on PCA which was first raised by
Wold [36]. In SIMCA, a PCA is performed on each class in the data set and optimal number of PCs is
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retained to account for most of the variation within each class [37]. Hence, a PCA model is used to
represent each class in the data set. The number of PCs retained for each class is important, as retention
of too few components can distort the signal or information content contained in the model, whereas
retention of too many PCs diminishes the signal-to-noise. RMSECV based on cross-validation is used
to find the optimal number of PCs. To perform cross-validation, segments of data are predicted and
compared to the actual values, using one, two, three, etc., PCs. The optimal number of PCs is selected
when the addition of another PC does not greatly improve the performance of the model.

3.4.3. PLS-DA

PLS-DA is performed in order to find models that allow the maximum separation among classes
of objects [38] by hopefully rotating PCA components and to understand which variables carry the
class separating information. PLS-DA consists of a classical PLS regression where the response variable
is a categorical one (replaced by the set of dummy variables describing the categories) expressing
the class membership of the statistical units. Therefore, PLS-DA does not allow for other response
variables than the one for defining the groups of individuals. As a consequence, all measured variables
play the same role with respect to the class assignment. PLS-DA simultaneously decomposes spectral
matrix and class matrix, and extracts the spectral information most related to the classes, which can
lead to the establishment of a more accurate classification model [39].

3.4.4. SVM-DA

SVM-DA is a chemometric technique that is originated from binary classification but supports
classification of multiple classes [40]. Each classification model is achieved by creating a hyperplane
that allows linear separation in the higher dimension feature space, unless the linear boundary in lower
dimension input space would accomplish a proper classification. In SVM-DA, this transformation
into higher dimensional space is achieved through a kernel function. There exist three classical
kernel functions: polynomial kernel function, Gaussian kernel function, and sigmoid kernel function.
Selection of kernel function is of great importance on the performance of SVM-DA.

In this work, the popularly used Gaussian kernel function was applied. Its structure was the
radial basic function (RBF), also called RBF kernel function. RBF kernel took the form as Equation (1):

K
(
xi, xj

)
= exp(−γ‖xi − xj‖2) (1)

In order to obtain a good performance of SVM-DA model, two parameters including the penalty
parameter (C) and kernel width (γ) in Gaussian kernel function should be optimized. The optimization
was achieved by a combination of grid-search approach and 5-fold cross-validation (CV). The optimal C
and γ were selected when the highest classification accuracy achieved. After the selection of parameters
C and γ, the number of PCs was also optimized based on the highest classification accuracy by CV.

3.4.5. Model Efficiency Estimation

To evaluate the classification performances of the different classification models, the classification
accuracy (%) by cross-validation was used as Nright/N0. Nright and N0 referred to the number of rightly
classified and total number of samples in data set, respectively.

Five-fold CV was used to evaluate the efficiency of classification models. The calibration set was
first divided into five subsets of equal size. Sequentially, one subset was tested using the classification
model trained on the remaining four subsets. Thus, each instance of the whole calibration set was
predicted once so the CV accuracy was the percentage of data.
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For SIMCA model construction, RMSECV was used to evaluate the model efficiency based on CV.
The RMSECV was defined as Equation (2):

RMSECV =

√∑n
i=1 (yi − ŷi)

2

n
(2)

4. Conclusions

This study sufficiently demonstrated that NIR spectroscopy coupled with chemometric techniques
had high potential to distinguish the crude drugs of Trichosanthis Fructus from different geographical
origins and to discriminate the crude drugs and prepared slices in an accurate and non-destructive
way. The successful discrimination using chemometric analysis was based on their differences in NIR
spectra, which mainly correlated with the differences in their chemical compositions. The differences
of crude drugs from different geographic origins might be caused by soil, climate, light, planting
methods, and other factors. Light affected the synthesis and accumulation of carbohydrates and
nitrogen metabolism of plants, soil affected the absorption of mineral elements in plants, and climate
affected the growth cycle of plants resulting in the inconsistency of fruit maturity. All these led to
changes in the types and contents of the constituents in Trichosanthis Fructus of different geographic
origins. The variations between crude drugs and prepared slices might lie in that the former was
only dried from the fresh fruits in the air, while the latter also needed to be steamed through, pressed,
shredded, and sun-cured after dried fruits.

Four chemometric techniques (KNN, SIMCA, PLS-DA, and SVM-DA) were applied comparatively
to construct the classification models. Among the four classification models, SVM-DA as a non-linear
classification method showed superior performance over the linear ones of KNN, SIMCA, and PLS-DA
after preprocessing with MSC. The classification accuracy of the calibration set and prediction set were
both 100% when C = 100, γ = 0.00316, and PCs = 6. Generally, the non-linear model performed better
than the linear models.

The genuineness of herbal medicine depends mostly on its geographical origins. It can be
concluded that NIR spectroscopy coupled with chemometric techniques will have more application
on the discrimination of TCM according to different geographical origins similarly, which is essential
for quality control and traceability management. It also has a promising future to distinguish crude
drugs and prepared slices, authenticity, adulteration, and storage period of TCM, all of which cannot
be easily recognized by simple visual inspection. Therefore, more representative TCM samples need to
be collected and experimented to develop more robust models for prediction in further studies.
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Abstract: A rapid method to quantify the total phenolic content (TPC) and total carotenoid content
(TCC) in blackberries using near infrared spectroscopy (NIRS) was carried out aiming to provide
reductions in analysis time and cost for the food industry. A total of 106 samples were analysed
using the Folin-Ciocalteu method for TPC and a method based on Ultraviolet-Visible Spectrometer
for TCC. The average contents found for TPC and TCC were 24.27 mg·g−1 dw and 8.30 μg·g−1 dw,
respectively. Modified partial least squares (MPLS) regression was used for obtaining the calibration
models of these compounds. The RPD (ratio of the standard deviation of the reference data to the
standard error of prediction (SEP)) values from external validation for both TPC and TCC were
between 1.5 < RPDp < 2.5 and RER values (ratio of the range in the reference data to SEP) were 5.92
for TPC and 8.63 for TCC. These values showed that both equations were suitable for screening
purposes. MPLS loading plots showed a high contribution of sugars, chlorophyll, lipids and cellulose
in the modelling of prediction equations.

Keywords: blackberries; Rubus fructicosus; phenolics; carotenoids; bioanalytical applications; near
infrared; chemometrics

1. Introduction

Consumers have high awareness of the health benefits of increased fruit and vegetable
consumption, especially those rich in phytochemicals with nutraceutical properties. Vegetables and
fresh fruit are reported to decrease the risk of cardiovascular diseases, certain forms of cancer and to
prevent degenerative diseases [1,2]. This protection has been attributed to the fact that these foods
may contain an optimal content of phytochemicals, such as antioxidants, fibre and other bioactive
compounds [3]. These phytochemicals are in higher concentrations in small fruit, such as berries
(blueberries, blackberries and strawberries) and this has motivated a large demand for fresh fruit.
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Berries are widely grown in Spain especially in Huelva (South-eastern Spain) where the cultivated
area has increased in the last years to approximately 11,145 hectares in 2018, being more than 95% of
national volume [4]. With reference to commercialization and sales prospects, the blackberry is the
most promising reference [5,6].

Previous studies have reported that berry fruits contain a high total phenolic content (1.97–3.62 mg
gallic acid equivalent GAE g−1 fresh weight (fw) and 16.94–31.13 mg GAE g−1 dry weight (dw)
representing a rich source of antioxidants [5,7–10].

The total carotenoid content was also high in blackberry fruits with values from 0.86 μg·g−1 fw
(7.4 μg·g−1 dw) to 21.40 μg·g−1 dw in blueberry fruits [11,12]. However, other authors also reported
lower carotenoid contents ranging from 0.162 μg·g−1 fw (1.39 μg·g−1 dw) [13] to 1.84 μg·g−1 dw [14].

The demonstrated antioxidant capacity of blackberry fruits suggests that can play an important
role against oxygen-free radical in the organism [15,16] and therefore for use in the development
of functional food or nutraceuticals [17]. Due to the recognized importance of these antioxidant
compounds, it is essential to characterize their content of them in the fruits.

Nowadays, the measuring of phenolic compounds and carotenoids is carried out using methods
such as high performance liquid chromatography (HPLC) [18,19], gas chromatography (GC), or
combinations of these methods with different systems of detection such as UV-Vis or mass spectrometry
(MS) [20]. These methodologies are efficient for a rapid separation and quantification of these
compounds. Although their use is common, these methods require sophisticated and expensive
equipment, skilled labour and a variety of reagents which contain pollutants. Another relevant
method includes spectrophotometry since it represents a relatively simple method for measuring
phenolic compounds and carotenoids. As an alternative to these methods of analysis, NIRS (Near
Infrared Reflectance Spectroscopy) technique offers several advantages such as high response,
non-sample destruction, non-polluting and low analytical cost that does not require sophisticated
sample preparation [21]. This methodology measures the interaction of the material with the light,
which is in turn determined by the vibration of the chemical bonds of the sample constituents [22].

With regards to berry fruits, the studies with NIRS have been focused on determining the total
phenolic content and antioxidant activity in intact berries (multispecies calibration) [23], in quality
control and identification of food product adulteration of wild berry fruit extracts during storage [24],
in evaluation of quality and nutraceutical compounds such as anthocyanin, polyphenol and flavonoid
content of blueberries (Vaccinium corymbosum L.) [25] and also for detecting of an underground insect
named Eurhizococcus colombianus (Hemiptera: Margarodidae) in blackberry leaves [26].

Since Andalusia (Southern Spain) is an important exporter of blackberries, there is interest in
developing methodologies for the rapid analysis of antioxidant compounds as is demanded in both,
food industries and in germplasm-screening programs. Nutritional quality improvement has been
initiated in blackberry breeding programs; thus, rapid techniques such as those based on NIRS are
needed for quick screening of lines with higher quality in early generations.

Therefore, the objectives of the present work were: (i) to study the potential of the NIRS technology
for predicting the total phenolic and total carotenoid contents in blackberries, being these compounds
constituting some of the main responsible molecules of the antioxidant properties in this fruit; (ii)
to provide some knowledge about the mechanism used by NIRS for successfully determining these
compounds in the fruits of this species.

2. Results and Discussion

2.1. Reference Analysis of Total Phenolic and Carotenoid Contents in the Samples

Figure 1a,b showed frequency distribution plots of total phenolic and carotenoid contents for the
samples (n = 106) used in this work, respectively. Such Total phenolic content (TPC) as Total carotenoid
content (TCC) exhibited normal distributions in their intervals.
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Figure 1. Frequency distribution plots for total phenolic (a) and total carotenoid content (b) by
reference analysis.

TPC values ranged from 17.36 to 35.67 mg·g−1 dw with mean and variation coefficient values
of 24.27 and 13.67, respectively. These values were similar to those contents reported previously
in studies carried out on blackberry fruits by Souza et al. [11] and Contessa et al. [10] with 34.53
and 36.78 mg·g−1 dw, respectively. Previous works have reported higher TPC concentrations
(43.29–99.47 mg·g−1 dw) [23,27] and lower findings (5.58 mg·g−1 dw) [13,17] than those found
in this study. The qualitative and quantitative differences found among fruits for the phenolic
compounds could be due to factors such as environmental conditions, genotype, storage conditions
and agro-techniques as observed by Aaby et al. [28] in berry fruits.

Regarding TCC, the values varied from 2.84 to 13.73 μg·g−1 dw with mean and variation coefficients
of 8.30 and 21.92, respectively. Souza et al. [11] obtained similar results with 12.14 μg·g−1 dw of TCC
in blackberries. Higher TCC contents (21.40 μg·g−1 dw) have been described in previous studies by
Rutz et al. [13] and Lashmanova et al. [12].

2.2. Spectral Data Pre-Treatments and Equation Performances. Second Derivative Spectra of Blueberry Fruit

Figure 2 shows the peaks and troughs corresponding to the points of maximum curvature in the
raw spectrum.

The bands in the visible region at 558 nm are due to electric transitions in the green, the band at
614 nm corresponding to electric transitions in the orange and 678 nm to electronic transitions in the
red. The absorption band at 674 nm is assigned to absorption by chlorophyll [29].

The characteristic bands for phenolics can be observed in the NIR regions from 1415 nm to
1512 nm and from 1955 to 2035 nm [30]. The wavelength regions of the spectra in the ranges 1100–1250,
1300–1350 and 1650–1700 nm correspond to the 3rd overtone, the combination bands and the 1st
overtone, respectively, of the C–H bonds of carotenoids [31]. In addition to these bands, the main
absorption bands in the NIR segment of the spectrum were displayed at 1404 nm related to O-H
stretch 1st overtone; at 1436 nm, which is characteristic of sugars [32] and related to combination O-H
stretch/HOH deformation (O-H bend 2nd overtone; the band at 1724 nm related to lipid-specific 1st
overtone [33]; at 1924 nm assigned to O-H stretch first overtone; the band at 2278 nm was assigned
to the CH- stretch of cellulose [32]. The band at 2350 nm is related to C-H stretching first overtone of
lipids, the peak at 2388 nm is associated with the C-H functional group present in hemicellulose and
cellulose. Other absorptions were associated to the O-H 1st overtone (1364 nm) [33], the O-H group
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hydroxyl (1514 nm), C-O stretch of phenols (2056 nm), C-H stretch first overtone (1762 nm, 2142 nm
and 2170 nm) [32].

Figure 2. Second-derivative NIR spectra of blueberry samples.

2.3. Calibration Development for TPC and TCC

For calibration purposes, the wavelength ranges between 400–2500 nm were used. Table 1
summarizes the statistics of calibration and prediction models after the application of spectral
pre-treatment. For the development of NIRS calibrations, four derivative mathematical treatments
were tested: 1,4,4,1; 1,10,10,1; 2,5,5,2 and 2,20,20,2 (where the first digit is the number of the derivative,
the second is the gap over which the derivative is calculated, the third is the number of data points in
a running average or smoothing and the fourth is the second smoothing) [34]. The use of the second
derivative to the raw spectra resulted in an increased complexity of spectra and assisted in a clear
separation between peaks.

Table 1. Calibration and cross-validation statistics of total phenolic content (TPC expressed as
mg·g−1 dw) and total carotenoid content (TCC expressed as μg·g−1 dw) for blackberry fruit measured
by FNS-6500 with different treatments.

Trait Range SD a R2 b SEC c R2
CV

d SECV e RPDcv f Treatment Factor g

TPC

17.36–35.67 3.06 0.86 1.14 0.69 1.69 1.81 2,5,5,2 8
17.36–35.67 3.06 0.71 1.66 0.59 1.95 1.58 1,4,4,1 8
17.36–35.67 3.06 0.70 1.68 0.59 1.97 1.57 1,10,10,1 8
17.36–35.67 3.06 0.76 1.49 0.67 1.75 1.75 2,20,20,2 8

TCC

2.84–13.73 1.82 0.92 0.52 0.76 0.95 1.91 2,5,5,2 8
2.84–13.73 1.82 0.85 0.72 0.71 1.03 1.83 1,4,4,1 8
2.84–13.73 1.82 0.83 0.75 0.71 0.99 1.82 1,10,10,1 8
2.84–13.73 1.82 0.84 0.75 0.70 1.05 1.80 2,20,20,2 8

a SD: standard deviation; b R2: coefficient of determination in calibration, c SEC: standard error in calibration,
d R2

CV: coefficient of determination in cross-validation, e SECV: standard error of cross-validation, f RPDcv: ratio of
the standard deviation to standard error of cross-validation; g Factor: number of latent variables.

The coefficient of determination for cross-validation (R2
CV) for TPC was 0.70 in this study. The

second derivative resulted in a better prediction in the cross-validation. This Modified partial least
squares (MPLS) model (2,5,5,2) reached the best prediction precision. The number of latent variables
was determined by cross validation of MPLS procedure and it was 8 for all models.

Figure 3 shows the plots of Standard error of cross-validation (SECV) versus the different number
of factors included in the cross validation of MPLS for TPC and TCC models (2,5,5,2; standard normal
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variate and de-trending transformations (SNV + DT)). The number of factor of 8 were optimum for
both parameters as it resulted in the minimum SECV of 1.69 and 0.95 for TPC and TCC models,
respectively. This SECV value was close to the value of SEC which then shows that the calibration
carried out was feasible.

SE
C

V

Factor number

Figure 3. Plot of standard error of cross-validation (SECV) vs. the different number of factors included
in the cross-validation of the modified partial least model for Total phenolic content (TPC) and total
carotenoid content (TCC).

Other authors have shown the ability of NIRS to predict the content of phenolic compounds in
blueberries (Vaccinium corymbosum L.) [25], in methanolic extracts of berry fruits (wild blueberries,
blackberries, raspberries, strawberries and red currants) reporting high R2 coefficients (ranging from
0.864 to 0.975).

R2
CV and RPDCV coefficients for the cross-validation (treatment 2,5,5,2) were 0.76 and 1.91,

respectively for total carotenoid content in blackberry fruits.

2.4. External Validation

Table 2 shows the external validation statistics (SEP, Q2, RPDp and RER) for both compounds
measured in blackberries.

Table 2. Reference values and external validation statistics of the NIRS calibrations for total phenolic
content (TPC expressed as mg·g−1 dw) and total carotenoid content (TCC expressed as μg·g−1 dw) in
blackberry fruit.

Reference Values (n = 30) External Validation

Parameters Range Mean SD a Q2 b SEP c RDPp d RER e

TPC 20.77–27.97 23.41 1.85 0.65 1.22 1.52 5.92
TCC 5.02–11.66 8.21 1.40 0.71 0.77 1.82 8.63

a SD: standard deviation; b Q2: coefficient of determination in external validation; c SEP: standard error of prediction
corrected for bias; d RPDp: ratio of the standard deviation to standard error of prediction (performance); e RER:
ratio of the range to standard error of prediction (performance).

The SEP values in the external validation were lower than their respective standard deviation,
which point that NIRS is able to determine these traits in blackberry fruits.

The Q2 values give an indication of the percentage variation in the Y variable that is accounted
for by the X variable. Therefore, Q2 values above 0.50 indicate that over 50% of the variation in Y is
attributable to variation in X and this allows discrimination. In our study, external validation resulted
in Q2 of 0.65 and 0.71 for TPC and TCC respectively (Table 2) which indicated that 65% and 71% of the
variability in the data was explained by the respective calibration model.
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According to Williams and Norris [35], the values for Q2 obtained from the external validations
in this work, indicated that the models for both TPC and TCC can be classified as models that can be
used for rough predictions of samples (Table 2).

The Q2 statistic obtained in external validation for TPC was lower than those reported in previous
works. Sinelli et al. [25] indicated a Q2 value of 0.87 for TPC in blueberry fruits. Other authors found
Q2 values of 0.98 for different berry species [23]. According to the guidelines for interpretation of RPDp
from external validation [35], if this ratio is between 1.5 < RPDp < 2.5 this characterizes the equations
as suitable for screening purposes, which was obtained for TPC (1.52) and TCC (1.82). Similar results
were obtained in blueberry [25] with RPDp = 2.05. However, a higher RPDp value (RPDp = 3.05) has
been reported for different berry species than those found in this work [23].

The results were corroborated by the Figure 4 of predicted values versus reference values obtained
using the MPLS model (second derivative) for the TPC and TCC validation sets.

Figure 4. External validation scatter plot for near infrared predicted values versus reference values for
total phenolic content (TPC) and total carotenoid content (TCC) in blackberries.

The calibration equation obtained in the present work for TPC showed an RPDp value lower
than that reported by Gajoš [23], which developed a multicalibration equation for wild blueberries,
blackberries, raspberries, strawberries and red currants. This could be due to the narrower range of
TPC content found in the samples of our study which varied from 20.77 to 27.97 mg·g−1 dw (Table 2).
As the RPDp value is highly dependent on the range of the sample population for a determined
parameter [36], a wider range implies a higher RPD value.

In terms of RER coefficients, predictive ability of the prediction models in this work ranged from
5.92 to 8.63. For TPC and TCC, the validation yielded RER (5.92 and 8.63, respectively) values which
indicated models that can be used for screening purposes, thus being very useful in quality control
and as a selection tool in blackberry breeding programmes [36].

2.5. Modified Partial Least Square Loadings for Total Phenolic Content

MPLS regression was used to obtain the spectral information and predict the sample composition.
Figure 5 shows the equation corresponding to TPC. Some of the spectral regions used by the

TPC models for calibrating these compounds have been previously reported by other authors [32].
The first MPLS term was influenced by absorption bands characteristic of electronic vibrations at
632 nm, it was also influenced by absorption bands at 1412 and 1668 nm. Vibration differences in
the range 1399–1699 nm have been identified for fruit products such as wine, grape juice and orange
fruit [21,37,38] presenting the vibration range of the C-H and O-H bonds, corresponding to water
and phenolic absorbance [21]. There was also a peak at 1908 nm influenced by absorption assigned
to the first OH stretch. At 1980 nm it corresponded to C-H aromatic 2nd overtone, it also relate to
one or more aromatic rings and hydroxyl groups, mainly related to combination bands of the -OH
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functional group, symmetric and anti-symmetric stretching. The absorption vibrations at 2236, 2300
and 2388 nm were due to N-H bend [32]. The second and third terms were influenced by absorption
bands characteristic to electronic vibrations at 640 nm and 672 nm, respectively.

Figure 5. MPLS loading plots for TPC (black line) and TCC (red line) using near-infrared reflectance
spectroscopy. (a) First loading; (b) Second loading; (c) Third loading.

2.6. Modified Partial Least Square Loadings for Total Carotenoid Content

MPLS loading plots of the TCC equation are shown in Figure 5. The first term (Figure 5a) was
influenced by bands which corresponding to electronic vibration assigned to chlorophyll at 672 nm [39],
second C=O stretch at 1900 nm. Absorptions at 1980 nm and 2300 nm correspond to vibrations in N-H
stretch bending and C-H combination tones by lipids [32].

Those wavelengths corresponding to absorptions by electronic vibration assigned to chlorophyll
(672 nm) and stretch groups: C=O and O-H (1444 nm), C-O (1692 nm), N-H with C-O (2068 nm)
and OH cellulose stretch (2268 nm) highly influenced the second factor of the equation (Figure 5b).
The third term (Figure 5c) of the equation was modelled with those wavelengths corresponding to
electronic vibrations (672 nm) with the following stretches: C=O (1420 nm), N-H (1516 nm) and O-H
(1908 nm) [32].
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3. Materials and Methods

3.1. Plant Material and Greenhouse Experiments

Blackberry (Rubus fructicosus L.) cv. Tupy was chosen for the field trials.
The plant transplant took place on November 29th 2013 in a greenhouse of 600 m2 in the IFAPA

Centre La Mojonera, Almería (36◦47′19” N, 02◦42′11” W; 142 m a.s.l.), following standard cultural
practices for disease control, insect pest and plant nutrition.

The blackberry plants were transplanted on polypropylene containers of 15 l capacity using
coconut fibre substrate. The irrigation water conditions were pH 8.1 and 1.26 mS·cm−1 conductivity
and the nutrient solution had pH 5.8 and 2.50 mS·cm−1 electrical conductivity.

The trial (Figure 6) was designed as a randomized complete block with 3 replicates and 20 plants
per repetition. Thirty fruits were collected per each plant and stored at −80 ◦C until lyophilization,
then were lyophilized (Telstar LyoQuest, Terrassa, Spain) and ground in a mill (Janke & Kunkel, model
A10, IKA®-Labortechnik). The samples were lyophilized to remove the strong absorbance of water in
the infrared region, which overlaps with important bands of nutritional parameters present in low
concentration [40].

Figure 6. Trial of Tupy blackberry variety growing in greenhouse.

Two samplings were performed at the time of maximum production (21 April 2014 and
20 May 2014).

The fruits harvested were classified according to their colour with a colorimeter to avoid
fruit-to-fruit variation in ripeness, thus these were considered to be ripe when the CIE L*a*b (CIELAB)
values were L: 21.11; a: 0.835; b: 0.073 y C: 1.27.

3.2. Determination of the Total Phenolic Fraction

Five grams of each sample (fresh weight) were homogenized in 20 mL of ethanol (99.7%) and
stored at −20 ◦C for 2 weeks. An aliquot of 60 μL supernatant was taken previous to centrifugation of
the extracts and then prepared according to the modified method by Dewanto et al. [41]. After 75 min,
the absorbance was measured at 765 nm using a Thermo Spectronic UV–visible Spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA). The external standard gallic acid, 3,4,5-trihydroxybenzoic acid
(Sigma–Aldrich, Steinheim, Germany) was used for quantifying. The results were expressed in mg
GAE (gallic acid equivalent) g−1 dry weight.
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3.3. Determination of the Total Carotenoid Content

Analysis of total carotenoid content was carried out by the method described by Rutz et al. [13].
Five grams of each sample and 2 g of celite were added to 20 mL of cold acetone and the mixture

was shaken for 10 min. The material was filtered with a Buchner funnel with filter paper, washing
the sample with acetone until the extract was colourless. The filtrate was transferred to a separatory
funnel, to which 30 mL of petroleum ether and 30 mL of distilled water were added. The lower phase
was discarded, then distilled water was added; this procedure was repeated four times to achieve
total removal of the acetone. The upper phase was transferred to a 50-mL volumetric flask and the
volume was completed with petroleum ether. The absorbance was measured with a Thermo Spectronic
UV–visible Spectrometer (Thermo Fisher Scientific, Delaware, USA) at 450 nm, using petroleum ether
as a blank. The total carotenoid content was determined by Equation (1) and the results were expressed
in mg of total carotenoids per g dry weight.

3.4. NIRS Analysis Calibration and Validation Development

One hundred and twenty freeze-dried blackberry samples were analysed by NIRS (90 calibration,
30 calibration). An spectrometer (Model 6500 Foss-NIRSystems, Inc., Silver Spring, MD, USA) was
used for registrating the spectra in the range from 400–2500 nm each 2 nm in reflectance mode.

Freeze-dried, ground samples of the blackberries were placed in the sample holder (3 cm diameter,
10 mL volume approximately) until it was full (sample weight: 3.50 g) and then were scanned. Their
spectra were acquired at 2 nm wavelength resolution as log 1/R (R is reflectance) over a wavelength
range from 400 to 2500 nm (visible and near-infrared regions).

The spectral variability and structure of the sample population was performed using the CENTER
algorithm; samples with a statistical value >3 were considered anomalous spectra or outliers [42].

Calibration equations for total phenolic content and total carotenoid content were developed on
the whole set (n = 90) using the application GLOBAL v. 1.50 (WINISI II, Infrasoft International, LLC,
Port Matilda, PA, USA). Calibration equations were computed using different mathematical treatments
although only those that displayed the higher predictive capacity were showed: [(1,4,4,1); (1,10,10,1);
(2,5,5,2); (2,20,20,2)] where the meaning of each term is the derivative order of the log 1/R data (being
R the reflectance), segment of the derivative, first smooth and second smooth). Additionally to the use
of derivatives, standard normal variate and de-trending (SNV-DT) transformations [43] were used,
which are algorithms used to correct baseline offset due to scattering effects (differences in particle size
and path length among samples) and improve the accuracy of the calibration.

Modified partial least squares (PLSm) was used as a regression method to correlate the spectral
information (raw optical data or derived spectra) of the samples and TPC and TCC contents determined
by the reference method, using different number of wavelengths from 400 to 2500 nm for the calculation.
The objective was to perform a linear regression in a new coordinate system with a lower dimensionality
than the original space of the independent variables. The PLS loading factors (latent variables) were
determined by the maximum variance of the independent (spectral data) variables and by a maximum
correlation with the dependent (chemical) variables. The model obtained used only the most important
factors, the “noise” being encapsulated in the less important factors.

Cross-validation was performed on the calibration set to determine both, the ability to predict on
unknown samples and the best number of terms to use in the equation [44]. The number of principal
component terms used in the equation to explain the analyte variance was also taken into account
before selecting the equation for use. The cross validation process used in the software should prevent
over fitting of the equation to the calibration set as the optimum number of terms are selected when the
SECV is at its lowest and R2

CV is at its highest. Addition of more terms than necessary will increase the
prediction error and over fit the equation to its calibration set resulting in poor predictive performance
on samples outside the calibration set. Usually a medium sized model is preferred. An external
validation in 30 independent samples was carried out to evaluate the accuracy and precision of the
calibration equations for total phenolic and carotenoid content following the protocol outline by Shenk
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et al. [44]. The 30 samples of the validation set were selected by taking one of every 5 samples in the
120 samples set; finally, the calibration set was constituted of the 90 remaining samples. The standard
error (SE) and coefficient of determination were calculated for cross-validation (R2

CV) and external
validation (Q2). The predictive ability of the equations was assessed in the external validation from
the Q2 coefficient, the RPD (the ratio of the standard deviation for the samples of the validation to the
SEP (standard error of prediction (performance) and the RER (the ratio of the range in the reference
data (validation set) to the SEP). NIR models can be classified depending the Q2 from the external
validation [36] as: if 0.26 < Q2 < 0.49, the models show a low correlation;); if 0.50 < Q2 < 0.64) models
can be used for rough predictions of samples; if 0.65 < Q2 < 0.81) the models can be used to discriminate
between low and high values of the samples; (if 0.82 < Q2 < 0.90 are models with good prediction; if
Q2 > 0.90 the models show excellent precision. RPD values > 3 are desirable for excellent calibration
equations, however equations with an RPD < 1.5 are unusable [35]. The RER (ratio of the range to
standard error of prediction (performance), it should be at least 10 [36].

The mathematical expressions of these statistics are as follows:

RPD = SD〈[(∑n
i=1 (yi − ŷi)

2)(N − K − 1)−1]
1/2〉−1

where yi = laboratory reference value for the ith sample; ŷ = NIR value; K = number of wavelengths
used in an equation; N = number of samples; SD = standard deviation.

RER = range〈[(∑n
i=1 (yi − ŷi)

2)(N − K − 1)−1]
1/2〉−1

where yi = laboratory reference value for the ith sample; ŷ = NIR value; K = number of wavelengths
used in an equation; N = number of samples.

4. Conclusions

The NIRS technique has the potential to reduce the cost and time in analysing the total phenolic
and carotenoid content in blackberries for both agri-food applications and research. Approximately
each 1.5 min we can analyse a sample for both quality components by using the NIR spectroscopy.
From the different mathematical treatments tested the second derivative produced the better results
for predicting, however the models reported here are usable for routine screening of a large number of
samples in breeding programs.

The spectral regions corresponding to absorbance by cellulose, lipids, chlorophyll and sugars
were used by MPLS for modelling the prediction equations for total phenolic and carotenoid content
in blackberries.
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Abstract: A VIS/NIR hyperspectral imaging system was used to classify three different degrees
of freeze-damage in corn seeds. Using image processing methods, the hyperspectral image of
the corn seed embryo was obtained first. To find a relatively better method for later imaging
visualization, four different pretreatment methods (no pretreatment, multiplicative scatter correction
(MSC), standard normal variation (SNV) and 5 points and 3 times smoothing (5-3 smoothing)),
four wavelength selection algorithms (successive projection algorithm (SPA), principal component
analysis (PCA), X-loading and full-band method) and three different classification modeling methods
(partial least squares-discriminant analysis (PLS-DA), K-nearest neighbor (KNN) and support vector
machine (SVM)) were applied to make a comparison. Next, the visualization images according to
a mean spectrum to mean spectrum (M2M) and a mean spectrum to pixel spectrum (M2P) were
compared in order to better represent the freeze damage to the seed embryos. It was concluded
that the 5-3 smoothing method and SPA wavelength selection method applied to the modeling can
improve the signal-to-noise ratio, classification accuracy of the model (more than 90%). The final
classification results of the method M2P were better than the method M2M, which had fewer numbers
of misclassified corn seed samples and the samples could be visualized well.

Keywords: VIS/NIR hyperspectral imaging; corn seed; classification; freeze-damaged; image
processing; imaging visualization

1. Introduction

Corn (Zea mays L.), one of the world’s three major food crops, is currently one of the most
grown food crops in several parts of the world [1]. As the world’s second-largest corn producing and
consuming country, China has most of its corn growing areas located in the north. In these regions,
the corn seed is often damaged due to low temperatures and high seed moisture content before harvest
or dehydration, which is an agricultural disaster.

Seed embryo is the most important part of the seed which contains a large number of nutrients.
If damage takes place in this part, it must have great impact on subsequent growth. After suffering
from low-temperature freeze damage, the seed quality declines, and it is easy for mildew to grow when
the seeds are stored at later stage. The internal components of the seed will change, which results in
a great impact on the subsequent germination, root growth and development. To investigate the vigor
change in seed and how it changes, the International Seed Testing Association (ISTA) recommended
two kinds of seed viability measurement methods in 1995 [2], the electrical conductivity test could be
conveniently conducted due to its simplicity and low cost [3,4].

Therefore, a key factor in current study is how to quickly and accurately determine the
characteristic changes in the freeze-damage seeds and identify the freeze condition (especially,
the slightly freeze-damaged seeds), which will provide guidance for the seed agricultural production.
In particular, it is of more specific significance to study the frost damage status of the embryo.
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In recent studies, through the use of near-infrared spectroscopy technology, the vitality [5], internal
essential constituents such as lipids [6], starches [7,8] and the toxin-infected pests [9–11] to corn seed
batches have been studied, all of which have a rapid non-destructive advantage, but this technology
only processes the corn seed in batches, and it is hard to determine the characteristics of individual
corn seeds.

At present, the application of hyperspectral imaging technology in non-destructive testing of
agricultural products has become more extensive. As a technology that combines the advantages
of traditional image technology and spectral technology, it can obtain the spectral information of
every pixel on the collected image, which can be used to effectively analyze the chemical composition
index of each part of the seed and avoid the instability of experimental results. Another advantage
of this technology is that it can test the seeds individually. Many research studies such as those on
water content [12], hardness [13,14], internal component testing [15], variety classification [16–19],
vitality [1,20], different storage periods [21–23], fungi and toxin detection [24–32] have been reported.
Huang et al. (2015) used hyperspectral imaging techniques to predict the consistency of seed moisture
content with correlation coefficient of prediction set of 0.848 [33]; Williams et al. (2016) used NIR
hyperspectral imaging to classify maize kernels into three hardness categories, where pixel-wise
and object-wise methods were compared and they had similar results [34]; Zhao et al. (2018) used
hyperspectral imaging techniques to study a total of 12,900 maize seeds of 3 different varieties,
first to determine the optimal calibration set of each variety, and then the performance of the back
propagation neutral network and support vector machine models were compared to obtain the best
model, the overall results indicated that hyperspectral imaging was a potential technique for varietal
classification of maize seeds [35].

According to the current research, no study has been conducted on the freeze damage of corn
seed, although there are some studies using hyperspectral imaging techniques to study frozen grown
crops [36–39] or fruit [40], but these studies could not be used for the freeze damage identification of
the seeds due to different technical methods and objectives.

To summarize, the objectives of this study were to: (1) conduct an electrical conductivity test on
corn seeds to consider if the seed is damaged or not; (2) obtain the corn seed embryo hyperspectral
image, and assess the potential of applying hyperspectral imaging technology for the classification of
different degrees of freeze damage to the corn seeds; (3) evaluate the models established by different
spectral pretreatment methods, wavelength selection methods and modeling methods, and then
compare and identify the optimal model among them; (4) visualize the classification results of two
different methods (M2M and M2P), and to identify the optimal method.

2. Results and Discussions

2.1. Results of Conductivity Test

Figure 1 shows the results of the conductivity of three varieties of corn seeds after soaking for 24 h,
it can be found that the highest conductivity is at the frost condition of −20 ◦C, for 10 h, the second is at
−10 ◦C, for 5 h while the lowest is at the normal condition. It indicates that during the freeze-damage
process, the membrane integrity of the corn seed deteriorated, and then the leakage of the cell contents
was serious after the seeds absorbing water, thus a higher conductivity was obtained.
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(a) (b) 

(c) 

Figure 1. The conductivity of (a) Haoyu21, (b) Haihe78 and (c) Jindan10 soaking for 24 h.

2.2. The Analysis of Spectral Features

According to the experiment description, Figure 2 shows the average spectrums of three different
corn seeds varieties.

(a) (b) 

Figure 2. Cont.
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(c) 

Figure 2. The average spectrums of (a) Haoyu21, (b) Haihe78 and (c) Jindan10.

In order to get better classification results, the noise wavelengths (before 444.23 nm and after
985.37 nm) were excluded and the remaining 430 wavelengths were used for later modeling. The SPA,
PCA and X-loading methods were applied to select feature wavelengths after applying the pretreatment
methods (no pretreatment, MSC, SNV and 5-3 smoothing) to the spectrums. The feature wavelength
results for the three varieties are shown in appendixes Tables A1–A3.

From Tables A1–A3, the original input of 430 wavelengths was dramatically reduced to several
or no more than 20 inputs, thus the calculating time was greatly shortened. To take the selected
wavelengths in the condition of 5-3 smoothing pretreatment method and SPA method as an example
(Figure 3). Most of the selected wavelengths were in the range of 450–700 nm, they are possibly related
to the change in Chlorophyll, β-carotene or other components related to the embryo [41]. In the range
of 850–950 nm, it is mainly related to the 3rd overtune vibrations of the hydrocarbon C-H bond [42].

Figure 3. The description of the selected wavelengths by 5-3 smoothing pretreatment and the SPA
method for the three varieties.

2.3. The Results of Established Classification Models

When the feature wavelengths were selected, the classification models were established.
The accuracy results of the three varieties of corn seed are shown as Figures 4–6.

From Figure 4, an 80% pink line for both calibration sets and validation sets was firstly set.
At full-band treatment, the classification accuracy results of 5-3 smoothing and no pretreatment
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method were better than those of the MSC and SNV pretreatment methods, because the results of the
validation sets with the MSC and SNC pretreatment methods were all lower than 80%. With the same
pretreatment method, the classification accuracies of the full-band, SPA, PCA and X-loading methods
were sorted: The classification accuracies for the full-band method were higher than those of SPA, and
those of SPA were higher than those of the PCA and X-loading methods. With the same pretreatment
method and the same wavelength selection algorithm, both the PLS-DA and SVM modeling methods
had higher accuracy results than the KNN method. The >80% classification accuracy results for the
calibration set and validation set with the KNN method only appeared in no pretreatment and 5-3
smoothing pretreatment method.

By counting the number of >80% classification accuracy results, the 5-3 smoothing and no
pretreatment method had similar classification result, and in the meantime, the PLS-DA and SVM
modeling methods had similar classification result.

(a) (b) 

  
(c) (d) 

Figure 4. The classification accuracy results of Haoyu21 with (a) no pretreatment method,
(b) the MSC pretreatment method, (c) the SNV pretreatment method and (d) the 5-3 smoothing
pretreatment method.

From Figure 5, the classification accuracy results of the no pretreatment and three pretreatment
methods at full band, were very high, and most of them could reach an accuracy of 100%, which perhaps
shown that a wonderful classification model could be established on the premise of it containing all the
reflectance spectral information of the samples. Though there were good accuracy results among each
pretreatment method for full-band spectrums, irrelevant information for the sample is still existed, so it
was necessary to find several wavelengths to represent the 430 wavelengths to reduce the calculation
time. With the same pretreatment methods, the classification accuracies of the full-band, SPA, PCA and
X-loading methods were sorted: the classification accuracies for the full-band method were higher than
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those of the SPA, and those for SPA and PCA methods were higher than those of the X-loading method.
In some respects, it could be found that many of the classification accuracies for PCA were slightly
higher than those for SPA, but the number of > 80% classification accuracies for SPA was one more
than that for PCA. Though the full-band method had the best classification results among the four
pretreatment methods, the accuracies of SPA were also much higher, and most of the accuracies of the
validation sets were almost more than 90%. So it could also be used for the classification of frozen corn
seeds. Moreover, with the same pretreatment method and the same wavelength selection algorithm,
the PLS-DA and SVM modeling methods had higher accuracy results than the KNN method.

By counting the number of >80% classification accuracies, all of the pretreatment methods had
similar classification result, and in the meantime, the number of >80% classification accuracy results
for the calibration set and validation set of the KNN method were fewer than for the other two
classification modeling methods.

(a) (b) 

  
(c) (d) 

Figure 5. The classification accuracy results of Haihe78 with (a) no pretreatment method,
(b) the MSC pretreatment method, (c) the SNV pretreatment method and (d) the 5-3 smoothing
pretreatment method.

From Figure 6, the 5-3 smoothing pretreatment method had a greater number of >80% classification
accuracy results than the no pretreatment and the other two pretreatment methods at full band. Almost
all of the calibration sets could reach an accuracy of 85% or higher, while most of the accuracies
of the validation sets were lower than 80%. With the same pretreatment method, the classification
accuracies of the full-band, SPA, PCA and X-loading methods were sorted: the classification accuracy
results of the full-band than 80%. With the same pretreatment method and the same wavelength
selection algorithm, the PLS-DA modeling method had higher accuracy results than the SVM and
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KNN modeling methods. There was no >80% classification accuracy result for the calibration set and
validation set in KNN modeling method.

By counting the number of >80% classification accuracies, the conclusion was drawn that the
classification accuracy results for the PLS-DA modeling method with the 5-3 smoothing pretreatment
method had better results than any other pretreatment methods.

(a) (b) 

  
(c) (d) 

Figure 6. The classification accuracy results of Jindan10 with (a) no pretreatment method,
(b) the MSC pretreatment method, (c) the SNV pretreatment method and (d) the 5-3 smoothing
pretreatment method.

2.4. The Visualization Images of the Classification Results

A better model was found when using the 5-3 smoothing pretreatment method and the PLS-DA
classification modeling method. To more clearly understand the classification results of the corn seed
samples, the spectrum of each pixel in the embryo image was classified to realize the visualization of
the corn embryo images.

2.4.1. The Visualization Images of Haoyu21

At first, the six images (the first two are of normal corn seeds, the middle two are of slightly
freeze-damaged corn seeds and the last two are of severely freeze-damaged corn seeds) of three
different degrees of freeze-damage in corn seed were merged, Figure 7 shows the two different classified
images. Figure 7a,b, were the results images obtained by method M2M and method M2P, respectively.

From Figure 7a, the visualization image with the SPA and PLS-DA model was almost matched
with the above figure results. As for Figure 7b, each pixels had a classification value and each corn
seed image was obtained to form a whole image with different color gradients (from light blue to
yellow and then to deep red) although not all of the pixels were the same color in one corn seed.
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(a)

(b) 

Figure 7. The visualization images of (a) method M2M and (b) method M2P for Haoyu21 with the SPA
and PLS-DA model.

Now, how to identify the final category for the corn seeds was next step. The percentage of each
category of each corn seed was calculated, and the results are shown in Figure 8.

Figure 8. The percentage of each category of Haoyu21 with the SPA and PLS-DA model.
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From Figure 8, each type of corn seed had its own concentrated percentage distribution area.
For example, the first 60 corn seed samples had a larger percentage of category 1 than those of the
other corn seed samples because they were the normal corn seeds; With a threshold of 0.37, the number
83 corn seed sample was misclassified as category 1. The middle 60 corn seed samples had a larger
percentage of category 2 than those of the other corn seed samples because they were the slightly
freeze-damaged corn seeds; With a threshold of 0.32, the number 15, 37 and 167 corn seed samples
were misclassified as category 2. The last 60 corn seed samples had a larger percentage of category 3
than those of the other corn seed samples because they were the severely freeze-damaged corn seed;
With a threshold of 0.44, and all of the category 3 corn seeds were classified correctly, the number 23
and 117 corn seed samples were misclassified as category 3.

Among numbers 15, 23, 37, 83, 117 and 167, It was found that numbers 83 and 167 were classified
into two categories (number 83 was classified as categories 1 and 2, and number 167 was classified as
categories 2 and 3), shown in Table 1. One sample should only have one category. Thus, a method
to classify them into one category need to be found. In this study, the percentages of two categories
were compared, and the bigger one was the final category and the final category was obtained with
the smallest value in the deep black color. In the end, the number 167 was classified correctly.

Table 1. The percentages of the two categories of Haoyu21 corn seed samples.

The Number (the
Original Category) of

the Sample

The
Percentage—Threshold

of Category 1

The
Percentage—Threshold

of Category 2

The
Percentage—Threshold

of Category 3

83 (2) 0.38833–0.37 0.32435–0.32 0.28732–0.44
167 (3) 0.17004–0.37 0.32591–0.32 0.50405–0.44

It was also found that the category 1 percentage of number 15, 23, 37 and 51 corn seeds were
lower than 0.37, and they were not included in category 1; the category 2 percentage of number 86,
115, 116 and 117 corn seeds were lower than 0.32, and they were not included in category 2. From the
above study the number 15, 23, 37 and 117 corn seeds were classified, but the 51, 86, 115 and 116 corn
seeds did not have their own category, so the percentage of each category was compared shown in
Table 2. After subtracting the percentage from the threshold, the final category was obtained with the
smallest value in the deep black color. At last, the number 86 corn seed was classified as category 2
correctly, while the number 51 (should be category 1) was classified as category 2 and numbers 115
and 116 (should be category 2) were classified as category 1. The final classification results of method
M2P are shown in Figure 9.

To compare the above results, the number of misclassified corn seed samples were counted.
There were 17 corn seed samples misclassified by method M2M while eight corn seed samples
were misclassified by method M2P. Meanwhile, none of the severely freeze-damaged samples were
misclassified by method M2P. In some respects, it could be drawn that method M2P shown better
results than method M2M.

Table 2. The percentage and subtraction of each uncertain Haoyu21 corn seed sample.

The Number (the
Original Category) of

the Sample

The
Percentage—Threshold

(Subtraction) of
Category 1

The
Percentage—Threshold

(Subtraction) of
Category 2

The
Percentage—Threshold

(Subtraction) of
Category 3

51 (1) 0.31313–0.37 (0.0587) 0.28535–0.32 (0.03465) 0.40152–0.44 (0.03848)
86 (2) 0.321–0.37 (0.049) 0.31026–0.32 (0.00974) 0.36874–0.44 (0.07126)
115 (2) 0.36018–0.37 (0.00982) 0.28308–0.32 (0.03692) 0.35673–0.44 (0.08327)
116 (2) 0.36364–0.37 (0.00636) 0.26477–0.32 (0.05523) 0.37159–0.44 (0.06841)
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Figure 9. The final visualization images of Haoyu21 with the SPA and PLS-DA model with method M2P.

2.4.2. The Visualization Images of Haihe78

From Figure 10, the top visualization image (Figure 10a) with the SPA and PLS-DA model was
almost matched with the above figure results. The 6 misclassified corn seed samples of Haihe78 were
fewer than the 17 of Haoyu21.

(a) 

(b) 

Figure 10. The visualization images (a) method M2M and (b) method M2P for Haihe78 with the SPA
and PLS-DA model.

Next, the percentage of each category of each corn seed was calculated, and the results are shown
in Figure 11.

From Figure 11, the first 60 corn seed samples had a higher percentage of category 1 with
a threshold of 0.55, and all of the category 1 corn seeds were classified correctly and no other category
corn seeds were classified to category 1 in this situation. The middle 60 corn seed samples had a larger
percentage of category 2 with a threshold of 0.239, and the number 121, 122 and 155 corn seed samples
were misclassified as category 2. The last 60 corn seed samples had a larger percentage of category 3
with a threshold of 0.45, and the number 113 corn seed sample was misclassified as category 3.

Among numbers 113, 121, 122 and 155, the number 122 was classified as categories 2 and 3, shown
in Table 3. Similar to the above study, the percentages of two categories were compared, and the bigger
one was the final category and the final category was shown with the smallest value in the deep black
color. In the end, number 122 was classified correctly.
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Figure 11. The percentage of each category of Haihe78 with the SPA and PLS-DA model.

Table 3. The percentage of the two categories of Haihe78 corn seed samples.

The Number (the
Original Category) of

The Sample

The
Percentage—Threshold

of Category 1

The
Percentage—Threshold

of Category 2

The
Percentage—Threshold

of Category 3

122 (3) 0.22491–0.55 0.26965–0.239 0.50544–0.45

It was also found that the category 2 percentage of numbers 83, 84, 98, 101 112, 113 and 114 corn
seeds were lower than 0.239, and they were not included in category 2. The category 3 percentage
of numbers 121 and 155 corn seeds were lower than 0.45, and they were not included in category 3.
Numbers 113, 121 and 155 corn seeds were classified, but the 83, 84, 98, 101, 112 and 114 corn seeds
did not have their own category, so the percentage of each category were compared and shown in
Table 4. After subtracting the percentage from the threshold, the final category was shown with the
smallest value in the deep black color. At last, the numbers 84, 98, 101, 112 corn seeds were classified as
category 2 correctly, while number 83 (should be category 2) was classified as category 1 and number
114 (should be category 2) was classified as category 3. The final classification results for method M2P
are shown in Figure 12.

Figure 12. The final visualization images of Haihe78 with the SPA and PLS-DA model with
method M2P.
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To compare the above results, the number of misclassified corn seed samples are counted. There
are six corn seed samples misclassified by method M2M while five corn seed samples are misclassified
by method M2P. In some respects, it can be drawn that the effect of method M2P is similar to that of
method M2M.

Table 4. The percentage and subtraction of each uncertain Haihe78 corn seed sample.

The Number (the
Original Category) of

the Sample

The
Percentage—Threshold

(Subtraction) of
Category 1

The
Percentage—Threshold

(Subtraction) of
Category 2

The
Percentage—Threshold

(Subtraction) of
Category 3

83 (2) 0.39402–0.55 (0.15598) 0.19421–0.239 (0.04479) 0.41176–0.45 (0.03824)
84 (2) 0.39179–0.55 (0.15821) 0.22754–0.239 (0.01146) 0.38067–0.45 (0.06933)
98 (2) 0.38179–0.55 (0.16821) 0.23726–0.239 (0.00174) 0.38095–0.45 (0.06905)

101 (2) 0.34878–0.55 (0.20122) 0.23059–0.239 (0.00841) 0.42063–0.45 (0.02937)
112 (2) 0.47799–0.55 (0.07201) 0.19227–0.239 (0.04673) 0.32974–0.45 (0.12026)
114 (2) 0.34722–0.55 (0.20278) 0.20313–0.239 (0.03587) 0.44965–0.45 (0.00035)

2.4.3. The Visualization Images of Jindan10

From Figure 13, the top visualization image (Figure 13a) with the SPA and PLS-DA model was
almost matched with the above figure results. The 4 misclassified corn seed samples of Jindan10 was
less than that the 17 of Haoyu21 and the 6 of Haihe78.

(a)

(b) 

Figure 13. The visualization images (a) method M2M and (b) method M2P for Jindan10 with the SPA
and PLS-DA model.

Next, the percentage of each category of each corn seed was calculated, and the results are shown
in Figure 14.

From Figure 14, the first 60 corn seed samples had a larger percentage of category 1 with
a threshold of 0.38, and the number 135 corn seed sample was misclassified as category 1. The middle
60 corn seed samples had a larger percentage of category 2 with a threshold of 0.385, no other category
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corn seeds were classified as category 2 in this situation. The last 24 corn seed samples had a larger
percentage of category 3 with a threshold of 0.34, and the number 39 and 59 corn seed samples were
misclassified as category 3.

Figure 14. The percentage of each category of Jindan10 with the SPA and PLS-DA model.

Among numbers 39, 59 and 135, numbers 39 and 135 were classified to two categories (number 39
was classified to categories 1 and 3, and number 135 was classified to categories 1 and 3), shown in
Table 5. Similar to the above study, the percentage of two categories was compared, the bigger one was
the final category and the final category was shown with the smallest value in the deep black color.
In the end, both numbers 39 and 135 were classified correctly.

Table 5. The percentage of the two categories of Jindan10 corn seed samples.

The Number (the
Original Category) of

the Sample

The
Percentage—Threshold

of Category 1

The
Percentage—Threshold

of Category 2

The
Percentage—Threshold

of Category 3

39 (1) 0.38468–0.38 0.26813–0.385 0.34719–0.34
135 (3) 0.38983–0.38 0.21243–0.385 0.39774–0.34

It was also found that the category 1 percentage of numbers 22 and 59 corn seeds was lower than
0.38, and they were not included in category 1. The category 2 percentage of number 62 was lower than
0.385; the category 3 percentage of numbers 122, 127, 130 and 140 corn seeds were lower than 0.34, and
they were not included in category 3. The number 59 corn seed was classified from the above study,
but the 22, 62, 122, 127, 130 and 140 corn seeds did not have their own category. The percentage of each
category was compared and shown in Table 6. After subtracting the percentage from the threshold,
the final category was obtained with the smallest value in the deep black color. At last, the number
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22, 62, 122, 127, 130 and 140 corn seeds were classified correctly and the final classification results of
method M2P are shown in Figure 15.

Table 6. The percentage and subtraction of each uncertain Jindan10 corn seed sample.

The Number (the
Original Category) of

the Sample

The
Percentage—Threshold

(Subtraction) of
Category 1

The
Percentage—Threshold

(Subtraction) of
Category 2

The
Percentage—Threshold

(Subtraction) of
Category 3

22 (1) 0.37094–0.38 (0.00906) 0.32401–0.385 (0.06099) 0.30505–0.34 (0.03495)
62 (2) 0.34061–0.38 (0.03939) 0.37212–0.385 (0.01288) 0.28727–0.34 (0.05273)

122 (3) 0.36697–0.38 (0.01303) 0.29702–0.385 (0.08798) 0.33601–0.34 (0.00399)
127 (3) 0.36983–0.38 (0.01017) 0.29603–0.385 (0.08897) 0.33414–0.34 (0.00586)
130 (3) 0.36148–0.38 (0.01852) 0.30871–0.385 (0.07629) 0.32982–0.34 (0.01018)
140 (3) 0.324–0.38 (0.056) 0.35688–0.385 (0.02812) 0.31912–0.34 (0.02088)

 

Figure 15. The final visualization images of Jindan10 with the SPA and PLS-DA model with
method M2P.

To compare the above results, the number of misclassified corn seed samples were counted.
There were four corn seed samples misclassified by method M2M while one corn seed sample
was misclassified by method M2P. Meanwhile, none of the severely freeze-damaged samples were
misclassified by method M2P. In some respects, it could be drawn that method M2P had better results
than method M2M.

To summarize, the visualization results of three corn varieties using method M2M and method
M2P were compared. By setting several category thresholds, and comparing the percentage value or
subtracting the percentage from the threshold, method M2P could get fewer numbers of misclassified
corn seed samples than in method M2M. In some respects, the method M2P had better results than the
method M2M.

3. Materials and Methods

3.1. Sample Preparation

Three fresh corn seed varieties (Haoyu21, Haihe78 and Jindan10) were collected from the Jiuquan
Julong Tengfei Seed Industry Co., Ltd. in Gansu province, China, with a moisture content of about
30% before harvesting in 2017. In order to obtain different freezing-damage corn seeds, the seeds
were dried in an oven until the moisture content was 18% and were put in plastic bags for later
experiment. Then the seeds were placed in different freezing temperatures for different duration
and eventually were divided into three categories (normal samples, slightly freeze-damaged samples,
severely freeze-damaged samples). The frozen environment is shown in Table 7.

180 corn samples (60 normal samples, 60 slightly freeze-damaged samples, 60 severely freeze-
damaged samples) of Haoyu21; 180 corn samples (60 normal samples, 60 slightly freeze-damaged
samples, 60 severely freeze-damaged samples) of Haihe78; and 144 corn samples (60 normal samples,
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60 slightly freeze-damaged samples, 24 severely freeze-damaged samples) of Jindan10. The three
varieties of corn samples were randomly divided into calibration sets and validation sets (calibration
sets:validation sets = 2:1). Next, the seeds were stored in a refrigerator with a temperature of 4 ◦C to
prevent moisture absorption. Before collecting the hyperspectral images, the moisture content was
tested again to ensure all the samples had nearly the same moisture content. The final moisture content
was controlled at 13%.

Table 7. The frozen condition (freezing temperature and freezing duration) of corn seeds.

Frozen Condition Normal Slight Freeze-Damage Severely Freeze-Damage

Freezing temperature Room temperature −10 ◦C −20 ◦C
Freezing duration / 5 h 10 h

3.2. Conductivity Test

Before the collection of hyperspectral images, an electrical conductivity test of corn seeds was
conducted to check for the effects of the freeze damage on the corn seeds. Fifty corn seed samples for
each treatment condition were weighed and placed in a 500 mL beaker containing 250 mL of deionized
water. The conductivity was measured after the corn seed soaked for 8, 12, 16, 20 and 24 h.

3.3. Hyperspectral Image Acquisition

3.3.1. Hyperspectral Imaging System

The hyperspectral data of the corn seeds were collected using a VIS/NIR hyperspectral imaging
system (Dualix Spectral Imaging, Inc., Sichuan, China). The system consisted of a CCD camera
(C8484-05G, Hamamatsu Photonics, Shizuoka, Japan), an imaging spectrometer (Impressor V10E-QE,
Spectral Imaging Ltd., Oulu, Finland), a lens (V23-f/2.4 030603, Specim Ltd., Oulu, Finland), line light
sources (P/N9130, Illumination Technologies, Inc., East Syracuse, NY, USA) and its controller (2900ER,
Illumination Technologies, Inc., East Syracuse, NY, USA), sample stage (GZ02DS20, Guangzheng
Instruments Co., Ltd., Beijing, China) and a moving stage controller (PSA200-11-X, Zolix Instruments
Co., Ltd., Beijing, China).

The CCD camera, VIS/NIR imaging spectrometer, lens, line light source, sample stage, moving
stage and 0.5 mm extension tube were all placed in a dark box. The moving stage was installed in
the bottom of the dark box and connected with the moving stage controller. The sample stage was
installed on the top of the moving stage and the corn seed was placed on the sample stage; above the
sample stage, two line tungsten halogen light sources were installed on both side walls of the dark
box, which provided illumination for the corn seeds. The two line light sources were symmetrically at
60º and installed at a height of 26 cm above the moving stage to provide a stable and uniform diffuse
reflection light for the corn seeds. The CCD camera, VIS/NIR imaging spectrometer and lens were
installed on the top surface of the dark box and were connected to each other vertically. Above the lens,
there was a 0.5 mm extension tube between the lens and the VIS/NIR infrared spectrometer. After
adding the extension tube, more clear corn seed hyperspectral images were obtained.

3.3.2. Hyperspectral Image Acquisition and Correction

The hyperspectral image acquisition software, Spectracube 2.75b (Spectral Imaging Ltd., Oulu,
Finland), was used for image acquisition and correction. At last, the corn seed embryo was placed
upside down on black sample stage with an object distance of 28.5 cm, with an exposure time of 1 ms
and the moving stage speed of 2.6 mm/s. The hyperspectral images were acquired with a spectral
range of 400–1000 nm which had a total of 477 wavelengths.
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In order to overcome the inhomogeneity of the light source intensity at each wavelength and the
influence of the dark current of the acquisition sensor, the collected hyperspectral images required
black and white correction according to Equation (1).

Ic = (I0 − Ib)/(Iw − Ib) (1)

where Ic is the relative reflectance intensity of each wavelength, I0 is the original reflectance intensity
of the hyperspectral image, Ib is the intensity of the dark current, which was obtained by turning off
the light source and completely covering the lens with its cap, and Iw is the reflectance intensity of the
Teflon white surface (Spectralon, Labsphere Inc., North Sutton, NH, USA), which was obtained under
the same conditions as the raw image.

The hyperspectral images were analyzed using the ENVI 4.6.1 software (ITT Visual Information
Solutions, Boulder, CO, USA) and MATLAB R2017b (MathWorks, Natick, MA, USA).

3.4. Data Analysis

3.4.1. Image Segmentation and Processing

After the hyperspectral images were obtained, the feature image, i.e., the embryo image was
extracted for later processing. At first, the average spectrums of 10 pixel × 10 pixel regions of interest
(ROI) in the endosperm and embryo were compared, and the gray image in the wavelength of 500 nm
was selected as a segment image to separate the embryo (the brighter region) from the whole corn seed
(in this method, image enhancement and the Otsu threshold segmentation method was used). Finally,
the final embryo-binary image was obtained.

3.4.2. The Spectral Pretreatment Methods

After the embryo-binary image was obtained, it was masked with the original hyperspectral
image and the average spectrum of corn seed embryo hyperspectral image was pretreated for spectral
feature extraction. Since the spectrometer had low response and noise at the edge of the spectral region,
the middle 31 to 460 wavelength spectrum was selected for analysis.

In this paper, multiplicative scatter correction (MSC), standard normal variation (SNV) and
5 points and 3 times smoothing (5-3 smoothing) pretreatment methods were applied [43,44].

The MSC method is used to correct the scattering of each sample’s spectrum, get the desired
spectrum, and remove the undesirable scatter effect which can improve the signal-to-noise ratio [44].

The SNV method is commonly used to eliminate spectral errors among samples due to different
solid particle sizes, scattering, or measurement path lengths. It converts the data mean to 0 and the
standard deviation to 1 and is generally used for scatter correction and to remove the slope variation
from the spectra [43].

The smoothing method can effectively remove high-frequency noise which may be produced
by instrument noise, random errors, etc., which can keep the original useful signal information and
improve the signal-to-noise ratio at the same time [44]. In this study, 5-3 smoothing was applied which
is based on 5 points and 3 times polynomial fitting, and the smoothing time was 2000.

3.4.3. Spectral Feature Extraction

It is well known that a hyperspectral image has a large amount of spectral data and the whole
spectral wavelength contains much noise and irrelevant information. According to the introduction,
it is necessary to apply some algorithms (in this study, the successive projection algorithm (SPA),
principal component analysis (PCA) and other methods were applied) which have faster speed in data
computation and higher accuracy to obtain important wavelengths and establish the classification
model [42].
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SPA is a forward selection algorithm that looks for variable combinations with minimal
redundancy information in the variable matrix to minimize collinearity among the variables. Therefore,
the SPA is used to extract the characteristic wavelengths during spectral data analysis processing [42].

PCA is a commonly used dimension reduction mapping method, which maps original features
with strong original correlation into a set of new features. Each new feature constructed is a linear
combination of the original features. Each new feature is not related to each other [45].

X-loading method uses spectral variables for partial least-squares modeling, and the wavelengths
are extracted based on the absolute value of the regression coefficients for each wavelength. As the
absolute value of the regression coefficient gets larger, the greater the influence of these wavelengths
on the modeling, that is, the final extracted feature wavelength [42].

3.4.4. The Classification Methods

In this paper, the partial least squares-discriminant analysis (PLS-DA), K-nearest neighbor (KNN)
and support vector machine (SVM) models were established for classification of different frozen
corn seeds.

The PLS-DA is based on the partial least squares (PLS) technique that is a commonly used in
multivariate statistical analysis methods [46]. The main principle of the PLS-DA model is briefly
described as Equation (2):

Y = Xn*p B + E (2)

where Y is the matrix of the response variables that relates to the measured sample categories; X is the
n*p matrix of the spectral variables for each measured sample category; n is the number of samples,
p is the number of variables; B is the matrix of regression coefficients for the spectral variables and
E is the matrix of residuals. The number of main components is optimized by using ten-fold cross
validation during the model development and updating stages.

KNN classifies by measuring the distance (the distance can be Euclidean distance or Manhattan
distance) between different feature values [47]. If a sample is in the feature space, most of the k most
similar samples belong to a certain category, and the sample also belongs to this category. The main
principles of KNN are as follows:

(1) Calculating the distance d (this paper Euclidean distance was applied as d) between the test
data and each set of training data; (2) Sorting the distance increasingly; (3) Selecting the K points with
the smallest distance; (4) Calculating the frequency f of each category of the K points; and (5) The
category with the highest frequency among the K points is the predictive category for the test data.
K is optimized by using ten-fold cross validation during the model development and updating stages.

SVM is an important classification method and has many unique advantages in solving small
sample sets, nonlinear and high-dimensional pattern recognition problems [48]. It establishes the
model from the limited training samples and obtains small errors for the independent test set. It tries
to improve the generalization ability of the learning machine. The data input space is mapped into
a high-dimensional feature space through a kernel function (in this paper, the radial basis function
(RBF) kernel function was applied); and c (the penalty factor) and g (the radial width of the kernel
function) are the two main parameters of the SVM method, which are optimized using a grid-search
algorithm coupled with ten-fold cross validation during the model development and updating stages.

To analyze the classification accuracy results, there were three aspects can be considered: (1) the
results of different pretreatment methods at full-band treatment; (2) the results of different wavelength
selection algorithms with the same pretreatment method; and (3) the results of different classification
methods with the same pretreatment method and the same wavelength selection algorithm. The >80%
classification accuracy results of both the calibration sets and the validation sets could be observed
clearly by a pink 80% line among the three corn varieties.
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3.4.5. The Visualization Images of the Classification Results

When the PLS-DA, KNN, and SVM methods were applied to establish the classification models,
the robust classification model was selected to achieve the visualization of classification results of the
corn seeds.

The average spectrum and the pixel spectrum are explained. When the ROI of a hyperspectral
image is extracted, it contains many pixels, and each pixel corresponds to a spectrum; in this paper,
the average spectrum refers to the average spectrum of the seed embryo ROI, the pixel spectrum refers
to the spectrum of each pixel in the seed embryo ROI.

In this paper, the visualization images were obtained in Method M2M and Method M2P.
Method M2M: the classification results were obtained from the above study and each corn seed was
corresponding with the classification value. Method M2P: the spectrum of each pixel of the embryo
images was classified, and each pixel of the corn seed was corresponding with the classification value.
Mean-spectrum to mean-spectrum (M2M) means that both of the calibration and validation sets were
the mean spectrums of the ROI; Mean-spectrum to pixel-spectrum (M2P) means that the calibration
sets were the mean spectrums of the ROI while the validation sets were the spectrum of each pixel in
the seed embryo ROI.

It is known that the surface of the corn seed sample is not very flat where the height of the embryo
edge is higher than the height of the embryo inside, thus, in this paper, 1~3 thresholds for each category
were set to classify the different degrees of freeze-damage in corn seed after the percentage of each
category was calculated.

4. Conclusions

Conductivity test is a general method to distinguish different degrees of freeze-damage in corn
seed. The more serious the freeze damage is, the higher its conductivity. In this feasibility attempt to
classify different degrees of freeze-damage in corn seed with hyperspectral imaging technology, four
different pretreatment methods (no pretreatment, SNV, MSC and 5-3 smoothing), four wavelength
selection algorithms (SPA, PCA, X-loading and full-band methods) and three different classification
modeling methods (PLS-DA, KNN and SVM) were applied to find a relatively better method for the
three different corn seed varieties. In order to better represent the freeze damage of the seed embryos,
comparisons were made between method M2M and method M2P.

The following conclusions are drawn from this study:

(1) By using related image preprocessing methods on the gray image of corn seeds at 500 nm
wavelength, the final embryo hyperspectral images can be clearly obtained to achieve the
following classification of different degrees of freeze-damaged corn seed.

(2) The 5-3 smoothing pretreatment method has higher classification accuracy than the other
pretreatment methods from the results of different pretreatment methods at full-band
treatment. The classification accuracy almost reaches 90%, maybe because the pretreatment
has the advantages of keeping the signal from the original spectrums and improving the
signal-to-noise ratio.

(3) The classification accuracies of the full-band, SPA, PCA and X-loading algorithms can be sorted as
follows: the classification accuracies of the full-band method are higher than those of the SPA and
PCA methods, and the X-loading method has the lowest classification accuracy from the results
of different wavelength selection algorithms with the same preprocessing method. Maybe this is
because a great deal of information about the corn seeds can be got in the full band situation, but
in some way, it necessary to find several wavelengths to reduce the modeling time and improve
the efficiency, so the SPA algorithm could be a good choice.

(4) The classification accuracies of the PLS-DA, KNN and SVM methods can be sorted as follows: the
PLS-DA modeling method has the best classification accuracy compared to the SVM and KNN
modeling methods, while the KNN modeling method has the lowest classification accuracy.

348



Molecules 2019, 24, 149

(5) By setting several category thresholds, and comparing the percentage value or subtracting with
method M2P, fewer numbers of misclassified corn seed samples can be obtained. In some respects,
method M2P has better results than method M2M.

Based on the above several conclusions, it is feasible that the hyperspectral imaging technology
used to establish classification models for the embryos of corn seeds with different degrees of freeze
damage. The smoothing method and wavelength selection method can be applied to modeling to
improve the signal-to-noise ratio, classification efficiency and result accuracy of the model, although
good modeling results can be obtained in the full-band case. The method M2P allowed visualization
of the classification result of each embryo pixel and the final classification result is better than the
method M2M.
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Abstract: Seed aging during storage is irreversible, and a rapid, accurate detection method for
seed vigor detection during seed aging is of great importance for seed companies and farmers.
In this study, an artificial accelerated aging treatment was used to simulate the maize kernel
aging process, and hyperspectral imaging at the spectral range of 874–1734 nm was applied as
a rapid and accurate technique to identify seed vigor under different accelerated aging time regimes.
Hyperspectral images of two varieties of maize processed with eight different aging duration times
(0, 12, 24, 36, 48, 72, 96 and 120 h) were acquired. Principal component analysis (PCA) was used to
conduct a qualitative analysis on maize kernels under different accelerated aging time conditions.
Second-order derivatization was applied to select characteristic wavelengths. Classification models
(support vector machine−SVM) based on full spectra and optimal wavelengths were built. The results
showed that misclassification in unprocessed maize kernels was rare, while some misclassification
occurred in maize kernels after the short aging times of 12 and 24 h. On the whole, classification
accuracies of maize kernels after relatively short aging times (0, 12 and 24 h) were higher, ranging
from 61% to 100%. Maize kernels with longer aging time (36, 48, 72, 96, 120 h) had lower classification
accuracies. According to the results of confusion matrixes of SVM models, the eight categories of
each maize variety could be divided into three groups: Group 1 (0 h), Group 2 (12 and 24 h) and
Group 3 (36, 48, 72, 96, 120 h). Maize kernels from different categories within one group were more
likely to be misclassified with each other, and maize kernels within different groups had fewer
misclassified samples. Germination test was conducted to verify the classification models, the results
showed that the significant differences of maize kernel vigor revealed by standard germination tests
generally matched with the classification accuracies of the SVM models. Hyperspectral imaging
analysis for two varieties of maize kernels showed similar results, indicating the possibility of using
hyperspectral imaging technique combined with chemometric methods to evaluate seed vigor and
seed aging degree.

Keywords: maize kernel; hyperspectral imaging technology; accelerated aging; principal component
analysis; support vector machine model; standard germination tests

1. Introduction

Seeds enter an aging process after natural maturity. During this process, the vitality of the seed
gradually decreases, which is a common phenomenon during the seed storage period. Seed vigor is
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an important indicator synthesizing seed germination, seedling rate, seedling growth potential, plant
stress resistance and production potential [1,2]. For farmers, seeds with low viability will have low
germination rates, which will increase their costs. Compared with seeds with low viability, seeds
with high vigor which can save time, labor and material resources have obvious advantages [3].
Thus, an appropriate seed vigor detection method can help farmers engage in agricultural production
activities in a better way. For seed companies, the seeds should be dried, processed and stored after
harvest. If certain conditions are not suitable for seeds during these processes, it is possible to cause
damage to the seeds, therefore, a rapid, non-destructive and high-accuracy method for seed vigor
detection is of great help to them too.

The aging process of maize kernels can be influenced by maize varieties and environment factors
such as temperature and humidity [4]. Generally, the natural aging of seeds is a long-duration
procedure, which increases the cost of sampling for research purposes. In order to facilitate the
research process, artificial accelerated aging tests are applied as a common method to simulate the
seed aging procedure in a short time compared with natural aging. Studies have shown that artificial
aging tests are an effective method to study seed vigor instead of natural aging. Han et al. identified
quantitative trait loci (QTLs) for four maize seed vigor-related traits under artificial aging treatment [5].
Gelmond et al. applied accelerated aging to obtain six different levels of vigor of sorghum seeds
from an identical lot [6]. Souza et al. also adopted an accelerated aging test during their study of the
physiological quality of quinoa seeds under different storage conditions [7].

Most of the current research methods for seed aging determination are traditional physical and
chemical detection methods. Mcdonough et al. studied the effects of accelerated aging on the vigor
of maize, sorghum and sorghum powder. They detected both physical and chemical attributes that
reveal the vitality of seeds. The density of maize and sorghum physical attribute was tested using
a gas comparison pycnometer and tangential abrasive huller. The chemical attribute content of soluble
protein in aged maize and sorghum was detected by gel chromatography with reagents [8]. Among
all the seed vigor test methods, the standard germination test is the most widely used method for
seed vigor detection, but it needs a complete sprouting procedure with the manual measurement
of shoot length, root length and germination, which will take a long time. The disadvantages of
traditional physical and chemical methods lies in that they are destructive, inefficient, time-consuming
and usually involve complex operating procedures, thus a rapid, non-destructive method is needed
for seed vigor detection.

Hyperspectral imaging technology is a new non-destructive test method which combines
imaging information and spectral information [9–13]. Hyperspectral imaging can obtain the chemical
information of heterogeneous samples and the spatial distribution of chemical components [14–20].
The hyperspectral imaging can be used to study the quality of seeds. Wei et al. used a visible/
near-infrared hyperspectral imaging technique to detect the spatial distribution of aflatoxin B1 in
kernels [21]. Wang et al. used hyperspectral imaging to predict the texture of maize seeds after different
storage periods. The established quadrature signal correction-continuous new algorithm-piece partial
least squares regression model (OSC-SPA-PLSR) had good prediction results of corn hardness and
elasticity [22]. Williams et al. used near infrared (NIR) hyperspectral imaging to distinguish hard,
intermediate and soft maize kernels from inbred lines. They used a Spectral Dimensions MatrixNIR
camera and a short wave infrared (SWIR) hyperspectral imaging system to acquire the images of whole
maize kernels. The authors used principal component analysis (PCA) to remove background, bad
pixels, shading and found histological classes including glassy (hard) and floury (soft) endosperm on
the cleaned images. They used PCA to discriminate endosperm from different kinds of maize kernels.
Then PLS-DA was applied in classifying two kinds of maize. The result verified the effectiveness of the
proposed method [10].

Hyperspectral imaging technology can also be used to detect the changes in seeds which
underwent artificial accelerated aging test. Mcgoverin et al. investigated the viability of barley,
wheat and sorghum grains using NIR hyperspectral imaging [11]. Nansen et al. adopted hyperspectral
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imaging to detect the germination rate of two native Australian tree species. During the process,
hyperspectral images were acquired of individual seeds after 0, 1, 2, 5, 10, 20, 30 and 50 days of standard
accelerated aging, and they found the loss of germination was associated with a significant change in
seed coat spectral reflectance profiles [12]. Kandpal et al. predicted the viability of muskmelon seeds
using NIR hyperspectral imaging system. After image collection, all seeds underwent a germination
test to confirm their viability and vigor. The muskmelon seeds used in the study were vacuum-packed
in plastic bags and stored in 45 ◦C hot water to age for 2, 4 and 6 days, while another set of seeds did
not undergo artificial aging and were kept as the control (0 h). They found the spectral reflectance
intensity decreases when there was an increment of seed viability, and this could reveal the changes in
the chemical components in the seed as the artificial aging time increasing [13].

The main objective of this study was to explore the feasibility of using hyperspectral imaging
to identify maize kernels vigor undergoing different accelerated aging time. The specific objectives
were to: (1) conduct qualitative analysis of differences among maize kernels under different aging
time by PCA; (2) build classification models and select optimal wavelengths to identify maize kernels
undergoing different accelerated aging time; and (3) validate the results of hyperspectral imaging by
standard germination tests.

2. Results and Discussion

2.1. Spectral Profile

The average spectral reflectance curves of maize kernels of two varieties at eight different aging
times are shown in Figure 1. Similarity was observed in the change trends of the spectral reflectance
curves of maize kernels which belonged to same variety but underwent different aging processes.
The change trends of the reflectance curves of two varieties of maize showed clear similarities.
Reflectance curves of maize kernels had differences in the reflectance of broad wavebands, so it
was difficult to identify optimal wavelengths to discriminate maize kernels processed for different
aging times.

 

(a) (b) 

Figure 1. Average spectra of unprocessed spectra: (a) Maize 1; (b) Maize 2. Average spectra of maize
kernels under different aging duration time differs in reflectance value.

The average spectra of two varieties of maize preprocessed by the second-order derivative
with three smoothing points are shown in Figure 2. The second-order derivative spectra in
Figure 2 show the main changes in the spectral reflectance among maize kernels for eight aging
durations. The wavelengths with obvious difference in reflectance data were manually selected
as the optimal wavelengths by comparing maize kernels exposed to the eight different aging
treatments. The wavelengths showing obvious differences could be easily identified in Figure 2,
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and the interferences of unimportant wavelengths were greatly suppressed. The second-order
derivative spectra showed more obvious differences of maize kernels among different aging time than
unpreprocessed spectra. Moreover, it could be found in Figure 2 that the second-order derivative
spectra of maize kernels under different aging time between two varieties of maize showed similar
trends in their spectral curves.

 

(a) (b) 

Figure 2. Average spectra preprocessed by second-order derivative: (a) Maize 1; (b) Maize 2.
Spectral differences of maize kernels under different aging duration time at certain wavelengths
could be observed.

2.2. PCA Analysis

2.2.1. Pixel-Wise PCA Scores Visualization

One hyperspectral image under each aging time of each variety was randomly selected to conduct
PCA analysis. The PCA score images of PC1, PC2 and PC3 of Maize 1 and Maize 2 were shown in
Figures S1 and S2 of the Supplementary Materials, respectively. Using the original images as references,
it can be seen in Figures S1 and S2 that warm colours (yellow-red) were related to soft endosperm,
while cold colours (green-blue) were associated with hard endosperm. The compositional structure of
unprocessed maize kernels was shown more clearly in score images, while the structure outline inside
maize kernels after accelerated aging treatment were fuzzier. That might be because the accelerated
aging treatment altered the physical and chemical attributes of material inside the seeds, causing the
hardness to change to varying degrees in different parts of maize kernels.

2.2.2. Object-Wise PCA Scores Scatter Plots Analysis

PCA analysis was conducted on average spectra of maize kernels to explore the scores scatter
of different PCs. The first three PCs for each kind of maize were used to conduct qualitative analysis
because the first three PCs contained the most of information of maize kernel, with 99.98% explained
variance for Maize 1 (93.75% for PC1, 6.04% for PC2 and 0.14% for PC3) and 99.84% for Maize 2 (94.98%
for PC1, 4.67% for PC2 and 0.14% for PC3). According to Figure 3, maize kernels after different aging
processing treatments were grouped together depending on different features of their own spectral
characteristics though there were some overlapping among the eight clusters. Maize kernels without
aging processing were partly separated on Figure 3b–e, which revealed that the differences among
maize kernels without aging treatment and maize kernels under seven different aging treatments had
more differences in hyperspectral imaging. In order to obtain satisfactory classification results, further
processing should be conducted.
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(a) (b) (c) 

 

(d) (e) (f) 

Figure 3. PCA scores scatter plots of maize kernels under different aging duration time: (a) PC1 versus
PC2 for Maize 1; (b) PC2 versus PC3 for Maize 1; (c) PC1 versus PC3 for Maize 1; (d) PC1 versus
PC2 for Maize 2; (e) PC2 versus PC3 for Maize 2; (f) PC1 versus PC3 for Maize 2. Clusters show the
differences of maize kernels under different aging duration time.

2.3. Classification Models Based on Full Spectra

PCA analysis indicated that differences existed among maize kernels after different aging times.
SVM models were built to evaluate the differences among maize kernels exposed to different aging
times. To build SVM models, the maize kernels of each category were randomly split into a calibration
set and a prediction set at the ratio of 2:1 (400 maize kernels in the calibration set and 200 maize kernels
in the prediction set).

The overall classification results of Maize 1 and Maize 2 are shown in Table 1. A SVM model using
the spectra of the combination of Maize 1 and Maize 2 was also built, and the overall classification
results also presented in Table 1. As shown in Table 1, the overall classification accuracy of the
calibration sets for Maize 1 and Maize 2 was approximately 80%, but the prediction accuracy of Maize
1 was a little higher than that of Maize 2, with Maize 1 reaching 70% and Maize 2 only 60%. The SVM
model using the combined dataset showed close classification results to the SVM models using Maize
1 and Maize 2.

Table 1. The classification accuracy of SVM models using full spectra.

Sample Variety C 1 G 2 Cal. 3 (%) Pre. 4 (%) Cv. 5

Maize 1 256.00 1.74 81.53 68.15 58.13
Maize 2 256.00 3.03 78.47 60.16 63.84

Maize Mixed 256.00 5.28 73.43 59.90 57.23
1 The regularization parameter of SVM; 2 The kernel function parameter of SVM; 3 Calibration set; 4 Prediction set;
5 Five-fold cross-validation.

To explore the details of the classification results of maize kernels under different aging times,
Table 2 shows the confusion matrix of maize kernels of each category obtained according to the results
of the SVM models using the full spectra. From Table 2, it could be seen that for Maize 1, Maize 2 and
the combination of Maize 1 and Maize 2, maize kernels could be divided into three groups. The first
group (Group 1) contained the maize kernels aged for 0 h, with nearly no misclassification with other
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categories. Because maize kernels aged for 12 and 24 h were more likely to be misclassified with
each other, these two categories were sorted as Group 2, but the categories from Group 2, still had
a high classification accuracy in both the calibration set and prediction set. The third group (Group 3)
contained the maize kernels aged for 36, 48, 72, 96, 120 h. The maize kernels aged for each duration
time in Group 3 gave lower classification accuracies, and they were grouped together because they
were misclassified with each other more often.

Table 2. Confusion matrix of SVM models using full spectra.

Sample Variety Sample Number
Pre.

Accuracy (%)
1 1 2 3 4 5 6 7 8

Maize 1

Cal.

1 (400) 400 0 0 0 0 0 0 0 100.00
2 (400) 0 384 16 0 0 0 0 0 96.00
3 (400) 0 14 356 26 3 0 1 0 89.00
4 (400) 0 3 34 306 40 11 5 1 76.50
5 (400) 0 0 16 74 228 68 2 12 57.00
6 (400) 0 0 4 25 76 261 8 26 65.30
7 (400) 0 0 0 1 5 18 327 49 81.80
8 (400) 0 0 0 5 9 20 19 347 86.80

Pre.

1 (200) 199 1 0 0 0 0 0 0 99.50
2 (200) 1 150 47 0 0 2 0 0 75.00
3 (200) 0 19 158 17 6 0 0 0 79.00
4 (200) 0 4 26 114 39 16 0 1 57.00
5 (200) 0 0 2 11 92 87 0 8 46.00
6 (199) 0 1 2 22 66 100 3 5 50.30
7 (200) 0 0 0 1 10 12 117 60 58.50
8 (199) 0 0 0 1 6 17 16 159 79.90

Maize 2

Cal.

1 (400) 400 0 0 0 0 0 0 0 100.00
2 (400) 0 374 24 0 0 0 2 0 93.50
3 (400) 0 16 384 0 0 0 0 0 96.00
4 (400) 0 0 0 279 37 27 10 47 69.80
5 (400) 0 0 0 38 322 6 0 34 80.50
6 (400) 0 1 0 30 2 256 95 16 64.00
7 (400) 0 1 0 17 1 105 259 17 64.80
8 (400) 0 1 0 79 53 22 8 237 59.30

Pre.

1 (200) 196 0 3 0 0 0 0 1 98.00
2 (200) 1 156 36 0 0 1 6 0 78.00
3 (199) 1 21 177 0 0 0 0 0 88.90
4 (200) 0 2 0 90 36 23 10 39 45.00
5 (200) 1 0 0 47 109 4 2 37 54.50
6 (200) 0 3 0 12 3 80 92 10 40.00
7 (200) 0 6 1 19 0 71 93 10 46.50
8 (200) 0 1 0 71 41 16 10 61 30.50

Maize mixed

Cal.

1 (800) 800 0 0 0 0 0 0 0 100.00
2 (800) 0 654 134 0 0 8 0 4 81.80
3 (800) 0 123 657 17 1 2 0 0 82.10
4 (800) 0 5 30 499 126 35 40 65 62.40
5 (800) 0 4 19 156 422 129 22 48 52.80
6 (800) 0 7 4 52 70 480 110 77 60.00
7 (800) 0 0 0 57 51 125 409 158 51.00
8 (800) 0 2 1 40 64 75 87 531 66.40

Pre.

1 (400) 394 2 3 0 0 1 0 0 98.50
2 (400) 4 246 130 0 2 11 3 4 61.50
3 (399) 2 94 287 9 1 4 0 2 72.20
4 (400) 0 9 16 205 90 26 25 29 51.30
5 (400) 0 3 3 55 136 130 20 53 34.00
6 (399) 0 3 5 36 64 187 74 30 46.90
7 (400) 0 3 4 36 59 167 77 54 19.30
8 (399) 0 3 0 40 59 51 58 188 47.10

1 1, 2, 3, 4, 5, 6, 7 and 8 are assigned respectively as the category value of the maize kernels processed under different
aging duration (12, 24, 36, 48, 72, 96 and 120 h).
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From Table 2, although maize kernels within one group would be misclassified with each other,
maize kernels were not easily misclassified with categories from the other groups. Table 3 showed
the classification accuracy of SVM models of three groups (Group 1 (0 h), Group 2 (12 and 24 h) and
Group 3 (36, 48, 72, 96, 120 h)) using full spectra. All accuracies were above 90%.

Table 3. The classification accuracy of SVM models of three groups using full spectra.

Sample Variety Sample Number
Pre.

Accuracy (%)
Group 1 Group 2 Group 3

Maize 1

Cal.
Group 1 (400) 400 0 0 100.00
Group 2 (800) 0 770 30 96.25
Group 3 (2000) 0 57 1943 97.15

Pre.
Group 1 (200) 199 1 0 99.50
Group 2 (400) 1 374 25 93.50
Group 3 (998) 0 35 963 96.49

Maize 2

Cal.
Group 1 (400) 400 0 0 100.00
Group 2 (800) 0 798 2 99.75
Group 3 (2000) 0 3 1997 99.85

Pre.
Group 1 (200) 196 3 1 98.00
Group 2 (399) 2 390 7 97.74
Group 3 (1000) 1 13 986 98.60

Maize mixed

Cal.
Group 1 (800) 800 0 0 100.00
Group 2 (1600) 0 1568 32 98.00
Group 3 (4000) 0 72 3928 98.20

Pre.
Group 1 (400) 394 5 1 98.50
Group 2 (799) 6 757 36 94.74
Group 3 (1998) 0 49 1949 97.55

As shown in Tables 1 and 2 the SVM model using the combined dataset showed close classification
results to the SVM models using Maize 1 and Maize 2, and the general trend of classification accuracy
of each aging duration time of the combined dataset was similar to Maize 1 and Maize 2. The results
indicated that it would be possible to build a non-variety specific classification model for maize kernel
vigor detection.

2.4. Optimal Wavelengths Selection

In this study, the second-order derivative was adopted to select the optimal wavelengths.
As shown in Figure 2, the wavelengths with larger differences among maize kernels aged for different
duration were highlighted in the spectra. The peaks and valleys with larger differences were selected
as the optimal wavelengths to identify maize kernels at different aging times. The selected optimal
wavelengths for Maize 1 and Maize 2 are shown in Table 4, and 19 and 18 optimal wavelengths were
obtained finally to reduce the data volume. The optimal wavelengths near 995 nm were related to
the second vibration of N–H bonds in proteins or amino acids [23]. The attributes of the secondary
stretching vibration of C–H bonds in starch, proteins or lipids were revealed at optimal wavelengths
near 1200 nm [24]. The spectral bands near 1463 nm were concerned with the absorption region of
water [25]. From Table 4, the differences of the optimal wavelengths selected for Maize1 and Maize2
might be related to the genotypic differences for two varieties of maize.

Table 4. Corresponding optimal wavelengths selected by second-order derivative spectra.

Sample Variety No. Optimal Wavelengths (nm)

Maize 1 19 995, 1005, 1035, 1076, 1130, 1156, 1167, 1207, 1241, 1264,
1321, 1375, 1399, 1426, 1463, 1480, 1504, 1585, 1615

Maize 2 18 1005, 1072, 1130, 1156, 1160, 1167, 1197, 1241, 1264,
1318, 1345, 1372, 1396, 1426, 1453, 1463, 1480, 1612
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2.5. Classification Models on the Optimal Wavelengths

The overall results of SVM models of Maize 1 and Maize 2 using the optimal wavelengths selected
by second-order derivative spectra are shown in Table 5. For Maize 1, the classification accuracy
of the calibration set was over 70%, and the classification accuracy of the prediction set was about
60%. For Maize 2, the classification accuracy of the calibration set reached 71%, and the classification
accuracy of the prediction set was 62%. A slight decrease could be found between the overall results
of the calibration set of SVM models using full spectra and optimal wavelengths, and the results of
the prediction set were quite close to each other. The number of wavelengths reduced to 18 and 19
by optimal wavelengths selection, resulting in reduction of spectral data volume to 91% and 90.5%.
During this process, some useful information was lost, leading to the accuracy reduction in SVM
models based on optimal wavelengths. In the case of small difference between the classification results
based on full spectra and optimal wavelengths, it was still meaningful to adopt the classification model
based on optimal wavelengths.

To explore the classification results of maize kernels at different aging time using optimal
wavelengths, the confusion matrix of maize kernels of each category obtained by SVM models using
optimal wavelengths of Maize 1 and Maize 2 were shown in Table 6. Classification results of Maize
1 and Maize 2 using optimal wavelengths could also be divided into the three same groups as the
SVM models using full spectra. Group 1 contained maize kernels under aging time of 0 h, Group
2 contained maize kernels under aging time of 12 and 24 h, and Group 3 contained maize kernels
under the aging time of 36, 48, 72, 96 and 120 h. Maize kernels aged for different duration time within
one group were more likely to be misclassified with each other. And maize kernels within different
groups had fewer misclassified samples. Table 7 showed the classification accuracy of SVM models of
three groups (Group 1 (0 h), Group 2 (12 and 24 h) and Group 3 (36, 48, 72, 96, 120 h)) using optimal
wavelengths selected by second-order derivative spectra. Although the accuracies were slightly lower
than models based on full spectra, the accuracies were still above 90%.

Table 5. The classification accuracy of SVM models using the optimal wavelengths selected by
second-order derivative spectra.

Sample Variety c g Cal. (%) Pre. (%) Cv.

Maize 1 256.00 27.86 70.47 57.45 71.31
Maize 2 256.00 16.00 71.66 62.48 63.81

Table 6. Confusion matrix of SVM models using optimal wavelengths selected by second-order
derivative spectra.

Sample
Variety

Sample
Number

Prediction Value Accuracy
(%)1 2 3 4 5 6 7 8

Maize 1

Cal.

1 (400) 400 0 0 0 0 0 0 0 100.00
2 (400) 0 372 27 1 0 0 0 0 93.00
3 (400) 0 33 314 14 23 12 1 3 78.50
4 (400) 0 5 27 190 57 68 11 42 47.50
5 (400) 0 3 43 54 196 66 3 35 49.00
6 (400) 0 0 17 92 82 170 3 36 42.50
7 (400) 0 0 0 19 7 13 319 42 79.80
8 (400) 0 1 5 31 29 26 14 294 73.50

Pre.

1 (200) 199 1 0 0 0 0 0 0 99.50
2 (200) 2 161 36 0 0 1 0 0 80.50
3 (200) 0 36 131 6 14 6 0 7 65.50
4 (200) 0 4 31 66 41 47 1 10 33.00
5 (200) 0 2 25 37 77 37 2 20 38.50
6 (199) 0 2 13 62 53 43 4 22 21.60
7 (200) 0 0 0 11 10 10 121 48 60.50
8 (199) 0 0 0 21 22 16 20 120 60.30
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Table 6. Cont.

Sample
Variety

Sample
Number

Prediction Value Accuracy
(%)1 2 3 4 5 6 7 8

Maize 2

Cal.

1 (400) 400 0 0 0 0 0 0 0 100.00
2 (400) 0 365 33 0 0 2 0 0 91.30
3 (400) 0 25 375 0 0 0 0 0 93.80
4 (400) 0 0 0 246 54 29 10 61 61.50
5 (400) 0 0 0 57 295 6 0 42 73.80
6 (400) 0 5 0 38 1 230 113 13 57.50
7 (400) 0 2 0 21 1 165 196 15 49.00
8 (400) 0 0 0 117 63 27 7 186 46.50

Pre.

1 (200) 196 0 3 0 0 0 0 1 98.00
2 (200) 1 164 30 0 0 2 3 0 82.00
3 (199) 2 15 182 0 0 0 0 0 91.50
4 (200) 0 0 0 86 35 11 11 57 43.00
5 (200) 1 0 0 36 126 3 2 32 63.00
6 (200) 0 2 0 16 2 93 84 3 46.50
7 (200) 0 2 0 20 0 75 94 9 47.00
8 (200) 0 0 0 78 46 12 6 58 29.00

Table 7. The classification accuracy of SVM models of three groups using optimal wavelengths selected
by second-order derivative spectra.

Sample
Variety

Sample Number
Pre. Accuracy

(%)Group 1 Group 2 Group 3

Maize 1

Cal.
Group 1 (400) 400 0 0 100.00
Group 2 (800) 0 746 54 93.25

Group 3 (2000) 0 101 1899 94.95

Pre.
Group 1 (200) 199 1 0 99.50
Group 2 (400) 2 364 34 91.00
Group 3 (998) 0 77 921 92.28

Maize 2

Cal.
Group 1 (400) 400 0 0 100.00
Group 2 (800) 0 798 2 99.75

Group 3 (2000) 0 7 1993 99.65

Pre.
Group 1 (200) 196 3 1 98.00
Group 2 (399) 3 391 5 97.99

Group 3 (1000) 1 4 995 99.50

2.6. Germination Tests Analysis

A germination test was carried out to validate the accuracy of hyperspectral imaging in this
study. Table 8 showed the germination rate, shoot length and root length of Maize 1 and Maize 2 at
different aging duration. It could be seen that Maize 1 and Maize 2 at aging duration time from 0 to
24 h had significant differences in shoot length and root length, but there were no significant difference
in germination rate among these three categories. Because the germination rate was calculated by
seeds with at least 1 cm germ after 10 days, accelerated aging treatment for a short time (12 h and
24 h) may not affect the germination ability for maize kernels obviously, but the significant differences
of root length and shoot length could reveal the vigor differences of maize kernels from these three
categories, which consisted with the high classification accuracies of SVM models of Group 1 (0 h) and
Group 2 (12 and 24 h). It also could be found in Table 8 that there were small significant differences
among maize kernels under aging duration of 36, 48, 72, 96 and 120 h, which consisted with the low
accuracies of SVM models of Group 3. The overall results indicated that hyperspectral imaging could
be used to detect seed vigor under different aging duration time.
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Table 8. Germination rate, shoot and root length of Maize 1 and Maize 2 under different accelerated
aging time.

Sample Variety
Accelerating Aging

Time (hrs)
Germination Rate

(%)
Shoot Length
(cm/seedling)

Root Length
(cm/seedling)

Maize 1

0 92.00a 11.30a 23.15a
12 90.67a 12.26b 21.42b
24 86.00a 9.77c 17.31cd
36 75.33b 6.35d 18.20c
48 73.67b 8.95c 16.68d
72 76.33b 6.17d 13.76e
96 59.00c 5.60d 12.80e
120 57.00c 5.99d 12.69e

Maize 2

0 96.33a 13.06a 24.68a
12 97.67a 10.64b 24.11a
24 93.00a 10.09bc 19.25b
36 82.67b 8.78cd 17.08c
48 79.00bc 6.98e 18.46b
72 75.33c 7.27de 12.80d
96 62.00d 5.93e 14.63e
120 63.67d 6.73e 12.13e

The letters (a, b, c, d, e) in each column indicate the significance of difference among maize kernel processed by
different duration of aging time at the confidence level of 5% (Duncan’s). Within a column, data followed by
different letters are significantly different.

3. Materials and Methods

3.1. Sample Preparation

Two varieties of maize kernels cultivated by a commercial seed company (Jiudingjiusheng Seed
Industrial Co., Ltd., Beijing, China) with breed numbers of 106101 and 7879 (in this work the names
Maize 1 and Maize 2 were used to refer to maize varieties 106101 and 7879, respectively) instead of
their original chemical names, complying with the company rules. The two varieties of maize were
sown and harvested in the same experimental field simultaneously in 2016. For each variety, 4800
maize kernels were prepared for artificial accelerated aging. Before accelerating aging treatment, maize
kernels were disinfected with 1% hypochlorous acid (HClO) solution for 20 min and then the maize
kernels were naturally dried after being rinsed with distilled water. The 4800 maize kernels of each
variety were randomly divided into eight categories (600 kernels in each category). One category
was selected as control group (0 h) placed at room temperature (20 ◦C, 60% relative humidity) and
the other 7 categorizes were used to conduct aging process under different aging time (12, 24, 36,
48, 72, 96 and 120 h). Then the maize kernels were aged in LH-150S artificial aging box (Ansheng
Instrument Ltd., Zhengzhou, Henan, China) with temperature of 45 ◦C and relative humidity of
99%. After accelerated aging treatment, maize kernels were disinfected, rinsed with distilled water,
naturally air-dried, and stored in Kraft paper bags. After the acquisition of hyperspectral images,
maize kernels of each category were divided into 30 samples (20 kernels in each sample) for standard
germination analysis.

3.2. Hyperspectral Imaging System

The experiment was carried out using a hyperspectral imaging system with the spectral range of
874–1734 nm, the spectral resolution of 5 nm and the spatial resolution of 320 × 256 pixels. The system
consisted of an ImSpector N17E imaging spectrograph (Spectral Imaging Ltd., Oulu, Finland), a Xeva
992 camera (Xenics Infrared Solutions, Leuven, Belgium) equipped with an OLES22 lens (Spectral
Imaging Ltd., Oulu, Finland), two 150 W tungsten halogen lamps (2900 Lightsource, Illumination
Technologies Inc., Elbridge, NY, USA) that were symmetrically placed and served as the light source
and a conveyer belt (Isuzu Optics Corp., Taiwan, China). The imaging system was controlled by the
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software (Xenics N17E, Isuzu Optics Corp.), which can be used to calibrated and analyze the images
as well.

3.3. Hyperspectral Image Acquisition and Calibration

The maize kernels were placed on a black plate with a very low reflectivity, so it is easy to isolate
maize kernels from the background. During the experiment, the exposure time of the camera was
3500 μs. The distance between the lens and the plate was adjusted to 17.9 cm, and the moving speed of
the conveyer belt was set to 13.8 mm/s. The above adjustments were aimed at obtaining a clear image
without distortion.

Two reference standards were used to calibrate the raw images (Iraw). The dark reference image
(Idark) was acquired by covering the lens with lens cap whose reflectivity is about 0%. The white
reference image (Iwhite) was collected from a piece of pure white Teflon board whose reflectivity is
about 100%. The calibrated image (Ic) could be calculated as Equation (1):

Ic =
Iraw − Idark

Iwhite − Idark
(1)

3.4. Spectral Reflectance Extraction and Preprocessing

After image calibration, the spectral reflectance of each maize kernel was extracted from the
hyperspectral images. Hyperspectral imaging provides spectral reflectance data and grayscale images
at each wavelength. Prior to image processing, the maize kernels were separated from the background
by using a mask 14, 26, 27. In this study, the mask was built by conducting image binaryzation on
the gray-scale image at 1116 nm to set maize kernel area as 1 and the background as 0. The maize
kernels were then isolated from background by applying the mask to the gray-scale images at each
wavelength. Then, calibrated hyperspectral images were pre-processed to minimize noise 11, 28, 29.
The original pixel-wise spectra were denoised by the wavelet transformation with decomposition level
3 using Daubechies 8 (db8) as the wavelet basis function. Then, the pixel-wise spectra of all pixels
within a maize kernel were averaged as one spectrum.

3.5. Standard Germination Tests

Standard germination tests for Maize 1 and Maize 2 were conducted on ten kernels of each sample
after acquiring hyperspectral images. For each sample, 10 maize kernels were picked randomly for
germination tests. To obtain the vigor of maize kernels, the standard germination tests were performed
according to the guidelines of the International Seed Testing Association (ISTA)30. Maize kernels were
placed in round holes of sponges, and sponges were placed in seedling basins with enough water.
Then all the seedling basins were stored in germination cabinet at 25 ◦C with 99% relative humidity
for 10 days. According to ISTA standards, seeds with 1 cm germ after germination were considered to
be seeds with viability. After germination, the germination percentage, shoot length and root length
were calculated and measured manually.

3.6. Data analysis Methods

3.6.1. Principal Component Analysis

Principal component analysis (PCA) is a multivariate statistical method that studies the correlation
between multiple variables. It examines how a few principal components can be used to reveal the
internal relationship between multiple variables. PCA derives principal components from the original
variables, and the first few principal components (PCs) contained most of the useful information.
The PCs are linear combinations of original variables, and they are orthotropic and irrelevant to each
other. The scores of the first few PCs can be used to explore the differences between samples [24–26].
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For hyperspectral images, there are two approaches to conduct PCA analysis, pixel-wise analysis
and objective-wise analysis [15]. Pixel-wise analysis is to form PCA scores visualization image. For
this method, PCA is calculated on individual pixels of the images. Scores of each pixel within the
hyperspectral image of each PC can be obtained to form a scores visualization image. The differences
between samples can be visually observed and explored in colormaps for each PC.

Object-wise analysis is to form PCA scores scatter plots. For this method, average spectra of
the depicted objects are used instead of individual pixels. The scores of different PCs of samples are
scattered in a two-dimensional space or a three-dimensional space. The differences among samples
can be explored more clearly in these spaces [15,27].

3.6.2. Optimal Wavelength Selection

The spectral data obtained by hyperspectral images usually have a large data volume and
contain a lot of useless information like redundant and collinear information. The existence of useless
information will increase the data processing burden, which is likely to casue instability of the model
and thus result in a poor performance. Meanwhile, processing of a large amount of data places a high
burden on computer hardware and increases the calculation time. Thus, it is necessary to select optimal
wavelengths to reduce the inputs, which can simplify the model and improve the model performance.
The second derivative is an efficient preprocessing method in spectral data analysis. It can eliminate
the interference of other backgrounds, improve the spectral resolution and highlight useful information
in the spectra. Differences in peaks and valleys of spectra preprocessed by second-order derivative
indicate the physical and chemical changes of the samples, which has been used as an efficient method
to identify optimal wavelengths [28,29]. Peaks and valleys with large differences in second-order
derivative spectra can be selected as the optimal wavelengths.

3.6.3. Discriminant Model

Support vector machine (SVM) is a supervised machine learning model used for classification
and regression. The main idea of SVM is to create a hyperplane as a decision surface, which maximizes
the margins of isolation between different samples. SVM could deal with both linear and nonlinear
data efficiently with its good generalization ability. Kernel function is important for conducting SVM,
and radial basis function (RBF) is a widely used kernel function. The parameters for SVM models
should be determined, including the regularization parameter c and kernel function parameter g.
The former determines the tradeoff between minimizing the training error and minimizing model
complexity, and the latter defines the non-linear mapping from input space to some high dimensional
feature space. The search range for c and g ranged from 2−8 to 28 in this study. The optimal combination
of c and g was determined by the SVM model with the highest classification accuracy. Grid-search was
applied to optimize the two parameters for SVM in this study [30–32].

3.6.4. Significance Test

Duncan’s multiple range tests were applied to calculate for comparison of maize vitality index
(germination, shoot and root length) at different accelerated aging duration time at a significance level
of 0.05 [33].

4. Conclusions

Hyperspectral imaging technology combined with SVM models was used to identify the vigor of
maize kernels after different aging times. The results of SVM models based on optimal wavelengths
were about 10% lower than that of models based on full spectra. However, it was meaningful to
conduct optimal wavelengths selection because of the obvious improvement in modeling speed.
Confusion matrixes for maize kernels of each category were built for both SVM models using full
spectra and optimal wavelengths to reveal the detail of classification results of maize kernels processed
under different aging duration. From the results of confusion matrixes, 8 categories of maize kernels
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could be divided into three groups. Group 1 contained unprocessed maize kernels, Group 2 contained
maize kernels aged for 12 and 24 h and Group 3 contained maize kernels with longer aging times (36,
48, 72, 96, 120 h). Maize kernels aged for different durations within one group were more likely to be
misclassified with each other. Maize kernels within different groups had fewer misclassified samples.
To verify the results of SVM models, traditional seed vigor testing method, standard germination test
was conducted. The results of standard germination tests were generally consistent with those of
SVM models. Maize kernels belonging to Group 1 (0 h) and Group 2 (12 h and 24 h) had significant
differences for root length and shoot length. Maize kernels belonging to Group 3 (36 h, 48 h, 72 h, 96 h
and 120 h) had no significant differences with each other comprehensively considering germination
rate, root length and shoot length.

The results of this research demonstrate that it is feasible to detect maize kernel vigor with
a hyperspectral imaging system combined with SVM models and the second-order derivative spectra
could be used to select optimal wavelengths which do great help in shortening modeling time. Thus,
as a rapid, non-destructive method, hyperspectral imaging system has great potential for application
in seed vigor detection. To improve model performances, different varieties of maize kernels from
different crop years, growth locations and storage conditions will be take into consideration to extend
the database in the future researches. Variety specific models and non-variety specific models will also
be explored for real-world application.

Supplementary Materials: The following are available online, Figure S1: Score images for the first three principal
components of Maize 1: (a) Score image for PC1. (b) Score image for PC2. (c) Score image for PC3. The color bar
indicates the score value of each pixel, differences of maize kernels under different accelerating aging duration time
could be seen according to the score images. Warm color (positive score values) were related to soft endosperm,
while cold color (negative score values) were associated with hard endosperm; Figure S2: Score images for the
first three principal components of Maize 2: (a) Score image for PC1. (b) Score image for PC2. (c) Score image for
PC3. The color bar indicates the score value of each pixel, differences of maize kernels under different accelerating
aging duration time could be seen according to the score images. Warm color (positive score values) were related
to soft endosperm, while cold color (negative score values) were associated with hard endosperm.
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Abstract: Different varieties of raisins have different nutritional properties and vary in commercial
value. An identification method of raisin varieties using hyperspectral imaging was explored.
Hyperspectral images of two different varieties of raisins (Wuhebai and Xiangfei) at spectral range
of 874–1734 nm were acquired, and each variety contained three grades. Pixel-wise spectra were
extracted and preprocessed by wavelet transform and standard normal variate, and object-wise
spectra (sample average spectra) were calculated. Principal component analysis (PCA) and
independent component analysis (ICA) of object-wise spectra and pixel-wise spectra were conducted
to select effective wavelengths. Pixel-wise PCA scores images indicated differences between
two varieties and among different grades. SVM (Support Vector Machine), k-NN (k-nearest
Neighbors Algorithm), and RBFNN (Radial Basis Function Neural Network) models were built
to discriminate two varieties of raisins. Results indicated that both SVM and RBFNN models based
on object-wise spectra using optimal wavelengths selected by PCA could be used for raisin variety
identification. The visualization maps verified the effectiveness of using hyperspectral imaging to
identify raisin varieties.

Keywords: near-infrared hyperspectral imaging; raisins; support vector machine; pixel-wise; object-wise

1. Introduction

Raisins are generally consumed as snacks, and they are also served as popular ingredients in
many other food menus. Raisins are dried grapes which are rich in dietary fiber, carbohydrates with a
low glycemic index, and minerals like copper and iron, with a low fat content [1,2]. In addition to their
nutritional value, they also have medical value, such as regulating blood pressure for individuals with
mild increases in blood pressure [2–4]. In general, raisins are important commercial products for the
grape industry.

The commercial value of raisins differs according to the production area. In China, Xinjiang Uygur
Autonomous Region is one of the major producing regions of grape, the perfect producing conditions and
climates make it quite suitable for grape planting and deep processing. Variety is another important factor
which influences the taste and nutritional compositions of raisins. To satisfy the demands of producers and
consumers, different varieties of grapes are developed. Variety is one of the important factors in pricing
the raisins. Varieties of raisins can be identified by specialist, experienced famers, and laboratory-based
chemical analysis methods. To improve the identification efficiency, advanced non-destructive methods
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have been introduced, among which computer vision, spectroscopy, and spectral imaging techniques have
shown great efficiency and potential for large scale detection at industrial level. Ma et al. achieved rapid
non-destructive identification of apple varieties with 96.67% accuracy based on hyperspectral imaging [5].
Zhang et al. identified coffee variety using mid-infrared transmittance spectroscopy combined with
pattern recognition algorithm [6]. Yang et al. developed a model for maize seed variety identification
based on hyperspectral imaging [7].

Hyperspectral imaging is a technique combining computer vision and spectroscopy. Images of the
study objects can be acquired for image analysis, and spectral information can be extracted from each
pixel within the image for spectral analysis. A combination of image analysis and spectral analysis can
also be explored. Hyperspectral imaging has been widely used in food analysis [8,9], and it has showed
great potential in the grape industry. Fernandes et al. estimated grape anthocyanin concentration
using hyperspectral imaging data. The squared correlation coefficient value was 0.65 compared to
the values measured using conventional laboratory techniques [10]. Rodríguez-Pulido et al. found
it was possible to assess the maturation stage in grape seeds based on the near-infrared spectra with
prediction models and multivariate analysis methods [11]. Zhao et al. used hyperspectral imaging to
identify different varieties of grape seeds. The results indicated that the variety of each single grape
seed was accurately identified with 94.3% accuracy of the calibration set and 88.7% accuracy of the
prediction set [12].

The general application of hyperspectral images is to conduct data analysis on a predefined region
of interest (ROI) [12–14]. Spectral information is most widely used in hyperspectral image analysis,
due to the advantage that spectral information can be precisely extracted from each pixel within ROIs.
In general, pixel-wise spectra are averaged to build calibration models, and some researchers have
focused on using pixel-wise spectra to build calibration models [15–18]. In fact, the size and the shape
of raisins, which are key factors for the classification of different varieties, also play an important role
in raisin grading within one variety. The raisin size can be influenced by the harvesting procedure of
fresh grapes and the air-drying procedure, which can also beget irregular shapes of raisins in addition
to storage.

The objective of this study is to explore the feasibility of using near-infrared hyperspectral imaging
to identify raisin varieties. The specific objectives are: (1) exploring the influence of fruit size and shape
in classification accuracy; (2) exploring spectral preprocessing of standard normal variate (SNV) in
classification accuracy; (3) comparing performances of objective-wise analysis and pixel-wise analysis
of SVM (Support Vector Machine), k-NN (k-nearest Neighbors Algorithm), and RBFNN (Radial Basis
Function Neural Network) models.

2. Results and Discussion

2.1. Spectral Profiles

In this research, 200 wavelength variables ranging from 975 to 1646 nm of hyperspectral images
were studied. Figure 1 presents average spectra of each grade of raisins of Wuhebai (WHB) and
Xiangfei (XF) with standard deviation (SD) at peaks and valleys (1123, 1210, 1308, and 1473 nm).
The absorbance bands at 1123, 1210, and 1308 nm are largely attributed to the C–H stretching mode
and overtone [19]. The wavelength around 1473 nm is a characteristic water wavelength [20]. It was
obvious that a large proportion of overlap exists among eight curves, so it was necessary to conduct
further study to make a better distinction between the two varieties of raisins.
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Figure 1. Average spectra with standard deviation (SD) of Wuhebai (WHB) and Xiangfei (XF).

2.2. PCA Scores Image Visualization

Pixel-wise PCA scores could be used to depict the PCA scores image. The first seven PCs explained
over 99% of the total variance. Figure 2 shows visualized hyperspectral images of the first seven
principal components (PC1–PC7) of two varieties of raisins. As can be seen from Figure 2, the warm
color (yellow-red) accounted for the majority in WHB scores image of PC1 and PC2. In contrast to
WHB scores image, the cold color (green-blue) was more obvious in XF scores image of PC1 and
PC2, which revealed differences between two varieties. PCA scores image of PC5, PC6 and PC7 of
XF exhibited obvious difference in color for Grade1 and two other grades, which showed differences
among different grades. Although the PCA scores image could be used to distinguish different varieties
and grades of raisins to some extent, it was necessary to conduct further study in order to obtain
satisfactory classification results.
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Figure 2. Scores image for the first seven principal components.

2.3. Effective Wavelength Selection

PCA loadings were used to select effective wavelengths for raisin cultivars classification. Since the
first seven PCs explained over 99% of total variance, the loadings of these PCs were used. To examine
the differences of object-wise analysis (average spectra) and pixel-wise analysis (pixel-wise spectra),
PCA was conducted on both object-wise spectra and pixel-wise spectra of two different varieties
of raisins. Figure 3 and Table 1 shows 20 or 17 optimal wavelengths selected by PCA based on
object-wise analysis or pixel-wise analysis, respectively. PCA loadings plots of object-wise spectra and
pixel-wise spectra were quite similar. As shown in Table 1, corresponding optimal wavelengths for
object-wise spectra and pixel-wise spectra were nearly the same, with slight differences caused by
different varieties and grades.
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(a) 

(b) 
Figure 3. Corresponding optimal wavelengths selected by principal component analysis (PCA):
(a) Object-wise analysis. (b) Pixel-wise analysis.

Table 1. Corresponding optimal wavelengths selected by PCA.

Type of Analysis No. Optimal Wavelengths (nm)

Object-wise 20 1005, 1032, 1049, 1086, 1119, 1160, 1173, 1187, 1200, 1220, 1244, 1254, 1278, 1305,
1328, 1352, 1379, 1406, 1433, 1473

Pixel-wise 17 1005, 1029, 1103, 1119, 1164, 1200, 1214, 1251, 1261, 1315, 1328, 1355, 1375, 1406,
1426, 1436, 1473

ICA was also conducted on object-wise spectra and pixel-wise spectra. To compare with PCA, the
same numbers of optimal wavelengths are showed in Table 2.
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Table 2. Corresponding optimal wavelengths selected by independent component analysis (ICA).

Type of Analysis No. Optimal Wavelengths (nm)

Object-wise 20 982, 985, 995, 999, 1002, 1009, 1012, 1015, 1019, 1022, 1025, 1029, 1032, 1035, 1039,
1042, 1046, 1049, 1052, 1056

Pixel-wise 17 1139, 1143, 1146, 1150, 1153, 1156, 1207, 1210, 1230, 1521, 1527, 1531, 1548, 1554,
1561, 1575, 1582

2.4. Raisin Variety Classification Models Based on Different Grades

The PCA analysis above indicated that there were differences between different varieties of raisins,
and there were also differences among different grades of raisins. Thus, grade was an important factor
which influenced classification results of two varieties of raisins.

To evaluate the influence of different grades on model performances, samples from the same
grade of raisins were formed as calibration set, and the remaining samples were used as prediction
set. SVM (Support Vector Machine) models were built using effective wavelengths selected by PCA,
and the results are shown in Table 3.

For the calibration model built based on Grade1, classification results of the calibration set were good
for both varieties and prediction results of three grades of WHB were good, while prediction results of XF
were poor. There were no correctly classified samples for Grade3 of XF. The SVM model built based on
Grade2 exhibited better performance compared with SVM model based on Grade1. For the calibration
model built based on Grade2, both the calibration set and prediction set obtained satisfactory results,
and WHB and XF both obtained good classification results. When the calibration set was built according
to Grade3, classification results of calibration set were good. The prediction results of the three grades of
WHB were good, and the prediction results of Grade2 and Grade3 of XF were also good. However, the
prediction result of Grade1 was poor with classification accuracy lower than 20%.

These results revealed that different grades of raisins had influences on variety classification.
As shown in Table 3, classification models based on Grade1 and Grade3 obtained poorer classification
results compared with classification models based on Grade2. The reason might be that feature
differences between Grade1 and Grade3 of XF were significant (for example the difference of sample
size of different grades for same raisin variety was obvious as shown in Figure 4). The calibration set
using Grade1 or Grade3 might not cover enough sample features used for PCA scores analysis.

Table 3. Classification models based on different grade using optimal wavelengths selected by PCA.

WHB XF C 4 γ 4 Cal. Result Pre. Results

WHB XF Pre. set WHB XF

Grade1 1 Grade1 1 3.0 665/665 245/246
Grade3 1382/1382 0/602
Grade2 930/931 22/453
Grade1 380/380 99/116

Grade2 2 Grade2 256 16 622/622 304/305
Grade3 1371/1382 559/602
Grade2 305/309 146/148
Grade1 1040/1045 323/362

Grade3 3 Grade3 48.5 9.1 950/950 405/405
Grade3 419/432 197/197
Grade2 658/931 434/453
Grade1 1033/1045 51/362

1 Grade1 represents large size; 2 Grade2 represents medium size; 3 Grade3 represents small size; 4 C and γ are
parameters of SVM model.

Table 4 shows the results of SVM models built based on optimal wavelengths selected by ICA.
Compared with Table 3, the calibration and prediction accuracies of SVM models based on Grade1 and
Grade3 using optimal wavelengths selected by ICA were close to SVM models using optimal wavelengths
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selected by PCA. The accuracies based on Grade2 using optimal wavelengths selected by ICA were lower
than SVM models based on PCA optimal wavelengths selection for both varieties of raisins.

Table 4. Classification models based on different grade using optimal wavelengths selected by ICA.

WHB XF C γ
Cal. Result Pre. Results

WHB XF Pre. set WHB XF

Grade1 Grade1 147.0 0.3 664/665 242/246
Grade3 1380/1382 0/602
Grade2 931/931 17/453
Grade1 379/380 100/116

Grade2 Grade2 147.0 48.5 606/622 255/305
Grade3 1360/1382 267/602
Grade2 296/309 119/148
Grade1 1014/1045 306/362

Grade3 Grade3 84.4 3.0 944/950 385/405
Grade3 409/432 197/197
Grade2 487/931 393/453
Grade1 899/1045 15/362

2.5. Classification Results of Pixel-Wise and Object-Wise Spectra

According to Zhang et al. (2018) [21], pixel-wise spectra can be used to build classification
models, and can achieve good prediction results on sample average spectra. The results of average
spectra showed that sample size might be a factor influencing classification results. The advantage
of hyperspectral imaging was to obtain spectral information of each pixel within the sample.
Previous results have showed that pixel-wise spectra analysis has great value in hyperspectral image
analysis [22,23]. For each variety of raisins, pixel-wise spectra were extracted. In all, there were about
300,000 pixels of each grade within the calibration sets of WHB and XF raisins. Establishing calibration
models using such a great number of pixels (over 1,800,000 pixels) requires quite heavy computation.
Selecting effective wavelengths could reduce the data volume significantly, but the data volume was
still large. As for about 300,000 pixels of each grade of raisins, there might be redundant pixels for
modelling, so representative pixels should be selected to reduce the data amount.

To select representative pixel-wise spectra, a calibration set selection procedure was proposed by
Kang et al. (2004) [24]. Firstly, for pixel-wise spectra of all grades of a variety, the collected pixel-wise
spectra were clustered into 3000 groups using the k-means algorithm. Secondly, the Euclidean distance
between sample and group centroid was calculated, and the sample with smallest Euclidean distance
was selected into the new calibration set.

SVM, k-NN, and RBFNN models were built using selected pixel-wise spectra or object-wise
spectra, and prediction set was also formed based on selected pixel-wise spectra or object-wise spectra.
The results are shown in Table 5. The value of sensitivity means the classification accuracy of WHB,
and the value of sensitivity means the classification accuracy of XF.

From Table 5, the results of SVM and RBFNN models using pixel-wise spectra to predict pixel-wise
spectra were acceptable, with classification accuracy of calibration and prediction about 80%–90%.
Meanwhile, the results of SVM and RBFNN models using pixel-wise spectra to predict object-wise
spectra also obtained good results for calibration set, with 93.62% and 88.40% accuracy, respectively.
Compared with SVM and RBFNN models based on pixel-wise spectral, the results of k-NN were
slightly poorer, with accuracies varied from 40%–90%. Three models based on object-wise spectra all
obtained acceptable results for the calibration set, with accuracies ranging from 87%–99%. SVM, k-NN
and RBFNN models using object-wise spectra to predict object-wise spectra obtained better results
for the prediction set compared with models using pixel-wise spectra to predict object-wise spectra,
with all accuracies above 80%.

The overall results indicated that SVM and RBFNN models using object-wise spectra to predict
object-wise spectra could be used to identify raisin varieties. Selection of representative samples was
of significance for stable and accurate models, which should be further studied.
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Table 5. Classification results for SVM, k-NN, and RBFNN models based on optimal wavelengths
selected by PCA.

Model Parameter 5
Calibration Set Prediction Set

Acc. 6 (%) Sen. 7 Spe. 8 Acc. (%) Sen. Spe.

Pixel to pixel 1
SVM (256, 5.28) 91.83 0.898 0.939 80.10 0.800 0.802
k-NN 3 78.48 0.700 0.870 78.18 0.642 0.895

RBFNN 7 88.40 0.842 0.926 80.89 0.797 0.819

Pixel to object 2
SVM (256, 5.28) 91.83 0.898 0.939 93.62 0.785 0.998
k-NN 3 78.48 0.700 0.870 83.82 0.464 0.992

RBFNN 7 88.40 0.842 0.926 91.40 0.711 0.997

Object to pixel 3
SVM (147, 9.12) 99.72 0.994 0.998 71.10 0.817 0.626
k-NN 5 95.46 0.870 0.991 76.86 0.727 0.803

RBFNN 3 99.78 0.994 0.999 54.14 0.819 0.317

Object to object 4
SVM (147, 9.12) 99.72 0.994 0.998 99.12 0.987 0.993
k-NN 5 95.46 0.870 0.991 94.06 0.839 0.982

RBFNN 3 99.78 0.994 0.999 99.30 0.983 0.997
1 Pixel to pixel means to use models using pixel-wise spectra to predict pixel-wise spectra; 2 Pixel to object means
models using pixel-wise spectra to predict object-wise spectra; 3 Object to pixel means to use models using object-wise
spectra to predict pixel-wise spectra; 4 Object to object means to use models using object-wise spectra to predict
object-wise spectra; 5 Parameters for SVM models are C and γ, parameter for k-NN is number of neighbors (k) and
parameter for RBFNN is spread value; 6 Acc. means accuracy; 7 Sen. means sensitivity; 8 Spe. means specificity.

Table 6 shows the classification results for SVM, k-NN, and RBFNN models based on optimal
wavelengths selected by ICA. The accuracies based on models using pixel-wise spectra to predict
pixel-wise spectra or object-wise spectra were much lower than the same models using optimal
wavelengths selected by PCA. The prediction set results of models using object-wise spectra to predict
pixel-wise spectra were poor, with accuracies varying from 48%–63%. Models using object-wise
spectra to predict object-wise spectra obtained acceptable results, with all accuracies above 90%.
However, the calibration results of three models using object-wise spectra as the calibration set using
optimal wavelengths selected by ICA were slightly lower than the results of three models using
optimal wavelengths selected by PCA.

Table 6. Classification results for SVM, k-NN, and RBFNN models based on optimal wavelengths
selected by ICA.

Model Parameter 5
Calibration Set Prediction Set

Acc. 6 (%) Sen. 7 Spe. 8 Acc. (%) Sen. Spe.

Pixel to pixel 1
SVM (256, 16) 82.15 0.739 0.903 74.9 0.708 0.784
k-NN 3 85.60 0.791 0.896 71.13 0.618 0.789

RBFNN 6 78.92 0.695 0.884 76.74 0.797 0.819

Pixel to object 2
SVM (256, 9.19) 82.15 0.739 0.903 78.63 0.271 0.998
k-NN 3 85.60 0.791 0.896 79.58 0.393 0.962

RBFNN 6 78.92 0.695 0.884 80.47 0.341 0.996

Object to pixel 3
SVM (147, 84.45) 94.68 0.879 0.976 54.63 0.870 0.285
k-NN 5 93.64 0.849 0.974 62.17 0.709 0.551

RBFNN 3 93.96 0.851 0.977 48.34 0.565 0.417

Object to object 4
SVM (147, 84.45) 94.68 0.879 0.976 93.81 0.863 0.969
k-NN 5 93.64 0.849 0.974 90.58 0.805 0.947

RBFNN 3 93.96 0.851 0.977 93.30 0.844 0.970
1 Pixel to pixel means to use models using pixel-wise spectra to predict pixel-wise spectra; 2 Pixel to object means
models using pixel-wise spectra to predict object-wise spectra; 3 Object to pixel means to use models using object-wise
spectra to predict pixel-wise spectra; 4 Object to object means to use models using object-wise spectra to predict
object-wise spectra; 5 Parameters for SVM models are C and γ, parameter for k-NN is number of neighbors (k) and
parameter for RBFNN is spread value; 6 Acc. means accuracy; 7 Sen. means sensitivity; 8 Spe. means specificity.

378



Molecules 2018, 23, 2907

2.6. Prediction Maps of Raisin Variety Detection

Based on the developed models, prediction maps of different raisins varieties could be formed.
According to the results in Table 5, we used the pixel-wise SVM model to form prediction maps.
Raisin grades of the corresponding pixel were predicted to form classification maps, and prediction
maps are shown in Figure 4. Pixel-wise prediction maps indicate that most of the pixels could be
correctly classified. The prediction maps show clear a difference between WHB and XF according to
different visualized prediction color.

(a) 

 
(b) 

Figure 4. Classification results using pixel-wise spectra: (a) WHB; (b) XF.

3. Materials and Methods

3.1. Sample Preparation

Two varieties of raisins, including Wuhebai (WHB) and Xiangfei (XF), were collected from a
local market in Shihezi, Xinjiang Uygur Autonomous Region, China. For each variety of raisin,
three grades (Grade1-large size, Grade2-medium size, Grade3-small size) of raisins were manually
collected according to the raisin size. For each grade, 450 g samples were divided into 30 groups
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(nearly 15 g per group) to acquire 30 hyperspectral images. Two varieties of raisins were all produced
in 2017. RGB images of the two varieties of raisins are shown in Figure 5.

(a) 

(b) 

Figure 5. RGB images of the two varieties of raisins: (a) WHB; (b) XF.

3.2. Hyperspectral Imaging System

The hyperspectral image acquisition was carried out using an assembled near-infrared
hyperspectral imaging system with the spectral range of 975–1646 nm. The system consisted of
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an ImSpector N17E imaging spectrograph (Spectral Imaging Ltd., Oulu, Finland), a Xeva 992 camera
(Xenics Infrared Solutions, Leuven, Belgium) installed with an OLES22 lens (Spectral Imaging Ltd.,
Oulu, Finland), two 150 W tungsten halogen lamps (3900 Lightsource, Illumination Technologies Inc.,
Elbridge, NY, USA) that were symmetrically placed and served as the light source, and a conveyer
belt (Isuzu Optics Corp., Taiwan). The imaging system was controlled by the software (Xenics N17E,
Isuzu Optics Corp., Taiwan), which can be used to calibrated and analyze the images as well. The
sketch of the hyperspectral imaging system is presented in Figure 6.

Figure 6. Hyperspectral imaging system.

3.3. Hyperspectral Image Acquisition and Correction

To acquire hyperspectral images, the distance between sample plane and the camera was set to
16 cm, the moving speed of the plate was set to 13.5 mm/s, and the exposure time of the camera was set
to 4 ms. After adjustment, white reference image was collected by a white Teflon bar whose reflectivity
is approximately 100%, and dark reference image was acquired by turning off the light source and
covering the lens with lens cap whose reflectivity is about 0%. The white and dark reference images
were used to calibrate the light intensity and reduce the dark current. For each group, one image was
acquired. In all, 30 images were acquired for each grade of raisin.

After raw hyperspectral images acquisition, hyperspectral images were then corrected by the
following equation:

Ic =
Ir − Id
Iw − Id

(1)

where Ic is the corrected image, Ir is the raw image, Iw is the white reference image and Id is the dark
reference image.

3.4. Spectral Data Preprocessing and Extraction

The hyperspectral image at 1119 nm was selected for background segmentation since the
reflectance difference between sample and background was more obvious. To differentiate background
from foreground, we set the segmentation threshold to 0.122 for hyperspectral image binarization.

After image correction, spectral information was extracted from hyperspectral images. Each raisin
kernel was defined as the region of interest (ROI). Pixel-wise spectra within the ROI were firstly
extracted, and wavelet transform (WT) was used for smoothing. Wavelet function of Daubechies
7 with a decomposition level of 3 was used to reduce random noises. After WT preprocessing,
standard normal variate (SNV) was used to reduce the influence of scattering of pixel-wise spectra [25].
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Then, average spectra calculated according to pixel-wise spectra within each ROI were used to represent
the sample. In this study, pixel-wise spectra and average spectra were both used for analysis.

To extract spectral information, a binary image was obtained using the gray-scale image at
1199 nm, the background was set as 0 and the kernel regions were set as 1. The binary image was
applied to the gray-scale images at each wavelength, and the background information was thus
removed. After the background removal, pixel-wise spectra were extracted and preprocessed.

3.5. Sample Set Division

For each grade of raisin, 30 hyperspectral images were acquired. Hyperspectral images were
randomly split into the calibration set and prediction set at the ratio of 2:1, with 20 hyperspectral
images in the calibration set and 10 hyperspectral images in the prediction set for each grade.

3.6. Data Analysis Methods

3.6.1. Principal Component Analysis

Principal component analysis (PCA) was used to explore the qualitative differences among
different varieties of raisins [11,26–28]. In hyperspectral images, object-wise analysis and pixel-wise
analysis were studied. For object-wise analysis, the average spectrum of each raisin kernel was used to
conduct PCA; for pixel-wise analysis, pixel-wise spectra were used to conduct PCA. To explore the
differences among raisins, the samples in the calibration set were used to conduct PCA. Then, scores
values of each PC were then assigned to each kernel or each pixel to form the PCA scores image.

Hyperspectral imaging suffers from the large volume of data, and effectively reducing the data
volume is of significance for data processing. There are also collinearity and redundancy in the spectra,
which will affect the data analysis procedure. Variable selection is an effective strategy to reduce the
data volume and select informative wavelengths. In this study, PCA loadings were used to select
effective wavelengths. Loadings of each principal component (PC) indicate the correlation between the
original variables and new feature variables. The higher the loading value is, the more important the
variable is. The wavelengths with high absolute loading values can be selected as effective variables.

3.6.2. Independent Component Analysis

Independent component analysis (ICA) is a technique which is widely used in feature selection
and feature extraction. It extracts independent source signals which are statistical independent by
linear or nonlinear transformation. Independent component (IC) is obtained by a high-order statistic.
Given a spectral matrix X, X can be expressed as Equation (2):

X = As (2)

where s are the independent components (ICs) and A is the mixing matrix. For spectral data matrix X,
s is unknown, and the general procedure is to find the estimation of s by the following equation:

�
s = WX (3)

where
�
s is the estimation of s and W is the weight matrix for unmixing.

The procedure to select optimal wavelengths is as follow [29]. The average absolute weight value
of each variable in W is calculated, and the variables with larger average absolute weight values are
selected as optimal wavelengths. To compare with PCA, the same number of optimal wavelengths was
selected by ICA. Fast ICA proposed by Hyvarinen and Oja was used to perform ICA in this study [30].

3.6.3. Discriminant Models

Support vector machine (SVM) is used to build models to classify different varieties of raisins.
SVM is a supervised machine learning method, which is efficient to deal with linear and nonlinear data
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for classification and regression. For classification issues, SVM maps the original data into new feature
spaces [31–33]. According to linearly separable data, a simple linear classifier can be constructed.
For non-linearly separable data, the original data should be mapped into high-dimensional feature
spaces so that the non-linearly separable issue can be transformed to a linearly separable issue.
Kernel functions are the key for the mapping. Radial basis function (RBF) is a widely used kernel
function with good performances for nonlinear data, and it was used as kernel function in this study.
To conduct SVM with RBF kernel function, model penalty coefficient (C) and kernel parameter (γ)
were determined by a grid-search procedure. In this study, the range of C and γ was 2−8–28.

The k-nearest neighbors algorithm (k-NN) is a type of instance-based learning method used for
classification and regression [34,35]. Both for classification and regression, a useful technique can be
used to assign weight to the contributions of the neighbors, so that the nearest neighbors contribute
more to the average than the more distant ones. The k-NN algorithm is among the simplest of all
machine learning algorithms.

Radial basis function neural network (RBFNN) is an efficient feedforward neural network,
which has the best approximation performance and global optimal characteristics that outperforms
other feedforward networks, and has a simple structure as well as a fast training speed. On the other
hand, it is also a neural network model that is widely used in pattern recognition, nonlinear function
approximation, and other fields [36,37].

3.6.4. Software and Model Evaluation

The performance of classification models was evaluated by the classification accuracy, specificity,
and sensitivity [38]. Hyperspectral images analysis, spectral data extraction, spectral preprocessing,
PCA analysis, SVM, K-NN, and RBFNN were conducted on Matlab R2014b (The MathWorks, Natick,
MA, USA).

3.6.5. Visualization of Prediction Maps

One of the advantages of hyperspectral imaging is that prediction maps can be formed to visualize
the distribution of physical and chemical features. Object-wise or pixel-wise calibration models using
spectra extracted from the hyperspectral images can be used to predict object-wise or pixel-wise
features, and prediction maps can be formed with the predicted values [6,13,39].

4. Conclusions

Hyperspectral imaging was successfully used to identify different varieties of raisins. Three grades
of raisins of Wuhebai and Xiangfei were studied. Object-wise and pixel-wise spectra were extracted.
PCA analysis was firstly conducted to form PCA scores images, and scores images of the first seven
PCs indicated the differences between different varieties and among different grades. PCA and ICA of
object-wise spectra and pixel-wise spectra were conducted to select effective wavelengths. The overall
results indicates that SVM models and RBFNN models using object-spectra to predict object-spectra
based on optimal wavelengths selected by PCA both obtained acceptable results. The overall results
showed that hyperspectral imaging was an effective technique to identify raisin varieties, and that both
pixel-wise and object-wise could be used to build classification models. Selection of representative
samples was important for building a stable and accurate model, and how to select representative
samples should be studied in the future.
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Abstract: Rapid and accurate discrimination of Chrysanthemum varieties is very important for
producers, consumers and market regulators. The feasibility of using hyperspectral imaging
combined with deep convolutional neural network (DCNN) algorithm to identify Chrysanthemum
varieties was studied in this paper. Hyperspectral images in the spectral range of 874–1734 nm were
collected for 11,038 samples of seven varieties. Principal component analysis (PCA) was introduced
for qualitative analysis. Score images of the first five PCs were used to explore the differences
between different varieties. Second derivative (2nd derivative) method was employed to select
optimal wavelengths. Support vector machine (SVM), logistic regression (LR), and DCNN were
used to construct discriminant models using full wavelengths and optimal wavelengths. The results
showed that all models based on full wavelengths achieved better performance than those based on
optimal wavelengths. DCNN based on full wavelengths obtained the best results with an accuracy
close to 100% on both training set and testing set. This optimal model was utilized to visualize
the classification results. The overall results indicated that hyperspectral imaging combined with
DCNN was a very powerful tool for rapid and accurate discrimination of Chrysanthemum varieties.
The proposed method exhibited important potential for developing an online Chrysanthemum
evaluation system.

Keywords: hyperspectral imaging; variety discrimination; Chrysanthemum; deep convolutional
neural network

1. Introduction

As one of the most popular flowers throughout the world, Chrysanthemum has a long planting
history in China. The excellent ornamental, edible and medicinal values make Chrysanthemum
used in many different forms. Chrysanthemum tea is one of the most commonly consumed teas
for Chinese consumers. The chemical components such as flavonoids and polysaccharides rich in
Chrysanthemum tea have antioxidant and antibacterial properties, which can relieve cell damage and
improve body immunity [1,2]. The nutritional qualities of Chrysanthemum tea are affected by many
factors, including climate, soil, water, cultivation management and post-harvest treatment, being
the variety a determinant factor. Due to differences in content of chemical compositions, different
varieties of Chrysanthemum tea have specific effects on human bodies. With the frequent mixing of
Chrysanthemum from different varieties in the market in recent years, the purity of Chrysanthemum is
difficult to guarantee. Thus, an appropriate method for discrimination of Chrysanthemum varieties
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is needed. The appearance characteristics such as color, flower diameter, petal shape often serve
as the basis to identify Chrysanthemum varieties. This visual inspection method is subjective and
requires professional knowledge. Some other approaches like high performance liquid chromatography
(HPLC) combined with photodiode array detection, employed to determine the quality attributes, are
destructive, time consuming, and can only handle very small number of samples [3]. Therefore, a
rapid and accurate method would be advantageous when large number of Chrysanthemum samples
need to be classified.

Near-infrared spectroscopy (NIRS), as a potential technology for rapid measurement, has been
widely used in different fields such as geographical origin discrimination of agricultural products [4],
quality assessment of agricultural seeds [5], variety identification of Chinese herbal medicines [6].
However, the samples needed to be shattered into powder when using this technology, making
extraction of external space information difficult. Moreover, the sample size in these studies was
very small which could not cover a broad variation. In contrast to NIRS, hyperspectral imaging
(HSI) perfectly integrating visible/near-infrared spectroscopy and optical imaging in one system,
can acquire both spectral information and spatial information. The capacity of collection spectra of
multiple samples in one scan simultaneously gives HSI the property of batch detection, which makes
the practical application possible. In addition, the spectra and the corresponding location of each
pixel in image recorded by HSI can be employed to visualize the variety and chemical composition
distribution of the samples.

To extract spectral and spatial information of a sample, hyperspectral image contains hundreds of
contiguous wavebands for each pixel. Multivariate analysis methods, including spectral and image
preprocessing, variable extraction and selection, model building and analysis, are often utilized to
process this kind of data [7–9]. Currently, traditional machine learning methods combined with
HSI have been widely used in variety identification of agricultural products [10–14], and multiple
classification models were utilized, such as multiple logistic regression (MLR) [15], partial least squares
discriminant analysis (PLS-DA) [16], support vector machine (SVM) [17], extreme learning machine
(ELM) [18].

Deep learning, also known as representational learning, is a research focus in artificial intelligence
nowadays. Among a variety of deep learning algorithms, deep convolution neural network (DCNN)
aims to automatically extract abstract distributed features layer-by-layer. Various DCNNs has
dramatically improved the state-of-the-art results in many vision tasks. In the field of hyperspectral
image analysis, DCNN was first introduced in 2015 to classify hyperspectral sensing data [19]. In
recent years, researchers have developed different DCNNs according to specific spectral analysis tasks,
such as variety identification of rice seeds [20], disease detection of wheat Fusarium head blight [21],
crop classification from remote sensing images [22]. It is of interest to further investigate if DCNN has
the potential to discriminate the Chrysanthemum varieties.

The main objective of this study was to explore the feasibility of using HSI technique combined
with DCNN for variety discrimination and visualization of Chrysanthemum. The specific objectives were
to: (1) select important wavelengths that can contribute to identification of Chrysanthemum varieties,
(2) develop appropriate DCNNS using full wavelengths and optimal wavelengths, (3) compare the
results of DCNNs with traditional machine learning methods, including SVM and LR, (4) visualize the
identification results of Chrysanthemum varieties using the optimal model.

2. Results

2.1. Overview of Spectra

Figure 1 shows the mean spectra with standard deviation (SD) of Chrysanthemum samples of seven
varieties. The shape of the reflectance curves was similar to that of Chrysanthemum in [23]. It can also
be seen from the figure that the average spectra of seven Chrysanthemum varieties shared the consistent
trend with similar peak and valley positions. However, slight differences could be observed from the
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average spectra of Chrysanthemum samples. The different chemical compositions and biochemical
characteristics of these seven varieties resulted in these differences in spectral features. The peaks,
around 1116 and 1308 nm, and valleys, around 1200 and 1460 nm, in spectral curves could be employed
to discriminant the Chrysanthemum varieties. Among them, the two peaks and the valley at 1200 nm
are attributed to the second overtone of C–H stretching [24,25], while the valley at 1460 nm (around
1450 nm) is attributed to the first overtone of O–H stretching [25]. In addition, it could be clearly
observed that the spectral curves of Boju and Hangbaiju are very close and partially overlapping in
the range of 975–1200 nm, indicating that the chemical compositions of these two varieties are similar.

 

Figure 1. The average spectra of Chrysanthemum samples of seven varieties.

2.2. Principal Component Analysis

In the field of spectral analysis, PCA is often used as a method for qualitative analysis. In this study,
PCA was employed to explore the differences between seven Chrysanthemum varieties. A hyperspectral
image for each variety was random selected from the testing set for PCA. The first five PCs reflected
99.95% of information in original spectral data (96.61%, 3.17%, 0.11%, 0.04%, 0.02% for PC1, PC2, PC3,
PC4, PC5, respectively). Thus, these five PCs of seven hyperspectral images were extracted. The pixels
with PC value in sample region together with pixels with zero value in black background formed the
final score images illustrated in Figure 2, from which the scores of Chrysanthemum samples of each
variety were displayed intuitively, and some varieties could be preliminarily distinguished through
combining these five PCs. For example, Boju could be highlighted because of the high scores of most
sample pixels in PC4, which caused the samples to appear yellow. Due to the negative scores of most
pixels in PC2, it was clear to discriminate Chuju and Hangbaiju from other Chrysanthemum varieties.
However, the further discrimination between Chuju and Hangbaiju was difficult. In addition, it was
easy to distinguish Gongju and yellow Huaiju from other Chrysanthemum varieties in PC1 and PC5,
since most pixels of these two varieties had high scores in PC1 and negative scores in PC5. And Gongju
could be further identified in PC4 for its negative scores. White Huaiju and Qiju having the same
clustering pattern as some other varieties could not be identified. To distinguish all Chrysanthemum
varieties, discriminant models need to be built for quantitative analysis in further study.
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(d) 

 
(e) 

Figure 2. Score images of the first five PCs of seven Chrysanthemum varieties (from left to right: Boju,
Chuju, Gongju, Hangbaiju, white Huaiju, yellow Huaiju, and Qiju): (a) PC1; (b) PC2; (c) PC3; (d) PC4;
(e) PC5.
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2.3. Selection of Optimal Wavelengths

In order to remove the redundancy information contained in hyperspectral images and improve
the classification performance of Chrysanthemum varieties, second derivative (2nd derivative) method
was introduced to select optimal wavelengths from full wavelengths. Figure 3 shows the 2nd derivative
spectra of average spectra of seven varieties. There are multiple high peaks and low valleys in the
2nd derivative spectra, and the wavelengths with large differences between Chrysanthemum varieties
were selected as optimal wavelengths for discrimination. Finally, eighteen optimal wavelengths were
selected in total. Among them, the absorption bands at approximately 999, 1005, 1015, 1025 and
1032 nm are attributed to the second overtone of N−H stretching [17]. The wavelengths between
1136 nm and 1311 nm (1136, 1190, 1214, 1244, 1301, 1311 nm) are related to the second overtone of C-H
stretching [17,26]. The selected wavelengths of 1321 and 1375 nm are associated with the first overtone
of C–H combination bands [27]. The bands at 1406, 1433 and 1456 nm present the first overtone of
O–H stretching [27]. The bands at 1470 nm (around 1480 nm) is ascribed to the second overtone of O-H
stretching [25,28]. The peak at 1633 nm (around 1630 nm) is attributed to the aromatic C-H bands [29].
These wavelengths carrying the category information are closely related to the constituent differences
of chemical composition of different Chrysanthemum varieties.

 
Figure 3. The 2nd derivative spectra and the selected optimal wavelengths.

2.4. Discrimination Results of Different Models

Discriminant models using full and optimal wavelengths were built by SVM, LR, and DCNN for
quantitative analysis. The classification accuracies of different models and corresponding parameters
were summarized in Table 1. As can be seen in Table 1, SVM, LR and DCNN models all achieved
good classification results on both training set and testing set. For full wavelengths, the accuracies
of these three models on the training set were greater than 99%, and the accuracies on the testing
set were more than 94%. The classification capacity of DCNN was better than those of SVM and LR,
showing accuracies of close to 100% on both training set and testing set. Being able to learn deep
spectral features automatically, DCNN could provide excellent classification performance.

Since a large amount of redundant information existed in full wavelengths, the optimal
wavelengths were often extracted in previous spectral analysis to improve the robustness of the
model. In this study, 2nd derivative method was introduced to select the optimal wavelengths. The
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accuracies of the three models based on optimal wavelengths were slightly lower than those based
on full wavelengths. Consistent with the results based on full wavelengths, the best results were still
obtained by DCNN model with an accuracy of 98.45% on training set and 94.27% on testing set. LR
was most sensitive to wavelength reduction that led to the largest drop of accuracy on testing set.
Due to the removal of a part of spectral information, a slight accuracy reduction was understandable.
However, the fact that SVM and LR based on optimal wavelengths achieved lower accuracies than
DCNN based on full wavelengths further proved that the deep spectral features learnt by DCNN were
more distinguishable than the selected feature wavelengths.

In summary, DCNN achieved better classification performance than the traditional machine
learning algorithms, including SVM and LR. The overall results indicated that hyperspectral imaging
combined with DCNN was feasible to distinguish Chrysanthemum varieties. Without any optimal
wavelengths extraction, DCNN based on full wavelengths is a very reliable model and is available for
identification of more Chrysanthemum varieties in future.

Table 1. Discrimination results of Chrysanthemum varieties by different models using full wavelengths
and optimal wavelengths.

Models
Full Wavelengths Optimal Wavelengths

Parameters 1 Training Testing Parameters Training Testing

SVM (106, 10−5) 99.83% 94.02% (107, 10−4) 98.26% 90.03%
LR (L2, 100, liblinear) 99.34% 96.59% (L2, 100, liblinear) 94.35% 85.75%

DCNN (4, 32, 93) 99.98% 99.98% (3, 32, 125) 98.45% 94.27%
1 The parameters of the discriminant models. (c, g) for SVM, (pi, c’, optimize_algo) for LR, and (num_convs,
num_first_kernels, epoch) for DCNN.

2.5. Visualization of Chrysanthemum Variety Classification

In order to discriminant the Chrysanthemum varieties more intuitively, the optimal model, DCNN
based on full wavelengths, was used to visualize the classification of Chrysanthemum varieties in this
study. A hyperspectral image for each variety was randomly selected from testing set. The original
grayscale images of seven varieties are shown in Figure 4a. Although some Chrysanthemum varieties
differed in size from others, it was difficult to identify all varieties according to the external phenotype.
The corresponding classification maps were displayed in Figure 4b. The low resolution of hyperspectral
images and the application of some morphological operations during image segmentation resulted
in some changes of Chrysanthemums’ shape. However, the main patterns and positions of the
Chrysanthemums were clearly expressed on the classification maps. It was easy to distinguish different
Chrysanthemum varieties according to the colors. For these randomly selected hyperspectral images,
DCNN based on full wavelengths classified all samples correctly. That is to say, DCNN achieved
an accuracy of 100%, which is consistent with the quantitative analysis. The visualization results
indicated that hyperspectral imaging combined with DCNN provided a rapid, accurate and intuitive
way to distinguish Chrysanthemum varieties, which is a potential tool for identifying and locating more
Chrysanthemum varieties.
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(a) 

 
(b) 

Figure 4. Visualization of Chrysanthemum varieties (from left to right: Boju, Chuju, Gongju, Hangbaiju,
white Huaiju, yellow Huaiju, and Qiju): (a) Original grayscale images; (b) The classification maps.

3. Discussion

Influenced by growth environment, cultivation management, picking period and other factors,
the chemical compositions of Chrysanthemums from same variety may vary greatly. For example,
there are significant differences in total polysaccharide content and total flavonoid content between
Chrysanthemum picked in different periods. As a result of these differences, their pharmacological
properties and prices vary widely [23,30]. To include these variations, large-scale samples need to be
collected. In previous studies, the classification of Chrysanthemum varieties has been reported. A total
of 200 samples including five cultivars of Chrysanthemum were classified using a multispectral imaging
system in [31]. To identify three kinds of white Chrysanthemum, a near infrared spectroscopy system was
employed to collect the spectra of 139 samples and 92 spectra were selected as calibration set to build the
identification model in [32]. In this study, a total of 11,038 samples of seven Chrysanthemum varieties
were classified using hyperspectral imaging technology. The characteristic of batch detection of
hyperspectral imaging makes it possible to acquire large-scale samples, which also provides favorable
conditions for the application of deep learning.

As a research focus in machine learning, deep learning has been gradually applied in the field
of spectral analysis. DCNN is a typical deep learning algorithm that learns abstract features through
multiple convolutional layers. The large-scale samples obtained by hyperspectral imaging technology
enable DCNN to fully exploit its advantages and automatically learn the deep spectral features
contained in hyperspectral images. In previous studies on spectral analysis, the optimal wavelengths
were commonly selected manually and then modeled using traditional machine learning algorithms
such as SVM, LR, and KNN [16]. However, deep learning algorithms often achieved good classification
results without additional feature selection [33,34]. In this study, DCNN and two traditional machine
learning algorithms using full wavelengths and optimal wavelengths were compared. The results
showed that DCNN based on full wavelengths achieved the best performance. This further illustrated
that DCNN can discriminate Chrysanthemum varieties more accurately since it can learn deep spectral
features through multiple hidden layers automatically. More Chrysanthemum varieties need to be
collected to develop a Chrysanthemum variety identification instrument. In addition, in order to further
evaluate the quality of Chrysanthemum, a comprehensive research need to be conducted in future.
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Combining the advantages of hyperspectral imaging and DCNN, an on-line detection system of
Chrysanthemum varieties and quality could be developed.

4. Materials and Methods

4.1. Sample Preparation

Seven varieties of dried Chrysanthemum, including Boju, Chuju, Gongju, Hangbaiju, white Huaiju,
yellow Huaiju, and Qiju, were collected for our experiment. Among them, Boju, Chuju, and Gongju
were bought from the local tea sales companies in Bozhou, Chuzhou and Huangshan, Anhui Province,
China, respectively. Hangbaiju were bought from the local market in Hangzhou, Zhejiang Province,
China. The two varieties of Huaiju and Qiju were bought from the local tea sales companies in Jiaozuo,
Henan Province and Anguo, Hebei Province, China, respectively. All Chrysanthemums were harvested
in 2017 and had a similar dry state.

In total, 1600, 1500, 1643, 1600, 1500, 1590, 1605 samples were obtained for Boju, Chuju, Gongju,
Hangbaiju, white Huaiju, yellow Huaiju, and Qiju, respectively. The dataset of each variety was
randomly divided into a training set and a testing set at a ratio of 3:1. Therefore, there were
8280 samples in the training set and 2758 samples in the testing set. All Chrysanthemum samples
were assigned a category label. Boju, Chuju, Gongju, Hangbaiju, white Huaiju, yellow Huaiju, and
Qiju were assigned from 1 to 7, respectively.

4.2. Hyperspectral Image Acquisition and Correction

Hyperspectral images of Chrysanthemums were acquired using a near-infrared HSI system. This
system consists of a group of devices interacting to each other: an imaging spectrograph (ImSpector
N17E; Spectral Imaging Ltd., Oulu, Finland) with a spectral range of 874–1734 nm, a high-performance
CCD camera assembled with a camera lens (OLES22; Specim, Spectral Imaging Ltd., Oulu, Finland)
having a resolution of 326 × 256 (spatial × spectral) pixels, two 150-W tungsten halogen lamps (3900e
Lightsource; Illumination Technologies Inc.; West Elbridge, NY, USA) regarded as the illumination
unit, and a conveyer belt controlled by a stepped motor (Isuzu Optics Corp., Zhubei, Taiwan) used for
moving samples.

To obtain non-deformable and clear hyperspectral images, dried Chrysanthemums were placed
on the conveyer belt, and the distance between the camera lens and the conveyer belt, the exposure
time of the camera, and the speed of the conveyer belt along X-axis were adjusted to 25 cm, 4 ms and
19.5 mm/s, respectively. The acquired hyperspectral images of Chrysanthemums were composed of
256 spectral channels with a spectral resolution of 5 nm.

To reduce the effects of dark current and obtain the reflectivity of samples, raw hyperspectral
images Iraw should be corrected with the white reference image and black reference image using the
following Equation (1):

Ic =
Iraw − Idark

Iwhite − Idark
(1)

where Ic is the hyperspectral image after corrected, Iwhite is the hyperspectral image of a white Teflon
tile with nearly 100% reflectance, Idark is acquired by covering the camera lens with its opaque cap. Iraw,
Iwhite, Idark are obtained under the same condition during samples collection.

4.3. Spectra Extraction and Pretreatment

Before spectra extraction, the region of interest (ROI), each Chrysanthemum sample region, need
to be segmented from the black background. A threshold segmentation procedure was conducted
on the gray image at 1119 nm where the contrast between the sample regions and the background
reached the maximum value, and then the obtained binary mask was applied on the gray images at
other wavelengths. After getting ROI of each Chsrysanthemum sample, the spectrum of each pixel in
each ROI with a spectral range of 874–1734 nm was extracted. Due to the instability of hyperspectral
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imaging system at the start and end of sample collection, the beginning and the end of the spectral data
contained random noise. Thus, the middle 200 wavelengths from 975 nm to 1646 nm were used for
analysis. To further reduce the spectral noise and improve the signal-to-noise ratio, wavelet transform
(WT) with decomposition scale of 3 and basis function of Daubechies 6 was employed to smooth the
pixel-wise spectra. Finally, the preprocessed pixel-wise spectra in each ROI were averaged and the
mean spectrum of each Chrysanthemum sample was used for discrimination analysis.

4.4. Chemometrics Analysis

PCA is a powerful tool to reduce the dimensionality of high-dimensional data. More importantly,
PCA can remove noise and discover patterns inherent data through dimensionality reduction. In
spectral analysis, each specific wavelength regarded as a feature variable forms the spectral matrix.
PCA is applied to this matrix, and projected the original spectral variables into a new coordinate
system by maximizing the sample variance. The variables in the new coordinate system called PCs
are a linear transformation of original spectral variables and are orthogonal to each other. The PCs
are arranged in descending order of interpreted variance and the first few PCs can reflect most of
variance inherent in original matrix. From the score images of PCs, it is possible to identify the pattern
difference between different categories of data.

Collinearity and redundancy exist among the contiguous wavelengths in hyperspectral image.
Optimal wavelength selection is an efficient way to extract wavelengths that are beneficial for
classification. 2nd derivative is a widely-used wavelength selection method, which can highlight
spectral change [35]. Subtle changes in original spectra can be projected into the peaks and the
valleys in 2nd derivative spectra. The wavelengths corresponding to the peaks and valleys with large
difference between spectra could be selected as the optimal wavelengths to discriminant different
sample categories.

4.5. Discriminant Methods

To classify the Chrysanthemum samples correctly, a DCNN was built as the discriminant model.
Traditional machine learning methods, including SVM and LR, were introduced as contrast methods.

4.5.1. Support Vector Machine

SVM is a supervised machine learning approach, widely used in spectral data classification.
The basic principle of SVM is to find the optimal hyperplane that maximizes the interval between
the positive and negative samples in training set. To solve the nonlinear problem, kernel function
is introduced into SVM. The hidden mapping of samples from original feature space into a new
high-dimension space using kernel function can make the samples change from the linear indivisible
state to a linear separable state [36]. Among the kernel functions, radial basis function (RBF) is efficient
to deal with nonlinear classification problem. In this study, RBF was selected as the kernel function of
SVM. To obtain a satisfactory classification performance, penalty coefficient c and the kernel parameter
g could be determined using a simple grid-search procedure.

4.5.2. Logistic Regression

LR is a commonly-used pattern recognition approach to solve classification problem using
regression-like method. Sigmoid function is utilized to map the real value predicted by linear regression
model into the value in range 0–1. The output of sigmoid function is treated as the predicted category
probability. When solving binary classification problem (labeled by 0 and 1), the sample with a
value greater than or equal to 0.5 is classified as category 1, otherwise assigned to category 0. When
solving multi-classification problem, multiple one-to-many binary classification models are combined.
Structural risk loss is employed as the objective function to be optimized [15]. The penalty item pi can be
set to L1 regularization or L2 regularization to reduce the overfitting risk. The inverse of regularization
coefficient c’ can be adjusted, while small c’ causes strong regularization. The optimization algorithms
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optimize_algo, including newton-cg, lbfgs, liblinear, sag, can be selected to optimize the loss function
according to the classification performance.

4.5.3. Deep Convolutional Neural Network

A DCNN was further developed to discriminate the Chrysanthemum varieties, and its performance
was compared with that of SVM and LR. A typical DCNN consists of convolutional layers to extract
the local features, pooling layers to reduce the size of parameters and fully-connected layers to output
the classification results.

The structure of our designed DCNN for full wavelengths shown in Figure 5 contained
four convolutional modules and two full connected layers. Each convolutional module included
two convolutional layers followed by a max pooling layer. The number of filters in the first
convolutional module was set to 32, and was doubled as the modules going deeper. To process
one-dimensional spectral data, the commonly-used two-dimensional convolution kernels were
replaced by one-dimensional convolution kernels. The trick of using two consecutive 1 × 3 kernels
instead of a 1 × 5 kernel was inspired by VGGNet to decrease the number of parameters while
increasing the network depth [34]. Each convolution kernel was acted on the local region of the feature
maps of the upper layer, and all regions were processed by the same kernel. This mechanism allowed
DCNN to quickly learn the local spectral features in parallel. The max pooling layer with a kernel of
1 × 2 was used to reduce the number of feature maps to the half. The stride and padding of all the
filters were set to 1. The two full connected layers were used to combine the features output by the last
convolution module.

Figure 5. The structure of DCNN based on full wavelengths.

Exponential linear unit (ELU) was selected as the activation function in this study due to its better
performance than rectified linear unit (RELU), which was consistent with the results in [20,37]. The
right linear part allows ELU to mitigate the gradient disappearance like other activation functions. The
left soft-saturated part allows ELU to push the mean of the active unit closer to 0, thereby reducing the
offset effect and making ELU more robust to input variations and noise. Combining the advantages of
these two parts, ELU can speed up the training process and improve the classification accuracy. The
expression of ELU is as shown in Equation (2):

f (x) =

{
x x ≥ 0

α(exp(x)− 1) x < 0
(2)

As an important achievement of deep learning in recent years, Batch Normalization has
been widely proved to be effective and important [38]. For each neuron in hidden layers, Batch
Normalization forces the input distribution closing to the saturation region back to the standard
normal distribution to reduce the offset effect like ELU. The consistent scale of data in each layer
and each dimension makes parameter adjustment efficient. This accelerates the convergence process,
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reduces the possibility of overfitting and improves the classification performance. In this study, Batch
Normalization was inserted before each ELU (except the last fully connected layer).

At the end of DCNN, a softmax function was introduced to transform the output of last
fully-connected layer to the value in range 0–1, which represents the relative probability between
different categories. Then, the cross-entropy loss was chosen as the objective function to evaluate the
difference between the output of DCNN and the ground-truth in training phase. The cross-entropy
loss function can be defined by Equation (3):

Loss = −∑
x

p(x) log q(x) (3)

where x is the input of DCNN, p(x) is the probability value of expected output, q(x) is the probability
value predicted by DCNN. A Stochastic Gradient Descent (SGD) optimizer with a learning rate of
0.001 and a momentum of 0.9, was used to minimize the cross-entropy loss function during training.
And the batch size was set to 256. The network structure for optimal wavelengths was similar. The
number of convolution modules num_convs, the number of convolution kernels in the first convolution
module num_first_kernels, and the iterations of network training epoch should be adjusted according to
the classification performance.

4.6. Chrysanthemum Varieties Visualization

Visualization of Chrysanthemum varieties facilitates intuitive and rapid inspection of
Chrysanthemum varieties by industrial producers and market regulators. The advantage of
hyperspectral imaging to obtain spatial and spectral information simultaneously makes visualization
of Chrysanthemum varieties possible. To build the classification maps, the average spectrum of each
sample in hyperspectral image was input into the classification model, and the obtained label was
mapped back to each pixel of the corresponding sample in hyperspectral image. In this study, the
optimal discriminant model based on hyperspectral imaging was selected to visualize the spatial
distribution of Chrysanthemum varieties. Different Chrysanthemum varieties were assigned to different
colors on the chemical imaging maps, which is beneficial for identifying the specific Chrysanthemums
whose varieties are different from that of most Chrysanthemums.

4.7. Software

ENVI 4.6 (ITT Visual Information Solutions, Boulder, CO, USA) was used to crop the
Chrysanthemum samples from the irrelevant background in hyperspectral images. MATLAB R2018a
(The MathWorks, Natick, MA, USA) was used to extract and preprocess the spectral data from
hyperspectral images. PCA for pattern recognition between different varieties was also implemented
with MATLAB R2018a. Unscrambler 10.1 (CAMO AS, Oslo, Norway) was used to extract the optimal
wavelengths by 2nd derivative method. Discriminant models including SVM, LR and DCNN were
implemented using python language with Spyder3.2.6 (Anaconda, Austin, TX, USA). The famous
machine learning library sklearn (http://scikit-learn.org/stable/) and convenient deep learning
framework Pytorch (Facebook, Menlo Park, CA, USA) were used during programming. All software
tools were carried out on the software platform of win10 64-bit operating system and the hardware
platform of a computer with Inter(R) Core (TM) i5-8500 3.00 HZ CPU and 8 G memory.

5. Conclusions

Hyperspectral imaging combined with DCNN was used to distinguish Chrysanthemum varieties.
The qualitative analysis of PCA showed that different Chrysanthemum varieties could be preliminarily
distinguished according to the score images. The optimal wavelengths with certain distinguishing
ability were selected by 2nd derivative method. The performance of SVM, LR, and DCNN models
using full wavelengths and optimal wavelengths were compared, and the performance of models
based on full wavelengths were superior to those based on optimal wavelengths. DCNN based on
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full wavelengths obtained the best classification results, indicating that the deep spectral features
automatically learned by DCNN were more beneficial for discrimination than the artificially selected
optimal wavelengths. The classification maps of Chrysanthemum varieties formed by DCNN made
the spatial distribution of Chrysanthemum varieties to be displayed in an intuitive manner, showing
great potential of rapid detection of large-scale samples in industrial production. The overall results
indicated that the characteristics of non-destructive and batch detection of hyperspectral imaging
and the ability of automatically learning deep features of DCNN were the key factors for rapid and
accurate discrimination of Chrysanthemum varieties. This study provides a new idea for identification
of Chrysanthemum varieties.
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Abstract: Dry matter content (DMC) and reducing sugars (glucose, fructose) contents of three
potato varieties for frying (Innovator, Lady Claire, and Markies) were determined by applying
Fourier-transform near-infrared spectrometry (FT-NIR), with paying particular attention to tubers
preparation (unpeeled, peeled, and transversally cut tubers) before spectral acquisitions. Potatoes
were subjected to normal storage temperature as it is processed in the industry (8 ◦C) and lower
temperature inducing sugar accumulations (5 ◦C) for 195 and 48 days, respectively. Prediction of
DMC has been successfully modeled for all varieties. A common model to the three varieties reached
R2, root mean square error (RMSEP), and ratio performance to deviation (RPD) values of 0.84, 1.2,
and 2.49. Prediction accuracy of reducing sugars was variety dependent. Reducing sugars were
accurately predicted for Innovator (R2 = 0.84, RMSEP = 0.097, and RPD = 2.86) and Markies (R2 = 0.78,
RMSEP = 0.033, and RPD = 2.15) and slightly less accurate for Lady Claire (R2 = 0.63, RMSEP = 0.036,
and RPD = 1.64). The lack of accuracy obtained with the Lady Claire variety is mainly due to the tight
variability in sugar content measured over the storage. Finally, the best preparation of the tuber from
the point of view of the accuracy of the prediction models was to use the whole peeled potato. Such
preparation allowed for the improvement in RPD values by 15% to 38% the RPD values depending
on reducing sugars and 35% for DMC.

Keywords: Fourier-transform near-infrared spectroscopy; glucose; fructose; dry matter; partial least
square regression

1. Introduction

The potato is the fifth most produced agricultural product with 388 million tons, behind sugar
cane (1.84 trillion tons), corn (1.13 trillion tons), wheat (771 million tons), and rice (769 million tons) [1].
It can be consumed fresh, dehydrated, or fried as a snack.

Around the world, the potato crisp is a particularly popular snack. At the industrial level,
the preparation of chips requires particular attention to the formation of acrylamide. This chemical
compound is suspected to of being carcinogenic to humans, and its evolution in industrial products is
closely monitored. During cooking, reducing sugars and asparagine interact can lead to browning on
the outline and sometimes the whole of the chips, as a result of the reaction of Maillard [2]. The more
the potato is rich in reducing sugars (glucose, fructose, and sucrose), the more the browning is visible.
Whether for health or commercial reasons, the industry seeks to limit this browning. To limit the
formation of acrylamide in food products, FoodDrinkEurope [3] has published tools in the form of
"toolboxes" that are intended for the food industry. Among the first recommendations is the need to
use potato varieties with low levels of reducing sugars. Some studies have already shown that there is
a strong link between the reducing sugar content and the final level of acrylamide [4,5]. From both
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sanitary and aesthetic points of view, it is important for the industry to find an effective and accurate
way to quantify the reducing sugars in their raw material, the fresh potato.

Indeed, the choice of a variety with low content of reducing sugars is a first big step, but there
remains a consideration for an intra-varietal variability of reducing sugar content point of view.
As a result, the method to be developed by the industry must be able to scan the largest number of
individual tubers along the supply and processing chain.

During the last twenty years, near-infrared spectroscopy has been developed as a fast, precise, and
mostly non-destructive method for the quality control of the agri-food sector. This method developed
in the laboratory has the potential to be implemented in the industry for a chain analysis. Studies
described the ability to quantify sugar content in fresh apples [6,7]. Subsequently, this method of
measuring sugars has been extended to other fruits [8,9]. Studies have been conducted on potatoes to
test the possibility of using near-infrared spectroscopy to measure the sugar or dry matter content of
potatoes [10–14]. These studies are difficult to compare because some focused on whole tubers, whole
and peeled, in cross-sections, or crushed in the form of puree. However, these studies have shown the
potential of this method for application on the potato industry.

In general, the Swiss potato industry only accepts tubers with a reducing sugar content of
less than 0.1% (w/w) for the manufacture of potato chips. The aim of the present study will be to
develop predictive models for reducing sugars and dry matter content of fresh potato tubers based
on Fourier-transform near-infrared spectroscopy (FT-NIRs). The novelty of this work is to use the
advantages of Fourier-transform spectroscopy compared to spectroscopy from sequential instruments
using monochromators or filters and multichannel instruments using diode arrays. The advantages
of FT-NIR spectroscopy are significant, e.g., the usage of the interferometer saves time in acquiring
spectra (Fellgett advantage) and allows higher throughput by passing through a larger amount of
the NIR radiation, which can then be emitted or reflected by the sample (Jaquinot advantage) [15].
From the point of view of the potential future application in industry, it is important to note that
FT-NIR spectroscopy has a lower sensitivity to stray light compared to monochromator and diode
array devices. Such an advantage is significant since, in the industry, the environmental conditions
can be more difficult to control compared to those at the lab [16]. Finally, these advantages are not
detrimental to precision because the FT-NIR spectroscopy allows the highest precision of wavenumber
(Connes’ advantage). FT-NIR spectrometers present the best wavelength precision, accuracy, high
signal-to-noise, and scan speed [17]. In this way, the FT-NIR-based technique is fully capable of
being transferred from a lab to the potato industry. To date, studies aiming at predicting dry matter
and reducing sugars in potatoes have been carried out using monochromators or diode array-based
instruments and often present a reduced range of NIR spectral absorbance (i.e., short-wave NIR
wavelengths or higher than 1100 nm). The present study aims to highlight the potential of FT-NIR
spectroscopy to predict dry matter and reducing the sugar content of potato tubers.

In order to optimize the method, three types of fresh tuber preparations were tested to decide
the optimal preparation for maximum accuracy of the prediction models. Finally, the study worked
on three varieties adapted to the potato industry, and the models were calibrated and validated with
potato provided by industrials gathering tubers from different producers and different production sites.

2. Results and Discussion

2.1. Prediction of Dry Matter Content

Dry matter content (DMC) of individual potatoes was monitored during storage at 5 ◦C and 8 ◦C
for the three varieties. Before storage, Lady Claire presented significantly (p < 0.0001) higher DMC
values (26%) compared to Markies (23%) and Innovator (24%). This range of values is consistent with
those found in several studies and in particular that of Elmore et al. [18] which compared the DMC
of 20 UK-grown varieties intended for frying. The authors determined average values of DMC in a
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range of 17% to 28% depending on the variety, with Lady Claire being around 26%, and Innovator and
Markies around 24%.

During storage at 5 ◦C, DMC remained steady while higher values were measured after 62 days
at 8 ◦C for Lady Claire (p < 0.0001) and after 195 days at 8 ◦C for Markies (p < 0.0001) and Innovator
(p < 0.0001). Finally, DMC values ranged from 18% to 40% depending on the variety and the
storage modalities.

Then, DMC values were used to elaborate prediction models based on FT-NIR spectral data
(Table 1). More than 400 and 100 spectra were used to calibrate and validate the models, respectively.
Three models were attempted, with the first one based on spectra acquired on entire and unpeeled
potatoes (PDTE), the second one with spectra of entire and peeled potatoes (PDTP), and the third
one with spectra acquired on transversal cuts of potatoes (PDTC). The best result was obtained with
spectra based on PDTP. This model presents the highest R2 value (0.84), and the lowest root mean
square error (RMSE) value (1.23%).

Table 1. Partial least square values of dry matter content prediction. PDTE: entire and unpeeled
potatoes, PDTP: entire and peeled potatoes; PDTC: potatoes cut transversally.

PLS Parameters PDTE PDTP PDTC

Spectra (n) CAL/VAL 420/105 417/104 417/103
Averaged spectra (n) CAL/VAL 140 (140) 1/35 139 (140) 1/35 140 (140) 1/35

Wavenumber range (cm−1)
9403.8–7498.4
6102.1–5446.3

9403.8–7498.4
6102.1–5446.3

9403.8–7498.4
6102.1–5774.2
4601.6–4246.8

LV CAL/VAL 7/7 7/7 7/7
R2 CAL/VAL 0.76/0.70 0.84/0.83 0.83/0.78
RMSE (%) CAL/VAL 1.59/1.66 1.27/1.23 1.34/1.40
RPD CAL/VAL 2.05/1.85 2.55/2.49 2.45/2.17

Data preprocessing CAL/VAL LOS D1 + SNV SNV

DMC values (min–max) (gDW/100 gFW) CAL/VAL 18–41/18–37 18–41/18–37 18–40/18–37
DMC Standard error (%) CAL/VAL 3.22/3.07 3.22/3.07 3.22/3.07

1 number of averaged spectra (tubers) before elimination of outlayers. CAL: calibration; VAL: validation; n: number
of spectra or potato samples; LV: the number of latent variables; R2: determination coefficient; RMSE: root mean
square error; RPD: ratio performance to deviation; DMC (%): range of dry matter content values used in the
models; DW: dry weight; FW: fresh weight. LOS: Linear offset subtraction; SNV: Standard Normal Variate; D1:
first derivative.

Furthermore, the model used only five latent variables while seven have been required for the
PDTE- and PDTC-based models. In the present modeling, all potato varieties were successfully
gathered for elaborating a “trans-varietal” model (Figure 1A). Modeling with separating the varieties
allowed us to slightly improve the model performances of the Lady Claire variety in terms of ratio
performance to deviation (RPD) value (3.05) (Figure 1C). Concerning the Innovator and Markies
varieties, models were less accurate (Figure 1B,D).

The performance of the model gathering all varieties is comparable to that obtained by
Helgerud et al. [19] who reached R2 and RMSE values of 0.8–0.9 and 0.9–1.7, respectively. However,
the model developed with peeled potatoes only used five latent variables while the model developed
by Helgerud et al. [19] used between five and nine latent variables. When the models were separately
built per each variety, the accuracy increased until reaching R2 and RMSE values of 0.89 and 0.9%,
respectively, for the Lady Claire variety. The performances were not improved for the two other
varieties since the ranges of DMC values were very tight. Hartmann and Büning-Pfaue [20] were one
of the first to study the prediction of DMC of potatoes using NIR spectral data acquired on peeled
potato. They concluded that the accuracy of models was cultivar-dependent. In the present study,
the feasibility of a model gathering the three cultivars shows that it is possible to predict DMC without
developing a cultivar-dependent model. Subedi and Walsh [21] reported accurate predictions of DMC
in potatoes using short-wave NIR spectral data with R2 values that ranged between 0.80 and 0.95 and
RMSECV values that ranged from 0.5% to 1.52% depending on the cultivar. The authors used a batch
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of potatoes with a range of DMC values of 17% to 25%. The results obtained in the present study using
FT-NIR spectroscopy allowed for obtaining similar accuracy for a range of DMC values of 18% to 40%.

DMC is crucial for the quality of chips or different forms of potato-based frites. Indeed,
several studies showed the tight relationship existing between DMC and starch content [22,23].
Monitoring the DMC of fresh potatoes with FT-NIR spectroscopy could be an indirect indicator
of starch content-related quality.

Figure 1. Actual vs. predicted values of dry matter content (DMC) (g of dry weight/100 g fresh weight).
Calibration (�), validation (�). (A) Entire and peeled tubers of the three tested varieties, (B) Entire and
peeled tubers of Innovator, (C) Entire and peeled tubers of Lady Claire, (D) Entire and peeled tubers
of Markies.

Figure 2 shows the beta-coefficients of the first latent variable of the Partial least square models
predicting the DMC of peeled, entire, and cut potatoes. Peeled potato model is based on two wavelength
bands (1060–1330 nm and 1640–1830 nm). Such bands are mainly related to the second and first C–H
overtones, respectively. Subedi and Walsh [21] identified the short-wave NIR region (750–950 nm) and
particularly high importance of absorbance at 910 nm as significant to predict DMC in potatoes.
This region is essentially related to absorption bands of the third overtone of CH and NH. In their
study, the authors used a spectrometer whose wavelengths did not exceed 1100 nm, as they did not
have access to the first overtones and combinations of CH and OH molecular bonds. In the present
study, the two bands identified as significant in predicting DMC corresponded also to NH and CH
molecular bonds, but these are the first and second overtones. The absorbance in the short-wave NIR
range did not appear as significant. Finally, it can be considered that the main difference between
the study of Subedi and Walsh [21] and the present study rely on the wavelength range availability
due to the spectrometer. Hartmann and Büning-Pfaue [20] predicted DMC using a spectrometer
with a wavelength range comprised between 1100 nm and 2500 nm. The accuracy of the models
was correct, but no information about beta-coefficients was provided to determine the significance of
wavelength absorbencies.
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Figure 2. Mean spectra and beta-coefficients of the first PLS models latent variable to predict the DMC
based on spectral data acquired on entire tubers (red line), peeled tubers (blue line), and cut tubers
(green line).

2.2. Prediction of Reducing Sugars

Reducing sugars were measured in individual potatoes during storage of the three varieties
(Table 2). Sugar levels remained low (under 0.1%) over the 195 days of storage at 8 ◦C for all varieties.
During storage at 5 ◦C, the levels of sugars were a function of the variety. Sugar contents increased
slightly for Markies (0.14% fresh weight, FW) and Lady Claire (0.21% FW), and more strongly for the
Innovator (0.70% FW) variety (Table 2).

Table 2. Sugar values of individual potatoes. Sugar values were statistically analyzed by the
non-parametric test of Kruskal–Wallis (p = 0.05); mean values comparisons have been processed
by the Dun test. RS: Reducing sugars, FW: fresh weight.

Duration
(Days)

Temp.
(◦C)

Glucose (% FW) Fructose (% FW) RS (Glucose + Fructose) (% FW)

IN LC MA IN LC MA IN LC MA

0 - 0.07 a,b 0.03 c 0.02 b 0.05 b,c 0.01 b,c 0.01 b 0.11 a,b 0.04 b 0.04 b
6 5 0.11 b 0.03 c 0.02 b 0.09 c 0.03 c,d 0.02 b 0.20 b 0.06 b 0.04 b
24 5 0.30 c 0.05 c,d 0.08 c 0.27 d 0.05 d,e 0.10 c 0.57 c 0.10 b,c 0.18 c
48 5 0.37 c 0.07 d 0.10 c 0.33 d 0.07 e 0.11 c 0.70 c 0.14 c 0.21 c
6 8 0.08 a 0.02 b,c 0.02 b 0.06 b,c 0.01 c,d 0.01 b 0.14 a,b 0.03 b 0.03 b
62 8 0.03 a 0.01 a,b 0.01 a,b 0.02 a,b 0.00 a,b 0.01 a,b 0.06 a 0.01 a 0.01 a,b
195 8 0.04 a 0.00 a 0.00 a 0.01 a 0.00 a 0.00 a 0.05 a 0.01 a 0.00 a

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Means followed by different letters within one column differ significantly at p = 0.05.

Predictions of sugars contents were attempted for each potato variety. Prediction values of the
Innovator, Lady Claire, and Markies varieties have been gathered in Tables 3–5. Predictions of glucose,
fructose, and reducing sugars (glucose + fructose) were performed using FT-NIR data acquired on
entire and unpeeled potatoes (PDTE), entire and peeled potatoes (PDTP), and transversally cut potatoes
(PDTC).

Potatoes preparation for FT-NIR spectra acquisition affected the overall performance of models
(Figure 3).
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Table 3. PLS values of sugar content prediction of the potato variety Innovator.

PLS Score
Glucose Fructose Fructose + Glucose

PDTE PDTP PDTC PDTE PDTP PDTC PDTE PDTP PDTC

Spectra CAL 420 405 405 402 402 405 405 405 408
VAL 105 102 99 99 105 99 102 105 99

Averaged
spectra

CAL 140 (140) 1 135 (140) 135 (140) 134 (140) 134 (140) 135 (140) 135 (140) 135
(140)

136
(140)

VAL 35 (35) 34 (35) 33 (35) 33 (35) 35 (35) 33 (35) 34 (35) 35 (35) 33 (35)

WL (cm−1)
9403.8–7498.4;
6102.1–5446.3

9403.8–7498.4;
5774.2–5446.3

9403.8–
7498.4

8451.1–7498.4;
5774.2–5446.3

9403.8–
7498.4

9403.8–
7498.4

9403.8–7498.4;
6102.1–5446.3

9403.8–
7498.4

9403.8–
7498.4

LV 7 6 7 8 6 6 7 6 6

R2 CAL 0.56 0.71 0.82 0.72 0.71 0.77 0.68 0.69 0.76
VAL 0.70 0.82 0.79 0.84 0.82 0.85 0.77 0.84 0.80

RMSE (%)
CAL 0.108 0.076 0.061 0.065 0.071 0.061 0.149 0.151 0.129
VAL 0.084 0.059 0.066 0.050 0.050 0.049 0.120 0.097 0.113

RPD
CAL 1.51 1.87 2.35 1.9 1.87 2.08 1.75 1.8 2.05
VAL 1.89 2.34 2.25 2.5 2.43 2.59 2.07 2.86 2.23

Data Preprocessing SNV SNV LOS MMN None LOS MMN None LOS

Sugar values
(% FW)

CAL 0–0.709 0–0.596 0–0.613 0–0.417 0–0.539 0–0.564 0–0.969 0–1.135 0–1.178
VAL 0–0.494 0–0.476 0–0.493 0–0.39 0–0.39 0–0.39 0–0.779 0–0.779 0–0.779

1 number of averaged spectra (tubers) before elimination of outlayers. CAL: calibration; VAL: validation; spectra:
number of spectra or potato samples; LV: the number of latent variables; R2: determination coefficient; RMSE:
root mean square error; RPD: ratio performance to deviation; SNV: Standard Normal Variate; LOS: Linear offset
subtraction; MMN: Min–Max Normalization.

Figure 3. Actual vs. predicted values of Innovator’s (A–C), Markies’ (D–F) and Lady Claire’s (G–I)
reducing sugars contents. Predictions were performed based on “Entire and peeled” (A,D,G) tubers,
“Entire and unpeeled” tubers (B,E,H), and tubers “cut transversally” (C,F,I).

PDTP (peeled potatoes) configuration allowed us to reach the most accurate models. Reducing
sugar (fructose + glucose) were predicted with RPD values of 2.07 (PDTE), 2.86 (PDTP), and 2.23
(PDTC) for Innovator, 2.09 (PDTE), 2.15 (PDTP), and 2.1.85 (PDTC) for Markies, and 1.43 (PDTE),
1.64 (PDTP), and 1.61 (PDTC) for Lady Claire. In the same way, R2 and RMSE values were generally
favored by the PDTP configuration (Tables 3–5).
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Table 4. PLS values of sugar content prediction of the potato variety Markies.

PLS Score
Glucose Fructose Fructose + Glucose

PDTE PDTP PDTC PDTE PDTP PDTC PDTE PDTP PDTC

Spectra CAL 402 396 405 405 405 405 411 405 405
VAL 102 102 102 102 99 99 102 99 102

Averaged
spectra

CAL 134 (140) 1 132 (140) 135 (140) 135 (140) 135 (140) 135 (140) 137 (140) 135 (140) 135 (140)
VAL 34 (35) 34 (35) 34 (35) 34 (35) 33 (35) 33 (35) 34 (35) 33 (35) 34 (35)

WL (cm−1)
8451.1–
7498.4

9403.8–
8451.1;
6102.1–
5774.2

9403.8–
8451.1;
6102.1–
5446.3

8451.1–
7498.4

9403.8–
8451.1;
6102.1–
5774.2

9403.8–
7498.4;
5774.2–
5446.3

8451.1–
7498.4

9403.8–
7498.4;
6102.1–
5446.3

9403.8–
7498.4;
5774.2–
5446.3

LV 5 9 4 3 9 9 3 5 5

R2 CAL 0.71 0.83 0.72 0.61 0.83 0.88 0.55 0.81 0.78
VAL 0.80 0.75 0.70 0.75 0.81 0.77 0.77 0.78 0.71

RMSE (%)
CAL 0.019 0.013 0.019 0.022 0.016 0.013 0.051 0.031 0.034
VAL 0.015 0.017 0.019 0.018 0.016 0.017 0.033 0.033 0.037

RPD
CAL 1.86 2.4 1.89 1.6 2.39 2.94 1.5 2.31 2.14
VAL 2.29 2.14 1.83 2.01 2.4 2.11 2.09 2.15 1.85

Data Preprocessing SLS None MSC 1st der. None None 1st der. D1 + MSC MSC

Sugar values
(% FW)

CAL 0–0.165 0–0.128 0–0.165 0–0.173 0–0.173 0–0.173 0–0.338 0–0.338 0–0.338
VAL 0–0.115 0–0.115 0–0.115 0–0.119 0–0.119 0–0.119 0–0.235 0–0.235 0–0.235

1 number of averaged spectra (tubers) before elimination of outlayers. CAL: calibration, VAL: validation; spectra:
number of spectra or potato samples; LV: the number of latent variables; R2: determination coefficient; RMSE:
root mean square error; RPD: ratio performance to deviation; MSC: Multiplicative scatter correction; 1st der.: first
derivative; SLS: Straight line subtraction.

Table 5. PLS values of sugar content prediction of the potato variety Lady Claire.

PLS Score
Glucose Fructose Fructose + Glucose

PDTE PDTP PDTC PDTE PDTP PDTC PDTE PDTP PDTC

Spectra CAL 396 393 408 408 411 411 414 411 393
VAL 96 105 102 99 105 102 102 105 96

Averaged
spectra

CAL 132 (140) 1 131 (140) 136 (140) 136 (140) 137 (140) 137 (140) 138 (140) 137 (140) 131 (140)
VAL 32 (35) 35 (35) 34 (35) 33 (35) 35 (35) 34 (35) 34 (35) 35 (35) 32 (35)

WL (cm−1)
7502.2–
6098.2

9403.8–
7498.4

9403.8–
7498.4;
6102.1–
5446.3

9403.8–
6098.2

9403.8–
7498.4;
4601.6–
4246.8

9403.8–
7498.4;
6102.1–
5446.3

9403.8–
7498.4

6102.1–
5446.3

9403.8–
7498.4;
6102.1–
5446.3

LV 6 5 6 9 14 6 5 5 7

R2 CAL 0.55 0.57 0.61 0.57 0.64 0.59 0.45 0.38 0.64
VAL 0.57 0.52 0.61 0.67 0.70 0.63 0.50 0.63 0.58

RMSE (%)
CAL 0.015 0.018 0.018 0.020 0.019 0.018 0.045 0.047 0.028
VAL 0.016 0.014 0.018 0.016 0.017 0.018 0.044 0.036 0.026

RPD
CAL 1.49 1.52 1.6 1.74 1.68 1.56 1.35 1.27 1.66
VAL 1.56 1.47 1.62 1.52 1.83 1.66 1.43 1.64 1.61

Data Preprocessing D1 + SNV LOS SLS MMN D1 SNV SNV None LOS

Sugar values
(% FW)

CAL 0–0.103 0–0.131 0–0.131 0–0.138 0–0.147 0–0.138 0–0.300 0–0.279 0–0.202
VAL 0–0.102 0–0.077 0–0.117 0–0.122 0–0.122 0–0.122 0–0.239 0–0.239 0–0.144

1 number of averaged spectra or potatoes before elimination of outlayers. CAL: calibration, VAL: validation; spectra:
number of spectra or potato samples; LV: the number of latent variables; R2: determination coefficient; RMSE: root
mean square error; RPD: ratio performance to deviation; SNV: Vector normalization; LOS: Linear offset subtraction;
MMN: Min–Max Normalization; D1: first derivative; SLS: Straight line subtraction.

In a study, Rady and Guyer [14] worked on the prediction of sugar by near-infrared spectroscopy
using whole or sliced potatoes. They showed few differences between the two potato preparations
from a model accuracy point of view. This result was similar in our study since the results obtained
with PDTE and PDTC were quite similar and less accurate than those obtained with the PDTP. A reason
why the PDTP was the most efficient method could be due to the fact that the reducing sugars are
concentrated at the periphery of the tuber. On whole tuber, Chen et al. [24] predicted sugar contents
with RMSE of 0.26 mg/g (0.026%) for fructose and 0.46 mg/g (0.046%) for glucose. For this, they used
a range of NIR wavelength of 400–1100 nm. These results are comparable to ours, although the
latter is strongly related to the variety and the total reducing sugar content of potatoes. Furthermore,
Chen et al. [24] used particularly drastic conditions of storage, such as 25 ◦C storage temperature
during several months. Such a storage parameter is not representative of the real storage rules for
potatoes and induced very high sugar levels in tubers. Consequently, the tested storage conditions
would be a simulation and consequence of at-home consumers’ storage rather than professional storage
conditions. The very large range of sugar content allowed Chen et al. (2010) to develop a correct model
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in terms of accuracy. Rady and Guyer [14] obtained results showing the variability of model accuracy
as a function of the used variety. They obtained R2values from 0.55 to 0.88 and RPD values from 1.49 to
2.73. However, it benefited from varieties with a greater range of sugar concentration than the varieties
used in our study. Our lower sugar range gives our results a lot of room for improvement and the
performance of our models could be increased by adding varieties with other ranges of sugar values.

In the present study, we considered that two of the three tested varieties (Innovator and Markies)
were suitable for building a prediction model using near-infrared spectral data, but the last variety
was inadequate (Lady Claire). The latter proved to be very insensitive to storage conditions and, as a
result, the variations in sugar content were very small. However, this variety is not the right candidate
to build our models, but it remains a good candidate for the French fries potato industry.

Figure 4. Mean spectra and beta-coefficients of the first PLS models latent variable to predict the
reducing sugars of the three potato varieties: Innovator (A), Lady Claire (B), and Markies (C).

Figure 4 shows the beta-coefficients of the first latent variable of the PLS models predicting
the reducing sugars of peeled tubers for the three varieties. Prediction of reducing sugars is based
on wavelength bands between 1065 nm and 1335 nm, 1635 nm and 1835 nm, and both bands for
Innovator, Lady Claire, and Markies varieties, respectively. Thus, models relied on second and first
overtones of CH molecular bonds. Chen et al. [24], who used only a short-wave NIR range, identified
relevant absorbencies in the vicinity of 710 nm (fourth overtone CH) and 888 nm (third overtone
CH), but also bands around 950–960 nm (water band, second overtone OH) and 1020 nm (second
overtone NH). The two first bands are consistent with the results obtained in the present study.
The water bands were removed from the range used in our models (around 950 nm, 1450 nm, and
1900–1950 nm). The Relevance of wavelength absorbance at 910 nm to predict sugars in potatoes has
been assigned by previous studies and is confirmed by the present FT-NIR approach [25]. The use of
the full NIR range allowed for assigning other overtones of CH bonds to reduce sugar of potatoes.
Finally, the FT-NIR approach suggests a possible transfer from the laboratory to the industry in the
medium term. However, the models will still have to be enriched with other varieties of potatoes with
different sugar content variations during storage to make the models more robust and confirm the
relevant wavelengths already assigned.
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3. Materials and Methods

3.1. Potatoes

Three potato varieties for frying were used in the present study: Lady Claire, Innovator,
and Markies. In order to increase the variability of quality due to the varieties, the potatoes were
stored into two different conditions. The first batch was stored in classical conditions at 8 ◦C and a
second one at 5 ◦C to increase the sugar contents over time. A first batch of potatoes was analyzed
some days after harvest. Then, potato batches stored at 5 ◦C were analyzed after 7, 21, and 49 days
while potatoes stored at 8 ◦C were analyzed after 7, 62, and 195 days. A given batch was constituted of
25 potatoes per variety. A total of 525 tubers were analyzed.

3.2. Dry Matter Content

A sample of each fresh potato (a cube of about 2 cm on each side) was weighed to obtain the
fresh weight (FW). Then, the sample was placed in a dryer at 70 ◦C for 6 days and weighed again to
obtain the dry weight (DW). The relative content of dry matter (DMC) was calculated according to
Equation (1).

DMC(%) =

[
1 −

(
FW(g)− DW(g)

FW(g)

)]
× 100 (1)

3.3. Reducing Sugars Analyses

Sugar analyses were performed using enzymatic tests (Enzytec™ Fluid D-Glucose, r-Biopharm,
Darmstadt, Germany). The limit of detection (LoD) and quantification (LoQ) calculated according
to the method DIN 32645:2008-11 were 4.0 mg/L and 10 mg/L, respectively (Enzytec™ Fluid
D-Glucose, r-Biopharm, Germany). A repeatability calculation was performed on 19 potato samples
and duplicated. Relative standard errors of 1.6% and 1.7% were calculated for the glucose and
fructose, respectively.

3.3.1. Extraction

Approximately 1 g of the potato powder was weighed into a 50 mL centrifuge tube. A total of
10 mL of ethanol at 40% was added. The mixture was then extracted for 1 min using an Ultra-Turrax
(Polytron PT3100/Polytron PT 10 20 3500, Kinematica AG, Luzern, Switzerland) on the highest rpm
setting. After that, the tubes were centrifuged for 5 min at 4000 rpm. The extract was filled into a 50 mL
measuring flask. This extraction was repeated twice, and extracts were pooled together. Tubes were
then filled to the calibration mark with ethanol at 40%.

3.3.2. Quantification of Free Sugars

A total of 10 mL of the ethanol extract was pipetted into a 25 mL pointed flask. The solvent
was then evaporated using a Rotavap at 60 ◦C. The residue was solved in 2 mL of distilled water.
The results were expressed in milligrams of sugar contained in 100 g of potato fresh weight. An aliquot
of the sample was filtered through a 0.45 μm syringe filter (nylon). Glucose/fructose contents of this
filtered sample were quantified by photometric methods using the Konelab Arena 20XT (Thermo
Fisher Scientific OY, Vantaa, Finland).

3.4. FT-NIR Spectroscopy

FT-NIR measurements (MPA, Bruker, Fällanden, Switzerland) were carried out according to
3 configurations, all using an optical fiber. Spectral acquisitions were performed on (1) entire and
unpeeled potatoes (PDTE), (2) entire and peeled potatoes (PDTP), and (3) potatoes cut transversally
(PDTC). Spectra were acquired in diffuse reflexion using an optic fiber. A total of 3 spectra were
recorded per potato. A given spectra was the average of 16 scans in a wavenumber range comprised
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between 12,500 cm−1 and 4000 cm−1. A total of 4725 spectra was collected in the present study (4725 =
(25 potatoes) × (3 varieties) × (7 batches of storage) × (3 spectra per potato) × (3 configurations of
spectra measurements)). All spectra were collected with the OPUS software (Bruker, Germany).

3.5. Chemometric

Partial Least Square Regression

Averaged spectra of each tuber were gathered in a matrix X(n,p) where ‘n’ is the number of
spectra and ‘p’ is the number of wavenumber steps. The reference values (sugars) were gathered in a
column vector y(n,1). Potato batches were separated in a calibration set (3n/4) and a test set (n/4).
The accuracy and goodness of models were evaluated according to several indicators: the coefficient of
determination (R2), root mean square errors (RMSE), and the ratio performance to deviation (RPD) [15].
All data analyses were performed with OPUS software and Matlab R2016a (The MathWorks, Inc.,
Natick, MA, USA).

4. Conclusions

The potato industry needs to precisely monitor the quality of the potatoes along the supply chain
to ensure the optimal quality of the final product both in terms of aesthetics and sanitation. The Fourier-
transform near-infrared spectroscopy is a possibility since this technology is already implemented in
various food industries and presents significant advantages compared to monochromator and diode
array-based NIR instruments. The study presented in this paper aimed to evaluate the possibility of
determining the dry matter and reducing sugars contents in fresh potatoes which are the primary
matters of the industry. The results obtained are promising in terms of accuracy. In addition, sample
preparation is important when working with NIR spectroscopy. The present study tested three different
tuber preparations in order to optimize the configuration of spectral acquisitions. The peeled but not
necessarily crushed potato was determined to be the most interesting. This preparation has made it
possible to obtain more precise models for sugar and dry matter contents. In particular, it has improved
the RPD values from 15% to 38% for reducing sugars and 35% for DMC. Finally, since the robustness
of the models is closely linked to the variability introduced, additional potato varieties adapted to the
potato frying industry should be added to the present models. In addition, different storage conditions
may be important to make the models more robust.
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Abstract: This work applied the FT-NIR spectroscopy technique with the aid of chemometrics
algorithms to determine the adulteration content of extra virgin olive oil (EVOO). Informative spectral
wavenumbers were obtained by the use of a novel variable selection algorithm of bootstrapping
soft shrinkage (BOSS) during partial least-squares (PLS) modeling. Then, a PLS model was finally
constructed using the best variable subset obtained by the BOSS algorithm to quantitative determine
doping concentrations in EVOO. The results showed that the optimal variable subset including
15 wavenumbers was selected by the BOSS algorithm in the full-spectrum region according to the first
local lowest value of the root-mean-square error of cross validation (RMSECV), which was 1.4487 % v/v.
Compared with the optimal models of full-spectrum PLS, competitive adaptive reweighted sampling
PLS (CARS–PLS), Monte Carlo uninformative variable elimination PLS (MCUVE–PLS), and iteratively
retaining informative variables PLS (IRIV–PLS), the BOSS–PLS model achieved better results, with
the coefficient of determination (R2) of prediction being 0.9922, and the root-mean-square error of
prediction (RMSEP) being 1.4889 % v/v in the prediction process. The results obtained indicated
that the FT-NIR spectroscopy technique has the potential to perform a rapid quantitative analysis of
the adulteration content of EVOO, and the BOSS algorithm showed its superiority in informative
wavenumbers selection.

Keywords: bootstrapping soft shrinkage; partial least squares; extra virgin olive oil; adulteration;
FT-NIR spectroscopy

1. Introduction

With the rising prices of cooking oil, greedy traders and suppliers may resort to unethical practices,
such as mixing low-value cooking oil with high-value cooking oil [1]. The consumers cannot detect
these low-value, inexpensive ingredients in cooking oils, so they pay more for them. Extra virgin
olive oil (EVOO) is native to the Mediterranean area, is known as “the gold of liquids”, “the queen
of plant oils”, and “the Mediterranean nectar”, and is an established Chinese consumer favorite [2].
The consumption of the EVOO has increased in recent years. However, the production of EVOO is not
enough to cope with the growing consumer demand in China because of the demanding production
conditions of EVOO. Therefore, EVOO adulteration has spread in the Chinese market. Adulteration not
only causes confusion in the edible oil market but also violates the rights of consumers. Therefore, a fast
and effective analytical method of EVOO adulteration is required to assist government’s regulations.

Fourier transform near-infrared (FT-NIR) molecular spectroscopy is a technique widely applied
in food quality analysis [3–6] that can provide abundant information about the chemical composition
and molecular structure of various food substances. In addition, this technology also has the
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Molecules 2019, 24, 2134

advantages of being non-destructive, fast, low-cost, with good reproducibility and broad application
prospects. Recently, the FT-NIR spectroscopy technique has been extensively used in quality and safety
analysis of EVOO [7–9]. In addition, other molecular spectroscopy techniques, such as fluorescence
spectroscopy [10–12], infrared spectroscopy [13–15], Raman spectroscopy [16–18], and nuclear magnetic
resonance spectroscopy [19,20], have good applications in the analysis of EVOO adulteration. With the
technological developments, the amount of spectral data acquired is increasingly large because of the
improvement of instrument resolution. Therefore, the selection of spectral characteristic wavenumbers
plays an important role in spectral model development. Moreover, more and more researchers
have proved that the selection of characteristic wavenumbers in the multivariable model calibration
can not only improve the prediction performance of the chemometrics model but also enhance the
interpretability of the model [21–24].

Partial least-square (PLS) regression is a statistical method related to principal component
regression (PCR), which is to search a linear regression model by projecting predicted variables and
observed variables into a new state space [25]. Because of the advantages of variable selection,
many PLS-based feature variable selection algorithms have been developed [26], for example,
the variable importance in projection (VIP) score [27], the successive projections algorithm (SPA) [28],
the uninformative variable elimination (UVE) algorithm [29], and the selectivity ratio (SR) [30].
These methods were developed on the basis of the criteria of variable weights or regression coefficients.
Additionally, some other feature wavenumber selection methods based on model population analysis
(MPA) strategies have been developed [31], for instance, the iteratively retaining informative variables
(IRIV) [32], the variable iterative space shrinkage approach (VISSA) [33,34], the variable combination
population analysis (VCPA) [35], and the bootstrapping soft shrinkage (BOSS) [36]. Compared with
IRIV, VISSA, and VCPA, an important feature of the BOSS algorithm is the introduction of weighted
bootstrap sampling (WBS) criteria that the other three algorithms do not consider. Furthermore,
different from other bootstrap-based algorithms, the BOSS algorithm performs the bootstrap criteria
in the variable space, while other algorithms perform the criteria in the sample space. Thus, in this
study, the BOSS algorithm was applied for the wavenumber selection of spectral data of EVOO
doped samples.

The aim of this study was to verify the feasibility of establishing an improved and reliable reduced
spectral model which can directly and quantitatively determine the doping content of EVOOs by
their spectra. The feature wavenumbers were first selected by the BOSS algorithm, and a detection
model based on the PLS regression using the selected wavenumbers by the BOSS algorithm was built.
Finally, the performance of the reduced BOSS–PLS model was compared with the performances of
the other three commonly used reduced models (i.e., competitive adaptive reweighted sampling PLS
(CARS–PLS), Monte Carlo uninformative variable elimination PLS (MCUVE–PLS), and iteratively
retaining informative variables PLS (IRIV–PLS)).

2. Results

2.1. Variable Selection by the BOSS Algorithm

In this study, the informative wavenumbers were firstly selected by using the BOSS algorithm
during PLS modeling. A five-fold cross validation was used for the optimization of relevant parameters,
and the optimal variables were finally determined according to the first local lowest root-mean-square
error of cross validation (RMSECV) value. Before running the BOSS algorithm, the number of bootstrap
sampling was set to 1000, and the maximum number of principal components (PCs) was set to 15.
In this study, in order to verify the repeatability and stability of the algorithm, the approach was
conducted repeatedly 10 times, and the best results were recorded.

Figure 1 shows the evolution of the variables and the value of RMSECV in each iteration of
sub-models during the run of the BOSS algorithm. The number of wavenumbers selected decreased
smoothly with iteration of the BOSS algorithm. The initial number of wavenumbers obtained was
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1557 from the full spectrum. As can be seen in Figure 1a, the number of variables selected gradually
decreased and became 1 after 14 iterations. Meanwhile, as can be seen in Figure 1b, the values of
RMSECV in the sub-models decreased with the increase of the iteration number, reached the minimum
value at the eighth iteration, and then started to rise slowly. The best variable subset was finally
achieved in the eighth iteration, and the optimal number of wavenumbers selected was 15 at the eighth
iteration, according to the first local lowest RMSECV, which was 1.4487 % v/v.

  
Figure 1. Evolution of the number of variables (a) and root-mean-square error of cross validation
(RMSECV) (b) in each iteration of the sub-models using the bootstrapping soft shrinkage
(BOSS) algorithm.

Figure 2 shows the weights and the wavenumbers distribution in the full spectrum of the
15 variables selected at the eighth iteration of the sub-models; it shows the 15 variables selected
with their respective weights and the variable with the largest weight and highest importance.
By investigating the results in Figure 2, the most informative wavenumbers were finally obtained at
around 5900 cm−1. Thus, the 15 variables selected by the BOSS algorithm constituted the best variable
subsets for building the final PLS model.

 
Figure 2. The weights of the variables in the optimal sub-model at the eighth iteration using the
BOSS algorithm.

2.2. Results of the PLS Model

The optimal PLS model was built using the 15 wavenumbers selected by the BOSS algorithm when
three PLS factors were included. The value of RMSECV was 1.4487 % v/v, and the R2 was 0.9908 in the
calibration set. The predictive accuracy and generalization performance of the constructed model were
evaluated using the independent samples from the validation set. The result of the root-mean-square
error of prediction (RMSEP) was 1.4889 % v/v, and the R2 was 0.9922 in the validation set which,
as shown in Figure 3.
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Figure 3. Reference-measured versus FT-NIR-predicted doping concentration of extra virgin olive oil
(EVOO) in the validation set.

3. Discussion

In order to show the advantages of the BOSS algorithm in terms of wavenumber selection,
it was compared with other three high-performance approaches for wavenumber selection, i.e., CARS,
MCUVE, and IRIV. The best results of PLS models based on variables selected from different variable
selection algorithms are shown in Table 1. The results in Table 1 show that the prediction accuracy of
the PLS model could be improved by the four wavenumber selection algorithms with respect to the
full-spectrum PLS model. Moreover, compared with the CARS–PLS model, the MCUVE–PLS model,
and the IRIV–PLS model, the BOSS–PLS model achieved better results not only in the calibration process
but also in the validation process. The main reason is that, quite likely, the BOSS algorithm combines the
strategies of soft shrinkage, MPA, and WBS and makes full use of the regression coefficient information.

Also, the BOSS algorithm adopts the soft shrinkage strategy to select informative variables.
Compared with the method of variable selection based on the hard shrinkage strategy, such as
CARS and MCUVE, which delete less informative wavenumbers directly, the soft shrink strategy
allocates smaller weights to wavenumbers with less information. However, these wavenumbers
can still participate in the sub-models’ construction for further evaluation considerations in the next
iteration. Thus, the advantage of the soft shrink strategy is that it is able to reduce the risk of removing
characteristic variables during the iteration and to choose the optimal variable subsets with better
prediction ability.

The best variable subset is finally obtained by the BOSS algorithm on the basis of the criteria
of the MPA combined with those of the WBS. Concretely, the sub-models are obtained in terms of
the weight of each variable by the BOSS algorithm. The weight of each wavenumber is determined
according to the value of the regression coefficients of multiple PLS sub-models by using the MPA
strategy, rather than by using a single full-spectrum model. Then, the WBS strategy is used to stepwise
update the weight of the wavenumbers selected so that the variable space can be compressed better.
Thus, the BOSS algorithm considers all possible combinations of the selected wavenumbers, which is
reasonable because the best number of variable subsets obtained is unknown before and during
wavenumbers selection.
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Table 1. Results of different partial least-square (PLS) models for the prediction of doping concentrations
in EVOO. CARS: competitive adaptive reweighted sampling; MCUVE: Monte Carlo uninformative
variable elimination; IRIV: iteratively retaining informative variables.

Models
Selected Wavenumbers

(cm−1)
Number of
Variables

PLS
Factors

Calibration Set Validation Set

R2 RMSECV R2 RMSEP

PLS 9999.10-3999.64 1557 6 0.9421 3.4618 0.9599 3.2520

CARS-PLS

4192.49; 4242.63; 4261.92;
4578.18; 4593.61; 4655.32;
4659.18; 4666.89; 4670.75;
4674.60; 4682.32; 4690.03;
5746.83; 5754.55; 5758.40;
5766.12; 5858.68; 5862.54;
5870.25; 5874.11; 5877.97;
5881.82; 5885.68; 5889.54;
5897.25; 5901.11; 5912.68;
5920.39; 5935.82; 8234.55

30 4 0.9617 2.9647 0.9683 2.7664

MCUVE-PLS

4373.76; 4412.33; 4566.61;
4593.61 4612.89; 4632.18;
4647.61 4670.75; 4690.03;
4709.32; 5750.69; 5762.26;
5777.69; 5866.40; 5885.68;
5904.97; 5924.25; 5939.68;
6001.39; 6028.39; 8238.41;
8253.84; 8261.55; 8265.41

24 3 0.9694 2.6828 0.9778 2.3232

IRIV-PLS

4373.76; 4412.33; 5750.69;
5754.55; 5758.40; 5762.26;
5769.97; 5773.83; 5777.69;
5854.83; 5858.68; 5862.54;

5866.40; 5874.11

14 2 0.9901 1.4877 0.9887 1.8471

BOSS-PLS

4373.76; 4678.46; 4705.46;
5758.40; 5762.26; 5766.12;
5777.69; 5858.68; 5862.54;
5866.40; 5870.25; 5877.97;
5881.82; 5885.68; 5904.97

15 3 0.9908 1.4487 0.9922 1.4889

4. Materials and Methods

4.1. Sample Preparation and Division

In this study, extra virgin olive oil, peanut oil, sunflower seed oil, soybean oil, sesame oil, and maize
oil were purchased in local supermarkets. In the experiments, peanut oil, sunflower seed oil, soybean
oil, sesame oil, and corn oil were used as adulterating oils, which would be added separately to the
EVOO to prepare the samples to be tested. That is to say, the adulterated oil samples were prepared
including only two kinds of edible oil, namely, the EVOO and one of adulterating oils. The specific
preparation process is reported below.

The doped oil samples were prepared using the EVOO and one of the adulterating oils. The volume
fraction of each adulterated oil ranged from 2.5 to 50% v/v, increasing by 2.5% v/v volume fraction.
Thus, 100 samples could be obtained in the experiment process.

In this study, the 100 samples were divided into two subsets. One was the calibration set, which
was adopted to construct the prediction model, the other was the validation set, which was applied
to verify the accuracy and generalization performance of the model. In order to meet the statistical
requirements, three samples at the same doping concentration were randomly selected and put into the
calibration set during sample division. Thus, there were 60 samples in the calibration set and 40 samples
in the validation set. Because the adulterated samples obtained in this study only contained two kinds
of edible oils, the calibration model established in this study can only be used to quantitatively detect
one adulterated oil mixed with EVOO.
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4.2. FT-NIR Spectra Acquisition

In this study, the NIR spectra of the doped samples were collected in transmission mode by means
of an Antaris II NIR spectrophotometer (Thermo Scientific Co., Waltham, MA, USA). The number of
spectral scanning was set to 32, and the spectral resolution was set to 4 cm−1. The range of spectral
scanning was set from 10,000 cm−1 to 4000 cm−1. Thus, the original spectrum of each doped sample
contained 1557 wavenumbers (i.e., 1557 wavelength variables). The absorbance data were stored as
Log (1/T), T being the transmittance.

In spectral collection, each doped sample was first placed in a cuvette with a diameter of 6.0 mm,
and then in the sampling chamber of the spectrometer for original spectral collection. The spectra of
each doped sample were collected three times, and the mean values of the three measured spectra
were taken as the original NIR spectra of the sample. When the spectra were collected, the laboratory
temperature maintained at 25 ◦C.

4.3. Spectra Preprocessing

Figure 4a shows the raw FT-NIR spectra of all collected samples. As can be seen from Figure 4a,
the spectra obtained contained not only useful sample information but also certain noise information,
even overflow occurred in some wavenumbers. In order to eliminate the influence of these adverse
factors, it was necessary to adopt appropriate methods to preprocess the spectra obtained before
multivariable model calibration. Standard normal variate (SNV) transformation, which can be used to
eliminate not only the baseline drift of diffuse reflectance spectrum but also the overflow phenomenon
of diffuse reflectance spectrum, is mainly used to eliminate the influence of surface scattering and
optical path change on diffuse reflectance spectra. Therefore, in this study, the SNV method was
adopted to pretreat the spectra obtained, and the FT-NIR spectra after SNV preprocessing are presented
in Figure 4b.

  
Figure 4. The original FT-NIR spectra (a) and the standard normal variate (SNV) preprocessing FT-NIR
spectra (b) of all adulterated EVOO samples.

4.4. Data Analyses Methods

The BOSS algorithm applied here, which can be used to select the characteristic variables in the
presence of collinearity, was described by Deng et al. [36]. The BOSS algorithm is based on a favorable
criterion of shrinkage and utilizes the information of regression coefficients instead of the traditional
hard shrinkage strategy. The BOSS algorithm, which is based on the bootstrap sampling (BSS) [37] and
WBS [38] techniques, was used to determine the random combination wavenumbers and to establish
the sub-models. The MPA was applied to extract informative variable subsets from the sub-models
developed on the basis of PLS regression. The specific process of the BOSS algorithm was as follows:

In the process of spectral data analysis, suppose the spectral data matrix is X, of size N × P,
which includes N samples and P wavenumbers, and a vector Y, of size N × 1, which represents the
reference measurements.
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Step 1, K subsets were generated in a variable space by the BSS. In each subset, one of many
redundant variables remained by the BSS to extract characteristic variables. In the step, all wavenumbers
were treated equally so that they had the same probability of being selected into the variable subset.
That is to say, each variable had the same weights (w)

Step 2, the K sub-model of PLS were first developed by the data from the subsets selected.
Then, the cross-validation RMSECV of each sub-model was calculated, each sub-model was sorted
from smallest to largest, according to the RMSECV value, and the sub-model ranked in the top 10%
was extracted.

Step 3, the regression coefficients of each sub-model extracted was calculated. By normalizing
each regression vector, all elements in the regression vector were transformed into the absolute value
of unit length. The new weights of the variable selected were then obtained according to the following
summation formula:

wi =
∑K

i=1
bi,k (1)

where K represents the number of sub-models that are extracted, and bi,k is the absolute value of the
normalized regression coefficients for the ith wavenumber in the kth sub-model.

Step 4, the WBS was used to generate some new subsets based on the new weight of each variable
selected, and the number of substitution wavenumbers in the WBS was obtained according to the
average number of wavenumbers selected in the last step.

Step 5, steps 2 to 4 were repeatedly conducted until the number of wavenumbers selected in the
renewed variable subset equaled one, and the variable subset was finally selected according to the
lowest value of the RMSECV during the iterations as the best variable subset.

4.5. Model Evaluation

The prediction and generalization performances of the models were examined by a five-fold cross
validation and an independent validation set. The values of the RMSECV, RMSEP, and coefficient of
determination (R2) were used as measures for model performance evaluation. RMSECV, RMSEP, and
R2 are given by the expressions

RMSECV =

√∑n
i=1

(
ŷ\i − yi

)2

n
(2)

RMSEP =

√∑n
i=1(yi − ŷi)

2

n
(3)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − yi)
2 (4)

For RMSECV, n is the number of samples in the calibration set, yi is the reference measurement
value from the ith sample, and ŷ\i is the estimated value of the ith sample, when the model is constructed
with the removed ith sample. For RMSEP, n is the number of samples in validation set, yi is the
reference measurement value of the ith sample in the validation set, and ŷi is the estimated value of the
ith sample in the validation set. For R2, n is the number of samples, yi is the reference measurement
value from the ith sample, ŷi is the estimated value of the ith sample, and yi is the mean of all samples.

4.6. Software

All algorithms were implemented in Matlab R2018a (Mathworks, Natick, MA, USA) under
Windows 10. The Matlab codes for implementing BOSS are freely available on the website:
http://www.mathworks.com/matlabcentral/fileexchange/52770-boss.

417



Molecules 2019, 24, 2134

5. Conclusions

The results obtained in this study show the potentials of FT-NIR spectroscopy in the detection of
adulterations in EVOO. The BOSS algorithm combines the strategies of soft shrinkage, MPA, and WBS
and could be used to extract the informative wavenumbers from the full-spectrum. The BOSS–PLS
model revealed its superiority with respect to the full-spectrum PLS, CARS–PLS, MCUVE–PLS,
and IVIR–PLS models. It can be concluded that the FT-NIR spectroscopy technique is an effective tool
for the determination of EVOO adulteration and has a good guiding significance for the evaluation of
EVOO quality. Moreover, the BOSS algorithm is a promising wavenumbers selection algorithm in
chemometrics analysis, which can improve the prediction performance of calibration models.
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Abstract: Aquaphotomics is a young scientific discipline based on innovative knowledge of water
molecular network, which as an intrinsic part of every aqueous system is being shaped by all of its
components and the properties of the environment. With a high capacity for hydrogen bonding,
water molecules are extremely sensitive to any changes the system undergoes. In highly aqueous
systems—especially biological—water is the most abundant molecule. Minute changes in system
elements or surroundings affect multitude of water molecules, causing rearrangements of water
molecular network. Using light of various frequencies as a probe, the specifics of water structure can
be extracted from the water spectrum, indirectly providing information about all the internal and
external elements influencing the system. The water spectral pattern hence becomes an integrative
descriptor of the system state. Aquaphotomics and the new knowledge of water originated from
the field of near infrared spectroscopy. This technique resulted in significant findings about water
structure-function relationships in various systems contributing to a better understanding of basic
life phenomena. From this foundation, aquaphotomics started integration with other disciplines into
systematized science from which a variety of applications ensued. This review will present the basics
of this emerging science and its technological potential.

Keywords: aquaphotomics; water; light; near infrared spectroscopy; water-mirror approach;
perturbation; biomeasurements; biodiagnosis; biomonitoring

1. Introduction to Aquaphotomics

Aquaphotomics is a young scientific discipline introduced by Professor Dr Roumiana Tsenkova
at Kobe University in Japan in 2005 [1–5]. The establishment of a new science came in response to
the recognized need in the current state of art for a common platform that can provide integration
of knowledge about the water structure and functionality coming from various disciplines and most
spectroscopy fields.

Water is the simplest compound and is made of two most common reactive elements. It covers
more than 70% of the Earth’s surface, comprises almost 2/3 of human body and is the most abundant
molecule of all living cells. From nano to micro, meso, and up to the level of galaxies—water is
everywhere. Wherever it is found, there are many phenomena involving it for which the mainstream
science still does not have an explanation for. In everyday lives water is the first association to the
word “liquid”, and yet liquid water is such an atypical liquid—with behaviors so different from other
liquids—that its properties are called “anomalies”. This behavior stems from the capacity of water
molecules for hydrogen bonding; if it did not exist, water would be a rather uninteresting material
and our world would most likely look profoundly different. The hydrogen bonds connect the water
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molecules into a dynamic network; a water molecular network, or in other words—into a very complex
water molecular system.

The past two decades have seen much progress in water science. Due to the significant role it plays
in biological systems, water has received considerable attention. Many interesting phenomena where
water is a key player stimulated research across disciplines, revealing the significance of water structure
and consequently its functionality in properties of materials or processes such as wettability [6],
biocompatibility [7–9], cell communication and carcinogenesis [10], DNA structure [11], molecular
recognition and communication [12], protein stability [10,13], membrane stability and survival in
desiccated state [14], mechanical properties such as kernel hardness [15] or mechanical behaviors
such as curling of the plant stem [16]—to list a few. Spectroscopy methods such as X-ray, infrared
spectroscopy (IR), THz spectroscopy, near infrared (NIR) spectroscopy and others, using light as a
probe, proved to be especially valuable tools for water studies and have contributed immensely to
elucidation of various aspects of water systems. In general, water-light interaction over the entire
electromagnetic spectrum, significantly contributed to a better understanding of water molecular
systems [5].

Water molecules absorb radiation over the entire range of the electromagnetic spectrum (Figure 1).
In contrast to mid- and far-infrared, where water strongly absorbs, allowing analysis of only very
thin samples, in the NIR part of the spectrum, water absorption is much weaker, therefore offering
the possibility of analyzing thicker samples and objects rapidly, in a completely non-destructive and
non-invasive manner, and with none or little sample preparation. Using light of the NIR range, it
is very easy to acquire spectral data of various aqueous and biological systems in real time without
disruption of their state and dynamics. Near infrared spectroscopy thus offers a unique window of
opportunities to observe the water molecular network as a scaffold—a matrix of every system of which
it is an intrinsic part of—in relation to all other contributing elements and factors shaping the system
structure, state and resulting dynamics—without any disruptions.

Figure 1. Water spectrum (double logarithmic plot), based on data from Segelstain [17].
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Aquaphotomics as a science was laid on a foundation provided by near infrared spectroscopy [5].
The breakthrough knowledge regarding the importance of water stemmed from the observation that
NIR spectral data for milk of healthy and dairy animals with mammary gland inflammation (mastitis)
differed at water absorbing bands (1440 and 1912 nm) [18–21]. The presence of disease in an organism
influenced many biomolecules (fat, lactose, proteins, etc.); these changes were subtle and sometimes
not even visible in the spectra at absorbance bands related to those compounds. However, all these
components exerted an influence on the water structure, and this cumulative effect was observable and
measurable at multiple water absorbance bands corresponding to different water molecular species.
In other words, the water molecular network changed when the composition of the aqueous system
was altered, and this was reflected in water spectral pattern.

This innovative knowledge changed the approach in spectral analysis and paved way for the
development of aquaphotomics. Changes in the water spectrum accurately and sensitively reflect
the changes of water molecular species, hydrogen bonding and charges of the solvated and solvent
molecules. In liquid water, each water molecule forms bonds with neighboring molecules, and can
also establish dipoles and induce dipole interactions with other molecules, which gives the water
molecular systems a heterogeneous character responsive to physical and environmental conditions [10].
Specific water species such as free water molecules, dimers, solvation shells and others contribute
to the water spectrum in a very distinctive manner [5]. The water on a molecular level behaves as
a collective mirror—its spectrum depicts changes as a response to all internal and environmental
perturbations [5,22,23]. Rich experience acquired during many years resulted in a big database
of spectra acquired under various perturbations, which revealed information regarding the water
molecular system dynamics and the functionality of water in bio-aqueous systems [5], supporting the
recognition of water as an active molecule and a central player in living processes [10,24].

The aim in establishing aquaphotomics as a science on its own, came in response to the recognized
need in the current state of art in “omics” disciplines. Despite huge contributions of genomics,
proteomics, metabolomics, transcriptomics and etc. to the comprehensive understanding of the
principles underlying basic living functions, they all have an approach focused on single molecules and
involve extraction procedures with the sample disruption. Biological systems can be studied using a
non-destructive and integrative approach based on aquaphotomics, i.e., the interaction between water
and biomolecules in which spectroscopic techniques combined with multivariate analysis represent a
powerful tool.

Therefore, aquaphotomics aims at integrating and systematizing the knowledge about water-light
interaction into a complementary, novel “omics” discipline whose objective is the large-scale,
comprehensive study of water, its structure and related functionality. The first step towards this goal
is identification of all the absorbance bands corresponding to specific water species. In this way, by
knowing what each frequency means in the terms of the water structure, the absorbance bands become
like “letters” that could be used to describe the features of aqueous systems. Relating the observed
spectral patterns (combinations of water absorbance bands and the intensities of absorbance at these
bands) with the observed characteristics or behaviors of aqueous systems, will clarify the functionality
of certain water species and allow for future descriptions of the system states and dynamics solely in
terms of the water structure. For various systems under various perturbations, aquaphotomics aims to
build an aquaphotome, a comprehensive database of water bands and spectral patterns which describe
the system and can therefore be used for future evaluations.

Since its establishment in 2005, aquaphotomics has showed steady progress (Figure 2). From
only eight articles published in the first year after it was first introduced, the influence of the general
idea and change over the years in the approach of how water is seen and treated in spectroscopy field
can be seen. If the current trend continues, the estimate is that in the year 2025, 500 research articles
per year can be expected. Through fundamental research, aquaphotomics provided novel insights
and a better understanding of the basic phenomena and the role of water. It stimulated research and
development of novel signal processing and chemometrics methods for data analysis, and provided a
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novel common measurement platform for a variety of applications, which led to the development of
novel sensing devices and instruments based on water-light interaction.

Figure 2. Number of articles published per year mentioning word “aquaphotomics” since 2006.
The numbers are obtained using Google Scholar web search engine for articles and patents (excluding
citations) containing word “aquaphotomics”.

In the following sections, the key ideas of aquaphotomics, which lead paradigm shift of water
seen from passive to active component of bio-aqueous systems and how this affected the basis of novel
measurement platform—will be explained. Together with the brief illustrations of major contributions
to science so far and through the extensive but not exhaustive list of applications, an overview of the
huge technological potential of aquaphotomics will be presented.

2. Water Spectrum as a Source of Information

2.1. Water as a Sensor and an Amplifier: The Water-mirror Approach

The fundamental idea of aquaphotomics is that water works as a sensor. This principle is in
aquaphotomics—usually expressed in the terms of water being a “collective mirror” (the water-mirror
approach) [5,22,25,26]. Every aqueous system is a dynamic arrangement of a water molecular network,
hydrogen-bonded between themselves and/or other constituents and influenced by perturbations.
As a consequence of the strong potential of water molecules for hydrogen bonding, water changes
its absorbance pattern every time it adapts to a physical or chemical change in the system itself or its
environment. The spectral pattern extracted through the interaction of light and water hence can be
used as an integrative marker or descriptor of the state of aqueous system.

The aquaphotomics approach is complementary to the conventional spectroscopy approaches.
In most of the NIR-IR spectroscopy studies, the water absorption bands are considered to be masking
the real information. For example, in order to measure proteins or sugars, the samples are usually dried
in order to remove water and better observe the absorbance bands related to the structure of these
biomolecules. In contrast, in aquaphotomics, the changes of the water spectral pattern are used as a
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source of information. The change in the concentration of a particular analyte is reflected in the changes
of absorbance at several water absorbance bands, which are then used to build the prediction model.

The water-mirror quality of water on a molecular level indirectly permits measurements of small
quantities or structural changes of other molecules present in the aqueous system [27]. By tracking the
changes in values of absorbance at water absorbance bands in the spectra of aqueous or biological
systems, the information is extracted not only regarding the water structure but also of other components
present in water, or the state of the system as a whole [4,5,27]. It should be mentioned that this property
of water was recognized and utilized very early on in the field of NIR spectroscopy [28–31], but
it was only with the development of aquaphotomics that the properties of water as a “collective
mirror” were truly explored and the huge potential of it for understanding new phenomena and
applications in aqueous systems, in biomeasurements, biodiagnostics and biomonitoring has been
truly understood [5].

The fact that changes in concentrations of particular analytes affect many water molecules, and
consequently affect many water absorbance bands, has a significant advantage. Traditionally, the
quantification limit for NIRS is regarded to be the concentration of 5000 ppm (mgL−1) or 0.5% (w/v) [32].
This established limit for the traditional approach to NIRS analysis is based on the utilization of the
absorbance bands of respective analytes directly. However, in aquaphotomics, water absorbance
bands are used for indirect quantification. The comparison of different approaches— traditional and
aquaphotomics and the resulting accuracy of quantification—was performed in one of the proofs
of the concept works concerned with the measurement of concentration of polystyrene particles in
water [33]. When the first overtone of water (i.e., the aquaphotomics approach) was used to develop a
quantification model for polystyrene particles in aqueous suspension (1–0.0001%), the measurements
achieved high accuracy—even in the case of very low concentrations. However, when the traditional
approach was applied and measurements were based on the polystyrene band near 1680 nm (C-H
stretching from aromatic C-H (2ν) [34]) a decrease in the concentration of particles led to a substantial
decrease in prediction accuracy. Therefore, the two approaches are not equivalent. The possibility
of detecting and measuring even low concentrations of analytes—lower than traditionally accepted
limit for NIRS—is a result of the different principle of measurement. In all aqueous systems, every
molecule of analyte is hydrated with an abundance of water molecules, which adapt to its structure
and rearrange, creating a variety of different water molecular species that can be observed based on
their respective absorbance bands in the NIR region. Since many water molecules are involved in the
hydration of just one molecule of analyte, the water not only acts as a sensor, but also as an amplifier.
This means that in aquaphotomics, instead of measuring analytes directly, the information about their
concentration is obtained indirectly by measuring changes in always abundant solvent molecules
which provides better detection and quantification than it was traditionally assumed the capability of
NIRS technique.

Aquaphotomics can thus provide detection and quantification of analytes—even when they are not
absorbing near infrared light—and when they are present in low concentrations [5,26,35]. In addition,
this approach offers the possibility of using the same water spectra as a source of information about
multiple analytes, thus enabling simultaneous measurements of many analytes [5,25,36].

2.2. Water Matrix Coordinates (WAMACS) and Water Spectral Pattern (WASP)

In the NIR region, the water spectrum shows four main bands located approximately around 970,
1190, 1450 and 1940 nm, which are attributed to the second overtone of the OH stretching band (3ν1,3),
a combination of the first overtone of the OH stretching and OH bending band (2ν1,3 + ν2), the first
overtone of the OH stretching band (2ν1,3) and a combination of the OH stretching and OH bending
band (2ν1,3 + ν2), respectively [37] (Figure 3). All these main bands are a rich source of information
regarding the water structure. However, despite having lower absorbances or being overlapped with
absorbance bands of other molecules, it should be noted that from 400 to 2500 nm more than 500 water
absorbance bands have been identified [38].
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Figure 3. Spectra of pure water (produced by Milli-Q water purification system (Millipore, Molsheim,
France) in the visible-near infrared region (400–2500 nm). Five spectra (miliQ_consNr1, miliQ_consNr2,
miliQ_consNr5) presented in the figure were acquired by illuminating the same water sample five
times consecutively.

Traditionally, water bands in the NIR region around 1450 and 1940 nm have been used for the
determination of water content, hydration state [39] and, in particular, the moisture content [40] in
various fields (agriculture, food industry, medical and pharmaceutical science).

Conventionally, only few symmetric and asymmetric stretching vibration assignments of water
molecules are known in the first overtone of water OH stretching vibrations (Figure 4). This region
with its broad band might look completely uninteresting to a classical spectroscopist, and it is often
overlooked as informationally poor. In fact, for years, water has been described as the ‘greatest enemy’
of infrared (IR) and NIR spectroscopy on account of its dominant absorption.

The changes in water spectra in response to any change of water molecular network are very
subtle, and require a data mining approach. The recognition of a high information potential of water
spectra stimulated the development of novel analytical methods and even new computing tools, in
order to meet the needs of the aquaphotomics data analysis [26,41–43]. A step-by-step explanation of
aquaphotomics analysis supplemented by analytical tools currently at disposal is provided in Tsenkova
et al. (2018) [26]. With so many tools at disposal, the utilization of the richness of NIR water spectra
extended its applications far beyond moisture determination.
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Figure 4. Spectra of pure water subjected to consecutive illuminations (the same spectra presented in
Figure 3) in the area of the first overtone of water.

Through extensive experimental research and application of multivariate analysis, the abundance
of water absorbance bands in near infrared region was discovered [38]. In the area of the first overtone of
water, 12 water absorbance bands corresponding to specific water molecular species were uncovered [5]
(Table 1). These 12 absorbance bands, named water matrix coordinates (WAMACS), were found to
be consistently important in spectral analysis of different aqueous and biological systems, and under
different perturbations. Table 1 provides assignments for the WAMACS of the first overtone of OH
stretching vibrations, based on the original publication as a source [5]. This list is only a small part of
the full-scale list of water absorbance bands, which is far from being completed, and is continuously
expanding as the science progresses. For example, in the region of C5 water matrix coordinate, recent
work discovered a subpopulation of quazi-free water molecules—water molecules confined in the
local field of ions (1396 to 1403 nm) [44].
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Table 1. Water matrix coordinates in the area of the first overtone of water in the near infrared region
(1300 to 1600 nm) (based on [5,44,45]).

WAMACS Range (nm) Assignment

C1 1336–1348 2ν3: H2O asymmetric stretching vibration

C2 1360–1366 OH-·(H2O)1,2,4: Water solvation shell

C3 1370–1376 ν1 +ν3: H2O symmetrical stretching vibration and H2O
asymmetric stretching vibration

C4 1380–1388
OH-·(H2O)1,4: Water solvation shell

O2-·(H2O)4: Hydrated superoxide clusters
2ν1: H2O symmetrical stretching vibration

C5 1398–1418
Water confined in a local field of ions (trapped water)

S0: Free water
Water with free OH-

C6 1421–1430 Water hydration band
H-OH bend and O-H . . . O

C7 1432–1444 S1: Water molecules with 1 hydrogen bond

C8 1448–1454 OH-·(H2O)4,5: Water solvation shell

C9 1458–1468 S2: Water molecules with 2 hydrogen bonds
2ν2 +ν3: H2O bending and asymmetrical stretching vibration

C10 1472–1482 S3: Water molecules with 3 hydrogen bonds

C11 1482–1495 S4: Water molecules with 4 hydrogen bonds

C12 1506–1516
ν1: H2O symmetrical stretching vibration

ν2: H2O bending vibration
Strongly bound water

Aquaphotomics starts to build up a “water vocabulary” where the “letters” are the water
vibrational frequencies bands (WAMACS) and the water spectral patterns (WASP) are the “words”
identifying different water spectral patterns and their relation to functions and phenomena in order
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to translate findings of water between different disciplines. More information about aquaphotomics
terminology are reported in [26]).

The water absorbance spectral pattern WASP is usually presented by aquagrams [46]. There are
different types of aquagrams [26]. The simplest form is a classical aquagram—a radar chart that
displays normalized absorbance at selected water absorbance bands. For the first overtone of water,
the axes of the aquagram are usually based on previously discovered 12 WAMACS. The normalized
absorbance is calculated as follows:

A′λ =
Aλ − μλ
σλ

,

where A′λ is normalized absorbance value displayed on radar axis; Aλ is absorbance after scatter
correction (multiplicative scatter correction using the mean of the dataset as a reference spectrum or
standard normal variate transformation); μλ is the mean of all spectra; σλ is the standard deviation of
all spectra; and λ are the selected wavelengths from WAMACS regions corresponding to the activated
water absorbance bands. Water absorbance bands are considered “activated” if they are consistently
found to be among highly influential variables in the outputs of aquaphotomics analysis.

The aquagrams are visually very convenient tools that enable quick and comprehensive comparison
of different systems or conditions of the same system by comparison of their WASPs.

2.3. Using Perturbation to Elicit Information

One of the most spectacular discoveries from the early years of aquaphotomics development was
the observation that the absorbance spectrum of water changed with consecutive measurements [1] (in
aquaphotomics, this is called illumination perturbations) (Figure 5). From the example presented in
Figure 5, it is evident that every subsequent spectrum after exposure to near infrared light is different.
The perturbation in the form of absorbed photons of radiation over sequential illuminations adds the
energy to the system and changes the water molecular network.

Figure 5. Consecutive illumination of water changes the near infrared spectra. Difference spectra
calculated by subtracting the first consecutive spectrum from four subsequently acquired spectra under
consecutive illuminations (the same spectra from Figures 3 and 4), show that near infrared light changes
the water spectral pattern.

Apart from the most affected bands being located around 1410 and 1488 nm, the subtle troughs
and shoulders can be observed throughout the spectra. The bands found to be affected by illumination
are located at 1344, 1360, 1376, 1382, 1410, 1418, 1472 and 1482 nm—all within the ranges of 12
WAMACS and corresponding to different water species. These changes in water spectra in response to
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perturbation due to light serve as a source of additional information. For example, the first publications
that presented the influence of light on water spectra, utilized the illumination as perturbation of prion
protein solutions in order to discover differences in the functionality of different protein isoforms [1,47].
As the solution evolved with time, the frequencies of the various intramolecular vibration modes
fluctuated due to a changing interaction between molecules. Out of three isoforms, only the solution
of protein with bound copper ions consistently showed less bulk water despite the light perturbation
suggesting it was the most stable form—a finding consistent with the published data.

Similarly to near infrared light, another aquaphotomics study that explored DNA mutation
products, showed that exposure to ultraviolet (UV) radiation leads to changes in water spectral pattern
of DNA solutions [48]. In addition, this study also showed that it was possible to measure the dose of
exposure to irradiation with high accuracy (Figure 6). The regression vector of the developed model
for prediction of the irradiation dose (Figure 6B) shows that UV light causes changes of absorbance at
C5, C7, C8, C9, C10 and C11 water matrix coordinate. Comparing Figures 5 and 6, the similarities
between the influence of NIR and UV light on water spectral pattern can be observed.

 
Figure 6. PLSR model for prediction of UV irradiation dose: (A) Y-fit curve showing relationship
between actual and predicted values; (B) regression vector of PLSR model showing water absorbance
bands affected by UV light perturbation [48].

The illumination affects the water spectra similar to the temperature; it creates more free water
molecules, which are then available to “scan” the rest of the water system and interact with its
components. From this interaction, new information can be gained, as explained in the example above.

Similarly to perturbation by light, intentional perturbation by temperature is often used in
aquaphotomics as it is possible to use temperature dependent NIR spectra to obtain structural and
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quantitative information of the aqueous systems [42,43,49,50]. For instance, temperature perturbation
was employed to study structural changes of ovalbumin as a model protein in aqueous solutions [51].
Two-dimensional correlation NIR spectroscopy and Gaussian fitting were adopted to investigate the
variation of different water species and the sequences of the changes in the structure of protein during
gelation. The results showed that in the gelation of protein, the change of S2 water species (water
species with two hydrogen bonds) follows the same phases as the protein; it maintains the stability of
the protein in native and molten globule states, while weakening of the hydrogen bond in S2 caused by
high temperature resulted in the destruction of the hydration shell and led to ovalbumin clusters to
form a gel structure.

In another work, water was used as a probe to quantify glucose in aqueous glucose solutions and
human serum samples [52]. Spectral changes of water were captured from the temperature dependent
NIR spectra using multilevel simultaneous component analysis (MSCA). The correlation coefficient for
the temperature model was higher than 0.99, and that of the concentration of glucose were 0.99 and
0.84 for aqueous solutions and serum samples, respectively. Even if the changes in the spectra of water
caused by temperature or concentration are very subtle, chemometrics provided techniques for the
solution of this problem [50].

2.4. Water as a Biomolecule and Water Spectral Pattern as a Collective Biomarker

There are a hundred times as many water molecules in our bodies than the sum of all the other
molecules put together. The most abundant molecule in the cell is water. Most biological processes
involve water, and the interactions of biomolecules with water affect their structure, function and
dynamics [10,24,53,54]. In the last decade, important advances have been made in our understanding
of the factors that determine how biomolecules and their aqueous environment influence each other.

In the field of near infrared spectroscopy, however, water is still not considered a molecular
network or a biologically relevant matrix, which originates from the general opinion still dominant
in life sciences that water is an inert, passive medium. The state of art is so that living processes are
described in terms of genes, DNA, proteins, metabolites or other single biomolecules acting as entities
isolated from water [53] (Figure 7a). In nature, there are no isolated biomolecules and water is not
only the native environment in which all biological processes occur, but also an integral part of all of
biological processes [10,24,55,56].

In aquaphotomics, the water spectral pattern is considered as the main source of information.
This offers two advantages when analysis of biological systems is performed. First, by focusing on
water absorbance, simultaneous measurements of several analytes is possible, and second, which is far
more important, the cumulative effect of different biomolecules on water matrix offers opportunity
of using water spectral pattern as a novel biomarker. In most conventional spectroscopy studies,
quantitative models are made for each separate component to be used to diagnose a system, where
combining the models multiplies the errors—thereby producing inaccurate results. In aquaphotomics,
despite possibility of measurements of the individual components, using the water spectral pattern as
an integrative, global marker provides much more information about the studied systems, because it
includes the effect of all components in the system—even the ones that, at the moment, current science
does not identify as important and contributing to the system functionality (or disfunctionality, as is
the case of diseases).

In aquaphotomics, the ‘functionality’, the biological state, the biological reaction to a change
(dynamics) of the bio aqueous system is the key (focus, objective), instead of the presence of individual
molecules. Specific water molecular structures (presented as water spectral patterns) are related
to the status, dynamics and ‘function’ of the bio-aqueous systems studied, thereby building an
aquaphotome—a database of water spectral patterns correlating water molecular structures to specific
‘perturbations’ (disease state, contamination state, reaction to light, change in temperature, and so on).
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Figure 7. An example of a collagen peptide and its hydration shell: (a) in conventional science,
biomolecules are usually represented only by this main chain on a black background, as if the
biomolecular processes are happening in the vacuum; (b–d), a realistic picture, showing water
hydration shells as an integral part [57] (Reprinted from Bella J, Brodsky B, Berman HM. Hydration
structure of a collagen peptide. Structure 1995; 3:893–906, with permission from Elsevier).

The simple shift in perspective of what water is in biological systems offers novel insights and
explanations of certain biological processes or phenomena. For example, DNA damage was detected
through changes in the water spectral pattern as nonirradiated and UVC-irradiated DNA solutions
were successfully distinguished in the 1488–1543 nm range, corresponding to the first overtone of
water [48].

3. Aquaphotomics—Innovative Knowledge Leads to Innovative Applications

Being rapid and non-destructive, NIR spectroscopy is a powerful technique whose horizons
have been further expanded by aquaphotomics. Since its establishment, aquaphotomics has grown
into a multidisciplinary scientific field, encompassing many research areas and providing a common
measurement platform for many applications. Using near infrared spectroscopy in aquaphotomics—in
comparison to using light of other frequencies—does offer significant advantage of non-destructive
evaluation of aqueous systems, which is of special significance for not only exploration of biological
systems, but offers immense potential for biodiagnosis and biomonitoring. This region is furthermore
an excellent tool for water observation, which provides an enormous amount of information about
water molecular structure [5,58]. Numerous NIR spectra can be obtained in various conditions and
states of the systems (under different perturbations)—all in real time.

The work in such a wide variety of applications, with different systems in different conditions led
to two significant breakthroughs in aquaphotomics. The first breakthrough is that water spectral pattern
can be used as a collective, integrative biomarker—a descriptor of a system’s state [4]. The second
one is the discovery that the water spectral pattern is related directly to certain functionality of the
system. While the first breakthrough is of major significance for applications and provides a novel
measurement platform, the second one leads to innovative knowledge of many phenomena. The next
sections will illustrate the significance of both.
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Contrary to the common understanding of overtone spectroscopy (100 to 1000 times lower
absorbance than in the mid-IR range), it has been shown that even very small concentrations of the
solutes could be measured with NIR spectroscopy if the aquaphotomics water-mirror approach is
applied. Changes in the absorption spectrum of liquid water were used for quantification of the
solutes present in water, even when the solutes did not absorb NIR light at all [30,35]. For instance,
using very robust experimental design, Gowen et al. performed comprehensive aquaphotomics
analysis of aqueous salts solutions (NaCl, KCl, MgCl2, AlCl3) with the aim of establishing limit of
detection [35]. This research demonstrated that the best region for the prediction of salt concentration
was the first overtone of water, attaining the prediction error of 500-800 ppm. Similar detection
limit (1000 ppm) was reported in a research study that explored quantification of different metals
(Cu(II), Mn(II), Zn (II) and Fe(III)) in aqueous HNO3 [59], while another work reported successful
prediction of HIV virus concentrations in plasma with the standard error of 23 pg/ml (ppb level) [60].
The water-mirror, indirect approach enables measurements of concentrations previously thought
impossible to be measured with NIR spectroscopy at ppm and even at ppb levels under certain
experimental conditions [23,25,33,35,59–62]. However, if we look beyond the measurements of
individual solutes, what these results illustrate is the sensitivity of water molecular network to the
changes in its components. The successful applications list measurements of acidity, pH [63] and
effects of mechanical filtration on pure water [64]. Introducing water spectral pattern as an integrative
marker represents one step forward from the detection of individual contaminants in water quality
monitoring [65] or measurements of single, individual biomarkers in disease diagnostics [4].

This concept is radically novel, because it shifts the perspective of the definition of water quality
by a set of physico-chemical and microbiological parameters to the definition of water quality as a
water spectrum within some defined spectral limits. The same is true for disease diagnostics, which for
many of diseases, especially in the early stage of development, works with very low concentrations of
biomarkers in body fluids or does not even have reliable biomarkers. The spectrum of aqueous system
integrates the influence of all single markers into one integrative, holistic marker which is a result of
cumulative effect of many components and can easily be monitored in real time. The applicability of
the proposed concept was evaluated in water quality monitoring [65], food quality monitoring [66]
and biodiagnostics [67,68]. Using water as a biomarker, the information on the health status of any
organism can thus be acquired in real time and non-destructively, allowing the continuous in vivo
monitoring of the same sample.

In plant biology studies, aquaphotomics provided a methodology to follow the impact of a
virus infection based on tracking changes in water absorbance spectral patterns of leaves in soybean
plants during the progression of the disease [69,70]. Compared to currently used methods such as
enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and Western blotting,
aquaphotomics was unsurpassable in terms of cost-effectiveness, speed, and accuracy of detection of
a viral infection. The diagnosis of soybean plants infected with soybean mosaic virus was done at
the latent, symptomless stage of the disease based on the discovery of changes in the water solvation
shell and weakly hydrogen-bonded water which resulted from a cumulative effect of virus-induced
changes in leaf tissues. A similar study reported the detection of begomovirus in papaya leaves with
an aquaphotomics approach [71]. Tracking the cumulative effect of various, most likely unknown,
biomarkers of viral infection in leaves provided grounds for successful, early diagnosis based on
aquaphotomics principles.

Similarly, different water spectral patterns were found in leaves of genetically modified soybean
with different cold stress abilities [69]. This research on the discrimination of soybean cultivars with
different cold resistance abilities has proven that resistance to cold stress can be characterized by
different water absorbance patterns of the leaves of genetically modified soybean. Different genetic
modifications resulted in a multitude of bio-molecular events in response to cold stress, whose
cumulative effect was detected as a specific water spectral pattern of leaves; i.e. the higher the cold
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resistance, the higher was the ability of the cultivar to keep the water structure in less-hydrogen bonded
state, providing a supply of “working water” in the conditions of decreased temperature.

In another study, aquaphotomics was applied for exploration of the extreme desiccation tolerance
i.e. the ability of some plants—called resurrection plants—to survive extremely long periods in
the absence of water and then to quickly and fully recover upon rewatering [72]. Application of
aquaphotomics to study one such plant—Haberlea rhodopensis—during dehydration and rehydration
processes, revealed that in comparison to its biological relative—a non-resurrection plant species,
Deinostigma eberhardtii—H. rhodopensis performs fine restructuring of water in its leaves, preparing
itself for the dry period. In the dry state, this plant drastically diminished free water, and accumulated
water molecular dimers and water molecules with four bonds (Figure 8). The decrease of free water
and increase of bonded water, together with preservation of constant ratios of water species during
rapid loss of water, was found to be the underlying mechanism that allows for the preservation of
tissues against the dehydration-induced damages and ultimately the survival in the dry state.

 
Figure 8. Dynamics of different water species (Si =water molecules with i hydrogen bonds,
Sr = protonated water clusters) during dehydration and rehydration of Haberlea rhodopensis and
Deinostigma eberhardtii. Relative absorbance of water species in Haberlea rhodopensis (A) and Deinostigma
eberhardtii (B) during desiccation and subsequent rehydration [72].

In the medical field, aquaphotomics was proposed for in vivo therapy monitoring of topical cream
effects [73,74], for monitoring of dialysis efficacy [67] and diagnosis of several diseases: cancer [67],
diabetes and coronary heart disease [75]. These applications utilize the concept of a water spectral
pattern as an integrative biomarker that offers significant advantage compared to traditional ways of
therapy monitoring or diagnostic practices in medicine. For example, monitoring dialysis efficacy is a
particularly challenging task that relies on discrete sampling and measurements of only several uremic
toxins out of more than 80 currently recognized that contribute to the uremic syndrome (Figure 9).
The NIRS method has already been proposed to measure urea in spent dialysate [76]. However, urea
is only a single marker and its concentration decreases during dialysis, making the detection harder.
By using aquaphotomics approach, individual component measurements were replaced by process
monitoring [67]. Instead of measuring waste materials in spent dialysate, their cumulative effect on the
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water matrix was measured as water spectral pattern changes during the dialysis. In another words,
individual component measurement was replaced by monitoring of the process. The water spectral
pattern of spent dialysate averaged for all patients after 5, 45, 90 and 135 min of treatment presented
as the aquagram in Figure 9 showed, as the therapy progressed there was an increase of free water
molecules (1398 and 1410 nm: C5 WAMACS) in the dialysate. In this way, the efficacy of dialysis can be
assessed in a simplified way by tracking the changes of the respective dialysate water spectral pattern.
The advantage of such an indirect approach of biomonitoring can also be extended to biodiagnostics as
the water spectral pattern captures the information regarding all biomolecules that change with the
disease—even the biomolecules current science is not aware of.

Figure 9. Water spectral pattern of spent dialysate presented on aquagram can be used as a marker of
dialysis efficacy. Instead of measurements of different uremic toxins (of which there are more than 80),
aquaphotomics provides measurement of their collective cumulative effect on water matrix of spent
dialysate. [67].

The works on mastitis [21,77–82] showed that as the various milk components change during the
different stages of infection, they influence the water matrix of milk differently. The water spectral
patterns of blood, milk, and urine of mastitic cows, revealed that the same water absorbance bands are
activated in different body fluids in response to the presence of disease [81]. Similarly, physiological
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changes such as ovulation can be detected in various body fluids using the same principles such as in
the Giant panda [68,83], in the Bornean orangutan [84], in dairy cows [85] and in mares [86].

Aquaphotomics made a significant contribution to the field of microbiology and food engineering
by not only providing a fast and nondestructive analysis, but by contributing to better understanding
of the mechanism of action of some microorganisms [87–89]. For example, probiotic, non-probiotic and
moderate bacteria strains produced a unique water spectral pattern, as shown in aquagrams reported in
Figure 10. Probiotic bacteria strains were characterized by a higher number of small protonated water
clusters, and free water molecules and water clusters with weak hydrogen bonds [89]. The discovery
that strong probiotic bacteria produced more free water and less hydrogen-bonded water species, i.e.
they break water structures in a way comparable to an increase in temperature, provides novel insight
on their mode of action. Moreover, aquaphotomics was able to distinguish a subdivision into two
species within one bacteria strain, where conventional PCR analysis was not enough sensitive [90].

 
Figure 10. Aquagrams of culture media of groups of probiotic, moderate and non-probiotic strains.
Average values of normalized absorbance values of the water matrix coordinates for each group are
plotted on each wavelength axis [89].

The aim of studying water interactions on a molecular level was to obtain a better understanding
of the relationship between the water structure and a phenomena on a macro scale. For example, one
of the novel studies related the sensory texture of apples with particular spectral pattern of fruits:
mealy apples had water predominantly in a weakly hydrogen bonded state, while the opposite was
true for juicy, firm apples [66]. Another study related the dehydration band (1398 nm) with physical
damage in mushrooms [45]. Similarly, wheat kernel hardness was related to specific water absorbance
bands (1366 and 1436 nm) [15]. Usually, food texture is not considered a property that stems from
certain water structure; however, the above-mentioned works revealed that water structure change
with texture. Further studies are needed to better understand the relationships between the water
spectral pattern and pectin metabolism in horticultural products.

Interesting findings were obtained in applications of aquaphotomics for basic studies of interaction
of biomolecules and water. For example, although many spectroscopic studies have been conducted
on glucose, few studies have been carried out on the anomers of glucose despite the fact that
spectra—as well as chemical and enzymatic reactions—depend on the specific molecular structure.
What aquaphotomics study of glucose isomerism [91] found is that the absorbance band at 1742
nm possess the potential to distinguish glucose anomers qualitatively and quantitatively. What is
conventionally regarded as the first overtone of the C-H stretching mode, was confirmed to not be
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related to glucose—but to water [92,93]. Through work in the field of protein-water interactions,
aquaphotomics provided insight into their dynamics and the significant role water plays in their
functionality. In a study of prion protein isoforms [47], aquaphotomics analysis of Mn and Cu
prion isoforms in water solutions revealed that while binding of copper results in increased protein
stability in water, the binding of manganese resulted in less stability—which led to fibril formation,
responsible of neurodegenerative disease. The fact that the entire process of protein structural changes
in aqueous systems can be monitored indirectly through the water absorbance pattern of the protein
solution, was demonstrated in a study of amyloid protein—another protein involved in pathogenesis
of neurodegenerative diseases [71]—as well as ovalbumin [51].

Aquaphotomics studies on water-material interaction hold great promise in understanding some
of the very complex properties that are of interest for many applications, such as wettability or
biocompatibility. A study concerned with investigation of an excellent wettability of titanium dioxide
reveled the importance of water species ratios [6]. More recent studies exploring the state of water
in hydrogel materials of soft contact lenses [94–96] revealed that the water spectral pattern holds
information even about the state of polymer network and protein deposits on the surfaces of worn
contact lenses. Other aquaphotomics studies showed how nanomaterials shape the water matrix, as in
the case of fullerene-based nanomaterials that act as water structuring elements when present in very
low concentrations [73,74,97]. In nanotechnology and nanomedicine, aquaphotomics could lead to
novel findings due to the fact that with decreasing size, the available active surface interacting with
water playing a significant role increases.

Since its establishment, aquaphotomics has grown into a large, multidisciplinary scientific
field, encompassing many research areas and providing common measurement platform for many
applications. Table 2 provides an idea of possible fields of applications of aquaphotomics coupled
to NIR spectroscopy. These works illustrate the great versatility of this technique and can hopefully
inspire novel research and application ideas.

Table 2. Aquaphotomics contribution: from fundamental research to various applications.

Application Object of Study Purpose References

Fundamental
research

Sugars Quantification [25,43,49,52]

Glucose Distinguishing anomers [91]

Salts Quantification and influence on water spectra [26,35,44,61,98]

Acids Quantification, accuracy of prediction
depending on acidity

[99]

Acids and pH Quantification [63]

Ethanol Quantification, structural analysis [42,100–103]

Methanol Quantification [98,104]

Water-ethanol-isopropanol
mixture

Quantitative analysis and the effect of
temperature

[105]

Water, methanol, ethanol
and ethylenediamine

mixture

Quantitative analysis and the effect of
temperature

[106]

Monoethylene-glycol Quantification [98]

Metal ions Quantification [107–110]

Near infrared light Influence of consecutive irradiation [1]

UV light Measurement of irradiation dose [48]

Temperature Influence of temperature on water spectra [42,43,111]
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Table 2. Cont.

Application Object of Study Purpose References

Biomolecules Oligopeptides Interaction with water – elucidating the
structure, dynamics and function of proteins

[112]

Prion proteins Stability of protein structure as a function of
metal binding

[47]

Insulin Fibrillation phases [113]

Albumin and γ-globulin Quantification [114]

Albumin Structural analysis and hydration properties [115]

Ovalbumin Gelation of globular proteins [51]

DNA Quantification and detection of mutation
products

[48]

Phospholipids Structural analysis and effect on water [111]

Water Water contamination Quantification of pesticides alachlor and
atrazine

[62]

Water contamination Detection of contaminants based on salts as
model systems

[35]

Commercial mineral
waters

Discrimination [116]

Ground water quality Continuous monitoring based on water
spectral pattern as a holistic/integrative

marker

[65]

Pure water Influence of filtration process [64]

Food Honey Adulteration [117]

Mushrooms Detection of physical damage [45,118]

Milk Components [36]

Wafer, coffee, soybean Water activity and moisture content [119,120]

Perches (fish) Discriminating between wild fishes and
raised in the recirculation system

[121]

Pork loin Discrimination between fresh and spoiled
meat

[121]

Porcine muscles Discrimination between fresh and thawed
meat

[121]

Cheese Ripening process [122]

Cheese and winter melon Influence of packaging material on ripening [123]

Salami Influence of coating on ripening [124]

Packaging material Influence of bioactive compound - propolis [125]

Apples Sensory texture - specific mechanical and
structural properties related to water

spectral pattern

[66]

Oilseed Rape Stem rot detection [126]

Rice Seed vitality [127]

Coffee Roasting degree [128]

Wheat kernels Hardness [15]
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Table 2. Cont.

Application Object of Study Purpose References

Materials Soft contact lenses:
hydrogels

Discrimination of hydrogels with different
water content

[95,96]

Soft contact lenses:
hydrogels

Discrimination of new and worn contact
lenses

[94]

Titanium dioxide Wettability [6]

Environment Soil Identification of soil type [129]

Water contamination Monitoring [65,130]

Nanomaterials Fullerene based
nanomaterials

Hydration properties [73,74,97]

Polystyrene Quantification of particles in water solutions [33]

Microbiology Bacteria – metabolites Contribution to NIR signal from cells and
metabolites

[131]

Bacteria - probiotic Classification [87,89]

HIV virus Detection and quantification [60]

Bacteria Selection [88]

Cells and
tissues

Somatic cells in milk Quantification [21]

Tissue (mice) Native state of metals [132]

Tissue (mice) Ex vivo discrimination [133]

Plant biology Soybean Detection of mosaic virus infection [70]

Soybean Ability to cope with cold stress in genetically
modified cultivars; Detection of mosaic virus

infection

[69]

Resurrection plants Peculiarities of water structure in leaves of
anhydrobiotic organism

[72]

Papaya leaves In vivo detection of begomovirus infection [71]

Animal
medicine

Mastitis in dairy cows Disease detection [21,77–82]

Estrus detection in urine
of giant panda

Finding water spectral pattern as biomarker,
quantification of hormone

[68,83]

Estrus detection in milk
of cows

Ovulation period detection and monitoring [85]

Estrus detection in urine
of Bornean orangutan

Ovulation period detection and monitoring [84]

Estrus period detection
using serum in mares

Detection of oestrus, metestrus, and diestrus
in mares,

[86]

Medicine DNA mutation products Detection of DNA damage, quantification of
damage products

[48]

AIDS HIV virus detection [60]

Serum Serum based diagnosis (diabetes, coronary
heart disease)

[75]

Prion protein disease Mechanism of disease [47]

Skin cream effects Therapy monitoring [73,74]

Dialysis efficacy Monitoring of spent dialysate [67]

Colorectal cancer Diagnostics based on serum and urine [67]
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4. Future Perspectives

With the theoretical and technological advancements in spectroscopy and data analysis techniques,
the development of aquaphotomics as a new science led to development of a steady new knowledge
base about water-light interaction and provided a common measurement platform that employs novel
measurement principles.

The future of aquaphotomics will be towards building up the aquaphotome database of WAMACs
and WASPs for extensive number of systems in our life. It will embrace the rest of the “–omics” data in
a collective manner to be used as complementary tool for further understanding new phenomena in
science and for the development of feedback systems where the WASP will be the diagnostic tool and
the respective individual “–omics” data will provide the information for the regulator in a feedback
system to not only monitor and diagnose, but control processes including biological ones.

The innovative knowledge of importance of water as a biologically significant molecule (a
biomolecule in its own right [53]) and of water-light interaction as a way of extracting information
led the paradigm shift that places different demands on the development of sensing technologies.
The advantage of being non-destructive, rapid and capable of comprehensive biomonitoring and
biodiagnosis, based on utilization of water spectral pattern as new, more accurate and collective
biomarker, aquaphotomics provides great potential to complement conventional technologies used to
perform single tasks, while in others it may even lead to the replacement of current ones.

The aquaphotomics based applications vastly extended the possibilities of spectroscopy and
especially of the near infrared spectroscopy, while the ever improving sensor technology offers great
prospects for high accuracy, real-life applications, being more cost-effective at the same time [134].
Presented here, aquaphotomics works demonstrate outcomes that are presumably just a glimpse of a
much larger application potential.
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Abstract: The agricultural industry has made a tremendous contribution to the foundations of
civilization. Basic essentials such as food, beverages, clothes and domestic materials are enriched by
the agricultural industry. However, the traditional method in agriculture cultivation is labor-intensive
and inadequate to meet the accelerating nature of human demands. This scenario raises the need
to explore state-of-the-art crop cultivation and harvesting technologies. In this regard, optics
and photonics technologies have proven to be effective solutions. This paper aims to present a
comprehensive review of three photonic techniques, namely imaging, spectroscopy and spectral
imaging, in a comparative manner for agriculture applications. Essentially, the spectral imaging
technique is a robust solution which combines the benefits of both imaging and spectroscopy but faces
the risk of underutilization. This review also comprehends the practicality of all three techniques
by presenting existing examples in agricultural applications. Furthermore, the potential of these
techniques is reviewed and critiqued by looking into agricultural activities involving palm oil, rubber,
and agro-food crops. All the possible issues and challenges in implementing the photonic techniques
in agriculture are given prominence with a few selective recommendations. The highlighted insights
in this review will hopefully lead to an increased effort in the development of photonics applications
for the future agricultural industry.

Keywords: agriculture; photonics; imaging; spectral imaging; spectroscopy

1. Introduction

Light constitutes a collection of particles known as photons, propagated in the form of waves [1].
In physics, light often relates to radiation in the entire electromagnetic spectrum, encompassing X-rays,
ultraviolet, visible light, infrared, and microwaves among others [2]. The unique electromagnetic
properties of light have intrigued academics across the globe and the earliest study can be traced
back to the early 17th century [3]. As time passes, the accumulation of knowledge and technological
advancement have gradually shaped the canvas for light-related research, leading to the establishment
of the field of optics and photonics.

Optics can be defined as a branch of physics that studies the behavior and properties of light as
well as the interaction of light with other matter [2]. Meanwhile, photonics can be regarded as the
application of light through the systematic generation, control and detection of photons [2,4]. Despite
the distinction between optics and photonics, both terminologies have often been used interchangeably
in the literature to collectively represent the science and application of light [1].
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Optics and photonics have influenced various engineering applications, transforming the
landscape of various fields and improving the lives of mankind. One of the main applications
of optics and photonics can be seen in the field of communications. Knowledge of optics and photonics
has been used to develop optical fibers which help to cater for the needs of broadband Internet service
in this “data hungry” era. Furthermore, optics and photonics have been used in the manufacturing of
modern displays such as liquid crystal display (LCD), organic light-emitting diode (OLED), flexible
display and such. Solar cells for energy harnessing too illustrate another application of optics and
photonics. Not least, optics and photonics have also been applied in more sophisticated areas such as
security surveillance, medical imaging, quantum computing and more [1].

Amidst the modern and complex solutions discussed earlier, it often slipped our minds that optics
and photonics can be readily integrated into the field of agriculture. The simplest examples would
be the adjustment of plantation direction for optimum sunlight exposure, as well as the usage of
incandescent light bulbs in egg incubation and hatching [5]. Over recent decades, academics have been
alerted to the potential of optics and photonics in the agricultural industry. This has led to progressive
developments that utilize optics and photonic techniques in maximizing the quality and productivity
of agricultural products.

This paper aims to review some of the most popular optics and photonic techniques in agriculture,
namely imaging, spectroscopy and spectral imaging. In addition, existing applications of each
technique in the agricultural industry will also be compiled. A comprehensive discussion will also be
made to gauge the potential of exploiting optics and photonic techniques in the agricultural sector
with the intention of improving the quality and productivity of the agricultural products at a reduced
labor cost.

2. Classification of Photonics Systems in Agriculture

Quantity and quality have always been the primary foci in the field of agriculture. The governing
of these attributes is anticipated to be more crucial in the upcoming years. This prediction is based
on the constant increase in global population as well as heightened expectations for healthy food
sources. However, the agricultural field faces great pressure under globalization. The transformation
of the global economic landscape makes agricultural activities seem less profitable in contrast to other
industrial activities. The outflow of the workforce makes it increasingly expensive and difficult to meet
the demands of agricultural activities.

As a result, modern technology has been integrated into the agricultural field to maximize output
efficiency at minimum labor force. Similar to other industries, automation systems have been applied
in stages of agricultural activities to reduce a dependency on manual labor [6]. These systems require
optics and photonics techniques to complement them, providing the required ‘sight’ for operations.
These vision requirements have been fulfilled by optics and photonic techniques such as imaging, and
spectral imaging. These techniques provide machine vision at high dynamic range, high resolution
and high accuracy in a non-destructive, non-contact and robust manner [5]. In the subsections below,
details of ESS configurations, their classifications and structures have been illustrated.

2.1. Imaging Technique

The imaging technique is analogous to the function of the human eye. It captures the image of
the subject for necessary calculations and measurements before performing the final evaluations [7].
The imaging technique is essential for collecting spatial, color [6] and even thermal [8] information
of the subject of interest. Therefore, imaging techniques are typically operated in an active manner.
The active imaging technique involves image acquisition under two major light sources, namely visible
light and infrared sources. Images under visible light can be easily acquired with any standard camera
modules. On the other hand, images under exposure to infrared can be acquired with special infrared
camera modules [8].
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Image acquisition under visible light is similar to our daily photography. The image acquisition
process under this light source is straightforward and images captured are usually rich in details and
colors. However, complexity often arises while performing analysis on these images due to illumination
variations. For instance, images captured outdoors vary under sunny and cloudy conditions. Meanwhile,
images captured indoors is categorized by natural light, incandescent and fluorescent conditions [7].

The acquired image will then undergo pre-processing to convert it into an appropriate format
before further analysis. Pre-processing tasks may include exposure correction, color balancing, noise
reduction, sharpness increase or orientation change. Next, the process of feature detection and matching
as well as segmentation is performed on the pre-processed image to extract the object or region of
interest. Finally, the subject of interest is analyzed with proper analysis algorithms in the respective
area of application [9].

The imaging technique can be easily applied in the simple analysis of static-positioned objects or
even in more complex areas which involve moving targets, such as visual navigation and behavioral
surveillance. These achievements were made possible by utilizing the spatial information acquired
through the imaging technique for position triangulation and motion guidance [7,9]. In image
processing, the computer imaging technique has been employed to create, edit, and display graphical
images, characters, and objects. The computer image analysis technique is a broad field which consists
of computer domains and applications in food quality evaluation [10,11], grading and the sorting of
agricultural products [12,13], as well as harvesting the crops [14], and estimating moisture content
in the drying stage for the storability of the food product [15]. Computer imaging contributes to the
development of digital agriculture. For instance, weed detection and fruit grading systems with digital
imaging techniques are cost effective systems in achieving ecological and economically sustainable
agriculture [16].

2.2. Spectroscopy Technique

In contrast to the imaging technique, the spectroscopy technique enables the ‘sight’ of properties
that are invisible to the naked eye. The spectroscopy technique functions by extracting spectral
information from the sample of interest. The spectral information is obtained when light interacts with
the composition of the sample. This interaction leads to changes in the intensity or frequency and
wavelength of the initial light source, ultimately defining a spectrum which acts as the fingerprint of
the sample [17].

Similar to the imaging technique, variations do exist for spectroscopy. These variations are
categorized by the nature of interaction between the light source and the sample when the spectroscopy
measurement is conducted. In the agricultural field, the commonly adopted spectroscopy techniques
are ultraviolet-visible (UV-VIS) spectroscopy, fluorescence spectroscopy, infrared (IR) spectroscopy,
and Raman spectroscopy [17].

2.2.1. Ultraviolet-Visible (UV-VIS) Spectroscopy

The ultraviolet-visible (UV-VIS) spectroscopy is conducted in both the ultraviolet (UV) and visible
light (VIS) band, spanning wavelengths from 100 nm to 380 nm (UV) and from 380 nm to 750 nm
(VIS). The principle governing the UV-VIS spectroscopy is Beer-Lambert’s law, which is expressed
by (1) and (2):

I = I010−εcl, (1)

ln
I0

I
= ln

1
T

= εcl = A (2)

where I0 and I are intensity of light entering and leaving a sample respectively, ε is the extinction
molar coefficient, c is the molar concentration of substance, l is the thickness of sample (cm), T is
transmittance and A is absorbance [18].

A typical model that illustrates Beer-Lambert’s law can be seen in Figure 1. It can be observed
that as light propagates through a sample, a portion of the incidental light source will be absorbed by
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the molecules in the sample, while the remaining light rays will transmit and escape across the sample.
The ratio between the intensity of the incident and escaped rays defines the absorbance of light by the
sample. This value of light absorbance is of main interest in UV-VIS spectroscopy. As in Equation (2),
light absorbance is dependent on ε, c, and l [18]. The absorbance value(s) at a single or multiple
wavelength(s) will then be used to measure the concentration of compounds in a sample [19–23].

 
Figure 1. Model of Beer-Lambert’s Law [18].

2.2.2. Fluorescence Spectroscopy

Fluorescence spectroscopy is distinct from other spectroscopy techniques in terms of the emission
of light when incident rays from an ultraviolet or visible light source is absorbed by fluorescent
molecules present in a sample. These fluorescent molecules are known as fluorophores and commonly
known examples include quinine, fluorescein, acridine orange, rhodamine B and pyridine 1 [24].

The fluorescence phenomenon can be explained with a Jablonski diagram illustrated in Figure 2.
It should first be understood that fluorescence involves the three electronic states of a fluorophore
molecule, namely the singlet ground, first and second electronic states. These states are represented by
S0, S1 and S2 in Figure 2. The key condition for fluorescence to occur is the excitation of the molecule
from the ground state, S0 to either electronic states S1 or S2 upon the absorption of light. If the molecule
reaches the S2 state, internal conversion or vibrational relaxation will occur, returning the molecule to
the lower S1 state without radiation emitted. From here, the molecule will again return to the S0 while
emitting light which has equal energy as the energy difference between S0 and S1. This light emission
is known as fluorescence and this condition typically occurs 10-8 seconds after the initial excitation [17].

Figure 2. Jablonski diagram [17]. Reproduced with permission from A. Nawrocka, Advances in
Agrophysical Research, Published by IntechOpen, 2013.

Fluorescence spectroscopy is highly specific and highly sensitive. The high specificity of the
technique arises from the usage of both the excitation and emission spectra; whereas high sensitivity
is achieved as radiation measurements are made against absolute darkness. These characteristics
however limit the independent usage of the technique [17]. As a result, fluorescence spectroscopy
is often combined with high performance liquid chromatography (HPLC) [25]. Variations may also
be implemented in the excitation and emission wavelengths, forming the synchronous fluorescence
spectroscopy (SFS) [26].
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2.2.3. Infrared (IR) Spectroscopy

Infrared (IR) spectroscopy operates within the IR band with wavelengths from 780 nm to 1 mm.
The IR band can be further broken down into three sub-bands, namely near-infrared (NIR; 780 nm to
5 μm), mid-infrared (MIR; 5 μm to 30 μm) and far-infrared (FIR; 30 μm to 1 mm). In agriculture-related
optics and photonics, the NIR and MIR bands are of greater interest [17].

IR spectroscopy obtains the spectral information of a subject due to molecular vibrations under
the excitation of an IR light source. In general, molecular vibrations occur when there exist normal
modes of vibrations. A normal mode of vibration (or fundamental) refers to the phenomenon in which
every atom in a molecule experiences a simple harmonic oscillation about its equilibrium position.
These atoms oscillate in phase at the same frequency while the center of gravity of the molecule remains
unchanged. A typical molecule has 3N-6 fundamentals (3N-5 for linear molecules), where N refers to
the number of atoms. The diatomic molecular vibrations are illustrated in Figure 3 [27].

Figure 3. Vibrations in diatomic molecules [17]. Reproduced with permission from A. Nawrocka,
Advances in Agrophysical Research, Published by IntechOpen, 2013.

Molecular vibrations, which occur regardless the presence of IR light source, result in an increase
in light absorption. These peaks in absorption form specific bands in the IR spectrum that correspond
to the specific frequencies in which molecular vibrations occur. This allows the easy identification of
the molecular structure in a sample since different molecules have different vibration frequencies [27].
This unique frequency ‘fingerprint’ is exceptionally beneficial in the analysis of complex molecules
that contains functional groups such as –OH, –NH2, –CH3, C=O, C6H5– and more. For instance,
the C6H5– group forms peaks at wavenumbers from 1600 cm−1 to 1500 cm−1 (wavelengths from
6.25 μm to 6.67 μm) whereas the C=O group exhibits high absorption at wavenumbers from 1800 cm−1

to 1650 cm−1 (wavelengths from 5.56 μm to 6.06 μm) [28].

2.2.4. Near-Infrared (NIR) Spectroscopy

The near-infrared (NIR) spectroscopy operates within the NIR band with wavelengths from
780 nm to 5 μm. The absorptions within the NIR band exist due to overtones and combinations of the
fundamental vibrations. Overtones refer to higher frequencies that are multiples of the fundamental
frequency. Meanwhile, combinations involve interactions between two or more vibrations occurring
simultaneously, resulting in a frequency which is the sum of multiples of the respective frequencies.
A majority of the absorptions in the NIR band are due to vibrations of the C–H, O–H and N–H bands.
The S–H and C=O bonds too potentially contribute to these absorptions. Several assignments of the
NIR absorption bands can be seen in Table 1 [29].
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Table 1. Examples of NIR absorption bands [29].

Wavelength (nm) Wavenumber (cm−1) Assignment

Water

1454 6878 1st overtone O–H stretching

1932 5176 O–H combination

Proteins

1208 8278 2nd overtone C–H stretching

1465 6826 1st overtone N–H and O–H stretching

1734 5767 1st overtone C–H stretching

1932
2058
2180

5176
4859
4587

N–H combination and O–H stretching

2302
2342

4344
4270 C–H stretching combination

Oil

1210 8264 2nd overtone C–H stretching

1406 7112 1st overtone N–H and O–H stretching

1718
1760

5821
5682 1st overtone C–H stretching

2114 4730 N–H combination and O–H stretching

2308
2346

4333
4263 C–H stretching combination

Starch

1204 8306 2nd overtone C–H stretching

1464 6831 1st overtone N–H and O–H stretching

1932
2100

5176
4762

N–H combination and O–H stretching

2290
2324

4367
4303

C–H stretching combination

NIR spectroscopy, which is a non-destructive measurement, enables the simultaneous identification
of components in a single sample within a short period of time, making it a preferable replacement for
various chemical techniques. However, consideration should be taken into account as this technique
requires initial calibration with samples of known composition, requiring great expenses of time and
resources. Not least, frequent recalibration and issue of instrument interoperability might affect the
practicality of the NIR spectroscopy technique [29].

2.2.5. Mid-Infrared (MIR) Spectroscopy

The mid-infrared (MIR) spectroscopy operates within the MIR band with wavelengths from 5 μm
to 30 μm (wavenumbers from 4000 cm−1 to 400 cm−1; note the presence of slight overlapping with
NIR). The absorptions that occur within the MIR band are due to fundamental vibrations and can be
segregated into four regions, namely the X–H stretching region (4000 cm−1 to 2500 cm−1), triple-bond
region (2500 cm−1 to 2000 cm−1), double-bond region (2000 cm−1 to 1500 cm−1) as well as the fingerprint
region (1500 cm−1 to 600 cm−1) [27].

The X–H stretching region is due to vibrations from O–H, C–H and N–H stretching. The triple-bond
region arises from vibrations of C≡C and C≡N bonds. Besides, the double-bond region relates to C=C,
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C=O and C=N vibrations. Lastly, the fingerprint region roots on bending and skeletal vibrations.
Table 2 lists some of the common examples of MIR absorption bands [27].

Table 2. Examples of MIR absorption bands [27].

Wavelength (nm) Wavenumber (cm−1) Assignment

Water

2.778–3.125 3200–3600 O–H stretching

6.061 1650 H–OH stretching

Proteins

5.917–6.250 1600–1690 Amide I (C=O stretching)

6.349–6.757 1480–1575 Amide II (C–N stretching and N–H bending)

7.692–8.130 1230–1300 Amide III (C–N stretching and N–H bending)

Fats

3.333–3.571 2800–3000 C–H stretching

5.731–5.797 1725–1745 C=O stretching

10.309 970 C=C–H bending

Carbohydrates

3.333–3.571 2800–3000 C–H stretching

7.143–12.500 800–1400 Skeletal stretching and bending

MIR spectroscopy is effective since it provides information on structure-function relationships
while performing quantitative analysis. The structure-function relationships are useful in food research
and quality control, making MIR spectroscopy a crucial technique in the field of agriculture. The Fourier
transform process is often bundled with MIR spectroscopy for data analysis, forming the popular
Fourier transform infrared spectroscopy (FTIR) technique [27].

2.2.6. Raman Spectroscopy

Raman spectroscopy (RS), similar to IR spectroscopy, is another form of vibrational spectroscopy
technique. RS obtains the spectral information of samples due to the occurrence of Raman effects [30].
Prior to understanding the Raman effects, one should look into the light scattering schemes that
occur when incident photons interact with molecules in the sample. The possible light scattering
schemes are illustrated in Figure 4. In the case of elastic scattering or Rayleigh scattering, the excited
photons experience no change in energy content upon returning to ground state. Alternately, in the
case of inelastic scattering or Raman scattering, the excited photons may lose (Stokes’ shift) or gain
(Anti-Stokes’ shift) energy equivalent to the vibrational energy changes in the atoms of the molecules.
This affects the motion of the atoms as well as the polarizability of the molecule. The change in
molecule polarizability results in increased Raman intensity, ultimately forming the Raman spectrum
when plotted across the investigated wavenumbers. However, this effect is weak as the probability of
energy exchange is low [30].

The RS technique is gaining popularity as it enables the identification of molecular structure
through the characteristic wavenumber in which vibrations occur. Furthermore, samples can be
studied in the absence of a solvent as water causes weak Raman scattering. Not least, this technique
is instantaneous and may undergo intensity enhancement. However, this technique is not without
limitations. Due to the low probability of Raman scattering, this technique requires high concentration
of samples. Moreover, sample molecules may experience photo degradation due to excitation of
electronic absorption bands. The existence of fluorescence from impurities may disrupt the results
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obtained as well. These limitations aside, the RS technique can be combined with IR spectroscopy to
deliver satisfactory results as summarized in Table 3 [30].

Figure 4. Light scattering schemes [17]. Reproduced with permission from A. Nawrocka, Advances in
Agrophysical Research, Published by IntechOpen, 2013.

Table 3. Examples of Raman bands [30].

Wavelength (nm) Wavenumber (cm−1) Assignment

Water

2.778–3.125 3200–3600 O–H stretching

Proteins

19.608
19.048
18.349

510
525
545

S–S stretching

14.925–15.873
13.423–14.286

630–670
700–745 C–S stretching

5.882–6.250 1600–1700 Amide I (C=O stretching and N–H bending)

8.032–8.097 1235–1245 Amide III (C–N stretching and N–H bending)

3.876–3.922 2550–2580 S–H stretching

3.333–3.571 2800–3000 C–H stretching

Fats

6.940 1441 CH2 bending

6.863 1457 CH3–CH2 bending

6.039 1656 C=C stretching

3.378–3.503 2855–2960 C–H stretching

Carbohydrates

11.962 836 C–C stretching

9.398 1064 C–O stretching

3.434
3.397

2912
2944 C–H stretching

2.898 3451 O–H stretching

2.2.7. Additional Spectroscopy Techniques

Apart from the popular spectroscopy techniques discussed earlier, existing studies presented
additional variations of spectroscopy techniques which may be more complex in nature. For instance,
dielectric spectroscopy has been utilized in agricultural inspections. Dielectric spectroscopy involves
the inspection of dielectric properties or permittivity of samples over broad frequency ranges. Dielectric
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properties or permittivity refers to the ability of samples to store electrical energy in the electric field.
In this spectroscopy technique, the permittivity is a complex permittivity relative to the free space, and
this complex number is represented by (3):

ε = ε′ + jε′′ (3)

where the real part, ε′, is the dielectric constant and the imaginary part, ε”, is the dielectric loss
factor which covers losses due to dipolar relaxation and ionic conduction [31]. Another spectroscopy
variation is the nuclear magnetic resonance (NMR) spectroscopy technique. The NMR spectroscopy
gains spectral information of samples from the interaction between the magnetic moments of nuclei
of various atoms and the applied magnetic fields. The two common phenomena that give rise to the
NMR spectra are chemical shift and J-coupling [32].

A chemical shift occurs due to different resonant frequencies present in nuclei of the same species.
The difference in resonant frequencies is a result of shielding effect from electrons surrounding the
nuclei. The shielding effect is sensitive to chemical environments, hence allowing the characteristic
identification of specific molecular functional groups [32].

The J-coupling phenomenon is also known as indirect (scalar) spin-spin coupling. This coupling
effect results in splitting of spectroscopic lines into multiplets. The J-coupling occurs between two
nuclei or groups of nuclei and is governed by the polarization of electrons on the chemical bonds
connecting these nuclei. The polarization scheme is in turn dependent on the instant orientation of the
nuclear magnetic moments in the presence of a magnetic field [32].

2.2.8. Spectroscopy Processing and Analysis

The raw spectral data undergoes pre-processing or pre-treatment in order to reduce noise and
correct baseline variations. The common pre-treatment techniques are multiplicative scattering
correction (MSC), standard normal variate (SNV), Savitzky-Golay smoothing as well as first and second
derivatives [33,34].

Upon the completion of pre-processing or pre-treatment, the data set undergoes multivariate
analysis to select and extract wavelengths that contain useful information. This aids in rectifying
issues of collinearity, band overlapping and interaction between spectral variables. The results
from multivariate analysis will be used to develop calibration models for calibration and prediction
purposes [33,34].

The developed calibration models can be categorized according to the nature of the utilized
multivariate analysis such as linear regression or nonlinear regression. Calibration models based on
linear regression are built from partial least squares (PLS), interval partial least squares (iPLS), synergy
interval partial least squares (SiPLS) or successive projections algorithm (SPA). Meanwhile, calibration
models based on nonlinear regression are constructed from principal component analysis (PCA),
independent component analysis (ICA), support vector machines (SVM), artificial neural networks
(ANN) or a genetic algorithm (GA) [33,34].

The robustness of the final calibration model is evaluated from its ability to perform calibration
and prediction. The calibration performance of the model is determined from the root mean square
error of calibration (RMSEC) and the correlation coefficient (RC) in the calibration set. Meanwhile,
the prediction performance of the model is identified from the root mean square error of prediction
(RMSEP) and the correlation coefficient (RP) in the prediction set. Ideally, an effective model should
register low RMSEC and RMSEP, with minimum difference between RMSEC and RMSEP. Not least,
higher RC and RP are preferable [33,34].

2.3. Spectral Imaging Technique

The spectral imaging technique is a combination of both imaging and spectroscopy techniques
discussed earlier. Being a combinational technique, the spectral imaging technique preserves the best
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of both worlds, allowing the simultaneous extraction of spatial and spectral information from the
inspected sample [35,36].

2.3.1. Classes of Spectral Imaging

The spectral imaging technique acquires multiple images of the same subject at varying
wavelengths. The resulting spectral images are three-dimensional (3-D) in nature, consisting of
two spatial dimensions (row, x, and column, y) and one spectral dimension (wavelength, λ). Variations
of spectral imaging technique are determined by the continuity of data in the wavelength dimension,
branching out into hyperspectral imaging and multispectral imaging [35,36].

In general, hyperspectral imaging obtains spectral images in continuous wavelengths, whereas
multispectral imaging registers spectral images at discrete wavelengths. Hyperspectral imaging
acquires large number of images at high spatial and spectral resolutions. Due to the high volume of
data, hyperspectral imaging requires long image acquisition time and involves complex algorithms for
image analysis. Despite the complexity, hyperspectral imaging is essential for fundamental research
and is the basis for multispectral imaging [35,36].

Multispectral imaging acquires spectral images at a significantly smaller number compared to
hyperspectral imaging. Spectral images will only be acquired at optimal wavelengths predetermined
from the analysis of dataset obtained through hyperspectral imaging. A smaller number of
interested wavelengths allows rapid image acquisition and requires simpler image analysis algorithms.
This characteristic of optimum data volume makes multispectral imaging perfectly suited for real-time
in-field applications [35,36].

2.3.2. Spectral Image Acquisition Methods

There are several methods in which spectral imaging systems acquire spectral images. The methods
are point scan, line scan and area scan as illustrated in Figure 5 [35]. The point scan (whiskbroom)
method acquires the spectrum of a single pixel in each scan. A complete hyperspectral cube will be
generated as the detector moves from pixel to pixel along the two spatial axes (x and y). The point
scan method is similar to a normal spectroscopic approach. Since it cannot cover a large sample area,
the point scan method is time consuming and unsuitable for fast image acquisition [35,36].

(a)                (b)                 (c) 

Figure 5. Methods of spectral image acquisitions with (a) point scan, (b) line scan, and (c) area scan [35].
Reproduced with permission from J. Qin, Journal of Food Engineering, Published by Elsevier, 2013.

The line scan (pushbroom) method, in each scan, acquires a slit (line) of spatial information
together with the spectrum of every pixel along the line. A complete hyperspectral cube will be formed
when scans are repeated along the direction of motion (x). The operation characteristic of the line
scan method makes it suitable to acquire spectral images of moving samples. Hence, this method is
usually combined with conveyor belt systems, making it a popular method in practical production
lines. However, the exposure time should be short and accurately selected to allow uniform exposure
at all wavelengths [35,36].
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The area scan (band sequential) method, on the other hand, acquires a 2-D grayscale image
comprising of complete spatial information in a single wavelength. A complete hyperspectral cube is
generated through image stacking when scans are performed along the spectral axis (λ). The nature of
the area scan method makes it more suited for the imaging of stationary samples instead of moving
samples. In short, among the image acquisition methods discussed, line scan and area scan are
greatly preferred over point scan for both hyperspectral and multispectral imaging on the basis of time
consumption [35,36].

2.3.3. Spectral Imaging Sensing Modes

Spectral imaging may have varying sensing modes as illustrated in Figure 6. The sensing modes
are determined by the positions of the light source and the detector, forming variations such as
reflectance, transmittance and interactance modes. In reflectance mode, the detector collects the light
reflected off the illuminated surface. This sensing mode is suitable for identifying external features of
samples such as size, shape, color, texture and defects. However, when selecting this mode, the detector
should be properly positioned to avoid specular reflection [36].

(a) (b) (c) 

Figure 6. Sensing modes in spectral imaging; (a) reflectance, (b) transmittance, and (c) Interactance [36].
Reproduced with permission from D. Wu, Innovative Food Science & Emerging Technologies, Published
by Elsevier, 2013.

The transmittance mode operates by having the detector collect light rays transmitted through
inspected samples. In this sensing mode, the light source and the detector will be placed in opposite
direction to each other. Due to the absorption of light rays in a sample, the detected signal will be
relatively weak and dependent on sample thickness. Hence, the transmittance mode is commonly
applied in the internal inspection of relatively transparent samples [36].

Meanwhile, the interactance mode overcomes the limitations of both the reflectance and
transmittance modes. This sensing mode exhibits less surface effect compared to reflectance mode.
At the same time, it allows detection in deeper layers of a sample without being affected by sample
thickness as in transmittance mode. This advantageous sensing mode is set up by installing the light
source and the detector at the same side and parallel to each other [36].

2.3.4. Spectral Imaging System Construction

The variations in spectral imaging lead to a diversity of instruments during the construction
of a spectral imaging system. In general, a spectral imaging system is made up of a light source,
a wavelength dispersive device and an area detector [35,36].

The light source for a spectral imaging system can be classified into illumination and excitation
sources. Illumination light source is selected when measurements involve changes in the intensity of
the incident rays upon light-sample interaction. The spectral composition of the incident source will
not experience any changes. Such interaction is commonly observed in reflectance and transmittance
sensing modes. Broadband lights are normally used as illumination sources. An example of illumination
light source is the quartz tungsten halogen (QTH) lamp which is capable of generating a smooth
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spectrum in the visible to infrared range. Besides, the broadband light emitting diode (LED) has gained
popularity over time due to its low power consumption, low heat generation, small size and long
lifetime [35,36].

Excitation light source is usually selected when measurements involve changes in the frequency and
wavelength of the incident rays. Interactions of this nature usually involve fluorescence phenomenon
or Raman scattering effect. Narrowband lights are frequently used as excitation sources. A popular
excitation light source is the laser which generates powerful monochromatic rays. Not least, UV
fluorescent lamp, narrowband LED, high-pressure arc lamp (xeon arc lamp) and low-pressure vapor
lamp (mercury vapor lamp) add to the family of excitation light sources [30,31].

The core component of the spectral imaging system is the wavelength dispersive device.
A wavelength dispersive device disperses broadband light into different wavelengths to be projected
to the area detector. Examples of wavelength dispersive devices include the imaging spectrograph,
electronically tunable filter and beam splitting device [35,36].

Compared to traditional spectrograph, an imaging spectrograph extracts both spatial and spectral
information. The imaging spectrograph disperses the broadband light illuminated onto different
spatial areas of a sample into different wavelengths. This is achieved through diffraction gratings.
The two most popular imaging spectrographs are the prism-grating-prism (PGP) imaging spectrograph
which uses transmission diffraction gratings and the Offner imaging spectrograph that uses reflection
diffraction gratings [35,36]. These variations of imaging spectrographs are commonly applied in line
scan acquisitions [37].

An electronically tunable filter utilizes electronic devices to extract the required wavelength.
Current electronically tunable filters can be categorized into the acousto-optic tunable filter (AOTF)
and liquid crystal tunable filter (LCTF). An AOTF utilizes an acoustic transducer to generate high
frequency acoustic waves that change the refractive index of a crystal. The crystal with varied
refractive index will only allow the passage of light rays at the specified wavelength. Meanwhile,
a LCTF transmits light at the required wavelength through electronically controlled liquid crystal
cells [35,36]. These electronically tunable filters allow fast and flexible wavelength switching compared
to mechanical filter wheels. They too exhibit advantages of high optical throughput, narrow bandwidth
and broad spectral range [38].

Unlike the electronically tunable filter, a beam splitting device allows spectral images to be obtained
simultaneously at multiple wavelengths. The beam splitting device divides light into several parts
and passes them through bandpass filters which correspond to the required wavelengths. The beam
splitting device can be categorized into color splitting and neutral splitting. In color splitting, light rays
at a particular waveband are directed to each output, whereas, in neutral splitting, an equal portion of
the total light energy is directed to each output [35]. The multiple wavelength acquisition characteristic
makes the beam splitting device suitable to be installed in multispectral imaging systems [39].

A spectral imaging system will not be complete without an area detector. The area detector is
responsible for collecting light rays which will eventually form the spectral images of the inspected
sample. The common categories of area detector are the charge-couple device (CCD) camera and the
complementary metal-oxide-semiconductor (CMOS) camera [35,36].

A CCD camera is made up of millions of photodiodes (pixels) that are closely arranged to form
an array. These light sensitive photodiodes convert the incident photons into electric charges that
correspond to the intensity of the exposed incident rays. The accumulated electric charges at each
photodiode will then be moved out of the array to be quantified for spectral image formation [35,36].
One of the common CCD cameras is the silicon CCD camera. The silicon CCD camera exploits the
sensitivity of silicon under visible light to perform image acquisition in visible and short-wavelength
near-infrared bands [40]. Indium gallium arsenide (InGaAs) CCD camera is another CCD camera
variation constructed from InGaAs, an alloy between indium arsenide (InAs) and gallium arsenide
(GaAs) which is sensitive in the near-infrared band [41]. Not least, mercury cadmium telluride (MCT
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or HgCdTe) CCD camera built from HgCdTe, an alloy between mercury telluride (HgTe) and cadmium
telluride (CdTe), enables sensing in the long-wavelength near-infrared and mid-infrared band [42].

Comparatively, the CMOS camera is similar to the CCD camera by having a collection of
photodiodes (pixels) that convert light rays into electrical charges. The difference, however, lies in the
quantification process of the electric charges. Opposed to the remote quantification in the CCD camera,
the CMOS camera allows electric charges at each pixel to be independently and instantaneously read
by the transistor attached to each photodiode [43]. This unique characteristic allows the CMOS camera
to compete with the CCD camera in terms of high imaging acquisition speed, blooming immunity,
low cost, low power consumption and small size. However, careful note should be taken as the CMOS
camera is susceptible to noise due to on-chip signal transmissions, resulting in lower sensitivity and
dynamic range when pitted against CCD camera [36].

2.3.5. Spectral Imaging Processing and Analysis

The raw spectral image data obtained via the spectral imaging technique comes in different
formats according to the image acquisition method used. The common formats are Band interleaved
by pixel (BIP), band interleaved by line (BIL) and band sequential (BSQ). The BIP format results from
the point scan method and stores the complete spectrum of each pixel sequentially. The BIL format
comes with the line scan method and stores the complete spectrum of each line in order. Lastly, the BSQ
format relates to the area scan method and stacks the spatial image continuously obtained at each
wavelength [35,36].

Similar to the imaging and spectroscopy techniques, the raw spectral image data in BIP, BIL and
BSQ formats should undergo pre-processing in both the spatial and spectral aspects before being
utilized for further analysis. The raw spectral image, which represents detector signal intensity,
will first undergo flat-field calibration or reflectance calibration to form useful reflectance or absorbance
image. From the spatial aspect, the generated reflectance image can be further improved through
image enhancement processes such as edge and contrast enhancement, magnifying, pseudo-coloring
and sharpening. Noise reduction can also be achieved through spatial filtering, Fourier transform (FT)
and wavelet transform (WT). From the spectral aspect, noise reduction and baseline correction can
be performed through algorithms such as MSC, SNV, Savitzky-Golay smoothing, first and second
derivatives, FT, WT as well as orthogonal signal correction (OSC) [35,36].

The next step in the analysis flow will be image segmentation. Image segmentation serves
to divide the pre-processed spectral image into different regions for the identification of region of
interests (ROIs) [44]. In this process, segmentation algorithms are greatly preferred over manual
segmentation due to the ease of operation and time saving. The selections of segmentation algorithms
include thresholding (global thresholding or adaptive thresholding), morphological processing
(erosion, dilation, open, close or watershed algorithm), edge-based segmentation (gradient-based or
Laplacian-based methods) and spectral image segmentation [36].

Spatial analysis utilizing spectral image data usually involves quantitative measurement.
In this process, gray-level object measurement is performed to quantify the intensity distribution
of ROI extracted from image segmentation. Gray-level object measurements can be categorized
according to intensity-based or texture-based measurements [45]. Intensity-based measurements are
usually first-order measures such as mean [46,47], standard deviation, skew, energy and entropy [36].
Meanwhile, texture-based measurements are second-order measures such as joint distribution
functions [36], gray-level co-occurrence matrix (GLCM) [46,48] and 2-D Gabor filter [49].

For spectral analysis, the data set will undergo multivariate analysis to reduce the spectral
dimension and select the optimum wavelengths. Similar to the spectroscopy technique, some examples
of multivariate analysis algorithms include PLS, linear discrimination analysis (LDA) [35,36], correlation
analysis (CA) [50], PCA, ICA [41,51,52], ANN [53], sequential forward selection (SFS) [54] and GA [55].
These results from multivariate analysis will be used to develop calibration models for calibration,
validation and prediction purposes [36].
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The robustness of the final calibration model is evaluated from its ability to perform calibration
and prediction. The calibration performance of the model is determined from the standard error of
calibration (SEC), root mean square error of calibration (RMSEC) and the coefficient of determination
(r2

C) in the calibration set. Validation performance is determined via the root mean square error of
cross-validation (RMSECV) and the coefficient of determination (r2

V) in the validation set. Meanwhile,
the prediction performance of the model is identified from standard error of prediction (SEP), root
mean square error of prediction (RMSEP), residual predictive deviation (RPD) and the coefficient of
determination (r2

P) in the prediction set. Ideally, an effective model should register low SEC, RMSEC,
RMSECV, SEP and RMSEP, with a minimum difference between SEC and SEP. Not least, higher r2

C, r2
P,

r2
P and RPD are preferable [36].

2.3.6. Pros and Cons of Spectral Imaging

This technique is advantageous as it omits chemical processes and requires minimum sample
preparation. Moreover, the composition of multiple components in a sample can be simultaneously
obtained. Upon spectral image acquisition, spectral imaging too allows the flexible selection of region
of interest (ROI) for analysis. Furthermore, owing to the rich spatial and spectral information, spectral
imaging can easily detect and differentiate subjects even though similar colors, overlapping spectra
and morphological characteristics are present [36].

However, the spectral imaging technique does pose several limitations. Hardware speed is a major
concern, especially in the case of hyperspectral imaging, due to the massive amounts of data to be
acquired and analyzed. Moreover, spectral imaging includes the acquisition of redundant data, resulting
in complex data analysis. Spectral imaging systems too require constant calibration in order to maintain
their efficiency. The detection limits of spectral imaging are poorer compared to chemical-based
analytical methods. Similar to spectroscopy, spectral imaging suffers from multicollinearity and
requires multivariate analysis to address the issue. In addition, spectral imaging is inapplicable when
the ROI is smaller than the size of a pixel or does not exhibit the characteristic spectral absorption.
Lastly, spectral imaging may be irrelevant in the analysis of liquids and homogeneous samples since
these samples do not pose distinctive and useful spatial information [36].

2.4. Technique Comparison

Table 4 presents a simple comparison of the optics and photonics techniques in agriculture that
have been discussed earlier. From the comparison, the imaging technique is noted to be utilized for
the extraction of spatial information only and is sensitive to small-sized objects. In contrast to the
imaging technique, the spectroscopy technique allows acquisition of spectral information and is useful
in accessing multi-constituent information. The spectral imaging technique covers the benefits of
both imaging and spectroscopy techniques, allowing it to obtain spectral and spatial information
simultaneously. Apart from this, spectral imaging has the added value of flexible spectral extraction as
well as the capability of generating quality-attribute distribution. However, it should be noted that
multispectral imaging has poorer access to spectral information compared to hyperspectral imaging
due to the acquisition at limited number of wavelengths. Among the compared techniques, the spectral
imaging technique can be said to be the most robust. Nonetheless, the area of application should be
given the utmost consideration when selecting the best optics and photonic technique in order to avoid
the underutilization or overutilization of a particular technique [36].
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Table 4. Comparison of optics and photonics techniques in agriculture [36].

Characteristics Imaging Spectroscopy Spectral Imaging

Spectral information × � �

Spatial information � × �

Multi-constituent information × � �

Sensitivity to small-sized objects � × �

Flexibility of spectral extraction × × �

Generation of quality-attribute distribution × × �

3. Optics and Photonics Applications in Agriculture

The optics and photonics techniques discussed above have been applied in various studies
involving agricultural products. The studies will be tabulated in the following sections, enlisting
details such as agriculture class, agriculture product, application area, wavelength details and country
of applications.

3.1. Applications of Imaging Technique

Table 5 lists some of the agricultural works based on the imaging technique. The imaging
technique is performed in the UV-VIS-IR range and involves the acquisition of spatial, color and
thermal data from the inspected samples. These works show that the imaging technique is suited
for inspection or analysis based on external features of the subject of interest. For instance, bruise
detection [56,57] and disease detection [58,59] are performed by inspecting the external damage on
the sample. In addition, quantitative analysis [60,61] is performed using the spatial information
obtained. The color features extracted are also used for maturity evaluation [57,62,63] and nutrient
content detection [64,65]. The thermal data, meanwhile, proves to be useful in similar occasions of
bruise detection [66,67], disease detection [68,69] and maturity evaluation [70,71] by analyzing the
temperature variations over the inspected sample. Not least, the most significant application of the
imaging technique is the development of automated agricultural robots [72–75] and animal behavioral
studies [76,77].

Table 5. Applications of imaging technique in agriculture.

Class Product Application Ref.

Fruit Apple Bruise detection (thermal) [66,67,70,78]

Apple Maturity evaluation (thermal) [70]

Apple Yield estimation (thermal) [79]

Apple Scab disease detection (thermal) [68]

Green apple Acquisition of segmented fruit region [80]

Green apple and orange Yield estimation [61]

Orange Texture analysis [81]

Orange Bruise detection (thermal) [67]

Citrus Water stress evaluation (thermal) [82]

Pear Maturity evaluation (thermal) [71]

Banana Maturity evaluation [62]

Banana Maturity evaluation [63]

Persimmon Maturity evaluation (thermal) [71]

Passion fruit Mass and volume estimation [83]

Blueberry Bruise detection [56]

Grapevine Pathogen detection (thermal) [84]

Tomato Fruit detection [85,86]
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Table 5. Cont.

Class Product Application Ref.

Tomato Bruise detection and maturity evaluation [57]

Tomato Bruise detection (thermal) [87]

Tomato Maturity evaluation (thermal) [71]

Tomato Clustered fruit detection [88]

Sweet peppers Peduncle detection [89]

Onion Post-harvest quality assessment (thermal) [90]

Lettuce Segmentation of vegetable [91]

Cucumber Downy mildew disease detection (thermal) [69,92,93]

Grain Rice leaf Nitrogen content detection [64]

Wheat Yield estimation (thermal) [94–96]

Corn Water stress evaluation (thermal) [97]

Macadamia nuts Yield estimation [60]

Soybean Identification of foliar disease [98]

Soybean Identification of leaf disease [59]

Maize Yield estimation (thermal) [99]

Maize Identification of leaf disease [100]

Maize Cultivar identification [101]

Commercial Cotton Water stress evaluation (thermal) [97,102]

Silkworm Gender identification [103]

Farm and Plantation Seed Viability evaluation (thermal) [104]

Wheat field Estimation of nutrient content [65]

Cauliflower plantation Weed detection [73]

Asparagus plantation Crop harvest robot vision [74]

Sugar beet and rape plantation Agriculture robot vision [75]

Grapevines Estimation of intra-parcel grape quantities [105]

Cow farm Behavioural studies [76,106]

Goat and sheep farm Animal species identification [107]

Fish aquarium Behavioural studies [77,108]

Baby shrimp farm Chlorine level detection [109]

Orchid farm Disease and pest detection [58]

Surface and ground water Chemical content detection [110]

Based on Table 5, bruise detection, yield estimation, and disease identification are the three most
common applications with imaging technique in agriculture. In bruise detection, a hyperspectral
camera with broad operating wavelength from 400 to 5000 nm [78], a non-destructive and non-contact
infrared sensing thermogram [66], and an infrared thermal imaging camera with high temperature
resolution of 0.1 K [70] are among the instruments employed as the imaging technique. Moreover,
the thermal camera with temperature resolution better than 0.5 ◦C [79], colour stereo vision camera
which creates a 3D environment for further processing [86], and grading machine with a high accuracy
of 96.47% [57] are employed for yield estimation. However, the grading machine proposed in [57]
has a small capacity in estimation for 300 tomatoes per hour and does not efficiently work for
tomato images with high specular reflection. In addition, infrared thermography is a popular device
for disease identification due to its non-invasive monitoring and indirect visualization of downy
mildew development [69]. This device takes the colour reflectance image for the detection of V.
inaequalis development on apple leaves [68] and detects the pathogen in grapevines [84]. Additionally,
an X-ray computed tomography scanner is utilized to obtain the cross-section of onion inoculated by
pathogens [90], whilst an unmanned aerial vehicle (UAV) is presented to track the foliar disease in
soybean [98].
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Apart from the instrument, numerous types of algorithms are depicted in imaging technique.
In bruise detection, PCA and a minimum noise fraction are proposed for 20 apple samples with
threshold percentages of success within 86% to 93% and 87% to 97%, respectively [78]. In yield
estimation, the fruit detection algorithm is presented for 8–120 apple samples with a correlation
coefficient ranging from 0.83 to 0.88 [79]. In addition, the blob detector neural network is demonstrated
to detect the yield estimation for both oranges and apples with intersection over union of 81.3% for
orange and 83.8% for apple [61]. As for disease identification, a simple linear iterative clustering
algorithm is presented for 3624 foliar images with high classification rate of 98.34% for height between
1 to 2 m [98]. The classification rate is reduced for approximately 2% for each meter from the examined
height within 1 to 16 m. Moreover, an improved GoogLeNet and Cifar10 models are established for
500 images of maize leaf disease with 4:1 ratio for training and validation which allows the system to
have a diversity of sample conditions [100]. The average identification accuracy of GoogLeNet and
Cifar10 models is recorded as high as 98.9% and 98.8%, respectively. Apart from bruise detection,
yield estimation, and disease identification, algorithms are also shown in maturity evaluation and
acquisition of crop segmentation. In maturity evaluation, both a Fuzzy model [62] and medium filter
algorithm [85] are employed for 3108 images on banana samples and 100 images on tomato samples
with an average identification rate of 93.11%, and within 89% to 98%, respectively. The Fuzzy model is
useful in handling ambiguous information for the banana fruit maturity detection using red-green-blue
(RGB) components. In the acquisition of crop segmentation, K-mean clustering algorithm is presented
for a clustering of apple samples with target acquisition rate of 84% [80]. This algorithm is commonly
used in image segmentation whereby crop segmentation can be precisely attained, even with the
presence of stems and leaves in the captured images.

3.2. Applications of Spectroscopy Technique

The applications of spectroscopy technique in agriculture are presented in Table 6. The spectroscopy
technique is widely applied to inspect internal qualities that are externally invisible. A sizeable amount
of research has performed spectroscopy in the UV-VIS-IR region to identify the internal constituents of
agricultural products such as pigment compound in apple [111], moisture content in mushroom [112],
protein and sugar in potato [113], and caffeine in coffee [114] among others. Within 400 to 1000 nm,
678 nm is sensitive to low chlorophyll content thus the reflectance at 678 ± 30 nm is suggested for the
monitoring of the early stage of ripening and the pigment content change with a maximum correlation
of closely 0.6 [111]. On the other hand, 590 to 700 nm is recommended for the maturity detection in
early stage for yellow colour apple fruits with maximum correlation from 0.7 to 0.9. In the verification
of moisture content in mushroom, the spectral region from 600 to 2200 nm gives the lowest standard
deviation of cross validation as 0.644% and maximum correlation factor of 0.951 among the investigated
wavelengths from 402 to 2490 nm [112]. A high experimental repeatability is presented by a standard
deviation of 0.677% and a maximum correlation factor of 0.947 for a separate set of mushrooms of
a similar type and treatment. In the protein and sugar content identification in potato, a modified
PLS regression model is applied to calculate the relationship between the spectrum and chemical
properties of the calibrated samples [113]. Based on the measurement, the standard deviations for
crude protein, glucose, fructose, sucrose and red sugar for the 120 potato samples are 0.2%, 0.073%,
0.068%, 0.068%, and 0.122%, respectively. Correspondingly, the squared correlation coefficient for the
above five parameters are deduced as 0.96, 0.70, 0.89, 0.62, and 0.82, respectively. In a total of 665 tea
leaf samples, NIRS and liquid chromatography is coupled to a diode arrayed detector to determine its
content of caffeine [114]. Among 375 calibration sets and 250 validation sets for caffeine in the tea leaf
samples, a standard deviation of 8.6 and 8.9, as well as high squared correlation coefficients of 0.97 are
acquired for both calibration and validation sets though regression model.

The quality and freshness of fruits [115,116], vegetables [117], and meat [118,119] can be easily
inspected using spectroscopy as well. For instance, two wavelengths within 600 to 904 nm of VIS-NIR
spectrum are investigated by correlation analysis to discriminate brown core and sound pears [115].
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Using eight brown core pears and 32 sound pears, the percentage of soluble solid content achieves
a precision of 97.8% and 99% within a standard deviation of 0.5% and 1%, respectively. In addition,
NIR spectrum and PLS regression model are used to detect the total anthocyanins content (TAC) and
total phenolic compounds (TPC) in jambu fruits [116]. With a total of 50 jambu samples scanning
from 1000 to 2400 nm, the correlation coefficients of TAC and TPC are deduced as 0.98 and 0.94,
and strong ratio to performance of deviation as 5.19 and 3.27, respectively. Besides that, a 250 to
350 GHz radiation is found to be suitable to distinguish the defective and proper sugar beet seeds [117].
A python package scikit-learn algorithm is used to determine the threshold for these two types of
seeds, with 80% detection for proper seed and 94% detection for defective seed. Therefore, the average
detection rate of this algorithm is 87%. In addition, meat fraud is injected into bovine meat, aiming
to increase the water holding capacity. This issue is characterized with attenuated total reflectance
Fourier transform infrared spectrum and the supervision of the 55 meat fraud adulterated samples
through PLS square discriminant analysis [118]. The analysis records a precise detection as high as
91% of the adulterated samples. Apart from meat fraud, the freshness of mackerel fish is characterized
with auto-fluorescence spectroscopy and analyzed with fluorescence excitation emission matrices
(EEM) [119]. The fluorescence EEM data and real freshness values are modelled with PLS regression
and an algorithm is developed for this smart system as a predictor with squared correlation coefficient
of 0.89.

Furthermore, chemical residues in harvested product [120] or even plantation soil [121–123] can
be easily identified, leading to easy detection on contamination of agricultural product. Residual
pesticides such as phosmet and thiabendazole in apples are analyzed with surface-enhanced Raman
spectroscopy (SERS) coupled with gold nanoparticle [120]. The sensitivities for detectable concentration
are 0.5 μg/g for phosmet and 0.1 μg/g for thiabendazole. The PLS regression is also used to correlate
the SERS spectrum with the concentration of pesticide in apples with squared correlation coefficient of
0936 for phosmet and 0.959 for thiabendazole. In addition, the effect of drying temperature on the
nitrogen detection in soils at four different temperatures of 25 ◦C for placement, 50, 80, and 95 ◦C
for drying is modelled based on NIR sensor and three successive algorithms, which are multiple
linear regression, PLS, and competitive adaptive reweighed square on the spectral information [122].
Based on the three soil samples, loess, calcium soil, and black soil show the correlation coefficients
of 0.9721, 0.9588, and 0.9486, respectively at the optimum drying temperature of 80◦C. The detection
of nitrogen in three types of soils is also alternatively performed in [123], with squared correlation
coefficients of 0.95, 0.96 and 0.79 for loess, calcium soil and black soil using PLS regression model.
The relatively lower squared correlation coefficient in black soil is due to the interference of high humus
content and strong absorption of organic matter in black soil. Lastly, a point worth noting is that the
dielectric and NMR spectroscopy are often adopted when the analysis involves more complex chemical
compounds [124,125]. These complex chemical compounds include the vulcanization of natural rubber
with sulfur-cured and peroxide-cured systems with different dynamics [124] and detection to changes
in concentrations of pollutants in agriculture drainage such as heavy metal and heavy oxides [125].
In [124] a sulphur-cured system has features restricted segmented dynamics whereas peroxide-cured
system has faster dynamics. In addition, network structure resulting from the vulcanization of both
systems also influences the segmental dynamics of natural rubber. The peroxide-cured network is
more homogeneous with spatial distribution of cross links than the sulphur-cured network with large
inhomogeneity due to the presence of zinc oxide particles and the ionic interaction with the natural
rubber chains. In [125], an X-ray fluorescence spectroscopy is employed to investigate the changes
of pollutants in dried root and shoot plant parts at a temperature range from 30 to 90 ◦C. From the
measurement, the concentration of pollutant is found to be higher in plant root than plant shoot
through the analysis of frequency relaxation process via dielectric modulus measurement. Significantly,
the removal of pollutants by plants will be enhanced upon subjecting them to a microwave heating
power of 400 W for 30 min. Apart from the aforementioned applications, more applications of the
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spectroscopy technique in agricultural products with different methods and wavelengths are tabulated
in Table 6.

Table 6. Applications of spectroscopy technique in agriculture.

Class Product Application Method Wavelength (nm) Ref.

Fruit Apple Pigment content change during
ripening

UV-VIS-NIR 400–1000 [111]

Apple Soluble solid content detection VIS-NIR 500–1100,
1000–2500

[33]

Apple Pesticide residue detection Raman 5–18 μm [120]

Pear Brown core and soluble solid
content detection

UV-VIS-NIR 200–1100 [115]

Mango Maturity evaluation NIR 1200–2200 [126]

Peach Peach variety identification NIR 833–2500 [127]

Wax jambu Quality inspection NIR 1000–2400 [116]

Grape leaf Water content estimation UV-VIS-NIR 350–2500 [128]

Vegetable Carrot Carotenoid, fructose, glucose,
sucrose and sugar content

detection

NIR 1108–2490 [129]

Potato Bruise detection UV-VIS-NIR 250–1750 [130]

Potato Protein, fructose, glucose, starch
and sucrose content detection

NIR 1100–2500 [113]

Onion Soluble solid content detection VIS-NIR 500–1200 [131]

Oilseed rape
leaf

Aspartic acid content detection NIR 1100–2500 [132]

Sugar beet
seeds

Quality control Time-domain
spectroscopy

250–350 GHz [117]

Mushroom Moisture content detection VIS-NIR 600–2200 [112]

Grain Corn seed Viability evaluation NIR
Raman

1000–2500
3.125–59 μm

[133]

Almond Internal defect detection VIS-NIR 700–1400 [134,
135]

Maize Identification of transgenic
ingredients

THz spectral 0–4.5 THz [136]

Rice, maize and
peanut

Germination and growth of crop UV-VIS
FTIR

380.85–796.62 nm
562.72–3865.11 cm−1

[137]

Meat Beef Thermal change inspection Fluorescence 250–550 [138]

Beef Adulteration detection NIR-MIR 2.5–19 μm [118]

Frozen fish Freshness evaluation Fluorescence 250–800 [119]

Dairy Egg Contamination detection UV-VIS-NIR 200–860 [139]

Goat milk Fatty acid content detection VIS-NIR 400–2498 [140]

Oil Edible oil Stability analysis NMR 300 MHz (1H) [141]

Olive oil Adulteration detection Fluorescence 250–720 [142]

Ocimum
essential oil

Antioxidant property
identification

NIR-MIR 2.5–18 μm [143]

Beverage Tea leaf Tea polyphenol level detection UV-VIS-NIR 347–2506 [144]

Green tea leaf Caffeine and catechins content
detection

VIS-NIR 400–2500 [114]

Coffee Geographic and genotypic origin
identification

NIR 1100–2498 [145]

Coffee Roasting degree and blend
composition detection

NIR 800–2857 [146]

Tomato juice Quality inspection NIR-MIR 2.5–14 μm [147]

Apple wine Volatile compound detection NIR 833–2500 [148]

Rice wine Fermentation monitoring NIR-MIR 2.5–25 μm [149]
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Table 6. Cont.

Class Product Application Method Wavelength (nm) Ref.

Commercial Cotton fibre Cotton type identification NIR 800–2500 [150]

Cotton fibre Cotton fibre micronaire
measurement

VIS-NIR 400–2500 [151]

Natural rubber Protein and lipid content
detection

NIR-MIR 2.5–25 μm [152]

Natural rubber Chemical interaction during
vulcanizing process

NIR-MIR
Raman

2.5–25 μm
3.125–100 μm,

6.25–50 μm

[153]

Natural rubber Rubber silane reaction NMR 400 MHz (1H),
100.6 MHz (13C)

[154]

Natural rubber Moisture content detection VIS-NIR 400–1100 [155]

Natural rubber Vulcanization system effect Dielectric
NMR

10-1 < Hz < 107
20 MHz (1H)

[124]

Neem leaf Pest control UV-VIS
FTIR
XRD

200–800 nm
250–4000 cm−1

10–80◦

[156]

Farm and
Plantation

Soil Quality inspection NIR 780–5000 [157]

Soil Nitrogen content detection NIR 800–2564 [158]

Soil Chemical and physical property
estimation

NIR-MIR 1430–2500,
2.5–27 μm

[159]

Soil Nitrogen detection NIR 900–1700 [122]

Soil Nitrogen detection NIR 900–1700 [123]

Soil and water Contaminant detection VIS-NIR 400–2500 [121]

Water hyacinth
Soybean straw

Pollutant concentration detection
Detection of biomass

Dielectric
Fluorescence
Near infrared
spectroscopy

10-1 < Hz < 106
N/A

4000–12,000 cm−1

[125]
[160]

Flower Plant type identification VIS 635, 685, 785 [161]

3.3. Applications of Spectral Imaging Technique

As discussed earlier, the spectral imaging technique is a combination of both imaging and
spectroscopy techniques. In the agriculture industry, both variations of hyperspectral and multispectral
imaging are equally crucial, and some sample applications are compiled in Table 7. As observed from
Table 7, hyperspectral imaging involves acquisition over a range of wavelengths while multispectral
imaging involved acquisition at fewer selected wavelengths. The robustness of spectral imaging allows
its usage in bruise detection [78,162,163], maturity evaluation [164–168], quality evaluation [169–171]
and disease detection [172–176]. Internal attributes of samples [177–179] are easily acquired for analysis
purposes as well.

In bruise detection of agriculture product, a machine vision system is integrated with optical filter
at 740 and 950 nm to detect the bruise in rotating apple with a detection accuracy of 90 to 92% from 54
Pink Lady apples and 60 Ginger Gold apples [162]. In addition, the bruise detection in mushroom is
carried out through a line scanning hyperspectral imaging instrument from 400 to 1000 nm with a
spectroscopic resolution of 5 nm [163]. The PCA is applied to a set of data comprising of 50 normal
and 50 bruise spectra, with standard deviation of 0.025 and 0.055, respectively.

For the maturity evaluation of agriculture products such as peach fruit, a CCD camera is employed
at 450, 675 and 800 nm, whereas the fruit ripening is characterized with the increasing in intensity from
a histogram with a ratio of red divide with infrared red (R/IR) [164]. The firmness of the peach fruit
reduces when the reflectance at 675 nm is increased. An analysis of variance (ANOVA) is presented to
access the R/IR clustering which has the highest reflectance at 675 nm, and higher Fisher value as a
function of higher R/IR ratio. Apart from the detection of maturity for peach fruit, the maturity stage
of strawberry is detected using a hyperspectral imaging system from 380 to 1030 nm and from 874 to
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1734 nm [165]. According to the PCA, the optimal wavelengths are from 441.1 to 1013.97 nm and from
941.46 to 1578.13 nm with a classification accuracy of above 85%. Moreover, the maturity of tomato is
detected by an electromagnetic spectrum with a continuous 257 bands from 396 to 736 nm [166] and
discrete band of 530, 595, 630, and 850 nm using a tomato maturity predictive sensor [167]. Based on
the LDA, the classification error is reduced from 51% to 19% [166] and achieves detection accuracy
above 85% [167]. The ripening in banana fruit is also characterized with a compact imaging system
and an UAV from 500 to 700 nm [168]. The detection is based on the reflectance spectrum whereby in
ripe banana, the main element is carotenoid which absorbs less light at 650 nm band. On the other
hand, a green banana with a greater amount of chlorophyll than ripe banana absorbs more light at
650 nm band.

For the quality evaluation of agriculture product, the firmness test for two types of apple fruits
is conducted with a laser-based multispectral imaging prototype which captures and processes four
spectral scattering images at a speed of two fruits per second [169]. The multilinear regression models
are developed using to predict the firmness of those two apple types at 680, 880, 905, and 940 nm
with a correlation coefficient of 0.86. The quality of grape berries is determined by the reflectance
spectrum from a hyperspectral imaging system, whilst the high reflectance at 500 nm, 660 to 700 nm,
and 840 nm denotes the chlorophyll content, red-coloured anthocyanin pigment, and sugar content,
respectively [170]. A partial least square regression (PLSR) model is applied in order to determine
the correlation between the spectral information and the physico-chemical indices. The titratable
acidity of the green and black grapes shows a coefficient of determination of 0.95 and 0.82, as well as
soluble solid content of 0.94 and 0.93 at pH value of 0.8 and 0.9, respectively. The root mean square
error for this method is 0.06 for green grape and 0.25 for black grape. Apart from fruits, the quality
of tea leaves is classified by a hyperspectral imaging sensor at 762, 793, and 838 nm, supported by
SVM algorithm [171]. Within 700 samples comprising of 500 training samples and 200 prediction sets,
the SVM algorithm generates a total classification rate of 98% the training sample and 95% for the
prediction set, at result of optimal regularization parameter of 4.37349 and kernel parameter of 13.2131
in SVM model.

For the disease detection in agriculture product, a fruit sorting machine is used to detect the citrus
canker at 730 and 830 nm with a bandpass filter installed in the scanning camera [172]. A real-time
image processing and classification algorithm is developed based on a two-band ratio (R830/R730)
approach, which achieves a detection accuracy of 95.3% for 360 citrus samples. Next, a shortwave
infrared hyperspectral imaging system is used to detect the sour skin in onion based on the suitable
reflectance spectrum from 1070 to 1400 nm [173]. Two image analysis approaches are utilized based
on the log-ratio images at two optimal wavelengths of 1070 and 1400 nm. A global threshold of
0.45 is integrated to segregate sour onion skin infection areas from log-ratio images. With Fisher’s
discriminant analysis, the detection accuracy of 80% is achieved. The second image analysis approach
is the incorporation of three parameters; max, contrast and homogeneity of the log-ratio images as the
input features for the SVM. Subsequently, the Gaussian kernel generates higher detection accuracy as
87.14%. Apart from that, the tumorous chicken is detected by the combination of a CCD camera and
imaging spectrograph from 420 to 850 nm [174]. Within the wavelength bands, the PCA select the three
useful wavelengths of 465, 575, and 705 nm from the tumorous chicken image. Based on the images
from 60 tumorous and 20 normal chicken, multispectral image analysis generates the ratio images,
which are divided into ROI classified either as tumorous or normal chicken. The image features from
ROI such as coefficient of variation, skewness and kurtosis are extracted as the input for the Fuzzy
classifier, which generates the detection accuracy of 91% for normal chicken and 86% for tumorous
chicken. To detect the nematodes in coffee cultivation, hyperspectral data is used in band simulation of
the RapidEye sensor to determine the most sensitive spectral ranges for pathogen discrimination in
coffee plants [176]. Multispectral classification identifies the spatial distribution of healthy, moderately
infected, and severely infected coffee plants with an overall accuracy of 71%. Apart from the four

467



Molecules 2019, 24, 2025

main applications with the spectral imaging technique in agriculture products, more applications with
different scanning methods and various wavelengths are tabulated in Table 7.

Table 7. Applications of spectral imaging technique in agriculture.

Class Product Application Method Wavelength (nm) Ref.

Fruit Apple Bruise detection Hyper. line scan 400–2500,
1000–2500

[78,180]

Apple Bruise detection timing Hyper. line scan 400–2500 [181]

Apple Bruise detection Multi. area scan 740, 950 [162]

Apple Bruise and faeces detection Multi. line scan 530, 665, 750, 800 [182]

Apple Firmness evaluation Multi. area scan 680, 880, 905, 940 [169]

Citrus Canker detection Multi. area scan 730, 830 [172]

Peach Firmness evaluation Hyper. line scan 500–1000 [183]

Peach Maturity evaluation Multi. area scan 450, 675, 800 [164]

Cantaloupe Faeces detection Hyper. line scan 425–774 [184]

Blueberry Firmness evaluation, soluble
solid content detection

Hyper. line scan 400–1000 [177,185]

Strawberry Maturity evaluation Hyper. line scan 380–1030
874–1734

[165]

Cherry Pit detection Hyper. line scan 450–1000 [186]

Grape Quality evaluation Hyper. line scan 400–1000 [170]

Banana Maturity evaluation Hyper. area scan 500–700 [168]

Tomato Maturity evaluation Hyper. line scan 396–736 [166]

Tomato Maturity evaluation Multi. area scan 530, 595, 630, 850 [167]

Cucumber Chilling injury detection Hyper. line scan 447–951 [187]

Vegetable Freeze-dried
broccoli

Glucosinolate detection Hyper. line scan 400–1700 [188]

Potato Cooking time prediction Hyper. line scan 400–1000 [189]

Onion Sour skin disease detection Hyper. area scan 950–1650 [173]

Mushroom Bruise detection Hyper. line scan 400–1000 [163]

Grain Rice plant Nitrogen content detection Hyper. line scan 400–1000 [190,191]

Thai jasmine
rice

Rice variety identification Multi. area scan 545, 575 [192]

Wheat Fungus detection Hyper. area scan 1000-1600 [193]

Wheat Damage detection Hyper. line scan 1000–2500 [194]

Peanut Tomato spot wilt disease
detection

Multi. Area scan 475, 560, 668, 717, 840 [195]

Corn Oil and oleic acid content
detection

Hyper. area scan 950-1700 [196]

Corn Aflatoxin detection Hyper. line scan 400–600 [197]

Meat Chicken Skin tumour detection Hyper. line scan 420–850 [174]

Chicken Heart disease detection Multi. area scan 495, 535, 585, 605 [198]

Chicken Faeces detection Multi. area scan 520, 560 [199]

Chicken Wholesomeness inspection Multi. line scan 580, 620 [200]

Beef Tenderness evaluation Hyper. line scan 400–1000 [201]

Beef Microbial spoilage detection Hyper. line scan 400–1100 [202]

Lamb Lamb variety identification Hyper. line scan 900–1700 [203]

Pork meat E. coli detection Hyper. line scan 470–960 [204]

Pork meat Quality inspection Hyper. line scan 900–1700 [205]

Fish Moisture and fat content
detection

Hyper. line scan 460–1040 [206]

Fish Ridge detection Hyper. line scan 400–1000 [207]

Salmon Microbial spoilage detection Hyper. line scan 400–1000
880–1720

[208]
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Table 7. Cont.

Class Product Application Method Wavelength (nm) Ref.

Dehydrated
prawn

Moisture content detection Hyper. line scan 380–1100 [209]

Prawn Adulteration detection Hyper. line scan 380–1030
900–1700

[210]

Dairy Milk powder Melamine detection Hyper. line scan 990–1700 [211]

Milk Fat content detection Hyper. line scan 530–900 [178]

Milk Melamine detection Hyper. point scan 4–98 μm [212]

Oil Olive oil Free acidity, peroxide and
moisture content detection

Hyper. line scan 900–1700 [179]

Beverage Tea Quality inspection Hyper. line scan 408–1117 [171]

Tea Moisture content detection Hyper. line scan 874–1734 [213]

Tea Tea variety identification Multi. area scan 580, 680, 800 [214]

Farm and
Plantation

Tea bush Tea variety, growth status and
disease identification

Hyper. area scan 325–1075 [175]

Coffee crop Detection of disease/infection Hyper. area scan 440–850 [176]

Coffee
plantation

Monitoring chlorophyll content Multi. area scan 490–2190 [215]

Note: Hyper. = hyperspectral, multi. =multispectral.

4. Photonics Techniques Implementation in Food Safety Inspection and Quality Control

Food safety inspection and quality control is important for ensuring the high quality of agriculture
products. To meet this criterion, photonics techniques have been extensively implemented into
numerous applications. For instance, clean drinking water is undeniably one of the most important
elements to sustain the organisms’ life. Contamination may happen when treated drinking water
is travelling in the distribution system to the consumer, whilst the sensitivity to the inhibitor of
contamination can be measured by the elevated dissolved organic matter (DOM) at the tap relative
to the water leaving the treatment plant [216]. Across a biologically stable drinking water system,
humic-like fluorescence (HLF) intensities of less than 2.2% relative standard deviation are measured
after accounting for quenching by copper. In addition, a minor infiltration of a contaminant is detectable
by sewage with a strong tryptophan-like fluorescence (TLF) signal thus validating the potential of DOM
fluorescence in detecting the water quality changes in drinking water system. Moreover, fluorescence
spectroscopy was demonstrated in evaluating the microbial quality of untreated drinking water
through online monitoring [217]. The DOM peaks are targeted at excitation and emission wavelengths
of 280 and 365 nm for TLF, as well as 280 and 450 nm for HLF. Both TLF and HLF are strongly correlated
to micro-bacterial cells such as E. coli with a correlation coefficient of 0.71 to 0.77. In comparison to
turbidity for E. coli with correlation coefficient of only 0.4 to 0.48, the DOM sensor appears to be a better
indicator for micro-bacterial cells in untreated drinking water. Apart from the DOM sensor, an optical
sensor was proposed to differentiate the particles in drinking water as either bacteria or abiotic particles
with an accuracy of 90 ± 7% and 78 ± 14% for monotype and fix-type suspensions, respectively, based
on a 3D image recognition and classification algorithm [218]. In addition, this optical sensor can
detect micro-particles with minimum size of 0.77 μm. Significantly, the aforementioned optical sensors
incorporating photonic techniques serve as an early warning for drinking water pollution.

Photonics and optics have also recently gained popularity in the quality inspection of food product.
This is because food inspection in the production line needs to be carried out at fast speed and a
very fast monitoring system is needed. Food inspection can become even more challenging when
it is dealing with large quantities of sample moving very quickly on the conveyor belt. Therefore,
high speed and high sensitivity optical system will be very suitable for the online monitoring and
inspection of food product. For example, research work on UV-visible-NIR optical spectroscopy have
been carried out extensively in the monitoring of extra virgin olive oil [219], honey [220], tea [221],
dairy product [222] and alcoholic beverages [223]. However, as these works focus on wavebands below
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1100 nm, the results and consistency of the conclusions may be easily affected by ambient lighting
conditions and the change in color of the beverages or product. Therefore, more research work shall be
carried out to characterize these food products in the NIR (>1100 nm) and MIR wavebands in order to
obtain the optical “fingerprint” that correlates to the quality and food safety level of the product.

In addition, food preservative exceeding the allowable limit has been a critical issue in ensuring
the health of the public. Butylated Hydroxytoluene (BHT) is commonly used as an antioxidant agent
in canned food or bottled beverages. Several optical sensing techniques such as optical spectroscopy
and fluorescence may be able to detect the concentration of BHT. BHT is also commonly known as
2,6-ditertiarybutyl-para-cresol (DBPC). Recently, Leong et al. [224] reported the detection of DBPC in
transformer oil using optical spectroscopy at waveband near to 1403 nm. This opens up the opportunity
of detecting the concentration of BHT in canned food or bottled beverages, leading to an online
monitoring system that uses the optical spectroscopy method.

Due to the lack of attention paid during the preparation processes or due to the contamination of
water and environment, hazardous residual materials are occasionally found in food. These hazardous
materials include heavy metal, pesticides and antibiotics. Conventionally, the screening process or food
safety inspections were carried out using laboratory-based equipment or measurement methods such as
gas chromatography (GC), GC-mass spectrometry and high-performance liquid chromatography [225].
However, these methods only allow inspection based on sampling due to the high cost and long
result waiting time. In this context, optical detection methods such as optical spectroscopy, Raman
spectroscopy and fluorescence can be explored for their possible utilization in the online monitoring of
food products in order to ensure that they are free of hazardous residual materials.

5. Photonics Techniques Implementation in Tropical Countries Agriculture

Blessed with wide spans of fertile soil, rich marine ecology, abundant rainfall and a tropical
climate, tropical countries are exceptionally suited for a myriad of agricultural activities [226–228].
Agriculture activities boost the country’s economy by supplying food sources and industrial raw
materials. This sector also provides income to farmers, raising their living standards in rural areas.
An example of tropical countries with active agricultural activities is Malaysia. Dating back to the
early years following Malaysia’s independence in 1957, the agriculture sector has been a signifficant
driver towards socio-economic development in Malaysia. However, in the early 1980s, the growth
of the agricultural field came to an abrupt halt due to the sharp decline in commodity prices,
limited technical specialty, volatile rubber prices and lack of incentives [229,230]. Industrialization
soon became the leading economic sector, with great focus directed towards manufacturing and
services [230]. Fortunately, the agriculture sector is once again emphasized upon the Asian financial
crisis in 1997, acting as a measure to minimize external economic shock by first strengthening the
domestic economy [227,231]. Since then, agriculture has always been a major agenda item of Malaysian
economic plans, with a recent target directed towards modernizing agriculture as drafted in the
Eleventh Malaysia Plan [232]. To date, amidst industrial developments, Malaysia has approximately
4.06 million hectares of agricultural land, with 80% allocated for commercial crops such as palm oil,
rubber, cocoa, coconut and pepper [229,233], while a portion of the remaining 20% was utilized for
the cultivation of agro-food crops [226]. These remarkable statistics have validated the potential of
a tropical country to develop its agricultural sector. Apart from Malaysia, other tropical countries
such as Indonesia and Thailand are also actively involved in agriculture activities. The following
sections will discuss some of the agricultural crops in tropical countries in which optics and photonic
techniques can be easily integrated for automated plantation management, yield increment, quality
inspection and disease control.

5.1. Implementation in Palm Oil-Related Activities

Palm oil is an extremely valuable commercial crop in tropical countries. Palm oil, which is
extracted from oil palm, is often used as raw materials for the production of biofuel, biofertilizers,
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oleochemicals, biomass products, nutraceuticals and pharmaceuticals. In fact, tropical countries are
among the global leaders in the palm oil industry [234]. The implementation of optics and photonic
techniques in palm oil-related activities will maintain the competitive power of the tropical countries
in the field and help to reap the associated economic benefits.

The implementation of optics and photonics techniques in oil palm related activities can start
from the development of agriculture robots. The development of an agriculture robot involves the
implementation of the imaging technique in its operation. Spatial and color information attained by
the agriculture robot through the imaging technique will greatly improve the efficiency of palm oil
plantation management. Automated palm oil fruit harvest is potentially applicable by pinpointing
the fruit position as presented in [72,74,75] for other crops. Besides, automated weed detection and
removal [73] as well as automated fertilizing can be performed using the developed agriculture robot.

In addition, palm oil quality is governed by fatty acid, moisture and peroxide contents. Microbial
or oxidation reactions that take place during the storage of oil palm fruit may modify these contents,
resulting in a depreciation of palm oil quality [235]. Under common operations, palm oil plantations
are usually distanced further away from refinery factories. Bulk transport of palm fruit upon reaching
the necessary processing quota is often practiced for cost savings. As a result, palm fruits that have been
harvested earlier will be stored in dedicated storage spaces. The time difference between harvesting
and processing greatly increases the risk for microbial or oxidation reaction to take place. In this
scenario, spectroscopy or spectral imaging can be implemented in the palm oil extraction stage to
perform oil quality segregation. This will greatly prevent contamination of low-quality palm oil in
further downstream processes, promoting process efficiency and increasing palm oil yield.

Another area in which optics and photonics techniques may be applied for oil palm activities is
disease detection. The most devastating diseases that attack palm oil plantations in South East Asia are
basal stem rot (BSR) and upper stem rot (USR). These diseases result in certain death of oil palms if not
controlled effectively, resulting in yield loss and disrupting the plantation cycle. These fatal diseases are
identified to be caused by the Ganoderma boninense (G. boninense) fungus. However, the identification of
the root cause of these diseases is still insufficient as they cannot be controlled even with the slightest
delay in infection detection [236]. In this area, spectral imaging presents itself as one of the possible
alternatives to perform early detection of the G. boninense fungus [237]. Samples of suspicious fungi
in the palm oil plantation can be simultaneously collected and analyzed to identify the presence of
disease-causing G. boninense. From here, preventive measures can be effectively performed to curb any
possible disease spreading.

5.2. Implementation in Natural Rubber Related Activities

Natural rubber is an important commodity that finds it place in the manufacturing of various
household, industrial and medical products. Rubber tree plantations have been widely established in
the fertile soils of tropical countries. The usage of optics and photonic techniques will again prove to
be beneficial in this area.

The simplest idea will again start from the usage of agriculture robots during the plantation stage.
In the context of rubber tree plantations, the imaging technique will provide visual guidance for the
agriculture robots to perform the scheduled collection of field latex. The usage of these robots will
gradually replace manual latex collection done by rubber tappers. This approach will address the
decline in manpower to maintain rubber tree plantations.

Meanwhile, the spectroscopy technique can be utilized in the later rubber processing stages.
The first application would be rubber quality grading. For instance, cup lump raw rubber, which is
an important material in tires, seal strips, conveyor belts and other moulded rubber products, can be
graded by using VIS-NIR spectroscopy to inspect the moisture content of the rubber. This spectroscopic
approach is fast, accurate and more reliable compared to manual inspection through sight and
touch [155]. Similarly, the protein and lipid contents in natural rubber can be detected through NIR-MIR
spectroscopy to enable grading [152]. Lastly, spectroscopy variations, such as NIR-MIR, Raman,
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dielectric or NMR, can be opted to study the structure and properties of rubber during vulcanization.
Such studies allow the analysis and selection of accelerators, activators and retarders, leading to
improved characteristics in the vulcanized rubber and an optimized vulcanizing process [124,153].

5.3. Implementation in Agro-Food Crops Related Activities

It is important to increase food production and achieve a self-sufficiency level (SSL) for a growing
country to become an advanced country. Currently, the agro-food crops in tropical countries comprise
of grains, organic fruits and vegetables, herbs and spices, livestock and fisheries [232,234]. By referring
to some of the applications stated in Sections 3.1–3.3, optics and photonic techniques can once again
improve the overall quality and yield of these crops.

Starting from grains such as rice and corn, crop harvest [72] and weed removal [73] can be easily
performed by agriculture robots with imaging capabilities. Thermal imaging can be conducted to
evaluate water stress in crops for irrigation control [97]. Moreover, the development of mobile phone
application to perform color-based identification of nitrogen content in rice and corn plant is another
interesting idea. The usage of such applications promotes the portable and on-site analysis of fertilizer
requirements in crop fields [64].

At the same time, all three optics and photonic techniques discussed earlier can be fully utilized
to inspect the harvested organic fruits and vegetables for quality evaluation. For instance, imaging
in either VIS or IR region is useful in detecting external damage or bruises in mangosteens, wax
jambus, cherry tomatoes and more. Spectroscopy may be performed as well to inspect internal features
or maturity of fruits and vegetables. Not least, spectral imaging may be considered when spatial
and spectral information are required simultaneously for quality evaluation. Meanwhile, the quality
inspection of meat products, such as chicken, beef, lamb, and fish among others, is strongly preferred to
be performed using spectroscopy or spectral imaging. These two techniques are suitable for identifying
the microbial spoilage of meat products due to their ability to obtain spectral information. With the
integration and application of optics and photonics in the agriculture industry, it is anticipated that the
agricultural products in the tropical countries will meet the public expectation of higher food quality.

5.4. Possible Challenges

The prevailing research challenges of integrating optics and photonics techniques into the
agriculture field are the reliability issue of the laser source and sensor, effect of the ambient environmental
condition into optics system, and expensive semiconductor materials at operating wavelength from
short to mid-IR range. First and foremost, the illumination intensity of the laser and the sensitivity of
the sensor may change over time, which leads to the need for recalibration of the system. Therefore,
more research is required in terms of the design and fabrication of a more reliable laser source, sensor
and optical detector. In addition, the effect of the ambient condition such as humidity, surrounding
temperature, and dust particles could be a hindrance in ensuring consistent results obtained from the
optical system. Hence, research into the minimization of these effects on the optical system is significant
to improve the system performance such as higher sensitivity, lower systematic error and maintenance
rate. Moreover, silicon is well-known for its optimum wavelength operation below 1000 nm. From short
to mid-IR range, examples of more viable semiconductor materials are gallium antimonide and indium
gallium arsenide. The investigation in terms of generating a higher efficiency using these materials for
a cost-effective solution creates the research opportunities for further exploration in both simulation
and experimental works.

Apart from the research challenges, the main challenge in introducing the discussed optics and
photonic techniques into the field of agriculture in tropical countries would be gaining the acceptance
of farmers, fisherman and smallholders. The introduction of modern technology and new agriculture
practices often raises concerns surrounding their technical and economic feasibilities. Farm and
plantation owners will prefer traditional agriculture practices as newly introduced technologies are
often regarded to be more suited to a controlled laboratory environment. In this scenario, technology
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vendors should ensure that complete field testing has been done in the environment where the
technology will be introduced. A probationary period may also be set to allow owners to try out and
experience the benefits brought forth by the proposed technologies.

The next challenge would be on financial limitations. In general, the cost to fully implement optics
and photonics techniques in existing agriculture activities may be a burden to the owners, especially
those involving sophisticated optical tools. This deterring factor may be mitigated if financial aids are
provided to the owners. In this case, the government of tropical countries should set the right path
by providing funds to the owners through attractive policies. For instance, a loan policy of flexible
repayment based on harvest cycles is more attractive compared to one of fixed term financing since
owners are now presented with flexible loans [232].

Lastly, another challenge lies with the need of technical support. When introducing the optics
and photonic techniques, technical training should be provided to farm and plantation workers in
order to familiarize them with the operations of new tools. At the same time, advisory and technical
services should be easily available in case the agriculture tools experience downtime or require
scheduled maintenance.

6. Conclusions

In conclusion, optics and photonics exhibit great benefits if they are integrated into the agricultural
industry. A complete knowledge of the behaviors and properties of light upon light-material interaction
allows the quantitative and qualitative analysis of agriculture products. In general, optics and photonic
techniques for agricultural purposes can be categorized into imaging, spectroscopy and spectral imaging
techniques. The imaging technique is effective in collecting spatial, color and thermal information,
whereas the spectroscopy technique is essential for collecting spectral information. Meanwhile, spectral
imaging is a combination of both imaging and spectroscopy techniques, allowing the collection of
a complete data set. These three optics and photonic techniques have been utilized in agriculture
categories such as fruits, vegetables, grain, meat, dairy produce, oil, beverages, and commercial crops,
as well as farm and plantation management. These works can be referred to and emulated in the
agriculture industry of tropical countries, especially in agriculture activities related to oil palm, rubber
and agro-food crops. However, challenges in terms of public acceptance, finance and technical support
should be overcome before achieving a complete integration of optics and photonics techniques in the
agriculture industry.

Thus, the key contribution of this study is the comprehensive analysis of different optics and
photonics systems in agricultural applications to provide a detail idea of the advanced techniques and
their future deployment in agriculture cultivation and harvesting. The review has proposed important
and selective suggestions for the further technological development of optics and photonics in future
agricultural applications:

• The incorporation of optical sensors into photonics detection techniques that serve as an early
warning for drinking water pollution.

• The characterization of canned food or bottled beverages in the NIR (>1100 nm) and MIR
wavebands for their optical “fingerprint” that correlates to the quality and food safety level of the
product, such as preservatives concentration.

• The characterization on hazardous residual materials in food using optical spectroscopy, Raman
spectroscopy and fluorescence.

• The implementation of an agricultural robot to perform better palm oil plantation management,
scheduled collection of field latex and weed removal.

• The spectral imaging provides early detection of disease-causing G. boninense in the oil palm.
• Spectroscopy provides moisture content inspection, protein and lipid content detection, as well as

improving the rubber vulcanizing process.
• The imaging technique detects external damage or bruises on organic fruits and vegetables.
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