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Preface to ”Air Quality Assessment Standards and

Sustainable Development in Developing Countries”

Air pollution is a critical challenge faced by the world, especially in developing countries.

During the rapid economic growth and remarkable pace of industrialization of typical developing

countries, such as China and India, massive amounts of fossil fuels, including coal, petroleum,

and natural gas, have been consumed. In addition to the usual pollution from fossil fuels and

sandstorm, fine atmospheric pollutants (such as PM2.5, PM10, and O3) continue to emerge and are

compounded to create new hazards. Air pollution not only affects the public health and quality of life

in developing countries, but also poses a threat to the sustainable development of their economies and

societies. Quick and efficient control of air pollution in developing countries has become a common

concern in academia.

In order to scientifically measure and improve air quality, the U.S. established the Environmental

Protection Agency (EPA) in the 1970s and published the first Pollution Standards Index. In 1999,

the EPA added the measurement of daily average PM2.5 concentration into their PSI and thereby

formed an independent Air Quality Index (AQI). After that, major developed countries constructed

their own air quality assessment systems. The World Health Organization (WHO) and various

scientific research institutions have also established their own air quality measurement standards,

which are constantly adjusted. Therefore, researchers from various universities have conducted

in-depth studies on air quality measurement and have offered amendment suggestions to the current

measurement indicator system.

Therefore, we have edited and published this book to discuss the effectiveness of current air

quality assessment standards in developing countries, the impact of air quality governance policies

based on those standards, and the improvement of those standards in order to effectively achieve

sustainable development. Scholars have delved into the issues of air quality assessment standards

and sustainable development in developing countries in 13 excellent academic papers which provide

excellent materials for students studying at the BSc, MSc, and Ph.D. levels as well as researchers to

understand air quality assessment standards and sustainable development in developing countries.

Weixin Yang, Guanghui Yuan

Special Issue Editors

ix
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Abstract: This paper calculated and evaluated the air quality of 13 cities in China’s Beijing-Tianjin-
Hebei (BTH) region from February 2015 to January 2018 based on the extended AQI (Air Quality
Index) Indicator System. By capturing the heterogeneous information in major pollutant indicators
and the standardization process, we depicted the important effect of other relevant features of
pollutant indicators beyond single-point data. Based on that, we further calculated the assessment
value of the air quality of different cities in the BTH region by using the Collaborative Filtering
Backward Cloud Model to construct differentiated weights of different indicators. With help of the
Back Propagation (BP) Neutral Network, we simulated the effect of the pollution control policies of
the Chinese government targeting air pollution since March 2016. Our conclusion is: the pollution
control policies have improved the air quality of Beijing by 55.74%, and improved the air quality of
Tianjin by 34.38%; while the migration of polluting enterprises from Beijing and Tianjin has caused
different changes in air quality in different cities of Hebei province—we saw air quality deterioration
by 58.60% and 38.68% in Shijiazhuang and Handan city respectively.

Keywords: AQI indicators; air pollution; collaborative filtering; Beijing-Tianjin-Hebei region

1. Introduction

Among the environmental challenges China is facing now, air pollution is one of the key issues
that draw the attention of academic circles [1–4]. In order to scientifically measure air quality and
better prevent and control air pollution, China has officially launched the Technical Regulation on
Ambient Air Quality Index (on trial) (HJ 633-2012) in 2016 [5].

Air pollution refers to the circumstances where the concentration of certain substances in the
atmosphere reaches a certain level that it can harm the ecosystem as well as humans and other species
living in it, and threaten the survival of human beings [6]. Currently, the pollutants that China has
covered in regular monitor and air quality evaluation include sulfur dioxide (SO2), nitrogen dioxide
(NO2), carbon monoxide (CO), inhalable particles (PM10 and PM2.5), and ozone (O3) [5,7]. Above
pollutants all cause serious threats to the sustainable development and health of human beings.

According to the two National Standards on Air Quality Measurement published by the
Chinese Ministry of Environmental Protection on 29 February 2012—Ambient air quality standards
(GB 3095-2012) and Technical Regulation on Ambient Air Quality Index (on trial) (HJ 633-2012)—that
became effective on January 1st, 2016, the air quality measurement of China mainly relies on the
calculation of AQI (Air Quality Index), with the method of [5]:

Sustainability 2019, 11, 939; doi:10.3390/su11030939 www.mdpi.com/journal/sustainability1
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• First, calculate the Individual Air Quality Index of certain pollutant (IAQIP):

IAQIP =
IAQIHi − IAQILo

BPHi − BPLo
(CP − BPLo) + IAQILo (1)

In equation above, CP represents the mass concentration of pollutant P; BPHi is the higher
threshold of pollutant concentration near CP corresponding to specified IAQI (Individual Air Quality
Index) regulated by government policy; BPLo is the lower threshold of pollutant concentration
near CP regulated by government; IAQIHi is the corresponding IAQI to BPHi; while IAQILo is the
corresponding IAQI to BPLo.
• Then, take the largest number from all IAQIP to calculate the AQI:

AQI = max{IAQI1, IAQI2, IAQI3, · · · , IAQIn} (2)

Nevertheless, there are some issues to be further discussed in above calculation method:
(1) The final AQI only reflects one pollutant—only the pollutant with the highest IAQI. Although

it is further defined in “AQI Technical Specifications (Trial Use)” that “when AQI is above 50,
the pollutant with the highest IAQI is the “primary pollutant”; if there are more than one pollutant with
the same highest IAQI, then all of such pollutants are classified as “primary pollutants”; all pollutants
whose IAQI is above 100 should be classified as “pollutants exceeding limits” [5]. However, even
based on such definitions, we are unable to capture the impact of pollutants other than the one with
the highest IAQIP on air quality.

(2) As regulated by government, the threshold of pollutant concentration corresponding to
specific IAQI is 500 for average PM2.5 within 24 hours, and 600 for average PM10 in 24 hours [5].
However, recently in our actual air quality monitoring practice, sometimes the concentration of certain
pollutants (such as PM2.5) in certain regions reached far higher than the threshold that it went “off the
charts” [8,9]. Because BPHi and BPLo in Equation (1) above is subject to the range of (0, 500) and (0, 600),
this calculation method cannot reflect the exact AQI.

(3) Given above issues, it is difficult for us to accurately measure and assess the air quality
of different cities, not to mention comparing the effect of air pollution control policies across the
cities. In current research practice, the assessment and comparison of air quality across provinces and
cities is usually simplified to be based on PM2.5 data, which is not helpful in identifying the whole
picture of pollutant sources and creates more challenges for the design and evaluation of air pollution
control policies.

Hence, this paper has selected 13 cities across the Beijing-Tianjin-Hebei (BTH) region—the region
with the heaviest air pollution in China and ranking top among the 13 target regions assigned by the
government for air pollution control [10]. Our study has covered the two municipalities directly under
the Central Government, Beijing and Tianjin. Meanwhile, since the launch of “Beijing-Tianjin-Hebei
Integration Policy” in 2014, the 13 cities in this region have shown stronger synergy in terms of policy
design and execution. Therefore, the air pollution conditions as well as the effectiveness of government
policy in the BTH region have valuable implications for wider areas of China.

A number of academic studies have also been conducted on the air quality problem in the BTH
region. Lang et al. studied the vehicular emissions trends in the BTH region from 1999 to 2010 by
the COPERT IV model. They showed that vehicular emissions of CO and VOC (Volatile Organic
Compounds) have decreased while emissions of NOX and PM10 have kept increasing in Tianjin and
Hebei [11]. Xu et al. studied the health risks caused by SO2 emissions in the different cities in the BTH
region. Using the Community Multi-scale Air Quality (CMAQ) modeling system, they simulated the
fate and transport of SO2 in the BTH region. They discovered that a risk-based approach should be
preferred because it will help improve the efficiency in resource utilization [12]. Zhao et al. collected
more than 400 PM2.5 samples in Beijing, Tianjin, Shijiazhuang, and Chengde over four seasons from
2009 to 2010. They indicated that the characteristics of carbonaceous aerosol pollution were spatially
similar and season-dependent in the plain area of the BTH region [13]. Sheng et al. compared the air
quality of the BTH region just before and after Asia-Pacific Economic Cooperation (APEC) meetings
of 2014. They showed that the APEC emission reduction measures have effectively improved the air
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quality of the BTH, especially in Beijing [14]. Miao et al. used the Weather Research and Forecasting
Model and the Flexible-particle Dispersion Model to investigate the pollutant transport mechanisms
of a haze event in 2011 over the BTH region. They suggested that the penetration by sea-breeze could
strengthen the vertical dispersion in BTH and carry the local pollutants to the downstream areas [15].
Zhou et al. investigated the ammonia emission inventory for the BTH region with the updated
source-specific emission factors and the county-level activity data. They found that higher ammonia
emission was concentrated in the areas with more rural and agricultural activity of Shijiazhang,
Handan, Xingtai, Tangshan and Cangzhou than other cities in BTH [16]. Han et al. studied the intense
air pollution occurred in the BTH region in January 2013. By multisatellite datasets, air sounding and
surface meteorological observations, they showed that there was a vertical overlap of fog and aerosol
layers during the foggy haze episodes, which would worsen the regional air quality and have notable
effects on the radiation balance [17]. Guo et al. investigated the reduction potentials of PM10, NOx, CO
and HC under different control policies in the BTH region during 2011–2020. They showed that the
emission standards updating policy would achieve a substantial reduction of all the pollutants, while
the eliminating high-emission vehicles policy can reduce emissions more effectively in short-term
than in long-term, especially in Beijing [18]. Chen et al. used Voronoi spatial interpolation method
to estimate the PM2.5 concentration in the BTH region. They showed that up to 14,051 deaths and
6574 million yuan loss would be avoided when the PM2.5 concentration fell by 25% in BTH [19].
Zhu et al. studied the spatial impacts of foreign direct investment (FDI) on SO2 emissions in the BTH
region by spatial panel data from 2000 to 2013. They found that the increase in FDI inflows would
also increase air pollution levels and influence the air quality of surrounding cities [20]. Wang et al.
developed a modified inter-regional and sectoral model to study the embodied emission flows based on
the input-output table of the BTH region. They showed that the transfer pattern of the most significant
pollutant flow was the same for SO2, Soot, Dust and NOx, which accounted for 35.7% to 42.0% of the
total embodied emissions of pollutants from Hebei province to Beijing [21]. Zhang et al. calculated the
intended maximum emission levels in the BTH region by modelling the relationship between PM2.5

concentration and other air pollutant emissions. They indicated that the PM2.5 concentrations in BTH
was influenced by local air pollutant emissions, wind speed, lagged PM2.5 concentrations, and PM2.5

concentrations in adjacent cities [22].
However, none of the above studies considered the combined effects of the six pollutants. In fact,

the severity of each pollutant is not all the same in cities in the BTH region (see Figure 1) [23].

 
Figure 1. Cont.
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Figure 1. Monthly average concentration of six pollutants in the BTH Region (February 2015): (a) PM2.5

(unit: μg/m3); (b) PM10 (unit: μg/m3); (c) CO (unit: mg/m3); (d) NO2 (unit: μg/m3); (e) O3 (unit:
μg/m3); (f) SO2 (unit: μg/m3).

Therefore, this paper has extended the indicators defined in “AQI Technical Specifications
(Trial Use)” (HJ 633-2012). First, we built an indicator system that covers all six main air pollutants and
based on the interval analysis method [24,25], we further constructed three kinds of heterogeneous
information (information with different dimensions, such as interval number, mean value, and
variance) as well as calculated the standardization form of each pollutant indicator in order to capture
the effect of each pollutant on air quality within our study period. Then we adopted the Collaborative
Filtering Backward Cloud Model to obtain the different weights for calculation of air quality assessment
score of each city based on air pollutant concentration data of the BTH region from February 2015 to
January 2018. Furthermore, we simulated the Background Trend Line of the dynamic change in air

4



Sustainability 2019, 11, 939

quality in absence of air pollution control policies in cities of the BTH region with help of the Back
Propagation (BP) Neural Network method in order to quantify the influence of government policy on
pollution control of different cities. Last but not least, we proposed tailored policy recommendations
for air pollution control.

The structure of this paper is as follows: Part 2 introduced the methodology and data used in
this paper. Part 3 illustrated our calculation results and analysis of the effect of air pollution control
policies on various cities in BTH region since March 2016. Part 4 provided conclusions and related
policy recommendations.

2. Materials and Methods

2.1. Data

The data adopted by this paper came from the official daily air quality data and pollutant
monitoring data published by the Data Center of China’s Ministry of Environmental Protection [23],
the City Air Quality Publishing Platform of China’s National Environmental Monitoring Center [26],
as well as local governments of Beijing, Tianjin and Hebei. The data range from February 2015 to
January 2018, and included the daily average concentration numbers of 6 main air pollutants (PM2.5,
PM10, CO, NO2, O3, and SO2).

2.2. Methods

Because this paper has extended the official AQI indicator system of the Chinese government to six
main pollutants and 18 indicators, we first selected 3 variables of heterogeneous information (interval
number, mean value, and mean variance) for each indicator, and then obtained the standardization
form of these variables by common practice and calculated the distance between heterogeneous
information and its positive thresholds (the corresponding minimum value of each attribute indicator
during the observation period) and negative thresholds (the corresponding maximum value of each
attribute indicator during the observation period). Then we further adopted the Collaborative Filtering
Model that helps to sort and select the optimal assessment method given multiple indicators in order
to determine the differentiated weights of different indicators. Finally, we calculated the air quality
assessment scores of 13 cities by the Backward Cloud Model [27].

2.2.1. Construction and Standardization of Heterogeneous Information

We selected 3 variables of heterogeneous information for each main pollutant indicator—interval
number, mean value, and mean variance. Among these variables, the mean value and mean variance
can be written as real number eij(j ∈ C1). We first obtained the standardization form of eij as xij:

xij =

⎧⎨
⎩

eij
emaxj

, j ∈ Cb
1

1 − eij
emaxj

, j ∈ Cc
1

(3)

in which emaxj = max
{

eij
∣∣i = 1, 2, . . . , m

}
.

The standardization form of the interval number eij =
[
e−ij , e+ij

]
, j ∈ C2 can be written as:

xij =

⎧⎪⎪⎨
⎪⎪⎩

[
e−ij

e+maxj
,

e+ij
e+maxj

]
, j ∈ Cb

2[
1 − e+ij

e+maxj
, 1 − e−ij

e+maxj

]
, j ∈ Cc

2

(4)

in which e+maxj = max
{

e+ij
∣∣∣i = 1, 2, . . . , m

}
.
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2.2.2. Calculate the Distance between the Heterogeneous Information and Its Positive and Negative
Thresholds

In order to compare different assessment methods, let x+ and x− be the positive and negative
thresholds of the heterogeneous information respectively, i.e., the extremal solutions of the best case
and worst case scenario. Therefore, if xij represents the jth attribute value of the ith indicator, its
distance from its positive threshold value, d(xij, x+) can be calculated by:

d
(

xij, x+
)
=

⎧⎪⎪⎨
⎪⎪⎩

d
(
dij, d+i

)2, j ∈ C1
1
2

[(
dij, e−i

+
)2

+
(
dij, e+i

+
)2
]
, j ∈ C2

1
3

[(
aij, a+i

)2
+
(
bij, b+i

)2
+
(
cij, c+i

)2
]
, j ∈ C3

(5)

While its distance from its negative threshold value, d(xij, x−) can be calculated by:

d
(

xij, x−
)
=

⎧⎪⎪⎨
⎪⎪⎩

d
(
dij, d−i

)2, j ∈ C1
1
2

[(
dij, e−i

−)2
+
(
dij, e+i

−)2
]
, j ∈ C2

1
3

[(
aij, a+i

)2
+
(
bij, b+i

)2
+
(
cij, c+i

)2
]
, j ∈ C3

(6)

2.2.3. Decide Indicator Weights by Using Collaborative Filtering Algorithm

After obtaining the distance between the heterogeneous information from its positive and negative
threshold values, we measured the differentiation between various indicators by taking the opposite
number of their similarity value calculated by the MSD Similarity Formula.

d
(
yi, yj

)
=

∑
card(Sij)

h=1

(
bhi − bhj

)2

card
(
Sij
) (7)

in which d
(
yi, yj

)
is the differentiation between indicator yi and yj; Sij is the set of all assessment

models that cover both yi and yj; bhi is the standardized assessment score of indicator yi by assessment
model Sh.

The mean differentiation of indicator yi with all other indicators, di can be written as:

di =
∑n

j=1 dij

n
(8)

In equation (8), dij is the differentiation between the ith indicator yi and the jth indicator yj. The
differential weight of indicator yj, ωi can be expressed as:

ωi =
di

∑n
i=1 di

(9)

2.2.4. The Backward Cloud Model

In order to combine quantitative and qualitative assessment, we selected Backward Cloud Model
with no specific degrees to calculate the air quality score of different cities. First, we obtained the mean
value of the air quality scores (X) based on the information of n indicators (xi).

X =
1
n

n

∑
i=1

xi (10)

This average value X is the expected value of air quality of this city. This is the best indicator for
qualitative assessment of a city’s air quality.

6
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Given the expected value, we can further calculate the entropy of air quality of different cities, En:

En =

√
π

2
× 1

n

n

∑
i=1

∣∣xi − X
∣∣ (11)

This entropy (En) means the width of the information, which represents the uncertainty
and ambiguity in one city’s air quality score. The bigger the entropy’s value is, the higher the
uncertainty becomes.

We then further obtained the hyper entropy (He) of each city’s air quality score through:

He =
√
|S2 − En2| (12)

in which S2 is the variance of various assessment models against their respective expectation value Ex.
This hyper entropy (He) reflects the uncertainty of various entropy values by showing the

dispersion degree of fuzzy information. The bigger the hyper entropy value is, the more disperse a
city’s air quality score is, and the more randomness there is. A smaller hyper entropy value means less
uncertainty and randomness, and better air quality of a city. The larger the evaluation value obtained,
the worse was the air quality of the city at that time. Therefore, with help of the Backward Cloud
Model, we obtained the qualitative result expressed by a certain number and realized the integration
of quantitative scores and qualitative expression, able to qualitatively describe a city’s air quality based
on a quantitative number.

3. Results

With help of the Collaborative Filtering Backward Cloud Model discussed in 3.1 and the
MATLAB algorithm we developed (refer to Appendix A) and based on the pollutant data listed
in 3.2, we calculated the Air Quality Assessment Score of 13 cities in BTH region from February 2015
to January 2018 (1095 days) as shown below through Tables 1–4.

Table 1. Air quality assessment score of cities in the BTH region (2015.02–2015.10).

2015-02 2015-03 2015-04 2015-05 2015-06 2015-07 2015-08 2015-09 2015-10

Baoding 0.8440 0.8561 0.7136 0.6942 0.6789 0.6942 0.7094 0.6473 0.7373
Beijing 0.4373 0.4329 0.4446 0.4723 0.5354 0.4845 0.4516 0.4808 0.4200

Cangzhou 0.5017 0.4831 0.3742 0.6043 0.4379 0.0800 0.4219 0.4058 0.2640
Chengde 0.3135 0.2663 0.1712 0.3941 0.1988 0.3590 0.2240 0.2055 0.1351
Handan 0.5969 0.3893 0.5457 0.5285 0.6499 0.5829 0.8147 0.7053 0.7513

Hengshui 0.7697 0.6868 0.5638 0.6405 0.6189 0.6357 0.6046 0.8389 0.8801
Langfang 0.3117 0.3767 0.5031 0.4415 0.4170 0.4393 0.5946 0.6149 0.5629

Qinhuangdao 0.3005 0.3197 0.3800 0.3050 0.1375 0.1286 0.2647 0.1929 0.1937
Shijiazhuang 0.4626 0.6096 0.5823 0.3846 0.4678 0.2947 0.4143 0.4639 0.4341

Tangshan 0.6236 0.8502 0.9725 0.9995 0.7670 0.7661 0.6697 0.7291 0.7173
Tianjin 0.3130 0.3760 0.0886 0.2781 0.4627 0.0627 0.2310 0.2190 0.2366
Xingtai 0.7590 0.6527 0.5737 0.5618 0.7026 0.6843 0.8039 0.7065 0.7335

Zhangjiakou 0.2422 0.2290 0.2675 0.4207 0.2968 0.1705 0.2582 0.1371 0.0819

Within our study period, the most important air pollution control policy by the Chinese
government is the one announced by Prime Minister Li Keqiang in the “Government Work Report”
(March 2016) that “we must prioritize the control of air pollution and water pollution with the goal
of reducing chemical oxygen demand (COD) and ammonia-nitrogen emissions by 2%, reducing the
emissions of sulfur dioxide and oxynitride by 3% and controlling the concentration of PM2.5 in key
areas” [28]. As the key area listed in the “Government Work Report”, the BTH region has made great
effort on air pollution control under the policy guidance of the central government since March 2016.
In order to depict the effect of such air pollution control policy, we adopted the Back Propagation (BP)
Neural Network method to simulate the Background Trend Line of the dynamic change in air quality
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in absence of these pollution control policies in cities of the BTH region, and compared with the actual
numbers (especially since the air pollution control campaign that started in March 2016) from below
Tables 2–5, in order to quantify the influence of policy on pollution control of different cities.

Table 2. Air quality assessment score of cities in the BTH region (2015.11–2016.07).

2015-11 2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06 2016-07

Baoding 0.7371 0.6991 0.6298 0.8750 0.7225 0.6364 0.6870 0.6127 0.6329
Beijing 0.4446 0.3742 0.1996 0.2896 0.5057 0.3786 0.5397 0.5779 0.5328

Cangzhou 0.7212 0.4504 0.3726 0.5587 0.5211 0.4021 0.4265 0.4103 0.4098
Chengde 0.2902 0.1759 0.3461 0.4294 0.2476 0.3135 0.3312 0.3481 0.3446
Handan 0.6415 0.7078 0.6554 0.8445 0.7648 0.7955 0.2903 0.5024 0.3518

Hengshui 0.7449 0.7871 0.7306 0.9171 0.7632 0.6172 0.5894 0.6422 0.6467
Langfang 0.5093 0.4317 0.3473 0.3294 0.4516 0.2237 0.2164 0.4799 0.5971

Qinhuangdao 0.2070 0.1576 0.0904 0.1124 0.2889 0.3187 0.3366 0.2894 0.1180
Shijiazhuang 0.6835 0.5144 0.5899 0.6014 0.7660 0.3267 0.5278 0.4469 0.5410

Tangshan 0.6982 0.4357 0.4623 0.6462 0.8139 0.7107 0.8880 0.9609 0.5922
Tianjin 0.4943 0.2709 0.2772 0.1672 0.4672 0.4470 0.3450 0.4395 0.0983
Xingtai 0.6978 0.6196 0.6253 0.7029 0.7446 0.5027 0.5205 0.5598 0.7750

Zhangjiakou 0.4137 0.2942 0.3691 0.3947 0.2122 0.1761 0.1561 0.0899 0.2541

Table 3. Air quality assessment score of cities in the BTH region (2016.08–2017.04).

2016-08 2016-09 2016-10 2016-11 2016-12 2017-01 2017-02 2017-03 2017-04

Baoding 0.3092 0.6628 0.5853 0.5509 0.5631 0.6854 0.6255 0.6643 0.5634
Beijing 0.4877 0.2403 0.3245 0.2401 0.3293 0.3087 0.1616 0.3003 0.2197

Cangzhou 0.2731 0.5797 0.5798 0.5681 0.6649 0.3238 0.5536 0.6097 0.6751
Chengde 0.1787 0.0767 0.1436 0.2105 0.1548 0.2277 0.2727 0.2135 0.2898
Handan 0.5420 0.7057 0.4738 0.6708 0.7452 0.6672 0.7120 0.6064 0.7989

Hengshui 0.6088 0.6651 0.5344 0.6288 0.4565 0.5000 0.5819 0.6314 0.6944
Langfang 0.7345 0.3213 0.1966 0.2460 0.4123 0.3987 0.4081 0.4372 0.4947

Qinhuangdao 0.2415 0.2363 0.2490 0.2354 0.2881 0.4494 0.3947 0.4700 0.4536
Shijiazhuang 0.4370 0.6672 0.7702 0.7248 0.6939 0.6808 0.7176 0.7575 0.5961

Tangshan 0.4957 0.7255 0.6287 0.5398 0.5315 0.4429 0.5363 0.6436 0.7999
Tianjin 0.2715 0.4562 0.3333 0.3651 0.3652 0.3113 0.3510 0.6127 0.7321
Xingtai 0.3989 0.7404 0.5957 0.5495 0.6229 0.6827 0.8329 0.7001 0.5804

Zhangjiakou 0.2147 0.0795 0.2242 0.2973 0.2653 0.3020 0.2287 0.1595 0.3066

Table 4. Air quality assessment score of cities in the BTH region (2017.05-2018.01).

2017-05 2017-06 2017-07 2017-08 2017-09 2017-10 2017-11 2017-12 2018-01

Baoding 0.7170 0.6288 0.6332 0.5885 0.7320 0.4273 0.7028 0.7288 0.6464
Beijing 0.4714 0.3771 0.4886 0.2573 0.3874 0.2164 0.1696 0.1455 0.2238

Cangzhou 0.6445 0.5570 0.4912 0.4590 0.4080 0.6839 0.5789 0.6079 0.5319
Chengde 0.2721 0.0333 0.0113 0.0156 0.0321 0.0345 0.1520 0.1651 0.2904
Handan 0.8597 0.7773 0.4710 0.8398 0.6658 0.6679 0.7722 0.7462 0.8278

Hengshui 0.6058 0.4576 0.3713 0.4443 0.3034 0.5248 0.5525 0.5562 0.6148
Langfang 0.5550 0.4469 0.5713 0.3136 0.4420 0.2623 0.1900 0.2319 0.2227

Qinhuangdao 0.1415 0.3120 0.2403 0.2963 0.3901 0.4707 0.4547 0.3096 0.2895
Shijiazhuang 0.8026 0.7218 0.7478 0.6380 0.7405 0.5206 0.6798 0.6535 0.7337

Tangshan 0.8857 0.8552 0.7815 0.7767 0.7740 0.9348 0.6063 0.5592 0.4841
Tianjin 0.5620 0.2684 0.3644 0.3660 0.4094 0.4932 0.3299 0.3422 0.3066
Xingtai 0.9449 0.8580 0.8058 0.8240 0.7968 0.7023 0.8016 0.7332 0.8120

Zhangjiakou 0.2200 0.1316 0.3945 0.1164 0.0076 0.1465 0.2841 0.3168 0.2854

By calculations under the Back Propagation (BP) Neural Network (refer to Appendix B for
calculation principles and MATLAB algorithm), we obtained the Output Layer result of the Background
Trend Line of the dynamic change in air quality in absence of pollution control policies in cities of the
BTH region (see Tables 5 and 6).
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Finally, we can make the comparison between air quality assessment scores simulated by BP
Neural Network and actual air quality scores of cities in the BTH region (see Figure 2).
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0

0.5

1
Handan real simulated
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Figure 2. Cont.
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Figure 2. Comparison between air quality assessment scores simulated by BP Neural Network and
actual air quality scores of cities in the BTH region.

4. Discussion

According to our research method, the larger the evaluation value obtained, the worse was the
air quality of the city at that time. Through comparison between the air quality assessment scores
simulated by BP Neural Network and the actual air quality scores, we found that the air pollution
control policy since March 2016 has shown different effectiveness and impact on cities of the BTH
region as below:

(1) Beijing’s air quality scores have shown improvement since August 2016 after the pollution
control policy was implemented, but have also experienced fluctuations before April 2017. Beijing
has shown success in air pollution control since October 2017, and greatly improved its ranking in air
quality among the 13 cities of BTH region from 2017 to 2018. It has even ranked top one for 3 months
and ranked among the top three for 8 months in 2017. The air quality of Beijing has improved 55.74%
from 0.5057 in March 2016 to 0.2238 in January 2018, and improved 48.82% since the beginning of
our study period (February 2015). Behind this remarkable improvement, Beijing has made heavy
investment and issued numerous administrative orders with Chinese characteristics.

• From 2016 to 2017, Beijing has invested as much as 34.78 billion RMB in air pollution control, which
is almost 7 times of its investment in 2013 [29]. The biggest investment is on “Replacing Coal and
Reducing Nitrogen Emission”, i.e., facilitating the energy source change from coal to clean energy
and reducing the annual coal consumption of Beijing from 22.7 million tons in 2013 to less than 6
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million tons by end of 2017 through administrative orders and equipment upgrade [30]. One of
the administrative orders with Chinese characteristics is from Beijing Construction Committee
on September 15th 2017 that all road construction work (including any earthwork and house
demolition) and hydraulic engineering projects must suspend from November 15th 2017 to March
15th 2018 (the heating season in Beijing) in order to completely eliminate construction dust [31].
Only one month after this administrative order (from October 2017 to January 2018), Beijing has
achieved the best air quality score during the entire study period.

• Beijing has prioritized the policy control on high-emission vehicles by extending its forbidden
area. In November 2016, Beijing government has issued its revised “Air Pollution Emergency
Plan” which stipulates that on days of Air Pollution Orange Alert and Red Alert, all light-duty
gasoline vehicles with National Level I and Level II Emission Standards are forbidden on the road
in the whole city [32]. Since February 15th 2017, Beijing government has further forbidden cars
with National Level I and Level II Emission Standards driving in areas within the 5th Ring Road
during workdays (whole day) [33]. By end of 2017, Beijing government has forced the retirement
of 2.17 million old motor vehicles, which accounted for 36.12% of its total motor vehicles [30].

• Beijing has implemented more strict elimination policies for polluting companies. The “Production
Technology and Equipment Upgrade / Retirement List of Heavy Polluting Industries of Beijing”
was officially effective in July 2017, which strictly requires to remove 115 production technologies
and 57 production equipment of 11 industries including the steel industry, non-ferrous metals
industry, building materials industry, chemical industry, textile printing and dyeing industry,
papermaking industry, etc. within a specified time limit and forbids starting or extending any
similar projects [34]. By the end of 2017, Beijing government has cleaned up around 11 thousand
heavy pollution companies [30]. However, it’s worth noticing that a large number of those
companies (especially large industrial companies) simply moved from Beijing to a nearby city.
The result is moving the pollution sources from Beijing to Hebei province.

(2) As the other municipality directly under the central government in this region, Tianjin has
experienced large fluctuations during the study period. Although its air quality has improved by
34.38% after implementation of the pollution control policies, its air quality score has once dropped
to the worst level of 0.7321 in April 2017 and gradually improved afterwards. Its air quality score
in January 2018 only improved by 2.04% compared to its level in February 2015. According to the
inspection result on Tianjin provided by the Environmental Protection Inspectorate sent by the central
government in July 2017, the execution as well as effectiveness of Tianjin’s air pollution control policy
has large fluctuations with even worse air quality in several periods. With high concentration of heavy
and chemical industries in the city and severe structural pollution, Tianjin still initialized or planned
to initialize several thermal power projects without regard to the environment, which resulted in a
large increase in the concentration of nitrogen dioxide in the atmosphere in 2016, and an increase of
PM2.5 by 27.5% in the first quarter of 2017 [35]. Although thee Tianjin government has taken a series
of remedial measures including longer suspension period than Beijing—from October 2017 to March
2018, all road construction work, hydraulic engineering projects, earthwork, house demolition and
cement mixing work are paused in Tianjin’s urban area [36]. However, the policy has not shown much
effectiveness so far.

(3) Baoding and Cangzhou have shown most overall policy effectiveness within the study period
with their own characteristics. Although Baoding has achieved an improvement of 23.41% in air
quality score in January 2018 compared with that of the beginning period, except for August 2016
and October 2017, its air quality score has been above 0.50 for most of the study period. Cangzhou
has shown lower air quality score than other cities in the study period partly due to its geographical
location close to the Bohai Sea. However, since October 2017, its air quality score has deteriorated to
above 0.5, resulting in an air quality score in January 2018 that has declined by 6.02% compared with
that of the beginning period. We have noticed that in June 2017, Cangzhou Bohai New Area planned
a “Beijing Enterprise Zone” in order to receive the immigrating companies of non-capital functions
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from Beijing. By the end of 2017, almost one thousand companies have settled down in this “Beijing
Enterprise Zone”, among which there are nearly 800 clothes manufacturing companies [37].

(4) The air pollution control policy of Handan, Hengshui, Xingtai and Zhangjiakou has shown low
effectiveness within the study period with large differences in air quality scores. All these cities have
experienced a decline of air quality scores when comparing the last period with the beginning period,
except for Hengshui (the score of Handan has declined by 38.68%, that of Zhangjiakou declined by
17.84%, while that of Xingtai declined by 6.98%). We have noticed that these 4 cities have all received
large numbers of polluting companies that migrated out of Beijing in the study period. In 2014, Beijing
government decided to move its Lingyun Building Materials & Chemical Co.,Ltd. from Beijing to
Handan, which was the first central-government-owned enterprise that was forced to migrate out
of Beijing during our study period and received its production permit from Handan government in
October 2015. Before that, this company emitted 400 thousand tons of carbon dioxide, 9 thousand
tons of sulfur dioxide, and 10 thousand tons of dust and fume in Beijing every year [38]. In addition,
as one of the leading textile printing and dyeing companies of Beijing, Victor’s Clothing Company also
migrated to Hengshui in 2015, only leaving its head office and design center in Beijing [39]. All these
migrating companies plus the existing polluting companies in these cities such as Handan Iron and
Steel Group Company, panel and plate processing companies in Xingtai, chemical plants in Hengshui,
and emissions from the growing numbers of motor vehicles in Zhangjiakou in recent years—the
various factors have offset the effects of the air pollution control policies.

(5) The air quality score of Langfang, which is located between the two municipalities directly
under the central government—Beijing and Tianjin, dropped to the worst level of 0.7345 in August
2016, ranking bottom among the 13 cities in our study scope. However, after that, its air quality score
has seen distinct improvement and reached its best level of 0.2227 in January 2018 (improved by
28.55% compared with its beginning level), ranking top among the 13 cities. Located in the ecological
conservation area north-west of Beijing, Chengde has kept an outstanding air quality record of under
0.40. We noticed that the air quality score of Chengde first dropped to the worst level during June
and October 2017 but then climbed up. Its air quality score has only improved by 7.37% when
comparing that of the ending period with the beginning period. This result shows big fluctuations in
air quality and policy effectiveness of these 2 cities in our study period and needs further enhancement
in the future.

(6) Tangshan’s case is a little special. Although its air quality in January 2018 has improved
by 22.37% compared with the beginning of the period, its air quality score has ranked bottom in
9 months across the study period of 36 months, and has showed no sign of improvement until
October 2017. In order to understand the reason behind, we must be aware that from 2014 to
2017, Tangshan received the most industries that migrated from Beijing and Tianjin among cities
in Hebei province, with total investment of 575.1 billion RMB and 442 projects of investment over 100
million RMB, including large heavy-pollution industrial companies such as Capital Iron and Steel
Company and Beijing Coking and Chemical Plant [40]. The Caofeidian District of Tangshan with large
numbers of immigrating companies from Beijing and Tianjin is only one-hour drive from downtown
Tangshan [41]. Therefore, the moving-in of industrial companies has caused huge impact on the air
quality of Tangshan. That is why Tangshan government appropriated 66.70 million RMB from its fiscal
income and constructed an air quality grid monitoring and decision-making support system with
high accuracy for the purpose of air pollution monitoring and control which was officially launched
in September 2017. This system has integrated resources from various government departments
including the environmental protection department, public security department, housing development
department and land department, and installed almost 600 miniaturized and integrated online
monitoring devices with international standards in the urban area [42]. Moreover, Tangshan has
put great emphasis on staggering peak production of iron and steel companies. Since November
15th 2017, Tangshan government has demanded that all of its 35 iron and steel companies adopt
staggering-peak production [43]. For example, Tangshan Iron and Steel Co., Ltd. under Hebei Iron
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and Steel Group has limited its steel production to 477.5 thousand tons of by suspending the operation
of blast furnaces [44], which has greatly helped the improvement of air quality since October 2017.

(7) The air pollution control policy has achieved little effect in Shijiazhuang and Qinhuangdao.
The air quality score of Shijiazhuang in January 2018 has deteriorated by 58.60% when compared with
that of the beginning period. The possible reasons are: First, the geographic location of Shijiazhuang is
very close to the Taihang Mountains, which blocks the wind or air circulation and causes air pollutants
to linger above the city, creating difficulty for the clean-up of air pollution [45]. Moreover, apart from
its own polluting industries including the iron and steel industry and cement industry, Shijiazhuang
has also received large numbers of polluting industries from Beijing and Tianjin in recent years,
including the building materials industry, leather manufacturing industry, pharmaceuticals industry,
etc. [46]. Many of these polluting companies have set their new location to be between Tangshan and
Qinhuangdao, which has impacted the air quality of Qinhuangdao and offset the effectiveness of air
pollution control policies to some extent [47].

5. Conclusions

This paper calculated and assessed the air quality of 13 cities of the BTH region from February
2015 to January 2018 based on the extended AQI indicator system. By constructing and standardizing
Heterogeneous Information of major pollutant indicators including interval number, mean value,
and variance, we depicted the important effect of other relevant features of pollutant indicators
beyond single-point data. Based on that, we further calculated the air quality scores of different
cities in the BTH region by using the Collaborative Filtering Backward Cloud Model to construct
differentiated weights of different indicators. With help of the Back Propagation (BP) Neutral Network,
we simulated the effect of the pollution control policies of the Chinese government targeting air
pollution since March 2016. Our conclusion is: the pollution control policies have improved the air
quality of Beijing by 55.74%, and improved the air quality of Tianjin by 34.38%; while the migration of
polluting enterprises from Beijing and Tianjin has caused different changes in air quality in different
cities of Hebei province—we saw air quality deterioration by 58.60% and 38.68% in Shijiazhuang and
Handan city respectively. Based on findings above, we provided below policy recommendations for
air pollution control of the BTH region:

(1) Embrace more market measures than administrative orders in the battle against air pollution.
Currently, most of the measures targeting the air pollution in BTH region are administrative orders
and penalty. Although these administrative orders and penalty have achieved certain results, these
tools are not efficient or sustainable enough and do not match with the requirement under market
economy. Therefore, in the future battle against air pollution, apart from improving the accuracy of
air quality measurement, we should also design more tax categories for specific pollutant emissions,
such as carbon tax, sulfur dioxide tax, and PM2.5 tax. At the same time, we should convert the current
environmental protection fee to corresponding local tax; decrease the production of pollution products
by income effect and substitution effect of tax; encourage companies to save energy [48,49] and cut
emissions in order to solve the issue of pollution [50,51].

(2) Improve the compensation system for both economic and environmental loss during industry
migration in the BTH region. During the air pollution control campaign of Beijing and Tianjin, large
numbers of polluting companies moved to cities in Hebei province, including some heavy pollution
companies such as the Capital Iron and Steel Company and Beijing Coking and Chemical Plant that
moved to Tangshan, the Lingyun Building Materials & Chemical Co., Ltd. that moved to Handan,
Beijing’s No. 1 Machine Tool Plant that moved to Baoding, etc. This impacted the air pollution control
work of cities in Hebei province to some extent. Therefore, the BTH region should establish and
improve the compensation system for industry migration and industry upgrade in this region. Based
on the overall industry plan of this region, the government should be fully aware of the economic
development and environmental protection pressure on these destination cities of polluting industries,
and offer sufficient compensation in terms of economic development and environmental protection
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resources in order to realize a fair competition within this region and achieve synergy in regional
economic development.

(3) Develop pollution control technologies and continuously improve air quality through
technological advancement. On one hand, we should encourage colleges and scientific research
institutions in this region to continue working on air pollution control technologies, and enhance
the cleansing and control of industrial wastegas and motor vehicle exhaust. On the other hand,
we should continuously develop and implement new energy technologies in this region; improve
traffic management and green construction in the city; and further reduce pollution by encourage
public transportation and other environmentally friendly methods such as walking and cycling.
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Appendix A. MATLAB algorithm for the Collaborative Filtering Backward Cloud Model

load(‘DATA.mat’);

data=DATA;

L=5;

a1=max(data(:,1));

data(:,1)=1-data(:,1)/a1;

data(:,2)=data(:,2);

a2=max(max(data(:,4:5)));

data(:,4:5)=data(:,4:5)/a2;

a3=max(max(data(:,6:8)));

data(:,6:8)=data(:,6:8)/a3;

data1=xiangduizhengtiejindu(data,L);

MSD=chayi(data1); MSD_=mean(MSD,2);

MSDsum=sum(MSD_);

W=MSD_./MSDsum;

W=W’;

[Ex,En,He]=nixiangyun(data1,W);

function [MSD]=chayi(data)

[m,n]=size(data);

for i=1:n

for j=i:n

AA=[data(:,i) data(:,j)];

[z1,z2]=find(isnan(AA));

AA(z1,:)=[[];

[p,q]=size(AA);

a=intersect(AA(1),AA(2));

b=length(a);

card(i,j)=1-b/(2*p-b);

%card(i,j)=pdist(AA’, ‘jaccard’);

15



Sustainability 2019, 11, 939

qiuhe(i,j)=mean((AA(:,1)-AA(:,2)).ˆ2);

%qiuhe(i,j)=sum((AA(:,1)-AA(:,2)).ˆ2);

msd(i,j)=qiuhe(i,j)./card(i,j);

end

end

MSD=msd+msd’;

for i=1:n

MSD(i,i)=0;

end

function dataZZ=xiangduizhengtiejindu(data,L)

dataz=max(data);

dataz(10)=max(data(:,10));

dataf=min(data);

dataf(10)=min(data(:,10));

dataZ(:,1)=(data(:,1)-dataz(1)).ˆ2;

dataZ(:,2)=1/L.*((data(:,2)+data(:,3)-(dataz(2)+dataz(3))).ˆ2);

dataZ(:,3)=1/2.*(((data(:,4)-dataz(4)).ˆ2+(data(:,5)-dataz(5)).ˆ2));

dataZ(:,4)=1/3.*((data(:,6)-dataz(6)).ˆ2+(data(:,7)-dataz(7)).ˆ2+(data(:,8)-dataz(8)).ˆ2);

dataZ(:,5)=1/3.*((data(:,9)-dataz(9)).ˆ2+(data(:,10)-dataz(10)).ˆ2+((data(:,9)+data(:,10))-

(dataz(9)+dataz(10))).ˆ2);

dataF(:,1)=(data(:,1)-dataf(1)).ˆ2;

dataF(:,2)=1/L.*((data(:,2)+data(:,3)-(dataf(2)+dataf(3))).ˆ2);

dataF(:,3)=1/2.*(((data(:,4)-dataf(4)).ˆ2+(data(:,5)-dataf(5)).ˆ2));

dataF(:,4)=1/3.*((data(:,6)-dataf(6)).ˆ2+(data(:,7)-dataf(7)).ˆ2+(data(:,8)-dataf(8)).ˆ2);

dataF(:,5)=1/3.*((data(:,9)-dataf(9)).ˆ2+(data(:,10)-dataf(10)).ˆ2+((data(:,9)+data(:,10))-

(dataf(9)+dataf(10))).ˆ2);

dataZZ=dataZ./(dataZ+dataF);

function [Ex,En,He]=nixiangyun(UU,W)

UU=mapminmax(UU’,0,1);

UU=UU’;

[m,n]=size(UU);

X_=W*UU’;

Ex=X_;

sum1=zeros(1,m);

En=zeros(1,m);

for i=1:m

for j=1:n

BB=abs(UU(i,j)-X_(i));

sum1(i)=sum1(i)+BB;

end

En(i)=(pi/2)ˆ2*mean(sum1(i),2);

end

S2=zeros(1,m);

for i=1:m

S2(i)=var(UU(i,:));

end

He=zeros(1,m);

for i=1:m
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He(i)=(abs(S2(i)-En(i)ˆ2))ˆ0.5;

end

Appendix B. Calculation Principles of BP Neural Network and MATLAB algorithm

Appendix B.1. Calculation Principles of BP Neural Network

In March 2016, Chinese Prime Minister Li Keqiang officially raised in the “Government Work
Report” that we must prioritize the control of air pollution and water pollution with the goal of
reducing chemical oxygen demand (COD) and ammonia-nitrogen emissions by 2%, reducing the
emissions of sulfur dioxide and oxynitride by 3% and controlling the concentration of PM2.5 in key
areas including Beijing, Tianjin and Hebei [28]. Since March 2016, the Chinese government has made
great effort in air pollution control under the aligned policy guidance of the central government.
In order to depict the effect of such air pollution control policy, we adopted the Back Propagation (BP)
Neural Network method to simulate the Background Trend Line of the dynamic change in air quality
in absence of these pollution control policies in cities of the Beijing-Tianjin-Hebei (BTH) region in order
to quantify the influence of policy on pollution control of different cities.

The BP Neural Network is a multilayered feedforward network, consisting of the Input Layer,
Hidden Layer and Output Layer. In calculations and predictions related to policy analysis, the BP
Neural Network with single hidden layer can approximate any continuous function in a bounded
region with any specified precision [52]. In our model, the number of neurons (nodes) on the input
and output layers of the BP Neural Network equals the number of dimensions of our input vector
(pollutant data) and output vector (assessment score). Its topological structure is shown in Figure A1,
in which X = (x1, x2, . . . , xn) represents the Input Vector of pollutant data in the past n days while the
expectation value of the (n+1)th day is y. Let the number of nodes on the hidden layer be m, the link
weight between the input layer and hidden layer be wij(i = 1, 2, . . . , n; j = 1, 2, . . . , m), the link weight
between the hidden layer and output layer be v1j(j = 1, 2, . . . , m), and the thresholds of nodes on the
hidden layer and output layer be θj(j = 1, 2, . . . , m) and γ respectively.

xn

Wij

x4

x3

x2

x1

Vj1

y

j

 

Figure A1. Structure of Single Hidden Layer, Single Output BP Neural Network.
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Through forward propagating of input signals (pollutant data) and back propagation of error
signals, we can complete the calculation process of such BP Neural Network: propagating the pollutant
input vector xi through the Input Layer, Hidden Layer and Output Layer, and obtaining the estimated
output of ŷ (assessment score) on the Output Layer by using the link weight of ŷ, wij and v1j between
different layers as well as randomly assigned threshold values of θj and γ and the activation function;
propagating e—the error between the output value ŷ and the expected value of y through the Input
Layer, Hidden Layer and Output Layer, and modifying the link weights between different layers
towards the direction of diminishing errors. Assume the number of learning samples is p, expressed
by a vector of (x1, x2, . . . , xp). After obtaining the output vector yp

j (j = 1, 2, . . . , m) of the pth sample,
we could calculate the error of the pth sample Ep by the square error function.

Ep =
1
2

m

∑
j=1

(
tp

j − yp
j

)2
(13)

In above equation, tp
j is the expected output.

The global error with p samples is:

E =
1
2

p

∑
p=1

m

∑
j=1

(
tp

j − yp
j

)2
(14)

(1) Output Layer Weight Change
Using the BP algorithm of accumulative error to modify ωjk in order to minimize the global error

of E:

Δωik = μ
∂E

∂ωjk
= μ

∂

∂ωjk

(
p

∑
p=1

Ep

)
=

p

∑
p=1

μ
∂Ep

∂ωjk
(15)

The error signal in above equation is:

Δωjk =
P

∑
p=1

m

∑
j=1

μ
(

tp
j − yp

j

)
f ′2
(
Sj
)
zk (16)

(2) Hidden Layer Weight Change

Δvjk = μ
∂E

∂vki
= μ

∂

∂vki

(
p

∑
p=1

Ep

)
=

p

∑
p=1

μ
∂Ep

∂vjk
(17)

The equation for weight adjustment of neural networks on the Hidden Layer is as follows:

Δvjk =
P

∑
p=1

m

∑
j=1

μ
(

tp
j − yp

j

)
f ′2
(
Sj
)
ωjk f ′1(Sk)xi (18)

By repeating above processes until convergence of the algorithm, we achieved the output layer
results of the Background Trend Line of the dynamic air quality change in absence of air pollution
control policies in cities of the BTH region (as listed in the Tables 5 and 6).

Appendix B.2. MATLAB Algorithm

function [A]=BP(BB)

[N,M]=size(BB);

for kk=1:N

x=BB(kk,:);

lag=6;
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iinput=x;

n=length(iinput);

inputs=zeros(lag,n-lag);

for i=1:n-lag

inputs(:,i)=iinput(i:i+lag-1)’;

end

targets=x(lag+1:end);

hiddenLayerSize = 10;

net = fitnet(hiddenLayerSize);

net.divideParam.trainRatio = 70/100;

net.divideParam.valRatio = 15/100;

net.divideParam.testRatio = 15/100;

[net,tr] = train(net,inputs,targets);

yn=net(inputs);

errors=targets-yn;

errorsA(kk,:)=errors;

fn=23;

f_in=iinput(n-lag+1:end)’;

f_out=zeros(1,fn);

for i=1:fn

f_out(i)=net(f_in);

f_in=[f_in(2:end);f_out(i)];

end

A(kk,:)=f_out;

end

end
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Abstract: During China’s air pollution campaign, whistleblowing has become an important way
for the central government to discover local environmental issues. The three parties involved
in whistleblowing are: the central government environmental protection departments, the local
government officials, and the whistleblowers. Based on these players, this paper has constructed
an Evolutionary Game Model under incomplete information and introduced the expected return
as well as replicator dynamics equations of various game agents based on analysis of the game
agents, assumptions, and payoff functions of the model in order to study the strategic dynamic trend
and stability of the evolutionary game model. Furthermore, this paper has conducted simulation
experiments on the evolution of game agents’ behaviors by combining the constraints and replicator
dynamics equations. The conclusions are: the central environmental protection departments are able
to effectively improve the environmental awareness of local government officials by measures such
as strengthening punishment on local governments that do not pay attention to pollution issues and
lowering the cost of whistleblowing, thus nurturing a good governance and virtuous circle among
the central environmental protection departments, local government officials, and whistleblowers.
Based on the study above, this paper has provided policy recommendations in the conclusion.

Keywords: whistleblowing; air pollution; evolutionary game; environmental supervision

1. Introduction

The Chinese economy has maintained rapid growth since the reform and opening up in
1978. However, along with rapid growth, environmental issues such as air pollution have become
increasingly prominent, seriously threatening the urban environment and quality of life [1–4]. In order
to control air pollution, China has taken various measures [5–8], in which whistleblowing is a pollution
control measure with Chinese characteristics [9].

On 5 June 2009, China’s Ministry of Environmental Protection officially launched the “010-12369”
hotline for environment-related whistleblowing, which is open to people all over the country, and
accepts complaints about all kinds of environmental issues [10]. Based on that, the Ministry of
Environmental Protection launched smartphone APPs such as the “Green Knight” Environmental
Snapshot in 2014 [11], and further launched the “12369 Environment Whistleblowing Platform”
on WeChat in June 2015, the most widely used smartphone social media app in China [12], and
completed the integration of all whistleblowing databases nationwide by the end of 2016 to form
China’s “12369 Integrated Environmental Whistleblowing Management Platform” [13]. This platform
has integrated whistleblowing from various channels including the “12369” hotline, WeChat, and
online platforms at four levels (nation-level, province-level, city-level and county-level), and has
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enabled interconnection and information sharing among all these four levels [14]. This platform has
helped whistleblowing to become one important channel for the central environmental protection
department to discover local environmental issues [15].

In 2017, China’s Ministry of Environmental Protection’s national environmental whistleblowing
management platform received 618,856 whistleblowing reports in total, of which 409,548 were reported
through the “12369” hotline (accounting for 66.18% of the total reports), 129,423 were reported on
WeChat (accounting for 20.91% of the total reports), and 79,885 were reported online (accounting for
12.91% of the total reports) [16]. It can be seen that hotlines and WeChat are two major sources of
whistleblowing, accounting for 87.09% in total. In terms of the whistleblowing from hotlines, most
whistleblowing reports were from the eastern and central provinces and municipalities of China,
including Jiangsu, Chongqing, Shanghai, Beijing, Liaoning, and Hainan. In terms of whistleblowing
on WeChat, the number of whistleblowing reports increased by 96.4% in 2017 on a year-on-year
basis, and the top five provinces in terms of number of whistleblowing reports are: Guangdong,
Henan, Shandong, Jiangsu, and Hebei, accounting for around 48% of the total whistleblowing reports
nationwide (see Figure 1) [16].

Figure 1. Number of environmental whistleblowing in different provinces of China in 2017, through
“12369” Hotline and WeChat.

As seen from the type of pollution in whistleblowing, air pollution is the most prominent,
accounting for around 56.7% in all pollution cases [16], which is also the study subject of this paper.
In the process of air pollution whistleblowing, there are three main players involved: the central
environmental protection department (the Ministry of Environmental Protection), the local government
(official), and the whistleblower (including citizens, enterprises, and other organizations). According to
the “Environmental Protection Law of the People’s Republic of China”, the central environmental
protection department can directly penalize the local government if the complaint is verified [9].
Whether from an economic perspective or from the evaluation and career development perspective of
local officials, the local governments try their best to minimize the number of whistleblowing [17–19].
On the other hand, although the whistleblowers are rewarded after the complaint is verified [20–22],
in practice, they are often harassed in real life and their rights and interests are often violated [23,24],
which to some extent demotivates the act of whistleblowing. In this case, the central environmental
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protection department, the local government, and the whistleblower constitute an evolutionary game
under incomplete information [25–27].

The academic community has applied the evolutionary game model to environmental protection
research and made great progress. For example, Liu et al. (2015) developed an evolutionary game
model of two enterprise populations’ dynamics and stability for decision-making. By building a
system dynamics model, they simulated the aforementioned game and found that the initial choice of
strategy was essential to the final result. They concluded that it is important to check the saddle point
and external factors [28]. Zhao et al. (2016) established an evolutionary game model to investigate the
responses of enterprises to carbon-reduction policies. They examined the individual and combined
intervention of carbon-reduction policies through analysis of two scenarios in the simulation based on
the game model. They concluded that the combination of these two policies was more efficient than
an individual one [29]. Based on the game between the government and enterprises in the context of
a complex network, Wu et al. (2017) built an evolutionary model for low-carbon strategies research.
By introducing government policy encouragement in the decision-making process of companies, they
argued that enterprises’ expectations of government encouragement determined whether low-carbon
strategies could be diffused. They also concluded that those enterprises quickly adjusting their
expectations in the game learned to adopt and follow effective low-carbon strategies [30]. Li et al.
(2017) founded a tripartite evolutionary game model based on the relationships among the central
and local governments, and land-lost farmers, to analyze China’s land expropriation during the rapid
urbanization process. They found that serious asymmetry of information between stakeholders led
to the low efficiency of the game by simulation analysis. Moreover, they established the reference
for the central and local governments to reduce conflicts during land expropriation [31]. Chen (2017)
established a three-stage evolutionary game model of the ecological industry chain and achieved the
stable strategies by analyzing the equilibrium points of replicator dynamics equations. The author
also constructed a multi-agent model to analyze evolutionary paths and trends. Finally, the case of
Poyang Lake was used to examine the evolutionary game method [32]. Zhang and Li (2018) built
an evolutionary game model of haze cooperative control between governments. They analyzed the
dynamic evolution path and stable strategy of this game. Their results showed that the stable state of
cooperation cannot be formed between governments spontaneously because of the heterogeneity.
Hence the superior government should use administrative penalties to promote the stability of
cooperation [33].

However, there are still few studies analyzing environment-related whistleblowing by the
evolutionary game method, especially the Three-party Evolutionary Game Model under incomplete
information. In order to fill in the blank spaces in game studies on environment-related whistleblowing,
this paper has constructed an evolutionary game model under incomplete information that involves
the central environmental protection department, the local government, and the whistleblower. In the
following parts of this paper, Section 2 introduces the three-party evolutionary game model and
conducts detailed analysis on the game agents, assumptions, and payoff functions of the model.
Based on the three-party evolutionary game model, Section 3 introduces the expected return and
replicator dynamics equations of the three parties in order to perform equilibrium analysis on
the game model. Section 4 conducts simulation experiments on the evolution of game agents’
behaviors by combining the constraints and replicator dynamics equations and analyzes the impact
of changes in parameters on the final evolution result. Section 5 provides conclusions as well as
policy recommendations.

2. Methods

2.1. Game Agent Analysis and Assumptions

According to China’s current laws and regulations and administrative governance structure, the
players, and their relationships in this three-party evolutionary game model, are as follows:
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(1) Overall relationship: Currently in China, the local government is responsible for air pollution
control and governance in different regions of the country under a centralized environmental
regulation [9,34]. The enterprises that release pollution into the air during production and operation
are required to declare the types, quantities, concentrations, emission destinations, and emission
methods of their pollutants to the local government. The local government is responsible for pollution
control and law enforcement [35], while as the highest regulatory authority for air pollution in China,
the Ministry of Environmental Protection oversees and manages air pollution control and governance
by local governments at all levels and directly accepts air pollution whistleblowing through hotlines,
WeChat, and online platforms [36]. According to common practice in academia [37–41], and also
because the local governments at all levels in China generally have the same benefits and costs when
they are supervised by the central environmental protection department [42–46], this paper has made
“the local government” one single player in the three-party evolutionary game model, and does not
distinguish local governments by their administrative levels in China (i.e., province-level, city-level,
county-level, district-level, etc.).

(2) The Ministry of Environmental Protection as the central supervision department for
environmental protection: The Ministry of Environmental Protection is the highest environmental
protection regulator in the country [9]. It analyzes and supervises environmental whistleblowing
throughout the country. It passes on whistleblowing cases to relevant local governments to verify
and solve problems. It also supervises and handles the issues reported in media or by the public, or
problems not properly handled by the local governments [9,36]. Due to limitations in monitoring
technology and staffing, it is very difficult for the central environmental supervision department
to implement strict all-round supervision throughout the country, and the supervision sometimes
fails [18,47–49]. Therefore, the central environmental supervision department’s behavior strategy space
is (Strict Supervision, Loose Supervision).

(3) The local governments: The behavior pattern of the local governments has two sides. On the
one hand, due to the need for political achievement and promotion, local governments consider that
“excessive” air pollution control will affect the development of local enterprises as well as local GDP
growth and their political achievement, and therefore take a negative attitude and a position of inaction
towards air pollution [50–52], and even conduct extreme acts, such as retaliation, against air pollution
whistleblowers [53]. On the other hand, air pollution has not only received great emphasis from the
central government, it has also caused great damage to the local environment. It threatens the local
ecological environment and sustainable development in the long term, and causes irreparable damage
to the physical and mental health of local residents, which also motivates the local governments to
emphasize and control air pollution to a certain extent [54–56]. The local governments’ behavioral
strategy space is (Put Emphasis on Pollution Control, Neglect Pollution Control).

(4) The whistleblower: The whistleblowers include the public, the media, and non-governmental
environmental protection organizations, etc., who are the direct victims of air pollution. From the
perspective of air pollution hazards, the whistleblowers are all affected by air pollution in the long
term, and with their increasing environmental awareness and legal awareness, the public will become
more and more active in participation in supervision. The whistleblowers can report air pollution
issues by reporting, petitioning, exposure, litigation, and claims in order to protect their rights and
interests [10,12,35]. However, the whistleblowers may also give up on whistleblowing due to the
time and effort it costs to collect evidence and proof, the complicated process for supervision and
implementation after whistleblowing, the possibilities of retaliation from the local government, etc. [53].
Therefore, the whistleblower’s behavioral strategy space is (Blow the Whistle, Not Blow the Whistle).

Based on the analysis above, it can be seen that there is a game relation among the three parties: the
central environmental protection department, the local government, and the whistleblower. This paper
has made the following assumptions regarding the three-party evolutionary game model:

Assumption 1. For the central environmental protection department, suppose that the proportion of the central
environmental protection department selecting Strict Regulation strategy is x (0 < x < 1); then the proportion
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selecting Loose Regulation strategy is 1 − x. The central environmental protection department’s pay-off is
constant at R1, whether it pursues strict regulation or not. If it pursues strict regulation, the regulation cost
is C1, and the long-term improved social welfare will be W (including reduced air pollution and better health).
However, strict regulation would restrict the local economic development, resulting in a loss of L1 due to GDP
growth slow-down. If the central environmental protection department does not pursue strict regulation, its
regulation cost would be C11 (C1 > C11), and there will not be any long-term social welfare improvement.

Assumption 2. For local governments, suppose that the proportion of local governments selecting Put Emphasis
on Pollution Control strategy is y (0 < y < 1); then the proportion selecting Neglect Pollution strategy is 1 − y.
If they put emphasis on environmental issues and pollution control, their pay-off would be R2 (such as reputation
and public opinion that would help their promotion), while the cost would be C2 (including time cost, economic
cost, and loss in GDP growth). If the local officials neglect environmental protection, their short-term pay-off
would be G (including short-term GDP growth), while the cost would be C22 (C2 > C22). However, if they do not
make efforts on pollution control, they would face a penalty of L2 if this is discovered by the central environmental
protection department, whether through inspections or whistleblowing.

Assumption 3. For the whistleblowers, suppose that the proportion of the whistleblowers selecting Blow the
Whistle strategy is z (0 < z < 1); then the proportion selecting Not Blow the Whistle strategy is 1 − z. The cost
of whistleblowing is C3. If the central environmental protection department pursues strict regulation, the
whistleblower would get a reward of R3 from the central environmental protection department as well as a
compensation of R33 from the local government. However, if the central environmental protection department
does not pursue strict regulation, the local government would call off the whistleblowing with a bribery of R333.
Furthermore, the whistleblower would suffer a loss of L3 due to the harms of environmental pollution.

Assumption 4. According to the experience since China’s reform and opening up, the air pollution issue is
becoming increasingly serious with the rapid economic development. In order to achieve effective environmental
protection, this paper assumes that the three-party game system should adopt a mixed strategy of strict supervision
by the central environmental department, emphasis on pollution control by the local governments, and active
participation and reporting by the whistleblowers.

The parameters and variable descriptions of our model are listed in Table 1.

Table 1. Model parameters and variable descriptions.

Parameter Description

R1
The normal income of the central environmental protection department (wage income from
government finance, which is the same under strict regulation and loose regulation)

C1 The regulation cost of the central environmental protection department under strict regulation

W The social welfare improvements achieved by the central environmental protection
department’s strict regulation

L1
The impact of strict regulations on local economic growth (losses including decline in
GDP growth)

C11
The regulation cost of the central environmental protection department under loose regulation
(C1 > C11)

R2
The reputation and public opinion gain of local government officials if they put the emphasis
on environmental issues
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Table 1. Cont.

Parameter Description

C2
Cost of local government officials if they work on environmental issues (including economic
cost and time cost of pollution control)

G The short-term gain of local government officials if they neglect environmental issues (such as
short-term growth of local GDP)

C22 The cost to local government officials if they neglect environmental issues (C2 > C22)

L2
The penalty on local government officials if they neglect environmental issues (if discovered
by inspections or due to whistleblowing)

R3
The rewards to the whistleblower by the central environmental protection department if it
pursues strict regulation

C3 The cost of whistleblowing

R33
The compensation to the whistleblower by the local government if the central environmental
protection department pursues strict regulation

R333

The cost to call off whistleblowing paid by the local government (such as “hush money”) if the
central environmental protection department does not pursue strict regulation and the local
government neglects pollution issues

L3
The loss suffered by the whistleblower due to environmental pollution when the local
government officials neglect pollution issues

2.2. The Payoff Function

Since the payoff of each game agent is affected by the strategy of the other two game agents,
there are eight strategy combinations for the evolutionary game between the central environmental
department (a), local government officials (b), and whistleblowers (c), as below (see Figure 2):
(a1 Strict Regulation, b1 Put Emphasis on Pollution Control, c1 Blow the Whistle); (a2 Strict Regulation,
b2 Neglect Pollution Control, c2 Blow the Whistle); (a3 Loose Regulation, b3 Put Emphasis on Pollution
Control, c3 Blow the Whistle); (a4 Loose Regulation, b4 Neglect Pollution Control, c4 Blow the Whistle);
(a5 Strict Regulation, b5 Put Emphasis on Pollution Control, c5 Not Blow the Whistle); (a6 Strict
Regulation, b6 Neglect Pollution Control, c6 Not Blow the Whistle); (a7 Loose Regulation, b7 Put
Emphasis on Pollution Control, c7 Not Blow the Whistle); (a8 Loose Regulation, b8 Neglect Pollution
Control, c8 Not Blow the Whistle).

Figure 2. Three-party evolutionary game flow chart.
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When the strategy of the central environmental department, local government officials, and
whistleblowers is (a1 Strict Regulation, b1 Put Emphasis on Pollution Control, c1 Blow the Whistle),
the central environmental protection department’s pay-off is constant at R1, and the regulation cost is
C1, and the long-term improved social welfare will be W. However, strict regulation would restrict
local economic development, resulting in a loss of L1 due to GDP growth slow-down. The local
governments’ pay-off would be R2, while the cost would be C2. The whistleblower would get a reward
of R3 from the central environmental protection department, and the cost of whistleblowing would be
C3. Similarly, the benefits of the central environmental department, local government officials, and
whistleblowers under other strategic combinations can be derived. (see Table 2).

Table 2. The Payoff matrix of the three-party evolutionary game.

Central Environmental Protection Department: a Strict Regulation (x) Loose Regulation (1 − x)

Local Government Officials: b Put Emphasis on
Pollution Control (y)

Neglect Pollution
Control (1 − y)

Put Emphasis on
Pollution Control (y)

Neglect Pollution
Control (1 − y)

Whistle Blower: c
Blow the Whistle: (z) (a1, b1, c1) (a2, b2, c2) (a3, b3, c3) (a4, b4, c4)

Not Blow the Whistle: (1 − z) (a5, b5, c5) (a6, b6, c6) (a7, b7, c7) (a8, b8, c8)

Based on assumptions in Section 2.1, the payoffs of the different game agents under different
strategy combinations can be written as follows:

a1 = W + R1 − L1 − C1 − R3; b1 = R2 − C2; c1 = R3 − C3;
a2 = W + R1 − L1 − C1 − R3 + L2; b2 = G − C22 − L2 − R33; c2 = R3 − C3 + R33 − L3;

a3 = R1 − C11; b3 = R2 − C2; c3 = −C3;
a4 = R1 − C11 + L2; b4 = G − C22 − L2 − R333; c4 = −C3 + R333 − L3;

a5 = W + R1 − L1 − C1; b5 = R2 − C2; c5 = 0;
a6 = W + R1 − L1 − C1 + L2; b6 = G − C22 − L2 − R33; c6 = R3 − L3;

a7 = R1 − C11; b7 = R2 − C2; c7 = 0;
a8 = R1 − C11; b8 = G − C22; c8 = −L3

(1)

3. Equilibrium Analysis

3.1. The Expected Payoff and Replicator Dynamics Equation of the Three Game Agents

1. The replicator dynamics equation of the central environmental protection department
Let UX1 represent the expected payoff of the central environmental protection department if

it pursues strict regulations, and UX2 represent the payoff of the central environmental protection
department if it does not pursue strict regulations. UX represents the average expected payoff of the
central environmental protection department. UX1, UX2, and UX can be expressed as:

UX1 = y × z × a1 + (1 − y)× z × a2 + y × (1 − z)× a5 + (1 − y)× (1 − z)× a6 (2)

UX2 = y × z × a3 + (1 − y)× z × a4 + y × (1 − z)× a7 + (1 − y)× (1 − z)× a8 (3)

UX = x × UX1 + (1 − x)× UX2 (4)

Therefore, the replicator dynamics equation of the central environmental protection department
can be written as:

F(x) = dx
dt = x × (UX1 − UX)

= −(−1 + x)x(W − C1 + C11 − L1 + L2 − yL2 − zL2 + yzL2 − zR3)
(5)

2. The replicator dynamics equation of local government officials
Let UY1 represent the expected payoff of local government officials if they put emphasis on

environmental issues, and UY2 represent the payoff of local government officials if they neglect
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environmental issues. UY represents the average expected payoff of local government officials.
Then UY1, UY2, and UY can be expressed as:

UY1 = x × z × b1 + x × (1 − z)× b5 + (1 − x)× z × b3 + (1 − x)× (1 − z)× b7 (6)

UY2 = x × z × b2 + x × (1 − z)× b6 + (1 − x)× z × b4 + (1 − x)× (1 − z)× b8 (7)

UY = y × UY1 + (1 − y)× UY2 (8)

The replicator dynamics equation of the local government can be written as:

F(y) = dy
dt = y × (UY1 − UY)

= (y − 1)y(G + C2 − C22 − xL2 − zL2 + xzL2 − R2 − xR33 − zR333 + xzR333)
(9)

3. The replicator dynamics equation of the whistleblower
Let UZ1 represent the expected payoff of the whistleblower if he/she decides to blow the whistle,

and UZ2 represent the expected payoff of the whistleblower if he/she decides not to blow the whistle.
UZ represents the average expected payoff of the whistleblower. Then UZ1, UZ2, and UZ can be
expressed as:

UZ1 = x × y × c1 + x × (1 − y)× c2 + (1 − x)× y × c3 + (1 − x)× (1 − y)× c4 (10)

UZ2 = x × y × c5 + x × (1 − y)× c6 + (1 − x)× y × c7 + (1 − x)× (1 − y)× c8 (11)

UZ = z × UZ1 + (1 − z)× UZ2 (12)

The replicator dynamics equation of the whistleblower can be written as:

F(z) = dz
dt = z × (UZ1 − UZ)

= (−1 + z)z(C3 − xyR3 + (−1 + y)(xR33 − (−1 + x)R333))
(13)

3.2. Stability Analysis of the Evolutionary Game

By combining these replicator dynamics equations above, we can obtain a three-dimensional
dynamic group evolution system with three agents. In this three-dimensional dynamic system, the
probability of the three agents’ different strategies is affected by time. The solution domain of F(x),
F(y), and F(z) is [0, 1]× [0, 1]× [0, 1 ]. By letting F(x) = 0, F(y) = 0, F(z) = 0, i.e., letting the rate
of strategy change be zero, we can obtain the equilibrium points of this dynamic system, which are
(0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,1,0), (1,0,1), (0,1,1), and (1,1,1), respectively. These eight equilibrium
points constitute the boundary of the domain of this evolutionary game, and the stability of these
equilibrium points in this evolutionary system can be obtained by local stability analysis of the Jacobian
matrix [57–59].

By making derivation on these three replicator dynamics equations, we can get:

F′(x) = (1 − 2x)(W − C1 + C11 − L1 + L2 − yL2 − zL2 + yzL2 − zR3) (14)

F′(y) = −(1 − 2y)(G + C2 − C22 − xL2 − zL2 + xzL2 − R2 − xR33 − zR333 + xzR333) (15)

F′(z) = −(1 − 2z)(C3 − xyR3 + (−1 + y)(xR33 − (−1 + x)R333)) (16)

According to the characteristics of the evolutionary game, after substituting these equilibrium
points into the formula above, if F′(x) < 0, F′(y) < 0, F′(z) < 0, it means the equilibrium strategies x,
y, and z respectively represent the stable strategy adopted by the three agents in the evolution process.
Then we will use Wolfram Mathematica for stability analysis.

(1) Analysis of the Asymptotic Stability of the Central Environmental Protection Department
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According to Formula (5), if W −C1 +C11 − L1 + L2 − yL2 − zL2 + yzL2 − zR3 = 0, then F(x) ≡ 0,
indicating the boundary of the stable state. Its phase diagram is shown in Figure 3a.

F x

x

F x

x

F x

x

(a) (b) (c)

Figure 3. Replicator dynamics phase diagram of the central environmental protection department’s
strategy: (a) z =

W−C1+C11−L1+L2−yL2
L2−yL2+R3

; (b) z <
W−C1+C11−L1+L2−yL2

L2−yL2+R3
; (c) z >

W−C1+C11−L1+L2−yL2
L2−yL2+R3

.

If W − C1 + C11 − L1 + L2 − yL2 − zL2 + yzL2 − zR3 �= 0, let F(x) = 0, and we can get two
stable points of x = 0 and x = 1. If W − C1 + C11 − L1 + L2 − yL2 − zL2 + yzL2 − zR3 < 0,
i.e., z < W−C1+C11−L1+L2−yL2

L2−yL2+R3
, then F′(x)|x − 0 < 0 and F′(x)|x − 1 > 0. Therefore, x = 0 is the

stable strategy, and the central environmental protection department will decide not to pursue strict
regulation. Its phase diagram is shown in Figure 3b. On the contrary, if W − C1 + C11 − L1 + L2 −
yL2 − zL2 + yzL2 − zR3 > 0, i.e., z > W−C1+C11−L1+L2−yL2

L2−yL2+R3
, then F′(x)|x − 0 > 0 and F′(x)|x − 1 < 0.

Therefore, x = 1 is the stable strategy and the central environmental protection department will decide
to pursue strict regulation. Its phase diagram is shown in Figure 3c.

By combining the three cases in Figure 3a–c, this paper has obtained the dynamic trend and
stability of the central environmental protection department’s strategy in three scenarios, as shown in
Figure 4.

Figure 4. Dynamic trend and stability analysis of the central environmental protection department’s
strategy.

The eight equilibrium stable points in Figure 4 are (0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,1,0), (1,0,1),
(0,1,1), and (1,1,1), respectively. These eight equilibrium points constitute the boundary of the domain of
this evolutionary game. Under the constraints of z < W−C1+C11−L1+L2−yL2

L2−yL2+R3
, the three-party game hybrid

strategy moves to x = 0, and we can prove that when the proportion of the whistleblower selecting Blow
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the Whistle is less than the critical value, the central environmental protection department tends to
select Loose Regulation strategy. On the contrary, when the proportion of the whistleblower selecting
Blow the Whistle is greater than the critical value, the central environmental protection department
tends to select Strict Regulation strategy.

(2) Analysis of the Asymptotic Stability of Local Government Officials
According to the formula (9), if G +C2 −C22 − xL2 − zL2 + xzL2 − R2 − xR33 − zR333 + xzR333 =

0, then F(y) ≡ 0, indicating the boundary of the stable state. Its phase diagram is shown in Figure 5a.
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Figure 5. Replicator dynamics phase diagram of local government officials’ strategy: (a) z =
G+C2−C22−xL2−R2−xR33

L2−xL2+R333−xR333
; (b) z > G+C2−C22−xL2−R2−xR33

L2−xL2+R333−xR333
; (c) z < G+C2−C22−xL2−R2−xR33

L2−xL2+R333−xR333
.

If G + C2 − C22 − xL2 − zL2 + xzL2 − R2 − xR33 − zR333 + xzR333 �= 0, let F(y) = 0,
and we can get two stable points of y = 0 and y = 1. If −(G + C2 − C22 − xL2 − zL2+

xzL2 − R2 − xR33 − zR333 + xzR333) < 0, i.e., z > G+C2−C22−xL2−R2−xR33
L2−xL2+R333−xR333

, then F′(y)|y − 0 > 0 and
F′(y)|y − 1 < 0. Therefore, y = 1 is the stable strategy, and the local government officials will choose
to put emphasis on pollution issues. Its phase diagram is shown in Figure 5b. On the contrary, if
G + C2 − C22 − xL2 − zL2 + xzL2 − R2 − xR33 − zR333 + xzR333 > 0, i.e., z < G+C2−C22−xL2−R2−xR33

L2−xL2+R333−xR333
,

then F′(y)|y − 0 < 0 and F′(y)|y − 1 > 0. Therefore, y = 0 is the stable strategy and the local
government officials will choose to neglect pollution issues. Its phase diagram is shown in Figure 5c.

By combining the three cases in Figure 5a–c, this paper has obtained the dynamic trend and
stability of local government officials’ strategy in three scenarios as shown in Figure 6.

Figure 6. Dynamic trend and stability analysis of local government officials’ strategy.
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The eight equilibrium stable points in Figure 6 are (0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,1,0), (1,0,1),
(0,1,1), and (1,1,1), respectively. These eight equilibrium points constitute the boundary of the domain
of this evolutionary game. Under the constraints of z > G+C2−C22−xL2−R2−xR33

L2−xL2+R333−xR333
, the three-party game

hybrid strategy moves to y = 1, and we can prove that when the proportion of the whistleblower
selecting Blow the Whistle is greater than the critical value, the local government officials tend to select
Put Emphasis on Pollution Control strategy. On the contrary, when the proportion of the whistleblower
selecting Blow the Whistle is less than the critical value, the local government officials tend to select
Neglect Pollution Control strategy.

(3) Analysis of the Asymptotic Stability of the Whistleblower
According to the formula (13), if (C3 − xyR3 + (−1 + y)(xR33 − (−1 + x)R333)) = 0, then F(z)≡0,

indicating the boundary of the stable state. Its phase diagram is shown in Figure 7a.
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Figure 7. Replicator dynamics phase diagram of the whistleblower’s strategy: (a) x =
C3−R333+yR333

yR3+R33−yR33−R333+yR333
; (b) x >

C3−R333+yR333
yR3+R33−yR33−R333+yR333

; (c) x <
C3−R333+yR333

yR3+R33−yR33−R333+yR333
.

Z is constant. If (C3 − xyR3 + (−1 + y)(xR33 − (−1 + x)R333)) �= 0, let F(z) = 0, and we can
get two stable points of z = 0 and z = 1. If −(C3 − xyR3 + (−1 + y)(xR33 − (−1 + x)R333)) < 0,
i.e., x > C3−R333+yR333

yR3+R33−yR33−R333+yR333
, then F′(z)|z − 0 > 0 and F′(z)|z − 1 < 0. Therefore, z = 1 is

the stable strategy, and the whistleblower will decide to blow the whistle. Its phase diagram is
shown in Figure 7b. On the contrary, if −(C3 − xyR3 + (−1 + y)(xR33 − (−1 + x)R333)) > 0, i.e.,
x < C3−R333+yR333

yR3+R33−yR33−R333+yR333
, then F′(z)|z − 0 < 0 and F′(z)|z − 1 > 0. Therefore, z = 0 is the stable

strategy, and the whistleblower will decide not to blow the whistle. Its phase diagram is shown in
Figure 7c.

By combining the three cases in Figure 7a–c, this paper has obtained the dynamic trend and
stability of the whistleblower’s strategy in three scenarios as shown in Figure 8.

The eight equilibrium stable points in Figure 8 are (0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,1,0), (1,0,1),
(0,1,1), and (1,1,1), respectively. These eight equilibrium points constitute the boundary of the domain
of this evolutionary game. Under the constraints of x > C3−R333+yR333

yR3+R33−yR33−R333+yR333
, the three-party

game hybrid strategy moves to z = 1, and we can prove that when the proportion of the central
environmental protection department selecting Strict Regulation is greater than the critical value, the
whistleblowers tend to select Blow the Whistle strategy. On the contrary, when the proportion of the
central environmental protection department selecting Strict Regulation is less than the critical value,
the whistleblowers tend to select Not Blow the Whistle strategy.

In summary, when the proportion of the whistleblower selecting Blow the Whistle is greater than
the critical value, the central environmental protection department tends to select Strict Regulation
strategy(see Figure 4); when the proportion of the whistleblower selecting Blow the Whistle is greater
than the critical value, the local government officials tend to select Put Emphasis on Pollution Control
strategy (see Figure 6); when the proportion of the central environmental protection department
selecting Strict Regulation is greater than the critical value, the whistleblowers tend to select Blow the
Whistle strategy (see Figure 8).
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Figure 8. Dynamic trend and stability analysis of the whistleblower’s strategy.

4. Simulations and Discussions

Based on the stability analysis of the evolutionary game, it can be seen that the evolutionary
equilibrium of the central environmental protection department changes with y (the probability that
the local government officials put emphasis on pollution control) and z (the probability that the
whistleblower blows the whistle); the evolutionary equilibrium of local government officials changes
with x (the probability that the central environmental protection department chooses strict regulation)
and z (the probability that the whistleblower blows the whistle); and the evolutionary equilibrium of
the whistleblower changes with x (the probability that the central environmental protection department
chooses strict regulation) and y (the probability that the local government officials put emphasis on
pollution control).

Since the values of x, y, and z change from time to time during the evolution process, and since the
equilibrium of this evolutionary game is not robust against small changes in the values of x, y, and z, we
cannot make the three-party game evolve towards the expected stable equilibrium merely by adjusting
the initial conditions. This paper is committed to promoting the evolution of this three-party game
towards the social rational model, that is, strict regulation by the central environmental protection
department, great emphasis on pollution control by local government officials, and whistleblowing
by the citizens (i.e., x = 1, y = 1, z = 1). Therefore, we could guide the behavior of different agents
towards the desired direction by controlling or adjusting related variables. More specifically, this paper
has conducted numerical experiments on the evolution process of the behaviors of the three parties
by combining the constraints and replicator dynamic Equations (5), (9), and (13) in order to analyze
the impact of changes in parameters on the evolution result. The study adopts MATLAB R2015b to
simulate the evolution process for the behavior strategies.

(1) The Dynamic Evolution of Central Supervision Authorities, Local Government Officials, and
Whistleblowers in the Initial State

x0, y0, z0 respectively indicate the initial proportion or probability of the central environmental
department choosing the “strict supervision” strategy, the local governments choosing the “emphasis
on pollution control” strategy, and the whistleblowers choosing the “participation” strategy, with
the initial time of 0 and evolution end time of 5. The values of the parameters are: R1 = 20, C1 = 10,
W = 26.5, L1 = 20, C11 = 5, R2 = 22.5, C2 = 20, G = 50, C22 = 10, L2 = 30, R3 = 2, R3 = 2, R33 = 3, R333 = 3.1,
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and C3 = 1. Let x0 = 0.1, y0 = 0.1, z0 = 0.1, and the initial system simulation results are shown in
Figure 9.

 

Figure 9. System evolution results in the initial state (x0 = 0.1, y0 = 0.1, z0 = 0.1).

The above simulation results have verified the stability of the above equilibrium points as well as
the derivation of the system evolution results. The system finally reaches a stable equilibrium state
(1,1,1), which satisfies Assumption 4, i.e., the three-party game system adopts the mixed strategy of
strict supervision by the central environmental department, emphasis on pollution control by the local
governments, and active participation and reporting by the whistleblowers.

Furthermore, through the simulation experiments with different changes to the initial state, this
paper has obtained the impacts of initial state change on the evolution result when all other parameters
are unchanged. The results of the simulation experiments with initial state change are shown in
Figure 9.

As shown in the simulation results comparison, the initial state of the three-party game agents has
significant impact on the evolution of the game system towards the stable equilibrium state. The higher
the initial x, y, z are, the shorter time it takes for the system to reach the stable equilibrium state.
When (x, y, z), (i.e., strict regulation, emphasis on pollution control, participation in whistleblowing)
take the strategy proportions of (0.2, 0.3, 0.4), the game system will reach the stable equilibrium state
at around t = 3. When the proportions increase to (0.5, 0.6, 0.7), the game system will reach the stable
equilibrium state at around t = 2.5. When the proportions increase to (0.8, 0.8, 0.8), the game system
will reach the stable equilibrium state at around t = 1.5. This indicates that the increase in initial state
proportions would help shorten the time it takes for the game system to evolve to the stable equilibrium
state, that is, increasing the proportion of strategy choices of (strict regulation, emphasis on pollution
control, participation in whistleblowing) by the game agents would help facilitate pollution control.

Furthermore, it is shown by Figure 9 that as long as the central supervision department increases
the probability of strict supervision, it can indirectly increase the incentive probability, thus greatly
enhancing the enthusiasm of whistleblowers and quickly reaching the equilibrium state of the
whistleblowers. However, when the initial state is comparatively low (x0 = 0.1, y0 = 0.1, z0 = 0.1), the
local governments do not put much emphasis on pollution control, and the increase in whistleblowing
probability cannot enhance local governments’ emphasis on the environment. With the increase in
the probability of strict supervision by the central supervision department, the local government
officials would greatly raise their emphasis on environmental pollution (y > 0.8008) when there is a
high probability of strict supervision by the central supervision department (x > 0.8017), and would
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evolve towards the equilibrium state (0.9934, 0.9999, 0.9997). The initial stage of environmental
pollution control in China is a relatively low initial state. First, the central supervision department
needs to increase the probability of strict supervision, and then local governments need to raise their
emphasis on pollution control, and the whistleblowers should also be encouraged to participate in
environmental whistleblowing. Only when the three parties increase their environmental awareness
(x > x0, y > y0, z > z0), can the environmental pollution issues be efficiently managed and controlled.

(2) The Dynamic Evolution of Central Supervision Authorities, Local Government Officials, and
Whistleblowers under Different Parameters

Based on the stability analysis of the evolutionary game, it can be seen that a number of influencing
factors also have a great impact on the evolution of the system.

When z > W−C1+C11−L1+L2−yL2
L2−yL2+R3

, x → 1 , which means the central environmental protection
department would eventually choose strict regulation. Therefore, by increasing the penalty on local
government officials who neglect pollution control (L2) and increasing the rewards to whistleblowers
(R3), we could encourage the central environmental protection department to evolve towards the
strategy of strict regulations.

When z > G+C2−C22−xL2−R2−xR33
L2−xL2+R333−xR333

, y → 1 , which means local government officials would
eventually put an emphasis on pollution control. Therefore, by raising the compensation to
whistleblowers by local government officials who neglect pollution control (R33), lowering the pollution
control cost of local governments (C2), enhancing the role of reputation and public opinion in political
career or official promotion (R2), increasing the penalty on local government officials who neglect
pollution control (L2) as well as the cost on local government officials if they neglect pollution control
(C22), and to some extent making it more difficult for local government officials to use measures such as
“hush money” to call off whistleblowing (i.e., lowering R333), we could also motivate local government
officials to evolve towards the strategy of emphasizing pollution control and environmental issues.

When y > −C3+xR33+R333−xR333−xR3+xR33+R333−xR333
= 1 − xR3−C3

(R3−R33+R333)x−R333
, z → 1 , which means the

whistleblower would eventually decide to blow the whistle. Therefore, by increasing the rewards
to whistleblowers by the central environmental protection department (R3), lowering the cost of
whistleblowing (C3), raising the compensation to whistleblowers by local government officials who
neglect pollution control (R33), and to some extent making it more difficult for local government
officials to use measures such as “hush money” to call off whistleblowing (i.e., lowering R333), we
could encourage whistleblowers to evolve towards the strategy of blowing the whistle.

Therefore, we could select multiple factors to analyze the impact of parameter change
on the evolution result. While keeping all other parameters and the low-level initial state of
(x0 = 0.1, y0 = 0.1, z0 = 0.1) unchanged, the results of the simulation experiments where the central
environmental protection department strengthens punishment on local governments that neglect air
pollution issues and lowers the cost of whistleblowing are shown in Figure 10.

The simulation results indicate that by strengthening the punishment on local governments
that neglect air pollution issues and lowering the cost of whistleblowing, the central environmental
protection department could significantly enhance the local government officials’ attention to
environmental pollution and facilitate the local governments’ strategy to evolve towards the stable
equilibrium. Moreover, in the long term, this could also effectively reduce central supervision
departments’ regulatory cost on local governments and achieve the strategy of emphasis on pollution
control by the local governments and active participation by the whistleblowers with a comparatively
lower probability of strict supervision.

In the same way, the impact of other parameter changes that are conducive to pollution control,
such as increasing the weight of public opinion in local government officials’ performance evaluation
and promotion, reducing the pollution control costs of local governments, improving the rewards
to whistleblowers, and enhancing the compensation from the government to whistleblowers, could
also be experimented with the above method. Due to space limitations, this paper will not elaborate
further. There are two important factors that affect the speed at which the three-party game system
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reaches the evolutionary stability strategy (ESS). One is the initial probability. The larger the initial
probability, the faster the system reaches the ESS (see Figure 10). The other is the magnitude of penalties,
incentives, and environmental governance costs. It is necessary to reduce the cost of pollution control
by local government and the cost of whistleblowers, based on increasing the magnitude of penalties
to local governments’ negative response to environmental protection and the effective reports from
whistleblowers (see Figure 11).

 
(a) (b) 

 
(c) (d) 

Figure 10. The effect of state changes on system evolution results: (a) x0 = 0.1, y0 = 0.1 , z0 = 0.1;
(b) x0 = 0.2, y0 = 0.3, z0 = 0.5; (c) x0 = 0.5, y0 = 0.6, z0 = 0.7; (d) x0 = 0.8, y0 = 0.8, z0 = 0.8.

 
(a) (b) 

Figure 11. Effect of parameter changes on system evolution results from the initial state (x0 = 0.1,
y0 = 0.1, z0 = 0.1): (a) two-dimensional diagram of the result; (b) three-dimensional diagram of
the result.

It is worth noting that as indicated by the simulation results, the reward to whistleblowers can
urge local governments to raise their emphasis on environmental pollution control and management
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to some extent; however, from the sustainability perspective, when the emphasis on environmental
pollution is generally low, the supervision and punishment of the central supervision department
plays a crucial role, and reducing the pollution control costs of the local governments can achieve the
same effect as punishment, such as increasing the central government’s subsidies to environmental
pollution control, setting the environmental quality as one performance indicator in local governments’
performance evaluation, etc.

5. Conclusions

This paper has focused on the three main parties involved in environmental pollution control—the
central supervision department, local governments, and whistleblowers—and constructed a three-party
evolutionary game model based on evolutionary game theory. This paper has also analyzed the
equilibrium points as well as the evolutionary stable strategy in the three-dimensional dynamic system
using the replicator dynamics equation. This paper has then conducted numerical simulations to
demonstrate the impact of different values on the evolution result of environmental pollution control.
The results of this study indicate that the positive feedback among behaviors of the central supervision
department, local government officials, and the whistleblowers can facilitate the improvement in
environmental awareness of the entire society, enhance environmental pollution control, and promote
the harmonious coexistence of human society and nature. Based on the above conclusions, this paper
has provided the following recommendations for further improvement of China’s environmental
pollution control:

(1) Public participation is an indispensable part of environmental pollution control and one of
the fundamental ways to solve environmental problems [60,61]. It is suggested that whistleblowing
be encouraged by reducing the whistleblowing cost and increasing the reward to a certain level [53].
The traditional whistleblowing channels (such as petitioning and hotlines) have high time and
economic costs and low efficiency, while the rapid development of the Internet and smart phones
has offered new methods with comparatively low economic costs. Therefore, we should make full
use of low cost online channels, such as WeChat, Weibo, and other online platforms to encourage
whistleblowing. The convenient online channels could effectively enhance the interactions between
whistleblowers and the Ministry of Environmental Protection, and indirectly increase the rewards for
whistleblowing while saving time and economic costs.

(2) It is necessary to further increase the punishment on local government officials that neglect
pollution control and use subsidies to lessen the concern of local government officials on pollution
control costs. It is recommended that “promotion” be used as an incentive for local government officials,
and to comprehensively evaluate government officials’ political achievements from multiple aspects
including local economic indicators and environmental indicators. We should not only supervise local
government officials’ emphasis on local environmental pollution control, but also conduct spot checks
on the achievements of pollution control with reference to whistleblowers’ feedback. Compared with
developed countries, currently the local air pollution control performance in China does not have much
weight in the promotion of local government officials [62,63]. In future policy design, it is recommended
that bonus points be given to local government officials that work hard on environment improvement
and air pollution control in promotion evaluation, or lower the requirements on economic indicators in
performance assessment. At the same time, the central environmental protection department should
provide proper and reasonable subsidies based on the local policy and measures targeting air pollution
according to the actual situation.

(3) Establish and improve the disclosure system for air pollution information and supervision
progress. The public disclosure of air pollution information is a new environment management method
different from the “administrative control measures” and “market economy measures” [64,65]. It could
put pressure on the polluters and environmental departments by disclosing relevant environmental
information and utilizing public opinion, thus urging them to change their behavior with help of
public supervision in order to eventually achieve the goal of environmental protection. The central

37



Sustainability 2019, 11, 324

supervision department should make efforts to properly collect and disclose the whistleblowing data
from different regions related to environmental pollution. It should not only publicly disclose relevant
information such as the number of whistleblowing cases in different regions, but also urge various
local governments to establish and improve air pollution information disclosure and supervision
progress disclosure systems as soon as possible, in order to form a positive trend in which various
parties actively and efficiently participate in air pollution control.

Author Contributions: Y.Y. and W.Y. are joint first authors. They contributed equally to this paper.
Conceptualization, W.Y.; Methodology, Y.Y. and W.Y.; Resources, Y.Y. and W.Y.; Software, Y.Y.; Validation, W.Y.;
Formal Analysis, Y.Y. and W.Y.; Data Curation, Y.Y. and W.Y.; Writing—Original Draft Preparation, Y.Y. and W.Y.;
Writing—Review and Editing, Y.Y. and W.Y.

Funding: This research was funded by the Humanities and Social Sciences Research Fund of the University
of Shanghai for Science and Technology, and the Decision-making Consultation Research Project of Shanghai
Municipal Government. We gratefully acknowledge the above financial supports.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Yang, W.X.; Li, L.G. Energy Efficiency, Ownership Structure, and Sustainable Development: Evidence from
China. Sustainability 2017, 9, 912. [CrossRef]

2. Yang, W.; Li, L. Analysis of Total Factor Efficiency of Water Resource and Energy in China: A Study Based
on DEA-SBM Model. Sustainability 2017, 9, 1316. [CrossRef]

3. Zhai, B.; Chen, J.; Yin, W.; Huang, Z. Relevance Analysis on the Variety Characteristics of PM2.5
Concentrations in Beijing, China. Sustainability 2018, 10, 3228. [CrossRef]

4. Li, L.G.; Yang, W.X. Total Factor Efficiency Study on China’s Industrial Coal Input and Wastewater Control
with Dual Target Variables. Sustainability 2018, 10, 2121. [CrossRef]

5. Huang, W.; Wang, H.; Wei, Y. Endogenous or Exogenous? Examining Trans-Boundary Air Pollution by Using
the Air Quality Index (AQI): A Case Study of 30 Provinces and Autonomous Regions in China. Sustainability
2018, 10, 4220. [CrossRef]

6. Liu, R.; Liu, X.; Pan, B.; Zhu, H.; Yuan, Z.; Lu, Y. Willingness to Pay for Improved Air Quality and Influencing
Factors among Manufacturing Workers in Nanchang, China. Sustainability 2018, 10, 1613. [CrossRef]

7. Wang, F.; Wang, K. Assessing the Effect of Eco-City Practices on Urban Sustainability Using an Extended
Ecological Footprint Model: A Case Study in Xi’an, China. Sustainability 2017, 9, 1591. [CrossRef]

8. Yang, W.; Li, L. Efficiency evaluation of industrial waste gas control in China: A study based on data
envelopment analysis (DEA) model. J. Clean. Prod. 2018, 179, 1–11. [CrossRef]

9. Standing Committee of the Twelfth National people’s Congress of the people’s Republic of China.
The Environmental Protection Law of the People’s Republic of China; The Law Press of China: Beijing, China, 2014.

10. Ministry of Environmental Protection of the People’s Republic of China. The Ministry of Environmental
Protection Will Open the “010-12369” Environmental Whistleblowing Hotline on the World Environment
Day (5 June). Available online: http://www.mee.gov.cn/gkml/sthjbgw/qt/200910/t20091023_179602.htm
(accessed on 17 November 2018).

11. Ministry of Environmental Protection of the People’s Republic of China. The “Green Knight” Environmental
Snapshot APP for Smartphone Is Officially Released. Available online: http://www.mee.gov.cn/xxgk/
hjyw/201406/t20140623_277270.shtml (accessed on 17 November 2018).

12. Ministry of Environmental Protection of the People’s Republic of China. The “12369 Environment
Whistleblowing Platform” on WeChat Has Been Working Well Since Its Opening in 2015. Available online:
http://www.mee.gov.cn/gkml/sthjbgw/qt/201603/t20160322_334063.htm (accessed on 17 November
2018).

13. Ministry of Environmental Protection of the People’s Republic of China. Report on the “12369” Environment
Whistleblowing in 2016. Available online: http://www.mee.gov.cn/gkml/hbb/bgth/201705/t20170512_
414013.htm (accessed on 17 November 2018).

14. China Environment News. Strictly Supervising and Promoting the Coordinated Development of
China’s Environment and Economy. Available online: http://www.cenews.com.cn/opinion/hjsp/201710/
t20171013_854057.html (accessed on 17 November 2018).

38



Sustainability 2019, 11, 324

15. Environmental Emergency and Accident Investigation Center of the Ministry of Environmental Protection.
12369: Promoting Environmental Information Disclosure and Public Participation. World Environ. 2017, 4,
76–77.

16. Ministry of Environmental Protection of the People’s Republic of China. Report on the “12369” Environment
Whistleblowing in 2017. Available online: http://www.mee.gov.cn/gkml/sthjbgw/qt/201801/t20180123_
430188.htm (accessed on 17 November 2018).

17. Wei, J.; Lu, S. Investigation and penalty on major industrial accidents in China: The influence of
environmental pressures. Saf. Sci. 2015, 76, 32–41. [CrossRef]

18. Zhang, B.; Chen, X.; Guo, H. Does central supervision enhance local environmental enforcement?
Quasi-experimental evidence from China. J. Public Econ. 2018, 164, 70–90. [CrossRef]

19. Chen, H.; Hao, Y.; Li, J.; Song, X. The impact of environmental regulation, shadow economy, and corruption
on environmental quality: Theory and empirical evidence from China. J. Clean. Prod. 2018, 195, 200–214.
[CrossRef]

20. Xinhua Net. 300,000 Yuan! A Domestic Reward Record Has Been Created for Environmental Whistleblowing
in Jingjiang, Jiangsu Province. Available online: http://www.xinhuanet.com//legal/2017-11/18/c_
1121974431.htm (accessed on 17 November 2018).

21. Zhang, Y. Rewarding Pollution Whistleblowing Highlights Environmental Protection. Environ. Prot. Circ.
Econ. 2017, 37, 1.

22. Huang, G. A Number of Major Environmental Protection Cases were Uncovered by Reward for
Whistleblowing. Pestic. Mark. News 2018, 11, 16–17.

23. Du, T. “Environmental Guardian” Was Arrested Twice—Suspected of Retaliation for Whistleblowing.
Available online: http://www.mzyfz.com/index.php/cms/item-view-id-1199432 (accessed on
17 November 2018).

24. The Paper News. The Polluted Enterprises Retaliated the Resident after His Whistleblowing to the Central
Environmental Protection Inspectorate. Available online: https://www.thepaper.cn/newsDetail_forward_
1512811 (accessed on 17 November 2018).

25. Jin, J.; Zhuang, J.; Zhao, Q. Supervision after Certification: An Evolutionary Game Analysis for Chinese
Environmental Labeled Enterprises. Sustainability 2018, 10, 1494. [CrossRef]

26. Zhao, X.; Zhang, Y. The System Dynamics (SD) Analysis of the Government and Power Producers’
Evolutionary Game Strategies Based on Carbon Trading (CT) Mechanism: A Case of China. Sustainability
2018, 10, 1150. [CrossRef]

27. Gao, L.; Zhao, Z.-Y. System Dynamics Analysis of Evolutionary Game Strategies between the Government
and Investors Based on New Energy Power Construction Public-Private-Partnership (PPP) Project.
Sustainability 2018, 10, 2533. [CrossRef]

28. Liu, L.; Feng, C.; Zhang, H.; Zhang, X. Game Analysis and Simulation of the River Basin Sustainable
Development Strategy Integrating Water Emission Trading. Sustainability 2015, 7, 4952–4972. [CrossRef]

29. Zhao, R.; Zhou, X.; Han, J.; Liu, C. For the sustainable performance of the carbon reduction labeling policies
under an evolutionary game simulation. Technol. Forecast. Soc. Chang. 2016, 112, 262–274. [CrossRef]

30. Wu, B.; Liu, P.; Xu, X. An evolutionary analysis of low-carbon strategies based on the government–enterprise
game in the complex network context. J. Clean. Prod. 2017, 141, 168–179. [CrossRef]

31. Li, Q.; Bao, H.; Peng, Y.; Wang, H.; Zhang, X. The Collective Strategies of Major Stakeholders in Land
Expropriation: A Tripartite Game Analysis of Central Government, Local Governments, and Land-Lost
Farmers. Sustainability 2017, 9, 648. [CrossRef]

32. Chen, S. An Evolutionary Game Study of an Ecological Industry Chain Based on Multi-Agent Simulation:
A Case Study of the Poyang Lake Eco-Economic Zone. Sustainability 2017, 9, 1165. [CrossRef]

33. Zhang, M.; Li, H. New evolutionary game model of the regional governance of haze pollution in China.
Appl. Math. Model. 2018, 63, 577–590. [CrossRef]

34. Standing Committee of the Twelfth National people’s Congress of the people’s Republic of China. Law of
the People’s Republic of China on Air Pollution Prevention and Control (Latest Revision); The Law Press of China:
Beijing, China, 2018.

35. State Council of the People’s Republic of China. Notice of the State Council on Printing and Dispatching the
Air Pollution Prevention and Control Action Plan. Available online: http://www.gov.cn/zhengce/content/
2013-09/13/content_4561.htm (accessed on 17 November 2018).

39



Sustainability 2019, 11, 324

36. Ministry of Ecology and Environment of the People’s Republic of China. The Responsibility of the Ministry
of Ecology and Environment of the People’s Republic of China. Available online: http://www.mee.gov.cn/
zjhb/zyzz/ (accessed on 17 November2018).

37. Shen, X.; Wang, L.; Wu, C.; Lv, T.; Lu, Z.; Luo, W.; Li, G. Local interests or centralized targets? How China’s
local government implements the farmland policy of Requisition–Compensation Balance. Land Use Policy
2017, 67, 716–724. [CrossRef]

38. Yang, W.; Li, L. Efficiency Evaluation and Policy Analysis of Industrial Wastewater Control in China. Energies
2017, 10, 1201. [CrossRef]

39. Wang, D.; Chen, C.; Richards, D. A prioritization-based analysis of local open government data portals:
A case study of Chinese province-level governments. Gov. Inf. Q. 2018, 35, 644–656. [CrossRef]

40. Cao, R.; Zhang, A.; Wen, L. Trans-regional compensation mechanism under imbalanced land development:
From the local government economic welfare perspective. Habitat Int. 2018, 77, 56–63. [CrossRef]

41. Zhang, L.; Wu, B. Farmer innovation system and government intervention: An empirical study of straw
utilisation technology development and diffusion in China. J. Clean. Prod. 2018, 188, 698–707. [CrossRef]

42. Zhou, Y.; Zhu, S.; He, C. How do environmental regulations affect industrial dynamics? Evidence from
China’s pollution-intensive industries. Habitat Int. 2017, 60, 10–18. [CrossRef]

43. Cull, R.; Xu, L.C.; Yang, X.; Zhou, L.-A.; Zhu, T. Market facilitation by local government and firm efficiency:
Evidence from China. J. Corp. Financ. 2017, 42, 460–480. [CrossRef]

44. Wu, J.; Xu, M.; Zhang, P. The impacts of governmental performance assessment policy and citizen
participation on improving environmental performance across Chinese provinces. J. Clean. Prod. 2018,
184, 227–238. [CrossRef]

45. Geall, S.; Shen, W. Gongbuzeren Solar energy for poverty alleviation in China: State ambitions, bureaucratic
interests, and local realities. Energy Res. Soc. Sci. 2018, 41, 238–248. [CrossRef]

46. Yang, Y.; Yu, G. The analysis of social resource mobilization on new media: A case study of Chinese
environmental protection documentary Under the Dome. Telematics Inform. 2018. [CrossRef]

47. Shen, L.; Wang, Y. Supervision mechanism for pollution behavior of Chinese enterprises based on haze
governance. J. Clean. Prod. 2018, 197, 571–582. [CrossRef]

48. Guttman, D.; Young, O.; Jing, Y.; Bramble, B.; Bu, M.; Chen, C.; Furst, K.; Hu, T.; Li, Y.; Logan, K.; et al.
Environmental governance in China: Interactions between the state and “nonstate actors”. J. Environ. Manag.
2018, 220, 126–135. [CrossRef] [PubMed]

49. Deng, J. The National Supervision Commission: A New Anti-corruption Model in China. Int. J. Law
Crime Justice 2018, 52, 58–73. [CrossRef]

50. Liu, L.; Wu, T.; Li, S.; de Jong, M.; Sun, Y. The drivers of local environmental policy in China: An analysis of
Shenzhen’s environmental performance management system, 2007–2015. J. Clean. Prod. 2017, 165, 656–666.
[CrossRef]

51. Zhang, L.; An, Y. The government capacity on industrial pollution management in Shanxi province:
A response impulse analysis. J. Environ. Manag. 2018, 223, 1037–1046. [CrossRef]

52. Jia, S.; Liu, X.; Yan, G. Effect of APCF policy on the haze pollution in China: A system dynamics approach.
Energy Policy 2019, 125, 33–44. [CrossRef]

53. Wang, L. Research on Environmental Right of Reporting and Its Protection in China. Master’s Thesis,
Soochow University, Suzhou, China, 2017.

54. Zhang, H.; Xiong, L.; Qiu, Y.; Zhou, D. How Have Political Incentives for Local Officials Reduced the
Environmental Pollution of Resource-depleted Cities? Energy Procedia 2017, 143, 873–879. [CrossRef]

55. Yang, J.; Zhang, B. Air pollution and healthcare expenditure: Implication for the benefit of air pollution
control in China. Environ. Int. 2018, 120, 443–455. [CrossRef]

56. Xia, Q.; Jin, M.; Wu, H.; Yang, C. A DEA-based decision framework to determine the subsidy rate of emission
reduction for local government. J. Clean. Prod. 2018, 202, 846–852. [CrossRef]

57. Zhao, X.-G.; Ren, L.Z.; Zhang, Y.Z.; Wan, G. Evolutionary game analysis on the behavior strategies of power
producers in renewable portfolio standard. Energy 2018, 162, 505–516. [CrossRef]

58. Chen, Y.; Ding, S.; Zheng, H.; Zhang, Y.; Yang, S. Exploring diffusion strategies for mHealth promotion using
evolutionary game model. Appl. Math. Comput. 2018, 336, 148–161. [CrossRef]

40



Sustainability 2019, 11, 324

59. Vigliassi, M.P.; Massignan, J.A.D.; Delbem, A.C.B.; London, J.B.A. Multi-objective evolutionary algorithm in
tables for placement of SCADA and PMU considering the concept of Pareto Frontier. Int. J. Electr. Power
Energy Syst. 2019, 106, 373–382. [CrossRef]

60. Rollason, E.; Bracken, L.J.; Hardy, R.J.; Large, A.R.G. Evaluating the success of public participation in
integrated catchment management. J. Environ. Manag. 2018, 228, 267–278. [CrossRef]

61. Brombal, D.; Moriggi, A.; Marcomini, A. Evaluating public participation in Chinese EIA. An integrated Public
Participation Index and its application to the case of the New Beijing Airport. Environ. Impact Assess. Rev.
2017, 62, 49–60. [CrossRef]

62. Pu, Z.; Fu, J. Economic growth, environmental sustainability and China mayors’ promotion. J. Clean. Prod.
2018, 172, 454–465. [CrossRef]

63. Taylor, C.M.; Gallagher, E.A.; Pollard, S.J.T.; Rocks, S.A.; Smith, H.M.; Leinster, P.; Angus, A.J. Environmental
regulation in transition: Policy officials’ views of regulatory instruments and their mapping to environmental
risks. Sci. Total Environ. 2019, 646, 811–820. [CrossRef]

64. Tian, X.-L.; Guo, Q.-G.; Han, C.; Ahmad, N. Different extent of environmental information disclosure across
chinese cities: Contributing factors and correlation with local pollution. Glob. Environ. Chang. 2016, 39,
244–257. [CrossRef]

65. Kasim, M.T. Evaluating the effectiveness of an environmental disclosure policy: An application to New
South Wales. Resour. Energy Econ. 2017, 49, 113–131. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

41



sustainability

Article

Relevance Analysis on the Variety Characteristics of
PM2.5 Concentrations in Beijing, China

Binxu Zhai 1,2, Jianguo Chen 1,2,*, Wenwen Yin 1,2 and Zhongliang Huang 1,2

1 Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
dbx15@mails.tsinghua.edu.cn (B.Z.); yww17@mails.tsinghua.edu.cn (W.Y.); hzlthu@foxmail.com (Z.H.)

2 Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University,
Beijing 100084, China

* Correspondence: chenjianguo@mail.tsinghua.edu.cn

Received: 9 August 2018; Accepted: 7 September 2018; Published: 10 September 2018

Abstract: Air pollution has become one of the most serious environmental problems in the world.
Considering Beijing and six surrounding cities as main research areas, this study takes the daily
average pollutant concentrations and meteorological factors from 2 December 2013 to 30 June 2017 into
account and studies the spatial and temporal distribution characteristics and the relevant relationship
of particulate matter smaller than 2.5 μm (PM2.5) concentrations in Beijing. Based on correlation
analysis and geo-statistics techniques, the inter-annual, seasonal, and diurnal variation trends and
temporal spatial distribution characteristics of PM2.5 concentration in Beijing are studied. The study
results demonstrate that the pollutant concentrations in Beijing exhibit obvious seasonal and cyclical
fluctuation patterns. Air pollution is more serious in winter and spring and slightly better in summer
and autumn, with the spatial distribution of pollutants fluctuating dramatically in different seasons.
The pollution in southern Beijing areas is more serious and the air quality in northern areas is better
in general. The diurnal variation of air quality shows a typical seasonal difference and the daily
variation of PM2.5 concentrations present a “W” type of mode with twin peaks. Besides emission
and accumulation of local pollutants, air quality is easily affected by the transport effect from the
southwest. The PM2.5 and PM10 concentrations measured from the city of Langfang are taken as the
most important factors of surrounding pollution factors to PM2.5 in Beijing. The concentrations of
PM10 and carbon monoxide (CO) concentrations in Beijing are the most significant local influencing
factors to PM2.5 in Beijing. Extreme wind speeds and maximal wind speeds are considered to be the
most significant meteorological factors affecting the transport of pollutants across the region. When
the wind direction is weak southwest wind, the probability of air pollution is greater and when the
wind direction is north, the air quality is generally better.

Keywords: relevance analysis; spatial and temporal distribution characteristics; PM2.5; Beijing

1. Introduction

Ambient fine particulate matter smaller than 2.5 μm (PM2.5) is a major environmental problem
and is harmful to human health [1,2]. Numerous studies have documented that short-term and
long-term exposure to PM2.5 can increase the risks of allergies, respiratory system diseases, and
cardiovascular diseases [3–6]. Meanwhile, the haze caused by PM2.5 reduces visibility [7,8] and affects
transportation, causing huge economic losses [9]. Chinese cities suffer heavily from ambient air
pollution [10], particularly the capital Beijing [11]. A Global Burden of Disease (GBD) study ranks
ambient particulate matter pollution (PM2.5) as the 5th leading risk factor for early death and disability
in China [12]. Thus, it is necessary to carry out research on PM2.5 in China. Current research mainly
focuses on the physical and chemical properties of pollutants [13–15], although some studies focus on
social [16] and natural factors [17]. Previous studies have shown that meteorological factors, including
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those of wind speed, wind direction, precipitation, relative humidity, and atmospheric pressure, have
a very significant impact on air quality. For example, Guo et al. found that adverse weather conditions,
including those of low wind speed and high relative humidity would promote the concentration of
pollutants in the study area and lead to the rapid deterioration of air quality in the short term [18].
Li et al. [19] identified ideal meteorological regions, according to the quantified spatial relationships
between PM and meteorological elements. Lv et al. [20] found that wind speed and wind direction have
more complex effects on air pollution. The prevailing wind direction or wind speed is beneficial to the
dilution and diffusion of pollutants in the region and then reduce the concentrations of pollutants. The
effect of non-prevailing wind (not long-lasting) or of low wind speed is just the opposite. The specific
effect of wind direction is related to the distribution of surrounding pollution sources. In addition,
it has also been found that the periodic changes in the haze weather in Beijing are closely related to
the specific geographical location of Beijing and the growth of high pressure cyclones in the upper
reaches of Siberia [21]. In addition, the impact of the cross-regional transportation of particulates on
local air quality has been gradually emphasized in recent research [22–26]. Wang et al. [27] used an
integrated Fifth-Generation NCAR/Penn State Mesoscale Model-Community Multiscale Air Quality
(MM5-CMAQ) modeling system to analyze the backward trajectory of pollutants in Beijing and found
that the southwest is the most influential transport channel. Ma et al. [28] demonstrated that regional
transport from southern Beijing is a leading influencing factor that spurs initial PM2.5 increases.

PM2.5 concentration is affected by local pollutants, surrounding pollutants factors, and
meteorological factors and it has temporal and spatial variability. However, in most studies on the
temporal and spatial distribution characteristics and the relevant relationship of PM2.5 concentrations,
only local pollutants and meteorological factors were considered [17,19]. Few studies have considered
comprehensive factors. In this study, we consider Beijing and six surrounding cities as main research
areas, taking the daily average pollutant concentrations and meteorological elements from 2 December
2013 to 13 October 2017 into account and study the spatial and temporal distribution characteristics
and the relevant relationship of PM2.5 concentrations in Beijing. Investigating the temporal and spatial
distribution characteristics and the relevant relationship of PM2.5 is important for understanding the
mechanisms underlying PM2.5 pollution and for preventing haze. Therefore, this study has great
practical value, it can elucidate the factors contributing to this air pollution and provide scientific
reference for joint control measures in future.

Based on correlation analysis and geo-statistics techniques, this paper studies the inter-annual,
seasonal, diurnal variation trends, and temporal spatial distribution characteristics of PM2.5

concentration in Beijing. The relevant relationships between PM2.5 and major local pollutants,
surrounding pollutants, and meteorological factors are also analyzed.

2. Study Area and the Data

2.1. Study Area

Beijing, ranging from 39.4◦ N to 41.6◦ N and 115.7◦ E to 117.4◦ E and located in the north of the
North China Plain, is surrounded by Hebei Province, along with Tianjin. The terrain is generally
characterized by high altitude in the west and low altitude in the east. The western mountains belong
to the Taihang Mountains and the northern mountains belong to the Yanshan Mountains. The central
and southeastern parts between the two mountains are plain areas, with large mountainous areas
and a total elevation between 20–2300 m. It has 16 districts, 6 of which are located in the downtown
area and the remaining 10 are located in the suburbs, covering an area of 16,410.54 square kilometers.
The seasonal distribution of precipitation is fairly inhomogeneous. 80% of the annual precipitation
occurs in the three months of summer (June, July and August). The sunshine duration is the longest in
spring, followed by autumn. In summer, the sunshine duration is slightly shorter due to the plentiful
precipitation and the sunshine duration is the shortest in winter. Taking into account the effects
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of transport, this study focuses on Beijing and its surrounding cities, including Baoding, Chengde,
Langfang, Tianjin, Zhangjiakou, and Tangshan. The study area is illustrated in Figure 1.

Figure 1. The physical geography of the study areas with colors denoting altitudes above sea level.

2.2. Data Collection

Historical site records of major pollutant concentrations and meteorological data from 2 December
2013 to 30 June 2017 were collected from open sources, spanning a total of 1307 days. Ground-measured
hourly pollutant concentrations, including those of PM10, PM2.5, carbon monoxide (CO), nitrogen
dioxide (NO2), sulfur dioxide (SO2), ozone (O3) and the Air Quality Index (AQI), were collected
from the Beijing Municipal Environment Monitoring Center (BJMEMC, http://zx.bjmemc.com.cn/)
and then calculated as daily mean values. The locations of the 35 monitoring stations around the
city are shown as dots in Figure 1. Original meteorological data on air temperature (TEM), daily
sunshine duration (SSD), wind direction (WD), and wind speed (WIN), etc. were acquired from the
website of the National Meteorological Information Center (NMIC, http://data.cma.cn/). Pollutant
concentrations measured in surrounding cities were obtained from the Ministry of Environmental
Protection of China data center (MEP, http://www.mep.gov.cn/). The raw parameters selected from
open sources are listed in Table 1.

For meteorological data, NMIC provides the Air Pollution Index (API) interface for data
acquisition. After authentication, it can be downloaded directly and the original data can be obtained
through analysis. There are no historical archived pollutant concentration data and the BJMEMC
official website only provides real-time online display. This paper applies a crawler based on the
Scrapy framework to scrawl pollutant concentration records.

The data flow in Scrapy is controlled by the central engine. The engine opens a website for a
crawler, requests the URL address for the site and then schedules it in the scheduler. The engine
sends the URL to the downloader by the download middleware and the download middleware then
disguises itself as a normal client in response to the anti-scrawling strategy and generates feedback
from the parsing page and returns to the engine. Once received by the engine, the parsed page is sent
to the crawler by the crawler middleware, then the content resolved by the crawler is sent back to the
engine. The collected data are saved to a database through the pipeline and item middleware and
then returned to the scheduler. After that, the procedures above are repeated until all requests are
processed. The engine closes the website and gets all the data.
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Table 1. Description of raw data parameters.

Parameter Type * Unit Description

Pollutant factors

PM2.5-BJ N μg/m3 Daily averaged concentration of PM2.5 in Beijing
PM10-BJ N μg/m3 Daily averaged concentration of PM10 in Beijing
SO2-BJ N μg/m3 Daily averaged concentration of SO2 in Beijing
CO-BJ N mg/m3 Daily averaged concentration of CO in Beijing

NO2-BJ N μg/m3 Daily averaged concentration of NO2 in Beijing
O3-BJ N μg/m3 Daily averaged concentration of O3 in Beijing

AQI-BJ N - Daily air quality index of Beijing
Class-BJ C 1–5 Daily grade of air quality in Beijing

Meteorological
factors

EVP N 0.1 mm Daily evaporation capacity of Beijing
GST-mean N 0.1 ◦C Daily averaged ground surface temperature
GST-max N 0.1 ◦C Daily maximal ground surface temperature
GST-min N 0.1 ◦C Daily minimal ground surface temperature
PRE-208 N 0.1 mm Precipitation from 20:00 p.m. to 8:00 a.m.
PRE-820 N 0.1 mm Precipitation from 8:00 a.m. to 20:00 p.m.
PRE-2020 N 0.1 mm Precipitation from 20:00 p.m. to 20:00 p.m.
PRS-mean N 0.1 hPa Daily averaged barometric pressure
PRS-max N 0.1 hPa Daily maximal barometric pressure
PRS-min N 0.1 hPa Daily minimal barometric pressure
RHU-mean N 1% Daily averaged relative humidity
RHU-min N 1% Daily minimal relative humidity

SSD N 0.1 h Daily duration of sunshine
TEM-mean N 0.1 ◦C Daily averaged air temperature
TEM-max N 0.1 ◦C Daily maximal air temperature
TEM-min N 0.1 ◦C Daily minimal air temperature
WIN-mean N 0.1 m/s Daily averaged wind speed
WIN-max N 0.1 m/s Daily maximal wind speed
WD-max C 1–16 Wind direction of maximal wind speed in category
WIN-ext N 0.1 m/s Extreme wind speed
WD-ext C 1–16 Wind direction of extreme wind speed in category

* The C in column Type indicates category variables, while the N indicates numerical ones.

3. Methodology

The main data analysis methods adopted in this study include statistical analysis, spatial
analysis, and visualization technology. The statistical analysis technique principally included
variance analysis, correlation analysis, regression analysis, factor analysis, and so on, analyzing
the complicated relationship between PM2.5 concentrations, meteorological factors, and surrounding
factors. Spatial analysis, including Spatial Center Statistics (SCS) and Exploratory Spatial Data Analysis
(ESDA) were adopted to reveal the temporal and spatial characteristics of pollutant diffusion. The
Spatial Center Statistics focused on depicting spatial distribution, which was mainly realized by
calculating the basic parameters of the distribution, while the Exploratory Spatial Data Analysis
emphasized the description of data, the identification of data statistical characteristics, and the
preliminary judgment of the structure of the data through relevant assumptions, aimed at revealing
spatial data characteristics, identifying outliers or regions, exploring spatial association patterns,
recognizing accumulate or hotspot areas, implementing spatial zoning, and discovering spatial
heterogeneity through geographical visualization. The data visualization methods used in this paper
mainly included scatter plot, wind rose chart, and violin diagram, so as to intuitively illustrate the
atmospheric phenomena varying with time and space behind data and help to find out the potential
development pattern.

4. Results and Discussion

4.1. General Statistical Characteristics of PM2.5 Concentrations and Exploratory Data Analysis

Statistical descriptions of the main indicators measured for the observation period are presented
in Table 2. It can be seen from the table that the air quality situation in Beijing is certainly not
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optimistic, considering how the average 24-h value of PM2.5 concentrations reached 77.40 μg/m3.
This is three times more than the WHO guidance value (25 μg/m3) and the 24-h average of the PM10

concentrations reached 104.90 μg/m3, which is two times more than that of the WHO guidance value
(50 μg/m3). The 24-h maximum concentrations of PM2.5 and PM10 reached 477 μg/m3 and 820 μg/m3,
respectively. In addition, the variance of PM2.5 and PM10 concentrations were also closed to the mean
levels respectively, indicating the volatility of the major pollutant concentrations and the instability
of the regional air quality. The annual mean value of other gaseous pollutants has not exceeded the
national standard at present but the peak value was higher in different degrees than the national level-2
standard in the same period. It reveals that all of the pollutant concentrations in the heavily polluted
days have reached reasonably high levels and the long-term exposure to such an environment is very
harmful to the human body and corresponding protection measures should be taken as precautions.

Table 2. The statistical description for main indicators.

PM2.5-bj PM10-bj NO2-bj CO-bj SO2-bj O3-bj

Unit μg/m3 μg/m3 μg/m3 mg/m3 μg/m3 μg/m3

Mean 77.40 104.90 50.41 1.23 14.52 97.93
Standard Deviation 68.43 80.86 24.38 1.01 17.01 64.70

25% 29 48 33 0.60 4 50
50% 58 88 44 0.90 8 85
75% 103 135 61 1.40 18 138

Range (5, 477) (0, 820) (8, 155) (0.2, 8.0) (2, 133) (2, 294)

Figure 2 shows the fluctuation of the PM2.5 concentrations in Beijing during the study period.
The solid line represents the variety of PM2.5 concentrations, the points are the daily mean values of
PM2.5 concentration in six different colors according to the Individual Air Quality Index (IAQI) level
respectively. The 24-h mean value of PM2.5 concentrations in the study period and the corresponding
WHO guidance value are marked by a dotted line. It can be seen that about 40% of Beijing’s air quality
exceeded the national standard in one year and the air quality exceeded the WHO recommended
standard about 80% of the time.

Figure 2. The fluctuation of the PM2.5 concentrations in Beijing during the study period.
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It can be drawn from Figure 2 that the air pollution caused by fine particles exhibits remarkable
volatility and irregularity, at the same time, it shows a certain seasonal and periodic fluctuation in
the overall variation tendency. The peak values of pollutant concentrations generally concentrate on
heating periods, indicating that the energy structure of central heating has had an obvious influence
on the ambient air quality in Beijing. According to the management methods for central heating
in Beijing, the statutory heating period in Beijing is generally from 15 November to 15 March of
the next year and fluctuates slightly in accordance to the current situation. The annual variation of
PM2.5 concentrations were relatively stable, with the annual mean values of year 2014 to 2017 were
84.83 μg/m3, 80.25 μg/m3, 73.01 μg/m3, and 57.83 μg/m3 respectively. The annual mean values
spread over a decreasing tendency, which indicates that the current treatment measures for air pollution
have achieved initial success. In terms of the periodical tendency, the short cycle of the pollutant
concentration fluctuations was about one week (the left magnified curve in Figure 2) to one month
(the right magnified curve in Figure 2), the long period is one year, and the peak of the pollutant
concentrations occurred alternately throughout the year.

4.2. Seasonal Variation of PM2.5 Concentrations in Beijing

Figure 3 shows the temporal and spatial distribution of seasonal variation of PM2.5 concentrations
in Beijing in the year 2017. According to climatological classification, the spring in Beijing is regarded
as months March, April, and May, the summer from June to August, the autumn from September
to November, and the winter will be regarded as the time from December to February of the next
year. This distribution situation diagram uses the monitoring data of 35 monitoring stations in the city,
taking into account the anisotropy, autocorrelation, and the trend of data distribution, which is drawn
by the Kriging interpolation method in geo-statistics [29,30].

  

 

Figure 3. Temporal and spatial distribution of seasonal variation of PM2.5 concentrations in Beijing
in 2017.

It can be drawn from Figure 3 that the air pollution in Beijing is more serious in spring and
winter, and slightly better in summer and autumn. The distribution of pollutants varied dramatically
in different seasons. The most seriously polluted regions in spring were the southern and central
Beijing. In summer, the overall air pollution situation was better, only the southeast part of the city
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was more polluted. The main polluted areas in autumn were also concentrated in the southeast
and southwest regions. In winter, the pollution situation was further aggravated, and some regions
in the north also registered by high level pollution in PM2.5 concentrations. In general, the spatial
distributional characteristics of regional air quality were quite different in the four seasons, the
pollution levels in the southern regions were more serious, and the concentrations of pollutants
gradually reduced from the southwest to the northeast. The seasonal variation of pollutant spatial
and temporal distribution may have been caused by different meteorological conditions and the
distribution of pollution sources [31,32]. For example, the meteorological conditions formed by the
combination of dry climate and strong wind in spring are conducive to the formation and development
of sandstorms. The humid and hot environment and the increase of irradiation intensity in summer
are beneficial to the formation of photochemical reactions, resulting in secondary pollution. The spatial
distribution of pollutants in autumn was mainly due to the regional transport caused by unfavorable
weather conditions, which was the main cause of air pollution in this period. In winter, the air quality
was inseparable from the biomass burning [33] and coal combustion [34]. With the weakening of the
wind and the decrease of the atmospheric height, the diffusion and convection in the horizontal and
vertical direction were gradually restricted. The accumulation effect of local pollutants aggravated the
outbreak of serious pollution events in winter.

4.3. Diurnal Variation Characteristics of PM2.5 Concentrations in Beijing

Figure 4 shows the diurnal variation of PM2.5 concentrations in different seasons of the year
2017 in Beijing. The curves in different colors represent the variation of the seasonal average PM2.5

concentrations at different times in one day of the corresponding season. The value of each time is the
average measured values of 35 monitoring stations around the city. The dashed lines represent the
annual mean value of the PM2.5 concentrations in the year 2017 (red line) and the guiding value given
by WHO (black line).

Figure 4. Diurnal variation of PM2.5 concentrations in different seasons in Beijing.

It can be observed from Figure 4 that the diurnal variation of air quality presented a certain
seasonal difference and there was a certain fluctuation in diurnal concentrations. In the seasons of
summer and autumn, the diurnal variation was small, with the daily fluctuation lingering around
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10 μg/m3, while the diurnal variations in winter and spring was large, with the daytime fluctuation
reaching about 20 μg/m3. The diurnal variation of PM2.5 concentrations was by and large characterized
by a “W” type double wave. The peak value in the daytime occurred between 08:00 and 11:00 in the
morning, and then continued to decrease to a trough. The peak in the night appeared after 19:00 and
then gradually decreased in the early hours of the morning. The occurrence of the peak pollutant
concentrations in the daytime could be related to the increase of human activity during the early peak
period. With the increase of temperature at noon, the pollutant concentrations gradually decreased,
aided by the weather conditions. Subsequently, with the approach of evening peak, the increase of
restaurant emissions, and the reduction of the height of the planetary boundary layer, the concentration
of pollutants increased further [34]. In the seasons of spring and summer, the average concentrations
of pollutants were higher during the daytime and reduced at night, which contrasts with the situations
in the autumn and winter. This difference was mainly due to the diverse sources of pollution and
their distinct formation mechanisms in different seasons. The air quality in spring and summer was
more affected by human activities. With the advent of night and the decrease of human activities,
the concentration of pollutants dropped to a lower level in these two quarters. The main influencing
factors of outdoor air quality in autumn and winter were the transport and diffusion effect of external
pollution sources. The impact of human activity was relatively small and superseded by meteorological
conditions. Therefore, during the night time, the lower atmosphere and stagnant wind conditions
aggravated the accumulation of pollutants and increased the PM2.5 concentrations [20].

To further reveal the diurnal variation of the pollutant concentrations in Beijing, Figure 5 shows
the temporal and spatial variation of the PM2.5 concentrations in Beijing on 25 December 2015.
On 25 December 2015, a serious particulate matter pollution incident occurred in Beijing. The
concentration of PM2.5 in some areas reached over 700 μg/m3, causing widespread international
and social concerns.

As can be drawn from Figure 5, the particulate matters in Beijing were mainly concentrated on
the southeast and central areas at 00:00 in the early morning, and the air quality in the northern and
western mountainous areas was better than in other regions. At 04:00 and 08:00, the pollution bound
expanded to the northern and western regions and the pollution levels in the southern part of the
region were also aggravated, however the northern and western parts of the region still maintained
high levels of air quality. By noon, the concentration of particulate matters in the city reached a
peak and the pollution range was further expanded. From the southwest to the northeast, almost the
whole city was immersed in serious pollutions of middle and above-recommended levels and the
concentration of PM2.5 in some areas reached more than 705 μg/m3, creating the record of the highest
concentration in a single day in the year. At this time, there were still some regions in the northern
mountainous areas that were unaffected. At 16:00, the pollution range expanded once again. The
core pollution areas were concentrated in the Fengtai, Chaoyang, and Haidian districts in the center
of the city and the northern regions were also thereby affected. After nightfall, the concentration of
pollutants gradually decreased but the pollution areas did not shrink. The average concentration of
pollutants in the city dropped to the levels of 08:00 in the morning. In general, the heavily polluted
areas in this serious pollution event were still concentrated in the southern and central areas, and
were obviously affected by the transport effect from southwest directions. At the early stage of the
development of this air pollution event (before 12:00 a.m.), the air quality level was mainly affected by
the local emission and accumulation effects. Influenced by meteorological conditions, the transport
effect of the surrounding pollution sources became the leading factor for the overall air quality levels
in the city, which aggravated the severity of the air pollution and promoted the outbreak of a serious
air pollution event.
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Figure 5. The temporal and spatial variation of the PM2.5 concentrations in Beijing on 25 December 2015.

4.4. Relevance Analysis between PM2.5 and Major Pollutants

The raw data can be divided into two types, the numerical variables and categorical ones.
For numerical variables, the Pearson coefficient analysis showed that the top five linearly related raw
parameters with PM2.5 concentrations in Beijing were the PM2.5 concentrations in Langfang (0.85),
PM10 concentrations in Beijing (0.85), PM10 concentrations in Langfang (0.83), CO concentrations in
Beijing (0.83), and PM2.5 concentrations in Chengde (0.83), as shown in the upper right and lower left
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corners of the correlation matrix in Figure 6. At the same time, there was a linear correlation between
the variables, as shown in the middle of the correlation matrix. Figure 6 shows a linear correlation
matrix of the top 15 variables, with a high linear correlation with PM2.5 concentration. A significance
test was performed on these correlation coefficients and found that sig = 0.000, indicating that the
significance level p value was less than 0.001, further indicating that the correlation does exist. It can be
seen from the figure that there was a strong linear correlation between PM2.5 concentration in Beijing
and pollutants in surrounding cities, such as: Langfang, Chengde, Baoding, etc.

Moreover, obvious nonlinear relationships between several independent variables and dependent
variables could be found during the exploratory data analysis, as depicted in Figure 7. It can be
seen from the figure that the distribution of most numerical variables exhibited different degrees
of skewness (the diagonal part of the figure), and there was a significant nonlinear relationship
between the independent variable and dependent variable (the upper right and the lower left corner).
Meanwhile, the linear relationship between these parameters indicated the risk of multi-collinearity
(lower right).

For example, the O3 concentrations, evaporation capacity, and extreme wind speed exhibited an
apparent exponential relationship with PM2.5, while the PM10 and PM2.5 concentrations of Langfang
presented potential logarithm relevance.

Figure 6. PM2.5 concentration linear correlation matrix.
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Figure 7. Typical nonlinear relationship between features and PM2.5.

For categorical variables, there was a linear correlation between the variables and the target
values. Most of the variables exhibited typical periodic variation and fluctuation characteristics,
as shown in Figure 8. Figure 8a refers to the violin plot of PM2.5 monthly concentration. It can
be seen that the change in PM2.5 concentration showed typical seasonal fluctuations and that the
PM2.5 concentration was smaller in the summer and autumn from June to September. The rest of
the months fluctuated greatly and the lowest PM2.5 concentration appeared around August. This is
consistent with the conclusions of previous studies. Guo et al. found the lowest and highest monthly
mean PM2.5 concentrations appeared in August and January, respectively [35]. We encoded the wind
direction from 1 to 16 clockwise and 1 represents a north wind direction. Figure 8b refers to the
scatter plot of wind direction of extreme wind speed and PM2.5 concentration. It shows that the PM2.5

concentration exhibited periodic rhythm with the change of extreme wind speed direction and the
highest concentration of pollutants occurred when the extreme wind speed direction was northeast
and southwest (wind direction code is 3 and 11). When the wind direction was west and northwest
(wind direction codes 13 and 15), air quality conditions were generally good. Figure 8c,d further reveal
this phenomenon through wind rose for wind direction of maximal and extreme wind speed against
PM2.5 concentrations. The radius refers to the frequency of specific wind direction and the intensity
refers to the value of PM2.5 concentrations. The prevailing wind direction of Beijing’s maximum wind
speed and daily maximum wind speed is northeast-southwest, where the daily maximum wind speed
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is slightly east. When the wind direction is weak southwest wind, the probability of air pollution is
greater, and when the wind direction is north, the air quality is generally better. This phenomenon may
be related to the topographical features of the three sides mountains of Beijing and the distribution of
southern industrial areas [36,37].

 
(a) (b) 

 
(c) (d) 

Figure 8. The relationship between categorical variables and PM2.5. (a: violin plot of PM2.5 monthly
concentration; b: scatter plot of wind direction of extreme wind speed and PM2.5 concentration; c: wind
rose for wind direction of maximal wind speed against PM2.5 concentrations; d: wind rose for wind
direction of extreme wind speed against PM2.5 concentrations).

Combined with the analysis of the correlation between surrounding pollutants, meteorological
factors, and PM2.5 in Beijing, it can further explain the reason why the air quality in southern Beijing is
generally better than that in the north. The surrounding pollutants have a strong influence on Beijing’s
air quality and Beijing’s prevailing winds are mostly southerly, so the areas in the south of Beijing
have a greater impact and Langfang is closer than Baoding in geographical distance. Therefore, in the
correlation analysis, the pollutants in Langfang have a greater impact on Beijing than Baoding.

5. Conclusions

Today, air pollution has become one of the most serious environmental problems in the world.
Fine particulate matters (PM2.5) are harmful to ambient air quality, economic development and human
health. Considering Beijing and six surrounding cities as main research areas, this study took the daily
average pollutant concentrations and meteorological elements from 2 December 2013 to 13 October
2017 into account and studied the spatial and temporal distribution characteristics, the primary
influencing factors, and the forecasting method of PM2.5 concentrations in Beijing in order to provide
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guidance for coping with extreme meteorological disasters and to provide references for improving
municipal crisis response and emergency planning.

In this paper, the inter-annual, seasonal and diurnal variation trends, and temporal spatial
distribution characteristics of PM2.5 concentration in Beijing were studied by correlation analysis and
geo-statistics. The main conclusions are as follows:

(1) The pollutant concentrations in Beijing exhibit obvious seasonal and cyclical fluctuation
patterns. Air pollution is more serious in winter and spring and slightly better in summer and autumn,
with the spatial distribution of pollutants fluctuating dramatically in different seasons. The pollution
in southern Beijing areas are more grievous and the air quality in northern areas are better in general.
The diurnal variation of air quality shows a typical seasonal difference and the daily variation of PM2.5

concentrations by and large presented a “W” type of mode with twin peaks. Except for the emissions
and accumulation of local pollutants, air quality is susceptible to the transport effect from southwest.

(2) A feature importance analysis reveals that PM10 and PM2.5 concentrations measured from the
city of Langfang should be taken as the most important elements of surrounding pollution factors to
PM2.5 in Beijing. These concentrations of PM10 and CO are the most significant local factors to PM2.5

in Beijing. Extreme wind speeds and maximal wind speeds are considered to extend most effects of
meteorological factors to the cross-regional transportation of contaminants. Pollutants found in the
cities of Langfang have a stronger impact on air quality in Beijing than other surrounding factors. Each
element affects the air quality of the study areas in a different way.

This study elaborated the spatial and temporal distribution characteristics of PM2.5 concentrations
in Beijing and the influencing modes of various factors on PM2.5 concentrations in Beijing. It helps to
thoroughly recognize and understand the formation mechanisms of serious haze events.
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Abstract: China relies on the total pollutant emission control and environmental target responsibility
system to curb environmental pollution and improve energy conversation. How the central
government breaks down environmental targets among provincial governments lies at the core,
but little research has been done to explore the determinants of environmental target-setting
empirically. This work models the decomposition process of environmental targets by focusing
on the roles of historical performance and provinces’ political status. With the method of hierarchical
linear model, data on five kinds of environmental obligatory targets (energy consumption per unit
GDP and other four kinds of pollutants) during China’s “12th Five-year Plan” period is used to
test the hypotheses. The results show that provincial historical structural performance is negatively
significantly correlated with their environmental target levels, while the effects of historical scale
performance and intensity performance are not significant. Besides, provinces with higher political
rankings tend to be allocated higher targets, which is in accordance with the model effect hypothesis
rather than the bargaining effect hypothesis.

Keywords: environmental target-setting; performance; hierarchical linear model; environmental
governance; China

1. Introduction

Echoing management by objectives, many countries in the world have already adopted various
kinds of result-oriented goal management reforms [1–4]. In these result-oriented reforms, goal-setting
lies in the core and plays the “baton” role in directing the behaviors of persons for whom the goals
are set. As an important management instrument, the positive effects of goal-setting on performance
improvement have been empirically confirmed by dozens of studies in the past few decades [5–7].
Goals can usually be elaborated through goal dimensions and goal aspiration levels: goal dimensions
are used to illustrate what is considered important (concentrating on the goal priorities or goal
preferences), while goal aspiration levels are used to explain which performance levels are expected
to be achieved on certain goal dimensions [8–10]. Nowadays, to examine determinants of goal
aspiration levels and goal priorities has become an important channel to explore the behavioral logic
of decision-makers.

Actually, the top-down target responsibility system in China provides an ideal practical situation
for conducting research on determinants of government performance goal-setting [10]. In the Chinese
target responsibility system, performance goals are divided into two forms, namely, anticipated targets
and obligatory targets. Anticipated targets refer to the development goals that the central government
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and local governments expect to achieve and set by themselves (e.g., GDP), while obligatory targets
refer to the task requirements for local governments that are allocated or set by their superior
governments in public service and other policy domains involving public interest (e.g., pollutant
emission control). Previous research on goal-setting concentrated only on anticipated targets [10–12]
and failed to explore determinants of the setting of obligatory targets. There is a great difference
between the setting of anticipated targets and obligatory targets in China, because anticipated targets
are set by local governments independently and obligatory targets are allocated by their superior
governments, although local governments can also express their own opinions or adjust the targets in
the decomposition of obligatory targets to some extent [13].

Due to the goal-setting theory being developed mainly based on anticipated targets, it is of
great importance to explore determinants and features of the setting of obligatory targets in order
to understand the target-setting logic in China more thoroughly. Along with more and more severe
environmental pollution [14], China relies on the total pollutant emission control and environmental
target responsibility system to curb environmental pollution, the core of which is the disaggregation
of obligatory environmental targets [13,15,16]. Thus, this work models the decomposition process
of environmental targets and focuses on the effects of performance feedback and political features
by controlling a set of factors advocated in previous goal-setting research. This work contributes to
current literature by first dividing historical performance into three dimensions and then extending
previous frameworks by including the politic-related factors based on the feature of the setting of
obligatory targets. It also additionally extends previous literature that mainly focused on the context
of setting anticipated targets to the context of the setting of obligatory targets. By taking the setting of
environmental targets as a case, this work uses the data of Chinese provinces in the “12th Five-year
Plan” period to examine this framework empirically.

The remainder of this work is organized as follows. The second section briefly reviews current
research related to organizational goal-setting and the third section proposes the theoretical framework
and two clusters of hypotheses. The fourth section illustrates the methodology, including samples,
measures, and data sources, and the analytical approach used, followed by the fifth section which
presents the empirical results in detail. Finally, the theoretical and practical implications of these
findings are discussed, followed by limitations and research avenues for future research.

2. Literature Review

Research on organizational target-setting or goal-setting can be tracked back to the behavioral
theory of the firm developed by Cyert and March, which holds that the prior performance, the previous
goal, and comparable peers’ previous performance of one organization are important predictors of its
goal-setting [8]. Following this research stream, some studies have examined how one organization’s
previous goal and previous goal attainment discrepancy (the gap between previous performance and
the previous goal) influence its decision-making in the private sector [17,18]. Recently, the behavioral
theory of the firm has become one of the most influential theories in organizational studies and is
advocated by many followers [9,19]. However, current evidence mainly focuses on the goal-setting
process in the private sector and whether it can be generalized to the decision-making process in the
public sector, which is usually faced with multiple tasks and characterized by a hierarchical structure,
is still an outstanding question [10].

Similarly, public administration scholars have also developed the Bayesian theory of public
organizations’ decision-making to explain the decision-making process in the public sector [20].
It argues that the historical performance in the last period, performance gaps, peers’ performance,
superiors’ preferences can figure as benchmarks that can be referred to in organizations’
decision-making in the public sector [20]. Recently, some public administration scholars have examined
impacts of these factors on the setting of goal priorities empirically based on survey data in the public
education system [11,12]. Moreover, Ma also empirically explored determinants of the setting of
Gross Domestic Product (GDP) goal aspiration levels by Chinese provincial governments and found
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that it followed prior historical GDP aspiration levels and was related to the average performance
aspiration levels of peers and performance gaps when compared with peers horizontally [10]. However,
all of these studies focus on the setting of anticipated targets rather than obligatory targets in the
public sector.

After reviewing research on setting of environmental obligatory targets in detail, we find that
English articles about environmental target-setting published in international journals are really
scarce. In this aspect, Zhao and Wu interpreted the evolution of China’s energy-saving target
allocation system from the policy learning perspective and described the target allocation process [13].
Some studies also either discussed principles which should be followed in decomposing environmental
targets (e.g., effect, efficiency, equity, transparency, feasibility, continuity, consistency, responsibility,
and capability) [21,22] or used some economic factors to model the allocation of environmental targets
among local governments, including resource distribution, energy consumption, fiscal revenue, GDP
per capita, and industry development features [23,24]. Though these studies have provided some clues
to understand the behavioral logic of environmental target allocation, no research was found that used
archive data to examine determinants of environmental target-setting in China empirically.

Overall, due to the importance of target-setting, it becomes an emerging hot topic to explore
determinants of organizational target-setting in recent years. Though current studies have helped
us understand organizational decision-making logic and behaviors, there are still several significant
research gaps. First, many studies have explored what determines the setting of goal priorities and
goal aspiration levels of individuals [6] and organizations in the private sector [8,17–19], while research
on determinants of organizational goal priorities and goal aspiration levels in the public sector is
still much less than what we need [10,11,20]. Second, current studies mainly concentrate on the
setting of anticipated targets rather than obligatory targets [10], which makes it difficult to generalize
these findings in different situations. Third, current research mainly focuses the roles of historical
performance in target-setting from the perspective of rational decision-making, while target-setting
in the public sector is also a political process and no research examines the political features
of target-setting.

3. Theoretical Framework and Hypotheses

3.1. Theoretical Framework: Performance-Based or Politic-Related

Both the behavioral theory of the firm and the Bayesian theory of public organizations’
decision-making put organizations’ historical performance at the center of organizational
target-setting [8,20]. They argue that organizations tend to set their own targets using their own
prior performance as a key reference point from the perspective of rational decision-making. Actually,
target-setting is an important policy instrument to improve performance [7,25,26]. Organizational
prior performance records can influence organizations’ expectations about their performance in
the next period. As far as China’s environmental pollution control concerned, previous pollutant
emission and energy consumption performance is also related to local governments’ potentials to
reduce their pollutant emissions and energy consumption [16]. Thus, it is reasonable that the central
government in China should decompose national targets down to provincial governments according
to provinces’ historical performance, which implies environmental target-setting in China is expected
to be performance-based.

In addition, the decomposition and allocation of environmental targets in China is a top-down
process in which the central government first releases the national environmental targets, provinces
propose their own possible targets, the central government further compiles and reviews the
proposed targets, and then, the central government negotiates with provinces and finalizes target
assignments [13,15]. Actually, some studies argue that local governments strive to stand out in policy
areas prioritized by their superior governments [27,28], while environmental target-setting research
also holds that the decomposition of China’s environmental targets is a political process full of
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intensive central–local bargaining [13]. This means provincial governments may be stimulated by
political factors to submit targets higher or lower than the national environmental targets, and the
primary difference between the initial proposed targets and the finalized targets of the provinces in the
“11th Five-year Plan” period provides partial evidence about the political features of this process [13].
Hence, in order to simulate the decomposition process of environmental targets in China, this work
integrates the performance-based and politic-related decomposition perspectives together to establish
a theoretical framework (Figure 1). In the following section, it proposes detailed hypotheses from these
two perspectives.

Figure 1. Theoretical Framework.

3.2. Hypotheses Denoting Performance-Based Decomposition

Historical performance in the last period can figure as the simplest benchmark that can be referred
to in decision-making [8,20]. On one hand, historical performance is related to goal attainment
discrepancies or performance gaps and, thus, can influence goal aspiration level adaptation [18,20].
On the other hand, managers tend to lower the weight of this performance dimension when the
performance on this dimension has improved in this period; otherwise, the manager tend to increase
the weight of the performance dimension [12]. When one organization had a better performance record
in the last period, it would be more confident in setting higher-level performance goals; on the contrary,
when the performance record in the last period was worse, the organization would tend to lower its
goal aspiration level in order to attain its performance goal in this period [10].

The effect of historical performance is expected to be different in the setting of anticipatory targets
and in the decomposition of environmental obligatory targets. As far as the setting of anticipatory
targets, historical performance tends to be positively related to the goal aspiration level in the
current period, because a better historical performance record can act as an anchor and indicate
that better performance is possible, thereby strengthening organizational confidence in setting a higher
performance goal in the next period [10,18]. However, the setting of environmental obligatory targets is
a top-to-bottom decomposition process in China, and historical performance can negatively influence
the setting of environmental obligatory targets because it reflects local governments’ potentials to
reduce pollutant emissions in the current period [16]. Specifically, when the historical performance of
one province is low (that means it emitted more pollutants), it is expected to have a larger potential to
improve performance on this dimension in the next period.

Previous research focuses on the effect of one-dimension performance on governmental
goal-setting, such as the GDP growth rate [10]. In the research field of carbon emissions, some scholars
typically decompose the carbon emissions into production, structural, and efficiency effects [29,30],
which implies that we can improve environmental performance through multiple channels, such as
reducing the production scale, adjusting the structure, and improving production efficiency. Similarly,
environmental performance can also be measured from these three perspectives with scale performance,
structural performance, and intensity performance, which reflects the total gross of pollutant emissions
or energy consumption, the structure of pollutant emissions or energy consumption, and the pollutant
emission efficiency or energy consumption efficiency, respectively. Thus, the environmental targets are
hypothesized to be decomposed mainly based on historical environmental performance records and
thus we propose:
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Hypothesis H1. With other conditions being equal, the allocated target of one province is negatively related to
its historical energy consumption and pollutant emission performance.

Hypothesis H1a. With other conditions being equal, the allocated target of one province is negatively related to
its historical energy consumption and pollutant emission scale performance.

Hypothesis H1b. With other conditions being equal, the allocated target of one province is negatively related
to its historical energy consumption and pollutant emission structural performance.

Hypothesis H1c. With other conditions being equal, the allocated target of one province is negatively related to
its historical energy consumption and pollutant emission intensity performance.

3.3. Hypotheses Denoting Politic-Related Decomposition

Local governments enjoy considerable autonomy in setting anticipatory targets in China (such as
GDP) [10], while pollutant emission reduction targets, as a kind of obligatory target, are usually
decomposed and allocated by the central government in China [31]. Rational local government
leaders would not always completely obey performance management activities initiated by their
superior governments and would instead usually take some response strategies [32]. In the policy
domain of pollutant emission reduction, in order to minimize the pressure of attaining targets set by
their superior governments, it is a rational choice for local governments to strive for lower pollutant
emission reduction targets by bargaining with their superior governments [13]. On the one hand, the
nomenklatura personnel management system of China divides government officials into multiple
hierarchical levels, and the central Politburo is located at the top layer [27,33,34]. The higher historical
likelihood that leaders (party secretary and governor) of one province are promoted to the Politburo
means the province has a higher political ranking in Chinese political system [28,31], which not only
makes it easier for the province to get information about the central policy direction in advance, but
also gives the province more political capital to bargain with the central government in the setting
of environmental targets. In this case, provinces with higher political rankings are expected to be
allocated lower environmental targets through bargaining.

Because environmental protection has been one of the top policy priorities of the central
government in China since 2007 [35], provinces with higher political rankings are also likely to
be driven by higher political promotion incentives to accept higher environmental targets. Some
scholars argue that provinces whose leaders have a higher historical likelihood to be promoted
to the Politburo are keener on following the policy priority of the central government to control
pollutant emissions [28]. Meanwhile, some research also provides empirical evidence that the historical
likelihood of one province’s leaders to be promoted to the Politburo is not significantly but positively
related to the attainment of environmental targets [31], which implies that provinces with higher
political rankings indeed are perhaps more aggressive in achieving environmental targets set by the
central government. Therefore, a model effect may exist for provinces with higher political rankings
in setting environmental targets, which means provinces with higher political rankings, driven by
political promotion incentives, are more likely to accept higher environmental targets allocated by the
central government. Overall, two competing hypotheses are proposed:

Hypothesis H2a. With all other conditions being equal, provinces with higher political rankings have more
power to bargain with the central government and tend to be allocated lower environmental obligatory targets,
defined as the bargaining effect hypothesis.

Hypothesis H2b. With all other conditions being equal, provinces with higher political rankings tend to play
a leading role and be allocated higher environmental targets, defined as the model effect hypothesis.
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4. Materials and Methods

4.1. Samples

This work uses data from 29 provinces in China (Hong Kong, Taiwan, Tibet, Xinjiang, and Macao
are excluded) during the “12th Five-year Plan (2011–2015)” period to test our hypothesis. The samples
are province–target combination units. During the “12th Five-year Plan” period, the central
government of China decomposed China’s national environmental targets down to its provincial
governments, providing an appropriate institutional context to explore determinants of the setting
of environmental obligatory targets. The reasons why the allocation of environmental targets from
the central government to Chinese provinces is chosen lie in the following two aspects: on the one
hand, it is the first and most important step to break national targets down to Chinese provinces in the
Chinese top-down target assignment decomposition system, which is completely independent from
target decomposition and allocation in the following stages; on the other hand, previous empirical
research on determinants of goal aspiration levels was conducted at Chinese provincial level [10],
and it is better to compare those findings with the findings of this work.

4.2. Measures and Data Sources

4.2.1. Dependent Variable

The dependent variable is the expected reduction rate for the investigated environmental
obligatory indicator of the investigated province during the “12th Five-year Plan” period. For example,
the dependent variable for the observed sample of “Henan province-sulfur dioxide” is measured with
the mandatory reduction percentage of the total amount of sulfur dioxide emissions in Henan province
during the “12th Five-year Plan” period; for another example, the dependent variable of the observed
sample for “Shandong province-energy consumption per unit GDP” is the mandatory reduction
percentage of the energy consumption per unit GDP in Shandong province during the “12th Five-year
Plan” period. The data are from the Comprehensive Work Scheme of Energy Conservation and
Emission Reduction during the “12th Five-year Plan” Period. The larger the value of the variable is,
the stronger the pressure is to improve environmental performance for the focus province.

4.2.2. Independent Variables

As discussed in the third section, historical performance is used to examine the performance-based
decomposition feature in China’s environmental target allocation system, including historical scale
performance, historical structural performance, and historical intensity performance. Historical scale
performance represents the relative gross of energy consumption or the relative gross of pollutant
emission for the corresponding investigated obligatory indicator of the investigated province in the
year before the “12th Five-year Plan” period. For example, the variable of the observed sample of
“Henan province-sulfur dioxide” is measured with the ratio between the total sulfur dioxide emission
of Henan province and the national emission gross of sulfur dioxide in 2010; for another example,
the variable of the observed sample of “Shandong province energy consumption per unit GDP” is
measured with the ratio between the total energy consumption of Henan province and the national
energy consumption gross in 2010. This measurement can make different pollutant emissions and
energy consumption comparable. The data are from the Chinese Statistical Yearbook 2011, Chinese
Energy Statistical Yearbook 2011, and Chinese Environment Yearbook 2011. The larger the value of
this variable is, the lower the scale performance is.

Historical structural performance is measured with the secondary industry proportion of the
investigated province in the year before the “12th Five-year Plan” period, as industrial consumption of
energy or industrial pollutant emissions have stronger control elasticity compared to daily life energy
consumption or daily life pollutant emissions. The data are from the Chinese Statistical Yearbook 2011.
The larger the value of this variable is, the lower the structural performance is.
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Historical intensity performance is measured with the ratio between the investigated province’s
energy consumption per unit GDP and the national energy consumption per unit GDP or the
ratio between the investigated province’s pollutant emission per unit GDP and the national total
pollutant emission per unit GDP for the investigated environmental indicator in the year before the
“12th Five-year Plan” period, which makes it comparable among these five kinds of environmental
indicators. The data are from the Chinese Statistical Yearbook 2011, Chinese Energy Statistical Yearbook
2011, and Chinese Environment Yearbook 2011. The larger the value of this variable is, the lower the
energy utilization efficiency or pollutant control efficiency of the investigated province is.

Besides, the third section also elaborates that provinces’ political status measured with political
rankings can be used to examine the politic-related decomposition feature in China’s environmental
target allocation system. Political ranking is measured as the total number of the members of the
Politburo who had worked in the investigated province as the party secretary or governor from 1997
to 2011. Members of the Politburo lie at the top in Chinese nomenklatura system; this measurement
has been adopted in some other studies [27,28]. These data are coded by the author based on the
resumes of the members of the Politburo in the 15th, 16th, and 17th sessions. The larger the value of
this variable is, the higher the political ranking is.

4.2.3. Control Variables

A set of variables are controlled in this work. First, previous research holds that organizational
goal-setting historically follows its past goal aspiration level, horizontally aligns with the average
goal aspiration level of its comparable peers, and vertically complies with the goal aspiration level of
its superior [10,20]. Hence, the prior environmental target of the investigated province, the average
environmental target of its comparable peers, and the national environmental target are controlled.

Specifically, the variable of the prior target is measured with the target level of the investigated
province for the investigated environmental obligatory indicator in the “11th Five-year Plan” period.
The data are from the National Control Plan for the Total Emissions of Major Pollutants during the
“11th Five-year Plan” Period and the Decomposition Plan for the National Energy Consumption per
Unit GDP Reduction Target among Chinese Subnational Regions during the “11th Five-year Plan”
Period, which are approved and issued by the State Council in 2006.

The variable of the comparable peers’ average environmental target is measured by the average
reduction rate for the investigated environmental obligatory indicator of all the comparable provinces
of the investigated province during the “12th Five-year Plan” period. Neighboring provinces
are treated as proxies of comparable provinces, which are usually used in research on policy
diffusion and goal-setting [10,27,36]. Thus, this variable is calculated by the authors according to the
Chinese administrative territory and the data are from the Comprehensive Work Scheme of Energy
Conservation and Emission Reduction during the “12th Five-year Plan” period.

The variable of the national environmental target is measured with the national reduction
rate set by the central government for the investigated environmental obligatory indicator during
the “12th Five-year Plan” period. The data are from the Comprehensive Work Scheme of Energy
Consumption and Emission Reduction in the “12th Five-year Plan” period. The higher the value of
this variable is, the stronger the ambition is for the central government to control pollutant emissions.

Second, unemployment can reflect economic health, and provinces with more unemployed
labors should bear less pollutant emission reduction burden in order to guarantee employment.
Hence, we also control the unemployment rate of each province, which is measured with the registered
urban unemployment rate of the investigated province in the year before the “12th Five-year Plan”
period. The data is from the Chinese Statistical Yearbook 2011. Besides, previous studies confirmed
that economic development conditions were related to the setting of PM2.5 concentration control
targets and GDP goal aspiration levels [7,10]. Thus, economic development is also controlled. It is
measured by the GDP per capita of the investigated province in the year before the “12th Five-year

63



Sustainability 2018, 10, 3410

Plan” period, and the data are from the Chinese Statistical Yearbook 2011. Details of the variables,
measures, and data sources are presented in Table 1.

Table 1. Variables, measures, and sources.

Variables Measures Sources

Target The target level of the investigated province for the investigated
environmental obligatory indicator in the “12th Five-year Plan” Period (%) FYP

E_scale

The ratio between the investigated province’s total energy consumption
and the national total energy consumption or the ratio of the investigated
province’s total pollutant emission and the national total pollutant emission
(one-year lagged)

CSY
CESY
CEY

E_structure The proportion of the secondary industrial output of the investigated
province (one-year lagged, %) CSY

E_intensity

The ratio between the investigated province’s energy consumption per unit
GDP and the national energy consumption per unit GDP or the ratio
between the investigated province’s pollutant emission per unit GDP and
the national total pollutant emission per unit GDP (one-year lagged)

CSY
CESY
CEY

P_ranking Number of secretaries/governors of the investigated province who had
served as members of the Politburo from 1997 to 2011 Author

P_target The target level of the investigated province for the investigated
environmental obligatory indicator in the “11th Five-year Plan” period (%) FYP

Neighbor The average target level of the investigated province’s neighboring
provinces for the investigated environmental indicator (%) Author

Central The target level of the central government for the investigated
environmental indicator (%) FYP

Deprivation Unemployment rate of the investigated province (one-year lagged, %) CSY

GDP GDP per capita of the investigated province (one-year lagged, log) CSY

Notes: FYP indicates Five-year Plans; CSY indicates the China Statistical Yearbook; CNSY indicates the China
Energy Statistical Yearbook; CEY indicates the China Environment Yearbook.

4.3. Analytical Approach

Given that the data used are cross-sectional data of five kinds of environmental targets
(sulfur dioxide, chemical oxygen demand, energy consumption per unit GDP, nitrogen oxide,
ammonia nitrogen) of 29 provinces in mainland China (excluding Hong Kong, Taiwan, Tibet, Xinjiang,
and Macao) during the “12th Five-year Plan” period, and some variables (e.g., structural performance,
political ranking, unemployment rate, and GDP) are shared by samples within the same province,
the data present a nested structure. The assumptions for the ordinary least square regression are
violated in data with a nested structure and hence, we follow some scholars’ recommendations to
adopt a two-layered hierarchical linear model (HLM) to analyze the data [37]. There are two kinds of
HLM, namely, the random intercept and fixed slope model and the random intercept and random slope
model [38]. This work uses the random intercept and fixed slope model for estimation because we focus
on the universal effects of the independent variables across layer-2 units. Specifically, the two-layered
HLM can be presented as follows.

Layer 1: Targeti,p = β0i + β1iE_scalei,p + β2iE_intensityi,p + β3iControl_1i,p + εi,p (1)

Layer 2: β0i = γ00 + γ01E_structurei + γ02P_rankingi +γ03Control_2i + μi (2)

In our data, environmental indicator units (layer 1) are nested in province units (layer 2).
As described in Equation (1), the dependent variable of Targeti,p denotes the mandatory reduction rates
for major environmental obligatory indicators of 29 provinces in mainland China for the “12th Five-year
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Plan” period, where i denotes the codes of provinces and p denotes the codes of environmental
obligatory indicators. According to Equation (1), the target level in province i for environmental
indicator j is the sum of the following three parts: average outcome in the province unit i (β0i),
outcome predicted by indicator-specific factors (including E_scalei,p denoting scale performance in
province i for environmental indicator j, E_intensityi,p denoting intensity performance in province i
for environmental indicator j, Control_1i,p denoting other indicator-level control variables, such as
the prior target in province i for environmental indicator j, the average target for environmental
indicator j of the neighboring peers of province i, and the national target for environmental indicator j),
and indicator-level errors (εi,p).

Besides, according to the intercept Equation (2), the average outcome in province unit i (β0i)
is also composed of three parts: the average outcome for all samples (γ00), outcome predicted by
province-level factors (including E_structurei denoting structural performance measured with the
proportion of the secondary industrial output in province i, P_rankingi denoting the political ranking
of province i, Control_2i denoting other province-level control variables, such as the unemployment
rate in province i, and the GDP per capita in province i), and province-level random effect (μi). Because
ui has different values across provinces, the method can make the intercepts vary among different
provinces. Following previous research, we center layer-1 variables around their mean within each
layer-2 group and center layer-2 variables around their grand mean of all samples [37]. The software
used to run HLM is Stata 14.

5. Results

Descriptive analysis results of the variables are shown in Table 2, which mainly reports the
sample size, mean, standard deviation, minimum value, and maximum value. The sample size is 145,
comprising 145 combinations of five kinds of environmental indicators (energy consumption per unit
GDP, sulfur dioxide, nitrogen oxide, chemical oxygen demand, ammonia nitrogen) and 29 provinces
in mainland China. The minimum value of the dependent variable is −34.9, the maximum value is 18,
the mean value is 9.75, and the standard deviation is 7.17, indicating great variance of the dependent
variable, which provides great space to explore determinants of environmental target-setting. It is
noteworthy that observations for some independent variables are 29 (such as E_structure, P_ranking,
Unemployment, and GDP) because of the nested data structure. Only three kinds of environmental
obligatory targets (energy consumption per unit GDP, sulfur dioxide, and chemical oxygen demand)
were set at the national level and decomposed down to the provincial level during the “11th Five-year
Plan” period; hence, the number of observations for the variable of the P_target is 87 (87 combinations
of 29 provinces and three environmental indicators).

Table 2. Descriptive analysis results.

Variables N Mean S.D. Min Max

Target 145 9.75 7.17 −34.90 18
E_scale 145 3.36 2 0.13 8.94

E_structure 29 49.18 7.72 24 57.3
E_intensity 145 1.25 0.76 0.16 4.99
P_ranking 29 2.41 2.69 0 11
P_target 87 13.29 6.76 0 30

Neighbor 145 10.61 3.74 1.48 18
Central 145 10.40 2.95 8 16

Unemployment 29 3.61 0.61 1.37 4.35
GDP 29 0.49 0.2 0.12 0.87

The results of bivariable correlation analysis are shown in Table 3. E_scale, E_structure,
and P_ranking are significantly positively related to the dependent variable of Target, which
preliminarily supports the corresponding hypotheses. However, the correlation coefficient between
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E_intensity and Target is negatively significant, which does not provide evidence to support the
corresponding hypothesis. Furthermore, the bivariable correlation coefficients between P_target,
Neighbor, and Central are approximately 0.7 and are very significant (p < 0.01). Therefore, if we put
these three variables into the same regression model, severe multicollinearity problems may exist due
to the high correlations among them. The correlation coefficients between the independent variables
and other control variables are all smaller than 0.65, indicating low correlations.

Table 3. Correlation analysis results.

Variables 1 2 3 4 5 6 7 8 9

1. Target 1
2. E_scale 0.38 *** 1
3. E_structure 0.26 *** 0.41 *** 1
4. E_intensity −0.17 ** 0.035 0.14 * 1
5. P_ranking 0.28 *** 0.08 −0.19 ** −0.48 *** 1
6. P_target 0.70 *** 0.22 ** 0.06 −0.16 0.26 ** 1
7. Neighbor 0.59 *** 0.09 −0.05 −0.32 *** 0.30 *** 0.76 *** 1
8. Central 0.45 *** 0.004 0 −0.065 0 0.69 *** 0.78 *** 1
9. Unemployment −0.07 −0.03 0.45 *** 0.34 *** −0.28 *** −0.10 −0.13 0 1
10. GDP 0.29 *** 0.119 −0.07 −0.48 *** 0.62 *** 0.31 *** 0.31 *** 0 −0.33 ***

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1.

The results of three regression models based on HLM are shown in Table 4. Due to the
strong correlations between P_target, Neighbor, and Central, we first put these three variables into
regression models separately in order to control multicollinearity (see Model 1, Model 2, and Model 3).
The variance inflation factors of all variables in the three models are all smaller than the critical
value 10, and thus, there is no severe multicollinearity [39]. In Model 1, E_structure and Target
are significantly positively related (p < 0.05), and the coefficients remain significantly positive in
Models 2 and 3, strongly supporting the Hypothesis H1b. This finding indicates that provinces
with higher proportions of the secondary industrial outputs were allocated higher environmental
targets by the central government. In Models 1–3, the coefficients of E_scale are negative and the
coefficients of E_intensity are positive, but they are all not significant. Therefore, hypotheses H1a and
H1c are not supported, indicating that there was no significant trend of being allocated with higher
environmental targets for provinces with lower scale performance and lower intensity performance in
energy consumption and pollutant emissions. In all the three models, the coefficients of the P_ranking
are all significantly positive (p < 0.05), fully supporting Hypothesis H2b. Therefore, provinces with
higher probabilities of provincial leaders being promoted to Politburo members were more likely to be
allocated higher environmental targets.

Some control variables are also significant in these models. For example, the coefficient of
P_target is positive and significant (p < 0.01) in Model 1, which means provinces which were allocated
higher environmental targets during the “11th Five-year Plan” period also tended to be allocated
higher environmental targets during the “12th Five-year Plan” period. In Model 2, the coefficient
of Neighbor is positive and significant (p < 0.01), and hence, it concludes that provinces whose
neighboring provinces were allocated higher environmental targets also tended to be allocated higher
environmental targets. In Model 3, the coefficient of Central is positive and significant (p < 0.01),
indicating that provinces were allocated higher environmental targets for this corresponding indicator
when the central government set a higher environmental target for one environmental indicator.
Moreover, the variable of Unemployment is significantly negatively related to the dependent variable
in Models 2 and 3, which implies provinces with higher unemployment rates were allocated lower
environmental targets. The Chi-square values of Models 1–3 are very significant (p < 0.01), indicating
that they fit the data well. Moreover, when we re-estimate these models with the ordinary least square
regression, the results are similar, indicating that the findings are robust.
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Table 4. Regression results of hierarchical linear models (HLM).

Model 1 Model 2 Model 3

Constant
9.988 *** 9.748 *** 9.748 ***
(0.622) (0.644) (0.644)

Layer-2 variables

P_ranking 0.545 ** 0.640 ** 0.640 **
(0.250) (0.297) (0.297)

E_structure
0.323 ** 0.349 ** 0.349 **
(0.162) (0.173) (0.173)

Unemployment −1.304 −1.472 * −1.472 *
(0.860) (0.806) (0.806)

GDP
5.094 4.792 4.792

(3.598) (3.433) (3.433)

Layer-1 variables

E_scale
−1.013 −1.438 −1.186
(1.153) (0.885) (0.907)

E_intensity 3.302 3.911 3.346
(3.438) (2.616) (2.613)

P_target 0.753 ***
(0.0949)

Neighbor 1.188 ***
(0.153)

Central
1.152 ***
(0.137)

Model statistics

N (layer 1) 87 145 145
N (layer 2) 29 29 29

Variance (layer 1) 30.43 18.51 22.15
Variance (layer 2) 7.04 × 10−11 7.92 7.20

Intra-class Correlation Coefficient 2.3135 × 10−12 0.2997 0.2453
Log pseudolikelihood −272.023 −433.928 −444.317

Wald Chi2 166.72 *** 175.78 *** 210.86 ***

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors are presented in parentheses. Regression results
based on the ordinary least square estimation are similar.

Robustness Check

We then re-measure E_scale, E_structure, and E_intensity with the difference between the
investigated province’s scale performance and the average scale performance of its neighboring
provinces for the investigated environmental indicator, the difference between the investigated
province’s structural performance and the average structural performance of its neighboring provinces
for the investigated environmental indicator, and the difference between the investigated province’s
intensity performance and the average intensity performance of its neighboring provinces for the
investigated environmental indicator, which are coded as R_scale, R_structure, and R_intensity,
respectively. We then put these three new variables into models to do a robustness check. Results of the
three new HLM models are shown in Table 5. The three variables of P_target, Neighbor, and Central
are also put into regression models separately in order to control multicollinearity (see Models 4–6).
The variance inflation factors of all variables in Models 4–6 are all smaller than the critical value 10,
and hence, there is no severe multicollinearity [39].
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Table 5. Regression results of HLM.

Model 4 Model 5 Model 6

Constant
10.06 *** 9.748 *** 9.7483 ***
(0.608) (0.668) (0.668)

Layer-2 variables

P_ranking 0.569 ** 0.672 ** 0.672 **
(0.246) (0.305) (0.305)

R_structure
0.270 * 0.302 * 0.302 *
(0.153) (0.166) (0.166)

Unemployment −0.880 −1.289 * −1.289 *
(0.898) (0.747) (0.747)

GDP
4.704 4.476 4.476

(3.362) (3.420) (3.420)

Layer-1 variables

R_scale
−2.006 −1.686 * −1.354
(1.289) (0.894) (0.956)

R_intensity 4.885 3.967 3.789
(3.590) (2.483) (2.644)

P_target 0.720 ***
(0.075)

Neighbor 1.131 ***
(0.121)

Central
1.097 ***
(0.108)

Model statistics

N (layer 1) 87 145 145
N (layer 2) 29 29 29

Variance (layer 1) 28.594 18.200 21.655
Variance (layer 2) 1.478 8.871 8.180

Intraclass Correlation Coefficient 0.0491 0.3277 0.2742
Log pseudolikelihood −271.403 −434.001 −444.081

Wald Chi2 145.21 *** 191.62 *** 192.23 ***

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1; robust standard error in parentheses. Regression results based on the
ordinary least square estimation are similar.

In Models 4–6, R_structure and Target are all significantly positively related (p < 0.1), and
hence, Hypothesis H1b is still supported; in the Model 5, the coefficient of R_scale is significantly
negative (p < 0.1), and it remains negative in Models 4 and 6, still failing to support Hypotheses
H1a. The coefficients of R_intensity are positive but not significant in Models 4–6, and hence,
Hypothesis H1c is still not supported. Besides, the coefficients of P_ranking are all significantly
positive (p < 0.05) in Models 4–6, thus supporting hypothesis H2b. Overall, these results of Models 4–6
are consistent with those of Models 1–3, implying our findings are highly robust. The results conclude
that the decomposition of environmental targets mainly depends on provinces’ historical structural
performance and their political rankings. This means the decomposition of environmental targets in
China is both performance-based and politic-related.

6. Discussion and Conclusions

This work explores the roles of historical performance and provinces’ political status in the
decomposition of environmental targets by controlling a set of factors advocated in previous
goal-setting research. Data from five environmental indicators (sulfur dioxide, chemical oxygen
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demand, energy consumption for per unit GDP, nitrogen oxide, and ammonia nitrogen) of 29 provinces
in mainland China during the “12th Five-year Plan” period are used to test these hypotheses.
Considering the nested data structure, HLM is used for estimation. The findings show that the
structural performance of energy consumption and pollutant emissions of provinces is significantly
negatively related to environmental target levels, while the scale performance and intensity
performance of provinces’ energy consumption and pollutant emissions are not significantly related to
provinces’ environmental target levels. Provinces with higher probabilities of provincial leaders being
promoted to politburo members tend to be allocated higher environmental targets, though the wealth
is controlled. This finding means that the decomposition of environmental targets in China is partially
performance-based but strongly politic-related.

The historical structural performance of energy consumption and pollutant emissions is
significantly correlated with the setting of environmental target aspiration levels, while the effects
of historical scale performance and intensity performance are not significant. This finding confirms
the limited and partial role of historical performance in China’s environmental target-setting and
implies that the central government mainly considered the pollutant emission and energy consumption
reduction potentials of Chinese provinces through the adjustment of economic development structures.
Similar to the “scale economies effect” in economics, there is still a scale effect in pollutant emission
and energy consumption reduction. Thus, it is easier for the province to reduce pollutant emissions
and energy consumption when the scale of its previous pollutant emissions and energy consumption
is large. However, the nonsignificant effect of the historical scale performance implies that the central
government ignored the scale effect when evaluating the pollutant emission reduction potentials.
Intensity performance is also not significant, which means the central government also underestimated
the reduction potentials by using technological advances to improve pollutant emission efficiency in
environmental target-setting. Some scholars hold that carbon intensity convergence can be used to
make carbon reduction target allocation reasonable, which means provinces with relatively higher
CO2 intensities of GDP should be assigned higher CO2 intensity reduction targets and vice versa [40].
Their ideas are in line with our arguments to a great extent.

This work also reveals some clues about the different effects of historical performance in the
setting of obligatory targets and the setting of anticipated targets in China. Generally, historical
performance is positively related to the setting of anticipatory targets because better historical
performance can enhance the organization’s confidence in setting higher anticipatory target aspiration
levels [10,18]. This observation reveals that the setting of anticipated targets follows the law
of “addition”, which means organizations set their anticipated targets through increasing certain
percentages of performance based on their historical performance. However, historical performance
is negatively related to environmental obligatory targets, mainly because environmental obligatory
targets are allocated by the superior government, and lower historical pollutant emission performance
means greater pollutant emission reduction potentials. This finding reveals that the setting of
environmental obligatory targets follows the “law of subtraction”, which means organizations set
their obligatory targets through decreasing certain percentages of pollutant emissions or energy
consumption based on their historical performance.

Chinese provincial governments set their anticipated target aspiration levels themselves,
while Chinese provincial governments’ obligatory targets are allocated by the central government [13,16].
During the allocation process, local governments interact with the central government; this work finds that
provinces with different political rankings set different environmental obligatory target aspiration levels.
Based on two competing hypotheses of the “bargaining effect” and “model effect”, the empirical results
support the “model effect hypothesis”. This indicates that provinces with higher political rankings do not
take advantage of their own political capital to bargain with the central government to strive for lower
environmental obligatory target levels. Instead, these provinces tend to play the role of “leading models”
and accept higher environmental obligatory target aspiration levels allocated by the central government.
One possible explanation is that these provinces are motivated by political promotion incentives: leaders
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(party secretary and governor) in the provinces with higher political rankings have higher likelihoods
of being promoted to the Politburo in China; in this case, these provinces are more likely to follow the
policy preference of the central government and strive to keep their advantages by performing well in the
performance dimension and subsequently being favored by the central government [28].

The findings provide some important practical policy implications. First, the national
environmental targets should be decomposed based on provinces’ historical scale performance,
structural performance, and intensity performance in pollutant emissions and energy consumption
comprehensively. Specifically, the higher the proportion of the secondary industrial output of one
province is, the higher target the province should be allocated; the higher the scale of pollutant
emissions and energy consumption of one province is, the higher target the province should be
allocated; the higher the pollutant emissions and energy consumption per unit GDP of one province
is, the higher target the province should be allocated. Second, provinces with higher probabilities
of provincial leaders being promoted to politburo members are incentivized by potential political
promotions to comply with national environmental targets, and hence, other kinds of incentives
(financial incentives, moral incentives, etc.) can also be provided for provincial governments in order
to make them comply with environment-related central directives actively [35].

Though this work takes the first step to explore the hidden logic in the decomposition of
environmental targets in China empirically, its limitations also provide some future research avenues.
On the one hand, this work focuses on the disaggregation of environmental targets from the central
government to Chinese provincial governments and more evidence is needed about the antecedents of
the decomposition of environmental targets from Chinese provincial governments to city governments.
On the other hand, this work explores determinants of the decomposition of environmental targets in
China during the “12th Five-Year Plan” period. Future studies can explore features and determinants
of environmental target-setting during the “11th Five-Year Plan” period and the “13th Five-Year Plan”
period, which can help reveal the evolution features of environmental target-setting across various
“Five-year Plan” periods through comparison.
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Abstract: China’s current Air Quality Index (AQI) system only considers one air pollutant which has
the highest concentration value. In order to comprehensively evaluate the urban air quality of Jiangsu
Province, this paper has studied the air quality of 13 cities in that province from April 2015 to March
2018 based on an expanded AQI system that includes six major air pollutants. After expanding the
existing air quality evaluation standards of China, this paper has calculated the air quality evaluation
scores of cities in Jiangsu Province based on the six major air pollutants by using the improved Fuzzy
Comprehensive Evaluation Model. This paper has further analyzed the effectiveness of air pollution
control policies in Jiangsu Province and its different cities during the study period. The findings
are as follows: there are distinct differences in air quality for different cities in Jiangsu Province;
except for coastal cities such as Nantong, Yancheng and Lianyungang, the southern cities of Jiangsu
generally have better air quality than the northern cities. The causes of these differences include
not only natural factors such as geographical location and wind direction, but also economic factors
and energy structure. In addition, air pollution control policies have achieved significant results
in Nantong, Changzhou, Wuxi, Yangzhou, Suzhou, Yancheng, Zhenjiang, Tai’an and Lianyungang.
Among them, Nantong has seen the biggest improvement, 20.28%; Changzhou and Wuxi have
improved their air quality by more than 10%, while Yangzhou, Suzhou, and Yancheng have improved
their air quality by more than 5%. However, the air quality of Nanjing, Huai’an, Xuzhou, and Suqian
has worsened by different degrees compared that of the last period within the beginning period,
during which Suqian’s air quality has declined by 20.07% and Xuzhou’s by 16.32%.

Keywords: air quality; air quality evaluation standards; AQI; Jiangsu province; fuzzy
comprehensive evaluation

1. Introduction

Since the reform and opening-up of China, with the rapid expansion in the size of its
economy, its ecological environment, especially air quality, has been facing serious threats [1–6].
Increasing energy consumption, the energy structure over-relying on primary energy sources (such as
coal) with low conversion efficiency and high pollution emissions, as well as the lack of environmental
awareness, have all contributed to the severe deterioration in China’s air quality [7–12]. In recent years,
China has experienced frequent heavy pollution weathers, especially in the eastern coastal region.
The devastating, long-lasting, and wide-ranging smog and haze phenomenon is typical proof of the
deterioration in air quality. Apart from its negative impact on traffic, the growing problem of air
pollution has also caused great loss to normal people’s daily life, health [13,14], and the operation and
production of enterprises, which has drawn great attention from the academic community [15–19].
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As the most economically developed province in the eastern coastal areas of China, Jiangsu
Province has also been seriously plagued by air pollution problems in recent years. According to
the “Jiangsu Province Environmental Bulletin” published by the Jiangsu Provincial Environmental
Protection Department every year, although the air quality of Jiangsu has improved since 2013, none
of its 13 cities has reached the Level II Air Quality Standards stated in China’s “Ambient Air Quality
Standards (GB3095-2012)” on air pollutants’ annual average concentration limits since 2013 (see Table 1
below) [20]. Moreover, the annual average concentration of NO2 and O3 rebounded in 2017, and the
province’s air quality compliance rate decreased by 2.2% in that year [21].

Table 1. Annual Average Concentration of Major Air Pollutants and Air Quality Compliance Rate of
Jiangsu Province (2013–2017).

2013 2014 2015 2016 2017

PM2.5 (μg/m3) 73 66 58 51 49
PM10 (μg/m3) 115 106 96 86 81
SO2 (μg/m3) 35 29 25 21 16
NO2 (μg/m3) 41 39 37 37 39
CO (mg/m3) 2.1 1.7 1.7 1.7 1.5
O3 (μg/m3) 139 154 167 165 177
Air Quality Compliance Rate in Jiangsu (%) 60.3 64.2 66.8 70.2 68.0
Number of Cities in Jiangsu that Reached Level II Air Quality Standards 0 0 0 0 0

Therefore, although the official statistics of Jiangsu Province’s air quality compliance rate have
improved in recent years [20], it is worth studying how to objectively evaluate the air quality and policy
effectiveness in Jiangsu Province, given that the emissions of major air pollutants are still increasing [22].

In recent years, the academic community has also carried out various explorations on the
measurement and evaluation of Jiangsu Province’s air quality. Wang et al. (2016) used the Logarithmic
Mean Divisia Index (LMDI) to analyze the driving factors of SO2 emissions in Jiangsu Province,
and found that energy intensity is the main reason for the increase. They believe that the government
needs to determine specific emission reduction targets and policy initiatives according to the actual
energy structure of different cities [23]. Ge et al. (2017) used the Projection Pursuit Cluster (PPC)
Model to analyze the Social Vulnerability for Air Pollution of the Yangtze River Delta (YRD) region
represented by Jiangsu Province. By calculating the Social Vulnerability Index (SVI), they concluded
that Jiangsu’s SVI was higher than that of Shanghai [24]. He et al. (2018) studied the impact of
various factors including the industrial structure, energy consumption structure, and energy efficiency
on air quality in Jiangsu Province from 2006 to 2015, and further explored the impact of relevant
policies on energy consumption and air quality. Their study showed that every 1% optimization of
the industrial structure in Jiangsu Province would result in an improvement of 0.0054% in the Air
Quality Index [25]. Zhang et al. (2017) analyzed the spatial distribution of acid rain using the recent
data of acid rain and urban pollutant emissions in the eastern coastal areas. They concluded that since
2009, the increase of NH4

+ and Ca2+ has led to an increase in the number of haze days in Jiangsu,
and that the long-distance spread of pollutants and alkaline pollutants are key drivers of acid rain
and haze problems [26]. Xu et al. (2017) used the Structural Decomposition Analysis (SDA) method
to decompose the factors behind the increase of CO2 emissions in Jiangsu Province. They pointed out
that the economic growth of Jiangsu Province has generally contributed to the increase of CO2 emissions,
and that the transfers-out and investment effects are the main reason for the increase of CO2 emissions [27].
Chen et al. (2017) studied the relations between short-term ozone exposure and daily total mortality
using a generalized additive model and univariate random-effects meta-analysis. By studying seven cities
in Jiangsu Province from 2013 to 2014, they concluded that there was a significant correlation between
premature total mortality and short-term ozone exposure [28]. Wang et al. (2017) divided the factors
reducing air pollution into three stages: source prevention, process control, and end-of-pipe treatment
based on index decomposition analysis and a whole process treatment perspective. After studying the
treatment of energy-related SO2 emissions in 13 cities of Jiangsu Province, they divided these cities into
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4 types: the leading type, process-dependent type, end-dependent type, and lagging type. They also found
that the development pattern of “Pollute First, Govern Later” still has not fundamentally changed for
Jiangsu Province [29].

The above research on the air quality of cities in Jiangsu were still based on the existing air quality
measurement standards of China, and most of them only considered 1–2 major pollutants such as
PM2.5 and PM10. However, using only China’s current national air quality standards—Ambient Air
Quality Standards (GB3095-2012) and the Technical Regulation on Ambient Air Quality Index (HJ
633-2012)—it is difficult to make a comprehensive and objective assessment on the air quality of
Jiangsu Province in recent years. This is because, first of all, China’s current air quality assessment
standards essentially only involve one type of pollutant (the pollutant with the highest concentration
on the day), so it is difficult to fully reflect the overall air quality [30,31]. Secondly, China’s current
standards are only based on the average concentration value of each pollutant within a certain period
of time, so it is difficult to reflect the extreme concentration values of the pollutant and its fluctuations
in that period. Finally, the above standards were established in 2012, which set the upper limit of the
“24-h average PM2.5” as 500 [30,31]. However, this limit can no longer adapt to the reality because
currently, the actual PM2.5 concentration values of many cities in China were far exceeding this upper
limit (i.e., off the charts) [32]. Under such circumstances, the current assessment of China’s air quality
is often simplified into vertical and horizontal comparisons of the PM2.5 statistics of different regions.

Therefore, based on above research, and drawing on the research of Cannistraro et al. (2016) [33],
this paper has constructed a comprehensive air quality evaluation system that encompasses the six
major pollutants (SO2, NO2, CO, PM10, PM2.5 and O3) [30,31] covered in China’s national routine
monitoring and air quality assessment. Based on the statistics of the six air pollutants in cities of
Jiangsu Province from April 2015 to March 2018, this paper has also utilized the Fuzzy Comprehensive
Evaluation Model in order to measure and evaluate the air quality of various cities in Jiangsu Province,
and to enrich the existing academic literature on Jiangsu Province’s air quality. Scholars have adopted
new approaches to the evaluation of air quality in Jiangsu in recent years. Cao et al. (2018) studied the
air pollution caused by the exhaust gas from inland ships in the Jiangsu section of the Beijing-Hangzhou
Grand Canal. Their results indicated that dry cargo ships are the most important air pollution sources
in the Jiangsu section of the Grand Canal, while ships with a gross tonnage between 200 and 600 tons
had the largest exhaust gas emissions [34]. Yang et al. (2018) derived the Variogram Model using
the daily average concentration data of PM2.5 in the southern part of Jiangsu Province in 2014,
and generated the distribution information maps of pollutants in the southern area of Jiangsu with
help of the spatiotemporal ordinary kriging (STOK) technology. Their results showed that in 2014,
about 29.3% of the area in southern Jiangsu was polluted by PM2.5, which also showed a spatial
trend of the PM2.5 pollutants declining from the west to the east of southern Jiangsu [35]. This paper
decided to calculate and evaluate the air quality of Jiangsu by Fuzzy Comprehensive Evaluation Model.
Compared with other methods, the Fuzzy Comprehensive Evaluation Model describes the air quality
level of evaluation with the membership function, and can evaluate the parameters in the model,
which makes the results as close as possible to objective fact [36,37]. Moreover, this paper improves
the original model in order to better evaluate the air quality of Jiangsu on the basis of six pollutants
(please refer to Part 2).

The structure of this paper is as follows: Part 2 introduces the research methods used; Part
3 lists the calculation results; Part 4 analyzes the air quality of various cities of Jiangsu Province
since April 2015; Part 5 summarizes the findings in this paper and provides corresponding
policy recommendations.
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2. Methodology and Data

2.1. Improved Fuzzy Comprehensive Evaluation Model

The air quality evaluation system constructed in this paper includes six major air pollutants: SO2,
NO2, CO, PM10, PM2.5, and O3. In this complex system, the evaluation of the air quality of each city
in Jiangsu Province is determined by these six pollutants. Therefore, in the calculation of air quality
evaluation scores, we first need to calculate the evaluation score of each pollutant, and then obtain the
overall air quality evaluation result of that city based on the evaluation scores of each pollutant. In the
actual evaluation process, in order to deal with the uncertainties of a complex systems containing six
major pollutants of SO2, NO2, CO, PM10, PM2.5, and O3, this paper has made a few improvements to
the Fuzzy Comprehensive Evaluation Model commonly used in academic circles [38–42] in order to
reduce the uncertainty of this evaluation system. The specific steps are as follows:

A city’s air quality evaluation object P. U = {u1, u2, · · · , un} represents a set of pollutant indicators
related to this evaluation object P. For each pollutant, there is a Rating Set V = {v1, v2, · · · , vm}.
After making a fuzzy evaluation on the Rating Set of each pollutant in U, this paper has obtained (1) the
fuzzy evaluation matrix about n factors:

R =

⎡
⎢⎢⎢⎢⎣

R1

R2
...

R4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

r11

r21
...

rm1

r12

r22
...

rm2

· · ·
· · ·
. . .
· · ·

r1n
r2n

...
rmn

⎤
⎥⎥⎥⎥⎦ (1)

where rij is determined by the membership function. The calculation steps are as follows.
Equations (2)–(4):

(1) Rating Level 1:

ri1(ri) =

⎧⎪⎨
⎪⎩

0 ri ≥ vi2
− ri−vi2

vi2−vi1
vi1 < ri < vi2

1 ri ≤ vi1

(2)

(2) Rating Level j:

rij(ri) =

⎧⎪⎪⎨
⎪⎪⎩

0 ri ≤ vij−1, ri ≥ vij+1
ri−vij−1
vij−vij−1

vij−1 < ri < vij

− ri−vij+1
vij+1−vij

vij−1 < ri < vij+1

(3)

(3) Rating Level n:

rin(ri) =

⎧⎪⎨
⎪⎩

0 ri ≤ vin
ri−vin−1
rin−vin−1

vin−1 < ri < vin

1 ri ≥ vin

(4)

The element rij in the above matrix represents the fuzzy membership degree of the factor ui
with regard to the rating vi, that is, a fuzzy relationship from U to V; thus, the determined (U, V, R)
constitutes a Fuzzy Comprehensive Evaluation Model.

In order to calculate the comprehensive evaluation value of different cities’ air quality, it is also
necessary to determine the weight of each factor. Since the degree of harm of the six pollutants has
not yet been uniformly quantified, we weigh all pollutants equally in the calculation. Let the weights
be W = {w1, w2, · · · , wn}, which denotes the weight of each indicator, and satisfies the condition
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n
∑

i=1
wi = 1. By using the matrix and vector algorithm, this paper can obtain Fuzzy Evaluation Set B

with the following Equation (5):

B = W × RT =

⎡
⎢⎢⎢⎢⎣

r11

r21
...

rm1

r12

r22
...

rm2

· · ·
· · ·
. . .
· · ·

r1n
r2n

...
rmn

⎤
⎥⎥⎥⎥⎦× [w1, w2, · · · , wn]

T = [b1, b2, · · · , bm] (5)

Finally, based on the principle of maximum membership degree, this paper can obtain a
comprehensive evaluation value of different cities’ air quality by analyzing the Fuzzy Evaluation Vector
B: in this Fuzzy Evaluation Set B = (b1, b2, · · · , bm), let bi be the membership degree of Level vi to this
Fuzzy Evaluation Set B. Let M = max(b1, b2, · · · , bm), M’s value represent the Fuzzy Comprehensive
Evaluation Score of the evaluation object, i.e., the comprehensive evaluation value of the air quality of
the city. Ranging from 0 to 1, the larger the M’s value, the better air quality of the city; the smaller the
M’s value, the worse the air quality.

2.2. Data Sources

In February 2015, the Jiangsu Provincial People’s Congress officially published the “Regulations
on the Prevention and Control of Air Pollution in Jiangsu Province”, which was officially implemented
from March 2015 [43]. As the first local regulation reviewed and approved by the Jiangsu Provincial
People’s Congress since 2001, this regulation has gone through four rounds of review, which was
a record in the local legislation of Jiangsu Province [22]. This regulation strictly stipulates the
acquisition and disclosure of air pollution monitoring data, the development and publication of
the heavy-pollution industrial projects list, as well as the enforcement actions including rectification,
production restriction, production suspension, and closure, which provided effective local regulatory
guidance on air pollution control to different cities of Jiangsu Province [43]. In March 2018, the second
meeting of the Standing Committee of the 13th People’s Congress of Jiangsu Province adopted a
resolution to formally amend the regulations [44].

This paper has selected April 2015 to March 2018 as the study period, which was after the
regulations were first implemented but before the amendment took place in order to analyze the
influence and effectiveness of this regulation based on the six major air pollutants. This paper’s
calculation is based on the monthly air quality and pollutant monitoring data published by the
Data Center of China’s Ministry of Environmental Protection and China’s National Environmental
Monitoring Center, covering the monthly average concentration data of six major pollutants, i.e., PM2.5,
PM10, CO, NO2, O3, and SO2 [45,46].

3. Results

By adopting the Fuzzy Optimization Theory introduced in Part 2.1, this paper has calculated the
air quality evaluation results for 13 cities in Jiangsu Province from April 2015 to March 2018 based on
the aforementioned air pollutant data (as shown in Tables 2–5 and Figures 1–4 below).

77



Sustainability 2018, 10, 3561

T
a

b
le

2
.

A
ir

Q
ua

lit
y

Ev
al

ua
ti

on
Sc

or
e

of
C

it
ie

s
in

Ji
an

gs
u

Pr
ov

in
ce

(A
pr

il
20

15
–D

ec
em

be
r

20
15

).

A
p

ri
l

2
0

1
5

M
a

y
2

0
1

5
Ju

n
e

2
0

1
5

Ju
ly

2
0

1
5

A
u

g
u

st
2

0
1

5
S

e
p

te
m

b
e

r
2

0
1

5
O

ct
o

b
e

r
2

0
1

5
N

o
v

e
m

b
e

r
2

0
1

5
D

e
ce

m
b

e
r

2
0

1
5

N
an

jin
g

0.
50

78
0.

45
61

0.
44

64
0.

50
25

0.
45

22
0.

47
12

0.
47

96
0.

51
41

0.
50

31
N

an
to

ng
0.

50
23

0.
51

10
0.

42
19

0.
42

26
0.

45
95

0.
47

74
0.

49
91

0.
54

25
0.

52
81

Su
qi

an
0.

56
71

0.
55

98
0.

41
69

0.
50

73
0.

50
27

0.
52

09
0.

47
46

0.
43

60
0.

44
99

C
ha

ng
zh

ou
0.

42
51

0.
44

12
0.

59
18

0.
49

65
0.

50
23

0.
47

11
0.

51
29

0.
54

60
0.

47
83

X
uz

ho
u

0.
43

54
0.

38
11

0.
41

56
0.

52
56

0.
54

13
0.

50
15

0.
45

17
0.

45
54

0.
47

19
Ya

ng
zh

ou
0.

46
22

0.
41

52
0.

41
65

0.
46

05
0.

46
59

0.
47

31
0.

50
67

0.
54

17
0.

55
22

W
ux

i
0.

44
09

0.
48

20
0.

49
52

0.
48

47
0.

45
41

0.
42

78
0.

52
35

0.
53

89
0.

48
79

Ta
i’a

n
0.

50
00

0.
48

69
0.

38
14

0.
43

62
0.

48
72

0.
47

46
0.

44
66

0.
50

39
0.

50
69

H
ua

i’a
n

0.
53

63
0.

52
68

0.
40

34
0.

52
67

0.
51

25
0.

56
12

0.
50

49
0.

52
95

0.
48

25
Ya

nc
he

ng
0.

51
72

0.
57

81
0.

48
12

0.
52

24
0.

51
49

0.
56

74
0.

52
97

0.
54

16
0.

51
52

Su
zh

ou
0.

49
39

0.
49

87
0.

51
06

0.
49

28
0.

46
20

0.
45

09
0.

54
19

0.
56

14
0.

52
43

Li
an

yu
ng

an
g

0.
55

27
0.

53
19

0.
44

31
0.

49
99

0.
51

45
0.

50
87

0.
54

27
0.

51
95

0.
46

30
Z

he
nj

ia
ng

0.
44

78
0.

49
01

0.
39

07
0.

41
26

0.
43

21
0.

43
75

0.
51

13
0.

52
02

0.
52

32

T
a

b
le

3
.

A
ir

Q
ua

lit
y

Ev
al

ua
ti

on
Sc

or
e

of
C

it
ie

s
in

Ji
an

gs
u

Pr
ov

in
ce

(J
an

ua
ry

20
16

–S
ep

te
m

be
r

20
16

).

Ja
n

u
a

ry
2

0
1

6
F

e
b

ru
a

ry
2

0
1

6
M

a
rc

h
2

0
1

6
A

p
ri

l
2

0
1

6
M

a
y

2
0

1
6

Ju
n

e
2

0
1

6
Ju

ly
2

0
1

6
A

u
g

u
st

2
0

1
6

S
e

p
te

m
b

e
r

2
0

1
6

N
an

jin
g

0.
50

17
0.

51
63

0.
46

03
0.

51
63

0.
43

29
0.

47
63

0.
48

89
0.

39
10

0.
45

28
N

an
to

ng
0.

54
90

0.
53

54
0.

56
71

0.
47

66
0.

47
09

0.
47

42
0.

42
29

0.
54

17
0.

53
18

Su
qi

an
0.

45
50

0.
42

72
0.

47
95

0.
54

59
0.

60
62

0.
52

17
0.

54
50

0.
51

95
0.

50
80

C
ha

ng
zh

ou
0.

51
14

0.
49

52
0.

44
39

0.
48

36
0.

46
01

0.
47

82
0.

46
88

0.
44

50
0.

49
58

X
uz

ho
u

0.
42

26
0.

45
17

0.
45

18
0.

43
37

0.
46

92
0.

47
08

0.
50

16
0.

46
10

0.
48

70
Ya

ng
zh

ou
0.

53
16

0.
54

09
0.

49
53

0.
51

11
0.

46
50

0.
50

04
0.

44
84

0.
50

64
0.

51
71

W
ux

i
0.

52
12

0.
53

80
0.

48
38

0.
44

85
0.

45
38

0.
50

90
0.

45
96

0.
45

41
0.

49
75

Ta
i’a

n
0.

51
24

0.
45

49
0.

43
97

0.
49

15
0.

47
43

0.
47

53
0.

43
02

0.
51

11
0.

49
70

H
ua

i’a
n

0.
49

66
0.

48
33

0.
47

04
0.

49
48

0.
50

83
0.

48
62

0.
50

06
0.

54
70

0.
50

37
Ya

nc
he

ng
0.

50
21

0.
51

67
0.

55
09

0.
54

18
0.

56
91

0.
55

10
0.

59
27

0.
63

46
0.

55
06

Su
zh

ou
0.

55
70

0.
54

09
0.

55
77

0.
51

76
0.

49
04

0.
49

83
0.

47
52

0.
49

27
0.

50
89

Li
an

yu
ng

an
g

0.
46

55
0.

53
81

0.
52

53
0.

45
92

0.
50

08
0.

49
27

0.
57

21
0.

54
98

0.
49

82
Z

he
nj

ia
ng

0.
51

90
0.

48
76

0.
48

67
0.

55
54

0.
52

02
0.

52
81

0.
44

02
0.

41
88

0.
48

46

78



Sustainability 2018, 10, 3561

T
a

b
le

4
.

A
ir

Q
ua

lit
y

Ev
al

ua
ti

on
Sc

or
e

of
C

it
ie

s
in

Ji
an

gs
u

Pr
ov

in
ce

(O
ct

ob
er

20
16

–J
un

e
20

17
).

O
ct

o
b

e
r

2
0

1
6

N
o

v
e

m
b

e
r

2
0

1
6

D
e

ce
m

b
e

r
2

0
1

6
Ja

n
u

a
ry

2
0

1
7

F
e

b
ru

a
ry

2
0

1
7

M
a

rc
h

2
0

1
7

A
p

ri
l

2
0

1
7

M
a

y
2

0
1

7
Ju

n
e

2
0

1
7

N
an

jin
g

0.
49

96
0.

59
76

0.
57

78
0.

53
59

0.
55

73
0.

53
93

0.
53

28
0.

55
93

0.
47

24
N

an
to

ng
0.

58
31

0.
56

27
0.

60
58

0.
61

49
0.

57
83

0.
55

56
0.

49
85

0.
57

37
0.

49
72

Su
qi

an
0.

52
25

0.
50

59
0.

50
55

0.
47

37
0.

46
33

0.
53

06
0.

50
44

0.
45

56
0.

44
65

C
ha

ng
zh

ou
0.

53
55

0.
54

71
0.

54
04

0.
54

77
0.

51
60

0.
52

65
0.

51
96

0.
57

68
0.

45
94

X
uz

ho
u

0.
37

73
0.

40
03

0.
36

94
0.

37
25

0.
40

45
0.

40
91

0.
45

56
0.

36
53

0.
38

74
Ya

ng
zh

ou
0.

54
47

0.
49

27
0.

53
54

0.
51

00
0.

45
75

0.
47

07
0.

48
35

0.
52

55
0.

42
91

W
ux

i
0.

49
25

0.
52

43
0.

54
66

0.
56

30
0.

56
32

0.
54

53
0.

50
96

0.
56

67
0.

47
86

Ta
i’a

n
0.

54
03

0.
46

16
0.

54
03

0.
52

31
0.

48
27

0.
51

40
0.

48
87

0.
54

28
0.

46
28

H
ua

i’a
n

0.
56

23
0.

51
81

0.
51

80
0.

51
48

0.
49

80
0.

52
00

0.
47

73
0.

52
08

0.
46

34
Ya

nc
he

ng
0.

56
02

0.
55

27
0.

59
51

0.
54

32
0.

51
30

0.
51

70
0.

53
19

0.
62

03
0.

57
07

Su
zh

ou
0.

50
74

0.
56

37
0.

53
60

0.
59

26
0.

56
15

0.
53

58
0.

48
05

0.
59

51
0.

56
41

Li
an

yu
ng

an
g

0.
50

97
0.

48
91

0.
55

21
0.

52
65

0.
53

74
0.

51
89

0.
53

90
0.

56
45

0.
58

93
Z

he
nj

ia
ng

0.
57

19
0.

55
98

0.
57

24
0.

53
52

0.
47

60
0.

48
41

0.
51

11
0.

53
76

0.
45

72

T
a

b
le

5
.

A
ir

Q
ua

lit
y

Ev
al

ua
ti

on
Sc

or
e

of
C

it
ie

s
in

Ji
an

gs
u

Pr
ov

in
ce

(J
ul

y
20

17
–M

ar
ch

20
18

).

Ju
ly

2
0

1
7

A
u

g
u

st
2

0
1

7
S

e
p

te
m

b
e

r
2

0
1

7
O

ct
o

b
e

r
2

0
1

7
N

o
v

e
m

b
e

r
2

0
1

7
D

e
ce

m
b

e
r

2
0

1
7

Ja
n

u
a

ry
2

0
1

8
F

e
b

ru
a

ry
2

0
1

8
M

a
rc

h
2

0
1

8

N
an

jin
g

0.
49

05
0.

53
43

0.
52

77
0.

53
77

0.
52

49
0.

47
23

0.
41

89
0.

49
83

0.
48

79
N

an
to

ng
0.

35
23

0.
41

03
0.

49
70

0.
64

36
0.

58
20

0.
57

37
0.

66
21

0.
62

10
0.

60
42

Su
qi

an
0.

52
65

0.
46

68
0.

51
04

0.
48

12
0.

48
41

0.
47

22
0.

36
86

0.
45

75
0.

45
33

C
ha

ng
zh

ou
0.

42
53

0.
45

87
0.

49
98

0.
53

59
0.

52
06

0.
44

71
0.

45
39

0.
49

87
0.

48
82

X
uz

ho
u

0.
47

23
0.

43
01

0.
40

60
0.

32
63

0.
39

28
0.

37
59

0.
31

33
0.

34
69

0.
36

44
Ya

ng
zh

ou
0.

35
98

0.
46

09
0.

52
62

0.
56

50
0.

48
18

0.
50

13
0.

52
40

0.
52

74
0.

50
33

W
ux

i
0.

43
20

0.
46

37
0.

49
31

0.
52

54
0.

51
36

0.
48

06
0.

48
67

0.
50

63
0.

50
02

Ta
i’a

n
0.

44
14

0.
51

91
0.

53
53

0.
59

49
0.

51
44

0.
50

05
0.

52
01

0.
54

50
0.

51
89

H
ua

i’a
n

0.
51

72
0.

53
42

0.
53

91
0.

49
78

0.
49

88
0.

48
58

0.
48

60
0.

49
33

0.
49

25
Ya

nc
he

ng
0.

54
04

0.
56

42
0.

51
01

0.
60

55
0.

55
17

0.
52

34
0.

56
37

0.
57

00
0.

55
21

Su
zh

ou
0.

45
95

0.
48

00
0.

53
03

0.
55

79
0.

55
00

0.
50

39
0.

52
70

0.
53

93
0.

53
40

Li
an

yu
ng

an
g

0.
62

37
0.

56
82

0.
58

65
0.

54
68

0.
57

78
0.

58
96

0.
51

84
0.

55
59

0.
56

39
Z

he
nj

ia
ng

0.
40

94
0.

46
24

0.
46

74
0.

52
83

0.
46

69
0.

46
50

0.
46

12
0.

49
00

0.
47

00

79



Sustainability 2018, 10, 3561

Figure 1. Air Quality Evaluation Score of 13 Cities in Jiangsu Province (April 2015–December 2015).

Figure 2. Air Quality Evaluation Score of 13 Cities in Jiangsu Province (January 2016–September 2016).
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Figure 3. Air Quality Evaluation Score of 13 Cities in Jiangsu Province (October 2016–June 2017).

Figure 4. Air Quality Evaluation Score of 13 Cities in Jiangsu Province (July 2017–March 2018).

4. Discussions

Based on the air quality evaluation scores of various cities in Jiangsu Province from April 2015 to
March 2018, this paper concludes that:

(1) Although none of the cities in Jiangsu Province has reached the Level II Air Quality Standards
stated in China’s “Ambient Air Quality Standards (GB3095-2012)” on air pollutants’ annual average
concentration limits within the study period [20,30], the lowest air quality evaluation score in the study
period was that of Xuzhou in January, 2018 (0.3133), which was much higher than 0. Moreover, most
cities’ air quality scores ranged between 0.4–0.6 in the study period, which indicates that the overall air
quality of Jiangsu cities was quite good. This is also why the Chinese central government, especially
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the Ministry of Environmental Protection, didn’t enforce intensified air pollution control policies (such
as those on the Beijing-Tianjin-Hebei region) on Jiangsu Province.

(2) However, there are still some concerns regarding the air quality of cities in Jiangsu Province,
such as:

• Although the air quality of the three coastal cities, Jiangsu-Nantong, Yancheng, and Lianyungang,
was quite good during the study period—especially Nantong, whose air quality score has ranked
top one among all Jiangsu cities for 5 months during the six months from October 2017 to March
2018—there have been large seasonal fluctuations in these cities’ air quality. Taking Nantong as
an example, according to the statistics of Jiangsu Provincial Academy of Environmental Science,
in terms of the pollution sources of the six major air pollutants, local pollution sources accounted
for 51%–73% (average 62%). In terms of the types of the pollution sources, coal burning accounts
for the largest proportion, 26%; mobile pollution sources account for 24%; industrial pollution
sources account for 23%, dust pollution accounts for 18%; other “scattered pollution” sources
account for 9% [47]. Therefore, although Nantong has adopted a series of control measures
in order to improve air quality, including the 39 so-called “strictest in history” relocation (or
closure) projects targeting heavy pollution companies that were completed by the end of 2017 [48],
its air quality during summers is still quite poor due to the impact of mobile pollution sources
and dust pollution, resulting in significant fluctuations in air quality. In addition, although
Yancheng’s air quality ranked top among Jiangsu cities for four consecutive years according
to official statistics, taking all the six major air pollutants into consideration, Yancheng’s air
quality has also experienced large fluctuations during the study period. Taking the factors of
geographical location and wind direction into account, the air pollution in these three cities is
greatly affected by the wind in offshore waters. Because of stronger winds in southern Jiangsu
compared with the northern regions, the air quality of Nantong, which is located in the south,
is generally better than that of Yancheng and Lianyungang in the north. Due to the clear seasonal
pattern in wind direction in coastal areas of Jiangsu Province (east to southeast during spring
and summer, and northerly winds in autumn and winter) and stronger winds during winter
compared with that of summer [49], the air pollutants would linger for a long time above these
three cities in summertime due to weaker east and southeast wind than in winter, resulting in
worse air quality during summer than in winter.

• There is a clear difference in the air quality of different cities in Jiangsu Province; except for coastal
cities, the air quality of southern cities in Jiangsu is generally better than that of the northern
cities. During the study period, the air quality of southern cities (such as Suzhou, Wuxi and
Changzhou) is generally better than the northern cities (represented by Xuzhou, Suqian and
Huai’an). The reasons for this are, on the one hand, Suzhou, Wuxi, and Changzhou enjoy better
economic condition and are less dependent on heavy-pollution energy sources such as coal. On the
other hand, these cities have adopted low-carbon and energy-saving policies. Taking Suzhou as
an example, it successfully decreased the energy consumption per unit of industrial production to
0.917 tons of standard coal per 10,000 yuan in 2010, and its total energy consumption per unit
of GDP has also dropped from 1.043 tons of standard coal per 10,000 yuan of GDP in 2005 to
0.824 in 2010, with an average annual decrease of 4.87% [50], which has laid a good foundation
for further implementation of air pollution control policies. In the above comparison, the GDP
values are inflation-adjusted. While looking at the northern cities of Jiangsu Province, Xuzhou
has long relied on coal resources, and there were once more than 250 coal mines in the city. As of
2017, 70% of the mountains in Xuzhou have suffered severe damage, and there are, in total,
381,900 mu of coal mining subsidence land in the city [51], which has not only caused serious air
pollution, but has also caused severe damage to land resources. From 2010 to 2015, in the energy
consumption structure of industrial companies of Suqian City, coal has taken a proportion of over
70%. In 2016, industrial smoke and dust emissions mainly from coal burning accounted for 46%
of the city’s total exhaust gas emissions [52]. Hua’an’s average annual standard coal consumption
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has increased by nearly 10% since 2008, and coal has taken the largest proportion in its energy
structure, almost reaching 65% in 2015 [53].

(3) During the study period, the cities adopted a series of air pollution control policies based on
the “Regulations on the Prevention and Control of Air Pollution in Jiangsu Province”. These policies
have shown different effects in different cities with regard to the changes in air quality evaluation
scores. More specifically:

• Despite differences in effectiveness, the air pollution control policies have achieved improvements
in the nine cities, i.e., Nantong, Changzhou, Wuxi, Yangzhou, Suzhou, Yancheng, Zhenjiang,
Tai’an, and Lianyungang. Among them, Nantong’s air quality has seen an improvement of
20.28% when comparing that of the ending period (March 2018) to that of April 2015, when
the air pollution control policies were first implemented. Changzhou and Wuxi have improved
their air quality by more than 10%, while Yangzhou, Suzhou, and Yancheng have improved
theirs by more than 5%. These cities have all initiated their own pollution control policies with
local characteristics based on the “Regulations on the Prevention and Control of Air Pollution
in Jiangsu Province”. For example, Nantong has actively promoted the relocation of heavily
polluting companies out of its main urban zones, carried out pilot projects for the ultra-low
emission transformation of coal-fired power plants, and upgraded the standards for smoke
and dust emissions from cement industries and coal-fired boilers [48]. By the end of 2017,
the relocation and transformation of all heavily polluting companies in Nantong’s central urban
area (Chongchuan District) has been completed [54]. Wuxi City has shut down three coal-fired
power plants in its urban area, completed the rectification of more than 1200 small coal-fired
boilers in its main urban area and subordinate counties, and implemented ultra-low emission
transformation for eight large coal-fired power units in the city [55]. Suzhou and Yancheng have
also formulated and implemented their annual work plan for air pollution prevention and control
based on the “Regulations on the Prevention and Control of Air Pollution in Jiangsu Province”,
as well as the characteristics of their own pollutants and industrial structure [56,57], which has
achieved remarkable results. Meanwhile, although Yangzhou’s air quality has improved by 8.89%
at the ending period compared with that of the beginning period, there has been clear decline since
May 2017. According to the official environmental quality report issued by Yangzhou Municipal
Government, the proportion of days with good air quality in Yangzhou City from January to
September 2017 was 59.7%, down 12.2 percentage points year-on-year; meanwhile, the indicators
on PM2.5, PM10, O3, and NO2 have all exceeded the standards by varying degrees [58]. The reason
behind is that although Yangzhou has formulated the annual work plan for air pollution
prevention and control, the implementation of the work plan has not been detailed enough
since the end of 2016, resulting in a decline in air quality in 2017. After realizing this problem,
Yangzhou local government revised and approved the “Yangzhou City Heavy Air Pollution
Early Warning and Emergency Plan” in October 2017, included 31 high-emissions companies
in the municipal-level key emission monitoring list, and incorporated the heavy air pollution
warning and emergency response into the environmental performance evaluation of the CPC and
local government leaders under a system of responsibility and accountability [59]. In December
2017, the provincial-level inspection team for air pollution prevention and control set up by the
Jiangsu Provincial Environmental Protection Department officially started their one-month on-site
inspection of Yangzhou [60]. As such, Yangzhou’s air quality has shown clear improvements
since January 2018.

• The air quality of Nanjing, Huai’an, Xuzhou and Suqian has shown different degrees of decline
when comparing their ending score with the beginning score. Among them, Suqian’s air quality
has declined by 20.07%, and Xuzhou’s by almost 20% (16.32%). The reason for this is that, on the
one hand, for historical and geographical reasons, these cities rely more on coal burning in
terms of energy structure and have more heavy-pollution companies. Taking Nanjing as an
example, in the study on pollution sources of key monitoring cities for air pollution prevention
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and control completed by China’s Ministry of Environmental Protection in 2015, the primary
pollution source of Beijing, Hangzhou, Guangzhou, and Shenzhen is motor vehicles, while that of
Nanjing and Shijiazhuang is coal burning. The biggest consumers of coal in Nanjing are the four
high-energy-consumption industries of electricity, steel, petrochemicals, and cement. From 2015 to
2016, Nanjing’s total coal consumption exceeded 35 million tons, its sulfur dioxide emissions per
unit of GDP ranked top one among sub-provincial cities, and its average chemical oxygen demand
(COD) emissions ranked second [61]. As discussed above, the energy structure of Xuzhou, Suqian,
and Huai’an also relies heavily on coal combustion. A major action to control air pollution by
Xuzhou is to gradually transform the mining area into ecological parks, such as the ecological
restoration project of coal mining subsidence areas around Pan’an Lake in the Jiawang District
which was completed in 2017. This was the comprehensive project with the largest individual
investment in Jiangsu Province since the establishment of People’s Republic of China, covering
17,400 mu [62]. In addition, the fluctuations and decline in these cities’ air quality is also partly
due to the dust and smog spread from northern China since October 2017. With the cold air in
northern China moving southward, the dust and smog in northern China has intensified the air
pollution in these four non-coastal cities in northern Jiangsu, especially in 2018 [63–66].

5. Conclusions

This paper has studied the air quality of 13 cities in Jiangsu Province from April 2015 to March
2018 based on an expanded AQI system of six major air pollutants. After expanding the existing air
quality evaluation standards of China, this paper has calculated the air quality evaluation scores
of various cities in Jiangsu based on the six major air pollutants by using the improved Fuzzy
Comprehensive Evaluation Model. This paper has further analyzed the effectiveness of air pollution
control policies in Jiangsu Province and its different cities during the study period. The conclusions are:
there are distinct differences in air quality of different cities in Jiangsu Province; except for the coastal
cities such as Nantong, Yancheng and Lianyungang, the southern cities of Jiangsu generally have
better air quality than the northern cities. Apart from natural factors such as geographical location,
economic conditions and energy structures are also important causes of this situation. In addition,
air pollution control policies have achieved significant results in the cities of Nantong, Changzhou,
Wuxi, Yangzhou, Suzhou, Yancheng, Zhenjiang, Tai’an, and Lianyungang. Among them, Nantong has
achieved the biggest improvement, i.e., 20.28%; Changzhou and Wuxi have improved their air quality
by more than 10%, while Yangzhou, Suzhou and Yancheng have improved theirs by more than 5%.
However, the air quality of Nanjing, Huai’an, Xuzhou, and Suqian has declined by different degrees
when comparing that of the last period with the beginning period: Suqian’s air quality has declined by
20.07%, while Xuzhou’s has declined by 16.32%.

Based on above findings, this paper provides the following policy recommendations in order to
further improve air pollution control of Jiangsu Province.

(1) Fundamentally change the energy structure of Jiangsu cities that are overly-reliant on coal
combustion (especially the northern cities) with the latest revision and implementation of the
“Regulations on the Prevention and Control of Air Pollution in Jiangsu Province” in April 2018 [44].
Establish long-term treatment measures against air pollution through industry upgrade and
technological advancement in order to achieve a long-term and stabilized pollution control
performance as well as to minimize the cyclical fluctuations of air quality, and ensure the
sustainability in air pollution control.

(2) Take advantage of the trend of regional economic integration of the YRD region and integrate the
formulation and implementation of air pollution control policies in Jiangsu Province. Since 2015,
there haven’t been many integrated measures for air pollution control by Jiangsu Province
except the “Regulations on the Prevention and Control of Air Pollution in Jiangsu Province”.
Therefore, under the overall trend of regional economic integration in the YRD region, it is
suggested that Jiangsu Province further improve the information sharing and decision-making

84



Sustainability 2018, 10, 3561

mechanism for air pollution control and treatment among its different cities by using various air
pollution control programs such as the “Yangtze River Delta Regional Air Quality Improvement
and Treatment Program (2017–2020)” [67], “Key Emphasis in the Cooperation of Yangtze River
Delta Regional Air Pollution Prevention and Control (2018)” [68], etc. and by learning from
the successful experience of Shanghai, Anhui, and other provinces, in order to fully realize the
integration of air pollution control policies in the province.

(3) It is necessary to fully consider the local differences in air pollution of various cities of Jiangsu
Province, and make targeted pollution control policies based on coordinated work and different
characteristics of each city’s air pollution sources and industrial structure. For northern cities
such as Xuzhou, Suqian and Huai’an, it is necessary to change the energy structure which is
overly-reliant on coal, to strictly restrict the number of new coal mining and coal-fired plants
construction projects, and to prohibit various types of loose coal combustion while accelerating
the development of clean energy. For cities such as Suzhou, Wuxi, and Changzhou, it is necessary
to further improve and optimize the public transportation system, and strictly control the number
of motor vehicles in order to curb the growth of mobile pollution sources.
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Abstract: Livestock farming is a major source of greenhouse gas and ammonia emissions. In this
study, we estimate methane, nitrous oxide and ammonia emission from livestock sector in the Red
River Delta region from 2000 to 2015 and provide a projection to 2030 using IPCC 2006 methodologies
with the integration of local emission factors and provincial statistic livestock database. Methane,
nitrous oxide and ammonia emissions from livestock farming in the Red River Delta in 2030 are
estimated at 132 kt, 8.3 kt and 34.2 kt, respectively. Total global warming potential is estimated at
5.9 MtCO2eq in 2030 and accounts for 33% of projected greenhouse gas emissions from livestock in
Vietnam. Pig farming is responsible for half of both greenhouse gases and ammonia emissions in the
Red River Delta region. Cattle is another major livestock responsible for greenhouse gas emissions
and poultry is one that is responsible for ammonia emissions. Hanoi contributes for the largest
emissions in the region in 2015 but will be surpassed by other provinces in Vietnam by 2030.

Keywords: emission inventory; livestock; greenhouse gases; air pollutant

1. Introduction

Economic growth in Vietnam has shifted food consumption patterns to incorporate more livestock
products (meat, dairy products, and eggs) [1]. With the growing demand for livestock products,
livestock farming is expanding in Vietnam and is among the fastest growing agricultural production
subsectors in Vietnam [1]. In 2015, livestock accounted for 28% of value added from the agriculture
sector. The development and intensification of this subsector has led to an increase in the total animal
population during the past decade. In 2016, Vietnam had 29 million pigs, 5.5 million cattle, 2.5 million
buffalos, and 361 million poultry [2]. The largest population increases compared to 2005 have been
in poultry (increased by 65% with 142 million head added), followed by pigs (increased by 8% with
2 million head added); while numbers of cattle and buffalo have fluctuated slightly.

The development and intensification of livestock farming helps to ensure national food security
and boosts economic growth. However, this sector is also a significant contributor to environmental
pollution in general and air pollution in particular. Livestock farming contributes significantly to global
greenhouse gas (GHG) emissions [3] by releasing methane (CH4) and nitrous oxide (N2O), as well as
air pollutants, mostly ammonia (NH3), into the atmosphere. Livestock farming is the largest emissions
source of NH3 [4–6], which plays a major role in eutrophication and acidification [7]. The Food and
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Sustainability 2018, 10, 3826

Agriculture Organization (FAO) has estimated that 18% of global GHG emissions originate from the
livestock sector.

Vietnam is listed among the 20 countries with the highest GHG emissions in the UNFCCC
and FAOSTAT databases [8]. Emissions from livestock farming account for approximately 20%
of greenhouse gas emissions from agricultural activities in Vietnam according to the National
GHG emissions inventory for 2010 [9]. Emissions from enteric digestion are responsible for half
of all livestock emissions, with the other half originating from manure management, one of the
fastest-growing sources of GHG emissions in Vietnam during 1994–2010 [5]. An inventory of CH4

emissions from livestock in Asia in 2000 [10] showed that poultry emitted the largest amounts of CH4

in Vietnam, followed by cattle, buffalo, and pigs. A CH4 and N2O emissions inventory for South,
Southeast, and East Asia was recently conducted [11] using emissions inventory methodologies from
the International Panel on Climate Change (IPCC) 1997 Guidelines for National Emission Inventory,
and ranked Vietnam in 6th place for NH3 emissions and 7th place for CH4 and N2O emissions among
the 23 countries studied. An estimate of air pollutants and GHGs over Asia aggregated Vietnam
within the Southeast Asia region [12]. To the best of our knowledge, no emissions inventory has
been conducted for CH4 and N2O in Vietnam using IPCC 2006 methodologies. Previous studies
estimating livestock farming emissions in Vietnam have been conducted at the provincial scale or for
one type of pollutant (such as GHG or air pollutant). Examples of such studies include estimates of
CH4 emissions from cattle in Daklak province [13], CH4 emissions from cattle in Quang Ngai province,
with mitigation scenarios [14], and GHG and pollutants from livestock farming within a ward of Hung
Yen province [15].

It is important to develop a historical inventory and projections of future livestock GHG and air
pollutants to improve our understanding of the evolution of emissions and their associated impact on
air quality. In this study, we focused on the Red River Delta (RRD) region, which is among the largest
livestock farming centers in Vietnam. This region contained 8726 livestock farms in 2016, accounting
for 42% of all livestock farms in the country [2]. RRD contains the largest number of pigs and poultry,
with populations of 7.4 million and 93.7 million head, respectively (account for 26% of country’s total).
This inventory attempts to quantify emissions of CH4, N2O, and NH3 produced by livestock farming,
in RRD from 2000 to 2030 at a 5-years resolution using the IPCC 2006 Guidelines for National Emission
Inventory [16] and regional or country-specific emission factors wherever applicable. Its results are
designed to provide input to more comprehensive studies about regional air quality, for example
using an air dispersion model and the Greenhouse Gases—Air Pollution Interactions and Synergies
(GAINS) model.

2. Materials and Methods

2.1. Emission Inventory Methodology

We conducted an emissions inventory for livestock farming for the sources and pollutant species
listed in Table 1. We applied emissions inventory methodologies from the IPCC Guidelines for the
National Emission Inventory [16]. In general, we applied Tier 1 methods, such that activity data were
multiplied by relevant emission factors. Country-specific emission factors were used (Tier 2 method)
wherever applicable. The general equation for estimating livestock emission is Equation (1) [17].

Ej = ∑
T

NT × EFT,j (1)

where Ej is the emission from animal type T and pollutant j; NT is the number of animal of type
T, EFT,j is the emission factor for animal type T for pollutant j.
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Equation (2) from IPCC 2006 Guidelines was used to estimate direct N2O emissions from
manure management.

EN2O =

[
∑
S

[
∑
T
(NT × NexT × MST,S)

]
× EFS

]
× 44

28
(2)

where NT is number of animal type T, NexT is the annual average Nitrogen excretion per head of
animal type T. NexT is calculated using Equation (3), where Nrate T is the default Nitrogen excretion
rate; TAM is the typical animal mass for animal type T. Both values are provided in the IPCC 2006
Guidelines. Value of NexT for animals in Asia are listed in Table 2. MST,S is the fraction of total annual
nitrogen excretion for each animal of type T in manure management system S. MST,S is provided in
Table 3. EFS is default emission factor for direct N2O emission from manure management system S
(Table 3). 44/28 is the conversion of N2O-N emissions to N2O emissions.

NexT = Nrate T × TAM/1000 × 365 (3)

Table 1. Activities and pollutant species included in the inventory.

Source/Pollutant CH4 N2O NH3

Enteric fermentation �
Manure management � � �

Table 2. Nitrogen (N) excretion per animal type (kgN head−1 yr−1).

Animal Nrate T (kgN/1000 kg Animal Mass/Day) [16] TAM (kg/Animal) [16] NexT (kgN/Head/yr) [16]

Dairy cattle 0.47 350 60.043
Other cattle 0.34 319 39.588

Pigs 0.42 28 4.292
Poultry 0.82 1.8 0.539
Goats 1.37 30 15.002

Horses 0.46 238 39.960
Buffalo 0.32 380 44.384

NrateT, default N excretion rate; TAM, typical animal mass for animal of type T; NexT, annual
average N excretion per head of animal of type T.

Table 3. Fraction of total annual N excretion for each animal type and emission factors by manure
management system.

Manure Management
System

Fraction of Total Annual N Excretion (kg N Excreted) by Manure
Management System

Emission Factor
kg N2O-N/kg N

ExcretedDairy Cattle Other Cattle Pig Horse Goat Buffalo Poultry

Pasture/range 0.20 0.50 - 1 1 0.50 - -
Daily spread 0.29 0.02 - - - 0.04 0.55 0
Solid storage - - 0.15 - - - - 0.005

Dry lot 0.07 0.48 - - - 0.46 - 0.02
Liquid/slurry 0.38 - 0.15 - - - - 0.05

Anaerobic lagoon 0.04 - - - - - - 0
Pit storage - - - - - - - 0.002

Anaerobic digester 0.02 - 0.30 - - - - 0
Composting static pile - - 0.40 - - - - 0.006

Poultry manure with litter - - - - - - 0.45 0.001

2.2. Data

The RRD region consists of 11 provinces and two cities, including Hanoi, the capital of Vietnam.
In our inventory, historical activity data from 2000 to 2015 was acquired at the provincial level and
summed to obtain regional data. Projected activities were obtained from approved provincial, regional,
and national agricultural development plans.
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Historical data on provincial livestock numbers were obtained from the Statistical Yearbook of
each province and from the Vietnam Statistical Yearbook [18,19]. More detailed data (e.g., numbers of
dairy cattle and laying hens) were obtained from the Department of Livestock Production, Ministry of
Agriculture and Rural Development, and are publicly accessible [20]. Livestock is classified into the
following groups: Dairy cattle, other cattle, pigs, poultry, horses, and goats. Data on livestock number
by province is provided in Table S1, Supplementary Materials.

Projected livestock numbers for 2020 were obtained from the Provincial Agriculture Development
Plan for each province. Projections for 2030 were not available for all provinces examined in this
study; therefore, we distributed the projected livestock populations for Vietnam in 2030 [21] into these
provinces using the proportion of each type of animal of each province over the national total in
2020. Projections for 2025 take the average of 2020 and 2030 values. Historical and projected livestock
populations are presented in Table 4.

Table 4. Livestock population data used in this emissions inventory.

Animal (103 Head) 2000 2005 2010 2015 2020 2025 2030

Dairy Cattle 13.5 20.0 19.3 48.3 45.3 63.7 77.5
Other cattle 489.4 689.9 604.0 445.4 754.1 757.7 871.4

Poultry 54,742 59,597 76,394 90,829 97,686 109,352 124,153
Horses 1.5 1.3 1.8 0.9 1.0 1.0 0.9
Goat 10.5 10.5 75.6 79.1 96.8 112.1 129.6

Buffalo 278.1 209.1 168.7 130.4 130.2 108.4 108.7
Pig 5688 7796 7301 7061 9326 9906 10,476

Distributions of N excretion for each animal type managed under different manure management
systems are provided in Table 3. We estimated the proportion of manure by type of management
system for the pig and poultry industries using results from previous studies [22–24]. We used default
values from the IPCC 2006 Guidelines for cattle, buffalo, and other animals.

2.3. Emission Factors

A summary of the CH4 and NH3 emission factors used in this study is provided in Table 5.
We used regional emission factors for CH4 emission fromenteric fermentation from previous studies
for dairy and beef cattle [25,26] and buffalo [15]. We used the IPCC 2006 default values for all other
animals. We used the IPCC 2006 Guidelines for N2O, in which emission factors were specified for
manure management systems (Table 3). We used an adjusted European NH3 emission factors [11],
which were also used in a previous study [15] for Vietnam.

Table 5. Methane (CH4) and ammonia (NH3) emission factors.

Dairy Cattle Other Cattle Pig Horse Goat Buffalo Poultry

Enteric fermentation

CH4 (kg/head−1yr−1) used in this study 94.5 a 41 a 1 c 18 c 5 c 82.3 b -
IPCC 2006 c 68 47 1 18 5 55 -

Manure Management

CH4 (kg/head−1yr−1) 26 c 1 c 6 c 1.64 c 0.17 c 2 c 0.02 c

NH3 (kg/head−1yr−1) 5.6 b 3 b 1.5 b 7 b 1.1b 3.4 b 0.12 b

a [26]; b [15]; c [16]

3. Results

3.1. Estimated Total Emissions

Figure 1 shows the estimated CH4, N2O and NH3 emissions from livestock farming in RRD. Total
CH4 emissions in 2015 were 87 kt (Figure 1a), or 2.4 Mt CO2 equivalent (CO2eq) as determined using
the global warming potential (GWP) for 100-year time horizon from IPCC Fifth Assessment Report [27].
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Given the current agricultural development plan, the total amount of CH4 emissions for RRD in 2030
was estimated at 132 kt, or 3.7 Mt CO2eq. Decreases in CH4 emissions in 2010 and 2015 were due
to decreases in numbers of other cattle and buffalo in those years. Although the buffalo population
continued to decrease in the subsequent years, increases in the numbers of other animals kept CH4

emissions on an upward trend from 2020 onward. Enteric fermentation and manure management
contributed equally to total CH4 emissions, which were estimated at 63 and 69 kt, respectively, for
2030. N2O emissions showed an upward trend, reaching 8.3 kt by 2030 (Figure 1b), or 2.2 Mt CO2eq.
Although N2O emissions were 16-fold lower than those of CH4, higher GWP limited the global
warming impacts of N2O to 1.6 times lower than those of CH4.

Figure 1. Total CH4 (a), N2O (b) and NH3 (c) emissions from livestock farming in the RRD region.

The total GHG emissions from livestock from our estimation for RRD region in 2015 is 4.0 MtCO2eq.
GHG emissions projection for 2020 and 2030 are 5.0 and 5.9MtCO2eq, respectively. Our estimations
indicates that RRD region accounts for about one-third of Vietnam’s GHG emissions from livestock
farming according to the national GHG inventory [9]. This result reflects the fact that RRD is the
largest livestock farming center in Vietnam. Compare with a previous estimate [28], as summarized
in Reference [1], our estimation results in much higher GHG emissions. Total GHG emissions from
livestock in RRD is estimated at 2.1 MtCO2eq in 2012 in the study of Reference [28] while our estimation
for 2010 is 4.1 MtCO2eq.

NH3 emissions increased over time as the animal population expanded during the past decade,
and are projected to further increase until 2030 (Figure 1c). By 2030, total NH3 emissions from livestock
in RRD are expected to reach 34 kt.

3.2. Emissions by Animal Type

CH4 emissions from enteric fermentation and manure management were of the same order of
magnitude. However, the contributions differed by animal type in these emissions categories. Cattle
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contributed the largest proportion of CH4 emissions from enteric digestion (Figure 2a). Modifying diet
is one of the mitigation option for methane emissions from enteric fermentation [29]. Several studies
have explored the potential for emissions reduction by changing cattle diet at a local scale [13,25,26].
The National Plan for GHG emissions reduction in the agricultural sector by 2020 [30] has proposed
two measures to reduce enteric fermentation emissions: (i) changing the feeding proportion in 30% of
total amount of animal feed to reduce 0.91 MtCO2eq (3.73% GHG emissions in livestock production
projected for 2020) and (ii) supply Molasses Urea Block for 192,000 dairy cattle for a reduction of 0.37
MtCO2eq (1.51% GHG emissions in livestock production projected for 2020). However, the practice of
implementing those mitigation measures nation-wide is not yet documented.

CH4 emissions from manure management are produced mainly from pig farming (Figure 2b).
Pig husbandry emits 50 kt of methane in 2015, accounts for 57% total methane emission. The dominance
of pig farming in CH4 emission suggests that more effort should be made to effectively mitigate
emissions in this sector, as RRD has the highest pig farming density in Vietnam. The most common
method of emissions mitigation in Vietnam is the production of biogas from pig manure due to
subsidization of anaerobic digester construction by the government [31].

Figure 2. CH4 emissions from enteric fermentation (a) and manure management (b).

Poultry and pig farming are responsible for about 90% of N2O (Figure 3) and NH3 emissions
(Figure 4). Poultry accounted for largest share of N2O emissions (60%) followed by pigs (26%).
The farming of these animals contributed equally to NH3 emissions. Although chicken manure is
a preferred source of organic fertilizer [1], the remaining uncollected poultry manure apparently has
a considerable impact. GHG emissions from poultry husbandry accounted for 27% of total GHG
emissions from livestock farming in 2015.

Figure 3. Nitrous oxide (N2O) emissions by animal type.
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Figure 4. Ammonia (NH3) emissions by type of animal.

3.3. Emissions by Provinces

Figure 5 presents methane, nitrous oxide and ammonia emissions by provinces in the Red River
Delta in 2015 and projection for 2030. In 2015, Hanoi is the dominant city for emissions (Figure 5a)
with 21 kt of methane, 1 kt of nitrous oxide and 5.5 kt of ammonia (Tables A1–A3). However, Quang
Ninh becomes the highest emission province in the RRD by 2030, followed closely by Hanoi, Vinh
Phuc and Thai Binh (Figure 5b, Tables A1–A3). This projection reflects that livestock farming will be
developed more in other provinces rather than in the capital city.

(a) 

Figure 5. Cont.
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(b) 

Figure 5. Emissions from livestock by provinces in 2015 (a) and projection for 2030 (b).

4. Discussion

Emission factor is a very important element to the accuracy of the estimations in emission
inventory. Default methane emission factors for enteric fermentation in IPCC 2006 Guidelines for
Asia is 68 kg head−1 yr−1 for dairy cattle and 47 kg head−1 yr−1 for other cattle. We used emission
factors from studies of References [25,26], which were derived from the RUMINANT model (Tier 3
methodology). These emission factors are higher for dairy cattle and lower for other cattle compared
to the default values in IPCC 2006 (see Table A4, Appendix A). These emission factor discrepancies
were mainly due to higher milk yields from dairy cattle and lower weight in beef cattle in the studied
area. Another study [10] used IPCC 1997 default emission factors, which are lower than IPCC 2006
values for both dairy and non-dairy cattle.

Previous studies [11,15] have used a manure management CH4 emission factor of 16 kg head−1

year−1 for dairy cattle in a temperate climate region with annual average temperature ranging from
15 to 25 ◦C. However, the IPCC 2006 guidelines provide CH4 emission factors for temperatures
classified at a finer scale. We calculated the annual average temperature for the RRD region to be
approximately 25 ◦C using historical data from three monitoring stations in the region. According to
the IPCC 2006 guidelines, the manure management CH4 emission factor for dairy cattle is 26 kg head−1

year−1, much higher than the value used in previous inventories.
The N2O emission factors used in this study are presented in Table A4, and expressed in emission

per animal head per year to be able to compare with the ones used in previous studies. Some
studies have used IPCC 1997 default N2O emission factors for each animal type (e.g., Reference [11]),
which were calculated based on proportional regional values of manure production. Our calculation
resulted in higher emission factors for all animals except horses and goats; these are “pasture animals”,
for which N2O emissions are not accounted for as livestock but instead for soil management. Our
emission factors for dairy cattle and poultry were an order of magnitude higher than those used
previously [11,15]. We used the IPCC 2006 default values for dairy and non-dairy cattle to calculate
emission factors, resulting in higher values than those obtained using the IPCC 1997 guidelines due
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to the incorporation of different manure management systems and the more detailed classification
systems employed in the IPCC 2006 guidelines.

Pig husbandry is the largest GHG and NH3 emitter in the RRD region, which is responsible
for about half of total GHG emissions (in CO2eq) and about 46% NH3 emissions from livestock in
2015. This is an atypical situation compared to neighboring countries. In the emission inventory for
South, South East and East Asia for 2000 [11], cattle was the largest emitter for CH4, N2O and NH3

emissions, with a share of 56%, 30% and 33% respectively. Study of Reference [32] in Indonesia has
also shown cattle as the major contributor to GHG emissions in the 2005–2015 period. Our results
provide a reminder that regarding agricultural sector emission mitigation, policies in the Red River
Delta should not be copied from other countries.

The production of emissions from livestock farming depends on various factors including feeding
practices, housing systems, and manure management systems. Detailed historical data on the feed
composition for each animal type and the proportions of manure managed by different management
systems are needed to obtain more accurate emissions estimates. However, these data are not yet
systematically collected or well documented for emissions inventory purposes. Improving the quantity
and quality of data and research related to livestock farming will help to improve emissions monitoring
in this sector.

Currently, environmental protection regulations for livestock farming in Vietnam mainly focus
on water quality, not air quality. There is a national technical standard for wastewater from livestock
farming in Vietnam, but no specific regulations with respect to manure management and air quality.
In practice, compliance with and enforcement of related environmental regulations in the livestock
sector are currently weak [1]. The significant contributions to GHG and air pollutant emissions from
this sector deserve more attention.

5. Conclusions

In this study, we estimated CH4, N2O, and NH3 emissions from livestock farming in the
RRD, northern Vietnam from 2000 to 2015 and projected future emissions to 2030. This inventory
and projection yielded emissions by animal type and by province. The results of our emissions
inventory indicate that livestock farming in RRD contributes significantly to GHGs and NH3 emissions.
The emissions inventory and projection showed an upward trend in GHG and NH3 emissions during
2000–2030. The GWP of CH4 and N2O emissions was 5.9 MtCO2eq in 2030, representing 33% of GHG
emissions from livestock nationwide. Pig farming contributed the largest proportion of GHG and NH3

emissions, at 50%. Cattle were responsible for the second largest share of GHG emissions, whereas
poultry contributed most of the remaining NH3 emissions. This study also provides the provincial
emissions levels for CH4, N2O and NH3. Understanding the level of emissions emitted in the RRD
region and the contribution of different type of livestock as well as the spatial distribution of emissions
by province is a first step to developing effective mitigation strategies for reducing GHG and NH3

emission in the RRD region. Furthermore, this inventory provides an input to implementing regional
air dispersion modeling for air pollution impact assessments in the RRD region.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/10/10/3826/
s1, Table S1. Livestock number by provinces in Red River Delta from 2000 to 2030.
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Appendix A

Table A1. CH4 emissions (kt/y) by provinces.

Province 2000 2005 2010 2015 2020 2025 2030

Hanoi 18.99 24.07 22.88 20.99 21.11 19.89 19.02
Bac Ninh 6.29 6.57 4.88 4.65 4.71 4.77 4.77
Hung Yen 4.71 6.52 6.72 6.38 6.54 6.37 6.32
Vinh Phuc 10.81 13.06 12.34 11.15 16.00 16.83 18.65

Quang Ninh 8.12 9.03 9.01 7.13 15.92 17.60 21.66
Hai Duong 9.01 9.72 6.08 5.64 5.61 5.70 5.70
Hai Phong 5.35 5.85 5.34 4.76 7.60 8.15 9.30
Thai Binh 8.44 11.13 11.28 9.57 15.40 16.20 18.25
Ha Nam 4.12 5.04 4.45 4.17 7.12 8.65 10.00

Nam Dinh 5.67 7.45 7.50 7.60 8.61 9.01 9.56
Ninh Binh 5.11 6.43 5.68 5.16 7.25 7.59 8.37

Table A2. N2O emissions (kt/y) by provinces.

Province 2000 2005 2010 2015 2020 2025 2030

Hanoi 0.83 1.12 1.23 1.38 1.10 1.11 1.05
Bac Ninh 0.256 0.298 0.292 0.31 0.30 0.30 0.30
Hung Yen 0.34 0.44 0.49 0.51 0.32 0.27 0.27
Vinh Phuc 0.40 0.25 0.53 0.57 0.84 0.96 1.11

Quang Ninh 0.20 0.22 0.23 0.23 0.67 0.82 1.21
Hai Duong 0.47 0.57 0.49 0.58 0.70 0.80 0.78
Hai Phong 0.30 0.34 0.39 0.44 0.50 0.56 0.61
Thai Binh 0.47 0.63 0.66 0.70 0.96 1.07 1.22
Ha Nam 0.19 0.25 0.29 0.34 0.49 0.58 0.68

Nam Dinh 0.35 0.42 0.46 0.50 0.53 0.57 0.61
Ninh Binh 0.22 0.25 0.27 0.27 0.35 0.38 0.43

Table A3. NH3 emissions (kt/y) by provinces.

Province 2000 2005 2010 2015 2020 2025 2030

Hanoi 3.68 4.97 5.20 5.45 4.69 4.60 4.35
Bac Ninh 1.19 1.35 1.23 1.28 1.25 1.24 1.23
Hung Yen 1.38 1.82 2.00 2.02 1.53 1.38 1.38
Vinh Phuc 1.73 1.45 2.22 2.23 3.33 3.71 4.26

Quang Ninh 0.96 1.10 1.12 1.08 3.17 3.84 5.05
Hai Duong 1.99 2.45 1.96 2.19 2.54 2.83 2.79
Hai Phong 1.32 1.55 1.63 1.71 2.20 2.41 2.70
Thai Binh 2.05 2.87 2.98 2.95 4.04 4.39 4.93
Ha Nam 0.85 1.12 1.22 1.34 2.11 2.50 2.94

Nam Dinh 1.53 1.94 2.02 2.20 2.34 2.51 2.67
Ninh Binh 0.95 1.14 1.21 1.18 1.59 1.70 1.89

Table A4. Comparision of emission factors used in this study and previous studies.

Source Methodology

Type of Animal

Dairy
Cattle

Other
Cattle

Pig Horse Goat Buffalo Poultry

Enteric fermentation

CH4
(kg/head−1yr−1)

IPCC 2006 [16] Tier 1 68 47 1 18 5 55 -

[15] Tier 2 50.46 64.15 - - - 82.3 -

[25]; [26]
Tier 3,

RUMINANT
model

94.5 41 - - - - -

[10] Tier 1 47 44.9 1 18 5 53.2 -
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Table A4. Cont.

Source Methodology

Type of Animal

Dairy
Cattle

Other
Cattle

Pig Horse Goat Buffalo Poultry

Manure Management

CH4
(kg/head−1yr−1)

IPCC 1997
[10,15] Tier 1 16 1 4 1.6 0.18 2 0.018

IPCC 2006 temp.
25◦C Tier 1 26 1 6 1.64 0.17 2 0.02

N2O
(kg/head−1yr−1)

[11,15] Tier 1 0.29 0.34 0.18 0.87 0.17 0.39 0.0069

IPCC 1997; Tier 1 0.29 0.34 0.18 0.77 0.77 0.34 0.0068

Used in this
study 1.92 0.60 0.22 0.00 0.00 0.55 0.0425

NH3
(kg/head−1yr−1) [15]; [11] 5.6 3 1.5 7 1.1 3.4 0.12
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Abstract: Manaus, a city of more than two million people, suffers problems arising from strong
sunlight and aggravated by several factors, such as traffic congestion and greenhouse gas emissions
generated by evaporation and burning of fuel. The present study examined Carbon Monoxide (CO)
and Nitrogen Dioxide (NO2) emissions in an urban area of the city using different methodologies.
CO and NO2 were measured using automated and passive analyzers, respectively. Meanwhile,
direct monitoring of these pollutants was performed in vehicular sources in the vicinity of sampling
locations. Results showed that levels of carbon monoxide vary over time, being higher during
peak movement of vehicles. NO2 values have exceeded the recommendations of the World Health
Organization (WHO), and monitoring at source showed high levels of CO and NO2 emissions to
the atmosphere.

Keywords: vehicle; pollution; measurement and environment

1. Introduction

The study of chemical interactions occurring in the atmosphere is very complex. The atmosphere
is similar to a natural laboratory. However, unlike in laboratory research, where researchers perform
specific experimental reactions with controlled atmospheric variables, the atmosphere involves a
series of chemical reactions that are difficult to monitor, mainly owing to low concentrations, altitude
variation, and slow reactions. This is why studies on the chemical reactions occurring in the atmosphere
and their consequences are growing, despite the difficulties they present [1].

Moreover, in addition to natural components, any portion of atmospheric air contains primary
pollutants emitted by pollution sources and as a result of reactions occurring among these, from
chemical reactions among them, a relative amount of secondary pollutants. The composition of
atmospheric air, the chemical reactions occurring in the atmosphere, the movement of air masses, the
energy balance, and meteorological conditions are all factors responsible for observed atmospheric
phenomena that have intensified in recent times [2].

Until the Constitution of 1988, environmental concerns in Brazil permeated constitutional
standards. Environmental impact studies, for example, were introduced into Brazilian law through
Act number 6803/1980, which obliged companies linked to petrochemical, clorochemical, and
carbochemical industries and nuclear installations to present special studies of alternatives and impact
assessments [3].
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After the UN Conference on the Environment held in Stockholm in 1972, there was an increase
in ecological awareness, a phenomenon that came to be reflected in legislative processes ensuring
protection and preservation of the environment [4].

In Brazil, the environment acquired constitutional status after the 1988 Constitution. The Magna
Carta reveals some central axes: The environment as a fundamental right; the conservation of biological
diversity and ecological processes; the creation of specially protected territorial areas; the need for
prior study of the environmental impact of activities potentially causing significant degradation; and
environmental education [5]. It consciously seems to promote the idea that development at any cost
causes profound changes in the environment and society. Some noteworthy examples of the most
damaging consequences are those resulting from accelerated urbanization processes [6].

Manahan [7], when analyzing the climatic differences between urban and rural areas, confirms the
impacts of urbanization on the climate of cities worldwide. According to the author, urbanization induces
a strong effect on microclimates. In rural areas, vegetation and water bodies have a moderating effect,
absorbing modest amounts of solar energy and releasing it slowly. In contrast, in cities, stone, concrete,
and asphalt pavements strongly absorb solar energy and reradiate heat back to the urban microclimate.

There are many studies concerning the consequences of population increases for environmental
imbalance, considering that the process of expansion of cities has supported itself through the
availability of abundant and cheap energy sources. Reference data from the National Energy Report
(BEN) indicates that the domestic supply of energy in Brazil grew by 5.6% in 2007, from 226.1 million
tonnes of oil equivalent (TOE) in 2006 to 238.8 million TOE in 2007. This growth was greater than the
growth of the economy (5.4%) registered by IBGE (Brazilian Institute of Geography and Statistics) [8].

In 2012, total demand for oil products stayed at 2.274 million barrels of oil equivalent (BOE) per
day, 6.6% more than in 2011. The production of oil, at a negative rate of 1.7%-including LNG (liquefied
natural gas) and shale oil-reached the amount of 2.16 million bbl/day (barrels per day). In this context,
there were net imports of oil and oil products on the order of 211 thousand BOE/day in 2012 [9].

Manaus is the Amazon’s largest city and its population has exploded in recent decades as a
result of development policies that prioritized the state’s capital at the expense of other municipalities.
Consequently, as in other cities in Brazil, the process of development occurred unsustainably, when
considering the increase in population and the growing number of motor vehicles. Geographically
located near the Equator (latitude 03◦07′00” N, longitude 059◦57′00” W, and altitude 67.00 m) and
with an area of 11,401 km2, Manaus is home to a population of 2,145,444 inhabitants [10].

These data give a population density of 188.18 inhabitants per km2. Throughout the Amazonas
state, density is only two inhabitants per km2, revealing a huge concentration of population in the
state’s capital. Since 1970, the city’s population has grown from 300,000 to over 2 million inhabitants.
In 2000, Manaus was the ninth most populous city in Brazil and grew to take eighth place in 2004 [10].
Population growth in Manaus is demonstrated in Table 1.

The increased number of thermoelectric power plants (UTEs), which is also proportional to
population growth (since it is the basis of the power generation matrix), contributes directly to indices
of carbon monoxide, nitrogen oxides, and others pollutants in the atmosphere caused even by urban
traffic of the modern cities [11].

However, it is important to note that the polluting power of UTEs is not greater than the contribution
of vehicles, because the transportation sector consumes high levels of energy and is responsible for over
50% of fuel consumption globally. This can be attributed primarily to development processes, which
were dependent on petrol and diesel, particularly for the energy industry and transport sector [6].
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Table 1. Population growth in Manaus [10,12].

Year Inhabitants

1970 284,000
1980 635,000
1990 1,100,000
2000 1,405,835
2004 1,592,555
2005 1,644,690
2007 1,646,602
2008 1,709,010
2009 1,738,641
2010 1,802,014

The image of Figure 1 shows the geographic panorama of the location of the UTEs installed in the
city of Manaus.

 

Figure 1. Location of UTE’s in the city of Manaus/AM. Source: [13].

Rapid growth has also been observed with regard to the number of vehicles in the city of Manaus.
According to data provided by the Ministry of Cities, National Traffic Department (DENATRAN),
Manaus has 705,296 motor vehicles, and difficult conditions of transit (slow moving traffic, paving,
and other problems) associated with pollutant emissions and the noise can produced [14] may be
responsible for the deterioration of air quality in the city (Table 2).

The transport sector’s role in increasing emissions has been extensively reported worldwide.
In the countries of the European Community, transport contributes 75% of all carbon monoxide (CO),
40% of hydrocarbons (HC), and 48% of nitrogen oxides (NOx) [15]. In the United States, the main
source of CO is transport, despite reductions in emissions that have occurred since 1970 owing to
increasingly stringent standards of emission control and improvements in energy efficiency [16].
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Table 2. Data concerning the vehicle fleet in Manaus. Source: [17].

Type 2010 2012 2013

Automobile 246,265 285,796 309,162
Truck 14,314 15,990 16,406

Truck-tractor 1902 2348 2540
Van 48,537 58,977 83,700

Pickup-truck 18,367 21,607 23,166
Minibus 2280 2777 2894

Motorcycle 80,333 104,819 119,763
Motor-scooter 8269 10,320 11,821

Bus 5626 7307 7714
Trailer 1642 1848 1836

Semi-trailer 9618 10,861 11,236
Tractor wheels 48 50 58

Tricycle 90 342 571
Utility 2269 3473 4078
Other 60 65 67
Total 439,620 526,580 595,012

In Brazil, the situation is broadly similar, justifying concerns relating to air quality. The traffic
congestion occurring in virtually all capitals is responsible for 90% of CO, 80 to 90% of emissions
of NOx and hydrocarbons, and a considerable portion of particles that constitute a threat to human
health [18].

Consequently, the issue of transportation and the environment is a paradoxical one. On one hand,
increasing the number of vehicles meets the growing demand for mobility; on the other hand, the
effects are significant for society. Hence, transport plays a fundamental role in the lives of city dwellers
and is a major environmental concern because in coming decades, transport is expected to remain a
significant contributor to air pollution, especially in more populous cities.

Converging factors, such as the deployment of car factories and the construction of highways, led
to an increase in oil demand. As a result, the consumption of fuels increased, increasing emissions and
impacts on environment and society that are difficult to measure [8].

Undeniably, there has been major technological development of engines and fuels, resulting in
significant reductions in emissions of some pollutants. Notwithstanding, factors such as the growth
of vehicular fleets, traffic jams, and increases in distances traveled contribute to significant emission
increases. Moreover, one should take into account the fact that, although vehicle pollutants can be
formed in combustion processes, the production of pollutants per unit of burned fuel is higher in
vehicle engines [19].

There are several factors that produce this effect, including no permanent combustion, insufficient
fuel atomization, and the engine cooling system that prevents the oxidizing mix from burning equally.
Overtaking, stopped traffic, conversions, vehicle speed, and other typical traffic events also have
significant impacts on fuel consumption and emissions, caused by changes in operating motor
vehicles [19].

Despite the fact that the State of Amazonas represents the largest isolated energy system, its
capital, Manaus, does not have an environmental management policy directed at monitoring and
supervising air quality. The number of thermoelectric plants and motor vehicles is increasing within
its territory, mainly within the state’s capital; consequently, the city needs to adapt to the increase in
fuel and energy consumption.

Some developed areas such as the United States and Western Europe, have made significant
progress in relation to the control of air pollutants. These advances have been globally important;
however, poor air quality continues to affect many people in developing countries. This situation
is caused by rapid population growth combined with growing energy demand, weak standards for
pollution control, dirty fuels, and inefficient technologies. Some governments have begun to address
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this problem, but very strict measures are needed to reduce the serious impacts of air pollution on
public health worldwide [20].

Currently, some consequences are already notable in the atmosphere of Manaus as a result of
increased emissions of pollutants. These include smog, which is probably due to the high turnover of
cars, abundant sunlight, and frequent temperature inversions [21].

Nevertheless, very little is known about the effects of urban development on the quality of air
that local people breathe. This is because the immensity of the Amazon rainforest conveys the idea of
infinity of natural resources. It follows that, having abundance of exaggerated features and dimensions,
as is the case of the Amazon region, conscious concern with saving nature is minimized and natural
resources are used on a large scale, surpassing necessary limits [8].

Among major air pollutants, carbon monoxide is considered to be the vehicular pollutant with
greatest influence on the loss of quality of atmospheric air. Its emissions are related to incomplete
combustion, both in mobile sources and in stationary sources. The effects caused by the exposure to
the pollutant are associated with their affinity to hemoglobin in the blood, which is greater than that of
hemoglobin with oxygen, potentially leading to death by asphyxiation.

Nitrogen oxides also play an important role in atmospheric chemistry. These pollutants are not
required to be present in fuel composition in order to be formed, with formation occurring naturally
during all processes of combustion. These gases form when fuel is burned at high temperatures,
mainly from motor vehicle exhaust and stationary sources. Nitrogen dioxide is a strong oxidizing
agent that reacts in air to form corrosive nitric acid as well as organic nitrates and other toxic secondary
pollutants, which can attack the outer layer of the material of the monuments of the works of art [22].
It also plays a major role in atmospheric reactions by producing ground-level ozone (or smog) [23].

Nitrogen oxides may be involved in a series of reactions commonly associated with the occurrence
of peak ozone that produces photochemical smog, reducing visibility. In urbanized areas, one of
the obvious effects caused by burning fossil fuels is the occurrence of smog. It is a photochemical
phenomenon characterized by the formation of a kind of fog composed of pollution, water vapor, and
other chemical compounds [7].

In Manaus, the consequences of these factors added to forest fires in the dry season, result in
an environment with a high level of pollution and serious health problems caused by changes in
air quality. Currently, some consequences are already evident in the atmosphere of Manaus due to
the increase in pollutant emissions. This is the case with smog, probably due to high turnover of
automobiles, abundant sunlight and frequent thermal inversions.

According to Kuhn et al. [21], the main contribution in the urban pollutant plume in Manaus
was attributed to the city’s thermal power plant complex. Strong evidence has shown that there are
significant amounts of ozone from this source, as well as the relationship between the concentrations
of nitrogen dioxide found in the site studied and the activities related to the intense vehicular traffic,
which may directly influence the formation of photochemical smog in this region.

Figure 2 shows a photochemical smog in the city of Manaus, the visible differences of this
environment in the comparison of the images: (a) photographic record of an avenue in humid season of
the year; and, (b) photographic record of the same avenue in dry period of the year. The dry period
occurs between the months of July to December; the humid period occurs in the months January to June.

This phenomenon is unlike events recorded in other countries, such as in many American
cities where haze occurs during wet conditions. The American environmental agency, the EPA, has
announced a major effort to improve air quality in national parks and wilderness areas [23].
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(a) (b) 

Figure 2. Photographic record of Efigênio Sales Avenue, Coroado/Manaus (2014). (a) In the humid
period; (b) In the dry period.

On the contrary, in the Amazon, the atmosphere undergoes great changes during the dry season
due to emissions of trace gases and aerosol particles from pasture and forest. The intense deforestation
activity and the consequent emission of gases and particles from fires during the dry season have
important implications at local, regional and global levels [24]. In Manaus the rains wash the particles,
providing a better air quality.

The yellow color in the atmosphere of a city enveloped by smog is due to the presence of nitrogen
dioxide, because this gas absorbs some visible light near the limit of violet and, therefore, solar light
transmitted through the fog appears yellow.

The consequences of NO2 atmospheric emissions are diverse, because they cause several harmful
effects, direct or indirect, on the health and well-being of humans, fauna and flora, materials, soils, and
water bodies. The degree and extent of these effects depends on the scale of these emissions. They can
occur at local and regional levels owing to the short residence time of NO2. Local impacts are limited
to the vicinity of sources. Regional impacts comprise a much larger radius of hundreds of kilometers.

According to Kun et al. [21], the main contributors to urban air pollution in the plume of
Manaus were the complexes of power plants in the city. Strong evidence showed that there are
significant amounts of ozone derived from this source, potentially directly influencing the formation of
photochemical smog in the region. The study recorded a rate of ozone in the order of 15 ppb/h within
the plume of pollutants.

In the Amazon, there is no air quality monitoring network, the vehicle fleet is increasing
exponentially, and the electric sector is made up of 80% thermal generation. These facts motivated this
work, which presents the partial results of a survey on air quality carried out by the research group
of the Interdisciplinary Center for Energy and Environment (NIEMA) at the Federal University of
Amazonas. The study analyzed CO and NO2 emissions in an urban area of the city of Manaus, using
different methodologies.

2. Materials and Methods

As the impact of human activities is increasing on a global scale, the need to recognize and deal
with the health risks associated with air pollution has become increasingly urgent [25]. Accordingly,
emission monitoring has been adopted as a tool for the management of air pollution, aiming to
eliminate or reduce pollutants to acceptable levels.

However, despite the efforts that have been made to clean up the atmosphere, pollution remains
a major problem, posing a continuous health risk. Population growth, coupled with an increase in
the number of circulating vehicles, traffic conditions, and characteristics of vehicular fuel pollutants,
are factors that create a worrying scenario in relation to air quality. This research was conducted by
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researchers from NIEMA in the context of two research projects supported by National Council for
Scientific and Technological Development (CNPq).

2.1. Emissions Monitoring

There are two main types of monitoring: Monitoring emissions directly at the source, and air quality
monitoring. In the first type, the concentration of pollutants released into the atmosphere by ducts and
chimneys (CME, or Maximum Concentration of Issue) is measured. Conversely, monitoring of air quality
deals with the measurement of emissions scattered into ambient air (CMI, or Maximum Concentration
Immersion). Both are important because they are chemically related, depicting the pathways that
pollutants follow in atmospheric air, dragged by winds, washed by rainfall, or transformed by chemical
reactions and solar energy [6].

The weather conditions affect the quality of air, phenomena such as the dispersion and removal
of pollutants are closely related to climatic factors, weather conditions, topography, and the use and
occupation. For this reason the study of atmospheric chemistry involves knowledge of these conditions,
for environmental vitality of any region depends on the ability to exchange energy and matter without
accelerating the entropy processes [26].

In this study the variations of meteorological parameters were recorded and considered in the
analysis of the measurements. Figure 3 shows the data considered during the study period.

 

Figure 3. Simultaneous variation of meteorological parameters.

Air quality can be measured using passive or active monitors. Passive samplers are well known
because the molecules of the gas of interest are absorbed in the atmosphere by diffusion and/or
molecular permeation. These methods were initially used for monitoring indoor environments but are
today occasionally used to monitor gases and vapors at low outdoor concentrations [27].

Two sampling sites (passive and active) were installed in a space belonging to the Ministry of
Agriculture, Livestock and Supply (MAPA) at a location with coordinates 03◦02′36” S and 60◦04′28”
W (Figure 4). This particular location was selected owing to its situation in a neighborhood of busy
avenues, where it is consequently influenced by both mobile and urban sources. The two points were
located in parallel. Direct monitoring of vehicular sources was conducted at a distance of 3 m from the
samplers [27].
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Figure 4. Image of passive and active sample mesh.

2.2. Data Stratification

The sample was made up of vehicles manufactured between 1982 and 2013, as shown Table 3.
Data collection took place through stratified sampling. Strata have been classified as follows:

Light vehicles, heavy vehicles (trucks and buses), and motorcycles, with the total size of 262 vehicles.
The strata are detailed in Table 3. In this sample we selected one hundred and seventy light vehicles,
sixty seven motorcycles, eight trucks, eight buses and eight minibus.

According to the type of vehicles, the sample was stratified as follows: Two hundred and eleven
vehicles powered by gasoline, twenty one vehicles running on ethanol and 30 Diesel.

Table 3. Year of Manufacture.

Year N◦. of Vehicles Year N◦. of Vehicles Year N◦. of Vehicles

1985 2 2000 5 2007 15
1987 2 2001 4 2008 26
1990 2 2002 2 2009 22
1995 2 2003 2 2010 44
1996 2 2004 11 2011 44
1998 2 2005 14 2012 34
1999 2 2006 18 2013 3

2.3. Passive Monitoring

Concentrations of NO2 were provided by passive analyzers. The methodology adopted was
described by Ugucione et al. [28], and consisted of the use of passive samplers installed three meters
above the ground on a stand with eight samplers; three of these samplers were used as blank and
remained sealed during sampling.

Passive monitoring took place over three months; subsequently, chemical analysis was performed
in the laboratory of environmental analytical chemistry of the National Institute of Amazon Research
(INPA), employing a molecular UV-Vis spectrophotometer with absorbance at a wavelength of 540 nm.
The calibration curve was prepared for each analysis using the standard solution of sodium nitrite.
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The concentration of NO2 was calculated using the first integration of Fick’s Law [29]. The Figure 5
shows the image of the measurement sites and the Figure 6 is the photographic record of one of the
installed passive analysers.

 

Figure 5. Map of the passive sampling mesh.

 

Figure 6. Support with samplers installed at the study site.

2.4. Automatic Monitoring

In addition, an air quality monitoring station, installed a few meters away from the point of
passive samplers (Figure 7), provided data on the carbon monoxide concentrations. The Model 48I
CO Analyzer from Thermo Scientific was used, with this being widespread and tested throughout the
world by environmental agencies.
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Figure 7. Air Quality Monitoring Station installed.

2.5. Vehicular Source Monitoring

The instrument of measurement used for vehicular sources was the exhaust gas analyzer for
engines, BRIDGE MODEL 900403. This analyzer uses a proven methodology for the measurement
of gases, NDIR (Non Dispersive Infra-Red) for the gases CO, HC, and CO2, and electrochemical
sensors for measuring O2 and NOx. The collection of data for vehicular sources was carried out for
three consecutive days during November 2012. This study made use only of data for CO and NO2.
The Figure 8 shows photographic records of the measurements made.

Figure 8. Measurement in vehicular sources.

3. Results and Discussion

Direct NO2 emissions from vehicular sources were grouped according to the corresponding year of
manufacture of each vehicle. The results indicate that average NO2 concentration was 89.01 ppm (Figure 9).

 

Figure 9. Emission of NO2 according to the year of manufacture of the vehicle.
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It was also evident that older vehicles are the largest emitters, because the largest quantity of
emissions corresponds to a smaller number of old vehicles, while a large number of new vehicles have
lower emissions.

According to CONAMA Resolution 418, the maximum exhaust emission of CO was fixed at 0.3%
(3000 ppm). Dependent on vehicle type, it was observed that measured values were above legal limits.
The findings also showed that motorbikes have average CO emissions much greater than those of
other types of vehicles. The lack of space for installation of efficient equipment such as filters, for
example, seems to be one of the difficulties faced in making this means of transport more ecologically
friendly (Table 4).

Table 4. CO average emissions according to vehicle type obtained by the research sample.

Vehicle Type CO (%)

Light Vehicle 0.61 (6100 ppm)
Motorcycles 12.64 (126,400 ppm)

Trucks 0.71 (7100 ppm)
Bus/Minibus 0.75 (7500 ppm)

In 2009, PROMOT (Program for Control of Air Pollution by Motorcycles and Similar Vehicles)
imposed fairly strict restrictions on the emission of pollutants, but these were restricted only to
new motorcycles.

It was found that gasoline is the largest emitter of CO (Table 5). Owing to the large number
of gasoline-powered vehicles, high concentrations of carbon monoxide are generally found in cities,
mainly in areas of large moving vehicles.

Table 5. Average emissions according to fuel type obtained by the research sample.

Fuel Type CO (%) NOx (ppm)

Gasoline 1.95 (19,500 ppm) 82.2
Ethanol 1.521 (15,210 ppm) 113.93
Diesel 0.94 (9400 ppm) 34.03

It also became evident that ethanol-fueled vehicles emit more nitrogen oxides than diesel and
gasoline-powered ones. Measures have been taken for stationary vehicles and those at average
acceleration that facilitate an increase in evaporation losses. With the vehicle stationary and the engine
running, the conditions under which measurements were conducted, CO emissions are higher. This is
because, at the beginning of the combustion process, the fuel quantity in the mix (fuel × air) is greater,
resulting in inefficiency of combustion and in the formation of CO in large quantities. This fact confirms
that traffic congestion conditions are decisive for pollutant emissions.

It also became evident that ethanol-fueled vehicles emit more nitrogen oxides than diesel and
gasoline-powered ones. Measures have been taken for stationary vehicles and those at average
acceleration that facilitate an increase in evaporation losses. With the vehicle stationary and the engine
running, the conditions under which measurements were conducted, CO emissions are higher. This is
because, at the beginning of the combustion process, the fuel quantity in the mix (fuel × air) is greater,
resulting in inefficiency of combustion and in the formation of CO in large quantities. This fact confirms
that traffic congestion conditions are decisive for pollutant emissions.

In addition to measuring the exhaust gases of vehicles, the automatic monitoring station provided
data on the atmospheric concentration of CO. The verification of these results showed that the levels
of carbon monoxide vary over time, being lower during morning hours and higher during periods of
intense traffic movement. Hourly average emissions of carbon monoxide provided by the monitoring
station during the first three days of sampling are shown in Figure 10.
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Figure 10. Information from the emission of CO by hours of the day. Source: Research NIEMA.
Note: Measurements of NO2 in atmospheric air were performed with passive analyzers, installed a
short distance from the site of vehicular source monitoring. Results obtained at this sampling point
during the month in which the survey was conducted were as follows: Sample 1: 0.117 ppm; Sample 2:
0.153 ppm; Sample 3: 0.118 ppm; Sample 4: 0.135 ppm; Sample 5: 0.174 ppm.

The Brazilian legal standard (CONAMA 03) defines the maximum NO2 limit as being 0.170 ppm,
which was exceeded only in one sample. However, the World Health Organization reduces this limit
to 0.100 ppm. This standard was exceeded at all sampling points [30].

4. Conclusions

The aim of this study was to quantify emissions of nitrogen oxides and carbon monoxide in
vehicle exhaust gases in an urban area. In recent decades, as a consequence of the development process
and of limited investment in public transport, the choice of individual means of transport has been
responsible for most of the impact on air quality. Saturated urban roads and the idling of vehicle
engines result in incomplete combustion of fuel, resulting in substances that are not fully oxidized,
such as carbon monoxide and unburned combustible material (HC).

Even if we discard the utopian theories of sustainable development, the increasing number of
automotive vehicles seems to make sustainability almost a chimera. Considering population growth
and heavy reliance on cars, there are no doubts about the urgency of finding energy alternatives to
ensure the possibility of a reasonably sustained system.

This problem is tending toward becoming chronic. The analysis developed here highlights the fact
that sustainable development goals are unattainable in the face of breakneck-speed economic growth
and social and regional differences, creating dangerous imbalances for future generations. The results
from these mismatches are evident, demanding that we reflect on the growing use of energy, increased
greenhouse emissions, and investments in public transport, not to mention the need to look at each
region with a different perspective, seeking in diversity the solutions for equality.

In Manaus, there more than two million people and almost 500,000 vehicles circling the city.
That means a motorization of 4 people per vehicle. By analyzing these facts and the data presented in
this study about pollution, we conclude that the city of Manaus is not yet one of the most polluted
Brazilian cities, but that there is a problem in the making that cannot be ignored.

The results from the study suggest that gasoline-powered lightweight vehicles are the main
emitters of CO and that ethanol-fueled vehicles emit more nitrogen oxides than gasoline-driven
vehicles. It was also noted that the emerging segment of motorcycles, which has grown substantially,
needs greater control.

In fact, pollution abatement should demand monitoring of emissions mainly from mobile sources
in order to reduce impacts on the environment and on people’s health. Monitoring is an important
environmental management tool in the assessment of air quality, allowing the establishment of
measures of prevention and control, which may suggest energy redevelopment interventions consisting
of new plant and building technologies, in addition to offering subsidies for traffic.
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Above all, so that public policies can be created to reduce emissions, it is important to find ways
to measure actual vehicular emissions. Moreover, it is necessary that pollutant emissions are estimated
with precision to ensure the appropriate implementation of environmental management policies.

The Program for Air Pollution Control by Automotive Vehicles (PROCONVE) of the Ministry
of Environment, based on values measured in laboratory tests, quantified emissions in g/km.
The resolution CONAMA number 415 (2009) established the PROCONVE phase L6 to control such
emissions from 2013 onwards. To reduce air pollution in urban centers and save fuel, the legal norm in
question lays down emission ceilings for the following pollutants from exhaust of motor vehicles.

• Carbon monoxide (1.3 g/km)
• Total hydrocarbons (THC) only for natural gas vehicles (0.3 g/km)
• Non-methane hydrocarbons (NMHC) (0.05 g/km)
• Oxides of nitrogen (NOx) (0.08 g/km)
• Aldehyde (CHO) for Otto cycle (0.02 g/km)
• Particulate matter (PM) to Diesel cycle (0.025 g/km)
• Carbon monoxide at idling to Otto cycle (0.2% in volume)

These tests do not refer to emissions of used vehicles. Moreover, even if they are conducted under
strictly controlled conditions, they do not reflect the real use conditions of vehicles.

The processes of dispersion and diffusion of pollutants in air are affected by various environmental
characteristics that complicate the process of measurement that is not conducted at source.
Measurements taken directly at the source, i.e., at the output from vehicle exhaust, seem to better
reflect actual conditions of use of the vehicle.

Many challenges must be faced by developing countries, because these countries must achieve
rapid economic growth without compromising air quality. This seems to be an unattainable goal
considering global limits; however, an excellent model to follow is that of the developed world, in
which progress in air quality has been pursued more effectively.
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Abstract: As air pollution characterized by fine particulate matter has become one of the most
serious environmental issues in China, a critical understanding of the behavior of major pollutant is
increasingly becoming very important for air pollution prevention and control. The main concern of
this study is, within the framework of functional data analysis, to compare the fluctuation patterns of
PM2.5 concentration between provinces from 1998 to 2016 in China, both spatially and temporally.
By converting these discrete PM2.5 concentration values into a smoothing curve with a roughness
penalty, the continuous process of PM2.5 concentration for each province was presented. The variance
decomposition via functional principal component analysis indicates that the highest mean and
largest variability of PM2.5 concentration occurred during the period from 2003 to 2012, during which
national environmental protection policies were intensively issued. However, the beginning and
end stages indicate equal variability, which was far less than that of the middle stage. Since the
PM2.5 concentration curves showed different fluctuation patterns in each province, the adaptive
clustering analysis combined with functional analysis of variance were adopted to explore the
categories of PM2.5 concentration curves. The classification result shows that: (1) there existed eight
patterns of PM2.5 concentration among 34 provinces, and the difference among different patterns
was significant whether from a static perspective or multiple dynamic perspectives; (2) air pollution
in China presents a characteristic of high-emission “club” agglomeration. Comparative analysis
of PM2.5 profiles showed that the heavy pollution areas could rapidly adjust their emission levels
according to the environmental protection policies, whereas low pollution areas characterized by the
tourism industry would rationally support the opportunity of developing the economy at the expense
of environment and resources. This study not only introduces an advanced technique to extract
additional information implied in the functions of PM2.5 concentration, but also provides empirical
suggestions for government policies directed to reduce or eliminate the haze pollution fundamentally.

Keywords: PM2.5 concentrations; functional principal component analysis; adaptive clustering
analysis; functional ANOVA; spatial and temporal difference

1. Introduction

With the rapid development of industrialization and urbanization in China, haze pollution
characterized by particulate matter smaller than 2.5 μm occurs more frequently and widely, which
has seriously endangered the physical and mental health of residents, and threatened the sustainable
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development of China’s economy. According to statistics, the severe haze events that occurred in the
first quarter of 2013 affected about 13.5% of the land area and 800 million people in China [1]. It is
estimated that without a pollution control policy, the particulate matter pollution in China will lead
to a 2% GDP loss and 25.2 billion USD in health expenditure in 2030 [2]. Thus, the prevention and
control of haze pollution is not only a major livelihood project, but also an important way to assist
the transformation of China’s economic development model and the optimization and adjustment of
China’s economic structure. Since China’s State Council released the “Air Pollution Prevention and
Control Action Plan” in September 2013, which was a milestone for reducing PM2.5 concentrations,
local governments have promulgated their own air pollution control action plans. However, due to
the multiple effect of various complex factors, such as an extensive development mode, unbalanced
industry structure, and inefficient energy utilization, the fluctuations of PM2.5 concentrations in
different provinces exhibits obvious regional disparities and temporal characteristics [3–8]. Therefore,
understanding the dynamic behavior of PM2.5 concentrations is beneficial to further formulate and
implement targeted environmental protection policies.

As a developing country with a dual structure, China is characterized by an unbalance of regional
economic development and deteriorating environmental problems which resulted from its extensive
mode of economic development and over-consumption of energy. Many researchers have pointed
that haze pollution has become an obstacle for China to attract foreign investment, talent and tourists,
and even threatens sustainable development in China [9,10]. Since PM2.5 concentrations always
change with time and fluctuate diversely across regions, intensive studies have been carried out on
interpreting the spatial and temporal variability of PM2.5 concentrations in China, both from city-level
and national-scale perspectives. For example, taking Weifang city as a research object and based on the
data of controlled monitoring stations, Li et al. concluded that the annual PM2.5 concentrations reached
a peak in 2013, while the seasonal and monthly PM2.5 concentrations formed a U-shaped trend [11].
Considering Beijing and six surrounding cities as main research areas and based on correlation analysis
of geo-statistics techniques, Zhai et al. studied the relevant relationship of PM2.5 concentrations in
Beijing [12] and found that the pollutant concentrations exhibit obvious cyclical fluctuation patterns
with significant spatial correlation. Studies on spatial-temporal characteristics of PM2.5 concentration
on the national-scale includes references [13–16], their common conclusions are that China’s haze
pollution presented an obvious spatial spillover effect, and that PM2.5 emissions had strong positive
spatial autocorrelation with a certain spatial heterogeneity.

In light of the fact that PM2.5 concentrations are the combined result of various factors, numerous
literatures focus on exploring its primary cause via advanced methods. For example, Guan et al.
presented an interdisciplinary study to measure the magnitudes of socio-economic factors in driving
primary PM2.5 emission changes in China between 1997–2010 [17]. According to the latest air quality
standards of China, Wang et al. characterized the spatial and temporal variations of the concentrations
of PM10, PM2.5 and PM1 in China, their conclusion showed that the ratios of PM2.5 to PM10 showed a
clear increasing trend from northern to southern China, and that both emissions and meteorological
variations dominate the long-term PM concentration trend, while meteorological factors played a
leading role in the short term [18]. In order to monitor PM2.5 by remote sensing in the Yangtze delta,
Xu and Jiang constructed a PM2.5 concentration model based on MODIS AOT, PM2.5 concentration
data of the 36 ground air quality observation sites and meteorological data, and empirical results
proved their model estimation was higher than classical methodology [19]. Through the CAMx model,
Cheng et al. examined spatial-temporal variations of PM2.5 concentrations during two alerts based on
multiple data sources, their results suggested that the implementation of emission reduction measures
1–2 days before red alerts could lower the peak of PM2.5 concentrations significantly [20]. Using PM2.5

concentrations data at China’s provincial level over 1998–2012, Shao et al. adopted a dynamic spatial
panel model and SGMM to empirically identify the key determinants of smog pollution, their results
indicated that there was a significant U-shape curve relationship between smog pollution and economic
growth, and smog pollution was worsening with economic growth in most eastern provinces [16]. With
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PM10 and PM2.5 concentration data collected from five air-quality monitoring sites in Lanzhou from
October 2014 to October 2015, Guan et al. investigated the primary transport path using Hybrid Single
Particle Lagrangian Integrated Trajectory Model (HYSPLIT) and the PM2.5-to-PM10 ratio model [21].
Noticeably in these studies, all model constructions and empirical results were based on discrete
and equal-sampled observations without any error disturbance. Additionally, the spatial-temporal
characteristics of the PM2.5 concentrations are also the major issues for air pollution investigations
in many other countries, including developing and developed countries or regions. An array of
literature focuses on assessing PM2.5 spatial-temporal variability. For example, based on data from
biophysical remote sensing and GIS, Famoso F, et al. conducted the measurement and modeling
of ground-level ozone concentration of Catania in Italy [22]. Using PM2.5 concentrations at 71 EPA
monitoring stations from 2006 to 2011, Wu et al. applied a hybrid kriging/LUR model to assess the
spatial-temporal variability of PM2.5 for Taiwan [23]. In order to identify the local and long-range
sources of PM2.5 and their relationships with other air pollutants and meteorology, Mukherjee et al.
investigated the local and distant sources of PM2.5 from 2014 to 2017 in Varanasi city located in middle
Indo-Gangetic plain (IGP) of India using various statistical modeling methods [24], such as conditional
bivariate probability function (CBPF), land use regression (LUR) and trajectory statistical models
(TSM) like potential source contribution function (PSCF),concentration weighted trajectory (CWT)
and trajectory cluster analysis. Considering LUR models may fail to capture complex interactions
and non-linear relationships between pollutant concentrations and land use variables, Brokamp et al.
developed a novel land use random forest (LURF) model and compared its accuracy and precision
to a LUR model for elemental components of PM in the urban city of Cincinnati, Ohio [25]. The
comprehensive comparison showed that these methodological approaches provide efficient means to
better assess PM2.5 spatial-temporal variations and prediction levels, and usually work well with large
scale pollution dispersion.

Although the existing studies on PM2.5 concentrations have provided many meaningful
suggestions, their shortcomings are also obvious. Firstly, most of the empirical methods were statistical
descriptions or econometric modeling using discrete noisy data, which cannot mine the continuous
trajectory and dynamical information implied in the changing process of PM2.5 concentrations.
Secondly, most studies focused on the research scale of mainland China and metropolitan areas
which neglected the increase in regional differentiation, or analyzed the individual district separately,
with little consideration of the homogeneity of different regions. Thirdly, the existing studies used
mostly rough and historical data collected by ground monitoring stations. Unlike the air pollution
index, PM2.5 concentrations have only been recorded since 2012 in China, thus having too short or too
old time scales that result in a low temporal resolution.

It should be noted that data in many scientific experiments are recorded repeatedly through time
or space and have been seen to arise as a continuous process. Examples of such kinds of observations
are hourly records of PM2.5 concentrations and daily records of air quality. The classical discrete data
modeling approaches are found to be inadequate in understanding the underlying process of the
pollutant and hence prevent the implicit information from being revealed [26,27]. The coming era of
big data makes it possible to analyze these discrete noisy data by converting them into continuous and
smoothing functions, then we can explore the dynamic information implied in the original data from
multiple derivative functions [28]. The new modern statistical methodology which considers discrete
time point values as observations of continuous functions over a continuum is termed as Functional
Data Analysis (FDA) [29]. The functional concept may bring additional insight by looking at the pattern
and temporal variation of pollutant variables in the form of smoothing curves or functions. A previous
study by Shaadan et al. highlighted the advantages of an FDA approach in assessing and comparing
the PM10 behavior [27], while several studies that focus on using FDA to analyze the pollution behavior
have proved the merits of FDA in environmental pollution research [27,30–32]. To the best of our
knowledge, there is little research studying the spatial-temporal variability of PM2.5 concentrations
in China within the framework of continuous functions. Thus, using PM2.5 concentrations data at
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provincial level from 1998 to 2016, this study will employ FDA to classify the fluctuation patterns of
PM2.5 pollution for 34 provinces, and dynamically compare their evolving trajectories. The empirical
results is helpful for enhancing the recognition of the spatial distributions and dynamic changes of
PM2.5 concentrations in China, and can provide quantitative support for governments to formulate
and implement air pollution prevention and control measures.

2. Methodology

In this subsection, we introduce the framework of FDA, which mainly includes smoothing
PM2.5 pollution functions with roughness penalty, classifying categories of fluctuations via adaptive
weighting clustering analysis, and testing the significance of difference among different regions
using functional ANOVA. Data processing and analysis are conducted using the free R software (R
Development Core Team, 2018), together with package “fda.usc” (Febrero-bande et al., 2016) [33] and
package “fda” (Ramsay et al., 2013) [34].

2.1. Smoothing with or without Roughness Penalty

PM2.5 concentrations data is often recorded at discrete time intervals, and is usually analyzed
within the framework of traditional time series or multivariate statistical approaches. But in the context
of functional data analysis, the PM2.5 concentration data is essentially assumed to be continuous with
time, even though the concentration data is collected at a daily, monthly or annual frequency. The
primary goal of FDA is to convert discrete data, such as yi1, · · · , yiTi , to a smooth function fi(tj), which
is computable for any values of tj with j = 1, · · · , Ti. There are two ways to convert the discrete
data into continuous functions, their core difference lies in the presence or absence of disturbance
factors. If the data is assumed to be errorless, that is yij = fi(tj), the interpolation method may be
employed. However, if there are observational errors that need removing, the smoothing process will
be used. In reality, the PM2.5 concentrations data is always contaminated by random noise εij, that is
yij = fi(tj) + εij. Considering the universality of practical problems and our intention of converting the
discrete noisy data into quadratic differentiable functions, we mainly discuss the smoothing functional
method with roughness penalties to error disturbances. Assuming Φ(t) = {φ1(t), · · · , φL(t)} to be
the optimal basis function in Hilbert space, the sum of squared fitting residuals for the roughness penalty
(PENSSEκ) [29,34,35] is given as follows:

PENSSEκ =
n

∑
i=1

{
Ti

∑
j=1

[yij − fi(tj)]
2 + κ

∫
T
[ f ′′i (t)]

2dt} (1)

The intrinsic continuous function fi(t) in Equation (1) is a linear approximation of the basis
function to meet the criterion of minimizing the PENSSEκ , i.e., fi(t) = ∑L

l=1 βilφl(t), where βil denotes
the coefficients of the basis function expansion. The smoothing parameter κ specifies the proportion
between the goodness of model fitting and the smoothing amount of the function curve. Large values
of κ will increase the amount of smoothing. The best value for the smoothing parameter κ is determined
by the minimum generalized cross-validation GCV(κ) [34]. The criterion is given as follows:

GCV(κ) =

(
n

n − d f (κ)

)(
PENSSEκ

n − d f (κ)

)
(2)

where the degree of freedom d f (κ) = trace
{

Φ(Φ′Φ + κR)−1
Φ′
}

and the roughness penalty matrix R

is expressed as R =
∫

D2φ(s)·D2φ′(s)ds. Based on the above symbols, solving Equation (1) for β will
give us β̂ = (Φ′Φ + κR)−1

Φ′y, then 34 provinces with 18 yearly measurements will be transformed
into 34 PM2.5 concentrations curves. A complete theoretical review of the penalty smoothing method
can be found in Kokoszka et al. (2017) [36], and the steps of the algorithm are detailed in Ramsey et al.
(2009) [34]. It should be noted that FDA does not restrict all samples to be sampled at regular intervals or
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same frequency on the observing interval, that is Ti �= Tj. Thus, the relaxed structure of data collection
and hypothesis of distribution enable FDA to depict practical problems more comprehensively and
flexibly [37]. Particularly, once the intrinsic functions are reconstructed from the discrete noisy
data, we can not only display the continuously changing trajectory of PM2.5 concentrations statically
from the holistic perspective, but also can analyze their dynamic process interactively from multiple
derivative functions.

2.2. Significance Test of Difference via Functional Analysis of Variance

The functional analysis of variance (F-ANOVA) is used to test whether two or more sets of
functional data are identical, independent, and come from the same population. The verification was
done by comparing their functional means. Let g represent the number of groups or zones, with
fij(i = 1, · · · , g; j = 1, · · · , ni) as the jth-functional data for i groups, and ni is the number of curves in
group i. As a first step in F-ANOVA, the classical F statistic in the form of functional data is considered
and is given as:

Fn =
∑

g
i=1 ni

∥∥∥ fi. − f..

∥∥∥2
/(g − 1)

∑i,j

∥∥∥ fij − fi.

∥∥∥2
/(n − g)

(3)

where ‖·‖ denotes the usual L2 norm as ‖ f ‖ = (
∫

f 2(t)dt)1/2. The expressions used in Equation (3)
are described by fij = ( fij(t1), · · · , fij(tT))′, fi. = ( fi.(t1), · · · , fi.(tT))′ and f.. = ( f..(t1), · · · , f..(tT))′,
which can be computed as fi.(t) = ∑ni

j fij(t)/ni, n = ∑
g
i=1 ni and f..(t) = ∑

g
i=1 ni fi.(t)/n. f.. is the

global functional mean and fi. is the functional mean in the ith groups, respectively, at time t. With the
above symbols, the equivalent statistic of Equation (3) can be rewritten as:

Vn =
g

∑
i<j

ni

∥∥∥ fi. − f j.

∥∥∥2
(4)

Given the null hypothesis of having the same functional means for each i group, that is, H0 :
f1. = · · · = fg., calculate the critical value PH0{F > Fn,α} = α and PH0{V > Vn,α} = α at the specified
significance level α respectively. H0 should be rejected if the variability between groups, which are
measured by the difference in the sample means Fn and Vn, is large enough to be expressed as Fn > Fn,α

and Vn > Vn,α. In other words, the test is found to be statistically significant if the p-value is less than
the α significance level. The detailed steps of algorithm can be found in Cuevas et al. (2004) [38]. This
procedure uses a point-wise critical value obtained using a permutation test for reference lines [39].

2.3. Functional Principal Component and Adaptive Clustering Analysis

The intrinsically infinite dimensionality of functional data poses challenges to traditional
clustering methods used for classifying discrete data, both for theory and computation [40–42]. In order
to reduce the cost of calculation and elevate the accuracy of classification, we employ the adaptive
weighting clustering analysis to classify the fluctuation patterns of PM2.5 concentrations curves, and
use bootstrap sampling methods to test the significance and robustness of difference among groups.

Let V(s, t) = (N − 1)−1∑N
i=1 [ fi(s)− f (s)][ fi(t)− f (t)] be a continuous covariance operator

on [0, T]2, by Mercer’s lemma [43], there exists an series of orthogonal functions ϕk(t) with their
corresponding non-negative decreasing eigenvalues λk satisfying:

∫ T

0
V(s, t)ϕl(s)ds = λl ϕl(t) t ∈ [0, T], l ∈ N (5)

with respect to ∫ T

0
ϕl(t)ϕm(t)dt = δlm =

{
1 , m = l
0 , m �= l

(6)
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Further, for the second-order continuous stochastic process { f (·), t ∈ [0, T]} on L2(T), the
realization of the process for the ith subject is fi(t). Denote μ(t) and V(s, t) as the mean and covariance
of fi(t), respectively. Then the Karhunen-Loève expansion of fi(t) [44] is given as:

fi(t) = μ(t) +
∞

∑
k=1

ζik( fi)ϕk(t) , t ∈ [0, T] (7)

where ζik( f ) =
∫

T ( fi(t)− μ(t))ϕk(t)dt are the functional principal components (FPCs), sometimes
referred to as scores. The ζik(·) are independent across i for a sample of independent trajectories and are
uncorrelated across k with E(ζik) = 0 and var(ζik) = λk. Furthermore, the covariance of ζik(·) satisfies

E[ζk( f )ζl( f )] = λkδkl k, l ∈ N (8)

From the Karhunen-Loève expansions of stochastic process, we can infer that ζik( f ) are the
projection scores of centered functions ( fi(t) − μ(t)) to the direction of a standard orthogonal
basis function ϕk(t), which is objectively derived from the information implied in original PM2.5

concentrations data. Based on the Karhunen-Loève expansion of Equation (7), the difference among
categories of different functional data is entirely reflected by the difference between their projected
scores ζ·k( f ). Since λk is also the variance of ζ·k( f ), and without loss of generality, assume their
sequence order satisfying λ1 ≥ λ2 ≥ · · · ≥ 0. In order to reflect the objective difference of classification
information implied in ζ·k( f ), define βk = λk/∑l≥1 λl as the weight of ζ·k( f ), we reconstruct the
adaptive weighting distance between ζi( f ) and ζ j( f ) as:

d[ fi(t), f j(t)|q] = [
∞

∑
l=1

(βl
∣∣ζl( fi)− ζl( f j)

∣∣) q
]

1
q (9)

The distance parameter q is analogous to the classical definition of similarity, with q = 2
corresponding to the Euclidean distance. In practice of conducting adaptive clustering analysis,
it is unnecessary to choose all the FPCs. Without a loss of core information, the criteria for selecting
the number of FPCs is the minimum value M that reaches a certain level of the proportion of total
variance explained by the M leading components, such as ∑M

l=1 λl/∑l≥1 λl1{λl>0} ≥ 90%. Further
information on the theoretical foundation and applications of functional adaptive clustering method
could be obtained from our previous works [45–47].

3. Data Sources and Empirical Results

3.1. Data Sources

The reliable data source of PM2.5 concentrations is crucial for this study. After China’s Ministry
of Environmental Protection issued the new environmental air quality standard in February 2012,
local governments began to routinely record and release the data of PM2.5 concentrations. Due to
lacking data of a long-term time span, it is difficult to extract the dominant patterns of evolution for
PM2.5 concentrations. Besides, because the number of ground monitoring stations is small and its
distribution is uneven, the rough reflection using sparse points to denote the whole area cannot exactly
measure the real situation of PM2.5 concentrations. In order to solve the data deficiency of historical
and regional PM2.5 concentrations, this paper adopts the data sets regarding the raster data of the
annual average PM2.5 concentrations at a global level using satellite-based environmental surveillance,
which is published by the socio-economic research center at Columbia University. The data sets used
here are obtained from the study by van Donkelaar et al. (2016) [48], which had calibrated each AOD
source using AERONET observations. Based on the data sets, using geographic information system
technology, we could obtain the corresponding raster data of the annual average PM2.5 concentrations
in China for the period 1998–2016. Notably, however, compared with that directly from actual
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monitoring data on the ground, although the data sets collected from satellite-based monitoring
process could be affected by meteorological factors, which thereby led to a lower accuracy, the data
sets from actual monitoring data on the ground could only roughly provide PM2.5 concentrations in
a region using area object other than point one based on point source data, and thus it’s difficult to
accurately measure global PM2.5 concentrations in the region. Being an important non-point source
data, satellite-based monitoring data sets have more advantages than the traditional methods in terms
of reflecting the value of the PM2.5 concentration and its change trend in a region. Actually, the research
based on satellite-based monitoring data has won the recognition of the academics, owing to the works
of Nordhaus et al. [49,50], who won the Nobel Prize Economics in 2018. Thus, the satellite-based
monitoring data employed by this study is reliable. Additionally, from the technical perspective of
empirical analysis, FDA owns the congenital advantage of modeling noisy data when smoothing with
roughness penalty, even when the data is sparse or sampled unequally. Thus, having combined the
reliable data source with the advanced methodology, it is reasonable to draw reliable conclusions.

3.2. Reconstructing PM2.5 Concentrations Functions and Summary Statistics

As a rule of thumb, it is safer to smooth only when necessary if we want to retain the maximal
information [51,52]. In order to verify the necessity of roughness penalty in reconstructing PM2.5

concentrations functions, we firstly select the optimal smoothing parameter which minimizes the
GCV. Figure 1 shows how the GCV criterion varies as a function of log10(k) for the mean of PM2.5

concentrations. The minimizing value of k is found to be 1.25, and at that value d f (k) = 3.81 ≈ 4.
Next, we plot the penalized PM2.5 concentrations curve with the selected smoothing parameter, and
the comparison object, that is the mean of un-penalized PM2.5 concentrations curve without roughness
penalty, is also plotted in Figure 2. Taking the trajectory of the penalized curve as benchmark, we can
clearly see that the mean of PM2.5 concentrations experienced a fluctuation, increased rapidly and then
declined slowly, and reached its maximal value round 2007. Though there is a slight rebound during the
descending process, the PM2.5 concentrations kept a downward trend at the end of the research interval,
which can be attributed to the synthetic effect of environmental protection policies [53]. In contrast,
the trajectory of the un-penalized PM2.5 concentrations curve fluctuated frequently with a cycle about
every two years, but the dominant changing trend of PM2.5 concentrations was obscured by those
slight fluctuations with various amplitudes. Thus, we decided to smooth the PM2.5 concentrations
with a roughness penalty at the value of k = 1.25.

Figure 1. The values of generalized cross validation or GCV criterion for choosing the smoothing
parameter for fitting the mean of PM2.5 concentrations.

Figure 3 displays the summary statistics for the functional information of PM2.5 concentrations in
terms of their mean and standard deviation for all regions. It shows that generally, the highest mean
PM2.5 concentrations were recorded around 2007, the year during which environmental protection
policies were formulated and implemented intensively in China, such as a campaign for energy-saving.
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The trajectory of the standard deviation function also follows the same pattern as the functional mean
of PM2.5 concentrations. That is, the PM2.5 concentrations variability increased rapidly since 1998, and
reached its maximal value around 2007, then kept a high level with a slight rebound. It should be
noted that the value of standard deviation is larger when the level of PM2.5 concentrations is high.
For the increasing deviation, we ascribe it to the differentiated reactions from different regions when
facing the dilemma between environmental protection and extensive economic development.

Figure 2. Smoothing curves with roughness penalty and without roughness penalty for the mean of
PM2.5 concentrations.

Figure 3. (a) The average of mean and (b) the standard deviations for yearly PM2.5 concentrations
curves of all provinces.

Information about the first and second derivatives from the smoothing function can give
information on the rate of change and the acceleration in PM2.5 concentrations according to time
compared to the traditional multivariate statistical approaches which could not possibly capture
this kind of information [24,25]. In order to dynamically analyze the evolving process of PM2.5

concentrations from 1998 to 2016, we can extract more information by studying how derivatives relate
to each other, which is often called a phase-plane plot (PPP) [54]. The energy transferring between
the first order derivative of PM2.5 concentrations which is called average velocity and the second
order derivative which is called average acceleration, was shown in Figure 4. The numbers along
the curve indicate the year of PM2.5 concentrations. The trajectory of PPP exhibits several interesting
features. There were two obvious cycles of energy transferring between velocity and acceleration,
with the year 2007 as a landmark. During the first cycle, although the sign of growth acceleration for
PM2.5 concentrations alternated from positive to negative frequently, the growth velocity remained
positive all the time, and the largest growth velocity occurred between 2001 and 2002. During the
second cycle from 2007 to 2016, both the sign of growth velocity and acceleration alternated between
positive and negative, with a larger oscillation. The first cycle corresponded to the period during
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which the decoupling indicators of China’s resources consumption and GDP growth is much lower.
The key reason for this phenomenon is that China was in the process of industrialization, particularly
in the process of heavy industrialization, which caused the rapid growth of infrastructure construction
and consumed vast amounts of basic materials. The second cycle corresponded to the period during
which the PM2.5 concentrations fluctuated with a high frequency, due to the intensive formulation and
implementation of environmental protection policies.

 
Figure 4. The phase-plane plot for the average PM2.5 concentrations curve: the second derivative
(acceleration) versus the first derivative (velocity).

3.3. Temporal Variability Decomposition

As one of the most important advantages for FDA, the temporal variance-covariance surface as
well as the corresponding contour in functional data gives new ways to gather information, more
than a single value or matrix obtained in the traditional univariate and multivariate contexts [55]. The
estimated variance surface of PM2.5 concentrations from 1998 to 2016 with its corresponding contour
plot are presented in Figure 5. We can see the variability becoming larger and larger since 1998, and the
highest variability occurs around 2007, the period which also corresponds to the highest mean of PM2.5

concentrations. In order to further explore the potential variation from curve to curve, we employ
functional principal components analysis (FPCA) to decompose the covariance function. Figure 6
displays the result of covariance decomposition via FPCA for PM2.5 concentrations after varimax
rotation. For each of the first three principal components, three curves are plotted. The solid curve is
the overall smoothed mean which is the same in all provinces just for reference purposes, and the other
two curves show the effect of adding and subtracting a suitable multiple of the principal component
weight function. The accumulative percentage of variance explained by the first three components is
99.7%, indicating that there was almost no valuable information lost.

It can be seen that, each of the three principal component functions quantifies variability
corresponding to a particulate period, thus the trajectories of the varimax rotated FPCs give good
interpretations. Specifically, the first principal component function, which accounts for 69.2% of the
total variation in the original PM2.5 concentrations observations, mainly depicts the variability from
2003 to 2012. Actually, the period from 2003 to 2012 was called the “golden ten years” for the coal
industry, which also are the “golden ten years” of China’s rapid economic growth. However, restricted
to various factors such as industrial structure and resources endowment, each province can only
choose the suitable development mode according to its own situation. As a result, the emissions
level of particulate matter for each province deviated greatly from the overall mean. Consequently,
the covariance function of PM2.5 concentrations among 34 provinces oscillated drastically during the
period of fossil fuel energy being highly consumed. In contrast, the second and the third principal
component function mainly reflect variability located at the end and beginning of the research period,
respectively. The proportions of total variation they accounted for is nearly equal, that is 15% and
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15.5%, which is even less than the one fourth of the amount explained by the first principal component
function. In light of this, the vast disparity in variance contribution rate for each principal component
function requires differentiated treatment when conducting functional clustering analysis on the scores
of principal components.

Figure 5. (a) Estimated variance surface of PM2.5 from 1998 to 2016 and (b) the corresponding
contour map.

Figure 6. The first three varimax-rotated principal components of PM2.5 concentrations.

3.4. Region Classification and Significance Test

In order to visually explore how curves clustering within the three-dimensional subspace spanned
by the first three principal component functions, Figure 7 displays the scatter plots of scores on pairs of
weight functions for each province. It shows that there is essentially no correlation among these scores,
so the three principal components can be considered as uncorrelated variables within 34 provinces.
Although the three scatter plots show no very distinctive features, the distribution range for each of
the three component differs vastly. It can be seen that the scores on the first principal component
ranges from about −100 to 150, with a considerable lager amount of variability. However, the scores
on the other two components distribute with a nearly equal range, which is far less than that of the
first component. In view of the vast disparity of information amount, different weights for the three
principal components should be taken into account when employing clustering analysis to classify the
categories of fluctuation.

As a preliminary step of unsupervised classification, it is necessary to determine the number of
clusters before conducting adaptive weighting clustering analysis. The optimal number of clusters
in unsupervised classification is still an open question [56]. In this study, we adopt the wssplot( ) and
NbClust( ) functions to objectively choose the number of clusters [57]. The selecting criterion presented
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in Figure 8 indicates that there is a distinct drop in the within-groups sum of squares when moving
from one to eight clusters. After eight clusters, this decrease drops off, suggesting that an eight-cluster
solution may be a good fit to the PM2.5 concentrations data in 34 provinces. Besides, 14 of 24 criteria
provided by the NbClust package suggest an eight-cluster solution. So we chose eight as the optimal
number of clusters, and the initial classification via adaptive weighting clustering was listed in the
second column of Table 1, the spatial distribution of PM2.5concentrations for each group was illustrated
in Figure 9.

Figure 7. Plot of the first three principal components scores of PM2.5 concentrations.

Although we have objectively classified the PM2.5 concentrations curves of 34 provinces into
eight clusters, it is necessary to quantitatively conduct a further test in the robustness of the initial
classification. In other words, we should prove the hypothesis that there indeed was significant
difference between the eight groups. To address the above problem, the F-ANOVA based on 1000
bootstrap sampling is performed on original functions as well as their velocity and acceleration,
respectively. Figure 10 illustrated the test results of the original PM2.5 concentration functions, and the
robust test results corresponding to the first order and the second order derivatives were presented in
Figures 11 and 12, respectively. Using the test results of F-ANOVA from Figures 10–12, we can safely
draw the conclusion that, the fluctuation patterns between the eight groups of PM2.5 concentration
functions was significantly different at the level of 1%, whether from the static perspective or from
multiple dynamic perspectives. Thus, on a credible quantitative analysis basis, we are confident in
excavating more reliable and deeper information by further comparing the different trajectories of
PM2.5 concentration curves in each groups.

Figure 8. Dindex graphic for determining the best number of clusters.
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Table 1. The classification of PM2.5 concentrations fluctuation.

Group Provinces Characteristics Reasons

1 Liaoning, Jilin, Zhejiang,
Guangdong, Guangxi

the dominant fluctuation pattern of
PM2.5 concentrations in China with
slightly more than the national
average level and a moderate
deviation in the end stage

sparsely-populated provinces with
developed heavy industry, or
intensively-populated provinces of
highly developed tertiary industry Pearl
River Delta

2 Heilongjiang, Hainan,
Sichuan, Yunnan

the second lowest level with a
slightly growing trend and an
increasing deviation

provinces with tourism as their
pillar industry

3
Shanxi, Jiangxi,
Chongqing, Guizhou,
Hong Kong, Macao

the dominant fluctuation pattern of
PM2.5 concentrations in China with
slightly less than the national
average level

intensively-populated provinces with
steady and humid atmospheric

4 Fujian, SHANXI,
Ningxia, Taiwan

the third lowest level with a nearly
constant deviation

provinces in the southeast coast of China
strongly influenced by maritime
monsoon, or provinces in western with
stable atmospheric circulation
throughout the year

5
Neimenggu, Tibet,
Gansu, Qinghai,
Xinjiang

the lowest level, without obvious
growth or deviation.

sparsely-populated provinces in western
frontier of China, with traditional
agriculture and livestock farming

6 Tianjin, Shandong

the highest level and largest
fluctuation amplitude, with obvious
turning points corresponding to
government environmental policies

energy-intensive industries with
enriched, high-frequency use of diesel
freight vehicles and non-road machinery

7 Shanghai, Jiangsu,
Anhui, Henan

the second highest level, mainly
located at Yangtze River Delta with
obvious secondary pollution

the most active economic area in China,
labor-intensive and enriched industries,
resulting in a large quantity of fumes
discharged from vehicles

8 Beijing, Hebei,
Hunan, Hubei

the third highest level with a
growing deviation

highly intensive-populated region, or
inland region with secondary pollution
from their surrounding neighborhood

Figure 9. Spatial distribution of PM2.5 concentrations for eight groups in China.
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Figure 10. F-ANOVA test for absolute level of PM2.5 concentration functions.

 

Figure 11. F-ANOVA test for the velocity of PM2.5 concentration functions.

 

Figure 12. F-ANOVA test for the acceleration of PM2.5 concentration functions.
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3.5. Comparing the Fluctuation Patterns of PM2.5 Concentration in Each Group

Due to multiple differences in industrial structure and topography, together with the different
coping strategies toward influence of various environmental policies, the fluctuation process of PM2.5

concentrations between provinces has typical category features. In order to interactively display the
disparity of fluctuation process, we have taken the overall mean function of China as the benchmark
for comparison (blue dashed line), Figure 13 displays how the PM2.5 concentration functions vary from
province to province, with the mean function of each category in a red solid line. From the perspective
of absolute level, we can see the average value of PM2.5 concentration for the sixth, the seventh and
the eighth category far outweighed the overall mean and their highest value occurred around 2007.
However, the average value of the second, the fourth and the fifth group is far less than the overall
mean, especially the fifth group which exhibited nearly a horizontal fluctuation trajectory, meaning
that there were almost no substantial changes in the PM2.5 concentration fluctuations. The mean curves
of the first and the third category seemed to be overlapping with the trajectory of the overall mean,
indicating that the level of PM2.5 concentration for the two categories represented the overall situation
of PM2.5 concentration in China.

Figure 13. Mean curves of eight groups (red) with the benchmark of national average (blue).

Since the PM2.5 concentrations usually originate from multiple sources, besides motor vehicle
usage and static atmosphere flow, we focus on tracking the major cause for regional difference in
PM2.5 concentration from the perspectives of industrial activities and energy structures. According
to the spatial distribution of each group in Figure 9 and data from the “Statistical Yearbook of China
(1998–2016)” [58], we found that the provinces with highest level in groups six, seven and eight were
mainly located in the Beijing-Tianjin-Hebei region and the Yangtze River Delta region, as well as their
surrounding provinces. As is well known, the above regions are the leaders in social and economic
development in China, and their prosperity was established on the massive consumption of fossil
fuels (coal and oil), especially in colder seasons. The sources of PM2.5 in Yangtze River Delta could
be attributed to the secondary pollution and active economic activities. Actually, most of traditional
manufacturing industries, such as electronics industry and transportation service, located at Yangtze
River Delta in China, and a large labor force including ordinary workers and high-tech talent resides
in this region. The labor-intensive industries whose layout focused on upstream and intermediate
products of industrial chains, produced large quantities of volatile organics, which are the main
components of PM2.5 in Yangtze River Delta. Besides, the global night-time light data from 1992 to
2012 indicates that the Yangtze River Delta is still the most active economic area [59]. According
to environmental statistics from 1998 to 2016 [60], the proportion of fumes, such as SO2 and NOx,
discharged from vehicles is closing in on that from factories, and have an exceeding tendency. After
chemical reactions in atmosphere, the fumes transmuted into smaller particulate pollutants, such

128



Sustainability 2019, 11, 1620

as sulphates and nitrate. Although the pollutants from factories are declining due to the campaign
of “Desulphurization and Denitrification” launched in all industrial sectors, the growing number of
vehicles is increasing the emission of pollutants in the Yangtze River Delta of China.

In contrast, the provinces with lowest PM2.5 concentrations in the second, fourth and fifth group
mainly located in two kinds of regions, that are the provinces of tourism and regions in western
China. We can see that the fifth group was mainly composed of frontier provinces in western China,
which is a major exporter of labor force due to its low economic development or its short industrial
chain. It should be noted that the trajectories of PM2.5 concentration in the fifth group is almost
horizontal with constant deviations. The reason for this is that their highly homogenous economic
development was supported by traditional agriculture and livestock farming. Thus, the level of PM2.5

concentration in the fifth group is the lowest, seldom effected by adjustments of the industrial structure.
Different to provinces in the fifth group, tourism is the pillar industry of provinces in the second group.
In order to keep appealing to tourists with their beautiful environments, these provinces have to
adopt environmentally-friendly sustainable economic development modes. However, the improving
economical development of the second group as well as their comfortable living environment, attracts
more and more residents and results in a growing quantity of vehicles. Thus, the PM2.5 concentrations
of the second group exhibit a slowly growing trend, with an increasing deviation. As for provinces
in the fourth group, the PM2.5 concentration of Fujian and Taiwan are closely related to human
activity and highly developed manufacturing industries. Located at the southeast coast of China
and strongly influenced by maritime monsoon, it is hard to form high concentrations of particle
pollution in Fujian and Taiwan. As for Shanxi and Ningxia, the main source of PM2.5 is dust aerosols
resulting from soil erosion and the smoke discharged from energy bases. Due to their open topography,
the pollutants of Shangxi and Ningxia can rapidly diffuse due to being influenced by the stable
atmospheric circulation in these regions. Except for differences in fluctuation amplitude, the time
of turning points corresponding to the fourth group is consistent with that of the national mean,
meaning that provinces in the fourth group can adjust their industrial structures quickly according to
environmental protection policies.

The PM2.5 concentrations of provinces in the first and third group represents the average level
and dominant (tendency) of China. These provinces can be classified into two categories, one category
located in northeast China is characterized as developed heavy industry, such as Liaoning and Jilin. The
other category is located in southeast China with the highest population density, including Chongqing
and Hong Kong. The region classification in this paper indicates that the spatial distribution of PM2.5

concentration has obvious characteristics of spatial agglomeration. Besides, the classification of PM2.5

concentration for 34 provinces in our study is basically consistent with the regional definition, “three
districts and ten groups”, of 12th Five-Year Plan for Air Pollution Prevention and Control in Key
Regions jointly issued by the Ministry of Ecology and Environment, the State Development and Reform
Commission and the Ministry of Finance of China [61].

In order to further analyze the differences in the growth of PM2.5 concentrations from dynamic
perspectives, which also is the advantage of FDA, we plot the trajectories of velocity and acceleration
for eight groups in Figure 14. Upon the comparison of fluctuation trajectories between every group,
it can be found that the provinces in the sixth group not only possess the largest level of PM2.5

concentration, but their fluctuation amplitudes of velocity and acceleration are also the largest ones.
Besides, by comparing the turning points in the curves of velocity and acceleration with the issued
time of environment protection policies, we found that the provinces in the sixth group could adjust
their industrial structure and pollution emissions in time in accordance with the policy requirements.
The absolute level and amplitudes of velocity and acceleration for PM2.5 concentration of the seventh
and eighth group ranked the second and the third, respectively, and their turning points are also highly
concurrent with the issued time of environment protection policies. Compared to the regions with the
highest PM2.5 concentration, the amplitudes of velocity and acceleration for PM2.5 concentration of the
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second, the fourth and the fifth group were remarkably small, but there was few turning points at the
issued time of environment protection policies.

Figure 14. (a) PM2.5 concentration functions with (b) firs-order and (c) second-order derivatives of
eight groups for the years from 1998 to 2016.

The dynamic analysis of PM2.5 concentration indicates that, although the environment protection
policies issued by government sectors in China could have dramatic influence on reducing the overall
PM2.5 concentration, especially in the high pollution regions, the rebound effect would also be obvious
after the control periods of regulations. However, the regulating effect of policies was negligible in
the low pollution regions because of their environmentally friendly economic development modes.
The implication of our empirical results is that the relationship between China’s existing economy
development mode and environmental protection is still in an irreconcilable stage, and it is hard
to eliminate or reduce PM2.5 concentrations by just relying on the government’s administrative
intervention. As low pollution areas have the subjective motivation of protecting the environment
to sustain their pillar industry, the government should fundamentally devote its efforts to reducing
pollution levels in high pollution areas.

4. Conclusions and Discussion

As a developing country with vast territory and a typical dual economic structure, the rapid
development of China occurs at the expense of environment and energy, which has resulted in
serious air pollution. Accurately identifying the spatial and temporal patterns of haze pollution is
a prerequisite for rational formulation and effective implementation of haze control policies. This
study employed FDA techniques to represent PM2.5 concentration data in the form of a smoothing
curve for each province. Based on the continuous curves reconstructed from discrete noisy PM2.5

concentration data with roughness penalty, the FPCA was adopted to decompose the temporal
variability of PM2.5 concentration curves, and the patterns of PM2.5 concentration in 34 provinces was
determined using adaptive weighting clustering analysis. The analysis continued with a functional
ANOVA to verify the significance of differences between eight groups, and with further exploration in
their spatial differences, both from static and multiple dynamic perspectives. The conclusions with
policy implications obtained from this study are as follows.

(1) Imposing roughness penalty on the curves’ reconstruction of PM2.5 concentration could
emphasize the dominant trend of fluctuation, thus enhancing the interpretability of variability
implied in PM2.5 concentration curves. The standard deviation trajectory of PM2.5 concentrations
perfectly followed the growing pattern of the overall mean function, which means that facing
the opportunity for rapidly developing economy at the expense of environment pollution,
the decision-making of different provinces differed vastly, whether for subjective reasons of
excessively pursuing GDP or for objective reasons of industrial structure and resource endowment.
The above conclusions imply that quite a few provinces could rationally balance extensive
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economic development with ecological sustainability. Consequently, the feasible approach
to eliminate haze pollution should emphasis on optimizing, upgrading and transferring of
industrial structure. In particular, the government should encourage low pollution regions,
through cutting their taxes or increasing their subsidies, to sustain their environmentally-friendly
economic development.

(2) The temporal variability of PM2.5 concentration from 1998 to 2016 could be decomposed into
three distinctive sub-fluctuation modes by FPCA, which depicts the variations in the beginning,
the middle interval and the end of the research period, respectively. Remarkably, the middle
interval with largest variation portrayed by the first FPC perfectly matches with the period of
the “ten golden years” for coal, and the variance contribution rate of the first FPC far outweighs
that of the other two, meaning that the fluctuation of PM2.5 concentrations for 34 provinces was
mainly located at the period of extensive economic growth. The empirical result again verifies
the different coping strategies among the 34 provinces when facing the choice of developing the
economy at expense of the environment and energy. The contribution to empirical methodology
derived from this study is that the huge disparity in classification information among the three
FPCs requires different weights when conducting clustering analysis on 34 PM2.5 concentrations
curves. Therefore, the same inputs or approaches might not be useful in modeling the pollution
processes for different regions.

(3) The fluctuation patterns of PM2.5 concentration functions were classified into eight groups via
adaptive weighting cluster analysis, and the effect of spatial and geographical locations was
analyzed using functional ANOVA. The test results indicate that the differences between the
eight groups was significant, whether from the static perspective or dynamic potential. The
reason of differences in the PM2.5 concentration patterns could possibly be due to the effect of
geographic and industrial factors, as well as the different coping strategies of environmental
policies. Multiple comparisons of fluctuation patterns show that the heavy pollution areas
not only have the highest level of PM2.5 concentration, but also have the largest longitudinal
amplitude of velocity and acceleration. The tuning points of PM2.5 concentration curves for the
heavy pollution areas highly matched the issued time of environmental policies, whereas the
effect of environmental policies in low pollution areas was not obvious. The findings reveal that
the characteristics of PM2.5 concentration are very dependent on the industrial structures of the
provinces. As such, it is hard to eliminate haze pollution by relying solely on the government’s
administrative intervention. Thus, the direct way of reducing PM2.5 concentration in the short
term is to maintain the continuity of environmental policies. In the long run, how to encourage
enterprises to transform or upgrade industrial structure via revenue decrease or financial subsidy
is an important and unavoidable issue for government to eliminate haze pollution fundamentally.

Compared with the existing literature, the main contribution of this study is focused on how the
FDA technique can be used for PM2.5 concentrations data analysis. This paper has significance for both
empirical methodology and important policy implications. Instead of utilizing discrete noisy PM2.5

concentration data, we can create a functional form for the data which could be analyzed over any
time interval. So we are able to extract additional information contained in the smoothing curve and
its derivatives which may not be normally available from traditional statistical methods. The findings
from this study, such as significant differences in PM2.5 concentration patterns between regions, not
only provide a guideline for analyzing the effectiveness of current air quality control regulations, but
also provide information for the environment management for provinces, as well as suggestions on
sustainable development for China’s government. As a future research direction, significant differences
in PM2.5 concentration patterns between regions signify that a different approach in modeling the
process should be employed, especially linking the change of PM2.5 concentration to policy-related
implications using functional concurrent models.
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Abstract: A fuzzy optimization model based on the entropy weight method for investigating air
pollution problems in various cities of Zhejiang Province, China has been proposed in this paper.
Meanwhile, the air quality comprehensive evaluation system has been constructed based on the six
major pollutants (SO2, NO2, CO, PM10, PM2.5 and O3) involved in China’s current air quality national
standards. After analyzing the monthly data of six pollutants in 11 cities of Zhejiang Province from
January 2015 to April 2018 by the above method, the authors found that, although the air quality of
cities in Zhejiang Province did not reach the long-term serious pollution of Beijing, Tianjin, and Hebei,
the air quality changes in the northern cities of Zhejiang were worse than those in southern Zhejiang.
For example, the air quality of Shaoxing in northern Zhejiang has dropped by 14.85% in the last study
period when compared with that of the beginning period, and Hangzhou, the provincial capital of
Zhejiang, has also seen a decrease of 6.69% in air quality. The air quality of Lishui, Zhoushan and
Wenzhou in southern Zhejiang has improved by 8.04%, 4.67% and 4.22% respectively. Apart from the
geographical influence, the industrial structure of these cities is also an important cause for worse
air quality. From the local areas in southern Zhejiang, cities have developed targeted air pollution
control measures according to their own characteristics, including adjusting the industrial structure,
changing the current energy consumption structure that heavily relies on coal, and improving laws
and regulations on air pollution control, etc. In the four cities in central Zhejiang, the air quality at the
end of the period (April 2018) has decreased from the beginning of the period (January 2015), given
that there were no fundamental changes in their industrial structure and energy pattern.

Keywords: entropy weight method; fuzzy optimization model; air quality

1. Introduction

Environmental pollution refers to the matters released from human activities (such as during
the process of production and living) into the environment that are harmful to living organisms [1–3].
The ecosystem has self-purifying functions on the pollutants, but if the pollutants released have
exceeded the limits allowed by the ecosystem, they would cause great harm to the human society.
If the environment is polluted by harmful matters, the growth and reproduction of organisms will
be affected, disturbing the normal life of human beings and endangering human health and the
sustainable development of human beings [4–8]. Since the 1970s, China has achieved rapid economic
development, but its growth model is characterized by extensive production and high pollution.
The labor-intensive industry structure and relatively backward production technologies have made
the pollution problem of China, especially its air pollution issues keep deteriorating, which has caused
serious threats to China’s sustainable development [9–13].
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In 2016, the total emissions of SO2, nitrogen oxides and smoke/dust of China reached 11.03
million tons, 13.94 million tons and 10.11 million tons, respectively, which caused great pressure on
the environment and sustainable development [14]. According to international standards, 38% of
the Chinese people are breathing unhealthy air every day; and about 1.6 million people die of heart
disease, lung disease and stroke every year due to air pollution (especially the particulate pollutants
in haze) [15]. According to the statistics of the World Bank, China is the most negatively affected
country in the world by air pollution, with various types of air pollutants and shocking amounts of
emissions. The annual economic losses caused by air pollution are as high as 10% of China’s GDP
(Gross Domestic Product), which mainly includes premature death, loss of working time and increase
of related welfare expenses [16]. These figures and research results have driven us to reflect on the
interrelations between China’s air pollution and sustainable development.

This paper has selected China’s Zhejiang Province as the research object of air pollution evaluation
standards and air pollution governance policies (please refer to Figures 1 and 2). Zhejiang Province is
on the southeast coast of China, with the Yangtze River Delta in the north, Shanghai in the southeast,
Anhui and Jiangxi in the west, and Fujian in the south. It is one of the most developed provinces
in China, and has 11 prefecture-level cities. Zhejiang Province is not rich in natural resources and
mainly relies on industrial production to support rapid economic growth [17,18]. In 2000, Zhejiang’s
GDP was 641.10 billion yuan, and its total inflation-adjusted GDP in 2017 after rough calculation was
5176.80 billion yuan, which has achieved an increase of 842.99% [19,20].

 
Figure 1. Map of Zhejiang Province in China.
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Figure 2. Map of cities in Zhejiang Province, China.

However, just like China’s overall economic development model, Zhejiang’s rapid economic
growth has always been driven by the consumption of limited natural resources, and its economic
development is still at the stage of extensive growth characterized by quantity expansion and low-cost
competition [21]. In addition, the enterprises with high energy consumption, high emissions and
backward production technologies are still in operation, thus driving the growth rate of Zhejiang’s
industrial waste gas emissions to continuously rise and causing serious environmental pollution. In
2013, the industrial waste gas emissions of Zhejiang Province totaled 2456.5 billion cubic meters, and
this number rose to 2695.8 billion cubic meters in 2014 with an increase of almost 9%. At the same time,
the proportion of major air pollutants in the waste gas emissions has always been high. In 2016, the
total emissions of SO2, nitrogen oxides and smoke/dust in Zhejiang Province reached 268,400 tons,
380,400 tons and 182,300 tons, respectively.

Therefore, the choice of Zhejiang Province as a research object has the following important
meanings: (1) Zhejiang is the most active area of China’s private economy, covering an area of 105,500
square kilometers which exceeds South Korea [22,23], with many small and medium-sized private
enterprises. However, while Zhejiang’s economy has grown rapidly since the reform and opening up,
the protection of the environment, especially of the air quality, is seriously inadequate; (2) Unlike in
Jiangsu and Shanghai, which are the other two provinces located in the Yangtze River Delta region, air
pollution control in Zhejiang is faced with the task of adjusting the economic structure and many small
and medium-sized private enterprises. The change in air quality reflects not only the effectiveness of
the air pollution control policy, but also the effectiveness of Zhejiang’s environmental adjustment of
the industrial structure and the private economy; (3) Under the background of China’s implementation
of the “Integration Development of Yangtze River Delta” strategy in recent years, the governance of air
pollution in Zhejiang will represent the implementation of environmental protection and sustainable
development strategies in the most developed areas of China’s private economy.
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The academic circle has given great attention to the air pollution issue of Zhejiang Province.
In the field of outdoor air pollution research, Ni et al. used the Weather Research and Forecasting
with Chemistry Model to study the air pollution characteristics and its root causes in Hangzhou
(the provincial capital of Zhejiang Province) during the second World Internet Conference in the
winter of 2015. Their results showed that the control measures implemented one week before the
meeting did help reduce the PM2.5 pollution to some extent, with the total PM2.5 concentration
in Hangzhou decreased by 15% [24]. Feng et al. used the WRF/CMAQ (Weather Research and
Forecasting/Community Multi-scale Air Quality) Model to analyze the air pollution level in Hangzhou
based on observation data from five local environmental monitoring stations in downtown Hangzhou.
According to their findings, in 2017, the local pollution sources in Hangzhou accounted for 15.8%,
68.6%, 48.3% and 59.2% of the total concentrations of SO2, NO2, PM2.5 and PM10, respectively [25].
PM2.5 refers to particulate matter with an aerodynamic equivalent diameter of 2.5 μm or less in ambient
air, and PM10 refers to particulate matter with an aerodynamic equivalent diameter of 10 μm or less in
ambient air [26]. Based on the daily PM10 and PM2.5 concentration data from 50 monitoring stations
in Zhejiang Province from 1 February 2015 to 28 February 2017, Wu et al. conducted a quantitative
study on the relationship between PM10 and PM2.5 concentration and green spaces and landscape
structure through Principal Composition Cluster Analysis (PCA) and Hierarchical Cluster Analysis
(HCA). Their results showed that the increase of urban green space can reduce PM pollution, and the
correlation between green space and PM2.5 concentration is stronger than that between green space
and PM10 on the scale of 5 km or less [27]. Xu et al. selected four representative locations (two cities,
one suburb site and one rural site) in Hangzhou and Ningbo from December 2014 to November 2015 in
order to study the seasonal and spatial variation in terms of fine particle pollution in Zhejiang Province.
With help of the Principal Component Analysis (PCA) method, they found that industrial emissions,
biomass burning, and formation of secondary inorganic aerosols are the major sources of fine particles
in Zhejiang Province [28]. Fu et al. studied the potential correlation between conjunctivitis and air
pollution based on the air pollutant data from the Environmental Protection Department of Zhejiang
Province from 1 July 2014 to 30 June 2016 and data of 9737 outpatient visits for conjunctivitis at the
Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine. Their results
indicated significant correlations between the number of conjunctival outpatient visits and air pollution
in Zhejiang [29]. Xu et al. conducted a sample survey on air pollutants in Ningbo, Zhejiang Province
from 3 December 2012 to 27 June 2013 in order to study the chemical characteristics of highly polluting
aerosols in the air of Zhejiang Province. By analyzing the meteorological conditions, air mass backward
trajectories, distribution of fire spots in surrounding areas and various categories of aerosol pollutants,
they concluded that stagnant weather conditions and long-range transport of air masses from heavy
industries and biomass burning from northern China to Ningbo are the main contributors to the high
aerosol pollution during their study period [30].

In the field of indoor air pollution study, Sun et al. studied the indoor air pollution in Hangzhou.
Through high-frequency detection of indoor and outdoor homogenous pollutants, they found that
air-conditioning filters play a significant role in the indoor propagation of outdoor pollutants, especially
the home and office dust [31]. Mestl et al. studied the relationship between indoor air pollution and
deaths in Zhejiang, Shaanxi and Hubei provinces. By analyzing the PM concentrations in kitchens and
living rooms, they believed that the premature mortality in these three provinces should reach 60,600
instead of the current estimate of 46,000 [32].

Most of the above studies on air pollution in Zhejiang Province only considered 1–2 major
pollutants (such as PM2.5, PM10, SO2, etc.), and their study period was relatively short. In order
to conduct a comprehensive and objective assessment on the air quality of the 11 cities in Zhejiang
Province in recent years, this paper has included the six major air pollutants (SO2, NO2, CO, PM10,
PM2.5 and O3) covered by China’s regular monitoring and routine air quality evaluation based on
China’s current National Ambient Air Quality Standards (GB3095-2012) [33], and Technical Regulation
on Ambient Air Quality Index (HJ 633-2012) [26]. This paper would also like to illustrate the
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overall change and movements of these air pollutants over a longer period. Therefore, based on
the above-mentioned domestic and overseas research, this paper has further incorporated the six major
pollutants (SO2, NO2, CO, PM10, PM2.5 and O3) into the air quality assessment indicator system, and
studied the air quality of the 11 cities in Zhejiang from January 2015 to April 2018 based on related
data in order to present a comprehensive picture of air quality of various cities.

Therefore, the research topic of this paper has the following important significance for
sustainability, especially for China’s future sustainable development:

(1) The important symbol of sustainable development is the sustainable use of resources and
a good ecological environment [34–36]. In recent years, the serious air pollution in China has
caused tremendous damage to the atmospheric environment in which human beings depend for
survival and development. Therefore, this paper takes Zhejiang Province as the research object and
quantitatively evaluates the air pollution status of the city under its jurisdiction, which provides a
scientific basis for Chinese governments to formulate air pollution prevention policies and achieve
sustainable development.

(2) Sustainability requires economic and social construction under conditions that protect the
environment and sustainably use resources [37,38]. China’s future sustainable development should
maximize the quality of life of the people without exceeding the capacity to maintain the capacity of
the ecosystem, and must not destroy the environment and deplete resources for the cost of economic
growth [39,40]. Hence, the evaluation index system for the construction of major pollutants provides
scientific tools for measuring the carrying capacity of China’s atmospheric environment and achieving
sustainable development in the future.

In the following parts of this paper, Part 2 introduces the research method; Part 3 provides the
calculation results and analysis on the air quality of cities in Zhejiang Province since January 2015; Part
4 offers conclusions of this paper and related policy recommendations.

2. Materials and Methods

In order to take the six major air pollutants into consideration, this paper has introduced the
Entropy Weight Method based on the traditional Fuzzy Optimization Model to construct a Fuzzy
Optimization Measurement and Evaluation Model for the air quality in Zhejiang Province. In its
application, the key of successful modeling is how to reasonably determine the weight of different
indicators [41–44] and objective function [45,46]. To this end, this paper has adopted the Entropy
Weight Method to determine the weight of indicators in the Fuzzy Optimization Model. Entropy is a
concept in thermodynamics that represents a measure of the degree of disorder in a system. When
the Entropy Weight Method is applied to the Fuzzy Optimization Model, the smaller the information
entropy of an indicator is, the larger amount of information is contained in that indicator; the greater
role it plays in this model, and therefore the higher weight it should have in the model. Otherwise, the
larger the information entropy of an indicator is, the smaller role it plays in this model, and therefore
the lower weight it should have [47–50].

The specific steps of applying the Entropy Weight Method to the Fuzzy Optimization Model are
as follows:

(1) Construct a Fuzzy Comprehensive Evaluation Matrix
Given the evaluation object P, its related Factor Set U = {u1, u2, · · · , un}, and a Rating Set

V = {v1, v2, · · · , vm} for each of the factors, after performing fuzzy evaluation on the Rating Set of
each factor in U based on the membership function, this paper could obtain a Fuzzy Evaluation Matrix
with m × n elements:

R =

⎡
⎢⎢⎢⎢⎣

R1

R2
...

R4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

r11 r21 · · · rm1

r12 r22 · · · rm2
...

...
. . .

...
r1n r2n · · · rmn

⎤
⎥⎥⎥⎥⎦. (1)
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The element rij in the above matrix represents the Fuzzy Membership Degree of factor ui with
respect to the Rating element vi, that is, a fuzzy relationship of U to V, thereby determining the Fuzzy
Evaluation Matrix of the evaluation object P.

(2) Determine the Weight of Indicators by the Entropy Method
In the Fuzzy Comprehensive Evaluation Matrix, the Fuzzy Comprehensive Evaluation Vector

needs to be obtained by weighted summation. This paper has used the Entropy Method to determine
the weight of different indicators of the same rating. Since the calculation of the Entropy Method uses
the proportion of a certain indicator of each rating to the sum of indicators with the same nature, no
standardization is needed. The specific calculation steps are as follows:

A. Calculate the proportion of the jth indicator preferred by the ith program (Pij):

Pij =
rij

∑m
i=1 rij

, (i = 1, 2, · · · , m; j = 1, 2, · · · , n), (2)

B. Calculate the entropy value of the jth indicator (ej):

ej = −k ∗
m

∑
i=1

PijlnPij, (3)

where ln represents the natural logarithm, and the constant k is related to the m of the Rating Set.
Generally, let k = 1

lnm , and it would have 0 ≤ ej ≤ 1.
C. Calculate the variation coefficient of the jth indicator (gj):

gj = 1 − ej. (4)

The above formula shows that, for the jth indicator, the smaller the Entropy Value (ej) is, the larger
the variation coefficient (gj) becomes.

(4) Calculate the weight of the jth indicator:

wj =
gj

∑n
j=1 gj

. (5)

(3) Calculate the Fuzzy Comprehensive Evaluation Score
After calculating the weights of different indicators, this paper could obtain the Fuzzy Evaluation

Set B by matrix and vector algorithm based on the Fuzzy Evaluation Matrix and Weight Vector:

B = W ∗ RT =

⎡
⎢⎢⎢⎢⎣

r11 r21 · · · rm1

r12 r22 · · · rm2
...

...
. . .

...
r1n r2n · · · rmn

⎤
⎥⎥⎥⎥⎦ ∗ [w1, w2, · · · , wn]

T = [b1, b2, · · · , bm]. (6)

Finally, this paper could obtain M = max(b1, b2, · · · , bm) based on the principle of maximum
membership degree, whose value represents the Fuzzy Comprehensive Evaluation Score of the
evaluation object (please refer to Appendix A for the MATLAB Algorithm for Fuzzy Optimization
Model Based on Entropy Weight Method). The higher the score, the better the city’s air quality is; the
lower the score, the worse the city’s air quality is.

One disadvantage of the above method, especially the entropy weight method, is that the index
values are all required to be greater than zero. If the value of some indicators has an outlier of zero or
less than zero, the calculation result of the entropy method will be invalidated [51,52]. Since the data
of the six pollutant indicators involved in this study are all greater than zero, this deficiency of the
entropy weight method is avoided.
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3. Results

The data used in this paper are from the monthly air quality and pollutant monitoring data of
cities in Zhejiang Province published by China’s National Environmental Monitoring Center [53], and
the Data Center of China’s Ministry of Environmental Protection [54]. The study period is from January
2015 to April 2018, covering the monthly average concentration data of the six major air pollutants of
PM2.5, PM10, CO, NO2, O3 and SO2 in China’s current air quality standards [26,33]. The data used in
this study is the monthly average concentration data of the six pollutants in the target cities (calculated
according to the daily data of each city, including 1215 days). In the study of this paper, according to
the availability and completeness of the data, the selected period is from January 2015 to April 2018
(partial city data is missing in 2014, so it is not included in the calculation range). The data quoted here
are the raw data of the day obtained by the official observation points, so we calculated the monthly
average concentration data of the six pollutants in the target cities based on the original daily data,
and then used the method in Part 2 to achieve the evaluation outcomes.

Based on the Fuzzy Optimization Model with Entropy Weight Method introduced in Part 2.1 and
the above air pollutant data, this paper has calculated the air quality evaluation scores of the 11 cities
in Zhejiang Province from January 2015 to April 2018 (as shown in Figure 3 below and Tables A1–A4
in Appendix B):

Figure 3. Air quality evaluation score of cities in Zhejiang Province: (a) January 2015 to October 2015;
(b) November 2015 to August 2016; (c) September 2016 to June 2017; (d) July 2017 to April 2018.

4. Discussion

According to the above model and calculation results, the higher the score, the better the city’s air
quality is; the lower the score, the worse the city’s air quality is. Therefore, the below characteristics in
the air quality scores of cities in Zhejiang Province from January 2015 to April 2018 have been found:

(1) Overall evaluation results and trends. According to official statistics, since January 2013, the
Ministry of Environmental Protection of China has started air quality monitoring and evaluation
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on key regions (such as the Beijing–Tianjin–Hebei region, the Yangtze River Delta region, and the
Pearl River Delta region) and the so-called “74 cities” (including municipalities, provincial capitals,
and other key cities) with air quality reports published monthly. According to the air quality reports
published during the study period, the air quality of cities in Zhejiang Province was generally at the
middle level [55], which fully supports the calculation results in this paper. During the study period,
the air quality evaluation scores of cities in Zhejiang range from 0.3 to 0.7. Although the evaluation
scores of some cities (such as Jiaxing, Huzhou and Hangzhou) have always been low (never exceeded
0.5), the lowest air quality score is still above 0.34 (0.3491 of Hangzhou in March 2016). Therefore, the
air pollution of Zhejiang Province is not as enduring and severe as that in areas such as Beijing, Tianjin
and Hebei [56–58].

(2) Seasonal trends. Although the differences between the quarters were not large during the study
period, the air pollution in cities in Zhejiang Province still showed a certain seasonal trend—the air
quality in autumn and winter was generally relatively poor, while in spring and summer is generally
relatively good. This trend has been confirmed in relevant researches [59–62]. The reason is that,
although Zhejiang is located in southern China, with higher temperature in winter than that in the
northern regions such as Beijing, Tianjin and Hebei, the demand for heating in winter still exists, so
the increase in energy consumption has increased air pollution to a considerable extent.

Compared with the above research, we calculated the air quality evaluation values of all
prefecture-level cities in Zhejiang Province based on the six kinds of atmospheric pollutants, which
overcame the limitation of only 1–2 pollutants and several cities of Zhejiang. Moreover, we calculated
the weight of different pollutant indicators by using the fuzzy optimization model and based on the
entropy weight method, to enrich existing research methods of seasonal changes literature.

(3) The air quality in Zhoushan and the southern cities of Zhejiang is obviously improved. As
the first prefecture-level city in China that is formed by an archipelago, Zhoushan consists of large
numbers of islands and is surrounded by sea, and thus enjoys unique geographical advantages in
maintaining good air quality. In 2017, the air quality of Zhoushan ranked third among all cities
in China [63]. According to the calculation results of this paper, the air quality evaluation score of
Zhoushan has always ranked top in Zhejiang Province, and its air quality score has improved by 4.67%
at the last study period when compared with that of the beginning period. At the same time, the air
quality of Lishui and Wenzhou in southern Zhejiang has improved by 8.04% and 4.22% respectively
during the study period (please refer to Table 1 below).

Table 1. The air quality assessment results for key months in Zhoushan and the southern cities
of Zhejiang.

January 2015 April 2018
Improvement Ratio at the End of the Study

Period (April 2018) Compared to the
Beginning of the Study Period (January 2015)

Lishui 0.5312 0.5739 8.04%
Wenzhou 0.4999 0.5210 4.22%
Zhoushan 0.5722 0.5989 4.67%

Apart from geographical reasons, these three cities have formulated tailored air pollution
prevention and control measures based on their own characteristics and the “Regulations on the
Prevention and Control of Air Pollution in Zhejiang Province” officially passed by the Standing
Committee of Zhejiang Provincial People’s Congress on 1 July 2016 [64]:

• Lishui City has formulated a “Detailed Code of Practice for Air Pollution Prevention and
Control Campaigns”, clearly specifying air pollution prevention and control work in terms of six
perspectives: industrial structure, energy structure, mobile pollution sources (motor vehicles),
industrial waste gas, urban smoke and dust, and rural waste gas [65].
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• Based on the characteristics of its industries, Wenzhou is working to build a low-carbon city to
control air pollution by developing a recycling economy. Wenzhou is promoting industrial
transformation and upgrade by cultivating large clustering industries and large enterprise
headquarters, vigorously develops the marine economy, and aims to build an industrial structure
with the modern service industry as the main part, supported by an advanced manufacturing
industry, and with an urban modern agriculture in synergetic development. By the end of 2017,
the energy consumption per unit of industrial added value of Wenzhou has reduced by 17%
compared with that in 2012. The recycled proportion of main non-ferrous metals and steel was
over 40%, and more than 70% of the industrial parks of the above provincial level have completed
recycling upgrade and reconstruction [66].

• Zhoushan strictly controls coal consumption: it has set a control target regarding total coal
consumption, and determines detailed responsibility and accountability of specific enterprises and
equipment that consume coal with monthly monitoring. In addition, Zhoushan also works hard
to develop clean energy by taking advantage of its favorable geographical location (surrounded
by sea), such as building onshore wind farms and independent power supply systems on islands
in order to utilize ocean energy [67].

(4) The air quality of the northern cities of Zhejiang is relatively poor. During the study period, the
air quality of the four cities in northern Zhejiang (Jiaxing, Hangzhou, Huzhou, and Shaoxing) has been
ranked at the bottom. The air quality score of Shaoxing even declined by 14.85% at the ending period
when compared with that of the beginning period, and Hangzhou’s air quality score also decreased by
6.69% (please refer to Table 2 below).

Table 2. The air quality assessment results for key months in the northern cities of Zhejiang.

January 2015 April 2018
Improvement Ratio at the End of the Study

Period (April 2018) Compared to the
Beginning of the Study Period (January 2015)

Jiaxing 0.4104 0.4069 −0.85%
Hangzhou 0.4412 0.4117 −6.69%

Huzhou 0.4252 0.4103 −3.50%
Shaoxing 0.4869 0.4146 −14.85%

The main reason behind is that these four cities have always been the most densely populated and
economically developed region in Zhejiang Province; their industries have generated large amounts
of air pollutants. Moreover, the four cities are geographically located in the inland areas of northern
Zhejiang, and are heavily affected by the air pollutants spread from northern China [68,69], unlike
coastal cities (such as Zhoushan) where the air pollutants can be easily dispersed [70,71]:

• Shaoxing is located in the intersection of the hills of western Zhejiang, the mountains of eastern
Zhejiang and the northern Zhejiang plain, surrounded by mountains and with a terrain high
in the south and low in the north [72]. Once the air pollutants gathered over the city, it is more
difficult for them to dissipate. Meanwhile, Shaoxing has been relying on the heavily polluting
printing and dyeing industry as a pillar industry for many years, with this industry’s production
capacity taking over 60% of the total production capacity in Zhejiang Province, and accounting for
one-third of the national production capacity of the printing and dyeing industry in China [73].

• As for Hangzhou, the provincial capital of Zhejiang, its permanent population reached 9.47
million at the end of 2017, and its total population may have exceeded 10 million if taking the
migrant population into consideration; its annual industrial investment was 86.1 billion yuan in
2017 and its total number of motor vehicles reached 2.79 million at the end of 2017 [74], resulting
in large amounts of air pollutant emissions of all kinds that have brought tremendous pressures
to the environment.
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Therefore, although these cities have adopted a series of pollution prevention measures, the air
quality of these cities still ranked bottom among cities in Zhejiang during the study period.

(5) The air quality of the four cities in central Zhejiang (Jinhua, Ningbo, Quzhou and Taizhou)
has declined at the last study period when compared with that of the beginning period. Among them,
Jinhua and Ningbo have seen a large decline in air quality, which are 6.80% and 8.15%, respectively
(please refer to Table 3 below).

Table 3. The air quality assessment results for key months in the central cities of Zhejiang.

January 2015 April 2018
Improvement Ratio at the End of the Study

Period (April 2018) Compared to the
Beginning of the Study Period (January 2015)

Jinhua 0.4853 0.4523 −6.80%
Ningbo 0.4697 0.4314 −8.15%
Quzhou 0.5023 0.4981 −0.84%
Taizhou 0.5109 0.5099 −0.20%

• In Jinhua City, industrial emissions are the main source of air pollutants responsible for 67.31%
of the SO2, 34.42% of the NOx, 30.39% of the CO, 53.02% of the PM10 and 50.95% of the PM2.5.
Among the industrial pollution sources, the building materials manufacturing industry and the
textile printing and dyeing industry account for the largest proportion [75].

• Ningbo is also short in natural resources and lacks the energy resources needed to fuel economic
growth, with more than 90% of its energy imported from other regions in which industrial
consumption accounts for over 75% [76]. Meanwhile, the heavy usage of fossil energy in industrial
production is also an important reason for decline in air quality of Ningbo. Therefore, although
Ningbo have adopted a series of measures to control air pollution, given that their industrial
structure and energy structure have not fundamentally changed, their air quality has not improved
during the study period and has even deteriorated along with rapid economic development [77].

• The same thing is observed in Quzhou and Taizhou too. Although the decline in their air quality
is not as big as in Ningbo and Jinhua (Quzhou 0.84% and Taizhou 0.20%), the fact that there is no
obvious improvement in their air quality when comparing that in the last period with that of the
beginning period has indicated that the air pollution control campaign still has a long way to go
for these cities.

In summary, the main reasons for the above air quality status during the study period in cities in
Zhejiang Province are:

(1) The industrial structure is not reasonable and industrial upgrading is not yet in place.
(2) Coal-based energy consumption structure has not changed, and energy efficiency is not ideal.
(3) The laws and regulations on air pollution control need to be further improved.

Compared with similar literature, this paper has made innovations and contributions in the
following two aspects:

(1) By constructing the six major pollutants defined by China’s air quality standards, we have
evaluated the air quality of Zhejiang Province more comprehensively than the existing research. In
similar studies of air quality in Zhejiang Province, scholars often use particulate pollutants as research
objects [27,28,78]. Then, few research works contain the six major pollutants.

(2) In terms of research methods, the paper has introduced the Entropy Weight Method based
on the traditional Fuzzy Optimization Model to construct a Fuzzy Optimization Measurement and
Evaluation Model, in order to calculate the weight more accurately. Comparing the current literature
on the evaluation of air quality in Zhejiang and the Yangtze River Delta region (such as Shanghai and
Jiangsu) [79–83], we have innovated the traditional evaluation model and tried to make the evaluation
results more reliable.
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5. Conclusions

This paper has constructed an air quality evaluation system incorporating the six major air
pollutants covered in China’s current national air quality standards (SO2, NO2, CO, PM10, PM2.5 and
O3), and attempts to obtain a comprehensive evaluation of the air quality of cities in Zhejiang by
analyzing the monthly data of the six pollutants in the 11 cities of Zhejiang Province from January
2015 to April 2018. In terms of the research method, this paper has introduced the Entropy Weight
Method to the traditional Fuzzy Optimization Model to construct a Fuzzy Optimization Measurement
and Evaluation Model for the air quality of Zhejiang Province. The conclusions of this paper are:

(1) During the study period, the air pollution in cities in Zhejiang Province still showed a certain
seasonal trend. Moreover, the air quality scores of cities in Zhejiang Province range from 0.3 to
0.7, which indicates the air pollution in Zhejiang is not as severe as in Beijing, Tianjin, Hebei and
other regions.

(2) The air quality of northern Zhejiang cities (such as Jiaxing, Huzhou, Shaoxing and Hangzhou)
is worse than that of the southern cities. The air quality of Shaoxing has dropped by 14.85% at the
last study period when compared with that of the beginning period, and Hangzhou, the provincial
capital of Zhejiang, has also seen a decrease of 6.69% in air quality. Apart from geographical factors,
the industrial structure of these cities is also an important reason for their poor air quality.

(3) The air quality of Lishui, Zhoushan and Wenzhou has improved by 8.04%, 4.67% and 4.22%,
respectively, at the last study period when compared with that of the beginning period. In addition to
geographical reasons, these three cities have formulated tailored air pollution prevention and control
measures based on their own characteristics and the “Regulations on the Prevention and Control of
Air Pollution in Zhejiang Province”.

(4) The air quality of the four cities in central Zhejiang (Ningbo, Jinhua, Quzhou and Taizhou)
has declined at the last study period when compared with that of the beginning period given that
their industrial structure and energy structure have not fundamentally changed during the study
period. Among them, Ningbo and Jinhua have seen a large decline in air quality, which are 8.15% and
6.80%, respectively.

The main feature of this study is the comprehensive evaluation of air quality in Zhejiang Province
using the data of six air pollutants. Compared with the existing Chinese air pollution research literature,
on the one hand, this paper comprehensively evaluates the impact of six kinds of pollutants instead of
1–2 kinds of pollutants according to Chinese national standards. On the other hand, we try to make
innovation in the research methods of air pollution by using the Fuzzy Optimization Model Based on
Entropy Weight Method, in order to enrich the literature on air pollution and sustainable development.

Based on the findings above, this paper has provided the following policy recommendations for
further enhancing air pollution control in the cities of Zhejiang Province:

(1) Adjust the industrial structure as soon as possible to promote industrial upgrading. In the cities
of Zhejiang Province, especially in Shaoxing and Ningbo, industry still accounts for a large proportion
of the Gross Domestic Product (GDP). In 2017, Shaoxing’s secondary industry output accounted for
48.8% of its total GDP, while its service industry output accounted for 47.2% of its GDP [84]; Ningbo’s
secondary industry output accounted for 51.8% of its total GDP, while its service industry output
accounted for 45.0% of its total GDP [85]. These cities need to accelerate the development of their service
industry and promote the transition of its industrial structure towards a low carbon and environmental
friendly structure. The key in reducing air pollution in these cities is to optimize the industrial structure
and promote industrial upgrade. In order to promote the transformation and upgrade of heavy
pollution industrial enterprises, these cities must abandon the old production model and processing
mode that sacrifice energy and environment, improve their GDP structure, and lower their level of air
pollution. At the same time, it is necessary to vigorously develop advanced manufacturing industries,
improve the industrial capacity with help from the advancement of information technologies, promote
environmentally friendly industries to form related industrial clusters, and control the emissions of
industrial waste gas from their sources. In addition, given the current industrial waste gas emission
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levels of Zhejiang Province, it is also necessary to speed up the construction of eco-industrial parks,
attract funds and talents, and reduce the cost of sewage disposal and pollution treatment in order to
facilitate resource saving, industrial upgrading, and pollution/emission reduction.

(2) Increase investment in science and technology, change the current energy consumption
structure that heavily relies on coal, and improve the efficiency of energy utilization. Currently, the
cities in Zhejiang Province still rely on coal as their main energy source for production. In 2016,
the province’s total coal consumption reached 139.48 million tons [14], which increased by 0.89%
compared with that in year 2015 [86]. Therefore, cities in Zhejiang Province need to enhance the
investment in science and technology, change the energy structure over-relying on coal as soon as
possible, eliminate coal-fired equipment with heavy pollution, reduce emissions resulted from coal
burning, and improve their overall air quality and environment quality. On the one hand, they should
continuously reduce the pollution emissions of coal-fired equipment; on the other hand, they need to
continuously increase the proportion of clean energy and renewable energy in energy consumption,
such as by using subsidies and incentives to encourage enterprises and residents to use clean energy,
in order to fundamentally change the current coal-based energy consumption structure. At the same
time, they should work to increase the output per unit of energy consumption by applying the latest
scientific and technological achievements in the energy field to industrial production and daily life,
reducing the energy consumption per unit of regional GDP with help from scientific and technological
advancement in order to effectively control air pollution.

(3) Further improve laws and regulations on air pollution control, and enhance the legislation
and law enforcement work on environmental protection. All cities in Zhejiang Province need to
strengthen their legislation on air pollution control, especially the legislation of laws and regulations
on industrial waste gas emission. The cities need to scientifically classify the enterprises by pollutant
emissions, monitor and control the pollution emissions based on a grading standard and have clear
rules and standards to follow. In law enforcement work, the cities need to suspend the production of
enterprises that fail to meet national and provincial standards and order them to rectify, strictly
supervise and control the approval and construction of high-pollution projects, and completely
eradicate illegal pollution emission. It is necessary to strictly restrict the emissions of enterprises
by legal provisions, investigate the enterprises that have violated the laws, and hold their responsible
persons accountable by law. Furthermore, it is necessary to strengthen environmental protection
supervision work, determine and clarify the accountability in environmental protection among
governments at all levels, and actively cooperate with environmental protection departments to
perform supervision/investigation and law enforcement work. At the same time, the cities should
encourage their residents to participate in environmental supervision and management, and accept
social supervision in order to eventually establish a long-term system for air pollution control with
continuous improvement.
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Appendix A MATLAB Algorithm for Fuzzy Optimization Model Based on Entropy Weight Method

Algorithm: Fuzzy Optimization Model Algorithm

function[B]=fuzzy_zhpj(model,A,R)
B=[];
[m,s1]=size(A);
[s2,n]=size(R);
if(s1~=s2)

disp(‘The column of A is not equal to the row of R’);
else

if(model==1)
for(i=1:m)

for(j=1:n)
B(i,j)=0;
for(k=1:s1)

x=0;
if(A(i,k)<R(k,j))

x=A(i,k);
else

x=R(k,j);
end
if(B(i,j)<x)

B(i,j)=x;
end

end
end

end
elseif(model==2)

for(i=1:m)
for(j=1:n)

B(i,j)=0;
for(k=1:s1)

x=A(i,k)*R(k,j);
if(B(i,j)<x)

B(i,j)=x;
end

end
end

end
elseif(model==3)

for(i=1:m)
for(j=1:n)

B(i,j)=0;
for(k=1:s1)

B(i,j)=B(i,j)+A(i,k)*R(k,j);
end

end
end
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else if(model==4)
for(i=1:m)

for(j=1:n)
B(i,j)=0;
for(k=1:s1)

x=0;
x=min(A(i,k),R(k,j));
B(i,j)=B(i,j)+x;

end
B(i,j)=min(B(i,j),1);

end
end

elseif(model==5)
C=[];
C=sum(R);
for(j=1:n)

for(i=1:s2)
R(i,j)=R(i,j)/C(j);

end
end
for(i=1:m)

for(j=1:n)
B(i,j)=0;

for(k=1:s1)
x=0;
x=min(A(i,k),R(k,j));
B(i,j)=B(i,j)+x;

end
end

end
else

disp(‘improper assignment of model’);
end

end
end

Appendix B Air Quality Evaluation Score of Cities in Zhejiang Province (January 2015 to April 2018)

Table A1. Air quality evaluation score of cities in Zhejiang Province (January 2015 to October 2015).

January
2015

February
2015

March
2015

April
2015

May
2015

June
2015

July
2015

August
2015

September
2015

October
2015

Hangzhou 0.4412 0.4498 0.4095 0.4673 0.3943 0.4803 0.4642 0.4274 0.4165 0.4127
Huzhou 0.4252 0.4450 0.4110 0.3972 0.4239 0.3892 0.3783 0.3895 0.4015 0.3994
Jiaxing 0.4104 0.4285 0.3821 0.4073 0.4281 0.4167 0.4101 0.3807 0.4210 0.3955
Jinhua 0.4853 0.5090 0.4434 0.4891 0.4218 0.4923 0.4625 0.4537 0.4290 0.4268
Lishui 0.5312 0.5491 0.4890 0.5497 0.5623 0.6167 0.6359 0.6039 0.5872 0.5906

Ningbo 0.4697 0.4453 0.5002 0.4850 0.5051 0.4703 0.4747 0.5221 0.4654 0.4466
Quzhou 0.5023 0.4958 0.5172 0.4962 0.4766 0.5859 0.4952 0.4663 0.4820 0.4838
Shaoxing 0.4869 0.4811 0.4651 0.5340 0.4111 0.4137 0.4401 0.3834 0.4149 0.4366
Taizhou 0.5109 0.4895 0.5587 0.4929 0.5529 0.4802 0.5447 0.5624 0.5076 0.5016

Wenzhou 0.4999 0.5358 0.4820 0.4367 0.5066 0.4318 0.4837 0.5537 0.5228 0.4828
Zhoushan 0.5722 0.5555 0.5959 0.5781 0.5933 0.5294 0.5127 0.6437 0.5758 0.5338
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Table A2. Air quality evaluation score of cities in Zhejiang Province (November 2015 to August 2016).

November
2015

December
2015

January
2016

February
2016

March
2016

April
2016

May
2016

June
2016

July
2016

August
2016

Hangzhou 0.3966 0.3710 0.3902 0.4437 0.3491 0.4250 0.4368 0.4120 0.4010 0.4321
Huzhou 0.4173 0.3594 0.4429 0.4461 0.3754 0.4048 0.4114 0.3763 0.3609 0.3633
Jiaxing 0.3796 0.3819 0.4290 0.4417 0.4485 0.4320 0.4302 0.3807 0.3750 0.4413
Jinhua 0.4300 0.4543 0.4833 0.4856 0.4227 0.5505 0.5048 0.5107 0.4630 0.4463
Lishui 0.5290 0.6652 0.5824 0.5862 0.5702 0.6248 0.5887 0.6318 0.6159 0.5464

Ningbo 0.4031 0.4070 0.4524 0.5240 0.5162 0.4520 0.4436 0.4919 0.5173 0.5163
Quzhou 0.5369 0.5715 0.5369 0.4306 0.4145 0.5395 0.5077 0.5365 0.5364 0.4894
Shaoxing 0.4079 0.3843 0.4243 0.4854 0.4328 0.5381 0.4915 0.4536 0.4727 0.4410
Taizhou 0.5480 0.6026 0.5607 0.4896 0.5127 0.4792 0.5112 0.5555 0.5559 0.5394

Wenzhou 0.4736 0.6182 0.5263 0.5582 0.4840 0.4388 0.4558 0.4438 0.4974 0.4894
Zhoushan 0.5980 0.5672 0.5769 0.5754 0.6321 0.5227 0.4964 0.5939 0.6206 0.6375

Table A3. Air quality evaluation score of cities in Zhejiang Province (September 2016 to June 2017).

September
2016

October
2016

November
2016

December
2016

January
2017

February
2017

March
2017

April
2017

May
2017

January
2017

Hangzhou 0.4519 0.4324 0.3930 0.4066 0.3790 0.4053 0.4198 0.4448 0.4048 0.4046
Huzhou 0.3973 0.4532 0.3705 0.4159 0.3868 0.4285 0.4393 0.3994 0.3874 0.3562
Jiaxing 0.4517 0.4798 0.3765 0.4209 0.4833 0.4623 0.4361 0.4000 0.4338 0.4052
Jinhua 0.4910 0.4372 0.4330 0.4154 0.3983 0.4994 0.5093 0.4960 0.4527 0.5069
Lishui 0.5768 0.5227 0.5519 0.5271 0.5329 0.5606 0.5839 0.6125 0.5776 0.6460

Ningbo 0.4947 0.4268 0.4094 0.4317 0.5254 0.4926 0.4555 0.4585 0.5147 0.4558
Quzhou 0.5368 0.4575 0.4136 0.4421 0.3928 0.4919 0.5153 0.5448 0.4945 0.6207
Shaoxing 0.4831 0.4309 0.3856 0.3909 0.3993 0.4214 0.4258 0.4325 0.4183 0.4528
Taizhou 0.5710 0.5500 0.5287 0.5521 0.5019 0.5721 0.5544 0.5673 0.5813 0.5523

Wenzhou 0.5277 0.4701 0.4554 0.4940 0.4979 0.4864 0.4490 0.4549 0.4880 0.4781
Zhoushan 0.5961 0.5685 0.6248 0.6144 0.6103 0.5612 0.5555 0.5527 0.6030 0.4855

Table A4. Air quality evaluation score of cities in Zhejiang Province (July 2017 to April 2018).

July
2017

August
2017

September
2017

October
2017

November
2017

December
2017

January
2018

February
2018

March
2018

April
2018

Hangzhou 0.4126 0.4507 0.4128 0.4328 0.4504 0.4202 0.3729 0.4218 0.4232 0.4117
Huzhou 0.4207 0.4078 0.4189 0.4294 0.4619 0.4043 0.3914 0.4233 0.4285 0.4103
Jiaxing 0.3884 0.3918 0.4426 0.4472 0.4427 0.3954 0.3969 0.4259 0.4207 0.4069
Jinhua 0.4826 0.4730 0.4530 0.4131 0.4449 0.4535 0.4665 0.4382 0.4496 0.4523
Lishui 0.6025 0.6076 0.5461 0.4913 0.5623 0.5604 0.6296 0.5470 0.5723 0.5739

Ningbo 0.4949 0.4691 0.5208 0.5101 0.4259 0.4110 0.4422 0.4598 0.4330 0.4314
Quzhou 0.5285 0.5619 0.4675 0.4365 0.4150 0.5031 0.5472 0.4677 0.4696 0.4981
Shaoxing 0.4444 0.4474 0.4480 0.4994 0.4249 0.4007 0.4052 0.4459 0.4203 0.4146
Taizhou 0.6114 0.5367 0.5113 0.4940 0.5119 0.5258 0.4875 0.5026 0.5079 0.5099

Wenzhou 0.4934 0.4845 0.4858 0.5146 0.5259 0.5442 0.4817 0.5162 0.5188 0.5210
Zhoushan 0.5984 0.4899 0.5695 0.5788 0.5423 0.6000 0.6289 0.5857 0.5798 0.5989
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Abstract: In recent years, China’s urban air pollution has caused widespread concern in the academic
world. As one of China’s economic and financial centers and one of the most densely populated cities,
Shanghai ranks among the top in China in terms of per capita energy consumption per unit area.
Based on the Shanghai Energy Statistical Yearbook and Shanghai Air Pollution Statistics, we have
systematically analyzed Shanghai’s atmospheric pollutants from three aspects: Primary pollutants,
pollutants changing trends, and fine particulate matter. The comprehensive pollution index analysis
method, the grey correlation analysis method, and the Euclid approach degree method are used to
evaluate and analyze the air quality in Shanghai. The results have shown that Shanghai’s primary
pollutants are PM2.5 and O3, and the most serious air pollution happens during the first half of the
year, particularly in the winter. This is because it is the peak period of industrial energy use, and
residential heating will also lead to an increase in energy consumption. Furthermore, by studying the
particulate pollutants of PM2.5 and PM10, we clearly disclosed the linear correlation between PM2.5

and PM10 concentrations in Shanghai which varies seasonally.

Keywords: primary pollutants; air quality; comprehensive pollution index analysis; grey correlation
analysis; Euclid approach degree method

1. Introduction

In recent years, with China’s rapid economic development, consumption of fossil energy has also
grown rapidly, and its air quality, especially in cities, has deteriorated drastically, causing a significant
negative impact on people’s health as well as climate change [1–4]. It has been realized that the scope
and severity of urban air pollution are affected by the nature of air pollutants and pollution sources [5],
weather conditions [6–8], as well as properties of the land surface [9–11]. These factors are influenced
by natural factors (such as air pressure [12], temperature [13], wind direction and speed [14], etc.),
but human factors (such as industrial waste gas emissions [15], domestic coal combustion [16,17],
automobile exhaust emissions [18], etc.) have a greater impact on the urban air quality. At the same
time, human activities also affect natural factors to a certain extent, and a considerable part of the
human factors come from the unreasonable consumption of primary energy and secondary energy.
The energy consumption structure is closely connected to the industrial structure [19,20]. The current
industrial structure with high consumption and low output has further resulted in the deterioration of
air quality.
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Shanghai is China’s largest industrial city and an energy-consuming city, with a per capita energy
consumption and unit area energy consumption much higher than the national average. Its total
energy consumption has increased from 106.71 million tons of standard coal in 2010 to 117.12 million
tons of standard coal in 2016 [21], while the total energy consumption nationwide was 4.36 billion tons
of standard coal in 2016 [22], which means Shanghai’s total energy consumption accounted for 3% of
the total energy consumption of 338 cities in China. What comes with such high energy consumption
density is the deterioration of Shanghai’s urban environment. According to the data in the Shanghai
Environmental Condition Bulletin, the number of days with good air quality was only 275 in 2017, with
an Air Quality Index (AQI) good rate of 75.3% [23]. The requirement of continuous economic growth,
the increasing consumption of energy and resources, and the continuous deterioration of air quality
have brought tremendous pressure and severe challenges to the sustained and stable development of
Shanghai’s economy and society.

In order to meet the requirements of air quality under the new circumstances, in 2012, China
issued a new national ambient air quality standard (GB 3095-2012), which clarified the calculation
method of AQI [24]:

First, calculate the Individual Air Quality Index of certain pollutant (IAQIP):

IAQIP =
IAQIHi − IAQILo

BPHi − BPLo
(CP − BPLo) + IAQILo (1)

In the equation above, CP represents the mass concentration of pollutant P; BPHi is the higher
threshold of pollutant concentration near CP corresponding to the specified IAQI (Individual Air
Quality Index) regulated by government policy; BPLo is the lower threshold of pollutant concentration
near CP regulated by the government; IAQIHi is the corresponding IAQI to BPHi; while IAQILo is the
corresponding IAQI to BPLo.

Then, take the largest number from all IAQIP to calculate the AQI:

AQI = max{IAQI1, IAQI2, IAQI3, · · · , IAQIn} (2)

In 2013, the first year the new ambient air quality standard was implemented, the air quality
monitoring and evaluation work of Shanghai started to follow the new standards including the
Ambient Air Quality Standards (GB3095-2012) and the Technical Regulation on Ambient Air Quality
Index (HJ 633-2012) [25]. This was a great opportunity to study the impact of Shanghai’s energy
consumption structure on its air quality, accelerate the optimization of Shanghai’s energy consumption
structure, and build an energy-saving society, which is of great significance to the construction of an
international city.

Currently, studies on related fields mainly focus on three aspects. The first is the analysis of fine
particle pollution and its impact on atmospheric visibility in cities. The second is the concentration
feature and chemical composition of air pollutants. The third is the description of emission factors of
air pollutants.

Li et al. (2019) studied the meteorological conditions of the severe haze weather that frequently
occurred in North China and concluded two main reasons for the decrease in visibility [26]. The first is
the influence of meteorological conditions such as atmospheric currents, and the second is the change
in the average astigmatism coefficient caused by the absorption and scattering of light due to fine
particles and major air pollutants [26]. Golly et al. [27] (2019) conducted experiments on the chemical
characterization of PM2.5 particles in five rural areas of France, and conducted chemical analysis on
the samples every 6 days, including their organic carbon (OC), elemental carbon (EC), ion species,
etc. The results showed that wood combustion had made high contributions to the organic carbon
(OC), and in some rural areas, the contribution rate of wood combustion to OC could be as high as
90% in winters; the contribution of terrestrial protozoa organic components was also significant in
summers and autumns, with a monthly PM2.5 contribution rate of 4.5–9.5% [27]. Ryu et al. (2019)
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studied the PM (Particulate Matter) removal effect of plant evapotranspiration by using the PM removal
performance of five plants and the relative humidity (RH) in a closed chamber as control parameters.
The results showed that under effective transpiration, honeysuckle had higher efficiency for aerosol
PM2.5 removal [28].

At the same time, relevant departments of different countries have also formulated different
emission inventories in response to air pollution. The U.S. Environmental Protection Agency (EPA) has
established the emission inventory for pollutants through direct measurements of power plants stacks,
which provides emission measurements that have an error of less than 2% [29]. The establishment of this
emission inventory has provided valuable guidance to the study of the impact of energy consumption
on the atmospheric environment. The European Environment Agency (EEA) has established an
emission inventory for 30 countries and regions including France and Germany, which covers 8
pollutants (NOx, SO2, CO, NH3, CH4, N2O, CO2, NMVOC) [30]. The study of the emission inventory
in Asia started relatively late. Ohara et al. established an emission inventory of Asia from 1980–2020, in
which the pollutants mainly come from energy consumption such as the combustion of fossil fuel and
biomass fuel for industrial, power, transportation and civil use [31]. This is a relatively comprehensive
emission inventory for Asia so far. Meanwhile, Korea and Japan are expected to have their own
emission inventory [32–35].

In current studies, there is a lack of systematic and quantitative research on the migration
characteristics of urban air pollutants under the influence of energy consumption and estimation of
pollutants produced by energy consumption. Therefore, it is important to analyze the characteristics
of urban air pollution by relating to the energy consumption needs of Shanghai as a mega-city in its
economic and social development, in order to improve its air quality as well as the life quality of its
residents. This paper has adopted the Comprehensive Pollution Index Method, the Improved Grey
Relational Degree Method, and the Euclid Approach Degree Method to evaluate the air quality of
Shanghai, and systematically analyzed the changing pattern and correlation of fine particle pollutants
(PM2.5 and PM10) in Shanghai, in order to achieve innovations as following:

(1) By introducing the pollution index analysis method, the grey correlation analysis method,
and the Euclid approach degree method comprehensively, we hope to overcome their respective
deficiencies and make new additions to existing research methods.

(2) By further discussing the changing pattern and correlation of the fine particle pollutants (PM2.5

and PM10), we hope to provide new evidence of the interrelationship between major atmospheric
pollutants in China.

In the following parts of this paper: Section 2 introduces the backgrounds and methods of this
paper and introduces three study methods. Section 3 uses the three methods to calculate and evaluate
the air quality of Shanghai from 1 November 2017 to 31 October 2018. Based on the above assessment,
Section 4 further discusses the changing pattern and correlation of the fine particle pollutants (PM2.5

and PM10) in Shanghai during the study period. Finally, Section 5 provides conclusions of this paper.

2. Materials and Methods

2.1. Introduction of China’s AQI System

In order to meet the public’s increasing requirement of air quality, and objectively reflect the air
pollution situation in China at the same time, in the first half of 2012, the Ministry of Environmental
Protection of China issued the Technical Regulation on Ambient Air Quality Index (HJ 633-2012) to
replace the previous Air Pollution Index (API). The pollutants covered by this new standard increased
to 6 items (SO2, NO2, PM10, PM2.5, O3, and CO). The AQI is divided into six levels, which represent
superior air quality, good air quality, mild pollution, moderate pollution, heavy pollution, and severe
pollution respectively from the highest to the lowest level. The corresponding Air Quality Indexes are:
Level I—0–50, Level II—50–100, Level III—101–150, Level IV—151–200, Level V—201–300, and Level
VI—above 300 [25]. See Table 1 for details of each level.
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Table 1. Air Quality Index Range and corresponding impact.

Air Quality
Index Range

Air Quality
Level

Air Quality
Category

Representative
Color

Impacts on Human Health and
Recommended Actions

0–50 Level I Superior Green
The air quality is satisfactory. There is

basically no air pollution, and no
impact on human activities.

51–100 Level II Good Yellow

The air quality is acceptable. There
are certain air pollutants that may

cause health issues to a small number
of people who should reduce

outdoor activities.

101–150 Level III Mild Pollution Orange

Symptoms in susceptible people
would intensify, and healthy people

would show irritation symptoms.
Elderly people and children should
avoid long hours of high-intensity

outdoor exercises.

151–200 Level IV Moderate
Pollution Red

Symptoms in susceptible people
would further intensify, and the

breathing of healthy people would be
affected. Elderly people and children

should avoid outdoor sports.

201–300 Level V Heavy Pollution Purple

Ordinary people would show
symptoms. Elderly people and

children should avoid outdoor sports.
The general population should reduce

outdoor activities.

>300 Level VI Severe Pollution Maroon
Obvious and strong symptoms would

appear, and all groups of people
should avoid outdoor activities.

2.2. Overview of Shanghai Air Quality

The main air pollutants in Shanghai include SO2, NO2, PM10, PM2.5, O3, and CO. According to
the data released by the Shanghai Environmental Hotline, the main pollutants published before 2012
include SO2, NO2, and PM10. Since 2012, PM2.5, O3, and CO have been added to the published main
pollutants [36].

Taking 2017 as an example, according to the AQI evaluation, the number of days with superior
and good air quality in Shanghai was 275, which was 1 day less than that in 2016. The good AQI
rate was 75.3%, which was 0.1% point lower than that of 2016. Overall speaking, there were 58 days
with superior air quality, 217 days with good air quality, 71 days with mild pollution, 17 days with
moderate air pollution, and 2 days with heavy pollution. The number of days with heavy pollution
was the same with that in 2016. In those 90 days with air pollution, there were 52 days in which ozone
(O3) was the primary air pollutant (the maximum IAQI air pollutant when AQI is greater than 50 [25]),
accounting for 57.8% of the pollution days; there were 23 days in which fine particles (PM2.5) was the
primary air pollutant, accounting for 25.6% of the pollution days; there were 12 days in which nitrogen
dioxide (NO2) was the primary air pollutant, accounting for 13.3% of the pollution days; there were 2
days in which inhalable particles (PM10) was the primary air pollutant (due to the transportation of
sand dust), accounting for 2.2% of the pollution days; there was 1 day in which PM2.5 and NO2 were
the primary air pollutants, accounting for 1.1% of the pollution days [23].

In 2017, the annual average concentration of PM2.5 in Shanghai was 39 μg/m3, which exceeded
the Level II national air quality standard of 4 μg/m3 and decreased by 13.3% and 37.1% respectively
compared with that of 2016 and the base year 2013. In 2017, the annual average concentration of PM10

in Shanghai was 55 μg/m3, which met the Level II national air quality standard, and decreased by
6.8% compared with that of 2016. In 2017, the annual average concentration of SO2 in Shanghai was
12 μg/m3, which met the Level I national air quality standard, and decreased by 20.0% compared with
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that of 2016. In 2017, the annual average concentration of NO2 in Shanghai was 44 μg/m3, which
exceeded the Level II national air quality standard of 4 μg/m3, and increased by 2.3% compared with
that of 2016. In 2017, the 90th percentile of the daily maximum 8-h average concentration of O3 in
Shanghai was 181 μg/m3, which exceeded the Level II national air quality standard of 21 μg/m3, which
increased by 10.4% compared with that of 2016. In 2017, the daily average concentration of CO in
Shanghai ranged from 0.4–1.8 mg/m3, which met the Level II national air quality standard. The annual
average concentration of CO in Shanghai was 0.76 mg/m3 in 2017, which decreased by 3.8% compared
with that of 2016 [23].

Figure 1 below shows the good rate of overall air quality (the ratio of air quality rated as Level I
or II in Table 1) in Shanghai from 2013–2017 [23,37–40]. It can be seen from the figure that since 2013,
Shanghai’s air quality has shown an improvement trend, despite a slight decline in 2015, which was
mainly due to the fine particle pollution (PM2.5) during autumn and winter, and ozone (O3) pollution
during summer.

 

Figure 1. Shanghai Air Quality (AQI) Good Rate from 2013–2017.

2.3. Overview of Shanghai Climate

The climate of Shanghai is a typical subtropical maritime monsoon climate, mild and humid,
with four distinct seasons. The spring in Shanghai is warm but often has sudden cold currents. The
summer is hot with frequent heavy rains. The autumn is cool with dry weather. The winter is cold and
accompanies fog and haze weather.

The Shanghai Meteorological Department began to accelerate the construction of automatic
weather stations in 2002. Up to now, there are more than 200 automatic weather stations that have been
built and used effectively [41]. The main observations indices of those stations include temperature,
rainfall, air pressure, wind, visibility and dew point, etc. This paper selects 67 automatic stations with
temperature observation records starting from 1 January 2006 and analyzes the climate data during the
study period [42]. We found that Shanghai’s climate has the following distinct features:

(1) The climate in Shanghai is with a monthly average relative humidity of over 75%, and the
annual precipitation is 1100 millimeters, which helps to relieve air pollution to some extent. So,
Shanghai is a city with stable humidity. This will not cause the time difference of its PM2.5.

(2) The average annual temperature is 16.7 ◦C. The average highest temperature in July and
August is 28 ◦C and the extreme temperature in summer is 40.2 ◦C. The average lowest temperature in
January is 4 ◦C, and the extreme temperature in winter is −12.1 ◦C [23].

(3) The northeast wind and the northwest wind are the dominant winds in winter, while the
southeast wind and the southwest wind are the dominant winds in the summer. Because the east side
of Shanghai is facing the sea, the easterly wind brings the clean air from the sea, while the westerly
wind facilitates the spread of air pollutants from neighboring regions to Shanghai [43,44]. Shanghai
is a city with many winds all year round. The average wind speed is relatively stable. At the same
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time, Shanghai is located in the plain, and there will be no conduction effect of pollutants due to wind
direction problems.

2.4. Three Air Quality Assessment Methods

2.4.1. Comprehensive Pollution Index Method

In terms of the Comprehensive Pollution Index Method, the first step is to analyze the pollution
load of the main air pollutants. The formula of the pollution load coefficient is as follows:

fi =
Pi
P

, Pi =
Ci
Si

, P =
k∑

i=1

Pi (3)

where:

Ci is the annual average concentration of the ith pollutant in the atmosphere;
Si is the evaluation criteria of the ith pollutant in the atmosphere;
Pi is the sub-index of the ith pollutant;
fi is the pollution load coefficient of the ith pollutant.

Then calculate the Comprehensive Pollution Index I according to Equation (2):

I =

√
max

(
c1

s1
,

c2

s2
, . . . ,

ck
sk

)
1

k
∑k

i=1
ci
si

(4)

where:

ck is the observed concentration value of a pollutant;
sk is the corresponding evaluation criteria in Level II national air quality standard for the pollutant;
I is the Comprehensive Pollution Index.

China issued the new Ambient Air Quality Standards (GB3095-2012) in 2012, which reclassified the
atmospheric functional zones from the original three categories into two categories. Nature reserves,
tourist attractions and other areas that require special protection belong to the first category, referred to
as the Category I Zone, which applies to the Level I concentration limit. Commercial areas, industrial
parks, and rural areas belong to the second category, referred to as the Category II Zone, which
applies to the Level II concentration limit [27]. See Table 2 for the concentration limits of different
functional zones.

The air quality can be evaluated by comparing the calculated Comprehensive Pollution Index
I with the thresholds in the Air Quality Index scale. Table 3 below has provided the Air Pollution
Grading System.

The Comprehensive Pollution Index Method determines the air quality level based on the
calculated pollution index value, and considers the average level of various pollutants and the damage
level of a single pollutant in the calculation, which is simple and easy to conduct. However, the
main disadvantage of this method is that when the value of the pollution index is exactly at the
threshold between two air quality levels, it would be arbitrary to determine the air quality only based
on one cut-off value and this would diminish the credibility of the evaluation result. Meanwhile, the
calculation result depends on the ratio of the observed highest pollutant concentration value to the
corresponding standard value, which would result in a higher Comprehensive Pollution Index if the
observed value of a certain pollutant is relatively higher [45,46].
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Table 2. Basic air pollutants assessment standards.

Pollutant Average Value
Concentration Threshold

Unit of Measurement
Level I Level II

Sulfur Dioxide (SO2)
Annual Average 20 60

μg/m324-h Average 50 150
Hourly Average 150 500

Nitrogen Dioxide (NO2)
Annual Average 40 40

μg/m324-h Average 80 80
Hourly Average 200 200

Particulate Matter (PM10) Annual Average 40 70
μg/m3

24-h Average 50 150

Particulate Matter (PM2.5) Annual Average 15 35
μg/m3

24-h Average 35 75

Ozone (O3) 24-h Average 100 160
μg/m3

Hourly Average 160 200

Carbonic Oxide (CO) 24-h Average 4 4
mg/m3

Hourly Average 10 10

Table 3. Air pollution grading system.

Air Quality Level Clean Mild Pollution Moderate Pollution Heavy Pollution Severe Pollution

I <0.6 0.6–1 1–1.9 1.9–2.8 >2.8
Pollution Level Safe Standard Alert Warning Emergency

2.4.2. The Improved Grey Relational Degree Method

Let the reference sequence be
{
Xi(k)

}
. Compare the two sequences of

{
Xj(k)

}
and

{
Xi(k)

}
={

Xi(1), Xi(2), . . .Xi(n)

}
, K = 1, 2, . . . n. The correlation coefficient (ξi j(k)) of

{
Xi(k)

}
and

{
Xj(k)

}
at point K

(reflecting the correlation of the comparison sequence and the reference sequence at a certain point)
can be defined by:

ξi j(k) =

min
j

min
k

Δi j(k) + ρ
max

j
max

k
Δi j(k)

Δi j(k) + ρ
max

j
max

k
Δi j(k)

(5)

where:

Δi j(k) =
∣∣∣Xi(k) −Xj(k)

∣∣∣ is the difference in the absolute value of
{
Xi(k)

}
and

{
Xj(k)

}
at point K;

min
j

min
k

Δi j(k) is the minimum differnce between two levels;

max
j

max
k

Δi j(k) is the maximum difference between two levels;

ρ is the distinguishing coefficient, which takes a value between 0 and 1. After comparing the ρ values
in the related literature [47,48], we set ρ = 0.5 to avoid the influence of the extreme values on the
calculation results.

Integrate the correlation coefficients at different points (K = 1, 2 . . . n) to obtain the overall
correlation of the comparison sequence

{
Xj(k)

}
and the reference sequence

{
Xi(k)

}
, as shown in the

following equation:

γi, j =
1
n

n∑
k=1

ξi j(k) (6)
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If
{
X1(k)

}
,
{
X2(k)

}
, . . . ,

{
Xj(k)

}
are N known comparison sequences, and

{
Xi(k)

}
is a known reference

series, there would be:
γi,s
∗ = max

{
γi, j

}
, 1 ≤ j ≤ n (7)

At this time, the reference sequence
{
Xi(k)

}
would have the best correlation with the comparison

sequence
{
Xj(k)

}
.

Obviously, if
{
Xi(k)

}
represents the sequence made up by the observed mass concentration values

of different pollutants,
{
Xj(k)

}
represents the sequence made up by the evaluation standards of a certain

level of different pollutants. Because of the good correlation between
{
Xi(k)

}
and

{
Xj(k)

}
, it is most

appropriate to evaluate the air quality of Sample Point i as the corresponding Level S.
Furthermore, normalize the data. Let S(k, j) = SKj/SIj be the equal-standard grading standard, and

I(i, j) = Cij/SIj be the Air Pollution Index to be evaluated. The weight of the pollutant w(i, j) can be
written as follows:

w(i, j) =
log100I(i, j)∑k

i=1 log100I(i, j)
(8)

where:

SKj is the Graded Index of the jth pollution indicator on Level K;
SIj is the Graded Index of the jth pollution indicator on Level I;
Cij is the observed value of the jth pollution indicator in the ith monitoring point.

Based on this, the correlation between the quality of air samples to be evaluated and the standard
air quality of different levels can be calculated by:

G(i, k) =
k∑

i=1

W(i, j).γi,s
∗ (9)

The traditional Grey Relational Degree Method is relatively simple in calculation. However,
when the pollution factors are significantly different, the average value with equal weights would
understate the pollution factor with high concentration while overstate the pollution factor with low
concentration, which would differ from the actual pollution condition [49–51]. The improved method
above determines different air quality levels based on the observed concentration of different pollution
factors, and calculates the weights and correlation coefficients of each pollution factor accordingly.
When evaluating the air quality, the Improved Grey Relational Degree Method not only enhances the
weights of the pollution factors with high concentration, but also takes into account the combined
effects of different pollution factors on air quality, so that basically no information is lost during the
evaluation process. It also comprehensively considers the effects of different pollutant weights and the
interactions between different pollutants, thus improving the accuracy of the evaluation result.

2.4.3. Euclid Approach Degree Method

First, determine the characteristic value λ(K, j) of the pollution level, as shown in the
following equation:

λ(K, j) =
{

SKj/2, K = 1[
SKj + SK−1 j

]
/2, K = 2

(10)

where SKj represents the grading index of the jth pollutant of Level K.
Then determine the index weight w(i, j) of different pollutants:

w(i, j) =

(
λKj + xij

)
/λJ∑n

i=1(λKj + xij)/λJ
(11)
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where:

xij represents the observed concentration value of the jth pollution indicator at the ith monitoring point;

λJ represents the the mean value of the characteristic values of different levels of the jth
pollution indicator;
λkj represents the characteristic value of Level II of the jth pollution indicator.

Normalize the observed result by:

x(i, j) = xij/λkj

Calculate the Proximity Degree η( i, j) of the air sample to be evaluated:

η(i, j) =

√√ n∑
i=1

W(i, j)[x(i, j) − λ(i, j)]2

Then, determine the respective air quality level of each monitoring point based on the principle of
minimum proximity degree.

For evaluation purpose, the Euclid Approach Degree Method needs to establish two membership
functions of the observed value and the standard level. All valid data observed have been taken into
consideration in the modeling and calculation process. Therefore, there won’t be any information loss
during the evaluation process and the actual condition of the environment could be comprehensively
reflected [52–54].

3. Results

The study period of this paper is from 1 November 2017 to 31 October 2018. The air pollutants as
the study object include SO2, NO2, PM10, PM2.5, O3 and CO. The seasons are determined based on
the months: Spring (March, April, May), summer (June, July, August), autumn (September, October,
November), and winter (December, January, February). See Table 4 for the average concentration levels
of various air pollutants in different seasons.

Table 4. Average Concentration of Main Air Pollutants by Season (μg/m3).

Season

Pollutant
PM2.5 PM10 SO2 NO2 O3 CO

Winter 52.00 66.67 14.33 58.00 83 0.82
Spring 42.33 62.67 12.00 44.33 97 0.76

Summer 24.33 36.67 8.00 25.33 112 0.68
Autumn 31.67 52.67 9.67 46.00 103 0.53

The Air Pollution Grading Indexes of different seasons obtained through the Comprehensive
Pollution Grading Method are shown in Table 5.

Table 5. Comprehensive Pollution Grading Index by Season.

Season Winter Spring Summer Autumn

Comprehensive Pollution Index 1.24 1.02 0.59 0.92

It can be seen from Table 5 that from 1 November 2017 to 31 October 2018, the average air quality
in Shanghai during winter (December, January, February) was heavy pollution; the average air quality
during spring (March, April, May) was moderate pollution; the average air quality during summer
(June, July, August) was clean; while the average air quality during autumn (September, October,
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November) was mild pollution. The results above indicate that the air quality of Shanghai was still not
ideal and further pollution control measures are needed.

Table 6 has shown the Air Pollution Grading Index by season obtained through the Improved
Grey Relational Degree Method and the Euclid Approach Degree Method introduced in Part 2.4 (please
refer to Appendix A for the MATLAB algorithm—MATLAB 2017b, MathWorks, Natick, USA).

Table 6. Air Pollution Grading Index by season obtained by the improved grey relational degree
method and the Euclid approach degree method.

Season

Method
Improved Grey Relational Degree Method Euclid Approach Degree Method

Winter II II
Spring II II

Summer I I
Autumn I II

It can be seen that the evaluation results obtained through the Improved Grey Relational Degree
Method and the Euclid Approach Degree Method are consistent except for autumn. The air quality in
winter has met the Level II national air quality standard stipulated in GB3095-2012; the air quality
in spring has also met the Level II standard; while the air quality in summer has reached the Level I
national air quality standard.

It can be seen from the calculation results obtained by the three evaluation methods above that
there is some concern in the air quality of Shanghai, especially during winters when the air pollution is
most severe.

4. Discussion

Based on the above calculation results, this paper further analyzes the fine particle pollution of
Shanghai during the study period. The particulate pollutants in the atmosphere can be categorized
into total suspended particulates (TSP), PM10, and PM2.5 based on the particle size [55–57]. TSP
generally refers to the particulate matters floating in the air with a particle size of less than 100 μm,
including solid particles and liquid particles [58,59]. PM10 refers to particulate matters with a particle
size of 10 μm or less. Most PM10 could reach the throat or even further in the respiratory tract [60,61].
PM2.5 refers to particulate matters with a particle size of below 2.5 μm. Most PM2.5 can settle in the
respiratory tract, and a small number of PM2.5 could even reach the pulmonary alveoli which are
very difficult to get rid of and extremely harmful to the human body [62–64]. In recent research,
PM2.5 and PM10 have been the focus of air pollution control in China [65–68]. According to studies
at home and abroad, there exist certain correlations between PM10 and PM2.5 [69–72]. In order to
fully understand the relationship between PM2.5 and other major pollutants in Shanghai, we have
calculated the ratio of PM2.5/PM10, PM2.5/SO2, PM2.5/NO2, PM2.5/CO, and PM2.5/O3, according to
the 2017 Shanghai Environmental Bulletin [26] and the Shanghai Air Quality Monthly Report from
January–October 2018 [73]. The results showed that the variation range of PM2.5/PM10 was [0.4–0.7],
while the ratio of PM2.5/SO2, PM2.5/NO2, PM2.5/CO, and PM2.5/O3 was low (see Figure 2).

Hence, we will focus on the correlation between PM2.5 and PM10 concentration in Shanghai. The
ratio of PM2.5/PM10 in Shanghai ranged from 0.50–0.91 during the study period [23,73]. The monthly
ratios are shown in Figure 3 below, which was highest in January and lowest in August. Overall
speaking, the ratios were volatile, with an average value of 0.68. Among the 90 pollution days in
2017 as published in 2017 Shanghai Environmental Bulletin, there are 25.6% of the days in which fine
particles (PM2.5) was the primary air pollutant [23].
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Figure 2. Ratio of PM2.5/PM10, PM2.5/SO2, PM2.5/NO2, PM2.5/CO, and PM2.5/O3 by month.
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Figure 3. Ratio of PM2.5 to PM10 by month.

It can be seen from the seasonal change of the PM2.5/PM10 ratio in Figure 4 that the seasonal
trend of this ratio is: winter > spring > summer > autumn. Meanwhile, this ratio in winter is 1.3
times of that in summer. According to the relevant literature, we found that it is due to the increased
energy consumption in winter heating, less rainfall and more fog weathers in winters, which do not
facilitate the movement of fine particles and results in less sedimentation. In springs, the increased
wind frequency and air flow, especially the northwest wind would bring coarse particulate pollution
to Shanghai. In summers, the high temperature and rising hot air do not facilitate the sedimentation of
fine particles. In autumns, the cool weather and air flow help to spread and subside fine particles, and
therefore the degree of fine particle pollution is lower [74–78].

Through the quarterly linear regression analysis of PM2.5 and PM10 in Shanghai from 1 November
2017 to 31 October 2018, this paper has found a significant linear relationship between PM2.5 and PM10.

As shown in Figure 5a, although the linear correlation between PM2.5 and PM10 varies from
season to season, there is still a strong correlation between PM2.5 and PM10 concentrations, which is
the strongest during winters and summers. In winter, the correlation coefficient reached R2 = 0.9655,
while in summer, the correlation coefficient R2 = 0.9112. The corresponding regression equations
are y = 0.9333x − 5.2223 and y = 0.7734x − 2.614, respectively. Taking winter as an example, the
t-test on the three-month data of winter provided a confidence interval of [53.4543, 68.4943] with 95%
confidence, and a significance probability of 0, which is less than 0.05. Therefore, we can say there is a
significant linear relationship between PM2.5 and PM10 concentration in winter. In spring and autumn,
there is also a linear relationship between PM2.5 and PM10 concentration, but the correlation coefficient
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is smaller. The regression equation in spring is y = 0.5524x − 11.206, with a correlation coefficient
of R2 = 0.7379; while the regression equation in autumn is y = 0.5731x + 5.597, with a correlation
coefficient of R2 = 0.7282.
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Figure 4. Ratio of PM2.5 to PM10 by Season.
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Figure 5. The Regression Curve of PM2.5 and PM10 Mass Concentration in Shanghai from November
2017–October 2018: (a) in winter, (b) in spring, (c) in summer, (d) in autumn.
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The regression fitting results above show that there is a significant linear relationship between
PM2.5 and PM10 concentration in winters and summers, while their linear correlation is less significant
during spring and autumn, which is mainly due to temperature reasons. The cold weather in winters
and hot weather in summers of Shanghai do not facilitate the spread of particle pollutants. The particles
tend to float in the air, showing a significant linear correlation. On the other hand, in springs and
autumns, the temperature is moderate with frequent and strong monsoon which helps to increase air
flow and facilitate the diffusion and sedimentation of particle pollutants. Fine particles and coarse
particles respond differently to these climate factors. Therefore, the linear correlation between the mass
concentration of particulate matters PM2.5 and PM10 is less significant in springs and autumns.

Although air quality has shown improvement in the past decade, there are numerous challenges
in the coming years. With the construction of the Yangtze River Delta urban agglomeration and the
Yangtze River Economic Belt during the 13th Five-Year Plan period, there will be strong economic
growth as well as a continuous increase in air pollutant emissions in neighboring cities and other
provinces and cities at the upper and middle region of the Yangtze River. If we cannot establish an
effective and coordinated regional air pollution prevention and control mechanism, it would greatly
affect Shanghai’s air quality. Moreover, since the parameters we used are derived from official data from
Shanghai [21,23,36–40,73], and the aforementioned research methods have been widely recognized in
the academic world, the research design of this paper has exportability under the premise of using
other reliable data sources.

5. Conclusions

This paper has evaluated the quarterly air quality of Shanghai by using the Comprehensive
Pollution Index Method, the Improved Grey Relational Degree Method, and the Euclid Approach
Degree Method and based on the technical norms of China’s current AQI and analysis of Shanghai’s
overall climate. By analysis on the air pollutants (SO2, NO2, PM10 and PM2.5) in Shanghai from 1
November 2017 to 31 October 2018, this paper has reached the following conclusions:

(1) The air quality of Shanghai has moderate pollution in winters and springs, clean in summers,
and mild pollution in autumns. The evaluation results obtained by the Improved Grey Relational
Degree Method and the Euclid Approach Degree Method are basically consistent. The air quality in
winter has met the Level II national air quality standard in GB3095-2012; the air quality in spring has
also met the Level II standard; while the air quality in summer has reached the Level I national air
quality standard. These results are consistent between the Improved Grey Relational Degree Method
and the Euclid Approach Degree Method. However, in autumn, the air quality evaluation result
according to the Improved Grey Relational Degree Method is Level I, while the evaluation result
according to the Euclid Approach Degree Method is Level II. Therefore, there exist some concern in the
air quality of Shanghai, especially during winters when the air pollution is most severe.

(2) The air pollutants in Shanghai have shown a seasonal pattern of high concentration in winters
and low concentration in summers; meanwhile, the pollutant concentration is higher in the first half of
the year than in the second half. This is because the first half of the year is the peak period of industrial
energy consumption, and both industrial and residential heating needs in winter would inevitably
cause increase in energy consumption such as the coal [79], which would undoubtedly increase the
concentration of air pollutants.

(3) By analyzing the particle pollutants of PM2.5 and PM10, this paper has found that the
linear correlation between the two varies with the seasons, which is most significant during winters
and summers.
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Appendix A

The MATLAB algorithm for calculating the distance between observations and standard values
clc;
close;
clear all;
format short;
% raw data
X = [];% input variable, a column of standard values (in Table 2), a column of observations (in Table 4)
n1 = size(x,1);
for i = 1:n1
x(i,:) = x(i,:)/x(i,1);
end
data = x;
consult = data(6:n1,:);
m1 = size(consult,1);
compare = data(1:5,:);
m2 = size(compare,1);
for i = 1:m1
for j = 1:m2
t(j,:) = compare(j,:)-consult(i,:);
end
min_min =min(min(abs(t’)));
max_max =max(max(abs(t’)));
resolution = 0.5;
coefficient = (min_min+resolution*max_max)./(abs(t)+resolution*max_max);
corr_degree = sum(coefficient’)/size(coefficient,2);
r(i,:) = corr_degree;
end
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Abstract: In order to evaluate the atmospheric environment sustainability in the provinces of
Northeast China, this paper has constructed a comprehensive evaluation model based on the rough
set and entropy weight methods. This paper first constructs a Pressure-State-Response (PSR) model
with a pressure layer, state layer and response layer, as well as an atmospheric environment evaluation
system consisting of 17 indicators. Then, this paper obtains the weight of different indicators by
using the rough set method and conducts equal-width discrete analysis and clustering analysis by
using SPSS software. This paper has found that different discrete methods will end up with different
reduction sets and multiple indicators sharing the same weight. Therefore, this paper has further
introduced the entropy weight method based on the weight solution determined by rough sets and
solved the attribute reduction sets of different layers by using the Rosetta software. Finally, this paper
has further proved the rationality of this evaluation model for atmospheric environment sustainability
by comparing the results with those of the entropy weight method alone and those of the rough
set method alone. The results show that the sustainability level of the atmospheric environment in
Northeast China provinces has first improved, and then worsened, with the atmospheric environment
sustainability level reaching the highest level of 0.9275 in 2014, while dropping to the lowest level of
0.6027 in 2017. Therefore, future efforts should focus on reducing the pressure layer and expanding
the response layer. Based on analysis of the above evaluation results, this paper has further offered
recommendations and solutions for the improvement of atmospheric environment sustainability in
the three provinces of Northeast China.

Keywords: PSR Model; rough set; entropy weight method; attribute reduction

1. Introduction

Sustainable development refers to “meeting the needs of contemporary people while at the same
time sustaining the ability of future generations to meet their needs” [1]. In 1992, the Conference
on Global Environment and Development in Rio de Janeiro adopted the Agenda of the Century [2].
After that, China also adopted The 21st Century Agenda of China. Both agendas have set sustainable
development that “meets the current needs and pursuits of human without damaging the needs and
pursuits of the future” as the goal of future economic development [2,3].

Sustainable development refers to development that meets the needs of the present without
compromising the ability of future generations to meet their needs [4–6]. The atmosphere has significant
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implications to people’s lives, which makes the topic of atmospheric environment sustainability one
of the hottest discussions of today [7–9]. As a crucial part of human activities, the atmosphere
and its quality directly impact the life and daily production of human beings. Since the origin of
species, humans cannot survive without the air. The issue of air quality and safety is one of the key
issues to humankind [10–12]. The Los Angeles photochemical smog episode in the 1940s, the serious
sulfur dioxide pollution in Donora, Pennsylvania in October 1948, and the London smog incidents
in December 1952, etc., all have warned us of the consequences of air pollution and unsustainable
development [13–15].

As the world’s second largest economy, China plays an increasingly important role in global
economic development [16–18]. However, China is also a huge energy consumer [19–21]. China’s
energy consumption accounts for about 23% of world total consumption, and its coal consumption
accounts for 59% of China’s energy consumption, with an annual consumption of 4.64 billion tons.
In 2018, China’s consumption of coal, crude oil, natural gas and electricity increased by 1.0%, 6.5%,
17.7% and 8.5%, respectively [22].

Since the reform and opening up, some regions of China have paid too much attention to economic
interests and neglected the protection of natural resources and the ecological environment, resulting
in ecological imbalances and serious pollution, especially in provinces and cities that focus on heavy
industry, where air pollution has become a common thing and has seriously damaged the health of the
local population [23–25]. Such issues have not only brought dilemma to social development, but also
developed new issues, in which ecological challenges are the most alarming [26–28].

With their vast land, rich fossil fuels resources such as coal, oil and natural gas, as well as their
leading industrial foundation in the country, the three Northeastern provinces of China (Liaoning,
Jilin and Heilongjiang) used to be the fastest-growing regions in modern China, known as the
“Cradle of the Nation’s Industry” [29,30]. However, in recent years, the three Northeastern provinces
have experienced four key issues of high energy consumption, high resource dependence, high
environmental degradation, and a high ratio of brain drain, and are now facing unprecedented energy
and environmental crises. Such a phenomenon is called the “Northeast Phenomenon” [31–33].

Currently, the air pollution problem in Northeast China is also quite serious [34–36]. Although total
emissions of SO2 and NOX declined during the period between 2011 and 2017, SO2 and NOX emissions
are still 849,477.79 tons and 1,270,006.47 tons in 2017, respectively (please refer to Figure 1) [37]. In this
context, it is of great practical and theoretical significance to evaluate the development sustainability
of the atmospheric environment in the Northeast region and explore effective air pollution control
measures. It is necessary to study how to effectively find the weak points in atmospheric environment
protection and take targeted improvement measures in provinces with lagging economic development
to achieve sustainable development under the background of China’s rapid economic growth.

When studying the sustainable development of the atmospheric environment, academic circles
use the rough set method and the entropy weight method, respectively. For example, Lai et al. studied
low carbon technology integration management using the rough set method. Based on a questionnaire
survey and exploratory factor analysis results on the selected indexes, they implemented a rough set
method to identify the weight of all the indexes. Their results showed that the constructed evaluation
framework can properly reflect the integrity, and the rough set evaluation could well reflect the overall
performance of low carbon project evaluation [38]. Xue et al. developed a fuzzy rough set algorithm
to identify the spatial variability, driving forces, and uncertainties of the net ecosystem exchange of
carbon between the temperate forests and the atmosphere. Their results showed the advantages of
the new rough set algorithm and explained the most important variables for net ecosystem exchange
in the northeastern United States [39]. Zhao et al. established a fuzzy comprehensive model based
on entropy technology for air quality assessment. By improving the computing factors’ weights
with Entropy Weight Method, they used the new model to assess the air quality of Fuxin city, China.
The results coincided with the objective air quality condition of Fuxin city greatly, which proved the
effectiveness of the entropy weight method [40]. Chen et al. developed a hybrid approach, combining
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a land use regression model and the entropy weight method to estimate the PM2.5 concentrations on
a national scale in China. They proved that the hybrid model could potentially provide more valid
predictions than a commonly-used model. With R2 = 0.82 and root mean square error of 4.6 μg/m3 [41].
Liu et al. estimated the relationship between urbanization and atmospheric environment security in
Jinan City from 1996 to 2004 on the basis of the theory of environmental Kuznets curves. Employing
the entropy method to determine the index weight, they constructed a comprehensive index system for
urbanization and atmospheric environment security. They determined the main factors that influence
the system to provide a basis for creating scientific urban development strategies and atmospheric
environment protection measures [42].

Figure 1. SO2 and NOx emissions in Northeast China from 2011 to 2017.

However, it is rare to combine the two methods to learn from each other. Based on rough set
and entropy weight theory, this paper has determined the comprehensive weight by taking both the
weight calculated by the attribute reduction set and the entropy weight into consideration, and that
has improved the credibility and feasibility of the indicator weights. This paper has also compared
experimental results by using different discrete methods, and found that the ranking of attribute values
is basically consistent both before and after introducing the entropy weight, thus solving the problem of
inconsistent results under different discrete methods and experimental methods. After comparing the
results by this new method and by the method of determining the objective weights of the attributes
based on the ideal structure optimization model, this paper has found that the rankings are basically the
same, which further proves the rationality of this method. Finally, this paper has graded the indicator
values into four levels (Excellent, Good, Medium, Poor) according to the actual level of atmospheric
environment sustainability as well as previous studies on indicator grading. By determining the levels,
this paper could obtain the level of sustainable development of each region based on a comprehensive
indicator value.

2. Materials and Methods

2.1. Modeling Basis

Different from the traditional development concept solely based on economic development,
sustainable development means balancing economic development with environmental protection
and that the two things cannot be separated. When evaluating whether ecosystems are healthy,
researchers often use the conceptual PSR Model based on the logic of “Pressure-State-Response” [43–46].
By analyzing the causal relationship inherent in the system, this model discovers the causal chain in the
system, and then takes targeted adjustment measures to achieve system sustainability. When analyzing
the relationship between humans and nature, this model believes that because of the pressure brought
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by human activities to the natural environment, the quantity of natural resources and some of the
original properties of nature are changed, thus calling for society to take countermeasures through
various environmental, economic and governance strategies. This process repeats over and over
again, constituting the relationship between human beings and the natural environment. Whether
the indicator system is reasonably constructed or not determines the accuracy of the evaluation
results [47,48]. Therefore, it is necessary to select generalized and representative indicators as the
evaluation indicators from a wide range of potential indicators. The following principles need to be
followed: scientific, complete, principal components, and independent [49,50]. Regarding the principal
components, this means that when selecting evaluation indicators, if the information given is sufficient,
we should select as few indicators as possible and make sure that all indicators are representative.

2.1.1. Establishment of the Indicator Layer for the PSR Model

Pressure indicators refer to the environmental impact of human economic and social activities,
such as the damage and disturbance to air quality caused by economic growth, social development,
and emissions by various industries during their daily operation in the Northeast region. Therefore,
the pressure layer refers to the collection of related indicators that cause damage and disturbance to
the air quality and its sustainable development. [51]

State indicators refer to the environmental conditions and environmental changes within specific
time periods, such as the consumption of coal, crude oil, and natural gas that affect the sustainable
development of the Northeast region. Therefore, the state layer refers to the collection of economic
indicators and energy consumption indicators generated by human life in economic activities. This layer
includes indicators that are responsive assessments of human activities that can effectively describe the
process of regional sustainable development [52].

Response indicators refer to how the society and individuals act to mitigate, stop, and prevent
the negative impacts of human activities on the environment, as well as the remedial measures for
ecological changes that have already occurred and hindered human survival and development, such
as the waste treatment measures in the Northeast region. Therefore, the response layer refers to the
collection of measures that society and individuals actively take action to mitigate, prevent, restore and
prevent the negative impacts of human activities on the environment and remedy the environmental
damage already caused [53].

Relieving pressure is at the core of the system; the state is the basis for the system to decide
whether to respond; while response is the main way to achieve sustainable development. The three
aspects of pressure, state and response interact with each other to form an organic feedback loop.
Effective response behaviors would help to maintain the air quality of Northeast China at a good level.
Otherwise, inappropriate response behaviors would cause the air quality of Northeast China to fall
into a vicious circle.

2.1.2. Construction of the Indicator System for the PSR Model

Through empirical research, US economists Grossman and Krueger studied the relationship
between the quality of the ecological environment and GDP per capita. They found that environmental
pollution showed an upward trend with the growth of GDP per capita when the relative income was
low, reached the peak at certain turning point when the countries entered the high-income stage, and
then gradually declined with the growth of GDP per capita [54].

According to the above logic of causality, this paper has allocated various factors into the pressure
layer, the state layer and the response layer respectively. Drawing on existing research [51,55,56] and
combining the characteristics of the three provinces, we selected 17 indicators including core and
supplementary indicators based on the data of air quality and GDP per capita of the Northeastern
provinces from 2009 to 2017 to construct the PSR Model [57]. This indicator system is complete
and independent with a principal component and accurately reflects the sustainability level of the
atmospheric environment in Northeast China, as shown in Table 1.

175



Sustainability 2019, 11, 3793

T
a

b
le

1
.

Th
e

in
di

ca
to

rs
in

th
e

Pr
es

su
re

-S
ta

te
-R

es
po

ns
e

(P
SR

)M
od

el
fo

rN
or

th
ea

st
C

hi
na

at
m

os
ph

er
ic

en
vi

ro
nm

en
ts

us
ta

in
ab

ili
ty

m
ea

su
re

m
en

ta
nd

th
ei

rs
ta

nd
ar

di
ze

d
va

lu
es

fr
om

20
09

to
20

17
.

T
h

e
E

le
m

e
n

t
L

a
y

e
r

T
h

e
In

d
ic

a
to

r
L

a
y

e
r

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

Th
e

Pr
es

su
re

La
ye

r

SO
2

0.
06

0
0.

06
1

0.
00

0
0.

01
5

0.
06

3
0.

09
5

0.
12

6
0.

35
2

0.
43

7

N
it

ri
c

O
xi

de
0.

00
4

0.
17

7
0.

00
0

0.
00

4
0.

04
1

0.
06

8
0.

17
7

0.
31

1
0.

47
7

Sm
ok

e
(D

us
t)

0.
11

1
0.

09
3

0.
17

4
0.

11
9

0.
09

0
0.

00
0

0.
18

8
0.

43
7

0.
49

3

O
il

R
es

er
ve

s
0.

00
0

0.
00

0
0.

06
0

0.
08

0
0.

13
2

0.
16

8
0.

19
2

0.
21

8
0.

21
8

N
at

ur
al

G
as

R
es

er
ve

s
0.

08
4

0.
00

0
0.

03
4

0.
05

3
0.

07
3

0.
07

9
0.

09
8

0.
11

0
0.

07
9

C
oa

lR
es

er
ve

s
0.

00
0

0.
10

9
0.

95
1

0.
96

6
1.

00
0

0.
90

3
0.

97
1

0.
88

2
1.

00
0

T
he

St
at

e
La

ye
r

R
eg

io
na

lG
D

P
(H

un
dr

ed
M

ill
io

n
R

M
B)

0.
53

9
0.

65
1

0.
79

1
0.

86
1

0.
90

9
0.

94
6

0.
94

8
0.

96
7

1.
00

0

V
al

ue
A

dd
ed

of
th

e
Se

co
nd

ar
y

In
du

st
ry

(H
un

dr
ed

M
ill

io
n

R
M

B)
0.

67
1

0.
83

1
0.

98
7

1.
00

0
0.

96
8

0.
91

8
0.

79
3

0.
72

7
0.

67
1

V
al

ue
A

dd
ed

of
th

e
Se

rv
ic

e
In

du
st

ry
(H

un
dr

ed
M

ill
io

n
R

M
B)

0.
37

7
0.

45
3

0.
55

2
0.

62
3

0.
69

0
0.

77
5

0.
86

1
0.

93
6

1.
00

0

In
du

st
ri

al
V

al
ue

A
dd

ed
(H

un
dr

ed
M

ill
io

n
R

M
B)

0.
67

5
0.

84
4

0.
99

9
1.

00
0

0.
97

1
0.

91
2

0.
77

2
0.

69
4

0.
63

3

G
D

P
pe

r
ca

pi
ta

(R
M

B)
0.

53
5

0.
64

6
0.

78
3

0.
85

2
0.

89
9

0.
93

6
0.

94
1

0.
96

5
1.

00
0

C
oa

lC
on

su
m

pt
io

n
(T

en
Th

ou
sa

nd
To

ns
)

0.
78

6
0.

86
9

0.
93

9
0.

99
4

0.
94

4
0.

96
7

0.
95

6
0.

99
9

1.
00

0

C
ru

de
O

il
C

on
su

m
pt

io
n

(T
en

Th
ou

sa
nd

To
ns

)
0.

93
3

0.
95

2
0.

99
6

0.
98

0
0.

96
2

0.
96

9
0.

96
0

1.
00

0
0.

97
3

N
at

ur
al

G
as

C
on

su
m

pt
io

n
(H

un
dr

ed
M

ill
io

n
C

ub
ic

M
et

er
s)

0.
01

2
0.

00
0

0.
13

5
0.

46
4

0.
59

8
0.

68
6

0.
72

7
1.

00
0

0.
79

2

Th
e

R
es

po
ns

e
La

ye
r

In
ve

st
m

en
ti

n
In

du
st

ri
al

Po
llu

ti
on

C
on

tr
ol

(T
en

Th
ou

sa
nd

R
M

B)
0.

47
9

0.
23

8
0.

48
7

0.
18

9
1.

00
0

0.
85

8
0.

93
4

0.
84

0
0.

44
0

In
ve

st
m

en
ti

n
W

as
te

G
as

C
on

tr
ol

(T
en

Th
ou

sa
nd

R
M

B)
0.

27
1

0.
09

1
0.

42
2

0.
14

9
1.

00
0

0.
87

1
0.

73
0

0.
83

5
0.

37
3

Lo
ca

lF
is

ca
lE

xp
en

di
tu

re
on

En
vi

ro
nm

en
ta

lP
ro

te
ct

io
n

(H
un

dr
ed

M
ill

io
n

R
M

B)
0.

00
0

0.
22

3
0.

24
8

0.
34

1
0.

42
3

0.
39

1
0.

71
9

0.
40

5
1.

00
0

176



Sustainability 2019, 11, 3793

2.2. Evaluation Model on Atmospheric Environment Sustainability

2.2.1. Basic Concept of the Model

First, this paper determines the weight of each layer by using the rough set and entropy
weight methods. Because the two methods are both objective methods for determining weights, the
combination of the two has taken both the importance of each attribute to decision-making and the
influence of the information quantity within each attribute on decision-making into consideration, thus
achieving more precise weights [58–61]. Secondly, by assuming the weights of element layers, this paper
has constructed a comprehensive evaluation model on atmospheric environment sustainability to obtain
the sustainability indicator value. At last, this paper has ranked the objects under assessment based on
the indicator values, and respectively determined each object’s influence on the sustainability level.

2.2.2. Evaluation Steps

1. Standardize the raw data. Due to different properties of the evaluation indicators, the
original data are in different dimensions and orders of magnitude. In order to eliminate the influence
of difference in dimensions and ensure the comparability of data as well as the feasibility of the
decision-making results, it is necessary to properly standardize the original data. Suppose there are
N evaluation objects, M evaluation indicators, the evaluation value of the indicators is expressed as
mi

ij(i ∈ N, J ∈M), and the standardized indicator value is written as mi
ij. It can be concluded from the

relevant literature that for benefit attributes, the larger the indicator value, the better; while for cost
attributes, the smaller the indicator value, the better [62,63]. In this paper, the indicators in the state
layer and the response layer are benefit attributes, while the indicators in the pressure layer are cost
attributes. Then we have:

mij =
m′i j −min

i∈N
{m′i j}

min
i∈N
{m′i j} −max

i∈N
{m′i j}

(1)

mij =
max
i∈N
{m′i j} −m′i j

max
i∈N
{m′i j} −min

i∈N
{m′i j}

(2)

2. Determine the Decision Weights. When rough sets are used to process data, the general
approach is to determine the indicator weights based on the importance of various attributes [64,65].
However, this method is flawed. The reduction set of attributes refers to the smallest set of attributes
whose number is greater than zero while division is the same with the original data set. The intersection
of all reduction sets is called the core attribute. It can be found by data analysis that when the core
attribute does not exist, the indicator weights based on the importance of various attributes all equal
to zero, which is in contradiction with the fact. When the core attribute does not exist, the attributes
in all the reduction sets are relatively necessary attributes. It can be learned from the literature that
the importance of each attribute can be determined by the ratio of the number of occurrences of the
attribute in the reduction sets to the total number of reduction sets [66,67].

Let H be the total number of reduction sets. H is the number of reduction sets that contain the
relatively necessary attribute Lj, then the weight of Lj is X∗LJ

= g/G, which can be normalized as:

XLJ =
(
X1

LJ
+ X2

LJ

)
/2 (3)

Although the above method can determine the weights of relatively necessary attributes, on the
one hand, because the data processed by this method is discrete, different attribute discretization
methods would result in different reduction sets, thus obtaining inconsistent attribute weights; on the
other hand, it happens that some attributes would have the same weights as calculated by Formula (3).
Therefore, it can be seen that this method is inadequate to properly calculate the weights of relatively
necessary attributes.
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In order to make up for the shortcomings of the above two methods, this paper has integrated the
entropy weight method with the attribute reduction set method for weight calculation. The entropy
weight method is an objective weighting method based on normalization matrix calculation and
is not suitable for discrete data [68,69]. The entropy weight method analyzes the influence of
indicator variation on the weight [70,71], while the attribute reduction set method examines the
dependence of decision attributes on conditional attributes [72–74]. By combining the weights obtained
by both methods, this paper has comprehensively considered the importance of each attribute to
decision-making and the influence of information quantity within each attribute on decision-making,
thus determining the weight of attributes based on two aspects and making up for the shortcomings of
the attribute reduction set method in weight determination.

According to existing literature, the entropy weight of indicator Lj is [75]:

X2
LJ

=

⎛⎜⎜⎜⎜⎜⎝1 + s
N∑

i=1

lntij

⎞⎟⎟⎟⎟⎟⎠/
⎛⎜⎜⎜⎜⎜⎜⎝M + s

M∑
j=1

N∑
i=1

tij lntij

⎞⎟⎟⎟⎟⎟⎟⎠ (4)

in which s = 1/lnN, tij = mij /
N∑

i=1
mij . Assume that when tij = 0, hij lnhij = 0.

By combining the weight obtained from the attribute reduction set method (X1
LJ

) and the entropy

weight (X2
LJ

), this paper has obtained the new weight for indicator Lj (XLJ ), which comprehensively
considers the importance of the attribute itself and its information quantity to decision-making, and
therefore makes the weighting more reasonable.

3. Calculate the Comprehensive Evaluation Value. Suppose the importance weights of the pressure
layer, the state layer and the response layer in sustainable development are ω, ψ, ξ, respectively.
Then, the comprehensive value can be expressed as:

Zi = ω
M1∑
j=1

mij XLj +ψ
M2∑

j=M1+1

mij XLj + ξ
M3∑

j=M2+1

mLjXLj (5)

where M1, M2, and M3 respectively stand for the number of indicators in the pressure layer, the state
layer and the response layer; ω, ψ, ξ are determined by the weighting method based on standard
deviation, i.e., by Formula (7) [15]; eij is the indicator value of the pressure layer, the state layer and the
response layer; ej is the mean value of the indicator values.

Xj =

√√√ N∑
i=1

(eij − ej)
2/(N − 1), Xj = Xj/

3∑
j=1

Xj (6)

Based on previous research results on the development sustainability level and the actual situation
of sustainable development of the atmospheric environment [76,77], this paper has graded sustainability
indicator values into four levels (Excellent, Good, Medium, Poor). When the sustainability indicator
value is no lower than 0.9 (Z ≥ 0.9), its level of sustainable development is Excellent, indicating a
high level of sustainability of the atmospheric environment in various aspects including the economic,
environmental and social aspects. When 0.75 < Z < 0.9, its level of sustainable development is
Good; when 0.6 < Z ≤ 0.75, its level of sustainable development is Medium, which indicates that
the sustainability of the atmospheric environment in this region has improved but this improvement
is not prominent. When Z ≤ 0.6, its level of sustainable development is Poor, indicating a low
level of sustainability of the atmospheric environment in this region which requires significant
improvement efforts.
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3. Results

3.1. Standardize the Evaluation Indicator

By standardizing the air quality data of the three Northeastern provinces from 2009 to 2017
according to Formulas (1) and (2), this paper has obtained the standardized values of various indicators
(as shown in Table 1).

This paper has adopted the rough set method to process discrete data and used SPSS software to
perform equal-width discrete analysis and clustering analysis on the data [20]. The equal-width discrete
algorithm is a typical unsupervised discretization method, which equally divides the standardized
data between [0,1] into four intervals: (0.9, 1.0), (0.65, 0.9), (0.5, 0.65), and (0, 0.5). Four discrete values
are selected for these intervals: 4, 3, 2, and 1, corresponding to Excellent, Good, Medium, and Poor,
respectively. Clustering analysis is used to obtain decision attributes, which are divided into four
categories according to the conditional attributes, and the decision information system is eventually
determined as shown in Table 2 below:

Table 2. Decision table of the PSR Model.

The Element
Layer

The Indicator Layer 2011 2012 2013 2014 2015 2016 2017

The Pressure
Layer

SO2 1 1 1 1 1 2 2

Nitric Oxide 1 1 1 1 1 2 2

Smoke (Dust) 1 1 1 1 1 2 2

Oil Reserves 1 1 1 1 1 1 1

Natural Gas Reserves 1 1 1 1 1 1 1

Coal Reserves 4 4 4 4 4 4 4

The State
Layer

Regional GDP
(Hundred Million RMB) 4 4 4 4 4 4 4

Value Added of the Secondary
Industry (Hundred Million RMB) 4 4 4 4 4 3 3

Value Added of the Service Industry
(Hundred Million RMB) 3 3 3 4 4 4 4

Industrial Value Added
(Hundred Million RMB) 4 4 4 4 4 3 3

GDP per capita (RMB) 4 4 4 4 4 4 4

Coal Consumption
(Ten Thousand Tons) 4 4 4 4 4 4 4

Crude Oil Consumption
(Ten Thousand Tons) 4 4 4 4 4 4 4

Natural Gas Consumption (Hundred
Million Cubic Meters) 1 2 3 3 3 4 4

The Response
Layer

Investment in Industrial Pollution
Control (Ten Thousand RMB) 2 1 4 4 4 4 2

Investment in Waste Gas Control
(Ten Thousand RMB) 2 1 4 4 3 4 2

Local Fiscal Expenditure on
Environmental Protection (Hundred

Million RMB)
1 2 2 2 3 2 4

Table 2 shows the change in the discrete values of the indicators in the three Northeastern
provinces from 2011 to 2017. It can be seen that although the values of the pressure layer elements
(SO2, Nitric Oxide, Smoke/Dust) have shown an improvement trend, they still belong to the Medium
Level. Therefore, it can be concluded that the air quality of Northeast China is still quite poor, and
it is necessary to look for a sustainable development plan for the Northeast region regarding the
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atmospheric environment. The reserves of oil, natural gas and coal resources are generally stable, of
which oil and natural gas are relatively scarce, while coal reserves are relatively abundant. On the
other hand, it can be seen by analysis of the elements of the state layer that the Northeast region
has not only maintained excellent regional GDP, but the industrial structure of the three Northeast
provinces is also undergoing certain changes. For example, the added value of the secondary industry
has decreased compared with that of the service industry; the growth of the industry has slowed down
but the regional GDP per capita has still remained at an excellent level. Overall, the consumption
of coal and oil is still quite high, and the consumption of natural gas is growing. The investment in
industrial pollution control and waste gas control has first increased but later decreased, while the local
fiscal expenditure on environmental protection has shown an increasing trend. Based on the above
table, we could clearly understand the changes in the relevant factors that influence the air quality
sustainability of the Northeast region as well as their values in different time periods. It can be seen
that the three Northeast provinces have made efforts to improve their air quality in recent years and
have achieved certain results. However, there is still a long way to go before these provinces have
accomplished a true transformation and upgrade.

3.2. Determine the Weights

Attribute reduction refers to selecting the minimum condition subset while ensuring an unchanged
correlation coefficient as the decision system so as to determine the condition attributes in the decision
rule. By using Table 2 and the Rosetta software, this paper has obtained the attribute reduction set of
each layer.

The Attribute Reduction Set of the Pressure Layer:
Heilongjiang: {a2, a6}, {a1, a6}, {a3, a6};
Jilin: {a1, a3, a6}, {a2, a3, a6};
Liaoning: {a1, a3, a5, a6}, {a2, a3, a5, a6}.

The Attribute Reduction Set of the State Layer:

Heilongjiang: {b3, b4, b5, b8}, {b1, b3, b4, b8}, {b2, b3, b5, b8}, {b1, b2, b3, b8};
Jilin: {b3, b4, b8}, {b2, b3, b5, b8}, {b1, b2, b3, b8};
Liaoning: {b2, b3, b8}, {b3, b4, b8}.

The Attribute Reduction Set of the Response Layer:

Heilongjiang: {c1, c3}, {c2, c3};
Jilin: {c1, c2, c3};
Liaoning: {c1, c2, c3}.

Based on the attribute reduction set of various indicator layers and Formula (3), this paper has
obtained the relatively necessary attribute weight X1

LJ
; based on Formulas (4) and (5) and Table 1,

this paper has obtained the entropy weight of each indicator layer X2
LJ

and the new weight XLJ .
The calculation results are shown in Table 3. Different from subjective methods that rely on expert
experience and lack objectivity and objective methods with poor explanatory power, the method in
this paper uses the rough set method to explore the internal relationship within the experimental data
so that the weight obtained by this method could demonstrate the information quantity within each
attribute. In this way, it can be ensured that the indicators selected could reflect most of the original
information, thus achieving more effective and objective results. Moreover, during data analysis,
this paper has performed equal-width discrete analysis, thus preventing the potential problem of
inconsistent weighting under different discretization methods. By combining the entropy weight
method with the attribute reduction set method, this paper has made up for the shortcomings of the
reduction set method and obtained more reasonable weighting results.
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Table 3. The weights of various indicators.

The Element
Layer

Indicator
Entropy-Based

Weight X1
Lj

Rough Weight X2
Lj

Average Weight
XLj

The Pressure Layer

a1 0.2409 0.1667 0.2038

a2 0.2862 0.1667 0.2264

a3 0.1533 0.1667 0.1600

a4 0.1525 0.0000 0.0763

a5 0.0753 0.0000 0.0376

a6 0.0919 0.5000 0.2959

The State Layer

b1 0.0375 0.1250 0.0813

b2 0.0256 0.1250 0.0753

b3 0.0995 0.2500 0.1747

b4 0.0311 0.1250 0.0780

b5 0.0380 0.1250 0.0815

b6 0.0059 0.0000 0.0029

b7 0.0005 0.0000 0.0002

b8 0.7619 0.2500 0.5060

The Response
Layer

c1 0.2158 0.2500 0.2329

c2 0.3568 0.2500 0.3034

c3 0.4274 0.5000 0.4637

3.3. Calculate the Comprehensive Evaluation Value

Based on Table 1, Table 3, and Formula (6), this paper has obtained the attribute values and
sustainability levels of each indicator layer as shown in Table 4 below. From Table 4, it can be seen
that the sustainability levels from 2009 to 2017 are ranked as: Z2014 > Z2013 > Z2015 > Z2011 > Z2012 >
Z2017 > Z2009 > Z2010 > Z2016.

Table 4. The comprehensive management and sustainability level obtained by the PSR Model.

Year p Value S Value R Value Sustainable Value Z Level

2009 0.1677 0.0023 0.0273 0.5810 Poor

2010 0.1549 0.0028 0.0189 0.5455 Poor

2011 0.1672 0.0034 0.0155 0.7287 Medium

2012 0.1576 0.0037 0.0151 0.6777 Medium

2013 0.1541 0.0041 0.0397 0.8009 Good

2014 0.1719 0.0043 0.0617 0.9275 Excellent

2015 0.1581 0.0043 0.0332 0.7723 Good

2016 0.0997 0.0037 0.0298 0.5459 Poor

2017 0.0850 0.0039 0.0266 0.6027 Medium

4. Discussion

By comparing the above method with the entropy weight method and the rough set method alone,
we can obtain the rationality of the method adopted in this paper, i.e., introducing the entropy weight
method based on the rough set method to construct a sustainable development model. The calculation
results of the three different methods for Northeast China as a whole are shown in Table 5 below
(Please refer to Appendix A for the calculation results of each province in Northeast China.):
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Table 5. Comparison of comprehensive values calculated by different methods for Northeast China.

The Element
Layer

Year
The Entropy

Weight Method
The Rough Set

Method
Rough Set + Entropy

Weight Method

The Pressure Layer

2009 0.7090 0.6882 0.7092

2010 0.5728 0.7016 0.6364

2011 0.6807 0.7199 0.7239

2012 0.5878 0.6831 0.6473

2013 0.6439 0.6915 0.6624

2014 0.6928 0.7776 0.7033

2015 0.6724 0.7164 0.6486

2016 0.4083 0.4420 0.4418

2017 0.3944 0.3380 0.3233

The State Layer

2009 0.3063 0.3587 0.2879

2010 0.3195 0.2727 0.2727

2011 0.4249 0.4063 0.4061

2012 0.4159 0.4477 0.4270

2013 0.4996 0.4999 0.4497

2014 0.4640 0.4757 0.4574

2015 0.4876 0.5377 0.4659

2016 0.3623 0.4488 0.4274

2017 0.4944 0.5168 0.4596

The Response
Layer

2009 0.5036 0.4075 0.4039

2010 0.2560 0.2846 0.2557

2011 0.3749 0.2587 0.2562

2012 0.2300 0.2195 0.2389

2013 0.7124 0.6638 0.6034

2014 0.8988 0.7609 0.8225

2015 0.5120 0.4447 0.4475

2016 0.5429 0.5613 0.4860

2017 0.3794 0.3243 0.3577

The Sustainable
Layer

2009 0.3349 0.4542 0.4180

2010 0.3781 0.5273 0.4273

2011 0.3898 0.4698 0.5072

2012 0.4127 0.5105 0.5143

2013 0.3490 0.5667 0.5460

2014 0.5182 0.6392 0.6799

2015 0.4124 0.5746 0.5630

2016 0.5036 0.4915 0.4454

2017 0.4663 0.4455 0.4544

Different discrete methods would lead to different ranking results, especially the ranking of
sustainability indicators. By the entropy weight method, the year of 2009 had the lowest sustainability
value of 0.3349; while by the rough set method, the year of 2017 had the lowest sustainability value of
0.4455, which indicates large differences in the sustainability evaluation result by different weighting
methods, and that the choice of weighting methods directly affects the accuracy of the evaluation.
However, if the entropy weight method is further introduced based on the rough set method, the
result obtained is consistent with the result obtained through the original Method, as shown in
Figure 2 below. According to the result, in Northeast China, the same year 2009 had the lowest
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sustainability level for atmospheric environment, with an indicator value of 0.4180; while the year 2014
has the best sustainability level with an indicator value of 0.6799. This proves that by introducing the
entropy weight method, this paper has solved the issue of inconsistent results by different weighting
methods. The rough set method categorizes the data based on attributes and examines the degree of
approximation by finding the upper and lower approximations and finding the positive domain. In
the assessment of sustainable development of the atmospheric environment in the Northeast region,
the rough set method can be used to draw rough conclusions. However, because different weighting
methods would lead to different results, this would have a great impact on the accuracy of the data as
well as the final conclusion. The entropy weight method is an objective weighting method which only
depends on the discreteness of the data. The entropy value can be used to determine the discrete degree
of the indicator, and thereby obtain the weight of the indicator in overall comprehensive evaluation.
Thanks to this feature of the entropy weight method, the accuracy of the evaluation result can be
effectively improved so as to make up for the flaw of the rough set method that different weighting
methods would lead to different conclusions [78–80].

Figure 2. Calculation results of the rough set plus entropy weight method for Northeast China:
(a) Results of the sustainable layer; (b) Results of the response layer.
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From Table 5, we could learn the sustainability level of the atmospheric environment in Northeast
China: the state layer and the response layer have both shown an upward trend, while the pressure
layer has shown a downtrend. Now we can perform a targeted analysis based on the different trends
of various indicator layers:

1. Pressure Indicators: it can be seen from the comprehensive value of the pressure indicators
that 2014 and 2015 have the best performance, but there has been a downtrend in recent years, with
a record low in 2017, which is probably due to increasing demands for resources with the increase
of population pressure. The Northeast region is the industrial heartland of China. Back in 2016, the
National People’s Congress and Chinese People’s Political Consultative Conference reaffirmed the
policy of “revitalizing the old industrial base in Northeast China”, which probably had led to a growing
demand for resources in this region. In addition, the Northeast region faces severe cold during winters.
The strong demand for heating and large consumption of coal would cause the environmental quality
to further deteriorate.

2. State Indicators: the indicators of the state layer have generally shown an upward trend,
indicating an overall improvement in resource utilization rate in the Northeast region with growing
environmental awareness. In addition, the state layer indicators have reflected the fact that in the
wave of globalization, the industrial development of the Northeast region has had a great impact on
the atmospheric environment sustainability. As the cradle of China’s core industry, while it continues
to develop its industry, the Northeast region should also pay attention to the reuse of resources and
increase investment in clean energy development.

3. Response Indicators: the indicators of the response layer have generally shown a downward
trend. The investment reached its peak in 2014, and according to various indicators, the sustainability
level of the Northeast provinces also reached its best in 2014, indicating that enterprises and
local government are working towards a correct direction in terms of environmental protection
investment. The Northeast provinces could see more achievements if they increase their investment in
environmental protection.

4. Sustainability Indicators: there have been large fluctuations in the sustainability indicators,
which are mainly affected by the air quality protection investment by enterprises and the local
government, the promotion of clean energy such as natural gas, and the environmental awareness
of people. This indicates that achieving sustainable development is the common responsibility of
everyone in our society. Individuals, enterprises and the government should all establish a sense
of responsibility and strengthen their understanding of sustainable development concepts, thus
promoting the sustainable development of the Northeastern provinces.

It can also be found that Heilongjiang Province has done the best in the sustainable development
of the atmospheric environment during the research period. On the whole, the main reasons are:

(1) Heilongjiang strictly abides by the state’s laws, regulations and action guidelines on air
pollution control, and has formulated a series of sustainable development policies for atmospheric
environment with local characteristics and specificity. It has issued and released “Implementation Rules
of Air Pollution Prevention Action Plan in Heilongjiang” [81], “Special Action Plan for Air Pollution
Prevention and Control in Heilongjiang Province, 2016–2018” [82], and “Air Pollution Prevention and
Control Regulations of Heilongjiang Province” [83], etc. These regulations have played positive roles
in reducing air pollution emissions and maintaining the sustainable development of the atmospheric
environment in Heilongjiang.

(2) In accordance with national and local regulations, Heilongjiang has established a strict
environmental accountability mechanism to give political sanctions and economic penalties to units
and individuals that are not effective in preventing and controlling air pollution, which urges
government officials and enterprises to attach great importance to the sustainable development of
the atmospheric environment. In early 2018, the provincial government reproached 65 civil servants,
including eight cadres at the departmental level and 39 at the sectional level, who were are directly
responsible for the poor effectiveness of air pollution prevention and control in October 2017. Among
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them, 45 were given Party and administrative discipline, and 17 were conducted admonition talks.
At the same time, the Provincial Agricultural Commission was ordered to make a written inspection to
the provincial government [84].

(3) Heilongjiang has focused on controlling major air pollution sources such as coal-fired heating
and biomass burning emissions in winter and adopted new technologies for pollution source grid
monitoring and straw resource utilization. By the end of 2015, the comprehensive utilization rate of
straw in the province exceeded 80%, which effectively reduced atmospheric pollution [82].

5. Conclusions

This paper has adopted a new method that can determine the weight more objectively. First, this
paper has constructed a PSR Model for the sustainability evaluation of the atmospheric environment of
Northeast China as well as an air quality evaluation system consisting of 17 indicators. After this paper
obtained the weights by using the rough set method, it further introduced the entropy weight method
to make up for the flaws of the rough set method, and effectively solved the issue of large differences
in evaluation results by different weighting methods under the rough set method, thus improving the
accuracy of the results. This paper obtained the data on changes in the atmospheric environment of the
three Northeast provinces from 2009 to 2017. Finally, by consolidating the data of the three provinces,
this paper obtained the evaluation result of the atmospheric environment sustainability in Northeast
China, which showed that the sustainability level of the atmospheric environment in Northeast China
provinces first improved, and then worsened, with the atmospheric environment sustainability level
reaching the highest level of 0.9275 in 2014, while dropping to the lowest level of 0.6027 in 2017.
In Northeast China, Heilongjiang Province has done the best in the sustainable development of the
atmospheric environment. From 2009 to 2017, the sustainability level of Northeast China’s atmospheric
environment has risen at first but then declined and achieved the best level in 2014.

The research results of this paper have good applicability to the sustainable development of China’s
atmospheric environment. On the one hand, this paper has obtained a more complete evaluation on
the actual sustainability level of the atmospheric environment based on the existing data. The main
feature of this study is that it uses the rough set method to calculate the weight of each condition
attribute and introduces the entropy weight method to obtain an objective evaluation of the data based
on discrete values. On the other hand, this paper has combined the entropy weight method with the
rough set method to make up for the flaws of the rough set method and effectively makes use of the
advantages of the two methods. The two methods supplement each other and lead to more accurate
conclusions regarding the development sustainability of the atmospheric environment. This paper
uses the entropy value to solve the problem of inconsistent data under different weighting methods
and has innovated a model for atmospheric sustainable development studies as well as enriched the
literature on atmospheric environment and sustainable development. Therefore, compared with the
previous research, the advantages and applicability of this paper are mainly reflected in:

1. The analysis and calculation of the pressure layer, state layer and response layer. This paper
reflects the various factors affecting the sustainable development of atmospheric environment more
comprehensively, and provides a more scientific and complete basis for the future sustainable
development policies.

2. As far as the research method is concerned, the entropy weight method is used to make
up for the shortcomings of the rough set method. The problem of difference in evaluation results
caused by using rough set method alone is effectively solved (see Table 5), so that calculation accuracy
is optimized.

3. China is vast in territory, and the sources and effects of air pollution are not exactly the same
everywhere. By comparing and analyzing the impacts of various factors affecting the sustainable
development of the atmospheric environment on different provinces in the same region, this paper
could help different regions of China (such as the Yangtze River Delta, Pearl River Delta, etc.) to
analyze their own atmospheric environmental impact factors more effectively.
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Based on the evaluation results, this paper has proposed the following suggestions in order for
the atmospheric environment of the Northeast region to maintain sustainable development:

1. Develop relevant technologies to improve energy efficiency and reduce waste and pollutant
emissions. Meanwhile, establish an incentive program and punishment policy for technology-based
enterprises to encourage the research and development as well as application of high-quality technology.

2. Increase investment in industrial pollution control, establish a systematized industrial pollution
and waste treatment system, and process different types of pollutants by category. Establish relevant
laws and regulations, strictly limit and monitor the pollution emission quota of different production
units and enhance law enforcement efforts to crack down on illegal pollution behavior.

3. Further adjust and optimize the industrial structure by lifting the proportion of the service
industry in economic development and advancing the transformation and upgrading of the secondary
industry; gradually phase out heavily polluting enterprises.

4. The local government of Northeast provinces should also actively encourage and advocate
for people to use clean energy and reduce the use of traditional energy. The local government should
further enhance the public’s environmental awareness [85], and establish an air quality management
system in accordance with the concepts of sustainable development with the participation of the public
in order to truly realize the “revitalization of the old industrial base in Northeast China”.
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Appendix A Calculation Results by the Three Different Methods for Each Province in
Northeast China

Table A1. Comparison of comprehensive values calculated by different methods for Heilongjiang.

The Element
Layer

Year
The Entropy

Weight Method
The Rough Set

Method
Rough Set + Entropy

Weight Method

The Pressure Layer

2009 0.8541 0.7277 0.8312

2010 0.7441 0.7259 0.8248

2011 0.8253 0.7698 0.8810

2012 0.7355 0.6947 0.8000

2013 0.7490 0.7143 0.8162

2014 0.8288 0.7736 0.8737

2015 0.8480 0.6049 0.6996

2016 0.4321 0.4541 0.5118

2017 0.4223 0.2848 0.3320

The State Layer

2009 0.2802 0.3164 0.3423

2010 0.2978 0.2491 0.2798

2011 0.3399 0.4173 0.4551

2012 0.4399 0.4096 0.4523

2013 0.4805 0.4349 0.4811

2014 0.5015 0.5482 0.5972

2015 0.4858 0.4646 0.5147

2016 0.4005 0.4534 0.5164

2017 0.5748 0.4524 0.5162
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Table A1. Cont.

The Element
Layer

Year
The Entropy

Weight Method
The Rough Set

Method
Rough Set + Entropy

Weight Method

The Response
Layer

2009 0.5419 0.3788 0.3680

2010 0.2241 0.3162 0.3089

2011 0.2706 0.2277 0.2108

2012 0.2022 0.3053 0.2977

2013 0.7917 0.7251 0.7017

2014 1.0193 0.9406 0.9290

2015 0.5652 0.4886 0.4666

2016 0.5460 0.6186 0.5958

2017 0.3421 0.3951 0.3896

The Sustainable
Layer

2009 0.5670 0.2794 0.4556

2010 0.5161 0.3241 0.4454

2011 0.5873 0.4156 0.5912

2012 0.5710 0.4463 0.5815

2013 0.5674 0.3967 0.6110

2014 0.7953 0.5237 0.7278

2015 0.6302 0.4894 0.6869

2016 0.4433 0.4326 0.4624

2017 0.5015 0.5720 0.5493

Table A2. Comparison of comprehensive values calculated by different methods for Jilin.

The Element
Layer

Year
The Entropy

Weight Method
The Rough Set

Method
Rough Set + Entropy

Weight Method

The Pressure Layer

2009 0.5787 0.8304 0.7045

2010 0.5291 0.7724 0.6507

2011 0.5639 0.8408 0.7024

2012 0.5307 0.7932 0.6620

2013 0.5203 0.7740 0.6471

2014 0.6030 0.8412 0.7221

2015 0.5501 0.7781 0.6641

2016 0.3501 0.4873 0.4187

2017 0.3017 0.4121 0.3569

The State Layer

2009 0.2179 0.2761 0.2347

2010 0.2635 0.3322 0.2831

2011 0.3164 0.4018 0.3413

2012 0.3517 0.4488 0.3799

2013 0.3832 0.4884 0.4132

2014 0.4023 0.5143 0.4343

2015 0.4014 0.5168 0.4351

2016 0.3179 0.4819 0.3784

2017 0.3348 0.4993 0.3948
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Table A2. Cont.

The Element
Layer

Year
The Entropy

Weight Method
The Rough Set

Method
Rough Set + Entropy

Weight Method

The Response
Layer

2009 0.4360 0.3566 0.3826

2010 0.2824 0.2236 0.2643

2011 0.2958 0.2230 0.2168

2012 0.2298 0.1773 0.2116

2013 0.7305 0.6101 0.5560

2014 0.9405 0.7977 0.8637

2015 0.5843 0.4679 0.4654

2016 0.5711 0.4668 0.4176

2017 0.3891 0.3223 0.3717

The Sustainable
Layer

2009 0.1625 0.6836 0.4310

2010 0.2574 0.6138 0.3955

2011 0.1781 0.6455 0.5787

2012 0.2459 0.6007 0.5277

2013 0.1162 0.6836 0.6509

2014 0.2937 0.8182 0.7775

2015 0.1504 0.6749 0.6223

2016 0.3844 0.4363 0.3958

2017 0.5014 0.3675 0.4527

Table A3. Comparison of comprehensive values calculated by different methods for Liaoning.

The Element
Layer

Year
The Entropy

Weight Method
The Rough Set

Method
Rough Set + Entropy

Weight Method

The Pressure Layer

2009 0.6649 0.7194 0.5918

2010 0.5201 0.5750 0.4549

2011 0.6700 0.7353 0.6026

2012 0.5629 0.6250 0.4997

2013 0.5923 0.6518 0.5299

2014 0.5966 0.6442 0.5176

2015 0.6447 0.6922 0.5740

2016 0.4519 0.4791 0.4060

2017 0.2979 0.3183 0.2573

The State Layer

2009 0.3147 0.3227 0.2804

2010 0.2814 0.2903 0.2397

2011 0.4655 0.4774 0.4158

2012 0.5076 0.5217 0.4525

2013 0.4985 0.5137 0.4383

2014 0.4017 0.4182 0.3386

2015 0.5032 0.5211 0.4406

2016 0.4505 0.4927 0.4091

2017 0.5008 0.5421 0.4563
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Table A3. Cont.

The Element
Layer

Year
The Entropy

Weight Method
The Rough Set

Method
Rough Set + Entropy

Weight Method

The Response
Layer

2009 0.5174 0.4573 0.4277

2010 0.2486 0.2045 0.1937

2011 0.3711 0.3268 0.3013

2012 0.2556 0.2181 0.2102

2013 0.6836 0.5979 0.5163

2014 0.8349 0.7132 0.6495

2015 0.5190 0.4393 0.3890

2016 0.5600 0.4905 0.4256

2017 0.3785 0.3232 0.3046

The Sustainable
Layer

2009 0.3605 0.5470 0.3951

2010 0.4691 0.5913 0.4575

2011 0.3333 0.4802 0.3908

2012 0.4482 0.5543 0.4677

2013 0.3444 0.5244 0.4417

2014 0.5337 0.6879 0.5885

2015 0.3522 0.5181 0.4301

2016 0.5235 0.5173 0.4584

2017 0.4586 0.3693 0.3572
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Abstract: Haze is the greatest challenge facing China’s sustainable development, and it seriously
affects China’s economy, society, ecology and human health. Based on the uncertainty and suddenness
of haze, this paper proposes a novel linear time-varying grey model (GM)(1,N) based on interval grey
number sequences. Because the original GM(1,N) model based on interval grey number sequences
has constant parameters, it neglects the dynamic change characteristics of parameters over time.
Therefore, this novel linear time-varying GM(1,N) model, based on interval grey number sequences,
is established on the basis of the original GM(1,N) model by introducing a linear time polynomial.
To verify the validity and practicability of this model, this paper selects the data of PM10, SO2 and
NO2 concentrations in Beijing, China, from 2008 to 2018, to establish a linear time-varying GM(1,3)
model based on interval grey number sequences, and the prediction results are compared with the
original GM(1,3) model. The result indicates that the prediction effect of the novel model is better
than that of the original model. Finally, this model is applied to forecast PM10 concentration for 2019
to 2021 in Beijing, and the forecast is made to provide a reference for the government to carry out
haze control.

Keywords: haze; linear time-varying GM(1,N) model; interval grey number; Beijing; forecasting

1. Introduction

In recent years, the process of urbanization and industrialization has been accelerating in China, but
air pollution is seriously increasingly. At present, haze is one of the greatest atmospheric, environmental
pollution problems in China. Haze not only has adverse effects on the ecological environment [1–3]
but also poses a major threat to human health [4,5]. As one of the largest developing countries in the
world, China is facing the biggest challenge of sustainable development. In 2018, China’s government
officially issued the ‘Three-Year Plan of Action to Win the Blue Sky Defense War’. Therefore, an accurate
study of haze is of great importance.

Beijing is one of key cities for haze control in China. 16 haze events occurred in Beijing from
November, 2012 to January, 2013, and the minimum visibility was even 667 m during this period [6].
Besides, the haze event in January, 2013 may have been the cause of 690 deaths in Beijing, which could
lead to 253.8 million dollars losses [7]. To reduce the haze event, China’s government implemented
the ‘Air Pollution Prevention and Control Action Plan’ in September, 2013. Since then, an increasing
number of scholars started to research haze from different aspects. Current haze studies mainly focused
on health impact [3,4,7], economic loss [7], chemical composition [8], statistical characteristics [9], trend
prediction [10], formation mechanism [11], and the rest. Above researches mainly based on hourly
or daily data, but the goal of Blue Sky Defense War is to reduce the average annual concentration
of pollutants. Therefore, using annual data to forecast haze is necessary. Due to the uncertainty and
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suddenness of haze, the data of its related indices are uncertain. In the system research, grey number
refers to the uncertain number in an interval or a general number set [12]. In other words, due to the
constraints of data acquisition tools, acquisition conditions and errors by the acquisition personnel, the
value of haze may contain inevitable measurement errors in a certain range, thus, haze has obvious
grey number features. Therefore, Wu et al. established a grey prediction model to forecast annual
pollutant concentrations effecting haze by limited data for the first time [13]. Grey prediction model
is an important part of grey system. As an emerging uncertain system theory, grey system theory is
characterized by small data modeling to obtain accurate results, and widely applied in all professions
and trades. The grey system theory was established by Professor Deng, and assists with solving
an uncertain system of small data and poor information, mainly through the deep mining of the
inherent law in the existing information research system. Besides, grey number is the basic unit of grey
system [12]. To summarize, grey prediction model is an effective tool for studying haze.

At present, the original grey model (GM)(1,N) based on interval grey number sequences is used to
estimate structural parameters by the least squares method, and the result of its structural parameters
are fixed values that are not related to time. Although this method is simple, it ignores the dynamic
change characteristics of the parameters over time, which may lead the model to have a high precision
fit, but not an ideal predictive effect. Therefore, this paper selects the data of PM10 concentration (PM10

refers to particles with aerodynamic equivalent diameter less than or equal to 10 microns in ambient
air, called inhalable particulate matter), SO2 concentration and NO2 concentration in Beijing, China,
from 2008 to 2018, and establishes a novel linear time-varying GM(1,3) model based on interval grey
number sequences to perform simulations and make predictions. Meanwhile, we establish an original
GM(1,3) model based on interval grey number sequences as the contrast model, and then we compare
the results of these two models.

This paper is organized as follows: the literature reviews of studying on haze and grey prediction
model are presented in Section 2; the modeling algorithms and model testing methods of the linear
time-varying GM(1,N) model based on interval grey number sequences are illustrated in Section 3;
the linear time-varying GM(1,N) model based on interval grey number sequences is established to
forecast PM10 concentration of Beijing in Section 4; the main conclusions of this paper are summarized
in Section 5.

2. Literature Reviews

2.1. Study of Haze

To control haze more scientifically and effectively, many scholars at home and abroad have carried
out a series of extensive studies. PM2.5 (PM2.5 refers to particles with an aerodynamic equivalent
diameter less than or equal to 2.5 microns in ambient air, called fine particulate matter) and PM10 are
main factors causing haze, which not only affect the quality of atmospheric environment and visibility,
but also endanger human health. Voukantsis et al. used the neural network method of multilayer
perceptive structure to predict the daily change of PM10 concentration in Thessaloniki and Helsinki [14].
Kumar et al. used a principal component regression method to predict short-term air quality index days
in Delhi [15]. Lang et al. generalized the season autoregressive integrated moving average (SARIMA)
model to the small-scale time sequences and used this model to make a short-term prediction of PM2.5

concentration at 10 stations in Hangzhou [16]. Mishra et al. studied the meteorological factors and
atmospheric pollutants affecting PM2.5 in Delingha, and predicted the PM2.5 concentration under haze
conditions in Delingha using a combination of a neural network and fuzzy logic [17]. Konovalov et al.
predicted future PM10 values in Europe by combining the deterministic prediction method and the
linear regression method [18]. Based on the data of PM2.5 concentration in 285 cities in China from 2001
to 2012, Cheng et al. used a dynamic space panel model to analyze the main driving factors affecting
air pollution [19]. Wu et al. established an input-oriented zero sum gains-data envelopment analysis
(ZSG-DEA) model, and studied the allocation efficiency of PM2.5 emissions in China’s provinces under
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fixed target amount conditions [20]. The novel air quality early warning system was proposed by
Xu et al., which included an evaluation module, a prediction module and a feature estimation module,
and this literature used a novel dynamic fuzzy comprehensive evaluation method to determine the air
quality level and major pollutants in the study area [21]. Han et al. predicted the spatial distribution of
lung cancer in males induced by PM2.5 in China from 2010 to 2015, and the spatial autocorrelation
method was used to evaluate the spatial relationship between the incidence of lung cancer and the
atmospheric level of satellite-derived PM2.5 from 2006 to 2009 [22].

Nowadays, there are some scholars studying haze with grey system theory. Xiong et al. established
the multivariate grey model (MGM) (1,M) based on interval grey number sequences to predict the
visibility and relative humidity during a haze period in Nanjing [23]. Gong et al. combined the
GM(1,1) model with both the Markoff chain model and the residual error correction model to establish
a modified grey Markoff chain model, and used this model to predict the PM2.5 concentration in
Shanghai [24]. Wang studied the distribution characteristics of PM2.5 concentration in Huaian with the
non-parametric hypothesis test, and predicted the PM2.5 concentration of Huaian in the next five years
by using GM(1,1) model [25]. Chen et al. predicted the hourly PM2.5 and PM10 in Taichung’s Dali area
by using several GM(1,1) models and back-propagation artificial neural network, and compared their
predictive performances [26]. Wang et al. established a novel grey correlation degree model, and used
this model to dynamically analyze the influencing factors of haze in southern China [27].

2.2. Study of Grey Prediction Model

The grey prediction model has been widely applied in many fields, and it occupies an important
position in the grey system theory. The GM(1,1) model that has only one variable is the most widely
used prediction model in the grey system, but it is most suitable for the time sequences of monotonic
increasing or monotonic decreasing. Hence, many scholars have worked to improve it. Wu et al.
proposed a new GM(1,1) model with the fractional order accumulation, and this model had a better
predicted performance than the traditional model [28]. Focusing on why the discrete grey model
simulated the constant value growth rate, Zhang et al. established a linear time-varying discrete grey
model by introducing a linear time polynomial [29]. Wang introduced the time polynomial function
into the GM(1,1) power model and optimized the power exponent of the model [30]. Zeng et al. built a
self-adapting intelligent grey prediction model to predict the natural gas demand of China [31].

However, the GM(1,1) model ignores the effect of related factors on the system behavior data, and
then, Professor Deng proposed the GM(1,N) model, which has one system behavior sequence and
N-1 related factors sequences [12]. The GM(1,N) model, as an extension of the GM(1,1) model, fully
considers the impact of related factors on the system behavior data. Therefore, the GM(1,N) model
and its optimization models are increasing in researches and applications. Ding et al. established a
novel GM(1,N) model combined with the changing trend of the driving term, and this model was
applied to predict CO2 emissions from fuel combustion in China [32]. Zeng et al. proposed the optimal
background-value GM(1,N) model through optimizing the background-value coefficient with the
particle swarm optimization algorithm [33]. Wang et al. constructed a nonlinear GM(1,N) model by
introducing the power exponent of the related factors, and this model was used to predict the carbon
emissions of fossil energy consumption in China [34]. The above studies on grey prediction models
were mainly based on real number sequence. Recently, increasingly more scholars have begun to
explore the modeling problem of grey prediction models based on interval grey number sequences.
Ye et al. fully explored and expanded the axiom of generalized non-decreasing grey degrees and
established a prediction model for interval grey number sequences [35]. Luo et al. established a discrete
GM(1,1) model for kernel and measure sequences, and then restored the predicted value of the interval
grey number [36]. Yang et al. established a prediction model for the normal distribution based on
interval grey number sequences in the context of the normal distribution of uncertain information [37].
A new nonlinear GM(1,N) model was established based on interval grey number sequences by Xiong
et al., which was applied to the prediction of air quality index in haze period [38].
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3. Methodology

3.1. The Introduction of Interval Grey Number

In this section, we will mainly introduce the basic concepts of interval grey number, including the
definitions of interval grey number, kernel and grey radius.

Definition 1. [12] grey number that has both lower bound ak and upper bound bk is called interval
grey number, denoted as ⊗k ∈ [ak, bk].

Definition 2. [12] suppose that interval grey number ⊗k is a continuous function, ⊗̃ = (ak + bk)/2 is
called a kernel of interval grey number ⊗k.

Definition 3. [12] when ⊗k is a continuous interval grey number, r(k) = (bk − ak)/2 is called a grey
radius of interval grey number ⊗k.

3.2. Linear Time-Varying GM(1,N) Model Based on Interval Grey Number Sequences

In this section, the modeling mechanism of the linear time-varying GM(1,N) model based on
interval grey number sequences will be introduced. Besides, this model will be constructed from the
kernel and grey radius sequences, respectively. Finally, the kernel and grey radius sequences will be
restored to the interval grey number sequences. To illustrate the model more clearly, we will show the
modeling steps of the linear time-varying GM(1,N) model based on interval grey number sequences in
Figure 1.
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Figure 1. Modeling flow chart of the linear time-varying GM(1,N) model based on interval grey
number sequences.

Then, this section will mainly introduce the linear time-varying GM(1,N) model based on kernel
sequences as follows:

Definition 4. Suppose that the system behavior sequence is ⊗̃(0)1 =
(
⊗̃(0)1 (1), ⊗̃(0)1 (2), · · · , ⊗̃(0)1 (n)

)
, and

the related factor sequences is ⊗̃(0)i =
(
⊗̃(0)i (1), ⊗̃(0)i (2), · · · , ⊗̃(0)i (n)

)
, i = 2, 3, · · · , N, where ⊗̃(1)i is the

first order accumulating generation sequence of ⊗̃(0)i , i = 1, 2, · · · , N; z(1)1 (k) = 0.5
(
⊗̃(1)1 (k) + ⊗̃(1)1 (k− 1)

)
is the mean sequence generated by consecutive neighbors of ⊗̃(1)1 ; thus, the linear time-varying GM(1,N)
model based on kernel sequences is shown as follows:

⊗̃(0)1 (k) + az(1)1 (k) =
N∑

i=2

(bi1 + bi2k)⊗̃(1)i (k). (1)

Also, the whitening equation of the linear time-varying model based on kernel sequences is shown
as follows:
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d⊗̃(1)1

dt
+ a⊗̃(1)1 =

N∑
i=2

(bi1 + bi2t)⊗̃(1)i . (2)

Theorem 1. The undetermined coefficient vector of the linear time-varying GM(1,N) model based
on kernel sequences is â = [a, b21, ···, bN1, b22, ···, bN2]

T, which can be estimated by utilizing the least
squares method as follows:

(1) When n− 1 = 2N− 1, that is n = 2N, and |B| � 0, â = B−1Y;

(2) When n− 1 > 2N− 1, that is n > 2N, and
∣∣∣BTB

∣∣∣ � 0, â =
(
BTB

)−1
BTY;

(3) When n− 1 < 2N− 1, that is n < 2N, and
∣∣∣BTB

∣∣∣ � 0, â = BT
(
BBT

)−1
Y;

where B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−z(1)1 (2) ⊗̃(1)2 (2) . . . ⊗̃(1)N (2) 2⊗̃(1)2 (2) . . . 2⊗̃(1)N (2)

−z(1)1 (3) ⊗̃(1)2 (3) . . . ⊗̃(1)N (3) 3⊗̃(1)2 (3) . . . 3⊗̃(1)N (3)
...

...
...

...
...

−z(1)1 (n) ⊗̃(1)2 (n) . . . ⊗̃(1)N (n) n⊗̃(1)2 (n) . . . n⊗̃(1)N (n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⊗̃(0)1 (2)

⊗̃(0)1 (3)
...

⊗̃(0)1 (n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The proof is similar to literature [39].

Theorem 2. After calculating the coefficient vector â, the solution of the linear time-varying GM(1,N)
model based on kernel sequences is shown as follows:

ˆ̃⊗(1)1 (k + 1) =
1
a

N∑
i=2

(bi1 + bi2k)⊗̃(1)i (k + 1) + e−ak

⎡⎢⎢⎢⎢⎢⎣⊗̃(1)1 (0) − 1
a

N∑
i=2

(bi1 + bi2k)⊗̃(1)i (k + 1)

⎤⎥⎥⎥⎥⎥⎦, (3)

where the solution can be obtained using the initial condition ⊗̃(1)1 (0) = ⊗̃(0)1 (1). Also, the inverse
accumulating reduction equation is shown as follows:

ˆ̃⊗(0)1 (k + 1) = ˆ̃⊗(1)1 (k + 1) − ˆ̃⊗(1)1 (k). (4)

The modeling mechanism of the linear time-varying GM(1,N) model based on grey radius
sequences are the same as the linear time-varying GM(1,N) model based on kernel sequences, thus we
will not present the linear time-varying GM(1,N) model based on grey radius sequences repeatedly.

After obtaining the values of kernel and grey radius respectively, we will calculate the upper and
lower bounds of the interval grey number sequences as follows [40]:⎧⎪⎪⎪⎨⎪⎪⎪⎩ âk+1 = ˆ̃⊗(0)1 (k + 1) − r̂(0)1 (k + 1)

b̂k+1 = ˆ̃⊗(0)1 (k + 1) + r̂(0)1 (k + 1)
. (5)

3.3. Model Evaluation Criterion

To analyze the reliability and credibility of the prediction model, we will show the model
evaluation criterion for testing the model accuracy in this section. By comparing the relative error and
average relative error of the upper and lower bounds of the interval grey number sequences to test the
prediction model, the testing equations are shown as follows:

The relative error of the upper and lower bounds of the interval grey number sequences are shown
as follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩ Δk =

|âk−ak|
ak
× 100%

Δk =

∣∣∣b̂k−bk
∣∣∣

bk
× 100%

,k = 1, 2, · · · , n. (6)
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The average relative error of the upper and lower bounds of the interval grey number sequences
are shown as follows: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

âk =
1
n

n∑
k=1

Δk

b̂k =
1
n

n∑
k=1

Δk

,k = 1, 2, · · · , n. (7)

Prediction accuracy is an important criterion for measuring the reliability of the prediction model.
Therefore, this paper provides the prediction accuracy corresponding to the average relative error in
Table 1.

Table 1. The average relative error criterion for testing model [41].

Average Relative Error Prediction Accuracy

<10% High prediction
10–20% Good prediction
20–50% Reasonable prediction
>50% Weak prediction

4. Empirical Results and Discussion

In this section, the linear time-varying GM(1,N) model and the original GM (1,N) model, based
on interval grey number sequences, will be established to simulate the development trend of haze in
Beijing, and the model with high prediction accuracy will be selected to forecast the haze situation in
Beijing from 2019 to 2021.

4.1. Data Selection and Processing

PM10 can be formed by the interaction of sulfur oxides, nitrogen oxides and other compounds in
the ambient air. Additionally, PM10 is highly correlated with SO2 and NO2 in 31 cities of China [42].
Therefore, PM10 concentration in Beijing from 2008 to 2018 is selected as the system behavior sequence,
and SO2 concentration and NO2 concentration are selected as related factor sequences. In addition,
the data are from the annual report of air quality in Beijing. In data processing, the maximum and
minimum observed values over the previous three values are the upper and lower bounds of the third
interval grey number. Moreover, the interval grey number sequences for 2008 to 2014 are used as the
modeling data, and the interval grey number sequences for 2015 to 2018 are used as the prediction data.
Besides, we denote the interval grey number sequences of PM10 concentration, SO2 concentration and
NO2 concentration as X1(⊗), X2(⊗), X3(⊗) respectively. The original data is shown in Table 2.

Table 2. The interval grey number sequences of PM10 concentration, SO2 concentration and
NO2 concentration

k Year X1(⊗)(μg/m3) X2(⊗)(μg/m3) X3(⊗)(μg/m3)

1 2008 [122,161] [36,53] [49,66]
2 2009 [121,148] [34,47] [49,66]
3 2010 [114,122] [32,36] [49,55]
4 2011 [114,121] [28,34] [53,55]
5 2012 [109,121] [28,32] [52,55]
6 2013 [108,114] [27,28] [52,56]
7 2014 [108,116] [22,28] [52,59]
8 2015 [102,116] [14,27] [50,59]
9 2016 [100,116] [10,22] [48,59]
10 2017 [95,108] [8,14] [46,50]
11 2018 [91,100] [6,10] [42,48]
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4.2. Establishment and Comparison of Model

Step 1: on the basis of the data from 2008 to 2014 in Table 2, the kernel and grey radius sequences
of PM10 concentration, SO2 concentration and NO2 concentration are calculated according to Definition
2 and 3, and the results are shown in Table 3.

Table 3. The kernel and grey radius sequences of PM10 concentration, SO2 concentration and
NO2 concentration

k
~⊗1(k)

~⊗2(k)
~⊗3(k) r1(k) r2(k) r3(k)

1 141.5 44.5 57.5 19.5 8.5 8.5
2 134.5 40.5 57.5 13.5 6.5 8.5
3 118 34 52 4 2 3
4 117.5 31 54 3.5 3 1
5 115 30 53.5 6 2 1.5
6 111 27.5 54 3 0.5 2
7 112 25 55.5 4 3 3.5

Step 2: after calculating model parameters by least squares method, a linear time-varying GM(1,3)
model for the PM10 concentration kernel sequence is established as follows:

⊗̃(0)1 (k) + 1.9972z(1)1 (k) = (1.5419− 0.0591k)⊗̃(1)2 (k) + (3.7449− 0.0014k)⊗̃(1)3 (k) (8)

Similarly, a linear time-varying GM(1,3) model for the PM10 concentration grey radius sequence
is established as follows:

r(0)1 (k) + 1.6900z(1)1 (k) = (−6.9833 + 2.2742k)r(1)2 (k) + (9.5542− 2.0577k)r(1)3 (k). (9)

According to the linear time-varying GM(1,3) model of PM10 concentration kernel and grey
radius sequences, the simulated values of PM10 concentration kernel and grey radius sequences
can be respectively obtained. The SO2 concentration and NO2 concentration sequences that are
predicted by the GM(1,1) model are used as the related factor sequences for 2015 to 2018. Then, a linear
time-varying GM(1,3) model is used to obtain the predicted values of PM10 concentration kernel and
grey radius sequences.

Step 3: according to Equation (5), the simulated and predicted values of the upper and lower
bounds over the PM10 concentration interval grey number sequence are obtained by restoring the
simulated and predicted values of kernel and grey radius sequences. The results are shown in Table 4.

Step 4: the relative error and average relative error of the PM10 concentration upper and lower
bounds are calculated according to Equation (6) and Equation (7). The results are shown in Table 4.

At the same time, the original GM(1,N) model based on interval grey number sequences is selected
as the contrast model. Establishing the GM(1,3) model based on interval grey number sequences
to simulate and forecast PM10 concentration in Beijing from 2008 to 2018, and the relative error and
average relative error of upper and lower bounds are calculated. The results are shown in Table 4.
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Table 4. The simulated and predicted values and the average relative error of the PM10 concentration
upper and lower bounds.

Linear Time-Varying GM(1,3) Model GM(1,3) Model

Year
Actual
Value

(μg/m3)

Simulated
Value (μg/m3)

Lower
Bound

Relative
Error (%)

Upper
Bound

Relative
Error (%)

Simulated
Value (μg/m3)

Lower
Bound

Relative
Error (%)

Upper
Bound

Relative
Error (%)

2008 [122,161] [122.00,161.00] 0.00 0.00 [122.00,161.00] 0.00 0.00
2009 [121,148] [107.05,130.05] 11.54 12.13 [105.05,126.89] 13.18 14.26
2010 [114,122] [124.80,141.14] 9.47 15.69 [124.73,138.16] 9.41 13.25
2011 [114,121] [121.66,123.27] 6.72 1.88 [115.38,125.57] 1.21 3.78
2012 [109,121] [110.83,121.07] 1.68 0.06 [111.76,119.48] 2.53 1.26
2013 [108,114] [110.18,115.51] 2.02 1.32 [110.10,114.59] 1.95 0.52
2014 [108,116] [105.85,118.84] 1.99 2.45 [104.30,117.56] 3.43 1.35
Average simulated relative error (%) 4.78 4.79 4.53 4.92

Year
Actual
Value

(μg/m3)

Predicted
Value (μg/m3)

Lower
Bound

Relative
Error (%)

Upper
Bound

Relative
Error (%)

Predicted
Value (μg/m3)

Lower
Bound

Relative
Error (%)

Upper
Bound

Relative
Error (%)

2015 [102,116] [103.77,109.13] 1.74 5.92 [103.88,106.75] 1.85 7.98
2016 [100,116] [100.99,106.51] 0.99 8.18 [101.46,103.48] 1.46 10.80
2017 [95,108] [98.52,104.11] 3.70 3.60 [99.14,100.56] 4.36 6.89
2018 [91,100] [96.31,101.91] 5.84 1.91 [96.95,97.95] 6.53 2.05
Average predicted relative error (%) 3.07 4.90 3.55 6.93

This paper will compare the simulated and predicted values, relative errors of upper and lower
bounds of the PM10 concentration interval grey number sequence. According to Table 4, the average
simulation relative error of upper and lower bounds of linear time-varying GM(1,3) model are 4.79%
and 4.78%, respectively, and the average simulation relative error of upper and lower bounds of
GM(1,3) model are 4.92% and 4.53%, respectively. The average simulation relative errors of those two
models are very close, and both belong to high simulation accuracy. However, the average predicted
relative error of upper and lower bounds of linear time-varying GM(1,3) model are 4.90% and 3.07%
respectively, which are less than those of GM(1,3) model.

For ease of comparison, we make comparison maps as shown in Figures 2–5. For simplicity,
we briefly note the linear time-varying GM(1,N) model based on interval grey number sequences
as LTVGM(1,N), and briefly note the GM(1,N) model based on interval grey number sequences as
GM(1,N). From Figure 2 to Figure 5, the novel linear time-varying GM(1,3) model based on interval grey
number sequences can more accurately describe the upper and lower bounds of PM10 concentration in
Beijing, which especially has the better prediction effect.
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Figure 2. Comparison map of the PM10 concentration lower bound values for LTVGM(1,N) model and
GM(1,N) model.

Figure 3. Comparison map of the PM10 concentration upper bound values for LTVGM(1,N) model and
GM(1,N) model.

Figure 4. Comparison map of the relative errors of PM10 concentration lower bound for LTVGM(1,N)
model and GM(1,N) model.
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Figure 5. Comparison map of the relative errors of PM10 concentration upper bound for LTVGM(1,N)
model and GM(1,N) model.

4.3. Forecast Results and Discussion

To understand the trend of haze in Beijing in the future, the linear time-varying GM(1,3) model
proposed in this paper is used to forecast PM10 concentration in Beijing for 2019 to 2021, the forecast
results are shown in Table 5. According to Table 5, PM10 concentration in Beijing will decrease slowly
from 2019 to 2021, but still exceed the China’s environmental air quality standard [13].

Table 5. The predicted value of PM10 concentration in Beijing for 2019 to 2021.

Year 2019 2020 2021

PM10 concentration (μg/m3) [94.36,99.88] [92.62,98.07] [91.06,96.29]

According to all the results considered, we will perform a discussion as follows: the average
predicted relative errors of the linear time-varying GM(1,3) model are less than those of the original
GM(1,3) model, which is attributed to the improved adaptability of the model to the dynamic change
characteristics data. The model proposed in this paper is simple in the modeling method and convenient
for calculation and applications. In addition, this novel model expands the range of predicted values
from the real number to interval grey number, which can broaden the range of applications. To a
certain extent, it can make up for the errors caused by data acquisition tools, acquisition conditions and
acquisition personnel. However, this novel model still has certain limitations. It only considers that
the related factor sequences are air pollutants, and it neglects the influence of meteorological factors on
haze. Therefore, the future research will select both air pollutants and meteorological factors as the
related factor sequences to study haze.

5. Conclusions

Aiming at forecasting haze of Beijing more accurately, this paper introduced a linear time
polynomial into the GM(1,N) model based on interval grey number sequences, and established a
novel linear time-varying GM(1,N) model based on interval grey number sequences. The data of PM10

concentration, SO2 concentration and NO2 concentration in Beijing, China, were selected as modeling
data to establish a linear time-varying GM(1,3) model from 2008 to 2018. The results indicate that the
prediction model proposed in this paper has a higher prediction accuracy than the original model, and
both the corresponding prediction errors are less than 5%, which proves the validity and practicability
of this model. When using this novel model to make a forecast of PM10 concentration in Beijing, the
forecast shows that PM10 concentration will be a downward trend for 2019 to 2021 in Beijing. This is
because PM10 concentration is not only determined by air pollutants, but also related to meteorological
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factors, such as wind speed, precipitation, and so forth. Specifically, when wind speed or precipitation
increases, haze will decrease in Beijing [43]. Meteorological factors vary from year to year, and the
extreme weather event such as El Niño cannot be accurately forecasted a year in advance. When the
extreme weather event occurs, the actual PM10 concentration in Beijing may be different with our
forecast for 2019 to 2021. If there is no extreme weather event in that year, the haze predicted value of
this paper will be accurate. Therefore, this model can provide decision support for the government
when working toward greater haze control.

The model proposed in this paper had a high accuracy of prediction, but there is much room
for improvement. This paper only selected two pollutants as related factors, which were SO2 and
NO2, in order to forecast PM10 concentration in Beijing. In future research, we will consider a few
meteorological factors as related factors to construct model, such as wind speed, relative humidity,
air pressure, temperature, precipitation, etc. Besides, we will apply this novel model to several key
cities in the Beijing-Tianjin-Hebei region of China. On this basis, we will use data mining technology
to compare and analyze the haze of different cities in the Beijing-Tianjin-Hebei region.
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Abstract: Faced with the deterioration of the environment and resource shortages, countries have
turned their attention to renewable energy and have actively researched and applied renewable
energy. At present, a large number of studies have shown that renewable energy can effectively
improve the environment and control the reduction of resources. However, there are few studies
on how renewable energy improves the environment through its influencing factors. Therefore,
this paper mainly analyses the relationship between wind energy and carbon emissions in renewable
energy and uses Chinese data as an example for the case analysis. Based on the model and test
methods, this paper uses the 1990–2018 data from the China Energy Statistical Yearbook to study and
analyse the correlation between wind energy and carbon emissions and finally gives suggestions for
wind energy development based on environmental improvements.

Keywords: sustainable development; wind power development; carbon emissions

1. Introduction

With the rapid development of the economy and rapid growth of the population, human behaviour
has an increasing impact on the global environment, such as resource shortages and environmental
pollution [1–4]. Therefore, sustainable development has become the focus of all countries. In recent
years, global fog and haze have become severe, the environment has drastically deteriorated, and carbon
emissions have remained high [5–7]. These issues have become the main targets of the environmental
governance of all the countries in the world. Governing the environment and alleviating the energy
crisis have become the top priorities. The concept of sustainable development was proposed by the
World Commission for Environment and Development, which was chaired by Mrs. Brundtland in
1987, and was adopted at the 1992 United Nations Conference on Environment and Development.
The latter marks the entry of countries from all over the world into an environmentally friendly and
sustainable development stage. Sustainable development is the core content of the scientific concept of
development. Sustainable development refers to development that meets the needs of the present
without compromising the ability of future generations to meet their needs. The theoretical core of the
concept of sustainable development mainly includes two aspects: One is the harmonious coexistence
between man and nature, and the other is the coordination of the relationships between people. Due to
serious environmental pollution and poor environmental quality around the world, carbon emissions
control is an important issue for sustainable development. Countries around the world have made
relevant agreements to ensure that carbon emissions can be effectively controlled, such as the Kyoto
Protocol and the Paris Agreement.
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It is necessary to vigorously develop clean energy, since the total amount of carbon emissions
remains high. It is also important to alleviate the continued environmental deterioration to improve its
future. Among them, wind power generation is one of the most mature, large-scale developmental
goals and commercialization prospects of clean energy.

After reviewing a large amount of literature, we found that the previous research mainly focused
on carbon emissions, economic growth and energy consumption [8–10]. There are few scholars
who have studied the relationship between carbon emissions and renewable energy. Since China
has completed wind power generation data, this paper takes China as an example to analyse the
relationship between wind energy and carbon emissions. The article concludes with recommendations
for sustainable development in countries around the world. The research methods in this paper are
as follows. (1) We establish an autoregressive distributed lag model, which is usually defined as an
ARDL model to test whether there is a long-term co-integration relationship between wind power
development and total carbon emissions. (2) We use the Granger causality test to verify the causal
relationship between wind power development and total carbon emissions.

This research has far-reaching significance. It can provide a theoretical reference for environmental
sustainability analysis, and provide a scientific basis for sustainable development strategies, which is
conducive to future wind power construction planning. The structure of the remainder of this paper
is as follows. First, it introduces the relevant research background and a large amount of literature
that is related to the disciplines we studied. Second, the literature review describes the development
of wind power, the spatial and temporal distributions of carbon emissions, and the application of
the ARDL model and the Granger causality test. Third, the research areas and data are introduced.
Fourth, we take China as an example and use the ARDL model and the Granger causality test method
to analyse the case. Fifth, the results are obtained, and relevant recommendations and prospects for
future research are given.

2. Literature Review

2.1. Development and Application of Wind Energy

Many countries are turning their attention to renewable energy to alleviate the status quo, since the
significant global warming greenhouse effect; excessive energy shortages and the inability of traditional
energy sources such as oil, coal and natural gas cannot meet the growing global energy demand.
Furthermore, the relatively low power density of renewable energy, the returns on energy investment,
and the trends towards energy conservation and emissions reductions will all contribute to the
widespread use of renewable energy. Wind energy has wide application prospects due to its small
impact on the local environment and easy management [11–13].

Wind energy resources are abundant, inexhaustible and sustainable. The total amount of wind
energy in the world is approximately 130 million megawatts, of which 20 million megawatts of wind
energy is available. This is 10 times more than the total amount of hydroelectric power that can
be developed and utilized on the earth, which is up to 53 billion MWh per year. Wind power is
currently the most mature renewable energy. Therefore, in order to achieve sustainable social and
economic development, wind power development is a key goal. Countries have knowledge gaps
in their existing wind energy abilities. To understand the distribution of wind energy resources,
scholars have combined the advantages of large wind speed observation networks and grid-based
advantages to geographically analyse the distribution and intensity of terrestrial wind resources on
the global, continental and national scales. Better use of wind energy resources can achieve economic
growth, energy conservation, emission reductions, and sustainable development [14–17].

Electricity is closely related to people’s lives. However, the traditional power industry is
dominated by thermal power. The environmental pollution is very serious, causing a global
greenhouse effect, which is not conducive to sustainable development. Therefore, energy conservation
and emission reduction in the power industry is imperative. Due to environmental impacts and
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fluctuations in fossil fuel prices, the application of renewable energy in the power industry has received
great attention. Wind power significantly reduces the power system life cycle costs, energy costs,
greenhouse gas emissions costs and annual load loss costs, effectively alleviating global environmental
degradation [18,19].

Offshore wind energy resources are the most abundant wind energy resources in all regions.
Therefore, the most aspect of the technology is to understand the characteristics of the best locations
for installing offshore wind power plants. To achieve this goal, it is necessary to fully understand wind
resources, marine life and environmental protection, and the related conflict management [20].

2.2. Time and Spatial Distributions of Carbon Emissions and the Reduction of Renewable Energy

The carbon emissions of fast-growing cities around the world are becoming increasingly severe.
To alleviate the greenhouse gas pollution, scholars usually focus on the changes in the amounts of
carbon emissions. For the spatial and temporal characteristics of carbon emissions, meteorological
models have difficulties simulating their transportation and diffusion, partly due to the increased
surface heterogeneity and fine spatial and temporal scales. The Eulerian model has been used to
observe the air or to generate a high-precision time-space distribution map using a comprehensive
coefficient model of the carbon density factor and the corresponding land cover type. It is necessary
for the government to understand the spatial and temporal distributions of carbon emissions and take
corresponding measures to reduce carbon emissions to make the energy economy sustainable [21–24].

The decarbonization of the power industry is critical to achieve the goal of reducing greenhouse
gas emissions in countries around the world and addressing fossil fuel shortages. Among them,
intermittent clean energy such as wind energy and photovoltaic solar power are major components
of low-carbon power systems. Scholars have studied whether the use of clean energy to generate
electricity is reducing carbon emissions and if its productivity is increasing. Studies have shown that
clean energy generation can not only reduce the marginal costs of power generation but also reduce
carbon dioxide emissions, preventing the greenhouse effect that is caused by carbon emissions from
becoming more severe [25–27].

Wind power plays a vital role in mitigating climate change and responding to environmental
pollution. However, the difficulty and instability of wind farm scheduling hinder the development of
wind power. To meet the ever-increasing energy demand and energy-savings emissions reduction
targets, scholars have conducted relevant research on these problems. This research includes combining
wind turbines with compressed air energy storage; combining water energy and wind energy, and using
deterministic dynamic programming in long-term power generation. The extended model was
optimized and the hourly power system simulation tool was used to evaluate the five additional
supplements of the lowest cost integration batch to maintain system stability [28–31].

2.3. Related Research on the ARDL Model

The ARDL co-integration test method was developed by Charemza and Deadman. It was
proposed by Pesaran and the ARDL co-integration test is a model for checking whether there are stable
relationships between variables [32,33].

The ARDL model has the following points: It only requires that the time sequence monotony does
not exceed one without pre-checking whether the time series has first-order monotonicity; the ARDL
boundary test is also robust enough in small sample cases; and when the explanatory variable is an
endogenous variable, the ARDL model can also be derived from unbiased and effective estimates.
Therefore, it has attracted the attention of many scholars [34–36].

Many experts have studied the application of the ARDL model in the correlation analysis. (1) Some
studied the relationship between Ghana’s carbon dioxide emissions, GDP, energy use and population
growth, and added renewable energy technologies to Ghana’s energy structure, which is conducive to
solving Ghana’s climate change and environmental problems. There was evidence of bidirectional
causality running from energy use to GDP and a unidirectional causality running from carbon dioxide
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emissions to energy use, carbon dioxide emissions to GDP, carbon dioxide emissions to population,
and population to energy use. As a policy implication, the addition of renewable energy and clean
energy technologies into Ghana’s energy mix can help mitigate climate change and its impact in the
future. [37]. (2) The causal relationship between transportation consumption, fuel price, added value
of the transportation sector and carbon emissions was studied. The results show that the increase in
transportation consumption technology, the increase in fuel prices, and the increase in the value added
of the transportation sector are all conducive to the reduction of carbon emissions. Providing new
ideas to policy makers to improve the transportation environment and other issues [38]. (3) Related
researchers have studied the relationship between carbon emissions and economic growth, and given
corresponding policy recommendations [39–42].

2.4. Granger Causality Test and Its Application

The Granger causality test is a statistical hypothesis testing method that examines whether a set
of time series x is related to another set of time series y. It is based on an autoregressive model from
the regression analysis. On the basis of this, scholars have conducted in-depth research, have made
great progress in the research on the nonlinearity and robustness of causality tests, and have tested
extensive applications of the causal tests in economics and finance [43,44].

There have been several applications of Granger causality tests in the research and analysis of
correlation. (1) Some researchers have investigated the relationship between carbon dioxide emissions,
energy consumption, actual production, actual production squared, trade openness, urbanization
and financial development. In the long run, energy consumption and urbanization will exacerbate
environmental degradation, while financial development has no impact on it, and trade will bring about
environmental improvements. Therefore, effective energy policy recommendations are given in the
literature to help reduce carbon dioxide emissions without affecting the actual output [45]. (2) Related
field experts have studied the relationships between carbon dioxide, energy consumption, foreign direct
investment and economic growth, and concluded that the use of clean technology for foreign investment
is essential to reducing carbon dioxide emissions while maintaining economic development [46].
(3) Scholars have studied the relationship between carbon emissions, energy consumption, and economic
growth in various countries, and provided useful advice to relevant policy makers to ensure the
reduction of carbon emissions while promoting sustainable economic development [47–51].

3. Materials and Methods

3.1. Data Processing

This paper uses the annual data from 1990–2018 from the Energy Statistics Yearbook for the
empirical analysis. We estimate China’s carbon emissions using the following formula:

Y =
∑

i

qi × βi (1)

Here, Y is the total annual carbon emissions, qi is the annual consumption of China’s primary
energy, and βi is the carbon emissions coefficient. By consulting the relevant data, the carbon emissions
coefficient of energy consumption is found, and the average values is used to calculate the carbon
emissions coefficient of each type of energy (see Table 1). We input the data into Equation (1) to obtain
China’s annual carbon emissions.
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Table 1. Carbon emissions coefficients of different types of energy.

Data Sources
Coal Consumption
Carbon Emissions
Coefficient t(c)/t

Petroleum Consumption
Carbon Emissions
Coefficient t(c)/t

Natural Gas Consumption
Carbon Emissions
Coefficient t(c)/t

DOE/EIA 0.702 0.478 0.389
Japan Institute of Energy

Economics 0.756 0.586 0.449

National Science and
Technology Commission
Climate Change Project

0.726 0.583 0.409

Xu Guoquan 0.7476 0.5825 0.4435
average value 0.7329 05574 0.4226

The total carbon emissions in China from 1990 to 2018 are shown in Table 2.

Table 2. The total carbon emissions in China from 1990 to 2018.

Years Total Amount Years Total Amount

1990 65,131.425 2005 151,096.135
1991 68,652.9008 2006 165,792.045
1992 72,093.6518 2007 179,477.125
1993 76,201.8913 2008 184,448.433
1994 80,354.932 2009 193,867.63
1995 85,513.0048 2010 202,395.535
1996 91,068.6173 2011 242,899.904
1997 89,110.1581 2012 248,151.036
1998 87,583.4832 2013 255,020.596
1999 90,768.2709 2014 256,274.833
2000 93,169.9358 2015 255,275.396
2001 95,090.6289 2016 254,395.482
2002 100,890.264 2017 259,093.115
2003 117,681.65 2018 263,041.807
2004 136,325.105

Wind power development is measured using the total annual installed capacity of wind power
every year and is recorded as X. To eliminate the possible heteroscedasticity in the original data and not
change the co-integration relationships between them, this paper takes the logarithms of the variables
and records them separately as ln X and ln Y. The newly installed capacity and total carbon emissions
of China’s wind power in 1990–2018 are shown in Figure 1.

 

Figure 1. Annual carbon emissions and newly installed wind power capacity.
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3.2. ARDL Cointegration Test

The ARDL co-integration test is a method that was proposed by Charemza and Deadman and also
Pesaran [52,53]. The main idea is to determine whether there is a long-term stable relationship between
variables using the boundary test method, and then estimate the correlation coefficient between
the variables under the premise of the existence of a co-integration relationship. Combined with
the research content of this paper, the main calculation steps of the ARDL co-integration test are
briefly introduced.

First, we construct an unconstrained error correction model (UECM).

ΔlnYt = a10 +
n∑

i=1

a11iΔ ln Yt−i +
n∑

i=1

a12iΔ ln Xt−i + a13lnYt−1 + a14 ln Xt−1 + ε1t (2)

ΔlnXt = a20 +
n∑

i=1

a21iΔlnXt−i +
n∑

i=1

a12iΔlnYt−i + a23lnXt−1 + a24lnYt−1 + ε2t (3)

Here, ai0(i = 1, 2) is a constant, Δ is the first-order difference of the variable, εit(i = 1, 2) is the
stable white noise sequence, n is the lag order, and t is the year. The optimal lag order of each difference
term in Equations (1) and (2) is determined using a priori information or related information criteria
(AIC, SBC or another). Then, the F statistic is used to test the following joint hypothesis.{

Null hypothesisH0 : ai3 = ai4 = 0, i = 1, 2
HypothesisH1 : ai3 � or ai4 � 0, i = 1, 2

(4)

If the null hypothesis is accepted, it means that there is no co-integration relationship between
the variables; otherwise, it means that there is a co-integration relationship between the variables.
The relevant literature gives the upper and lower thresholds of the F statistic. If the calculated F value
is greater than the upper critical value, the original hypothesis is rejected. If the calculated F value is
less than the lower critical value, the original hypothesis is accepted. If the calculated F value falls
between the upper and lower thresholds, the unit root test is needed. If the test results show that all
variables are first-order and single-order and the sequence is an I(1) process, the conclusion is based
on the upper bound. If the test result indicates that all variables are 0-order and the sequence is an I(0)
process, the conclusion is drawn according to the lower bound.

Under the premise that there is a co-integration relationship between variables, the correlation
coefficient between variables is estimated. The parameters of the long-term dynamic equation are
estimated under the condition that the lag order is determined.

Compared with the traditional co-integration test method, the biggest advantage of the ARDL test
is that regardless of whether the time series in the model is an I(0) or I(1) process, the ARDL results
are relatively robust, especially for small sample estimations. However, if the variable’s single order is
more than one, the F statistic regarding whether there is a co-integration relationship between the test
variables will be invalid [54]. Considering the characteristics of the ARDL and the number of samples
in this study, the method will be used to test the co-integration relationship between variables.

3.3. Granger Causality Test

The Granger causality test is the most common method of determining whether a change in one
variable is the cause of another variable’s change. The main calculation steps are briefly given with
respect to the research content of this paper.

(1) Construct a lagged term regression equation containing explanatory variables and interpreted
variables. If there is a cointegration relationship between the variables, the corresponding ECM model
can be constructed, and, based on this, the Granger causality test is used to analyse the long-term
causal dynamic relationship between the variables. Assuming that there is a cointegration relationship
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between wind power development and carbon emissions, the following formal ECM models can
be used.

Δ ln Yt = b10 +
m∑

i=1

b11iΔ ln Yt−i +
m∑

i=1

b12iΔlnXt−i + λ1ECMt−1 + υ1t (5)

ΔlnXt = b20 +
m∑

i=1

b21iΔlnXt−i +
m∑

i=1

b22iΔlnYt−i + λ2ECMt−1 + υ2t (6)

Here, bi0(i = 1, 2) is a constant, υit(i = 1, 2) is a stable white noise sequence, and ECMt is an error
correction term, which is the residual of the cointegration equation. The following steps only use
equation (3) as an example.

(2) Regress the current Δ ln Yt for all the lagged terms Δ ln Yt−i(i = 1, 2, · · · , m) and other variables
(if any), but this regression does not include the lagged term of ΔlnXt. It returns the sum of the
squared residuals.

(3) Add the lagged term of ΔlnXt to the regression equation of step (2) and then perform the
regression to obtain the sum of the squared residuals.

(4) Test the null hypothesis using the calculated squared sum of the F values of the two residuals
in steps (2) and (3).

H0 : b12i = 0, (i = 1, 2, · · · , m) (7)

If the F value that is calculated at the set significance level exceeds the critical value, the null
hypothesis H0 is rejected. This means that ΔlnXt belongs to this regression, indicating that ΔlnXt is the
Granger cause of Δ ln Yt, and the magnitude of the causal relationship can be the pair of F values.

It should be pointed out that the Granger causality test requires that the time series be covariance
stable; otherwise, the pseudo-regression problem may occur. Therefore, the unit root test is needed to
assess the covariance stationarity of each time series. If there is no unit root in the test, then the time
series non-covariance is stable, and the first-order difference test must be conducted before the Granger
causality test. In addition, the Granger causality test is sometimes sensitive to the choice of the lagged
order of the regression model and needs to be screened.

4. Model Results and Analysis

4.1. Unit Root Test

As mentioned above, if the variable order is more than one, the F statistic that uses the ARDL
model to check for the existence of a co-integration relationship between variables will be invalid.
Therefore, we first perform a unit root test on the variables. Since the sample size that is selected in this
paper is small, the DF−GLS test method is proposed. The selection of the lagged order is based on the
AIC criterion, and the maximum lagged order is eight. The results are shown in Table 3.

Table 3. Unit root test result.

Null Hypothesis: D(LNY) Has A Unit Root

Exogenous: Constant

Lag Length: 0 (Automatic—Based on SIC, Maxlag = 8)

t-Statistic Prob. *
Augmented Dickey-Fuller test statistic −3.020011 0.0456

Test critical values: 1% level −3.699871
5% level −2.976263

10% level −2.627420
Variable Coefficient Std. Error t-Statistic Prob.

D(LNY(−1)) −0.543901 0.180099 −3.020011 0.0058
C 0.026425 0.012796 2.065096 0.0494
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It can be seen from the above table that the intercept of ln X and lnY plus the delay term,
the intercept only, and the P value without the intercept and the delay term are all greater than 0.05;
therefore, it is an unstable sequence, and Δ ln X and ΔlnY do not contain the intercept. When the delay
term is P, the value is less than 0.05, which is a stationary sequence. The single integer order of the two
variables is more than the first order, and so the ARDL model can be used.

4.2. Co-Integration Test Based on the ARDL Model

This section may be divided by subheadings. It will provide a concise and precise description of
the experimental results and their interpretations and the experimental conclusions that can be drawn.

We use the Eviews software to run the F tests, and the results are shown in Table 4.

Table 4. F test results.

EC = LNX − (6.1556 *LNY − 68.9407)

F-Bounds Test Null Hypothesis: No level relationship
Test Statistic Value Signif. I (0) I (1)

Asymptotic: n = 1000
F-statistic 5.501287 10% 3.02 3.51

K 1 5% 3.62 4.16
2.5% 4.18 4.79
1% 4.94 5.58

If the F statistic is greater than the upper critical value, the null hypothesis is rejected, indicating that
there is a co-integration relationship between the variables. If the F statistic is less than the lower critical
value, then there is no co-integration relationship between the variables. It can be seen in Table 4 that at
the 5% significance level, the F statistic is greater than the upper critical value. Therefore, when wind
power development is the dependent variable, the variable has a long-term co-integration relationship.

On the basis of this model, the stability of the selected model is tested by using the recursive
residual accumulation sum test (CUSUM) and the recursive residual cumulative square sum test
(CUSUM of squares). The results are shown in Figures 2 and 3.

Figure 2. CUSUM TEST.

It can be seen from Figures 2 and 3 that both statistics are within the 5% significance lines,
indicating that the parameters in the ARDL model are stable. From Table 4, the long-term co-integration
equations for wind power development and carbon emissions can be obtained.

ln X = 6.1556× ln Y + 68.9407 (8)

From the above formula, it can be seen that for every 1% increase in carbon emissions, 1% of the growth
rate of the newly installed of wind power capacity will increase by 6.1556%. It can be seen that the
increase in carbon emissions will accelerate the development of wind power.
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Figure 3. CUSUM of squares.

4.3. Granger Causality Analysis

Since there is a long-term co-integration relationship between China’s wind power development
and carbon emissions, an error correction model can be used to analyse the Granger causal relationship
between the two. We run the analysis using the Eviews software, and the results are shown in Table 5.

Table 5. ECM-based Granger causality test results.

Pairwise Granger Causality Tests

Sample: 1990 2018
Lags: 4

Null Hypothesis Obs F-Statistic Prob.
LNY does not Granger Cause LNX 24 3.42253 0.0354
LNX does not Granger Cause LNY 0.38472 0.8162

It can be seen from Table 5 that carbon emissions are the cause of wind power development,
and wind power development will not increase carbon emissions, but it will inhibit carbon emissions
and enable the environment to be effectively improved. Therefore, the growth of carbon emissions
will drive the development of wind power, but the development of wind power will also inhibit the
growth of carbon emissions, thereby reducing the speed of wind power development. In the long
run, the final installed capacity of wind power will reach a certain value, and the amount of carbon
emissions will be reduced to a certain value, achieving stable development.

5. Conclusions and Outlook

There have been a few scholars that have studied the relationship between a certain energy’s
development and carbon emissions. Almost no research has been conducted on the relationship
between wind power development and carbon emissions. Here, the relationship between wind power
development and carbon emissions are effectively assessed using models and causality tests. The data
we used are open to the public and published by the government, and the data source is authoritative
and reliable.

Results are as follows.
1. The ARDL model verifies the long-term stable relationship between wind power development

and carbon emissions reductions. The two interact with each other, and so the development of wind
power will impact carbon emissions.

2. The Granger causality test shows that an increase in carbon emissions will contribute to the
annual increase in the newly installed wind power capacity. The reductions in carbon emissions
will also inhibit the development of wind power. In the long run, the two will eventually stabilize
in a certain region and steadily develop. However, at present, global carbon emissions are always
increasing, which will certainly drive the development of wind power. Therefore, countries around
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the world should increase investments related to wind power, promote wind power development,
effectively curb the increase in carbon emissions, protect the environment, and conserve resources.

3. The excessive use of fossil energy makes greenhouse gas emissions harmful to the environment.
The rapid growth of carbon emissions is one of the driving forces for our development of clean energy.
To promote the sustainable development of China’s energy and alleviate the energy consumption crisis,
China should promote the development of wind power and promote the utilization of renewable energy.

First, in order to promote sustainable energy development, alleviate environmental pollution
and reduce carbon emissions, the Chinese government should vigorously develop wind power,
increase investments in wind power development, and formulate relevant subsidy policies to promote
the development of renewable energy. Second, the Chinese government is also facing the problem
of wind power consumption, which was solved by the government through administrative means.
Currently, China is in the stage of the power market reform, and the problem of wind power
consumption should be solved through market means. This will be the focus of our future research.
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