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Preface to ”“Energy Storage and Management for
Electric Vehicles”

One of the main drivers for technological development and innovation within the automotive
and road transport sectors in recent years is the need to reduce the fuel consumption and exhaust
emissions of vehicles while concurrently exceeding consumer expectations of quality, driveability,
refinement, and vehicle range. To meet this challenge, engineers and researchers have worked
together to design, integrate, and validate future powertrain technologies for the next generation of
hybridised and fully electric vehicles. Within the context of many electrified vehicle applications, the
design and management of high-voltage battery systems represents the greatest element of research
novelty. The aim of this Special Issue of Energies is to explore research innovation within the
battery systems engineering domain that incorporates optimization, mathematical modelling, control

engineering, thermal management, mechanical design, and component sizing and packaging.

James Marco, Quang Truong Dinh, Stefano Longo
Special Issue Editors
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Abstract: Based on the zinc—nickel single-flow battery, a generalized electrical simulation model
considering the effects of flow rate, self-discharge, and pump power loss is proposed. The results
compared with the experiment show that the simulation results considering the effect of self-discharge
are closer to the experimental values, and the error range of voltage estimation during charging
and discharging is between 0% and 3.85%. In addition, under the rated electrolyte flow rate and
different charge-discharge currents, the estimation of Coulomb efficiency by the simulation model is
in good agreement with the experimental values. Electrolyte flow rate is one of the parameters that
have a great influence on system performance. Designing a suitable flow controller is an effective
means to improve system performance. In this paper, the genetic algorithm and the theoretical
minimum flow multiplied by different flow factors are used to optimize the variable electrolyte
flow rate under dynamic SOC (state of charge). The comparative analysis results show that the flow
factor optimization method is a simple means under constant charge-discharge power, while genetic
algorithm has better performance in optimizing flow rate under varying (dis-)charge power and state
of charge condition in practical engineering.

Keywords: zinc—nickel single-flow battery; equivalent circuit model; self-discharge; dynamic flow
rate optimization; genetic algorithm

1. Introduction

The shortage of primary energy and environmental problems have led to increased development
of renewable energy in all countries of the world. However, renewable energy has the characteristics
of discontinuity, instability, and uncontrollability. Large-scale integration of renewable energy into
power grids will bring serious impact on the safe and stable operation of power grids, resulting in
a large number of abandoned light and wind [1]. Large-scale energy storage technology is one of
the effective methods to solve this problem [2-4]. Among them, the liquid flow battery has attracted
wide attention in the home and abroad because of its independent capacity, flexible location, safety,
and reliability. In view of the problems of ion cross-contamination and high cost of ion exchange
membrane in traditional dual-flow batteries, Professor Pletcher of Cape Town University had proposed
single-flow lead—acid batteries [5-8] in 2004. Due to the obvious advantages of single-flow batteries
over dual-flow batteries, different series of single-flow batteries have been developed at home and
abroad, such as zinc—nickel single-flow batteries [9], lead dioxide/copper single-flow batteries [10],
and quinone/cadmium [11] single-flow batteries. Among them, zinc-nickel single-flow batteries
have attracted wide attention due to their long life, high energy efficiency, safety, and environmental

Energies 2019, 12, 582; doi:10.3390/en12040582 1 www.mdpi.com/journal/energies
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protection [9]. In recent years, the research and development of zinc—nickel single-flow batteries
have been mainly based on experiments, including the selection and testing of key materials [12-14],
electrolyte composition addition [15-18], and flow structure design [19-22] to improve the performance
of zinc—nickel single-flow batteries and promote large-scale zinc-nickel single-flow battery systems
(ZNBs) to form an energy storage system for engineering applications [23].

Establishing a general electrical model that can accurately reflect the external characteristics of the
stack is the premise of predicting and analyzing the parameters of ZNBs energy storage system and
optimizing its operation, and then building an efficient battery stack management system. At present,
there are few studies on the electrical model construction of zinc-nickel single-flow battery stacks,
and the development of more complete vanadium redox flow batteries can be referred to. Barote
et al. [24,25] and Chahwan et al. [26] proposed the basic equivalent circuit model of the vanadium
redox flow battery. The model used a controlled current source and a fixed resistance to represent
parasitic loss, reaction resistance, and electrode capacitance, and a voltage source to represent stack
voltage. However, their models do not take into account the dynamic characteristics of batteries
and lack of experimental verification. Recently, Ankur et al. [27] aimed to make vanadium redox
flow batteries further oriented to renewable energy sources, and built an equivalent circuit model
of vanadium redox flow batteries considering electrolyte flow rate, pump loss, and self-discharge.
Accurate estimation of battery stack terminal voltage and dynamic SOC was achieved, and the optimal
range of variable electrolyte flow under dynamic SOC was investigated, which provided support for
the design of flow controller. On the basis of the above, reference [28] further estimated the parameters
of the internal electrical components of the equivalent circuit of the vanadium redox flow battery
under different electrolyte flow rates, charge-discharge current densities, and charge states, and
coupled the obtained parameters with the simulation model. The comparison with the experimental
results showed that the accuracy of the model has been significantly improved. For the zinc-nickel
single-flow battery stack studied in this paper, Yao Shou-guang et al. [29,30], based on the working
principle of zinc—nickel single-flow batteries, built the PNGV (the Partnership for a New Generation
Vehicles) equivalent circuit model, and further obtained the PNGV model parameters by parameter
identification based on the experimental data of the pulse discharge of the battery at 100 A. Then,
the high-order polynomial and exponential function fitting method was used to obtain the analytical
formula of each model parameter. Xiao M. et al. [31] proposed an improved Thevenin equivalent circuit
model of the zinc—nickel single-flow battery, based on the principle of parameter identification and
the least-squares curve-fitting method to obtain the parameters of the improved model, and then the
discrete mathematical model of each parameter in the improved model was obtained by discretization.
However, the above equivalent circuit model established for the zinc—nickel single-flow battery does
not consider the effects of self-discharge, electrolyte flow, and pump loss.

Based on the preliminary work, a general electrical model considering the factor of flow rate,
self-discharge, and pump loss which can accurately reflect the external characteristics of the stack
is proposed in the paper. In addition to this, another significant contribution of this paper is to
use flow factor multiplied by the theoretical minimum flow and genetic algorithm to determine an
optimal flow rate for minimum loss in the ZNBs system, considering both the internal power loss and
pump power loss. Such a comprehensive modeling of zinc—nickel single-flow batteries has not been
reported in the literature available at home and abroad. The general electrical model is simulated in
MATLAB/Simulink and is verified by a zinc—nickel single-flow battery stack composed of 23 single
batteries in parallel. The simulation model can support the design of efficient battery management
systems for large-scale ZNBs energy storage system.

2. Equivalent Circuit Model

The positive electrode of the zinc—nickel single-flow battery adopts a nickel oxide electrode used
in a secondary battery; the negative electrode is an inert metal current collector (nickel-plated steel
strip), and 10 mol/L KOH + 5 g/L LiOH + 0.5 mol/L ZnO solution is used as the base electrolyte.
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The positive electrode reaction is completed in the porous nickel positive electrode, and the negative
electrode reaction is a surface deposition/dissolution reaction. Figure 1 is a schematic diagram of the
basic structure of a zinc—nickel single-flow battery stack (300 Ah), which comprises 23 parallel cells,
and the electrolyte is driven by a pump to flow through the stack from the bottom during the charge
and discharge cycle. Figure 2 is a schematic structural view of a partially parallel single cell, and d;
is an interval between the positive and negative electrodes. The specific structural parameters of the
model are shown in Table 1.

An/ode /

dy Cathode

Figure 2. Basic structure of partially parallel single cells.

Table 1. Size parameters of the initial model.

Main Components Size Parameters
Height of porous nickel electrode (mm) 240
Width of porous nickel electrode (mm) 186
Thickness of porous nickel electrode (mm) 0.64
Height of negative pole (mm) 240
Width of negative pole (mm) 186
Thickness of negative pole (mm) 0.08
Distance between anode and cathode(d; /mm) 160
Electrolyte density (kg-m~%) 1456.1
Electrolyte viscosity (kg-m~'-s~1) 0.003139
No. of parallel cells in stack 23
Inner diameter of the pipeline (mm) 15
Length of pipeline (cm) 40
Pipeline import and export height difference (cm) 5
Number of bends 3
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The active substance in the nickel oxide electrode undergoes a chemical reaction during charge
and discharge. The charge-discharge reaction process is as shown in Equation (1). The zinc
negative electrode is accompanied by deposition and dissolution during charge and discharge.
The charge-discharge reaction process is as shown in Equation (2). The total reaction in the zinc-nickel
single-flow battery is shown in Equation (3).

2NiOOH + 2H,0 + 2~ = 2Ni(OH), + 20H~  E’ =049V 1)
Zn+40H™ = Zn(OH); +2e” E' = 1215V @)
2NiOOH + 2H,0 + Zn = 2Ni(OH), + Zn(OH),  E’=1.705V ©)

Taking the above-mentioned zinc-nickel single-flow battery stack (300 Ah) as the research object,
the equivalent circuit model considering the flow rate, pump power loss, and self-discharge is built.
The final general electrical model of the zinc—nickel single-flow battery stack is shown in Figure 3.
The following Sections 2.1-2.5 elaborate on each module of the general electrical simulation model of
the zinc-nickel single-flow battery.

s0C
Flow rate«

—80C  Istackd— powergul

@‘ Istackl

Connection ‘

Port pump loss El
Lfnow ratd-512% K
) E '

LC LY —

3
R_sef discharge Refix é |

E-stack

S0C E_stack 1
C-electrode ____

L
R-resistive %

[Chan

R-reaction

W

(e

Connection
Port1

Figure 3. Generalized electrical model of zinc—nickel single-flow battery stack.

2.1. Internal Loss

Experimental tests show that the system efficiency of the zinc—nickel single-flow battery stack
(300 Ah) is about 69% when the charge-discharge current is 100 A, and the remaining 31% is internal
loss. The actual power inside the stack can be calculated by Equation (4). The internal loss of the stack
can be divided into ohmic loss and polarization loss. The effect on the stack can be reflected in the
equivalent circuit model as ohmic loss resistance (Ryesistive) and polarization loss resistance (Ryeaction),
which can be calculated by Equation (4) [32].

p
Pstack = —=e )
nsystem
K- P
R = z stack (5)

max
In Equation (4), Prate is rated power and ngystem is system efficiency. In Equation (5), K is power
loss coefficient, Imax is the maximum charge—discharge current of the battery stack, and R is the
internal loss resistance (ohmic loss resistance or polarization loss resistance). Equivalent circuit model
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parameters are calculated under very bad conditions [32], that is, when the charge-discharge current is
the maximum current and SOC is 0.2. This paper is based on the function expression of the ohmic loss
resistance (Ryesistive) and the polarization loss resistance (Ryeaction) Of the zinc-nickel single-flow battery
stack (300 Ah) proposed in reference [29]. When the SOC is 0.2, the values of Ryegistive and Ryeaction are
respectively 0.623 m(Q) and 0.2504 m(), and then the ohmic loss coefficient (Kiesistive) and polarization
loss coefficient (Kyeaction) are calculated by Equation (5) to be 10.8% and 4.35%, respectively, and the
parasitic loss is about 15.85% of the total loss.

2.2. Pump Loss Model

The pump loss model of the zinc—nickel single-flow battery is shown in Figure 4. The pump
loss is characterized by fixed loss (Rgy) and pump current loss (Ipump). Fixed loss resistance (Rgy) is
calculated by Equation (6), in which Upyp is the minimum voltage of the stack and Py, is the fixed loss
power, which is experimentally measured to account for about 2% of Pgp,ck-

U2,
Ry = —in (6)
. Pfix

The function relationship between pump loss current (Ipump) and pump power (Ppecn) in the
electrical model is shown in Equation (7). The pump loss coefficient (M) is related to pump loss power.
Definition of M see Equation (8).

e — flow rate
Connection
Pot &D)

Divide3 q

Product2

Product3

:
x pressure loss

Divide1

2
Reparasitic <
=

Connection S0
Port1

Figure 4. Pump loss model of zinc—nickel single-flow battery stack.

IS ac
I o Pmech_loss _ M(SlO(li() (7)
ump — =
pump Ustack Ustack
M _ Pmech'SOCworse (8)
Imax

The mechanical 10ss (Ppech_loss) includes two parts: the mechanical loss (Ppipe_1oss) caused by
the electrolyte flowing through the pipeline connecting the stack and the external storage tank, and
the mechanical loss (Pgtack_10ss) caused by the electrolyte flowing through the stack. The total loss
(Pmech._1oss) is shown in Equation (9).

Pmechfloss = Pstackfloss + Ppipefloss (9)

When the electrolyte of the zinc—nickel single-flow battery flows through pipes, valves, and liquid
storage tanks, it will cause a certain pressure drop, which is collectively called pipeline pressure drop.
The pressure drop equation of the pipeline can be obtained by the Bernoulli equation, which is related
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to electrolyte flow rate, loss along the pipeline, local loss, and height difference between inlet and
outlet of the pipeline. Pipeline pressure drop and mechanical loss can be expressed as Equations (10)
and (11). The pressure drop of the tube outside the stack is estimated to be about 65.5 kPa.

AV?
APpipe = —v P +AZ +hi+hm (10)
Ppipe = APpipe xQ (11)

The pressure drop in the stack is determined by the flow rate of the electrolyte and the resistance
of the electrolyte, so the expressions of pressure drop and mechanical loss in the stack are as follows:

APy = Q x R (12)

Pstack = APstack X Q (13)

In Equation (12), R is the hydraulic resistance of the stack, and its value can be seen in the
previous research work of our group [33]. The formula for calculating Py, is shown in Equation
(13).Considering the pump efficiency, the total mechanical loss of the battery system can be defined as
Equation (14).

P + P,
pipe_loss stack_loss a 4)

Pmech_loss = i
pump

2.3. Self-Discharge Loss

The self-discharge of the zinc-nickel single-flow battery is mainly caused by the negative reaction
of the negative electrode, which forms a microprimary battery on the surface of the negative electrode,
which has a significant influence on the attenuation of the battery capacity. In this paper, the
self-discharge effect is equivalent to the loss resistance (Ryej¢) in the equivalent circuit model. The
calculation formula is shown in Equation (15), where Py is the power loss caused by self-discharge,
and its expression is given by Equation (16). For the self-discharge power loss coefficient (f), the
calculation formula is shown in Equation (17), where U; and Uy are the changes of battery voltage
with time in the charge—discharge process without considering self-discharge effect and considering
self-discharge effect, respectively.

Reerr = Usin (15)
Pselt
Pseif = f-Pstack (16)
. ftjz UL dt — fff U,Lpdt -
ft‘f Uy L dt

2.4. Voltage Estimation Model

The voltage estimation module of the zinc-nickel single-flow battery stack is shown in Figure 5.
The ion activity should be used when calculating the battery electromotive force using the Nernst
equation. When the ionic strength is not large, and the valence state of the oxides and the reductants
is not high, the battery electromotive force can be directly calculated by using the ion concentration.
In the zinc—nickel single-liquid battery, the valence states of the hydroxide ion and zincate ion are
—1 and —2, respectively. The active material nickel oxide of the positive electrode is not present in
the battery in the form of ions, and its ion activity cannot be further measured. Only the proton
concentration of hydrogen can be used to indicate the content of nickel hydroxide. Whether it is
theoretical analysis or comparison with experimental results, it is shown that the error caused by the
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calculation of the voltage of the stack using the ion concentration is small and within an acceptable
range. The potentials of the positive and negative electrodes are as follows:

2
RT i
Positive electrode potential : E* = Ei +—In _ Cnioon (18)
nF \ Cniony, Con-
RT CZn(OHF*
Negative electrode potential : E~ = EY + ——[n| 224 (19)
nF Con—+

E" is the positive equilibrium potential, E™ is the negative equilibrium potential, T is the ambient
temperature, and n is the electron transfer number in the electrode reaction. The concentration of
positive active substance can be replaced by H proton concentration. Equation (18) can be rewritten

as follows: )
RT H _ ~H
Positive electrode potential : E™ = E(}F + —In CmH‘"‘XiC (20)
nF cH.Copy-
The battery stack potential is as follows:
RT,  (Ch —cH Con-
Estack = 0+ F ln( - H X C or 1/2> (21)
C Zn(OH)~

< Divide1 Math Constant9

Constante Fandu?

Soc
: @D

CO— £ stack(OCV)
5

constant2

Product4

Math
Function

Divide

Constantt R

Constant3

Figure 5. Open-circuit voltage estimation model of zinc—nickel single-flow battery stack.

Based on the above-mentioned calculations in Equations (18)—(21) for the potential of the
zinc-nickel single-flow battery stack, combined with the range of concentration of each substance in
Table 2, the battery potential can be further expressed by SOC as Equation (22), where E” is 1.705 V.
Under different operating conditions, the terminal voltage is affected by internal loss and self-discharge.
The terminal voltage is estimated by Equation (23), where “£” indicates the charging process and the
discharging process. Egg¢- discharge 1S the average voltage drop caused by the self-discharge during
charge and discharge, which is 3.65 mV and 6.9 mV, respectively [33].

RT SOC 2 (1.4S0C +9.6)2
Egoae = B0+ — 1 22
stack = &7 g “((1 —soc) X T 1-o0750C 2)
Etermi.nal = Estack(OCV) + Istack (Rreaction + Rresistive) - Eself—discharge (23)
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Table 2. Range [28].

Parameters Unit Range
cH mol-m~3 0-35,300
Con- mol-m—3 9600-11,000
Conony> mol-m~3 3001000
cH. mol-m—3 35,300

2.5. SOC Estimation Model

SOC is used to characterize the state of charge of batteries. Its estimation module is shown in
Figure 6. Based on the change of concentration of Zn(OH)if, the dynamic SOC value of the zinc-nickel
single-flow battery is reflected in Equation (24). “+” indicates the charging and discharging process.

2
The value of Ci“JXOH)‘* can be obtained as 1 mol/L from Table 2.
CZn(OH)?[ CZn(OH)f
sOC=1-— initial variable (24)
Zn(OH)3~

Cmax

The SOC of the zinc-nickel single-flow battery stack storage system is divided into SOCy,pj in
the tank and SOCg,y in the stack. The SOC in the stack is given by Equation (25). To simplify the
estimation of the SOC, the formula for calculating the dynamic SOC of the stack is shown in Equation
(26). Equation (27) is a formula for calculating the SOCgack. When charging, b takes a value of 1, and
when discharged, it is —1. The simulation parameters involved in the model are shown in Table 3.

!
socstackfin + socstackfout SOCtank + Soctank + FXStQaC;ZC

SOCstaCk = B = 2 (25)
SOCuack 1 = SOCiumk ¢ + —sack (26)
stack- MET 2 FExQxC
b x fttz Istack_tdt
SOCank_t = SOCtank_initial + W (27)
& ]
Product5.
o
I-stack
Soume Product!
Product6
be4ss [;,l
F
a2
Product4
(@D

Flow rate Product3

Figure 6. SOC estimation model of zinc-nickel single-flow battery stack.
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Table 3. Parameters [29-34].

Parameters Unit Value
Rated voltage \% 1.6
Imax A 200
Uinin \ 12
Prate W 160
Stack capacity Ah 300
Number of parallel cells - 23
Operating temperature range °C —40~40
Volume of electrolyte L 8.5
Rresistive Q 0.00064
Ryeaction Q 0.00036
Kresistive - 10.8%
Kreaction - 4.35%
Rix Q 0.313
Celectrode F 138
Reerf Q 0.16
f - 0.039
Npump - 0.8
F C/mol~! 96485
SOCuyorse - 0.2
R Pa/m? 14186843
n - 2
T K 298
C mol/L 1

3. Results and Discussions

3.1. Terminal Voltage Estimation and Error Analysis of the Charging

This section compares the voltage values of the zinc—nickel single-flow battery stacks obtained
from experimental and simulation models at different charging currents (50 A, 100 A, 150 A). Figure 7a
shows the comparison between the terminal voltage value of the stack obtained by the experiment
and the voltage of the stack of the equivalent circuit model (considering self-discharge and without
considering self-discharge) when the charging current is 100 A. The results show that the simulation
results without considering the self-discharge effect have a large error with the experimental values.
When the model considers the capacity loss and voltage drop caused by self-discharge, the charging
time and voltage value obtained by the simulation are more consistent with the experimental values,
s0 as to avoid the undercharge phenomenon caused by the large voltage estimation error. Figure 7b is
a relative error analysis of the model simulation voltage value considering the self-discharge effect and
the experimental value, and the error range is between 0.001% and 2.61%.

s
&
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- g b
£ a0
E 2
e 175 | 100A charging % 2 i
@ . o
§ —=— Experimental
qer —=— Simulation with self-discharge 4 ]
1651 Simulation without self-discharge
’ L 1 I 1 I L 1 % N R
o B R 15 a8 &5 = 0.0 05 1.0 15 20 25 30
{a)Time(h) (o)Time(h)

Figure 7. (a) Simulation results and experimental verification of ZNBs voltage at 100 A charging current;
(b) relative error between simulation results considering self-discharge and experimental results.
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Figure 8 is a comparison of simulated voltage values obtained from electrical models (considering
self-discharge and without considering self-discharge) with experimentally obtained voltage values at
50 A and 150 A. The results show that the simulation results considering the self-discharge are more
accurate, and the error analysis is shown in Table 4.

20 2.1
19}
— ~ 20}
s s
@ [5]
o j=]
£ ) =
N L 19}
© =
£ Z
Ert E
e i 1504 Chargi
@ 50A Charging| ¢ arging
0 ‘
% 16} = Experimental 2z Experimental
N i y : . N Simulation with self-discharge
—=— Simulation with self-discharge 17F . y . N
—— Simulation without self-discharge = Simulation without self-discharge
15 L1 L I 1 I L I 1 L 1 L L

.
] 1 2 3 4 5 6 0.0 04 0.8 12 1.6 20
(a)Time(h) (b)Time(h)

Figure 8. (a) Simulation results and experimental verification of the ZNBs terminal voltage when the
charging current is 50 A; (b) simulation results and experimental verification of the ZNBs terminal
voltage when the charging current is 150 A.

Table 4. Voltage error analysis of stack under different charging currents.

. Maximum Relative Minimum Relative Charging Completion
Charging Current (A) Error (%) Error (%) Time (h)
50 1.1 0.02 6
100 2.61 0.001 3
150 1.44 0 2

3.2. Terminal Voltage Estimation and Error Analysis of the Discharging

Similar to Section 3.1, this section analyzes and validates the simulated voltage values obtained
from the equivalent circuit model of the zinc-nickel single-flow battery stack under different discharge
currents (50 A, 100 A, 150 A) and the experimentally obtained voltage values. Figure 9a shows
the terminal voltage estimation of a zinc-nickel single-flow battery stack under different conditions
(experiment, simulation of self-discharge, simulation without self-discharge) when the discharge
current is 100 A. The results show that the simulation results without considering the self-discharge
effect have a large error with the experimental values. When the model considers the capacity loss and
voltage drop caused by self-discharge, the discharge time and voltage value obtained by the simulation
are more consistent with the experimental values, so as to avoid the overdischarge phenomenon caused
by the large voltage estimation error. Figure 9b is a relative error analysis of the model simulation
voltage value considering the self-discharge and the experimental value, and the error range is between
0.004% and 3.75%.

10



Energies 2019, 12, 582

Relative Error(%)
=3

ZNBS Terminal Voltage(V)

—=— Experimental
Simulation with self-discharge

—— Simulation without sele-discharge
. . . . .

0.5 1.0 15 20
(a)Time(h)

25 30

8
2.0 1.0 1

(b)Time(h)

5 20

Figure 9. (a) Simulation results and experimental verification of ZNBs voltage at 100 A discharging

current; (b) relative error between simulation results considering self-discharge and experimental results.

Figure 10 is a comparison of simulated voltage values obtained from electrical models (considering
self-discharge and without considering self-discharge) with experimentally obtained voltage values at
50 A and 150 A. The results show that the simulation results considering the self-discharge are more

accurate, and the error analysis is shown in Table 5.
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Figure 10. (a) Simulation results and experimental verification of the ZNBs terminal voltage when the

discharging current is 50 A; (b) simulation results and experimental verification of the ZNBs terminal

voltage when the discharging current is 150 A.

Table 5. Voltage error analysis of stack under different discharging currents.

Discharging Current Maximum Relative Minimum Relative Discharging
(A) Error (%) Error (%) Completion Time (h)
50 1.8 0.002 53
100 3.75 0.004 2.48
150 3.85 0.02 1.78

3.3. Coulomb Efficiency Analysis

This section evaluates the Coulomb efficiency of a complete charge—discharge cycle for a
zinc—nickel single-flow battery stack. Charging current is 100 A, discharge current is 50 A, 100
A, 150 A, and Coulomb efficiency (Ncoulombic) is defined as Equation (28).

TNcoulombic =

oty .

j()d 1dichargedt
ote .

joc 1chargedt

11

(28)
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Figure 11 shows the Coulombic efficiency of the ZNBs energy storage system under the same
charging current and different discharge currents. Under the operating conditions of 50 A, 100 A, 150
A discharge, the Coulomb efficiency calculated by the experiment is 89%, 89.9%, and 88%, respectively,
and the Coulomb efficiency calculated by the simulation model is close to the experimental values, at
88.1%, 90.3%, and 88.6%, respectively. Therefore, the model can be used to estimate the Coulombic
efficiency of a zinc-nickel single-flow battery stack under different operating conditions.

20

19

18

16 F

15+
50A Discharge Experimental

14 F = 100A Discharge Experimental
+ 150A Discharge Experimental
50A Discharge Simulation
121 + 100A Discharge Simulation
< 150A Discharge Simulation
T T i n T

ZNBS Terminal Voltage(V)

13+

o 1 2 3 4 5 6 7 8 9
Time(h)
Figure 11. Coulombic efficiency estimation of 300 Ah zinc-nickel single-flow battery stack when
charging at 100 A and discharging at three different currents (50 A, 100 A, 150 A).

3.4. Dynamic Flow Rate Optimization

Electrolyte flow rate is one of the parameters that have a great influence on the performance
of the flow battery stack energy storage system, and is closely related to its internal mass transfer,
temperature distribution, and system loss. For the concentration overpotential, Ma X. et al. [35] first
proposed the theoretical minimum electrolyte flow rate (Q,,;,) based on Faraday’s law; see Equations
(29) and (30). On this basis, relevant scholars use the theoretical minimum flow multiplied by different
flow factors to optimize the electrolyte flow. Fu et al. [36] found that the minimum flow of the stack
system should consider the concentration overpotential and pump power loss; Tang et al. [37] found
that the system efficiency is the highest when the electrolyte flow rate is 7.5 times the theoretical
minimum flow rate (factor = 7.5). In this paper, with reference to the optimization method proposed
by the predecessors, the overall power loss (pump loss and internal loss) of the system is taken as the
objective function. Firstly, the theoretical minimum flow multiplied by different flow factor (factor) is
used to optimize the flow. The expression of flow rate can be seen in Equation (31).

I

Charge : Qmin = 57— c¢x (1-50C) !
Dischatge : Quin = == w0

1scharge : mm_FxnchSOC
Q = factor-Q,i, o

Figure 12 shows the theoretical minimum electrolyte flow rate of the zinc—nickel single-flow
battery stack (300 Ah) as a function of SOC and current. The results show that the theoretical minimum
flow rate of the electrolyte is large at the end of charge and at the end of discharge to avoid a large
concentration overpotential [34].

12
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Figure 13 shows the power consumption and output of the system under different flow factors
(factor = 5, factor = 10, factor = 15) and charging and discharging currents of 100 A. The simulation
results show that with the increase of the flow factor, the power consumption of the stack system is
slightly improved, and the power output of the stack system has a small decrease.
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Figure 13. (a) The change of power consumption with the flow factor during charging; (b) the variation
of output power with the flow factor during discharging.

In the face of the phenomenon of charge and discharge "peak and valley" in actual engineering,
there is a time-varying optimal flow factor corresponding to different charge and discharge powers
under the corresponding state of charge. If a fixed flow factor is used, it may not reach the expected
optimization effect. Tao W. et al. [38] combined dichotomy with the flow factor optimization method to
realize real-time optimization of electrolyte flow under dynamic charging and discharging power, but
this method is only applicable to single-parameter optimization, and the objective function must be a
single peak function. Compared with the traditional optimization algorithm, genetic algorithm has
good optimization ability for nonlinear problems, and can optimize multiobjective and multiparameter
simultaneously. Therefore, the genetic algorithm is introduced as an optimization method in this paper.
The constant charge-discharge power condition is taken as an example to optimize the electrolyte flow
rate of the zinc—nickel single-flow battery stack in real time, which provides theoretical support for
multiparameter and multiobjective optimization under dynamic charge-discharge power.

In this paper, the total loss (internal loss and pump loss) of the zinc-nickel single-flow battery stack
(300 Ah) energy storage system during charging and discharging process is taken as objective function,
and the electrolyte flow rate was optimized at each time step in the simulation model. Figure 14a,b
show the system power under two different flow control strategies (not optimized flow rate 0.09 L/s
and genetic algorithm optimized flow) during charging and discharging, respectively. The results
show that under the optimized electrolyte flow rate, the power consumption of the charging process is
significantly reduced, and the power output of the discharge process is significantly improved.
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Figure 14. (a) System power consumption under different flow control strategies during charging
process; (b) system output power under different flow control strategies during discharge process.

In addition, the overall performance (Coulomb efficiency, energy efficiency, and system efficiency)
of the zinc-nickel single-flow battery stack (300 Ah) under 100 A charge-discharge current and different
electrolyte flow control strategies (optimized electrolyte flow rate by genetic algorithm, electrolyte
flow rate corresponding to different flow factors, and rated flow rate of 0.09 L/s) are compared and
analyzed. The calculation formulas for Coulombic efficiency, energy efficiency, and system efficiency
are as follows in Equations (32)-(34).

t,
f 0 d Idischarge dt

Coulombic efficiency : Ncouombic = i o (32)
0 ‘charge
ta
. Ldischarge Edischargedt
Energy efficiency : Ngenergy = fo ttlsc arge g1 arje (33)
fo IchargeEcharge t
' (Pyack — Plogs)dt
System efficiency : TNsystem = fotc(btad(—bbb) (34)

0 (Pstack + Ploss)dt

Figure 15 shows the performance parameters calculated by the complete charge and discharge
cycle of the zinc-nickel single-flow battery stack under different flow control strategies with a current
of 100 A. The results show that when the flow control strategy is optimized by the genetic algorithm,
the system efficiency is the highest, reaching 86.7%. When the theoretical minimum flow is multiplied
by different flow factors for flow optimization, it can be found that with the increase of factor, the
system efficiency has a small decrease. The theoretical minimum flow multiplied by the different
flow factor optimization method can make the system efficiency of the stack energy storage system
reach a higher value, for example, when the factor value is 5, the system efficiency is 85.6%. From
the trend of change, the factor value is smaller, which may further improve the system efficiency, but
the optimization result of the flow factor is only suitable for a specific working condition. With the
fluctuation of charging and discharging power, if a fixed flow factor is used, the expected optimization
effect may not be achieved. However, the optimization method of genetic algorithm solves this
problem well. In practical engineering applications, a superior flow control strategy can be derived
by genetic algorithm when in the face of the “peak and valley” phenomenon of charge and discharge
power caused by the discontinuous, unstable, and uncontrollable characteristics of renewable energy
and uncontrollable changes in user demand.
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Figure 15. Performance analysis of the stack under different flow control strategies.
4. Conclusions

In this paper, the zinc—nickel single-flow battery stack is taken as the research object, and a general
electrical model considering self-discharge, pump loss, and flow is built by using MATLAB/Simulink
software. The self-discharge module, pump loss module, SOC, and voltage estimation module in
this model are described in detail in Section 2. In order to evaluate the accuracy of the electrical
model, the charging and discharging experiments of the zinc—nickel single-flow battery stack (300 Ah)
were carried out under different charging and discharging currents (50 A, 100 A, 150 A). The results
are compared with the simulation values (considering self-discharging and without considering
self-discharging). The results show that the simulation values obtained by the simulation model
considering self-discharging are closer to the experimental results. The minimum error of voltage in
charging is 0-0.02%, the maximum error is 1.1-2.61%, the minimum error of voltage in discharging
is 0.002-0.02%, and the maximum error is 1.8-3.85%. In addition, the Coulombic efficiency of the
complete charge and discharge cycle of the simulation model is estimated. Under the operating
conditions of rated electrolyte flow rate (0.09 L/S), charging current 100 A, and discharge current
50 A, 100 A, and 150 A, the comparison with experimental data shows that the simulation model
has high accuracy in estimating Coulomb efficiency. The flow rate of electrolytes is one of the most
influential parameters in the operation of battery stacks. Excessive flow rate of electrolytes will cause
high pump loss, and too low a flow rate of electrolyte will increase the internal loss of the battery
stack. Therefore, there exists a time-varying optimal electrolyte flow rate to maximize the system
efficiency of the zinc—nickel single-flow battery stack corresponding to the dynamic SOC. In this paper,
the overall power loss (pump loss, internal loss) of the system is taken as the objective function, and
two methods, genetic algorithm and theoretical minimum flow multiplied by different flow factors,
are used to optimize the flow rate. The results show that, compared with the rated flow rate (0.09 L/s),
the optimized flow rate of electrolytes improves the system efficiency significantly. The results show
that under the constant charge and discharge power, the above two optimization methods have
significantly improved the system performance, and the flow factor optimization method is more
convenient. However, in the face of the “peak-valley” phenomenon of charge and discharge power
in actual engineering, the optimization method of fixed flow factor may not achieve the expected
effect, and the genetic algorithm can optimize the electrolyte flow in real time to provide better flow
control strategy.
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Abbreviations

Pgtack Stack power hm Localized loss

Prate Stack power rating Peert Self-discharge power loss

K Power loss coefficient Relf Self-discharge resistance

Imax Maximum charge and discharge current Vg, Stack terminal voltage

R Internal loss resistance Estack Stack potential

Vimin Stack minimum voltage SOCstack Stack stage of charge

Prix Fixed loss power SOCiank Tank stage of charge

Reix Fixed loss resistor n No. of electrons transferred per mole
Prnech Mechanical loss Q Electrolyte flow rate

Pstack loss Internal mechanical loss of stack F Faraday constant

Ppipe_loss Mechanical loss in the pipe factor Flow rate factor

Vs Velocity of the electrolyte inside the pipe Mcoulombic Coulombic efficiency

Z Height of the pipe MNEenergy Energy efficiency

hy Pipeline loss NSystem System efficiency

R Hydraulic resistance Tpump Pump efficiency
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Abstract: In this paper, the efficiency characteristics of battery, super capacitor (SC), direct current
(DC)-DC converter and electric motor in a hybrid power system of an electric vehicle (EV) are
analyzed. In addition, the optimal efficiency model of the hybrid power system is proposed
based on the hybrid power system component’s models. A rule-based strategy is then proposed
based on the projection partition of composite power system efficiency, so it has strong adaptive
adjustment ability. Additionally. the simulation results under the New European Driving Cycle
(NEDC) condition show that the efficiency of rule-based strategy is higher than that of single power
system. Furthermore, in order to explore the maximum energy-saving potential of hybrid power
electric vehicles, a dynamic programming (DP) optimization method is proposed on the basis of
the establishment of the whole hybrid power system, which takes into account various energy
consumption factors of the whole system. Compared to the battery-only EV based on simulation
results, the hybrid power system controlled by rule-based strategy can decrease energy consumption
by 13.4% in line with the NEDC condition, while the power-split strategy derived from the DP
approach can reduce energy consumption by 17.6%. The results show that compared with rule-based
strategy, the optimized DP strategy has higher system efficiency and lower energy consumption.

Keywords: hybrid power system; electric vehicle; rule-based optimal strategy; dynamic
programming approach

1. Introduction

Due to the shortcomings of short life and low power density of power battery, if power battery is
used as the sole energy source of electric vehicle (EV), the power and economy of vehicles will be greatly
limited [1,2]. The utilization of high-power density super capacitor (SC) into the EV power system
and the establishment of a battery-super capacitor hybrid power system can achieve complementary
advantages to make up for the lack of power battery [3,4]. Yi Hongming simulated the important
modules of the SC-battery hybrid power system in MATLAB/Simulink. The results show that the
hybrid power system can exert its high energy density and high-power density characteristics, thus
improving the vehicle’s dynamic performance and energy utilization [5]. Xu and Wang combined
high-power SC with traditional batteries, and adopted parallel interleaving technology in DC/DC
converter, which changed the topology of the hybrid power supply, greatly improving the overall
performance of the composite power system. The fuzzy control method is used to manage the
energy storage system [6]. Cezar improved the performance of the combined energy storage unit by
introducing SC as auxiliary power supply. This paper presents a complete energy storage system
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model, including a battery, a SC and a rule-based control strategy. When the power required for energy
storage is higher than the threshold, the SC is released, which means that the power of the driver needs
to be increased for a period of time [7]. Therefore, a SC with battery hybrid power system is proposed
in this paper, which is composed of the battery-super-capacitor hybrids, transmission and the electric
motor in this research. Specific efficiency characteristics are displayed by each component of the hybrid
power system, which is strongly affected by the power demands according to driving conditions and
driver’s intentions. EV with battery-super-capacitor hybrids can attain minimum energy consumption
through switching different driving modes according to the high efficiency area of the hybrid power
system [8].

In addition, the rationality of the energy distribution strategy of the composite power system
is also an important factor affecting energy consumption. Special efforts have been devoted to the
design and implementation of optimal energy management strategies concerning their importance
to urban EV. Essentially, existing approaches may be categorized in rule-based control strategies,
optimization and intelligent control strategies [9]. (1) Rule-based methods and analytic methods are
usually operation mode dependent. (2) Optimal theory methods can be classified as global optimization
and real-time optimization methods, including minimum principle, quadratic programming and
dynamic programming (DP) method. (3) Intelligent control methods include neural networks,
and model predictive control methods, fuzzy logic, genetic algorithm method, and swarm optimization
method [10]. Rule-based methods have difficulty achieving optimal control effect, but they are simple
and easily conducted; real-time application of intelligent control methods are limited because of
they involve more calculation and are time-consuming [11]. Banvait proposed a rule-based energy
management strategy for plug-in hybrid electric vehicle (PHEV), then a PHEV model was built using
Advisor software, and the simulation results show that the strategy can significantly reduce fuel
consumption [12]. Hemi proposed a rule-based energy management strategy combined with the
equivalent consumption minimization strategy (ECMS), which is developed and simulated by using
a dynamic model of the vehicle developed in the Matlab/Simulink environment. The simulation
results verify the effectiveness of the strategy under various vehicle masses [13]. Previous research
about energy management algorithms are concentrated in the field of energy management algorithm
based on optimization. DP is a widely-used method that applies search for absolutely optimal controls
under a predetermined driving cycle [14]. Optimal power management strategy obtained by DP
was employed in parallel hybrid electric vehicle (HEV) to minimize fuel consumption [15]. A finite
horizon dynamical optimization problem with constraints of proper energy limits and solved by a DP
approach was proposed by Xiaosong Hu, in order to avoid physical damage of the electrical storage
system [16]. A driving pattern recognition technique of switching among the control rule employed in
the optimal power management strategy for range extended electric vehicle sets extracted from DP
results of each representative driving pattern [17]. An optimal solution to the energy management
problem in fuel-cell hybrid vehicles with dual storage buffer for fuel economy in a standard driving
cycle using multi-dimensional dynamic programming (MDDP) was suggested and turned out to be
applicable [18]. An energy management strategy based on stochastic dynamic programming was
proposed for a serial hybrid electric tracked vehicle [19]. DP typically focuses on the energy consumed
during the driving event as its objective, with the SOC indicating the state of the system, and either
the power split ratio or the torque split ratio as the control variable [20]. However, the real-time
controller based on DP is effective only for the driving cycle that is used for rule extraction [21].
For the near-optimal rule-based energy split strategy, control rules can also be extracted from the
DP results [22]. In summary, rules-based and DP method used in composite power pure electric
vehicles, the existing research shows that the main optimization lies in the optimization of motor
control and optimized space can be limited; in this paper, the hybrid power system and motor drive
system are comprehensively considered, and the optimal efficiency model of the hybrid power system
is established to explore the best feasible scheme of energy utilization for pure electric vehicles.
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In order to propose a systematic optimal solution for hybrid power system and energy split
strategy, high efficiency areas of hybrid power system under single power and hybrid power modes
needed to be rationally distributed. Efficiency characteristics analysis of battery, SC, electric motor
and DC/DC converter is a vital part of the solution. Based on simulation and experiment methods,
the efficiency formulas of the hybrid power system can be summarized under different working
conditions, with vehicle acceleration and velocity as independent variables. It is critical to set the status
parameters of battery and SC as constraints of optimization problems, because constraints represent
the work status of both energy storage units, and work status directly influences the efficiency of the
hybrid power system. In this sense, after analyzing the characteristics of each component of the hybrid
power system, the efficiency calculation model of the hybrid power system is established. On this
basis, a rule-based energy management strategy is proposed, and then the DP method is used to solve
the optimization problem of the optimal energy allocation strategy for the hybrid power system of EV.

The structure of the paper is organized as follows: firstly, the materials and methods are provided
in Section 2, and the structure and the key components models of hybrid power system in EV are
presented in Sections 2.1-2.4, which include description of the hybrid power system, battery model,
SC model and electric motor; and the rule-based strategy and DP optimization strategy is described
in Sections 2.5 and 2.6. In Section 3, the results and discussions of rule-based energy management
strategy and energy allocation optimization strategy based on DP are presented. Finally, conclusions
are presented in Section 4.

2. Materials and Methods

2.1. Description of the Hybrid Power System

The vehicle is equipped with a brushless direct current motor (BLDC) connected to a fixed-ratio
transmission. BLDC is powered by battery and SC. The bidirectional DC/DC converter is used to
interface the SC with the BLDC. Energy management controller plays the role of power split in the
hybrid power system. The architecture of the hybrid power system is as shown in Figure 1. The main
parameters of the EV used in this study are listed in Table 1.

[ ————————— — — — signal
———electric drive
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1
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| - cutrent signal
| sighal |
| -
| |

DC/DC i :
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battery status braking
: — X _sti‘glnaﬁ us Battery signal | | _ _ﬂc&ele_raltion signal

Figure 1. Architecture of the hybrid power system.
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Table 1. Basic parameters of the electric vehicle (EV).

Parameter Value
m, Vehicle mass (kg) 1360
R, Wheel radius (m) 0.277
Cp, Air drag coefficient 0.35
A, Front area (mz) 2.3
o, Air density (kg/m® 1.29
ip, Transmission ratio 7.881
nt, Transmission efficiency (%) 95
17y, Regenerative braking efficiency (%) 65
11pc, DC/DC converter efficiency (%) 92
DC bus voltage (V) 260-350

2.2. Battery Model

Lithium-ion batteries are preferred in EV applications owing to their high voltage, good safety
property, and long cycling life [23]. The main parameters of the Lithium-ion battery used in this study
are given in Table 2.

Table 2. Basic parameters of the battery cell.

Parameter Value
Nominal voltage (V) 3.65
Capacity (Ah) 42
Stored energy (kWh) 21
Ry (mQ)) 16.8

Rint model is commonly used in describing the characteristics of the lithium battery, which is
applied because of its simplicity and little inaccuracy. The battery behavior is represented by the Rint
model depicted in Figure 2a.

L AN AN
Ry t Res
E—— U, Use U,
| i I
Y A
0
() (b)

Figure 2. Simplified circuit models of battery and super capacitor (SC). (a) Rint model of the battery;
(b) Transmission line model of SC.

The parameter data of variables is obtained through battery characteristics experiments, and
the calculation results of the battery module internal resistance are shown in Table 3. According to
the calculation results of the internal resistance of the battery module in Table 3, the relationship
between battery SOC and internal resistance can be obtained by polynomial fitting under MATLAB
environment (The MathWorks, Inc, Natick, MA, USA), and 6 times polynomial is obtained, such as
Equation (1).

Ro = 221.2x% — 695.5x° + 729x* — 358.2x% + 73.12x% — 6.338x + 17.49 (1)
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where x represents the SOC value of the battery, Ry (m(2) is the internal resistance of the battery. The
fitting curve is shown in Figure 3, and a conclusion can be drawn through analyzing the data that the
resistance appears smaller when the SOC was between 0.3 and 0.9. Hence, 0.3 to 0.9 is a high-efficiency
working region for battery which will be used as boundaries of constraints.

Table 3. The calculation results of battery cell internal resistance.

sOocC 1 0.9 0.8 0.7 0.6
Ro/mQ 16.81 16.41 16.24 16.24 16.25
sOC 0.5 0.4 0.3 0.2 0.1
Ro/mQ 16.29 16.35 17.09 17.26 17.26

+ data point
—fitting curve

RO (mQ)

. ™.

16.5
\’//v//_{
160 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
soc

Figure 3. Change curve of internal resistance of battery discharge.

The following two formulas demonstrate the mathematical character of battery based on the
equivalent circuit model above.
E=U,+ LRy 2)

Pypar = "Ry €)

where E is the electromotive force; Uj, is the battery terminal voltage; I, represents the battery current
load; Ry represents internal resistance; Py,_;,; is the power loss.

2.3. SC Model

The basic parameters of the SC modules used in this paper are listed in Table 4. The transmission
line model shown in Figure 2b was adopted to represent the characteristics of the SC with its simplicity
and sufficient accuracy. The series/parallel numbers Sgc/Psc of the SC module within the SC pack is
40/9 in this study. SC working states are divided into 2 states in this paper beforehand, as shown in
Figure 4. When the terminal voltage of SC is between Uy and Vsc_ay, SC single drive is the priority
selection; when the terminal voltage of SC is between Uy and V. iy, the driving modes are decided
by the system efficiency.

Table 4. Basic parameters of the SC module.

Parameter Value
Maximum voltage (V) 2.7
Capacity (F) 350
Stored energy (Wh) 0.35
Maximum discharge current (A) 170
Resistance (mQ}) 32
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Figure 4. Division of the SC working states.

The series resistance (Rs) is relatively steady, and the parallel resistance (R.y) demonstrates the
current leakage, which is small enough to be neglected. Hence, the approximate power wastage of SC
is mainly caused by R.s. The mathematical model of SC is expressed by the equations below.

Use = IscRes + Ue (4)
du.
le=C— 41, (5)

where Usc represents the terminal voltage of SC; Isc is the outputting current; Uc is the actual voltage
of the capacitor in the SC; I, is the leakage current.

2.4. Electric Motor

The basic parameters of the motor used are listed in Table 5. The motor output power was
evaluated through testing the rotor speed and torque, which could be used to distinguish the efficiency
region and divide the power split mode, meanwhile the electric motor efficiency under different torque
and rotor speed could be obtained. An efficiency map of the motor is presented in Figure 5. The top
blue line represents the characteristics curve of the motor: the first half is constant torque phase,
and the latter part is constant power stage.

Table 5. Basic parameters of the electric motor.

Type Nominal Power (kW)  Maximum Power (kW) Maximum Speed (r/min)
BLDC 29 40 9000

1204

100

804

60+

Torque(N.m)

40

204

T L T l T | T
1000 2000 3000 4000 5000 6000 7000 8000 9000
Speed(r/min)

Figure 5. Efficiency map of the electric motor.
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2.5. Rule-Based Energy Management Strategy

The aim of optimal control strategy is to maximize the efficiency of the hybrid power system,
the efficiency of which is expressed as follows.

7 _ Przq(v,a) ©)
,a,80¢,1) —
sys(o.a,s0c.]) Preq(v,u) + owbat(sac,lh) + Pw—sc(lsc,u_;[) + owDC(I_g,;,LISC) + owmar(lh,,s,n,w)

where Py, is the power requirement of hybrid power system, Py, is the power dissipation of battery.
Py.-sc is the power dissipation of SC. Py,.pc represents the power dissipation of DC/DC converter.
Py-mor represents the power loss in electric motor.

The rolling resistance, the air resistance, the ramp resistance and the acceleration resistance are
mainly used in the process of vehicle driving, and the force equation is shown in Equation (7):

Ft:Ff+sz+Fi+Fj (7)

where F i is rolling resistance, Fy, is air resistance, F; is ramp resistance, and F]- is acceleration resistance.
The specific expressions of each force are expressed as Equation (8), and the calculation of demand
power is as shown in Equation (9).

Fy = mgf
E, — CDAv2
w = 2115 (8)
F; = mgi
F = oma
Fﬂ}

Preqom) = 360077

)

where m is the EV mass, g is the gravitational acceleration, f is the rolling resistance coefficient, v is
the EV velocity, a is the EV acceleration, i is the climbing angle, Cp is the air drag coefficient, A is the
front area, ¢ is the generalized inertia coefficient, # is the transmission efficiency. All the variables are
formulated as the equations below:

Pregva) = ’}—T(mgfv/3600 + mgiv /3600 + Cp Av® /76140 + Smova /3600)

Poy—patsocty) = Ib*(Rogsoc) + Ri(soc)) (10)
P

— 2
w—sc(lse) — Isc™Res

Pw—DC(ISC,U;E) = fipclscUsc

where 77pc is the efficiency of the DC/DC converter.

According to the above efficiency calculation mathematical model and the characteristics analysis
of each component of the composite power system, the efficiency calculation model is built in Simulink,
as shown in Figure 6. Vehicle speed and acceleration as the input of the model can be converted into
the motor output speed and torque through the conversion module, thus the required driving power
of the vehicle can be calculated through the demand power module. Then it is transferred to the logic
module, which distributes the direct current bus power to the battery module and the SC module
according to the different driving modes of the vehicle. The DC/DC converter is included in the SC
module. Finally, the efficiency of the system can be calculated by summing up the power loss of battery,
SC, DC/DC converter and motor to the efficiency calculation module.
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Figure 6. Efficiency model of power system.

ba

System efficiency varies significantly under different conditions concerning different battery and
SC states. Depending on the working states of battery and SC, the hybrid power system is classified
into four conditions. Based on the relevant tests on battery, a relative low resistance region (SOC;, <=
SOC <= SOC;) was obtained as mentioned above, and for SC, high and low terminal voltage work
region was determined by a middle voltage line U,;,.

SOC € (SOCy, SOCy)&Use > Uy, conditionl
SOC ¢ (SOCy, SOCy)&Use > Uy, condition2
SOC € (SOCy, SOC)&Use < Uy, condition3
SOC ¢ (SOCy, SOCy)&Use < Uy, conditiond

1)

(1) Condition 1: Battery stays in high efficiency region, and the initial terminal voltage of SC stays
in high value. Adjusting the power limit of battery, and a maximum efficiency value under each couple
of vehicle velocity and acceleration is seek out. The simulation results of the efficiency model of the
power system under Condition 1 are depicted in Figure 7.

i N
c N Dual driving
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Figure 7. Efficiency comparison and switching rule under Condition 1. (a) Efficiency comparison under
Condition 1; (b) Switching rule under Condition 1.
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As the Figure 7 shows (similar to Figures 8-10), the white mesh stands for the efficiency in single
driving mode; the colorful one stands for the dual driving mode; meanwhile the switching rule of
single driving mode and dual driving mode under Condition 1 can be summarized. It can be seen from
Figure 7a (similar to Figures 8a, 9a and 10a) that the efficiency of single driving mode is higher than
that of dual driving mode when the speed and acceleration are smaller, and the power system should
work in single driving mode at this time. With the increase of the vehicle speed and acceleration,
the efficiency of dual driving mode increases slowly and is larger than that of single driving mode,
and the power system should work in dual driving mode at this time. In order to accurately find out the
switching rules of single driving mode and dual driving mode in power system, the three-dimensional
surface graph shown in Figure 7a (similar to Figures 8a, 9a and 10a) is projected to the v-a plane,
and the efficiency differentiation curve of single driving mode and dual driving mode can be obtained
in Figure 7b (similar to Figures 8b, 9b and 10b). The dividing line between white grid and color grid is
the switching rule of single driving mode and dual driving mode: when the speed and acceleration
are located at the lower left of the dividing line, the efficiency of single driving mode is higher and the
power system should switch to single driving mode; when the speed and acceleration are at the upper
right of the dividing line, the efficiency of dual driving mode is higher and the power system switches
to dual driving mode.
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Figure 8. Efficiency comparison and switching rule under Condition 2. (a) Efficiency comparison under
Condition 2; (b) Switching rule under Condition 2.
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Figure 9. Efficiency comparison and switching rule under Condition 3. (a) Efficiency comparison under
Condition 3; (b) Switching rule under Condition 3.

(2) Condition 2: Battery is in lower efficiency region, and SC is in high voltage. The comparison
and switching rule are depicted in Figure 8, and the switching rule of single driving mode and dual
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driving mode under Condition 2 can be summarized according to the explain of switching rules under
Condition 1.
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Figure 10. Efficiency comparison and switching rule under Condition 4. (a) Efficiency comparison
under Condition 4; (b) Switching rule under Condition 4.

(8) Condition 3: Battery stays in high-efficiency region, while SC keeps in low voltage. The
comparison and switching rule under Condition 3 can be seen in Figure 9. The switching rule of single
driving mode and dual driving mode can be summarized similarly according to the explanation of
switching rules under Condition 1.

(4) Condition 4: Both battery and SC stay in low-efficiency region. The simulation results of
the power system efficiency model are depicted in Figure 10. The switching rule of single driving
mode and dual driving mode under Condition 4 can be obtained similarly according to the explain of
switching rules under Condition 1.

Based on the switching rule of single driving mode and dual driving mode under four different
conditions, the schematic flow-chart of the rule-based strategy can be achieved, as shown in Figure 11.
It can be seen from the Figure 11 that when the SC terminal voltage is higher than 100, the power system
adopts single driving mode. When the terminal voltage of the SC is less than 100, the power distribution
of the SC and the battery is determined according to the switching rules under different conditions.

SC single
driving

Power split
according to
switching rule 1

Power split
according to
switching rule 2

Power split
according to
switching rule 3

Power split
according to
switching rule 4

Figure 11. The flow-chart of the rule-based strategy.
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2.6. Energy Management Optimal Strategy Derived from DP Approach

The rule-based strategy is proposed on the basis of power source state and efficiency, and the
strategy is empirical, but it cannot achieve the best efficiency optimization effect.

The DP algorithm will be utilized to solve the optimal problem in this section, which is a famous
principal of optimization which transfers multistage decision problem to single stage, and solves each
problem with the relations between different stages. The recursion equation below plays an essential
role in the DP sequential algorithm.

fie(xeg1) = min{og(xer, 1) + feor ()}, k=1,2,--- ,n=1n (12)
boundary condition : fo(x1) =0

where x; is the state of the kth stage, the decision variable 1y is the decision of the state at xy, 1, the
state transition equation is xy,1 = Ti(x,ux), the set of allowed decision of k phase is denoted as Dy (xy),
Uk(Xg41,Ug) is as an indicator function.

The DP algorithm aims at minimizing the energy loss of the hybrid power system at every
moment under cyclic conditions, so as to achieve the optimization of vehicle efficiency and extend the
driving distance. In this paper, the optimal control strategy of energy allocation based on DP algorithm
takes the output power of the SC (Psc(t)) as the decision variable of global optimization, and time
series as the stage sequence with the interval of 1 s. The SOC of the power battery (SOC;) and the
terminal voltage of the SC (Vsc) are the state variables of global optimization. The expression is as
follows:

u={Psc(t)} (13)
x = {SOCy, Vsc} (14)

The DP optimization process of the energy allocation of the hybrid power system can be expressed
as: (1) dividing the search for the minimum energy consumption path of the hybrid power system into
several time series at a time interval of 1 s; (2) searching for the optimal decision variable u(f) during
the transition from the initial state x(0) to the final state x(f) according to the vehicle power demand at
each time; (3) making the hybrid power system achieve smaller energy loss. Therefore, the objective
function of DP optimization for energy allocation of composite power system is as follows:

T
T= [ folato),ute), 0t (15)
In the above formula, f,(x(t),1(t),t) is the energy loss of the hybrid power system at f time.
According to the above analysis, the cycle condition is divided into N stages in this paper, and the

step size between each stage is At (1 s in this paper). Therefore, the discrete global cost function of the
hybrid power system is as follows:

N
J =Y f(x(k),u(k),k)-k (16)
The transfer function of the hybrid power system is as follows in this paper:

SOC,(k+1) = SOC, (k) — k1)
x(k) = { b ) b(k) — Ssooc, )

k
Vsc(k+1) = V& (k) - 258

where 1 (k) is the charging and discharging efficiency of battery, I(k) is the current of battery, C;,; is the
initial capacity of battery, Csc is the rated capacity of SC.
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At the same time, the constraints that should be met are as follows:

0 < Pr < Pr_max
0 < Ib S Ib?max (18)
0 < Isc < Isc_max

where P;_jqy is the vehicle maximum demand power, I}, .y, is the battery maximum output current,
Isc jmax is the maximum current of SC.

According to the basic principles and basic equations of the above DP method, the objective
function recursive equation of the hybrid power system at any k time can be expressed as:

Ji (x(k)) = IL{}ikf)l{fw(x(k), w(k), k) + Jia (x(k+1)) } (19)

The DP algorithm adopted in this paper takes the SC terminal voltage of as the initial state
variable and discretizes it into 140 states from 0.5Vsc jyax t0 V¢ max, as shown in Figure 12. The DP
algorithm first carries on the reverse calculation. After the SOC of the battery and the terminal voltage
of the SC are given, the optimal decision results of each stage are obtained by the reverse calculation
according to the terminal conditions k = ky;;sx. Taking the decision variables of k time u(k), u;(k) as an
example, the state of k+1 time x(k+1), x;(k+1) can be obtained according to the system state variables
of k-time. Because x(k+1), x;(k+1) is not necessarily the state value at k + 1 time, the energy loss of
composite power system corresponding to state x(k+1), x;(k+1) is obtained by interpolation method.
The energy loss value of the composite power system with state variables u(k), u;(k) at k time is f(k),
fi(k). The output power of the SC corresponding to the smaller one is taken as the optimal decision
variable in this stage. All other stages are the same until all stages are reversed. At the end of the
reverse recursion, the forward calculation is needed, and the optimal decision variables at each time are
obtained by interpolation calculation based on the results of the reverse operation as known variables.

Vscl) 4 DP optimization path
J=140 .
Vscma) [~ O Q e 0
/
N OO L
(Vscniial) O Ji O
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Figure 12. Dynamic programming (DP) approach flowchart.

3. Results and Discussion

3.1. The Results of Rule-based Strategy

According to GB/T 18386-2005 Electric vehicles—Energy consumption and range—Test
procedures [24], the New European Driving Cycle (NEDC) is utilized to verify the rule-based strategy
proposed in the paper. As shown in Figure 13, period () is urban driving cycle, and period 3
belongs to period (), which represents the basic urban driving cycle, and period (2) means suburban
driving cycle.
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Figure 13. The New European Driving Cycle.

It can be seen from Figure 13 that the whole cycle is composed of conditions such as parking,
driving and braking. Concerning optimal control during driving period is the main aim of this paper,
the power loss during parking can be neglected, thus the system efficiency is equivalent to 95% under
parking conditions. Based on previous research results [25], the recovery of regenerative braking can
be assumed to reach 20%.

The hybrid power system can enter the dual driving mode with higher efficiency in time and
reasonably, so the efficiency of the power system will be higher theoretically. In order to verify the
advantages of the system efficiency under the rule-based strategy, the NEDC cycle condition is still
used as input to observe the change of the efficiency of the power system, as shown in Figure 14. The
battery SOC is set to 0.95 and the initial terminal voltage of the SC is set to 108 V when simulating.

As shown in Figure 14, the power system efficiency of rule-based strategy in driving and braking
process is higher than that of the single power mode. It can be seen from Figure 14b that the power
system efficiency is hardly improved in the case of a small power demand in an urban cycle condition;
however, the efficiency of the hybrid power system is improved to a certain extent because it can enter
the dual driving mode in time in the case of high power demand. Under braking process, the power
system enters the regenerative braking state, and since the single-cell prototype does not have the
regenerative braking function, so the efficiency of hybrid power system is higher in braking process.
From Figure 14c, it can be observed that the system efficiency of dual driving mode is higher at the
time because the vehicle speed in suburban cycle condition is higher. If the SC terminal voltage is
above the median, the hybrid power system will be switched to dual driving mode in time to improve
the efficiency of power system. Therefore, the system has greater efficiency improvement under the
condition of higher power demand, such as suburban cycle condition.

As shown in Figure 15a, rule-based strategy can enter dual driving mode timely, therefore, battery
current of rule-based strategy is smaller than battery-only mode. However, rule-based strategy cannot
enter dual driving mode under suburban driving condition due to low SC voltage, which can be solved
through increasing SC usage, but which will bring cost increase. Furthermore, as shown in Figure 15b,
rule-based strategy enters into SC single driving mode concerning high SC voltage and small power
demand at about 20s.
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3.2. The Results of DP Strategy

Compared with rule-based energy management control strategy, the effectiveness of the proposed
energy optimization strategy based on DP algorithm is verified. The initial SOC was set to 0.95, and
the initial SC terminal voltage was 108 V. The main program of the DP algorithm was then run; power
system efficiency comparison of DP and rule-based strategy is shown in Figure 16. Compared with
rule-based control strategy, the energy optimization control strategy based on DP algorithm has more
efficiency optimization space. Figure 16b is a partial enlarged view of the system efficiency of an urban
cycle, as shown in Figure 16b, the power system efficiency of DP approach is higher than rule-based
strategy as a whole. Besides, Figure 16¢ is a partial enlarged view of the system efficiency of a suburban
cycle, as shown in Figure 16¢, concerning the SC is of sufficient electricity, there is a magnificent
efficiency increase during the first driving process.
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In order to verify the advantages and disadvantages of the two strategies proposed, the initial
SOC of the battery is set to 1 and the voltage of the SC is set to 108 V under the NEDC condition and
the actual road driving cycle respectively, and the simulation model is set to circulate until the SOC of
the battery is reduced to 0.15. Among them, the whole course of the NEDC condition is 11.022 km,
and the whole course of the actual road driving cycle is 11.655 km. The SOC change of battery under
single NEDC condition is shown in Figure 17a, the SOC change of battery (1-0.15) under multiple
NEDC conditions is shown in Figure 17b; and the SOC change of battery under single actual condition
is shown in Figure 18a, and the SOC change of battery (1-0.15) under multiple actual conditions is
shown in Figure 18b. The speed in Figure 18a is collected from a real vehicle on the campus road
surface, which is called the actual road driving cycle. It can be seen from Figures 17 and 18 that
compared with the rule-based energy management strategy, the battery SOC of the energy allocation
optimization strategy based on the DP algorithm reduces more slowly. That is to say, the energy
allocation optimization strategy based on the dynamic programming algorithm is more economical.

Table 6 shows the different strategies comparison of driving range and energy consumption under
NEDC condition. It can be seen from Table 6 that compared with the rule-based energy management
strategy, the energy optimization allocation strategy based on the DP algorithm has a longer driving
range and a lower energy consumption. Compared to the battery-only EV based on simulation
results, the hybrid power system controlled by rule-based strategy can decrease 13.4% of the energy
consumption along the NEDC condition, while the power split strategy derived from DP approach
can reduce by 17.6%. The results verify the effectiveness of the DP algorithm optimization strategy.
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Table 6. Comparison of driving range and energy consumption under NEDC condition.

Strategy Driving Range (km) Energy Consumption (Wh/km)
Single battery system 120 104.82
Rule-based 131 90.73
DP approach 138 86.41

4. Conclusions

Based on an optimal efficiency model, a rule-based energy management strategy is proposed,
which is based on the projection partition of composite power system efficiency, so it has strong
adaptive adjustment ability. In order to explore the maximum energy-saving potential of hybrid power
electric vehicles, the DP optimization method is proposed on the basis of the establishment of the
whole hybrid power system, which takes into account various energy-consumption factors of the
whole system.

System efficiency varies significantly under different conditions due to different battery and SC
states. Depending on the working states of battery and SC, the hybrid power system is classified
into four conditions in this paper, and the switching rule of single driving mode and dual driving
mode under four different conditions are gained. Rule-based strategy is proposed on the basis of the
above contents, which can be easily implemented and prominently improves the system efficiency.
Compared with the battery-only system, the rule-based energy management strategy has higher power
system efficiency, and power system controlled by the proposed rule-based strategy can reduce 13.4%
of the energy consumption along NEDC. Meanwhile the effectiveness of the hybrid power system and
the availability of the proposed rule-based strategy are validated.

While the rule-based strategy is empirical, it cannot achieve the best efficiency optimization effect.
The DP algorithm is utilized to solve the optimal problem. Compared with the rule-based strategy
based on simulation results, power system controlled by the strategy deriving from DP approach can
reduce 4.8% of the energy consumption along NEDC. Compared to the battery-only EV based on
simulation results, the hybrid power system controlled by the power split strategy derived from DP
approach can reduce by 17.6%. As a result, the availability of the strategy deriving from DP approach
is validated. The results show that compared with rule-based strategy, the optimized DP strategy has
higher system efficiency and lower energy consumption.
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Abstract: One of the reasonable possibilities to investigate the battery behaviour under various
temperature and current conditions is the development of a model of the lithium-ion batteries and
then by employing the simulation technique to anticipate their behaviour. This method not only
can save time but also they can predict the behaviour of the batteries through simulation. In this
investigation, a three-dimensional model is developed to simulate thermal and electrochemical
behaviour of a 13Ah lithium-ion battery. In addition, the temperature dependency of the battery
cell parameters was considered in the model in order to investigate the influence of temperature on
various parameters such as heat generation during battery cell operation. Maccor automated test
system and isothermal battery calorimeter were used as experimental setup to validate the thermal
model, which was able to predict the heat generation rate and temperature at different positions of the
battery. The three-dimensional temperature distributions which were achieved from the modelling
and experiment were in well agreement with each other throughout the entire of discharge cycling at
different environmental temperatures and discharge rates.

Keywords: thermal modelling; thermal behaviour; lithium titanate oxide batteries

1. Introduction

Lithium-ion batteries are one of the most developing categories of batteries on the market these
days because of their high energy density and capacity. A large amount of energy is stored inside
them and they have great sensitivity to the operating conditions. Therefore, safety is an important
issue in lithium-ion batteries. In addition, demands on safety of these batteries is increasing with their
utilization in more applications.

With the intention of reaching out to safety requirements of the lithium-ion batteries on electronic
device applications, researchers are resuming to do supplementary investigations on the essential
issues in relation to the lithium-ion batteries.

System safety, cycle life, and cell performance are influenced by temperature distribution in the
cell. Consecutively, it depends on heat dissipation rate at surface of the cell and heat generation rate
within the cell.

Although lithium-ion batteries are susceptible to extreme heat load under severe or abnormal
functional conditions, thermal management has been one of the considerable issues in developing
lithium-ion batteries in hybrid electric vehicle and battery system applications.

A pseudo 2D electrochemical model for modelling electrochemical systems subject to realistic
automotive operation situations was proposed [1]. The model was developed for a lithium ion battery.
It consists of complicated electrochemical phenomena, which were generally eliminated in online
battery performance forecasters such as over potentials owing to mass transport restrictions and the
full current-over potential relation and variable double layer capacitance. The model was able to
simulate battery cell behaviour under dynamic procedures [1].
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Electrochemical characteristics of layered transition metal oxide cathode materials for lithium ion
batteries were investigated by considering different parameters such as thermal properties, surface,
and bulk behaviour [2].

The electrochemical behaviour of vapour grown carbon nanofibers was optimized for lithium-ion
batteries by hydrothermal and thermal treatments and impregnation [3]. It was concluded that the
surface of the untreated carbon nanofibers experiences an aging process during the earliest cycles [3].

In recent years, research on lithium-ion batteries heat loss has become very popular.
However, most of the previous studies did not quantify the reversible and irreversible heat sources
in lithium-ion batteries. A simple transformation of coordinates was proposed which simplifies the
efficient simulation of the non-isothermal lithium-ion pseudo 2D battery cell model [4].

Model reformulation and efficient simulation of two-dimensional electrochemical thermal
behaviour of lithium-ion batteries were investigated [5]. The two dimensional battery model was
presented and developed by using Chebyshev-based orthogonal collocation. It was concluded that
great changes in internal variables could appear, even under approximately mild situations [5].

A coupled continuum formulation for the mechanical processes—thermal, chemical,
and electrostatic—in battery materials was proposed [6]. The main improvement was to model
the evolution of porosity because of strains, which was induced by mechanical stresses, thermal
expansion, and intercalation [6].

A mathematical model was developed to anticipate the time dependent behaviour of a cell [7].
It was concluded that the reaction current was concentrated neighbouring the terminals at the start
of the discharging process, continuously became more homogeneous over the electrode surface,
and developed into a concentrated situation underneath the electrode neighbouring the ending of the
discharge process [7].

A 1D model appertaining to electrochemical and physical processes of a lithium ion cell was
employed to explain hybrid pulse power characterization and constant current data from a battery
cell [8]. It was designed for hybrid electric vehicle utilization. It was concluded that depending on
battery cell operating situation and design, the end of discharge pulse might be attributable to positive
electrode solid phase Li saturation, electrolyte phase Li discharge, or negative electrode solid phase Li
discharge [8].

Electrodes modelling was accomplished for three different battery cell geometries to investigate
the influence of the positioning of current collecting tabs and the aspect ratio of the electrodes on
the discharge behaviours of the battery [9]. In addition, with the intention of predicting the thermal
behaviour of the lithium-polymer battery cell the heat generation rate as a function of the location on
the electrodes and discharge time was determined. The modelling outcomes were compared with
the experimental discharge curves at different discharge rates [9]. It was concluded that that the
parameters, which were adjusted for the electrodes of one geometry, could be used for the electrodes of
other geometries. It should be noted that to accomplish this the manufacturing processes, compositions,
and materials of the electrodes should be the same [9].

Four distinct battery cell designs were investigated to appraise the effects of cell stack aspect ratio,
size, and tab configuration for similar electrode-level designs [10]. The model outcomes demonstrated
that the internal battery cell kinetics is considerably affected by the macroscopic battery cell design for
heat transport and electrical current [10].

The current density and potential distribution on the electrodes of a lithium-polymer battery were
investigated by employing the finite element procedure [11]. The outcomes demonstrated that the
placing and size of current collecting tabs and the aspect ratio of the electrodes have a considerable
impact on the current density and potential distribution on the electrodes to affect the SOC distribution
on the electrodes, hence influencing the homogeneous usage of the active material of electrodes [11].

A procedure was designed for dependency modelling of the discharge behaviour of a lithium-ion
battery cell on the environmental temperature [12]. The two-dimensional modelling of the potential
was validated by the modelling outcomes. The heat generation rates as a function of the position on the
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electrodes and the discharge time were determined in order to anticipate the temperature distributions
of the lithium-ion battery [12]. This was according to the modelling outcomes of current density and
the potential distributions. The temperature distributions, which were achieved from experimental
measurements, were in good agreement with the modelling [12].

A battery cell model, which is flexible to investigate the thermal, electrochemical, physical
phenomena, and advance over extensive length scales in battery cell systems of different assemblies,
is necessary.

Unfortunately, thermal parameter measurement explanations and electrical parameters
determination for lithium-ion batteries were not conveniently found in the literature. Many researchers
commonly address the thermal parameters without reporting measurement procedures. A detailed
description of thermal parameter measurement is reported in this investigation. Notwithstanding, to
the author’s best knowledge, only very few publications [13-15] are available in the literature that
discuss the thermal simulation of lithium-ion batteries by considering all of the influential parameters
such as thermal, electrical, and chemical processes on the thermal behaviour of the lithium-ion
batteries. In addition, most of the previous studies did not take into account all of the electrochemical
phenomena. In this investigation, the Multi-Scale Multi-Dimensional (MSMD) battery module was
used for a lithium titanate oxide battery, which to the author’s best knowledge, it has not been done
yet. The investigated model is able to determine the surface temperature distribution of the battery
cell at various operating conditions with high accuracy.

2. The Battery Modelling

A 13 Ah pouch type commercial lithium-ion battery cell with dimensions of 204 mm width,
129 mm length, and 7.7 mm thickness and a lithium titanate oxide based anode was modelled for all

simulations. The picture of the battery cell inside fixture, which was chosen for this investigation,
is illustrated in Figure 1.
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Figure 1. 13 Ah pouch type commercial lithium-ion battery cell. (a) The battery cell inside fixture.
(b) The battery cell and fixture inside the Maccor chamber.

In accordance with the construction and geometry of the battery cell, a three-dimensional model
was constructed in ANSYS (2018) and the battery geometry was generated and analysed in an
appropriate manner for additional analysis. Different components of positive and negative current
tabs are illustrated in Figure 2. The negative tab and positive tab are used to accumulate the current
flow via the battery cell. As shown in the figure five parts comprise the model:
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(1) Positive current tab meshing structure;
(2) Interior part of positive current tab;

(3) Positive current tab;

(4) Skin of positive current tab;

(5) Contact region of positive current tab.

Figure 2. Different components of (a) positive current tab (b) negative current tabs.

The active volume, contact region, and skin of the battery cell are illustrated in Figure 3. The active
volume demonstrates the stacked construction, comprising separator layers, negative and positive
active materials, and aluminium foils. The thin skin enclosing the active volume. Geometrical
structured meshing of lithium titanate oxide battery cell is shown in Figure 4. As shown in Figure 3
four parts comprise the model:

(A) Meshing of battery cell stacked construction;
(B) Skin of active volume;

(C) Active volume;

(D) Contact region of active volume.
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Figure 4. Geometrical structured meshing of lithium titanate oxide battery cell.
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3. Identification of Model Parameters

3.1. Determination of Thermal Parameters

The general energy balance differential equation, which explains the distribution of generated
local, conducted, and accumulated heats and the variation of temperature within a battery cell or pack,
can be written as follows:

d oT 0 oT a9 oT oT
a("%) - @("@) T 5 ("ZE) =G A @

where

Cp: Specific heat capacity

A: Volumetric heat generation

po: Physical mass

ki: Thermal conduction in direction i
T: Temperature

Free convection is the main heat transfer process from the surfaces of the battery cell.
The dissipated heat flux from the battery surface to the surrounding can be considered by both
the convection and the radiation heat contributions:

Qs = h(Ts - Ta) + EU’(T54 - Ta4) (2)
where

o: Stefan-Boltzmann constant

e: Emissivity of the battery cell surface
T,: Ambient temperature

h: Convective heat transfer

T;: Battery surface temperature

Natural convection on a surface is a function of the orientation besides the geometry of the surface.
In addition, it depends on the thermos physical properties of the fluid and the variation of temperature
on the surface [16]. The complicatedness of the fluid flow makes it hard to achieve straightforward
analytical relations for natural convection. The Rayleigh number, which controls the flow regime in
natural convection, is defined as the product of the Prandtl and Grashof numbers [16]:

gB(Ts — Tu)‘53

Ra = Pr x Gr = 5
%

Pr 3)
where

v: Kinematics viscosity of the fluid

B: Coefficient of volume expansion

g: Gravitational acceleration

0: Characteristic length of the geometry

The Nusselt number for natural convection could be determined in the following form [16]:
Nu = % = CRa" = 0.54Ra'/* @)

where the constants 7 and C depend on the flow and the geometry of the surface.
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In this investigation natural convection process was considered for heat transfer from the surfaces
of the battery cell. A procedure was used for the determination of the thermal parameters of the
lithium-ion batteries. The method is able to determine a single thermal parameter such as specific heat
capacity or thermal conductivity.

The heat capacity is quantifiable physical parameters of a substance, which characterizes the
amount of heat, which is required to alter the temperature of the substance by one degree. In other
words, heat capacity or specific heat is the amount of heat, which is needed to heat or cool 1 kg of a
material by 1 °C. It determines how quickly a battery heats or cools down from its primary temperature
in a given surrounding condition. The outcome of the heat capacity characterization process depends
on the amount of absorbed heat, which consecutively depends on the ambient circumstances of
the process.

In this investigation, isothermal battery calorimeter was employed for determination of specific
heat. In order to measure the heat capacity of the battery cell with known mass (i) a thermal procedure
was selected. At first, the battery was placed in the Maccor chamber for 3 h to be equilibrated at
initial temperature Tq. The chamber temperature was set to T7. Then it was placed rapidly in the
isothermal battery calorimeter. The isothermal battery calorimeter temperature was set to T,. After a
period, the battery cell temperature reached to the chamber temperature. This procedure was repeated
several times and the average amount was considered. The heat (Q) which was transferred between
the isothermal battery calorimeter and battery cell was measured by using heat flux sensors inside
chamber. Consequently, by having the temperature difference (T1 — T2) and the mass (1) of the battery
cell the heat capacity was calculated by using the following equation:

Cp=Q/m(T; — Tp) ®)

Transient and steady state methods are the main methods, which could be used for the
determination of the thermal conductivity of batteries. Guarded hot plate is a steady state method,
which can approximately estimate the thermal conductivity. In this method, the battery is placed
between a heat sink and heat source. The thermal conductivity could be determined by knowing the
battery cell thickness, temperature difference across the battery, and heat flux.

_ 9Ax

K_AT

(6)
where

q: Heat flux
AT: Temperature gradient
Ax: Thickness

To assure of the accuracy of the results different ways were used for determining the battery cell
density. The battery density was calculated based on the battery material. In addition, the density of
the lithium-ion battery was calculated by measuring the mass and volume of the battery cell. In order
to determine precisely the physical and thermal parameters of the lithium titanate oxide battery cell
and to assure of the accuracy of the previous estimations a procedure was selected. In this method,
the battery cell was divided to different parts such as negative current collector, negative electrode,
separator, positive electrode and positive current collector. The battery cell cross-section along with
the thickness of different layers is illustrated in Figure 5. The material properties of the battery cell
were estimated by employing the following formulations [17]:

_ 05(Kp)(Tp.) + (Kp,)(Tp,) + (Ks)(Ts) + (K, ) (Tn,) +0-5(Kn, ) (Tn.)

K= 7
0.5(Tp,) + Tp, + Ts + Tn, + 0.5(Tw,) @)
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_ 05(pp,)(Te,) + (or,)(Tp,) + (05)(Ts) + (on,) (T, ) +0-5(0n, ) (T.)
O.5(Tpc) + Tpe + Ts + TNe + O~5(TN,:)

0.5(Cpp,)(Tp.) + (Cpp,)(Tp,) + (Cps)(Ts) + (Cpn,)(Tn,) +0.5(Cpn, ) (Tn,)
O.S(Tpc) + Tpf + Ts + TNE + 0-5(TNC)

- 0.5(cp.)(Tp.) + (0p,)(Tp,)
77 05(Tp,) + Tp, + Ts + T, + 0.5(T,)

o = 0.5(on,) (Tiv) + () (T, ) 1)
" 05(Tp,) + Tp, + Ts + Ty, +0.5(Tn,)
k

a=—
PCy

0 ®)

Cp= )

(10)

12)

where
«: Thermal diffusivity
Ty, : Thickness of negative current collector
T,: Thickness of negative electrode
Ts: Thickness of separator
Tp,: Thickness of positive electrode
Tp,: Thickness of positive current collector
Kp,: Thermal conductivity of positive current collector
Kp,: Thermal conductivity of positive electrode
Ks: Thermal conductivity of separator
Kp,: Thermal conductivity of negative electrode
Ky, : Thermal conductivity of negative current collector
pp,.: Density of positive current collector
pp,: Density of positive electrode
ps: Density of separator
on,: Density of negative electrode
on,: Density of negative current collector
Cpp,: Heat capacity of positive current collector
Cpp,: Heat capacity of positive electrode
Cpg: Heat capacity of separator
Cpn,: Heat capacity of negative electrode
Cpn,: Heat capacity of negative current collector
0P,

c

: Electric conductivity of positive current collector
op,: Electric conductivity of positive electrode

on,: Electric conductivity of negative current collector
on,: Electric conductivity of negative electrode

Figure 5. The lithium-ion battery cell cross-section.
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3.2. Determination of Electrical Parameters

A 2RC equivalent circuit model was used in this investigation. The model is presented in Figure 6.
To achieve the parameters of the equivalent circuit model different loading profile were applied to
the battery cell. The loads consist of charge and discharge cycles with different C-rates. The voltage
variation of load profiles at different temperature and C-rates is illustrated in Figure 7. An example of
the voltage response when a 4 C-rate (52 Ah) current is applied to the battery cell at 27 °C is illustrated
in Figure 8.

N
)

e

0.5 1 15 2 25
Time (s) x10°

il

Voltage (V)
N

Figure 7. The voltage response of the battery cell to charging and discharging current pulses.
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Fast time constant region

/
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N
w

Slow time constant region

2.24
5 10 15 20 25 30 35 40
Time (s)

Figure 8. The voltage response of the battery cell for 4 C discharge at 30 °C.

The values of open circuit voltage, resistances, and capacitances of the 2RC equivalent circuit
model are illustrated in Figure 9. The parameters of the 2RC equivalent circuit model were determined
by using the following equations [18,19]:

Vi VimVe o VoV

Ro i i i

(13)
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_ t1— 1t _ tr — 3
O T R T ) R o
n( Vl(fl)) xR n( Vz(fz)) X R2

where

Vo: Battery voltage before the discharge current pulse is applied.

Ry: Ohmic resistance

I: Amplitude of the current pulse.

V1: Battery voltage one seconds (t;) after the discharge current is applied.

Ry, Cy: Resistance and capacitance of the first RC network

V,: Battery voltage ten seconds (t;) after the discharge current is applied.

V3: Battery voltage eighteen seconds (t3) after the discharge current is applied.
Ry, Cy: Resistance and capacitance of the second RC network

3
4
100 C-Rates soc C-Rates

C-Rates

Figure 9. Amount of (a) Ry, (b) Ry, (c) Cq, (d) Cp, (e) Vi and (f) OCV.

For the investigated battery cell, the open circuit voltage, resistances, and capacitances of the
2RC equivalent circuit model were considered as functions of the battery state of charge (SOC).
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The coefficients of fifth order polynomial are illustrated in Table 1. These functions were expressed in
fifth order polynomial form:

Ry Al A2 A3 A4 A5 A6 1
R4 Bl B2 B3 B4 B5 B6 s0C
Ry Cl C2 C3 C4 C5 Co | (SOC)? 5)
Cq D1 D2 D3 D4 D5 D6 (SOC)3
G El E2 E3 E4 E5 E6 (soc)*
Vo F1 F2 F3 F4 F5 Fé6 (soc)5
Table 1. Coefficients of fifth order Polynomial.
Parameters Al A2 A3 A4 A5 A6
R-0.25C —3.5809 x 1077 2.5521 x 1077 —6.7798 x 10° 8.3191 x 1075 —0.00046957  0.0025463
Rp-0.5 —1.866 x 1078 9.4976 x 107 —1.7805 x 107> 0.00015173 —0.00061228 0.0027413
Ro-1 —9.7461 x 1077 5.0726 x 107 —9.8659 x 10~° 8.9925 x 102 —0.00041996  0.0025851
Ro-2 —6.1113 x 10~8 3.5975 x 107° —8.0772 x 107° 0.00086392 —0.0044514 0.01021
Ro-4 —9.1265 x 108 53384 x 10° —0.00011908 0.0012635 —0.0064278 0.013877
R1-0.25C —2.114 x 1078 1.3532 x 107¢ —3.3195 x 10~ 0.00039194 —0.0022685 0.0064137
R1-0.5 —3.2789 x 108 1.9467 x 106 —4.4325 x 1079 0.00048576 —0.0026136 0.0068707
Ry-1 —3.9476 x 1078 2.3809 x 10~° —5.4759 x 1079 0.00060016 —0.0031773 0.0078591
Ry-2 —6.1113 x 1078 3.5975 x 10~° —8.0772 x 107> 0.00086392 —0.0044514 0.01021
Ri-4 —9.1265 x 1078 5.3384 x 10° —0.00011908 0.0012635 —0.0064278 0.013877
R,-0.25C —2.6294 x 10~8 1.433 x 10°° —2.8897 x 107° 0.00026512 —0.0010917 0.0021711
Ry-0.5 —1.7408 x 108 1.0479 x 106 —2.3627 x 107 0.00024636 —0.0011691 0.002445
Ry-1 —2.1097 x 108 1.1844 x 10°© —2.509 x 10~ 0.00024926 —0.0011648 0.002562
Ry-2 —4.1644 x 1078 2.4069 x 10° —5.2546 x 1075 0.00053695 —0.0025564 0.0049448
Ry-4 —4.1644 x 108 2.4069 x 107° —5.2546 x 1073 0.00053695 —0.0025564 0.0049448
C;-0.25C —0.0092475 0.45755 —7.8046 47.083 34.95 311.78
C-05 —0.0019811 0.067608 —0.38574 —~12.919 240.28 158.33
C-1 —0.0059824 0.25455 —3.4037 6.1343 215.73 184.13
-2 —0.0054655 0.25365 ~3.9189 13.296 219.94 136.56
C1-4 —0.0079124 0.40473 —7.3001 44.494 157.33 113.13
(2-0.25C 0.032132 —~1.7143 33.427 —293.41 1165.2 239.18
C-05 —0.011611 0.35172 —0.50313 —72.798 747.78 550.81
Co-1 0.012608 —0.72394 15.828 —172.34 1019.5 111.45
Co-2 ~0.01571 0.6205 —6.7757 —20.924 827.98 —182.01
Co-4 —0.029829 1.5623 —30.689 258.86 —513.18 1515
OCV-0.25C 6.5341 x 108 —~5.1732 x 10~° 0.00022863 —0.0032124 0.028214 2.0797
OCV-0.5 ~1.963 x 108 —8.8693 x 1077 0.00014772 —0.0024952 0.025067 2.0873
OCV-1 —8.6373 x 1078 2.5889 x 10~° 7.9331 x 105 —0.001866 0.022391 2.0925
OCV-2 —4.6552 x 1078 6.1797 x 1077 0.00011227 —0.0020581 0.022357 2.0958
OCV-4 ~7.1791 x 10~8 2.0946 x 10° 7.9307 x 105 —0.0017074 0.020533 2.101

4. Modelling Method

The model was solved in ANSYS by employing the Multi-Scale Multi-Dimensional (MSMD)
battery module. The model combines the principal design parameters of the battery cell such as
corresponding physical parameters, materials, and dimensions to computational fluid dynamics and
heat transfer. In addition, the battery model is able to simulate a single battery cell or a battery
pack to investigate their electrochemical and thermal behaviour. At the solution phase of the model,
unsteady state problem and the thermal time interdependent were solved numerically assuming
the heat generation in the battery cell as a dynamic source. The amount of heat generation inside a
lithium-ion battery cell, which was proportionate to the temperature and current rate, was measured
by an isothermal battery calorimeter and was considered as an input to the thermal model. The thermal
and electrical fields were solved by using the following equations [17]:

®OT _T(VT) =G+Q
G = 04|V  + 0| Vo[
V(o4 Vey) =V(e-Vo) =]

(16)
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where

J: Volumetric transfer

Cp: Heat capacity

Q: Heat generation

k: Thermal conductivity

o Effective electric conductivities
¢: Phase potential

T: Temperature

5. Measurement of Heat Generation Rates

Heat generation inside batteries is a complicated process, which could be divided into reversible
and irreversible parts. Experimental setup, which was used in this investigation, is illustrated in
Figure 10. Isothermal battery calorimeter was employed for heat loss measurement. The detailed
experimental procedures and setup, as well as corresponding equipment and materials, could be found
in [20]. Maccor automated system was used as a battery cycler for the whole experiments. The battery
cycler charged and discharged the battery with different current rates. Heat flux determination of
lithium titanate oxide battery cell by using isothermal calorimeter is shown in Figure 11.

Figure 10. Experimental setup.

Heat Flux (W)

4
’ k
0
10 20 30 40 50 60 70 80 90 100
Time (h)
Figure 11. A heat generation analysis of lithium titanate oxide battery cell for 300 K.

6. Experimental Validation

Several sets of experiments were accomplished to validate model performance at different
temperature by using a 13 Ah battery, which was fabricated by Altairnano and is shown in Figure 4.
A 45A discharge process was used to validate the temperature, which was anticipated by the model.
FLIR thermal camera and contact thermocouples were used to monitor the surface temperature of the
battery cell at different positions. Experimental temperature results and temperature simulation for
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45 A discharge process is illustrated in Figure 12. It could be seen from the figure that the temperature
increase of the simulation is in good agreement with the experimental data. This demonstrate that
the model is capable of simulating the real battery cell. The experimental temperature increase data,
which was used in this investigation, was the average amount of several thermocouples and FLIR
thermal camera measurements. In addition, the simulation temperature increase was the average
value of entire battery cell temperature.

|=Experimental|
= Simulation

N
=)

Temperature (°C)
w
(4]

w
S

25

100 150 200 250 300 350 400 450
Time (s)

Figure 12. Experimental temperature results and temperature simulation for 45 A discharge process.

During the charge and discharge cycling, the battery cell was made to be isothermal by
situating it in an isothermal battery calorimeter. The calorimetric measurements were used as a
heat generation source in the battery cell. A Maccor automated test system was employed as the
discharge apparatus with the intention of monitoring the current and voltage. The simulated and
experimental outcomes for 52 A discharge process and 300 K environmental temperature are illustrated
in Figure 13. The experimental temperature data, which were used for model validation, are the
value of surface temperature of the battery at four different locations, which were measured by four
contact thermocouples. Temperature value of the experimental data compare good to the simulation,
demonstrating that the model could simulate the real battery cell.

31151402
311328402
311138402
310338402
310746402
310558402
3 .1035e+02
31016402
303976402
309776402
309588402
303398402
303198402
30300402

Figure 13. Temperature distribution and experimental results at the end of 52 A discharge.
7. Simulation Results and Discussion

In this investigation, several quantities for the volumetric heat generation were considered.
The values were measured by an isothermal battery calorimeter for various load profiles. The model is
simulated in both time dependent and steady state environment to determine the temperature spatial
distribution over the battery surface. In addition, the modelling is able to show the maximum value of

surface temperature of the battery as a function of time for different environment temperature and
discharge current rates.
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The temperature distributions of the battery cell were determined as a function of time at
different discharge rates. As could be seen in Figures 12 and 13, the overall temperature distributions,
which were achieved from the model and experiment, are in good agreement with each other.

The heat, which is dissipated from the battery, and the heat generated inside it are approximately
equal during low current rates. Therefore, fast equilibrium could be reached. In another word, most of
generated heat will be transferred to the surrounding through free or forced convection. The evolution
of the uttermost temperature of the battery cell is confined at low current rates. The phenomenon
demonstrates the minor rises in the surface temperature. Notwithstanding, the difference among the
maximum temperatures, which were attained, from the modelling and experiment was lower than
that between the corresponding minimum ones.

The simulation was accomplished at different discharge current rates ranging from 0.25 C to 9 C
with 0.25 C interval. The modelling discharge profiles agree good with those, which were gained from
experimental. The corresponding heat loss from the battery cell was shown in Figure 11. In accordance
with the findings, the temperature increase sharply to a specific point. As anticipated, the position
of the hottest area is seen near the negative tab of the battery cell throughout the discharge process.
In addition, non-uniform temperature propagation was observed.

Temperature distribution of the battery cell at different discharge rates ranging from 0.25 C to 9 C
is illustrated in Figure 14. As could be seen from the distributions of temperature over the volume
of the battery cell, the temperature contours showed moderate slopes at low current rates. On the
contrary, the temperature contours demonstrate sharper slopes at higher current rates. It demonstrates
quicker temperature increase during the discharge of the battery cell, which is due to the higher heat
generation inside the battery cell. At high current rates, achieving equilibrium occurs in a longer time.
This phenomenon demonstrates that the modelling discharge curves agree well with those which were
achieved from the experiments.

Dzsci i U75ci i

o
b b b i
R

675C

-

Figure 14. Temperature distribution of the battery cell at different discharge rates from 0.25 C to 9 C.

Although the current flows in the neighbourhood of the tabs of both the negative and positive
electrodes are correspondingly great, the electrical conductivity of the active material of the negative
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electrode is much higher than that of the positive electrode. This phenomenon leads to lower
temperatures in the neighbourhood of the current collecting tab of the positive electrode compared to
the negative electrode [21-23].

Electrochemical reaction rate was increased due to higher temperature gradient. This phenomenon
could be described by higher current rates in some parts of the cell owing to high temperature gradient.
The minimum and maximum temperatures, which, were collected from the modelling and experiment,
are in good agreement with each other over the entire scope of battery cell surface at the different
discharge rates. Notwithstanding, some difference was seen among the discharge curves, which were
achieved from the experiment and model in close proximity to the end period of discharge. The highest
discrepancy was seen for high discharge rates.

8. Conclusions

The principal objective of this investigation was to develop a precise, computationally efficient
and simplified Dual Potential Multi-Scale Multi-Dimensional (MSMD) Battery model. A procedure
was used to simulate the thermal behaviour of a lithium-ion battery at different current rates and
environmental temperature. The three-dimensional temperature distribution of the battery was
anticipated as a function of the discharge time by using the model. By comparing the modelling
discharge curves with the experimental outcomes at different environmental temperatures and
discharge rates the modelling was validated. The parameters of equivalent circuit model were
determined from multi-pulse charge and discharge data. An average specific heat capacity was
considered for the battery cell in the time dependent and unsteady state simulation. To assist
the suggested modelling method, calorimetric experiments were accomplished. By using the
heat generation, which was measured by the isothermal calorimeter, the model was simulated to
demonstrate the temperature distribution. A great temperature discrepancy was seen in battery
surface at high current rates. This phenomenon could be described by high amount of heat generation
due to higher temperature gradient. In addition, the value of surface temperature of the battery
was determined by the model, was compared to the experimental data, and was in good agreement
with the model data. Greater temperature gradients were seen at the battery cell surfaces owing to
higher current rate. Subsequently, design of an appropriate thermal management system specifically
during high current rates charging and discharging could play a fundamental role in preventing great
temperature growth of the battery cell. The simulation methodology, which was demonstrated in
this investigation, might contribute to the development of a battery cell thermal management system,
which enables the temperature evolution of lithium-ion batteries as a subordinate of time to be more
precisely anticipated. In addition, it can assist to anticipate the evolution of the thermal, electrical, and
chemical processes.
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Abstract: To achieve a vehicle-efficient energy management system, an architecture composed of a
PEM fuel cell as the main energy source and a hybrid storage system based on battery banks and
supercapacitors is proposed. This paper introduces a methodology for the optimal component sizing
aiming at minimizing the total cost, achieving a cheaper system that can achieve the requirements of
the speed profiles. The chosen vehicle is an urban transport bus, which must meet the Buenos Aires
Driving Cycle, and the Manhattan Driving Cycle. The combination of batteries and supercapacitors
allows a better response to the vehicle’s power demand, since it combines the high energy density
of the batteries with the high power density of the supercapacitors, allowing the best absorption of
energy coming from braking. In this way, we address the rapid changes in power without reducing
the global efficiency of the system. Optimum use of storage systems and fuel cell is analyzed through
dynamic programming.

Keywords: optimal control; supercapacitors; batteries; fuel cell; hybrid vehicle

1. Introduction

Today, one of the topics of interest in scientific research is the depletion of the planet’s natural
resources. The energy that comes from fossil fuels such as coal and oil, among others, will be exhausted
in the next future. Moreover, this type of energy produces environmental pollution and greenhouse
gases, which are responsible for the biggest damage to the ozone layer. Energy consumption in the
transport sector is known to be very large, around 29.5% of the total energy consumed [1]. In particular,
vehicles are responsible for most of the energy consumed [2]. For this reason, environmental
deterioration is one of the main causes of the development of energy management research in vehicles.
Hybrid vehicles have been a step forward in this direction, and the advantages of hybridizing a
system [3] can be summarized as:

e  The vehicle can recover a fraction of the kinetic energy while braking (regenerative breaking)

e  The main power source might be shut down during idle periods and low-load phases without
compromising vehicle drivability

e The main power source can operate at high efficiency points independently of the
vehicle trajectory.

e  The main power source can be designed with a slightly lower capacity.

Articles like [4-8], use a battery as an auxiliary energy recovery system, while others as [9-11] use
a supercapacitor for that purpose. Currently, there are combinations of both. Combining the energy
density of the batteries with the power density of the supercapacitors increases fuel economy [12-14].
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To replace combustion engines, other devices as fuel cells have been introduced [15-17].
According to [18], many previous studies have shown the effectiveness of fuel-cell-based vehicles.
In addition, zero emissions and low noise generation make fuel cells a tempting energy converter for
automotive powertrains. As an example of this, fuel cell-powered bus projects report that since 2011
there are approximately 100 of such buses distributed around the world.

Fuel cells have relatively high efficiency compared to internal combustion engines [19]. Ref. [20]
contains a comparison between fuel cells and internal combustion engines in the transportation sector.

As shown in [21], the most common types of fuel cells on the market are proton exchange
membrane fuel cells (PEMFC), direct methanol fuel cells, alkaline fuel cells, phosphoric acid fuel cells,
molten carbonate fuel cells, solid oxide fuel cells, and microbial fuel cells. In this article, we will focus
on the use of PEMEC. The sizing of the fuel cell systems and associated storage elements is a problem
that must be treated with care, because its cost in the market is still high.

Usually, Fuel Cell Electrical Vehicles (FCEV) are composed of a fuel cell acting as main power
source and an energy storage system (ESS). The ESS can contribute to improving the performance
of an FCEV [22,23], reduce the FC size [24], improve the operating efficiency of the system [25,26],
and extend the service life of the elements [27]. In FCEV, ESS is usually composed of a battery
and/or supercapacitors. However, this hybridization involves a greater complexity of the system,
which highlights the importance of energy management [28,29].

This paper proposes a methodology to obtain an optimal sizing of the ESS, composed of a battery
and supercapacitors, in an urban transport FCEV. The combination of batteries and supercapacitors
allows a better response to the vehicle’s power demand, since it combines the high energy density of
the batteries with the high power density of the supercapacitors, allowing the best absorption of the
energy coming from the braking. In this way, we address the rapid changes in power without reducing
the global efficiency of the system.

Component optimal sizing aims to minimize the total cost while achieving the required
performance. It is well-known that the vehicle performance depends a lot on the speed profile.
For this reason, in this work two different urban driving profiles will be used as reference. In particular,
the Buenos Aires Driving Cycle and the Manhattan Driving Cycle will be considered.

The proposed methodology will proceed as follows: firstly, the optimal energy evolution will be
obtained using dynamic programming when following the considered speed profiles. This procedure
will be repeated for different battery and supercapacitor sizes. Then, from the obtained results, optimal
sizing will be determined.

The remainder of the paper is organized as follows: In Section 2, the vehicle architecture and
the models of the components are described. In Section 3, the driving profiles are introduced and
the theoretical amount of energy that can recover from regenerative braking is presented. Section 4
describes the ESS optimal sizing methodology based on dynamic programming. Section 5 presents
the results of the sizing of the components in the considered vehicle with the proposed methodology.
Finally, in Section 6, the main conclusions are drawn, introducing further research paths.

2. Vehicle Architecture

Vehicle architecture of HEV refers to the topological relationship and energy flow between its
components [30,31]. The main configurations are the series, parallel, and series-parallel. Designing
and selecting the architecture of an HEV's is a critical procedure, as it influences future design, control,
and optimization. As a first step, we will define the total power that the components of the vehicle’s
propulsion system must deliver. The dynamics of the vehicle are based on the energetic balance of the
forces that contribute to the movement of the vehicle, and those that oppose to it [32]. Then, we can
express the mechanical power as a product of the forces and the speed of the vehicle. The inherent
power of motion is deducted from the kinetic energy stored in it. The forces opposing the movement,
are called dissipative forces, which are aerodynamic drag, frictional resistance to the ground and the
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resistance force due to the inclination of the road. Then, the mechanical power required to move the
vehicle will be:

1
Po = Epv(scx)v3 + mguc, + mgusin(a) + mv%} (1)

where m is the mass of the vehicle, a is the slope of the road, v is its speed, p is the air density,
s is the front area of the vehicle, cy is the aerodynamic drag coefficient, g is gravity and ¢, is the
coefficient of rolling resistance. The parameters are based on a service bus, and are those shown
in Table 1, being obtained from [33]. The total mass of the vehicle includes the mass of the chassis,
the propulsion system, the components and the weight of the passengers. It should be noted that as
the weight of the vehicle increases with the increase in the weight of its components and the number
of occupants, more power is needed to reach the speed profile, because there are higher power peaks.
Figure 1 shows the components of the propulsion system that will be part of the vehicle’s energy
management. The main unidirectional source of energy is the fuel cell, which is connected to a DC
converter. The storage elements (batteries and supercapacitor) are considered bidirectional, as they
can deliver power to the movement, and at the same time, they can store the energy recovered from
breaking. These elements are also associated with a DC converter. The speed profile can be placed as a
power profile, and must be fulfilled by the sources. Then, the power balance can be expressed as:

Pov = Psup + Pbat + Pfc + Pbreak 2)

where ps,p is the supercapacitor power, py,; is the battery power, py, is the fuel cell power and pyreq is
the power dissipated in the mechanical brake. As expressed in Equation (2), the sum of the powers of
the elements must be equal to the mechanical power.

Table 1. Parameters of the vehicle.

Name Symbol  Value Unit
Air density 4 1.2 kg/m3
Coefficient of resistance to movement Crro 0.008 s/u
Coefficient of resistance to movement Crrl 0.00012  s?/m?
Aerodynamic coefficient Cx 0.65 s/u
Front area s 8.06 m?
Total mass m 14,000 kg
Gravity g 9.8 m/s?
SUPERCAPACITOR BATTERY
Vehicle

Poat

DCBUS

CONVERTER

FUEL CELL ELECTRIC BREAK

Figure 1. Vehicle architecture.
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2.1. Battery Modelling

Electrochemical batteries are one of the key components in hybrid electric vehicles. Batteries,
for specific energy management, will be characterized mainly in terms of power and energy. They are
characterized by their nominal capacities, and by the state of charge (SOC), which describes
the remaining energy stored in the battery, expressed as a percentage of its maximum capacity.
Some desirable attributes of batteries for EV and HEV applications are high energy density and cycle
life [34]. The energy density is a measure of the total amount of energy that a battery can store for a
given mass. These elements can store considerable amounts of energy. Other features include long
service life, low initial and replacement costs, high reliability, wide operating temperature range,
and robustness. Battery operation is typically defined by a certain SOC window, whose limits are the
minimum SOC during discharge and the maximum SOC during charging. Internal resistance is the
factor that limits the battery’s charge and discharge efficiency. Resistance has different values under
load and discharge conditions. Resistance and open-circuit voltage are non-linear functions of the
battery SOC. A battery model can be derived from an equivalent circuit, where the battery is regarded
as an open-circuit voltage source, in series with an internal resistor.

Depending on the amount of voltage/current, we connect a set of batteries, in series, in parallel,
or a mixed connection series-parallel. For a series connection, the voltage supplied by the assembly is
equal to the sum of the voltages. In parallel, the current increases as the sum of the number of batteries
inserted. In both cases, the capacity always increases. According to [33], the equations for battery
power charging and discharging should be taken into account as a function of SOC, where p;, is the
charge power and py, is the discharge power

2
~ NMpatsUcmax — toc (k) temax
T

Peb (k) = Mpatp 3

_ 2 )
Pab (k) = Mparstip (K)* + thoc (k) teyuin Mbatp @)

Ti

where 1y, is the battery voltage, 1, is the battery open-circuit voltage, 7; is the battery internal resistance,
where 71, is the number of parallel cells and 71,5 is the number of serial cells and k is the discrete-time.
The supercaps open-circuit voltage is a function of the battery charge. The total power of the battery
will be the sum of py, and pp, and is called p;,,. The battery is also associated with a converter
efficiency Jy,¢, which represents the losses in the converters and takes a value of 0.98. Then, we can
define the total battery power py,; as shown.

pbut(k) = ébatp;:at(k)' )

The considered battery is a prismatic Ni-MH one in a resin case. Battery parameters are shown in
Table 2 and taken from [35]:

Table 2. Battery parameters.

Parameter Data
Manufacturer PEVE
Shape Prismatic
Case Plastic
Cell capacity (Ah) 6.5
Cell voltage (V) 72
Specific energy (Wh/kg) 46
Specific power (W/kg) 1300
Mass (kg) 1.04
Operation temperature (°C)  —20 to 50
Cost (€/kg) 33.88
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2.2. Supercapacitor Model

Supercapacitor are energy accumulators. The specific power, or instantaneous power, that can
deliver is greater than that of batteries, but their specific energy, or the amount of energy that can store
is substantially less. In some cases, supercapacitors are used as primary ESSs, while in other cases,
such as in this paper, they can be placed as a secondary storage system. This allows improvement
of the performance of the main power system and the ESS. The equivalent circuit of supercapacitor
consists of a capacitor that represents the capacitance and a series resistor that represents the ohmic
losses in the electrodes and electrolyte [36].

In the model, we will redefine equations based on the capacitor state of energy (SOE). A detailed
study of the process can be found in [34]. Then, the SOE is defined by:

SoE(k) = esc(k) ©6)

Csc,t

where e, is the total storable energy and es. is the instantaneous energy. Then, e is defined by:

esc(k) = %Csc‘igc(k) 7)

where g is the capacitor voltage expressed in (V), and c,. is the capacitance expressed in (F).
According to [34], the charging p.s and discharging power p;; is given by

Pcs(k) _ nscusc,max(usc(k) — usc,max) ®)

Tsc

NscUse,min (usc(k) - usc,min)

Tsc

Pds (k) =

where g is the number of elements, tsc gy, and g i, are the supercapacitor voltage limits, ug is the
open-circuit voltage and rs. is the circuit resistance. A more detailed analysis and parameters can be
found at [34]. The parameters used are from Maxwell 125 V Heavy transportation module, and are
shown in Table 3.

©)

Table 3. Supercapacitor parameters.

Parameter Data
Manufacturer Maxwell Technologies
Packaging Bulk
Cell capacitance (F) 3000
Rated Voltage (V) 125
Temperature (°C) —40 to 65
Mass (kg) 1.3
Specific power (W/Kg) 1700
Specific energy (Wh/Kg) 2.3
SOEax 1
SOEmin 0
Cost (€/Kg) 88.34

The power of the supercapacitor p;,, is the sum of pcs and pgs. The supercapacitor system is
associated with an efficiency of the converter shown in Figure 1, ds,, which represents the losses in
the converters. In the current work, this parameter will take a value of 0.95. Then, the total output
power of the supercapacitor system psy is given by

psup(k) = ‘ssuppsup(k)*~ (10)
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2.3. Fuel Cell Model

The PEMFC has two electrodes: The anode where the fuel is oxidized and the cathode where
the oxidant is reduced [37]. The electrolyte simultaneously acts as an electrical insulator and a proton
conductor. It also separates the cathode and anode reactions. Electrons go from the anode to the
cathode through an external circuit generating electrical current, while protons do so through the
electrolyte. In the cathode, electrons, protons, and oxidant are reduced, generating sub-products.
Hydrogen is often used as an oxidizing agent and oxygen as reducing agent in this type of fuel cells.

The potential difference generated by a single unit or mono cell is less than one volt, so several
mono-cells must be connected in series to obtain the appropriate voltage for the required application.
However, although the fuel cell is the main part of a fuel cell system, the entire system typically
involves the following subsystems:

e  Supply of oxidant.

e  Fuel supply.

e  Heat management.

e  Water management.

e Power conditioning, instrumentation, and controls.

The fuel and oxygen inlet lines to each cell are connected in parallel to achieve similar pressure in
the anode and cathode. Impedance is a function of fuel pressure, membrane moisture, and catalyst
status. To characterize the model to be used, we know that power is the product of current and potential.
The power density is the product of the potential and current density, so it can be represented by:

Pfe = z]fcifc- (11)

The power density is usually drawn with current density using the so-called polarization curves
and indicate that there is a maximum power density that a fuel cell can reach. It is not always possible
to operate the fuel cells at their maximum power levels. The polarization curve and power-current
curve used in this work for the fuel cell are shown in Figure 2. In this work, we have taken the curve
of the fuel cell for a BALLARD XD6 FCvelocity module fuel cell system, which is dimensionalized
according to the maximum power of the driving profiles to be used, which are explained in the next
section. Therefore, there is a maximum power that the cell can reach, because the efficiency of the fuel
cell is directly proportional to the potential of the cell. Fuel cell efficiency is defined by:

Pre

P, (12)

n fe =
where py. is the electrical power produced and pp, is the theoretical power associated with the
hydrogen consumed, which is defined as

Pfetp
pH, = fe com

T —— (13)
Wtherm * Mutil * 7’/fci

where peon is the power that the compressor demands, 7y, is thermodynamic efficiency (0.98 at
298 K), #,,i1 is the efficiency of cell use, defined as a relationship between the mass of fuel that reacted
and the mass that entered in the fuel cell; and % fei is the efficiency of each cell, calculated as the
relationship between the cell voltage vy, and the open-circuit voltage Eo.. This relationship can also
be expressed as a function of cell voltage and current

v i

T 1482 (i ijge)” (14
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Figure 2. Polarization and power-current curve of fuel cell.

The losses of i, called i,ss are usually small. Greater efficiency can be achieved with the same fuel
cell, with significantly lower power density level. This means that for a required power, a fuel cell can
be expanded (with a larger active area) and be more efficient [38].

An electric model characterizing the fuel cell can be obtained using voltage and current equations

Ufe = Eoc — Uact — Uohmic (15)

where 1, is the system voltage output, i,y is the voltage of ohmic losses, and i, is the activation
voltage drop. E,, the open-circuit voltage, is defined by

—XTref

Eoc = Kc[Eo + (ch - Tref) ZF

RT
+ g (PP (16)

where s is a temperature constant, E, is the electromotive force under standard pressure conditions,
Tie is the temperature of reference, K. is the rated voltage constant, T, is the operating temperature,
z is the electron transfer number, which can be obtained as shown in [39], Py, Po, are the gas pressure,
F is the Faraday constant and R is the gas constant. The activation drop, i, is given by:
ife
= ——NAjomln(= 17
s + ] nom ( ZD ) ( )

Ugct

where 7 is the voltage time constant, and N is the number of cells. The ohmic voltage drop, ;. is
expressed by:

Uohmic = rinternulifc (18)
where i is the cell output current and ;;ser,q is the inner resistance of fuel cell system. The parameters
of the fuel cell stack are shown in Table 4. Finally, the hydrogen consumption is defined by:

NMp, i)
my, = —————

2 nF (19)

where myp, is the mass of hydrogen consumed, My, is the molar mass of hydrogen, A is the ratio of
excess hydrogen and 7 is the number of electrons acting on the reaction.
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Table 4. HD 100 FCvelocity Ballard fuel cell parameters.

Parameter Data
Maximum voltage 580V
Maximum current 288 A

Number of cells 560
Operating temperature 330 °K
Nominal air pressure 2.24 bar
Maximum power 100 kW
Mass 285 kg
Temperature of reference 298 °K

Temperature constant 4443

Cost 100 k€

3. Driving Profiles

A driving cycle consists of a speed profile which defines the route that must follow the vehicle.
Some types of vehicles track specific cycles, such as urban transport, which follow and predefined
urban routes. Different driving cycles have been created that represent the driving conditions of
vehicles with greater accuracy [40]. For example, the ECE15, which is the European cycle, whose main
problem is the smooth accelerations; the USFTP 72 cycle, which represents the conditions of circulation
in the Angeles; the USFTP 75, used for emissions certification in the USA.

However, in this paper we will present two specific driving cycles, the transport Driving Cycle in
Buenos Aires (BADC), and the Manhattan Driving Cycle (Manhattan DC), because they are driving
cycles designed for city buses, such as those indicated in Table 1, in which the driving conditions of
these buses are considered. They have several stops and decelerations, which allows recovery of a
significant amount of energy.

3.1. Buenos Aires City Driving Cycle

For the construction of the Buenos Aires Driving Cycle (BADC), 30 h of GPS data have been
acquired, which are related to 51 bus trips covering a total of 313.6 km. The BADC was validated on
a reference diesel bus widely used in Buenos Aires, and comparing the results obtained from fuel
consumption to those reported by the bus line operator. The speed profile is shown in Figure 3, and its
main characteristics are presented in Table 5.

v (m/s)
®
T
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Figure 3. BADC driving cycle.
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Table 5. BADC driving cycle parameters.

Parameter Value
Total cycle time 1864 s
Average Speed 392m/s
Maximum speed 15.6 m/s
Maximum acceleration  9.2155 x 1072 m/s?
e 22,678.62 kJ
ey 11,870.63 kJ

Using Equation (1), we can obtain the instantaneous power needed to follow this profile.
The equation allows us to obtain the power values, pj , which are the instantaneous values that
need to be delivered to produce the movement. The sum of these power values, for the complete
profile, becomes the energy needed to produce movement, e, . We can also obtain the power values
that we can recover by means of regenerative braking, p, . Analogously, the total sum of these
power values, for the complete profile, will be the energy recovered by braking e; . In the same way,
the equation allows us to obtain the maximum instantaneous power that must be contributed p;},,1o,
and the maximum instantaneous power that can be recovered from braking p, . ., which is useful for
dimensionalizing the storage systems.

Using the ratio indicated in Equation (19), we can obtain the maximum amount of energy that
can be recovered when there are no losses. For the BADC, this amount is 52.34%.

Yorecovery = (20)

SRS
ENEEN

3.2. Manhattan Driving Cycle

This driving cycle used for bus testing in New York has a profile travel distance of 3.30 km, with a
maximum acceleration of 2.04 Ez and a driving time of 1089 s. Figure 4 shows the Manhattan profile
velocity cycle. Table 6 shows the most relevant parameters of the profile.

In the same way as for the BADC profile, and using ratio Equation (20), the maximum amount of
energy that can be recovered from braking for this profile is 58.84%.

v (m/s)

200 300 400 500 600 700 800 900 1000
t(s)

Figure 4. Manhattan Driving Cycle.
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Table 6. Manhattan Driving Cycle parameters.

Parameter Value
Total cycle time 1089 s
Average Speed 3.033m/s
Maximum speed 11.24m/s
Maximum acceleration ~ 2.044 m/s?
el 13,747.04 kJ
[ 8090.08 kJ

4. Dynamic Programming

Dynamic programming is a very powerful numerical tool for solving optimal control problems,
as indicated in [41,42]. One of the advantages over other methods is that the solution of the optimal
control can be found in the complete time horizon. However, in some cases the computational effort
grows exponentially with the number of state variables and inputs of the dynamic system. When the
problem includes state constraints, any control input trajectory is limited to keep the system operating
in the space delimited by them.

The optimal problem for the energy management in vehicles is posed in a constant time interval,
with fixed initial conditions and a speed profile known to priori. The proposed optimal control problem
can be generically formulated considering the cost function

N-1
J = hn(x(N)) + ) hi(x(k), u(k)) @D
k=0

where the first term iy (x(N)), refers to the final cost. The second term i (x(k), u(k)), refers to the
cost of reaching a proposed state x(k), applying a control signal u(k), in an instant k, considering that
system dynamics is represented in discrete-time state space as

x(k+1) = fi(x(k), u(k)). (22)

Please note that second term of Equations (21) and (22) depend on k, therefore their value varies
with each iteration.

In case of the vehicle energy system, the states, x(k), are the battery SOC, the supercapacitor SOE,
and the fuel cell energy ef., while u(k) are the power of the elements psup, Puar, P e, and ppreak-

Then, the discrete-time model of the system is defined by

k
x1(k+1) = SOCpa (k) + ”be”;() (23)
bat

)+ Psup(k)

€sc

x2(k+1) = SoEgp(k (24)

x3(k+1) = egc(k) + pre(k). (25)

Excessive computational cost can be avoided by expressing the final system as follows. To make
this reduction, the power ratio shown in Equation (2) is taken into account.

4 Pot) = (k) = Poup(k) = Poreai (k)

1(k+1) = SOCuu(K) - (26)
(k4 1) = SoEguy (k) + ps%(k). 27)
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Constraints will be imposed on the battery SOC and supercapacitor SOE, as state restrictions,
as follows

0.4 < SOCy, (k) <0.8 (28)
0 < SoEgup(k) <1 (29)
SOCigto = SOCpat,N (30)
S0Esup = SoEsup,N (31)

where SOCy,; o, is the SOC of the battery at the initial instant and SOC,; y is the SOC of the battery at
the end of the driving cycle. In the same way SoE, 0 is the SOE of supercapacitor at the initial instant
and SoE,p,N is the SOE of the supercapacitor at the end of the driving cycle.

The safety threshold [0.4, 0.8] applied to the battery SOC, which theoretically could vary in the
ranges [0, 1] as the supercapacitor, is included to extend its useful life, avoiding deep discharges.
Constraints on control signals, 1(k), are also included as follows

Plowerbut < Pbut(k) < Pmuxbat (32)
Plowersup < PSH}? (k) < Pmaxsup (33)
Plowerfc < Pfc(k) < Pmaxfc~ (34

The maximum and lower power and energy values will be taken from the tables indicated in the
models of the elements.

4.1. Cost Function

When defining the particular expression of the cost function, Equation (21), for the energy
management system, we will take into account the following considerations:

e  The operational life of the elements.
e  The amount of hydrogen consumed.

In the case of the operational life of elements, such as batteries, the parameters that are evaluated
to characterize the main causes for degradation are: (a) temperature, (b) depth of discharge, and (c) rate
of discharge [43-49]. Degradation can be avoided by limiting rapid power changes and preventing the
instantaneous value from reaching the maximum value, which would result in deep discharges. In the
case of the fuel cell, high current peaks and rapid variation in current should be avoided [38,50-52].

Finally, the cost function according to the control objectives is defined with the following terms.

1. To preserve the operational life of the elements (state of health of the elements) abrupt variations

(@) in the power delivered by the fuel cell pr.(k) — pr(k — 1) and batteries
pbut(k) - pbat(k - 1) and

(b)  in the SOC of the battery SOCp,; (k) — SOCp,;(k — 1), [53], should be avoided [54].

2. The amount of hydrogen consumed by the fuel cell, expressed as a function of the power delivered,
pfc(k), which determines the economic cost should be minimized.

Thus, the cost function is finally defined as

] = wa peat (k) = poar (k= 1)) + wialpre(k) = pre(k = 1] + wsom peat (k)*+

5 ) (35)
Wsoc[SOCpat (k) — SOCpar (k — 1)]* + wap (k)

where the weights w,, w,1, W2, WsoH, Wsoe, have been determined based on of a sweep of these
coefficients as explained in the following section.
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4.1.1. Coefficient Sweep for BADC

Once the structure of the cost function was defined, we should proceed to make a sweeping of the
weights to determine the Pareto front that allows choosing those that allow reduction of the power
delivered by the fuel cell in order to reduce hydrogen consumption, as proposed in [55]. In addition,
the one that allows a smoother variation of the SOC of the battery to preserve its useful life should be
selected. To adjust the cost function coefficients based on sweeping of the weights, an initial sizing
of the system is required to solve the control problem proposed in the previous section. This sizing
is done with a storage element size shown in Table 7. The reason for choosing this initial size of the
storage system is that the literature recommends that the size of the storage system be about 30% of
the size of the main source. The fuel cell used is the one detailed in Table 4.

Table 7. Initial sizing for the calculation of pareto coefficients.

Component Mass Power  Energy

Battery 8kg 104kW 368 Wh
Supercapacitor 12kg 204 kW  27.6 Wh

It is considered that the sum of the weights wy, w1, Wy2, WsoH, Wsoe, Will always satisfy
Wa + Wy + Wy2 + WsoH + Wsoc = 1 (36)

The coefficients w,;; and w,, affect the behavior of the fuel cell and the w1, wsopy, Wsoc coefficients
affect the behavior of the battery. Then, it starts with a value of the coefficients w,; = 0 and w, =0,
while the coefficients of the terms referring to the battery are maximum with a value of w,; = 0.33,
wsoy = 0.33, and wsoc = 0.33. In this first case, the condition of Equation (36) is fulfilled. In a second
iteration, the coefficients related to the fuel cell take the values of w,, = 0.05 and w, = 0.05, with an
increase of 0.05 with respect to the first iteration. The coefficients related to the battery take the value
of w,; = 0.3, wsoy = 0.3, and wsoc = 0.3. All the coefficients related to the battery have the same
value that is calculated by:

1 Wy + W
Wil = WSOH = Wsoe = 3 — % (37)

In this case, the second iteration also complies with Equation (35). In the last iteration with the
increase of 0.05 to the fuel cell related coefficients in each new iteration, the coefficients have the values
of wyp = 04, wy—g4, w1 = 0.067, wsoy = 0.067, and wsy. = 0.067. All combinations (iterations) of the
coefficients can be seen in Table 8. For each of these combinations of coefficients, there is an amount of
energy contributed by each element of the propulsion system. The power generated by the fuel cell,
battery and supercapacitor must be equal to the power needed for motion fulfilling Equation (2). For a
better understanding, the energy of each element will be expressed as a percentage. In the case of the
battery and supercapacitor, this percentage will be the amount of energy they give to the system with
respect to the maximum possible that they can recover in braking, calculated in Equation (20) for the
BADC profile. As mentioned, the SOC and energy of these elements are equal at the beginning and at
the end, being the energy recovered from the braking, equal to the energy delivered. In the case of
the fuel cell, the percentage of energy saved by hybridization is shown compared to a pure fuel cell
system without storage elements. These results, for each iteration of weights can also be observed in
Table 8. In the last configuration of coefficients shown in Table 8, it is observed that there is the lowest
fuel consumption with a fuel cell energy consumption reduction of 27.22%. In the same configuration,
the power delivered by the battery is the highest in the table with 21.71%. Being one of the control
objectives that the variation of the SOC is not abrupt, it is necessary to choose a configuration of
weights in which the variation of the SOC is not the highest. For this reason, the configuration of
coefficients chosen will be (a) w, = 0.3, (b) w,; = 0.13, (c) w,» = 0.3, (d) wspoy = 0.13, (€) wsoc = 0.13,
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where the power delivered by the battery is 19.96%, being the same lower than 21.71% which is
the maximum value. In this configuration, the energy savings delivered by the fuel cell is 26.22%.
As it can be seen, the fuel saving is still significant in this configuration, being only 1% less than the
maximum saving case. This configuration of coefficients achieves a better balance of the proposed
control objectives. Please note that the criterion for choosing the coefficients is based on the fact that
the energy delivered by the battery is not the maximum and that the variation between the maximum
consumption in the use of the fuel cell and the chosen value should be similar to 1%.

Table 8. Variation in the weight of the cost function for BADC.

Weights Energy

Wy Wyl WsoH — Wsoc w,  Battery (%) Supercapacitor (%) Fuel cell (%)
0 0.33 0.33 0.33 0 13.24 23.84 19.41
0.05 03 0.3 03  0.05 16.79 27.74 23.31
0.1 0267 0267 0267 0.1 18.00 29.35 24.78
0.15 0.23 0.23 023 0.15 18.76 29.48 25.25
0.2 0.2 0.2 0.2 0.2 18.99 29.57 25.32
025 0.167 0.167 0.167 0.25 19.68 29.80 25.73
03 013 0.13 013 0.3 19.96 30.15 26.22
035 0.1 0.1 01 035 20.96 30.19 26.72
04 0.067 0.067 0.067 04 21.71 30.84 27.22

Figures 5 and 6 illustrate the increase in fuel savings when the amount of power recovered by
the storage elements increases for each combination of cost function coefficients. Figure 5 presents
this relationship for the fuel cell and battery, while Figure 6 shows this relationship for the fuel cell
and supercapacitors. Figure 5 shows in the lower left-hand corner, the case in which the coefficients
take the values of w, = 0, w,;; = 0.33, w,» = 0, wsoy = 0.33, and ws,c = 0.33. For this case, the energy
reduction delivered by the fuel cell is 19.41%, while the energy recovered by the battery is 13.24% and
for the supercapacitor is 23.84%. This is the case where the fuel cell delivers the most energy to the
system. In the upper right corner, there is the case where the coefficients take a value of w, = 0.4,
wy1 = 0.067, wyo = 0.4, wsoy = 0.067, and ws,c = 0.067. For this case, the energy reduction delivered
by the fuel cell is 27.22%, and the energy recovered by the battery is 21.71% and for the supercapacitor
is 30.84%. This is the case where the fuel cell delivers the smallest amount of energy. The intermediate
cases are taken from Table 8. In Figure 6, the same cases as for Figure 5 are shown, with the difference
that the power delivered by the supercapacitor and not that of the battery is shown.

When the fuel cell delivers less energy to the movement, and the battery also delivers less energy
(of the regenerative brake’s recovered power), due to the weights of the cost function, the supercapacitor
delivers an increasing amount of energy when other sources are restricted. The indicated behavior
between the supercapacitor and the fuel cell is shown in Figure 6.
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Figure 5. Saving in energy supplied by fuel cell and energy supplied by batteries for the different
combination of coefficients of the cost function for BADC.
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Figure 6. Saving in energy supplied by fuel cell and energy supplied by supercapacitor for the different
combination of coefficients of the cost function for BADC.

4.1.2. Coefficient Sweep for Manhattan Driving Cycle

For the Manhattan Driving Cycle, the procedure is similar to BADC. The design of the propulsion
system is the same as for the previous case. Once the cost function is known, we vary the weight
tuning, to find the best combination between the use of its elements, focusing on hydrogen saving,
and preserving the useful life of the elements.

The variation in the weights of the cost function is similar to that of the BADC profile, and a
summary of the region of interest is shown in Table 9.
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Table 9. Variation in the weight of the cost function for Manhattan DC.

Weights Energy

Wyy Wyl WsoH — Wsoc w,  Battery (%) Supercapacitor (%) Fuel cell (%)

0 0.33 0.33 0.33 0 11.02 25.66 19.57
0.05 03 0.3 03  0.05 13.20 25.89 20.33
0.1 0267 0267 0267 0.1 14.52 26.36 21.16
0.15 0.23 0.23 023 0.5 15.51 27.89 22.73
0.2 0.2 0.2 0.2 0.2 15.84 28.08 23.56
025 0.167 0.167 0.167 0.25 16.43 28.47 23.76
03 013 0.13 013 0.3 17.21 28.83 24.38
035 0.1 0.1 01 035 18.15 29.23 24.58
04 0.067 0.067 0.067 04 21.29 30.72 25.19

Figure 7 shows the behavior of the battery with respect to the fuel cell saving. In this profile,
with the combination of coefficients w, = 0, w,; = 0.33, w,;» = 0, wsoy = 0.33, and ws,c = 0.33,
the energy delivered by the battery is 11.02%, the energy delivered by the supercapacitor is 25.66%,
while the reduction in fuel cell use is 19.57%. This is the lower left-hand corner of Figure 7,
which corresponds to the case where the fuel cell delivers the most energy to the movement. With the
combination of coefficients w, = 0.4, w,; = 0.067, w,, = 0.4, wsog = 0.067, and ws,c = 0.067,
the energy delivered by the battery is 21.29%, the energy delivered by the supercapacitor is 30.72%,
while the reduction in fuel cell use is 25.19%, which corresponds to the upper right-hand corner of
Figure 7 and the case where the fuel cell delivers the least amount of energy to movement.
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Figure 7. Saving in energy supplied by fuel cell and energy supplied batteries for the different
combination of coefficients of the cost function for Manhattan Driving Cycle.

Figure 8 shows the behavior of the fuel cell saving and supercapacitors for the same cases in
Figure 7, summarized in Table 9.

As for the BADC profile, with the latest configuration of coefficients from Table 9, the energy
delivered by the battery is 21.19%, while the reduction in fuel cell usage is 25.19%. In this case, the fuel
economy is maximum and the variation of the battery SOC is also highest. For this reason, to have
a smaller variation in the SOC of the battery, we use the configuration of coefficients (a) w, = 0.2,
(b) w1 = 0.2, (c) w2 = 0.2, (d) wson = 0.2, (e) Wsoc = 0.2, where the energy delivered by the battery
is 15.84% and the reduction in the use of the fuel cell is 23.56%. In this way, we have a smaller variation
of the SOC, and the fuel saving is about 1% of the maximum possible.
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Figure 8. Saving in energy supplied by fuel cell and energy supplied batteries for the different
combination of coefficients of the cost function for Manhattan Driving Cycle.

5. Results

Considering BADC and Manhattan profiles as case studies, the power profile for each driving cycle
will be simulated. The combination of power generated by the fuel cell, and the energy recovered by
the ESS, should be sufficient to reach the power profile, derived from the velocity profile. Additionally,
to the parameters shown in Tables 2—4, we will use for each profile the coefficients resulting from the
sweeping of parameters of the cost function corresponding to each one. The control problem is the
same as described in Section 4. When the mass of ESS is equal to zero, the power will be generated
with the fuel cell only, and that will be a first case of analysis. In this first case, we must properly
dimensionalize the fuel cell to reach the required velocity at all times. In a second case, we will use the
ESS, as mentioned above. To properly dimensionalizing of the system, in Tables 3 and 4, power and
energy are expressed as a function of mass. Then, we will increase their mass to analyze the optimal
configuration and price.

5.1. Fuel Cell Operation Only

For the proposed analysis, no batteries or supercapacitors is assumed. The fuel cell provides all
the power needed to reach both profiles. The cost of power production for high volume cells is 1 €/W.

5.1.1. Buenos Aires Driving Cycle

For this profile, we will use a fuel cell system with a power of 200 kW, with a cost of 200 k€.
In this case study, the fuel cell must be able to fulfill the highest power peaks. This is the reason for
using a system of 200 kW of total power. Figure 9 shows the power profile derived from the BADC
speed cycle and the power delivered by the fuel cell.

In red, we can see the power required to fulfill the speed profile. In blue, the instantaneous power
delivered by the cell. The graphs in blue and red are the same, because they have the same power
values at each instant. As it can be observed, with this fuel cell sizing, we can also fulfill the profile.
Then, the total cost of the propulsion system to achieve the BADC profile with fuel cell operation will
be 2000 k€.
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Figure 9. Power profile BADC with only fuel cell operation.
5.1.2. Manhattan Driving Cycle

For this profile, we will use the same configuration of fuel cell than in BADC profile. The maximum
power of the system will be 200 kW, whose cost is 200 k€. Figure 10 shows in red, the power derived
from the Manhattan velocity profile, and in blue, the power delivered by the fuel cell system. The values
of instantaneous power as for the previous case are the same, so the blue and red graphs are the same.

As in the previous case, with this dimensionalizing, we were able to reach the required speed.
The cost of the propulsion system is 2000 k€.
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Figure 10. Power profile Manhattan with only fuel cell operation.
5.2. Hybrid Operation

When the mass of ESS increases, we can increase their capacity in power and energy and provide a
significant reduction in fuel cell use. This will allow the fuel cell not to give the maximum power peaks
of each profile, but to be able to give the average power of each one. The analysis of this variation,
expressed in percentages of energy supplied by the storage elements and in the reduction of fuel cell
use, will be presented below. Furthermore, the power profile of battery, supercapacitor, and fuel cell
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will also be plotted for a particular ESS mass value. Finally, in each profile, the monetary cost involved
in increasing the power of the ESS will be reported in a graph.

BADC Driving Profile

During the sizing process, the total mass of the storage elements should be constant
Mpgt + Msyp = Mess (38)

where 11,55 is the total mass and is constant and 1y, and msy are the ones that are going to vary.
As indicated, supercapacitors allow recovery of a greater amount of power from braking, but they are
more expensive than the battery. If the storage system is composed only of supercapacitors, the power
of the fuel cell used in the system decreases, but the momentary cost of the storage system increases.
Then, the objective is to find the mass of batteries and supercapacitors to reduce the cost of the storage
system, but without forgetting the objectives of fuel economy control and SOC variation. For this
reason, the case where the storage system has the lowest cost will not be optimal. This optimal case
will depend on the compendium of the cost of the storage system and the other control objectives.
A system with only supercapacitors (11, = 0) is initially dimensionalized and mass is added to the
batteries in each iteration. This is done to decrease the cost associated with the storage system in each
iteration and to know how the fuel saving varies. Then, the initial configuration will be m, = 0
and msyp = Mess. In order to fulfill with the power profile using the fuel cell described in Table 4,
the minimum mass of supercapacitors should be 30 kg. Otherwise, if it is lower, the power profile is
not fulfilled.

In the total mass, the mass of each element varies with respect to the other as follows. For example,
in case 1: (a) When the mass of the supercapacitor is 30 kg, the battery mass should be 0 kg; (b) when the
mass of the supercapacitor is 29 kg, the battery mass should be 1 kg. For each mass variation in batteries
or supercapacitors, there is a new cost involved, and a new power and energy capacity. For example,
for the same examples, in case 1, the cost of the battery is 0 €, while that of the supercapacitor is
2650 €. For case 2, the cost of the battery is 33.87 €, while the cost of the supercapacitor is 2561.67 €.
As we can see, the total mass remains constant, but the economic value varies for each case. The final
case will be when we have 28 kg of battery and 2 kg of supercapacitors, with a cost of 948.39 €,
and 176.67 €, respectively. The configuration of 29 kg of batteries and 1 kg of supercapacitors is
not considered, because with this configuration the power profile derived from the speed profile is
not fulfilled. The weight, power and cost of the fuel cell remains constant for each configuration of
batteries and supercapacitors in this scenario. The weight of the battery, supercapacitor and fuel cell,
is added to the total mass for calculating the power profile, shown in Equation (1), to achieve a more
realistic scenario. The cost of fuel cell FCveloCity-HD is 100 k€.

Contrarily to the case without hybridization, if the mass of the storage elements is different from 0,
with a certain minimum value, we can reduce the size of the fuel cell. For the first case, where the mass
of the supercapacitor is 30 kg (115, = 30) and the mass of the battery is 0 kg (113, = 0) the reduction
in fuel cell usage is the highest with 46.98%. The cost of the storage system for this same case is also
the highest with a value of 2650 €. For the last possible case, in which the mass of the supercapacitors
is 2 kg (msyp = 2) and the mass of the battery is 28 kg (11,,; = 28) the reduction in the consumption of
the fuel cell is 30.4% and the storage system has the lowest cost, with 1125.05 €. Although 1125.05
€, is the cheapest cost of the storage system, the reduction in fuel cell usage is only 30.4%, while the
battery delivers 55.98% of energy, being the same the highest of all configurations. This causes the
variation of the SOC to be increased.

Figure 11 shows graphically the reduction in fuel cell consumption as a percentage of energy,
compared to the percentage of energy recovered by the battery for each configuration. Even though
the percentage of energy recovered by the battery increases, the reduction in fuel cell consumption
decreases because the mass of the supercapacitors decreases. This shows that although the mass of
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the battery increases, the system does not absorb large peaks of power, so the fuel cell must provide
more power. Figure 12 shows the same behavior of the fuel cell with the supercapacitor. Since
supercapacitors have a high power density, they allow the system to recover the highest power peaks
of the profile and the reduction in fuel cell consumption increases.
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Figure 11. Reduction in fuel cell consumption versus energy supplied by battery for BADC profile.
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Figure 12. Reduction in fuel cell consumption versus energy supplied by supercapacitor for
BADC profile.

Figure 13 shows the variation of hydrogen consumption Equation (19) in relation to the cost of
the storage system. The BADC profile has 1864 seconds of operation (31.06 min). A bus normally rolls
15 h per day. In one day, it would roll 29 times the profile, in one month it would roll 870 times and in
a year 10.585 times.

In the Y axis of the Figure 13, the variation of the cost of hydrogen is indicated for a year of
operation of the bus, and in the X axis the cost of the storage system is indicated. From the figure,
it can be observed that with the lowest cost of the storage system (1125.05 €), a greater amount of
hydrogen is consumed. This corresponds to the point of 28 kg of batteries and 2 kg of supercapacitors.
Increasing the cost of the storage system reduces the consumption of hydrogen. In the maximum point
the cost is 2650 € with 30 Kg of supercapacitors and 0 Kg of batteries.

However, it can be observed that from 2200 €, with the increase in the mass of the storage system,
the decrease in hydrogen consumption is almost linear. This point corresponds to 9 Kg of batteries
and 21 Kg of supercapacitors. According to this analysis, this will be the optimum point. In this
configuration, the fuel cell consumption reduction is 45.82% (average reduction in fuel cell consumption
for BADC mass variation), and 87.54% of the energy from the regenerative brake is recovered.
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Figure 13. Cost of the storage and power delivered by fuel cell system in BADC profile.

Therefore, for case 1 with a storage element cost of 2650 €, the energy delivered by the fuel cell is
53.02%. For the case 2 with a storage element cost of 2595.54 €, the energy delivered by the fuel cell is
53.37%. While for the last case, with a storage system cost of 1125.05 €, the fuel cell delivers 69.55%
of energy to the movement. It can be observed how the fuel cell delivers a greater amount of energy,
given the price decrease of the total storage system. In this sense, when we decrease the size of the
supercapacitor system, the power can be recovered from regenerative braking decreases, and therefore,
the fuel cell must provide more power to achieve the profile.

Figure 14 shows the supplied power by each element, while Figure 15, shows the battery SOC

and supercapacitor SOE variation. The SOC has a slower variation than the SOE, due to the penalty of
the cost function.
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Figure 14. Power of the propulsion system for the BADC profile.

The sum of the battery, supercapacitor, and fuel cell powers in Figure 15 are equal to the power
required to reach the BADC speed profile.
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Figure 15. SOC and SOE for the BADC profile.

5.3. Manhattan Driving Profile

In the case of the Manhattan profile, the maximum power is higher than BADC. To satisfy
Equation (38) and the initial condition of starting only with mass of supercapacitors (i, = 0 and
Msyp = Mess), the minimum mass of supercapacitors must be 32 kg. With this initial mass, the control
problem is feasible. In the first case must start with a mass of supercapacitors of 32 kg, and 0 kg
of batteries, with a total cost of 2826.67 €. The fuel cell is the same as for the BADC profile, in cost
and maximum power. The second case, to keep the total mass of 32 kg constant, we use 31 kg of
supercapacitors and 1 kg of batteries, with a total cost of 2772.20 €, and so on in the other cases. The last
case is with 29 kg of batteries and 3 kg of supercapacitors, with a cost of 1247.26 €. The configuration
of 30 kg batteries and 2 kg supercapacitors is not possible, because the control problem is not feasible.

Figure 16 shows that the increase in the mass of the batteries and the decrease in the mass of
the supercapacitors produces a decrease in the value of the reduction in the consumption of the fuel
cell. Therefore, even though the energy recovered from battery for the braking increases, the fuel
consumption increases.
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Figure 16. Reduction in fuel cell consumption versus energy supplied by battery for Manhattan profile.
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Figure 17 shows the energy contributed to the movement by the supercapacitors and the reduction
in fuel cell consumption. With a higher mass of supercapacitors, fuel consumption decreases, even if
the battery mass is reduced.
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Figure 17. Reduction in fuel cell consumption versus energy supplied by supercapacitor for
Manbhattan profile.

Figure 18 shows in the X axis the cost of the storage system, while in the Y axis, the cost of the
hydrogen consumption. In the same way as for the BADC, the duration of the Manhattan profile is
1089 s (18.15 min). In a year, a bus rolls 18,250 times the profile.

On the left side of the figure, can be observed that the cost of the storage system is lower,
and hydrogen consumption is higher. The figure begins with a cost of 1247.26 € for the storage
system and 18 K€ for hydrogen consumption. This is given with 29 Kg of batteries and 3 Kg of
supercapacitors. Moving to the right of the figure, it is observed that as the cost of the storage system
increases, the consumption of hydrogen decreases. With 32 kg of supercapacitors and 0 Kg of batteries,
hydrogen consumption will be the lowest with almost 12.500 K€, while the cost of the storage system
will be maximum with 2826.67 €. However, can be seen that from a value of 2200 €, the reduction
in hydrogen consumption is almost linear. Then, the configuration of 12 Kg of batteries and 20 Kg of
supercapacitors, is the optimal point of dimensionalizing. In this configuration, the fuel cell delivers
52.28% of the total energy of the movement.
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Figure 18. Cost of the storage system in Manhattan profile.

In the optimal point, can be recovered 91.17% of the braking energy. The reduction of the fuel
cell consumption is 47.72% (average reduction in fuel cell consumption for Manhattan Driving Cycle
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mass variation) and the cost is 2.173.12 €. As for the BADC, the case of the minimum cost was not
taken into account as the optimal case because the energy delivered by the battery is the maximum
and increases the variation of the SOC.

Figure 19 shows the power of each propulsion system element for the desired configuration,
in addition Figure 20 presents the SOC and SOE variation.

In the same way, as for the previous case, the SOC variation is softer than SOE, due to the
penalization conditions imposed on the cost function for the battery. Also, the sum of the three
instantaneous powers reach the power required for the Manhattan speed profile.
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Figure 19. Power of the propulsion system for the Manhattan profile.
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Figure 20. SOC and SOE for the Manhattan profile.
6. Conclusions

In the considered HEV, the propulsion system without the use of energy storage elements requires
a fuel cell system capable of generating all the power required for the BADC profile and Manhattan
in each case. This means that the cost is high, as it is 200 k€, in each case (only fuel cell system).
The inclusion of energy storage elements such as batteries and supercapacitors allows us to reduce
fuel cell usage and reduce fuel cell size. For both profiles, the fuel cell can be dimensionalized with
100 kW of power instead of 200 kW, with a cost of 100 k€. Then, the increase in mass on ESS allows
reduction of the consumption of hydrogen from the fuel cell. With higher mass of supercapacitors,
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greater savings in fuel consumption and reduction in power generated by the fuel cell are achieved.
In the same way, the cost of the storage system is higher. For this reason, it is concluded that for both
profiles the pure use of supercapacitors allows greater savings of hydrogen, but makes the storage
system more expensive. The inclusion of batteries allows this cost to be reduced, but at the same time
increases the use of the fuel cell.

A larger battery size allows the SOC to vary less abruptly, which helps to improve the operational
life of the batteries. Several mass configurations of the storage elements were simulated to find the
best cost of the storage system compared with a maximum quantity (supercapacitor system only),
and at the same time, reduce the hydrogen consumption. In this way, we can take advantage of the
battery’s energy density and supercapacitor power density characteristics. For the BADC speed profile,
the optimal configuration was 9 Kg of batteries, and 21 Kg of supercapacitors. In this case, the energy
recovered by the ESS is 87.54%, while the energy delivered by the fuel cell is 54.18%. The reduction
of the cost, with the configuration (most expensive case), where only supercapacitors are presented
as an ESS system, is 18.52%. For the Manhattan speed profile, the optimal configuration was 12 Kg
of batteries, and 20 Kg of supercapacitors. In this case, the energy recovered by the ESS is 91.17 %,
while the energy delivered by the fuel cell is 52.28%. The reduction of the cost, with the configuration
(most expensive case), where only supercapacitors are presented as an ESS system, is 23.12%.

The behavior of the system with increasing mass of the storage elements is similar in both profiles.
Its inclusion can be considered a significant contribution to hydrogen savings, and improves fuel
cell efficiency.

As future work, additional objectives will be considered as the battery and fuel life degradation
following the ideas proposed in [56] as well as the effect of the uncertainty to include robustness in
the sizing.
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Abbreviations

The following abbreviations are used in this manuscript:

Dpr Dynamic Programing
ESS Energy storage system
SC Supercapacitor

FC Fuel cell

Pyt Battery power

Psy, P Supercapacitor power
Py Fuel cell power

Ppreak Break power

SOC Battery state of charge

SOH Battery state of health

SOE Supercapacitor state of energy
EV Electric vehicle

HEV Hybrid electric vehicle

BADC  Buenos Aires Driving Cycle
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Abstract: In the context of the increased acceptance and usage of electric vehicles (EVs),
vehicle-to-building (V2B) has proven to be a new and promising use case. Although this topic
is already being discussed in literature, there is still a lack of experience on how such a system,
of allowing bidirectional power flows between an EV and building, will work in a residential
environment. The challenge is to optimize the interplay of electrical load, photovoltaic (PV)
generation, EV, and optionally a home energy storage system (HES). In total, fourteen different
scenarios are explored for a German household. A two-step approach is used, which combines a
computationally efficient linear optimizer with a detailed modelling of the non-linear effects on the
battery. The change in battery degradation, storage system efficiency, and operating expenses (OPEX)
as a result of different, unidirectional and bidirectional, EV charging schemes is examined for both an
EV battery and a HES. The simulations show that optimizing unidirectional charging can improve the
OPEX by 15%. The addition of V2B leads to a further 11% cost reduction, however, this corresponds
with a 12% decrease in EV battery lifetime. Techno-economic analysis reveals that the V2B charging
solution with no HES leads to strong self-consumption improvements (EUR 1381 savings over ten
years), whereas, this charging scheme would not be justified for a residential prosumer with a HES
(only EUR 160 savings).

Keywords: battery degradation; battery energy storage system; charging scheme; efficiency; electric
vehicle; linear programming; lithium ion battery; operating expenses; residential battery storage;
vehicle-to-building

1. Introduction

Increasing environmental awareness, technical improvements, and favorable regulatory
conditions have all allowed the market for electric vehicles (EVs) in Germany and worldwide to
experience an upturn [1,2]. Simultaneously, an increasing number of electricity consumers are investing
in renewable energy sources. Photovoltaic (PV) power generators especially benefit from a growing
popularity in residential homes, allowing these customers to reduce electricity costs and rendering
them as prosumers [3]. A home energy storage system (HES) can be added to further increase
self-consumption and self-sufficiency rates [4].

In literature, HESs and EVs are well-researched topics [4-6], however, combined approaches of
both storage systems are still a very young research field [7]. While recent literature presents a novel
energy management system (EMS) for residential buildings with HES and EV, the contribution comes
short on analyzing the technical characteristics of the battery energy storage systems (BESSs) at varying
charging schemes [7]. In this work, we analyze how the aforementioned trends may interact, conduct
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a full techno-economic system analysis and reveal how prosumers with an EV may be able to optimize
their electricity expenses. In particular, the degradation and efficiency of the HES and the EV’s BESS
are discussed. In addition, operating expenses (OPEX) are analyzed in the context of electricity costs
for both the building and the vehicle. To increase the comparability of the results, a vehicle with an
internal combustion engine (ICE) serves as a reference case.

As illustrated in Figure 1, three different charging strategies for the EV are analyzed and compared:
Simple charging (SC) and optimized charging (OC) schemes, which both allow unidirectional power
flows from the building to the vehicle, and the vehicle-to-building (V2B) strategy, which is an extension
of the OC scheme allowing bidirectional power flows [6,8]. It is known that vehicle usage patterns
may vary strongly [9]. For this reason, to make more valid statements about the degradation behavior,
efficiency, and OPEX, the vehicle utilization patterns of a commuter and a supplementary vehicle are
investigated. These vehicles are characterized by varying plug-in times at the power outlet of the
prosumer’s residence. As an additional degree of freedom, interaction between the EV battery and an
optional stationary HES is examined. Particularly, the influence on the degradation and the efficiency
of such a scenario considering two BESSs (EV and HES) is discussed. For the sake of simplicity,
throughout this work, a typical German household with corresponding load and PV generator profiles
is utilized and price signals of the German energy market are incorporated. However, the methodology
can be applied to other profile data and the conclusive results drawn in this contribution are valid for
other regions worldwide. An overview of the discussed simulation structure is visualized in Figure 1.

Charging Schemes

PV Generator Simple Charging (SC) D_

Vehicle-to-Building (V2B) _|J—|_LIJ_'_|-|.|1

VANN
| 7777

Electric Vehicles
Electricity Grid e | Commuter EV
Supplementary EV

Prosumer household with and without
Home Energy Storage System (HES)

Figure 1. Schematic structure of the simulation environment of a prosumer household with three
varying simulation dimensions: Consideration of home energy storage system (HES), two electric
vehicle (EV) utilization patterns (commuter and supplementary car), and three different charging
schemes (SC, OC, V2B).

The investigated scenarios in this work are simulated using a two-step approach. First,
the residential power flow (RPF) model with an underlying linear programming (LP) algorithm
optimizes the power flows within the residential multi-node system. Next, the optimized power flows
are transferred to the open source simulation tool SimSES in order to model the resulting battery
degradation and system efficiency [10].

This paper is structured as follows: Section 2 explains the optimization and simulation models as
well as the system’s topology, Section 3 presents the simulation results, and Section 4 concludes with a
summary and discussion.

2. Methods

In order to optimize the electricity exchange between components and analyze the storage
systems in a detailed fashion, two solution methods are combined, as is illustrated in Figure 2.
First, the power flows between the individual technical units are optimized using the RPF model.
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The underlying algorithm is based on LP, derived from the MATLAB optimization toolbox and the
Gurobi optimizer [11]. Then, the simulation tool SimSES is used, which is capable of simulating
the technical parameters of an energy storage system [10]. The results of the linear optimization are
transferred to SimSES and represent the inputted alternating current (AC) power values of the energy
storage system’s inverter. By using SimSES’ integrated operation strategy PowerFollow, the predefined
time-discrete power values are implemented, and a detailed simulation is carried out. Both tools,
the RPF model and the SimSES simulations are conducted in MathWorks MATLAB R2018b, operating
at a sampling rate of 15 min [5].

LP-based RPF Model

power flow optimization to maximize residential profit

HES Power Flow, EV Power Flow

isolated subsystem modelling isolated subsystem modelling

& HES Efficiency Operating Expense E: EV-BESS Efficiency

HES Degradation perating Expens EV-BESS Degradation

Figure 2. Schematic diagram of the two-step model structure, consisting of a linear programming
(LP) based residential power flow (RPF) model, which optimizes the power flows so that the
operating expenses (OPEX) are minimized, and the simulation tool SimSES, which validates the

technical characteristics, round-trip efficiency, and battery degradation of the battery energy storage
systems (BESSs).

[ SimSES (HES) [ SimSES (EV-BESS)

The profit of a residential electricity prosumer in Germany is computed by simulating several
different system configurations: Optional HES, optional EV, three different EV charging schemes,
and two vehicle usage patterns.

Depending on the scenario, the RPF model of the investigated household consists of up to six
main components, which are illustrated in Figure 3. The household is equipped with a PV generator
with 8 kWp peak power, which is a common size for an average German household [12]. The PV
generator system is composed of the PV panels, maximum power point tracker (MPPT), and inverter
that converts the generator’s direct current (DC) power into AC power. The one-year data measured
from a PV system installed in Munich, Germany is used as the PV generating profile. To implement
the degradation of the PV system, a degradation factor of 0.5% of the PV’s peak power per year is
assumed [4,13].
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Figure 3. Residential power flow (RPF) model, consisting of the AC-coupled home energy storage
system (HES), a photovoltaic (PV) power generator, electricity demand, the power outlet with the
connected electric vehicle (EV), and the superordinate electricity grid. The simulation tool SimSES is
used to validate the technical characteristics of the considered battery energy storage system (BESS).
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In order to consider the electricity demand of a typical household, a representative one-year load
profile (profile 31) out of a freely available set of smart-meter derived household load profiles is used in
this study [14]. The annual electricity demand (only of the building, excluding that of the EV) of the
considered household is set to 6000 kWh, a value taken from literature and well-suited to an average
German household [12].

Further parameters and technical specifications of the household and its stationary HES can
be taken from Table 1. The eligibility requirements, according to the German Federal Ministry
of Economics and Technology, stipulate a feed-in limitation of 50% for PV generators that are
operated in combination with a stationary or decentralized BESS [15]. Furthermore, a fixed feed-in
remuneration price of 0.123 EUR/kWh is utilized, which is fixed and guaranteed for a period of twenty
years [13]. Due to the projected electricity price of 0.437 EUR/kWh in 2030 and the electricity price
of 0.294 EUR/kWh in 2018, a compound annual growth rate (CAGR) of 3.35% is assumed for the
electricity purchase price in the simulation [16].

Table 1. Main parameters for the prosumer building and the home energy storage system (HES).

Parameter Value
Annual electricity demand 6000 kWh [12]
PV peak power 8kWp [12]
Feed-in limitation 50% [15]
Feed-in remuneration 0.123 EUR/kWh [13]
Initial electricity price 0.294 EUR/kWh [16]
Electricity price CAGR 3.35% [16]
Battery chemistry lithium iron phosphate (LFP)
Nominal energy content 9kWh [12,17]
SOC limitation 5%, 95% [12,17]

Lithium ion batteries (LIBs) are assumed for both the EV and HES. The cell chemistry chosen
for the stationary HES within the building is based on a lithium iron phosphate (LFP) cathode and
graphite anode. This chemistry allows a high cyclic stability [18], which makes it a suitable candidate
for stationary applications [17].

The average German household with a HES has a usable energy content of 8.1 kWh [12]. From this
the nominal energy content of 9 kWh is derived with the state of charge (SOC) limitations of 5% and
95% [17]. Furthermore, a self-discharge rate of 0.6% of the nominal energy content per month is
assumed for the LFP cell [17]. Efficiency losses during charge and discharge processes of the battery
are calculated via SimSES’ equivalent circuit model, which depends on charging and discharging
current, battery temperature, and SOC [10].

The semi-empirical degradation model of the LFP cell is also incorporated in SimSES. Degradation
analysis is based on a superposition of calendar and cycling-related capacity fade [19]. During idle
periods only calendar degradation, whereas during load periods also cyclic degradation is
occurring [20]. This cyclic degradation is a function of multiple factors, including the depth of
cycle (DOC), current, SOC range, and temperature [10]. A constant ambient temperature of 25 °C is
assumed throughout the simulation period as the HES is installed within the building.

Since the AC coupling topology is the dominant topology for HESs in Germany [12], this setup is
also used in this work. One of the major advantages of this topology over a DC coupling to the PV
generator is an easy integration into a building with an existing PV generator, thus ensuring a high
level of flexibility [21].

For the power-electronics efficiency, a simplified constant value of 95% is assumed in the RPF
model. In order to make more accurate statements about the efficiency of the BESSs, the SimSES
simulation tool takes into account a concave efficiency curve, which is derived from previous
literature [4,22]. This curve considers the dependence on the inverter’s output power and the fact that
values below 10% of the rated inverter power result in a significantly lower efficiency.

82



Energies 2019, 12, 955

Analogous to the procedure for the stationary HES, the power flows to and from the EV are
optimized using the RPF model and then validated in SimSES. For all simulations of the EV and the
ICE vehicle, a B-segment small car is considered [23-25]. An overview of the technical characteristics
for the considered vehicles can be found in Table 2.

A nickel manganese cobalt (NMC) based cathode cell chemistry is chosen for the EV’s BESS.
Compared to other LIB cell chemistries, the NMC cell offers a higher energy density. The nominal and
usable energy contents of the chosen EV battery, 21.6 kWh and 18.8 kWh, are closely linked to numbers
often stated for EVs widely used in Germany. Derived from the nominal and usable energy contents,
SOC boundaries of 8% and 95% are defined [17]. Similar to the LEP cell of the HES, the self-discharge
rate of the NMC cell is set to 0.6% of the nominal energy content per month. Both the RPF model and
detailed simulations using SimSES assume a round-trip efficiency of 95% for the EV battery [26].

In comparison to the highly sophisticated battery model of the LEP cell, the EV’s battery is
modelled using a more generic approach within SimSES [10]. Similar to previous work, a Wohler
curve (i.e., stress-number (S-N) curve) based fatigue model is used as the underlying method to
estimate cycling-induced stress in the battery [4]. This method leads to an exponential weighting of
DOC, i.e., an increased DOC leads to an overproportional increase in battery stress level, which again
results in a reduced amount of equivalent full cycles (EFC) compared to low DOC values; thus,
resulting in a shortened battery lifetime [27].

Table 2. Parameters for the electric vehicle (EV) and the internal combustion engine (ICE) vehicle.

Parameter Value
Vehicle class B-segment small car [23-25]
Battery chemistry nickel manganese cobalt (NMC)
Nominal energy content 21.6 kWh [28]
Useable energy content 18.8 kWh [28]
Battery round-trip efficiency 95% [17]
Annually driven distance 13,922 km [29]
Electricity consumption 12.9kWh/100 km [28]
Fuel consumption 5.3L/100 km [30]
Initial fuel price 1.45EUR/L [16]
Fuel price CAGR 2.25% [16]

The annual mileage of a passenger car is based on the German average, which is 13,922 km [29].
Therefore, a comparable EV, which consumes 12.9 kWh /100 km, requires approximately 1800 kWh
annually [28]. In this paper, a gasoline-powered vehicle with an average fuel consumption of
5.3L/100km is used [30]. Analogous to the electricity costs, a temporally dynamic behavior is also
assumed for the fuel price: An initial price of 1.45 EUR/L fuel is assumed for the start of the simulation.
Due to the projected gasoline price of 1.89 EUR/L in 2030 and the gasoline price of 1.45 EUR/L in 2018,
a CAGR of 2.25% is assumed for fuel prices in the simulation [16].

As part of this work, two EV profiles are created synthetically. The profiles for the two considered
EVs (commuter and supplementary vehicle) are based on the US06 driving cycle and 83 charging
profiles provided by the Forschungsstelle fiir Energiewirtschaft e. V., which are used in the federal
study Mobility in Germany [9,31,32]. Both vehicle utilization patterns consist of a driving profile and a
binary time series, which indicates whether the vehicle is connected to the power outlet of the building.
It is assumed that the EV is only charged at the residential building and this additional electricity
demand is directly allocated to the total electricity consumption of the household.

In Figure 4 an exemplary week (Monday to Sunday) in early summer is illustrated. The dashed
areas in the two lower subplots show the plug-in times of the two utilization patterns, where the
respective EV is connected to the building. As is immediately apparent, both profiles differ strongly
in terms of their total plug-in time and respective daytime behavior: The commuter profile is only
rarely connected to the building’s power outlet during times of high solar irradiation on weekdays,
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which makes it more difficult for this vehicle user to directly utilize surplus PV power. Instead,
the cumulative plug-in time of the supplementary car is much higher, so the potential of optimizing
the power flows between building and vehicle is assumed to be higher.

In order to bring the difference of the vehicle utilization types into a quantifiable context,
the quotient between plug-in time and the residual power is formed. Residual power is defined
as the difference between PV power and demanded power. For the two types of examined profiles,
the resulting correlation coefficients are 7% for the commuter vehicle and 28% for the supplementary
car. With the increased plug-in time, the BESS availability of the EV is increased, which increases
the degree of freedom for power flow optimization. This increased utilization coefficient leads to a
reduction in electricity purchases, which in turn lowers the OPEX of the prosumer. Based on this
theory, this metric is introduced and discussed further in the following sections.
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Figure 4. Residual power of exemplary week (Monday to Sunday) where photovoltaic (PV) excess
power is characterized by positive values and the associated plug-in times (colored area) of the electric
vehicles (commuter EV = red, supplementary EV = blue).

In addition to the two aforementioned vehicle utilization patterns, three different EV charging
schemes are introduced. All three strategies are discussed in the context of storage system efficiency,
degradation, and economic impact:

e  Simple charging (SC): A simple rule-based charging of the EV is applied, where power is delivered
unidirectionally from the power outlet of the building to the vehicle. As long as the vehicle
is connected to the building and the EV’s battery SOC has not reached the maximum SOC
limit, the EV gets charged at the maximum allowed charge rate. The RPF model, as well as the
simulation tool SimSES, are considering constraints for the respective SOC and C-Rate boundaries.

e  Optimized charging (OC): Similar to SC the power outlet is used for unidirectional vehicle
charging only. An advanced strategy is used that optimizes and controls the amount of energy
and the timing of the EV’s charging. The controller is fed by input values such as power flows
within the building and the plug-in times of the EV.

e  Vehicle-to-building (V2B): As an extension of the OC strategy, V2B enables a bidirectional power
flow between the EV and building.

The RPF model’s objective is to maximize the profit from the electricity sold and purchased
throughout the simulation period. This comes down to a minimization of the OPEX of the prosumer.
All scenarios use the following base objective function:

Max Y (Ef-p; —EP - pl) (1)
i
whereby ET denotes the amount of electricity that is sold to the superordinate electricity grid at time

step i. The purchased electricity per time step is defined by the variable Ef’. The price signals p; and
pf describe the remuneration and purchasing price at time i. Considering changing electricity prices

84



Energies 2019, 12, 955

over time, price signals are time-dependent. Besides the objective function, inequality constraints
for the BESSs” SOC and C-Rate, as well as equality constraints for the power flows at each node are
considered and derived from a previous contribution [33].

Literature shows that the total cost of ownership (TCO) for an EV in Germany depends on many
factors [25]. Due to the perennial lifetime of modern BESSs and the complex estimation of future
BESS investment costs, capital expenditures (CAPEX) are neglected. In order to make the results as
comprehensible as possible, only electricity costs and fuel costs are taken into account.

3. Results

The simulation results are presented and discussed in the following section. In total, fourteen
different scenarios are conducted. As shown in Table 3, three different charging schemes, two vehicle
usage patterns, and either one or two BESSs within the system are considered. The results are discussed
in the context of battery degradation, storage system efficiency, and overall economic assessment,
from the perspective of operating expenses for the prosumer.

Table 3. Overview of the fourteen simulated scenarios with three different charging schemes, two
vehicle usage patterns, and either one or two BESSs within the prosumer household.

Vehicle Usage Pattern ICE ICEw/HES SC OC V2B SCw/HES OCw/HES V2Bw/HES
Commuter ves (ICE) yes (ICE) yes  yes  yes  yes yes yes
Supplementary yes  yes  yes  yes yes yes

3.1. Economic Assessment of OPEX

As a first metric, the scenarios are evaluated and discussed from an economic perspective. Here,
the OPEX for a short-term period of one year and a longer-term ten-year period are considered.

During the first year, even the EV scenario with the highest OPEX, the SC scheme, showed a
cost reduction of 31% without HES compared to the ICE vehicle without HES. With the addition of
a home energy storage system to the scenarios, the OPEX reduction when using the SC scheme is
39% (EUR 571) in comparison to the ICE vehicle with the same HES.

As illustrated in Figure 5, strong differences between EV charging strategies can be detected. Both
without and with HES, the implementation of an optimized charging (OC) scheme leads to a reduction
in OPEX. Further cost improvements can be gained by allowing bidirectional power flows (V2B)
between the building and the EV. This impact of optimized charging schemes (unidirectional and
bidirectional) is particularly strong if there is no additional HES, leading to cost reductions of 14% and
23% in comparison to the SC strategy. The same ratios, with the addition of a HES, are reduced to 12%
and 13% respectively.
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Figure 5. Operating expenses (OPEX) for one year. The dark-grey column represents the average value.

On average, OPEX decrease by 25% if, in addition to an EV, a stationary HES is available, resulting
in EUR 115 cost reduction for the observed setting and year. Furthermore, the results for the commuter
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and supplementary car in the V2B scenario without HES showed a strong difference. Due to the
relatively higher plug-in time of the supplementary car (especially during periods of high PV power),
more self-generated energy can be stored in the vehicle, which results in higher self-consumption and
self-sufficiency rates that are illustrated in Figure 6. Additionally, the scenarios of the supplementary
car, with or without an additional HES, result in almost the same costs. Again, the supplementary car’s
high amount of plug-in time increases the utilization of the vehicle battery, thus making the stationary
HES almost obsolete.
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Figure 6. (a) Self-consumption and (b) self-sufficiency rate for the investigated scenarios. For both
metrics, the top edge of each boxplot represents the supplementary car. The lower values of the boxplots
are defined by the commuter car, which has a shorter plug-in time compared to the supplementary car.

As shown in Figure 7, the relative differences between the six EV scenarios remain almost the same
as in the one-year view. The slight differences are due to the CAGR effect of rising electricity prices.
However, the OPEX relationships between the ICE vehicle and EV changed because the expected fuel
price increase is lower than that of electricity. A more detailed picture of the OPEX and their seasonal
development over ten years can be seen in Figure Al in the Appendix A.
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Figure 7. Operating expenses (OPEX) for ten years. Compound annual growth rate (CAGR) of energy
costs are considered, so that costs for ten years are more than ten times the one-year costs. The dark-grey
column represents the average value.

3.2. Battery Lifetime and Degradation

A common procedure when determining the end of life (EOL) of BESSs is reaching a certain
capacity value. Specifically, values between 70% and 80% of the nominal battery capacity are often
used to describe the EOL of the BESS [34,35]. In this work, the threshold of 80% is defined as EOL
criteria, for both the HES and the EV battery. Figure 8 shows the battery degradation for both BESSs
and the simulated scenarios. A more detailed evaluation of the degradation of the two battery types is
discussed in the following paragraphs.
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Figure 8. Remaining capacity of electric vehicle’s battery (nickel manganese cobalt (NMC) cell
chemistry, solid line) and home energy storage system (HES) (lithium iron phosphate (LFP) cell
chemistry, dashed line) over ten years, with the highlighted end of life (EOL) threshold at 80% nominal
battery capacity.

3.2.1. Home Energy Storage System

As visualized in Figure 9a the results of the observed scenarios show a lifetime between 10.7 years
and 13.6 years for the battery of the HES. It is noticeable that the highest lifetime is achieved in the
scenario of the ICE vehicle combined with a HES. For the EV scenarios, the lifetime is reduced by
about 20%, whereby the simple charging scheme shows the shortest lifespan of 10.7 years. A further
trend that can be seen in all three EV scenarios is that the battery lifetime in the scenarios with the
supplementary car is always higher than the ones of the commuter vehicle. In both the OC and V2B
strategy, this results in a relative lifetime improvement of about 6% for the supplementary car.
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Figure 9. (a) Modelled lifetime of the lithium iron phosphate (LEP) home energy storage system (HES)
with a nominal capacity of 9kWh and (b) calendar and cyclic degradation during ten years of operation,
with the end of life (EOL) condition of 80% remaining capacity. The dark-grey column represents the
average value.

In Figure 9b, the relative calendar and cyclic degradation over the course of ten years of operation
is illustrated. The results show that the 20% capacity fade is almost reached after ten years for the
HES. In Figure 9a, it can be observed that a total lifetime of up to 13.6 years is reached. This can be
explained by the initial intensity of degradation processes at the early stage of the battery’s operation,
which then decrease over time.

The fact that cells suffer particularly from SOC values in the lower and upper SOC range is
reflected in the LFP model used for the simulations of this study [20]. Due to increased stress
characteristics at these more extreme SOC regions, calendar degradation is accelerated. This, in turn
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leads to a reduced lifetime. At roughly 90%, calendar degradation processes are the main driver for the
reduced battery lifetime. On the other hand, the cyclic degradation stress is fostered by high amounts
of EFC. It should also be emphasized that the measured values shown are not the only drivers for
battery degradation.

The battery’s EFC are especially significant for cyclic degradation. The four HESs of the observed
scenarios show annual EFC values of between 167 to 246, as shown in Figure 10a. Especially in
the SC scheme, the EFC are significantly higher than those of the other scenarios. The lowest and
almost equal amount of EFC is achieved in the settings of unidirectional (OC) and bidirectional (V2B)
optimized charging.
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Figure 10. (a) Average amount of annual equivalent full cycles (EFC) of the home energy storage
system and (b) probability distribution of the average state of charge (SOC) per scenario. The dark-grey
column represents the average value.

Another degradation factor that is of importance for the lifetime of a LIB is the average SOC.
This measure is illustrated in Figure 10b and gives insight into the probability distribution of the
SOC for the four considered HESs. Here, a distinctive difference between the ICE vehicle and EV
scenarios can be seen. While the SOC values of the HES have a rather homogeneous distribution in
the ICE scenario, values in EV settings are much more heterogeneous. In all considered scenarios in
which an EV and a HES are combined, it is shown that the SOC of the HES has a high probability
density at high values. In the case of the simple charging (SC) scheme, the trend towards high SOC
values is particularly strong. As with the number of EFC, here too, both scenarios OC and V2B show
approximately the same, and better, results.

3.2.2. EV Battery

Like the evaluation of the HES’s data, the battery of the EV is also examined with regard to
degradation for the different scenarios. SimSES is used to model an isolated storage system behavior
of the EV battery. Since the battery model used for the NMC cells is a generic model in comparison to
the semi-empirical degradation model used for the LFP cells, results are shown in less detail for the
EV battery.

A common standard for the expected lifetime and warranty period for EV batteries is seven to ten
years [36]. Within this period, the remaining battery capacity should not fall below the defined EOL
criteria of the battery. For the considered scenarios, it is shown that the EV battery has a lifetime of
between 7.2 years and 11.8 years, as can be seen in Figure 11.

It is noticeable that its lifetime can be increased by an average of 19% if the EV battery works in
conjunction with the stationary HES. The existence of a second storage system leads to a segmentation
of the power flows, which results in a reduced stress level of the EV battery.
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Figure 11. Lifetime calculation of the electric vehicle’s nickel manganese cobalt (NMC) battery, based
on a generic battery model, with the defined end of life (EOL) condition of 80% of the nominal capacity.
The dark-grey column represents the average value.

The scenarios with SC and OC schemes show the same amount of EFC, due to the fact that in
these unidirectional scenarios, only the power needed at a later time for driving is delivered from the
building to the vehicle. Despite the same amount of EFC of the EV battery in the SC and OC scenarios,
the lifetime of the optimized charging (OC) scheme is reduced by 7%. For better interpretation along
with the degradation model used herein (based on Wohler curves), the average absolute values of
the DOC are shown in Table 4. Here, it can be seen that the average DOC in scenarios with a HES
decreases by about 30% compared to the same settings without a HES.

Table 4. Annual amount of equivalent full cycles (EFC) and the absolute depth of cycle (DOC)
(normalized to the amount of EFC) of the battery taken as an average from the commuter and
supplementary electric vehicle (EV).

ICE ICEw/HES SC OC V2B SCw/HES OCwW/HES V2Bw/HES

EFC n/a n/a 85,5 855 1193 855 85.5 89.5
|DOC]| n/a n/a 1.00 098 098 058 0.76 0.76

The degradation in the case of V2B is significantly higher. Results show that the annual number
of EFC at 119.3 increase by 40% when there is no additional BESS in the system besides the EV battery.
This increase in EFC and the relatively high average DOC values result in a lifetime reduction of about
12% compared to the OC scheme.

For scenarios considering two BESSs, the V2B scenario again shows the highest battery
degradation. Because of the permanently available HES, surplus PV power can also be stored in
the stationary HES and therefore the number of EFC in the V2B scenario is only slightly higher than
that of the unidirectional scenarios (SC and OC). However, the battery lifetime in the V2B case is
shortened by about 3% compared to the same setting with OC scheme.

The commuter car battery in the V2B scenarios has a lower energy throughput and thus a lower
number of EFC. The relatively higher plug-in time of the supplementary car allows more surplus
energy to be charged into and discharged from the EV battery, resulting in a higher number of EFC
and a reduced lifetime.

3.3. Storage System Efficiency

In addition to battery degradation, BESSs” round-trip efficiency values are also considered.
For both BESS types, the stationary HES and the storage system of the EV, a round-trip efficiency of
about 88% is achieved for all operational modes.

More detailed analysis reveals that the dominant source of storage losses comes from
power-electronics. This is in line with efficiency analysis conducted on stationary storage systems [37].
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Overall, between 8% and 10% efficiency losses are caused by the inverter. This emphasizes the
relevance for optimizing the specifications of the technical components of a storage system.

Furthermore, storage losses are considered during the charging and discharging processes of the
battery. Storage losses within the battery cells range from 2% to 4% in the considered simulations,
which is in line with results from literature [17]. Self-discharge losses, which account for below 0.1% of
the total energy throughput, play a subordinate role. This low percentage of storage losses is similar
for both storage technologies in all scenarios.

4. Discussion and Conclusions

The following section summarizes the results derived from the simulations and discusses them
in the context of previous literature. At the end of the section, related and future research fields
are highlighted.

4.1. EV Versus ICE Vehicle

In the previously discussed results section it is shown that an EV can have a significant economic
advantage compared to ICE powered vehicles when it comes to reducing electricity costs of a prosumer
household. Considering a time span of ten years, it is shown that OPEX can be reduced by an average
of 37% (without an additional stationary HES) and 42% (with HES). Even the least economically
lucrative scenario with simple charging (SC) shows an average savings potential of 28% (without HES)
and 37% (with HES) compared to the same scenarios with an ICE powered vehicle.

Looking at the average results of the individual EV scenarios, it can be said that the considered
additional energy costs for the investigated ICE vehicle are about EUR 7400 higher than for its
electric-powered counterpart, which may justify an investment in a higher priced EV. Of course,
further cost components and economic and policy aspects must be taken into account in order to carry
out a complete economic analysis [25,38]. Furthermore, at the moment, there is no consensus on when
an EV is equivalent to an ICE vehicle in terms of investment costs.

In the context of battery lifetime, the simulations reveal a trend of stronger degradation when
an EV is included in the consideration. The HES’s battery reaches the defined EOL criterion earlier
by 20%, on average, when an EV is connected to the household. Minimizing OPEX means that
more self-generated energy is stored in the HES. In the EV scenarios, the effect leads to an increased
occurrence of high SOC levels, which accelerates internal degradation processes of the LFP cells [10].
In order to compensate this effect, the developed charging strategies must be further optimized.

Furthermore, the share of automotive batteries that are used for further applications after their
primary use as an EV battery is growing. Particularly, the installation and operation of such second-use
batteries in stationary applications is increasing [39]. This use of second-use batteries allows an
additional economic impact of the BESS, which makes it more lucrative for their stakeholders [40].

4.2. Impact of Vehicle Utilization Pattern

From the simulations it can be concluded that the supplementary vehicle type has a beneficial
effect on electricity cost reductions. This is shown by the lower OPEX in all scenarios when compared
to the commuter EV, which has less plug-in time at the building. This relation confirms the initial
theory that a higher correlation coefficient between residual power and plug-in time leads to an
economic improvement. It is expected that, from the perspective of an office building with PV
generation, the connected EVs from commuting employees would have the same beneficial outcome.
The underlying effect can also be explained by the household’s increased self-consumption and
self-sufficiency rate with the supplementary vehicle profile [7]. On average, OPEX in the commuter
car scenarios are about 16% higher than those with the supplementary vehicle. This cost increase is
particularly high when considering a bidirectional charging scheme (V2B).

In terms of battery degradation, on the other hand, it is shown that battery lifetime of the HES
is slightly increased in the commuter car scenarios. However, the average battery lifetime for the
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EV battery shows a favorable behavior in the supplementary scenarios, in particular during V2B
charging schemes. DOC values and the underlying Wohler curve for the EV battery degradation
model represent the main drivers for this effect [27].

4.3. Impact of Considering an Additional HES

Previous literature has shown that it is still difficult to operate a HES in Germany in an
economically lucrative way [4]. Although the results presented in this paper only relate to OPEX, it is
noteworthy that a HES can reduce these costs by an average of 23% during the first year. When taking
into account the rising electricity retail tariff estimated for the next ten years [16], the cost savings may
rise by another few percentage points.

Due to the segmentation of power flows when considering a HES, both the energy throughput
and relative DOC values of the EV battery can be reduced. The reduced stress level leads to an increase
of the EV’s battery lifetime by an average of 20%.

Whether and to what extent the advantages of the lifetime extension of the EV battery and OPEX
reduction justify additional expenses of a HES depend, in turn, on the CAPEX. Taking into account the
discussed prosumer and an operation period of ten years, HES investment costs below EUR 2305 (V2B
scenario) and EUR 4437 (SC scenario) would be justified. The higher value in the SC scenario results
from the fact that, here, an additional HES has a higher potential for OPEX improvement, which is
further discussed in the subsequent paragraphs. Assuming steadily declining CAPEX for stationary
battery packs [41], a HES can become increasingly interesting for residential buildings. If, in addition
to the minimization of OPEX and self-consumption improvements, other applications are served,
the economics of the HES can be increased even further [42].

4.4. Impact of Charging Scheme

Both in the scenarios with and without HES, the simple charging (SC) scheme resulted in the
highest OPEX. The condition that the EV is charged as soon as it is connected to the building also
results in overall low self-consumption and self-sufficiency rates of 33% and 26%, which are illustrated
in Figure 6.

In the optimized charging (OC) scheme with a HES, the electricity costs can be reduced by 12%
(about EUR 1300 for a ten-year operation period). This effect is even more pronounced when there is
no additional HES and the EV battery is the only BESS in the setting. OPEX can be reduced by 15%
(about EUR 2200) compared to the SC scheme when the EV battery is the only storage unit to decouple
energy supply and demand.

By allowing a bidirectional power flow between the building and the EV (V2B) instead of the
unidirectional power flow (OC), further cost savings can be achieved. Relative to the OC scheme,
this results in a further OPEX reduction of 2% (with HES) and 11% (without HES). Analogous to the
above comparison between the SC and OC schemes, there is an increased cost saving potential if the
EV battery is the only storage unit in the system. When considering the absolute values of the savings
potential, an OPEX reduction of EUR 160 (with HES) and EUR 1381 (without HES) results for an
operation period of ten years. This comes at the cost for additional upfront investment costs: The low
savings potential of the scenario with HES suggests that the additional investment costs for a power
outlet with bidirectional power flow are difficult to compensate. On the other hand, in scenarios with
a single EV battery, the V2B scheme could be economically lucrative in comparison to the OC scheme,
if the additional investment costs are below the cost savings of EUR 1381.

In contrast to improved electricity expenditures, the lifetime of the EV battery decreases in the OC
and V2B schemes. Due to increased energy throughput, particularly in the V2B scheme, the lifetime
is reduced by up to 12% compared to the optimized unidirectional charging (OC). SC scenarios lead
to the highest lifetime with a relative improvement of 7% compared to the OC scheme. One of the
main drivers for the increased degradation are the relatively higher DOC values in the OC and V2B
scheme. In addition, two more obstacles come into play: The prediction of power values is needed for
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effective OC and V2B schemes. Furthermore, automotive original equipment manufacturers (OEMs)
provide warranties on the use of the EV battery for vehicle purposes. While this is maintained in
the SC and OC schemes, the EV battery in the V2B scheme does not only function as an EV battery,
but also as a buffer storage unit for the whole prosumer household. Thus this could pose a challenge
to incentivizing V2B schemes.

The EV market shows a trend towards increasing battery capacity. EVs being manufactured
currently are often more than twice as large in terms of nominal energy content than the 21.6 kWh EV
battery that is considered in this work. It can be expected that the higher cost savings and the lower
necessity of an additional HES due to the V2B scheme will be enhanced with these increased capacities.

4.5. Limitations and Future Research

The discussed simulations are conducted assuming perfect foresight of energy supply and
demand, both for the household and the vehicle. In order to emphasize on limited foresight,
other algorithms can be used. For instance, in [43] a fuzzy logic controller (FLC) is presented for a
V2B environment.

Since the discussed RPF model is using constant efficiency values, it would be an improvement to
implement non-linear relationships, as already implemented in SimSES [10]. This step would improve
the RPF’s validity, but would also lead to an increasing complexity of the optimization algorithm,
resulting in an elevated computation time.

Although the generic battery model of the NMC cell provides values for the battery
degradation [4,27], the quality of the battery model can be improved further. In comparison to
the current model, more sophisticated degradation models could be implemented, as done for the
semi-empirical degradation model of the LFP cell [20].

In order to generate a more profound insight into the economic results of the discussed settings,
further research should take additional cost components into account. Although it is not clear how
the CAPEX for batteries will develop in the future, there are estimations in recent literature that could
be used [41]. Another cost component that is of relevance in that perspective are battery degradation
costs [44]. The consideration of these factors would provide a more complete picture of the total cost
of ownership (TCO), which in turn would allow for more precise conclusions.
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Abbreviations

The following abbreviations are used in this manuscript:

AC Alternating current

BESS Battery energy storage system
CAGR Compound annual growth rate
CAPEX  Capital expenditures

DC Direct current
DOC Depth of cycle
EFC Equivalent full cycles
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EOL End of life
EV Electric vehicle
HES Home energy storage system
ICE Internal combustion engine
LFP Lithium iron phosphate
LIB Lithium ion battery
LP Linear programming
NMC Nickel manganese cobalt
oC Optimized charging
OPEX Operating expenses
PV Photovoltaic
RPF Residential power flow
SC Simple charging
SOC State of charge
V2B Vehicle-to-building
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Figure A1. Operating expenses (OPEX) during ten years of operation showing a strong seasonal pattern.
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Abstract: Supercapacitors with characteristics such as high power density, long cycling life, fast
charge, and discharge response are used in different applications like hybrid and electric vehicles,
grid integration of renewable energies, or medical equipment. The parametric identification and the
supercapacitor model selection are two complex processes, which have a critical impact on the system
design process. This paper shows a comparison of the six commonly used supercapacitor models,
as well as a general and straightforward identification parameter procedure based on Simulink or
Simscape and the Optimization Toolbox of Matlab®. The proposed procedure allows for estimating
the different parameters of every model using a different identification current profile. Once the
parameters have been obtained, the performance of each supercapacitor model is evaluated through
two current profiles applied to hybrid electric vehicles, the urban driving cycle (ECE-15 or UDC)
and the hybrid pulse power characterization (HPPC). The experimental results show that the model
accuracy depends on the identification profile, as well as the robustness of each supercapacitor model.
Finally, some model and identification current profile recommendations are detailed.

Keywords: supercapacitor models; parameter estimation; ECE15; HPPC; Simulink; Simscape;
Matlab; Identification

1. Introduction

Energy storage systems are essential in the industrial, medical, renewable or transportation sectors,
as well as other sectors. Some characteristics like high power density, reliability and safety are critical
in those sectors, this is why the electrochemical double layer capacitor or the supercapacitor play an
important role [1].

Many application areas in which supercapacitors are used can be mentioned like magnetic
resonance imaging (MRI) that needs very short pulses with high current [2] or fuel cell supercapacitor
hybrid bus, where the supercapacitor satisfy the dynamic power demand [3]. In addition,
the supercapacitor can be used for the integration of a photovoltaic power plant [4], grid integration
of renewable energies [5] and the improvement of energy utilization for mine hoist applications [6].
However, many applications are limited by the self-discharge behavior in wireless sensor network
applications [7], where the new techniques of chemical modification to suppress this phenomenon are
shown in reference [8] and reference [9].

In general, the supercapacitors models classify into three categories: electrochemical, mathematical,
and electrical. Electrochemical models consist of a set of partial differential-algebraic equations
with many parameters. The estimation of the electrochemical model is very accurate [10].
However, the simulation of these models consumes many resources. Mathematical models are
an alternative based on three dimensional ordered structures [11]. It can get a good fitting with
experimental data but with a complex process to get the different parameters. Finally, circuit-based
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or electrical models are able to reproduce the electrical behavior of supercapacitors with equivalent
circuits [12].

In the literature, there are some studies comparing supercapacitor models. Reference [13] reviews
three types of equivalent circuits with linear components, with only an identification current profile
and several verification current profiles. These models are the classic model, the multi-stage ladder
model, and the dynamic model, which are used in electric vehicle applications. In this case, a genetic
algorithm (GA) is used to estimate the different constant parameters of the resistors and capacitors (RC)
circuits. Reference [14] analyzes three basic constant parameters RC networks models showing the
relationship among them. However, as shown in reference [15], the model accuracy can be improved
with a nonlinear equivalent circuit model. In reference [16], the authors compared three circuits
models (Miller Model, Zubieta Model, and Thevenin Model) with a specific identification current
profile for every model. In general, the papers found in the state-of-the-art compare some of the
known supercapacitor models, applying different identification current profiles, and using different
parameters identification procedures, as it is difficult to obtain reliable conclusions to identify the best
model for every application.

The main contribution of this paper is the proposal of a general, practical and effective
parameters identification procedure applied to supercapacitors models and obtained in offline mode.
The parameters of this model can also be used as an initial estimation of the parameters in online
supercapacitor models [17]. The numeric optimization is developed by means of the interactive
interface provided by the Identification Toolbox of Matlab (Version R2018b, MathWorks, Natick, MA,
USA), once the equivalent models are built in Simulink or Simscape. In addition, the paper shows the
comparison of different identification current profiles applied to six kinds of models in order to obtain
the best features of each model, as well as the best accurate vs. complexity model.

The next sections are organized as follows: Section 2 shows the six supercapacitor models selected
to make the comparative study, as well as their circuits implemented in Simulink or Simscape. Section 3
describes the parameters estimation procedure. Section 4 depicted the different current profiles and
the experimental setup to get the supercapacitor voltage and current responses. Section 5 shows the
obtained statistical metrics using ECE15 and HPPC dynamic driving cycles, and the discussion about
the experimental vs. simulation results. Finally, in Section 6, the main conclusions are presented.

2. Supercapacitors Models

In this section, six representative supercapacitor models are selected from the literature, which
cover most of the typical applications. All of them are nonlinear models since this kind of models
obtains better accuracy. The selected models are the Stern-Tafel Model [18], Zubieta Model [19], Series
Model [20], Parallel Model [21], Transmission Line Model [22] and Thevenin Model [23]. In this section,
the electrical equivalent circuit and the parameters of each model are reviewed.

2.1. Stern-Tafel Model

The supercapacitor proposed in reference [24] and reference [25] uses the Stern-Tafel model to
describe the nonlinear capacitance. This electrochemical model reproduces the double layer capacitance
(Cr) related to the nonlinear diffusion dynamics. To do this, the supercapacitor model combines both
the Helmholtz’s capacitance (Cp) and Gouy-Chapman’s capacitance (Cgc) [26],

Ny (1 1 \7?
C P
A + Cr 1
T Ns ( H GC) M
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Coc = FQ sinh( Qr ) )
2NRT "\ N,2-A, VBR Tc g

where N, is the number of parallel supercapacitor cells, N; is the number of series of supercapacitor cells,
N, is the number of layers of electrodes, d the molecular radius (m), ¢ the molar concentration (mol.m~3),
A, is the interfacial area between electrode and electrolyte (m?), T is the operating temperature (K), F,
is the Faraday constant (C/mol), R is the ideal gas constant (J/(K-mol)), ¢ is the relative permittivity of

the electrolyte material (F/m), and ¢ is the free space permittivity (F/m) [18].
The model equivalent circuit has a controlled voltage source and an internal resistance, as shown
in Figure 1a. This model depends on several parameters where C; is the nominal capacitance (F), Vux
is the maximum supercapacitor voltage (V), Ry is the internal resistance (Q2), V7 is the total voltage

(V), and iy is the self-discharge current (A) which is determined by the Tafel Equation (4) described in
reference [27] as:

Vi v
aFe (=it - I -AV)

ica(f) = Nelpel —— o) @
where I is the leakage current (A), Viy; is the initial voltage (V), a is the charge transfer coefficient
and AV is the over-potential (V). The capacitance of the electrochemical model requires only a few
data from manufacturer datasheet and universal constant as described in reference [28]. The Simulink
implementation is shown in Figure 1b.
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Figure 1. Stern-Tafel model: (a) Electric circuit; (b) Simulink implementation.
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2.2. Zubieta Model

The proposed model in reference [19] includes a circuit with three parallel RC time constant,
Figure 2a. The first branch, with the elements RyCy, and the voltage-dependent k.-v. defines the
response in seconds. The second branch R;C; provides the response in the range of minutes. The branch
R,C; represents the response for a time longer than minutes. Finally, a resistor R reproduces the
leakage resistance.

A simplified equivalent circuit with two branches is shown in reference [29], with a simplified
parameter identification procedure through the differential equation of the circuit. Similar studies are
proposed in reference [30] in which the model parameters are easily obtained when the supercapacitor
is discharged with constant power. In addition, reference [31] proposes a multivariable minimization
function to find the parameters, they are validated with a current profile of a hybrid electric vehicle.

The total capacitance and current of the voltage-controlled capacitance implemented in Simscape
are shown in Figure 2b, which are defined by (5) and (6):

C(vc) = Co + keve ®)
. dQ  d(C(ve)ve) do,
===V = (Co +2kc'Uc)E (6)

where Cj is the initial linear capacitance which represents the electrostatic capacitance of the capacitor,
and k. a positive coefficient which represents the effects of the diffused layer of the supercapacitor.
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Figure 2. Zubieta model: (a) Electric circuit; (b) Simscape implementation.
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2.3. Series Model

The series model is an equivalent circuit obtained through the AC impedance approach, which
consists of two parallel RC circuit compound by Ry (vsc), C1(vsc), Ra(vsc), Ca(vsc), connected in series with
another RC circuit compound by Rs and C;(vs), as described in references [20,32,33]. This equivalent
circuit shows in the first branch of Figure 3a. In reference [34] a modified version of this circuit was
presented, which includes the model proposed by Buller and Zubieta, in order to represent a complete
model for a full frequency range. This complete model includes three branches in a parallel compound
by R3 and C3, R4 and Cy, and the leakage resistance Ry, as shown in Figure 3a. Figure 3b shows the
Simscape implementation of the modified series model.
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Figure 3. Series model: (a) Electric circuit; (b) Simscape implementation.
2.4. Parallel Model

The basic parallel model with constant values is described in reference [35] and reference [36].
Reference [37] describes an approximation to calculate the parameters without data acquisition, only
using the information provided by a supercapacitor datasheet, as well as the main basic equations to
obtain the constant parameters using this information. A modified four parallel RC networks with
voltage-dependent parameters are presented in reference [21], and it is shown in Figure 4a. This model
is more complex, but it achieves better accuracy. Figure 4b shows the implementations of the modified
parallel model in Simscape.
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Figure 4. Series model: (a) Electric circuit; (b) Simscape implementation.
2.5. Transmission Line Model

Transmission line model is composed of nRC branches in order to reproduce the supercapacitor
frequency response from 10 mHz to 1 kHz. This model was proposed for hybrid and electric vehicles,
and it was described in reference [38] and reference [39]. This model consists of four parallel networks
based on Ry, Ci(v1), Ry, C2(v7), Rz, C3(v3) and Ry, C4(vy), and a parallel leakage resistance Ry, as shown
in Figure 5a. Reference [22] describes a procedure to estimate the parameters through time response
and the equations of the circuit. Also, this model is used to evaluate the supercapacitor physical aging
process [40], by estimating the uncertainties of the parameters. Reference [41] uses a different number
of networks according to the simulation time step.

Figure 5b shows the model implemented in Simscape with the described Equations (5) and (6).
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Figure 5. Cont.
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Figure 5. Series model: (a) Electric circuit; (b) Simscape implementation.

2.6. Thevenin Model

The equivalent electric circuit of the Thevenin model, which includes several parallel RC and a
nonlinear state-of-charge (SOC) voltage-dependent source is described in reference [42]. The SOC is
calculated by coulomb counting using (7):

Qinit = fot i(T)dt
Qr

with Q;,;; being the initial supercapacitor charge, Qr being the total supercapacitor charge and i(7) as
the supercapacitor current.

In this paper, three RC branches are used to get a better accuracy, where OCV represents the
open circuit voltage, Ry represents the internal resistance, and three parallel networks based on Ry, C1,
Ry, C3, R3, and C3 reproduce the supercapacitor dynamic, as shown in Figure 6a. All parameters are
state-of-charge dependent. The proposed model applied to a hybrid storage system for an electric
vehicle gives a better agreement for a simulated vs. experimental response when 3-branches are used
in the model [23]. Figure 6b shows the Simscape implementation.

SOC = @)

(socy | Ksoc)|  Ri(soc)

Il |
Al Al
C(S0C)  C,(SOC)  C,(S0C)

(@)
= T
soc
Jb = et
I L toooprateq, [t ||
LookpTalel, o | awson) oo
S ooy DT
o . e
J 7 R(500)
LookupTableOCT ]
soc 1
f). o
® NG

Figure 6. Series model: (a) Electric circuit; (b) Simscape implementation.
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3. Parameters Estimation Procedure

Parametric models explicitly contain differential equations, transfer function or block diagrams.
The parameters update could be offline or online. For obtaining the parameters, in the offline mode,
the data are stored to later process, on the other hand, in the online mode, the procedure is executed in
parallel to the experiment [43]. In the literature, there are many proposed procedures to obtain the
model parameters such as e.g., the unscented Kalman filter [44] or the Luenberger-style technique [17].

Taking into account the literature, this paper focuses on the proposal of a practical, interactive,
simple and enough general offline procedures for estimating the model parameters.

Figure 7a shows the proposed identification procedure block diagram. This procedure can be
divided into several steps, shown and described in Table 1.
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Figure 7. Parameter estimation procedure: (a) Identification block diagram process; (b) Simscape
model; (c) Interactive interface by Simulink [45].

Table 1. Parameter Estimation Steps.

Steps Description
Apply the identification current profile to obtain supercapacitor current and voltage waveforms
1 (identification data) from the experimental test. E.g., as shown in Section 4.2: current profiles and
supercapacitor voltage response (a), (b) and (c).
2 Select and build the equivalent circuit model in Simulink or Simscape through a block diagram or

circuit. E.g., as shown in Section 3: Figure 7b.
Create a new experiment in Simulink and to import the identification data. Simulate the model with

3 the initial parameters and the identification current profile to obtain the simulation data. E.g.,
as shown in Section 3: Figure 7c.
4 Choose the variables and their limits to estimate their value. E.g., as shown in Section 3: Figure 7c.
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Table 1. Cont.

Steps Description

5 Set up optimization options (optimization method, algorithm, and parameter and function tolerance).
E.g., as shown in Section 3: Figure 8.
Run the parameter estimation process applying the selected optimization solver (E.g., sum-squared
6 error) to match the identification data with the simulation data. E.g., as shown in Section 3: Figure 7c.
If the error is not small enough, return to step 1 (); or change the identification method and return to
step 3 (@); or modify the current profile and return to step 2 (®), Figure 7a.
Once the model parameters have been obtained from the identification data, the next step is to verify
the model response using the application current profile and the application data. For that, it is
7 necessary to compare the application data with the new simulated data, using the obtained
parameters in step 6, E.g., as shown in Section 4.2: Figure 9d,e. If the error is not small enough, return
to step 1 (®); or change the identification method and return to step 3 (@); or modify the current
profile and return to step 2 (®), Figure 7a.

In step 5, the optimization method has to be selected. This paper uses an offline parameters
estimation based on the error minimization between the measured and simulated supercapacitor
voltage. The iterative procedure tunes the supercapacitors model parameters (p) to get a simulated
response (V) that tracks the measured response (V},,), with a finite number of samples (). To do that,
the solver minimizes the next cost function for each current profile:

F(p) = mpin ;[Vmi - Vs,'(p)]z (8)

where p varies between zero and infinity (e.g., 0 to 10'7).

The minimization problem is carried out with Simulink® Design Optimization™ of Matlab
(Version R2018b, MathWorks, Natick, MA, USA). This toolbox provides an interactive interface that
helps to minimize the square of the error between the measured and simulated supercapacitor voltage,

using the nonlinear least squares method for parameters estimation. This method is selected in the
user interface as shown in Figure 8.

jEstimationOptons ______________________________________________*X]
General Options | Optimization Options; Parallel Options.
Optimization method

Method: Nonlinear least squares i Algorithm:  Trust-Region-Reflective S

Optimization options
Parameter tolerance: |0.001 Function tolerance: 0.001

Maximum iterations: |100

Use robust cost
Display level lteration v
Restarts: 0

OK || Cancel | Help

Figure 8. The optimization option user interface for parameter estimation.

This method uses the Simulink function named as Isqnonlin, that requires at least (2k + 1)
simulations per iteration, where k is the number of parameters to be estimated [46]. The required
CPU time and memory increase as a function of the numbers of parameters and their initial values.
The offline runtime estimation is in the order of minutes.
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If runtime estimation has to be reduced, other techniques based on the layered technique to break
the global optimization into a smaller task [47], or based on differential mutation strategy [48], or based
on genetic programming [49], among others, could be used, although the flexibility and simplicity
provided by the Simulink user interface could be affected.

On the other hand, the algorithm selected is the Trust-Region-Reflective, which is based on a
gradient process with a trial step by solving a trust region. Specific details of the algorithm can be
found in reference [45]. Additional information is detailed in reference [50], in which the process of
how to import, analyze, prepare and estimate model parameters in Simulink is described.

Using the proposed procedure, based on Simulink® Design Optimization™ of Matlab, the most
model can be built, from a practical point of view. Nevertheless, this procedure is limited by the
optimization methods and algorithms included in Simulink.

4. Experimental Setup

4.1. Supercapacitor Testing System

The experimental setup includes a supercapacitor, a data acquisition system, a power source, and an
electronic load, as shown in Figure 9. The supercapacitor used to develop the test has been the Maxwell
BCAP3000. An equivalent bidirectional current source compound of the electronic load and the power
source, connected in parallel, emulates the current profile. This equivalent current source includes the
typical regenerative breaking present in automotive applications. The experimental current profile and the
data acquisition system are conducted using the following set of equipment listed in Table 2:

Power source

Eth‘ernet

@

Shunt resistor

Supercapacitor

Electronic load

1

Elhe;nel

¢

Tél 5.HPPC.ECEIS

7
T

zezsy

Datalogger

Figure 9. Experimental setup.

Table 2. Equipment and Components used in the Experimental Setup.

Component Specifications Use
Supercapacitor: Maxwell BCAP3000 2.7 V/3000 F Cell under test
Datalogger: Agilent 34970A 100 nV-1000 V/500 kHz Measure voltage
Power source: Sorensen SGI400/38 400 V/38 A Current charge
Electronic load: Chroma 63206A-600 600 V/420 A Current discharge
Shunt resistor: Newtons4th HF200 0.5m /200 mA — 200 Arms Measure current

All these elements have been synchronized with a computer running to manage the data logging
and supervisory control using LabVIEW® software.

4.2. Supercapacitor Test Schedule

The parameter identification procedure uses three different current profiles. The current profile 7 is a
current step, Figure 10a; the current profile i, are repetitive charging current steps applied until to reach the
maximum supercapacitor voltage, Figure 10b; and the current profile i3 is a dynamic charge-discharge
current step modulated in amplitude and time applied until the middle value of the supercapacitor voltage
range, [51], Figure 10c. From the modeling perspective, the validation current profile must be more
dynamic in amplitude and frequency than the identification current profile, as shown in Figure 10d,e.
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Figure 10. Current profiles and supercapacitor voltage response: (a) i1; (b) iy; (c) i3; (d) Verification
HPPC profile; (e) Verification ECE15 profile.

These identification current profiles apply to those models aforementioned in Section 2 to obtain

their parameters. The current profile applied in every model is shown in Table 3.
The robustness and accuracy of the supercapacitor models are evaluated by means of different

standardized test profiles, which include the Hybrid Pulse Power Characterization (HPPC) test and
European Urban Driving Cycle (ECE15) for long-time responses. Figure 9d shows the HPPC test that
is described in the Freedom Car Battery Manual [52]. The ECE15 test, described in reference [53], is a

more dynamic current profile, as shown in Figure 10e.
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Table 3. Identification Current Profiles Used to Supercapacitor Parameters Estimation.

Current Profile

Model - - -

11 i 13
Stern-Tafel N - -
Zubieta v v v
Series - v v
Parallel - N N
Transmission line - N v
Thevenin - v v

v'= Applicable; - = Not applicable.

5. Experimental Results, Comparison, and Discussion

After obtaining the parameters for each model, detailed in Appendix A in Tables A1-A9, using the
procedure described in Section 3 and identification current profiles described in Section 4, the output
voltage accuracy and robustness analysis for the six supercapacitor models described in Section 2 is
performed based on statistical metrics, such as relative error and root-mean-square (RMS) error.

Comparative results with identification current profile i; are illustrated in Figure 11a—d for the
HPPC test and Figure 11e-h for the ECE15 test. Figure 11a,e show the experimental supercapacitor
voltage and the voltages provided by the Stern-Tafel and Zubieta models. Figure 11b,f show the
relative error between these models and the experimental data.

0 20 400 600 800 1000 1200 1400 Average
Time (s)

(b)

(d)

0 S0 100 1500 2000 2500 3000 0 s00 1000 1s00 2000 2500 3000
Time (s) Time (s)

(e) (®) (8) (h)

Figure 11. Experimental data and supercapacitor models time response, relative error (%), RMS error
(mV): (a)-(d) current profile HPPC for iy, (e)—-(h) current profile ECE15 for i;.

Figure 11c,g represent the relative error in percentage. Figure 11d,h show the RMS error in mV.
It shows that the Stern-Tafel model has lower error values in comparison with the Zubieta model.
In any case, the relative error tendency with the time increase in both models, therefore the accuracy of
both models identified with the 7; current profile is not proper.

Similar information is shown when current profile i, is used to obtain the model parameters.
Figure 12a—d depicted the obtained result for the HPPC test and Figure 12e-h for the ECE15 test.
This current profile is applied to five out of the six models, with the exception of the Stern-Tafel model.
In this case, the Series model is the best one, since it presents a reduced relative error that maintained
with the time.
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Figure 12. Experimental data and supercapacitor models time response, relative error (%), RMS error
(mV): (a)-(d) current profile HPPC for iy, (e)-(h) current profile ECE15 for ip.

Finally, the result obtained with the current profile i3, which is the most dynamic current profile,
is depicted in Figure 13a—d for the HPPC test and Figure 13e-h for the ECE15 test. This current
profile has been applied to the same models as current profile i. Again, the Serie Model has the best
performance, and even the obtained relative error is lower than using the previous current profiles.
Nevertheless, the Parallel model, Transmission Line model and Thevenin model get good behaviors.

Identification and test current: is, imprc Identification and test current: iy, ipre

RMSE (V)

Voltage (V)
Relative error(%)

14l g " |
0 200 400 600 800 1000 1200 1400 0 200 40 60 800 1000 1200 1400
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RMSE (m)
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Relative error (%)

0 S0 1000 1500 2000 2500 3000 0 50 1000 1500 2000 2500 3000

Time (s)

(e) ®) (8 (h)
Figure 13. Experimental data and supercapacitor models time response, relative error (%), RMS error
(mV): (a)-(d) current profile HPPC for i3, (e)—(h) current profile ECE15 for i3.

The main conclusions obtained from these results are the following:

e The greater complex identification current profile i3 gets greater accuracy for every model in
which it can be applied.

e Inmost cases, the Series model provides the minimum relative error.

e Ifasimple and basic supercapacitor model has to be used, the best option is to use Zubieta model
identified with the current profile 73.
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Tables 4-6 include the numeric values for different current profiles identification and the response

of each model for HPPC and ECE15 test. These values are those shown in Figures 10-12.

Table 4. The statistical metric with Current Profile 7.

HPPC ECE15
Model Maximum Average Root Mean  Maximum Average Root Mean
Relative Relative Square Relative Relative Square
Error (%) Error (%) Error (mV) Error (%) Error (%) Error (mV)
Stern-Tafel 2.6624 0.4975 11.6037 6.9044 2.0402 45.1645
Zubieta 8.8702 3.5055 79.0721 8.2994 3.3861 72.6719
Table 5. The statistical metric with Current Profile i;.
HPPC ECE15
Model Maximum Average Root Mean ~ Maximum Average Root Mean
Relative Relative Square Relative Relative Square
Error (%) Error (%) Error (mV) Error (%) Error (%) Error (mV)
Zubieta 5.5291 2.2657 50.5217 2.2409 1.4013 29.2705
Serie 1.5156 0.7592 15.7086 2.1871 1.2212 24.2654
Parallel 1.2932 0.2971 7.3963 6.6324 1.9509 43.9770
Transmission line 7.2856 2.9581 65.0135 8.3307 3.8223 78.3289
Thevenin 8.0835 3.5226 77.9992 8.5904 3.9647 82.2516
Table 6. The statistical metric with Current Profile 73.
HPPC ECE15
Model Maximum Average Root Mean  Maximum Average Root Mean
Relative Relative Square Relative Relative Square
Error (%) Error (%) Error (mV) Error (%) Error (%) Error (mV)
Zubieta 1.9602 0.7170 15.8874 1.1287 0.5673 11.6797
Serie 0.9718 0.2728 6.8365 0.9562 0.2119 5.1513
Parallel 0.9263 0.2714 7.0952 1.2706 0.3724 8.7621
Transmission line 1.4099 0.5227 11.6305 0.7700 0.3722 8.7803
Thevenin 1.2297 0.4617 10.7354 0.7593 0.3493 8.8829

6. Conclusions

This paper describes a parameter identification general procedure with a flexible and interactive
interface used to build supercapacitor models in Simulink or Simscape. This procedure enables
estimating the different models parameters based on the use of the Optimization Toolbox of Matlab®.
Once, the procedure steps are explained, the procedure is used to develop a comparative study
of six commonly used supercapacitor models. In addition, the procedure enables using different
identification current profiles, providing the possibility of analyzing the influence of three different
identification current profiles in the accuracy and robustness of every model.

The experimental results obtained from the six models and three different identification current
profiles, used to develop the study, show that both the model and the identification current profile are
critical to obtaining good accuracy and robustness, which must be maintained over time.

From the comparison between the experimental results and the simulation results obtained
using the model, it can be concluded that the greater complexity of the current identification profile,
the greater accuracy and robustness of the model. In this case, the most complex identification current
profile i3 gets the best accuracy for every model in which it can be applied.

In a short simulation period, most models provide enough accuracy results. However, in a long
simulation period the differences among models as well as among the current identification profiles
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increase, and models responses cumulate voltage errors and, in some cases, they cannot correctly
represent the voltage of the supercapacitor. The Stern-Tafel model is proper for a short simulation
and as a first approximation. However, in a long-time simulation, the Series Model represents a good
performance, followed by the Parallel Model. In most cases, the Series model provides the minimum
relative error. However, the Zubieta model provides a good compromise between complexity and
accuracy. Then, if a simple and basic supercapacitor model has to be used, the best option is to use a
Zubieta model identified by means of the current profile i3.
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Appendix A. Tables of Supercapacitors Parameter

Table Al. Stern-Tafel Model Parameters with current profile 7.

Parameter Value
C(F) 3000
Ry (mQY) 2.1000
I (mA) 5.2000
Vi (V) 2.7000
N, 1
Np 1
N, * 2
d (nm) * 1.0115
a* 03200 0 <a<1)
AV * 0.4100

* = Estimated parameters.

Table A2. Zubieta Model Parameters.

Current Profile

Parameter - - -
1 2 13
Rp (mQ) * 1.1080 0.8653 0.6504
Co (F)* 2290.3000 2172.6000 2081.7000
ke (E/V) * 244.4400 240.5600 220.1800
Ry () * 16.9130 19.9280 10.5170
C(B)* 471.1500 368.1700 111.1500
Ry () * 0.6729 0.3773 3.5770
Cy (F)* 292.0100 176.3200 382.0700
Ry (kQ)) * 171210 11023 51.4030

* = Estimated parameters.
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Table A3. Series Model Parameters with current profile i,.

Voltage (V)
Parameter
0 0330 0.6417 0.9295 1.1977 1.4522 1.6973 1.934 21622 2.3830 2.5948
Cs (k) * 24655 23629 25419 26699 28260 28941 29450 2962 3.0666 3.1518 3.5999
Ry (u))* 581.02 470.26 563.94 546.61 540.87 507.120 54494 238.4  0.0080 1.3731 1.6410
Cy (kF)* 11595 1.7094 1.0285 1.5702 1.5695 2.1529 1.4429 0277 265980 65.884 87.292
Ry (uQ)) * 0.120  58.126 14.810 25.842 43970 108.870 0.0164 6.128  707.200 692.73  501.860
Cy (F)* 14.393 1324 1891.1 10714 570.42 345400 58.919 1351 43.7690 161.84 54.3090
Rs (Q)* 10.6610
Cs (kF)* 1.0877
Ry (Q)* 14.4660
Cy (F)* 32.5750
Ry (kQ) * 55436
* = Estimated parameters.
Table A4. Series Model Parameters with current profile i3.
Voltage (V)
Parameter
1.4932 1.7931 2.0874 2.3761 2.6618
Cs (k) * 2.8890 2.9626 3.0489 3.1745 3.1935
Ry (nQ) * 192.3800 460.1300 428.0600 182.1800 437.5600
C(F)* 15.3320 923.8500 30.6020 9.3121 229.6200
Ry (nQ) * 166.3700 1.4114 32.8880 303.2600 99.7610
Cy (kF) * 0.0309 0.2120 1.9380 1.9937 0.1050
Rz () * 7.6440
C3 (kF) * 1.2486
Ry ()% 14.0350
Cy (F)* 110.7000
Ry (kQ) * 1584.4000
* = Estimated parameters.
Table A5. Parallel Model Parameters with current profile i,.
Voltage (V)
Parameter
0.0002 0.3301 0.6417 0.9295 1.1977 1.4522 1.6973 1.9337 21622 2.3830 2.5948
Cq (kF)* 11494 5647 86.826 0.2254 82203 0.00353 100.120 219.83 125.880 182.96 170
Ry () * 18502 91543 19804 15.8680 421.90 25454 51657 857.68 398.850 254.02  279.950
Cy (F)* 561.28 25820 362.59 239.440 57.1310 65.969 56.8820 112.78 134.450 46.676 50.050
R, mQ)*  0.00358 11.937 0.3757 1.9524 155.180 137.89 117.090 14.308 13.746 4622.1  500.020
Cs3 (F)* 1068.9 1780.7 0.3458 43.1960 47.3320 0.1059 665.260 8367  12.691 30.798 25.003
Rz (mQ)* 29311 55832 0.00014 0.6223 16946 3.0161 5.6190 12579 0.01369 369.01 100
Cy (kF) * 1.8016 0.0452 24350 24355 27939 27622 24572 3.013 3.0641 3.3026  3.119
Ry (mQ)* 64737 84052 0.1441 1.0450 0.5837 0.6355 0.6429 0.4083 0.3057 0.5758  0.199
Ry () * 1.6786 15397 13.829 25.6290 11.714 13.701 17.801 17.821 16.065 16.649 18.947
* = Estimated parameters.
Table A6. Parallel Model Parameters with current profile i3.
Voltage (V)
Parameter
1.4932 1.7931 2.0874 2.3761 2.6618
Cy (kF)* 21.1090 652.920 119.440 503.490 28.4650
Ry ()* 0.3961 765.50 364.790 112.370 14.1460
G (F)* 59.1990 123.90 110.42 126.430 26.3940
Ry () * 9.1786 0.12605 0.11993 0.09205 0.01963
C3(F)* 657.710 15.920 21.9840 17.6280 15.6860
Rz (mQ) * 16.0070 4.7105 11.4340 0.0615 12.3470
Cy (kF) * 3.0746 2.867 2.9347 3.0351 3.1868
Ry (uQ)) * 507.890 657.90 689.490 470.030 850.340
Ry (Q) * 120.930 768.810 6150.30 585.340 303.670

* = Estimated parameters.
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S0C (%)
Parameter
0.01 10 20.04 29.96 39.95 49.86 59.89 69.77 70.77 89.67 99.64
OCV (V) 0.0002 0.330 0.6417 09295 1.1977 14522 1.6973 19337 2162 2.3830 2.5953
Ci (F)* 17046  551.64 236.58 303.76 363.06 509.86 434.30 401.51 22747 41124 147.11
C, (kF) * 119.28 2958 35427 30.323 39.527 22579 20.577 77157 11.614 94522 19.695
Cs (kF) * 2943.8 498.12 248.36 205.07 541.22 449.09 844.16 97.252 25075 703.25 3.772
Ry (uQ)) * 7232  431.02 02476 13.381 10441 1720 3.7923 213.26 11596 23.528 372.15
Ry (mQ) * 1.2436 09416 1.2504 1.1690 1.1998 1.3676 1.3495 1.2395 1.0854 1.1086 1.2487
Ry (mQ)) * 68.622 10.261 1.1819 35.648 3.3491 0.32405 0.4529 7.7754 14.9250 1.6529 186.44
R3 () * 33.592 22765 09059 2.143 2.6865 1.9369 432480 548140 29422 558260 555
* = Estimated parameters.
Table A9. Thevenin Model Parameters with i3 Current Profile.
SOC (%)
Parameter
53.37 64.68 75.97 87.25 98.59
OCV (V) 1.4786 1.7794 2.0742 2.365 2.6499
Ci(F)* 0.070731 11.1610 11.1610 12.30 123.90
Cy (kF) * 7.2709 1.3362 0.7907 16.107 28.906
C3 (MF) * 1929.30 0.00769 0.00638 76.5800 9.8952
Rg (1QY) * 6.5167 13.9100 39.4740 75.8540 53.527
Ry (nQY) * 204.02 168.97 35.226 339.940 565.850
Ry (nQY) * 684.340 486.780 512.330 352.520 284.940
R3 (nQY) * 24.6710 4.8491 7.8730 74.0560 0.25154
* = Estimated parameters.
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Abstract: Maximizing regenerative energy utilization is an important way to reduce substation energy
consumption in subway systems. Timetable optimization and energy storage systems are two main
ways to improve improve regenerative energy utilization, but they were studied separately in the past.
To further improve energy conservation while maintaining a low cost, this paper presents a strategy to
improve regenerative energy utilization by an integration of them, which determines the capacity of each
Wayside Energy Storage System (WESS) and correspondingly optimizes the timetable at the same time.
We first propose a dual-objective optimization problem to simultaneously minimize substation energy
consumption and the total cost of WESS. Then, a mathematical model is formulated with the decision
variables as the configuration of WESS and timetable. Afterwards, we design an e-constraint method to
transform the dual-objective optimization problem into several single-objective optimization problems,
and accordingly design an improved artificial bee colony algorithm to solve them sequentially. Finally,
numerical examples based on the actual data from a subway system in China are conducted to show the
effectiveness of the proposed method. Experimental results indicate that substation energy consumption
is effectively reduced by using WESS together with a correspondingly optimized timetable. Note that
substation energy consumption becomes lower when the total size of WESS is larger, and timetable
optimization further reduces it. A set of Pareto optimal solutions is obtained for the experimental subway
line—based on which, decision makers can make a sensible trade-off between energy conservation and
WESS investment accordingly to their preferences.

Keywords: regenerative energy; timetable optimization; energy storage system; e-constraint method;
improved artificial bee colony

1. Introduction

Energy conservation in subway systems has attracted great attention in recent years. As a great
proportion of total energy is consumed by train traction systems [1-4], many measures have been taken to
reduce traction energy consumption. The adoption of energy-efficient train operations has been a focus
in the past decades [5]. It aims to find a driving strategy which consumes the least energy. However,
Regenerative Energy (RE) is not considered in these studies, which limits the effect of this method on
energy conservation [3,6]. Regenerative energy is the electrical energy converted from kinetic energy by
a regenerative braking system during the braking of trains. As a potential energy supply, regenerative
energy can be used to accelerate trains. Regenerative energy takes a great amount of the total energy
consumption in a subway system [7]. Substation energy consumption can be reduced dramatically if
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the driving strategies of trains remain unchanged and the regenerative energy is fully utilized. Thus,
with regenerative braking systems being widely applied in subway systems, optimizing Regenerative
Energy Utilization (REU) has become a hot topic in recent years [8]. Generally, there are three ways to do
so [9-12].

The first one is to adopt Timetable Optimization (TO). It aims to coordinate the accelerating and
braking of trains, thus the regenerative energy from braking trains can be utilized by the accelerating
trains immediately. It is the most preferable way as its cost is the lowest according to [8,13-26]. However,
RE cannot be fully utilized in this way in general, and the surplus regenerative energy is dissipated into
heat via resistors.

The second way is to store regenerative energy temporarily by using wayside and/or on-board
Energy Storage Systems (ESS), e.g., super-capacitors, and to reuse it later. Due to the advancement
of power electronics and energy storage technologies, ESS can be integrated into subway systems to
utilize regenerative energy more sufficiently. For example, Wayside Energy Storage Systems (WESSs)
can store the surplus regenerative energy temporarily and deliver it back to accelerate trains in the same
Electricity Supply Interval (ESI) when needed. Thus, Substation Energy Consumption (SEC) can be
reduced. Furthermore, the stored energy in WESS can contribute to shaving power peaks during the
acceleration of trains, and WESS can be used as a temporary electricity supplier in case of power grid
failure. Thus, not only can WESS improve the efficient energy management, but it can also stabilize the
power network [10]. It becomes the second choice as it needs to pay for the cost of ESS and the rapid
development of ESS that has happened in recent years.

The last way is to feed regenerative energy back into a utility grid network in a city through reversible
power substations. Thus, the surplus regenerative energy can be used by other electricity facilities outside
of a subway system. However, this is not yet diffused, as it needs to modify the substations greatly, which
is complex and comes with high costs [11].

The management of timetables and ESS belong to different departments in subway systems. Thus,
they were developed and optimized separately in the past. Regenerative energy from braking trains can
either be utilized by traction trains immediately or be stored in ESS for later use. Thus, when ESS is used in
a subway subway system, the utilization of regenerative energy is different from without it. It is obvious
that the configuration of ESS affects its effect on energy saving. In addition, note that the effect of ESS is
also affected by the timetable used. As a timetable defines the schedules of all the trains, it determines the
synchronization of traction and braking trains, which affects the regenerative energy that can be absorbed
by ESS. Thus, when a timetable is changed, the effect of energy conservation is changed accordingly,
even if the ESS remains unchanged. On the other hand, by absorbing and/or releasing electrical energy,
ESS affects currents on the power supply line, thus the utilization of regenerative energy between traction
and braking trains is also affected. Therefore, both timetable optimization and the configuration of ESS
affect substation energy consumption, and their effects on energy saving interact with each other. However,
the integration of timetable optimization and ESS has seldom been studied in the past literature. As will
be shown in Section 2, most of the studies on REU improvement focus on timetable optimization, a few
talk about the configuration of ESS, and only very few of them study the integration of these two methods.

Motivated by the above, we present in this paper an integration optimization problem to reduce
energy consumption in a subway system, which simultaneously uses timetable optimization and the
application of WESS. To reduce the financial cost caused by WESS, we formulated a dual-objective
optimization problem. An e-constraint method together with an Improved Artificial Bee Colony (IABC)
algorithm are designed to the problem, and numerical examples are conducted to show the effectiveness
of the proposed methods.

The main ideas of this work are shown in Figure 1. The main contributions are concluded as follows:
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1. Anintegration of timetable optimization and WESS is proposed to maximize regenerative energy
utilization, thus to minimize substation energy consumption in a subway system.

2. To maximize energy saving with the least cost, a dual-objective optimization model is thereby
formulated to simultaneously minimize substation energy consumption and the total investment cost
of WESSs. Note that a subway line is divided into several electricity supply intervals. One WESS is
installed in each electricity supply interval. The size of each WESS can be different from each other,
and both of them are greater than or equal to 0. Their total size determines the total cost of WESSs.

3. To solve the proposed dual-objective optimization problem, an e-constraint method is first designed
to transform it into several single-objective optimization problems. Then, an improved artificial bee
colony algorithm is designed to solve these single-objective optimization problems sequentially.

4. Numerical examples are constructed based on the actual data obtained from a subway system in
China to show the effectiveness of the proposed resolution methods. A set of Pareto optimal solutions
is obtained. i.e., for each value of the total size of WESSs, the minimal substation energy consumption
is determined, and the optimal configuration of each WESS and the correspondingly optimized
timetable are obtained to reach the maximum energy saving.

The remainder of this paper is organized as follows. We review the related work on improvement of
regenerative energy utilization in Section 2. In Section 3, a dual-objective optimization problem is proposed
to simultaneously minimize substation energy consumption and the corresponding WESS costs, and a
mathematical model for the proposed problem is formulated. To solve the dual-objective optimization
problem, we design both an e-constraint method and an improved artificial bee colony algorithm in
Section 4. Then, numerical experiments are conducted in Section 5 to show the effectiveness of the
proposed method. Finally, Section 6 concludes this paper and points out some future research directions.

Dual-objective optimization model Resolution

methods

Decision variabls Objectives

Single-objective

Minimize K e-r(;oerlitézln optimization
Timetable Substation models
energy
consumption
Improved
WESS Minimize total artificial bee Pareto optimal
configuration cost of WESSs °°|°_”y solutions
algorithm

Figure 1. Main ideas of this work.
2. Literature Review

In this section, we review the studies on improvement of regenerative energy utilization. As two main
measures, timetable optimization and the application of energy storage systems are studied separately in
the literature. However, their integration was not considered until recently. Consequently, a dual-objective
optimization problem to minimize energy consumption and investment cost was also seldom studied.
The main related publications are reviewed in the following.

An optimized timetable can improve regenerative energy utilization between traction and braking
trains, hence reduce substation energy consumption in a subway system. In addition, the cost of timetable
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optimization is relatively low. Therefore, timetable optimization has been studied by many researchers to
save energy [7,8,13-27]. However, ESS was seldom considered in these studies, which limits their effects
on energy saving. Furthermore, most of the studies are single-objective optimization problems and only a
few of them are dual-objective optimization ones, which limits the resolution methods to be applied in
our work.

In a single-objective timetable optimization problem to save energy, the direct objective is to maximize
regenerative energy utilization, which may be represented by energy or the overlap time between trains’
traction and braking phases. Mathematical models of timetable and regenerative energy utilization
are formulated in these studies, and the problems are usually solved by an analytical method or an
intelligent algorithm, which are helpful for further research. For example, Ramos et al. [13] present a
timetabling problem to maximize the overlap time of the speed-up and slow-down actions of trains.
Kim et al. [15] propose a multi-criteria mixed integer program to minimize the peak energy consumed and
to maximize regenerative energy utilization through timetable optimization. Pena et al. [16] propose a
timetable optimization model for an underground rail system to maximize regenerative energy utilization.
Fournier et al. [17] develop an optimization model to maximize regenerative energy utilization by subtly
modifying dwell time for trains at stations, and a hybrid genetic/linear programming algorithm is
implemented to tackle this problem. Yang et al. [18] propose a cooperative scheduling model to maximize
the overlap time of accelerating and braking processes of adjacent trains. Yang et al. [21] formulate an
integer programming model with real-world speed profiles to minimize traction energy consumption by
adjusting dwell time. They coordinate the arrivals and departures of trains in the same electricity supply
interval (ESI), such that regenerative energy is effectively utilized. A genetic algorithm (GA) is designed to
solve their problems in both [18,21]. Zhao et al. [20] develop a nonlinear integer program to maximize
regenerative energy utilization, which searches for the optimal headway and dwell time at each station.
Gong et al. [23] present a timetable optimization model to maximize regenerative energy utilization with
dwell time control, and GA is used to find a near-optimal solution.

Few studies on timetable optimization are dual-objective optimization problems, where energy
conservation and passenger time are usually minimized at the same time. The way to formulate a
dual-objective optimization model and the possible resolving method are referrable. e.g., Yang et al. [8]
propose a dual-objective timetable optimization model to coordinate up and down trains at the same
station to improve regenerative energy utilization and reduce passenger waiting time. Two objectives
are combined into one by a weighted-sum method, and it is solved by GA. Zhao et al. [19] propose a
dual-objective optimization problem to maximize regenerative energy utilization measured by the overlap
time and to shorten total passenger time. Two objectives are combined into one through weighting,
and a simulated annealing (SA) method is designed to solve it. Xu et al. [24] propose a dual-objective
optimization problem to minimize both passenger time and traction energy, by controlling running time
at each section and dwell time at each platform. They adopt a weighted-sum method to combine two
objectives into one, and designed a genetic algorithm to solve it.

Installing ESS also can improve regenerative energy utilization, thereby reducing substation energy
consumption in subway systems. Therefore, few researchers have studied the application of ESS in subway
systems. Although timetable optimization is seldom considered in these studies, the modelling method
of ESS is referable to our work. Ceraolo et al. [11] develop models to analyze the impact of regenerative
braking in high-speed railway systems, where ESS is used. Feasibility of using wayside and on-board
ESS is analyzed, respectively. They evaluate the cost-effectiveness of different solutions by taking into
account the capital cost of the investment and annual energy saving. The results prove the effectiveness
on improving regenerative energy utilization through ESS application. Ciccarelli et al. [12] propose a
control strategy for on-board super-capacitors integrated with motor drive control. Simulation results
show its effectiveness on energy saving and reducing the voltage surge at the overhead contact line during
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train braking. Liu et al. [28] propose a single-objective timetable optimization problem with application
of WESS to minimize total energy consumption. An algorithm integrating tabu search and simulation is
designed to solve it. Experimental results prove the effectiveness of WESS on energy saving. The model of
WESS energy management is relatively simple in their work. Gao et al. [29] propose a control strategy to
use super-capacitors as WESS, which is helpful for WESS energy management. Huang et al. [30] propose
an energy-saving model to optimize trains’ speed profiles in a subway system. On-board ESS was used as
a basis of their optimization problem and the running time is allowed to be optimized within a predefined
window. A dynamic programming method is used to solve their problems. Kampeerawat and Koseki [10]
propose a single-objective optimization problem to reduce substation energy consumption, which raised
the studies on integration of timetable optimization and WESS. A mathematical model is formulated to
minimize a linear weighted sum of substation energy consumption and the energy capacity of WESS;
then, GA is designed to solve their problem. Although different weight factors can be assigned in theory,
it is hard to find all the non-dominated solutions for the original dual-objective optimization problem.
Ahmadi et al. [31] propose to reduce substation energy consumption in subway systems by simultaneous
application of WESS and speed profile optimization. To demonstrate the validity of the proposed method,
they first optimized the configuration of WESS together with the real world (i.e., non-optimized) speed
profiles to reduce substation energy consumption. Then, the speed profiles and the configuration of WESS
were simultaneously optimized. GA was used to solve their problems. Experimental results prove that
substantial reduction in substation energy consumption was achieved and total size of WESS is decreased
when speed profiles were optimized in comparison with the non-optimized speed profiles.

From the above we can see that the integration of timetable optimization and WESS is very few in the
existing studies, which highlights the first feature of our work. i.e., the energy saving strategy proposed
in this work, which combines timetable optimization and WESS, is challenging and different from the
existing studies. Consequent on the integration of the two different methods, to simultaneously minimize
substation energy consumption and the financial cost of WESS, a dual-objective optimization problem
is proposed, which is also innovative. Furthermore, to solve a dual-objective optimization problem,
a weighted-sum method is often adopted in the previous studies to transform it into a single-objective
optimization problem, where the optimal solutions are limited by the weights adopted. While in this
work we design an e-constraint method to transform the original dual-objective optimization problem
into several single-objective ones, then the Pareto front is able to be obtained in theory [32,33]. Finally,
instead of applying the most frequently used genetic algorithm to solve the single-objective optimization
problems, an improved artificial bee colony algorithm is designed and experimental results prove its better
performance over a genetic algorithm.

3. Mathematical Model

3.1. Problem Assumptions

According to the characteristics of the dual-objective substation energy-consumption optimization
problem, we formulate a mathematical model based on the following assumptions.

1. There is reserve time for dwell time at each platform.
2. The subway line is divided into several electricity supply intervals. Each electricity supply interval
provides energy for several stations and sections. Electricity can be transmitted within an an electricity

supply interval.
3. Each electricity supply interval includes one substation, one WESS and a bank of resistors. Each WESS

can be installed near the place of a substation. Each WESS consists of several parallel Basic Energy
Storage Modules (BESMs). The total cost of all WESSs grows linearly with their total energy capacity
(represented by the number of BESMs in this work).
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4. The transmission loss coefficient of regenerative energy is a constant.

5. The other electrical utilities (e.g., lights and air conditioners) are not considered during the simulation,
i.e., electrical energy can only be consumed by traction trains, resistors and charged into WESS.

6. Regenerative energy is fed back into the power supply line and can be immediately used by traction
trains in the same electricity supply interval. If regenerative energy cannot be used fully by traction
trains, the surplus is charged into WESS and consumed by resistors if needed.

7. The condition of a charge/discharge state transition for a WESS is defined as follows:

e When trains are braking and the power of surplus regenerative energy exceeds a predefined
limit, WESS in the same electricity supply interval begins to charge; When the power of surplus

regenerative energy gets smaller, the corresponding WESS stops charging.
e When trains are in a traction phase and the power of surplus traction energy exceeds a predefined

limit, WESS begins to discharge; when the surplus traction energy gets smaller, WESS stops
discharging (the surplus traction energy demand is satisfied by a substation).

3.2. Train Movement and Timetable Modeling

As shown in Figure 2, we label each station, platform and section with indices y € {1,2,---,Y},
ne{l,2---,Ntand! € {1,2,---,L} in this work, respectively. Note that total numbers of stations,
platforms and sections are Y, N and L, respectively. There are two platforms at each station, except the
terminal station Y, since we dismiss the detailed turnaround process in this work. Thus, we have
N = 2Y — 1. The platforms in stationy € {1,2,---,Y — 1} are labeled as platforms n and N —n + 1

respectively, by noting y = n. In addition, the platform in terminal station Y is labeled as platform

N+1
74_. A section is used to connect any two successive platforms, thus L = N —1 = 2Y — 2. The section

connecting platforms 7 and 7 + 1 is labeled as section I, by noting | = n.

In a subway system, every train travels at the same closed path in a subway system with a time
interval. Every traini € {1,2,- -, I'} begins its travel from platform 1. It runs along the down direction,
through each section and platform sequentially, until it arrives at the terminal station. Then, it turns
around to the up direction and repeats a similar process until it arrives the last platform N and finishes
its travel. In the process, it stays at each platform n € {1,2,---,N — 1} for some time period x;, for
passengers to get on and off the train.

Down direction—
Platform 1 Platform 2 Platform 7
Section 1 Section / — 1 Section /
— e —_— e — :»—]
\ é
Station Station Station Su'it,ion b ;5
1 2 ¥y v 5
N P — -— ... -— y 3
Section £ Section L =/ +2 SectionZ — / + 1 T
Platform Platform & — 1 Platform/ — n + 1 Platform. 2+

« Up direction Note that ¥ = 2V —1 and L = 2V — 2

Figure 2. Train travel process.

A timetable is often used to describe the key time points of trains in a subway system. Given a
timetable, we can easily obtain all the key time points of trains, including the time instant when each train
arrives at and departs from any platform. Dwell time and headway time are two of the most important
factors in a timetable, and they are to be optimized in this work. The running process at a section of
each train is also important for calculating energy consumption. It is often divided into three phases,
i.e,, traction, coasting and braking phases, in the timetable optimization studies [18,21]. Detailed process at
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any section [ and the related parameters are illustrated in Figure 3. A red dotted line stands for a traction
phase, a green solid line for a braking phase and a blue dashed line for a coasting phase. t} is the time
instant when train i is at time point u and section /, where u € {1,2,3,4} is the key time point index of
the running phases at a section, and its value from 1 to 4 represents the start time of a traction phase
(train leaves a platform), switch time from traction to a coasting phase, switch time from coasting to a
braking phase and the end time of a braking phase (train arrives at a platform), respectively. v} is the train
speed when train i is at time point 1 and section [. r/'is the time duration of phase 7 at section I, where
v € {1,2,3} is the train running phase index at a section, and its value from 1 to 3 represents a traction,
coasting and braking phase, respectively. a7 is the train acceleration in phase v at section /. x; ,, is the dwell
time for traini € {1,2,---,I} at platform n € {1,2,--- ,N — 1}, which is the time interval from train i
arrives at to it leaves from platform 7.

Speed (mv/s)
2
7 a?
—
_— v, 'I
1T e ’
a s P
4 9 Q
4 'l
Vie v, B
’ g .
1 2 3 Ti
7 me (S
7 7 ! Xi et ®
7
1 2 1 3 4 1
T lia L liy lirn

Figure 3. General process of a subway train running at a section.

Based on the above, the time of all the key points for all trains is determined by the time instant when
the first train starts its travel (t‘l1 o) via the following procedures:

1. Determine the time of the other key points for train i at section ! by that train’s start time at that section:
Hy=tt+r], ue {234}, y=u-1 o))

2. Determine t!, by the time instant when train i starts its travel:

N+1

. By 1+ Xin ne {1,2,~~~,N—1}\{T},
=9, N+1 @
it Xin+® n=——,
3. Determine t;{o by using t‘ioz
4 _ 4 s v
Bo=t 10 +thii=1to+ Y hie{2,-- I}, ®)
j=1

where t‘io is a given constant which represents the time instant that the first train ends its braking
phase at a virtual section 0 (also means arrival time at platform 1); /; is the headway time between
trains i and i + 1 and it is represented by the time difference of their arrival time at platform 1 in this
work, i.e., hj = t?ﬂ,o — ti‘l,0~
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Travel time of train i is obtained as:
N-1 L
T = Z xi,n+2”l+®r “4)
n=1 1=1

where T; is the travel time duration of train i, i.e., T; = t;-lL — t?o; ® is the turnaround time duration at
terminal station Y.
Operation time of a subway system is obtained as:

I-1
A=ty—ty=Y1h ®)
i=1

where A is the operation time duration of a subway system. It is represented by the first platform in
this work.

Train speed is 0 when a train stops at a platform, and it obeys uniformly accelerated /decelerated
motion in every phase at a section. Thus, train speed is determined as follows:

4 1

0 telty 1t

1 1 1 42
o =1" (£=1h) Fe i bl ®
e (-2) teig, )

171 ! il it

3 (4 3 44

%OM*Q te (8,1,

wherei € {1,2,---,I}and l € {1,2,---,L}; v;(t) is the train speed at any time ¢. Note that a} and 4} are

the maximum traction and braking acceleration of a train at section I respectively, which are both given
o it o ast _ T

constants. In addition, it is easy to obtain a; as aj = ——
-

1

. Thus, the kinetic energy of each train at

any time is determined actually.

3.3. Energy Consumption Calculation

Each electricity supply interval z € {1,2,-- -, Z} has several energy suppliers and consumers, where
the energy suppliers include a substation, braking trains and WESS in a discharging state, and energy
consumers include traction trains, a charging WESS and resistors installed in this electricity supply interval,
as shown in Figure 4. P{(t) is the power of traction energy demand in electricity supply interval z at time
t; PL(t) is the power of available regenerative energy in electricity supply interval z at time #; PS(t) is the
charging power of WESS z at time t; PZ(t) is the discharging power of WESS z at time ; P (t) is the power
of energy consumed by the resistors in electricity supply interval z at time #; P{(t) is the power of energy
supplied by substation z at time .

According to the energy conservation law, the total power of energy suppliers should be the same as
that of energy consumers, i.e.,

PY(t) + PE(t) + PS(t) = P(#) + PE(t) + PL(t) @)

Note that traction trains consume electrical energy and convert it into kinetic energy, and braking
trains supply regenerative energy to the power supply line by converting from kinetic energy. The electrical
energy demand from traction trains are satisfied by regenerative energy first. If regenerative energy is
not enough, the surplus traction energy demand are satisfied by the discharging energy of WESS and
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the energy from a substation. Otherwise, if there is surplus regenerative energy, it can be consumed by
resistors into heat and be charged into WESS for later use.

WESS discharging P Pe WESS charging
power z (£) z(©) power
Power of RE generated ~ po P;(f) Traction power
by braking trains 7 (@) demands
Power

Power supplied by a s . P*  Power consumed
substation PZ ) Slllp ply z by resistors
ine

Figure 4. Energy suppliers and consumers in an electricity supply interval.
3.3.1. Total Traction Energy Demand

The required electrical energy for accelerating train i at section / (denoted as Ef,) is determined by the
kinetic energy increased in its traction phase, and the required electrical power for accelerating train i at
section ] at time ¢ (denoted as Pf,(t)) is its derivative. They are determined as follows:

91 (a0 = (0))7), te (B,

a(t) = (8)
"l( ) 0, else,

a o 1 2
pry = B0 _ [wa(t=th), teltpthl ©
g dt 0, else,

where ¢; and ¥, are constants satisfying ¢, = m /25, and ¢, = m (all)2 /111, respectively, where m is train
mass and 7 is the conversion efficiency from electrical energy to a train’s kinetic energy. Thus, the total
traction energy demand of all trains (denoted as E?) in a subway system is determined as

I L
E=YY Ef)(8). (10)
i=11=1

The power of traction energy demand in electricity supply interval z at time # is determined by all the
traction trains in that electricity supply interval, i.e.,

PI(t) =} ) Pi(t). (11)

Note that the total traction energy demand E” is a constant in this work, as it is not affected by the
change of headway time and dwell time.

3.3.2. Available Regenerative Energy from Braking Trains

The available regenerative energy from train 7 at section / (denoted as Ef.’ ) is determined by the kinetic
energy decreased in its braking phase, and the power of regenerative energy at time t (denoted as Pibl ()
is the derivative of regenerative energy. They are determined as follows:
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92— (o)), te B, i),
E (t) = {53 (CARCHONY e;[ i il (12)
dE? (1) o (ﬁl - t) , te, 1],
b o il o il i7",
Pyt) = —4—= {0, lse, (13)

where 13 and 14 are constants satisfying g3 = mi (1 — 1) /2 and ¢4 = m(a3)*y2(1 — (1), respectively;
12 is the conversion efficiency from kinetic energy to regenerative energy; (; is the transmission loss
coefficient of regenerative energy.

The total available regenerative energy from all braking trains in a subway system (E?) is

M=

EL\(1). (14)

I
Er=Y"
i=1

1

I
—_

The total power of regenerative energy from braking trains in electricity supply interval z is

1
PL(t) =) 3 P (15)

i=1l€A,

3.3.3. Energy Dynamics of Wess

As described in Section 3.1, one WESS is installed in each electricity supply interval, and it is
comprised of several BESMs in parallel. Thus, the energy capacity and maximum power of WESS z are
determined by the number of BESMs «, and BESM specification. i.e.,

Ct =1, x CM,
S (16)
p¢ = PM,

where C¢ and P¢ is the maximum power and energy capacity of WESS z respectively; CM and PM are
given constants, represents the maximum power and energy capacity of a BESM respectively; «; is the
number of BESMs in WESS z € {1,2,-- -, Z}. Thus, the total energy capacity of all WESSs (denoted as C¢)
in a subway system is:

Z
Cct=Y ct=CcMxK, 17)
z=1

where K is the total number of BESMs in a subway system, satisfying K = Zzzzl Kz.

As for the control strategy design and modelling of ESS, there are several good references in smart
home domains. For example, Carli and Dotoli [34,35] present a distributed technique to control the
charging/discharging of ESS, controllable electrical appliances and renewable energy sources in a smart
city scenario. Sperstad et al. [36] formulate the charging/discharging of ESS as a multi-period optimal
power flow problem, and propose a framework of methods and models to handle the uncertainties in
energy exchange due to distributed wind and solar photovoltaic power generation. These studies are
very valuable for the control strategy and explicit modelling of ESS. Nevertheless, besides timetable
optimization, this paper mainly focuses on the optimization of WESS configuration in a subway system,
i.e., to determine the capacity of the WESS in each electrical supply interval. Thus, the control strategies of
WESS are reasonably simplified as in [11,29]. For example, we assume that each WESS can only be in a
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charging, discharging or idle state at a time, the abnormal case that charging and discharging commands
are simultaneously sent to a ESS is not considered.

Note that, according to [11,29], the maximum charging and discharging power of WESS are both
variables changing with its state-of-charge, as shown in Figure 5. The horizontal axes are state-of-charge,
and the vertical axes are maximum charging/discharging power of a WESS. Note that WESS cannot be
thoroughly discharged. For example, the discharging process of WESS stops when its state-of-charge
decreases to By.

Maximum charging power (w) Maximum discharging power (W)
A 'y
P\ P° /
1 > d 1
0 B 0 ﬂo ﬂ' State-of-charge

State-of-charge

Figure 5. Maximum charging and discharging power of WESS.
The state-of-charge of WESS z at time ¢ is defined as:

Qi () 0
S.(t) = éig x 100%, (18)
where s; () and Qf(t) are the state-of-charge and energy stored in WESS z at time ¢, respectively.

The maximum charging and discharging power of WESS z at time ¢ (denoted as P(t) and P4(t)

respectively) are determined as follows:

o P, 0 < S.(t) < Ba,
F(8(0) = @x%%%? Br<Sit) <1, a9)
Pg, ﬁl < SZ(t)/S 1/
PA(52(1)) = WX%Q%?,m<&m<m, 20)
0, 0 < S.(t) < Bo,

where f, is the point where the maximum charging power of WESS begins to decrease; f; is the point
where the maximum discharging power of WESS begins to decrease, and fy is the point where the
maximum discharging power of WESS decreases to 0.

The energy stored in WESS z at time ¢ is determined by its initial state, charging and discharging
energy, i.e.,

t
Q1) = Qs =0)+ [ (PE(t) x 1 — P(O) /s at, @

where Q¢(t = 0) is the energy stored in WESS z at the start time; 3 and 74 are the energy conversion
efficiencies when a WESS is in a charging and discharging state, respectively.

Real-time charging power of a WESS

WESS charges when the regenerative energy from braking trains is more than the energy demand
from traction trains, and the surplus regenerative energy exceeds the threshold of WESS charging. When
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WESS charges, its real-time charging power (denoted at P{(t)) is determined by the surplus regenerative
energy and maximum charging power of WESS, i.e.,

I £ CRORI O ORY .
0=, P < )

where P (t) is the power of surplus regenerative energy in electricity supply interval z , i.e., P;F (t) =
max {sz (t) — Pa(t), 0}; (7 is the proportion coefficient of surplus regenerative energy charging into WESS.
Note that the surplus regenerative energy is partially charged into WESS and partially consumed via
resistors into heat if needed.

Real-time discharging power of a WESS

WESS discharges when the power demand from traction trains is more than regenerative energy from
braking trains, and the surplus traction energy demand is greater than the threshold of WESS discharging.
When WESS discharges, its real-time discharging power (denoted at P#(t)) is determined by the surplus
traction energy and maximum discharging power of WESS. i.e.,

(e {min{&(t) <G BB, P 2 o)

pd
iz
0, P (1) < P{_g’
where P, (t) is the power of surplus traction energy in electricity supply interval z, i.e., P, (t) =
max {Pg(t) - PZb(t),O} ; (3 is the proportion coefficient of electrical energy supplied by WESS when
it is discharging. Note that the surplus traction energy is partially provided by the discharging power of
WESS and partially by a substation if needed.
3.3.4. Substation Energy Consumption

The realtime power of energy consumption from substation z is determined by the surplus traction
energy in electricity supply interval z and discharging power of WESS z:

Pi(t) :max{Pg(t) —PI(t) —Pzd(t),O}. (24)
Thus, the whole day total energy consumption from all substations (denoted as E°) in a subway

system is obtained as:

Zoorthn
ES = 2/ ps(4)dt. (25)

=17t
3.4. Dual-Objective Substation Energy Consumption Optimization Model

For energy optimization problems, it is necessary to consider both profit and costs paid for that.
Note that total traction energy demand is a constant in this work, thereby the profit is maximized if
substation energy consumption is minimized. The cost is determined by the energy capacity of WESS in
this work. It is correspondingly determined by the total number of BESMs. Thus, a mathematical model of
the dual-objective substation energy-consumption optimization problem is formulated as follows:

e  Problem P:
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Z ot
minE* =Y /4“ PS(t)dt = f (H, X, x), (26)
=1 tl,O
Z
minK = Z Kz = fo(%), (27)
z=1
s.t.
h<hi<hi€{1,2,---,1-1}, (28)
Xy <Xy <Xy, i€ {1,2--,I},ne{1,2,---,N-1}, (29)
-1
Yoh=q, (30)
i=1
N-1 L
T< Y xip+ Y n+®<T, ie{l,2,--- 1}, (31)
n=1 =1
ezt ie{1,2,---,1-1}, (32)
xin €Z%,ie{1,2,---,I},ne{l,2,--- ,N-1}, (33)
k. €{0,Z"},z€{1,2,---,2}, (34)

where H = (h],hz, e ]’li, s ,I’l[_l), X = (Xl,Xz, ce ,Xi, s ,XI) ’ where X,' = (xill,xilz, s /xi,N—l)
and x = (x1,%2,- -+ ,kz) in (26) are the decision vectors of headway time, dwell time and number of
BESMs, respectively; h and h are the lower and upper limits of headway time, respectively; x,, and
X, are the lower and upper limits of dwell time at platform 7, respectively; C; is a constant satisfying
C = t‘}’o - t%,Of where t‘fo and t%o are the time instants when the earliest train and the latest train go into
service, respectively; T and T are the lower and upper limits of train travel time, respectively; Z T represents
the set of non-negative integers.

Objective (26) aims to minimize substation energy consumption. Objective (27) aims to minimize the
total number of BESMs, which is a measurement of the cost paid for energy conservation. Constraint (28)
guarantees the lower and upper limits of headway time. The lower limit is determined by safety
requirements of a train signaling system and operation cost, and the upper one is determined by required
service quality. Constraint (29) ensures the lower and upper limits of dwell time for a train at a platform.
They are determined by the passenger flow and its potential variance. Constraint (30) guarantees that
the operation time duration of a subway system is fixed. (31) guarantees the punctuality of each train
travel, which is an important measurement of service quality in a subway system. (32) and (33) ensure that
headway time and dwell time are positive integers, respectively. (34) ensures that the number of BESMs in
a WESS is non-negative.

4. Resolution Method

There are several techniques to solve a multi-objective optimization problem [32,37-40]. The most
popular and straightforward one is a weighted-sum method. It converts the former into a single-objective
optimization problem by using a linear weighted sum formulation that combines all the objectives. Then,
the single-objective optimization problems can be solved by using an analytical method, or commercial
software (e.g., CPLEX), or an intelligent optimization algorithm. A weighted-sum method together
with GA are frequently used in solving dual-objective problems in subway systems [8,24,41]. However,
the weights are hard to decide sometimes. Moreover, this method is inappropriate if not all objectives can
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be represented via a linear combination, and it is ill-suited for a multi-objective problem with non-convex
objective space [32,42].

Another well-known technique to solve a multi-objective optimization problem is an e-constraint
method. This method is first introduced by Haimes et al. [43], some good application examples can
also be found in [38,44]. In solving a multi-objective optimization problem, it aims to optimize only one
primary objective each time, and the other objectives are transformed into constraints. By gradually
changing the constraints with a step length of ¢, a series of optimal results can be obtained. Thus, a set
of Pareto optimal solutions can be found for the original multi-objective optimization problem. It is
very convenient to be applied in the resolution of a dual-objective optimization problem. Since its
first use to solve a dual-objective shortest path problem [45], it has been successfully applied to solve
many problems [32,38,45-49]. Note that the dual-objective substation energy-consumption optimization
problem presented in this work is a dual-objective problem with discrete decision variables (integers),
and objective (27) is obviously linear. Thus, its Pareto front is able to be obtained by using an e-constraint
method in theory [32,33]. Therefore, an e-constraint method is designed to transform the dual-objective
substation energy-consumption optimization problem into several single-objective optimization problems.

To solve these single-objective optimization problems, an improved artificial bee colony algorithm
is designed. By combining the e-constraint method and the improved artificial bee colony algorithm,
the non-dominated solutions of the dual-objective substation energy-consumption optimization problem
are obtained.

4.1. e-Constraint Method

As our main objective is to minimize substation energy consumption in a subway system, we treat
objective (26) in problem P as the primary objective, and objective (27) is converted into a constraint. In this
way, the initial dual-objective substation energy-consumption optimization problem can be transformed
into the following single-objective optimization problems by applying an e-constraint method. The detailed
procedure of applying the proposed e-constraint method is shown in Algorithm 1, and the obtained
single-objective optimization problems are listed as follows. Note that only one objective in the original
dual-objective optimization problem is kept in each single-objective optimization problem, the other
objective is either dismissed or converted into a constraint. The order to solve the single-objective
optimization problems is also important, as the solution of the previous problem may be used in the
following problems.

e Problem P;:

. A
minE* =) /4 P (t)dt = f1 (H,X,x),
2=1"to

s.t.
Constraints (28)—(34).

Note that the objective f1() in this problem is corresponding to objective (26) in problem P, and
objective (27) in problem P is not considered in this problem. By solving problem P;, we obtain the minimal
value of E* denoted as f). It represents the minimal substation energy consumption when sufficient WESS
is installed.

e  Problem P;:
z
min K = Z Kz = fa(x),

z=1
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s.t.
Constraints (28)—(34).

Note that the objective f,() in this problem is corresponding to objective (27) in problem P,
and objective (26) in problem P is not considered in this problem. By solving problem P,, we obtain
the minimal value of K denoted as €. By using an analytical method, it is easy to obtain that e = 0.
It represents the minimal number of BESM installed in a subway system, when substation energy
consumption is not considered. Note that objective vector (f7,eq) is the ideal point of problem P.
It represents the lower limit of the Pareto front, which is unreachable.

. Problem P;5:

z
minK = ) &, = fo(x),
z=1
s.t.

E°=fi(H X,x) < f], (35)

Constraints (28)—(34).

Note that objective (26) in problem P is transformed into constraint (35) in this problem. By solving
this problem, we obtain its optimal result denoted as €p. It represents the minimal number of BESMs
needed while substation energy consumption is optimally minimized. Thus, (f{, &) is a non-dominated
point of problem P. Substation energy consumption cannot be reduced by further increasing the number
of BESMs.

e  Problem Py:

V4 #
minE* =} / " (bt = fi (H,X,x),
z=1" tio

s.t.
K= fz(K) S €0, (36)

Constraints (28)—(34).

Note that objective (27) in problem P is transformed into constraint (36) in this problem. By solving
this problem, we obtain the optimal result of E* denoted as f{. Note that (f{?,€q) is also a non-dominated
point of problem P. It represents the minimal substation energy consumption when a minimal number
of WESS is installed. As en = 0, f{? is the minimal substation energy consumption when a timetable is
optimized and no WESS is installed.

. Problem Ps:

. Zooetfp
minE* = 2/4 Pi(t)dt = f, (H, X, x),
z=1 rl,o

s.t.
K= fo(x) < e, (37)

Constraints (28)—(34).

Note that objective (27) in problem P is transformed into constraint (37) in this problem. Problem
P5 aims to minimize substation energy consumption with a limited number of BESMs. By solving it, we
obtain the optimal result denoted f’. As €, can be assigned with different values, problem Ps represents
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a series of problems. With €, decreasing from €j to €, we obtain a series of optimal results of problem
DPs. Each pair of (f%, €,) is a non-dominated point of problem P. Thus, { (f,€w) |w € {0,1,---,Q}}
constitutes the Pareto front of problem P. Note that e = 0 and K is a non-negative integer in this work.

Algorithm 1 Procedure of applying the e-constraint method

Input: Mathematical model of problem P
Output: { ( f1% €w) } %Non-dominated points on Pareto front

1: Transform problem P into problems Py, P5, P53, P4 and Ps;
2: Solve problems P;, P», P3 and P, sequentially to obtain the optimal results f{), €q, € and

112, respectively;
. Set ) = €p;
: forwo=1to ) —1do

Setew =€u-1—1;

Solve problem Ps to obtain the optimal result f{’;

. end for

: Remove dominated points from { ( fi% ew) |we {0,1, -, Q}} and output the remaining as the Pareto

® N QU oW

front of problem P;

According to [50], one drawback of an e-constraint method is that an improper selection of € may
result in a formulation with no feasible solution in general. Fortunately, the second constraint in our
dual-objective optimization problem, i.e., (27) in problem P is a linear function, and its decision variables
are all non-negative integers. Thus, its objective value K is definitely a non-negative integer too, i.e., the
changing step length of €, can be set to 1 naturally and the complete set of Pareto optimal solutions is able
to be obtained correspondingly, providing the exact solution for each single-objective optimization problem
can be obtained. In addition, for any non-negative value of K, there is always at least one feasible solution
for each ; satisfying K = Y2, k. e.g., one possible solution is x; = K and x, = 0,Vz € {2,3,---,Z}.
Furthermore, whatever value is K, the timetable currently used in a subway system is always a feasible
solution to (26). Thus, the drawback of potentially no feasible solution in an e-constraint method does not
exist for our dual-objective optimization problem.

The results obtained by applying an e-constraint method are illustrated in Figure 6. Point A is the
ideal point and B is the nadir one of the dual-objective optimization problem. Points C and E are the
end points on the Pareto front. Note that point D represents a typical point on the Pareto front. With €,
changes from €y to €q, f{’ is changed from f} to fi* correspondingly, thus point D can be any point on the

green curve in Figure 6.
~ Number of BESMs
f,
&

I

1
0o £ £ [o SEC
Figure 6. Points obtained by an e-constraint method.

The procedure of applying an e-constraint method to transform a dual-objective optimization problem
P into several single-objective ones (i.e., problems P; to Ps) is detailed as follows. Note that the first
objective in problem P (i.e., substation energy consumption) is treated as the primary objective.
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1. Obtain problems P; and P, respectively, where problem P; dismisses the second objective in problem
P and problem P; dismisses the other one. The constraints in problem P are kept unchanged in both
problems P; and Ps.

2. By solving problem Pj, we obtain the minimal value of the first objective (i.e., substation energy
consumption) without consideration of the other objective (WESS cost). The result is illustrated as f{]
in Figure 6. Similarly, by solving problem P,, we obtain the minimal value of the second objective
without consideration of the other one. The result is illustrated as €q,.

3. Obtain problem P; by adding constraint (35) into obtaining problem P,. Note that the constraint is
the first objective function in problem P and f{) is the optimized result of problem P;.

4. By solving problem P3;, we obtain the minimal value of WESS size needed (denoted as €p) whilst
maintaining minimum substation energy consumption. Note that (f}, €o) is a non-dominated point
of problem P, shown as point C in Figure 6.

5. Obtain problem P; by adding constraint constraint (36) into obtain problem P;. Note that the constraint
is the second objective function in problem P and €q, is the optimized result of problem P;.

6. By solving problem P;, we obtain the minimal value of substation energy consumption (denoted as
f) whilst the least size of WESS is installed. Note that (f{?, eq) is also a non-dominated point of
problem P, shown as point E in Figure 6.

7. Obtain problem P5 by adding constraint constraint (37) into obtain problem P;. Note that the constraint
is the second objective function in problem P and €, is a variable which changes from € to e with a
predefined step length. For different values of €, it becomes a different problem. Thus, problem Ps5
represents a series of optimization problems actually.

8. By solving problem Ps with each value of €., we obtain a set of minimal values of substation energy
consumption (denoted as f{V) whilst certain size of WESS (i.e., totally €, number of BESMs) is
installed. Note that each (f{’, €w) is a non-dominated point of problem P, shown as point D in
Figure 6. Also note that point D actually represents a set of points in the green curve, as €, is a
changing from € to €q.

4.2. Improved Artificial Bee Colony Algorithm

For the single-objective optimization problems transformed from problem P, except P,, all the other
problems (i.e., P, P3, P4 and Ps) are nonlinear. It is hard to find an optimal solution by using commercial
software (e.g., CPLEX) within an acceptable time. Thus, heuristic algorithms are often used to find
near-optimal solutions for these kinds of problems [8,10,17-25].

An Artificial Bee Colony (ABC) algorithm is a swarm intelligence algorithm. Since 2005 [51], it has
been successfully used to handle many complicated optimization problems [52-58]. It has been compared
with differential evolution (DE) [59,60], GA [25,53,61], particle swarm optimization (PSO) [62,63] and
evolutionary algorithm (EA) [64] for multi-dimensional numeric problems. Its performance is better than
or similar to these algorithms. Therefore, an improved artificial bee colony algorithm is designed to solve
the single-objective optimization problems in this work.

The proposed IABC starts with an initial set of feasible solutions, where one of them is the currently
used timetable with no WESS, and the others are randomly generated. There are three kinds of bees,
i.e., employed, onlooker and scout bees, used in an optimization process. In each iteration, each employed
bee is employed at a particular solution, and finds a neighbor one via a local search operator, which is
randomly chosen from swap, insertion, mutation and crossover operators; each onlooker bee chooses
a solution by spinning a roulette wheel, and then finds a neighbor one with the same procedure as an
employed bee; each scout bee randomly generates a feasible solution, to enhance IABC’s global search
ability. The best solution found by all bees is kept as an initial one in the next iteration. When the iteration
count reaches a predefined threshold, the algorithm restarts. Note that all the solutions, except the best
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one found, are replaced by randomly generated ones. IABC terminates when the restart count reaches a
predefined limit. Then, the best solution found is output as an optimal result. The main procedure of IABC
is shown in Algorithm 2. The detailed procedure of IABC can also be found in our previous work in [7].
n1, ny and n3 are the numbers of employed, onlooker and scout bees, respectively; 14 is the total number
of all bees, i.e., ny = ny + ny +n3; p1, p2, p3 and py are the probability of swap, insertion, mutation and
crossover operators been chosen, respectively; M; and M, are predefined iteration count limits; $* is a
specified initial solution; Sy, Sz, - - - , and S,,, 41 are one of 14 + 1 solutions, respectively; S" and F’ are the
optimal solution found and its fitness value, respectively.

Algorithm 2 Procedure of IABC
Input: ny, ny, n3, 14, ps, pi, Pm, pe, M1, Ma, S*
Output: s, F

1: Set Sy, 41 = S*; %init the best solution found
2: forj =1to M; x M do

3 if (] mod Mz) =1 then
fork =1tony do

4

5: Randomly generate a feasible solution Sy;
6: end for

7. endif

8 fork=1tongs+1do

9

: Calculate the fitness value F; for each solution Sg;
10:  end for
11:  Sort Fy, F, - -+, Fy,41 in "descend’ order and pick out the first 7; number of elements to generate a
list F;
12: Generate a list § containing the 77 number of solutions corresponding to F;
13: Set Sp,41 = 5(1),' Y%record the best solution
14: Set Fy 41 = F(y); %Fitness value of the best solution

Y%employed bee phase
15:  fork =1ton; do
16: Set solution B = §y);
17: Generate Sy from B via a local search operator randomly chosen from swap, insertion, mutation

and crossover;
18:  end for

%onlooker bee phase
19:  fork =1tony do

20: Set B as a solution in § by roulette wheel selection;
21: Generate S,,, 1 from B via a local search operator randomly chosen from swap, insertion, mutation

and crossover;
22:  end for

Y%scout bee phase
23:  fork =1tonsdo

24: Randomly generate a feasible solution S,,, 4, +k;
25:  end for
26: end for

27: Output s = Syy+1 and F = Fu, 415
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The currently used timetable without WESS is used as an initial solution and the idea of elitism
is adopted in IABC, to ensure the optimized solution is not getting worse than it. In each iteration,
all solutions are evaluated and sorted based on their fitness values. A list containing 77 best solutions is
generated accordingly. Then, each employed bee is assigned to a specific solution in the list sequentially,
and a new solution is generated by applying a local search operator. The local search operator is randomly
chosen from swap, insertion, mutation and crossover operators with the probability of p1, p2, p3 and
pa, respectively. To ensure each newly generated solution is feasible, i.e, satisfying constraints (28)—(34),
its feasibility is checked immediately and repair is applied if it is infeasible. Similarly, each onlooker bee
generates a new solution based on an assigned solution in the same way. The difference between employed
and onlooker bees is as follows: the former is associated with a particular solution in the best solution
list, and the latter randomly chooses one in the list by spinning a roulette wheel. A scout bee randomly
generates a feasible solution in each iteration to ensure the global search ability of IABC. IABC converges
to a local optimum in M, iterations. Then, the best solution found so far is kept and the other solutions
are replaced by randomly generated feasible ones, to reduce the chance of IABC being trapped in a local
optimum. Thereafter, a similar process repeats until the total iteration count reaches M; x M,. Finally,
a near-optimal solution and its fitness value are obtained.

5. Experimental Results and Analysis

To show the effectiveness of the proposed method, numerical examples are conducted based on the
actual data obtained from Yanfang Line in Beijing, China. The actual dwell time at each platform and
running time at each section are shown in Table 1. Note that x;, is dwell time at a departure platform with
index n, x,; and X;, being its lower and upper bounds in the optimization process, and r; is the running
time from platform x;, to x,,;1. They are the same for all trains. The headway time and other parameters of
Yanfang Line are listed in Table 2. Note that headway time between any two successive trains is identical in
the current timetable. The sections in each electricity supply interval are given in Table 3. A super-capacitor
is selected as a BESM in this work. Parameters about WESS are shown in Table 4.

Table 1. Actual dwell time and running time of Yanfang Line.

Departure Platform Indexn  x, (s) x,(s) X, (s) Arrival Platform Indexn+1 17 (s)

1 30 25 35 2 129
2 30 25 35 3 98
3 30 25 35 4 117
4 30 25 35 5 135
5 25 20 30 6 139
6 30 25 35 7 84
7 30 25 35 8 128
8 30 25 35 9 141
9 30 25 35 10 136
10 30 25 35 11 124
11 30 25 35 12 83
12 30 25 35 13 140
13 25 20 30 14 132
14 30 25 35 15 117
15 30 25 35 16 96
16 30 25 35 17 119
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Table 2. Other Parameters of Yanfang Line.

Parameter Value Parameter Value Parameter Value

I 131 N 9 m(kg) 287,080

0] 482 h(s) 422 T (s) 542
n 0.7 1 0.8 e} 0.05

T(s) 2576 7 (s) 2516 T (s) 2636

D (s) 188 u} 0.8 a? (m/s?) 1

C1 (s) 65236 1l (s) 27 73 (s) 21

Table 3. Electricity supply intervals distribution of Yanfang Line.

Electricity Supply Interval Index Section Indices
1 8 9 - - - -
2 5 6 7 10 11 12
3 3 4 13 14 - -
4 1 2 15 16 - -

Table 4. Parameters about WESS.

Parameter Value Parameter Value Parameter Value

P (KW) 2000 C" (kWh) 1 o 1
PE (kW) 300 lg (kW) 300 l3 0.1
B2 (%) 90 B1 (%) 30 Bo (%) 20

Parameters of IABC are set as shown in Table 5. GA is also applied to solve the single-objective
optimization problems as a baseline method. The detailed processes of GA can be found in [21]. To compare
TABC and GA fairly, the population size of GA is set to be 40 and its maximum iteration count is 300.
The local search operators used in GA include selection, crossover and mutation. The probability of
crossover and mutation are 0.8 and 0.2, respectively.

Table 5. Parameters of IABC.

ne no, ns M1 Mz ps  pi Pm Pc
10 10 20 6 5 01 01 02 06

Compared with identical dwell time, more energy can be saved when dwell time at a platform varied
for different trains. But regenerative energy utilization improvement is relatively limited, and it increases
the solution space of an optimization problem dramatically [25]. Thus, in order to simplify the problem
and keep consistent with the actual timetable, we keep the dwell time for different trains i and j at platform
n identical in the experiments. i.e., x;, = x;,,, Vi, j € {1,2,..,I}andn € {1,2,..,N —1}.

The experiments are implemented in MATLAB 2014 and runs on a notebook with Intel(R) Core(TM)
i5-3210M CPU @2.50 GHz, 12 GB RAM and a Windows 7 Operating System.

The simulation results are are shown in Figure 7. Note that there are several WESS in a subway line,
different WESS may have different number of BESMs. The horizontal axis in Figure 7 is the sum of the
BESM numbers in each WESS. The number of BESMs equals 0 means there are no WESS installed at all.
When it is greater than 0, the detailed configuration in each WESS should be obtained in the optimized
solution. The vertical axis is the substation energy consumption. A black asterisk in Figure 7 denotes
substation energy consumption with the current timetable (i.e., the timetable is not optimized). Note that

135



Energies 2019, 12, 1876

the configuration of each WESS is set as the optimized result, as there does not exist an actual configuration
of WESS for each case. A blue cross denotes an optimized result obtained by GA where timetable and
WESS are simultaneously optimized, a green circle denotes an optimized result of our dual-objective
optimization problem obtained by IABC, and a red “+ “ in a green circle denotes a non-dominated point
on the Pareto front of problem P.
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Figure 7. Traction energy saved in different numbers of basic energy storage modules.

From the experimental results, it is easy to see that: (1) Substation energy consumption decreases
with the total size of WESS increases, and the decreasing speed gradually slows down. (2) With the same
size of WESS installed, timetable optimization further reduces substation energy consumption, which
shows the effectiveness of the integration optimization of timetable and WESS. (3) IABC and GA can
both to solve the single-objective optimization problems, and IABC performs better than GA, as the
results obtained by IABC dominate those obtained by GA. (4) A set of Pareto optimal solutions of the
dual-objective optimization problem is obtained by applying the proposed e-constraint method and IABC.
The non-dominated points are diverse and well distributed over the Pareto front.

Set the current timetable with no WESS installed, which is the actual conditions in the experimental
subway line, as a basis for comparison, substation energy consumption reduces by (56.293 —
52.180)/56.293 x 100% = 7.31% when timetable is optimized without WESS invested, optimization of
WESS with total size as 37 BESMs reduces substation energy consumption by (56.293 — 50.663) /56.293 x
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100% = 10.00% when timetable is optimized, and the decrement comes to (56.293 — 46.331) /56.293 x
100% = 17.70% when timetable is optimized together with 37 BESMs installed as WESS. Thus, timetable
optimization and WESS installation can both improve energy conservation, and the integration of them
reaches the greatest extent. Note that the results we obtained is a set of Pareto optimal solutions,
each element of them reduces substation energy consumption to different degrees with different WESS
investment cost. The experimental results are helpful for optimal decision making. Based on relationship
between energy conservation profit and WESS cost, decision makers can easily choose a preferred solution
according to their particular needs, e.g., the solution with the lowest cost, the one with the greatest profit,
or that with the best cost-effectiveness.

As an illustration of one optimized solution, the optimized timetable and configuration of each WESS
when the total number of BESMs as K = 37 are given in Figure 8. The upper part shows the difference
between the optimized headway time and that in the current timetable; the lower left part shows the
optimized dwell time and the current dwell time; in addition, the lower right part shows the numbers of
BESMs in each WESS, note that there are four electricity supply intervals in this subway line, which means
four WESSs are installed. It is seen that the headway time and dwell time are slightly changed from the
current timetable, and the configuration for each WESS is proposed. Note that there are several electricity
supply intervals in a subway system, and one WESS is installed in an electricity supply interval. Thus,
there are several WESSs in a subway system (e.g., WESS 1 to z). As each WESS is independent from others,
they can have different capacities (i.e., number of BESMs) in theory.
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Figure 8. One optimized timetable and WESS configuration.
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The profiles of the state-of-charge of each WESS are shown in Figure 9. The peak values of all WESS
are between 90-100%. There is some residual capacity, but it is very small. Thus, this kind of WESS
configuration is reasonable for regenerative energy utilization, i.e., if the total number of BESMs is reduced,
some regenerative energy may not be able to be utilized; and if the number was increased, the increased
energy capacity would be a waste of money.
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Figure 9. State-of-charge of each WESS.

A real-world subway line is often subject to minor real-time perturbations which affects the adherence
to the timetable [7,17]. The presence of unexpected disturbances brings uncertainties to scheduling
optimization problems [65,66], which may affect the effectiveness of the optimized results. To make it clear,
the problem and method proposed in this work are intended to be used offline indeed, which means the
optimization problem is solved only once before trains go into operation and the potential uncertainties
are not particularly considered. However, the offline method is still of great significance, as the size of
each WESS is hard to be changed over time; it should be decided at the first stage of design.

To solve the potential uncertainties in real-world application, there are two alternative ways. One is
to adopt a real-time optimization method [65,66], e.g., using a receding horizon principle to optimize the
timetable iteratively; the other is to evaluate the robustness of the optimized results on disturbances and
subject to it if acceptable (i.e., the optimized results are not too sensitive to disturbances). It is relatively
complicated to introduce an online optimization method in this work, so we leave it as our future work
direction and adopt the second method here.

To evaluate the robustness of the optimized timetable, we conduct the following experiments by
adding random noise to it. In the experiment, we traverse the headway time and dwell time vector and
add a random number to each element in it. The random number is randomly chosen from set {6, 0, 6}
(s), which represents an actual noise. As a comparison, we add this king of noise both on the current
timetable and the optimized one, and ¢ is assigned with different values to compare their effects on energy

138



Energies 2019, 12, 1876

conservation. To be justified, we run the experiment 100 times with each value of § and their average
substation energy consumption is obtained, respectively. The experimental results with J varies from 0 to
3 are given in Table 6.

Table 6. Substation energy consumption (SEC) for timetable with noise.

Noise J (s) SEC with Current Timetable (kWh)  SEC with Optimized Timetable (kWh)  Energy Saving Ratio

0 56,293 46,331 17.70%
1 56,302 46,418 17.55%
2 56,313 46,592 17.26%
3 56,233 46,925 16.55%

Note that § = 0 represents no noise added on the timetable. It is seen that the energy saving ratio
slightly decreases when the disturbance on train operations becomes larger. However, even with 3-s of
noise, the energy saving ratio is still around 17% for the optimized timetable over the current one. Thus,
the optimized result is robust enough for energy conservation under disturbances. The proposed offline
optimization method is obviously acceptable to this particular problem.

6. Conclusions

We propose an integration of timetable optimization and WESS to improve regenerative energy
utilization, thus to reduce substation energy consumption in a subway system. A dual-objective
optimization model is formulated to simultaneously minimize substation energy consumption and WESS
investment cost accordingly. To solve the dual-objective optimization problem, an e-constraint method is
first designed to transform it into several single-objective optimization problems; then, an improved
artificial bee colony algorithm is designed to solve them sequentially. By combining the proposed
e-constraint method and improved artificial bee colony algorithm, a set of Pareto optimized solutions for
the original dual-objective optimization can be obtained. Experiments based on the actual data from a
subway system in China are conducted to illustrate the procedure to use them and their effectiveness.
The results are useful for decision makers in a subway system, based on which they can easily make a
sensible trade-off between energy saving profit and WESS investment cost according to their practical
needs. In addition, the proposed improved artificial bee colony algorithm is also compared with a
commonly used genetic algorithm during the experiments to prove its effectiveness.

The proposed model and resolution method can be used in any subway system which is equipped
with regenerative braking systems, to maximize energy saving with the minimum investment cost paid for
that. Although the optimized results are robust enough to random disturbances, one limit of the proposed
method is that it is mainly applicable for offline optimization now. Thus, part of our future work will
be the study of an online optimization method, to better handle the parameter uncertainty problems
caused by unexpected disturbances to train operations. In addition, train speed profiles at sections also
affect regenerative energy utilization and substation energy consumption. Thus, in our future research,
we also plan to integrate energy-efficient train operations into our model to further reduce substation
energy consumption.
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Abstract: With the popularity of electric vehicles, lithium-ion batteries as a power source are an
important part of electric vehicles, and online identification of equivalent circuit model parameters
of a lithium-ion battery has gradually become a focus of research. A second-order RC equivalent
circuit model of a lithium-ion battery cell is modeled and analyzed in this paper. An adaptive
expression of the variable forgetting factor is constructed. An adaptive forgetting factor recursive
least square (AFFRLS) method for online identification of equivalent circuit model parameters is
proposed. The equivalent circuit model parameters are identified online on the basis of the dynamic
stress testing (DST) experiment. The online voltage prediction of the lithium-ion battery is carried
out by using the identified circuit parameters. Taking the measurable actual terminal voltage of
a single battery cell as a reference, by comparing the predicted battery terminal voltage with the
actual measured terminal voltage, it is shown that the proposed AFFRLS algorithm is superior to the
existing forgetting factor recursive least square (FFRLS) and variable forgetting factor recursive least
square (VFFRLS) algorithms in accuracy and rapidity, which proves the feasibility and correctness of
the proposed parameter identification algorithm.

Keywords: lithium-ion battery; equivalent circuit model; recursive least square; adaptive forgetting
factor; parameter identification

1. Introduction

Energy shortages and environmental pollution are becoming more and more prominent today.
Therefore, electric vehicles, with many advantages such as resource conservation and environmental
friendliness, have attracted more and more attention. With the rapid development of electric vehicles,
industry standards of lithium-ion batteries have also been formulated. Lithium-ion batteries and their
energy management have received more extensive attention [1]. An accurate state of charge (SOC)
estimation of lithium-ion batteries is required in the testing and practical use of lithium-ion batteries [2].
The equivalent circuit model of lithium-ion batteries is the crucial basis for most SOC estimation
algorithms, such as extended Kalman filter (EKF) [3], adaptive extended Kalman filter (AEKF) [4], etc.
Although the performance of lithium-ion batteries and lead-acid batteries is very different, the reaction
mechanism of the two batteries is basically the same, the conversion between chemical energy and
electric energy is realized by the oxidation-reduction reaction and there is a similar response trend
for the change of input current [5]. In addition, the equivalent circuit parameters are fitted to the
experimental data of lithium-ion battery and lead-acid battery, and it is found that the two batteries
can be characterized by a unified equivalent circuit [6]. Thus, the lithium-ion battery model can
usually be established by referring to that of the lead-acid batteries. At present, the battery equivalent
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circuit model mainly includes Rjn; model [7], PNGV (Partnership for a New Generation of Vehicles)
model [8], Thevenin model [9], and n-order RC equivalent circuit model [10]. The Rj,; model is an
internal resistance model consisting of a DC source and an internal resistance. Although the model
is simple, it does not take into account the internal state of the battery. Hence, the circuit structure
has more defects. It is such an ideal model that it is generally only used in simple circuit simulation.
The PNGV model considering capacitance characteristics accurately reflects the discharge process,
but the equivalent circuit model of the charging process is not discussed. The n-order RC dynamic
equivalent model can reflect the relationship between the internal parameters of the battery and the
temperature or current. However, as the order increases, the complexity of the model increases, which
is not conducive to real-time online calculation of the micro-controller. Therefore, the second-order RC
equivalent circuit model is usually chosen, which not only has good accuracy and dynamic simulation
characteristics, but also has the advantage of lower complexity [11-13].

In view of the complex chemical reaction and physical structure inside the lithium-ion battery,
when the battery is actually used, the internal state of the battery will be affected by the factors
such as ambient temperature, operating conditions, and battery aging degree. Some parameters
in the battery equivalent model also change when the working conditions change. Therefore, it is
necessary to accurately identify the parameters in the battery equivalent model in real time. The
recursive least square (RLS) method is most commonly used for system parameter identification [14].
The RLS is simple and stable, but with the increase of data in the recursive process, the generation
of new data will be affected by the old data, which will lead to large errors. In order to solve the
above problems, reference [15] studies the forgetting factor recursive least square (FFRLS) method.
The proportion of old and new data is adjusted by introducing a forgetting factor into the RLS, so that
the proportion of old data is reduced when new data is available, and the algorithm can converge to
the actual value more quickly. Since the forgetting factor is constant, the dynamic identification ability
and accuracy of circuit parameters using FFRLS will be affected when the charging and discharging
currents change frequently. Therefore, the variable forgetting factor least square (VFFRLS) method
appears [16-18]. The forgetting factor is adjusted according to the square of a time-averaging estimation
of the auto-correlation of a priori and a posteriori error [16]. Reference [17] analyzes the dynamic
equation of the mean square error that can be used to derive a dynamic equation of the gradient of
the mean square error to control the forgetting factor. Since the forgetting factor converges slowly,
the tracking speed of the mutation parameter may decrease. In reference [18], the average input
power estimation and exponential window size expression are introduced to update the forgetting
factor. It is applied to the state regularization QR decomposition RLS method, which improves the
tracking performance, steady-state mean square error, and the robustness to the input power variation.
The calculation of the variable forgetting factor in the references mentioned above is rather complicated
and the computational burden is heavy, which is not conducive to the real-time operation of the
micro-controller. Therefore, an adaptive expression for calculating the forgetting factor relatively easily
is proposed in this paper. Based on the second-order RC equivalent circuit model, it is applied to the
adaptive forgetting factor recursive least square (AFFRLS) method to identify the equivalent circuit
model parameters online. Experiments including the dynamic stress test (DST) are implemented to
verify the real-time performance and accuracy of the AFFRLS algorithm.

2. Lithium-Ion Battery Modeling

The second-order RC equivalent circuit model of a lithium-ion battery is shown in Figure 1.
It consists of an ideal voltage source U,., ohmic resistor Ry, and two RC parallel circuits. U, represents
the open circuit voltage of the lithium battery. R indicates the internal resistance of the battery. The two
RC parallel circuits represent the electrochemical polarization and concentration polarization effects in
the battery reactions. Uy is the battery terminal voltage. The following is the analysis process of the
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equivalent circuit model shown in Figure 1 [13-15]. According to Kirchhoff’s voltage law and current
law, the electrical characteristic equation of the model is expressed by (1).

UL = Uae[SOC(H)] = Uy — Uy = I(£) - Ro

du u
C1'E:I(t)—5—; D)
Cy- d_t2 =I(t) - R_Z
Ro Ri R: I
Ci C: +
+
Une + Ul - + U: — UL
|
o

Figure 1. Second-order RC equivalent circuit model.

Equation (1) is written as a frequency domain expression.

Ry Ry
E=U -U, = -I(s)|R 2
1(8) = Une(s) (S)( O T R Cs 1+R2C23) @
Equation (2) is rewritten to (3).

RoR;C1+RoRyCa+RyR; Ci +R; Ry C Ro+Ry+R

E(s) R052+ oR1C1+ 01%1(%:;(2%21 1+R1Rp 25 4 Roltllgczz
Gls) = I(s) T 2 4 RiCiHRGy 1 @)

S+ RORG 5 T RGRKG

Bilinear transformation s = % . 114_-21 is brought into (3), and Equations (4) and (5) are obtained.

G(Z_l) _ E(k) _ 03 + 64Z_1 + 952_2 )
I(k) 1- 612_1 - 922_2

0, — 2T2-8R;C1R,Cy

1 = ZT20T(RyC1+RyCy)—4R1C R, C,
0, — T2-2T(R;C;+RyCp)+4R C1RoCy

2 = TT23T(R1C1+R2Ca)—4R,C1RyCy
0, — T?(Ro+R; +R2)+2T(RoR C1+RoRaCa+ Ry RaCa+RaR1 Cp ) +4RoR; C1 Ro Ca ®)
3= “T2-2T(R;C;+RCz)—4R,C1RyCy

2T2(Ry+R;+Ry)—8RyR1C1RoCy
ZT2=2T(R1C1+R,C2)—4R, C1 Ry C,
TZ(R(]+R1+RZ)*ZT(R()RlCl+R0R2C2+R1R2C2+R2R1C1)+4R0R1C1R2C2

—T2=2T(R1C1+R,Cp)—4R,C1 Ry Cy

04 =

05 =

Therefore, the recursive Equation (6) is obtained by (4).
E(k) = 01E(k—1) + O2E(k —2) 4 O3I(k) 4+ O4l(k— 1) + O5I(k - 2) (6)

where E(k — 1) and E(k — 2) are the difference between the terminal voltage and the open circuit voltage
at the time of k — 1 and k — 2. I(k), I(k — 1), and I(k — 2) are input currents at the time of k, k — 1, and k — 2.

146



Energies 2019, 12, 2242

Suppose that a, b, ¢, d, f are represented by (7).

a= RO
b = RiC1RCy
¢ =R1Cy 4+ RyCy 7)

d=Ry+R;+R;
f = RoR1Cq 4+ RyR2Cy + R1R2Cy + RyR1Cq

Equation (7) is brought into (5) and simplified to (8).

0, — —8b=21"
17 WrocT+12
0, = 4cT _
2= Ihr2cT+12
_ _ 4ab42¢T+dT?
03 = 4b+2cT+T2 ®)
0, — Bab=24T%
47 G4 2cT+T?
0s — _ 4ab—2¢T+dT?
5= T 42T+ 12

Therefore, Equation (9) is obtained by (8).

_ 04=05-65
4= Tr0,-0,
T2(146,-6,)
b= TUt01-0)
4(1-01-62)
_ T(1+40y)
C=19,-0, ©)
— 203-04-065
i = =299,
f= T(05-03)
= 1-0,-0,

where T is the sampling time.
Suppose 1] = - @, T, == *;2’417

Ry, Cy, and C; can be obtained by (10).

. Thus, the resistance and capacitance parameters Ry, Ry,

R():ll

Ry = [Il(d—a)+uc—f]/("c1—12)

Rzid—ﬂ—Rl (10)
G =mn1/R

G =10/R

3. Online Parameter Identification Principle

3.1. Forgetting Factor Recursive Least Square Method

The RLS method is the most commonly used method for system parameter identification [19].
This method uses the square norm of the discrete function as a metric to get the identification parameters.
Equation (11) can be obtained from (6) when the system error is considered. It is a discrete expression
of the system to be identified.

E(k) = 01E(k—1) 4+ 02E(k = 2) + 031(k) + 04I(k = 1) + 05I(k - 2) + e(k) (11)
Define the parameter vector 6 and the observation data matrix ¢ as follows:

0 = [010,056,05)" (12)
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E(k-1) E(k-2) 1(k) I(k-1) I(k-2)
E(k-2) E(k-3) I(k-=1) I(k-2) I(k-3)
P = : (13)

E(k=m-1) E(k—m-2) I(k;m) I(k=m—-1) I(k—-m-2)

where k denotes the current moment. m is the observation times. ¢ is the known observation data
matrix. 0 is the parameter vector to be estimated. The matrix form of (11) can be expressed from (12)
and (13).

E=q¢0+e (14)

where e is the systematic error vector e = [e(k)e(k—1)---e(k— m)]T. E is the system output vector,
and its data is the observation value of system output E = [E(k)E(k—1)---E(k— m)]”. The evaluation
function of the RLS method is given by (15).

m
J=) le(k=D] =ee (15)
=0
If the derivative of J is zero, the parameter vector 8 can be obtained in the smallest case of (14).
aJ _J T _
B0 = HE-00)(E-p0)] =0 )

¢"E= ¢ g6
When T is a full rank matrix, the parameter estimation of the RLS method is expressed by (17).

0 = (¢Tp) ' p'E (17)

On the basis of the RLS method, the FFRLS method is to add the forgetting factor A as a coefficient
in the observed data matrix ¢ and the system output vector E, they are expressed by (18) and (19).
When each observation obtains new data, the proportion of new and old data is adjusted by exponential
weighting, and then the last obtained identification parameter is corrected. Thus, when the input
variables change, the FFRLS method can respond quickly and obtain better identification parameters
as the system observation data increase.

E = [E(k)AE(k=1)---A"E(k—m)]" (18)
E(k-1) E(k-2) 1(k) I(k—1) I(k-2)
AE(k-2) AE(k-3) Al(k=1) Al(k=2) Al(k=3)

¢ = : (19)

AME(k=m=1) ME(k-m—-2) A"I(k—m) A"I(k-m—-1) A"I(k—m-2)

3.2. Adaptive Forgetting Factor Analysis

A allocates the weights of old and new data, and usually takes a constant of 0.98. When A =1,
the FFRLS method degenerates into the RLS method. Since the forgetting factor is constant, when
the online identification parameter error is very small, the introduction of the forgetting factor may
increase the online identification parameter error. When the online identification parameter error is
very large, it is desirable to optimize the forgetting factor to make the online identification have faster
convergence speed and reduce the identification error. Therefore, it is expected that the forgetting
factor can vary adaptively with the identification parameter error.

The most critical part of the variable forgetting factor least squares algorithm (VFFRLS) is how to
make the forgetting factor adaptively change. In the steady state, the forgetting factor A is close to
or equal to 1. On the contrary, the forgetting factor A tends to be a suitable value, which only affects
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the error of the nearby moment, so that the online identification parameter can be quickly tracked to
the actual value, and A is gradually increased to the optimum value at steady state. An equation for
calculating the adaptive forgetting factor is proposed to achieve the above purpose, it is expressed
by (20).
/\(k) = Amin + (1 - Amin) -he®
e(k) = round((f—"))z)

base

(20)

where A is the minimum value of the forgetting factor. Usually, the range of forgetting factor is
0.95~1 [15,20] and it is found by the experimental data that the equivalent circuit model parameters
identified by the AFFRLS algorithm are accurate and fast as the range of forgetting factor is selected
as 0.98~1, and, therefore, A,y is 0.98. h is the sensitivity coefficient. & may be selected as any value
between 0 and 1, which indicates the sensitivity of forgetting factor to the errors. When # is close to
1 (e.g., 0.99), the forgetting factor changes slowly from 1 to 0.98, which leads to the slow response
speed of parameter identification. Conversely, when / is close to 0 (e.g., 0.01), the forgetting factor
quickly changes from 1 to 0.98, which results in the response speed of parameter identification too
fast and reduces the accuracy. Therefore, h is generally chosen to be 0.9, which takes into account the
balance between the rapidity and accuracy of identification parameters. e(k) is the error at k time and
epase 1S the allowable error reference. Equation (20) shows that the forgetting factor A decreases rapidly
when the kth error e(k) exceeds ep,g,; hence, ey, is usually chosen according to the magnitude of the
expected error. When the identification parameter error is less than ey, the identification parameters
are considered stable and A changes to a larger value. When the error of identification parameters
is greater than ey, the identification parameters are considered unstable and the change of e, is
smaller. The function round(n) represents the integer closest to n. It can be seen from (20) that the
larger the error value, the smaller the forgetting factor ey, and its variation range is between 0.98 and
1; thus, the forgetting factor can be adaptively changed with the error of identification parameters.

3.3. Implementation of Online Parameter Identification Algorithm Based on AFFRLS

It is seen from the above analysis that each parameter in the second-order RC equivalent circuit
model of the lithium-ion battery can be calculated by (10) as long as 01, 0, 03, 04, and 05 in (4) are
estimated. Therefore, it is necessary to identify 01, 0,, 63, 64, and 05 by using the online parameter
identification algorithm based on AFFRLS. The overall block diagram is shown in Figure 2. The specific
implementation flow chart of AFFRLS is shown in Figure 3.

soc
Second-order RC model i Ua is calculated based on (24)
L
Uo=S0C Ro Ri R: I
lif.,p U:l

Online model parameter
identification based on
AFFRLS algorithm

Figure 2. Overall block diagram of the online identification parameters.
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Initialize A, J, ebase, E(-1),
E(-2), 6(0) and Po(0)

]

Figure 3. Flow chart of the adaptive forgetting factor recursive least square (AFFRLS) algorithm.

The online parameter identification algorithm is performed by the AFFRLS. It is known from (12)
and (13) that 0(k) = [010,030405])" and (k) = [E(k—1)E(k - 2)I(k)I(k—1)I(k - 2)]". Where ¢ (k) is

\ 4

Data input matrix

p(k)=[E(k=1) E(k-2) I(k) I(k=1) I(k=2)]

!

Calculate gain Ko
__ PMek
© A+ el P (k)p(k)

!

Calculate output prediction and error
E(k) =0k —1)" (k)
e(k) =U, (k) = U,(k) = 0k = 1)" (k)

!

Update estimation parameter (k)
0(k) = 6(k 1) + K, (k)e(k)

!

Calculate model parameters
Rov Riv Rav Civ G2

!

Update covariance matrix
1
Pk+)=—1I- K, (k)g(k)" 1P, (k)

Update forgetting factor
A(K) = Amint (1= Amin) - hB°0

e(k)= mund((ﬂ)z)

base

Is the estimation completed?

the known data at time k, and 0(k) is the parameter to be estimated at time k.

The given initial value 0(0) generally is a sufficiently small real matrix. At the two moments
before the start of the algorithm, the input current is zero, and the open circuit voltage U, is equal to
the terminal voltage U}, so E(—1) = E(-2) = 0, and the initial ¢(0) value is [0 0 0 0 0]. The gain matrix

K, is calculated by (21) [14].

Po(k—1)¢p(k)

T A o) Pok— (k)

where P, (k) is the covariance matrix at time k and its initial value is an identity matrix.

Hence, the estimated parameter O(k) is updated by (22).

0(k) = O(k—1) + Ko (k) [UL (k) — Upe (k) — O(k — 1) T (k)]
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where the open circuit voltage U, (k) at time k is given by the polynomial between the open circuit
voltage (OCV) and the SOC.

A is obtained from (20) and taken into (21) to obtain the gain matrix K,. Bringing K, into (22) and
01, 0,, 03, 04, and 05 are obtained. The estimated values of Ry, Ry, Ry, Cq, and C; at time k can then be
obtained by (9) and (10).

According to (23), the covariance matrix P,(k) is updated by the obtained gain matrix K,.
The parameter identification at the next moment is performed again. Where I is an identity matrix.

Po(k) = 3= Ko (R)p(k) 1P (k- 1) @)

4. Experimental Verification and Analysis

The special power supply is used to charge and discharge the 3.2 V/36 Ah lithium iron phosphate
battery produced by Shandong Wina Green Power Co., Ltd in Weifang, China. The sampling time is T
=10 s and the environment temperature is 25 °C. The experimental platform and the specification of
the battery are shown in Figure 4 and Table 1, respectively.

( )

Charging and discharging power supply

Computer

- |

Illlh-ﬂl

~af————— AC power

Current

— Power

..... 4 Communication

Voltage

\_ J

Figure 4. Experimental platform.

Table 1. The battery specifications.

Parameter Value
Rated capacity (Ah) 36
Nominal voltage (V) 32
Standard charging/discharging current (A) 12
Charging cut-off voltage (V) 3.7
Discharging cut-off voltage (V) 2.5
Maximum continuous discharging current (A) 108
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4.1. OCV-SOC Curve

Intermittent constant current charging and discharging experiments with 0.33 C standard rate
current recommended by a company are carried out. The charging and discharging experimental
curves are shown in Figure 5, and the obtained SOC-OCV data are given by Table 2. Polynomial fitting
of the experimental data is performed by using Matlab software, Equation (24) is obtained, which
provides an open circuit voltage Uy for the FFRLS or AFFRLS algorithm. The OCV-SOC relationship
curve under this condition is shown in Figure 6. It is seen from Figure 6 that the OCV-SOC curve of the
entire charging and discharging process is approximately a hysteresis curve. Therefore, the influence
of the charging and discharging current direction on the open circuit voltage needs to be considered
during the online parameter identification.

3.8

3.4

Voltage/V
w

24

o

22

Uyepis = 1813.4+50C°-8629.9+SOCE + 17470:SOC7 —19595+50C°
+13285+S0C>—5570.7+SOC* + 1419.9+SOC3-208.1+SOC?
+15.953 * SOC + 2.7228

Uyecna = 3060.5 + SOC?—13713+SOC8 + 25909+S0OC7 —26862+SOCE (24)
+16655+SOC?—6310.9+SOC* + 1434.4 » SOC3-185.1x50C?
+12.471 = SOC + 2.9002
24 3.5 24
Terminal voltage Terminal voltage
Charge current Discharge current
20 mﬁu-ﬂwf 120
m{“w 32 FW_\ 1
16 16
128 §29 12 8
3 s 3
8 8
26
| |

[

0.5 1.5 2 25 3 3.5 0 0.5 1 15 2 25 3 35
Time/s x10% Time/s %10%
() (b)

Figure 5. Voltage and current curves of the intermittent constant current charging and discharging
experiments: (a) Charging process; (b) Discharging process.

Table 2. The state of charge (SOC)-open circuit voltage (OCV) data.

Item 2 3 4 5 6 7 8 9 10 11 12 13
Intermittent constant current charging experiments with 0.33 C standard current
SOC/% 896 1792 26.88 3584 4480 5376 6272 71.68 80.64 89.60 9856 100

OCV/V 2902 3233 3270 3304 3311 3311 3311 3326 3.344 3348 3344 3341 3.615

Intermittent constant current discharging experiments with 0.33 C standard current

SOC/%

149 1045 1940 2836 3731 4627 5522 6418 7313 8209 91.04 100

OCV/V 2,683 2939 3214 3244 3270 3289 3292 3300 3.307 3.330 3.333 3333 3.393
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Figure 6. OCV-SOC relationship curve.
4.2. Online Parameter Identification of Lithium-Ilon Battery Equivalent Model

The dynamic stress test (DST) experiment has a strict charge and discharge process, it is shown in
Figure 7. The cyclic charge current rates are 0.22 C, 0.33 C, and 0.5 C, and the cyclic discharge current
rates are 0.22 C and 0.33 C, respectively. Under these conditions, the validity of the online parameter
identification algorithm can be more rigorously verified.

T T

20 ‘ Charging and discharging current | _|

< 10 i
<
e

3 0 1

10 il

I 1 1

0 5000 10000 15000

Time/s

Figure 7. Charge and discharge current waveform of dynamic stress testing (DST) experiment.

Figures 8 and 9 are the identified parameter curves of the FFRLS algorithm and the AFFRLS
algorithm under the DST conditions, respectively. Comparing Figures 8 and 9, it can be seen that the
parameters identified by the FFRLS algorithm are relatively stable, but the identification ability of
dynamic parameter change is insufficient. The parameters identified by the AFFRLS algorithm have
obvious fluctuations, which more accurately reflect the complex characteristics of real-time variation of
each parameter with the change of charging and discharging current. The dynamic parameters also
have more spikes, which fully highlights the identification ability when charging and discharging
currents are frequently switched. Figure 10 shows the adaptive forgetting factor A. It can be seen that
the forgetting factor A has many spikes. And it is adaptively varied with the change of charging and
discharging current, which is beneficial to enhance the dynamic parameter identification ability of the
AFFRLS algorithm.
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4.3. Comparative Analysis of the Prediction Effect of the Lithium-Ion Battery Terminal Voltage

The experimental conditions in Figures 11 and 12 are the same as those in Figure 7. The FFRLS
algorithm and the AFFRLS algorithm are used to predict the lithium-ion battery terminal voltage
respectively on the basis of the identification parameters shown in Figures 8 and 9, and Figure 11 is a
comparison of the measured terminal voltage and the terminal voltage identified by the FFRLS and
AFFRLS algorithms. Figure 12 is a comparison of the measured terminal voltage and the terminal
voltage identified by the VFFRLS algorithm of literature [16] with a certain weight coefficient. It may be
determined from Figures 11 and 12 which algorithm identifies the circuit parameters more accurately
and responds faster.
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Figure 11. Comparison of the measured terminal voltage and the terminal voltage identified by the
FFRLS and AFFRLS algorithms: (a) Terminal voltage comparison curve; (b) Scatter plots of relative
errors; (c) Distribution statistics of relative errors.
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Figure 11a is the measured terminal voltage and the terminal voltage identified by the FFRLS
and AFFRLS algorithms. Figure 11b shows the scatter plot of relative error for FFRLS and AFFRLS
algorithms. The range of absolute value of relative errors in Figure 11b is divided into 10 intervals, and
the points of relative errors falling into each interval are counted, and Figure 11c is obtained. As can be
seen from Figure 11c, the relative error distribution of AFFRLS in the range of (+0.5%) is significantly
higher than that of FFRLS, while the relative error distribution in other ranges is mostly lower than
that of FFRLS.

From the aspect of the sample average and standard deviation, sample average value of the relative
errors is 0.372% and sample standard deviation of the relative errors is 0.947 for FFRLS. The AFFRLS
sample average value is 0.136%, and the sample standard deviation is 0.526. The sample average and
standard deviation of AFFRLS algorithm are smaller than those of FFRLS algorithm.

The FERLS algorithm and AFFRLS algorithm are tested by F-test. Assume Hy: There is no
significant difference in the total variance between the two algorithms. H;: There is a significant
difference in the total variance between the two algorithms. Significance level is set to 0.05 and tail
type is bilateral, H = 1, p = 3.9233 x 1071% is obtained. The confidence interval of mean difference is
[2.9293, 3.5856], and we can see from H = 1, p = 3.9233 x 1071%? < 0.05 that the original hypothesis is
not accepted, i.e., there is a significant difference in variance between the two algorithms.

The FFRLS algorithm and AFFRLS algorithm are tested by t-test. Assume Hy: There is no
significant difference in the average value of the two algorithms. Hj: There is a significant difference in
the average value of the two algorithms. The significance level is 0.05, the tail type is bilateral, and
the variance type is unequal. H = 1, p = 3.9716 x 10”17 is obtained, the confidence interval of mean
difference is [0.18189, 0.29135]. We can see from H =1, p = 3.9716 x 1017 < 0.05 that the original
hypothesis is not accepted, i.e., there is a significant difference in the average value between the
two algorithms.

In summary, the average value of AFFRLS algorithm is closer to zero than that of FFRLS algorithm,
and the variance is smaller, which shows that the parameter identification result of AFFRLS algorithm
is more accurate than that of FFRLS algorithm.

Figure 13 is a real-time variation curve of the forgetting factor obtained by the algorithm of
literature [16] under a certain weight coefficient. It can be seen from Figure 12 that this algorithm also
has a good terminal voltage prediction capability, but it is more demanding on the weight coefficient.
When the weight coefficient is not appropriate, the forgetting factor will be too small and the parameter
changes drastically, which may lead to the divergence of the algorithm. While the AFFRLS algorithm
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in this paper limits the variation range of the forgetting factor, it has better stability and the range of
correlation coefficients is more relaxed.
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Figure 13. Real-time variation curve of the forgetting factor A in the literature [16].

The VFFRLS algorithm of the literature [16] to be compared is written into the same program
together with the AFFRLS algorithm proposed in this paper. The two algorithms run in parallel and
measure the computing time corresponding to each experimental data respectively. Last, the total
computing time of the two algorithms is obtained by accumulating the computing time, respectively.
The average calculation time of the AFFRLS algorithm in this paper is 17.65 ms, and that of the
literature [16] is 26.05 ms. The average calculation time is saved by 32.25%. This indicates that the
adaptive algorithm of this paper is simpler, the operation time is shorter, and the real-time performance
is better, which is beneficial to the practical application of the algorithm in the micro-controller such as
digital signal processor (DSP).

5. Conclusions

In this paper, the second-order RC equivalent circuit model of the lithium-ion battery is analyzed,
and the online identification algorithm of the equivalent circuit model parameters based on the AFFRLS
is studied. The correctness of the equivalent circuit model parameter identification in the case of
charging and discharging is verified by the DST experiment, and the prediction terminal voltage
obtained by the model parameters are compared with the actual terminal voltage. The experimental
results show that the proposed AFFRLS algorithm has a more accurate parameter identification ability
than the original FFRLS algorithm. Compared with other VFFRLS algorithms, it has better stability of
parameter identification and shorter operation time.
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Abstract: The development of Li-ion batteries has enabled the re-entry of electric vehicles into the
market. As car manufacturers strive to reach higher practical specific energies (550 Wh/kg) than
what is achievable for Li-ion batteries, new alternatives for battery chemistry are being considered.
Li-Sulfur batteries are of interest due to their ability to achieve the desired practical specific energy.
The research presented in this paper focuses on the development of the Li-Sulfur technology for use
in electric vehicles. The paper presents the methodology and results for endurance tests conducted
on in-house manufactured Li-S cells under various accelerated ageing conditions. The Li-S cells were
found to reach 80% state of health after 300-500 cycles. The results of these tests were used as the
basis for discussing the second life options for Li-S batteries, as well as environmental Life Cycle
Assessment results of a 50 kWh Li-S battery.

Keywords: energy storage ageing and degradation; life cycle assessment; second-life energy storage
applications; Li-Sulfur batteries

1. Introduction

The history of the electric vehicle (EV) is full of back and forth. It was born in the 19th century
before the first internal combustion engine vehicle (ICEV), but was soon abandoned. It resurged in
the 1890s by the hand of General Motors but was also soon abandoned. It was not until the arrival
of lithium ion batteries, with their clearly higher performance in comparison to other energy storage
systems, that the EV again entered the market in 2010. This time, though, apart from technical and
economic issues, the development and implementation of country and region-specific environmental
policies and directives was crucial for market penetration [1].

With the market share of electric vehicles (EVs) increasing and EV adoption being widely
debated [2], research related to EV energy consumption, environmental impact and economic impact
has increased on a yearly basis [3]. As part of this, and due to the increasing interest of adopting Circular
Economy principles, Life Cycle Assessment studies have been conducted to quantify the environmental
impact of EVs with the goal of reducing the pressure on ecosystems and natural resources [4].

Life Cycle Assessment (LCA) is the current state-of-the-art for quantifying the environmental
life cycle impact and is thought to be valuable for assessing the potential impact of moving towards
an electrified transportation infrastructure [5]. LCA is defined as the “compilation and evaluation
of the inputs, outputs and the potential environmental impacts of a product system throughout its
life cycle” [6]. LCA studies of EVs have focused on impact categories such as climate change and
energy demand. This is due to the fact that variation in the electricity grid mix has a large influence on
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the overall result, and thus decarbonization of the grid mix will lead to further improvements in the
environmental impact of the EV [7]. Along the same line, improvements in driving range and efficiency
of the battery will also lead to a lower environmental impact. Therefore, many efforts have focused
on the environmental analysis of the use phase of the EV. However, components such as batteries,
that generally use scarce and precious materials, also present environmental concerns that need to be
addressed, such as resource depletion. An LCA approach is necessary to give a more complete picture
of the environmental burdens caused by EVs, from raw material extraction through to final disposal.

In order to normalize the results from one LCA study to the next, most studies have assumed
a total lifetime driving distance above 100,000 km [8,9], a consumption of between 0.12 [10] and
0.2 kWh/km [11,12], and a battery lifespan that is equivalent to that of the EV. Other studies have
conducted scenario analysis on the driving distance, the consumption, and the battery lifespan
(including one or more battery replacements [13]). In terms of End-of-Life (EoL) of the EV battery,
degradation to 80% of the initial battery capacity is considered the appropriate lifespan for mobility
purposes, after which the battery should be replaced [14]. However, this 80% limit has been debated in
relation to the real needs of the EV owner [15], as trips are often well below 100 km [16] and may still
be supported with a battery below the suggested 80% State of Health (SoH). Once the battery reaches
its EoL, there is an opportunity to reuse the battery in stationary applications [17], referred to as the
second life of the battery [18].

There are three main strategies to consider regarding second life batteries, each having positive
and negative aspects. The first suggests that the best option from an economical perspective is to use
the batteries exactly as they are when extracted from the vehicle, without any further manipulation.
The battery pack is installed as one unit in a portable container [19,20], or a tertiary building knowing
that the battery might not be the most suitable for the stationary application. The second strategy is
based on the concept that the battery re-use should concentrate on modules, which are relatively easy
to dismantle from the battery pack and will allow for the battery to be sized according to the second life
application. In this case, the repurposed battery can use modules from different car manufacturers [21].
Finally, the third strategy suggests that the dismantling of the EV battery should be at cell level in order
to select the cells that have similar degradation. This selection allows perfectly homogeneous batteries
to be built [22]. However, besides the choice of the strategy and stationary application to use, there are
still other issues to consider before a positive revenue is generated from the defined business case,
such as battery ownership and battery collection, among others [23,24].

Battery performance is another aspect being considered for increased deployment of EVs. Not
all Li-ion batteries are equal, differing in the chemical composition of the anode, cathode and doping
elements to provide various performance characteristics, such as higher energy density, higher power
density, longer lifespan or improved safety. Currently, nickel manganese cobalt oxide (NMC) batteries
are preferred by the automotive sector [25] due to their relatively high energy density, acceptable
lifespan and safety level. Another chemical composition used by Chinese car manufacturers is Iron
phosphate (LEP) that has a lower cost and good lifespan but provides lower energy and power densities
compared to NMC. Finally, nickel cobalt aluminum oxide batteries (NCA) provide higher energy
and power densities than NMC, but have lower lifespans and safety inconveniences [26]. Due to the
different options available for Li-ion batteries, research has been done to analyze the environmental
impact of battery manufacturing. Studies have indicated that the preferred NMC batteries perform
worse than the other types from an environmental perspective [13,27].

Despite the quite good technical performance of Li-ion batteries that allowed the return of EVs,
the cost of the batteries is still too expensive for a massive deployment [28]. Moreover, car manufacturers
aim to reach specific energies of approximately 550 Wh/kg to increase the battery capacity and reduce
the overall weight of EVs, and in turn eliminate range anxiety concerns of EV owners. Since Li-ion
batteries are thought to have achieved their practical specific energy limit [29], which ranges between
100 and 250 Wh/kg, new alternatives for battery chemistry are being considered that have higher
practical specific energy limits, such as Li-Sulfur (Li-S) [30], lithium air, and all-solid-state batteries [31].
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From the aforementioned alternatives to Li-ion, the research presented in this study focuses on
Li-S technology as part of the work conducted under the framework of the HELIS H2020 project [32]
that aims to develop Li-S batteries for automotive purposes. This paper first presents the analysis
of the Li-S battery ageing tests that were conducted on in-house manufactured Li-S cells (achieving
around 300-500 cycles at 80% SoH). From these results, the second life options and possibilities are
discussed together with the results for an environmental Life Cycle Assessment (LCA) study. The LCA
is conducted on a 50 kWh Li-S battery and uses the results from the ageing tests to define the lifespan
of the battery. The work presented here is focused on the analysis of the evolution of the capacity
related to the SoH and the efficiency of the cells. The study of the internal mechanisms that lead to
degradation, material activation and self-discharge will not be addressed in this paper, but will be
included in future work.

2. Materials and Methods

This section is divided into two subsections. The description of the cell ageing tests and how the
results will be treated is presented in the first section. The second section presents the environmental
LCA methodology.

2.1. Ageing Tests

The ageing tests of the Li-S technology were performed by exposing in-house manufactured coin
cells to endurance tests under laboratory conditions in a thermal chamber. Note that these coin cells
were part of the second generation of cells resulting from the HELIS project. The cell composition was
based on a sulfur-carbon composite cathode and Li-metal anode. The cathode was fabricated using
a conventional doctor blade approach, consisting of 80% sulfur-carbon composite, 10% conductive
carbon and 10% Polyvinylidene fluoride (PVDF) binder. Electrodes were punched in a disc and
dried at 80 °C prior to the manual coin cell assembly. The cells contained 2 mgS/cm?/side with a
theoretical capacity of 1675 mAh/gS yielding the final capacity in the range of 1 mAh, although some
variability was observed due to the manual manufacturing process. An optimized amount of 1M
lithium bistrifluoromethanesulfonimidate (LiTFSI) in 1:1 dimethyl glycol (DME) and dioxolane (DOL)
electrolyte [33] was used, resulting in a ratio of about 35 uL/mgS. It is noted here that this ratio was
used in the coin cells for project purposes to ensure cell performance, but was reduced when scaling to
larger cell sizes.

The testing platform included a Bio-Logic BCS series potentiostat with 24 channels for multiple
simultaneous testing, an Angelantoni FM600BT climatic chamber for low temperature testing and a
DRY-line VWR oven to regulate high temperatures (Figure 1). At the end of the tests, EC-lab software
was used to extract all data for further analysis.

Figure 1. Image of the testing equipment.
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A total of six cells were tested combining different temperatures (=10 °C, room temperature and
45 °C) and current (C-rate) conditions (from C/5 to 2C) to determine which (if any) of these factors
can be considered the principal ageing factors that accelerate the ageing phenomena that occurs in all
types of batteries:

e Room Temperature (RT), C-rate: 2C (J26)

e Room Temperature (RT), C-rate: C/10 (provided by SAFT Battery Manufacturer)
e  Temperature —10 °C, C-rate: C/2 (J4)

e Temperature —10 °C, C-rate: C/5 (J1)

e Temperature 45 °C, C-rate: 2C (J33)

e  Temperature 45 °C, C-rate: C/5 (J32)

Note that there was only one cell per test due to the channel limitations of the equipment and the
duration of the experiments. Although one cell might not be enough to ensure the absolute validity
of results, it was preferred to test different scenarios rather than just a few but with a redundancy in
the number of cells following the same profiles. It should also be noted that the second cell, cycled at
room temperature (RT) and following a 10 h charge/discharge cycle profile, had the particularity to
be the only cell manufactured by SAFT, the battery manufacturer in the HELIS project. All the other
cells (J1, J4, J26, ]32 and J33) were built in the Catalonia Institute for Energy Research (IREC) facilities
following manual processes. Furthermore, at —10 °C, the operative capacity of the cells submitted to
relatively high rates was residual (less than 10% of the capacity identified at room temperature), being
impossible to retrieve reliable information from these tests, which is the reason that the maximum
cycling rate at —10 °C was done at C/2 instead of 2C.

All the endurance tests at low C-rates followed non-stop symmetric constant current capacity
cycles. That is, charges and discharges, which have the same C-rate (no matter if it is a charge or
discharge process) occurred consecutively without any pause between cycles and without having a
constant voltage period to achieve a full charge. All charges stopped at a maximum voltage of 2.6 V
while discharges stopped when the minimum of 1.9 V was reached. Moreover, the capacity fade
presented in the results section are directly extracted from these continuous cycling and not from
specific “control cycles.” Note that the continuous constant current cycling allows the batteries to
age relatively quickly compared to using constant current-constant voltage strategies, but it goes in
detriment of reliability, as the resulting data might present higher dispersion.

On the other hand, due to the particularities of the charge/discharge voltage profile of Li-S,
the effective or functional capacity of a cell might dramatically change depending on the C-rate but
independently of the ageing of the cell. Consequently, the instant performance of Li-S should be clearly
differentiated. Figure 2 (left) shows that the behavior of the discharge of Li-S batteries clearly has three
phases, an initial small voltage drop (an abrupt step just after the beginning of a charge or discharge)
of about 0.2 V (from 2.6 to 2.4 V), followed by a continuous voltage decrease and, finally, a plateau that
has a slight voltage recovery prior to the final descent of voltage until reaching the minimum limit of
1.9 V. This is the common behavior of a Li-S battery as the kinetics of the polysulfides inside the cell are
related to voltage [34]. However, when exposed to higher currents (Figure 2 right), the initial voltage
drop caused by the internal resistance is much higher (around 0.4 V) forcing the minimum voltage of
1.9V to be reached during the continuous voltage decrease of the second phase and before entering in
the last plateau [35]. In consequence, the functional capacity of the cell is divided by almost 2, and
thus should be considered during the ageing analysis.
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Figure 2. Charge/discharge voltage profile of a cell cycling at C/5 (left) and at 2C (right).

Additionally, as five of the cells were manufactured in-house following a non-industrialized
process, their capacity is substantially lower than the cell built by SAFT (Table 1) and they also have
quite a large dispersion between themselves. Itis worth to remark that all cells were manufactured using
the same active materials and electrolyte and contain the same sulfur loading, the differences observed
here are due to the manufacturing process (manual and industrial) and the inherent imperfections
linked to the manual processing of the components.

Table 1. Initial capacity of cells.

Cell Number Initial Capacity (mAh)

1 1.97
J4 118
126 0.83
132 0.92
133 0.68
SAFT 2.62

Due to the low capacity and large dispersion, the battery degradation was evaluated by analyzing
the evolution of SoH through the endurance cycling tests. In this study, the SoH is calculated as the
ratio between the capacity at the current cycle discharge divided by the capacity of the first discharge
done by the cell (Equation (1)).

SoH = Cap;/Cap, (1)

where Capi; is the initial Capacity and Cap is the capacity at the current cycle.

Using this process, the degradation of the battery can be easily compared between the different
endurance tests to be able to extract the functional effects of temperature and current intensity to
the available capacity. Note that for cells having lower capacity, the small dispersion caused by
the measurement equipment is amplified when relating it to SoH. To ease the interpretations of the
evolution of SoH results and the trends derived from them, one data point from every 100 cycles is
presented in the graphics in the results section (to have fewer overlapping data points in the same
graph). Note that the presentation of results as SoH versus cycles instead of SoH versus capacity
throughput (Ah) is also clearer due to the relatively important data dispersion of the initial capacity of
the in-house manufactured cells. In addition, the study also analyzes the degradation of the battery
in terms of efficiency, which is related to the internal resistance increase of the cells [36]. To do so,
the study considers the ratio between the total capacity (Ah) charged to the cell divided by the capacity
discharged from the cell for each cycle (Equation (2)).

Eff = Ah Charge/Ah Discharge. )

To understand the exact evolution of the resistance, pulse tests [37,38], or even more precise
methods, such as Electrochemical Impedance Spectroscopy (EIS) [39-41], could have been used.
However, as the main scope of the study was to evaluate the functional characteristics of the cells
and their relation to the End-of-Life, Second Life applications and LCA, it was decided that the SoH
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and efficiency were enough for this analysis and thus these results were not included in this study.
The analysis of the internal mechanisms that explains the exact behavior of cells at every instant will
be performed in future work.

2.2. LCA Methodology

LCA is divided into four stages including, Goal and Scope definition, Life Cycle Inventory (LCI),
Life Cycle Impact Assessment (LCIA) and Interpretation. The Goal and Scope definition states the
overall goal of the study and defines the system boundary, functional unit, and all other methodological
choices required to meet the goal. The functional unit describes the function of the product system
being assessed and is the unit for which the data is collected. Often the functional unit is scaled to
a more appropriate unit for quantifying the outputs of processes within the system boundary that
fulfill the function, referred to as the reference flow [6]. The LCI is the data collection step, and the
LCIA categorizes the LCI data into impact categories defined in the scope, applies the associated
characterization model and quantifies the overall environmental impact for each category assessed.
The interpretation stage checks that the LCI and LCIA have met the requirements defined in the goal
and scope.

For this study, an environmental attributional LCA was conducted for the production, use and
disposal of a 50 kWh Li-S battery in accordance to ISO 14044 [6]. The Li-S battery is based on the
composition of the Li-S coin cells manufactured in-house and considers the ageing tests as described in
Section 2.1. The goal of the study was to quantify the environmental impact of a Li-S battery for use in
an electric vehicle from cradle-to-grave, which includes raw material extraction, materials production,
battery manufacturing, use and final End-of-Life disposal (Figure 3). It should be noted that the system
boundary of the study does not include transportation, the production of the Battery Management
System (BMS), or the production of the electric vehicle.
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Figure 3. System boundary for the Life Cycle Assessment (LCA) of the 50 kWh Li-Sulfur (Li-S) Battery.

The functional unit of the LCA is defined as 1 km of driving based on an average of 0.17 kWh/km
for EVs [42] and an 85% efficiency [43] that takes into account both the charge/discharge efficiency
confirmed in the results section as well as the efficiency of the charger. The reference flow that is
commonly applied in LCA studies of EVs is 150,000 km, particularly for comparisons between EVs
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with Li-ion batteries to ICEVs [44]. Historically, LCA studies conducted on Li-S batteries assumed
that the Li-S chemistry would be able to achieve the 150,000 km, however, the degradation curves
from laboratory performance tests on Li-S batteries were not included in this assumption. Therefore,
another goal of the study was to use the ageing data to determine the total kilometers reached during
the lifespan of the battery.

In order to include the actual performance of the Li-S battery in the LCA, an alternative reference
flow was thus defined as total km for one Li-S battery. The total km was quantified using ageing test
data from laboratory tests on Li-S coin cells to calculate the SoH of the battery per cycle. It should be
noted that calendar ageing tests were also conducted on the coin cells, however, these results were
not considered in the ageing tests for this study as further investigation is required to determine the
relationship, if any, between cycle and calendar ageing for Li-S cells. The end-of-life of the battery was
defined as 60% SoH for several reasons further discussed in the results section regarding the ageing
test performance.

The LCA was modeled using GaBi Professional software, a tool designed for LCA studies assessing
a variety of impact categories. Both GaBi 8 Professional and Ecolnvent 3.5 datasets were used in the
study. The electricity mix shown in Figure 4. was used for this study and corresponds to the EU-28
grid mix.
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Figure 4. Electricity grid mix used in the LCA (EU-28 mix). Source: Adapted from GaBi
Professional Database.

A key limitation of this study includes the scaling up from the composition of a coin cell to a
battery. However, including laboratory data from Li-S ageing tests in an LCA case study of Li-S
batteries is a step forward for the environmental assessment of this technology.

2.2.1. Li-S Battery Manufacturing Inventory Data

The mass of the active material (electrolyte, anode and cathode) in the Li-S coin cells was scaled
to the mass of active material required for a 50 kWh Li-S battery based on the gravimetric energy
density (GED) and the ratio of total mass to active mass. The GED and active mass were calculated as
given in Equations (3) and (4), respectively. As indicated previously, the electrolyte ratio used in the
coin cells is 35 uL/mgS for project purposes to ensure proper cell performance. However, since this
amount of electrolyte is not optimal and it is assumed that larger cells can reach at least 6 uL/mgS, if
not lower, 11.5 uL of electrolyte was estimated as the amount per coin cell for the LCA. It is worth to
remark that the electrolyte ratio assumed is closer to the actual for EV-size batteries and provides a
more realistic approach for LCA studies. This is further confirmed in [45], where a ratio of 10 uL/mgS
is recommended when scaling up from coin cells. Similarly, the quantity of lithium anode in the coin
cell is in excess, therefore, the diameter of the Lithium ribbon was assumed to be the same diameter as
the cathode. For the active material in the cathode, a 1:1 ratio of carbon to sulfur was used. Table 2
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gives the specifications of the coin cells used in scaling up to the 50 kWh battery. The mass of each
active material in the battery was calculated using Equations (5) and (6).

Ccc
GED = — x V| 3
Mant cc ®3)
Mam = Mg + Maee + Mce s “)
1x10°  E
Scaling Factor = AZA(Z/I X GTBb , )
Scaling Factor
Mx, = Mxq X 000’ (6)

where Ccc is the capacity (mAh) of the coin cell, V¢ is the voltage of the coin cell, M aps is the mass (g)
of the active material in the coin cell, Mg , Ma. and Mc. are the masses (g) of electrolyte, anode
and cathode in the coin cell, Ep is the energy (kWh) of the battery, and GED is the gravitational energy
density (Wh/kg). My, (kg) and Mx_. (g) are the masses in kilograms and grams for X (electrolyte,
anode or cathode) in the battery (B) and coin cell (CC), respectively.

Table 2. Inventory data to calculate Scaling Factor.

Specification Quantity Unit
Anode (Ma.) 0.0064 g
Cathode (Mc..) 0.0078 g
Electrolyte (Mg;..) 0.015 g
Mass active material (Mapr) 0.026 g
Mass coin cell (TMcc) 3.59 g
Capacity (Ccc) 3.3 mAh
Voltage (Vc) 2.3 \%
Capacity Density ( Iﬁi; ) 128.4 Ah/kg
Gravimetric Energy Density (GED) 295.4 Wh/kg
Energy Li-S Battery (Ep) 50 kWh

The mass of the other battery components, including the cell container, separator, module and pack
packaging, and cooling system were taken from a previous LCA study conducted on Li-S batteries [43],
which used the BatPac software for sizing Li-ion batteries and adapted it to a Li-S system. Similarly,
data estimated in [43] for industry manufacturing of Li-S batteries was used for the energy consumption.
Table 3 gives the quantities used for the 50 kWh Li-S battery.

Table 3. Bill of materials for the 50 kWh Li-S battery.

Li-S Battery Composition Quantity  Unit Data Source
Cathode (Mc,) 51.4 kg Equation (6)
Anode (Ma,) 42.0 kg Equation (6)
Electrolyte (Mgy,) 75.9 kg Equation (6)
Separator 6.9 kg [43]
Cell container 19.6 kg [43]
Module packaging 22.6 kg [43]
Cooling system 27 kg [43]
Pack packaging 41.8 kg [43]
Assembly Energy 12,016 M) [43]

consumption !

! average value was used.
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2.2.2. Li-S Battery Use and End-of-Life Inventory Data

The EU-28 grid mix was used for the use phase. Tests for the ageing of coin cells as described in
Section 2.1 were used to compute the total amount of kilometers and, thus, extract the energy used
during the use phase. To do so, the linear relationship between SoH and number of cycles from the
results of the ageing tests served to obtain Equation (7), which was then used to quantify the total use
phase energy requirement for each scenario. Three scenarios were defined, being a minimum, average
and maximum number of cycles achievable by the battery to reach 60% SoH according to the ageing
results for the various cells tested. It should be noted that these scenarios were defined from the cells
that cycled for more than 800 cycles during the ageing tests.

e

3 + nb) , 7)

n
Er :EBZ(mn+b) = Ep
i=1

i=

where E7 is total accumulated energy (kWh), Eg is the energy of the battery (kWh), m and b are the
slope and intercept of the fit linear curve for SoH versus cycle number, respectively, and # is the
cycle number.

Data for the recycling of Li-S batteries was provided by ACCUREC (project partner) who developed
a recycling process for Li-S cells that is in compliance with EU-directive 66/2006. This directive sets a
minimum recycling efficiency requirement for batteries of 50% of the mass of the battery.

2.2.3. Impact Categories Assessed

The LCA data was aggregated into impact categories and summed to give a total result.
The impact categories assessed include resource depletion, acidification, eutrophication, climate
change, photochemical ozone formation and energy demand. The characterization model and
characterization factors used are defined in Table 4.

Table 4. Description of impact categories assessed.

Impact Characterization

Category Factor Unit Model Description
Resource Abiotic Depletion The depletion of reserves due to the
. Potential (ADP kg Sb-eq. CML 2001-Jan 2016  unsustainable extraction of
Depletion .
elements) non-renewable minerals
Acidificati The emission of substances that lead
Acidification clarication kg SO,-eq. CML 2001-Jan 2016  to the change in soil acidity and
Potential (AP)
ecosystem damage
Futrophication The release of nutrients that lead to
Eutrophication P kg PO;3-eq. CML2001-Jan2016 growth of algae and cyanobacteria
Potential (EP) . . . . .
and a relative loss in species diversity
. . The emission of greenhouse gases that
Climate Global'Warmmg kg CO,-eq. CML 2001-Jan 2016  lead to increased radiative forcing
Change Potential (GWP) L
and raise in mean global temperature
The emission of substances that
Photochemical ~ Photochem. Ozone undergo photochemical reactions to
Ozone Creation Potential kg CoHy-eq. CML 2001-Jan 2016  form ozone at ground level which
Formation (POCP) leads to human health impacts and
ecosystem damage
Primary energy .
Energy demand (ren. and PED, gross calorific The consumption of b9th renewable
M] and non-renewable primary energy
Demand non-ren. value

resources, PED)

sources measured prior to processing
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3. Results and Discussion

Following the same structure as in Section 2, this section first discusses the results of the ageing
endurance tests and then the LCA results.

3.1. Ageing Results

The results obtained from the data analysis are presented together in Figure 5 for all the
endurance tests to highlight the similarity of the degradation trends (SoH reduction) that all cells
follow independently of the cell.
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Figure 5. State of Health (SoH) evolution through cycling.

Although there is a large dispersion in the measurements (Figure 5), cells seem to follow a linear
degradation of about —0.00057 SoH per cycle on average. This value is close to the values obtained by
Shang et al. [46] where, after a first rapid decrease, cells continued with a constant (0.000625 SoH per
cycle) capacity decrease for over 200 cycles. Additional relevant information can be extracted from
Figure 5, for instance, there seems to be no clear relationship between the C-rate and the acceleration
of cell degradation. This is demonstrated by the fact that the cell from SAFT (purple dots), which
cycled at C/10 (the lowest current under test) and J33 (red dots), which cycled at 2C (20 times faster)
follow almost the same trend. Similarly, temperature also does not appear to be a relevant factor that
accelerates the ageing of Li-S cells. This can be observed in the figure by comparing the cells J4 (blue
dots), SAFT (purple dots) and ]33 (red dots) that cycled at =10 °C, room temperature (RT) and 45 °C
respectively, and for which similar degradation trends are obtained.

To clearly state this first impression, Table 5 presents the slope of the linear curve that best fits
each cell submitted to endurance tests and the corresponding R square value. Effectively, these three
cells (J4, ]33 and SAFT) have a slope that is close to the average, reinforcing the idea that temperature
and current have no relevant effect on ageing. Notice that the most rapid degradation occurs at C/5 at
45 °C (J32), however, there are too few points to ensure that this trend is going to be sustained after
more cycles. In fact, it is worth mentioning that the behavior of the cell cycling at C/5 at —10°C (J4)
initially had a similar degradation pattern but then stabilized for some cycles before again decreasing
more rapidly. This behavior might indicate that the initial aggressive slope would be softened if cycled
for a longer period. Similarly, after more than 600 cycles, cell 26 (cycling at 2C and RT) reaches the 60%
SoH and then seems to suffer a substantial drop but in fact it re-stabilizes at 40% SoH.

The differences in capacity fading observed with Li-S cell cycling have also been noted in previous
research. The trend that shows an initial linear capacity fade transitioning into a stabilization period
and then continuing with a capacity loss was indicated in [47] for cells cycled at C/10 and C/5, where
stabilization periods of 150 to 350 cycles were observed. Furthermore, an increase of the capacity
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during the initial cycles, as observed for cell ]33, has been highlighted in [48] for Li-S cells cycled at
C/10 and C/5 and temperatures of 20, 30 and 40 °C.

Table 5. Initial capacity of cells.

Cell Identifier Endurance Test ~ Share of Capacity Loss per Cycle R?

J1 C/5at-10°C 0.00069 90.45%

J4 C/2at-10°C 0.00049 88.36%

726 2C atRT ! 0.00080 97.96%

32 C/5at45°C 0.00100 99.60%

]33 2C at45°C 0.00058 89.61%
SAFT C/10atRT ! 0.00061 88.62%
Average 0.00057 74.29%

! RT = Room Temperature.

Thus, it seems reasonable to state that Li-S battery ageing does not behave like the Lithium ion in
response to changes in temperature and C-rate. In fact, Lithium ion battery ageing is strongly affected by
several factors that accelerate the ageing in different ways [49,50]. These factors are Temperature, State
of Charge (SoC), C-rate and Depth of Discharge (DoD) [51]. Typically, temperature has an exponential
effect on ageing, meaning that the battery lifespan shortens as temperature increases [52,53]. The SoC
and C-rate, on the other hand, follow first and second polynomial relations being more severe when
the battery remains fully charged or suffers from higher intensive discharges [54,55]. The DoD follows
a logarithmic behavior, which reverts in almost no ageing effect during small ripples or cycles that
increases rapidly as the DoD increases, becoming relatively stable after 40% DoD [56].

In comparison to the Li-ion ageing behavior, the endurance tests presented in this section indicate
that Li-S ageing seems independent of changes in temperature and C-rate confirmed by the linear
degradation trends with similar slopes under varying test conditions. However, this statement does
not mean that the C-rate and temperature have no effect on Li-S battery performance. In fact, the tested
coin cells displayed higher stability when working at higher temperatures and low C-rates but also
presented poorer efficiency, as described later in this section. In addition, these results show that the
sudden death or ageing knee that typically occurs in Lithium ion batteries [57,58] is not appreciable in
Li-S batteries (some cells achieved 40% SoH and continued working).

There is another important aspect to look at related to battery ageing performance for traction
purposes, which is the efficiency and loss of power. These two aspects are closely related to the internal
resistance of the battery by the Ohm law, the higher the internal resistance, the higher the losses.
Lithium ion batteries generally suffer an exponential internal resistance increase as SoH decreases,
that is, the internal resistance increase is quite low at the beginning but is more and more noticeable
as the battery ages. For instance, a study regarding the battery ageing of real electric vehicles using
the internal resistance shows how at 88% SoH, the internal resistance of all the cells in the battery
was slightly higher than at the beginning, but at 82% SoH their internal resistance was already 20%
higher [59] and it may rise even higher if the SoH goes beyond this point [57], up to 200% at 60%
SoH [60].

To analyze what occurs with Li-S, the evolution of the efficiency measured for all cells during
the endurance tests versus the SoH (Equation 1) was plotted (Figure 6). Note that the dispersion is
relevant due to the constant current cycling method, the particularities of the entrance into the second
plateau, and the fact that the efficiency versus SoH is presented in the figure. However, it is difficult
to identify any correlation between the evolution of efficiency versus SoH and the temperature or
C-rate. The shuttle effect has an important impact on efficiency [61], making Li-S cells less efficient
at higher temperatures and at lower C-rates [62]. It should be noted, however, that the cell with a
lower efficiency and a quicker efficiency loss is the SAFT cell, which was manufactured following an
industrial process. This cell was cycled at a lower C-rate where the self-discharge of the battery might
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noticeably interfere [63]. Yet, the loss of efficiency through ageing is relatively low decreasing from
99% to 96% in all the cases except for the SAFT cell and cell J33. This is in accordance with the quite
stable efficiency values presented in [64], where three cells containing different separators to inhibit the
shuttle effect were tested for more than 500 cycles. It further demonstrates that the internal resistance
does not seem to increase in an exponential way as occurs with Li-ion batteries.
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Figure 6. Evolution of the efficiency of the cells in relation to SoH.

All these aforementioned issues indicate that, effectively, aged Li-S batteries perform similarly
to new batteries but differ in initial capacity. Therefore, from a strictly ageing perspective, it seems
that there should not be much difference in using brand new Li-S cells or aged cells apart from the
bigger volume of the battery built from re-used cells and an uncertainty of a sudden malfunction
of the cell corresponding to a shorter lifespan. However, some of the cells continued working well
below a 50% SoH and, in one case (]26), 30% SoH was reached before the test was finally stopped.
The stabilization of the capacity fade at below 50% SoH was also observed in previous research
on Li-S pouch cells [65], however the number of cycles achieved by these cells was reported to be
significantly lower, reaching a 20% capacity fade before 50 cycles. The observed stabilization resulted
from the inhibition of polysulfide diffusion caused by similar concentrations of sulfur/polysulfide in
the electrolyte and carbon interface being reached [65].

It should be noted that most applications will fail before such a low SoH is reached, and thus, a
limit of 60% SoH at the end of the first and second life is acceptable, which is the value used for the
LCA discussed in the following section. Furthermore, the preliminary ageing results presented for the
few cells studied should be confirmed by future research.

The following recommendations should be considered when using Li-S batteries in stationary
applications for both new or re-used batteries:

e Aloss of capacity occurs when cycled at high current rates (caused by the impossibility to enter
the second plateau shown in Figure 2).

e  Low temperatures result in a sudden decrease in performance of Li-S batteries (at temperatures
below 0 °C)

e  High temperatures result in a loss in efficiency (due to an increase of the shuttle effect)

e Verylow C-rates or long durations without use result in a loss in efficiency (due to the shuttle effect)

3.2. Life Cycle Impact Assessment Results and Interpretation

The Life Cycle Impact Assessment results are presented and discussed in this section. For the
system boundary defined in Figure 3, the ageing test results from Section 3.1 were used to define three
scenarios for the analysis. From Figure 5, the number of cycles achieved by the battery to reach 60%
SoH can range from 552 to 912 cycles. The scenarios defined for the use phase are summarized in
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Table 6. From this table, Scenario 2 is very close to and Scenario 3 exceeds the 150,000 km defined
for most LCA studies on EVs, however, Scenario 1 does not quite meet this distance. Particularly for
Scenario 1, the options for battery replacement may be considered depending on the End-of-Life of
the EV.

Table 6. Battery cycling scenarios from ageing test results

Scenario Number of Cycles  Cell Identifier Ageing Test Er (kWh) Distance (km)

S1 552 J26 2C atRT 22,660 113,290
S2 722 - Average 1 28,790 143,955
S3 912 J4 C/2at-10°C 35,350 176,750

! average of all tests.

Figure 7 shows the impact per total kilometers achieved for each scenario defined in Table 6 and
for all impact categories assessed as described in Table 4. The figure also shows the contribution of the
production, use and disposal life cycle stages to the overall result. As can be seen, the production and
disposal stages are the same for all scenarios. This is due to the fact that only one battery was considered
for each scenario. For the use phase, however, the impact for each scenario differs depending on the
quantified energy required as calculated with Equation (7). The energy required is dependent on the
total number of cycles the battery is able to achieve before reaching its defined End-of-Life of 60%
SoH. Therefore, the life cycle environmental impact of the Li-S battery changes based on the number
of cycles (and hence the total kilometers) the battery is able to achieve. However, the amount of this
change differs depending on the impact category being assessed. For example, the contribution of the
use phase to the ADP elements (referred to as ADP from here forward) is insignificant compared to the
production stage and therefore changes in the use phase will not significantly change the overall result.
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Figure 7. Impact per total kilometers achieved for each scenario defined in Table 6 with a breakdown
of the contribution from production, disposal and use phases of the life cycle.

For all the other impact categories assessed (AP, EP, GWP, POCP, PED), however, the use phase has
a more significant contribution to the overall result than seen for ADP. Thus, the result for these impact
categories increases with an increase in the number of cycles achieved, as defined in each scenario.
It can further be seen for these impact categories that the production phase also has a contribution to the
overall result, and thus both the production and use life cycle stages are important for quantification of
the overall environmental impact for these impact categories.
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In order to see the environmental benefits of the extended lifespan of the battery due to more
cycles being achieved, it is necessary to look at the results per functional unit of 1 km (Figure 8).
In Figure 8, the trend clearly shows that as the number of cycles achievable by the battery improves
from 552 towards 912 cycles, the impact per km also improves. Table 7 further summarizes the results
per functional unit (per km) and per reference flow (per total km for one battery).
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Figure 8. Impact per km for each impact category assessed versus the number of cycles achieved
during the lifespan of the battery.

Table 7. Life Cycle Impact Assessment (LCIA) results per functional unit and per reference flow.

Impact U Total per Functional Unit ! Total per Reference Flow 2
nit
Category s1 s2 S3 S1 S2 S3
ADP kg Sb-eq. 1.9x10°  15x10° 12x10° 0.2 0.2 0.2
AP kgSOyeq.  66x107* 57x10* 51x10* 74.5 81.8 89.5
EP kgPO;3-eq. 20x10% 16x107* 14x10* 22.8 234 242
GWP kg CO,-eq. 0.16 0.14 0.13 18,198 20,765 23,504
POCP kg CoHy-eq.  42x10°  36x10°  32x107° 4.8 5.3 5.7
PED M] 3.7 3.4 32 423,641 490,775 562,595

1 Functional unit is 1 km. 2 Reference flow for S1, S2 and S3 is 113,290, 143,955 and 176,750 km, respectively.

Therefore, for the use phase, improvements in the environmental impact will come from extending
the lifespan of the battery, as well as from the improvement in efficiencies and decarbonization of the
electricity grid mix, as discussed in the introduction. Furthermore, it is shown that one 50 kWh Li-S
battery, taking into consideration the effects from cycle ageing, has the potential to reach the 150,000 km
reference that is often used in comparative LCA studies for EVs and ICEVs.

Since it was further found that the production phase also contributes to the results (Figure 7),
the contribution of the battery components to the production phase was further investigated. Figure 9
shows the percent contribution of each component to the total result due to production of the battery.
The material components are defined in the bill of materials in Table 3.
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Figure 9. Percent contribution of each component to each impact category for the production of the
Li-S battery. The numbers at the top of the stacked columns indicate the total value.

From Figure 9., the module packaging contributes significantly to the ADP. The module packaging
consists of electronic components, the contribution of which was found to range from 80% to 99% of
the total impact of the module packaging production depending on the impact category (Figure 10).
A complete list of the components of the module packaging can be found in [43]. Therefore, the main
contributing component to the ADP, which was found to come from the production stage (Figure 7),
is due to the electronic components in the modular packaging (Figures 9 and 10).
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Figure 10. Percent contribution of the components of the module packaging to the result for each
impact category.

For all other impact categories, the contribution of the active material (cathode, anode and
electrolyte) is greater than 70% to the total impact of battery production (Figure 9). This material has
been scaled from that in a coin cell with the use of Equations (3)—(6). Therefore, this data should be
updated when more tests are conducted on Li-S batteries and more data is available for the composition
and performance of larger batteries. This is important as the production of the battery contributes to
the overall result for all impact categories, as was seen in Figure 7. Therefore, improvements in this
data will influence the overall result for each of the environmental impact categories assessed.

4. Conclusions

This work presented the results for ageing tests conducted on Li-S coin cells. These results were
used to discuss the second-life battery applications and were further applied in an environmental
attributional LCA case study for the use of a 50 kWh Li-S battery in an electric vehicle.
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After analyzing the results from the endurance ageing tests, it seems that Li-S batteries do not
follow the same patterns of Li-ion batteries. It was found that the temperature and C-rate seem to
produce no acceleration of ageing, and that there is no dramatic change in the ageing tendency as is seen
in Li-ion batteries when they reach the “ageing knee” or “sudden death.” For Li-S batteries, the cells
either continue to cycle or crash instantaneously, meaning they can no longer absorb or deliver energy.
Furthermore, the efficiency of Li-S batteries decreases constantly, that is, an exponential loss of efficiency
is not visible which is in contrast to the behavior of Li-ion batteries. From an ageing perspective, these
factors make Li-S batteries preferable to Li-ion batteries, as their behavior appears “more predictable”
and they seem to be unaltered due to external factors related to the application environment.

In terms of battery second life applications, this may not be foreseen for Li-S batteries. Future
batteries are expected to have larger capacities of up to the 50 kWh as described in this study, and thus
the End-of-Life of the battery in an EV (first life) could be lower than the targeted 80% SoH (60% or even
lower) and still be capable of satisfying all the driving needs up until the car is recycled. Therefore, it is
not only the inherent complexities of their normal operability that limits the second life applications,
but also both the low SoH at the beginning of the second life corresponding to a lower capacity and the
fact that the batteries will be quite old (possibly 15 years old) at the end of the first life. In this duration,
newer and more interesting batteries will likely be on the market at reasonable prices.

In terms of the LCA case study conducted for a 50 kWh Li-S battery, it was found that both
the production and use stages of the life cycle contribute to the overall environmental impact for all
impact categories assessed, except for resource depletion (ADP) where the production stage is the key
contributor. For the use phase, three scenarios for the cycle life of the battery were defined based on
the ageing test results conducted on Li-S cells. It was found here that the 50 kWh Li-S battery has the
potential to achieve the 150,000km usually defined in LCA case studies of EVs. For the production stage
of the life cycle, the active material in the battery (anode, cathode and electrolyte) contributes greater
than 70% to all impact categories assessed except for resource depletion (ADP) where the electronics in
the module packaging is the largest contributor. It is noted here that the data quality for scaling the
active material from a coin cell to that in a 50 kWh battery will be improved and should be updated
in the LCA as better data from larger batteries is available, along with the efficiencies and driving
ranges defined for the Li-S technology. However, in this study it was shown that with improvements
in the Li-S technology, the environmental impact per kilometer will improve as the number of cycles
the battery achieves during its first life improves. Furthermore, the use of laboratory data for the
ageing of Li-S cells in an LCA study is a step forward for the assessment of the environmental impact
of this technology.
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Abstract: Battery sorting is an important process in the production of lithium battery module and
battery pack for electric vehicles (EVs). Accurate battery sorting can ensure good consistency of
batteries for grouping. This study investigates the mechanism of inconsistency of battery packs and
process of battery sorting on the lithium-ion battery module production line. Combined with the
static and dynamic characteristics of lithium-ion batteries, the battery parameters on the production
line that can be used as a sorting basis are analyzed, and the parameters of battery mass, volume,
resistance, voltage, charge/discharge capacity and impedance characteristics are measured. The data
of batteries are processed by the principal component analysis (PCA) method in statistics, and after
analysis, the parameters of batteries are obtained. Principal components are used as sorting variables,
and the self-organizing map (SOM) neural network is carried out to cluster the batteries. Group
experiments are carried out on the separated batteries, and state of charge (SOC) consistency of the
batteries is achieved to verify that the sorting algorithm and sorting result is accurate.

Keywords: lithium-ion battery; cell sorting; multi-parameters sorting; principal component analysis;
self-organizing maps clustering

1. Introduction

The initial differences among batteries which lead to inconsistency after charging and discharging
are the main reasons for the shortened life and low safety in the use of battery packs. It is not
feasible to completely eliminate the inconsistency of battery packs, but there are some ways to reduce
inconsistency’s negative impact [1,2]. Cell sorting in lithium-ion battery industry is an indispensable
process to assure the reliability and safety of cells that are assembled into strings, blocks, modules
and packs [3]. In the current lithium-ion power battery pack production line, cell sorting refers to the
selection of qualified cells from raw ones according to quantitative criterions in terms of accessible
descriptors such as battery resistance, open circuit voltage (OCV), charging/discharging capacity, etc.
Correspondingly, resistance sorting, voltage sorting and capacity sorting are the main single parameter
sorting methods used in battery pack production lines at present [4-7]. The single-parameter sorting
method can quickly screen batteries whose parameters are in the qualified range from raw ones [8],
but this method ignores the relationship among battery parameters. In contrast, the multi-parameter
sorting method which combines static and dynamic characteristics of batteries is a more accurate and
comprehensive solution. In order to realize multi-parameter sorting of lithium batteries in the battery
pack production line, it is necessary to test battery parameters, such as the resistance, voltage and
capacity, using the existing equipment.
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We note that a certain number of open publications focusing on sorting methods can be found,
and clustering algorithms [9,10], including the fuzzy C-means algorithm (FCM) [11,12], k-means
algorithm [13], and self-organizing maps (SOM) neural networks [14-16], are the main research
direction. Nevertheless, the sorting parameters and their relationships and constraints adopted in
the sorting process, which are of fundamental significance, have not been investigated. Therefore, in
this study, a series of parameters as sorting criterions which can characterize the performance and
difference of batteries are investigated, and they are divided into three categories: general parameters,
static performance parameters and dynamic characteristics.

General parameters refer to the appearance parameters such as mass (m) and volume (v) of
batteries and the derived parameters such as mass specific energy and volume specific energy
caused by them. Static performance parameters include battery resistance, voltage, charge/discharge
capacity, self-discharge rate, charge/discharge efficiency and charge/discharge time. They describe the
performance of batteries under non-working conditions, but their acquisition needs certain conditions.
For instance, charging and discharging [17] experiments are needed to obtain the capacity data of
batteries. As for static characteristics of a battery, charge-discharge voltage curve and electrochemical
impedance spectroscopy (EIS) [18] are typical methods to show the dynamic performance. Some
previous studies utilize an overall voltage-current or voltage-time curve comparing the differences
among batteries to complete sorting. However, drawing an overall voltage-time curve or EIS takes a
long time to complete, so it is unrealistic to use it in production line.

Under such circumstances, this study compares several parameters as descriptors for battery
sorting and finally selects the following sorting indicators: battery mass (m), volume (v), voltage
(V), capacity (C) and surface temperature (T) [19] as static indicators. As aforementioned, an overall
voltage-time curve or EIS spectrum takes a long time to obtain, therefore, in this study the impedance
characteristics of batteries at several key frequencies in EIS spectrum [20] are extracted, and the AC
(Alternative Current) impedance (Rp) and reactance (X) of batteries are taken as the evaluation criteria
of dynamic characteristics. These parameters can be obtained by testing equipment now available on
the production line. The principle components analysis (PCA) [21] method is used to pre-process the
data of battery parameters (clarifying the relationship between parameters), and obtain the principal
components that can reflect the characteristics of the battery. The clustering and sorting process of
batteries is accomplished by a self-organizing map (SOM) neural network.

The rest of this paper is organized as follows: The acquisition of battery parameters and data
analysis are completed in Section 2, followed by the results of data processing using PCA. Section 3
introduces the principle of SOM algorithm and its application in battery clustering. Section 4 carries
out the battery sorting experiments and operation tests to obtain the state of charge (SOC) curves of
the batteries to be sorted under special conditions. Finally, in Section 5 the performance of batteries
after grouping is studied, and the results of battery sorting are verified. Section 6 concludes the
major findings.

2. Parameter Acquisition and Data Processing

This section describes the process to obtain the parameters of the batteries to be sorted, so as to
get a sufficient number of parameter inputs to start a follow-up clustering algorithm.

A set of 58 lithium iron phosphate (LiFePOy) batteries are considered in this work. The batteries to
be sorted are INR 18650-33G cylindrical batteries produced by Samsung SDI Company (Suwon, South
Korea). The cathode is made of lithium iron phosphate and the anode is made of graphite. Tests were
performed in laboratories in Tsinghua University Shenzhen Graduate School and Sunwoda electronics
Co., Ltd. in Shenzhen to obtain experimental data such as mass, volume, voltage and currents under
charge/discharge and capacity, etc. and to identify internal resistance. These 58 Samsung 18650
cells with a nominal capacity of 2700 mAh and nominal voltage of 3.6V were tested under certain
circumstances. Table 1 shows the cell specification.
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Table 1. Cell Specification.

Item Value
Manufacturer Samsung INR18650-33G
Nominal capacity 2700 mAh
Charging cut-off voltage 42V
Discharging cut-off voltage 26V
Nominal voltage 3.6V
Standard weight 47+20¢g
Di . Height: 65.35 + 0.15 mm
imensions

Diameter: ¢18.33 + 0.1/-0.13 mm
Charge: —10~45 °C

Working temperature Discharge: ~20~60 °C

2.1. General Parameters

The general parameters of batteries can be directly reflected in their physical attributes, such
as the mass, volume and surface temperature of battery cells, as well as the derived mass specific
energy and volume specific energy. Because all the batteries selected in this paper are of the same type,
the battery energy is the same by default. Therefore, the mass (m), volume (v) and surface temperature
(T) of the battery cells are selected as the general parameters.

Parameters m and v of batteries were tested with Keyence pressure sensor and vision measurement
sensor. The quality measurement with 10 ug accuracy can be achieved by pressure conversion measured
by pressure gauge. The volume of the battery is calculated by measuring the geometric size. The surface
temperature (T) of battery is measured by thermocouple.

2.2. Static Parameters

The voltage (V) of the batteries to be sorted can be measured with a high precision voltmeter.
The total capacity (C) of batteries is a unique characteristic, which is different between different batteries.
It can be obtained from the charge/discharge test, by means of the capacity data provided from the
Coulomb counting method, shown as Equation (1), directly implemented in the testing equipment.
The charge/discharge test is carried out using Arbin BT-5HC battery testing equipment, with battery
cells (to be sorted) in a Sanwood constant temperature and humidity box. Figure 1 indicates the curve
of voltage and current during the charge/discharge test.

C=1It )

C denotes charging/discharging capacity, I and t represent charging/discharging current and time.
In the process of capacity testing, the lithium battery that has been stationary for 2 h is discharged to
the discharge cut-off voltage (2.6 V) at a rate of 1 C. Then the battery is charged by means of CC-CV
(Constant Current-Constant Voltage) at a rate of 0.5 C to the charging cut-off voltage (4.2 V), and then
is discharged at a rate of 1 C until the discharge cut-off voltage. The capacity test curve as shown in
Figure 1 is obtained after several cycles, and the capacity is calculated using Equation (1).

There are several ways to measure DC (Direct Current) internal resistance of batteries. In this
study, according to Equation (2), the DC internal resistance is derived by dividing the voltage drop
during the transition to rest by the constant discharge current:

LAV V-V

Rp = i i (2)

Due to the polarization phenomenon, the voltage of lithium batteries presents a dynamic process

of rapid rise, slow rise, rapid fall and slow fall during pulse charging. The change of voltage AV during
discharging is contrary to that during charging. In this process, the sharp voltage drop is caused by the
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ohmic polarization inside the battery, so the ohmic internal resistance of the battery can be identified
by using the voltage and current data.
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Figure 1. Capacity testing process.
2.3. Impedance Characteristics

The electrochemical impedance spectroscopy (EIS) method is used to measure the change of the
impedance or phase angle of the battery system with frequency, by applying sinusoidal alternating
currents of different frequencies to the battery. The EIS of a battery is an inherent characteristic.
It is a feasible method to use the similarity of EIS drawings to sort batteries. The EIS method is a
quasi-dynamic process, and small sinusoidal alternating current will not cause great disturbance to the
battery, so the EIS sorting method is more accurate than the static method.

In the EIS of lithium-ion batteries, the different parts corresponding to different frequencies can
reflect the process of lithium ion removal and embedding in the embedded electrode during the
charging and discharging process of lithium-ion batteries.

(1)  Ultra high frequency (UHF) part: The section where the impedance curve intersects the transverse
axis in EIS, reflecting the ohmic impedance (Ry) of lithium ion batteries.

(2) High frequency part: A semicircle related to the diffusion and migration of lithium ions through
the insulating layer on the surface of active material particles. This process can be represented by
a Rgei/ Csi parallel circuit.

(3) Intermediate frequency (IF) part: A semicircle reflecting the charge transfer process. The process is
represented by a R.;/Cy parallel circuit. R is the charge transfer impedance, or the polarization
impedance of the battery, and C,; is double-layer capacitor.

(4) Low frequency part: A line with a slope of 45 degrees, which is related to the solid diffusion process
of lithium ions in active material particles. In the equivalent circuit model, a Warburg impedance
Zyw describing diffusion can be used, also known as concentration polarization impedance.

(5) Ultra low frequency: A semicircle and a vertical line, reflecting the change in crystal structure
of active material particles and the accumulation and consumption of lithium ions in active
material respectively.

Figure 2a indicates the equivalent circle model for EIS used for curve fitting. In this study, using
the HIOKI BT4560 Impedance Tester (HIOKI, Shanghai, China), the impedance experiments are carried
out on one of the lithium battery cells using 0.1-1050 Hz AC current, and the impedance spectra
are plotted, as shown in Figure 2b, which reflects the intermediate frequency part mentioned above.
BT4560 can realize simultaneous measurement of battery voltage and impedance with high accuracy.
The measurement accuracy of voltage and impedance can reach 10 1V and 1 uQ) respectively. It can
also measure the surface temperature of batteries by connecting thermocouples, and the accuracy can
reach 0.1 °C.

181



Energies 2019, 12, 2980

12062
" " 10062
Il Il
015 i~ Cas Ca 8o
| |
R
" ! — ! — | z | ! ® * -eea
| | I | | Lant .
| Rei | Re W | anoes . ]
o ! ! ! ! ! 20063 n W
-Im(z) Ultrahigh | High | intermediat I tow | ultralow | 3 &
frequency|  frequency | P | frequeney] i o
| | | I 3 24962 29762 3 4562 39362
| | | ~2006-3
005 i~ | | |
! | | —400E5
! ! ' e
o —800E-3
0.05 01 5 0.25
Re(2) -1 poE2
() (b)

Figure 2. Electrochemical impedance spectroscopy (EIS) of lithium-ion battery: (a) EIS and equivalent
circle model of Li-ion battery; (b) EIS in intermediate frequency (IF) part of one 18,650 cell using BT4560.

As described in Section 1, we collect the impedance characteristics of batteries at several key
frequencies in EIS spectrum, so that the measurement process can be rapid. In this study, two
characteristic frequencies, 0.1 Hz and 1000 Hz, are selected to obtain the impedance (R4) and reactance
(X) of the battery as the sorting parameters. These two frequencies are between high, medium and low
frequencies. The results of impedance can reflect the polarization impedance and Warburg impedance
of batteries, respectively.

2.4. Principle Components Analysis

The parameters of each battery cell to be sorted are tested using the test equipment suitable for the
production line. The results are shown in Table 2; two cells are selected to show the input parameters.

Table 2. Examples of parameters for two batteries.

No. 1 2
Manufacturer Samsung INR18650-33G Samsung INR18650-33G
Mass (g) 46.92499999 47.60953785
Volume (mm?) 16,540 16,540
Capacity (mAh) 2600 2650
Voltage (V) 3.524017 3.568177
Impedance R1 (1000 Hz) (€2) 0.0219427 0.0223717
Reactance X1 (1000 Hz) (Q2) -0.0002701 —0.0006503
Impedance R2 (0.1 Hz) (Q) 0.0355982 0.0401869
Reactance X2 (0.1 Hz) (QQ) -0.0022978 -0.0024677
Surface temperature (°C) 26.2 26.5

The input data matrix of 58 X 9 is obtained after the test of 58 battery cells. Principle component
analysis (PCA) is used to analyze data. PCA is a statistical method, which uses linear transformation
to achieve dimension reduction. Its basic principle is to use the idea of dimension reduction and
linear transformation to transform multiple indicators into several unrelated comprehensive indicators
without losing much information, which are called the principle components. In this study, the data of
58 batteries are analyzed by principal component analysis in the following steps.

Arrange the raw data in rows to form a matrix X.
Standardize the data of matrix X, change its mean to zero.
Compute Covariance Matrix C.

Ll S

Calculate eigenvalues according to the covariance matrix C. The eigenvectors are arranged from
large to small eigenvalues, and the first k matrices are composed of rows P.
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5. Calculate by Equation (3) to get the reduced dimension data matrix Y.
Y = PX. (3)

6.  Compute the contribution rate V; of each eigenvalue as shown in Equation (4)

_ Xi
X| X0 xy,

*)

Vi
7. Sort the principal components according to their contribution rate and explain the physical
significance of principal components based on eigen roots and their eigenvectors.

The result of PCA shows that three principle components can cover more than 90% of data variability,
as shown in Table 3. By analyzing the proportion of principal components of each parameter,
the proportion results are obtained.

t; = —0.09011m — 0.09044v — 0.08985C — 0.34997V

+0.461975R; + 0.458163X1 + 0.465659R, + 0.456563 X7 + 0.06728T. ®)
ty = 0.564575m + 0.564293v + 0.564558C — 0.14541V ©)
+0.046857R; 4 0.079282X; — 0.00029R; + 0.083406X, + 0.086721T.

t3 = —0.05338m — 0.0557v — 0.05278C — 0.17591V @)

—0.08143R; — 0.08759X; — 0.04988R, — 0.08818X, + 0.967342T.

Table 3. (a) Principal component analysis of 58 batteries with nine parameters. (b) Proportional
relationship between the original parameters and principal components.

(a)
Principle Eigenvalue D-Value  Contribution Rate ~ Cumulative Contribution Rate
Component

1 4.513363 1.502216 50.14848 50.14848

2 3.011147 2.013297 33.45719 83.60566

3 0.99785 0.546226 11.08722 94.69288

4 0.451624 0.427816 5.018046 99.71093

5 0.023808 0.022719 0.264529 99.97546

6 0.001089 0.000355 0.012096 99.98755

7 0.000733 0.000383 0.008149 99.9957

8 0.000351 0.000315 0.003898 99.9996

9 3.6 x107° 0 0.000399 100
(b)
Standardized Variables Feature Vector (t;)  Feature Vector (t;)  Feature Vector (t3)

Mass (g) —0.09011 0.564575 —0.05338
Volume (mm?) —-0.09044 0.564293 -0.0557
Capacity (mAh) —-0.08985 0.564558 -0.05278
Voltage (V) —0.34997 —0.14541 —0.17591
Impedance R1 (1000 Hz) (€2) 0.461975 0.046857 —0.08143
Reactance X1 (1000 Hz) (Q2) 0.458163 0.079282 -0.08759
Impedance R2 (0.1 Hz) ((2) 0.465659 —0.00029 —0.04988
Reactance X2 (0.1 Hz) (Q)) 0.456563 0.083406 —0.08818
Surface temperature (°C) 0.06728 0.086721 0.967342

Equations (5)-(7) use eigenvectors to show the relationship with nine initial characteristic
parameters. It can be seen that these nine characteristics are confirmed and can be divided into three
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categories: appearance parameters, impedance characteristics and safety parameters. The characteristic
vector t; is mainly positively correlated with the impedance characteristics of batteries, and negatively
correlated with mass, volume and capacity, so t; can be regarded as the principal component reflecting
the impedance characteristics of batteries; similarly, the vector ¢, can be regarded as the principal
component reflecting the appearance parameters of batteries. The characteristic vector t3 mainly reflects
the temperature parameters of the battery, which is related to the safety and thermal management of
the battery.

3. SOM Neutral Networks and SOM Clustering

3.1. Introduction of SOM Neural Networks

The self-organizing map (SOM) neural network is an unsupervised learning clustering algorithm
which realizes high-dimension visualization. It is an artificial neural network developed by simulating
the characteristics of human brain to signal. The model was first proposed by Teuvo Kohonen [22],
a professor at Helsinki University in Finland in 1981, so it is also called the Kohonen network.

The application of SOM neural networks in clustering is mainly based on the following advantages:

1. Dimension reduction can be achieved, and clustering results have good visibility. High
dimensional input space can be mapped to low dimensional output space maintain the original
topological relationship.

2. With self-organizing and unsupervised learning, it can be applied to situations where the
characteristics of input data are not fully understood.

3. The algorithm is clear and the calculation is simple.

These features enable SOMs to be widely used in clustering, helping to recognize homogeneous
groups of generous and complex inputs. Reference [14-16] indicates research and applications where
SOMs are used in clustering processes in the last decades. Compared with traditional clustering
algorithms, such as the k-means algorithm and FCM algorithm, SOM is more accurate and not affected
by the selection of initial clustering centers, although its operation process is relatively complex.

3.2. Principle and Learning Algorithm of SOM

The structure of a SOM neural network is shown in Figure 3. It consists of an input layer and
output layer (competition layer). The number of neurons in the input layer is determined by the
number of vectors in the input network, and the output layer is arranged into a two-dimensional
node matrix by neurons. The neurons in the input layer and the neurons in the output layer are fully
connected by weights W. When the network receives the external input signal, the neurons in the
output layer excite and distribute the neurons in the region with the highest input spatial density
through competition.

5
A aS
Superior Neighborhood Competitive (Output)
/
ol > =
A
‘(

Distance

<:] Input Layer

Figure 3. The structure of a self-organizing map (SOM) neural network.
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A SOM is a competitive neural network, which follows the rules of competitive learning (referring
to lateral inhibition of neurons in human brain). For all neurons in the output layer (competitive layer),
the winner neurons are found according to the principle of minimum distance, then only the winner
neurons and the neurons in the winning neighborhood are adjusted by the weight vector. Based on the
WTA (winner-takes-all) rule, the specific algorithm steps of the SOM are as follows:

Step 1: Data initialization. The weight vectors of the output layer are given smaller random
numbers and normalized, which are recorded as Wj( j=1,2,...,m), mis number of neurons in the
output layer. The initial optimal neighborhood is established as N; (0), and the initial value of learning
efficiency a and the number of iterations T are set.

Step 2: Input data and normalize. Normalize the input vector XF(p = 1,2,...,n) and the weight
vector W; in the competition layer as shown in Equation (8), where n is the dimension of the input data.

X X Wj
£=2 W= _L 8
i = W ®

The normalized input vector is denoted as b'G (p=1,2,...,n), where n is the dimension of the
input data.

Step 3: Find the winning node. Calculate the distance between input X? and all output neurons,
and select the winning neuron with the smallest distance. Euclidean distance is chosen for distance
formula, as shown in Equation (9). Set the winning node as the center and determine the weight
adjustment region at t-time. Setting the neighborhood distance d, the region within the D range of the
distance from the winning node is regarded as the winning neighborhood.

©

Step 4: Definition of superior neighborhood. Taking the winning node j* as the center, the weight
adjustment region of ¢ time is determined. Setting the neighborhood distance d, the region within the d
range of the distance from the winning node is regarded as the winning neighborhood.

Nj(t) ={j.d; . < dJ (10)

Step 5: Weight adjustment. Based on the gradient descent method, the connection weights
between the winning node and all other nodes in the winning neighborhood are adjusted. Equation
(11) indicates the adjustment process as follows:

W]‘,,(t) +a(XP - W/‘*(t)) i=7
Wit +1) = Wi (t) + AWj = { Wi (t) +aN(H)(XP - Wi(t), jeN;(t) i=1,2,...,n,j€ N3 (t) (11)
Wi(t) jEN;(1)

where, w; /-(t) denotes the weight of neuron i to neuron j at t time; 0 < a < 1 denotes the learning rate,
which affects the convergence and stability of the algorithm and decreases with time; N(j, t) denotes
the topological distance between the jth neuron and the winning neuron j* in the neighborhood at
training time £.

Step 6: End Judgment: When the learning rate () < amin, Or iterations ¢ > T, the training process
is terminated, otherwise return back to Step 2 and continue the iteration.

The advantages of SOM unsupervised learning and visualization of results enable it to be well
applied in clustering analysis, as well as in lithium cell sorting.

3.3. SOM Clustering in Battery Sorting

The SOM is able to map any high-dimensional inputs to low-dimensional outputs, such as
one-dimensional linear array or two-dimensional grid. Therefore, this feature of the algorithm provides
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the possibility of sorting battery cells from raw cell groups according to single or multiple parameters
or characteristics. As aforementioned in Section 2, multiple parameters tested by testing equipment in
a production line are obtained, and they can be regarded as input data. The output layer of the SOM
map shows the sorting types each cell belongs to.

Nine parameters are tested including mass, voltage, impedance and parameters data. These are
pre-processed using PCA and transformed to three components in Section 2. These parameters are
used as inputs of the SOM neural network for battery cell sorting and the results of classification are
the output.

This study uses a SOM neural network to sort battery cells. The data of m battery cells with 1
parameters are input in the form of matrix of m x 1, and finally the cells are classified into k classes.
The learning rate @ and neighborhood radius r of the network are updated in the way shown in
Equations (12) and (13), respectively.

a=ayx(1- ), (12)
t
r=rox(1- ) (13)

where, Tryax means the maximum numbers of iteration. ag = 0.99 and ry = 1 are the initial learning
rate and winning neighborhood radius respectively, and these two parameters decrease with time.

Figure 4 demonstrates the process of battery sorting using SOM in this study and the specific
operation will be introduced in next section.
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Figure 4. Procedure of battery sorting using a SOM.
4. Cell Sorting Using a SOM

As described in Section 2, the vector of nine parameters is considered as input for SOM neural
network clustering. We tested 58 battery cells and recorded nine parameters of each cell. The input
of the SOM is the parameter matrix with 58 x 9. After PCA, in order to reduce the data dimension,
the matrix can be transformed to 58 X 3 as the nine parameters are replaced with the three principle
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components. Therefore, the first group of input data including nine parameters is marked as Group 1,
and the second group of input data including three principle components is marked as Group 2. Table 4
denotes part of the input data (eight cells).

Table 4. Examples of principal component scores for eight batteries (Group 2).

Principal Component  Principal Component  Principal Component

Battery Number Score First (t1) Score Second (&) Score Third (t3)
01 —-1.42814 7.525299 -0.02753
02 -1.38087 7.602607 0.678699
03 -0.97269 2.441534 -0.89297
04 -0.96143 2.449494 —0.78799
05 —-0.96094 2.466339 -0.71301
06 -0.95142 2.465672 -0.68406
07 -0.90951 -1.02728 -1.6356
08 —0.88487 2.546314 0.351155

This section compiles the algorithm of a SOM neural network and sets its initial algorithm
parameters by using the Neural Network Toolbox in MATLAB. The initial number of neurons in the
output layer, is set to four, as shown in Figure 5.
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Figure 5. Example of SOM mapping and clustering process: (a) SOM mapping and learning process in
clustering; (b) SOM topology in MATLAB; (c) SOM structure in view in MATLAB (e.g., nine inputs in
the input layer and four neurons in the output layer).
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Figure 6 shows the SOM clustering results of Group 1 and Group 2. In both sets of cells, eight
battery cells are clearly separated from the whole ones, which means that these eight cells are different
from the others.

Clustering Results of 58 Cells (PCA) Clustering Resuls of 58 Cells (no PCA)

@ (b)
Figure 6. SOM clustering results (four neurons), (a) Group 1, (b) Group 2.
The same procedure using a SOM is carried out to obtain the sorting results from the remaining
50 battery cells and the number of sorting is adjusted to six, as shown in Figure 7. Six groups are

obtained after being classified. Table 5 shows the categories of 50 numbered batteries based on the
SOM clustering results, both in Group 1 and Group 2.

Clustering Results of 50 Cells (PCA)
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Figure 7. SOM clustering results of Group 1 (six neurons in the output layer).

Table 5. Categories of 50 battery cells.

Group No. Battery Cell Number in Group 1 Battery Cell Number in Group 2
Category 1 1271521222427 32343536 38 40 45 2715212234 3536 38 40 45
Category 2 34569131623283341424346474849 34569132833414243464749
Category 3 81014192029 30313739 44 81014 19202930313739 44
Category 4 111725 1117252427 32
Category 5 121826 12161823 26 48
Category 6 50 150

The contents mentioned above in this section illustrates a qualitative result of SOM battery cell sorting, therefore a
validation experiment of the sorting results must be operated.
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It can be noted that the sorting result of Group 2 is basically coincident with Group 1, which
means SOM sorting, using the three principle components obtained from nine parameters after PCA, is
feasible. Consequently, pretreatment of PCA is also a workable method when the sorting batteries have
multiple dimension parameters. It also effectively reduces the workload of the subsequent scoring
algorithm such as SOM. According to the classification results, eight batteries with good consistency
(i.e., classified into the same category) can be selected from each group to form a module. This result
will be validated by experiments in the next section.

5. Verification for Sorting Results

In response to different operating conditions, the SOC of lithium-ion batteries will vary with the
voltage and current. Despite of their different dynamic responses, battery cells with good consistency
should have less SOC variation differences. Therefore, two typical power load profiles of electric
vehicles, the New European Driving Cycle (NEDC) and the Urban Dynamo-meter Driving Schedule
(UDDS), shown in Figure 8, are chosen to test the battery modules sorted and formed from Section 4.
The changes of the SOC curve and differences in the module under working conditions are recorded
and calculated in the module under working conditions to test the clustering algorithm.
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Figure 8. Power load profile: (a) New European Driving Cycle (NEDC) working conditions; (b) Urban
Dynamo-meter Driving Schedule (UDDS) working conditions.

Eight battery cells of Module 1 and Module 2 are chosen from the same categories of Group 1 and
Group 2 in Section 4, respectively. Eight cells (No. 3, 4, 5, 6,9, 13, 16, 23), which are all classified to
category 2 in Group 1, are connected in series to form Module 1. The same procedure is carried out to
category 1 in Group 2, so that eight cells (No. 2, 7, 15, 21, 22, 34, 35, 36) are connected in series to form
Module 2. For validation of consistency, another eight cells are chosen randomly from the whole cell
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stack to form Module 3. To ensure the randomness of the selection of the eight batteries, one cell is
selected from each seven cells according to number order, which means the first cell is selected from
No.1 to No.7 randomly, the second cell is selected from No. 8 to No. 14 and so on. The final number of
these eight cells in Module 3 are: No. 1, 8, 17, 26, 32, 37, 45, 54.

The battery module is charged and discharged using battery charging and discharging equipment
under the working conditions shown in Figure 8, and the current and voltage changes of each battery
are recorded.

The main result of battery module inconsistency is that the state of charge (SOC) of each cell is not
uniform, but differs from one another, because every cell is different in available capacity, dynamics,
and imbalance of the individual cells in a series or parallel chain. So, the SOC curve and variability
can be used to determine whether the battery module has good consistency or not. Currently, a lot of
research has been done on the estimation methods of SOC. Among them, the most typical methods are
the time integration method, open-circuit voltage method and Kalman filter method. In this section,
extended Kalman filtering (EKF) [23,24] is used to estimate SOC change under two working conditions.

The Kalman filter is a common algorithm in SOC estimation. It can realize the optimal estimation
of the state of a discrete-time linear system based on the minimum mean square error. The Kalman
filter method mainly includes two parts: prediction and correction. The prediction process refers to
updating the state estimates at the last time based on the state equation obtained from the battery model.
The correction process is to update the state predicted value, according to the observed value obtained
from the test. The extended Kalman filter (EKF) is based on the Kalman filter, which expands the
non-linear function of the system into a Taylor expansion of the first order, and obtains the linearized
system equation to complete the filtering and estimation of the state parameters.

In this study, EKF is one of the SOC estimation methods used for example, so the specific process
of EKF is not discussed here.

In order to save time, a section of NEDC working conditions is selected as shown in Figure 9.
Figure 10 shows the SOC of these three modules subject to the power profile of the NEDC working
conditions shown above. The SOC in the battery module appears as a consistent trend over time,
but the SOC between each cell at the same time is clearly different, especially in different modules.
The curves of cells in Module 1 and Module 2 have relatively better consistency, while in Module 3 the
difference between the SOC of batteries increases obviously, showing that cells after clustering and
sorting have better homogeneity than those chosen randomly.
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Figure 9. Local display of NEDC working conditions.
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Figure 10. State of charge (SOC) curve of cells in modules: (a) Module 1, (b) Module 2, (c) Module 3.
The same validation procedure is performed under UDDS working conditions to verify the SOC
changes in battery modules. The standard deviation of the SOC after load profile of Figure 11 is chosen

as another testing criterion. Figure 11, and Tables 6 and 7 illustrate the standard deviation of state of
charge of these cells in respective modules.

Table 6. SOC standard deviation of cells in modules under NEDC working conditions.

Module No. Mean Standard Deviation = Maximum Standard Deviation
Module 1 0.0058 0.0208
Module 2 0.0026 0.0142
Module 3 0.0356 0.1274

Table 7. SOC standard deviation of cells in modules under UDDS working conditions.

Module No. Mean Standard Deviation = Maximum Standard Deviation
Module 1 0.0069 0.0413
Module 2 0.0034 0.0184
Module 3 0.0472 0.1591
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Figure 11. SOC standard deviation curve of cells in modules: (a) Module 1, (b) Module 2, (c) Module 3.

The results clearly show a reduction in the SOC variability after power profile charge and discharge.
The SOC standard deviation of Module 1 or Module 2 is notably lighter than that of Module 3, which
means there is a significant improvement in the consistency of the battery module.

At the same time, it can be seen that the standard deviation of Module 2 is slightly less than
Module 1, indicating the clustering based on PCA gives the best results overall.

6. Conclusions

Effective sorting of lithium batteries is a means to eliminate the inconsistency of battery modules
and battery modules. Selecting appropriate sorting parameters and using appropriate sorting
algorithms can effectively improve the accuracy and efficiency of battery sorting. This work analyzes
the static and dynamic performance of 18650-cylinder lithium battery cell and selects appropriate
parameters to form feature characteristics. Based on the unsupervised learning and self-organization
characteristics of SOM neural networks and the dimensionality reduction characteristics of PCA,
the multi-parameter sorting of lithium battery combining dynamic and static characteristics was carried
out. The results show that sorting significantly improves the SOC consistency of batteries in the module
after grouping. The consistency after grouping can be further validated by other methods, and the
elimination of inconsistency during the using process is also the author’s future research direction.
Whether different numbers of batteries will affect the accuracy of sorting results, and whether the
sorting method can ultimately achieve the purpose that batteries are more accurately sorted, also
remains to be further explored by the author and his team.
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Abstract: Applications of rechargeable batteries have recently expanded from small information
technology (IT) devices to a wide range of other industrial sectors, including vehicles, rolling
stocks, and energy storage system (ESS), as a part of efforts to reduce greenhouse gas emissions
and enhance convenience. The capacity of rechargeable batteries adopted in individual products
is meanwhile increasing and the price of the batteries in such products has become an important
factor in determining the product price. In the case of electric vehicles, the price of batteries has
increased to more than 40% of the total product cost. In response, various battery management
technologies are being studied to increase the service life of products with large-capacity batteries and
reduce maintenance costs. In this paper, a charging algorithm to increase the service life of batteries
is proposed. The proposed charging algorithm controls charging current in anticipation of heating
inside the battery while the battery is being charged. The validity of the proposed charging algorithm
is verified through an experiment to compare charging cycles using high-capacity type lithium-ion
cells and high-power type lithium-ion cells.

Keywords: battery charging; cycle-life; state-of-health (SOH); battery cycle-life extension

1. Introduction

The trend of wider diffusion of mobile electronics, such as mobile phones and laptops, and the
increasing demand for high performance devices have led to growth of both the battery industry and
the information technology (IT) industry. Consumers need mobile devices that can be used for long
periods of time on a single charge, even with short battery charging time. This has motivated research
on rapid charging technology and improving the energy density of batteries. Furthermore, the growth
of the electric vehicle (EV) market has given rise to the new issue in the battery industry of managing
the battery’s state-of-health (SOH). Unlike small mobile devices, which are often replaced within two
to three years, EVs are relatively expensive products and their batteries, which generally have a life
expectancy of more than eight years, account for the largest cost among all parts. As a result, batteries
in the automotive industry must be capable of maintaining battery capacity for a considerable period
of time, and many studies have been conducted to manage the battery’s SOH.

The cycle life of batteries that generate electricity through chemical reactions is determined by
various external factors [1-8]. First, battery charging operation in low temperature conditions reduces
the chemical reaction rate of lithium ions. This causes the accumulation of lithium-ion metals in the
anode layer, which reduces the capacity and in turn is directly linked to the battery’s lifetime [1].
Second, high C-rate charging and high depth of discharge (DOD) range result in loss of active material
and the formation of a thick layer of solid electrolyte interphase (SEI) at the surface of electrodes.
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This increases internal impedance and reduces the capacity of the battery [2,3]. Third, overcharge
battery operation causes unwanted heating inside the battery. This results in cracking of the SEI and
loss of active area inside the battery, which reduces the total capacity of the battery [4,5]. Fourth,
over-discharge of batteries also reduces the number of ions participating in electrochemical reaction,
which causes capacity loss [4]. Fifth, battery cycle life can be shortened by charging/discharging
operation at high temperatures. Electrolytes and the binders of the battery are destroyed during the
charging/discharging operation at high temperatures and this reduces the capacity of the batteries [6,7].
In addition to the aforementioned reasons, the battery SOH is affected by various factors and many of
these factors are related to the charging conditions. Thus, the aging of batteries can be mitigated by
developing the charging algorithm.

Recently, various battery charging algorithms have been investigated to extend the battery cycle
life and reduce restrictions on battery use [7-19]. Most of these studies focused on developing charging
algorithms and profiles to reduce the battery charging time by adopting a high C-rate current. One of
the most common fast charging algorithms is the CC-CV, constant current-constant voltage, charging
method [8,9]. Batteries are charged with constant current until the maximum acceptable battery
voltage is reached; after that charging is continued with a fixed charging voltage, and charging is
completed when the charging current reaches a preset small value. The multi-stage constant current
(MCCQ) charging method is another well-known fast charging method. Unlike the constant-current
charging method, charging current is divided into several levels in the MCC method to reduce the
charging time and heat generated inside the battery during charging [8,13]. Generally, the charging
current is controlled in a direction where the size of the charging current decreases as the charging time
progresses. The constant power (CP) charging method maintains charging power during the charging
operation [7]. High charging current is induced at the beginning of charging and it is gradually
decreased as the battery voltage increases. The boost charging method is also one of the basic fast
charging methods based on the CC-CV charging profile [8,17]. It adopts a high current charging period
at the beginning of the CC-CV charging profile to reduce the charging time. Figure 1 shows the various
battery charging profiles.

Although various fast charging technologies are being studied through many different approaches
to reduce the charging time while minimizing capacity loss, they cannot reflect the characteristics of
changes in internal impedance, which depends on changes in state-of-charge (SOC) or SOH. As a result,
the battery’s life expectancy, which is determined by the available power rating and total remaining
capacity, is rapidly deteriorated with use of the fast charging method. Therefore, the conventional
CC-CV charging profiles are still widely utilized in applications where the battery price is a significant
factor in relation to the overall price and/or the battery’s characteristics have a significant impact on
the performance of the product.

In this paper, the aging characteristics of the battery with use of the CC-CV method are analyzed
and a new charging method that minimizes battery degradation is proposed. The proposed method
controls the charging current by considering the difference in internal impedance caused by SOC
changes in order to minimize the heating of the battery during charging. To verify the effectiveness of
the proposed charging method, the battery aging characteristics when the proposed charging method
is applied are compared with those observed with use of the CC-CV method.
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Figure 1. Battery charging profiles: (a) Constant current-constant voltage (CC-CV) charging method;
(b) Multi-stage constant current (MCC) charging method; (c) Constant power (CP) charging method;
(d) Boost charging method.

2. Equivalent Circuit Model for SOH Estimation

Various physical and chemical changes occur within the battery as battery cells age [20-25].
Physically, the structure of electrodes is changed and this reduces the capacity of the battery; chemically,
the loss of active material causes capacity reduction, and unwanted chemical reactions within the
electrolyte prevent circulation of internal active ions. These aging characteristics typically result in a
change in electrical properties, such as reduced capacity of the battery or increased internal resistance
(Rint.), which in turn undermines the output power characteristics of the battery.

Figure 2 shows the conventional equivalent circuit model (ECM), which is widely used in the
electrical analysis of batteries. SOH estimation using the ECM offers the advantage of a relatively simple
calculation while expressing the change in characteristics of the battery. The characteristics of batteries
are explained in the ECM by the open circuit voltage (OCV), which represents the battery capacity,
the internal ohmic resistance (R;), which denotes the resistance of the electrolyte, and the internal
diffusion resistance (R )-capacitance (Cyz) network, which represents the charge diffusion/transfer
characteristics. The applied voltages to R; and R-Cyif. network are represented as Vypic and Vg,
respectively. Vparr in Figure 2 shows the voltage across the terminals of a battery. The characteristics of
batteries that vary with the SOC and SOH can be expressed through changes in the internal resistance,
which is determined by the sum of R; and Ry, and capacitance values in the ECM [20]. Therefore, for
accurate prediction of the operating characteristics and SOH of batteries using the equivalent circuit
model, it is necessary to clearly identify the variation in the internal resistance parameters according to
the condition of the battery and to measure the parameters of the equivalent circuit periodically. Figure 3
illustrates the hybrid pulse power characterization (HPPC) method for measuring the resistances in
the ECM. The HPPC method obtains the internal parameters of the ECM by monitoring the change in
the internal voltage of the battery while varying the charge current and discharge current within the
range of operation of the battery [26,27].
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Figure 3. Hybrid pulse power characterization (HPPC) parameter calculation method: (a)
Charging-discharging profile; (b) Parameters estimation method.

3. Effect of Internal Heat on SOH of Batteries

A number of factors affect battery aging including temperature inside/outside the battery, SOC,
depth of discharge (DOD), etc., [4]. Among these, temperature, which has a direct effect on the rate of
chemical reaction of batteries, is one of the most influential factors in the aging of batteries. According
to the Arrhenius Equation (1), which describes a chemical reaction, the rate of chemical reaction and
temperature have a linear relationship of logarithmic scale. Therefore, in the case of batteries, which
charge and discharge energy through chemical reactions, temperature management is considered to
have a significant effect on battery aging.

r—Axel®), (1)

where 7 is the reaction rate, k is Boltzmann’s constant, A is the frequency factor, E;, is the activation
energy, and T is the absolute temperature.

4. Proposed Charging Method for Minimizing Battery Degradation

As mentioned earlier, the life cycle estimation method using equivalent circuit models is
widely employed in many applications due to its advantages of being simple and quite accurate in
calculation [28]. The internal resistances in the equivalent circuit are measured periodically using the
HPPC test method and the measured values of an aged battery cell are compared with those of a fresh
cell, and the differences in the parameter values are used to calculate the life of the battery. This paper
proposes a variable battery charging current algorithm (VCC) that controls the charging current in a
way that minimizes heating inside the battery when charging. This is done using the characteristics of
internal resistance change in batteries, which depend on the SOC and the relationship between heating
and aging of the battery.

Figure 4 shows the measured internal resistance values of batteries in accordance with the SOC
at intervals of 10 cycles using INR 18650 25R cells of Samsung SDI (Yongin-si, Korea). As shown in
Figure 4, the internal resistance of a battery varies significantly with the SOC and the life cycle. In
particular, the Figure 4 shows that changes in internal resistance do not have a linear relationship
with changes in the SOC. The internal resistance shows a proportional decrease in the resistance to
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the SOC in the range where the SOC decreases from 100% to 40%, whereas below 40% it shows an
increase in resistance as opposed to SOC reduction, as can be seen in Figure 4. Given that heating
inside the battery is ultimately determined by the value of the current flowing into the resistor, it can
be expected that the temperature of the battery will continue to change during the charging process
and heat generation will increase in the low and high SOC range, if the CC-CV method, which is
the most popular battery charging algorithm, is applied. Therefore, this paper proposes a variable
charging current algorithm that changes the amount of charging current according to the SOC, taking
into account the internal resistance of the battery in order to slow the aging of battery cells according
to the charging power. The proposed charging algorithm is a method to minimize internal thermal
variation of the battery in the charging process and thereby prevent fluctuation of the charging power
loss (Pposs), which directly affects the heating of the battery while the battery is being charged. Since
the internal resistance of a battery generally shows characteristics that vary with the SOC condition, a
method of controlling the charging current of the battery according to the changing resistance value is
required, and the charging current value (Icyag.) is achieved using Equation (2) in the present study.
To verify the effectiveness of the proposed charging algorithm, two types of batteries, high-capacity
lithium-ion cells (INR 25R) and high-power lithium-ion cells (INR 29E), were compared with use of
the conventional CC-CV charging method and the proposed VCC method.
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Figure 4. Measured internal resistance of INR 25R battery as it aged: (a) Internal ohmic resistance, R;;
(b) Internal diffusion resistance, R .

5. Experimental Configuration of the Proposed Algorithm

Two different types of batteries were used in the experiment: a battery with a high output power
characteristic, INR 25R, which is composed of nickel cobalt aluminum oxide (NCA) and a battery with
a high energy density characteristic, INR 29E, which is composed of nickel manganese cobalt oxide
(NMCQ). Table 1 presents detailed specifications of each battery. The experiment was conducted in a
temperature chamber set to be maintained at a temperature of 25 °C and the experiment proceeded
as follows.
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Table 1. Specifications of batteries used in the experiment.

Characteristics INR 25R INR 29E
Rated voltage 3.60 V 3.65V
Maximum continuous discharge current 20 A 2.750 A
Rated capacity 2500 mAh 2750 mAh
. 4.20 V (Charge) 4.20 V (Charge)
Cut-off voltage 2.50 V (Discharge) 2.50 V (Discharge)
Materials C (Negative) C (Negative)

LiCoNiAlO, (NCA) LiNiMnCoO, (NMC)

Step 1: Measure the exact capacity of each battery.

To measure the capacity of the battery, first it was fully charged up to 4.2 V using the CC-CV
charging method using 0.5 C charging current. A 0.5 C discharge current was then applied to discharge
the battery to the cut-off voltage and the capacity of the battery was calculated using the discharge time.

After each capacity calculation process, one hour of rest time was given to the battery to complete the
internal chemistry reaction.

Step 2: Measure the internal resistance of the battery.

The HPPC test method was applied to measure the internal resistance of the battery using 0.5 C
charging/discharging current. The resistance was measured by lowering the SOC by increments of 5%
from 100%. Figure 5 shows the experimental procedure used to measure the internal resistance.
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Figure 5. Experimental procedure used to measure the internal resistance.

Step 3: Derive the charging current.

Charging current values for each SOC were derived in this step using the resistance values
obtained from the previous step. In order to maintain a constant amount of heat inside the battery
generated during the charging process, a constant value of charging loss was set and the charging
current was calculated. Considering the tendency of the internal resistance of the battery to increase as
the SOC becomes lower, the loss value when 0.5 C charging is applied was taken as the reference value
at 50% of the SOC. Table 2 shows the charging current and internal resistance at each SOC. Only the
DC internal resistance (DCIR), which indicates the effect of DC current on the battery is considered in
calculating the charging current. The resistance is widely used value when comparing the performance
of the battery and also has the characteristics of large variation on the SOC [29-31].
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Table 2. Measured internal resistance and calculated charging current in the experiment.

SOC (%) INR 25R (NCA) INR 29E (NMO)
DCIR (ohm) Current (A) DCIR (ohm) Current (A)

100 0.0252 1.2258 0.0349 1.3991
95 0.0252 1.2327 0.0349 1.3991
90 0.0248 1.2431 0.0349 1.3988
85 0.0261 1.2111 0.0364 1.3693
80 0.0268 1.1962 0.0380 1.3412
75 0.0265 1.2015 0.0384 1.3334
70 0.0262 1.2084 0.0377 1.3468
65 0.0268 1.1963 0.0379 1.3429
60 0.0271 1.1893 0.0388 1.3276
55 0.0248 1.2433 0.0384 1.3334
50 0.0242 1.2570 0.0356 1.3861
45 0.0240 1.2632 0.0349 1.3991
40 0.0241 1.2619 0.0344 1.4101
35 0.0243 1.2555 0.0343 1.4102
30 0.0247 1.2464 0.0348 1.4010
25 0.0254 1.2269 0.0351 1.3947
20 0.0255 1.2268 0.0356 1.3859
15 0.0285 1.1589 0.0367 1.3649
10 0.0331 1.0757 0.0400 1.3073

5 0.0425 0.9492 0.0473 1.2012

0 0.0425 0.9439 0.0473 1.2012

Step 4: Aging test using the VCC method.

The battery aging experiment was carried out by repeating the charging cycle using the charging
current value obtained in Step 3. The SOH of the battery was checked by measuring the internal
resistance of the battery at every 10 charging—discharging cycles.

To compare the aging of batteries according to the charging method, the degree of aging of the
batteries with application of the existing CC-CV charging method was measured using the same two
types of batteries as applied during the VCC algorithm aging test. The battery aging condition was
compared after 60 cycles of the charging test were carried out in different ways to compare the degree
of aging according to the charging algorithm.

6. Experimental Results

Figure 6 shows the results of measuring the internal resistance variation of the battery by the
SOC according to each charging method by applying the proposed VCC method and the conventional
CC-CV charging method. The battery charging with the VCC method shows less variation in internal
resistance, and this is more visible in high-power battery cells. The difference in the increase in
resistance of a battery resulting from the batteries having different charging algorithms can be seen,
similarly to the tendency of capacity reduction due to the aging of the battery. Figure 7 shows the
variation of the capacity of each battery as the charging cycle repeats and Table 3 shows the comparison
result of the capacity degradation rate on each method. As shown in this Figure 7, there is less capacity
change in the battery cell with the proposed charging algorithm. Figure 8 shows the results of the
change in charging time following the aging test. In the proposed method, a resistance value at a 50%
SOC, which has the lowest internal resistance, and a current value of 0.5 C were used to obtain the
charging power loss, and the power loss value is used to calculate the charging current due to the
change in resistance. As a result, as the test progresses, the difference in charging time was reduced
or reversed depending on the battery type because the charging time is longer with the proposed
charging method than with the conventional CC-CV charging method at the beginning of the charging
test, but with aging this difference becomes smaller. This is ascribed to a slower aging process and
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smaller internal resistance characteristics in the proposed charging algorithm when compared to the
conventional method of charging [32].
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Figure 6. Hybrid pulse power characterization (HPPC) parameter calculation method: (a) DCIR of
cell with NCA material (CC-CV); (b) DCIR of cell with NMC material (CC-CV); (c) DCIR of cell with
NCA material (VCC); (d) DCIR of cell with NMC material (VCC); (e) comparison of internal resistance
(NCA); (f) comparison of internal resistance (NMC).
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Figure 7. The discharging capacity by cycle number: (a) cell with NCA material; (b) cell with
NMC material.

Table 3. Comparison of the capacity degradation rate.

CC-CV Method VCC Method
Battery Types and Cycles
Capacity (Ah) Growth Rate (%) Capacity (Ah) Growth Rate (%)
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Figure 8. The charge time by cycle number: (a) cell with NCA material; (b) cell with NMC material.
7. Conclusion

This paper proposes a variable charging current charging algorithm to minimize the aging
characteristics of batteries generated by repeated charging/discharging operation. The proposed
method is to manage heat inside the battery that occurs when charging the battery to minimize
the battery aging caused by repeated use of the battery. For heating management of batteries, the
charging current is varied at each SOC level depending on the internal resistance value of the battery to
maintain the power loss inside the battery. The effectiveness of the proposed charging algorithm was
then compared with that of the conventional CC-CV charging algorithm. By applying the proposed
algorithm, a battery with repeated charging would have a slower aging effect compared to a battery
with the conventional charging method. Also, the effects of the proposed algorithm vary depending
on the chemical composition of the battery and the proposed algorithm was found to be more effective
in high-power battery cells. Based on the results of this experiment, the variable charging current
battery charging algorithm proposed in this paper is an effective charging method that slows down the
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aging of the battery, and is expected to achieve better results in applications where the product has a
long life cycle and battery replacement is difficult. Further research to compare the results of battery
aging through long-term charging cycle testing and to adjust charging current to reflect the changes in
capacity due to aging of batteries should be carried out.
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Abstract: This paper presents a nonlinear-model-based observer for the state of charge estimation of
a lithium-ion battery cell that always exhibits a nonlinear relationship between the state of charge
and the open-circuit voltage. The proposed nonlinear model for the battery cell and its observer
can estimate the state of charge without the linearization technique commonly adopted by previous
studies. The proposed method has the following advantages: (1) The observability condition of
the proposed nonlinear-model-based observer is derived regardless of the shape of the open circuit
voltage curve, and (2) because the terminal voltage is contained in the state vector, the proposed
model and its observer are insensitive to sensor noise. A series of experiments using an INR 18650
25R battery cell are performed, and it is shown that the proposed method produces convincing results
for the state of charge estimation compared to conventional SOC estimation methods.

Keywords: nonlinear battery model; state of charge estimation; lithium-ion battery; Lipschitz
nonlinear system; Luenberger observer

1. Introduction

Since the first development of hybrid electrical vehicles (HEVs), pure electric vehicles (EVs) have
been rapidly commercialized. In contrast to HEVs, the mileage range of EVs is directly affected by
the power and energy density of the battery itself and the performance of the battery management
system (BMS). Hence, many studies related to lithium-ion (Li-ion) batteries, including the development
of new materials and algorithms for inner state estimation, have been conducted by various research
groups [1-8]. Increasing the energy and power density via advancements in battery manufacturing
technology requires a higher level of monitoring of the battery states to fully and safely use the
potential of the battery.

In EV applications, the state of charge (SOC), which represents the amount of charge in the battery,
is the most important parameter because it directly relates to the number of miles that an EV can travel.
An inaccurate SOC information causes the driver to constantly worried about the EV stopping on the
road or the battery being overcharged/overdischarged, causing ignition or explosion. Therefore, it is
important to estimate the SOC and accurately determine the dischargeable capacity of the battery to
protect the battery itself and help reduce the driver’s anxiety [9-11]. However, unlike the voltage and
current, there is no way to measure the SOC directly. Hence, advanced algorithms for accurate SOC
estimation need to be researched.

Typically, there are two kinds of categories of SOC estimation methods: (1) model-less and
(2) model-based methods. The most famous example of a model-less algorithm is the Coulomb
counting method [12,13]. This method estimates the SOC by integrating the current through the battery.
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Its simplicity and low computational cost make this method valuable in the infancy of the BMS.
However, it has obvious limitations: it suffers from an initial condition problem and the accumulation
of sensor offset due to the integrator. Artificial neural networks (ANNs) and fuzzy algorithms are
also model-less methods that implement intelligent algorithms [14-16]. However, these data-driven
methods have inherent problems, such as a long training time and a large number of data sets.
In particular, when the type of battery cell is changed, the learning procedure has to be restarted.
This is far from a practical concept. On the other hand, model-based methods use an equivalent
electrochemical model (EECM) or electrical circuit model (ECM) to represent the current-voltage
relationship of the battery. The EECM formulates the key behaviors of the battery cell by deriving a
series of differential equations for the chemical reactions inside the battery cell [17,18]. The accuracy
of the EECM for SOC estimation is very high, but its practical usefulness is questionable, because a
very high complexity leads to a significant memory and computational burden. On the other hand,
the ECM represents the current-voltage relationship by using electric components such as resistance,
capacitance and a variable voltage source [19-22]. Although the ECM is relatively inaccurate compared
with the EECM, the ECM is commonly adopted for real-time SOC estimation because it can be
simply implemented and can achieve a high accuracy when the ECM cooperates with a state observer.
Therefore, there have been many studies on various state observers and various kinds of ECMs.

The Kalman-filter-based observer, Luenberger observer, sliding-mode observer and proportional-
integral observer are widely used for the SOC estimation [23-35]. Previous studies have verified that
all methods produce good performance for the online SOC estimation. However, while the battery
is a type of nonlinear system due to the nonlinear relationship between the SOC and open circuit
voltage (OCV), previous studies focused on linear systems and their observers. Therefore, linearization
techniques must be implemented. For example, Kalman-filter-based approaches apply a Taylor series
expansion to each operating point at each time step, and the other approaches apply the "piece-wise’
linearization technique, which divides the nonlinear function into multiple linear functions according
to each operating region. Linearization techniques are useful for approximating a nonlinear system,
but when the operating point changes, the model of the linearized system changes. This means that
the performance of the designed observer based on a linearized model at a certain operating point
changes with respect to the operating region, and even worse, there can be a critical point where the
observer loses its stability. However, most previous studies did not consider time-varying conditions.

This paper proposes a nonlinear model for a battery cell and a nonlinear-model-based observer.
This work has two contributions. First, this paper proposes a nonlinear state space representation of
a 1st-order Thevenin equivalent circuit model. This allows the system to be time-invariant and the
eigenvalues of the designed observer to be fixed in all operating regions. The resulting observability
condition of the proposed model, which is generally used as the necessary condition for the design
of an observer, is derived regardless of the shape of the open-circuit voltage curve. This means that
the observability condition is always satisfied even if there is a voltage plateau on the open-circuit
voltage curve [36-38]. The proposed nonlinear model is also insensitive to sensor noise, because the
state vector contains the terminal voltage. Second, a nonlinear-model-based Luenberger observer
that can address the nonlinear system model is proposed. The stability condition of the proposed
observer is strictly derived using nonlinear system theories. The performance of the real-time SOC
estimation of the proposed method is evaluated by conducting experiments with INR 18650 25R from
SAMSUNG SDI

2. Nonlinear System Model for a Single Battery Cell

There are many ECMs for battery cells. For an onboard BMS system, there is always a trade-off
between the model accuracy and complexity. Therefore, a suitable selection for the ECM must be made
according to the application. Generally, for real-time SOC estimation, the 1st-order Thevenin ECM [5]
is adopted because it is more suitable for real-time SOC estimation (see Figure 1).
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Figure 1. Thevenin’s equivalent circuit model with a single RC pair.

The dynamic equations of the selected ECM are derived as follows:

Vi = Voc (z) — ILRo — V1, (€]
N
zZ= a/ ()
. 1 1
- )
Vi R Vi + ol 3

where V; is the terminal voltage of the battery cell, Voc(z) is the OCV function of z, z represents the
SOC, I, is the load current, Ry is the equivalent internal resistance, V; is the voltage of the RC pair,
Cy is the nominal capacity, R; is the equivalent resistance of the RC pair and C; is the equivalent
capacitance of the RC pair. In the case of a Li-ion battery, the nonlinear function Vpc(z) representing
the relationship between the SOC and OCV always exists. This makes it difficult to build a state space
model and design a state observer for the battery system.

2.1. Linearized System Model for a Single Battery Cell

Most previous studies related to observer-based SOC estimation [29,30,32,34,39] linearized Vo (z)
by using a piece-wise assumption. The linearized Vpc(z) is defined as

Voc(z) = kiz+d;, forthei™ SOC region 4)

where k; and d; are the coefficients of each linearized Vpc(z) and i is the number of divided sections of
the SOC. (1)-(3) can be rewritten as a linear state space representation by using (4).

X = Ax+ Bu,
y; = Cix + Du

T
where x = {Vl z} , i = Vi—dj, A =

1
[ -1 ki ] and D = Rq. By utilizing this linearized system model for a single battery cell, it is
easy to implement the state observer for an SOC estimation because the theories for linear systems are
applicable. However, a major concern of this linearized model is that when the operating point changes,
the linearized system model will change. If the change is large, the optimally designed observer will
no longer be optimal, and in the worst case, the observer will become unstable. Details about the
limitations of the linearized model for the battery system are mentioned in the discussion section.
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2.2. Nonlinear System Model for a Single Battery Cell

This paper proposes a nonlinear state space representation for the battery cell. Let us define the
nonlinear function Vpc(z) as a summation of a linear term and a nonlinear term as

Voc (2) ?ﬂé2+[3+f(2)f

f(z) = ¥ apsin(byz +cy) ©)
n=1

where « and f are the coefficients of the linear term, f (z) is a bounded nonlinear function consisting
of a sum of sine functions and a,, b, and ¢, are the coefficients of the sum of sine functions. Figure 2
conceptually represents (6).

N

« az+p —_ f(2)= Z a, sin(b,z+ c,) N Voc(2) =az+ B+ f(2)
+ S m 8
| A :
/ \/ soC@
SOC(») SOC (»)

Figure 2. Reformulation of the open-circuit voltage representation.

Equations (1)—(3) can be rewritten as a nonlinear state space representation by using (6).
The terminal voltage of the ECM in (1) is

Vi=waz+ B+ f(z) — Vi — ILRo. (7)
Its time derivative can be calculated as follows:

Vt =az+ %f (Z) — V1 — ILRO = 7txc%lIL + %f (Z)Z’ — <*ﬁvl -+ éIL)

=—ad - L£f (@) E L+ V- (2 +B+f(2)-Vi—-W) ®)
_ 1 1 1 17 d 1 B

= o Vi+ (G + ol ) Vi — iz + S LA S ) — Gef @+ (&L - }-

The derivative of the state of charge in (2) is

Z':—%RO(DLZ-Fﬁ"rf(Z)—Vl—Vt)

_ 1 1 1 1 ©)
=or it oV T or? T ok (B~ g
Then, the nonlinear state space representation of the given ECM can be obtained as
X=Ax+F (JC,IL) + G (IL),
y=Cx,
1 1 1 1 14
"GRG TRG TRG “rof @) g Ef L
A= 0 ) oren 0 , F(x,Ip) = 0
1 11 ! o« 1 f (Z) (10)
RoCn RoCn 1 RoCn 1 RoCy
—GL — mo P Vi
G(I) = & ,x= ||, y=V
1
& B z
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where A is the state matrix, F (z,I) is a nonlinear function with unknown states and G (I1) is
a nonlinear function with known parameters. It is noted that the time derivative of the current
I} can be negligible not only because the sampling time of the algorithm is much faster than
the current change [30] but also because its effect is much smaller than that of the other factors.
Different from the linearized model in (5), it is easily shown that the proposed nonlinear system
model in (10) does not change regardless of the SOC range, and the state vector contains the terminal
voltage V;, which can lead to the model being insensitive to sensor noise when using the measured
value directly. However, because of the existence of the nonlinear functions F (z,1;) and G (I1.),
the observers used previously for linear systems are no longer available, and the stability condition
for the nonlinear-model-based observer is not determined by considering the eigenvalues of the
linear stability matrix (A — LC), where L is the observer gain matrix. Hence, in the next section,
a nonlinear-model-based observer is proposed, and its stability condition is verified based on the
Lyapunov stability criteria.

3. Nonlinear-Model-Based Observer Design

Theorem 1. Under the assumptions that the linear observability matrix (A — L, C) of the given nonlinear
system model in (10) has full rank, and the nonlinear function F (z, I,) can be assumed to be a locally Lipschitz
continuous function with a Lipschitz constant x, which satisfies (11) in the physically feasible range of space X
such that

IF (v1, 1) — F (2, ) < xllx1 — 32l , Vx € X, a1

the observer given in (12) is asymptotically stable if the Luenberger observer gain L, can be chosen to ensure
that the linear stability matrix (A — L, C) is Hurwitz and the inequality (13) is satisfied.

£=AR+F(%I)+G(IL)+ L, (y—Cg), (12)
min opin (A — L,C — jwl) > x (13)
weRT

where ) is the Lipschitz constant in (11).

Proof. Let us prove Theorem 1 by the method of contradiction. According to He, theory, the following
well-known condition is satisfied. If the Hamiltonian matrix

A R

H =
Q -AT

(14)

has no imaginary eigenvalues; then, there exists a symmetric matrix P satisfying the algebraic
Riccati equation
ATP4+PA+PRP—Q =0 (15)

(for a proof, see [40]). In the same context, it can said if that the Hamiltonian matrix

H= (16)

(A—L,C) X1
—I—¢el  —(A-L,O)7

has no imaginary eigenvalues, there exists a symmetric matrix P satisfying the algebraic Riccati
equation
(A= L,C)"P+P(A—L,C)+Px*P+1+el =0. 17)

From (13), there exists a finite wy such that

min Omin (A — LyC — jwl) > 0min (A — LyC — jwol) = Xmin- (18)

weR*t
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Then, we can say that for all w > wy, (A — L,C — jwl)* (A —L,C — jwI) > X%ninl is satisfied,
where * indicates a Hermitian matrix. Choose € such that

(A—LyC — jwl)* (A — LyC — jwI) > x2inl > x> (I +¢l). (19)
The eigenvalues of the Hamiltonian matrix (16) are given by [41]
det [ 1 (I +el) + {AL+ (A = LaC) HAL+ (A~ LiO)}] = 0. 20)

Without loss of generality, it can assumed that an imaginary axis eigenvalue is represented by jcw.
By substituting A = jw in (20), we have

det [XZ (I+el) + {—jwl + (A — Ly,C)TH—jw + (A — LnC)}} =0. @1)
This means that
{(A—=LuO)" — jwI}H(A = LC) — jw} = x* (I +eI). (22)

This contradicts (19). Hence, the matrix H in (16) cannot have any imaginary eigenvalues if
inequality in (13) satisfied.

Let us define the state estimation error vector as e = x — £ and consider the Lyapunov function
candidate V = e Pe. Then, the derivative of V is

V =¢TpPe+eTPe

= ¢ [(A~LuO)P+ P (A~ LyC)] e +2eTP[F (x,1) — F (£,1)]. @3)

Using the Lipschitz condition in (11) and the property e'P[F(x,I)—F(%1)] <
[|Pe|| ||F (x,I) — F (%,1)]|, the derivative of V can be represented by an inequality as

V<el [(A —L,C)"P+P(A- LHC)} e+2x||Pell Jle]| - (24)

Using
x2eTPPe +eTe = 2xeTPe > 2x || Pe| |le]|, (25)

and the result of (16)—(22), the upper bound of the Lyapunov candidate can be obtained as
v<el [(A — L,C)TP + P (A — L,C) + x?PP + 1] e = —clele. (26)

Hence, the system is asymptotically stable. [

There are two kinds of necessary conditions for Theorem 1: (1) the linear observability matrix
(A — L,C) of a given system has full rank, and (2) the nonlinear function is a local Lipschitz continuous
function. The linear observability matrix of the given nonlinear system model in (10) can be obtained
T
asOuc) = C ca ca|.
The linear observability matrix of the given system is derived as

1 0 0
Owc) = 2} p1+p2 —apy (27)
pi—apips pi—ps—apips —api+a’pips
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— 1 _ 1 _ 1 : . .
where p1 = o, P2 = g;c; and p3 = g The determinant of the matrix Oy ¢ is

det ‘O(A/C)’ =aps—p1—p2 (28)

It is shown that the given observability condition is independent of the shape of the OCV function.
This is a function of the given parameters. Then, if the coefficient « is selected such that

wp P tr 29)
p3
the given nonlinear battery model in (10) will satisfy the first necessary condition of Theorem 1.
The Lipschitz condition in (11) can be rewritten by the following partial differential equation [42] as

F(x1,I1) — F(x2,1 F(x,1
|F (x1,IL) = F (x2,I1)| _ OF (x,11) <x (30)
|21 — 22 0% yxex

While there are three kinds of states to be considered for the Lipschitz condition, the state V;
is measurable. Therefore, the two unmeasurable states, V; and z, must be considered. The Lipschitz
conditions for the nonlinearities of V; and z can be derived as follows:

an (x, IL)

F €]

8F3 (x, IL) 1 d

n - RG#?
where F, and F; are the nonlinearities of V; and z. As mentioned above, the function f (z) is predefined
by the sum of the sinusoidal function, which has a certain boundary. The resulting function in (32)
is a function of only one state value z. Therefore, if the function values of (32) in the overall feasible
range of z are smaller than the Lipschitz constant y, the inequality in (11) is satisfied. This means that
the second necessary condition of the Theorem 1 is satisfied. The specific parameters of the necessary
conditions will be verified in the next section.

(32)

4. Experiments

This section inspects the performance of the SOC estimation of the proposed nonlinear battery
model and the extended Kalman filter, which has commonly been applied for SOC estimation in
previous works in [11,24,38,43] by conducting a series of experiments.

4.1. Experimental Setup

To analyze the performance of the SOC estimation of the proposed observer and previous methods,
an experimental battery cell test bench is established. Experiments were conducted using the INR
18650-25R battery cell from SAMSUNG SDI. The test bench for the charge-discharge experiment
is shown in Figure 3. The setup consists of a bidirectional DC/DC converter (Maccor 4300 K),
a temperature chamber (Jeiotech TH-G-408) and a main PC. The current and terminal voltage of
the cell were measured accurately by the Maccor 4300 K converter with a full-scale range (FSR)
measurement error below 0.02%. This experiment was implemented with a controlled temperature of
25°C.

In this paper, all of the charge-discharge experiments were conducted by: (1) charging the battery
with CC-CV mode until the battery reaches the charge cutoff voltage of 4.2 V; (2) discharging the battery
with CC mode until the SOC reaches the intended initial SOC, where the SOC is calculated by the
Coulomb counting method with a precise current sensor; and (3) conducting the target current cycle.
As an example, the sequential current and resulting terminal voltage for the UDDS current profile are
shown in Figure 4.
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To focus on the intended current cycle and target SOC area, the analysis was conducted only for
step 3.

Figure 3. Experimental setup: (1) bidirectional DC/DC converter, (2) personal computer (PC) for data
acquisition, (3) temperature chamber, and (4) tied battery cells inside the temperature chamber.

(a) (b)
447
4.2 V cutoff voltage
4.2
< S
= ()
g g
= —
© 381
3 ‘\ =
Step 1 3.6t
Step 2
-15 3.4
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Time (s) Time (s)

Figure 4. Experimental sequence: (a) engaging the current and (b) the resulting cell terminal voltage.
4.2. Target Battery Specification and Parameters Extraction

The target battery cell is an INR 18650-25R cylindrical Li-ion battery cell comprising GIC and NMC
from SAMSUNG SDI. Before extracting the parameters of the given ECM and SOC-OCV relationship,
the pre-cycling procedure including 10 fully charge-discharge cycles was conducted in order to the
target battery cell can be warmed-up and ready-to-use state. The equivalent parameters for the
1st-order Thevenin ECM are extracted using an offline hybrid pulse power characterization cycle
(HPPC) test at a constant temperature of 25 °C. The current profile and voltage profile of HPPC test
are shown in Figure 5.

1 C-rate (2.5A) is chosen for charge-discharge current, and by discharging 30 min with 1 C-rate
current, and discharge the battery during 30 min at every cycles so that the SOC level is dropped
by 5%. In order to measure the OCV at each SOC level, the battery is rested for an hour. According to
the voltage and current data, resulting equivalent parameters and SOC-OCV relationship for each
SOC level are shown in Figure 6.
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Figure 5. The HPPC test procedure: (a) engaged current profile and (b) resulting terminal voltage.
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Figure 6. Resulting equivalent parameters: (a) SOC-OCV relationship, (b) internal resistance
(c) resistance value of RC-pair and (d) capacitance value of RC-pair.

The equivalent parameters are obtained based on the method presented by Kim et al. [44].
The average parameters are listed in Table 1, and these values are used for establishing the state space
model and selecting optimal gain of observer.

Table 1. Average values of equivalent parameters of the 1st-order Thevenin ECM.

Parameter Value

Ry 0.0172 Q
Ry 0.0097 Q
C 570.86 F
Cn 8972 As

Voc (z) was captured at 5% SOC intervals from 5% SOC to 95% SOC. The linear and nonlinear
functions of the proposed OCV representation, which are introduced in Figure 2, are shown in Figure 7.
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Figure 7. The proposed open-circuit voltage representation: the (a) linear term and (b) nonlinear term.

The nonlinear term of the OCV function is tuned by utilizing the curve fitting tool in MATLAB
(2017a academic version, Mathworks, Natick, MA, USA). The corresponding coefficients are listed
in Table 2.

Table 2. Coefficients of the proposed V¢ (z) in (6).

Parameter Value

o 0.9878
B 3.2095

Parameter n=1 2 3 4 5 6
an 0.07 0.05 0.04 0.02 0.23 0.22
by, 1.90 030 3.39 8.35 10.01  10.10
Cn —-330 049 —-098 -—-127 174 —142

The measured OCV of each 5% SOC and the proposed nonlinear representation of the OCV curve
in (6) are shown in Figure 8.

427 7
O  Captured OCV
4+ == Proposed OCV

N
Voo (z)=az+ B+ a,sin(b,z+c,)

i=1

Open Circuit Voltage (V)

0 20 40 60 80 100
SOC (%)

Figure 8. Captured OCV at each SOC point and the SOC-OCV curves fitted using the proposed
OCV representation.
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Accordingly, the corresponding matrices of the proposed nonlinear battery cell model in (10) are

obtained as
0.1018 0.2814 —0.1006

A=| 0 —0179% 0 ,C:[1 0 0]. (33)
0.0065 0.0065 —0.0064
From the resulting coefficients, « = 0.9878, p; = 0.1018, p, = 0.1806, p3 = 0.0065 and the
condition in (29), it is known that the linear observability matrix of the given system has full rank.
The values of (32) in the overall feasible range of z are shown in Figure 9.

0.002

0.001

-0.001

-0.002

Function value

-0.003

-0.004

-0.005 -
0 20 40 60 80 100

SOC (%)

Figure 9. Values of the partial derivative function in (32) for the state in the overall feasible range.

The resulting values are bounded from —0.005 to +0.002. This means that the Lipschitz condition
in (11) is satisfied if the Lipschitz constant is selected as x > 0.005. All the necessary conditions of
(1) linear observability and the (2) local Lipschitz condition are satisfied. The Luenberger observer gain
is selected by utilizing the pole-placement technique so that the eigenvalues of the Luenberger observer

T

satisfy A (A—L,C) = { -05 —-0.1 -0.01 ] and the sufficient condition in (13) is satisfied.

The minimum singular value of L, min+ (A —L,C—jwlI) is 0.0073. This value is larger than the
weR

Lipschitz constant xy = 0.005. From the sulfficient condition in (13) of Theorem 1, the proposed observer
in (12) with the selected observer gain is asymptotically stable and the state estimation error converges
to zero as time increases.

4.3. Experimental Results

The UDDS current profile, which is shown in Figure 4, was used for the experiments.
To evaluate the performance of the real-time SOC estimation and insensitivity to sensor noise,
two types of experiments were conducted. The first working condition is the noiseless condition.
Because the experimental setup has a high precise current and the voltage sensors are operated under
controlled conditions, it can be assumed that there is no external noise. There are only unknown
model uncertainties. To compare the performance of the SOC estimation of the proposed method with
that of previous methods, two types of SOC estimation methods are used: (1) a Luenberger observer
with a nonlinear model and (2) an extended Kalman filter (EKF) with following form [45]:

X1 = Axy + Buy + wy,
Yi+1 = CXpeyr + Dty + v,

a-ee(-#E) o] 5 Rl(l—exp(—féé))} 64
0 1|’ ar '
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T
where x; = [ Vik zk ] s Yk = Vi, up = I and AT is the sampling time.

4.3.1. Case 1: Noiseless Condition

The real-time SOC estimation results of the two methods under noiseless condition are shown in
Figure 10. The percentage error is calculated by

Percent error (%) = True valu;;eis:;zatedvulue % 100. (35)

At the beginning of the experiment, the initial SOC value is set to be far from the true SOC value.
This shows the observer’s robustness to the initial state error. As shown in Figure 10, both SOC
estimation methods have good performance. Because the EKF is an adaptive and optimal version
of the Luenberger observer, it usually shows better performance when the accuracy of the model is
sufficiently high and the external noise can be assumed to be Gaussian noise. The EKF also shows
a shorter offset compensation time for a well-conditioned experiment than the proposed method.
However, after the offset compensation time, the percentage errors of the SOC estimation of the
proposed method and the EKF are under £5%.

(@

Proposed method
—— EKF method
=== Reference SOC

0 200 400 600 800 1000 1200 1400 1600
Time (s)

(b)

— Proposed method
30 —— EKF method

5% Error boundary

Percent Error (%)

0 200 400 600 800 1000 1200 1400 1600
Time (s)
Figure 10. SOC estimation results under noiseless conditions: (a) SOC estimation results of the two
types of methods and the (b) percentage error of each method.

The sensor noise is considered for the other working condition. Two types of sensor noise,
voltage sensor noise 1y and current sensor noise 1y, are considered as random noise with zero mean
and different peak-to-peak values of |ny|,,, = 0.02V and |n;|,,, = 2.5A. Although the given
voltage and current sensor noise conditions are quite severe, this level of sensor noise can occur in
a real implementation of an onboard BMS as a result of external noise due to an unstable ground,
electromagnetic interference (EMI) from electronic equipment or a low sensor resolution, and as a
result, the advanced performance of the proposed method can be emphasized. The current and voltage
signals with sensor noise are shown in Figure 11.
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Figure 11. Voltage and current signals: (a) original and noisy current signal and (b) original and noisy
voltage signal.

4.3.2. Case 2: Voltage Sensor Noise Condition

Figure 12 shows the SOC estimation results with only voltage sensor noise.

(a)

Proposed method ]

45 —— EKF method -
=== Reference SOC
40 -
0 200 400 600 800 1000 1200 1400 1600
Time (s)

— Proposed method

30 ——— EKF method 7

20

5% Error boundary

Percent Error (%)

200 400 600 800 1000 1200 1400 1600
Time (5)

Figure 12. SOC estimation results with voltage sensor noise: (a) SOC estimation results of the two

types of methods and (b) percentage error of each method.

As shown in (34), the output vector y is the measured terminal voltage. Because the EKF is a
good estimator whether the measurement noise can be assumed Gaussian noise, EKF shows better
SOC estimation performance compared with proposed method by suppressing the voltage noise well.
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The percentage error and offset compensating time are slightly increased compared with the results of
the noiseless condition.

4.3.3. Case 3: Voltage and Current Sensor Noise Condition

Figure 13 shows the SOC estimation results with voltage and current sensor noise.
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g
e —
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0 200 400 600 800 1000 1200 1400 1600
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Figure 13. SOC estimation results with voltage and current sensor noise: (a) SOC estimation results of

the two types of methods and (b) percentage error of each method.

Table 3 summarizes the results of the two types of experiments using both methods.
Compared with the results of the noiseless experiment, the SOC estimation error is larger with
both methods because of the sensor noise. However, in the case of the proposed method, the increases
in the mean absolute error (MAE) and the maximum error (after the offset compensation) are relatively
smaller than those of the errors of the EKF. The time for compensating the initial offset (when the
percentage error is less than 5%) is less affected by the sensor noise.

Table 3. SOC estimation results for different experimental conditions using both methods.

Method Experiment Offset Compensation Time (s) MAE (%) Absolute Maximum Error (%)
X Noiseless condition 174.59 2.9099 4.1340
Extended Kalman filter '\ condition 294.62 48255 7.8403
Proposed method Noiseless condition 274.36 3.7413 3.3539
P Noise condition 278.96 3.7646 3.6544

This result occurs because the proposed method includes the terminal voltage in the state vector.
Although the terminal voltage of the battery is information that can be measured, the result of adding
this information to the state vector is that it is updated when integrating the error between the noisy
measurement signal and the estimated value. The block diagram of proposed method is shown in
Figure 14.

It is shown that at the last sequence, the state vector is passed through the integrator.
This integrator can suppress the zero mean noisy signal in the state vector, which it is similar to
the low-pass filter. As a disadvantage, this can decrease the state estimation response. Therefore, it is
necessary to set an appropriate gain and achieve a trade-off between these characteristics. On the other
hand, the EKF directly updates the state values by using the noisy measurement signal. According to
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the given model in (34), different from the voltage sensor noise, the current sensor noise is applied
to not only the output vector through the matrix D but also the state vector through the matrix B.
It means that if there exists current sensor noise, both the measured value y(k) and the estimated states
x(k) based on the system model are inaccurate. Therefore, Kalman filter cannot show the convincing
performance under this kinds of condition because Kalman filter is designed to estimate the state with
a more accurate value between the measured value and the estimated value. This condition occurs
neither of these values is accurate. Figure 15 shows the estimated voltage of both the proposed method
and the original voltage signal.

It is known that in the case of the EKF, the noisy voltage signal is directly used for updating
the SOC, but in the case of the proposed method, although the estimation speed is relatively slow,
the noisy signal is filtered out.

ny

I,

E._

4 [ 1
""T L] /]
ny E«

Proposed method

*

=)

Figure 14. The block diagram of proposed method.
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Figure 15. (a,b) Estimated voltage of both methods and the original voltage signal.

Therefore, the proposed method can robustly estimate the SOC in the presence of sensor noise.
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5. Discussion

Although not experimentally verified in this paper, the proposed nonlinear battery cell model can
solve the critical limitation of the linearized model in (5). The observability matrix of a given linearized

model is calculated as
1 ks
[ 1 01 ] . (36)
CiRy

By calculating the determinant of the observability matrix, the observability condition of the
linear system is obtained as

o) =[c ca }T

1

"CiR

The condition directly states that the given linearized system is observable only if k; # 0.
That is, if there is a flat voltage region in the open-circuit voltage curve, the linearized model loses
its observability. This situation can occur in certain battery types: e.g., LiFePOy (LFP). The LFP-type
battery has voltage plateaus in the SOC-OCV curve [36-38,46]. Therefore, when the SOC range is
within such an area, the linearized model cannot estimate the SOC from the OCV curve because there
is no state excitation. Previous studies did not consider such problems.

det|O(A,C)| = —k 37)

Simulation Study with a Virtual Battery Cell Having Wide Range of Flat OCV Curve

Let assume that there exist a virtual battery cell having flat OCV curve from 20 % to 80 % SOC
range. The SOC-OCV relationship of this battery cell is shown in Figure 16, and two kinds of model
(1) proposed OCV curve representation in (2) and (2) linearized OCV curve representation in (4) are
used for SOC-OCV curve fitting.
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SOC (%)

Figure 16. SOC-OCYV relationship with wide flat area and two kinds of representation of OCV curve.

The SOC estimation results of proposed nonlinear-model in (10) and linearized model in (5) are
shown in Figure 17.

As derived in (37), the linearized model loses its observability when there exists flat area on the
OCV curve. Thus, the estimated SOC cannot converge to the true value. However, the observability
condition of the proposed nonlinear-model is independent of the form of the OCV curve. It is shown
that the estimated SOC based on the nonlinear-model converges to the true value. This result has been
obtained empirically, and mathematical validation remains as a further research.
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Figure 17. SOC estimation result with nonlinear model and linearized model.
6. Conclusions

This study has proposed a nonlinear state space representation for a Li-ion battery cell and
Luenberger observer for a class of nonlinear systems. The proposed nonlinear battery cell model
contains the terminal voltage in the state vector, improving the robustness against sensor noise
caused by the external operating environment or sensor faults. The proposed method has improved
SOC estimation performance in the presence of sensor noise. The improvements of the proposed
nonlinear-model-based method are demonstrated with experiments; however, there is room for
improvement in this study. Because the proposed observer is a Luenberger observer, an additional
performance enhancement can be achieved by adding adaptive observe gain, such as sliding-mode
gain and integral gain. However, verifying the stability condition of these observers for nonlinear
systems is much more challenging. Thus, this will be considered in a future study.
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Abbreviations

The following abbreviations are used in this manuscript:

HEV  Hybrid electric vehicle

EV Electric vehicle

BMS Battery management system

Li-ion  Lithium-ion

SOC State of charge

ANN Artificial neural network

EECM  Equivalent Electrochemical model

ECM  Equivalent circuit model

OCV  Open-circuit voltage

HPPC  Hybrid pulse power characterization

UDDS  Urban dynamometer driving schedule

MAE Mean absolute error

LFP LiFePOy; Lithium-ion phosphate battery

EKF Extended Kalman filter
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