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Preface to ”Green, Energy-Efficient and 
Sustainable Networks”

Over the last decades, information and communication technology (ICT) has radically changed 
many fields of living, with a significant improvement to people’s lives. However, the benefits 
introduced by the development and the usage of ICT systems have consequences and new challenges 
have arisen regarding sustainability and practices that are environmentally acceptable. More 
specifically, ICT systems and infrastructures have constantly increased their power consumption and 
environmental footprint. This is primarily reflected in huge amounts of energy consumption and 
greenhouse gas (GHG) emissions of overall ICTs, with an additional contribution to the pollution of 
ICT system elements during their production and disposal phase.

Not surprisingly, such a noteworthy increase in energy consumption and GHG emissions 
will continue to rise due to the increase in the number of users/devices/types of ICT services, 
which will be coupled with the proliferation of high transmission capacity demands, mainly due 
to bandwidth-hungry applications and massive implementation of the Internet of Everything (IoE) 
technologies. In order to satisfy the detrimental economic and social demands and expectations, 
estimations show that the energy consumption of ICT is going to increase with an exponential 
trend. Although the contribution of ICT systems to global energy consumption and GHG emissions 
cannot be completely eliminated, these contributions should be maximally reduced, in order to limit 
the exponential increase of energy consumption and GHG emission trends. To face this challenge, 
improved or completely new algorithms, tools, platforms, methodologies, paradigms, systems, and 
energy models must be devised and practically implemented. Hence, greener and energy-efficient 
networks and ICT systems should be designed on all layers, by targeting an increase of energy 
efficiency, a decrease of GHG emissions, better re-use of resources, and large-scale adoption of 
sustainable materials and renewable energy sources. However, accomplishing this task is extremely 
challenging, due to the fact that it requires the combined effort of different stakeholders, e.g., from 
industry, academia, governments, and national and international organizations.

Additionally, sustainable networks and ICT systems refer to concepts that consider a set of 
programs, procedures, attitudes, and policies based on which ICT systems and corresponding 
elements will be implemented, used, and disposed of. Sustainable networks and ICT systems have 
a key role in developing the digitalized world, since technologies for the connected world have to 
assure the sustainability requests of new solutions and paradigms. Sustainable networks and ICT 
systems can be achieved only if a holistic approach in life-cycle management is targeted. This process 
includes structuring, developing, implementing, and disposing of ICT systems and corresponding 
elements, with a minimal or even without an environmental impact. Hence, sustainability is a topic 
of increasing importance in modern society, with a primary objective dedicated to achieving the 
technological, economic, social, and environmental sustainability of ICT systems and networks.

Despite such ever-growing interests in improving the energy-efficiency of ICT systems, the 
research on greener, energy-efficient, and sustainable networking and computing in many fields 
and on different levels requires improved or novel solutions and some fundamental problems are 
still open or are even in its infancy. Hence, green, energy-efficient, and sustainable networks are 
and will continue to be very relevant academic, industrial, economic, and social topics. However, 
recent advances in communication networks and systems have created new opportunities for the 
implementation of energy-efficient techniques that can be successfully built into ICT systems. This

ix



book, Green, Energy-Efficient and Sustainable Networks, focuses on all aspects of the research

and development related to these areas. The book contains the outcomes of the Special Issue on

“Green, Energy-Efficient and Sustainable Networks” of the Sensors journal published by MDPI

(Multidisciplinary Digital Publishing Institute). Eighteen high-quality works have been collected

and reproduced in this book, demonstrating significant achievements in the field. Among published

scientific papers, one paper is an editorial and one paper is a review, while the remaining 16 works

are research articles.

Published papers are self-contained peer-review scientific works. The editorial paper gives an

introduction to the problem of ICT energy consumption and greenhouse-gas-emissions, presenting

the state of the art and future trends in terms of improving the energy-efficiency of wireless networks

and data centers as the major energy consumers in the ICT sector. In addition, the published

articles aim to improve energy efficiency in the fields of software-defined networking (SDN),

Internet of things (IoT), machine learning, authentication, energy harvesting, wireless relay systems,

routing metrics, wireless sensor networks (WSNs), the device to device (D2D) communications,

heterogeneous wireless networks (HetNets), and image sensing. The last paper is a review that gives

a detailed overview of the energy-efficiency improvements and methods for the implementation of

fifth-generation (5G) networks and beyond.

More than 80 different authors from both academia and industry backgrounds have contributed

to this book. Therefore, this book can serve as a source of information for industrial, teaching, and/or

research and development activities. Hence, the book gives insights and solutions for a range of

problems in the field of obtaining greener, energy-efficient, and sustainable networks and it lays

the foundation for solving new challenges and achieving future advances. The book editors would

like to thank all authors who have submitted their articles and all reviewers for their valuable work

dedicated to giving an expert review for submitted papers. Moreover, the book editors are grateful

to all those involved in the publication of this book for their invaluable support, including the editors

of Sensors and the team of people involved in editing the Sensors journal Special Issue on “Green,

Energy-Efficient and Sustainable Networks.”

We sincerely hope that this book will be a valuable source of information, presenting recent

advances in different fields related to greening and improving the energy-efficiency and sustainability

of those information and communication technologies particularly addressed in this book.

Josip Lorincz, Antonio Capone, Luca Chiaraviglio, Jinsong Wu

Special Issue Editors
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Abstract: Although information and communications technologies (ICTs) have the potential of
enabling powerful social, economic and environmental benefits, ICT systems give a non-negligible
contribution to world electricity consumption and carbon dioxide (CO2) footprint. This contribution
will sustain since the increased demand for user′s connectivity and an explosion of traffic volumes
necessitate continuous expansion of current ICTs services and deployment of new infrastructures
and technologies which must ensure the expected user experiences and performance. In this
paper, analyses of costs for the global annual energy consumption of telecommunication networks,
estimation of ICT sector CO2 footprint contribution and predictions of energy consumption of all
connected user-related devices and equipment in the period 2011–2030 are presented. Since presented
estimations of network energy consumption trends for main communication sectors by 2030 shows
that highest contribution to global energy consumption will come from wireless access networks and
data centres (DCs), the rest of the paper analyses technologies and concepts which can contribute
to the energy-efficiency improvements of these two sectors. More specifically, different paradigms
for wireless access networks such as millimetre-wave communications, Long-Term Evolution in
unlicensed spectrum, ultra-dense heterogeneous networks, device-to-device communications and
massive multiple-input multiple-output communications have been analysed as possible technologies
for improvement of wireless networks energy efficiency. Additionally, approaches related to the DC
resource management, DCs power management, green DC monitoring and thermal management in
DCs have been discussed as promising approaches to improvement of DC power usage efficiency.
For each of analysed technologies, future research challenges and open issues have been summarised
and discussed. Lastly, an overview of the accepted papers in the Special Issue dedicated to the green,
energy-efficient and sustainable networks is presented.

Keywords: energy-efficiency; wireless; green; sustainable; data centre; networks; ICT; 5G; power;
wired access; IoT

1. Introduction

United Nations (UN) General Assembly have set sustainable development goals (SDGs) by the
year 2030, and analyses presented in [1] show that information and communications technologies
(ICTs) have the potential of enabling powerful social, economic and environmental benefits. However,
a lack of exploration and innovation attempts dedicated to the search for answers on how SDGs can be
achieved through the implementation of ICT, requests for more global governmental, technological,
scientific and industrial attempts for accomplishing UN SDGs. The role of ICTs is twofold; while ICTs
and networking currently contribute non-negligibly to the global energy consumption and carbon

Sensors 2019, 19, 4864; doi:10.3390/s19224864 www.mdpi.com/journal/sensors1
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dioxide (CO2) emissions, they will also contribute to the reduction of carbon dioxide (CO2) and energy
consumption of other industry sectors. This unique position of the ICT sector is confirmed in the
SMARTer2030 report of the Global e-Sustainability Initiative (GeSI) [2], according to which expected
carbon-dioxide equivalent (CO2e) emissions of the ICT sector in 2030 can be kept at the same level
as those in 2015. This means that ICTs will yield the 20% reduction of global CO2e emissions by
2030 (Figure 1a). To illustrate the importance of ICTs in reducing CO2e emissions, it is worth to state
that contribution to CO2e reduction due to the deployment of renewable energy sources by 2030 is
estimated on 10.3 Gt, which is a (for 1.8 Gt) lower contribution to CO2e reductions when compared
with 12.1 Gt of estimated CO2e reduction yield by the ICT sector (Figure 1a).

(a) (b)

Figure 1. Estimated: (a) contribution of different industry sectors to global carbon-dioxide equivalent
(CO2e) reduction by 2030 [1], (b) information and communications technology (ICT) sector CO2e

“footprint” contribution and enabled reductions to global CO2e emissions expressed in Gt [2].

According to estimates of GeSI, the ICT sector will give by 2030 significantly higher contribution
to CO2e emission reductions when compared with other industry sectors (e.g., mobility, manufacturing,
agriculture, buildings, etc.). To achieve such CO2e emission reductions until 2030, a significant decrease
of ICT sector CO2e emissions in global CO2e emissions are envisioned by 2030 [2]. Based on results
presented in SMARTer2030 report (Figure 1b), in 2020 ICT sector’s CO2 emissions “footprint” is
estimated on 2.7% (1.43 Gt) of global CO2e emissions, while due to expected improvements in energy
efficiency of ICT systems, ICT sector will in 2030 contribute with 1.97% (1.25 Gt) to global CO2 emissions.
This means that estimated CO2e emissions avoided by the use of ICT systems in 2030 (12.08 Gt) will be
9.7 times higher than the CO2e emissions generated by implementing the same ICT systems (Figure 1b).
Thus, an expected increase in the implementation of ICT systems in the future can potentially alleviate
the need for selection among environmental protection and economic prosperity and it can pave the
way to the achievement of both goals.

Despite such positive estimates, the increased demand for user′s connectivity and an explosion
of traffic volumes necessitate continuous expansion of current ICTs services and deployment of new
infrastructures and technologies which must ensure the expected user experiences and performance.

This results in an increase in the energy consumption and energy cost of the ICTs infrastructure,
which in recent years become one of the major concerns for the ICT sector. Due to the expected increase
in diversity of connected objects, devices, applications and services and because of the rapid growth
of the worldwide broadband subscribers, predictions related to global annual monetary costs for the
energy consumption of ICT infrastructure are worrying. The energy consumption estimated for wireline
(access, metro, edge, core networks and the associated data centres) and wireless access networks is
presented in Figure 2a [3]. According to these forecasts, if no energy-efficiency improvements will
be implemented, monetary costs for the global annual energy consumption of telecommunication
networks will raise 8.6 times, more specifically form $40 billion in 2011 to $343 billion in 2025. This
increase of energy consumption costs is a direct consequence of the need for satisfying explosive
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growth of annual global internet protocol (IP) traffic, which is estimated on 4.8 ZB/year by 2022, or
396 EB/month. In 2022 this will result in a threefold monthly increase of IP traffic since 2017 (122
EB/month), or an astonishing 14.1 times increase since 2011 (28 EB/month) [4,5].

Due to increased energy costs pushed by constantly increasing traffic volumes, current network
energy costs of telecommunication service operators in developing countries already span between
40% and 50% of provider operational expenditures (OPEX), and between 7% and 15% of the OPEX
for operators in developed countries [6–8]. This is confirmed by some telecom operators which start
reporting energy bills of up to $1 billion, while some expect to reach these costs by 2020 [9].

(a) (b)

Figure 2. Estimation of (a) costs for the global annual energy consumption of telecommunication
networks in period 2011–2025 [2], (b) expected total annual energy consumption per different ICT
systems in period 2010–2030 [10].

High energy costs of telecommunication networks presented in Figure 2a correlate with estimations
of energy consumption trends of different ICT systems presented in Figure 2b. Estimates presented for
the period 2011–2030 are performed with an assumption that takes into account expected annual: future
improvements in the energy efficiency of ICTs systems, trends in future IP traffic growth and future
improvements in electricity usage per traffic unit [10]. According to estimations presented in Figure 2b,
expected annual electricity consumption of consumer devices (including desktop, monitor, laptops,
televisions (TVs) and peripherals, tablets, mobile phones, smartphones, modems, etc.) will contribute
to the global electricity consumption of ICT systems by 2030 with 8.1% (670 TWh). Estimations
further assume for fixed wired (core, distribution and access) networks, WiFi networks (consumer
premises WiFi equipment), radio part of the wireless access network (second (2G)/third (3G)/fourth
(4G)/fifth generation (5G)) and data centres (servers, power supply and cooling elements), yearly
energy consumption contribution to the annual electricity footprint of ICT systems equal to 31.95%
(2641 TWh), 10.75% (889 TWh), 2.35% (195 TWh) and 35.89% (2967 TWh), respectively (Figure 2b).
Additionally, estimates for annual electrical energy consumed for the production of different ICT
devices (user, wired and wireless network equipment, data centre devices) are anticipated at 10.92%
(903 TWh) of total ICT energy consumption by 2030 (Figure 2b).

Moreover, best, expected and worst-case forecasts related to the overall yearly electricity footprint
of ICT systems in 2030 equals to 2698, 8265 and 30,715 TWh, respectively, which means that energy
consumption impact of ICT systems for the overall global annual energy consumption can be, in
the best-case, equal to 8%, or 21% for the expected (Figure 2b) and even an astonishing 51% for
the worst estimation case. To get a sense of the rapidness of ICT energy consumption increase, in
2012 it was estimated that the complete ICT sector contributes approximately 6% to global electricity
consumption [11]. Hence, worst or even expected (Figure 2a) forecasts of ICT energy footprint
trends in global annual energy consumption by 2030 are alarming. This dramatic increase in energy
consumption of ICT systems justifies the precipice of economic unsustainability. Obviously, current
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technology improvements cannot cope with the increasing energy consumption of the ICT sector and
it is imperative to find novel solutions that will alleviate this problem.

The rest of the paper is organised as follows. The energy consumption of user-related devices is
analysed in Section 2. Sections 3 and 4 give an overview of research challenges for energy-efficiency
improvements of radio access networks and data centres, respectively. A short description of all articles
accepted for publication in the Special issue on green energy-efficient and sustainable networks of the
Sensors journal are presented in Section 5. Finally, some concluding remarks are given in Section 6.

2. Energy Consumption of User-Related Devices

According to presented in the previous section, the energy consumption of data centres (DCs)
and communication network devices is just one part of the overall ICT energy consumption, while
energy consumption of user-related devices presents the other part. The energy consumption patterns
of user-related devices point to different challenges and require different approaches to energy
consumption reductions, than those envisioned for network and DC devices. Energy consumption
estimates of user-related devices for the period 2011–2025 are presented in Figure 3 [3]. Presented
estimates are performed for all connected user devices in cellular networks, internet of things (IoT)
applications, public safety, intelligent buildings and generally for all consumer devices with a network
connection. Estimates consider the explosive growth of user-related devices from about 50 billion
in 2011 to 110 billion devices connected to the network in 2025 [3]. Forecasts for the global energy
consumption of these user-related devices estimate the energy consumption raise from about 180 TWh
in 2011 to 1400 TWh in 2025 (Figure 3), which represents a 7.7 time increase in the period of one and
a half-decade.

Figure 3. Estimations of energy consumption of all connected user-related devices and equipment for
the period 2011–2025 [3].

Obviously, this estimated energy consumption increase is unacceptable, and attempts focused
on alleviating such trends must take into account specific peculiarities of user-related devices. For
example, a single sensor or IoT device, in reality, consume rather low amounts of energy in absolute
values, however, it is expected that a vast number of such devices will be installed worldwide. On the
other hand, battery-less user-related devices must have constant power supply while battery-powered
devices must have a periodic power supply for battery recharging. This power supply can be obtained
from the electricity grid, by means of renewable energy sources, by means of energy harvested from
the environment or through the combination of these power sources. Hence, the problem related to the
energy footprint of user devices is not solely related to their annual energy consumption trends, it
is also related to the sources of energy supply and energy autonomy in the case of battery-powered
devices. Some estimates show that the number of user devices powered by rechargeable, grid, network
and renewable sources will increase in the period from 2011 to 2025 for 13×, 54×, 380× and 378×
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times, respectively [3]. Such figures mandate a necessity for significantly higher usage of renewable
energy sources.

Additionally, advances in battery storage, new solutions for lowering power consumption of user
devices and relying on energy harvesting is another possibility for energy footprint improvements.
This will be especially important since running power lines to a huge number of user devices or
repeatedly change of batteries will not be viable from the practical or economic point of view. Hence,
implementation of a fully connected world characterized by IoT and internet of everything (IoE)
applications will not be possible on a large scale unless the energy supply challenges of user devices
are properly solved. Future solutions must offer trade-off in the energy equation among better
energy storage, more effective use of harvested and renewable energy sources and lowering power
consumption of user devices.

Energy Consumption Trends

Although Figure 2a,b shows estimated trends for telecommunication networks in terms of expected
total annual monetary costs and electricity consumption per different ICT systems, more detail analyses
are presented in this section in order to understand the future trends in energy consumption of
communication networks. In Figure 4, energy consumption is breakdown into six main network
sectors, more specifically: edge and core networks, radio access, DCs, service core, fixed access and
residential and businesses. Contribution to the total annual energy consumption of each network
sector in 2013 and estimates for 2025 are presented in Figure 4a,b [3], respectively. Estimations are
performed based on expected IP traffic growth and by assuming the potential benefits of new network
architectures and technologies. According to Figure 4b, energy consumption will remain high or
even increase in two sectors: the data (cloud) centres and the wireless radio access network, while
in other sectors energy consumption will remain or even decrease. However, different technology
improvements are required in each of these sectors to ensure that an increase in IP traffic in the
future can be supported in an economically viable and sustainable way by 2025. Since wireless radio
access networks and data centre sectors are the highest contributors to the overall network energy
consumption, the next sections are dedicated to the presentation of main research challenges related to
the improvement of energy efficiency (EE) of these sectors.

(a) (b)

Figure 4. Estimated network energy consumption for main communication sectors in: (a) 2013 and (b)
2025 [3].

3. Research Challenges for Energy-Efficiency Improvements of Radio Access Networks

In this section, a review of the last research activities on green radio access approaches and
energy harvesting for the power supply of network devices in cellular access networks is presented.
Also, potential technical demands and some research topics for realizing green, energy-efficient

5



Sensors 2019, 19, 4864

and sustainable radio access networks are emphasized. For 5G networks, as currently the most
prominent wireless network technology, tremendous performance improvements are envisioned.
These improvements encompass support of: a thousand-fold increase in throughput in comparison to
present networks, up to ca. 7.6 billion mobile subscribers with the connection of at least 100 billion
devices worldwide, up to 10 Gb/s individual user broadband speeds, IoE communications, tactile
Internet applications and the network latency of 1 ms or lower. To satisfy such demanding performance
gains, different novel technologies are emerging, but performance improvements incurred by 5G
networks do not come without drawbacks. One of the major consequences is the degradation of
EE expressed in bits/Joule (b/J), which has been broadly accepted as the EE metric for wireless
communication systems [12]. It is expressed as

EE =
FR × SS × BW × log2(1 + SINR(D))

Pc + PT
[b/J], (1)

where SS, BW (Hz), FR, D (m), PC (W) and PT (W) represents the number of spatial streams (spatial
multiplexing factor), the bandwidth of signal, frequency reuse factor, distance among communicating
devices, circuit (mostly static) and transmit (mostly dynamic) power consumption of communicating
devices, respectively. According to EE Equation (1), the EE of cellular networks can be increased by
augmenting the signal bandwidth, the multiplexing factor, the frequency reuse factor, or by lowering
the circuit and transmit power consumption. In this regard, different paradigms for 5G networks have
emerged (Figure 5): Communications based on millimetre-waves (mmWave), long term evolution in
unlicensed spectrum (LTE-U), ultra-dense heterogeneous networks (UDNs HetNets), device-to-device
(D2D) communications and massive multiple-input multiple-output (M-MIMO) communications.
The impact of each technology on EE of radio access networks is further discussed. In Table 1, an
overview of technologies for EE improvements of wireless networks with future research challenges
characteristic for each technology is summarised.

Figure 5. Techniques for energy-efficiency improvement of radio access networks.
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Table 1. Technologies for energy efficiency improvements of wireless networks and future research challenges.

Technology Energy-Efficiency Improvement Area Future Research Challenges for EE Improvements

Ultra-dense HetNets [13–20]

Network design with decupled data and
signalling

Development of effective algorithms for the
management of signalling and data decupling

Network design with BS on/off switching
Development of effective radio resource management
algorithms for efficient BS activations
and deactivations

Network design with inter-cell interference
mitigation

Development of efficient inter-cell interference
management schemes

M-MIMO [12,14,21]

Design of energy-efficient antenna selection Finding algorithms for the selection of an optimal
number of antennas in M-MIMO systems

Energy-efficient hardware design Finding novel hardware designs for multi-antenna
placement in UTs

Energy-efficient design of pilot tones Finding algorithms for reducing the energy
consumption of pilot tome transmission

mmWave communications
[12,22–24]

Energy-aware transceiver designs Finding optimal hybrid control of RF transceiver
architectures and antenna designs

Energy-efficient analogue-to-digital
converters design

Finding optimal analogy-to-digital converters in
terms of sampling rate resolution

Renewable energy sources [25–27]

System design which exploits renewable
energy and energy cooperation

Solutions for estimation of optimal renewable energy
sources for BS sites

System design which exploits energy
cooperation

Development of systems enabling surplus power
transfer among BS sites

Design of BS site with efficient energy flows
management

Development of an optimal algorithm for energy flow
management on sites with renewable energy sources

D2D communications [12,28]

Network design based on the hybrid
overlay and underlay communication

Development of algorithms for switching among
underlay (assigned spectrum portion) and overlay
(unassigned spectrum portion) communication
designs

System design which enables active users’
cooperation

Development of algorithms for caching, sharing or
relaying data with minimal UTs energy consumption

LTE-U coexistence with other
systems [12,29] Design of channel allocation protocols Finding optimal protocol for RF channel scheduling

among different systems in an unlicensed band

Energy harvesting [30,31]

Design of highly efficient energy harvesting
systems

Development of algorithms for optimally balance
between energy harvesting and data transmission

Design of system which reduces energy
conversion inefficiency

Development of systems based on energy
beamforming, D2D and HetNets communications
with more energy-efficient receivers

Development of systems which exploit
interference in wireless networks

Development of systems which optimally exploits
interference signals for energy harvesting

3.1. Ultra-Dense Heterogeneous Networks

In essence, UDNs are heterogeneous networks based on a massive deployment of diverse
types of base stations (BSs), where macro-cells (of macro BSs) ensure base signalling coverage while
micro-cells (of mini/micro/pico/femto BSs) fulfils the demand for high throughput [13,14]. Such broadly
accepted radio access network architecture based on decoupling data and signalling contributes to EE
improvement of cellular networks and enables separation of downlink and uplink [15] communications.
Due to the reduction of distance between users terminals (UTs) and BSs accomplished with densification
of BSs allocation in such heterogeneous networks (HetNets), the EE improvements of the network are
reflected in a significant reduction of transmit powers and consequently energy consumption for both
(UT and BS) transceivers. Also, signalling and data decupling enable replacement of the macro-cell BSs
by more energy-efficient types of BSs having distant radio access unit′s (RAUs) controlled from central
location without impacting the small-cell BSs layer. Additionally, decoupling enables combining
different radio access technologies (RATs) such as mmWave and WiFi in existing networks, which can
help in achieving further EE gains. Moreover, the separation of uplink and downlink transmission
enables versatile association schemes among UTs ad BSs, which also can lead to significant energy
savings for both, BSs and UTs [12]. Nevertheless, UDN concept is not without drawbacks. It is expected
that the realization of such HetNets requests additional equipment and BS sites that will increase

7



Sensors 2019, 19, 4864

telecom operators’ (TOs) total network energy consumption for up to 150%–170% by 2026 [16]. Hence,
novel approaches to energy control within both, the 5G network infrastructure and changes in the
way TOs purchase and deliver electricity to 5G networks will become critical as they extend density,
coverage and capacity over the next decades. Also, signalling and data decupling raise the complexity
of HetNets management and contribute to a significant increase in signalling overheads (Table 1). This
request further investigations in the development of new signalling and network designs, which will
enable full exploiting of signalling and data decoupling while preserving network EE.

Another important approach to improvement of BS energy-efficiency is concept based on on/off
switching of BSs (i.e., BS sleeping) to save energy [17–19]. Applicability of this concept is related to
the nature of wireless traffic loads which varies in time and space. This concept enables shutting
down or putting into sleep mode some BSs in periods of low traffic loads and activation of BSs
when there is a need for satisfying increased traffic demands. Such dynamic management of BSs
activity in the radio access networks enables tuning of BS power consumption according to real traffic
variations, which eliminates the waste of energy imposed with the traditional concept based on BSs
which are permanently active, even in the periods with low or without any user traffic [12]. However,
ensuring full-service area coverage, signalling for smooth user handovers among BSs and elimination
of overloading of those BSs that remains active is a challenging task in case of BS on/off deployments
(Table 1). To ensure optimal balance between network EE and service quality, further improvements of
radio resource management algorithms must be developed and implemented.

Due to the high-frequency reuse factor, inter-cell interference represents another challenge to EE
implementation of ultra-dense HetNets. The Tx power increase of two neighbouring BSs initiated in
process of BS radio resource management, can have a negative impact in terms of signal cancelling
caused by inter-cell interference [20]. This degrades the system throughput and consequently leads to
lowering of network energy-efficiency. Although complete elimination of inter-cell interference is not
possible, management schemes which suppress interference, such as cooperative transmission, smart
power control, interference alignment and resource scheduling and partitioning are needed for the
successful proliferation of energy-efficient ultra-dense HetNets (Table 1).

3.2. Massive-MIMO Technology

Since it is based on exploiting a large number of BS antennas for serving many users with the
same time-frequency resources, M-MIMO concept significantly improves multiplexing and array gain
of 5G transmission systems. The drawback of M-MIMO implementation is that such concept increases
significantly power consumption of individual BS sites. When compared with 4G BSs, M-MIMO
strongly contributes to increase of 5G BSs power consumption due to the increase in a number of
analogue-to-digital converters with corresponding digital circuitry and power amplifiers needed for
M-MIMO operation [21]. More specifically, typical 4G BS contain four transmit (Tx) and receive (Rx)
elements (in so-called 4 × 4 MIMO arrays configuration), while 5G BSs are intended to work in up to
64 × 64 configurations, which is the reason why it is expected that 5G BS will have three times higher
power consumption than its 4G predecessor. On the other hand, M-MIMO can bring some advantages
with respect to EE of wireless networks [12]. This is because the uplink Tx power of single-antenna
UT can be proportionally reduced with the number of MIMO BS antennas in the case when the
equivalent results as those of a related single-input single-output transceiver wants to be achieved [22].
However, only reducing the Tx power of UTs is not sufficient for significant improvements of EE in
wireless networks, since power consumed by electronic circuits has linear growth with the number of
MIMO signal processing circuits, which has a non-negligible impact on the overall power consumption
(Table 1). Hence, determining an optimal number of antennas in M-MIMO systems arises as important
research topic which generally yields assumption according to which, a larger number of antennas
must be deployed in systems which Tx power dominates in the overall power consumption, and vice
versa [14].
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Furthermore, M-MIMO systems with a large number of antennas installed enable the
implementation of simpler precoding algorithms and signal detection and transmission at the BS, which
further enable significant savings in power consumption contributed by BS hardware. In comparison
with the implementation of existing signal processing methods (successive cancelling of interference and
dirty paper coding), implementation of advanced algorithms for signal processing such as maximum
ratio transmission/combining contributes to the reduction of the dissipated energy required for signal
processing computations [12]. Additionally, since M-MIMO systems demand much smaller RF Tx
power (of the order of milliwatts), power amplifier losses during operations will be reduced which can
bring significant power savings. Nevertheless, major challenges requesting broad investigations are
currently present in the design of UTs hardware (Table 1). Major performance bottlenecks related to
UT hardware are the limited physical size of UTs, lacking space for implementation of a large number
of antennas and demanding requirements on battery depletion.

Above all, M-MIMO systems require accurate and timely channel state information′s (CSIs)
which acquisition is directly related to the Tx antenna number. This leads to the significant power
consumption of pilot subcarriers and new approaches such as semi-orthogonal pilot design and pilot
beamforming needs further exploiting in order to reduce the contribution of pilot transmission to the
overall M-MIMO system energy consumption. Additionally, pilot interference incurred by reusing
the same resources of pilots in neighbouring cells of multi-cell locations also diminishes the EE of
M-MIMO systems (Table 1). Hence, designing pilot interference mitigation approaches as well as
balance in the exploitation of resources in time and frequency for training of pilots in downlink and
uplink, are important topics that must be slaved in order to reach high EE of M-MIMO systems.

3.3. Millimetre-Wave Communications

For transmission in the mmWave spectrum, the conventional transceiver architecture having
each antenna connected to the corresponding radio-frequency (RF) chain is energy-inefficient [12].
Inefficiency is a consequence of huge power consumption which emerges from the concurrent processing
of vast amounts of data burst Giga-samples/s per each RF chain. Thus, an approach to alleviate the
power consumption problem is to implement both, the digital and analogue beamforming, where every
RF chain can be connected to all (fully controlled architecture) or to some antennas (partially controlled
architecture) of a transmission system. The signal phase of each antenna must then be scheduled by a
network of digital and analogue phase shifters (PSs) [23]. The fully connected architecture demands
hundreds or even thousands of PSs, which maximizes spatial degrees transmissions utilization and
minimizes EE. The partially controlled architecture exploits only a limited number of PSs that improve
system EE, but reduces spatial degrees freedom and consequently transmission rates. Possible solutions,
which are currently a field of research, aim to find optimal hybrid control architectures (Table 1).
These architectures are based on a different number of antennas and RF chains, combining and
precoding approaches, Tx power allocations and antenna arrays having a lens with energy-focusing.
The development of these architectures can jointly or separately optimize the system performance
whit minimal impact on EE degradation [24].

Besides the high-power demands of a huge number of PSs, another power consumption problem
characteristic for mmWave systems are analogue-to-digital converters (ADCs). The power dissipation
of ADCs increases exponentially with the increase in the number of bits per sample and linearly with
the augmentation of the sampling rate [12]. Additionally, the data circuits which connect the digital
elements to the ADCs are high energy consumers and have an evident correlation with the adopted
sampling rate resolution (Table 1). This motivates the search for finding optimal ADCs in terms of
sampling rate resolution, which will efficiently balance between the power consumption and the data
rate or ensure optimal combining of low and high-resolution ADCs in order to maximize EE.
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3.4. Renewable Energy Sources

An approach based on powering BSs sites using energy harvested from renewable energy sources
such as wind, solar, fuel cell or combination of these energy sources significantly contributes to the
improvement of wireless network EE. Current trends in terms of integration of renewable energy into
power supply systems of contemporary wireless networks are twofold. The first approach is dedicated
to the replacement of an off-grid diesel-based BS power supply system with those relying solely on
some renewable energy sources. The other approach is based on the so-called hybrid BSs sites which
use different renewable energy sources or a mix of renewable, diesel generator and/or grid energy. In
addition to EE improvements and operational expenditure reductions, such approaches significantly
reduce or even completely eliminate diesel generator CO2 emissions from BS sites [25,26]. However,
the optimal selection of renewable energy sources in terms of size and power generation capacity, for
the specific site remains one of the major challenges (Table 1). Hence, further investigations in the
development of simulation tools that can fairly estimate the techno-economic aspect of transforming a
typical BS site in green BS site must take place.

Additionally, the integration of renewable energy sources into BSs power supply systems can
provide compensation for the additional circuit power consumption in case of installing more BSs on
BS site [12]. Also, dense allocation of BSs employing energy harvesting from renewable sources can
facilitate possible energy cooperation between BSs. This cooperation can be based on transferring
through power lines superfluous energy collected on sites harvesting more energy, to BSs sites that
harvest less energy (Table 1).

However, the major challenge in realization of durable BS site power supply solutions can be found
in the intermittent nature of renewable energy sources, limited battery capacities installed on sites and
necessity for ensuring stable and without any interruptions power supply of BSs sites. This imposes
the development of resource allocation algorithms for the management of BS site power demand.
Such algorithms must consider the traffic variations and wireless channel state information′s, power
supply impacted with the unpredictable nature of renewable energy sources and battery recharging
and depletion cycles [27]. Algorithms for efficient energy flow management of BS sites are generally
categorized as offline and online algorithms. The first one can be developed by exploiting optimization
theory approaches and the second one assumes that some statistical data is accessible at the Tx side or
they use the insights observed from the offline algorithm. Since 5G networks are characterised with
very dynamic traffic variations, results of offline algorithms often serve as performance upper bounds
for online algorithms. Nevertheless, the development of an optimal resource allocation algorithm for a
specific hybrid BS power supply solution, continues to be an object of research interest (Table 1).

3.5. Device-To-Device Communications

This type of communication offers effective local spectrum reuse through two modes of
operation: the cellular mode where UTs communicate via BSs and the D2D mode which ensure
possible communication of UTs directly with each other [28]. D2D mode of communication can
be realised through reuse of the spectrum portions that have not been assigned (known as overlay
communication) or has already been scheduled to UTs (known as underlay communication). Overlay
D2D communication does not generate co-channel interference, which results in more efficient spectral
efficiency (SE) of the D2D system [12]. In periods when such interference is weak, it is possible to switch
to underlay communication which offers more energy-efficient D2D communication system design
(Table 1). However, for switching among underlay and overlay communication designs, effective
algorithms must be envisioned, what represents a prominent research field.

Another advantage of D2D communications is the ability of proactive cooperation between users,
what can bring EE improvements in 5G networks, particularly in terms of extending the mobile devices’
battery lifetime. More specifically, active UTs in D2D networks can work as mobile relays or cluster
heads of UT clusters and local cashing devices, and each of these working modes can bring possible EE
improvements of the cellular network [12]. A mobile relay mode based on a multihop relaying of data
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among UTs and BSs or other UTs can reduce high energy consumption needed for direct transmission
between distant UT and BS, since communication among relaying nodes can be realised with lower Tx
powers. Local content caching provides a way to better exploit the UTs data storage in 5G networks
and enables power consumption and backhaul loads reduction through optimal decisions related
to what content to cache and at which location (Table 1). Although active user cooperation offers
significant advantages in terms of improving SE and EE, further investigations must give an answer
on how UTs can be managed to cache, share or relay data for other UTs at the expense of consuming
their own energy.

3.6. Long-Term Evolution Coexistence with Other Systems in Unlicensed Spectrum

Implementation of LTE-U technology is constantly challenged with the need for simultaneous
coexistence of different systems working in unlicensed bands, such as wireless local area network
(WLAN) systems and overlay Long-Term Evolution (LTE) systems [12]. Since LTE employs
scheduling-based and WLAN contention-based channel access mechanisms, lack of constraints
in LTE transmissions may cause permanent interference to WLANs, where the channel is sensed
as mostly unavailable [29]. This results in unending backoff times for the WLAN transmitters and
poses low EE of the network due to the high energy consumption of the WLAN users lacking the
possibility of transmission while waiting on backoff timer expiry. Hence, advanced modifications to
resource management become critical for the coexistence of different systems in unlicensed bands,
and so far, two methods have been proposed: duty cycling and the listen before talk method. The
first one defines periodic turning off and on of the LTE transmitter, without checking the availability
of the channel before transmitting, while the second one requires a check of channel occupancy by
WLAN systems before the LTE system can start transmission. However, the first method lacks real
responsibility of ensuring any transmission time window for WLAN networks since LTE carriers
define on-off scheduling, while the second method has degraded performance caused by excessive
transmission collisions in case of a huge number of devices contending for the channel (Table 1). Hence,
currently there is no broadly accepted protocol that will ensure the harmonious coexistence among
systems transmitting in the unlicensed spectrum (LTE-U, WLAN, etc.), and more advanced solutions
for alleviating this coexistence issues are jet to be devised.

3.7. Energy Harvesting

Wireless power transfer (WPT) known as RF energy harvesting, allows small receivers which
are expected to be massively used in 5G use cases like IoT to harvest energy from RF signals which
will be received [30,31]. WPT is assumed to be a promising technology for powering a huge number
of devices, since harvested energy from RF eliminates the need for powering those devices from an
electric gird and also enables battery lifetime extension of mobile, sensor or actuator devices. Although
WPT can be fully managed at the receiver side, in the practical implementation of RF energy harvesting,
the main challenge is ensuring optimal balance among the harvested energy and the achievable
transmission rates. This balance can be realized through the implementation of an approach based
on exploiting simultaneous wireless information and power transfer (SWIPT), where the receiver
device during reception divides the received signal into two parts, one for energy supply obtained
through energy harvesting and the other for information decoding [12]. Another approach known
as wireless powered communication network (WPCN) splits information transmission and energy
harvesting in time, where wireless devices first harvest energy from received signals and then, by
means of harvested energy perform wireless information transmission (WIT). In the case of the first
approach, the development of algorithms which will minimize the power losses at the receiver in order
to maximise the harvested energy and the achievable throughput must be devised. Regarding the
second approach, proliferation of novel solutions which will ensure intelligent selection of WIT and
WPT requests for further investigations and improvements (Table 1).
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Although RF energy harvesting brings many advantages, the major implementation issue is
system performance which is significantly limited by the severe RF signal path loss and consequently
low energy conversion efficiency at the position of the energy harvester. One of the possible approaches
to system performance improvement is in the implementation of an energy beamforming concept [28].
This concept is based on the transmission of narrow beams through multiple antennas with optimized
beamforming vectors, which is fully compatible with M-MIMO and mmWave theologies. Moreover,
D2D communications and ultradense networks (UDN) are technologies that contribute to performance
improvements of energy harvesting systems. This is because each of these technologies ensures
a reduced range among communicating pairs, what reduces the distance for energy transfer and
consequently improves WPT efficiency (Table 1). Also, the substation power consumption of electronic
circuits during information decoding and channel state information acquisition asks for further
attempts in finding new receiver architectures which will consume less power.

Finally, the fact that energy harvesting of co-channel interference can be exploited for ensuring
the power supply of receiver devices, gives completely new light on the impact of interference which
can become a potential energy source. To exploit interference as an energy source, possible solutions
can be based on deliberate artificial interference insertion into communication channels. This approach
enables devices to harvest energy in the case of dominant co-channel interference and to decode
information in case when this interference diminishes (Table 1). Obviously, more investigations related
to such a paradigm shift are needed in future research.

4. Research Challenges for Improvements of Data Centres Energy-Efficiency

According to analyses presented in Figure 2b and estimation of data centres (DC) future energy
consumption trends presented in Figure 4, increasing trends of DC energy consumption become a
major concern. Additionally, DCs continually run at high underutilization due to fragmentation and
over-provisioning of resources [32,33], with common utilization levels spanning between 5% and
25% [34–37]. Besides significant energy waste caused by such low utilisation of DCs which further
worsens the energy inefficiency problem, the low DC utilization causes the energy dissipation of other
DC ancillary equipment and infrastructure, such as cooling and power supply systems.

Additionally, authors in [38] analyse green issues related to the processing of the vast volume
of information’s characteristic for emerging big data concepts. Analyses address the green
challenges related to the three phases of the big data life cycle which are characterized as data
generation/acquisition/communications, storage and processing. Also, the study suggests novel green
metrics for processing big data in order to accommodate the need for adopting new definitions of
green metrics which will correspond to the contemporary big data concept. Although different metrics
for expressing DC energy efficiency have been proposed, the widely accepted metric is power usage
effectiveness (PUE) defined as [39]:

PUE =
PTOT
PIT

, (2)

where PIT is instantaneous power of the IT equipment consumed by the DCs storage, network, servers
and monitoring devices (laptops or workstations), and PTOT is the overall DC instantaneous power
consumption which includes the aforementioned PIT power and instantaneous power consumption of
ancillary DC equipment (cooling system, power distribution system, uninterruptable power supply,
etc.). In [39], an average value of the present DCs PUE is suggested to be 1.83 and according to the
Equation (2), better DC EE means lower PUE and vice versa. Since PUE of present DCs is extremely high,
different techniques and approaches for improving EE of DC arise. TheEquation (2) indicates that a
better PUE can be accomplished if total DC facility power will be reduced and to this end, research efforts
focused on improvement of DC energy-efficiency encompass the following techniques: improvement
of DC resource management, increasing DC servers efficiency through power management, developing
green DC monitoring and simulations and enhanced thermal management of DC. In Table 2, each of
the stated techniques for improvement of DC energy-efficiency with corresponding future research
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challenges is presented. Also, Figure 6 summarises techniques for energy-efficiency improvement of
DCs and an overview of the latest research on green DCs is presented in the next sections.

Table 2. Technologies for EE improvements in data centres and future research challenges.

Technology Energy-Efficiency Improvement Area Future Research Challenges for EE Improvements

DC resource management [36–81]

Energy-aware VM/containers assignment in
DCs

Finding an optimal algorithm for the implementation
of energy-efficient VM/containers management

Energy-aware DCs network traffic
engineering

Development of algorithms for energy-efficient
adaptation of DC traffic paths and network
architectures

Energy-efficient power distribution in DCs Design of energy-aware solutions for intra and inter
DC workload scheduling and power distribution

Usage of renewable energy for DC power
supply

Finding solutions for optimal control of DC power
supply form renewable energy and implementation
of stimulating energy pricing models

DC servers power management
[82–98]

Energy-aware DFVS scaling of server
components

Finding optimal frequency/voltage and link speed
scaling solutions for minimization of the DC power
consumption

Energy-aware server/server component
activity scheduling

Development of novel energy-efficient algorithms for
on/off server or server components switching

Energy-efficient hybrid (DFVS and
component activity switching) solutions

Development of algorithms which combine DVFS
and on/off server or server components switching

DC monitoring and simulation
management [99–126]

Green DC monitoring Development of novel DC monitoring tools which
will enable analyses of green metrics

Green DC simulators
Design of a system-oriented DC simulator for
concurrent performance simulation of different DC
elements

DC thermal management
[127–134]

Energy-efficient cooling and workload
distribution

Development of temperature-aware DC workload
assignment algorithms

DC management system which improves
temperature to reliability trade-off

Design of novel temperature-resistant components
for DCs with an increased average temperature

Figure 6. Techniques for energy-efficiency improvement of data centres.

4.1. DC Resource Management

To address resource underutilisation as one of the major DC problems causing an excessive
energy consumption, modern servers in DC use the concept of virtualization for presenting the
abstraction of many dedicated virtual machines (VMs) or containers executing separate applications
(Figure 6) [40]. Hence, optimal migration, allocation and consolidation of DC server resources known as
VMs/containers management is an important approach to the improvement of DC resource utilization
and energy consumption reduction (Table 2). Generally, VMs/containers management is based on the
efficient scheduling of VMs/containers to servers based on satisfying specific performance metrics
and resource demands [39]. Although different approaches to VMs/containers management have
been proposed [41–50], the main cause of why the utilization of DC resources still remains ignoble
is that DC administrators and owners worry about the potential quality of service (QoS) violations
caused by VMs/containers management. Additionally, in multi-tenant DCs, versatile tenants can
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request different levels of application performance that request heterogeneous resource management
algorithms, which further increases its complexity. Hence, algorithms which will optimize DC
energy-efficiency through optimal VM/container management and DC right-sizing, while preserving
QoS in single and multi-tenant DCs, are at present important research issues. However, improving
DC resource utilisation will consequently contribute to the DC energy-efficiency improvements and
solutions which will provide efficient resource management policies that require future exploration.

Additionally, traffic engineering is a very efficient concept which enables improvement of
DC energy-efficiency (Table 2). It is based on the adaptation of DC traffic paths and network
architectures according to DC traffic patterns [51]. To obtain proportionality between DC traffic
variations and DC power consumption, different solutions have been proposed based on traffic
aggregation and VM/container assignment techniques using virtualization of network functions [52–60].
Although network function virtualization promises as an approach in providing EE improvements for
deployment and management of the network services, problems such as preserving QoS and lack of
accountability for the energy consumption of many implementations such as cloud networking system
(for example CloudNaaS) [61] remain unsolved. Hence, finding an appropriate trade-off between
network performance and EE is currently a challenging problem that solving requires further research.

Another issue related to DC energy inefficiency is the over-provisioning of DCs power distribution
system, which brings high energy costs during idle periods of DCs operation. DC power distribution
systems are generally over-provisioned since the deployment of such systems in terms of power
capacity is based on satisfying traffic peaks and allowing DC expansions in the future. However,
due to the rare occurrence of simultaneous peak power draw across all equipment in DC, power
over-subscription is intentionally utilised for enhancing DC power exploitation (Table 2) [34], [61–66].
In order to more efficiently utilize the total DC power budget, proposed concepts are based on power
capping, power routing and dynamic power shifting among power distribution units (PDUs) and
various distributed components. These approaches are performed according to the workload variations
and DC power availability. Besides dynamic power shifting, to address the peak power demand
issue, a few works have introduced uninterruptible power supplies (UPSs) as an energy consumption
saver [67–69]. The energy stored in batteries of UPSs is used to provide energy during periods of highest
power demand, which results in DC OPEX reductions without performance degradation. Nevertheless,
existing works neglect the possibility of inter-DC power scheduling were geographically distributed
DCs can also offer opportunities for power distribution (Table 2). Inter-DC power scheduling enables
preferment power scheduling to DCs with a larger amount of stored energy by consequence of being
allocated closer to the larger sources of energy. Additionally, the low efficiency of UPSs used in DC
during low UPS power demand periods, further contributes to the degradation of PUE. Some initial
analyses of concept based on the simultaneous UPS and server/VMs consolidation in accordance with
the DC workload variations show promising results in terms of improving DC energy-efficiency [70,71].
Still, major challenges related to achieving energy consumption reduction obtained through combining
application performance, workload scheduling and power distribution in DC remains. This requests
novel and more advanced solutions that can cope with DC power over-provisioning.

The use of renewable energy is another approach to improvement of DC energy efficiency (Table 2).
Renewable energy sources such as solar, geothermal or wind energy are investigated for power
supply of DC [72]. However, sporadic, unstable and limited nature of renewable energy production
significantly determines the use of such green energy for DC power supply. Therefore, the question
requesting to be addressed is how to use energy from renewable sources for the power supply of DCs
and overcome the associated restrictions. To address intermittent power constraints of renewable
energy, most of the previous research activities have been dedicated to the development of solutions
in which the DC load had been adapted to follow the variable power supply capacities of renewable
energy sources [73–75]. However, power supply solutions solely relying on unreliable renewable
energy sources can experience unpredictable performance degradation and the most common approach
to overcome such challenge is to have a hybrid DC power supply system combining the electrical
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grid and one or more types of renewable energy for DC power supply [76,77]. Such approaches use
weather forecasts and historical data to estimate available renewable energy in the future, with the
goal of optimal usage of renewable energy sources. Another challenge in using renewable energy for
power supply of DCs is related to attenuation losses caused by the transfer of renewable energy over
long distances. To avoid this, several proposed solutions suggest scheduling of server’s workload
to multiple DCs located in different geographical locations according to the availability of nearby
renewable energy sources [78–81]. It is shown that such traffic routing based on geographical location
can considerably reduce the brown energy consumption, if the energy tariff will be dynamically
defined, and the degree of renewable energy usage will depend on the energy pricing model. Hence,
future research must offer analyses of beneficial pricing schemes which will encourage DC operators
to reduce brown energy consumption.

4.2. DC Servers Power Management

4.2.1. Dynamic Frequency and Voltage Scaling

The broadly accepted approach related to the improvements of DC servers power management is
based on dynamic frequency and voltage scaling (DFVS) of server components (Table 2). The DFVS as the
approach is based on lowering the frequency/voltage of components in order to achieve power savings
in periods when the frequency/voltage of server components can be reduced. Due to approximate
proportionality between the power consumption and the supply frequency/voltage of different hardware
components, the goal is to find an optimal dynamic allocation of frequency/ voltage resources which
will minimize the overall power consumption and ensure predefined performance. Vast research results
related to the improvement of DC energy efficiency by implementing DFVS management according to
individual servers computing and traffic load variations have been presented [82–94]. Additionally,
research efforts on the level of energy-efficiency improvements of the large-scale server′s warehouse
through the implementation of DFVS are analysed in [37,95,96]. Since higher frequencies or voltages
enable faster execution with the drawback of the increased power consumption, in [95], the optimal
power allocation problem related to finding the optimal frequencies/voltages of the server components
in a server farm was analysed based on server’s workload. Furthermore, the implementation of an
adaptive link rate (ALR) concept on the DCs network level was analysed [89,97,98]. The concept is
based on an adaptive selection of speeds of links connecting DC servers in DC communication network.
In order to contribute to the DC energy consumption reduction, adaptive adjustment of the Ethernet
link data rate according to utilization shows that significant energy savings can be achieved since
an Ethernet link can work almost 80% of the time at lower data rates [89]. However, most solutions
proposed in the papers related to the DFVS concept, have been focused on power models which
are assumed to be ideal. Hence, future research activities should consider models that have more
similarities to real systems. More specifically, overhead which is not taken into account is mostly
incurred when switching frequency or voltage speeds took place, because the central processing unit
(CPU) must stop during these changes. Also, frequent changes in frequency/voltage speed can have a
negative effect on CPU lifetime and a challenging issue is how to include these facts in performance
analyses of practically implemented systems.

4.2.2. On/Off Server and Component Switching

Another approach related to the DC server′s power management is based on the server components
activity scaling, which envisions the transition of server components (such as server CPUs, memory,
etc.) during idle traffic and computing periods into sleep or low-power standby mode (Table 2). The
challenge is to decide when sufficiently long idle periods exist that enable component (CPU) activity
state switching, while the cost for transitioning from or into the low power consumption state will not
outweigh the costs incurred by this transition and will satisfy the workload demand. Analyses of the
challenge of scheduling the power consumption in a two (sleep and active) states are presented in [99],
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and different studies extend analyses with multiple stets in [100,101]. Generally, components (such as
CPU) state transition energies were assumed to be additive [100,102]. By taking into account different
assumptions related to CPU state transition energy, different CPU scheduling algorithms in the case of
single and multi-processor environments were proposed [104,105].

Additionally, a number of different studies proposed energy proportional computing for large
hosting DCs [105–110], which are based on the concept of dynamic activation and deactivation of DC
servers proportional to the DC workload demand (Table 2). Through such energy-aware provisioning,
the server load is directed to the minimal active set of servers in DC and reduction of the server power
consumption by 29% for characteristic web-based load is reported in [111]. Nevertheless, the novel
approaches to further optimize DC energy consumption need to be devised. More specifically, in
widely accepted parallel scheduling of jobs to different CPUs of servers which number is fixed, the
scheduler decides about jobs that will be processed on CPUs and make a decision at any given time
about the speed of each CPU. But, DCs operate on a different concept in which on-demand activation
or deactivation of servers must be achieved. Hence, such DCs properties impose the development of
new algorithms related to improving PUE while satisfying DC scalability and efficiency. Also, the
power consumed, and latency generated during the rebooting of servers means that the effects of on/off
server switching or DC networking device switching must be taken into account.

Furthermore, power-down mechanisms based on the concept of aggregating and redirecting
network traffic on a few network devices which remain active are proposed in [106–109]. However,
DC network architectures often ensure many communication paths between servers. This imposes
the challenge of how to effectively control power consumption in DC networks and requests deeper
investigation which will offer novel topologies and designs of DC networks, while satisfying demands
for the network delay, congestion, loss of packets and throughput in those networks.

4.2.3. Hybrid DFVS and On/Off Server Switching

Another approach for improvement of DC server power management is based on hybrid concepts
that exploit both DFVS scaling and servers or server components switching models. This hybrid
approach is seen as a promising approach that can bring further improvements in DC energy-efficiency.
This approach considers accelerating the processing tasks of server or server component activity,
which results in longer idle periods, during which devices can be in the sleep or shut-down mode.
Longer idle periods then give a higher contribution to the energy savings. The first theoretical analysis
with an algorithm enabling combining system sleep mode for idle workload periods and DFVS
during task processing periods are presented in [110]. In subsequent studies [111–114], improved
algorithms were presented, some of which enable on-line scheduling and have low complexity orders.
To enhance energy savings at the level of complete hosting DCs, in [116] a framework allowing the
implementation of both approaches is introduced, while in [116], the authors considered the power
consumption reduction in geographically distributed DCs. Hybrid techniques for improving the energy
efficiency of network elements in DCs are used in studies [117,118]. In [117], to reduce network energy
consumption, hybrid technology is implemented based on adjusting the rate of network operators
to the real workload. Furthermore, in [118], the authors formulated an approach for online traffic
management which reallocates the computing demands among a multitude of paths while optimizing
energy consumption. Although both approaches report some energy savings, further investigations
related to the implementation of the hybrid approach must take place.

Additionally, current results mostly focus on DC environments having servers with multiple
homogeneous processors. Nevertheless, it is also important to take into account the DC server′s
heterogeneity, since the servers in DC mostly differ among themselves in terms of computing and
hardware performance. Hence, results for heterogeneous environments in terms of the design
of energy-efficient algorithms that can combine different DC power management methods are
currently missing.
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4.3. DC Simulation and Monitoring Management

Effective monitoring of DCs enable detecting the traces and tracks of thermal emission, power
distribution and energy consumption for individual DCs equipment. Collected data can be used for the
implementation of intelligent mechanisms based on which, the DC energy efficiency can be increased.
Different DC monitoring services have been presented in [119,120]. Based on the collected data related
to the VM application workloads, the resource utilization and power usage, DC online monitoring
service presented in [119] enable a better understanding of the DC temperature behaviour and energy
consumption. Developed monitoring solution also helps in consolidating the VM workload, which
contributes to the significant energy savings. In [120], a monitoring solution based on request-tracing
concept was implemented for determining energy inefficiencies in multi-tier DCs. The solution is
based on collecting the resource consumption of respective requests and analyses of the characteristics
of every DC tier. This further enables insights into the main causes of energy inefficiency of DCs and
gives an opportunity to devise efficient power-saving methods for multitier applications.

As an example, green storage initiative (GSI) of the Storage Networking Industry Association
(SNIA) works on forming a global standard for defining energy efficiency metrics of storage products
working in the DC environment [121]. The proposed methodology enables the standardized and
uniform method to grade the power efficiency of commercial (file, block, converged, object, etc.) storage
in idle and active working states. This enables selecting the type of storage which best suits DC owner
goals with the lowest power consumption contribution. This also motivates manufacturers to develop
more energy-efficient storage devices since its energy efficiency can be compared among vendors.

Although monitoring of green metrics offers diagnosing of DCs energy inefficiencies, the
development of monitoring tools has not been in the main research focus so far. The main obstacles in
the realization of efficient DC green metrics monitoring are the availability of communication resources
in DCs and a huge number of VMs and containers hosted on a large number of servers. Thus, future
research activities need to be focused on solving the key research question related to the minimization
of the costs incurred during collecting green DC metrics in a centralised or distributed manner, while
guaranteeing monitoring accuracy.

Another approach to improvement of DC energy efficiency is based on simulation of DCs activity
by means of developed simulation tools that enable understanding and identification of the design
challenges that are crucial to DC energy efficiency. In this regard, different simulation platforms
such as SimWare [121], GDCSim [122], GreenCloud [123] and EEFSim [124] are proposed. SimWare
simulator [121] enables evaluation of the DC energy-saving policies and examination of mechanical
functionalities such as management of airflow, cooling strategies and server placement. GDCSim
proposed in [122] enables the iterative design of green DCs configurations for specific purposes, such
as DFVS for power management, CPU sleep-state transitions and characterisation of thermal behaviour.
GreenCloud [123] is a packet exchange simulator for energy-aware analyses of cloud DCs, which
can be used for capturing the energy consumption of versatile DC elements such as switches, links,
servers, as well as packet-based communication patterns. EEFSim [124] reproduce the behaviour of a
real cloud DC and enables the possibility to examine the power consumption of different migration
and scheduling policies with VMs. Nevertheless, the main drawbacks of these simulators are that
each of them is very specific and dedicated only to certain functions or components of DC equipment
such as CPU, VM, cooling, etc. Therefore, the task of designing a comprehensive system-oriented DC
simulator that will integrate all DC components, such as the memory, CPU, cache, disks, input/output
components and communication network is still an open task which requests addressing.

4.4. DC Thermal Management

Since typical DC hosts thousands of servers and communication network devices, it is reported
in [125,126] that up to one-half of the total DC costs are spent on the cooling. These trends will be further
contributed with previously presented servers′ virtualization and consolidation techniques. These
techniques increase processor utilization rates, which consequently contribute to the increase of thermal
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dissipation. Additionally, a combination of the abovementioned issues with trends characterised
with server’s concentration and high-density computing (realised through usage of many multi-core
processors in single chasses), will raise the problem of thermal control as one of the most critical issues
in deploying green DCs.

To cope with such a problem, in [127] the optimization of the DC cooling delivery is based on full
control of the DC environment through collecting different DC attributes such as data aggregation,
variable air conditioning and distributed sensing. Although this concept reports energy savings of up
to 50%, another approach based on exploiting thermal energy storage (TES) tanks for the reduction of
DC power is presented in [128]. In this concept, up to 28% in OPEX reduction is reported since this
approach is based on TES storage of cold water or ice which are exploited as a supplement to the chillers
used for cooling DCs and for heat exchange during peak power periods. Additionally, a very promising
research field which can improve DC thermal management is based on DC workload migration and
assignment among servers, in order to achieve thermal balance [129–131]. The general idea is dedicated
to the development of algorithms for load scheduling based on temperature variations, which can
reduce the energy consumption of the infrastructure dedicated to DC cooling [129]. The approach
proposed is based on the dynamic transfer of server’s workload from ”warmed” servers and increasing
the workload on remaining ”colder” servers. The approach in [130] uses periodic temperature
monitoring and server utilization for scheduling requests according to the DC workload weights. Also,
in [131], a data-centric model dedicated to minimization of energy costs for DC cooling is developed
based on dynamic file allocation in an energy and thermal-aware manner. The proposed model is
developed by means of known data-semantics, cluster information and server-profile. Proposed
approaches show possible energy savings between 20% and 42%. Additionally, in [132], the challenge
of temperature-aware workload distribution in geo-distributed DCs is shown.

A completely different approach is based on efforts related to the reduction of the costs imposed by
cooling, if the higher temperature can be sustained in DC. Basically, the concept is based on increasing
temperature setting by only a few degrees, which results in an energy consumption reduction of
2%–5% [133]. However, the temperature increase of the servers and other equipment in DCs can
contribute to a shortening of the DC equipment lifetime, which further contributes to the increase
of capital expenditures (CAPEX) costs. Some initial studies related to the analyses of hardware
(storage/memory/server) reliability and server performance presented in [134] show that in order to
save energy, the DC could work at hotter temperatures than current ones, while negative effects on
system reliability and performance can be partially limited. Still, better analyses of how temperature
raise in DC can affect DC systems are needed and this field remains an open research topic.

Some other approaches which can offer the possibility of DCs to operate at higher temperatures
are related to the development of new temperature-resistant hardware components. However, such
components are still in their infancy and novel temperature-resistant chip and hardware solutions
should be developed.

5. A Review of Articles for Special Issue on Green, Energy-Efficient and Sustainable Networks

The paper [135] analyses the influence of the node speed on the throughput and energy provision
in an IoT network, where wireless charging stations (WCSs) are deployed to recharge IoT nodes while
data transfer among nodes is limited by their abrupt links as well as the amounts of residual energy.
To optimize node throughput and energy depletion of IoT nodes in such network based on wireless
power transfer (WPT), authors propose a two-dimensional model based on Markov chains where the
first state dimension represents the span to the closest WCS normalized with speed of nodes, while the
second one represents residual energy of the node. Obtained results show that to enhance wireless
charging efficiency, charging opportunity must be prioritized by WCSs based on a speed of IoT nodes,
for which battery capacity can be minimized if the speed of nodes can be predicted. Also, if the same
throughput must be ensured, it is shown that a lower number of WCSs per node can gain appropriate
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WPT to all nodes in the area of high mobility, while a larger number of WCSs per IoT node are needed
in areas of low mobility.

The next paper [136] tackles the problem of improving the energy-efficiency of software-defined
networking (SDN) equipment based on the concept of traffic aggregation on links between two switches.
In the paper, authors present different traffic allocation algorithms for SDN applications, which enable
aggregation of the traffic flows to a few ports of the Ethernet links bundle in accordance with the traffic
variations. Proposed allocation algorithms are validated in terms of packet losses, energy-efficiency
and delay of packs. Obtained results show that the implementation of equipment with SDN capabilities
can reduce energy consumption when Ethernet link bundles are used for up to 50%, without the
necessity of changing devices firmware. Also, improvements of the two previous algorithms dedicated
to offering a low-latency service for data traffic with strict requirements in terms of QoS and sustained
energy consumption are proposed. According to the shown results, the algorithms can ensure the
service which requests a low-delay of some orders of magnitude to time-sensitive traffic.

In [137], image compressive sensing is analysed as a potential image sensing approach that
can satisfy green IoT demands in terms of finding optimal storage and data organization format
suitable for sensors with limited power and bandwidth availability. The layer, patch and raster
structure are proposed as three promising measurement schemes that differ in approaches related to
storing and packaging of sensing measurements within an image. It is shown that each of the three
proposed measurement structures restrains the image blocking artefacts and eliminate high memory
requirements and huge computation complexity during image sensing and recovery. However, the
layer structure shows the best results in terms of possible green IoT implementation since it has good
rate and time-distortion performances and offers better visual quality than other structures.

Work [138] addresses a lack of models for energy-efficient malware detection based on gaining
knowledge about devices in an IoT environment with the Android operating system (OS). In the paper,
adversarial samples vulnerability of learning-based malware detection models is tackled through
the development of an automated testing framework that performs security analyses for IoT devices.
In order to find an appropriate fitness function that can produce the corresponding sample without
impacting the characteristics of the application, authors introduce generic algorithms and specific
technical enhancements built-in proposed testing framework. Obtained results show that black-box
testing of the system can be done by the proposed test framework, which can create effective samples
with a rate of success equal to almost 100% for the application on IoT devices with Android OS.

To eliminate drawbacks of authentication based on cipher approaches that are impacted by the
large expenditures and energy constraints of smart devices, authors in [139] proposed a clustering-based
physical-layer authentication scheme (CPAS) for systems with asymmetric resources in the mobile
edge computing (MEC) environment. To ensure two-way authentication among edge devices and
terminals, CPAS as cross-layer secure authentication merge symmetric cipher and clustering with
information related to the wireless channel. Theoretical analysis of developed CPAS approach shows
that CPAS can be robust to replay, spoofing and integer attacks, while experimental results show that
CPAS decreases the data frame loss rate and increase the overall success rate of access authentication,
without enlarging authentication latencies. Therefore, the proposed scheme reduces the complexity of
resource asymmetric authentication scenarios for the edge computing systems, which contributes to
the reduction of power consumption during the authentication phase.

In [140], the problem of the inter-tier interference mitigation in two-tier HetNets composed of
pico-cells and underlying macro-cells has been considered. First, the near-optimal values of almost
blank subframes (ABS) power reduction factor and pico-cell range expansion (CRE) bias are gained by
an algorithm which uses equivalence relation between ABS and CRE for a given pico-cell base station
(PBS) density. Also, by means of a linear search method, PBS density is optimized with the known
factor of power reduction and constant pico-CRE bias. Lastly, to maximize network energy-efficiency
of two-tier HetNets impacted with further-enhanced inter-cell interference, authors propose a heuristic
algorithm for joint optimization of ABS power reduction factor, PBS density and pico-CRE bias. Results
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obtained through numerical simulations show that the proposed heuristic algorithm with a low
complexity of computation can update the HetNets energy efficiency.

The study presented in [141] extends preceding works that use the social behaviour of the mobile
users to adapt the transmission speeds of messages used for the peer discovery in D2D networks
under the user equipment′s (UEs) power consumption constraint. The authors introduce a three-phase
energy-ratio rate decision (ERRD) algorithm, which in the first phase schedules the power budget of
the network among the UEs based on their social ratios and in the second phase, based on harvested
energy, allocates power quantum of each UE. Finally, in the third phase of the ERRD algorithm, the
UEs beacon transmission intensities are adjusted according to their designated quantum of power.
Adjusting is performed under the limitation that the overall power scheduled to the UEs cannot
be above the power quanta of the network budget. Results obtained through simulations of ERRD
performance show that the proposed algorithm outperforms the previously-reported algorithm by 8%
and 190% on the peer discovery ratio, for a budget having the power of 20 and 1 W, respectively.

In paper [142], in order to improve the secure operation of industrial wireless sensor networks
(IWSNs), a physical layer authentication based on deep learning is presented. Three different
authentication methods for sensor nodes, more specifically the deep neural network (DNN), the
convolutional neural network (CNN) and convolution pre-processing neural network (CPNN) have
been used to deploy the PHY-layer authentication in IWSNs. According to simulation results
obtained during the evaluation of algorithms performance, each algorithm can authenticate multiple
nodes simultaneously trough lightweight authentication. However, the CPNN-based sensor nodes’
authentication method has the best trade-off between the shortening of algorithm authentication
performance and the minimal training time of the algorithm.

Paper [143] investigates the mobile directional charging vehicle (DCV) efficiency optimization
in rechargeable wireless sensor networks (RWSN), through the implementation of wireless power
transfer (WPT) on continuously working sensors. Authors initially design an approximation algorithm
to define positions and charging orientations of the docking spots, with the constraints of maximizing
the charging coverage utility and minimizing the total number of the DCVs docking spots. Then, an
optimization of the DCVs energy charging is performed based on the developed moving path planning
algorithm for the DCVs. Based on theoretical analyses and comprehensive simulation experiments, for
the case of sparse networks, authors present that the efficiency of energy charging of the proposed
DCV concept is better than those based on a model using the omnidirectional energy charging.

Authors in the next accepted work [144] have analysed the problem of green networking from the
sustainability point of view. Besides energy-aware routing, authors propose pollution-aware routing
with new metrics like the percentage of non-renewable energy usage and CO2 emission factor. The
proposed algorithm provides optimal control and data planes for these metric types and enables
different routers scheduling and link bandwidth adaptations, while ensuring scheduling and adoption
priority according to traffic demand requirements. The impact of the proposed algorithm enabling
green routing was assessed for three different metrics. Obtained results show that the proposed
pollution-aware routing algorithm can reduce CO2 emissions for 20% and 36%, if compared with
energy-based and shortest path routing, respectively.

A relaying system based on non-orthogonal multiple access (NOMA) in downlink transmission
with the best amplify-and-forward radio-frequency energy harvesting relay was analysed in work [145].
Analyses are performed for a source node that exchanges information in parallel with multiple users
and for the Rayleigh fading conditions lacking perfect RF channel state information. For such a
system, authors develop expressions for the outage probability (OP), the optimal duration of energy
harvesting which minimizes the OP and the ergodic capacities of each user. Based on numerical
results obtained for the equal setting of parameters, the ergodic capacity of the whole system and
overall performance of the proposed NOMA relaying system outperforms an equal system with the
orthogonal-multiple-access (OMA) relaying.
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Authors in [146] analyse the influence of using single and multiple relays on energy-efficiency
and throughput of Long-Term Evolution-Advanced (LTE-A) networks, for different resource block
(RB) allocation schemes. Energy-efficiency analyses for a single relay scenario is performed for the
maximum throughput (MT) bisection-based power allocation (BOPA) algorithm, an alternating MT
with proportional fairness (abbreviated SAMM) BOPA algorithm and SAMM equal power RB algorithm.
Simulation results show that the SAMM BOPA algorithm ensures the best energy-efficiency, while
SAMM equal power algorithm provides the best fairness. For a multiple relay scenario, a two-step
neural network (NN) algorithm (SAMM NN) is introduced. Algorithm exploits BOPA supervised
learning for power scheduling and SAMM unsupervised learning for scheduling of RBs. Results
obtained for multiple relays scenario shows that SAMM NN algorithm achieves better energy-efficiency
in comparison with SAMM equal power and SAMM BOPA algorithms.

Article [147] analyses the radio frequency fingerprinting identification (RFFID) approach dedicated
to ensuring authentications for a high number of energy-limited user terminals working in the MEC
environment. The proposed scheme combines a two-layer model with the use of non-encryption
RFFID for IoT terminals. In the first layer, the MEC devices perform access authentication after signal
detection and RF fingerprint features extraction with database storage of collected features. In the
second layer, implementation of machine learning algorithms through collected learning features and
generated decision models is done in the distant cloud, which improves the speed of authentication.
Through extensive simulations performed for scenario based on IoT implementation, the gained results
indicate that the approach proposed in [147] can achieve lower device energy depletion and better
recognition rate than the traditional RFFID method based on wavelet features.

Paper [148] tackles the problem of scheduling consumer′s requirements and the achievable
electricity provision from renewable sources through the demand-response (DR) model. The proposed
DR model is centralised via the data collector called the ”aggregator” which schedules consumer’s
requirements for instantaneous power supply and supplied electricity from renewable energy sources
in a home environment monitored through the implementation of IoT applications. Results of the
proposed algorithm evaluation confirmed algorithm feasible costs of computation in different scenarios
of consumer′s behaviour and versatile communities and households. Also, it is shown that the energy
reallocation costs are mostly impacted by a consumer′s demand timeframe flexibility and a number
of appliances.

In [149], the challenge of optimizing the power consumption of network devices in DC by means of
energy-aware traffic engineering was addressed. The authors propose an optimization approach based
on a mixed-integer programming algorithm, which minimizes network devices′ energy consumption
according to traffic load variations. The proposed approach was verified through simulations of
versatile DC network topologies and obtained results demonstrate clear benefits in terms of DC power
consumption reduction for different traffic volumes and DC network sizes. Furthermore, the proposed
approach can be deployed as an implementation in the SDN paradigm, and therefore, it can be used in
real practical implementations.

In the review paper [150], the energy efficiency of the radio access and core parts of the 5G
networks are surveyed, and open issues and challenges related to the achievement of green cellular
access networks are discussed. An overview of techniques for energy-efficiency improvement at the BS
level encompasses next techniques for 5G networks: dynamic on/off cell switching, interference-aware
energy efficiency control in UDNs, energy efficiency enhancement of BSs with radio resource control,
connection management for 5G new radio, and energy-efficient cache-enabled BSs. Further analyses
have been dedicated to the review of techniques for energy-efficiency enhancement at the 5G network
level which includes energy-efficient: resource sharing, resource allocation in NOMA, outdoor–indoor
communications and virtualization techniques. Additionally, authors perform a survey of SDN
technology for improving energy-efficiency which considers energy monitoring and management in 5G
with included backhaul and fronthaul and energy savings approach based on the utility of sleep mode.
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Finally, the authors give an overview of techniques based on machine learning for energy-efficiency
improvement of 5G networks.

6. Conclusions

Just a decade ago, the energy consumption of ICT devices and systems have been postponed
in network and device design. However, a point where energy consumption optimisation of ICT
devices and systems have become the new frontier for competitive differentiation and innovation
is reached. Having energy-efficient ICT systems and devices is no longer a nice-to-have feature,
but the mandatory requirement for the networks of the upcoming digital age. This is confirmed in
papers accepted for publication in the Special Issue on the green, energy-efficient and sustainable
networks, which overview in terms of addressed topics and obtained outcomes are presented in this
paper. Additionally, estimations and analyses of energy costs and CO2 emissions for different ICT
systems in the period ranging up to the year 2030 are surveyed. Presented analyses confirm that ICT
systems are at a critical point regarding current and future energy consumption of telecommunication
networks, DCs and user-related devices. According to the presented estimations, current technology
improvements of different ICT systems are not sufficient to keep up with the increasing energy
costs and CO2 emissions. This is elaborated in this paper for the case of wireless networks and
DCs, which energy consumption and CO2 emissions have the highest increase and contribution
to the overall ICT energy consumption. This motivates the deeper investigation of technologies
and concepts which can contribute to the improvement of energy-efficiency of these ICT sectors.
As presented in this work, for the wireless networks, possible technologies that are analysed in
this context include millimetre-wave communications, long term evolution in unlicensed spectrum,
ultra-dense heterogeneous networks, device-to-device communications and massive multiple-input
multiple-output communication. Additionally, DC resource management, DCs power management,
green DC monitoring and simulation and thermal management in DCs are discussed as possible
options for improvement of DCs power usage efficiency. Although each of analysed techniques and
concepts can bring some energy-efficiency improvements in the corresponding area of implementation,
comprehensive analyses presented in this paper shows that there is no single technology or concept
which will bring energy-efficient improvements to the whole ICT sector. Hence, to achieve more
power-efficient and greener ICT systems in the future, the combination of different technologies
and concepts in wired, wireless and DC part of communication networks with novel solutions for
energy-efficiency improvements of user-related and sensor devices must be devised. Only such an
approach can result in a synergetic effect which will keep energy consumption and CO2 emissions of
ICT systems at the lowest possible levels.
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Abstract: There is a lot of effort to limit the impact of CO2 emissions from the information
communication technologies (ICT) industry by reducing the energy consumption on all aspects of
networking technologies. In a service provider network, data centers (DCs) are the major power
consumer and considerable gains are expected by regulating the operation network devices. In
this context, we developed a mixed integer programming (MIP) algorithm to optimize the power
consumption of network devices via energy aware traffic engineering. We verified our approach by
simulating DC network topologies and demonstrated that clear benefits can be achieved for various
network sizes and traffic volumes. Our algorithm can be easily implemented as an application
in the software-defined networking (SDN) paradigm, making quite feasible its deployment in a
production environment.

Keywords: software defined networking (SDN); data center; optimization; traffic engineering;
energy awareness

1. Introduction

The problem of climate change due to global warming is already identified and the research
community as well as industry are working on methods to limit its impact. The following areas
have been identified as the main contributors of CO2 emissions: (a) energy production (29%), (b)
transportation (27%), (c) industry (21%), (d) agriculture (9%) and (e) information communication
technologies (ICT) (9%) [1]. In the area of ICT, a large increase that can reach a total of 15% is expected
by the end of 2020 due to the deployment of 5G networks, mass introduction of IoT (Internet of Things)
devices, IP traffic generated by video streaming and augmented reality applications. Data centers (DCs)
in internet service providers (ISPs) account for more than 45% of the power consumption [2]. Although
a marginal 10% of it is caused by network equipment [3], data center networking is responsible for 0.36%
of the total power consumption [4]. This figure is expected to rise even more because of NFV (Network
Functions Virtualization) and software defined networking (SDN) based service deployment [5]. In 5G
networks, the number of DCs is expected to rise in order to support mobile edge computing (MEC)
and user plane intensive applications [6]. Also, the majority of legacy applications will be migrated to
cloud infrastructure increasing the workloads served by DCs.

Data center networks are characterized by traffic patterns and volumes that significantly vary from
typical IP based networks that reside in ISP’s premises. Typically, DC networks are overprovisioned
with a large number or redundant devices and links. Depending on the deployed topology, access and
aggregation layer links rarely exceed 10% of utilization due to the high number of redundant links
on these layers [7]. Links and devices on higher layers of the topology (closer to root or data center
routers) tend to have higher levels of utilization and thus consume more energy. Accordingly, only
60% of installed links could potentially serve traffic even during a busy hour [8].
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If we consider the utilization of available resources during a whole day and not only during the
busy hour, DC network infrastructure stays in idle state serving zero to minimal traffic (mostly for
management purposes and maintaining the routing algorithms) for almost 70% of the day. Even on
higher traffic volumes, the average link utilization is not surpassed for the remaining 25% of the day.
Since DC networks are mainly constructed to provide a high level of resilience during a busy hour, we
identify the opportunity to minimize the power consumption of network devices and links between
them for the largest part of the day.

In this paper we address the problem of minimizing the power consumption within DCs. The
main obstacle in developing a practical optimization method for DCs is the requirement for global
knowledge of network topology and the flows matrix between the hosts. DC networking presents
high variability mostly from virtual machines (VMs) instantiation that have ephemeral life span
in cloud environments. Thus, there is a need to continually monitor for new traffic flows and the
optimization algorithm should act accordingly. Building a distributed algorithm for this purpose is not
appropriate since it would require the introduction of new or updated protocols. Nevertheless, SDN
architectures are already deployed in production environments and the centralized implementation of
SDN controllers (SDN-C) now allows practical implementations of such optimization.

Taking for granted that all modern DCs follow the SDN architecture, we show that, via energy
aware traffic engineering, an SDN [9] application can successfully address the problem. Depending
on hardware properties and traffic conditions, links can be put on a lower power state or completely
shut off via traffic steering. We formulate the optimization process as a mixed integer programming
(MIP) problem [10] that models power consumption taking into account all relevant constraints. Using
standard optimization tools and heuristics for its solution we show that significant power savings
result. Since the solution is optimal only for a short time frame, as long as traffic loads do not change
considerably, periodical repetitions and fast execution times are required and fine tuning of the solver
is mandatory. We took great care to ensure that the optimization algorithm can be executed in a
timely manner and confirmed the viability of our approach on a variety of topologies and network
sizes. Finally, we implemented an application following the SDN paradigm to demonstrate the
applicability of our approach and verified it against emulated topologies for performance evaluation
and experimental ones for software verification purposes.

2. Related Work

For the ICT domain, the main method to limit CO2 emissions is by decreasing the power
consumption of network topologies. A lot of work is performed in this area on various layers of
the network architecture. Existing methods can be classified into two main categories (a) evolving
hardware to support power consumption proportional to traffic served [11] and (b) putting unused
links and devices into sleep mode after applying traffic engineering techniques to reroute traffic [12].

Techniques to allow unused links to get into sleep states can be applied to ‘access’ part of the
network (both wired and wireless), to ‘transport’ (covering wired aggregation and mobile backhauling
based on optical links) and to ‘core’ [13]. Based on work performed in core networks, a number
of mechanisms have been proposed and that can be separated into four main categories (a) new
routing protocols [14], (b) traffic engineering techniques [15], (c) new network architectures [16], and
(d) modifications to existing routing protocols [17,18] so that routing decisions will be based on energy
consumption criteria. The main drawback of existing approaches is the requirement for full knowledge
of network topology and link utilizations. Even though getting a full layer-3 topology is rather easy
even on large scales networks, it is not feasible to gather per flow statistics even when utilizing modern
monitoring systems with telemetry [19] and big data analytics [20].

On the DC domain, a more holistic approach is taken into consideration that addresses the power
consumption not only on networking and computing devices but on supporting equipment such
as cooling devices. On the networking layer, similar approaches have been proposed that try to
put unused links in sleep state. Furthermore, they only focus on legacy devices with sleep states,
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neglecting other possible power states [21]. In contrast, modern switches and especially fiber optics
links in DCs support a certain degree of energy proportionality with a step-wise approach [22]. A
typical modular network device consumes power only in two concrete states (a) maximum power
when operating in normal mode and (b) minimum power when operating in sleep state. This mode
of operation is applicable on chassis layer, line cards and routing processors. There is no direct
correlation between traffic volumes and power consumption, but only on environmental aspects like
DC room temperature and the number of routing table entries. Interfaces on the other hand operate
on energy aware states according to the amount of traffic they serve. The number of states and the
maximum power consumption of an interface varies among manufacturers and depends on the link
type (multimode optics, single mode optics, DAC cables, CAT-6 copper cables) [23].

Until recently, all proposed mechanisms have been applied only to experimental topologies and
lack adoption from major networking equipment manufacturers. In addition, there is a lack in real life
deployments of such solutions due to a number of reasons: (a) protocol expansions are not eagerly
adopted from manufactures, (b) network statistics (on per flow basis) and topology monitoring cannot
scale well, and (c) advances in the area of SDN are not taken into account.

The SDN architecture [24] of separated data and control plane has been successfully used to
build networks inside a DC regardless of the purpose served and the workloads hosted, from 5G and
NFV services to generic IT applications and data storage. Furthermore, SDN already provides the
mechanisms to efficiently collect measurements and apply forwarding rules to existing equipment
without modifications to devices or routing protocols. Finally, SDN design allows to easily integrate
external applications via well-defined software APIs in SDN controllers (SDN-C). Therefore, the use
of an SND-C application seems to be the only viable method for network policies in any aspect of
DC networking.

In this paper we pursue the SDN paradigm as applied for traffic engineering purposes, so as to
mitigate the aforementioned gaps. First, we define an optimization problem that takes into account new
hardware capabilities by modeling the interface power consumption in concrete power states. Then
we show that the optimization problem can be solved in a timely manner. Finally, by harvesting SDN
capabilities we get the opportunity to develop an optimization application using a real, production
ready SDN-C and to apply the optimal solution in a scalable and practical manner. Our optimal
solution can be applied without traffic loss and is independent of the traffic patterns (UDP or TCP
based).

Relevant approaches [8] consider only selected topologies, are optimized for these and assume
that there is a-priori knowledge of traffic patterns. Even though they make use of SDN as a method to
apply the optimal solution, they do not fully exploit SDN capabilities. In particular, they resort on
legacy methods to collect statistics via SNMP. As a result, they cannot lead to practical implementations
in production environments. Finally, since their solution is developed as a part of the SDN-C, not as an
application following SDN paradigm, it is coupled only to the specific implementation and cannot be
scaled to other controllers and topologies.

3. Optimization Problem

We formulate the following optimization problem to determine the optimal topology and state of
links (either disabled or in an optimal state for served traffic). We consider only fixed sized network
devices since this is the trend in currently deployed DC network topologies. Furthermore, since we
envisage our approach to be deployed in real-life scenarios, we exclude the option to put into sleep
mode a whole device.

Definitions:
V: set of network devices in a given topology. Device υ ∈ V has a base power consumption of Bυ

E: set of links between the devices. Links are assumed to be bi-directional thus link l = (υ, υ′)
originates from device υ and terminates at device υ’ where υ, υ′ ∈ V
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F: set of flows from Access only devices. Flow (s, t) ∈ F originates from device s and terminates at
device t where s, t ∈ V

ST: set of possible power states n for a link
P(n)

l : power consumption of link l when operating in state n
Cs

l : capacity of link l ∈ E operating on a state n ∈ ST

x(s,t)
l : flow from s to t, where s, t ∈ V, passing through link l ∈ E

Φl(r): power consumed at link l ∈ E when carrying traffic r
τ(s,t): flow from device s to t where s, t ∈ V
Decision Variables:
S(n)

l : a binary variable vector to describe the state of a link. Value S(n)
l equals to 1 if link l is in

state n
yv: a binary variable describing the state of device υ and equals to 0 when a device is in sleep state
zl: a binary variable defining if link l is in sleep mode and equals to 1 when is serving any volume

of traffic
Our objective is to minimize the following gain function that calculates the total power consumed

from network devices

Minimize :
∑

v∈V
Bv·yv +

∑
l∈E

∑
n∈ST

S(n)
l ·P

(n)
l (1)

While maintaining the following constraints:

∑
(υ, υ′)∈E

x(s,t)
(υ,υ′) −

∑
(υ, υ′)∈E

x(s,t)
(υ′,υ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τs,t i f υ = s
−τs,t i f υ = t

0 otherwise
,∀ (s, t) ∈ F and υ ∈ V (2)

∑
(s, t)∈F

x(s,t)
l ≤ C(n)

l , ∀ l ∈ E, n ∈ ST (3)

zl ·C(n)
l ≥

∑
(s,t)∈F

x(s,t)
l , ∀ l ∈ E, n ∈ ST (4)

z(υ′, υ) = z(υ′, υ),∀ l = (υ, υ′) ∈ E (5)

yυ·
(∑

(υ,υ′)∈E
C(n)
(υ,υ′) +

∑
(υ′,υ)∈E

C(n)
(υ′,υ)

)
≥

∑
(s,t)∈F

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

(υ,υ′)∈E

x(s,t)
(υ,υ′) +

∑
(υ′,υ)∈E

x(s,t)
(υ′,υ)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (6)

C(n−1)
l ≤

∑
(s,t)∈F

x(s,t)
l ≤ C(n)

l (7)

∑
l∈E,n∈ST

S(n)
l = 1 (8)

Φl(r) =
∑
n∈ST

S(n)
l ·P

(n)
l (9)

Equation (2) guarantees flow preservation, i.e., flow that enters a device is also coming out of it
without packet loss. Equation (3) guarantees that capacity constrains are not violated and the sum of
all the flows coming from an interface cannot be greater than the capacity of the interface. The fact
that a link must be on a specific state and not on sleep mode and in parallel be on the same state on
both interconnected devices is defined in Equations (4) and (5). Equation (6) guarantees that a device
(and the interconnected one) are kept online if they serve any amount of traffic. Capacity constraint in
Equation (7) ensures that the traffic through an interface is not grater then the capacity for a given state.
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Each interface can only be on one state and this is guaranteed by Equation (8). Equation (9) expresses
the consumption of a link based on the power state defined by the traffic crossing each interface.

This is a typical MIP (mixed integer programming) problem and the solution is relatively fast
in case of small topologies with a limited number of devices and interconnecting links. Network
topologies in DCs are much larger with a high number of nodes (hundreds of switches and thousands of
links) and solving the above optimization problem becomes time consuming. Thus, CPLEX solver [25],
a well-known solver for optimization problems and constrained programming for linear and integer
programming problems, was used to apply a number of heuristics and produce a suboptimal solution
in a timely manner. In addition, flows and capacity values are expressed as integers (bytes per second)
to accelerate CPLEX execution times.

CPLEX MIP solver applies a number of algorithms to automatically select the best method to solve
complex problems. Our problem is by definition feasible since traffic loads can be served in the initial
network state. That is, if links are operated on higher energy state, all constrains are fulfilled. In our
work, CPLEX as MIP solver uses pre-processing and probing by setting all binary variables to either
0 or 1 and checking the logical implications. It automatically selects an appropriate Branch and Cut
algorithm to solve the optimization problem. If heuristics are required, a neighborhood exploration
search starts which is called solution polishing after the time limit is reached. Polishing is based on the
integration of an evolutionary algorithm within an MIP branch and bound framework.

Since we aim at practical implementations, we applied a hard time limit to the execution of the
algorithm. A number of parameters were evaluated in order to get a solution in a timely manner.
Initially we obtained a sub-optimal solution (that reduces the total power consumption) and then
explored for a better one without violating the timing restriction. The CPLEX parameters evaluated
are shown in the following Table 1.

Table 1. Description of CPLEX software parameters that were considered during the execution of
optimization algorithm.

Parameter Description

tilim Duration in seconds that CPLEX looks for a solution to the optimization problem

threads Manages the number of parallel threads used during the calculations (maximum value depends on
the available CPUs)

parallelmode Sets the parallel optimization mode. Possible modes are automatic, deterministic, and opportunistic

mipemphasis Controls trade-offs between speed, feasibility, optimality, and moving bounds in MIP.

probe Sets the amount of probing on variables to be performed before MIP branching. Higher settings
perform more probing

varsel Sets the rule for selecting the branching variable at the node which has been selected for branching

lbheur Controls whether CPLEX applies a local branching heuristic to try to improve new incumbents
found during a MIP search

fpheur Turns on or off the feasibility pump heuristic for mixed integer programming (MIP) models

The first parameters were selected so as to fit the available hardware resources where CPLEX was
executing. In more detail, threads value was set to 8 to fully utilize available vCPU capacity of hosting
VM. Tilim was set to a value that can produce a viable solution even on large data set. Mipephasis was
set to feasibility mode in order to produce an initial suboptimal value given the timeframe and later
search for the optimal value. Probe was set to the highest possible value since the initial time spend
looking for a suboptimal solution guaranteed that we could have power savings for all scenarios. The
other parameter (varsel, lbheur and fpheur) values were selected to fit the nature of the problem and the
available input data. Multiple executions of the algorithm on the same data set were performed to find
an optimal set considering the time limitations imposed in a production grade network environment.
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4. Emulation Results

We evaluated the results of our optimization algorithm on various network topologies, sizes
(number of nodes) and traffic volumes. We emulated three different network topologies applicable
to DC networking (a) classical three tier topology [26], (b) fat tree [27], and (c) leaf and spine [28].
We focused only to inter-switch communications and did not consider the impact of multihomed
servers where further benefits can be achieved. Physical topologies and switches were emulated using
Mininet [29] that implements OpenvSwitch (OVS) [30] as an Openflow switch, because of its ability to
create and maintain large network topologies [31]. Mininet is responsible for instantiating a number of
Openflow enabled switches, connecting them to an external SDN-C, creating a number of physical
hosts and interconnecting them with virtual links. Mininet allows the development of scripts to deploy
large scale topologies based on pre-defined parameters. In this context, we developed a series of scripts
that automatically generate the topologies under examination with the number of devices described in
Table 2.

Table 2. Number of devices on evaluated scenarios.

Size Access (Number of Switches) Aggregation (Number of Switches) Core (Number of Switches)

Classical 3-Layer

Size 1 (XS) 8 2 2
Size 2 (S) 16 4 2
Size 3 (M) 32 4 2
Size 4 (L) 64 4 2

Size 5 (XL) 64 8 2

Fat Tree

Size 1 (XS) 8 2 2
Size 2 (S) 16 4 2
Size 3 (M) 32 4 2
Size 4 (L) 64 4 2

Size 5 (XL) 64 8 2

Leaf and Spine

Size 1 (XS) 8 2 n/a
Size 2 (S) 16 4 n/a
Size 3 (M) 32 4 n/a
Size 4 (L) 32 8 n/a

Size 5 (XL) 64 8 n/a

We have chosen Opendaylight (ODL) [32] as the SDN controller and we executed our experiments
employing ODL’s RESTful API. The experimentation procedure is depicted in Figure 1. Initially
we spin up the desired topology on a VM instance executing Mininet software. The OVS instance
inside Mininet is connected to an external VM that runs ODL. A python module collects the topology
information and the configured link capacities. The CPLEX solver runs on a separate dedicated VM in
order not to interfere with ODL. Our software module is fed with the device power consumption model
and randomized flows (depending on the scenario) so as to calculate the initial power consumption
and link utilization according to current, non-optimized state where all links operate on the highest
possible state. The same module includes the routing functionality and generates traffic flows between
all devices. Based on the scenario, the appropriate input configuration file for CPLEX is generated and
the MIP solver is invoked. According to the results, new optimal consumption and link utilizations are
calculated, and the new topology is stored in an external file for review.
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Figure 1. Process followed during the simulation.

The power consumption model of an interface consists of a baseline value due to the transceiver
and a traffic proportional part due to the electronics parts on the Linecards. Typical values for
transceiver consumption start from 1.5 W per transceiver for a 10 Gbps multimode optical module
till 3.5 W/module for 100 Gbps single mode fiber [33]. On the other hand, the nominal value on the
switch side is 3.5 W for a 10 Gbps interface and 14 W for a 40 Gbps one. In our emulation, a non-linear
power model is assumed where the initial states tend to consume higher volumes of power. We
considered four different states regarding the link power consumption, where the last state corresponds
to the maximum power consumption of a link. The link is considered to consume no power when in
sleep state. The first step includes the power requirements to maintain the link state (thus consumes
relatively more than intermediate steps). The next steps are according to power consumption data
sheet from switch manufacturers [34].

Network sizes varied from 12 switches (4 server racks equivalent in real deployments) to 74
switches (32 server racks) were emulated. For each topology the exact figures for switches per network
layer are listed in Table 2. Traffic profile (we evaluated only east–west communications) and total
traffic volume were considered constant for each execution of the experiment.

Figure 2 demonstrates the results for various network sizes and different network topologies. Even
though there is a different level of redundancy, starting from limited resiliency in a 3-tier architecture
up to the highest level of resiliency in leaf and spine topology, we recorded a power reduction of at least
65% in the worst case. By adding redundant paths, especially on the spine layer, the power savings
increased up to 90%. Leaf and spine topology by design includes the higher number of redundant
links compared to the other two topologies. Adding switches on the spine layer increases the number
of redundant paths without serving more hosts and thus increases the power savings potential. There
is no similar improvement in the other topologies although savings are around 70%. The classic 3-tier
architecture has less redundant links. Energy savings derive from partially loaded link power states
and are independent of the number of switches in each layer. In the fat tree architecture, where the
number of alternate paths depends on the switches at the aggregation level, power consumption is
affected only by the number of devices at this layer.
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Figure 2. Energy savings for various network topologies and sizes.

On the leaf and spine topology, the most promising in terms of power savings potential, we
examined the impact of various workloads. To compare different traffic volumes we introduce the
concept of traffic amplifier, being a percentage of the same maximum traffic across all topologies. The
maximum traffic is calculated assuming that hosts load the network as much as possible without
violating the link capacity on a given topology. Traffic amplifier is the factor used to multiply the
reference flows between the hosts (the ones resulting in full core link utilization without traffic
engineering algorithm in place). Thus, a traffic factor of 10% corresponds to a random generation of
flows between the hosts that lead to a maximum 10% utilization on the core links. Figure 3 depicts
the impact of increasing traffic volumes on the energy savings in conjunction with the number of
interfaces that operate on specific power states. The power state is derived from the traffic level at each
interface, whereas on the 1st state the load is 25% of the nominal and the 4th state corresponds to the
maximum capacity.

 

(a) (b) 

Figure 3. Analysis for average size leaf and spine topology under various traffic loads. (a) Energy
savings from optimization algorithm. (b) Number of interfaces per state after the execution of
the algorithm.

As depicted in Figure 3, even for high load utilization, where a number of links have to operate on
their maximum capacity, we still recorded energy savings up to 52%. Notice that, since the maximum
gains are achieved when a link is at sleep state, the MIP solver tends to reroute traffic on selected links
causing them to operate at higher rate, instead of distributing the load to multiple links which is the
current mode of operation in existing DC deployments. As traffic increases, the margins for energy
savings via traffic engineering are narrower as shown in Figure 3a where energy savings decrease as
link utilization increases from 85% savings to nearly 50%.
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Next, we evaluate the gains from considering enhanced power scaling capabilities of interfaces
compared to only disabling unused interfaces and devices. In Figure 4a, we plot the energy savings
gain versus traffic volume achieved in a leaf and spine topology. Even for high traffic volumes, there is
at least 28% benefit when taking into account the interface’s power state behavior. Similar results can
be achieved regardless of the selected topology as demonstrated in Figure 4b. The benefits of interface
power scaling decrease as traffic increases since more interfaces operate closer to their maximum
capacity consuming the maximum power. Power scaling is far more beneficial in the classic 3-tier
topology due to the absence of redundant paths on core links and the fact that only a small portion
of the links can be disabled. In the fat tree and leaf and spine topology, benefits are still significant
compared to the benefits of disabling only unused interfaces even though a large number of redundant
links can be switched off. Figure 4 demonstrates that a combined strategy of traffic engineering (to
disable the highest number of interfaces) and exploiting interface power states is required so as to
achieve the maximum benefits in power savings since greater values of power savings can be achieved
regardless of the traffic volumes and topology size.

 

(a) (b) 

Figure 4. Comparison between approaches based on disabling interfaces and our interface power
scale proposal. Difference under (a) various workloads on leaf and spine topology, and (b) various
topologies and number of devices for the same workload.

We further compare our results to existing studies that do not consider hardware capabilities
and only try to suspend unused interfaces. We selected the studies based on the relevance to our
study and the methodology followed. Existing literature in this domain can be classified into two
main categories: (a) studies that can be applied to all types of networks [35], (b) studies that focus
only on DC topologies. In both cases full knowledge of the topology and the relevant traffic matrix is
required. The optimal solution is applied either via SDN methods or following legacy approaches, i.e.,
by modifying the routing information. Since there is no direct comparison on topology level with the
studies in the first category, we can only examine power savings achieved for equivalent average link
utilizations of 10%, 50% and 90%. Compared to the results in Figure 6 of [35], our method can provide
five times more energy savings in the worst-case scenario of 90% link utilization, achieving 53% power
savings instead of only 10%. Considering 50% link utilization, we achieve more than triple savings
namely 68% in our case compared to 22%. For low link utilizations of 10% the savings we get are more
than double, 85% savings in our study compared to 35%.

Compared to studies in the second category, we can consider the same traffic volumes and network
topology. In particular, we compared our method towards the fat-tree network topology examined
in [8] under mid-traffic profile (50% on near nodes, 50% on far nodes) for 1024 nodes and maximum
link utilization of 20%. In this case, our approach can produce around 45% more savings, i.e., 65%
instead of 45% power savings. For lower number of hosts and similar link utilization, we observe
55% more savings when our approach is applied. Based on the aforementioned comparison with DC
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focused methods, the energy savings potential of our method is far greater compared to approaches
that try to optimize power consumption in DCs without considering hardware characteristics.

5. SDN Application

In SDN architecture, control and forwarding planes are clearly separated defining a discrete
device for control plane functions, the SDN controller (SDN-C), and keeping the forwarding process on
the physical switches. This architecture, as defined by ONF (open networking foundation), allows the
development of SDN applications that harvest controller APIs to collect statistics or routing information,
to modify port configuration and to reroute traffic. To demonstrate the applicability of our approach in
a DC environment, we developed an application that can be easily integrated to any SDN controller.

The flow chart in Figure 5 depicts a high-level description of the internal activity of such an
SDN application. First, it discovers all relevant switches and hosts that reside in the SDN-C database.
Then, a full mesh list of flows between hosts is generated for the given topology and their values are
stored internally in application’s configuration. In accordance with the Layer-2 topology as created
by the SDN-C using standard STP (Spanning Tree Protocol) algorithms, a set of link flows results.
The SDN application provisions these flows without modifying the existing routing information.
On a configurable time interval, the application collects flow statistics with the Openflow build-in
mechanism. Based on flow statistics and power profile for each device type (power consumption
per state), the CPLEX module calculates the new optimal state for all device and interfaces. The new
topology is then provisioned to devices directly or via the SDN-C. After a sleeping period, the whole
process is executed again removing all host specific flows generated on the initial execution. All ports
and devices are re-provisioned on the initial state where they consume the maximum amount of energy
and can serve nominal traffic.

 

Figure 5. Software defined networking (SDN) application internal sequence of activities.

Note that redundant links remain in service only if there is enough traffic in the topology. In
general, as expected from similar approaches in core networks, a certain stretch on the path length
between end devices is expected accompanied by a minor degradation in service quality. Since
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communication inside DCs involves a small number of hops, especially in leaf-and-spine topology,
this stretch is not expected to affect applications. The SDN application guarantees that connectivity of
end hosts is not disrupted at any case.

The key point is that the optimization problem can be solved by an external system irrespective
of the software architecture and programming language of the controller. Nevertheless, a number
of additional software components are needed. In order to verify our proposal, an SDN application
coded in python, was deployed at NTUA’s Computer Networks Laboratory using a testbed consting of
Opendaylight version 7.3 SDN controller, an HPE switch running firmware WB.16.05.0003 and several
software implementations based on OpenVSwitch. In particular, we have developed the following
generic modules:

Topology_discovery: This module uses the RestAPI of an SDN-C to automatically discover all
openflow enabled switches, interconnection links between the devices and end-hosts for any topology.
The outcome of the discovery process is stored in a single file, The SDN-C is scanned periodically for
topology changes.

Flow_generator: Based on the topology and hosts discovered, the flow_generator module creates
a full table of traffic flows between end hosts. Communication between Openflow [36] switches
is omitted as it is expected to consist of management traffic, marginal compared to the volume of
production traffic. These flows are provisioned via Rest API of the SDN-C to all devices.

Stats_Collector: It runs periodically to collect the statistics and aggregates the results according to
the operator needs. Stats_Collector uses the build-in mechanism of Openflow protocol and gathers the
values of flow counters based on “Counters” field for the provisioned flows of the previous step.

Green_Topology_Optimizer: This is the CPLEX module performing the optimization and some
python modules to control its execution. Based on a preconfigured link power consumption model and
the configuration files as created from Topology_discovery and Stats_collector modules, this module
generates the optimal power state for all devices and interfaces.

Port_Modifier: According to the solution generated, this module provisions the new state either
via the SND-C programmable API, via OVSDB or via ovs-vsctl.

The verification of our application was performed into two steps. The first step, the functional
verification, consisted of the successful integration of the above compents in the physical and virtual
lab environment. The second step, the performance evaluation, was carried out on the same Mininet
emulated topologies as in Section 4. Thus, the optimal solution in terms of power consumption savings
for each topology does not change. Topologies emulated by Mininet are depicted in Figure 6.

 
(a) 

(b) 

Figure 6. Cont.
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(c) 

Figure 6. Network topologies under evaluation: (a) classical-3-layer (b) fat tree (c) leaf and spin.

The network size of emulated topologies affects the time required for our SDN application to
calculate and provision the optimal solution. Thus, we evaluated its total execution time and not
only the optimization (CPLEX) part. We performed measurements for the concrete phases: (a) time
required to discover network topology and compute link power consumption based on the device’s
energy model and link capacity; (b) flow generation for full mesh communication among hosts and
their provisioning via Openflow commands; and (c) collection of flow statistics and initialization of
optimization problem CPLEX solution. As shown in Table 3, the topology discovery part is the faster
phase even for large topologies. The times for the flow generation and the collection of flow statistics
depend only on the number of flows and end hosts and are independent of the complexity of the
topology. The two initial phases have to be executed sequentially in less than 100 s in the worst case
scenario. After the bootstrap, the statistics collection can forked to different processes. Measured
values appearing in table must be regarded as the upper limit for this phase.

Table 3. Performance evaluation of SDN application.

Size Topology Discovery (s) Flow Provisioning (s) Statistics Collection (s)

Classical 3-layer

Size 1 (XS) 0.45 0.942 0.808
Size 2 (S) 0.825 3.649 3.313
Size 3 (M) 1.495 17.059 13.203
Size 4 (L) 2.495 76.116 71.189

Size 5 (XL) 3.739 71.941 72.298

Fat Tree

Size 1 (XS) 0.608 0.995 0.879
Size 2 (S) 1.198 3.916 3.258
Size 3 (M) 5.068 35.099 23.061
Size 4 (L) 5.024 89.483 72.062

Size 5 (XL) 4.539 79.729 70.433

Leaf and Spine

Size 1 (XS) 0.599 0.952 0.856
Size 2 (S) 1.72 4.316 3.277
Size 3 (M) 3.342 17.562 13.587
Size 4 (L) 6.5 18.853 13.815

Size 5 (XL) 13.556 78.15 71.851

Timely execution of the SDN application is of high importance since we aim at a practical
implementation. As demonstrated in Table 3, execution is fast even when the MIP optimization is
applied to large network topologies. Next, we compare the performance of our solution to a similar
approach in existing literature [37] that requires full knowledge of the flow matrix and applies heuristic
algorithms (referred to as QRTP and RQRTP) for traffic engineering. The method in [37] is selected
for comparison since it is developed as an SDN application like ours, it is focused on DC network
topologies and requires equivalent input for the optimization problem (flow matrix). Applying traffic
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engineering decisions is based on QoS and network performance metrics, not on power saving criteria.
Since the comparison cannot be direct for the full scope (energy savings and complexity) of our study,
we compare only the execution times of the optimization algorithm, i.e., the time to calculate the
optimal solution for the same number of flows and the same network topology. Our optimization
algorithm can be solved significantly faster for small number of flows. Namely, for 100 flows, we need
0.08 s to calculate the optimal solution in our algorithm compared to 3.16 and 2.66 s, respectively, for
the QRTP and RQRTP algorithms, using equivalent hardware resources (i.e., number of CPUs) while
emulating a classical 3-layer network topology. The number of hosts and traffic volumes do not impact
the complexity of the algorithms thus are not mentioned in detail. For larger topologies and 500 flows,
our solution generates an optimal solution in 1.57 s whereas QRTP in 178.13 and RQRTP in 41.45 s.
In the extreme scenario of 1000 flows, our optimization problem can be solved in 3.08 s compared to
1227.26 and 46.07 s respectively, for QRTP and RQRTP, and the same type of topology.

6. Conclusions

Due to the nature of DC network topologies, deployments tend to be overprovisioned with sparse
utilization even in peak hour. We showed that DC networking can be largely optimized regarding
power consumption regardless of the topology selected. The benefits in power consumption range
from 65% to 90% in all typical scenarios depending on the total load. Since power benefits are coupled
with traffic volumes, harvesting hardware capabilities for traffic steering can guarantee these savings
even for high workloads reaching 50% for fully utilized leaf and spine topology which is the benchmark
topology for DCs. Furthermore, we demonstrated that our proposal is a viable solution for DCs where
SDN is deployed. It can be implemented as an SDN application regardless of network equipment
manufacturer and SDN controller user and therefore easily applied to real life deployments.
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Abstract: The Internet of Things (IoT) and Demand Response (DR) combined have transformed the
way Information and Communication Technologies (ICT) contribute to saving energy and reducing
costs, while also giving consumers more control over their energy footprint. Unlike current price
and incentive based DR strategies, we propose a DR model that promotes consumers reaching
coordinated behaviour towards more sustainable (and green) communities. A cooperative DR system
is designed not only to bolster energy efficiency management at both home and district levels, but also
to integrate the renewable energy resource information into the community’s energy management.
Initially conceived in a centralised way, a data collector called the “aggregator” will handle the
operation scheduling requirements given the consumers’ time preferences and the available electricity
supply from renewables. Evaluation on the algorithm implementation shows feasible computational
cost (CC) in different scenarios of households, communities and consumer behaviour. Number of
appliances and timeframe flexibility have the greatest impact on the reallocation cost. A discussion
on the communication, security and hardware platforms is included prior to future pilot deployment.

Keywords: cooperative smart community; scheduling algorithm; consumer preferences; renewables

1. Introduction

There exists a global aim to conceive novel sustainable services and energy infrastructures
to balance supply and demand. Over the last decade, many sustainable development initiatives
across the globe have been promoting regulatory campaigns, such as pricing or optional/mandatory
thermal retrofit policies, looking at the engagement of cost-effective social behaviour and/or a social
pro-environmental morality [1]. To this regard, the Internet of Things (IoT) and Demand Response
(DR) combined have transformed the way Information and Communication Technologies (ICT)
contribute to saving energy and reducing costs, while also giving consumers more control over
their energy footprint [2,3]. Connected devices (e.g, household items, machines, vehicles or gadgets)
can automatically influence each other in order to increase the overall potential for energy efficiency
and the range of management systems’ involvement.

DR programmes, designed to stimulate changes in consumers’ electric usage patterns, thus appear
to bolster not only energy efficiency, but also renewable energy resource management initiatives.
Current DR strategies are based on providing end-users with individualised tailored advice
about their particular habits with incentive payments for load reductions when needed to ensure
reliability [4]. For instance, as control and communication technologies become more widely
accessible, electricity prices and information are delivered more effectively to consumers. This allows
consumers to identify and more easily target discretionary loads that can be curtailed or shifted.
On one hand, we can find new challenges to the analysis of these loads and the extraction of
consumer/community patterns that produce more automatic and user-friendly DR systems as
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well as driven by congestion management instead of being price-based. On the other hand, this
automation should be enabled by on-site energy controls fed by near-real-time pricing information
without significant customer effort or intervention. Furthermore, the real exploitation of renewable
sources for energy supply presents multiple challenges not only to utilities, grid and system
operators, but also to the consumer that knows very little about its availability or potential from
microproduction [5] and energy harvesting processes [6,7]. For instance, according to the Eurostat
survey (https://ec.europa.eu/eurostat) (Figure 1), only 19% of the final energy consumption in
residential sector comes from renewable resources.

Figure 1. Final energy consumption in the European residential sector from Eurostat survey 2017.

Our proposal intends to bridge the aforementioned gap between utilities and consumers by
leveraging consumer cooperation towards a joint daily schedule of their household appliances
operation using supply generated from renewable energy sources. In this work, we assume the
existence of an Utility entity (a set of energy providers or substations) generating, accumulating,
storing and ultimately serving electricity to the consumers. This role, the Utility, is therefore in charge
of allocating the available supply from the different energy sources at disposal of the community; it is
not, however, dealing with the final destination of the supply (whether to power low-energy electronics
or bigger appliances). As an application scenario, imagine a smart community of electricity consumers
who, empowered by a better access to their consumption controls and appliance interconnection,
are provided with sufficient incentives to coordinate and adjust their energy demands for a certain
purpose. These consumption controls are coordinated by a Home Energy Management System,
which enables energy management at homes. By doing this, consumers are able to visualise the energy
data and make optimum use of energy by controlling their electrical appliances. They autonomously
adapt their energy consumption by means of sharing nearly real-time electricity demand information.
An aggregator device, capable of shifting the consumers’ use of the resource, will be able to make
the overall consumption pursue common goals such as being sustainable, ecofriendly or cheaper.
On the other hand, utilities, allowed to perform real-time billing, profiling and fault detection, are also
creating incentives for users consuming renewable sources (e.g., guaranteeing the lowest price if the
load demand does not exceed a certain threshold). They produce, store, distribute and serve the supply
to the consumers who will now benefit from additional information about the supply availability.
It has to be observed that neither utilities nor consumers are considering microgenerated energy in
the current model. Hence, it is responsibility of the aggregator the computation and rescheduling
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of the total daily load of the community to avoid overloading the utility supply from renewables.
This scheduling represents an optimisation problem whose main factors are the 24 h-vector of the
next day’s supply from renewable sources and the duration and activation time preferences of every
consumer’s appliance.

In this work, we present a cooperative DR system designed to promote behavioural changes
in small or large communities with common interests. The involved entities will reach binding
agreements and coordinated behaviour through the aggregator, a device that collects 24-h vectors
with the consumers’ demands and the expected supply from renewables. It also centralises the
supply allocation algorithm that optimises the distribution of the available green supply between the
consumers taking into consideration their time preferences of appliance activation. Experimentation
on the algorithm implementation is conducted using estimated values and benchmarks. We include
the analysis of the power consumption in watts for most commonly used appliances taking average
measures informed by manufacturers; for each appliance type, we show the efficiency label (according
to EU normative), the estimated cost while in operation mode and standby mode as well as the average
consumption in 24 h time. In addition, we evaluate the algorithm over different strategies of player
order selection as well as over the application of four heuristics that optimise the objective search.
Evaluation results throw feasible computational cost in all these different programming configurations
as well as considering a series of scenarios for household and community settings, and consumer
behaviours. Finally, from the empirical results we can discuss on the hardware and networking
requirements for an efficient pilot deployment.

The paper is organised as follows. We discuss the related work in Section 2. Section 3
states the system model and design decisions. We describe the simulation of the implemented
scheduling algorithm and estimate the performance cost in Section 4. Technical considerations in
terms of communication, network protocols, security and hardware platforms are drawn in Section 5.
Finally, Section 6 concludes and establishes future research directions.

2. Related Work

The starting point of our research can be found in the works by the authors of [8,9], where an
adaptive model for DR is envisioned over the deployment of smart meter networks. Special focus is
taken on the software design in order to facilitate the integration and scalability of the community
system future development. An example of a DR aggregator model is designed in the work by the
authors of [10] to facilitate renewable energy integration, where end consumers play a key role.

One of the major challenges in the energy efficiency context is the way to involve end-users in
energy markets. This fact can be exemplified in the works by the authors of [11,12], where systems
are designed to facilitate DR for residential prosumers. For instance, the work by the authors
of [12] shows a system based on an aggregator of residential prosumers that participate in the
day-ahead energy market to minimise operation costs by controlling appliances. The performance
of an optimisation-based residential energy management scheme is presented in the work by the
authors of [13]. This work applies a constrained swarm intelligence model to minimise the total cost of
household electricity consumption. As it has been stated by the authors of [14], models based on DR,
smart technologies and intelligent controllers can lead to a considerable energy consumption reduction.

The vast majority of the related work addresses energy-efficient solutions and optimisation
algorithms from a single consumer/home viewpoint. The appliance scheduling optimisation solution
in the work by the authors of [15] considers time ranges and consumer preferences along with
different types of appliance consumption profiles. Their solution is based on the Mixed Integer Linear
Programming (MILP) technique under “Gurobi” solver, which is addressed to minimise both the total
energy cost and the peak load of all the home appliances used per day. This model is unscalable
though. Similarly, household load scheduling is also approached in the work by the authors of [16]
by the MILP optimisation model. The MILP model and a heuristic algorithm accounting for a typical
household user are simulated taking into account overall costs, climatic comfort level and timeliness.
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MILP is also the technique applied to load shifting by the authors of [17] to optimise the interaction
between an aggregator and smart consumers’ operation. The specific DR program incentives and the
consumers’ needs are the main parameters that a Smart Home (SH) controller considers to reshape
the consumers’ demand profile through shifting the operation of flexible loads. Focused on users’
individual preferences, the work by the authors of [18] sets priorities and preferred time intervals
for load scheduling, along with making efforts to optimise the consumption curves of household,
commercial and industrial consumers.

A remarkable interaction between the utility and its consumers is modelled through a two-step
centralised game in [19], where consumers reduce the peak-to-average power ratio by optimising
their energy schedules. The utility supplier pulls consumers in a round-robin (RR) fashion and
provides them with energy price parameter and current consumption summary vector. Each user,
then, optimises its own schedule and reports it back to the supplier, which, in turn, updates its energy
price parameters before pulling the next consumers. Also centralised but considering renewable
energy technologies to improve energy efficiency and reduce costs through optimisation algorithms,
approaches in the work by the authors of [20] focus on the context of microgrids and storage
at residential and commercial building environments. In addition, heuristics based on genetics
algorithms [21] and neural networks [22] work on the scheduling of the consumer consumption to
save the peak formation. Their simulation results show that the proposed algorithms reduce the
peak-to-average ratio and help users minimise their energy expenses without compromising comfort.

Applying a distributed and an autonomous Demand Side Management (DSM) within
a neighbourhood, the consumers’ schedulers in the work by the authors of [23] are assumed to
be built inside smart meters and connected to the power grid and a local area network. In order to
reduce the total energy cost, these schedulers interact automatically by running a distributed algorithm
to find the optimal energy consumption schedule. Subscribers also receive incentives to use the
schedulers via a novel pricing model derived from a game-theoretic analysis. The authors of [24]
formulate a power allocation game, where multiple companies, leaders and their consumers are the
followers to reach a unique pure-strategy Nash equilibrium via a distributed algorithm. Authors find
that the multi-period scheme, compared with the single-period one, provide more incentives for energy
consumers to participate in DR. For a comprehensive description of the many algorithms that can be
used to solve the resource allocation problem, see the work by the authors of [25].

In summary, several optimisation Pareto-efficient approaches to the load and/or consumption
adaptive scheduling have been the focus of much attention in demand side management, SHs,
wireless sensor networks, broadband networks, and smart grids [26,27].

3. System Model

Our proposal embraces the use of renewable resources aiming three main actors: Consumer,
Aggregator and Utility. Figure 2 illustrates the main roles and processes within the adopted cooperative
DR framework.

The first actor, Consumer, provides the home energy usage to be managed and automatically
controlled by Home Energy Management System (HEMS) that performs three main functions:
(1) schedule demand, (2) appliance control and (3) information provider. It selects the daily scheduling
preferences, managing a profile for collaboration in a DR system and viewing its account and consume
information. The consumer can manage them from a portable device (i.e., an app installed on
a mobile phone or tablet) that is connected to a communication network for preferences scheduling.
A community will comprise a set of consumers sharing electricity supplier or substation. HEMS pulls
scheduling information and generates processed data to the Aggregator. HEMS is also responsible for
collecting information from the Aggregator and controlling a variety of home appliances.
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HOME SMART
APPLIANCES (Ai)

HOME ENERGY MANAGER(HEM)

UTILITY: energy suppliers
shared by customers (RW)

NAN LEVEL

HAN LEVEL

WAN LEVEL

CENTRALISED AGGREGATOR
Capabilities: Optimisation

Communication
Data Flow

HEM CONTROLLER
Consumer Capabilities:
- Scheduling
- Monitoring 
- Control

Community consumers (N)

Figure 2. Smart cooperative system divided into Home Area Network (HAN), Neighbour Area
Network (NAN) and Wide Area Network (WAN).

In our proposal, Consumers adapt their energy consumption cooperatively on a centralised
way, that is, sharing their demand schedule with a data collector, which facilitates the integration
of energy consumption information into a common view. This integration is performed over the
so-called Aggregator, the second actor, which implements an optimised resource allocation algorithm
as a response to supply conditions, in particular, targeting renewable sources. The Aggregator is
defined as the optimal system providing energy management services in order to efficiently manage
demand in SH [28]. HEMS acts as a central node and receives the demand scheduled information from
the Aggregator. Then it loads the power consumption preferences to each appliance and establishes
communication for managing the appliances. The Aggregator allows the local distribution of the energy
provided, according to the availability of renewable resources. This energy management system will
be connected to the Utility, the third actor, which is a set of energy suppliers shared by customers.
We presume utilities implement a distributed generation that allows to gather energy from mainly
renewable sources addressed to give lower environmental impacts and improve supply security.

3.1. Consumer System Design

Let N denote an ordered set of Consumers that are willing to cooperate in the pursuit of global
community targets (i.e., becoming greener) by sending their data to the Aggregator. Each consumer
i ∈ N has a set of household appliances labeled as Ai. Fixed energy load is identified by factors such as
the consumers’ habits, their behaviours and their use of appliances, as well as a variable load resulting
from the use of such appliances and other equipments. Formulae and benchmarks can be used to
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estimate appliance and home electronic energy use in kilowatt hours (kWh) as well as household local
records.

Bearing in mind a discrete time slot system, and without loss of generality, we assume that time
granularity is one hour per day. Regarding the appliances, each Consumer is supposed to preallocate
a certain amount of fixed demand and variable consumption planned for the next 24 h [29]. For each
appliance, aij ∈ Ai, we assume both daily fixed and variable energy consumption scheduling vectors at
each time slot t ∈ {0, . . . , 23} to control its non-shiftable and shiftable consumption respectively.

We define fDt
i,aij

and vDt
i,aij

by denoting the corresponding one-hour fixed and variable energy
consumptions respectively. Variable energy demand is characterised by its flexibility, as the Consumer
preference for an appliance starting in a specific period of time is taken into consideration. For each
appliance, there is an execution window (i.e., a closed interval) that selects a minimal starting time,
and a maximal ending time labelled by ti

beg and ti
end. ti

sched is defined as the working time of appliance

“i” and matches the range of operation start time ti
sched ∈ [ti

beg, ti
end]. L is defined as the duration of the

planned operation of appliance aij in the next day. Load needs to be switched on for a time between
two predefined moments: ∀ij ∈ Ai, ti

sched ≥ ti
beg. In this line, load also needs to be switched off: ∀ij

∈ Ai, ti
sched ≤ ti

end. In other words, Consumer i will set the following data for its appliance aij ∈ Ai
(see Table 1).

Table 1. Appliance configuration.

Appliance Configuration

Consumption
(kWh)

Fixed consumption
(kWh)

Duration
(hours)

Time
ON

Time
OFF

vDt
i fDt

i L tbeg tend

• Fixed consumption (kWh) when appliance aij is in standby status
• Consumption (kWh) when aij is on
• Duration (hours/minutes) of the planned operation of appliance aij in the next day
• Point in time (hour, e.g., 8am) of preferred start of appliance aij activation
• Point in time (hour, e.g., 12pm) of preferred end of appliance aij operation

A centralised home controller provides access to all the appliances and devices at home via
wireless networks; it will receive and apply the 24-hour reallocated vector from the Aggregator to
systematically activate/deactivate every appliance without human intervention.

Moreover, we have developed an energy consumption scheduling app based on the Adobe
XD template [30], which provides the consumer with an interface to control, monitor, visualise and
program the functioning of appliances. More specifically, it allows the configuration and setting of
the aforementioned data for each appliance aij. Figure 3 depicts a usage sequence to explain how the
application works. The app allows users to check the resources used in the previous 24 h as well as to
select the appliance in relation to the dwelling zones such as the kitchen or the bathroom, among others.
At this stage, consumer will be able to indicate the time range and the duration of activation for each
appliance. The last window summarises the introduced demand information. It also provides an
estimated power cost in operation and standby for each appliance (according to benchmark analysis in
Table 2). Consumers have to give consent by sending these data to the home controller. Finally, a vector
is sent to the Aggregator with the data structure shown in Table 1.
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Figure 3. Consumer scheduling app.

Data aggregation is defined as a centralised system with aggregation tasks that communicates
with the Utility and the Consumers as shown in Figure 4. An algorithm is originally designed to
optimise the allocation of the expected electricity supply from renewables among the community’s
Consumers related to their chosen preferences.

Sequence diagram

Consumer APP

Visualization

Generate vector
configuration

Display error

User

Log into app

Correct?

Set
appliances'

fixed
demand

Set time
preferences

for
appliances
with flexible

demand

Set
appliances'

variable
demand

Send vector
configuration to

aggregator

Consumer i's
controller

Correct?

vDfD

L, st, et

Aggregator

Compile 24h - supply
from renewable

(RWt)
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Fixed demand
computation

(fDi
t)

Compile 24h - demand
vectors from N

consumers

Compile 24h -
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consumers
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t)

Optimization
model for n

consumer 24h -
demand vector

Objective
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Dispatch
privately

24h -
rescheduled
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to
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t + fDi
t)

Dispatch
privately 

24h -
community

to
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(RWt) 

No

Utility

Serve 24h -
community

demand

Estimate supply from
renewable

Figure 4. Sequence stating main processes and message exchange among the system’s players.
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3.2. Aggregator System Design

As an example of a renewable source efficient use, the Utility provides essential information on
reliable renewable source and fossil energy programmed for the next 24 h by replacing carbon-intensive
energy. The energy supply generated from a set of renewable sources at a time slot t ∈ {0, . . . , 23} is
denoted by RW t. fU t represents the energy supply at time t generated from a set of fossil sources.
The Utility centralises the distribution of the energy, the notification to the Aggregator, and the billing
process. The renewable supply vector RW is essential for the Aggregator in the optimisation of a
fair allocation of such supply between the Consumers’ fixed (non-shiftable) and variable (shiftable)
energy demands.

The daily fixed demand for consumer i ∈ N is denoted by fDi = ∑23
t=0 ∑aij∈Ai

fDt
i,aij

as the
aggregated load of non-shiftable local consumption of the appliances and frequent behaviours.
The Aggregator can then easily compute the daily fixed demand for the whole community of consumers
at a time t as fDt = ∑N

i fDt
i . On a daily basis, the Aggregator verifies that the total energy consumed by

all appliances in the system fulfils the daily utility service provided by the Utility. It is critical
that the community does not reach the worst case such as ∑N

i ∑23
t=0 fDt

i � ∑23
t=0 RW t. On the

contrary, aggregation of the variable energy is more complex given the consumers’ time preferences.
The Aggregator will execute a fair-share rescheduling of the community’s requested variable demand
per hour vDt

i aiming at ∀t ∈ {0, . . . , 23}, ∑N
i ( fDt

i + vDt
i ) ≤ RW t. We will show refinements of the

proposed scheduler algorithm looking at the max–min fairness, Pareto-efficiency, envy-freeness,
and truthfulness while serving Consumers’ preferences. Perhaps the simplest way to give each
Consumer equal chance against all other is to recursively apply a ”round-robin” strategy in the
allocation of each Consumer’s needs. Fair random assignment is one of the refinement methods to be
compared. A global centralised optimisation problem is faced here, where only a “Nash bargaining
solution” is possible such as ∀i ∈ {1 . . .N}, μt

i = fDt
i + min{DFC(vDt

i )} ≤ RW t.
Therefore, solutions to the optimisation problem should satisfy ti

sched and L while avoiding
overconsumption at RW t. The formulation is explained in Algorithm 1 (Demand Calculation Function,
DCF ) and it will be shaped as its minimum, i.e., min.DFC(·) upon request of Algorithm 2. In DFC
function, a search for the optimum time slot for every appliance activation takes place given its
activation time, its preference interval and the available supply in kW from the renewable utility.
In particular, taking into account Ai, ti

sched, ti
beg and ti

end variables, the optimisation will determine how
appropriate an adjustment is by minimising the total overconsumption (in hours) of the community
appliances against the available renewable supply at a certain time slot.

Finally, upon reaching the optimisation objective, the Aggregator will notify the community that
an agreement has been reached and privately release the reallocated demand vector −→μ i∀i ∈ N to
each Consumer.
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Algorithm 1 Demand Calculation Function (DCF )

1: RWt(renewable vector) = {σ1, . . . , σ24}
2: N = size(Ai)
3: Defining variables ti

beg, ti
end

4: for ihour time to the total number of hours do

5: if ihour doesn’t belongs to interval [ti
beg, ti

end] then

6: fDt
i computation

7: end if
8: end for
9: for iappliance 1 to size of appliances configuration (Ai) do

10: RW t = RW t −−Ai( fDt
i )

11: end for
12: Ai(vDt

i ) = Ai(vDt
i )−−Ai( fDt

i )
13: Ai(Dt

i (Dt
i < 0)) = 0

14: Ai( fDt
i ) = Ai( fDt

i )−−Ai( fDt
i )

Objective Function F (Ai,RW t, ti
sched)

Require: Ai configuration: vDt
i , fDt

i ,Li, ti
beg, ti

end
Ensure: ti

beg < ti
end

15: HC initialisation (consume Hourly Energy)
16: for iappliance 1 to size of appliance configuration do

17: Set ti
beg

18: Set ti
end based on Li and ti

beg
19: for ihour time to the total number of hours do

20: if ihour belongs to interval [ti
beg, ti

end] then

21: HC(ihour) ← HC(ihour) +Ai(vDt
i )

22: else

23: HC(ihour) ← HC(ihour) +Ai( fDt
i )

24: end if
25: end for
26: end for
27: RW ts = RW t −−HC t

28: RW ts(RW ts < 0) = 0
29: Demanded_RW t ← min(RW t,HC t)
30: R1 = sum(RW ts); R2 = max(HC t)
31: Result = sum(R1 +R2)
32: return Result, Demanded_RW t,HC t(ti

sched)

Algorithm 2 RR strategy

1: Generate parameters for consumer allocation
2: Define global variable RW
3: while (user < N ) and (min(RW) >= 0) do

4: if Optimisation needs then

5: Load consumer preferences. Ai size from preference array
6: Call Optimisation Function under variables preferences: RW , Ai, N
7: Number of user ++
8: if (RW equals to 0) then

9: Break
10: end if
11: end if(No consumer to optimise)
12: end while
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3.3. Proposed Algorithm: A Fair Division Game

The Aggregator can apply different approaches to optimisation search within the aggregated load
vector vD. It contains all consumer appliances’ scheduling that could be shifted within their preferred
activation time frame. This scheduling problem at the Aggregator can be seen as a division game given
a set of players (either the consumers in N or all its appliances ) and a set of assets (the supply from
renewables in RW). In our algorithm we have opted for a turn-based sequential game played by
Appliance instead of Consumer for optimisation purposes.

The scheduling problem has to produce a fair division of RW , i.e., a set of rules that, when
properly used by the players, guarantees at the end of the game each player will have received a
fair share of the assets. In our view, a fair share means that consumers’ preferences on the appliance
activation are considered by the Aggregator with equity and privacy. As in turn-based sequential
games, defining the order under which players start within a turn could be approached in terms of (A)
Round-Robin (RR) start: the first player selection policy is RR; (B) random RR; (C) ranking: the first
player being the same every time; and (D) randomness: the first player is randomly selected (likewise
the sequence order), as follows.

(A) The RR principle, known from other fields such as network scheduling and processor queuing,
is based on a process/game/technique, where each task/person/device takes an equal share
of something in turn. The RR scheduling can allocate the available electricity from renewables
both simple and fairly among the Consumers/ Appliances, because (1) the consumers’ number is
known and fixed and (2) the reallocation process is centralised by the Aggregator which, starting
on its own, will satisfy the demand of the Consumers/Appliances in a periodically repeated order.
We include pseudocode of our algorithm’s main function in the round robin strategy, being
the rest pseudocodes similar with exception of the player turn selection on Algorithm 2-line 3.
RR results in max–min fairness if the Consumers/Appliances’ demands are equally sized; otherwise,
fair queuing that establishes a fair share size would be desirable.

(B) A random RR scheduling: A similar process as in A), though the election of first Consumer
is random.

(C) A picking-sequence has several merits as a fair division protocol [31]. Assuming that
each agent has a (private) ranking over the set of objects, the allocator must find a policy
(i.e., a sequence of agents that maximises the expected value of some social welfare function).
Moreover, picking sequences are a natural way of allocating (indivisible) items to agents in a
decentralised manner: at each stage, a designated agent chooses an item among those that remain
available. The goal of the method is to identify the fairest sequence.

(D) A random process could, or could not, introduce efficiency (no other “random” assignment
dominates) in the aforementioned methods while keeping them Pareto-efficient, envy-free and
giving good approximation to the social welfare. Efficiency in terms of computational time is
also at stake.

4. System Validation

In this section, we measure the Computational Cost (CC) of the implemented scheduling algorithm
evaluating the suitability of a number of four heuristics applied to the optimisation search and on
a series of different case scenarios of consumer communities. In particular, the evaluation of the
heuristics and their behaviour on our algorithm under the same input parameters will assist in the
selection of the hardware platform for an efficient deployment.

4.1. Optimisation Algorithms Used

We adopt heuristic techniques to perform a partial random search of optimal solutions to our
objective, i.e., either when the reallocation demand is met or when the number of predefined iterations
is reached. We have identified and implemented the following four optimisation methods to guide the
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search of a workable solution, i.e., the nearest local minimum standard strategy in our Algorithm 1
as follows.

(i) Simulated Annealing (SA) [32] finds a local minimum solution for our Algorithm 1 (DCF ) starting
at an initial operation time ti

sched. As explained in Algorithm 3, SA starts generating trial point
based on current estimates and evaluates the function by accepting a new value generated after T
parameter is set. The solution must consider the [ti

beg, ti
end] time constraints. ti

sched can randomly

generate and filter by L. In case of better D, the original one D′, ti
sched′ could be accepted as better

solution if D′ is worst than D. After the internal counter reaches its threshold, T is cooled down
and re-select the best solution again with the reset counter.

Algorithm 3 Optimisation based on SA algorithm

1: Let T > 0 as initial parameter
2: Let N (T ) as maximum number of iterations
3: while stop criterion has not been met do

4: Randomly generate a fasible solution tsched
5: Evaluate ti

sched, D = f(ti
sched)

6: n = 1
7: while while n <= N (T ) do

8: Generate solution ti
sched′ based on ti

sched
9: Evaluation of ti

sched′ ; D′ = f(ti
sched′ ); δ = f(ti

sched′ )–f(ti
sched)

10: if f(t′osi) < f(ti
sched) then

11: ti
sched = ti

sched′
12: else

13: if δ >= 0 and u< exp((f(ti
sched′ )–f(ti

sched))/T ) then

14: ti
sched = ti

sched′
15: end if
16: end if
17: n = n+1
18: end while
19: T reduction and update ti

sched at each reduction
20: end while

(ii) Genetic algorithm (GA) [33] is identified as a method mainly used to solve optimisation problems
based on a natural selection process similar to biological evolution. GA finds an optimal operative
time from our Algorithm 1 (DCF ) for the Ai variables. As explained in Algorithm 4, GA can find
a solution beginning with random population of points. GA repeatedly modifies a population
of individual solutions. At each step, GA produces a next generation population based on
a randomly selection of individuals from the current population. After that, the population
turns into an optimal solution. The evaluation number is increased when the method finishes by
calculating one generation P . Each generation is a feasible solution for the appliance scheduling
(ti

sched per appliance). In the evaluation stage, the best solution ti
sched, which has the lowest

demand, is inserted to the best solution set. Mutation and crossover operators are selected to
generate the next evaluation from the current generation. The mutation operator randomly
shifts the scheduled start times of some appliances in order to generate newly solutions that may
have a better result in demand efficiency. They are screened with the constraints to filter out the
infeasible ones. The crossover driver swaps scheduled ti

sched under feasible solutions.
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Algorithm 4 Optimisation based on GA algorithm

1: Generate Solutions. Build a set of PopSize P solution
2: Reformulation of solutions. Selection of a local search method to each solution in P
3: while number of evaluations < MaxEval do

4: ti
sched introduction to P. Evaluation of solution in P and update

5: Probability of survival based on the quality of the solution
6: P solution is partially selected to apply the mutation and crossover operation
7: Number of evaluation ++
8: Constraint validate P for each ti

sched. Discard solutions which are disqualified
9: end while

(iii) Pattern Search (PS) [34] polls the values around the current point and determines the direction that
will minimise our Algorithm 1 (DCF ) starting at an initial operation time ti

sched. For each possible
direction, an all linear combination of the current position is created, and each pattern is multiplied
by the size of the mesh to obtain a new one. As presented in Algorithm 5, PS investigates nearest
neighbourhood of a possible solution always in the range of lower and upper bounds [ti

beg, ti
end]

for each appliance. This solution seeks to find a better one. A failure improvement generation
by neighbours (L and D) would reduce the search step (Δ). Search finishes when the step gets
sufficiently short, ensuring the convergence to a local minimal overconsumption.

Algorithm 5 Optimisation based on PS algorithm

1: Initialise predefine default search step Δ0; ti
sched and Δ=Δ0

2: while Termination condition not reached do

3: init current solution D= (ti
sched+L*Δ)

4: Evaluate nearest neighbours in D
5: if betters in D then

6: Update the current solution to the best neighbour in D; Δ=Δ0
7: else

8: Search step reduction Δ=Δ0/2
9: end if

10: end while

(iv) Particle Swarm Optimisation (PSO) [35] is a stochastic search method and simulates the social
behaviour of particles used to find parameters that minimise a given objective. The optimisation
determines the minimum value and the best location evaluating our Algorithm 1 (DCF )
through iterations.

Algorithm 6 illustrates this search procedure, which is initialised with the generation of particles
assigning initial velocities and positions. The operative appliances time is defined as a set of lower
and upper bounds [

−→
tbeg,

−→
tend], where the solution is found in operation time range

−→
tbeg = (ti1

beg, ..., tij
beg),

and
−→
tet = (ti1

end, ..., tij
end). The vectors −→x = (xi1, ..., xij) and −→v = (vi1, ..., vij) are the current position and

velocity, respectively. Each individual adjusts its position according to a linear combination of its
inertia ω, the best location of individual particle −→p = (pi1, ..., pij) and the best location of particle
swarm −→g = (gi1, ..., gij). The confidence degree is determined by the random operators φp and φg in
the range [0,1] together with the confidence coefficients cp and cg. They are responsible for moving in
the direction of the best position of a particle and the global best position. The new displacements are
no more than one way of trying to imitate other individuals. It then iteratively updates the solution
positions (the new location is the old one plus the velocity, modified to keep particles within [

−→
tbeg,

−→
tend],

velocities and neighbours). The solution, above Ai, tries to find the optimal ones. After several
iterations, particles converge to the best solution.
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Algorithm 6 Optimisation based on PSO algorithm

1: Initialise population of particles with random values positions in the search space −→x ∼U[
−→
tbeg,

−→
tend]

2: Set each particle best known position to its initial position −→p ← −→x
3: Initialise each particle velocity to random values −→v ∼U[

−→−d,
−→
d ] where

−→
d =

−→
beg −−−→

end
4: Initialise the best known position −→g to the −→x where f (−→x ) is lowest
5: while Termination condition not reached do

6: for Each particle i do

7: if i > 1 then

8: Choose two random numbers φp,φg
9: Adapt velocity −→v ← ω −→v + cpφp(−→p –−→x ) + cgφg(−→g –−→x )

10: Bound −→v for all dimensions i (−→v , -
−→
d ,

−→
d )

11: Update the position of the particle −→x ← −→x + −→v
12: Bound population xi for all dimensions i (−→x ,

−→
tbeg,

−→
tend)

13: end if
14: if f (−→x ) < f (−→p ) then

15: update the particle’s best known position −→p ← −→x
16: end if
17: if f (−→x ) < f (−→g ) then

18: update the particle’s best known position −→g ← −→x
19: end if
20: end for
21: −→g holds the best found position in search space
22: end while

4.2. Performance Analysis

Simulation runs on a computer with the following specifications: CPU: 2.3 GHz Intel Core
i5; Memory: 8 GB 2133 MHz LPDDR3 and MATLAB R2018b [36]. We evaluate the computational
cost of the proposed Algorithm 1 on a series of experiments that represent a variety of possible
scenarios of community sizes, consumption patterns or consumer behaviour as depicted in Table 3.
Experimentation will help us to identify the most influential factor/s in the computation of the
community scheduling.

We have conducted an analysis on the most common appliances’ real consumption estimation
from manufacturers and data sources from the authors of [37], the U.S. Department of Energy (http:
//www.energy.gov/), the National Grid report (http://www.nationalgrid.com), the authors of [38]
and the reports (https://standby.lbl.gov/docs) as well as the manufacturer data to set the scenarios.
Our benchmark is depicted in Table 2. Scenarios were envisioned from the design of a residential
building as in Figure 5. In particular, we have generated eight scenarios as illustrated in Table 4 and
conducted hundreds of experiments for the different factor values to obtain results on a boxplot shape.
On the one hand, we can denote as altruistic or flexible a consumer whose time preferences range is
big (e.g., from 0h to 23 h); such types of communities are represented by Cases 1, 3, 5 and 7. On the
other hand, Cases 2, 4, 6 and 8 illustrate communities on a more selfish setting. Duration is set equally
in both situations.
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Table 2. Common household appliance energy use.

ID Appliance Model Watts (W)
Efficiency Ranges
European Union
A, A+, A++, A+++

Estimated
Average
Power in 24 h
(kWh)

Estimated
Standby
Power in 24 h (kWh)

Estimated
Operative
Time in 24 h
(h)

AP1 Water Heater Wesen ECO30 2000 10–14.73 0.010 1–15
AP2 Clothes Dryer Balay 3SB285B 4350 1–2.22 0.015 1–10
AP3 Clothes Washer Eutrotech 1106 1800 1–2.67 0.015 0.5–10
AP4 Iron Rowenta DX1411 2100 0.1–3 0.002 1–3
AP5 Air conditioner Fujitsu STG34KMTA 9400 - 3.9–24.3 0.015 0.3–15

AP6 Room air conditioner Rinnai RPC26WA 2600 - 8–24.3 0.015 3–18
AP7 Heater DeLonghi HSX3324FTS 2400 1–7 0.08 0.1–10
AP8 Fan heater Dyson AM09 2000 - 1–6.7 0.015 0.1–10
AP9 Dehumidifier DeLonghi DEX 210 4–24.3 0.005 1.1–9

AP10 Electric blanket Medisana HDW 120 - 1–3 0.08 1.2–9

AP11 Ceiling Fans Westinghouse Bendan 80 0.5–9 0.01 0.5–5
AP12 Attic Fans Remigton 500 - 4.73–6 0.01 0.1–18
AP13 Tower Fan Sunbeam FA7250 40 - 1.4–3 0.03 0.1–18
AP14 Hoover BGLS4TURBO 750 - 3–6 0.02 0.3–18
AP15 Boiler Greenstar Ri 9000 8–22 0.05 0.1–3

AP16 Coffee maker DeLonghi ECOV 1100 9–12 0.05 0.1–3
AP17 Refrigerator Bosch KDN46VI20 500 8.77–10 0.05 4.77–24
AP18 Dishwasher Bosch SMS88TI36E 1500 0.5–1.5 0.015 0.3–4
AP19 Food processor Becken BFP-400 110 0.5–2 0.015 0.1–5
AP20 Freezer Bosch GSN36BI3P 350 6–8 0.009 0.1–24

AP21 Microwave Balay 3CG5172N0 1700 0.9–3 0.01 0.1–4
AP22 Oven Bosch VBD5780S0 5000 10.96–12 0.01 0.1–8
AP23 Toaster Russell Hobbs 21973 1100 0.2–1 0.01 0.1–1
AP32 Lighting Osram 100 - 0.7–3 0.01 0.1–24
AP25 Vaporizer Philips GC362/80 400 0.3–2 0.07 0.1–8

AP26 Printer HP Officejet 3833 100 - 0.8–1 0.05 0.1–4
AP27 Computer Samsung ls24a450 350 0.7–15.3 0.05 0.1–24
AP26 TV Panasonic TX43E302B 54 0.1–100 0.05 0.1–24
AP29 Kettle Philips HD4644/00 3000 6–19 0.01 0.1–1
AP30 Security Alarm Vbestlife 20 - 0.6-1 0.02 0.1-24

AP31 Auto Cook MUC88B68ES 1200 1–3 0.09 0.1–3
AP32 Air Cleaner Balay 3BC598GN 150 1.1–6 0.01 0.1–6
AP33 Vacuum Cleaner Hoover TH31HO01 1000 0.9–3 0.06 0.2–4
AP34 Electric Fryer DeLonghi F26237 1800 - 13–16 0.05 0.2–3
AP35 LedTV LG 49LJ515V 250 1.9–5 0.05 0.2–24

AP36 Electric Store Dura Heat EUH4000 4000 - 2.4–4 0.05 0.3–23
AP37 Speaker Logitech Z120 180 0.3–4 0.01 0.2–20
AP38 Hair Dryer Rowenta CV3812F0 2100 0.99–4 0.01 0.2–6
AP39 Smart Camera Yi Home 4 - 0.99–2 0.01 0.2–24
AP40 Monitor Sensor iHome 5 - 0.99–10 0.01 0.1–24

Table 3. List of factors for the different case scenarios.

Factor Type Value

Community Size High, Low 30, 5
N. of Appliances High, Low 1200, 40

Distribution of Appliances Same, Different S, D
Fixed Demand High, Low Not influenced by optimisation

Variable Demand High, Low Up to 18 kWh6, Up to 9 kWh6

Consumer Flexibility High, Low 24 h, A duration: L
Vector of RW Even, Uneven 10 kWh, [10 kWh–20 kWh] 50% SD

Table 4. Possible load-shape situations.

Community Size N N. of Appliances A Distribution of Appliances
Fixed Demand

fD (kWh)
Variable Demand

vD (kWh)
Consumer Flexibility CF RW Vector per Hour (kWh)

Case 1 From 5 to 30 From 40 to 1200 S Up to 0.43 Up to 9 24 h 10
Case 2 From 5 to 30 From 40 to 1200 S Up to 0.43 Up to 9 L 10
Case 3 From 5 to 30 From 40 to 1200 D Up to 0.43 Up to 9 24 h 10
Case 4 From 5 to 30 From 40 to 1200 D Up to 0.43 Up to 9 L 10
Case 5 From 5 to 30 From 40 to 1200 S Up to 0.43 Up to 18 24 h 10
Case 6 From 5 to 30 From 40 to 1200 S Up to 0.43 Up to 18 L 10
Case 7 From 5 to 30 From 40 to 1200 D Up to 0.43 Up to 18 24 h 10
Case 8 From 5 to 30 From 40 to 1200 D Up to 0.43 Up to 18 L 10
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We will compare our method’s performance with the four different heuristics mentioned in
Section 4.1, i.e., SA, PSO, GA and PS, and evaluate the efficiency of the different strategies presented in
Section 3.3 on the search for the optimisation objective.

Figures 6–9 depict the scheduling cost for the different case scenarios of consumers using strategy
C picking-sequence. These scenarios represent extreme conditions either considering high number
of appliances and/or an uneven distribution of them, and also the flexibility of the consumers’ time
preferences. Communities with selfish settings or fixed consumption display the best results over all
different optimisation procedures (cases 2, 4, 6 and 8).
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Figure 5. Distribution of the appliances, consumers and aggregator in the community.

(A) (B)

Figure 6. Comparison of the SA, PSO, GA and PS methods for low variable and high fixed consumption
in 24 h CF (A) and L CF (B).
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(A) (B)

Figure 7. Comparison of the SA, PSO, GA and PS methods for low variable and high fixed consumption
in 24 h CF (A) and L CF (B).

(A) (B)

Figure 8. Comparison of the SA, PSO, GA and PS methods for both high variable and fixed consumption
in 24 h CF (A) and L CF (B).

(A) (B)

Figure 9. Comparison of the SA, PSO, GA and PS methods for both high variable and fixed consumption
in 24 h CF (A) and L CF (B).

The CC is higher when consumers have an uneven number of appliances. This effect can be
observed in Figure 7 and in comparison with Figure 6. The same occurs in scenarios with high variable
demand (see Figure 9 and Figure 8). In addition, a high variable demand (Figures 8 and 9) penalises
the CC when compared with low settings (Figures 6 and 7). We find the worst case situation on
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altruistic communities with high variable demand when applying strategy C under SA optimisation.
As Figure 9 (red colour) shows, it takes 30 minutes. Both PSO and GA work with sets of solutions that
interact between themselves. Both perform better due to the number of solutions managed at the same
time. We can also conclude that strategy C under all possible scenarios can be solved within the next
24 h, being PSO the most computationally efficient for scheduling (28sec).

Additional simulation measures the performance of communities of 20 appliances per consumer
in Case 1. Figure 10 (left) compares all the algorithms and shows that PSO achieves a global optimum
solution quickly. GA obtains similar outcomes. Applying SA, Figure 10 (right) shows that the cost
needed for the scheduling increases linearly with the number of appliances.

Figure 10. Different approaches (left) and appliances number results (right).

So far, experiments have been mainly focused on strategy C. Figure 11 depicts the optimised
cost obtained after applying all strategies, and taking into account the different factors (see Table 4).
These factors are differentiated by branches and data are expressed as a percentage of the required CC.

Possible load-shape scenarios

Community Size/N. of Appliances

30/1200

Variable demand

18kWh

24H

Different

Case 7
16.9%
9.3%
100%
85%

Same

Case 5
12.1%
9.74%
93.8%
67.6%

L

Different

Case 8
7.9%
10.1%
70.8%
65%

Same

Case 6
10.2%
6.65%
66.1%
61%

9kWh

Consumer flexibility

24H

Different

Case 3
6.79%
6.65%
66.1%
51.1%

Same

Case 1
28.1%
71.2%
66.7%
50.6%

L

Appliances distribution

Different

Case 4
6.6%
6.2%
45.5%
40%

Same

Case 2
6.1%
6.8%
43.7%
38.97%

5/40

Variable demand

18hWh

24H

Different

Case 7
49.54%
66.2%
69.8%
60%

Same

Case 5
42.4%
69%

77.4%
57.4%

L

Different

Case 8
45.4%
92.9%
68.2%
56.0%

Same

Case 6
42.5%
57.6%
73.1%
55.9%

9kWh

Consumer flexibility

24H

Different

Case 3
37.1%
35.3%
100%
47.1%

Same

Case 1
44.3%
38.1%
77.4%
43.9%

L

Appliances distribution

Different

Case 4
32.7%
27.7%
78.7%
29.9%

Same

Case 2
(A) 42.8%
(B) 26.4%
(C) 53.3%
(D) 27.9%

Figure 11. CC results (in %) after applying different strategies (Section 3.3) performed under SA:
Round-Robin (A), Randomly Round-Robin (B), “having the first consumer always the same” (C) and
randomly (D).
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Strategy C performs badly, with higher CC in all circumstances. This is mainly because the
Aggregator needs more resources when it has to optimise all consumers and their appliances all
together. The simulation performed with consumers by adding their preferences randomly (strategy D)
shows similar cost when compared to strategy C. By contrast, the Aggregator under strategy A optimises
consumers preferences consecutively in an individual way. A new variant of RR is to perform this
strategy when the first consumer starts randomly (strategy B). Both strategies act equally, though
dispersed. Strategy A appears as the most appropriate strategy on our system.

Further conclusions can be extracted globally for all the strategies. The CC is higher in four
possible situations: when users set a very flexible demand need, when the community is large, when the
number of appliances is also large and when a high demand is needed (Figure 11, last branches).
A better performance is achieved under strategy B when consumers demand low variable load,
in a selfish and small community (Figure 11, first branch). The distribution of appliances also
impacts the CC, being higher in large communities with uneven number of appliances per neighbour.
The highest CC, which exceeds the half an hour of computation, is obtained in strategy C scenario under
a high demand flexibility for an optimisation of 30 neighbours with different appliances distribution
per dwelling (Figure 11, last branch).

Finally, Figure 12 compares the CC considering two different RW vector structure provided from
the available sources at the Utility: uniform RW vector and the 50% standard deviation of RW values.
For the eight different cases, and using strategy B and SA, testing is performed for communities of
5–30 consumers. In terms of the chosen strategy, both situations display similar behaviours.

Figure 12. Comparison of RW factor from cases 1 to 8 by applying strategy A under SA.

5. Technical Considerations: Communication, Security and Hardware

Discussion on the development of a pilot testbed for our system over the existent smart home
technologies, their security properties and more feasible communication protocols are included in
this section. Extensive work on networking infrastructures has been proposed for smart metering
data transmission [14,39]. Some approaches focus on fiber-optics for a high-speed data exchange
transmission [40], whose deployment cost would only worth when high data transmission rates are
required. Power Line Carrier (PLC) is generally applied to computer networks, wired smart meters
among other purposes such as remote monitoring and direct control applications offered by utility
companies to consumers [41,42]. Note that regulation should be taken into account to allow the use
PLC technologies in outdoor deployments as discussed in the work by the authors of [43].

Infrastructures in a Home Area Network (HAN) comprise the communication technologies
for deploying HEMS integrating the household appliances. Communication protocols for data

62



Sensors 2019, 19, 3973

transmission between appliances can be provided with a variety of unwired techniques [28] such as (1)
ZigBee, which offers an adequate range communication with low data rate and power consumption;
(2) Z-Wave, which has been used for short range communication due to the low latency communication
of small data packets in scalable environments; (3) 6LoWPAN, which can be applied to building
automation designs [44] and to home automation architectures [45]; (4) Bluetooth, which is widely used
to exchange data over short distances in low energy usage and fast data exchange [46]; and (5) GSM
networks and WLAN, which provide low latency robust communications [47].

Neighbourhood Area Network (NAN) connects customers’ HEMS on a two-way communication
infrastructure responsible for transmitting their demands and time preferences to the Aggregator,
as well as the traditional control messages and power grid sensing data. Wireless cellular is widely
used in this type of scenarios as described in the work by the authors of [14].

A Wide Area Network (WAN) establishes communication between the Aggregator and the Utility
substations. Distance to cover is in a radius of a thousand meters comprising of two interconnected
networks [48]. Protocols LoRaWan and 5G demonstrate high speed, bandwidth and responsiveness
while operating on various licensed and unlicensed frequency bands. Moreover, LPWAN (LoRa) will
fulfil most of the IoT challenges and applications. By contrast, the introduction of 5G into the IoT
world is still slow and other technologies sound more promising at present time. Table 5 summarises
the main features of the discussed technologies and includes recommendations on more appropriate
application areas.

In terms of security and privacy, HEMS involve the deployment of physical controls, cyber-security
countermeasures as well as privacy leakage prevention [49]. In addition, a gateway architecture for high
system availability is proposed in the work by the authors of [50]. Anonymous authentication applying
zero-knowledge proof of knowledge could be the solution to provide anonymous authentication
between consumers and Aggregator. The latter needs to guarantee compliance with the General Data
Protection Regulation (GDPR). Furthermore, a methodology to assess the security risks within the
HAN domain should be developed as in the work by the authors of [51]. Further details can be
found in the work by the authors of [52], where the authors explain the different IoT security threats
scenarios (e.g., personal information leak) and provide an evaluation method within a situational
smart home framework.

Table 6 identifies the most promising hardware platforms to build our HEMS emphasising
low-cost, compatibility, scalability, easy programming and lightweight properties [48,53]. Raspberry
Pi 3 [54] is a single-board computer with integrated Bluetooth and WiFi module and enough resources
to control the smart appliances and send/receive our system messages. The emergence of cheap
microcontrollers like the Arduino has enabled the implementation of low-cost HEMSs mainly devoted
to obtain the consumption data as to generate demand/load profiles [55]. For example, the work
by the authors of [56] designs and implements a remotely controlled, energy-efficient and highly
scalable HEMS using Zigbee in Arduino Mega board as a central controller. In [57] it is discussed
and evaluated the performance of BeagleBone blue for HEMS developments, an open-source hardware
platform with similar principles of Raspberry Pi. Similarly, the proposal by the authors of [58] develops
a remote monitoring system using “Libelium Waspmot”, a modular device that allows the integration
of different sensors and radio transceivers. Additionally, deep learning implementations on Field
Programmable Gate Array (FPGA) performs fast due to the exploration of parallel computing [59].
Particularly in the work by the authors of [60], Zedboard implementation (Zynq-ARM Cortex-A9
processor) allows the control of unpredictable loads in a deterministic demand management model.
In the work by the authors of [61], the algorithm is modelled in Verilog language on a FPGA allowing
dynamic reconfiguration of the HAN. A HEMS prototype is developed on a Cubietruck board (Linux
based cortex A7 processor) using a WiFi module [62]. It transmits real-time sensing data using TCP/IP
communication protocols.
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In terms of our DR system, and from preliminary design decisions, our prototype will consist of
a Raspberry testbed as the main processor of the HEMS, as it offers good computing performance at
a very low price. Its interoperability will provide the performance of alternatives protocols such as
ZigBee, WiFi or Z-wave. In the proposed architecture, the WiFi wireless communication between the
Aggregator, HEMS and appliances can transfer the data at around a hundredth millisecond, a suitable
speed for our current application. The proposed centralised DR system (Aggregator) will also operate
in an open-source HW platform.

6. Conclusions

Globally, smart communities are envisioned more efficient as residents gain autonomy and
self-organisation for reducing and shifting any resource consumption. Strategies for energy demand
response applied to smart residential communities can lead to improved scenarios of energy efficiency.
Consumers have the opportunity to reduce their electricity cost and/or peak-to-average ratio through
scheduling their power consumption. In this article, we have described a DR model that integrates
the electricity supply available from renewable energy sources into the scheduling process, which is
centralised via the community Aggregator. We have showed details of community scheduling algorithm
implementation and evaluated it in terms of its computational cost. Empirical comparison of our
algorithm design on different implementation strategies for player turn selection and optimisation
heuristics as well as on a series of case scenarios of community’s consumption patterns showed feasible
results in all cases (less than 1 minute to compute the rescheduled community vector). Simulations
are conducted with data from our own benchmark of appliance power cost. We have also illustrated
development decisions of a mobile app for consumers introducing their demands and time preferences.
Finally, we included the discussion of the preliminary decisions on the hardware requirements and
communication protocols for a pilot deployment. Immediate future work includes the pilot deployment
comprising the algorithm/Aggregator running on the most suitable HW platform as well as the home
controllers that autonomously activate/deactivate the smart appliances. We also plan to refine the
scheduling algorithm as to consider the usage or purpose of the consumption along with the device
type. Furthermore, Utilities and Aggregators in possession of the real-time data from microgeneration
and other energy harvesting generators would enhance the conceptual demand response model.
Finally, a study of the community patterns will be conducted through game theory and evolutionary
computation methods.
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Abbreviations

The following abbreviations are used in this manuscript.

N Consumer number
Ai Appliance number
i Consumer identifier
j Appliance index
aij Consumer i’s appliance identifier
t Certain time
RW 24-hour supply vector from renewables
tbeg Earliest start time appliance
tend Latest final time appliance
tsched Scheduled start time of appliance
D Consumer demand
vD Variable demand
fD Fixed demand
CF Consumer Flexibility
L Duration of the planned operation of appliance aij in the next day
SH Smart Home
HEMS Home Energy Manager System
HAN Home Arena Network
NAN Neighbour Area Network
WAN Wide Area Network
IoT Internet Of Things
ICT Information and Communication Technologies
SG Smart Grid
DSM Demand System Manager
MILP Mixed Integer Linear Programming
SA Simulates Annealing
PSO Particle Search Optimisation
GA Genetics Algorithm
PS Pattern Search
RR Round-Robin
PLC Power Line Carries
CC Computational Cost
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Abstract: In this paper, a light-weight radio frequency fingerprinting identification (RFFID) scheme
that combines with a two-layer model is proposed to realize authentications for a large number of
resource-constrained terminals under the mobile edge computing (MEC) scenario without relying on
encryption-based methods. In the first layer, signal collection, extraction of RF fingerprint features,
dynamic feature database storage, and access authentication decision are carried out by the MEC
devices. In the second layer, learning features, generating decision models, and implementing
machine learning algorithms for recognition are performed by the remote cloud. By this means,
the authentication rate can be improved by taking advantage of the machine-learning training
methods and computing resource support of the cloud. Extensive simulations are performed under
the IoT application scenario. The results show that the novel method can achieve higher recognition
rate than that of traditional RFFID method by using wavelet feature effectively, which demonstrates
the efficiency of our proposed method.

Keywords: mobile edge computing; IoT; RF Fingerprinting; authentication

1. Introduction

In recent years we have seen an innovative Internet-of-Things (IoT) paradigm, which combines
mobile edge computing (MEC) with traditional IoT architecture [1–3]. MEC is used as a bridge
between IoT devices and remote cloud devices to provide edge intelligent services to meet the critical
needs of industry digitization in terms of agile connectivity, real-time services, data optimization,
application intelligence, security and privacy protection, which are key issues for the industry control
applications [4–6]. However, such new architecture has aroused many security protection requirements,
including security access authentication, security transmission, and data privacy etc., in which the
most important one is security access authentication [7]. Due to constraints of terminals under the
IoT system, and resource constraints of the existing authentication methods that rely on encryption,
some lightweight and effective security access authentication measurements [8,9] are necessary.
Recently, many researchers have turned to using the physical (PHY) layer information to enhance

Sensors 2019, 19, 3610; doi:10.3390/s19163610 www.mdpi.com/journal/sensors71
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wireless security [10–12]. MEC operates on the wireless media. The innovative PHY-layer security
designs can cope with the unique PHY layer weakness of the MEC in which physical characteristics,
such as the channel responses between communication peers, the hardware property of the wireless
transmitter, have been explored as a form of fingerprint in the scenario of wireless security.

Many scholars have made contributions to the development of physical layer security [13–15].
RFFID is of vital importance to physical layer security technology. In fact, radiofrequency fingerprints
(RFF), which embody the hardware property of the wireless transmitter to be identified and
have the characteristics difficult to be cloned, are a good candidate to be used to enhance device
identification [16–21]. Additionally, RFFID is a lightweight authentication method for the transmitters,
because the authentication algorithm is mainly performed on receivers and transmitters that do almost
nothing. Therefore, it is especially suitable for the source-constrained terminals of IoT to perform
access identification.

The RFFID method is different from the device signal authentication method proposed in [22].
The stochastic features of dynamic watermarking signal are used as identity information. Hall et al. [23]
first proposed RF fingerprinting technology in Bluetooth wireless network device identification research
in 2003. After that, studies have found that the transmitter can also be identified by transmitting the
steady-state portion of the signal. Hu et al. [24] utilized RF signals to identify mobile phones in a
mobile cellular network. Hall et al. [23] and Ureten et al. [25,26] used RF fingerprinting technology to
achieve wireless positioning and access control for wireless network. In order to further improve the
authentication rate of RFFID, a machine learning algorithm has been introduced in extensive research
as the classification algorithm of RFFID [27–29]. However, a machine learning algorithm needs a certain
amount of computing resources to ensure a higher recognition and authentication rate. Especially in
offline training, the number of offline training samples will affect the effect of machine learning. With
available computing resources, MEC can perform limited tasks in offline training of machine learning.
When a large number of samples need to be trained, while uploading these computing cost tasks to
cloud computing platform, the authentication rate can be expected to be further improved. In this article,
we propose an efficient and flexible RFFID-MEC authentication method, in which RFFID is combined
with MEC and the cloud, making full use of the characteristics of MEC-IoT framework to establish the
two-layer model. The first layer provides data collection, extraction of RF fingerprint features, dynamic
data storage and access authentication decision, which consumes less limited computing resources
running at the MEC platform. The second-layer provides powerful computing for more complex and
resource-consuming tasks in the remote cloud, such as feature learning, generating decision model,
and establishing a machine learning algorithm. Since the authentication algorithm is mainly performed
on the MEC, the terminals do almost nothing. The novel model, the edge computing, and cloud
computing work collaboratively to ensure that the method has strong computing resources and improve
the authentication rate. Compared with the conventional physical authentication method [10–12,30–33],
our method makes efficient use of the characteristics of edge computing to collect transmitting signals
and computing support of the cloud, and performs the fast identity authentication of terminals in the
IoT scenario with asymmetric computing resources. Therefore, our proposed novel authentication
scheme is light-weight to the IoT terminals. Our contributions can be summarized as follows:

(1) To the best of our knowledge, we are the first to propose the radio frequency fingerprint-based
authentication, that combines physical characteristics of wireless device radio frequency and
machine learning algorithms under the collaborative work of edge computing and cloud
computing to achieve fast and efficient authentication.

(2) We present the typical scenario that uses an RFFID-MEC method for IoT devices authentication
applications and demonstrate the effectiveness of the algorithm.

The rest of this article is organized as follows. In Section 2, we introduce the related work about
the background information of MEC-IoT architecture and RFFID. The secure access authentication
method based on RFFID- MEC is proposed in Section 3. Section 4 includes the application of the
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novel method to typical scenario and the evaluation of the proposed methods via experiments. Finally,
the conclusions are given in Section 5.

2. Background of RFFID-MEC

2.1. MEC Architecture in IoT

The emergence of MEC brings a high-performance computing platform that provides data
preprocessing, storage, and edge intelligent services [2]. As shown in Figure 1, the MEC-IoT
architecture encompasses three different layers, the IoT devices, MEC, and the remote cloud platform.
Each layer is characterized by different constraints on computation ability, memory, and energy
availability. Among them, the computation ability of IoT terminals is the weakest. The MEC layer
can perform limited tasks with available computing resources and the cloud layer provides strong
computing support to the other two layers.

 

Figure 1. Mobile edge computing-Internet-of-Things (MEC-IoT) architecture.

A key transformation is to perform information processing based on servers at network edge,
applying the concepts of cloud computing. MEC can be seen as a cloud server running at the edge
of a mobile network and performing specific tasks that are necessary to some scenarios, such as
agile connectivity, real-time services, security and privacy protection, which could not be achieved
with traditional IoT network infrastructure [1]. In addition, IoT devices are connected with MEC
that provide (when needed) the computational resources for more complex and resource-demanding
application or processing tasks. MEC devices are interconnected through MEC networking and linked
to the remote cloud depending on application needs. As the traditional cloud-centered IoT architecture,
MEC-IoT architecture is also confronted with security problems. Meanwhile, access authentication is
envisioned as the primary problem to be solved. As a physical layer security technology, RFFID is
regarded as a lightweight access authentication method, and applicable to the MEC-IoT architecture.

2.2. Radio Frequency Fingerprinting Identification (RFFID)

The RFFID method refers to identification based on the radio frequency signal fingerprint of
the wireless devices to confirm the access of the legal wireless devices, thereby realizing the identity
authentication of the wireless devices. The RFFID, which embodies the hardware property of the
wireless transmitters, is difficult to be cloned and can be used for non-cryptographic authentication for
the wireless transmitters. Cobb et al. [30] made a further explanation of the mechanism of RFF and
introduced electronic component tolerances due to differences in hardware devices, such as printed
circuit board traces, integrated circuit internal components, and RF front-end circuits. The electronic
component tolerance effect of wireless transmitters is the main reason for generating RFF. Since the
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hardware of any two wireless devices is different and hard to be faked, it is feasible to uniquely identify
electronic components by RF signal fingerprinting.

As shown in Figure 2, the RFFID method consists of six steps: Signal collection, signal analysis and
process, feature extraction and classification, fingerprint database, and identification. RFFID mainly
includes two processes. The first one is offline to establish a fingerprint database for legitimate wireless
devices by implementing, analyzing and processing the radiation signals after collecting the signals
of legitimate devices. The second process is an online authentication process. The signals of the
wireless devices to be identified are collected and the fingerprint features are extracted through signal
analysis and processing. Then, matching and recognition are carried out in the existing legitimate
fingerprint database.

 

Figure 2. Radio frequency fingerprinting identification (RFFID) authentication method.

Recently, in order to further improve the authentication rate of RFFID, machine learning method
is taken as a recognition algorithm [27–29]. However, this method consumes resources in offline
samples learning due to a large number of samples training required to ensure the authentication
effect. Otherwise, the authentication rate will be compromised if only limited training samples are
used. Therefore, abundant computing resources are necessary to guarantee the authentication rate of
RFFID. When the computing power of MEC devices is inadequate, it can upload tasks to the cloud
platform. By this means, MEC can rationally get computational resources to support and fully ensure
the accuracy of tasks. Therefore, a combination of the RFFID method, MEC and cloud can strengthen
hardware resource guarantee.

3. Security Access Authentication Method Based on RFFID-MEC

In this section, we propose a lightweight algorithm for resource-constrained terminals to
accomplish access authentication with a satisfied authentication rate. This algorithm that combines
the mobile edge computing with the cloud may improve the accuracy of the authentication-based
RFFID. The architecture of the proposed RFFID-MEC authentication consists of two layers: The first
layer provides signal collection, signal analysis, and process, feature extraction and classification,
and establish fingerprint feature database, which will be performed on the MEC layer. The second
layer includes learning features, generating decision models, and implementing machine learning
algorithms for recognition, which need the powerful computing support for much more complex
and resource-consuming tasks, will be implemented on the remote cloud due to the limited
computing resources of MEC. Figure 3 shows a detailed logical flow of this authentication process.
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The authentication process includes two processes that are an offline training process and an online
decision-making process.

 

Figure 3. Detailed authentication process.

In the offline training authentication process, a terminal initiates an access request to the MEC
platform. After that, the MEC platform collects the signal of the terminal with the identity information,
and then performs feature extraction and establishes dynamic fingerprint feature database. The feature
information is transmitted to the cloud computing platform. The cloud computing platform makes use
of the machine learning algorithm to generate the authentication decision-making model, and transmits
the resulted decision model that meets the target authentication rate back to the MEC platform. At this
time, the offline training authentication process ends. In the online decision-making authentication
process, a terminal initiates an access request to the MEC platform, and the MEC platform collects
signals, extracts features, and performs fast identity authentication through the trained authentication
model that was established from the previous step.

The RFFID-MEC algorithm is illustrated in Figure 4. Notations of frequently-used variables are
described in Table 1 for steps. Steps 1–3, 5, 6 are carried out by the first layer, meanwhile Step 4,
including Steps 4.1–4.6, are carried out by the second layer.

Table 1. Notations of frequently-used variables.

Symbol Description

i The i-th terminal
N Discrete points of signal acquisition

x<l>T
i The l-th collection of the i-th terminal’s vector

X<l>T
i The total l-th times collection of the i-th terminal’s set

x<m>T
i The vector after remove the outline from the x<l>T

i
X<m>T

i The set after remove the outline from the set X<l>T
i

x<m>T
i The data normalization of vector x<m>T

i
X<m>T

i The data normalization of set X<m>T
i

x<m>T
i The vector x<m>T

i generated after DTWT

X<m>T
i The set X<m>T

i generated after DTWT
T The training data set
yi The category of the instance

75



Sensors 2019, 19, 3610

l

m T T T m T
i i i iX x x x< > < > < > < >=

m T
ix x x x< > = m T T T m T

i i i iX x x x< > < > < > < >=

m T
ix
< > m T

iX
< >

l T
ix
< > l T

iX
< >

m T m T m T
i iT X y X y X y< > < > < >=

m T
i Nx x x x< > =

 

Figure 4. Flow chart of RFFID-MEC method algorithm.

Step 1: The MEC platform continuously acquires signals:
The MEC platform collects the RF signals of the IoT devices with identity tags:

1. The vector of the l − th collection of the i − th terminal device is: x<l>T
i = (x0, x1, . . . , xN),

(N represents the discrete sample points of the collected signals)
2. The data set of the total L acquisitions of the l − th terminal devices is: x<l>T

i =

(x<1>T
i , x<2>T

i , . . . , x<L>T
i ), l = (1, 2, · · · , L)

Step 2: Data preprocessing in MEC platform:
The MEC platform preprocesses data sets for filtering and normalizing.

1. According to the data set, we obtain the mean E(X<l>T
i ) and, standard deviation σX<l>T ,

and remove the outliers from the data set X<l>T
i . Then x<l>T

i and, X<l>T
i were changed to:

x<m>T
i = (x0, x1, · · · , xN) and, X<m>T

i = (x<1>T
i , x<2>T

i , · · · , x<m>T
i ), m = (1, 2, · · · , M), M < L.
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2. x<m>T
i = (x0, x1, · · · , xN) was normalized to new value:

x =
1
N

N∑
i=1

xi, i = 1, 2, 3, · · · , N (1)

σ2 =
1

N − 1

N∑
i=1

(xi − x)

2

(2)

xi =
xi − x
σ

(3)

x<m>T
i and, X<m>T

i were changed to:

x<m>T
i = (x0, x1, · · · , xN)

and
X<m>T

i = (x<1>T
i , x<2>T

i , . . . , x<m>T
i )

where x<m>T
i has a standard normal distribution with mean zero and unit variance.

Step 3: The MEC platform generates training and testing data sets:

The normalized data sets X<m>T
i are used by MEC platform to generate the feature vector as the

training and testing data sets T as follows:

x<m>T
i are changed to x<m>T

i

ϕik(n) = fi(n− 2i+1k), (i = 0, 1, · · · , J − 2)

x<m>T
i =

∑
i

∑
k

x<m>T
i ϕik(n)

(4)

X<m>T
i are changed to X<m>T

i .

x<m>T
i = (x0, x1, · · · , xN )

X<m>T
i = (x<1>T

i , x<2>T
i , · · · , x<m>T

i )

T is the final generated training data sets given by:

T = {(X<m>T
i , y1), (X<m>T

2 , y2), . . . , (X<m>T
i , yi)}

m = (1, 2, . . . , M), yi ∈ Y = {+1,−1}
(+1 is represented as a legal terminal device, −1 is an illegal terminal device.)
Step 4: The cloud platform generates a decision-making model.
Step 4.1: When the number of sample data <100 K, we will choose a support vector machine

(SVM) classification algorithm to generate a decision-making model:

min 1
2

N∑
i=1

N∑
j=1
αiα jyiyjK(xi, xj) −

N∑
i=1
αi

s.t
N∑

i=1
αiyi = 0, C ≥ αi ≥ 0, i = 1, 2, . . . , N

(5)
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The decision-making model using the linear kernel function K(
→
x ,
→
z ) =

→
x ·→z , is applied to the linear

classification of large data sets to find the optimal solution:
→
α
∗
= (α∗1,α∗2, · · · ,α∗N)

T,
→
w
∗
=

N∑
i=1
α∗i yi

→
xi,

choosing C > α∗j > 0, b∗ = yj −
N∑

i=1
α∗i yiK(X<m>T

i , X<m>T
j ).

The decision-making model is defined by:

f (
→
x ) = sign(

N∑
i=1

α∗i yiK(X<m>T
i , X<m>T

j ) + b∗) (6)

According to the training data sets testing model, if it can satisfy the correct target recognition
rate, the current model is the decision-making model and transmitted to the MEC platform database,
otherwise the algorithm will jump into Step 4.2.

Step 4.2: The cloud platform determines whether the data sets are text data. (a) If they are text
data, using Naive Bayes, which can achieve the correct target recognition rate, then the current model
is the decision-making model and transmitted to the MEC platform database, otherwise the algorithm
will jump to Step 4. (b) If it is not text data, the algorithm will jump to Step 4.2.

Step 4.3: The cloud platform uses the (k-nearest neighbor) KNN classification algorithm to
determine whether the correct recognition rate is greater than the preset one.

(a) Input the training data set T:

T = {(X<m>T
1 , y1), (X<m>T

2 , y2), · · · , (X<m>T
i , yi)}

X<l>T
i ∈ χ ⊂ Rn is the feature of the instance, and yi ∈ Y = {+1− 1} is the category of the instance.

(b) Calculate the Euclidean distance:

Lp(X<m>T
i , X<m>T

j ) = (
M∑

m=1

∣∣∣∣∣x<m>T
i − x<m>T

j

∣∣∣∣∣
2

)

1
2

(7)

(c) Find the k samples closest to x<m>T
i in the training data sets T, let the neighborhood of this t point

be Nt(x<m>T
i ).

(d) Determine the category of x<m>T
i in Nt(x<m>T

i ), according to the classification decision is yi:

y = argmax
Cj

∑
x<m>T

i ∈N

I(ys = cj)

(s = 1, 2, · · · , M ∗ i; j = 1, 2)
(8)

where I is the indicator function. If ys = cj, then I
(
ys = cj

)
is 1. By a similar argument, if ys � cj,

then I
(
ys = cj

)
is 0.

According to the training data sets testing model, if it can satisfy the correct recognition of
the target, the current model is the decision model and transmitted to the MEC platform database,
otherwise the algorithm will jump to Step 4.4.

Step 4.4: The cloud platform uses the integrated classifier to determine whether the correct
recognition rate is greater than the preset. Integrated classifier, using a variety of existing learning
algorithms from the training data to generate individual learners and based on Adaboost binary
classification algorithm process, is as follows:
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(a) Input the training data set T:

T = {(X<m>T
1 , y1), (X<m>T

2 , y2), · · · , (X<m>T
i , yi)}

(b) Initialize the weight distribution of training data

D1 = (w11w12 · · ·w1q · · · , w1i), w1q =
1
i

q = 1, 2, · · · , i

(c) Use the Dh(h = 1, 2, · · · , H) training data set with weights to learn to get the basic classifier

Gh(x<m>T
i ) : X→ {−1,+1}

Calculate the classification error rate of Gh(x<m>T
i ) on the training data set given by:

eh = P(Gh(x<m>T
i ) � yi)

=
i∑

q=1
whqI(Gh(x<m>T

i ) � yi)

Calculate the coefficients of Gh(x<m>T
i )

αh =
1
2

log
1− eh

eh
(9)

Update the weight distribution of the training data sets:

Dh+1 = (wh+1,1 · · ·wh+1,q · · · , wm+1,i)

wh+1,q =
whq
zh

exp(−αhyqGh(x<m>T
i ))

(q = 1, 2, · · · , i)

(10)

zh is a normalization factor:

zh =
i∑

q=1

whq exp(−αhyqGh(x<m>T
i )) (11)

It makes Dh+1 a probability distribution.
(d) Build a linear combination of basic classifiers:

f (x) =
H∑

h=1

αhGh(x<m>T) (12)

(e) Get the final classifier:

G(x<m>T) = sign( f (x))

= sign(
H∑

h=1
αhGh(x<m>T))

(13)
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According to the testing set of test models, if it can satisfy the correct target recognition rate,
the current model is the decision-making model and transmitted to output the MEC platform database,
otherwise the algorithm will jump to Step 4.

Step 4.5: When the number of sample data is greater than 100 K, the SVM classification algorithm
based on stochastic gradient descent is selected and the cost model is optimized by stochastic gradient
descent method given by:

J(θ) = 1
s

s∑
i=1

1
2 (yi − hθ(xi))

2

= 1
s

s∑
i=1

cos t(θ, (xi, yi))
(14)

The final decision-making model is an SVM algorithm based on the multi-class linear kernel.
According to the testing data sets testing model, if it satisfies the correct target recognition rate,
the current model is a decision-making model and transmitted to the MEC platform database,
otherwise the algorithm will jump to Step 4.6 and continue to select the classification algorithm.

Step 4.6: Kernel approximation is a nonlinear classification model. Nonlinear SVM is a classification
model based on linear SVM. Different kernel functions are used to realize the transformation of
high-dimensional space map to low-dimensional space. The optional kernel functions are:

k(
→
x ,
→
z ) = (γ(

→
x
⇀
z + 1) + r)

p

k(
→
x ,
→
z ) = exp(−γ‖→x −→z ‖2)

k(
→
x ,
→
z ) = tanh(γ(

→
x
→
z ) + r)

k(x, y) =
∑
i

2xi yi
xi+yi

k(x, y) =
∏

i

2
√

xi+c
√

yi+c
xi+yi+2c

(15)

According to the testing set test model, if it satisfies the correct target recognition rate, the current
model is the decision-making model and transmitted to the MEC platform database, otherwise the
algorithm will jump to Step 4.

Step 5: The MEC platform stores the decision-making model and data set in the database.
Step 6: The MEC platform implements access authentication to determine whether it is legal.
Step 7: The MEC platform continuously collects the RF signals of the IoT devices with identity

tags: The MEC platform collects the signal and preprocesses the data, and then passes the processed
data and the training data set in the database through the decision model to judge whether the terminal
identity is legal. If it is the legal device, MEC platform consents the access request. If it is not legal,
the MEC platform refuses to access the request.

The main features of the RFFID-MEC architecture are:

1. Low-complexity: There is no need for encryption algorithm at the terminal node, and all the
identification algorithms are completed by MEC. Therefore, the novel authentication method is
especially beneficial to the terminals that are resource-constrained.

2. Low-latency: As the decision-making model has been generated by cloud computing and
transmitted to MEC platform, it considerably reduces decision latency. This becomes particularly
important for IoT scenarios, for example, when dealing with a large number of legitimate
users’ access requests that need low latency and real-time access authentication such as a
driverless scenario.

3. Universality: This method is suitable for interconnection of resource-constrained IoT devices in
5G networks. Meanwhile, it has the characteristics of low computational complexity and high
authentication accuracy.
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4. RFFID-MEC Authentication Method Evaluation

We demonstrate a typical application scenario of RFFID-MEC Authentication method, as illustrated
in Figure 5. IoT terminals are many NRF24Les nodes. More specifically, NRF24LE is a single RF
transceiver chip and the operating frequency range is from 2.4 to 2.525 GHz. Its internal components
include frequency synthesizer, power amplifier, crystal oscillator, GFSK modulator, and filters. NRF24LE
chip is characterized by small power consumption, monolithic and small size. It is widely used in
home automation and factory control [34]. MEC platform was composed of Universal Radio Software
Peripheral (USRP). USRP is an open-source software-defined radio platform, which is consisted of a
mother-board equipped with a dual 14-bit analog to digital converter (ADC) operating at 100 MHz
and dual 16-dit digital to analog converter (DAC) operating at 400 MHz, and two UBX160 daughter
boards and vert2450 antennas. UBX160 transceiver daughter boards that act as a front end and have
a frequency range from 10 MHz to 6 GHz, which allows transmitting and receiving in the 2.4 GHz
industrial, scientific, and medical radio band (ISM band) [35]. Cloud server is taken as a cloud platform.

 

Figure 5. Typical application scenarios of RFFID-MEC authentication method.

There are several steps in our experiment:
The steps of the offline training authentication are as follows.
Step 1: Two terminal nodes with identity tags (illegal, legal) send signals to MEC platform,

then the MEC platform collects the signals;
Step 2: The MEC platform preprocesses the collected signals to establish a fingerprint

feature database;
Step 3: The MEC platform generates training and testing data sets, which are transmitted to the

cloud platform;
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Step 4: The cloud platform performs the training processing and generates a decision-making
model, which is transmitted back to the MEC platform;

Step 5: The MEC platform stores the decision-making model. Online decision-making
authentication includes one step as follows:

Step 6: Terminals (illegal, legal) send signals to the MEC platform. The MEC platform generates
feature data sets and determines whether it is legal or not via a previously trained model.

In addition, we have compared RFFID-MEC with traditional RFFID methods. Our simulation
utilizes each of four kinds of RF fingerprint features to verify the authentication effect under different
SNR. Compared with the traditional RFFID method, the RFFID-MEC method takes advantage of the
cloud computing platform to increase the number of offline training samples in a machine learning
algorithm. As shown in Figure 6, from the four simulation results, it can be seen that whether using
envelope, phase, STFT, or wavelet feature, the correct identification probability of RFFID-MEC method
is higher than that of RFFID method at different SNR. Besides, the simulation indicates that the correct
identification probability of wavelet feature clearly outperforms the other ones and achieves a higher
correct identification rate at low SNR, because the fingerprint of wavelet transform possesses strong
anti-noise characteristics [36]. Therefore, we demonstrate the effectiveness of the proposed RFFID-MEC
method choosing wavelet RF feature, which can be applied to security authentication.

 
 

(a) RF Fingerprint-Envelope (b) RF Fingerprint-Phase 

(c) RF Fingerprint-STFT (d) RF Fingerprint-wavelet 

Figure 6. Correct identification probability versus SNR for RFFID-MEC and RFFID using four different
RF fingerprint features including: Envelope, phase, STFT, and wavelet feature.
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5. Conclusions

The paper has developed a lightweight RFFID-MEC authentication method by taking advantage
of attributes-based MEC, cloud, and non-encryption RFFID for IoT terminals. The presented two-layer
model is extremely suitable for the MEC-based IoT paradigms. Compared with the traditional RFFID
security access authentication, our light-weight RFFID-MEC authentication method has achieved
higher authentication accuracy and improved the work efficiency of IoT terminals, in which all the
computing burdens are taken by the edge devices and the cloud. Subsequently, we put this method
into an application scenario. Our simulations have demonstrated the effectiveness of this method in
actual IoT environments.
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Abstract: In recent years, Energy Efficiency (EE) has become a critical design metric for cellular systems.
In order to achieve EE, a fine balance between throughput and fairness must also be ensured. To this
end, in this paper we have presented various resource block (RB) allocation schemes in relay-assisted
Long Term Evolution-Advanced (LTE-A) networks. Driven by equal power and Bisection-based
Power Allocation (BOPA) algorithm, the Maximum Throughput (MT) and an alternating MT and
proportional fairness (PF)-based SAMM (abbreviated with Authors’ names) RB allocation scheme is
presented for a single relay. In the case of multiple relays, the dependency of RB and power allocation
on relay deployment and users’ association is first addressed through a k-mean clustering approach.
Secondly, to reduce the computational cost of RB and power allocation, a two-step neural network (NN)
process (SAMM NN) is presented that uses SAMM-based unsupervised learning for RB allocation and
BOPA-based supervised learning for power allocation. The results for all the schemes are compared in
terms of EE and user throughput. For a single relay, SAMM BOPA offers the best EE, whereas SAMM
equal power provides the best fairness. In the case of multiple relays, the results indicate SAMM NN
achieves better EE compared to SAMM equal power and BOPA, and it also achieves better throughput
fairness compared to MT equal power and MT BOPA.

Keywords: machine learning; LTE-A; energy efficiency; resource block allocation; bisection based
optimal power allocation; water filling algorithm; proportional rate constraint

1. Introduction

Green Radio communication has received a lot of attention in the past few years with an aim to
decrease the carbon foot print of wireless networks. It has been estimated that nearly 70% of the energy
being used by cellular operators is on the radio part [1] and around 9% of the global CO2 emission is
from the communication systems [2]. In addition, one of the main concerns is the User Equipment
(UE) battery, which has not shown progression at par with the Radio Access Technology (RAT). This
phenomena is highly visible for the cell edge users that despite spending higher energy (due to high
pathloss shadow fading and adjacent cell interference) are unable to achieve fair share of the radio
resources. In this context, Green communications employing cooperative and fair resource allocation
techniques can help in reducing the carbon footprint and increasing Energy Efficiency (EE).
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Most of the existing wireless systems use Orthogonal Frequency Division Multiple Access (OFDMA)
to distribute radio resources among UEs. One of the existing RAT to use OFDMA is Long Term
Evolution-Advanced (LTE-A), which has a similar structure to its predecessor LTE. In LTE, each Resource
Block (RB) is a time frequency grid element. The basic RB structure contains 15 subcarriers of 12 KHz
each and a 10 ms frame. Each frame is subdivided into 10 subframes of 1 ms and each subframe is
further divided into 2 slots of 0.5 ms each. Each slot may contain 6 or 7 OFDM symbols depending on a
normal or an extended cyclic prefix. The RB allocation can be changed after every Transmission Time
Interval (TTI) based upon channel conditions or RB allocation algorithm. OFDMA offers flexibility of RBs
Allocation to tailor user and network requirement, such as throughput, fairness, Energy EfficiencyEE,
and Spectral Efficiency (SE). For example, in order to support higher peak data rates Carrier Aggregation
(CA) is introduced to obtain wider bandwidth. Compared to LTE, CA in LTE-A can support maximum
5 adjacent/non-adjacent component carriers of maximum 20 MHz to achieve 100 MHz bandwidth.

In addition, LTE-A allows Layer 3 (L3) relays to be incorporated in the network that can decode
and forward the data to a UE [3]. This cooperative communication addresses EE and throughput
of the cell edge users by providing channel diversity. As the network can only accommodate finite
relays, their placement is, therefore, crucial to manage the overall throughput. The RB allocation
between direct link that is Base Station (BS)–UE and two hop link that is (BS)–Relay Node (RN)–UE
can be done independently or in a shared manner. In [4], the authors have presented a thorough
comparison of basic RB allocation schemes, which are Round Robin (RR), Proportional Fairness (PF),
Maximum Throughput (MT), and Maximum Minimum (MM); they presented an alternating MT and
PF based resource allocation scheme SAMM (abbreviated with Authors’ names) without considering
any relay. The paper considered LTE system with a basic RB structure [5], 5 MHz bandwidth with fixed
10 users that are uniformly placed from the BS. These schemes have been compared in terms of sum
throughput, individual user throughput and fairness based on JFI (Jains fairness index). The SAMM
scheme provides a better tradeoff between throughput and fairness. Cell edge users show some
throughput gains due to proportional fairness, however, this scheme fails to address EE. Authors in [6]
considered EE for generic OFDMA based downlink system. They presented Bisection based Optimal
Power Allocation (BOPA) algorithm for a given RB assignment. The BOPA works as an iterative
approach based on water filling principle. This work uses equal power allocation among users for
initial users’ rate calculation, whereas, a modified algorithm in [7] uses equal power per resource block.

In [8], the authors proposed a quality of service (QoS) aware optimization problem for relay-based
multi-user cooperative OFDMA uplink system. The main goal is to find optimal solutions for
relay selection, power allocation and subcarrier assignment that maximize the system throughput.
Aiming to support and attain the green wireless LTE network, an energy-efficient resource allocation
scheduler with QoS aware support for LTE network is proposed in [9]. The authors of [10] proposed
a two-stage method to solve the inter-cell interference problem. In the first stage, the subcarrier
allocation and time scheduling are jointly conducted with sequential users’ selection and without
considering the interference. The power control optimization is left to the second stage, using a
geometric programming method.

In [11], energy efficient resource block and power allocation optimal and low complexity
suboptimal schemes are presented for OFDMA relay-assisted downlink. Authors use fractional
programming to make the non-linear mixed integer problem to convex subtractive problem. In order
to reduce the computational complexity of the optimal solution, they present two-stage RB allocation
and transmission power control algorithms. The system model of this paper is similar to our model
but they use relays (small eNB in that paper) with frequency reuse factor of one, and the users employ
maximal ratio combining to maximize the received signal-to-noise ratio (SNR). In our case, we use
multiplexing gain instead of the diversity gain at users’ end by exploiting the knowledge of their
location in relay selection and users association algorithm. We have compared our proposed schemes
with the low complexity energy-efficient resource block and power allocation (LERPA) algorithm 3
and 4 of [11].
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Artificial intelligence techniques can be used in highly dynamic and stringent constraint
Next-Generation networks. Since machine learning is a most promising technique of artificial intelligence,
it can be directly/indirectly employed to achieve the goals of 5 G in cognitive radios, massive
multiple-input multiple-output (MIMO), hybrid beamforming, femto/small cells, smart grid, wireless
power transfer, device-to-device communications, non-orthogonal multiple access (NOMA) etc. [12].
This paper [12] gives an overview of the applications of machine learning in Next-Generation wireless
networks. Specifically, supervised learning techniques are suitable for massive MIMO channel
estimations and spectrum sensing, unsupervised learning could be helpful in users grouping and
clustering; and reinforcement learning can be applied in resource allocation problems.

A detailed review on existing techniques and methods have been provided in [13]. For example,
in [14], a cooperative Q-learning approach was applied as an efficient approach to solve the resource
allocation problem in a multi-agent network. The quality of service QoS for each user and fairness in
the network are taken into account and more than a four-fold increase in the number of supported small
cells. The authors in [15], proposed a machine learning framework for resource allocation to determine
the optimal or near-optimal solutions based on the learning of the most similar historical scenario.

In paper [16], the authors proposed an approximated solution to a wireless network capacity
problem using flow allocation, link scheduling, and power control. The Support Vector Machine
(SVM) was used to classify each link to be assigned maximal transmit power or be turned off, whereas,
the deep belief networks (DBNs) computes an approximation of the optimal power allocation. Both
learning approaches have been trained on offline computed optimal solutions. A novel resource
allocation method using deep learning to squeeze the benefits of resource utilization was developed
in [17]. It was reported that when the channel environment is changing fast, the deep learning method
outperforms traditional resource optimization methods. The resource allocation is to be optimized
by a convolutional neural network using channel information. A similar problem has been explored
in [18] that use Upper Confidence Bound learning for Greedy Maximal Matching (GMM) when the
channel statistics are unknown. Since the subchannel and power allocation problem is a non-convex
combinatorial problem, the optimal solution of the subchannel and power allocation problem requires
an exhaustive search over all possible combinations of subchannels and power levels. In order to train
the deep neural network (DNN) for an optimal solution, Ref. [19] utilizes the genetic algorithm to
get the training data for DNN. It shows that the prediction accuracy increases with the size of dataset
and the number of hidden layers. A four-step reinforcement learning based intercell interference
coordination (ICIC) scheme is presented in [20]. The users selection, resource allocation, power
allocation, and retransmit packet identification are handled by reinforcement learning to reduce the
intercell interference.

However, to the best of our knowledge no available literature discusses LTE-A with L3 relays for
SE and EE consideration. In this work,

• We present an energy efficient algorithm based on SAMM and BOPA for LTE-A system with a L3
relay. Performance evaluation in terms of throughput, fairness, power consumption, SE and EE
is shown between two best performing schemes i.e., MT and SAMM considering equal power
and BOPA.

• Considering the practical deployment, where there may be more than one relay supporting the
cell edge users, we devise a clustering strategy to obtain near optimal placement of L3 relays and
users’ association.

• In a multiple relay scenario, to optimize EE and reduce computational complexity of running
algorithm every TTI, we present a two step machine learning process that uses both the SAMM
and BOPA approach for resource and power allocation of the cell users. The proposed approach is
compared to MT equal power, MT BOPA and SAMM equal power in terms of users’ throughput
and EE.

A complete list of notations used in this paper is given in Table 1.
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Table 1. List of notations.

Notation Definition

μk,n the RB assignment indicator
Rk capacity of user k is given by the Shannon Capacity
SNRk,n the signal-to-noise ratio for user k on RB n
B System bandwidth
N Number of RB
W = B

N the RB bandwidth
PRN

total , PBS
total the total power at which RN and BS transmit

gRelay_link
k,n , gDirect_link

k,n channel gains for user k on RB n for RN and BS

hRelay_link
k,n , hDirect_link

k,n random channel coefficients for user k on RB n for RN and BS
SNRDirect_link

k,n signal-to-noise ratio for user k via Direct Link

SNRRelay_link
k,n signal-to-noise ratio for user k via Relay Link

SINRDirect_link
k,n signal-to-Interference-and-noise ratio for user k via Direct Link

αk proportional rate constraint for user k
λk rate parameter for user k
Dk allocated RB set for user k
Rk rate matrix for user k
p̂k,n optimal power allocation
PT total transmit power
θ Lagrangian multiplier

Rest of the paper is organized as follows: system model is described in Section 2, algorithms and
performance for MT, SAMM and BOPA with single relay network are given in Section 3. Multiple relay
users’ association and deployment with machine learning based power and RB allocation for SAMM
is presented in Section 4. Complexity analysis is given in Section 5, followed by the conclusions in
Section 6.

2. System Model

We consider a two-tier LTE-A system with a BS supported by L3 relays as shown in Figure 1.
The relays are assumed to be In-band type 1b [3] and full duplex, placed in the center of BS to the
most distant user. A total of K users and N RBs are considered with users placed at a uniform distance
from BS. The total powers of BS and RN are denoted by PBS

total and PRN
total , respectively. The LTE-A

system uses OFDMA transmission in the downlink. Let the system bandwidth is B with N number of
RB, then, W = B

N is the bandwidth of one RB. We express the channel gains gDirect_link
k,n and gRelay_link

k,n
for user k where k ∈ K = {1..., K} on RB n where n ∈ N = {1..., N} for BS and RN respectively.
Practically, the channel gain depends upon various factors, including thermal noise at receiver, receiver
noise figure, antenna gains, distance between transmitter and receiver, path loss exponent, log normal
shadowing and fading. Therefore, for all the links, we can write

gk,n = −	 − φ10 log10 dk − ζk,n + 10 log10 hk,n (1)

In the above equation, 	 (83.46 dB) is a constant depending upon thermal noise at receiver, receiver
noise figure, and antenna gains, φ is path loss exponent, dk is the distance in Km from UE k to the
BS/relay, ζk,n (10.5 dB) is shadowing parameter modeled by a normally distributed random variable
with standard deviation 8 dB, and hk,n corresponds to the Rayleigh fading channel coefficient of user k
in subchannel n [21].
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Figure 1. Topology.

The throughput of user k is given by,

Rk =

⎧⎪⎪⎨⎪⎪⎩
1
2

B
N

N
∑

n=1
μk,nlog2(1 + SNRk,n), Access link users

B
N

N
∑

n=1
μk,nlog2(1 + SNRk,n), Direct link users

(2)

where the factor 1/2 in access link shows the two time-slots transmission from BS-RN and RN-UE,
and μk,n is the binary variable such that μk,n = 1 when RB n is allocated to the user k, SNRk,n is the
maximum average signal-to-noise ratio for user k between direct and relay links. Let SNRDirect_link

k,n be

the signal-to-noise ratio for user k via Direct Link, and SNRRelay_link
k,n be the signal-to-noise ratio for

user k via Relay Link, then, the SNRk,n is given as

SNRk,n = max(E{SNRDirect_link
k,n },E{SNRRelay_link

k,n }), (3)

SNRDirect_link
k,n =

pBS
k,ngDirect_link

k,n

N0
B
N

, (4)

SNRRelay_link
k,n = min(SNRbackhaul_link

k,n , SNRaccess_link
k,n ), (5)

where, SNRbackhaul_link/access_link
k,n is

SNRbackhaul_link/access_link
k,n =

pBS/RN
k,n gbackhaul_link/access_link

k,n

N0
B
N

(6)

The Energy Efficiency EE in terms of bits/s/Watts can be expressed as

EE =

K
∑

k=1

N
∑

n=1
μk,nlog2(1 + SNRk,n)

K
∑

k=1

N
∑

n=1
pk,n

. (7)
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The EE optimization problem for the above scenario can be written as

maximize EE

subject to
K

∑
k=1

N

∑
n=1

pk,n ≤ Ptotal

pk,n ≥ 0, ∀ k, n

μk,n = {0, 1}, ∀ k, n
K

∑
k=1

μk,n = 1, ∀ n

R1 : R2 : .........RK = α1 : α2 : .........αK

(8)

where αk is the proportional rate constraint [22]. We assume that channel state information (CSI) of all
the users is known to the BS. Also, it is assumed that the RB allocation decision and assignment is done
in less than channel coherence time so that CSI information can be used. This further puts constraints
on the RB allocation algorithm complexity. The two-hop transmission to the RN users will be carried
out in two TTI’s. In the first TTI, the BS will only send data to the RN users that are in close proximity
of RN or have better RN-UE channel conditions than the direct link BS-UE. In the second TTI RN-UE
data will be sent. BS will choose the path to the user (direct or via RN) with best channel coefficient in
each TTI. The centralized scheduling minimizes the possibility of interference for In-band type of RNs.
Frequency division duplexing ensures that the RN may handle backhaul data simultaneously with
the access link data so that from the second TTI onwards backhaul BS-RN transmission is carried out
simultaneously with the access link RN-UE transmission.

The LTE-A downlink is an OFDM based system which supports M-ary quadrature amplitude
modulation (MQAM). We can use Equation (2) to calculate the throughput of user k on RB n for both
direct and relay-link paths. The two paths provide channel diversity to increase the users and system
level throughput. We use MT and SAMM criteria for RB allocation with equal power allocation to all
RBs or BOPA as explained below.

3. Fairness-Aware Power and Resource Block Allocation with Single Relay LTE-A Network

There are several well-known resource allocation schemes for cellular systems, namely, round
robin RR, maximize throughput MT, maximize the minimum throughput (max-min), and proportional
fairness PF. An improved hybrid MT and PF scheme, SAMM is presented in [4]. We briefly summarize
MT, PF, and SAMM, and then present our fairness-aware power and resource allocation algorithm.

3.1. Maximum Throughput

In a Maximize Throughput MT scheme, the aim is to maximize the sum throughput of the
network. It assigns more RBs to the user which has better channel conditions on direct link or two
hop link thereby adding more throughput to the system but its drawback is that users with the worst
channel conditions are essentially ignored. The maximum throughput criterion in mathematical form
is given as,

Dk = arg max
k

(Rk) (9)

where Dk is RB allocation matrix and Rk is rate matrix.
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3.2. Proportional Fairness

The proportional fairness based resource allocation schemes are widely used in practical wireless
communication systems. In this scheme, the system allocates the resource to a user who has the
maximum PF metric. The PF criterion in mathematical form is given as,

Dk = arg max
k

Rk(t)
R̄k(t)

(10)

where Rk(t) is the throughput of user k at scheduling time t, and R̄k(t) is the average user throughput
(moving average) over a past window of length Tw = 1/α [23], as

R̄k(t) = αRk(t − 1) + (1 − α)R̄k(t − 1), (11)

3.3. SAMM

In SAMM [4] PF and MT are run one after the other, i.e., in first TTI PF run for K users and
in second TTI MT run for K − 1 users ignoring the user with highest throughput in previous TTI.
This results in maximizing fairness and throughput alternatively in each TTI.

3.4. BOPA Algorithm

Bisection based optimal power allocation BOPA Algorithm 1 allocates the power to the RBs
assigned to a particular user. Given the RB allocation from MT or SAMM and throughput of each user
at equal power allocated to all RBs we can calculate λ “rate parameter” as given below:

λk =
R1

α1
=

R2

α2
= ... =

RK
αK

(12)

where Rk is the rate of each user and αk is proportional rate constraint set for fairness [6]. Optimal
power allocation is water filling operation and obtained for single user as

p̂k,n = max
{

1
θL ln 2

− 1
gk,n

, 0
}

(13)

where θL is Lagrangian multiplier and its value is chosen such that Rk is satisfied. Hence, the user
power can be expressed as Pk(λαk|Dk) and the total transmit power PT(λ) can be rewritten as

PT(λ) = ∑
k∈K

Pk(λαk|Dk) (14)

EE can be given as user rate divided by power consumed to achieve that rate.

EE(λ) =
λ ∑

k∈K
αk

PT
, (15)

and total transmit power is also limited by

λ ≤ λmax. (16)

According to [24] if transmit power PT(λ) is strictly convex in rate then EE(λ) is quasi-concave,
global optimal solution proof is given in the appendix of paper [22]

f (λ) = PT(λ)− λ ln 2 ∑
k∈K

minn∈Dk

{
1 + p̂k,ngk,n

gk,n

}
αk (17)
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Bisection method is a simple and robust. Since the method brackets the root, it is guaranteed to
converge. We apply BOPA on the RB allocation scheme SAMM, an alternating MT and PF scheme
for the relay-assisted LTE-A for the optimal power allocation with the objective of maximizing the
EE. In addition, we trained neural network with the dataset generated by the BOPA. Since power is a
monotonically increasing function of the rate parameter λ, we apply bisection method on the following
equation to find the root,

P(λ) = ∑
k

∑
n

2λαk N − 1
gk,n

− Ptotal = 0 (18)

Algorithm 1 BOPA Algorithm

1: Require:p̂k,n is the optimal power allocation matrix.
2: Ensure: Prior RB allocation through any algorithm and given as Dk.
3: Getting all the λ then calculate λmax which gives the max energy Efficiency by substitution in

Equation (6).
4: Using λmax set user rate as αk λmax , do water filling using Equation (13) and calculate f(λmax )

based on Equation (17).
5: If f (λmax ) ≥ 0
6: Return ; p̂k,n
7: Else Go to Step 9;
8: End if

9: Set λhigh = λmax , λlow = 0, λcurrent = λmax /2
10: Repeat: Set user rate according to αk λmax , do water filling using Equation (13) and calculate

f(λmax) based on Equation (17).
11: If f (λcurrent ) > 0
12: Set λlow = λcurrent
13: Else Set λhigh = λcurrent
14: End if

15: Set λcurrent = λhigh + λlow / 2
16: Return p̂k,n
17: End if

3.5. Performance Evaluation

A single cell is considered for generating simulations results. The cell consists of a BS, RN and
UEs equipped with Omni-directional antennas. The throughput, energy and spectral efficiency is
averaged over 1000 TTIs, with the duration of a TTI being 0.5 ms. The channel involves Raleigh fading
and distance based path loss as shown in Figure 1. BS is located in the center of the cell coverage and
most distant user is 1 Km distant from BS with RN in between at 0.55 Km. RN are In-band full duplex
relays and bit error rate (BER) considered for MQAM modulation is 10−3. Table 2 below summarizes
all simulation parameters used to derive results shown next.

Figure 2 shows the result of average throughput for MT and SAMM with equal power and BOPA
based power allocation. It can be seen that SAMM curves remain on top of MT curves for most of the
users due to inherent fairness which ensures all users get due share of RBs. However as evident from
Figure 3 Sum throughput of MT is higher as compared to SAMM for overall averaged throughput of
sum users due to channel exploitation of users with good channel conditions. This makes MT better
than SAMM as BOPA has proportional rate constraint set for assigning user priorities.
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Table 2. Simulation Parameters.

Parameter Value

Cell Radius 1 Km
Noise Density (σ) −171 dBm/Hz

No of users (K) 10
Bandwidth (B) 5 MHz

Number of resource blocks (RB) (N) 25
No of subcarriers per RB 12

Subcarrier bandwidth 15 KHz
BS Transmitter Power 46 dBm

Relay Power 34 dBm
TTI duration 0.5 ms

Relay distance from BS 0.55 Km
Bit Error Rate (BER) 10−3

OFDM symbols per TTI 7
Relay Type (In-band / Out-band Type 1 / Type 2) In-band with Type 1b (full duplex)

Figure 2. User vs. Throughput averaged over thousand times for SAMM and MT with equal power
and BOPA.

Figure 3. Sum throughput of all users.
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Figure 4 shows energy efficiency per user in bits per seconds per watts. SAMM BOPA outperforms
for initial users and remains considerably lower for rest of the users. Whereas MT BOPA compared to
all other schemes performs better for every user of the system with consistency due to convergence of
BOPA to maximize throughput and minimize energy.

Figure 4. Users vs. Energy Efficiency (bits per second per watts) for all four schemes.

Figure 5 shows fairness Index using Jains fairness Index [25] using below equation

FI =

(
K
∑

k=1
rk

)2

K
K
∑

k=1
r2

k

, (19)

where rk can be throughput or EE. Figure 5 shows SAMM has better fairness in terms of throughput
due to PF in its algorithm. Figure 6 depicts the system’s energy efficiency EE with and without power
allocation. The BOPA-based power allocation algorithm allocates the available power to the RB to
maximize the energy efficiency EE, therefore, both MT-BOPA and SAMM-BOPA outperforms their
corresponding MT and SAMM schemes with equal power allocation.

Figure 5. Jains fairness Index for Throughput.
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Figure 6. The system energy efficiency with and without BOPA based power allocation.

4. Fairness-Aware Machine Learning Based Power and RB Allocation with Multiple Relays

In practical scenarios, multiple relays are deployed to facilitate the cell-edge users as shown in
the Figure 7. The multiple relay deployment causes inter-relay interference. This interference can
be minimized by the careful deployment of relays, transmit power control, and the scheduling of
time/frequency resources. Though, L3 relays incur more processing delay as compared to the L1 and
L2 relays but they provide robust transmission in the presence of interference [26]. Assume there are
Q relays in a cell, such that relay q ∈ Q = {1, ..., Q}. The signal-to-interference-and-noise ratio (SINR)
at UE k in direct link is given as

SINRDirect_link
k,n =

pBS
k,ngDirect_link

k,n

∑q∈Q pq
k′ ,ngq

k,n + N0
B
N

(20)

where pq
k′ ,n is the transmit power of relay q assigned to its associated user k′ and gq

k,n is the channel
gain between relay q and the UE k. Similarly, the SINR at UE k in relay q link is given as

SINRq
k,n =

pq
k,ngq

k,n

∑q′∈Q−{q} pq′
k′ ,ngq′

k,n + pBS
k,ngDirect_link

k,n + N0
B
N

(21)

As seen from the above equation, the interference and fairness causes a significant increase in
the computational cost when deploying multiple relays. Therefore, we present a machine learning
based approach that utilizes relay deployment and users’ association data to develop RB allocation and
Power allocation strategy that maximizes the sum EE. Once trained, the proposed approach can save
cost of scheduling in every TTI. This is shown in Figure 8, the machine learning model takes the inputs:
number of relays, relays’ coordinates, CSI, SNR, and total transmit power and produces the outputs:
optimal relays’ coordinates with associated users, set of RBs assigned to each user k, and the optimal
power allocation (p∗k,n) to each user k in the RB n. Based on single relay performance, the RB allocation
block is trained using SAMM and power allocation block is trained using BOPA. Since the relay
deployment can significantly alter the RB and power allocation, a clustering approach is presented
that determines relay positioning and corresponding users’ association based on a pre-defined metric.
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Figure 7. LTE-A Network with Multiple L3 Relays.

Figure 8. Block diagram of machine learning based resource and power allocation.

4.1. Relays Deployment and Users Association

In this section, we present an autonomous unsupervised machine learning scheme that provides
users association with optimally deployed relay nodes in the cell-edge area. Machine learning
algorithms can broadly be divided into two main categories, namely supervised learning and
unsupervised learning algorithms. The former class of algorithms learn by training on the input
labeled examples, called training dataset, {(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), ..., (x(m), y(m))}, where
the ith example (x(i), y(i)) consists of the ith instance of feature vector x(i) and the corresponding
label y(i). Given a labeled training dataset, these algorithms try to find the decision boundary that
separates the positive and negative labeled examples by fitting a hypothesis to the input dataset.
Unsupervised machine learning algorithms, on the other hand, are given an unlabeled input dataset.
These algorithms are used for extracting information or features from the dataset. These features might
be related, but not confined, to the underlying structures or patterns in the input data, relationships
in data items, grouping/clustering of data items, etc. Discovered features are meant to provide a
deeper insight into the input dataset that can subsequently be exploited for achieving specific goals.
Clustering algorithms make an important part of unsupervised learning where the input examples are
grouped into two or more separate clusters based on some features. The K-Means (KM) algorithm, is
probably the most popular clustering algorithm. It is an iterative algorithm that starts with a set of
initial centroids given to it as input. During each iteration, it performs the following two steps.

1. Assign Cluster: For every user, the algorithm computes the distance between the user and every
centroid. The user is then associated to the cluster with the closest centroid. During this step,
a user might change its association from one cluster to another one.

2. Recompute centroids: Once all users have been associated to their respective cluster, the new
position of centroid for every cluster is then calculated.
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Let us define the following notations to be used later in this section.

K = Total number of clusters being formed.

x(i) = Location coordinates of user u(i). In our case, x(i) ∈ IR2

c(i) = Cluster to which the user u(i) is currently associated.

μk = Centroid of kth cluster, μk ∈ IR2

μc(i) = Centroid of the cluster to which the user u(i) is currently associated.

Now the cost function J can be defined as

J(c(1), c(2), ..., c(m), μ1, μ2, . . . , μK) =
1
m

m

∑
i=1

||x(i) − u(ci)||2 (22)

with the following optimization objective function.

min
c(1) ,,...,c(m) ,μ1,...,μK

J(c(1), c(2), ..., c(m), μ1, μ2, . . . , μK)

It may be pointed out that Equation (22) allows us to compare multiple clustering layouts based
on their cost and select the one with the lowest cost.

In this section, we use the KM algorithm for optimal clustering of m users competing for resources
in a particular cell. The clustering is performed based on their geographic location, thus our input
dataset {u(1), u(2), u(3), ..., u(m)} has m vectors u(i), 1 ≤ i ≤ m, consisting of location coordinates,
of ith user. For the sake of simplicity, we assume these users are deployed in a two dimensional
area, i.e., a plane and so u(i) = (x(i)1 , x(i)2 ), i.e., an ordered pair of location coordinates. Our clustering
algorithm is summarized in Algorithm 2.

The proposed algorithm takes the location coordinates of m users as input. It also takes two
numbers mink and maxk as additional inputs. The algorithm outputs the best number of clusters, k,
such that mink ≤ k ≤ maxk, and corresponding members of each cluster. It starts with k = mink and
randomly selects k user locations as the initial centroids (line 6). It assigns the closest centroid to each
user (line 8) and then computes new centroids by calculating the center/average location of all nodes
in each cluster (line 11). So, in effect, the location of centroids keeps moving in successive iterations.
It repeats the above two steps until the change in centroids’ positions is zero or negligible. We repeat
the test maxt times with a new set of randomly chosen initial centroids every time. During every test,
the discovered centroids, corresponding centroid assignment to users, and the cost are saved (lines
14–16) for later comparison. After running the loop for maxt times, we select and store the best k
centroids resulting from the test with the lowest cost while discarding the remaining (lines 19–21).
The same is repeated for the next value of k, i.e., k = k + 1, until k > maxk. At the end we have
cnt = maxk − maxk vectors μk, one for each value of k, the corresponding assignment vector ak and
cost ck. Finally, we choose the vector μ having the lowest cost and corresponding assignment vector
a among cnt stored cases. That is the best number of clusters and corresponding centroids that the
algorithm found. A snapshot of the relay deployment and users’s association algorithm output is
shown in Figure 9.
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Algorithm 2 Users association clustering algorithm

1: cnt = 0
2: for k = mink : maxk do

3: cnt = cnt + 1
4: for t = 1 : maxt do

5: repeat

6: Randomly choose initial k centroids μ1, μ2, μ3, ..., μk

7: for i = 1 : m do

8: a(i) = j, 1 ≤ j ≤ k, such that μj is the centroid closest to u(i)

9: end for

10: for l = 1 : k do

11: μl = mean of all users/points u(i) assigned to lth centroid
12: end for

13: until converges
14: μ(t) = (μ1, μ2, μ3, . . . , μk)

15: a(t) = (a(1), a(2), a(3), . . . , a(m))

16: c(t) = cost(μ1, μ2, μ3, . . . , μk)

17: end for

18: idx = argmin{c(t), 1 ≤ t ≤ maxt}
19: μk

(k) = μ(idx), 1 ≤ idx ≤ maxt

20: ak
(k) = a(idx),1 ≤ idx ≤ maxt

21: c(k)k = c(idx), 1 ≤ idx ≤ maxt

22: end for

23: index = argmin{c(k)k , 1 ≤ k ≤ cnt}
24: μ = μk

(index), 1 ≤ index ≤ cnt
25: a = ak

(index), 1 ≤ index ≤ cnt
26: n = index

Figure 9. A snapshot of the relay deployment and users’ association algorithm output in a
120 degree sector.
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4.2. Resource Allocation by Multiclass Classification

The resource block allocation problem has multiple discrete outputs, i.e., the users, therefore,
we use the multiclass classification to classify one out of K users. The multiclass classification is an
extension of One-Vs-All classification. The input of the training network comprises of channel state
information in terms of the SNR and the output consists of a particular user that maximizes the utility
function (throughput for MT and PF metric for the proportional fairness). The training data is obtained
from the implementation of SAMM algorithm of [4] as 25,000 K-dimensional samples of received SNR
and the corresponding selected users. The dataset is partitioned into three parts, the training dataset,
the validation dataset, and the test dataset. These are divided in 70%, 15%, and 15% ratio, respectively.
The Matlab Neural Network Pattern Recognition Apps is used to train and deploy the neural network.
It uses Scaled Conjugate Gradient algorithm [27] for training. Our application requires K = 10 neurons
in input layer and 10 neurons in output layer. A hit and trial choice of eight neurons in hidden layer
gave the best result. The neural network architecture is shown in Figure 10.

Figure 10. Neural network architecture for RB allocation, K = 10.

The neural network loss function is a generalization of the logistic regression’s loss function.
In logistic regression classification problem, we try to find the weighted parameter θ, such that the
mean square error between the predicted output and the actual output is minimized. This is called
loss function (LF) or the cost function and is given by

LF(θ) =
1
m

m

∑
i=1

(hθ(x(i))− y(i))2 (23)

where the prediction or hypothesis function hθ(x) is a sigmoid function, i.e., hθ(x) = 1
1+e−θT x

. In the

above equation, (x(i), y(i)) is a training dataset with 1, ..., m input-output pairs. However, loss function
with sigmoid function leads to a non-convex function, therefore, a cross entropy based loss function is
used to make it convex function as,

LF(θ) = − 1
m

m

∑
i=1

[y(i) log(hθ(x(i))) + (1 − y(i)) log(1 − hθ(x(i)))] +
λR
2m

n

∑
j=1

θ2
j (24)

where the second summation is for the regularization of weight or bias units θj and λR is a
regularization parameter.

In case of neural networks with multiclass classification, the prediction variable becomes
K-dimension, hΘ(x) ∈ R

K, therefore, the loss function is given as

LF(Θ) = − 1
m ∑m

i=1 ∑K
k=1[y

(i)
k log(hΘ(x(i)))k + (1 − y(i)) log(1 − (hΘ(x(i)))k)] +

λR
2m ∑L−1

l=1 ∑sl
i=1 ∑

sl+1
j=1 (Θ

(l)
j,i )

2 (25)
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where L is the number of layers in neural network, sl is the number of neurons in layer l, and λR =

5 × 10−4 is a regularization parameter to control the tradeoff between fitting the training dataset and
keeping the parameter Θ small. The neural network is trained using the stochastic gradient descent
algorithm. The gradient or partial derivative is calculated by the backpropagation algorithm and
weights (θ) are updated. The amount at which the weights are updated is called learning rate. It our
case, we set learning rate to 0.01. Batch size is a matrix of input (or output) vectors applied to the
network simultaneously to produce the update on network weights and biases. In our work, batch size
of 128 (MATLAB default), 10 × 1 input vectors is used.

We use MATLAB 2019a App, Neur al Network Pattern Recognition (nprtool) which is a
two-layer (one for hidden layer activation functions and other for output layer activation functions)
feedforward network.

Lower the cross entropy higher the classification accuracy, zero cross entropy means no error.
Figure 11 shows that cross entropy reaches 0.0078318 at iteration 136. Figure 12 shows variation in
gradient coefficient with respect to number of epochs. The final value of gradient coefficient at epoch
number 142 is 0.001787 which is approximately near to zero. Minimum the value of gradient coefficient
better will be training and testing of networks. From the figure, it can be seen that the gradient value
is decreasing with the increase in number of epochs. Large number of validation fails indicate the
overtraining. In Figure 12 validation fails are the iterations when validation mean square error (MSE)
increased its value. A lot of fails means overtraining. MATLAB automatically stops training after
6 fails in a row.

Figure 13 shows the error histogram of the trained neural network for the training, validation and
testing parts. In this figure we can see that the data fitting errors are minimum and they are distributed
within a closed range around zero. The confusion matrix Figure 14 visualizes the performance of
supervised learning. The rows correspond to the predicted user (Output Class) and the columns
correspond to the true user (Target Class). The diagonal cells correspond to observations that are
correctly assigned the user-RB pairs. The off-diagonal cells correspond to incorrectly assigned user-RB
pairs. The trained neural network provides 97.5% classification accuracy. The Figure 15 represent
the receiver operating characteristics (ROC) curves. The ROC curve plot shows the true positive
rate versus the false positive rate as the threshold is varied. A perfect test would show points in
the upper-left corner, with 100% sensitivity and 100% specificity [28]. In the RB allocation module,
it worked very well.

Figure 11. The mean-squared-error for the training and testing of the RB allocation module.
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Figure 12. The neural network training states with gradient and validation fail statistics as a function
of number of epochs.

Figure 13. The error histogram of the trained neural network for the training, validation and
testing phases.

Figure 14. The confusion matrix for test dataset.
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Figure 15. Receiver Operating Characteristic (ROC curve).

4.3. Power Allocation through Two-Layer Feedforward Neural Network

In the power allocation problem, we have to map the numeric input dataset (SNR) to the numeric
output dataset (allocated power) per user per RB. Therefore, we use neural network curve fitting
technique. The training dataset is generated by the Algorithm 2 as input received SNR and output
allocated transmit power. Given the resource blocks allocation set Dk ∀k ∈ K, the power allocation
problem has been solved using two-layer feedforward neural network. The hidden layer neurons use
sigmoid function as activation function and output neurons implement linear function as shown in
Figure 16. We use Bayesian Regularization method to train the neural network. This method typically
requires more training time but gives good results for difficult and noisy dataset. The Bayesian
Regularization method uses Levenberg-Marquardt optimization to update the weight and bias values.
It minimizes a combination of squared errors and weights, and then determines the correct combination
for better generalization. In this method, the training does not stops after six consecutive validation
(improve) fails and by default max_fail = inf. The training continues until an optimal combination
of errors and weights is reached. More detail on the use of Bayesian regularization, along with
Levenberg-Marquardt training, can be found in [29].

We use MATLAB 2019a App, Neural Net Fitting (nftool) which is a two-layer (one for hidden
layer activation functions and other for output layer activation functions) feedforward network.

The mean-squared-error graph for the training and testing is shown in Figure 17. It shows that
the MSE reaches to 0.087358 in 498 epochs. Our input/output samples to training network were
channel gain/allocated power. Since, the total transmit power is a sum of linear functions of the
channel gain, therefore, the neural network is got trained in a single epoch. An epoch is a full pass
through the entire dataset and the calculation of new weights and biases. Figure 18 shows that the
gradient coefficient reaches to 0.00076591 in 499 epochs. The lower value of gradient ensures the
training and testing of the network. Other parameters such as Mu, Num Parameters, and Sum Squared
Param are the stop criteria defined in Bayesian regularization backpropagation function ’trainbr’ [30].
Error histogram in Figure 19 visualizes the errors between target values and the predicted values
after training a feedforward neural network. In this figure we can see that the data fitting errors
are minimum and they are distributed within a closed range around zero. Around 88.1% errors fall
between −0.3 and 0.33.
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Figure 16. Neural network architecture for power allocation, K = 10.

Figure 17. The mean-squared-error for the training and testing of the power allocation module.

Figure 18. The neural network training states.
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Figure 19. The error histogram.

4.4. Performance Evaluation with Machine Learning Techniques

First, we apply the neural network for the RB and power allocation modules with a single relay.
For the SAMM scheme in Figure 20 shows 30.25% increase in the EE. This is because of the limitations
of the BOPA method which sometimes returns no result, whereas, the neural network is trained on
diverse dataset and always gives the output result. We also compare our proposed schemes with
LERPA of [11]. LERPA uses max–min criteria for RB allocation and fractional programming based
transmission power control. In case of LTE network with multiple relays as shown in Figure 7 or
Figure 9, the users associated with relay q experience interference due to the neighboring relays
qneigh. This interference decreases the users’ throughput as shown in Figure 21. However, the EE
maximization based NN power allocation continues to dominate in the multiple relay scenario. Since
the transmission is orthogonal between BS and RNs, only the relay’s associated users are affected by
the other relays transmissions. The equal power MT throughput does not affect because almost all
the users are associated with BS. This further reduces the required transmit power of the relay, hence
a net increase in EE has been observed in Figure 22. Addition of multiple relays slightly affect the
SAMM NN and SAMM equal power in positive and negative way, respectively. The PF component of
the SAMM forces the association of low throughput users to increase the fairness. This association
goes in positive way for the SAMM NN due to the EE based power allocation, but goes in negative
way for the SAMM equal power because of no compensation of the interference power. The increased
fairness of SAMM NN is evident from the Figure 21, where, even the farthest users 9 and 10 have
higher throughput. It can be seen that in LERPA, closer users get lower throughput but fairly large
throughput is given to the farther users. This is because it uses max-min criterion for the RB allocation,
which assigns the RB to the users who have lowest received SNR.
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Figure 20. The system energy efficiency with neural network for SAMM which is trained on waterfilling
based power allocation among users and BOPA based power allocation among subchannels in a single
relay scenario.

Figure 21. The users’ throughput with neural network for SAMM along with LERPA of [11] in multiple
relays scenario.
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Figure 22. The system energy efficiency with neural network for SAMM which is trained on waterfilling
based power allocation among users and BOPA based power allocation among subchannels along with
LERPA of [11] in a multiple relays scenario.

Table 3 summarizes simulation results.

Table 3. Simulation Results.

KPI
SAMM
Equal
Power

SAMM
BOPA

SAMM
NN

MT Equal
Power

MT BOPA LERPA [11]

Energy Efficiency
(Mbps/Watts) 0.5128 0.5481 1.0630 0.6660 0.5202 0.8862

System average throughput
(Mbps) 2.1471 1.1845 1.1037 4.0778 4.5775 0.4137

Throughput fairness index 0.3155 0.2337 0.2234 0.1453 0.1366 0.5797

It can be seen that SAMM with BOPA and NN compete well in fairness with best EE. Tradeoff has
to be done on system throughput. LERPA has better fairness performance but is less efficient in EE and
system throughput, whereas, the hypothetical MT performs better in average system throughput. We
say hypothetical because it only allocates the RB and power to the users with the highest SNR which
can not be applicable on practical scenarios.

5. Complexity Analysis

The RB allocation scheme SAMM uses alternate MT and PF metrics to assign the N RBs to K
users. MT assigns N

2 RBs to K users and PF assigns N
2 RBs to K − 1 users in alternate TTI. Therefore,

the computational complexity of SAMM is O
(

N(K − 1
2 )

)
. The BOPA Algorithm 1, first requires

λmin and λmax in line 4 using water-filling algorithm for which the worse-case complexity is O(2NK).
After that, BOPA uses binary search method to estimate the roots of Equation (17). In the worse
case, with Np points in the search space, binary search requires log2(Np) iterations to find the roots
of polynomial. In our case, Np = λmax−λmin

ε , where ε is the error tolerance. Therefore, the overall
complexity of the Algorithm 1 is O(2NK2 log2(Np)). In case of the optimal exhaustive search (KN) RB
allocation combining with the BOPA; the complexity is O(2NKN+2 log2(Np)), whereas, the complexity
of SAMM-BOPA is O((NK)2(2K + 1) log2(Np)).

The running-time complexity of the K-mean algorithm is O(kmdi) [31], where k is the number of
clusters, m is the number of objects to be clustered, d is the dimension of objects, and i is the number of
iterations. In our application of K-mean Algorithm 2, we use mink < k < maxk and two-dimensional
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geographical location of the users. Therefore, the worse-case computational complexity is given
as O(maxkKi).

6. Conclusions

In this paper, we have investigated the impact of using single and multiple L3 relays in terms
of EE and throughput. For a single relay scenario, equal power and BOPA are used in conjunction
with the SAMM and MT RB allocation algorithms. Simulation results show that SAMM BOPA has
26% power saving when compared with MT BOPA. Whereas, when comparing SAMM with equal
power allocation to all RBs, our proposed scheme gives 77% increase in EE. For a multiple relay
scenario, a clustering scheme is proposed that addresses relay placement and users’ association. This
information acts as an input to a machine learning process (SAMM NN) that cognizes both the SAMM
and BOPA approaches using One-Vs-All classification and feedforward neural networks, respectively.
The SAMM NN approach when compared with the SAMM Equal Power, gives a 2.07 times increase in
EE at the cost of 0.72 times decrease in throughput. A SAMM BOPA approach adopted in the case of
single relay still provided the best tradeoff in terms of energy efficiency EE, throughput and fairness in
the case of multiple relays.
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Abbreviations

The following abbreviations are used in this manuscript:

BER Bit Error Rate
BOPA Bisection based Optimal Power Allocation
BS Base Station
CA Carrier Aggregation
CoMP Coordinated Multipoint
CSI Channel State Information
EE Energy Efficiency
JFI Jains Fairness Index
L3 Layer 3
LTE-A Long Term Evolution Advanced
MIMO Multiple-input multiple-output
MQAM M-ary Quadrature Amplitude Modulation
MT Maximum Throughput
OFDM Orthogonal Frequency Division Multiplexing
PF Proportional Fairness
QoS Quality of service
RB Resource Block
RN Relay Node
RR Round Robin
SAMM hybrid proportional fairness scheme
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SINR signal-to-interference-and-noise ratio
SNR signal-to-noise ratio
TTI Transmission Time Interval
UE User Equipment
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Abstract: In this paper, we propose a non-orthogonal multiple access (NOMA) relaying system,
where a source node communicates simultaneously with multiple users via the assistance of the
best amplify-and-forward (AF) relay. The best relay is selected among N relays which are capable
of harvesting the energy from radio frequency (RF) signals. We analyze the performance of the
proposed NOMA relaying system in the conditions of imperfect channel state information (CSI) and
Rayleigh fading by deriving the exact expressions of the outage probability (OP) and the approximate
expression of the ergodic capacities of each user and the whole system. We also determine the optimal
energy harvesting duration which minimizes the OP. Numerical results show that, for the same
parameter settings, the performance of the proposed NOMA relaying system, especially the ergodic
capacity of the whole system, outperforms that of the orthogonal-multiple-access (OMA) relaying
system. Monte-Carlo simulations are used to validate the correctness of the analytical results.

Keywords: NOMA; energy harvesting; amplify-and-forward; imperfect CSI; successive interference
cancellation (SIC)

1. Introduction

Nowadays, the Internet of Things (IoT) has received increasing attention from both industry and
academia. It is considered an important mean for wireless connections in the fourth industrial
revolution. IoT is also being used in the fourth generation (4G) mobile communications and
will be applied to the fifth generation (5G). In order to support a large multiuser system such
as IoT, the non-orthogonal multiple access (NOMA) is a very potential technique due to its high
bandwidth efficiency [1,2]. Moreover, compared with conventional orthogonal multiple access
(OMA) systems, such as time division multiple access (TDMA), code division multiple access
(CDMA), orthogonal frequency division multiple access (OFDMA), the NOMA systems offer better
fairness among users, even for users with weak channel conditions such as the cell-edge users.
The fundamentals of the NOMA system can be found in Reference [3] while a study of NOMA system
in cellular communication with machine-to-machine in IoT is given in Reference [4].
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Recently, the power supply for terminal devices in wireless networks has become an important
matter and has attracted much interest from researchers. Besides using the optimal power allocation
for the fifth generation (5G) and sixth generation (6G) networks (6G network will start to enter the
market by 2026 [5]) to reduce the power consumption [6], another promising method to improve the
lifetime of communication devices is to generate electric power from some external energy sources such
as solar, wind, and radio frequency (RF) signal to charge the batteries. Unfortunately, natural energy
sources are not suitable for small-size mobile devices and in some cases they cannot be used in the
healthcare monitoring networks and the sensor networks with real-time requirements. In contrast,
the RF energy is often available due to its increased power density and availability, and is independent
on environmental conditions, including weather, climate, and temperature. As the result, the RF
energy harvesting (EH), also called simultaneous wireless information and power transfer (SWIPT),
has been widely used compared with other kinds of energy harvesting techniques [7–9]. SWIPT has
been applied not only in the point-to-point systems but also in relaying systems because deploying
relays can improve the amount of harvested energy and the coverage area of wireless networks.
The authors of References [10,11] investigated information and energy receiver architecture for SWIPT
networks. Reference [11] especially considered a non-linear energy harvesting model which described
the practical system well.

To prolong network lifetime and improve the spectral utilizing efficiency, NOMA is combined
with SWIPT [12]. In Reference [13], the authors investigated the tradeoff among the energy efficiency,
fairness, harvested energy, and system sum rate of NOMA systems in power domain. Investigation of
an integrated wireless communication system including NOMA, full-duplex relaying, and energy
harvesting techniques was conducted in Reference [14]. The authors of References [15,16] studied
the system performance of cooperative NOMA systems and derived the expressions of outage
probability in the conditions of perfect successive interference cancellation (SIC) and perfect channel
state information (CSI). In Reference [17], the near users which are close to the base station will harvest
the RF energy and forward signals to far users. The analysis results showed that if the time switching
ratio in NOMA system with SWIPT is appropriately chosen, the diversity gain will not be impaired.
The authors of Reference [18] proposed a NOMA system where source node communicates with
two users via the assistance of the best relay with the RF energy harvesting capability. The exact
expressions of the outage probability and throughput were used as the criteria to evaluate the system
performance. The effects of power allocation and time switching ratio on the performance of multi-user
NOMA system were investigated in Reference [19]. Specifically, the authors derived the outage
probability expression and determined the optimal power allocation coefficient for two NOMA power
allocation policies, namely NOMA with fixed power allocation (F-NOMA) and cognitive radio inspired
NOMA (CR-NOMA). It was shown that when a reasonable power allocation coefficient is selected,
higher system performance can be achieved in comparison with the conventional multi-user system.

We observe that all previous works only mentioned the case of perfect CSI and used only
one relay to forward signals to multiple users. Moreover, although the partial relay selection has
been widely studied in conventional wireless systems, it has not been analyzed in NOMA systems.
Another observation is that the NOMA systems perform superimposing signals in power domain,
thus they always require CSI to allocate power for all users. However, due to variation in the
communication quality of wireless environment, the imperfect CSI may happen [20,21]. Perfect CSI
exists if and only if the amount of feedback CSI from users to the base station is large and the length of
the pilot sequences which are used to estimate channel is very long. Unfortunately, these conditions
rarely happen in practice. Therefore, investigation of the impact of imperfect CSI on the relay selection
and power allocation is vitally important to the design of practical NOMA systems.

Motivated by the above issues, in this paper we propose a downlink NOMA relaying system with
partial relaying selection. In this system, source node transmits superposition modulated signals to
multiple users via the assistance of the best relay. The best relay is chosen from a set of relays which are
capable of harvesting RF energy and grouped by their locations. Based on the feedback CSI from all
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users, the source node performs power allocation and chooses the best communication link. The main
contributions of this paper can be summarized as follows:

• We overcome the limitation of current multiple access techniques and the energy demand of
wireless networks by proposing the downlink NOMA relaying system where the best relay is
selected from a set of multiple RF energy harvesting relays.

• We study the system performance in terms of the outage probability and the ergodic capacity
of each user and the whole system in the condition of imperfect CSI and Rayleigh fading.
The imperfection of the CSI is modeled by the correlation coefficient and its impact on the
system performance is investigated by using both analysis and simulation approaches. We also
compare the outage performance and the ergodic capacity of the proposed NOMA relaying
system with those of OMA relaying system.

• We determine the optimal time switching ratio to balance between the energy harvesting and
the signal processing so that the outage probability can be minimized. All analysis results are
validated by simulation results.

The rest of this paper is organized as follows. Section 2 describes the proposed downlink NOMA
relaying system with partial relaying selection and time switching (TS) protocol. The analysis of the
outage probability and ergodic capacity of the proposed system are presented in Sections 3 and 4,
respectively. Section 5 shows numerical results to evaluate the system performance. Finally, the
conclusions are given in Section 6.

For the sake of clarity, the frequently used mathematical notations together with their descriptions
are summarized in Table 1.

Table 1. The mathematical notations used in this paper.

Notation Description

FU(u) Cumulative distribution function (CDF)

fU(u) Probability density function (PDF)

CN (μ, σ2)
Circularly symmetric complex Gaussian distribution X
with mean μ and variance σ2

γth Predefined outage threshold

E {·} Expectation operator

Kn(·) Second order Bessel function n [22]

I0(·) Modified zero order Bessel function of first kind [22]

α Time switching ratio

η Energy conversion efficiency

ρ Channel correlation coefficient

T Transmission period

2. System Model

Figure 1 illustrates the proposed downlink NOMA relaying system. In this system, source node
S transmits the signals which are coded and superposed in power domain to multiple users Dm,
m ∈ {1, · · · , M}, via the assistance of the best relay which is selected from a set of relays Rn,
n ∈ {1, · · · , N}. The direct link S-Dm is assumed not available because the distance between S
and Dm is larger than the coverage area of S or due to deep shadow fading.
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Figure 1. System model of downlink non-orthogonal multiple access (NOMA) relaying system with
simultaneous wireless information and power transfer (SWIPT).

We consider that all nodes are equipped with single antenna and operate in half-duplex mode.
All channels between S and Rn and between Rn and Dm are influenced by block fading, that is,
the symbol rate is larger than channel varying rate so that it can be considered as constant over
each symbol duration. The communication links from S to Rn and from Rn to Dm are respectively
modeled as complex Gaussian distributions with zero mean and variances Ω1,n and ΩRnDm , that is,
h1,n ∼ CN (0, Ω1,n) and gm ∼ CN (0, ΩRnDm). The Additive White Gaussian Noise (AWGN) at the
relays and users are wRn ∼ CN (0, σ2

Rn
) and wDm ∼ CN (0, σ2

Dm
), respectively. Because of the time

varying characteristic of wireless channel, its coherent time may be altered when the feedback delay is
larger than the transmission block period of a symbol. Thus, the received CSI is always outdated at the
transmitter, which often happens in practice [23,24].

We denote ρi, 0 ≤ ρi ≤ 1, i ∈ {1, 2}, as the correlation coefficients between the past channel
h1,n and the current channel ĥ1,n, similarly for ĝm and gm. These coefficients can be considered as the
measurements of the fluctuation rate of wireless channels and are related solely to the time delay.
Based on the Markov chain, the relationship between ĥ1,n and h1,n and between ĝm and gm can be
presented as [25]

ĥ1,n = ρ1h1,n +
√

1 − ρ2
1ε1,n, (1)

ĝm = ρ2gm +
√

1 − ρ2
2εm, (2)

where ε1,n and εm are the circular symmetric complex Gaussian random variables which can be
modeled as ε1,n ∼ CN (0, σ2) and εm ∼ CN (0, σ2), respectively.

In this paper, a partial relay selection (PRS) scheme [26] is used to select the best relay from a set
of relays. According to the PRS scheme, S continuously monitors the gain of S–Rn channels by using
the feedback signal and selects the communication link that gives the largest instantaneous channel
gain, that is,

γb = arg max
n=1, 2··· ,N

γ1,n, (3)

where γ1,n is the instantaneous SINR of S-Rn link.
The advantage of using PRS scheme is that the system configuration is simpler and easier than

using the full relay selection (FRS) scheme [27]. In addition, the results in Reference [28] show that
both PRS and FRS schemes have the same average channel capacity in a high SNR regime and the
outage probability of PRS is higher than that of FRS when the number of relays is more than 2. On the
other hand, FRS scheme may not applicable for multiple-user systems because the distances from
the best relay to users are different, thus the calculation complexity of FRS scheme is significantly
increased with the number of users.
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After a link from the source node to the best relay is established, the transmission period T for
communication process is spitted into two parts (in this system, we use the time-division multiple
access (TDMA) scheme). According to the time switching (TS) protocol [29], a time duration αT is used
for EH. The remaining time duration (1 − α)T is divided into two equal time sub-slots, which are used
for the information transmission. The first half (1− α)T/2 is used for the information transmission from
source node to the relay and the remaining half (1 − α)T/2 is used for the information transmission
from the relay to the user. It should be noted that the case α = 1 is not considered in this paper because
when the energy harvesting time duration takes the whole transmission period T, i.e., the relay does
not process any signals, the basic role in signal forwarding of the relay is eliminated [30]. Hence,
we only consider the time switching ratio α in the range 0 ≤ α < 1. Then, the harvested energy of the
selected relay in time duration αT is expressed as [29]

Eh = αTηPS max
n=1,···,N

|ĥ1,n|2, (4)

where η is the energy conversion efficiency coefficient which varies from 0 to 1 and closely depends on
the quality of energy harvesting electric circuitry, PS is the transmission power of S.

In our proposed relaying system, since the harvest-use (HU) architecture is used, the relay does
not need an energy buffer to store the harvested energy. Since all amounts of harvested energy during
EH phase is consumed by Rn for signal transmission from R to Dm, from (4), the transmission power
of the best relay is given by

PR =
Eh

(1 − α)T/2
=

2αηPS

1 − α
max

n=1,···,N
|ĥ1,n|2. (5)

According to the NOMA technique in power domain, during the first time sub-slot 1−α
2 ,

source node transmits the superimposed signal xS = ∑M
m=1

√
PSamxm, where xm and am are the

signal and power allocation coefficient of mth user, respectively. At the end of this time sub-slot,
the received signal at Rn is

yn
R = ĥ1,b ∑M

m=1

√
amPSxm + wRn , (6)

where ĥ1,b = max
n=1,···,N

|ĥ1,n|2.

In the remaining second time slot 1−α
2 , the relay employs the AF protocol to broadcast yn

R to all
users after multiplying it with an amplifying factor G. To keep the output power constraint at relay,
it is required that E{‖Gyn

R‖2} = PR, where PR is given in (5), thus the amplifying factor G is given by

G =

√
2αηPS|ĥ1,b|2

(1 − α)(PS|ĥ1,b|2 + σ2
R)

≈
√

2αη

(1 − α)
. (7)

Therefore, the received signal at Dm in the case of perfect SIC is expressed as

yDm = Gĥ1,b ĝm
√

amPSxm + Gĥ1,b ĝm ∑M
j=m+1

√
ajPSxj︸ ︷︷ ︸

signals of other users

+ GĝmwRn + wDm︸ ︷︷ ︸
noise

, (8)

where ĝm denotes the channel coefficient between Rn and Dm.
The received signals at the best relay and each user is comprised of the desired signal and the

signals of other users, which are treated as the interferences. Hence, to mitigate the negative effect of
the inter-user interference, successive interference cancellation (SIC) method is applied.

For the downlink communication considered in this paper, the optimal SIC algorithm performs
decoding signals in an order of increasing channel gain [31] (|gD1 |2 ≤ |gD2 |2 ≤ · · · ≤ |gDm |2 ≤ |gDM |2).
To ensure the fairness among all users, the power allocation coefficients are assumed to be
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a1 ≥ a2 ≥ · · · am ≥ aM, with ∑M
m=1 am = 1. Hence, at the Dj, the signal of Dm, j < m, will be detected

and then be removed from the received signal by SIC method. Specifically, Dj first decodes symbol xm

while treating xj as noise.
Then, the SINR of symbol xm at Dj is given by

γD
m,j =

G2amPS|ĥ1,b|2|ĝj|2

G2 ∑M
j=m+1 ajPS|ĥ1,b|2|ĝj|2 + G2|ĝj|2σ2

R + σ2
Dm

, (9)

where j ∈ {1, ..., m} and m �= M.
At Dj, SIC will be performed until all signals of Dm are decoded successfully. Thus, the required

SINR at Dm to successfully decode the signal by itself is given by

γD
m =

G2amPS|ĥ1,b|2|ĝm|2
G2 ∑M

j=m+1 ajPS|ĥ1,b|2|ĝm|2 + G2|ĝm|2σ2
R + σ2

Dm

. (10)

We should note that the last user DM needs to decode all signals of other users before decoding
its signals. Consequently, the SINR for DM to decode its own signals can be expressed as

γD
M =

G2aMPS|ĥ1,b|2|gM|2
G2|gM|2σR + σ2

DM

. (11)

3. Outage Probability Analysis

In this section, we derive the exact closed-form expression of the outage probability, taking into
consideration the imperfect CSI and partial relay selection. It is well-known that the event that Dj can
decode the signals of Dm successfully is

Δm,j =

{
G2amPS|ĥ1,b|2|ĝj|2

G2 ∑M
j=m+1 ajPS|ĥ1,b|2|ĝj|2 + G2|ĝj|2σ2

R + σ2
Dm

> γthj

}
, (12)

where γthj = 2
2r

1−α − 1 is the predefined outage threshold. This threshold is served as the protected
value of the SINR to ensure the quality of service of the system and satisfy the target data rate r of Dj.

Let us denote X = |ĥ1,b|2 and Z = |ĝj|2. Without loss of generality, we assume that the
temperature noise σ2

R = σ2
Dm

= σ2. Thus from (12), we can rewrite Δm,j as

Δm,j =

{
G2amPSXZ

G2 ∑M
j=m+1 ajPSXZ + G2Z + σ2

> γthj

}
. (13)

From (13) and after some manipulations, we can rewrite (13) as

Δm,j
(λ)
=

{
X > θj, Z >

θj

G2(X − θj)

}
, (14)

where θj =
γthj

PS

(
am−∑M

j=m+1 ajγthj

) , step λ holds when the condition am > ∑M
j=1+m ajγthj is satisfied.

It should be noticed that θj =
γthj

PS

(
am−∑M

j=m+1 ajγthj

) is a constant and depends on the power allocation

coefficient and the target data rate of Dj.
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The outage event occurs at Dj when it fails to decode its own signal or unsuccessfully performs
SIC for the signals of Dm [32], i.e., Λm,j = γD

m,j < γthj, 1 ≤ j ≤ m. Outage probability of the system
occurs when the maximum SNRs at Dj falls below the threshold to decode signal. Thus, we have

Pj
out = Pr(γD

m,j ≤ γthj) = 1 − Pr(γD
m,j > γthj), 1 ≤ j ≤ m. (15)

Pj
out = 1 − Pr {Δm,1 ∩ Δm,2 ∩ ... ∩ Δm,m } , (16)

where Δm,j is the complementary in the set of Λm,j.
The condition in (14) always occurs, i.e., the outage probability is equal to one, if am ≤

∑M
j=1+m ajγthj. Hence, we need to allocate more power for Dm to satisfy the following condition

am > ∑M
j=1+m ajγthj. (17)

Let us denote θ∗ = max(θ1, θ2, · · · , θm) [33], then the outage probability Pj
out of Dj can be

reformulated as

Pj
out = 1 − Pr

{
Z >

θ∗

G2(X − θ∗)
, X > θ∗

}
. (18)

Using the conditional probability property [34] with respect to X, and applying the law of joint
CDF, we have

Pj
out = 1 −

∫ ∞

θ∗

[
1 − FZ

(
θ∗

G2(x − θ∗)

)]
fX(x)dx. (19)

To calculate the expression of the outage probability in (19), we first derive the CDF of Z and the
PDF of X as follows.

When the nth relay is selected as the best relay, the PDF of order statistic with respect to |h1,b|2 in
a set of N relays is obtained by using the binomial Newton expansion [35], that is,

f|h1,b |2(x) = N
[

F|h1,i |2(x)
]N−1

f|h1,i |2(x)

=
N
∑

n=1
(N

n )(−1)n−1 n
Ω1,n

exp
(
− nx

Ω1,n

)
,

(20)

where (N
n ) = n!

n!(N−n)! , N and n are non-negative integers, f|h1,i |2(x) = 1
Ω1,i

exp
(
− x

Ω1,i

)
and

F|h1,i |2(x) = 1 − exp
(
− x

Ω1,i

)
are respectively the CDF and PDF of |h1,i|2, which is the channel

gain of each link from source node to relay. According to the probability theory, the PDFs of |ĥ1,b|2 and
|h1,b|2 which are respectively denoted by f|ĥ1,b |2(x̂) and f|h1,b |2(x) can be calculated by using the joint

PDF, i.e., f|ĥ1,b |2(x̂) =
∫ ∞

0 f|ĥ1,b |2,|h1,b |2(x̂, x)dx. Another way to calculate the joint PDF of |ĥ1,b|2 is based
on the properties of conditional probability, that is,

f|ĥ1,b |2(x̂) =
∫ ∞

0
f|ĥ1,b |2||h1,b |2(x̂|x) f|h1,b |2(x)dx, (21)

where

f|ĥ1,b |2||h1,b |2(x̂|x) =
f|ĥ1,i |2,|h1,i |2(x̂, x)

f|h1,i |2(x)
. (22)
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Using the joint PDF which is given in ([36], Equation (9.389)), we can rewrite the numerator of (22) as

f|ĥ1,i |2,|h1,i |2(x̂, x) =
exp

(
− (x̂+x)

(1−ρ2)Ω1,n

)
(1 − ρ2)Ω2

1,n
I0

(
2ρ
√

x̂x
(1 − ρ2)Ω1,n

)
, (23)

where I0(x) is the modified zero order Bessel function of the first kind [22].
Without loss of generality, all correlation coefficients are assumed to have the same values, that is,

ρ = ρ1 = ρ2. Substituting (20), (22), and (23) into (21), after using the equation
∫ ∞

0 e−αz I0(2
√

βz)dz =

(1/α) exp(β/α) which is given in ([22], Equation (6.614.3)), and then perform some manipulations,
we have the PDF of X in the case of imperfect CSI as

f|ĥ1,b |2(x̂) =
N

∑
n=1

(
N
n

)
n(−1)n−1

Ω1,nΨ(ρ, n)
exp

(
− nx̂

Ω1,nΨ(ρ, n)

)
, (24)

where Ψ(ρ, n) = 1 + (n − 1)(1 − ρ2).
From (24), the CDF of |ĥ1,b|2 is given by

F|ĥ1,b |2(x̂) = 1−
N

∑
n=1

(
N
n

)
(−1)n−1 exp

(
− nx̂

Ω1,nΨ(ρ, n)

)
. (25)

Based on the result of order statistics which is provided in ([34], Equation (7.14), p. 246), and after
some similar calculations as above, the PDF of the ordered variable Z is expressed as

f |̂̂gj |2(z) =
M

∑
j=1

(
M
j

)
(−1)j−1 j
ΩzΨ(ρ, j)

exp
(
− jz

ΩzΨ(ρ, j)

)
, (26)

where Ψ(ρ, j) = 1 + (j − 1)(1 − ρ2).
From (26), we can derive the CDF of |ĝi|2 as

F|ĝi |2(ẑ) = 1−
M

∑
j=1

(
M
j

)
(−1)j−1 exp

(
− jẑ

ΩzΨ(ρ, j)

)
. (27)

Plugging (27) and (24) into (19), and after some manipulations, we obtain the expression of the
outage probability as

Pj
out = 1 −

M
∑

j=1
(M

j )(−1)j−1
N
∑

n=1
(N

n )
n(−1)n−1

Ω1,nΨ(ρ,n)

∫ ∞
θ∗ exp

(
− jθ∗

ΩzΨ(ρ,j)G2(x−θ∗) −
nx̂

Ω1,nΨ(ρ,n)

)
dx. (28)

Let u = x − θ∗, (28) becomes

Pj
out = 1−

M
∑

j=1
(M

j )(−1)j−1
N
∑

n=1
(N

n )
n(−1)n−1

Ω1,nΨ(ρ,n) exp
(
− nθ∗

Ω1,nΨ(ρ,n)

)
×

∞∫
0

exp
(
− jθ∗

ΩzΨ(ρ,j)G2u − nu
Ω1,nΨ(ρ,n)

)
du.

(29)

Using ([22], Equation (3.324)), we can rewrite the exact closed-form expression of the outage
probability as in (30), where K1(.) denotes the modified first order Bessel function of the second kind.

Pj
out = 1−

M
∑

j=1
(M

j )(−1)j−1
N
∑

n=1
(N

n )
(−1)n−1

Ω1,n
exp

(
− nθ∗

Ω1,nΨ(ρ,n)

)
×

√
4njθ∗

ΩzΨ(ρ,j)Ω1,nΨ(ρ,n)G2 K1

(√
4njθ∗

ΩzΨ(ρ,j)Ω1,nΨ(ρ,n)G2

)
.

(30)

118



Sensors 2019, 19, 3327

From the expression of the outage probability which is given in (30), we can see that when the
outdated CSI happens, the outage performance is a function of ρ.

4. Ergodic Capacity Analysis

In this section, we analyze the ergodic capacity of the proposed NOMA relaying system in
comparison with that of the OMA relaying system. Due to the fact that the hardware complexity and
performance degradation of the NOMA system is directly proportional to the number of users, we also
set the number of users be equal to three for both NOMA and OMA systems as used in [37]. For the
OMA system, we consider orthogonal frequency division multiple access (OFDMA). According to the
Shannon theory, the instantaneous rate of Dm is given by

Rmth
NOMA =

1 − α

2
log2

(
1 + γD

m

)
. (31)

From (10), when the transmission power is high, we can approximate the required SINR at Dm as

γD
m ≈ G2amPS|ĥ1,b|2|ĝm|2

G2 ∑M
j=m+1 ajPS|ĥ1,b|2|ĝm|2 + σ2

Dm

. (32)

Substituting (32) into (31), we have

Rmth
NOMA ≈ 1−α

2 log2

(
1 + G2amPS|ĥ1,b |2|ĝm |2

G2 ∑M
j=m+1 ajPS|ĥ1,b |2|ĝm |2+σ2

Dm

)
= 1−α

2 log2

(
G2P|ĥ1,b |2|ĝm |2+1

G2 ∑M
j=m+1 ajP|ĥ1,b |2|ĝm |2+1

)
,

(33)

where P = PS
σ2

Dm
.

Based on the properties of the logarithmic function, we can rewrite (33) as

Rmth
NOMA =

1 − α

2
E

{
log2

(
1 + G2P|ĥ1,b|2|ĝm|2

)}
︸ ︷︷ ︸

I1

− 1 − α

2
E

{
log2

(
1 + G2 ∑M−1

m=1 amP|ĥ1,b|2|ĝm|2
)}

︸ ︷︷ ︸
I2

,
(34)

then solve its components by using the partial integration, i.e.,

Iu =
{

log2(1 + Γu)
[

FΓu(xu)− 1
]}∞

0
− 1

2ln2

∫ ∞
0

1
1+xu

[
FΓu(xu)− 1

]
dxu

= 1
2ln2

∫ ∞
0

1
1+xu

[
1 − FΓu(xu)

]
dxu,

(35)

where FΓu(xu) is the CDF of random variable Γu with u ∈ {1, 2}, Γ1 = G2P|ĥ1,b|2|ĝm|2,
and Γ2 = G2 ∑M−1

m=1 amP|ĥ1,b|2|ĝm|2.
Using the condition probability, we have CDF of Γ1 as

FΓ1(x1) = Pr(G2P|ĥ1,b|2|ĝm|2 ≤ x1)

=
∫ ∞

0 Pr

(
|ĝm|2 ≤ x1

G2P|ĥ1,b |2

)
f|ĥ1,b |2 d|ĥ1,b|2.

(36)
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From (24) and (27) we can calculate FΓ1(x1) as

FΓ1(x1) = 1−
M
∑

j=1
(M

j )(−1)j−1
N
∑

n=1
(N

n )
(−1)n−1

Ω1,n

×
√

4njx1
ΩzΨ(ρ,j)Ω1,nΨ(ρ,n)PG2 K1

(√
4njx1

ΩzΨ(ρ,j)Ω1,nΨ(ρ,n)PG2

)
.

(37)

Similarly, for FΓ2(x2), we have

FΓ2(x2) = 1−
M
∑

j=1
(M

j )(−1)j−1
N
∑

n=1
(N

n )
(−1)n−1

Ω1,n

×
√

4njx2
ΩzΨ(ρ,j)Ω1,nΨ(ρ,n)bPG2 K1

(√
4njx2

ΩzΨ(ρ,j)Ω1,nΨ(ρ,n)bPG2

)
.

(38)

where b = ∑M−1
m=1 am.

Replacing (38) into (35), we obtain I1 as

I1 = 1
2ln2

M
∑

j=1
(M

j )(−1)j−1
N
∑

n=1
(N

n )
(−1)n−1

Ω1,n

×
∫ ∞

0
1

1+x1

√
A(n, j)x1K1

(√
A(n, j)x1

)
dx1,

(39)

where A = 4
ΩzΨ(ρ,j)Ω1,nΨ(ρ,n)PG2 .

Based on ([22], Equation (9.343)), we can rewrite (39) as

I1 =
1 − α

2
√

2 ln 2

∞∫
0

1
1 + x1

G2 0
0 2

(
x1

ΩzΨ(ρ, j)Ω1,nΨ(ρ, n)PG2

∣∣∣∣ 3
4 ,− 1

4

)
dx1. (40)

Then, using ([22], Equation (7.811.5)) and after some manipulations, we have

I1 =
1 − α

2
√

2 ln 2
G3 1

1 3

(
1

ΩzΨ(ρ, j)Ω1,nΨ(ρ, n)PG2

∣∣∣∣0

0, 3
4 ,− 1

4

)
, (41)

where Gmn
pq (x|ar

bs
) is the Meijer’s G-Function ([22], Equation (9.3)).

Plugging (38) into (35), and doing similar manipulations which were used to derive I1, we obtain

I2 =
1 − α

2
√

2 ln 2
G3 1

1 3

(
1

ΩzΨ(ρ, j)Ω1,nΨ(ρ, n)bPG2

∣∣∣∣0

0, 3
4 ,− 1

4

)
, (42)

To compare the ergodic capacities of the NOMA and OMA systems, we let β be the bandwidth
which is assigned for D1 and (1 − β)/2 be the remaining bandwidth which is assigned for D2 and D3,
where (0 < β < 1) and the whole bandwidth is 1Hz. From ([38], Equation (7.4)), we can extend the
achievable end-to-end ergodic capacity of the OFDMA system with three users as

ROMA =
1 − α

2
β log2

(
1 + γSRD1

)
+

(1 − α)(1 − β)

4
log2

(
1 + γSRD2

)
(43)

+
(1 − α)(1 − β)

4
log2

(
1 + γSRD3

)
,
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where γSRDm , m ∈ {1, 2, 3} denotes the instantaneous SINR of each user, which is computed as

γSRD1 =
G2POMA

S |ĥ1,b|2|ĝ1|2
β(G2|ĝ1|2σ2

R + σ2
D1
)

, (44)

γSRD2 =
2G2POMA

S |ĥ1,b|2|ĝ2|2
(1 − β)(G2|ĝ2|2σ2

R + σ2
D2
)

, (45)

γSRD3 =
2G2POMA

S |ĥ1,b|2|ĝ3|2
(1 − β)(G2|ĝ3|2σ2

R + σ2
D3
)

, (46)

where POMA
S = PS/3 is the equal power allocated for the signal transmission from S to each user

Dm ([38], p. 146) . The factor 1−α
2 appears in (31) and (43) because source node transmits its signals to

all users in two time slots of the transmission period T.

5. Numerical Results

In this section, we provide the numerical results to evaluate the system performance in terms of
the outage probability (OP) and ergodic capacity of the proposed EH-NOMA relaying system with
three users. We also determine the optimal time switching ratio to minimize the OP and compare
the ergodic capacities of the proposed EH-NOMA relaying system with EH-OMA relaying system.
Regarding to the evaluating method, we use the common approach in this field, that is, to drive
a closed-form mathematical expression to model the system performance and then compare the
analysis results with Monte-Carlo simulation results to validate the derived mathematical expressions.
Unlike previous works, which only considered EH-NOMA systems with two users and under perfect
CSI, our paper focuses on the theoretical analysis of an EH-NOMA system with more than two users,
taking into account the effects of AF relaying protocol and the feedback delay of wireless channels on
the system performance. Since, there are not many similar parameters, it may be an unfair comparison
between our proposed EH-NOMA relaying system with previous NOMA relaying systems. Therefore,
we use the same system model of the proposed EH-NOMA relaying sytem but replace the NOMA
with OMA to demonstrate the benefits of utilizing the NOMA technique in the proposed EH relaying
system. Unless otherwise stated, the parameter settings of EH-NOMA and EH-OMA relaying systems
are summarized in Table 2. It is noticed that the average SNR is defined as the ratio of the transmission
power of source S to the variance of AWGN, that is, SNR = PS/σ2, ranging from 0 dB to 40 dB.

Table 2. Parameter settings of EH-NOMA and EH-OMA relaying systems.

Description EH-NOMA EH-OMA

Allocated transmission power P1 = 0.7PS, P2 = 0.2PS, P3 = 0.1PS Pi = PS/3
Bandwidth β for D1, (1 − β)/2 for D2 and D3 B = 1 Hz for all users
Target data rate r = 0.5 bpcu
Time switching ratio α = 0.3
Average channel gain Ω1,n = 1, ΩRnD1 = 2, ΩRnD2 = 3, ΩRnD3 = 6
Energy conversion efficiency η = 0.85

Figure 2 shows the outage probability of each user versus the average SINR in dB. The outage
probability of the EH-NOMA relaying system is also compared with that of EH-OMA relaying system.
Firstly, we can see that the OP of D3 is lowest among all users while the OP of D1 is highest. The reason
is that the channel gain from R to D3 is highest (the decay of the magnitude power signal is proportional
to the squared distance in multipath fading) because D3 is the closest user to R while D1 is the farthest
one. Another important observation is that the OPs of D2 and D3 in the EH-NOMA relaying system
are better than those of D2 and D3 in the EH-OMA relaying system, while the OP of D1 in the EH-OMA
relaying system is better than in the NOMA relaying system. However, the gap is insignificant because
the number of time slots for the transmission in the EH-OMA relaying system is higher than in the
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EH-NOMA relaying system, thus the probability that outage evens happen in the EH-OMA relaying
system is also higher than in the EH-NOMA relaying system. On the other hand, the outage threshold

of the OMA user is γOMA
th = 2

2r
v(1−α) − 1, where v ∈ {β, (1 − β)/2}. In contrast, the outage threshold of

the NOMA user is γth = 2
2r

(1−α) − 1. Then, obviously the outage threshold of the OMA user is obviously
higher than that of the NOMA user. However, the OP not only depends on the outage threshold but
also on the received SINR at user. In addition, we also see that in the low SINR regime (less than
15 dB), the OPs of all OMA users always outperform those of NOMA users. However, in the high
SINR regime (larger 15 dB) only the OP of D1 in the EH-OMA relaying system is better than that in the
EH-NOMA relaying system. We can also see in Figure 2 that the diversity gain of all users is equal
to one.

Figure 2. The outage probability of each user in energy harvesting (EH)-NOMA and EH-OMA relaying
systems versus the average SINR. ρ = 0.9, the number of relays N = 3.

Figure 3 plots the OP of D1 in the EH-NOMA relaying system versus the average SINR in dB
for different channel correlation coefficients ρ. Firstly, we see that higher ρ reduces the OP, but the
reduction is not remarkable for small ρ. The improvement in OP is only significant when ρ is near to 1.
We should remind that ρ indicates the correlation degree between the transmission channel and the
feedback channel in time coherent at the transmitter. The analysis results are in excellent agreement
with the simulation ones, confirming the correctness of our mathematical analysis.

Figure 4 illustrates the OP of D1 in the NOMA system versus the average SINR in dB for different
numbers of relays N. From Figure 4, we see that when the number of relays increases, the outage
performance of the system is improved. It is because increasing the number of relays will provide more
opportunity for selecting the connection links from source node to relay, which not only makes the
achievable decoding performance better but also increases the amount of harvested energy. In addition,
the diversity gains is not significantly improved with N because the diversity order of PRS scheme is
always equal to one.
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Figure 3. The outage probability of D1 in the EH-NOMA relaying system versus the average SINR for
different correlation coefficients.

Figure 4. The outage probability of D1 in the EH-NOMA relaying system versus the average SINR for
different numbers of relays.

Figure 5 presents the OP of D1 in the EH-NOMA relaying system versus time switching ratio
α for different numbers of relays. The values of α range from 0 to 0.7 while SINR remains at 15 dB.
Firstly, we see that there exists an optimal value of α which minimizes the OP. Moreover, the minimum
value of OP depends on the number of relays N, i.e., as N is higher the minimal OP becomes smaller.
The reason is that when N increases, the SINR of the first hop will be better because the PRS method
is used. Another important observation is that the optimal value of α which minimizes the OP is
approximately 0.2 regardless of the number of relays.
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Figure 5. The outage probability of D1 in EH-NOMA relaying versus the time switching ratio α for
different number of relays.

Figure 6 demonstrates the OP of D1 in the EH-NOMA relaying system versus the correlation
coefficient ρ for different average SINR. We can see that the OP reduces as ρ increases. In the worst
case ρ = 0, the instantaneous CSI at the transmission time does not correlate with the instantaneous
CSI at the relay-selection time or at the power-allocation time. In contrast, in the best case ρ = 1,
the instantaneous CSI at the transmission time closely correlates with the instantaneous CSI at the
relay-selection time or at the power-allocation time. The improvement in the CSI leads to better power
allocation and signal processing of the system. Figure 6 also shows that when ρ < 0.8, the enhancement
of OP is not significant and the system performance is only improved when the correlation coefficient
ρ is close to 1.

Figure 6. The outage probability of D1 in the EH-NOMA relaying system versus the correlation
coefficient for different average SINRs.
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Figure 7 depicts the ergodic capacity of each user in EH-NOMA relaying system versus the
average SINR in dB. As observed from Figure 7, the ergodic capacity of D3 outperforms the ergodic
capacities of D1 and D2. Moreover, the ergodic capacities of D1 and D2 increase slightly in the low
SINR region and is saturated in the high SINR region. In contrast, the ergodic capacity of D3 increases
exponentially with respect to the SINR. This reason is that D1 does not use SIC but only detects the
signal of itself. Meanwhile, D2 must use the first-order SIC first and then D3 uses the second-order
SIC. Thus, the impact of interference on D1 is higher than D2 and D3. However, there exists the
trade-off between the complexity and the achievable ergodic capacity of the system. We also see a
good match between the analysis results and the simulation results, especially in the high SINR regime.
On the other hand, the ergodic capacity in the case of perfect SIC is compared with that in the case of
imperfect SIC. We can see that the ergodic capacity in case imperfect SIC is lower. Moreover, the gap
between them increases with the SINR. It is because when SINR increases, the interference caused by
imperfect SIC also increases. Therefore, the SINR as well as the ergodic capacity become slowly higher.
Another feature is that the ergodic capacity of D1 remains the same in both cases because D1 does not
use SIC when decoding the signals.

Figure 7. The ergodic capacity of each user and the ergodic capacity in EH-NOMA relaying system
versus the average SINR.

Figure 8 provides the simulation results of the ergodic rate of NOMA and OMA systems versus
the average SINR in dB. From Figure 8, we see that the ergodic rate of NONA system is always higher
than the OMA system as the number of relays increases. It is because the NOMA system uses the
whole bandwidth for each user while the OMA system uses individual bandwidth for each user,
resulting in higher spectrum usage efficiency. Another important observation is that when N gets
higher, the difference gap of the ergodic capacities of these two systems does not increase linearly.
Thus, we do not need to use a large number of relays for partial relay selection scheme because it may
increase the complexity of the system but not significantly enhance its performance.
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Figure 8. The comparison of the ergodic capacities of the EH-NOMA relaying system and the EH-OMA
relaying system versus the average SINR for different numbers of relays.

6. Conclusions

In this paper, we propose a downlink NOMA relaying system with the best RF energy harvesting
relay and investigate the impact of CSI imperfection on the performance of the proposed NOMA
relaying system over Rayleigh fading channel. Specifically, we provide detailed derivations of the exact
closed-form expression of OP and the approximate expression of the ergodic capacity of the proposed
NOMA relaying system. Based on the expression of the OP, the optimal energy harvesting duration
which minimizes the OP in the condition of imperfect CSI can be determined. The results show that
imperfect CSI significantly reduces the system performance. In addition, we show that the spectrum
efficiency of our proposed NOMA relaying system outperforms that of the OMA relaying system
in the same parameter settings. All analysis results are in excellent agreement with the simulation
results, confirming the correctness of the mathematical analysis. The proposed EH-NOMA relaying
system can support the communication for multiple users through the best relay without relying on the
external power supply. Thus it can be applied in surveillance sensor networks for disaster detection
or in Internet of Things (IoT) where installing fixed power lines or frequent battery replacement for
a large number of nodes may be not convenient. Using the results in this paper, we can choose an
appropriate time switching ratio to balance between the energy harvesting and signal processing so
that the outage probability of the proposed EH-NOMA relaying system system can be reduced upto
76.32%. Moreover, compared with the EH-OMA relaying system, the OP of the proposed EH-NOMA
relaying system is 9.41% lower and the ergodic capacity is 17.64% higher at the average SNR = 40 dB.
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Abstract: There are all sort of indications that Internet usage will go only upwards, resulting in
an increase in energy consumption and CO2 emissions. At the same time, a significant amount of
this carbon footprint corresponds to the information and communication technologies (ICT) sector,
with around one third being due to networking. In this paper we have approached the problem of
green networking from the point of view of sustainability. Here, alongside energy-aware routing,
we have also introduced pollution-aware routing with environmental metrics like carbon emission
factor and non-renewable energy usage percentage. We have proposed an algorithm based on these
three candidate-metrics. Our algorithm provides optimum data and control planes for three different
metrics which regulate the usage of different routers and adapt the bandwidth of the links while
giving the traffic demand requirements utmost priority. We have made a comparison between these
three metrics in order to show their impact on greening routing. The results show that for a particular
scenario, our pollution-aware routing algorithm can reduce 36% and 20% of CO2 emissions compared
to shortest path first and energy-based solutions, respectively.

Keywords: green networking; energy aware routing; carbon footprint; adaptive link rate; control and
data plane

1. Introduction

In this modern era of advancements, the ever-growing information and communication
technologies (ICT) sector plays an important role. Improvement in technologies, the availability
of inexpensive and extreme capacity optical transmission, increasing popularity of streaming services
and Internet of things technology have increased the amount of usage of the Internet exponentially
and there is no indication that this course will change. With the increasing dependency on ICT
services, the need for generating electricity has also increased substantially in order to power the ICT
infrastructure, which is a significant contributor in producing carbon dioxide, a leading greenhouse gas
(GHG). Global GHG emissions data shows that the highest contributor to global CO2 emissions in 2015
was electricity production. Surprisingly, all the ICT devices and infrastructure, excluding smartphones,
consumes 8% of the total electricity production and is projected to reach 14% by 2020 [1]. Similar
claims are also stated into European Commission’s digital agenda report in 2013: “ICT products and
services are currently responsible for 8 to 10% of the EU’s electricity consumption and up to 4% of its
carbon emissions” [2].

Among the various ICT sectors, network architectures and devices are one of the highest energy
consumers. According to [3], network devices and architecture are responsible of 29% of the total
energy consumption by ICT. The main reason behind this is the increase of Internet users all over
the world and secondly, most of the network architectures and resources like bandwidth, processing
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power and memory are designed bearing in mind the peak hour network usage [4,5]. This results in
redundancy and overprovisioning of the resources and consumes extra energy during off peak hours
which is unnecessary outside these peaks.

Due to this ever-increasing energy consumption from ICT devices and especially from network
infrastructures, it’s been a while now that researchers have started working on energy efficiency and
hence the term “Green Networking” has emerged. The main idea behind green networking is to
improve energy efficiency and reduce undesirable energy consumption which will in fact reduce the
carbon footprint produced by ICT devices. Several works have been done considering the problem of
energy efficiency in networks and there are mainly two research directions. The first at the network
hardware level where the prime focus is on building energy efficient circuits, improving the power
draining components like memory or modifying the cooling systems. The second direction is focused
more on the network design level where the whole network architecture is considered, and optimization
of the routing is done in order to reduce energy consumption also known as energy aware routing
(EAR). EAR is implemented by different power optimization techniques like, turning off the unused
network devices (nodes and links), Energy Efficient Ethernet (EEE) or Adaptive Link Rate (ALR).

The main motivation behind working on energy efficiency is to reduce carbon emissions. However,
it needs to be remembered that energy consumption is not always proportional to carbon emissions.
Same amount of energy production can have a very different impact on the environment in terms
of carbon emissions. For example, if we assume an average value of 400 g of CO2 emissions for
1 kWh of electricity production [6], France produces less than one fifth of the average value whereas
Poland produces three times the average value. Therefore, for these two countries, consuming the
same amount electricity has a quite different result in terms of environmental impact. Which begs the
question: “Is it enough to focus only on energy consumption while trying to achieve green networking?”

In order to address this question, in this paper, we have introduced the term pollution-aware
routing (PAR) which uses energy efficiency techniques and environmental variables together to find a
more pollution-aware solution. We have presented two different type of pollution metrics, namely
carbon emission factor (CEF) and non-renewable energy usage percentage (NRE). Our idea is to
compare and analyze the performance of the introduced pollution indicators with the well-known,
widely used indicator, energy efficiency. For energy efficiency, we have considered two green policies.
The first one is turning off the network devices (links and nodes) when they are not necessary and the
second one is adaptive link rate (ALR). These policies are quite often used by the research community
and very prominent in terms of energy savings. Section 2.1 contains a few of the works which have
included these policies while designing energy aware routing. As explained in [7], the problem of
finding the minimum number of links and nodes to be turned on while fulfilling the traffic constraint is
a problem of multi-commodity flow class which is known as NP-hard problem. We have used a genetic
algorithm as our heuristic to solve this problem. As a solution, we have provided a data plane and a
control plane which contains the information of the routing and the bandwidth distribution of each
link (ALR implementation), respectively. One main novelty of our algorithm consists of addressing
both planes at the same time, leading to optimal solutions. In this paper, we have formulated the
network and the energy consumption model for each of the network devices. By introducing CEF as
a pollution indicator we want to address the carbon emission problem more directly. On the other
hand, some energy resources have different impacts in addition to carbon emissions such as nuclear
power plants, for example, produce nuclear waste. Therefore, our second pollution metric is NRE
which will be applied to reduce the non-renewable energy usage percentage. The main difference
between the currently used (i.e., energy consumption) and our introduced metric is that ours consider
external factors (like power production) whereas energy consumption only reflects network efficiency.
In Figure 1 we have depicted this phenomenon. Secondly, CEF and NRE will vary based on the location
(i.e., country), in this regard we can say that we have addressed the problem with a more holistic
approach considering in fact the political engagement of each country regarding the production of
the energy.
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Figure 1. Basic Architecture of the System.

Based on three different indicator/metrics three different objective functions are formulated,
which are used as a fitness function for a genetic algorithm which is providing a set of data and control
plane as output. These planes are providing operational topology for the network but by focusing
either on reducing energy consumption, or total carbon emission or non-renewable energy usage
percentage respectively.

We have considered our solution from the point of view of a software defined network (SDN).
SDN is fairly a new network architecture where the data plane and control plane are separated in order
to have more control over the network. It integrates a controller which orchestrates the underlying
forwarding hardware. This centralized approach offers mechanisms allowing network operators to
have a global point of view which is suitable for our scenario where a single change in one part of
the network topology can have an impact all over the network. The authors of [8] used a centralized
approach in order to provide zoning evaluation of voltage distribution. Moreover, a centralized system
is always preferable for globally monitoring the system according to network policies and service
requirements [9]. The controller receives the traffic information from the network, and based on
the geographical position of the nodes, the values of environmental metrics like CO2 emission and
non-renewable energy usage are received. Then the controller, based on the optimizing algorithm,
provides a data plane and a control plane for the network. The detail description of how a control plane
and a data plane are designed will be described in Section 3. Figure 1 gives an overview of the system.

The paper is organized as follow: Section 2 explains the motivation in the light of related work
and sustainable green networking and summarizes the objective of our work. Section 3 contains the
concept of EAR and PAR and a description of centralized sustainable routing. Section 4 contains the
formalization of the problem and the overview of the heuristic function. In S5 we have a case study
and the performance evaluation of the algorithm and lastly Sections 6 and 7 contain the future work
and conclusions of the work, respectively.

2. Motivation

2.1. Related Work

For the last decade or so, several approaches are made in order to achieve green networking.
The authors of [10] provided a detail discussion on the different research trends in green networking.
Research works like [11,12] focus only turning off links and line cards whereas many other papers
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like [13–15] focus on turning off both links and nodes. Authors in reference [4] proposed a novel
heuristic, GreenTE, which maximizes the power savings and satisfies the quality constraints including
link utilization and packet delay. The proposed a heuristic solution that is proactive in terms of path
calculation. They have defined a set of previously calculated paths and they chose the solution from
one of them. Authors in references [12,13] emphasize least link and least flow without link adapting.
They have used a greedy algorithm to find out the least used link or devices with the least flow
and then turn them off. They did reactive path calculation. This means that based on the heuristic
several paths are being calculated instantly and the best one for the particular scenario is chosen.
Works like [15], provide a clear idea about how an optical core network behaves in terms of energy
consumption. On the other hand [16–18] all talked about implementing ALR in order to reduce energy
consumption. Other works like [12,13,19–21] all have considered energy aware routing. Authors
in reference [20] provided a greedy algorithm-based heuristic and along with links they have also
focused on reducing the energy consumption by turning off nodes. Nevertheless, in their solution
they have not considered ALR. In current times alongside these solutions various other solutions
have been proposed using SDN in order to benefit from the global knowledge of the central controller.
Authors in reference [14] proposed an incremental greedy algorithm-based solution where a controller
dynamically adds nodes and links to the initial small topology network in order to satisfy user demand
requirements. Authors in reference [22] also proposed an energy efficient solution combining energy
aware routing with SDN-based Ethernet networks. There are also a few works which have taken a
different approach towards green networking. Authors in references [23–25] all have tried to achieve
green networking in data centers by using renewable energy. Authors in references [23,24] changed the
destination node based on availability of the renewable energy and on the other hand in [25], alongside
with renewable energy, other criteria like geographical load balancing and server speed scaling are
considered. The authors of [26,27] proposed a similar eco-friendly routing idea using renewable energy
where they have used clustering to choose a cluster head with most renewable energy and then choose
the member node accordingly. Authors in reference [26] is for wireless networks and [27] is for IP
networks. However, one thing is common in the abovementioned works is that all of them consider
green network that same as the energy efficient network. They have all tried actively or passively to
reduce the energy consumption in order to get an energy efficient network. However, even if energy
has a link to sustainability issues, its direct impact on the environment in terms of air pollution and
Earth’s resources is not explicitly specified. Therefore, in our work we have introduced two different
green metrics–CO2 emission and non-renewable energy usage percentage–and make a comparison
between them and energy efficiency approaches.

2.2. Sustainability and Green Networking

The authors of [28] explained a very important point by mentioning that achieving sustainability
is not a straightforward approach of saving resources like energy. Even if from technical point of view,
it might seem direct approach, in fact the economical and behavioral perspective of the society needs
to be included when trying to achieve a sustainable solution. In [29], they have explained that, in order
to build a sustainable system, it is necessary to determine the shared interests of both business and
society’s point of view. In fact, sustainability is a unified concept which considers environmental, social,
and economic aspects as three fundamental pillars. They indicate that, viable development requires
the understanding of nature, society and economic capital or colloquially speaking the planet, people,
and profits [30–32]. Therefore, in order to design a sustainable green networking architecture, it is very
important to somehow consider all the three pillars. In this paper, we have proposed a centralized
model of generating sustainable control and data planes considering the three pillars. The details of
the model are described in Section 3.2.
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2.3. Summarizing the Goal

We have discussed a few works focusing on renewable energy, but almost all of them are focused
on topology-aware routing, which is different from energy-aware routing. To the best of our knowledge,
carbon emissions are not fully considered as a routing metric. In this regard, the goal of this paper
is to compare the performance of these metrics and how algorithms (optimizing both routing and
green policies) need to be adapted. Performance is going to be assessed in a centralized sustainable
routing model.

3. Green Routing and Metrics

3.1. Concept of EAR and PAR

In order to get a clear view of the proposed system, it is better to start with EAR and PAR.
While implementing green networking, one of the most common and effective solutions is to shut
down as much network equipment as possible while keeping the operational network, which is also
known as energy-aware routing (EAR). This drop in the number of active devices reduces the energy
consumption which has in fact a positive impact on the carbon footprint. The fundamental difference
between a classical routing approach like shortest path first (SPF) and EAR is that SPF considers the
number of hops and tries to reach the destination as quickly as possible without focusing on the
energy consumption of the network, whereas, EAR tries to reduce the overall energy consumption
of the network, which might result a longer path for some demands and similar length paths for
other demands.

In this paper we have talked about a different type of routing strategy which is pollution-aware
routing (PAR). The main concept of PAR is to route the demands with different paths based on
environmental factors such as carbon emission factors and the non-renewable energy usage percentage
of a node and try to reduce the targeted goal of reducing the CO2 emission or the usage percentage
of non-renewable energy of the total network architecture. This routing is applicable only for
geographically diverse, distributed network architectures where every node has different means
of energy production. The main motivation behind PAR is the variation of values of CO2 emission in
terms of energy production methods as shown in Figure 2. Values are taken from [33].

 

Figure 2. Emissions of selected electricity supply technologies (gCO2/kWh).

It can be clearly seen that for same amount of electricity production the CO2 emissions can vary
a lot. Therefore, in PAR, instead of reducing the energy consumption of the network architecture,
the environmental metrics are considered. The first metric is CO2 emissions. As different countries use
different techniques for producing electricity, they all have different carbon emission factors (CEFs).
Therefore, in this case, the routing will be based on the CEF. The paths for the demands will be chosen
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in order to reduce the carbon emissions of the total network architecture. Similarly, here we have
considered a second kind of PAR with the second green metric NRE, where nodes will be chosen
based on renewable energy (wind, solar, hydro) percentage. The idea is to decrease the overall amount
of non-renewable energy usage of the network architecture while fulfilling the demands. Both find
the paths for the demands in order to facilitate their targeted goal without considering the path size
or amount of energy consumption. The example depicted in Figure 3 will give a better grasp of
the concept.

Figure 3. Example of SPF, EAR and PAR. (a) shows a topology with 12 nodes, (b) shows the topology
for SPF, (c) shows how EAR will act in this scenario, (d) we have a different topology compared to (b,c).

Figure 3a shows a topology with 12 nodes. For this example, we have considered CO2 emissions
as a factor for PAR. For simplicity there are only two demands. One is from X to Z and the second one
is from Y to Z. Again, to avoid complexity, the sum of the two demand requirements is less than any
available links’ bandwidth. Three different colors are used instead of values for the carbon emission
factor. Green means the node has the lowest amount of CEF, orange means moderate and red means it
has the highest amount of CEF. A node is grey colored if it is turned off. Figure 3b shows the topology
for SPF. The lowest number of hops are considered for each demand. Regardless of the nodes CEF or
even without considering the total energy consumption, Figure 3c shows how EAR will act in this
scenario. It will choose a common link in order to reduce the number of active nodes and links. It will
reduce one node and two links compared to SPF. However, this will also not be concerned with the
CO2 emissions. In Figure 3d we have a different topology compared to Figure 3b,c. It didn’t look for
the shortest path or lowest number of nodes and links. Rather it chooses a topology where the total
amount of CO2 emissions will be low. It will not consider the total number of turned on nodes and
links if the overall CO2 emissions are on the low side.

3.2. Centralized Sustainable Routing

In this paper, we have also proposed a sustainable solution for the problem of achieving ‘green
networking’. As explained in Section 2, a solution cannot be sustainable without addressing the three
pillars of sustainability. In the section above, EAR and PAR are described. Our solution, depicted in
Figure 4, integrates all these elements in order to address the ‘green networking’ problem. Through our
solution we would like to investigate the performance of the proposed approach (PAR) and the available
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approach (EAR). We have designed the solution keeping in mind the three pillars of sustainability,
namely economy, environment and society. Figure 4 shows the architecture of the proposed system.
In the following part, how the three pillars are integrated into our solution is described briefly. Firstly,
our system takes traffic demand from users and the topology of the network from the Internet service
provider (ISP) as input. Both users and ISPs are the stakeholders for our solution. ISP has a direct
relation with the profit, whereas users are mainly concerned about the quality of service (QoS) like
throughput requirements. We also take geography-based environmental information such as carbon
emission factor (CEF) and non-renewable energy usage percentage (NRE) as input. This information
is one of the key factors for providing a green outcome. These environmental parameters are acting
as the second pillar of sustainability–environment. Lastly, our system provides a user of this system
the ability to choose to select a solution focusing on either reducing energy consumption or CO2

emissions or non-renewable energy usage percentage (the value of Φ in Equation (8)). The social
aspect of sustainability focuses on balancing the needs of the individual with the needs of the group.
By giving the choosing ability to the Internet service providers, it integrates the social entity of the
sustainability into our system.

Figure 4. Generation of sustainable data and control plane.

For example, in case of the GÉANT network, any environmental strategy or law defined and
imposed by European Union can be implemented in the network by tuning the optimizing equation.
After getting these inputs our system provides a solution based on the equation derived in the previous
section. It uses a genetic algorithm as the heuristic algorithm in order to solve the optimization problem.
The heuristic algorithm is described in the following section. After that an optimum data and control
plane are provided to implement the solution into the topology. These data and control planes are
calculated based on the inputs given to the system. The main goal of these planes is to minimize
the given objective function while fulfilling the QoS constraint. Alongside the solution topology
settings, these planes also provide vital information about energy consumption, CO2 emissions and
non-renewable energy usage percentage of the topology. This information is essential, especially for
the people pillar of sustainable development because it provides clear information about the impact of
network users on the environment, which by default provides them a guideline to act accordingly.
This kind of feedback always make the people in society more involved in the system which is a
prerequisite for creating a complete sustainable system. Our proposed solution is a sustainable solution
towards achieving green networking. The heuristic algorithm used for optimization is explained in the
next section.
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4. Formalization of the Problem

4.1. Problem Definition

Let us assume a network topology is defined by a directed graph G = (V, E), where V is set of
vertices i ∈ {1, 2, . . ., |V| = n} and E is set of edges (i, j), which are 2–elements subsets of V. The adjacency
matrix is a square |V| × |V|matrix A, such that the element Ai, ∈ {1,0} has the value of 1 when an edge
exists between two vertices i and j, and 0 when there is no edge. The C matrix contains the capacity of
each edge that means Ci j represents the capacity of the link between node i and j. Capacity is the only
part of G which is controllable. Now let’s come to the dynamic part of the network which is traffic
demands. Let’s suppose K is a set of traffic demands K = {1, 2, . . . , k}. A demand consists of three
information source (sk), destination (dk) and throughput requirement (λk) expressed in b/s.

In the framework of Software-Defined Networking (SDN) and more generally speaking network
automation, we would consider that the topology is redundant, which means that several paths (i.e.,
more nodes and links are added—offline—to the physical topology) are available. However, only those
paths will be considered which are satisfying both throughput demand and the capacity constraint of
the links. The data plane matrix is denoted by Π, which includes all the forwarding decision for all
flows over all nodes. Each row of the matrix is dedicated for one demand. Πk,v returns the node v + 1,
which is an adjacent node of v into path Pk (Πk, v = v + 1) or null set if the path does not include node

v. The path ends when it returns dk. A path Pk =
{
sk, Πk,sk

, Πk,Πk,sk
, ..., dk

}
then can be retrieved.

As mentioned earlier, different paths are available for every pair of source and destination therefore
for each demand set several data planes are possible. The data plane should respect the following
constraint for a demand i:

∀v ∈ {si−di}, w = Πi,v such as
∑

(kεK|Πk,v=w)

λk ≤ Cv,w (1)

This ensures that only the links that are in the topology are considered and no link will be
assigned more throughput than its capacity. Furthermore, the control plane, denoted by matrix Γ,
is used to define the controllability of the link capacity (i.e., ALR mechanism). The capacity can be
switched to different discrete values from the maximum capacity defined by C to 0. Zero is considered
when both interfaces of a link are turned off. Initially, Γ = C and later from the second flow C is
replaced by Γ in Equation (1). The value Γi, j represents the final link capacity required to fulfill every
demand requirement.

Figure 5 shows an example of how data and control planes work. Here as a topology
a portion of the GÉANT Network is used and let’s consider that the topology has three
different levels of bandwidth: 10, 100 and 1000 Mbps, respectively. For three demands K =

{{s1 = 12, d1 = 2, λ1 = 8 Mb/s}, {s2 = 4, d2 = 3, λ2 = 60 Mb/s}, {s3 = 3, d3 = 6, λ3 = 95 Mb/s}}.
The three chosen paths are {12 – 1 – 2}, {4 – 11 – 3} and {3 – 1 – 12 – 6}, respectively. Then the data plane
and the control plane will be look like Figure 5b,c. There are several possible solutions. The data
plane is created based on the chosen paths and the control plane is created based on the data plane.
Even though all the demands have a bandwidth requirement of less than 100 Mbps, we can see in the
control plane, edge {1,12} (link 4 on Figure 5) has a final capacity of 1000 Mbps. In fact, this edge is
included in the solution path of both demand-1 and demand-3 which have a combined throughput
demand of 103 (8 + 95) Mbps. A link capacity of 100 Mbps is hence not anymore enough and as only
three levels of bandwidth, namely 10, 100 and 1000 Mbps are considered, it will be replaced by a
1000 Mbps capacity one. Both data plane and control planes are vital for calculating our objective
functions that will be discussed in the next part.
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Figure 5. (a) Topology (a portion of the GÉANT network); (b) A possible data plane; (c) control plane.

4.2. Modelling of the Objective Functions

We have three different criteria that need to be minimized, namely energy consumption, CO2

emissions and the non-renewable energy usage. We have formalized the cost of data and control
planes based on the objective function. However, as mentioned earlier, the carbon emissions and
non-renewable energy both can be used as a multiplicative factor with the energy model. Therefore,
here the energy model is described first. For calculating the energy consumption, a simple model
from [34] is used where energy consumption model of a Cisco Ethernet switch is provided. Similar
models can also be found in the literature [8,35,36], even for different devices. To simplify, it is assumed
here that energy consumption of a node v, follows the linear model:

εv(t) =

t∫
0

⎛⎜⎜⎜⎜⎝αv +
∑
wεv
δv,wβv,w

⎞⎟⎟⎟⎟⎠t . dt (2)

where εv in Watt-hour (Wh), α is the static power consumption (when no interfaces are activated),
δv,w = 1 if Cv,w > 0 and 0 else (to know if the interface to the neighbor w is used) and βv,w is the power
consumption of the interface port itself. The model consists of two parts: a fixed/static one that must
be considered each time the node is turning on and a dynamic one that depends on the control plane.
As we want to include two green strategies (turn off nodes when not required and ALR) into the
model without hampering QoS constraint, in order to imply the first strategy, two binary variables
are included:

δv
Π =

{
1 i f

∑
k∈K Πk,v > 0 or v ∈ Π

0 else
(3)

δv,w
Π =

{
1 i f ∃k ∈ K, Πk,v = w or Πk,v = v

0 else
(4)

A node v is used in the data plane if it either forwards (
∑

k∈K Πk,v > 0) and receives (v ∈ Π) traffic
or it is used as a mediatory node for a selected path. Now, in the case of ALR, the second policy that
we have considered, the matrix Γ contains the decisions (Figure 5c), such the power consumption βv,w

will now vary according to the link capacity. Hence, the objective function in terms of data and control
planes while satisfying the demands requirements (elementary paths, throughput, links capacity
limitations) is as follows:

(
Π̂, Γ̂

)
= argmin

Π̂,Γ̂

∫ t

0

∑
v∈V

δv
Π

⎛⎜⎜⎜⎜⎜⎝αv +
∑
w∈V

δv,w
Π βv,w(Γv,w)

⎞⎟⎟⎟⎟⎟⎠t.dt (5)

This objective function depicts the problem of minimizing the energy consumption of overall
system. Now, let’s consider the environmental factors. Suppose, Λ is a set of carbon emission factors
(CEFs) for all the nodes. Where, Λ =

{
Λ1,Λ2, . . . , Λv

}
. And ψ is a set of non-renewable energy usage

percentage (NREs) for all the nodes. ψ =
{
ψ1,ψ2, . . . , ψv

}
. Here one thing to notice is that for all,

the goal is to reduce it.
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As mentioned earlier, that both environmental parameters are a multiplicative factor of the
original energy consumption model, therefore, objective function can be rewritten for CEF and NRE
respectively in the following way:

(
Π̂, Γ̂

)
= argmin

Π̂,Γ̂

∫ t

0

∑
v∈V

Λv ∗ δv
Π

⎛⎜⎜⎜⎜⎜⎝αv +
∑
w∈V

δv,w
Π βv,w(Γv,w)

⎞⎟⎟⎟⎟⎟⎠t.dt (6)

(
Π̂, Γ̂

)
= argmin

Π̂,Γ̂

∫ t

0

∑
v∈V

ψv ∗ δv
Π

⎛⎜⎜⎜⎜⎜⎝αv +
∑
w∈V

δv,w
Π βv,w(Γv,w)

⎞⎟⎟⎟⎟⎟⎠t.dt (7)

The goal is to provide data and control planes which will reduce the energy consumption or
carbon emission or non-renewable energy percentage of the overall system. Then from Equations
(5)–(7) a generalized version of the objective function for system would be:

(
Π̂, Γ̂

)
= argmin

Π̂,Γ̂

∫ t

0

∑
v∈V

Φv ∗ δv
Π

⎛⎜⎜⎜⎜⎜⎝αv +
∑
w∈V

δv,w
Π βv,w(Γv,w)

⎞⎟⎟⎟⎟⎟⎠t.dt (8)

where, Φv = 1 or Λv or ψv depending on the minimizing criteria (i.e.,: energy consumption, carbon
emission, non-renewable energy percentage) of the system.

4.3. Description of the Heuristic Function

This optimization problem falls into the multi-commodity flow class which is known as NP-hard
problems and a heuristic algorithm is required to find the solution. Therefore, in order to solve our
optimization problem formulated in the previous section we have used a genetic algorithm (GA) as
our heuristic algorithm. It is an evolutionary algorithm which is inspired by the genetic processes of
biological organisms. In [37–39] it is shown how this heuristic can be applied for solving NP-complete
optimization problem related to networking like finding shortest path or designing an industrial
Ethernet infrastructure. A GA has crossover and mutation which help the problem to not to get stuck
in local minima which makes it robust than any other enumerative approaches. In the following part
different parts of the GA are described in brief.

The crucial part of applying GA to a problem is to design a chromosome according to the problem.
Later these will create a population pool. Each chromosome represents a single candidate solution
of the search space. In our case, the data plane is converted into a chromosome as a data plane
contains a solution set for each demand following the capacity constraint. Therefore, in order to build
a chromosome pool, we have created a set of data planes. To do that, we have used another heuristic
which is randomized depth first search (RDFS). RDFS randomly selects the next node for going into
next level into the tree. Simple DFS is unable to create a diverse solution set. Therefore, RDFS is used
to find the path for each demand and then that path is added to create the solution set. RDFS considers
the current state of the topology capacity wise. Then, all the solutions that are found, follow the
capacity constraint. Once we have a data plane then we can convert the data plane into chromosome.
If we have a set of demand k = {1, 2, 3, . . . , k} and if a topology has E number of edges {1, 2, 3, . . . , E}
then in a chromosome consists of k*E number of 0’s and 1’s. Where 0 represents this link is not used
for fulfilling this demand and 1 represents this link is turned on for fulfilling this demand. Figure 6
shows the structure of the chromosome. This chromosome is actual representation of the example
with three demands that we discussed in Section 4.1. In our initial population pool, we have always
included one solution achieved by using SPF. Therefore, a population pool with a size of N has N-1
chromosome gathered by RDFS and the other one is using SPF.
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Figure 6. Structure of the chromosome.

For crossover operation we have decided to randomly select half of the bits of strings from one
chromosome and rest half from another chromosome instead of using one cut or two cuts where
chromosomes are divided into two equal parts or three equal parts and change the parts in between them
respectively. By doing single crossover operations the process is generating two new chromosomes.
In our case mutation is also done demand wise. Instead of a single bit values for a single demand,
the whole strings of bit of a demand is replaced. There are two kinds of mutation percentage. The first
one indicates how many of the chromosomes which are previously shortlisted by selection process will
go through the mutation process. However, from a chromosome, how many demands will be selected
for mutation is denoted by the second one. For example, mutation-1 equals to 10% means 10 of each 100
chromosomes are selected for mutation operation and mutation-2, 1% means 1 of each 100 demands
from a chromosome which is selected by mutation-1 will be chosen randomly for mutation operation.

After crossover and mutation, the most important part of genetic algorithm is the fitness function
which will after each iteration discard few of the solutions and promote the rest of the solutions for the
next round. In our case we have three kind of fitness function based on our objective functions. Based
on this fitness function score, different solutions are chosen for different cases.

After running GA, the next part is to convert the chromosome into a data plane and then control a
plane so that controller can make appropriate changes in the topology. Even though each chromosome
indicates that if a link is used for a demand or not, the direction of the flow of the traffic is not defined.
Therefore, the algorithm needs to take care the information regarding direction, when converting
from chromosome to data plane and then control plane. The algorithm to retrieve the data plane
Π and the control plane Γ is given in Algorithms 1 and 2 respectively. It simply corresponds to the
following equation:

Πk,v = χk×(v,w) ×w (9)

Algorithm 2 finds the minimal allocation satisfying the throughput demand gathered by the
data plane. To note that the green policy, consists of shutdown v switches when δv∏ = 0 and output
ports w of switches v when δv.w∏ = 0 and decreasing capacities of output ports w of switches v when
Γv,w < Cv,w. Finally, Algorithm 3 shows the overall algorithm for implementing GA. Here eval()

function is evaluating the fitness of the chromosome.

Algorithm 1. Retrieval of data and control plane from chromosome.
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Algorithm 2. Computation of the minimum control plane from given data plane.

Algorithm 3. The Full Algorithm.
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5. Evaluation of the System

5.1. Experiment Setup

For evaluating the performance of the system, the topology of the GÉANT network infrastructure
has been considered. The GÉANT project operates the European network for the research and education
community. GÉANT has 22 nodes and each node of GÉANT represents a different country. Because of
that, the values of CEF and NRE will be different for each node. The network structure and the traffic
has been taken from SNDlib [40] published in 2005. However, in order to keep the data compatible
with the network equipment as it is now using 100-gbps optical fiber, network’s overall traffic has also
increased significantly. From [41,42] it can be concluded that, during the last decade or so, traffic has
increased almost 28 times. In order to keep up with the times, the real data is been multiplied by the
increased traffic coefficient. Experiments are conducted with a set of 25 randomly generated demands.
The demand sizes are randomly distributed. Network detail summary can be seen in Table 1.

Table 1. Network topology parameters.

Network GÉANT

Nodes 22

Links 36

Link type Full-Duplex

Demand Structure (Source, Destination, Throughput)

Demand Type Aggregated (one demand request for one source destination couple)

Bandwidth Capacity 1 Gbps, 10 Gbps, 40 Gbps, 100 Gbps

For power measurement, values are taken from [5,43]. For the links, power consumption of the optical
transmission networking (OTN) layer interfaces per port has been considered. Power measurement values
are given in Table 2. The values of carbon emission factor and non-renewable energy usage percentage
have been taken from [44–46]. The details of all the national characteristics in terms of CEF and NRE are
shown in Appendix B Table A2.

Table 2. Power consumption values for node and links.

Type Power in Watts

Static Node 10000

1-Gbps port 7

10-Gbps port 34

40-Gbps port 160

100-gbps port 360

Lastly, the genetic algorithm has five factors, namely run time, population size, crossover rate,
and two types of mutation rate. In order to run the experiment, we have tuned these values. In our
work, we have fine-tuned these parameters using design of experiments. For this paper we are using
the following values for the parameters of genetic algorithm in all the experiments: run time 30 s,
population size 40, crossover rate 40%, mutation-1 rate 80% and mutation-2 rate 4%. The process of
selecting the parameter values is briefly described in Appendix A.

5.2. Result Analysis

A set of experiments has been conducted to analyze the performance of the three different objective
functions. The results are compared with shortest path first (SPF) with the same green policies that our
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algorithm has been considered. Twenty five demands are randomly taken for the experiment as we
want to see how the algorithm uses the two green policies according to the objective function. This is
because, if the number of demands are higher, then all the nodes of the topology will be involved as
either source or destination, then all the nodes must be kept turned on and there will be no scope to
analyze the performance of the algorithm in terms of first green policy where nodes will be shut down
when not in use. Figure 7 shows the graph which gives the comparison of three different approaches.
As we can see, every algorithm outperforms other two when their minimizing factor has been chosen.

Figure 7. Comparison between three algorithms.

When energy is considered as the minimizing factor, that means for our EAR with GA (E_GA),
we have maximum energy savings compared to the other two approaches. EAR saves around 24% of
energy consumption compared to SPF for this scenario, whereas both approaches of PAR (CO_GA and
NRE_GA) save around 18% and 23% energy consumption, respectively. However, when comes to
reducing the CO2 emissions, both CO2_GA and NRE_GA reduce an appreciable amount compared to
E_GA. CO2_GA reduces 36% of the CO2 emissions compared to SPF, whereas, NRE_GA and E_GA are
able to reduce them by 31% and 20%, respectively. Even though our EAR (E_GA) has outperformed
SPF by a large margin in all three aspects, in terms of reducing CO2 emissions both pollution-based
algorithms performs better. In fact, when the optimizing function focuses on reducing CO2 emissions
CO2_GA reduces CO2 emissions by almost double compared to E_GA. Lastly, while for reducing
non-renewable energy usage NRE_GA performs better than the other two. NRE_GA reduces the
non-renewable energy usage by 28% compared to the shortest path. Table A3 in Appendix B shows
the all obtained results for SPF and the other three algorithms. In contains country-wise consumption
energy values, CO2 and non-renewable energy for each algorithm in order to understand the results
more clearly. All these results raise the question, as the goal of green networking is to reduce the carbon
footprint from the environment, then how much effective will designing a green network by only
considering energy efficiency be. Even if a solution focusing on reducing CO2 emissions consumes
more energy but if the total CO2 emissions of the system are lower that means the system is consuming
more green energy than brown energy (energy sources producing a higher amount of CO2).

Based only on the consumption values used in the paper, Table 3 provides an annual emission
of energy CO2 and non-renewable energy. Here, at first, we have shown that if no green policy is
used then what the total emissions will be and then the consumption values for shortest path first
and our three algorithms are given. These values only reflect the emissions due to the devices and
links. However, the actual amount will be much higher considering the building, cooling and many
other criteria.
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Table 3. Energy, cost and CO2 emission analysis for a year.

Method Energy (MWh) CO2 (Tons) Non-Renewable Energy (MWh)

Without any green policy 2154 1088 1470

SPF 1522 684 1074

E_GA 1160 548 799

CO2_GA 1252 436 824

NRE_GA 1170 470 777

Figure 8 gives the different topologies for different solutions. The first one in the top left gives
the topology for SPF. As is clearly visible, the maximum number of nodes and links are used in this
topology. Now if we analyze the differences between different topologies there are some interesting
changes in the topology. The energy-based solution has not used node six and node sixteen which are
Switzerland and France, and node 14 which is The Netherlands is used. For energy-based solution
every node is considered as same as every node consumes same amount of energy, whereas, for the
CO2-based solution the emissions could be completely different for the same number of nodes. As for
our example, The Netherlands emits 130 times more CO2 gm per kw-h compared to Switzerland
and six times more compared to France which has huge impact on the overall result. In the same
way, node-2 (Poland) is used by E_GA whereas both of the PAR solutions avoid Poland as it has
huge CEF and NRE usage percentage. These choices made by E_GA might reduce the overall energy
consumption of the network, but at a cost of a high carbon emission.

Figure 8. Topology for different algorithm.

Now, if we compare the solutions of the two PAR-based options, as mentioned above they both
have avoided node-2 (Poland), however, for NRE_GA a majority of the traffic went through node-4
(Germany) and node-16 (France) is completely avoided, whereas for CO2_GA a substantial amount of
traffic went through France, even though it has very low carbon footprint. It is because NRE_GA only
focuses on non-renewable energy percentage and as France uses nuclear power plants for producing
electricity, it has very high non-renewable energy usage percentage. For example, for the same topology,

143



Sensors 2019, 19, 2901

let’s consider a demand from node 5 to node 14. There are several possible solutions. However, we will
consider only the solutions which are shortest that means lowest number of hops. Now, there are
four different possible paths. Table 4 gives a summary of all four shortest paths with carbon emission
factors and non-renewable energy usage percentages. Now, here only the NRE and CEF values of
intermediate nodes are considered. Based on the NRE_GA the optimal solution would be path-3 (with
Italy and Germany) even though this path has one of the highest carbon emission factors, whereas,
the optimal solution based on CEF would be path-2 but as this path has a maximum amount of NRE
percentage therefore this will not be chosen by NRE_GA.

Table 4. Demand paths from node-5 to node-14.

No. Paths NRE% Sum of the Intermediate Nodes CEF Sum of the Intermediate Nodes

1 5-16-4-14 1.535 0.742
2 5-16-1-14 1.659 0.294
3 5-12-4-14 1.337 1.082
4 5-12-11-14 1.602 1.15

1-Belgium, 4-Germany, 5-Spain, 11-Israel, 12-Italy, 14-Netherlands, 16-France.

Based on this analysis of the three algorithms, it can be said that even though the outcome of
the algorithm depends on the demand set, it is very much a possibility that in order to achieve a
sustainable solution focusing only on energy efficiency might not be a wise decision. Our result shows
that for this particular scenario both of our algorithms outperform the energy-based solution in terms
of reducing carbon emissions. Specially CO2_GA reduces carbon emission by more than 20% compared
to energy-based solution which is definitely a non-negligible amount.

5.3. Sustainability Discussion

The three pillars of sustainability are a great means of explaining the complete sustainability
problem. We have included all the three pillars into our system in order to provide a balanced
sustainable solution. Our system provides the information about the throughput of different parts of
the network. Whichever objective function is selected it gives an insight about the three parameters
for measuring the status of the green networking, namely energy consumption, CO2 emissions and
percentage of non-renewable energy usage, but as the goal of green networking is to reduce the carbon
emissions, therefore the objective function minimizing the CO2 has utmost importance. As we can see,
CO2_GA reduces CO2 emissions by around 8% compared to our E_GA and by 40% compared to SPF
with two green policies. These are definitely non-negligible values, however, a more tangible example
might give a better understanding of the situation. For our scenario, if we compare the result of SPF
and CO2_GA from Table 3, in one year it can save up to 248 tons of CO2. This is in fact equivalent to
the carbon emissions if a person were to make a round trip to JFK in New York from CDG in Paris by
plane 381 times. Even when comparing with E_GA, the carbon savings is equivalent to 172 round trips
by plane for the same source and destination. If we consider the savings in terms of money, even if
we consider an average rate for cost of electricity production, our all three can save more than 25%
of the cost compared to SPF. Lastly, the proposed system respects both the user traffic demand and
the objective function choice and provides a data and control plane and hence integrates the social
attribute of the sustainability.

6. Future Works

In our work we have proposed a solution which gives the required control plane and data plane
for implementing it on an SDN platform. However, changes in the demand set result in a new topology
and the new topology will be disseminated by the controller to the network. This dissemination
process also requires energy, and hence has a carbon footprint. Therefore, for the future work we are
planning to add a penalty system that will determine if a change in the network topology is necessary
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or not with a change in the demand set. In fact, this will control the frequency of network changes to
an optimum level. Additionally, in this work all the nodes are equally treated whereas, that is not
the case in reality. Our equation is flexible enough to add this variance into the system. Therefore,
next step will be to adjust the equation accordingly and run the experiment for variable values for
the node. Additionally, the carbon emissions and the non-renewable energy usage rate vary all the
time. This is due to weather conditions, to the period of the day (night/day), to energy demand peaks
requiring using for example more coal for producing electricity. Then, the idea is to include in the
fitness function these variations in adding temporal factor in order to get more realistic results. In the
same way, energy costs and its evolution could be integrated in the fitness function in order to cover the
economy pillar of sustainable development. Finally, these variations (energy costs, carbon emitted for
producing energy, etc.) could be estimated by predictive models for efficiently managing the changes
of network topology in considering the penalty explained above.

7. Conclusions

In this work, we have proposed a sustainable method for greening the Internet. We have
introduced the term “pollution-aware routing” and it has been added to the classical energy-aware
routing. While proposing this new term and introducing a new way of looking the problem of green
networking we have at the same time tried to answer whether the question concerning only energy
efficiency while trying to achieve green networking is enough or not. We have two different approaches,
one works based on the carbon emission factor of the nodes whereas the second one works based
on the non-renewable energy usage percentage. We show that our pollution-aware routing can have
significant impact on CO2 emissions compared to energy-aware solutions. Our system provides a
holistic approach towards attaining sustainability. At the same time, it provides a control plane and
data plane so that the system can be implemented in a centralized system using SDN.
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Appendix A

As our heuristic algorithm is based on genetic algorithm, we have to do an extensive set of
experiments for tuning the parameters. Five parameters are needed to be adjusted which are time,
population size, crossover percentage, mutation-1 percentage and lastly mutation-2 percentage.
We have selected few fixed values for each parameter for design of experiment. Each value of each
parameter is preliminarily tested before being used in DoE. In Table A1, different level of values for
each parameter is given. All the parameters are tuned in order to maximize objective function.

Table A1. DoE parameter summary.

Factor Values

Time 10 s, 20 s, 30 s

Population Size 20, 40, 80

Crossover Percentage 20%, 40%, 80%

Mutation-1 Percentage 20%, 40%, 80%

Mutation-2 Percentage 4%, 8%, 12%

145



Sensors 2019, 19, 2901

Running the full factorial experiment on our parameters using the above mentioned settings,
provides us significant information about the parameter tuning. For both 25 demands and 400 demands
DoE shows similar kinds of patterns. From these experiments we have achieved an optimum setting
for all the genetic algorithm parameters which are, run time 30s, population size 40, crossover rate
40%, mutation-1 rate 80% and mutation-2 rate 4%.

Appendix B

Table A2 shows the national characteristics in terms of carbon emission factor and non-renewable
energy usage factor.

Table A2. List of nodes of the GEANT network with carbon and non-renewable energy factors.

Node No. Country CEF NRE Factor

0 Austria 0.176 0.257

1 Belgium 0.224 0.834

2 Poland 1.196 0.863

3 Czech Republic 0.938 0.85

4 German 0.672 0.71

5 Spain 0.342 0.619

6 Switzerland 0.003 0.602

7 Greece 1.921 0.726

8 Croatia 0.386 0.348

9 Hungary 0.589 0.899

10 Ireland 0.521 0.753

11 Israel 0.74 0.975

12 Italy 0.41 0.327

13 Luxembourg 0.276 0.792

14 Netherlands 0.413 0.879

15 United States 0.547 0.72

16 France 0.07 0.825

17 Portugal 0.4 0.465

18 Sweden 0.023 0.429

19 Slovenia 0.578 0.694

20 Slovakia 0.282 0.755

21 United Kingdom 0.508 0.721

Table A3 shows the obtained results for each countries’ consumption of energy CO2 and
non-renewable energy for our scenario.
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Abstract: Wireless Power Transfer (WPT) is a promising technology to replenish energy of sensors in
Rechargeable Wireless Sensor Networks (RWSN). In this paper, we investigate the mobile directional
charging optimization problem in RWSN. Our problem is how to plan the moving path and charging
direction of the Directional Charging Vehicle (DCV) in the 2D plane to replenish energy for RWSN.
The objective is to optimize energy charging efficiency of the DCV while maintaining the sensor
network working continuously. To the best of our knowledge, this is the first work to study the mobile
directional charging problem in RWSN. We prove that the problem is NP-hard. Firstly, the coverage
utility of the DCV’s directional charging is proposed. Then we design an approximation algorithm to
determine the docking spots and their charging orientations while minimizing the number of the
DCV’s docking spots and maximizing the charging coverage utility. Finally, we propose a moving
path planning algorithm for the DCV’s mobile charging to optimize the DCV’s energy charging
efficiency while ensuring the networks working continuously. We theoretically analyze the DCV’s
charging service capability, and perform the comprehensive simulation experiments. The experiment
results show the energy efficiency of the DCV is higher than the omnidirectional charging model in
the sparse networks.

Keywords: wireless power transfer; directional charging vehicle; charging efficiency; RWSN

1. Introduction

Wireless power transfer is a promising technology to replenish energy to sensors in Rechargeable
Wireless Sensor Networks (RWSN), to keep the network working continuously [1]. Wireless Power
Transfer (WPT) is mainly using magnetic resonance coupling [1–3] or RF radiation technology [4,5].
To achieve efficient energy transfer in RF radiation technology, it generally requires directional
transmission by using high-gain and directional antennas for power transmitters and receivers to focus
the energy in narrow energy beams [6]. It has a more stable and higher efficiency of power transfer
compared with omnidirectional charging [7]. Consequently, in the mobile directional charging scenario
in RWSN, a rechargeable sensor can only receive power from a mobile charging vehicle equipped with
a directional power transmitting antenna, or called directional charging vehicle (DCV), when they are
located in the covered sector of the DCV’s directional antennas.

Products from Powercast [8] carry out wireless charging by leveraging the electromagnetic
radiation technique, with which energy transmitters broadcast the RF energy and receivers capture
the energy and convert it to DC. Applications of the electromagnetic radiation technique for wireless
charging have been reported in References [9–11]. As more and more applications of wireless charging
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technology have been envisioned, the Wireless Power Consortium [12] has been established to start the
efforts of setting an international standard for interoperable wireless charging.

Recently, most research works of mobile charging in RWSN adopted the omnidirectional power
transfer model [13–17]. Although some works have studied the directional charger’s deployment
problem in RWSN [9,18–20], to the best of our knowledge, there is no literature that has studied the
mobile directional charging problem. However, a directional antenna provides significant enhancement
over the omnidirectional antenna in terms of direction beam [21]. Moreover, when charging distributed
sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient
because of the smaller proportion of off-target radiation [22]. Inspired by the research issues in the
literature on mobile omnidirectional wireless charging scheduling [13–17], and directional charger’s
deployment [9,18–20], we propose the directional wireless charging optimization problem in this
paper. The complex factors of RF power transmission in practical environment are simplified in our
research problem.

In this paper, we investigate the mobile directional charging optimization problem in wireless
sensor networks. As shown in Figure 1, the data collection sensor network is deployed in a 2D plane
area. The sensors transmit data to the sink node through multiple hops route. The charger’s base
station serves for the DCV. The DCV starts from the base station and moves along the planned docking
spots and path to replenishing energy for all sensors in a charging cycle. The mobile directional
charging optimization problem is how to determine the DCV’s docking spots and charging directions
in the 2D plane, and plan the moving path through all docking spots to replenish energy for the sensor
network. The objective is to optimize Energy Charging Efficiency (ECE) of the DCV while maintaining
the sensor network working continuously. The ECE is the ratio of the energy received by all sensors to
the energy consumed by the DCV in a charging cycle. This problem is named as Charging Efficiency
Optimization Problem (CEOP) of mobile directional charging in RWSN.

Figure 1. Directional mobile charging scenario for the data collection network in RWSN (Rechargeable
Wireless Sensor Networks).

The CEOP problem has two main technical challenges. The first challenge is that since both the
DCV’s docking spots and its charging orientations are continuous values, it is hard to determine the
DCV’s docking spots and charging orientations to meet the charging coverage for all sensors. The
second challenge is how to plan a DCV’s moving path that ensures no sensors will run out of energy
during the charging cycle.

The CEOP is an NP-hard problem and it is difficult to design a global optimal solution. We
consider dividing the CEOP problem into two sub-problems: (1) How to determine the appropriate
docking spots of the DCV in the 2D plane and the DCV’s charging direction at each docking spot; (2)
How to plan the DCV’s moving path and charging time at each docking spot to meet the network’s
energy requirements and optimize the DCV’s energy charging efficiency.

We model the charging docking point planning on the 2D plane as a location optimization of
mobile charging with the objective of minimizing the number of docking points under the constraints
and of maximizing the charging coverage utility locally. Then, we use the TSP optimization to minimize
the charging path loop and maximizing energy charging efficiency for the whole network.

The main contributions are as follow:
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• As far as we know, this is the first work investigating the mobile directional charging problem
in WRSN aiming to maximize the energy charging efficiency and maintain the networks
working continuously.

• We prove that the problem is NP-hard.
• We propose the coverage utility of the DCV’s directional charging, and design an approximation

algorithm to determine the docking spots and their charging orientations while minimizing the
number of the DCV’s docking spots and maximizing the charging coverage utility. It ensures the
mobile charging coverage for all the sensors in the network and improves the energy charging
efficiency locally.

• We propose a moving path planning algorithm for the DCV’s mobile charging to optimize the
DCV’s energy charging efficiency while ensuring the networks working continuously.

• We theoretically analyze the DCV’s charging service capability, and perform the comprehensive
simulation experiments. The experiment results show that energy charging efficiency is higher
than omnidirectional charging model in the data collection network.

The remainder of the paper is organized as follows: In Section 2, we review the related work
of RWSN; In Section 3, we present the description of directional charging model, network energy
consumption and problem definition; In Section 4, we propose the optimization algorithms; In Section 5,
we give analysis of network size and area size that one DCV can serve; In Section 6, we present
simulation result; Section 7 concludes this paper.

2. Related Works

The existing wireless energy transfer can be divided into Single-Input Single-Output energy transfer
model [23–34] and Single-Input Multiple-Output energy transfer model [13–17,31–35]. Energy transfer
optimization problems can be divided into static charging stations’ deployment [11,18–20,35–38] and
mobile charging vehicles’ dispatching problems [13–17,23–34].

Mobile omnidirectional wireless charging problem. All existing works considering the mobile
wireless charging adopt the omnidirectional power transfer model. Unlike the omnidirectional charging
problem, we should not only determine the charging stop point and plan the charging path, but also
determine the charging direction at each charging stop point. Yi et al. [13] investigate how to schedule
the omnidirectional charging vehicle to maximize its vacation time and achieve higher charging
efficiency of sensor networks. Xie et al. [17] investigate the mobile charging problem of co-locating
the mobile base station on the wireless charging vehicle. Wu et al. [15] studied the omnidirectional
charger vehicle dispatch problem to maximize the network lifetime and improve the energy efficiency
for large-scale WSNs. Khelladi et al. [14] modeled the omnidirectional charger dispatching problem
as a charging path optimization problem, and aimed to minimize the number of stop locations in
the charging path and reducing the total energy consumption of the mobile charger. Jiang et al. [16]
consider the on-demand mobile charging problem which schedules the omnidirectional charger to
maximize the covering utility.

Directional wireless chargers deployment problem. All existing charging works which adopt
the directional power transfer model only concern the directional chargers’ deployment problem in
RWSN, rendering them not applicable to our problem. Dai et al. [9] investigated directional chargers’
deployment problem to optimize charging utility for the sensor network. Dai et al. [18] proposed
the notion of omnidirectional charging and studied the omnidirectional chargeability under the
deterministic deployment of chargers and random deployment of chargers. The goal is to achieve that
at any position in the area with any orientation can be charged by directional chargers with power
being no smaller than a given threshold. Jiang et al. [19] studied the wireless charger deployment
optimization problem, which is to deploy as few as possible chargers to make the WRSN sustainable.
Ji et al. [20] further investigated the deployment optimization problem of wireless chargers equipped
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with 3D beamforming directional antennas, and achieve the deployment of as few as possible chargers
to make the WRSN sustainable.

To best of our knowledge, this is the first work to study the mobile directional charging problem
in RWSN. The closest to our work is mobile omnidirectional charging and deployment of directional
charger. Compared with omnidirectional power transfer model, there are two strengths to introduce
directional power transfer model in mobile charging application in RWSN. The first is that in the sparse
sensor networks, using high gained RF radio directional power transfer antenna can reduce energy
transmission waste and improve energy charging efficiency. The second is that the directional charger
can cover longer distance and transfer more stable energy.

3. Problem Formation

Table 1 describes the symbols used in this paper.

Table 1. Symbol and Notations.

Symbol Meaning

sk Coordinate of docking spot k
oi Coordinate of sensor node i
→
θsk

DCV’s charging orientation at docking spot k
d(sk, oi) Euclidean distance between sensor node oi and the docking spot sk

Pk,i(sk, oi) DCV’s energy transfer function at docking spot sk for sensor node oi
A Charging angle of DCV (◦)
v The moving speed of DCV (m/s)
D Effective charging distance of DCV (m)

Pout Energy transmit power of DCV (J/m)
ωc Moving energy consumption of DCV (J/m)

Cmax Energy capacity of DCV
ωoi Energy consumption of sensor node i
es Energy consumption for sensing one unit data
et Energy consumption for transmitting one unit data
er Energy consumption for receiving one unit data

Roi Sensing data generation rate of sensor node i
L × L Size of the area

3.1. Directional Charging Model

As shown in Figure 2, we introduce the DCV’s directional power transfer model as follows. When
the effective charging distance of directional charger is D and charging coverage angle is A, the effective

charging coverage area is a sector determined by its docking spot sk and charging orientation vector
→
θkj.

Figure 2. Directional Charging Model.

For a sensor node oi is located at zoi , in order to determine whether the node oi can be charged

by the DCV stopped at docking spot sk with charging orientation vector
→
θsk , we have two judgment
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conditions: (1) The node oi is within the coverage angle A of the charger, denotes as inequality (1); and,
(2) The distance between node oi and charger is less than D, denotes as inequality (2).

( →
sk − zoi

)
× →θsk ≥‖ skzoi ‖ ×cos

(A
2

)
(1)

where ‖ skzoi ‖ denotes the distance between the location of the charger sk and the location of sensor
node zoi .

‖ skzoi ‖≤ D (2)

We refer the RF wireless charging model in Reference [11] to calculate a node’s energy received
from a wireless charger:

Pr =
GsGrη

L

(
λ

4π(d + β)

)2

Pout (3)

where d is the distance between a sensor node and a wireless charger, Pout is the charger’s transmission
power, Gs is the transmitting antenna gain, Gr is the node’s receiving antenna gain, L is polarization
loss, λ is the wavelength, η is rectifier efficiency, and β is a parameter to adjust the Friis’ free space
equation for short distance transmission. Except for distance d, all other parameters in Equation (3) are
constant values based on the environment and device settings. Therefore, we simplify the charging
model in Equation (3) as Equation (4).

Pr =
α

(d + β)2 (4)

where d is the distance from a sensor node to the DCV, and α represents other constant environmental
parameters including Pout, Gs, Gr, L, λ and η in Equation (3).

From Equation (4), we can deduce Pk,i(sk, oi), the effective charging power of the sensor node oi

received from the DCV which stopped at docking spot sk with charging orientation vector
→
θsk :

Pk,i(sk, oi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
α

(d(sk,oi)+β)
2 ,

‖ skzoi ‖≤ D and( →
sk − zoi

)
× →θsk ≥

‖ skzoi ‖ ×cos
(

A
2

)
0, others

(5)

3.2. Network Energy Consumption Model

We consider that each sensor node consumes energy for data sensing, transmission, and reception.
We assume sensor node oi generates sensing data with a rate Roi (b/s). Assuming PSN(oi) is the set of
previous sensor nodes that use sensor node oi on the routing path to the sink node. Equation (6) shows
the total energy consumption of sensor node oi.

ωoi =
∑

ol∈PSN(oi)

(
et + er

)
×Rol +

(
et + es

)
×Roi (6)

Here es, et, and er represent the energy consumption of one unit data for sensing, transmitting,
and receiving respectively [15].

Then we determine the data routing of the network through the minimum energy routing [39].
As shown in Figure 3, nodes o1, o2, o3, o4, and o5 sending data to the sink node through node o6. Then,
we have PSN(o6) = {o1, o2, o3, o4, o5}.
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Figure 3. The data routing path to the Sink in the data collection network.

3.3. Problem Formulation

We consider a set of wireless rechargeable sensor nodes O = {o1, o2, . . . , oN} randomly distributed
on a L× L 2D area, each sensor node oi generates sensing data with a rate Roi(b/s), i ∈ N. There is a
sink node located at Base Station which gathers the data from all sensors in the sensor network. A
Multi-hop data routing tree is constructed for forwarding all sensing data to the sink node, as shown
in Figure 4.

Figure 4. The DVC’s docking spots, charging orientations and moving path.

Aiming to keeping the network working continuously, a DCV with an energy capacity of Cmax

is periodic dispatched to travel through a set of Docking Spots (DS = {s1, s2, · · · , sM}), M denotes the
number of docking spots. The DCV stops at each docking spot and rotates its RF charging antenna to a
specific orientation to charging the nearby sensors.

In a charging cycle, the DCV starts from the base station, moves through each docking spot and
finally returns back to the base station to wait for the next charging cycle. The charging cycle T consists
of the moving time Tmov, the charging time Tcha, and the time rest at the base station Tres. The moving
time Tmov is determined by the length Lc of the DCV’s moving path and moving speed v. The charging
time Tcha is the sum of the dwell times at all docking spots, denote as Tcha = {t1 + . . .+ tk + · · ·+ tM}.
The remaining time of each cycle is the DCV’s rest time Tres.

T = Tres + Tmov + Tcha = Tres +
Lc

v
+

M∑
k=1

tk (7)

Here Lc
v denotes moving time of the DCV, tk denotes the DCV’s charging time at docking spot sk,

the sum of tk denotes the total charging time of the DCV.
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Assume the DCV travels through DS to charging the sensor network. The DCV stops at a docking

spot sk and rotates to a specific charging orientation vector
→
θl

sk
. The sensor nodes which are effectively

covered by the DCV denote as SNCl
k

(
sk,
→
θl

sk

)
. The DCV’s dwell time is tk at docking spot sk.

For a DCV’s charging Path, CP = BSsp1 · · · spk · · · spM
}
, spk ∈ DS, we define EECE, the Effective

Charging Energy received by all sensor nodes from DCV in a charging cycle T as follows:

EECE =
∑

sk∈DS

∑
oi∈SNCl

k(sk,
→
θl

sk
)

Pk,i(sk, oi) × tk (8)

Here Pk,i(sk, oi) denotes the receiving power of the sensor node oi when the DCV is at docking

spot sk; and SNCl
k

(
sk,
→
θl

sk

)
denotes the sensor set covered by the DCV at sk and charging direction

→
θl

sk
.

In a charging cycle T, the DCV’s energy consumption includes moving and charging energy,
denote as Emov and Echa respectively. Charging consumption is determined by charging time and the
DCV’s output power Pout. Moving energy consumption is determined by the length of path Lc and its
energy consumption per unit of moving length ωc. Then the DCV’s Energy Consumption, EDCV is
denoted as Equation (9).

EDCV = Emov + Echa = Pout

M∑
k=1

tk +ωc × Lc (9)

Here tk denotes the DCV’s charging time at docking spot sk, Lc denotes the DCV’s length of
moving path, ωc denotes DCV’s consumption power of moving.

We define the DCV’s Energy Charging Efficiency as follows.
Energy Charging Efficiency η: the ratio of effective charging energy received by the network to

the DCV’s total energy consumption in a charging cycle T, denoted as Equation (10):

η =
EECE
EDCV

(10)

Here EECE denotes the Effective Charging Energy received by all sensor nodes from DCV in a charging
cycle which can be calculated by Equation (8), and EDCV denotes the DCV’s energy consumption in a
charging cycle which can be calculated by Equation (9).

We define the residual energy value of node oi at the time τ as eoi(τ) in a charging cycle. The
node’s residual energy value at any time should be not lower than minimum value Emin, and not
greater than maximum value Emax.

The variation of node’s residual energy value in a cycle is divided into three stages: 1) before
charging; 2) charging stage; 3) after charging. For a sensor node oi, eoi(τ) varied in a charging cycle T
as shown in Figure 5. ck denotes the arrival time of the DCV at docking spot sk in the first cycle T, tk
denotes the DCV’s dwell time at docking spot sk.
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Figure 5. The variation of energy value function of node oi.

The DCV carries limited energy Cmax, so we have to make sure that the energy consumed by the
charging car is no more than Cmax in a cycle.

We define the CEOP problem of mobile directional charging as follow:
For the set of wireless rechargeable sensor nodes O = {o1, o2, . . . , oN} randomly distributed on a

L× L 2D area, how to plan the charging docking spots and charging path where the DCV moves along
the path to replenishing energy for all sensors and maintains the sensor network working continuously.
The objective is to maximize the DCV’s energy charging efficiency while maintaining the network
working continuously.

CEOP problem is formulated as follow:

𝑚𝑎𝑥 𝜂 = 𝐸ாா 𝐸ൗ  𝑠. 𝑡. 𝐸 ≤ 𝑒𝑜𝑖(𝜏) ≤ 𝐸௫, 𝑜 ∈ 𝑂, 0 ≤ 𝜏 ≤ 𝜔𝑇 
𝑒(𝜏) = ൞ 𝑒(𝜔𝑇) − 𝜔 × 𝜏, 𝜏 ∈ [𝜔𝑇, 𝜔𝑇 + 𝑐]𝐸 + ൫𝑃,(𝑠, 𝑜) − 𝜔൯ × 𝜏, 𝜏 ∈ (𝜔𝑇 + 𝑐, 𝜔𝑇 + 𝑐𝑘 + 𝑡]𝐸௫ − 𝜔 × 𝜏, 𝜏 ∈ (𝜔𝑇 + 𝑐 + 𝑡, (𝜔 + 1)𝑇]  

𝐸ாா =   𝑃,(𝑠, 𝑜) × 𝑡∈𝑆𝑁𝐶ቀ𝑠𝑘,𝜃𝑠𝑘𝑙ሬሬሬሬሬ⃗ ቁ௦ೖ∈ௌ  
𝐸 = 𝑃௨௧  𝑡 + 𝜔 × 𝐿ெ

ୀଵ  
𝐸 ≤ 𝐶௫  

(11) 

Here η denotes Energy Charging Efficiency, Emax denotes the maximum capacity of node, Emin
denotes minimum energy value of node. eoi(τ) denotes residual energy value of node oi at the
time τ,when τ ∈ [ωT,ωT + ck], eoi(τ) = eoi(ωT) − ωoi × τ, eoi(τ) denotes the remaining energy of
the node before charging, when τ ∈ (ωT + ck,ωT + ck + tk] , eoi(τ) = Emin +

(
Pk,i(sk, oi) −ωoi

)
× τ,

eoi(τ) denotes the remaining energy of the node during charging, when τ ∈ (ωT + ck + tk, (ω+ 1)T] ,
eoi(τ) = Emax −ωoi × τ, eoi(τ) denotes the remaining energy of the node after charging. EECE denotes
the Effective Charging Energy received by all sensor nodes from the DCV in a charging cycle, EDCV
denotes the DCV’s energy consumption in a charging cycle, Cmax denotes maximum energy capacity
of the DCV.
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4. Design and Analysis of Algorithms

It is difficult for the CEOP problem to be solved directly. We solve the problem in two steps and
divide it into two sub-problems:

(1) First, we find the set of Docking Spots (DS = {s1, s2, · · · , sM}) and their corresponding Charging

Orientation (CO =
{ →
θs1 ,

→
θs2 , · · · ,

→
θsM

}
) to maximize the charging coverage utility and ensure the

mobile charging coverage of the network (Section 3.1).
(2) Second, we plan the DCV’s charging path to travel through all docking spot in DS and the

charging residence time at each docking spot to optimize the overall energy charging efficiency
while maintaining the sensor network working continuously (Section 3.2).

4.1. Find Charging Docking Spots and Charging Directions

For the 2D plane on which the sensors are randomly deployed, we divide it into grids, and take
grid vertices as the DCV’s possible docking spots. Then we find the minimum number of the DCV’s
candidate docking spots and their charging directions to optimize the charging coverage utility locally
while achieving mobile charging coverage for the whole network.

We define the DCV’s Charging Coverage Utility at docking spot sk on the charging orientation
→
θl

sk

as the sum of received power of the charging covered nodes:

U
(
sk,
→
θl

sk

)
=

∑
oi∈SNC(sk,

→
θl

sk
)

Pk,i(sk, oi) (12)

where SNC
(
sk,
→
θl

sk

)
denotes the sensor nodes covered at docking spot sk in charging orientation

→
θl

sk
.

Suppose at the docking spot sk, the DCV has Qk optional charging directions, i.e., {
→
θ1

sk
,
→
θ2

sk
, . . . ,

→
θQk

sk
}.

The maximum charging coverage utility at docking spot sk is Umax(sk):

Umax(sk) = max
{

U
(
sk,
→
θ1

sk

)
, U

(
sk,
→
θ2

sk

)
· · ·U

(
sk,

→
θQk

sk

)}
(13)

Here U
(
sk,

→
θQk

sk

)
denotes charging coverage utility at docking spot sk in charging orientation

→
θl

sk
.

For num grid points on the discrete 2D plane, we get the vertex set of grids: CS =

{cds1, · · · , cdsk, · · · , cdsnum}, cdsk is coordinates of vertexes. We have to choose a set of candidate
docking spots S = {s1, · · · , sk, · · · , sM}, sk ∈ CS, and their corresponding charging direction
θ =

{
θs1 , · · · ,θsk , · · · ,θsM

}
, θsk ∈

{
θ1

sk
, . . . ,θQk

sk

}
, where sk has Qk possible charging directions. We use

Umax
sum(s) denotes the maximum coverage utility of the set S of candidate docking spots as Equation (14).

Umax
sum(S) =

M∑
k=1

Umax(sk)

S = {s1, · · · , sk, · · · , sM}, sk ∈ CS
θ =

{
θs1 , · · · ,θsk , · · · ,θsM

}
, θsk ∈

{
θ1

sk
, . . . ,θQk

sk

} (14)

As shown in Figure 6, there are three candidate docking spots s1, s2, and s3. The docking spot s1

can choose two possible orientation {
→
θ1

s1
,
→
θ2

s1
}, the docking spot s2 can choose two possible orientation

{
→
θ1

s2
,
→
θ2

s2
}, and the docking spot s3 can choose orientation {

→
θ1

s3
}. Therefore, there are five different

coverage utility of different combinations of docking spots and orientation vectors. We can calculate
the possible coverage utilities at s1, s2, and s3 according to Equation (12). For s1, two possible coverage
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utilities are presented as Equation (15). For s2, two possible coverage utilities are presented as Equation
(16). For s3, one possible coverage utility is presented as Equation (17).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
U

(
s1,
→
θ2

s1

)
= P1,4(s1, o4)

U
(
s1,
→
θ1

s1

)
= P1,1(s1, o1) + P1,1(s1, o2)

(15)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
U

(
s2,
→
θ1

s2

)
= P2,1(s2, o4) + P2,5(s2, o5)

U
(
s2,
→
θ2

s2

)
= P1,6(s2, o6)

(16)

U
(
s3,
→
θ1

s3

)
= P3,2(s3, o2) + P3,3(s3, o3) + P3,6(s3, o6) (17)

Figure 6. Combination of candidate docking spots and orientations.

As shown in Figure 6, we can get Umax(s1) and Umax(s2) respectively, as Equations (18) and (19).

Umax(s1) = U
(
s1,
→
θ1

s1

)
(18)

Umax(s2) = U
(
s2,
→
θ1

s2

)
(19)

Then we get the maximum coverage utility of candidate set S = {s1, s2, s3} and their related

charging directions θ ={θ1
s1

,θ1
s2

,θ1
s3

}, Umax
sum(S) = U

(
s1,
→
θ1

s1

)
+ U

(
s2,
→
θ1

s2

)
+ U

(
s3,
→
θ1

s3

)
.

The DCV’s energy loss includes charging energy loss and moving energy costs. At each docking
spot, we aim to reduce the DCV’s charging loss and get higher charging effectiveness. By minimizing the
number of docking spots, we can reduce the DCV’s moving energy cost in the process of mobile charging.
Additionally, maximizing charging coverage utility can reduce the charging energy loss at each docking
spot. Hence it finally improves the energy charging efficiency in mobile directional charging.

To find the candidate docking spots and their charging directions for improvement of the mobile
charging energy efficiency, we propose the two-objective optimization problem as Equation (20), that is
Minimizing the number of Stop points and Maximizing charging Coverage Utility under the constraint
of charging coverage of all sensors, called the MSMCU (Minimizing the number of Stop points and
Maximizing charging Coverage Utility) problem.
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𝑚𝑖𝑛  𝑎௨
ୀଵ𝑚𝑎𝑥  𝑈൫𝑠, 𝜃௦ೖሬሬሬሬሬ⃗ ൯௨

ୀଵ𝑠. 𝑡.  𝑎 × 𝑥, ≥ 1, 1 ≤ 𝑖 ≤ 𝑁     ௨
ୀଵ

 

𝑥, = ቐ1, 𝑖𝑓 𝑜 ∈ 𝑆𝑁𝐶 ቀ𝑠𝑘, 𝜃𝑠𝑘𝑙ሬሬሬሬሬ⃗ ቁ0, 𝑖𝑓 𝑜 ∉ 𝑆𝑁𝐶 ቀ𝑠𝑘, 𝜃𝑠𝑘𝑙ሬሬሬሬሬ⃗ ቁ 

(20) 

where ak is a binary decision variable that is equal to 1 if region sk belongs to the minimum stops, and
to 0 otherwise. Additionally, the n inequality constraints ensure that every node must belong to at
least one stop region in the minimum stops. We analysis Equation (20), give Theorem 1 and the proof
of Theorem 1.

Theorem 1. The MSMCU problem of finding specified docking spots and orientations with minimum the
number of stops and maximum coverage utility is NP-hard.

Proof of Theorem 1. We prove Theorem 1 by giving a special instance of the problem and explaining
that the instance is NP-hard.

Instance. We assume that the coverage utility is the maximum as long as a sensor is covered, then
the problem can be reduced to solve the Minimum Set Covering Problem. Because the Minimum Set
Covering Problem is NP-hard, the MSMCU problem is also NP-hard. �

Then we propose a Greedy approximation algorithm of Maximum Coverage Utility (GMCU).
GMCU algorithm firstly divides a 2D plane into grids. Secondly, it takes each grid vertex as a possible
stop point and computes its optimal charging Direction and Maximum Coverage Utility (DMCU).
Finally, it selects a set of candidate stop points to achieve overall maximum utility and network charging
coverage. Let us first introduce the GMCU algorithm, and then introduce the DMCU algorithm.

(1) GMCU algorithm

In the GMCU algorithm, we divide the plane into grids, and take each vertex as a possible docking
spot. The coverage of the charger is a 90◦ sector with radius D. The DCV only chooses one orientation
to charge each time it stops, so if the grid’s size is too large, some nodes will be missed. The grid’s size
d must satisfy Equation (21)

d ≤ √2/2×D (21)

The GMCU algorithm firstly divides a 2D plane into grids, take each grid vertex as a possible
docking spot, denoted as CS, and cdsi represents coordinates of vertexes. Put each cdsi into the DMCU
algorithm to calculate the maximum coverage utility and the covered nodes set. Choose the docking
stops with the maximum value of coverage utility until all nodes are covered. The outputs are the
docking spot set (DSS) and the set of covered nodes set (SANC) at corresponding directions.

The procedure of GMCU algorithm is presented in Table 2.

(2) The DMCU algorithm

The DMCU algorithm is used to find the charging direction with maximum coverage utility at
each docking spot.
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Take Figure 7 as an example to illustrate the process of DMCU algorithm: (1) The DCV rotates
counter-clockwise with each different node as initial boundary; (2) Calculate the coverage utility of
each orientation.

Table 2. The Procedure of the GMCU (Greedy approximation algorithm of Maximum Coverage
Utility) Algorithm.

GMCU algorithm: find candidate docking spots and their charging directions

1. Input: The length of area: L; Farthest distance DCV can reach: D; Charging angle of DCV: A
2. Discrete the L x L plane into grids, get the vertex set of grids: CS = {cds1, cds2, · · · , cdsk, · · · , cdsnum}, cdsk

is coordinates of vertexes
3. DDS = ∅, SANC = ∅, k = 0
4. //DDS candidate docking spots
5. //SANC set of cover set which associated with DDS
6. While O � ∅ // O set of sensor nodes
7. SNCtemp = ∅, Utemp = 0, CDStemp = 0
8. //find a stop point with max cover utility
9. While k < len(CS)
10. Call DMCU(cdsk) to get max coverage utility
11. Umax(cdsk), cover set SNCk at docking

12. point cdsk with charging direction
→
θsk

13. If Umax(cdsk) > Utemp
14. Utemp = Umax(cdsk)

15. SNCtemp = SNCk
16. CDStemp = cdsk
17. End If

18. k = k + 1
19. End While

20. SANC = SANC∪
{
SNCtemp

}
21. DDS = DDS∪

{
CDStemp

}
22. O = O− SNCtemp

23. CS = CS – { CDStemp
}

24. k = 0
25. End While

26. Output: set of docking points DDS and set of charging cover sets SANC at related charging directions

   
(a)  (b)  (c)  

   
(d)  (e)  (f)  

Figure 7. An example for showing the procedure of DMCU (Direction and Maximum Coverage
Utility) algorithm.

Six different coverage utility values can be obtained; the output is orientation with maximum
coverage utility of a docking spot and the sensor nodes set that the combination of docking spot and
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this charging orientation can cover. Figure 7a–f show the set of nodes covered by the DCV at dock spot

sk in each orientations (
→
θ1

sk
∼
→
θ6

sk
), SNC

(
sk,
→
θ1

sk

)
∼ SNC

(
sk,
→
θ6

sk

)
represent the corresponding nodes sets.

The procedure of DMCU algorithm is presented in Table 3.

Table 3. The Procedure of the DMCU Algorithm.

DMCU algorithm: Find the max utility, cover set and charging orientation at sk

1. Input: Sensor node set: O = {o1, o2, · · · , oi, · · · , oN}; Coordinates of certain docking spot sk:
(
cx, cy

)
;

Farthest charging distance DCV can reach: D; Charging angle of DCV: A
2. OCS = ∅ // OCS sensors’ set possible covered by sk
3. i = 0
4. While i < N: //find sensors’ set OCS at docking spot sk
5. Calculate Euclidean distance between sensor oi
6. and docking spot di
7. If di < D:
8. OCS = OCS∪ {oi}
9. End If

10. i = i + 1
11. End While

12. If OCS � ∅:
13. L = len(OCS)
14. Calculate the all possible charging angles:
15. ϕ =

{
γ1,γ2, · · · ,γ, · · · ,γL

}
16. Sort sensors in set OCS in ascending order
17. according to the value of angles.
18. DCS = ∅, k = 0
19. // calculate L directions’ cover sets
20. While k < L
21. m = 0, SNCtmp = ∅

22. While m < L
23. If γk ≤ γm ≤ (γk + A)%360:
24. SNCtmp = SNCtmp ∪ {om}
25. End If

26. m = m + 1
27. End while

28. DCS = DCS∪
{
SNCtmp

}
29. k = k + 1
30. End while

31. CUStmp = ∅, SNCtmp = ∅, j = 0, γtmp = 0
32. // find the cover set with max utility
33. While j < len(DCS)
34. Calculate cover utility CUS[ j] of DCS[ j]
35. If CUS[ j] > CUStmp
36. CUStmp = CUS[ j]
37. SNCtemp = DCS[ j]
38. γtmp = ϕ[ j]
39. End If

40. j = j +1
41. End While

42. Umax = CUStmp, SNC = SNCtemp, γ = γtmp
43. End If

44. Output: max utility Umax, covered set SNC, direction γ
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OCS represents a coverage set of a candidate docking spot, the initial value is null. If the distance
between the node and the candidate stop is not greater than D, then add the node into OCS. γ j in ϕ
represents the angle formed by each node in OCS at each candidate dock spot. DCSk represents a
coverage set of candidate stop with kth charging direction, and the CUSj indicates the corresponding
coverage utility value. The DMCU algorithm finally outputs the maximum value Umax

sk
in CUSj and

the set of covered nodes SNC
(
sk,
→
θl

sk

)
covered at this docking spot sk with corresponding direction

→
θl

sk
.

As shown in Figure 8, we randomly deploy 100 nodes in the 20 × 20 m2 area and run the GMCU
algorithm to determine specified docking spots and orientations with maximum coverage utility and
minimum the number of docking spots.

Figure 8. Illustration of the GMCU algorithm’s example result: DCV’s candidate charging locations
and charging directions.

4.2. Plan Moving Path and Charging Residence Time

In this section, we plan the DCV’s charging moving path to travel through all candidate docking
spots chosen by the GMCU algorithm and the charging residence times at each docking spot to maintain
the network’s continuous working and optimize the overall charging energy efficiency.

Firstly, we introduce the charging cycle T. As shown in Figure 9, the charging cycle T consists of
the DCV’s moving time, the charging residence time at each docking spot, and the rest time at the base
station. The moving time is determined by the length of charging path. The charging residence time at
each docking spot is determined by charging energy requirement of sensors covered by the DCV.

Figure 9. Periodic behavior of the charging car.

To achieve the goal of maintaining network perpetually, the charging process can be repeated
periodically. Then this periodical charging cycle must meet two requirements:

(1) The energy received by a sensor is greater or equal to the energy consumed in a charging cycle;
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(2) The residual energy value of a node will not be lower than Emin during a charging cycle.

The cover sets charged by the DCV at dock spot sk on charging orientations
→
θl

sk
:

SNC
(
sk,
→
θl

sk

)
=
{
okl

1 , okl
2 , · · · , okl

m

}
. We can derive the minimal charging residence time tk according to the

charging cover sets SNC
(
sk,
→
θl

sk

)
at docking spot sk:

tk = max
oi∈SNC(sk,

→
θl

sk
)

{
ωoi

Pk,i(sk, oi)

}
× T (22)

Hereωoi denotes the energy consumption of sensor node oi, Pk,i(sk, oi) denotes the receiving power
of the sensor node oi when the DCV is at docking spot sk.

We denote ck as the arrival time of the DCV at docking spot k in the first cycle. Denote d0,1 as
the distance between the base station and the first docking spot, dl,l+1 as the distance between lth and
(l + 1) th docking spot.

ck =
k−1∑
l=0

dl,l+1

v
+

k−1∑
l=1

tl (23)

Here tl denotes the DCV’s charging time at docking spot sl.
According to Figure 5, we can derive from Equation (22):

Emax − min
oi∈SNC(sk,

→
θl

sk
)

{
eoi(ck)

}
≥ Emax − min

oi∈SNC(sk,
→
θl

sk
)

{
eoi(T)

}
(24)

That is to say eoi(m× T + ck) is the minimum value of eoi(τ). To have eoi(τ) ≥ Emin, it is sufficient
to have:

eoi(m× T + ck) = eoi(m× T) − ck ×ωoi ≥ Emin, oi ∈ SNC
(
sk,
→
θl

sk

)
(25)

while m ≥ 1:

eoi(m× T + ck) = eoi(m× T) − ck ×ωoi

= eoi((m− 1) × T + ck + tk) − {
m× T − [(m− 1) × T + ck + tk]

}− ck ×ωoi

= eoi((m− 1) × T + ck + tk) − (T − tk) ×ωoi= Emax − (T − tk) ×ωoi

(26)

Therefore, if Equation (27) holds, we have eoi ≥ Emin, the sensor sk can working continuously.

Emax − (T − tk) ×ωoi ≥ Emin (27)

We can get the Charging Cycle T when the two periodical charging requirements are met. Then
we plan the DCV’s charging moving path.

When the DCV moves along the shortest Hamiltonian circle, we can achieve the maximum energy
efficiency η.

We can proof this based on contradiction. Suppose the shortest travel route for the Hamilton Circle
is L = {s1s2 · · · sM}, and there exists a move route L̂ = {s3s2 · · · sMs1}. Assume that η̂ ≥ η is established.

η̂ =
E

ÊDCV

=

∑M
k=1

∑N
i=1 Pk,i(sk, oi) × t̂k

Pout ×∑M
k=1 tj +ωc × L̂

(28)

η =
E

EDCV
=

∑M
k=1

∑N
i=1 Pk,i(sk, oi) × tk

Pout ×∑M
k=1 tk +ωc × L

(29)
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The energy received by the node in this cycle is equal to the energy consumed. The numerator of
Equations (28) and (29) are equal. Because L ≤ L̂, η̂ ≤ η, thus leading to a contradiction. Therefore,
we can dispatch the DCV moving along the shortest Hamiltonian circle to achieve the maximum
energy efficiency.

We redefine Equation (11) as Equation (30)

max η

s.t. tk = max
oi∈SNC(sk,

→
θl

sk
)

{
ωoi

Pk,i(sk,oi)

}
× T

Emax − (T − tk) ×ωoi ≥ Emin

T = Tres + TTSP +
M∑

k=1
tk

Pout
M∑

k=1
tk +ωc × Lc ≤ Cmax

(30)

Here η denotes Energy Charging Efficiency, ωoi denotes the energy consumption of sensor node oi,
Pk,i(sk, oi) denotes the receiving power of the sensor node oi when the DCV is at docking spot sk, tk
denotes the DCV’s charging time at docking spot sk, Tres denotes rest time of the DCV, TTSP. denotes
the moving time of the DCV, the sum of tk denotes the total charging time of the DCV.

Finally, we get the charging residence time at each docking spot and energy efficiency by solving
the planning problem.

5. Analysis of the DCV’s Service Capability

We use only one DCV with energy capacity of Emax to maintain WRSN perpetually. Therefore, the
network size and area size are limited. This section will specifically analyze the service capability of
the DCV.

Assume that the number of stops is M, the charging time of each stop is tk, the distance between
adjacent stops is dk−1,k, the length of the return route is dback. Two constraints must be satisfied for
each round of charging: (1) the energy received by each node is not less than the energy consumed,
formulated as Equation (31); and (2) the DCV should not run out of energy in a round, formulated as
Equation (32).

min
oi∈SNC(sk,

→
θl

sk
)

{
Pk,i(sk, oi)

}
× tk ≥ max

oi∈SNC(sk,
→
θl

sk
)

{
ωoi

}
×

(
(t1 + · · ·+ tM) +

d1,2+···+dM−1,M+dback
v

)
, 0 ≤ k ≤M (31)

Pout × (t1 + · · ·+ tk + · · ·+ tM) + (d1,2 + d2,3 + · · ·+ dM−1,M + dback) ×ωc ≤ Cmax (32)

Here, Pout is the charger’s transmission power, v denotes the moving speed of the DCV, ωc denotes
DCV’s consumption power of moving, Cmax denotes maximum energy capacity of the DCV.

We first analyze the maximum size of area. Assuming that there are only two nodes in the network
and they are on the diagonal line of the network, the consuming power is the minimum ωmin, the DCV
stops at the nodes respectively, and the receiving power of the nodes is both Pout. Then the number of
stops is two (M = 2), the shortest distance of moving route is 2

√
2 ∗ l, l denotes length of the network

,then we can get Equation (33)

lmax =
Cmax × (Pout − 2×ωmin)

2
√

2×
(Pout×ωmin

v +ωc × (Pout − 2×ωmin)
) (33)
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Secondly, we analyze the minimum size of area. Assume that the nodes are evenly distributed in
the network, the consuming power is the maximum ωmax, the DCV stops at the nodes respectively, and
the receiving power is all the minimum Pmin. Then the number of stops is formulated as Equation (34).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢
l√

2
2 ×D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥
2

(34)

The longest distance of move route is formulated as Equation (35).

2× (M− 1) × √2×D (35)

We bring Equations (34) and (35) into Equations (31) and (32) to get Equations (36).

𝑀 = −𝑏 ± √𝑏ଶ − 4 × 𝑎 × 𝑐2 × 𝑎  

⎩⎪⎨
⎪⎧ 𝑎 = 2√2 × 𝜔௫ × 𝐷 × 𝑃𝑏 = 2√2 × 𝐷 × 𝜔 × 𝑣 × (𝑃 − 𝜔௫)−2√2 × 𝜔௫ × 𝐷 × 𝑃𝑐 = 𝑣 × (𝑃 − 𝜔௫) × ൫𝐶௫ + 2√2 × 𝐷 × 𝜔൯ 

(36) 

Therefore, the minimum length of area is Lmin, formulated as Equation (37).

Lmin =
⌊√

d2 ×M
⌋

(37)

When the network area is the smallest, assuming that the charger can charge CN nodes
simultaneously at most, the number of nodes can reach the maximum. Then the maximum number of
nodes is CNS, formulated as Equation (38).

CNS = M×CN (38)

In summary, when the size of the area is between Lmin and Lmax and the size of network is less
than CNS, the proposed charging model and approximate algorithm can satisfy the two constraints: 1)
the energy received by each node is not less than the energy consumed; and 2) the DCV should not run
out of energy in a round.

6. Simulation Experiments

In this section, we describe comprehensive simulation experiments to investigate the algorithms’
performance under different influence factors, such as grid size, area size, and network size. In
the existing literature, there are no related works that study mobile directional charging problem in
WRSN. Therefore, we conducted simulations experiments and compared charging efficiency with
mobile omnidirectional charging models [14]. The simulation experiments were performed on a 64-bit
Windows 10 system; the programming languages were C++ and Python. The algorithms were realized
in the C++ language. Additionally, the visualization of deployment results was realized in Python. In
the simulation experiments, we set up the parameters of the DCV and rechargeable sensor network, as
in Table 4.
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Table 4. Parameter Setting.

Parameter Value

Emax 10,000 J
Pou 3 J/s
ωc 0.3 J/m
D 3 m
v 0.5 m/s

Roi randomly generated in References [1,10] b/s
es 0.01 mJ/b
et 0.06 mJ/b
er 0.05 mJ/b
α,β 10

The number of sensor nodes 20, 40, 60, 80, 100, 120, 140, 160, 180,200
The size of area 15 × 15 m2, 20 × 20 m2, 25 × 25 m2, 30 × 30 m2, 35 × 35 m2,

6.1. Comparison Experiments on Different Grid Size

In our approach, we discretized the continuous 2D plane with gridding. We investigated how
grid size affects the algorithm’s performance. We randomly deployed 20, 40 and 60 nodes in the
15 × 15 m2 area, changed the grid size, and explored the variation of energy efficiency and docking
spots number. Figure 10 shows that with the decrease of grid size, the energy efficiency of the DCV
increase. Additionally, a stable grid size tends to be 0.2 m. Figure 11 shows that with the decrease of
grid size, the number of specified docking spots decreases. Additionally, it tends to be stable when
grid size is .2 m.

Figure 10. The effect of different grid sizes on the energy efficiency.
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Figure 11. The effect of different grid sizes on the number of specified docking spots.

6.2. Comparison Experiments on Different Network Size And Area Size

We investigated how network size affects the algorithm’s performance. We randomly deployed
20, 40, 60, 80, 100, 120, 140, 160, 180, 200 nodes in 15 × 15 m2, 20 × 20 m2, 25 × 25 m2, 30 × 30 m2,
35 × 35 m2 plane areas respectively, and explored the variation in the energy efficiency of DCV. It can
be seen in Figure 12 that as the number of nodes increases, the energy efficiency increases; because the
number of nodes increases in the same area, the number of nodes can be covered by the DCV increases,
so more energy is received by the nodes, and the energy efficiency is improved. As shown in Figure 13,
when the number of nodes remains unchanged and the area becomes larger, the energy efficiency
decreases. This is because as the area becomes larger, the distance between nodes becomes larger, the
moving path of the DCV becomes longer, and the energy consumed on moving increases, which leads
to the decrease of the energy efficiency of the DCV.

Figure 12. The influence of network size N on energy efficiency of the DCV.
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Figure 13. The influence of area size on energy efficiency of the DCV.

6.3. Comparison Experiments on Mobile Omnidirectional and Directional Charging

In the existing literature, there are no related works that use directional charging model for mobile
charging in WRSN. Therefore, we conducted simulation experiments and compared charging efficiency
with mobile omnidirectional charging [14]. We randomly deployed 20, 40, 60, 80, 100, 120, 140, 160,
180 and 200 nodes in 15 × 15 m2, 20 × 20 m2 and 25 × 25 m2 areas. In experiments, we used DCV
and omnidirectional charging vehicle respectively to charge the network according to the algorithms
proposed in this paper, and compare their energy efficiency. Figures 14–16 show the variation of energy
efficiency in different area size and network size. The experiments show that the energy efficiency of
DCV is higher than that of omnidirectional charging vehicle in the network with sparse nodes. As
the node density increases, the energy efficiency of DCV and omnidirectional charging vehicle will
gradually converge. Hence our mobile directional charging algorithm is more suitable in a network
with sparse nodes compared with mobile omnidirectional charging.

Figure 14. Energy efficiency of the DCV and omnidirectional charging vehicle in 15 × 15 m2 area.
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Figure 15. Energy efficiency of the DCV and omnidirectional charging vehicle in 20 × 20 m2 area.

Figure 16. Energy efficiency of the DCV and omnidirectional charging vehicle in 25 × 25 m2 area.

7. Conclusions

In this paper, we investigated the DCV’s charging efficiency optimization problem in RWSN while
maintaining sensor network working continuously. We proved that the problem is NP-hard. Firstly, we
proposed the coverage utility of directional charging. Then we transformed the finding of candidate
docking spots and their charging directions on the 2D plane into a two-objective optimization problem
of minimizing number of stop points and maximizing charging coverage utility. Additionally, we
proposed a greedy approximation algorithm to solve the two-objective optimization problem and
find the set of candidate stop points of the DCV. Finally, we planned the DCV’s charging moving
path to travel through all candidate docking spots to maintain the network’s continuous working and
optimize the overall energy charging efficiency. We theoretically analyzeed the DCV’s charging service
capability, and performed the comprehensive simulation experiments. The simulation experiment
results show that energy charging efficiency is higher than omnidirectional charging model in the
sparse networks.

As stated in the literature [40], WPT has several limitations when applied to a WSN. First, it has
very low energy transfer efficiency as distance increases. Second, it is sensitive to obstruction between
an energy source and a receiver. Therefore, this technology is only suitable in the ultra-low-power
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WSN scenario. In future work, we will further investigate more practical energy replenishment
optimization problem in WSN, in which we can use a hybrid energy replenishing scheme, such as
wireless charging for ultra-low-power sensor nodes and solar energy harvesting for high-power sensor
nodes in the network.
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Abstract: In this paper, a deep learning (DL)-based physical (PHY) layer authentication framework is
proposed to enhance the security of industrial wireless sensor networks (IWSNs). Three algorithms,
the deep neural network (DNN)-based sensor nodes’ authentication method, the convolutional neural
network (CNN)-based sensor nodes’ authentication method, and the convolution preprocessing
neural network (CPNN)-based sensor nodes’ authentication method, have been adopted to implement
the PHY-layer authentication in IWSNs. Among them, the improved CPNN-based algorithm requires
few computing resources and has extremely low latency, which enable a lightweight multi-node
PHY-layer authentication. The adaptive moment estimation (Adam) accelerated gradient algorithm
and minibatch skill are used to accelerate the training of the neural networks. Simulations are
performed to evaluate the performance of each algorithm and a brief analysis of the application
scenarios for each algorithm is discussed. Moreover, the experiments have been performed with
universal software radio peripherals (USRPs) to evaluate the authentication performance of the
proposed algorithms. Due to the trainings being performed on the edge sides, the proposed method
can implement a lightweight authentication for the sensor nodes under the edge computing (EC)
system in IWSNs.

Keywords: PHY-layer; light-weight authentication; neural network; WSN; industrial

1. Introduction

With the development of Industry 4.0, wireless sensor networks (WSNs) have great application
prospects for industrial scenarios due to their advantages over traditional wired networks [1–4].
However, fully-automated mechanized operations and the wireless communication environments
make the industrial wireless sensor networks (IWSNs) have stronger requirements for high security
and low latency [5]. M.Luvisotto et al. [6] mentioned that the response delay in IWSNs should be in
milliseconds. Moreover, under the edge computing (EC) system in IWSNs, some sensor nodes are in
some completely security-free environments because there are no redundant computing resources
and transmission resources. Therefore, lightweight authentication is urgently needed to enhance the
security of IWSNs while ensuring low latency. The encrypted methods [7,8] are too heavy to support
the nodes due to complex computing. I. Bhardwaj et al. [9] did some lightweight processing on the
password, but their method still cannot meet some specific requirements. Some other researchers
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proposed a fast cross-authentication scheme that combines non-cryptographic and cryptographic
algorithms to solve the security and latency issues [10]. In addition, the heterogeneous nature of the
IWSNs makes traditional encryption-based authentication methods more complex to implement
or manage. However, physical (PHY) layer methods provide some new approaches to protect
the lightweightIWSNs. The high authentication rate and low cost are especially valued for such
applications. By introducing deep learning (DL) into the PHY-layer authentication method, under the
EC system, the training is performed under the edge devices, and the sensor nodes almost do not bear
any extra costs.

D. Christin et al. [1] surveyed related WSN technologies dedicated to industrial automation from
the aspects of security and quality of service (QoS). The work in [4] presented a QoS framework for
IWSNs guaranteeing the delay bound and the target reliability. N. Neshenko et al. [11] surveyed
the challenges and research problems in the Internet of Things (IoT) including intrusion detection
systems, threat modeling, and emerging technologies. However, the papers mentioned above only
address the security and reliability issues from the perspective of the system architecture or simply
give a direction for future research. L. Xiao et al. [12] proposed a method to enhance the security of
underwater sensor networks exploiting the power delay profile of the underwater acoustic channel to
discriminate the sensors. The article [13] presented a two-factor user authentication protocol using the
hash function that protects against other attacks in wireless sensor networks, with the exception of
denial of service (DoS) and node attacks. However, the traditional security methods have relatively
large requirements on computing resources and communication resources, which cannot meet the
requirement of low latency.

PHY-layer authentication can achieve lightweight authentication and effectively address the
tradeoff between the security and low latency requirement of the wireless sensor networks in industrial
scenarios. The PHY-layer authentication methods can distinguish the legitimate sensor nodes and
illegal ones by physical layer channel information, such as channel state information (CSI) [14–17],
received signal strength indicator (RSSI) [18–20], received signal strength (RSS) [21], and the radio
frequency (RF) fingerprint [22,23]. However, the PHY-layer authentication methods mentioned above
based on the hypothesis test are mostly compared with a threshold to distinguish users, which makes
it difficult to discriminate multi-nodes at the same time. Authenticating multi-nodes simultaneously is
a multi-classification problem, which needs to be solved urgently.

Deep learning has a large number of applications, such as computer vision, image classification,
pattern recognition [24–26], and so on. There are considerable research works using deep learning
in wireless communications, such as in channel estimation and channel prediction. P. Illy et al. used
machine learning to enhance the security of edge computing by implementing intrusion detection [27].
The paper [28] used the deep neural network to estimate the CSIs in orthogonal frequency division
multiplexing (OFDM) systems. The work in [29] proposed a Raleigh fading channel prediction scheme
with a deep learning method. N. Wang et al. [30] proposed a physical-layer authentication scheme
based on extreme learning machine to detect spoofing attack. The DL-based PHY-layer authentication
methods proposed in this paper can achieve multi-user authentication in a short time.

Unlike the traditional test-threshold-based PHY-layer authentication, the DL-based PHY-layer
authentication methods can distinguish multiple sensor nodes simultaneously and maintain excellent
performance. In the EC system, multi-sensor nodes need to be authenticated simultaneously, which
is suitable for using the DL-based methods. The DL-based authentication methods are usually
divided into the offline training phase and online authentication phase. The PHY-layer authentication
framework we proposed in this paper also includes an online retraining process. In summary, the
DL-based sensor nodes’ authentication algorithms proposed in this paper, utilizing the spatial diversity
of wireless channels, can discriminate the sensor nodes without the test thresholds and have more
practical application values. The main contributions of our work can be summarized as follows:
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• We propose a DL-based PHY-layer authentication framework to enhance the security of industrial
sensor networks. We also briefly explore the applications of the framework for practical industrial
scenarios.

• Three different algorithms are adopted to implement the PHY-layer authentication in IWSNs,
including the deep neural network (DNN)-based sensor nodes’ authentication method, the
convolutional neural network (CNN)-based sensor nodes’ authentication method, and the
convolution preprocessing neural network (CPNN)-based sensor nodes’ authentication method.

• Simulation results show that the proposed algorithms can achieve better performance. In addition,
the experiments in the engineering center with USRPs validate their utility in practical industrial
environments.

The rest of this paper is organized as follows. We present the preliminaries and system
model in Sections 2 and 3, respectively. The DL-based PHY-layer authentication method in
industrial wireless sensor networks is proposed in Section 4. We provide numerical experiments
in Section 5. The experiment in a practical environment and conclusions are presented in Sections 6
and 7, respectively.

The symbols used in this article are briefly described as follows. Uppercase bold letters are
used for the matrix (e.g., H, W) and lowercase bold letters for vectors (e.g., x, y). The elements are
represented by the letters with subscripts and not bold (e.g., xi, ω1i).

2. Preliminaries

2.1. Channel State Information

Due to the inherent characteristics of the wireless channels, the transmitted signals may
experience a series of attenuations, such as, multipath effects, fading, shadowing, and delay
distortion. The channel state information (CSI) provides us the channel variations experienced during
propagations. In wireless communications, CSI represents the channel properties of a communication
link. The CSI needs to be estimated by the receiver to detect the transmitted signals.

In the wireless fading channel, the system is modeled as:

y = Hx + n, (1)

where y and x represents the receive and transmit signal, respectively. H denotes the channel matrix,
which is the CSI we mentioned above. n denotes the additive white Gaussian noise vector, which
follows a complex standard normal distribution. n ∼ CN (0, σ0), where the mean value is zero and
the noise covariance matrix σ0 is known. H represents the channel’s frequency response, which can be
estimated by y and x in the receiving end.

2.2. Deep Neural Network

Generally speaking, DNN is a deeper version of the artificial neural network (ANN) through
increasing the number of hidden layers in order to enhance the ability in representation or classification.
As shown in Figure 1, it is a typical deep neural network with an input layer, multiple hidden layers,
and an output layer. Each layer has a large number of neurons. The input of each neuron is the output
of the upper neuron multiplied by the corresponding coefficient, and the output of each neuron is the
input activated by activation functions. For example, the output of the first neuron in the first hidden
layer is:

z1
1 = fa

(
∑

i
ω1ixi + ξ1

)
, (2)

where ω1i denotes the weight coefficient of links z1
1 and xi. ξ1 denotes the threshold coefficient of

z1
1. fa (·) represents the activation function. Common activation functions are the sigmoid function,
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the rectified linear unit (ReLU) function, and the soft-max function, defined as fsigmoid (x) = 1
1−e−x ,

fReLU (x) = max(0, x), fso f tmax (x) = ex

‖ex‖1
, respectively, where x is a vector and ‖·‖1 denotes the

�1-norm. Usually, the hidden layer and output layer use the ReLU function and the soft-max function,
respectively. The output of lth layer is given by:

zl = f l
a

(
W l · zl + ξl

)
. (3)

We use the Ψl (·) to represent the operation of each layer of neurons. Then, we have the output of
the deep neural network,

ŷ = Ψ (W , Ξ) = ΨL
(

ΨL−1
(
· · ·Ψ1 (x)

))
. (4)

The application of the neural network is executed in two steps, a training phase and an
identification phase. When in the training phase, the input data (i.e., CSI) of the input layer and
the corresponding label y are known. Then, we train the parameters W and ξ by minimizing the cost
function L by the gradient descent method, which is formulated as:

Ŵ , ξ̂ = arg min
W ,ξ

(L) , (5)

where L represents the value of the loss function. The loss function usually uses a mean squared error
function or a cross entropy function, which is given by:

Lmean−square = ‖y − ŷ‖2
2 , (6)

or:
Lcross−entropy = yT · log (ŷ) , (7)

where (·)T denotes the transpose of the matrix or vector.
In the identification phase, the label of the input data (i.e., CSI) is unknown. By inputting CSI to

the neural network, its corresponding output ŷ will be used to identify and classify the input CSI.

Figure 1. The deep neural network.

2.3. Convolutional Neural Network

The convolutional neural network (CNN) is part of the feedforward neural network with
convolutional computation and a deep structure [11]. CNN includes convolutional layers, pooling
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layers, and fully-connected layers compared with ordinary neural network. The convolutional layer
computes multiple convolutions in parallel to produce a set of linear activation responses. Further, the
convolution operation can effectively extract features form the original signal (e.g., CSI). The output of
the convolutional layer is given by:

Zl = f l
a

(
Zl−1 ⊗ W l + ξl

)
, (8)

where Zl denotes the output of the lth layer and W l and ξl denote the convolution kernel and threshold
in the lth layer, respectively. ⊗ represents the convolution operation. f l

a (·) denotes the activation
function in CNN, often using the ReLU function.

Following the convolutional layer is the pooling layer, which effectively reduces the data
dimension without losing valid information. The pooling function replaces the output of the network
at that location using the overall statistical characteristics of the adjacent outputs at a location; for
example, the maximum value in the adjacent rectangular region. Other commonly-used pooling
functions include the average value in an adjacent rectangular region, the �2 norm, and the weighted
average in adjacent regions. The main goal is to reduce the dimension or the resolution of feature maps.
The pooling operation, which is a subsampling, can facilitate the extraction of high-level features.

The fully-connected layer of CNN is more like a hidden layer in DNN. There can be one
fully-connected layer or multiple in CNN. We convert CSI into a matrix and use different colors
to represent different values. As shown in Figure 2, it is a typical convolutional neural network with
two convolutional layers, two pooled layers, and one fully-connected layer. We can see that the CSI
converts to a matrix of 32 by 32 in size. The size of the convolution kernel in the first convolutional
layer is four by four. After the convolution and activation, the average pooling operation is performed
with a kernel of four by four in size. Then, there is another convolution, activation, and pooling
operation. The final two layers are the fully-connected layer and the output layer activated with
soft-max. The output of CNN can be formulated as:

ŷ = Υ (w, ξ) = ΥL
(

ΥL−1
(
· · ·Υ1 (X)

))
. (9)

Like DNN, CNN is also executed in two steps, a training phase and an identification phase.
During the training phase, the input data (i.e., CSI) and corresponding labels y will be used to train
the parameters w and ξ in CNN, which is formulated as:

ŵ, ξ̂ = arg min
w,ξ

(L) , (10)

where L denotes the value of the loss function in CNN. In the identification phase, the well-trained
CNN will be used to perform the PHY-layer authentication.

Figure 2. The convolutional neural network. CSI, channel state information.
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3. System Model

We propose a DL-based PHY-layer authentication for an industrial wireless sensor network that
can resist the spoofing attack. The methods we propose can enhance the security of the industrial
wireless network without sacrificing communication resources. As shown in Figure 3, we placed
many sensor nodes in the different locations of the industrial scene. The wireless sensor nodes send
the pilot to the base station (BS) with time division duplexing (TDD) mode. First of all, each node
needs to be identified by the upper layer authentication to facilitate labeling the corresponding CSI.
In the initialization phase, we trained our neural networks through the training data (i.e., CSIs)
and corresponding labels. Then, we authenticated the legitimate and illegal sensor nodes with
newly-estimated CSI in the authentication phase. In the retraining phase, we updated the CSIs’
training set with the new channel information of certified sensor nodes and retrained the neural
network for the next authentication. The authentication processing of the industrial wireless sensor
network is shown in Figure 4.

The DL-based PHY-layer authentication we propose can dynamically adjust system parameters
over time. It can further improve the accuracy of authentication and has higher practicality.

Figure 3. The system model of DL-based PHY-layer authentication in IWSNs.
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Figure 4. DL-based PHY-layer authentication flow chart.

4. Deep Learning-Based Sensor Nodes’ Authentication Algorithms

In our previous work, we briefly introduced the physical layer channel authentication based
on CNN [31]. This paper will further improve the CNN algorithm and propose a rapid-DNN-based
PHY-layer authentication algorithm to meet the low latency requirements of industrial wireless sensor
networks.

4.1. DNN-Based Sensor Nodes’ Authentication

The DNN-based PHY-layer authentication in industrial wireless sensor networks uses the DNN
to implement sensor nodes’ authentication. In the initialization phase, the base station collects channel
state information of each sensor node and performs the corresponding labeling according to the upper
layer protocol authentication (e.g., EAP, AKA). The DNN was trained by the collected information
to obtain the initial neural network parameters. In the authentication phase, the CSI of the unknown
sensor node will be authenticated by the well-trained DNN in the initialization phase. After the new
CSI has been authenticated, the dataset will be trained again for the next authentication.
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Algorithm 1 DNN-based sensor nodes’ authentication.

Input: The ith CSI to authenticate x(i)

Output: The label of unknown CSI ŷ(i), the new weight matrix W†, and threshold vector ξ† of DNN

1: Initialize all connection weights W†
0 , and thresholds ξ†

0 in the network will be obtained through

the training of DNN, using the pre-acquired dataset D† = {(xk, yk)}m
k=1;

2: Compute ŷ(i) by well-trained DNN;
3: Update the training set D† = {(xk, yk)}m

k=1 by
(

x(i), ŷ(i)
)

;
4: Retrain the DNN by the new dataset and get new weight matrix W† and threshold vector ξ†;
5: Return ŷ(i), W†, ξ†.

4.2. CNN-Based Sensor Nodes’ Authentication

The CNN-based sensor nodes’ authentication method is more like the DNN-based sensor nodes’
authentication. They have the same steps except that the authenticated neural network changes from
DNN to CNN. In the initialization phase, the CNN will be trained by the pre-acquired dataset of
different sensor nodes. Then, the ith CSI will be authenticated by the well-trained CNN. At last, the
CNN will be retrained after the dataset is updated.

Algorithm 2 CNN-based sensor nodes’ authentication.

Input: The ith CSI to authenticate x(i)

Output: The label of unknown CSI ŷ(i), the new weight matrix W♦, and threshold vector ξ♦ of CNN

1: Initialize all connection weights W♦
0 , and thresholds ξ♦0 in the network will be obtained through

the training of CNN, using the pre-acquired dataset D♦ = {(xk, yk)}m
k=1;

2: Compute ŷ(i) by the well-trained CNN;
3: Update the training set D♦ = {(xk, yk)}m

k=1 by
(

x(i), ŷ(i)
)

;
4: Retrain the CNN by the new dataset and get new weight matrix W♦ and threshold vector ξ♦;
5: Return ŷ(i), W♦, ξ♦.

4.3. Convolution Pre-Processing Neural Network-based Sensor Nodes’ Authentication

The convolution pre-processing neural network-based sensor nodes’ authentication method
we propose in this paper has shorter training time and higher authentication accuracy. The core
idea is to perform offline convolution preprocessing on the CSIs before training the neural network.
The convolution preprocessing can effectively reduce the data dimension and extract the feature
information of the CSIs, while the convolution kernels are trained by pre-obtained CSIs and
corresponding labels. After convolution, activation, and pooling by the convolution kernels, the CSIs
xk become x̄k. The latter’s dimensions are much smaller than the former’s. For the CPNN-based sensor
node authentication method, the convolution kernels V⊥ need to be calculated by the pre-obtained
CSIs. Then, the neural network is trained by the new dataset D⊥ = {(x̄k, yk)}m

k=1 in the initialization
phase to get the weight matrix W⊥

0 and threshold vector ξ⊥0 .
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Algorithm 3 CPNN-based sensor nodes’ authentication.

Input: The ith CSI to authenticate x(i)

Output: The label of unknown CSI ŷ(i), the new weight matrix W⊥, and threshold vector ξ⊥ of CPNN

1: Initialize: training the CNN by the pre-acquired CSIs to obtain the convolution kernels V⊥; the

dataset D⊥ = {(x̄k, yk)}m
k=1 obtained by convolution; the weights W⊥

0 and thresholds ξ⊥0 in the

neural network will be obtained through the training of CPNN, using dataset D⊥ = {(x̄k, yk)}m
k=1;

2: Convolution pre-processing of the CSI x(i) into x̄(i);
3: Compute ŷ(i) by the well-trained CPNN;
4: Update the training set D⊥ = {(x̄k, yk)}m

k=1 by
(

x(i), ŷ(i)
)

;
5: Retrain the CPNN by the new dataset, and get new weight matrix W⊥ and threshold vector ξ⊥;
6: Return ŷ(i), W⊥, ξ⊥.

4.4. Complexity Analysis

We compare the computational complexity of each sensor nodes’ authentication methods in this
section. The initialization phase was performed offline, and we will not discuss its computational
resources and latency issues. In the authentication phase, the DNN-based sensor nodes’ authentication
method needs to perform:

bl = W l · zl−1 + ξl . (11)

As shown in Table 1, the computational complexity of the mathematical operation of DNN-based
method is almost O

(
max

(
n1 × n2, n2 × n3, · · ·, nL−1 × nL))

, where nl denotes the number of neurons
in the lth layer in DNN. In our numerical experiments, we used a five-layer DNN in which the number
of neurons in each layer was 1024, 120, 60, 25, 4. Therefore, the computational complexity is almost
1 × 105. The CNN-based sensor nodes’ authentication method needs to perform:

Bl = Zl−1 ⊗ W l + ξl . (12)

The computational complexity of the mathematical operation of the CNN-based method is
almost O

(
max

(
n1 × n1

ker × n1
num, n2 × n2

ker × n2
num, · · ·, nL−1

f ull × nL
))

, where nl indicates the number

of convolution operations in the lth layer. nl
ker and nl

num denote the dimensions and the number of
convolution kernels in the lth layer. nL−1

f ull and nL represent the number of neurons in the fully-connected
and output layers. In our numerical experiments, we used eight convolution kernels with dimensions
of 4 × 4 × 1 and 16 convolution kernels with dimensions of 2 × 2 × 8. The dimensions of the
input layer and fully-connected layer were 32 × 32 × 1 and 1 × 1 × 256, respectively. Therefore,
the computational complexity of the CNN-based method was almost 5 × 105. The CPNN-based
sensor nodes’ authentication method needs to perform convolution pre-processing on CSI, and the
computation complexity of pre-processing was relatively small. The computational complexity of
the CPNN-based method is O

(
max

(
n0 × n0

ker × n0
num, n1 × n2, · · ·, nL−1 × nL))

, which is almost the
same as that of the DNN-based method, where n0 denotes the number of convolution operations in
pre-processing and nl denotes the dimensions of the CSI after being processed in the lth layer. n0

ker and
n0

num denote the dimension and number of convolution kernels in pre-processing, respectively. There
were 16 convolution kernels of size 4 × 4 × 1 in the pre-processing of the CPNN-based method. There
were four convolution steps. The computational complexity of the CPNN-based method was almost
2 × 104.

During the retraining phase, the number of parameters that needed to be trained is shown
in Table 2. The DNN-based sensor nodes’ authentication method needs to train weight matrix
W† and threshold vector ξ†, in which it needs to train

(
n1 × n2 + n2 × n3 + · · ·+ nL−1 × nL)
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parameters. There were almost 1 × 105 parameters for the DNN-based sensor nodes’ authentication
method in our numerical experiments. The CNN-based sensor nodes’ authentication method
needs to train convolution kernels W♦ and threshold vector ξ♦, which needed to train(

n1
kernel × n1

num + n2
kernel × n2

num + nL−1
f ull × nL

)
parameters. In our numerical experiments, only 1 × 103

parameters needed to be trained. The CPNN-based authentication method needed to train weight
matrix W⊥ and threshold vector ξ⊥. Like the DNN-based method, the parameters of CPNN-based
method depended on the number of neurons in each layer. However, the dimension of the input in
the CPNN-based method was much smaller than the DNN-based method. The number of neurons in
each layer of CPNN was 256, 50, 25, 12, and 4. There were almost 1 × 104 parameters that needed to be
trained in the retraining phase.

Table 1. The computational complexity in the authentication phase.

Algorithms Computational Complexity Simulation

DNN-based O
(
max

(
n1 × n2, n2 × n3, · · ·, nL−1 × nL))

1 × 105

CNN-based O
(

max
(

n1 × n1
ker × n1

num, n2 × n2
ker × n2

num, · · ·, nL−1
f ull × nL

))
5 × 105

CPNN-based O
(
max

(
n0 × n0

ker × n0
num, n1 × n2, · · ·, nL−1 × nL))

2 × 104

Table 2. The number of parameters in the retraining phase.

Algorithms Number of Parameters Simulation

DNN-based
(
n1 × n2 + n2 × n3 + · · ·+ nL−1 × nL)

1 × 105

CNN-based
(

n1
kernel × n1

num + n2
kernel × n2

num + nL−1
f ull × nL

)
1 × 103

CPNN-based
(
n1 × n2 + n2 × n3 + · · ·+ nL−1 × nL)

1 × 104

5. Numerical Experiments

Simulations have been performed to evaluate the performance of DL-based PHY-layer
authentication for industrial wireless sensor networks. We performed the simulations under different
nodes and analyzed the impact of the number of sensor nodes on the authentication success rate.
We also compared the performance of different algorithms under different numbers of sensor nodes.
Cost J denotes the value of the loss function, which is calculated by (6) or (7). The authentication rate
Pa is defined as the probability of discriminating the wireless sensor nodes.

We considered the tapped delay line (TDL) model to simulate Raleigh fading channels with
multipath delays [32]. The TDL model uses a set of non-frequency selective fading generators (such as
the FWGN model or the Jakes model), where each generator is independent of each other and has an
average power of one. The channel state information of different transmitters can be generated by:

y(n) =
ND−1

∑
d=0

hd(n)x(n − d). (13)

where ND denotes the number of taps of the filters. We set the normalized Doppler shift fd = 0.125,
and six paths with different power delays were selected to synthesize the channels of different wireless
sensor nodes. For more realistic consideration, the time delay of the first five paths of the sensor nodes
was the same, which was 0 second (s), 5 × 10−6 s, 1 × 10−5 s, 1.5 × 10−5 s, and 2 × 10−5 s, respectively.
When there were twelve sensor nodes, the time delay of the sixth path of each sensor node was as
shown in Table 3.
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Table 3. The time delay of the sixth path of 12 sensor nodes.

Sensor Node 1 Sensor Node 2 Sensor Node 3 Sensor Node 4 Sensor Node 5 Sensor Node 6

6.6 × 10−5 s 6.2 × 10−5 s 5.8 × 10−5 s 5.4 × 10−5 s 5.0 × 10−5 s 4.6 × 10−5 s

Sensor Node 7 Sensor Node 8 Sensor Node 9 Sensor Node 10 Sensor Node 11 Sensor Node 12

4.2 × 10−5 s 3.8 × 10−5 s 3.4 × 10−5 s 3.0 × 10−5 s 2.6 × 10−5 s 2.2 × 10−5 s

When there were four sensor nodes, the sixth paths of each sensor node were 6.6 × 10−5 s,
4.6 × 10−5 s, 3.4 × 10−5 s, 2.2 × 10−5 s, respectively. Sampling interval tsampling= 5 × 10−6 s; the signal
to noise ratio (SNR) of the simulation channel was 4 dB; the number of subcarriers was nsub_carrier=256;
the number of pilot intervals and of the cyclic prefix length were npilot_inteval = 256 and lcp_length = 30,
respectively.

We used a five-layer neural network for the DNN-based sensor nodes’ authentication method,
where the numbers of neurons in the hidden layer were 120, 60, and 25. The size of the input layer was
determined by the CSI dimension, and the size of the output layer was determined by the number of
sensor nodes. The convolutional neural network used in the CNN-based algorithm had seven layers,
which were an input layer, two convolution layers, two pooling layers, one fully-connected layer, and
an output layer. The two convolutional layers respectively used eight convolution kernels of size
4 × 4 × 1 and 16 convolution kernels of size 2 × 2 × 8, respectively. For the CPNN-based algorithm,
it had 16 convolution kernels of size 4 × 4 × 1 for the convolution pre-processing. In the authentication
phase and retraining phase, we used a five-layer neural network for the CPNN-based algorithm, where
the numbers of neurons in the hidden layer were 50, 25, and 12. Moreover, the adaptive moment
estimation (Adam) accelerated gradient algorithm and minibatch skill was used for the accelerating of
the neural networks’ training.

As shown in Figure 5a, the x-axis is the number of neural network iterations and the y-axis is
the cost function value. As the number of iterations increased, the cost function value decreased.
In addition, the fewer the sensor nodes, the faster the cost function value dropped. We can visually see
the authentication rate under different sensor nodes from Figure 5b. After 30 iterations, the authenticate
rates tended to be stable. However, the authentication rate of four sensor nodes was higher than that
of six sensor nodes, and the authentication rate of 12 sensor nodes was the lowest. Specifically, after 30
iterations, the authentication rates of 4 sensor nodes, 6 sensor nodes, 8 sensor nodes, and 12 sensor
nodes was 95.5%, 80.83%, 77.25%, and 66.5%, respectively.

(a) (b)

Figure 5. The authentication performance with different sensor nodes. (a) The cost value under
different numbers of sensor nodes with the DNN-based method; (b) The authentication rate under
different numbers of sensor nodes with the DNN-based method.
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By discussing the authentication success rate under different numbers of hidden layers,
we researched the robustness of the DL-based authentication method. The DNN-based algorithm
had the most excellent performance. Therefore, we considered the influence of different hidden
layer numbers on the authentication rate under the DNN-based method. As shown in Figure 6a, the
authentication rate of the DNN-based method with different numbers of hidden layers increased as the
iterations increased. The greater the number of hidden layers, the faster the convergence of the neural
network’s performance. The authentication success rate of the DNN-based method with different
hidden layers after the training was stabilized are shown in Figure 6b. As the number of hidden layers
increased, the authentication success rate increased. However, due to the inherent characteristics of
the specific wireless channels, the performance of the DNN-based method did not continue to grow
and tended to be stable, after the number of hidden layers was increased to a certain number.

(a) (b)

Figure 6. The authentication performance with different numbers of hidden layers. (a) The authentication
rate of different numbers of hidden layers; (b) The authentication rate of different numbers of hidden
layers after training was stabilized.

In addition, we performed simulation analysis on the authentication performance of different
algorithms under different numbers of sensor nodes. As shown in Figure 7a, the DNN-based method
had the best performance, because it had many parameters. For example, the authentication rates
of the DNN-based method were 95.5% and 77.25% under four sensor nodes and eight sensor nodes,
respectively. The CNN-based algorithm had the worst performance, because of the convolution and
pooling and more or less lost some information of CSIs. For example, the authentication rates of the
CNN-based method were 86.25% and 67.87% under four sensor nodes and eight sensor nodes. Another
CPNN-based method we proposed in this paper was similar in performance to the CNN-based method.
The authentication rates of CPNN-based algorithm were 85.25% and 66.75% under four sensor nodes
and eight sensor nodes. However, the CPNN-based method had the shortest training time compared
to the DNN-based algorithm and CNN-based algorithm, as shown in Figure 7b. Therefore, it has
a better application prospect in the actual industrial wireless sensor network. We can see that the
CNN-based method had the longest training time, followed by the DNN-based method.

In summary, the DNN-based sensor nodes’ authentication had the best authenticate performance
and a relatively limited training time. However, its training parameters will grow exponentially as
the dimensions of CSI become larger. Therefore, the DNN-based algorithm is suitable for a shorter
CSI authentication scheme. The CNN-based sensor nodes’ authentication method effectively reduced
the parameters that the neural network needed to train. However, due to the convolution operation
and the pooling operation, it did not meet the requirements of saving training time, especially when
the dimension of CSI was relatively small. At last, the CPNN-based sensor nodes’ authentication
method can effectively solve the problem of training time and authentication performance. It has an
unparalleled advantage in practical industrial wireless sensor network applications.
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(a) (b)

Figure 7. The authentication performance with different algorithms. (a) The authentication rate of
different algorithms under different numbers of sensor nodes; (b) The time in the training phase of
different algorithms under different numbers of sensor nodes.

6. Experiments In Practical Environment

Experiments have been performed with universal software radio peripherals (USRPs) to evaluate
the authentication performance of the proposed DL-based PHY-layer authentication algorithms in
industrial wireless sensor networks. The experimental simulations were performed at the school’s
engineering center, which has a large number of industrial facilities, such as computer numerical
control (CNC) engraving and milling, CNC lathe, and so on. As shown in Figure 8, five radio sensor
nodes equipped with industrial computer and USRPs were placed in a 43.56 × 38.84 × 6.5m3 factory.
The base station was equipped with 8 antennas in Position 2, and the other sensor nodes were equipped
with 2, 4, or 8 antennas in Positions 1, 3, 4, and 5. The distances between sensor nodes and the base
station varied from 5–25 meters (m). In this experiment, we set the carrier frequency fc = 3 gigahertz
(GHz), the interval of subcarriers finterval_subcarrier = 15 kilohertz (kHz), and the number of subcarriers
nsubcarrier = 128. The transmitting power of USRPs was 15 dBm, and the transmission gain was 20 dB.
The practical view of the engineering center is shown in Figure 9.

Figure 8. The network topology.
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Figure 9. The location of the wireless sensor nodes in the practical industrial scenario.

We tested the authentication rates of sensor nodes with different antennas in different locations.
As shown in Figure 10, as the number of antennas increased, the authentication success rate increased
correspondingly. For example, the authentication rate of the DNN-based algorithm with 2 antennas was
92%, while the authentication rate of the DNN-based algorithm with 4 antennas and 8 antennas was
99.5% and 99.5%, respectively. From the histograms of different colors, we can see that the DNN-based
sensor nodes’ authentication method had the best performance. For example, the authentication rate
of DNN-based algorithm with 8 antennas was 99.5%, while the authentication rate of the CNN-based
algorithm with 8 antennas was 85%. In addition, the CPNN-based algorithm had the same performance
as the CNN-based algorithm. However, the retraining time of the CPNN-based method was much
shorter than that of the CNN-based algorithm.

Figure 10. The authentication rate with USRPs.

7. Conclusions

The DL-based PHY-layer authentication method in industrial wireless sensor networks we
proposed in this paper has a strong practical significance. It can both achieve lightweight authentication
and authenticate multiple nodes simultaneously. Especially for the CPNN-based sensor nodes’
authentication algorithm, it had good authentication performance and an ultra-short retraining time.
The DNN-based sensor nodes’ authentication had the best authenticate performance and a relatively
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limited training time. However, its training parameters will grow exponentially as the dimensions of
CSI become larger. Therefore, the DNN-based algorithm is suitable for a shorter CSI authentication
scheme. As shown in Table 2, the CNN-based algorithm and CPNN-based algorithm effectively
reduced the parameters that the neural network needed to train. However, due to the convolution
operation and the pooling operation, the CNN-based algorithm did not meet the requirements
of saving training time, especially when the dimension of CSI was relatively small. At last, the
CPNN-based sensor nodes’ authentication method can effectively solve the problem of training time
and authentication performance. It has an unparalleled advantage in practical industrial wireless
sensor network applications.
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Abbreviations

The following abbreviations are used in this manuscript:
AKA Authentication and key agreement
ANN Artificial neural network
CNN Convolutional neural network
CPNN Convolution preprocessing neural network
CSI Channel state information
DL Deep learning
DNN Deep neural network
EAP Extensible authentication protocol
IWSNs Industrial wireless sensor networks
MHz Megahertz
OFDM Orthogonal frequency division multiplexing
PHY Physical
QoS Quality of service
ReLU Rectified linear unit
RSS Received signal strength
RSSI Received signal strength indicator
TDD Time division duplexing
USRPs Universal software radio peripherals
WSNs Wireless sensor networks
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Abstract: In Device-to-Device (D2D) communications, the first step is to find all of the neighboring
peers in the network by performing a peer discovery process. Most previous studies use the social
behaviors of the users to adjust the sending rates of the peer discovery messages (i.e., beacons) under the
constraint of consumed power for increasing the Peer Discovery Ratio (PDR). However, these studies
do not consider the potential for energy harvesting, which allows for the User Equipments (UEs) to
procure additional power within charging areas. Accordingly, this paper proposes an Energy-Ratio
Rate Decision (ERRD) algorithm that comprises three steps, namely Social Ratio Allocation (SRA),
Energy Ratio Allocation (ERA), and Beacon Rate Decision (BRD). The SRA step determines the
allocated power quantum for each UE from the total budget power based on the social behavior of
the UE. The ERA step then adjusts this allocated power quantum in accordance with the power that is
harvested by the UE. Finally, the BRD step computes the beacon rate for the UE based on the adjusted
power quantum. The simulation results show that ERRD outperforms the previously-reported
Social-Based Grouping (SBG) algorithm by 190% on the PDR for a budget power of one watt and 8%
for a budget power of 20 watts.

Keywords: Device-to-Device (D2D); peer discovery; energy harvesting; social awareness

1. Introduction

The demands that are placed on wireless communications have exponentially increased in recent
years due to the proliferation of User Equipments (UEs) and the unceasing development of new
mobile services. Consequently, the lack of spectrum resources has emerged as a significant concern
for communication operators. Currently, any UE that wishes to transmit data to another UE must
transmit this data via the Base Station (BS) in the cellular network. However, if the distance between
the two UEs is sufficiently small, then the potential exists for the UEs to communicate directly, thereby
saving cellular spectrum resources. Accordingly, a new communication paradigm designated as
Device-to-Device (D2D) communication has been proposed as a means of achieving short-distance
transmissions in 5G networks with improved resource utilization efficiency.

In implementing D2D communications, the first, and most critical, step is that of peer discovery,
in which the UEs attempt to identify all of their neighbors in the network [1]. The peer discovery
process is generally performed using a beacon mechanism and it aims to maximize the Peer Discovery
Ratio (PDR), which is defined as the number of peers that are found in the discovery process divided
by the total number of peers in the network. Most previous studies on peer discovery focus on the
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problems of improving the efficiency of the search process, minimizing the number of collisions,
and determining a suitable beacon rate for the UEs [2–14].

In practice, a large proportion of D2D communications stems from the interaction between users
over social media, such as Facebook, Twitter, Plurk, and so on [15,16]. Consequently, many studies
have investigated the problem of social-aware peer discovery [17–21]. In general, the results have
shown that the social behavior of the users provides a useful tool for adjusting the beacon rates of the
UEs in such a way to improve the overall efficiency of the peer discovery process [17–21].

Energy (Energy and power are used interchangeably in this paper) is a critical concern in
D2D communications, since the UEs generally only have limited energy resources and they often
consume energy extremely rapidly when running user applications. Furthermore, the devices (e.g.,
mobile phones/sensors) in mine pine or oil well also encounter the energy issue, because they cannot
recharge the power with any metal contact, hence avoiding the sparkles and reducing the explosion
probabilities. Energy harvesting has thus attracted growing interest in recent years as a means of
enabling UEs to scavenge energy from surrounding energy sources, especially for limited capacity
energy storage electrical devices and systems [22–29]. Broadly speaking, the scavenged energy can
be classified as either renewable energy or nonrenewable energy. In the former case, the energy is
obtained from natural sources (e.g., thermal, solar, and wind), while in the latter case, the energy is
obtained from artificial sources (e.g., electromagnetic resonance, electromagnetic induction, and radio
frequency). The energy harvesting mainly adopts the technology of wireless power transfer (WPT)
via radio frequency (RF) to transmit power, and then uses the rectifying antenna to convert the
received radio signal to direct current (DC) and charge the battery [23]. In light of the promising
flexibility of energy harvesting, many organizations [24] (i.e., International Telecommunications
Union, European Cooperation in Science and Technology, Wireless Power Transfer Consortium for
Practical Applications) and scholars [25,26] have been involved in variable application developments,
which include drone powered wireless sensor network [27], emergency ubiquitous power source
system [28], and wireless power transfer in electric vehicles environments [29]. Some studies have
focused on energy harvesting-based D2D networks, which use harvested energy to promote the D2D
data communications [30–32].

As stated above, the literature contains many studies on the use of social behavior mechanisms to
enhance the performance of D2D communications. However, while some of these studies actively
address the problem of limiting the energy that is consumed in the peer discovery process, none of them
consider an environment in which the UEs are able to procure additional energy from the environment
while using energy-harvesting techniques. Nonetheless, such a strategy is of considerable benefit in
improving the performance of the peer discovery process. In particular, UEs that acquire additional
energy can send a greater number of beacon messages (thereby increasing the PDR), while those that
acquire no additional energy can reduce their beacon rate in order to minimize the out-of-energy risk
and prolong their participation in the discovery process.

Consequently, the present study proposes a novel peer discovery algorithm for energy-harvesting
environments, designated the Energy-Ratio Rate Decision (ERRD) algorithm. ERRD comprises three
steps, namely Social Ratio Allocation (SRA), Energy Ratio Allocation (ERA), and Beacon Rate Decision
(BRD). SRA determines an initial allocation power quantum for each UE that is based on its social
behavior. ERA then adjusts this power quantum based on the harvested power of the UE. Finally,
BRD computes the beacon rate for the UE based on the adjusted power quantum. For UEs with a high
harvested power, ERRD increases the beacon rate, thereby increasing the PDR. By contrast, for UEs
with low (or no) harvested power, ERRD reduces the beacon rate, and hence prolongs the lifetime of
the UE, thereby increasing the time for which the UE can perform beacon discovery.

This study attempts to determine the suitable beacon rates of all UEs to maximize PDR for D2D
communications in an energy-harvesting environment. The contributions of this paper are across
three orientations: (1) regarding the problem orientation, to the best of our knowledge, this study
is the first paper to consider the social-aware peer discovery problem for D2D communications
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in an energy-harvesting environment, (2) regarding the solution orientation, we propose ERRD,
which determines the beacon rate according to UE’s social behavior and the harvested power quantum
to increase its PDR, and (3) regarding the evaluation orientation, some of the simulations are conducted
to investigate many important parameters along with significant observations.

The remainder of this paper is organized, as follows. Section 2 introduces the related work in
the field. Section 3 describes the system model that is considered in the present study and formulates
the related problem. Section 4 introduces the ERRD algorithm and describes its detailed operation.
Section 5 presents and discusses the simulation results. Finally, Section 6 provides some brief concluding
remarks and indicates the intended direction of future research.

2. Related Works

The problem of peer discovery in D2D communications has attracted considerable attention
in the literature. Broadly speaking, existing approaches can be classified as either social-aware or
social-unaware (see Table 1). Within each classification, the proposed mechanisms can be further
divided as autonomous, network-assisted, or network-controlled. In autonomous mechanisms, the UEs
find nearby peers by themselves, and hence the major issue lies in determining efficient methods for
broadcasting the beacons with a minimum number of collisions. By contrast, in network-assisted
solutions, the BS collects surrounding the information, determines a suitable beacon rate for each
UE, and allocates a proper amount of resources to each UE to perform its transmissions. Finally,
in network-controlled mechanisms, the BS directly helps the UEs to find peers by locating UEs.

Table 1. Comparison of related works.

Category Ref. Type Main Goal Approach

Social-unaware

[2] Autonomous Min resource UEs periodically and synchronously send beacons using FDM.
[3] Autonomous Min resource UEs use trellis tone modulation multiple-access scheme.
[4] Autonomous Quick recovery UEs use a common channel and a group of channels to send beacons.
[5] Autonomous LTE compatible UEs listen to SRS channel to identify nearby UEs.
[6] Autonomous LTE compatible UEs listen to SRS channel to detect active UEs.
[7] Autonomous Min energy UEs determine the beacon rate based on their state.
[8] Network-Assisted Min collision BS determines the beacon rate for UEs depending on the number of requests sent by UE.
[9] Network-Assisted Min collision UEs authorized to perform discovery contend to transmit beacons.

[10] Network-Assisted Min interference Similar to [9], but interference from cellular UEs imposed on D2D pairs is
also considered.

[11] Network-Assisted Min resource UEs send preamble to nearby UEs and BS allocates uplink RBs for UEs.
[12] Network-Assisted Beacon schedule BS roughly estimates the location of UEs by measuring channel components.
[13] Network-Controlled Min resource BSs locate UEs by AOA.
[14] Network-Controlled Min energy Wifi scans are first used to determine the UE locations and BS then sends D2D broadcast.

Social-aware

[17] Autonomous Trust UEs find trusted UEs.
[18] Autonomous Two-hop pairing UEs send requests to trusted UEs, which forward request to all one-hop UEs.
[19] Autonomous Hybrid attributes UEs use three key social attributes to construct neighbor lists.

[20] Autonomous Max content
delivery Social relationship is used as a weight for D2D pair formation and content sharing.

[21] Network-Assisted Max PDR BS determines the beacon rate based on contact rate.
ERRD Network-Assisted Max PDR BS adjusts beacon rate based on harvested energy amount.

FDM: Frequency Division Multiplexing, SRS: Sounding Reference Signal, AOA: Angle of Arrival.

The literature contains several autonomous mechanisms for peer discovery using a social-unaware
approach [2–7]. For example, the FlashLinQ protocol that was proposed in [2] uses frequency
division multiplexing (FDM) to propagate the beacons through the network [2]. Notably, the beacons
are transmitted both periodically and synchronously, and hence FlashLinQ provides an effective
means of estimating the amount of consumed resources and timing the resource consumption to
minimize resource snatching. The scheme that is presented in [3] replaces the FDM-based peer
discovery process in [2], with a non-orthogonal multiple-access scheme that is referred to as Trellis
Tone Modulation Multiple-Access (TTMMA). TTMMA uses single-tone transmissions and achieves
long-distance discovery due to its low Peak-to-Average Power Ratio (PAPR). Furthermore, it makes
a higher discovery capacity through its use of a non-orthogonal resource assignment mechanism
possible. Based on the assumption of a synchronized superframe structure among the UEs, the peer
discovery mechanism in [4] uses both a common channel and a group of channels to send beacons
subject to certain rules and procedures that are designed to minimize the discovery time. To ensure
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compatibility with the standard LTE protocol, the UEs contained in [5] perform peer discovery by
listening to the Sounding Reference Signal (SRS) channel, being originally designed for data uploading
purposes in LTE networks and peer UEs can access it. However, the method is only capable of detecting
the presence of peers, i.e., not active peers that are interested in D2D discovery and communications.
Accordingly, the mechanism in [6] exploits the standardized uplink signal structure in the SRS channel
to accomplish both the detection of the active peers and the identification of their beacons. Finally,
in the peer discovery method that was proposed in [7], the UEs reside in one of five different states,
namely, Keep Alive, Advertise, Discover, Follow, and Passive, depending on their behavior. The UEs in
each state then employ a particular beacon rate that is chosen in advance in such a way as to maximize
the power saving in the network.

The literature contains various proposals for network-assisted peer discovery methods [8–12].
In [8], the UEs advertise their presence using a random access mechanism and the BS accepts the
D2D requests, allocates resource blocks (RB), and chooses an appropriate beacon rate for each UE,
depending on the number of requests that they produce. In the peer discovery method that is proposed
in [9], the UEs authorized to perform discovery in a given discovery interval contend to transmit their
beacons in a time-frequency multiplexed pool of network-allocated resources. In [9], it is assumed
that the transmitted beacons are always successful, i.e., other peers can successfully receive them.
However, the method in [10] considers a more realistic network model that is based on the Poisson
Point Process (PPP), in which the effect of the Channel State Information (CSI) on the performance
of the D2D discovery process is taken into account by considering the interference that is imposed
on the D2D pairs by nearby cellular users. In [11], each UE sends a preamble to the nearby UEs via
a newly-introduced physical channel, and the UEs that receive this preamble send a corresponding
report message to the BS by means of a normal random access procedure. The BS then allocates an
uplink RB for each reported preamble, such that the UEs that initially sent the preamble can send a
further report message to the BS. Finally, the BS, by comparing their reported preambles, identifies
pairs of UEs that are in close proximity to one another. The method in [12] exploits the fact that some of
the channel components of the UEs are spatially correlated to enable the BS to make a rough estimate
of the UE locations by measuring these components. The BS then schedules the transmissions of the
beacons that are sent by nearby UEs, such that nearby UEs transmit their beacons at similar times.

Network-controlled methods have several important advantages over Autonomous and
Network-Assisted methods, including low power consumption, reduced interference, and a low
beacon transmission cost. Consequently, the authors in [13] proposed a peer discovery method based
on the Angle of Arrival (AOA) measurements that were obtained by multiple BSs and further analyzed
the performance of network-controlled D2D discovery in random spatial networks. The authors
in [14] proposed a centralized novel approach, called ROOMMATEs, which utilizes the ubiquitous
WiFi network, which combines with BS for indoor peer discovery. ROOMMATEs is an unsupervised
approach that can provide different granularity location information. However, none of the studies
in [2–14] consider the potential for improving the peer discovery performance by exploiting the social
behaviors of the UEs in the network.

In fact, the literature contains very few proposals for social-aware peer discovery mechanisms [17–21].
Among those methods that have been proposed, three schemes [17–19] adopt an autonomous approach.
The method in [17] focuses on the security of the data transmissions and it chooses UEs with high social
ties (i.e., high trust) to perform D2D communications. However, by adopting such an approach, it is
possible that no UEs may be available for pairing. Consequently, the authors in [18] proposed a
two-hop pairing process, in which any UE failing to find a trusted UE with its wanted contents for
D2D communications sends a request to all the one-hop neighbors of its trusted UEs. The method
in [19] uses three key social attributes, namely the trust degree, the similarity degree between UEs, and
the center degree of each UE, to construct a unified metric with which to construct neighbor lists for
peer discovery. Reference [20] addresses the content delivery problem that is related to optimization of
peer discovery and resource allocation by combining both the social and physical layer information
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in D2D networks. The social relationship, which is modeled as the probability of selecting similar
contents, is used as a weight to characterize the impact of social features on D2D pair formation and
content sharing. The peer discovery in the physical layer depends on the received signal power by
UEs, while the social relationship is mainly used to optimize the context delivery. The method in [21],
which is called Social-Based Grouping (SBG), adopts a network-assisted approach to perform peer
discovery. UEs are grouped based on their social feature and centrality, and the UEs in the same group
are assigned the same beacon rate. The BS, in accordance with the rate at which each UE contacts the
other UEs in the network, determines the beacon rate. The UE with more contacts will send beacons at
a higher rate.

Similar to SBG, our study also focuses on the network-assisted approach to perform peer discovery.
However, between [21] and our study, there are some big differences: (1) SBG determines the beacon
rate with only considering the social feature, while ERRD determines it with not only considering the
social feature, but also the harvested power. (2) The UEs in SBG are grouped and the UEs in the same
group are assigned the same beacon rate due to its high complexity, while each UE in ERRD has its
individual beacon rate due to its low complexity. (3) Since ERRD extra considers the harvested power
to determine more suitable beacon rate, its PDR can be significantly better than that of SBG. This can
be easily observed in Section 5.

3. Problem Description

This section commences by introducing the system model and associated notations. The problem
statement is then formally defined.

3.1. System Model

The interval between the time t at which UE i comes within range of UE j and the time at which it
was last within range of UE j, t0, is referred to as the D2D contact interval of the two UEs, CIi,j, and it is
defined as

CIi, j = min
t

{
(t− t0) : ‖Li − Lj‖ ≤ Ri, j, t > t0

}
, (1)

where ‖.‖ denotes the distance between the two UEs; Li and Lj are the locations of UEs i and j,
respectively; and, Ri,j is the coverage range between the two UEs.

Based on the contact interval between the two UEs, the D2D contact rate between them, denoted
as λi,j, is defined as

λi, j =
1

E
[
CIi, j

] , (2)

where E[.] denotes the expectation. The average contact rate of UE i, denoted as λi, is then computed as

λi =

∑N
j=1, j�i λi, j

N − 1
, (3)

where N is the total number of UEs in the network. Let CIi, j follow a cumulative distribution function
(CDF) of FCIi, j(x), with rate λi,j. Assume further that FCIi, j(x) is a uniform distribution, and can thus be
written as

FCIi, j(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, x < 0,

x
2E[CIi, j]

, 0 < x < 2E
[
CIi, j

]
,

1, x > 2E
[
CIi, j

]
.

(4)

Let the social ratio of UE i be defined as the square root of its average contact rate over the sum of the
square root of each average contact rate, i.e.,
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ri =
λ

1
2
i∑N

j=1 λ
1
2
j

. (5)

In modeling the energy-harvesting environment, it is assumed that the charging devices (CDs)
and BS convert their power into RF signals. Furthermore, any UEs within the coverage of these CDs or
the BS acquire this RF signal and then convert it into power through special equipment. The power
that is obtained by UE i from energy harvesting, denoted as OPi, is thus calculated as

OPi = σ(CDPm‖Li −CDLm, i∈CDRm‖−υ), (6)

where σ is an energy harvesting efficiency factor that reflects the ability of UE i to change the RF signal
into power; v is the path loss exponent that is caused by interference, which increases with an increasing
distance; and, Li is the location of UE i. In addition, CDPm, CDRm, and CDLm are the transmitted
power, coverage, and location, respectively, of CD m, when UE i lies within its coverage [30–32].

3.2. Problem Statement

Before formally defining the problem statement, the used notations are listed in Table 2. As shown,
the notations fall into six categories that relate to the system, range, power, location, contact, and beacon,
respectively. The system parameters define the number of UEs in the network and the total peer
discovery time, respectively, while the range parameters describe the coverage of the devices. The power
parameters define the transmission powers of the devices and the various power variables that are
used in the ERRD model. The location parameters define the positions of the devices. The contact
parameters describe the contact behaviors of the UEs. Finally, the beacon parameters define the beacon
rates of the UEs.

Table 2. Notation table.

Category Notation Description Property

System N Number of UEs Input
T Total time of peer discovery Input

Range Ri, j Converge between UE i and j Input
CDRm Coverage of CD m or BS (m = 0 represents BS) Input

Power

BP Budget power Input
TP Consumed power in sending a beacon Input

CDPm Transmission power of CD m or BS (m = 0 represents BS) Input
σ ∈ (0,1] Energy harvesting efficiency factor Input

v Path loss exponent Input
Pi Owned power of UE i Input

OPi Obtained power of UE i Variable
GPi Allocated power of UE i Variable
AP Total power allocated to UEs Variable

Location
Li Location of UE i Input

CDLm Location of CD m or BS (m = 0 represents BS) Input

Contact

CIi, j Contact interval of UEs i and j Input
λi, j Contact rate of UEs i and j Variable
λi Average contact rate of UE i Variable
ri Social ratio of UE i Variable

OPRi Ratio of OPi over ri Variable

Beacon μi Beacon rate of UE i Output

The energy harvesting technology that is considered in this study is wireless power transfer (WPT)
via radio frequency (RF), as shown in Figure 1 [23]. The basic idea is that the RF transmitter transmits
radio signal towards the receiving antenna at the desired frequency and power level. The RF receiver
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then applies electromagnetic radiation to charge the battery, that is, the receiving antenna receives
the traveling signal and the rectifier converts the alternating current (AC) to direct current (DC) to
charge the battery. The energy carrier can be located at 2.4 GHz or 5 GHz frequency band under the
considerations that these bands are internationally reserved for Industrial, Scientific, and Medical
(ISM) purposes. Energy harvesting can explore sufficient power sources in significant radio coverage
by increasing the transmitting power under the regulation of the government.

Figure 1. The energy harvesting technology considered in this study.

This study attempts to determine the suitable beacon rates of all UEs to explore most peers in a
D2D network under the constraints of budget power, the limitation of overall power consumption.
This study further introduces a new scenario, i.e., energy harvesting, which previous studies did not
consider. The energy harvesting enables UEs within charging areas to procure additional power from
surrounding energy sources. Thus, under considering the UE may be out-of-energy and the study
determines the suitable beacon rates of all UEs to maximize PDR according to the budget power and
harvested power.

The problem that we investigated is formally described, as follows. First, for a beacon rate of UE i
equal to μi, the peer discovery ratio (PDR) of the UE can be calculated as [33]

PDR = 1− 2μ2
i

∫ 1
μi

0

∫ y

0
FCIi, j(x)dxdy. (7)

The second term denotes the missing probability and the probability UE i cannot detect the contact.
In other words, it is the probability that the UE i cannot find other peers.

According to the arrival contact rate of each UE, the aim of the peer discovery process is to
maximize the total PDR, as

N∑
i=1

λi

⎛⎜⎜⎜⎜⎜⎝1− 2μ2
i

∫ 1
μi

0

∫ y

0
FCIi, j(x)dxdy

⎞⎟⎟⎟⎟⎟⎠.s.t.
N∑
1

μi × TP ≤ BP, (8)

where TP is the transmission power used to send a beacon message and BP is the total budget power
quantum of the network. However, if a UE is out-of-energy, it cannot find any peers in the network
and any other peers cannot find it. Thus, in performing the peer discovery process, the objective given
in Equation (8) should be modified, as follows:

max PDR =
N∑

i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λi

(
1− 2μ2

i

∫ 1
μi

0

∫ y
0 FCIi, j(x)dxdy

)
, Pi > 0

0, Pi ≤ 0
s.t.

∑N
1 μi × TP ≤ BP,

(9)

where Pi is the power reserved for peer discovery of UE i. Differing from Equation (8), the UE cannot
find other peers and it cannot be found by any other peers when Pi ≤ 0 in Equation (9), because it is a
more reasonable condition. Also note that the constraint denotes that the total power consumption
must be less than the budget power quantum.

Thus, the problem statement is formally given, as follows.
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Input: the parameters marked input in Table 2.
Output: the beacon rate of UE i, μi, ∀i.

Objective: max PDR =
N∑

i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λi

(
1− 2μ2

i

∫ 1
μi

0

∫ y
0 FCIi, j(x)dxdy

)
, Pi > 0

0, Pi ≤ 0.
,

Constraint:
N∑
1
μi × TP ≤ BP.

4. Solutions

Before introducing the ERRD algorithm in detail, the overall operations of UEs and BS are first
described. The peer discovery is conducted per time period T. At the beginning of time period, each UE
will send its ID and its harvested power quantum to BS. Thus, BS will know which UEs in its coverage
and immediately extracts their social features from the database. According to UEs’ social features and
the harvested power quantum, and the pre-determined budget power quantum, BS can run ERRD to
determine the beacon rate for each UE, and then sends the determined beacon rate to the corresponding
UE. After receiving this rate, the UE will send the beacons accordingly. Since each UE only calculates
the harvested power quantum, according to Equation (8), its operation is very simple. Therefore, below,
we focus on describing the algorithm in BS, i.e., ERRD.

In D2D communications, the beacon rate is proportional to the amount of consumed power.
Hence, the ERRD algorithm that is proposed in this study first virtually allocates a proper power
quantum to each UE and then determines the corresponding beacon rate according to this allocated
power quantum. As described in the following sub-sections, ERRD comprises three steps, namely Social
Ratio Allocation (SRA), Energy Ratio Allocation (ERA), and Beacon Rate Decision (BRD). SRA first allocates
the budget power among the UEs, depending on their social ratios. For each UE, ERA then adjusts
this allocated power quantum according to the amount of energy that is harvested by the UE. Finally,
BRD computes the beacon rate of each UE, depending on the adjusted allocated power quantum.

Below, the concept of ERRD is first explained. As ERRD is composed of three steps, we describe
SRA, ERA, and BRD in sequence in Section 4.1. After describing the concept of ERRD, we formally
exhibit the pseudo code of ERRD in Section 4.2. Finally, an example to illustrate the overall ERRD
operation is given in Section 4.3.

4.1. ERRD Algorithm

4.1.1. Social Ratio Allocation

Let AP be the total allocated power quantum and GPi be the amount of power that is allocated to
UE i. Since the peer discovery process is subject to the constraint that the total consumed power must
be less than or equal to budget power BP, AP is initialized as BP. According to [21], when FCIi, j(x) has
a uniform distribution (as shown in Equation (4)), the maximum PDR is achieved when the beacon
rate of each UE is set proportional to its social ratio, i.e., μi ∝ ri. Thus, the initially allocated power
quantum for every UE is given by GPi = AP× ri.

4.1.2. Energy Ratio Allocation

The ERA step is the most critical step in ERRD. In order to properly explain the step, it is
appropriate to introduce the following intuitive thought regarding the approach for allocating the
power quantum, depending on the amount of power that is obtained from energy harvesting. The smart
approach employed by ERRD is then introduced.

• Intuitive thought

The SRA step in the ERRD algorithm allocates the budget power quantum among the UEs based
on their social ratios. However, some UEs can obtain power from energy harvesting, and hence their
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obtained power quantum OPi may exceed the allocated power quantum GPi. In this case, the UEs can
utilize the obtained power quantum, rather than the originally allocated power quantum to perform
their beacon transmissions. The unused portion of the allocated power quantum can then be returned
to AP for the re-allocation to other UEs. Conversely, if OPi is less than GPi, i.e., the UE only acquires
little (or no) energy via harvesting, the UE uses the original allocated power quantum GPi and returns
its obtained power quantum OPi to AP. Combining these two cases, the unused power quantum of UE
i is given by the minimum of OPi and GPi, i.e., min(OPi, GPi).

Since AP and GPi are dependent, it is necessary to obtain them alternately while using an iterative
approach. Let xk denote the value of x in the k-th iteration and k = 0 denote the initial value. Therefore,
the initial value of AP, AP0, is set as the budget power quantum, BP, and it is allocated to each
UE in accordance with ri, i.e., P0

i = AP0 × ri. Any unused power quantum must be returned to AP.
Consequently, AP is equal to the sum of BP and the returned power quantum of all the UEs, i.e.,

APk+1 = BP +
N∑

i=1

min (OPi, GPk
i ), k ≥ 0. (10)

Once APk+1 is calculated, the new allocated power quantum of each UE can be obtained
as GPk+1

i = APk+1 × ri, and used to calculate APk+2 accordingly. As shown in Lemma 1, AP is
non-decreasing as the number of iterations increases.

Lemma 1: APk+1 ≥ APk, ∀k ≥ 0.

Proof.

1. As AP0 = BP and AP1 = BP +
N∑

i=1
min(OPi + GP0

i ), it follows that AP1 ≥ AP0 since all OPi and

GP0
i are non-negative. Thus, k = 1 holds.

2. Suppose that k = n− 1 holds, i.e., APn ≥ APn−1. APn ≥ APn−1 implies that GPn
i ≥ GPn−1

i , 1 ≤ i ≤ N
since GPn

i = APn × ri. Hence,

BP +
N∑

i=1
min(OPi, GPn

i ) ≥ BP +
N∑

i=1
min(OPi, GPn−1

i )

⇒ APn+1 ≥ APn

Thus, k = n holds.
3. From mathematical induction, APk+1 ≥ APk, ∀k ≥ 0. �

Intuitively, APk can be iteratively calculated until no further change in its value is obtained,
i.e., APk+1 = APk. However, while such an approach is technically feasible, it requires many iterations
to converge, causing high complexity, and it is hence impractical for real-world peer discovery
applications. Consequently, the following smart approach is proposed instead.

• Smart approach

According to the relationship between OPi and GPi, ERRD classifies the UEs into two groups,
namely G1 when OPi < GPi and G2 when OPi ≥ GPi. Therefore, Equation (10) can be re-formulated as

APk+1 = BP +
∑
i∈Gk

1

OPi +
∑
i∈Gk

2

GPk
i . (11)

Lemma 2: In each iteration, the UEs in G2 may be shifted to G1, but the UEs in G1 cannot be shifted to G2.
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Proof.

1. From Lemma 1, AP is non-decreasing and GPi is also non-decreasing, i.e., GPk+1
i ≥ GPk

i , ∀i.

2. Since OPi is fixed, the condition OPi < GPk
i implies that OPi < GPk+1

i . Therefore, any member in
G1 will not be shifted to G2.

3. Consequently, in each iteration, only the UEs in G2 may be shifted to G1, but no UEs in G1 will be
shifted to G2. �

From Lemma 2, the ERA process seeks to shift any UEs belonging to G2 to G1 if possible in each
iteration in order to reduce the convergence time. However, to achieve this, two issues must first be
addressed, namely (1) which UE should be considered first to be shifted and (2) whether this UE can
actually be shifted.

ERA determines the answer to the first issue by inspecting the ratio of the obtained power
quantum over the corresponding social ratio, i.e., OPRi = OPi/ri. A smaller value of OPRi implies
that OPi is more likely to be less than GPi. In other words, UE i is more likely to belong to G1. Thus,
in the k-th iteration, according to the current grouping, UE mk, whose OPRmk is the smallest among
those of all the UEs in Gk

2, is chosen as the pivot UE, and it is most likely to be shifted from Gk
2 to Gk

1, as
described in the following lemma.

Lemma 3: The pivot UE mk among Gk
2 is most likely be shifted to Gk

1.

Proof.

1. OPRi =
OPi
ri
⇒ OPRi

APk = OPi
APk×ri

⇒ OPRi
APk = OPi

GPk
i
⇒ OPRi =

OPi
GPk

i
APk .

2. In the k-th iteration, as APk is fixed, UE mk has the smallest OPR in G2, i.e.,
OP

mk

GPk
mk

is the smallest,

and hence OP
mk is most likely to be less than GPk

mk . Consequently, UE mk is most likely to be

shifted from Gk
2 to Gk

1. �

ERA considers whether or not this UE can actually be shifted after determining the pivot UE.
To achieve this, a virtual critical point, defined as OPmk = GPmk , is considered. At this critical point,
the virtual total allocated power quantum, VAPk, obtained using mk as the baseline, is given as

VAPk = BP +
∑

i∈Gk
1

OPi +
∑

i∈Gk
2

GPk
i

= BP +
∑

i∈Gk
1

OPi +
∑

i∈Gk
2

GPmk × ri
r
mk

= BP +
∑

i∈Gk
1

OPi +
∑

i∈Gk
2

OPmk × ri
r
mk

.

(12)

The virtual allocated power quantum for mk is then obtained as VGPk
mk=VAPk × rmk . The virtual

critical point represents the threshold between Gk
2 and Gk

1. Thus, checking whether VGPk
mk is more

than OP
mk provides an efficient means of determining whether UE mk belongs to Gk

2 or Gk
1. If VGPk

mk is

larger than OP
mk , the pivot UE mk should be shifted from Gk

2 to Gk
1 and the iteration process should

continue to the next round. Otherwise, the pivot UE mk should remain in Gk
2. As the pivot UE mk

among Gk
2 is the most likely be shifted to Gk

1, the other UEs belonging to Gk
2 also remain in Gk

2. In other
words, the grouping process is complete and no further changes in the memberships of G1 and G2
are required.

Once the grouping process is finished (in iteration *), GP∗m∗ can be computed as
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GP∗m∗
rm∗

= BP +
∑
i∈G∗1

OPi +
∑
i∈G∗2

GP∗m∗ ×
ri

rm∗
. (13)

After solving Equation (13), GP∗m∗ can be obtained as

GP∗m∗ =
rm∗ ×

(
BP +

∑
i∈G∗1

OPi
)

1−∑
i∈G∗2 ri

. (14)

AP* can then be computed as AP∗ = GP∗m∗/rm∗ . In addition, each GP∗i can be computed with AP*.
Finally, the allocated power quantum for each UE is set as the maximum between GP∗i and OPi.

4.1.3. Beacon Rate Decision

In the BRD step, since OPi is considered, the sum of all the allocated power quanta is equal to the
budget power quantum plus all the obtained power quanta, as shown in Lemma 4.

Lemma 4:
∑N

i=1 max
(
OPi, GP∗i

)
= BP +

∑N
i=1 OPi.

Proof.

1. For UE i in G2, the allocated power quantum is GP∗i . As the UE has an obtained power quantum
of OPi, the allocated power quantum occupying the budget power quantum is equal to GP∗i −OPi.

Thus, it follows that
∑

i∈G∗2

(
GP∗i −OPi

)
= BP.

2.

∑N
i=1 max

(
OPi, GP∗i

)
=

∑
i∈G∗1

OPi +
∑

i∈G∗2
GP∗i

=
∑

i∈G∗1
OPi +

∑
i∈G∗2

(
GP∗i −OPi

)
+

∑
i∈G∗2

OPi

=
∑N

i=1 OPi +
∑

i∈G∗2

(
GP∗i −OPi

)
= BP +

∑N
i=1 OPi

. �

Due to this value exceeding the BP quantum, the final allocated power quantum should be
normalized through multiplication by R, i.e., the ratio of BP over the sum of the allocated power quanta.
That is,

R =
BP∑N

i=1 max
(
OPi, GP∗i

) =
BP

BP +
∑N

i=1 OPi
. (15)

Finally, the μi of each UE i is computed as the allocated power quantum multiplied by R and
divided by TP.

4.2. Pseudo Code

Algorithm 1 shows the pseudo code of the ERRD algorithm, where lines 1–7 correspond to the
SRA step, lines 8–24 describe the ERA step, and lines 25–29 are the BRD step. In the SRA step, lines 1–7
initialize the variables and compute ri, GPi, and OPRi for all the UEs. In the ERA step, lines 8–12
classify the UEs into two groups. In particular, UEs with an OPi greater than or equal to GPi are shifted
into group G2. Lines 15–17 then select UE m whose OPRm is the smallest among those of all the UEs in
G2 as the pivot UE and compute VAP and VGPm accordingly. Line 18 checks whether the pivot UE
meets the condition that OPm is larger than VGPm. If the condition holds, the final AP is computed in
lines 19 and 20. Otherwise, lines 14–23 are repeated iteratively until this condition is reached. Finally,
in the BRD step, R is calculated in line 25. Line 27 then computes GPi based on the final AP obtained in
the ERA process and line 28 normalizes the allocated power quantum and computes the normalized μi.
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Algorithm 1 Energy Ratio Rate Allocation Algorithm

1 : AP← BP, G1 ← {1 ∼ N}, G2 ← ∅

2 : Calculate all λi from CIi, j; λALL ←
N∑

i=1
λ

1
2
i

3 : for i = 1 to N do

4 : ri ← λ
1
2

λALL

5 : GPi ← AP× ri
6 : OPRi ← OPi

ri

7 : end for

8 : for i = 1 to N do

9 : if OPi ≥ GPi then

10 : G2 ← G2 ∪ i, G1 ← G1 − i
11 : end if

12 : end for

13 : if G2 � ∅ then

14 : repeat

15 : m← argmin OPRi, ∀i ∈ G2

16 : VAP← BP +

( ∑
i∈G1

OPi

)

+

( ∑
i∈G2

OPm × ri
rm

)

17 : VGPm ← VAP× rm

18 : if OPm ≥ VGPm then

19 : GPm ← rm×
(
BP+

∑
i∈G1

OPi

)
1−∑i∈G2

ri

20 : AP← GPm
rm

21 : end if

22 : G1 ← G1 ∪ m, G2 ← G2 −m
23 : until OPm ≥ VGPm or G2 = ∅

24 : end if

25 : R← BP
BP+

∑N
i=1 OPi

26 : for i = 1 to N do

27 : GPi ← AP× ri
28 : μi ← max(OPi, GPi) × R

TP
29 : end for

Note that the pseudo code of ERRD is run in BS at the beginning of each time period T. All allocating,
returning, and re-allocating power quanta from the BS to the UEs are virtually calculated in BS, rather
than the real transfer between BS and UEs. Therefore, the communication between BS and UEs happens
when each UE sends its ID and its harvested power quantum to BS at the beginning of each time
period, and BS sends the determined beacon rate to the corresponding UE after it has executed ERRD.

The time complexity of ERRD is calculated, as follows. The lines 1–2, lines 3–7, lines 8–12, line 25,
and lines 26–28 individually requires O(N). The repeat loop of lines 14–23 are executed as most N
times, because at least a UE will be shifted from G2 into G1 in each iteration. The time complexities of
calculating m in line 15, VAP in line 16, and GPm in line 19 are O(N). Thus, the time complexity of the
repeat loop is O(N2). Therefore, ERRD has low time complexity O(N2) and it can be implemented in a
real-time environment.

4.3. Illustrative Example

The following discussions present an illustrative example to demonstrate the detailed operational
steps of ERRD. It is assumed that the network contains five UEs with average social contacts, λi, of 1, 4,
9, 16, and 25, respectively. It is further assumed that the OPi values of the five UEs are 5, 4, 5, 3, and 1,
respectively. Finally, the total BP is assumed to be 15 and TP is set as 1.

The SRA step first computes ri in accordance with the average social contacts, λi, i.e., r1 =√
1√

1+
√

4+
√

9+
√

16+
√

25
= 1

15 . Thus, r1, r2, r3, r4, and r5 are obtained as 1
15 , 2

15 . 3
15 , 4

15 , and 5
15 , respectively

(see Table 3). For each UE, GPi is then computed as the product of AP, which is initialized as BP,
and ri, i.e., GPi = AP× ri. In other words, GP1, GP2, GP3, GP4 and GP5 are obtained as 1, 2, 3, 4, and 5,
respectively. In addition, OPRi is calculated as OPi/ri. For example, OPR1=

5
1
15

= 75. The UEs are then

classified into two groups, namely G1 or G2, by comparing OPi with GPi. In the present example, OP1,
OP2, and OP3 are greater than GP1, GP2, and GP3, respectively, while OP4 and OP5 are less than GP4

and GP5, respectively. Consequently, group G1 is determined to be {4, 5}, while group G2 is obtained as
{1, 2, 3}.
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Table 3. Initialized values.

UE ID ri OPi GPi OPRi Set

1 1
15 5 1 75 G2

2 2
15 4 2 30 G2

3 3
15 5 3 25 G2

4 4
15 3 4 45

4 G1
5 5

15 1 5 3 G1

Based on the results that are presented in Table 3, the ERA step selects UE 3 as the pivot UE, since
the value of OPR3 is the smallest among all of the OPR values in G2, To check whether the grouping
process is finished, ERA uses the ratio of ri over r3 to compute VAP as BP + OP5 + OP4 + OP3 × r3

r3
+

OP3 × r2
r3
+ OP3 × r1

r3
= 15 + 3 + 1 + 5

3 + 10
3 + 5 = 29. The VAP result is then used to compute VGP3

as 29 × 3
15 = 29

5 . OP3 is less than VGP3, that is, the virtually allocated power quantum exceeds the
obtained power quantum. Hence, UE 3 is shifted from group G2 to group G1.

The procedure that is described above is iteratively repeated until the grouping process is complete.
For the present example, G∗1 is obtained as {3, 4, 5} and G∗2, as {1, 2}. Once the grouping process is
finished, GP∗2 is GP∗m and in accordance with Equation (14) (line 19 in the algorithm), GP∗2 is computed

as
2

15×(15+5+3+1)

1−( 1
15+

2
15 )

= 4. Thus, AP∗ is obtained as 4
2
15

=30 (line 20). Finally, the values of GP∗i are computed

using the determined value of AP∗. Choosing the larger value between OPi and GP∗i for each UE,
the total consumed power quantum is obtained as 5+ 4+ 6+ 8+ 10= 33, which is equal to the sum of BP
and all OPi (15+5+4+5+3+1). As the total consumed power quantum is larger than BP, normalization
by R = 15

33 = 5
11 is performed and used to compute μi. For example, μ1 = 5× 5

11 × 1
TP = 25

11 . Table 4
shows the final results for all the UEs.

Table 4. Final results of the illustrative example.

UE ID ri OPi GPi Maximum μi

1 1
15 5 2 OPi: 5 25

11
2 2

15 4 4 OPi: 4 20
11

3 3
15 5 6 GPi: 6 30

11
4 4

15 3 8 GPi: 8 40
11

5 5
15 1 10 GPi: 10 50

11

5. Performance Evaluation

The PDR performance of the proposed ERRD algorithm was compared with that of the previously
reported Social-Based Grouping (SBG) algorithm [21]. In SBG, the UEs are grouped based on their
social feature: centrality and the UEs in the same group are assigned the same beacon rate. In the
present simulations, SBG classifies the UEs into three groups.

5.1. Dataset and Environment

The simulations were performed using the Infocom06 user mobility trace [34], which consisted of
the D2D communication contacts of 98 individuals that were recorded over the IEEE Infocom Conference
in 2006. The first half of the dataset was used to calculate the beacon rates from the contact rates of the
UEs, while the second half was used to evaluate and compare the performance of the two schemes
(ERRD and SBG). The dataset contains no information regarding the actual physical locations of the
users and the BS. Consequently, in performing the simulations, an artificial environment for energy
harvesting was created, with dimensions of 600 × 600 m2. The simulation field was partitioned into a
3 × 3 grid containing a BS with a 10-watt power in the center and eight CDs with a five-watt power
distributed around the outside (see Figure 2). The UEs were uniformly deployed in the 3 × 3 grid
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initially and their locations were then randomly moved as the simulations proceeded to simulate the
mobility of UEs. Thus, the UEs obtained harvested power from different CDs (or the BS) at different
points in the simulation process.

Figure 2. Simulation environment.

The adopted dataset is the same as the dataset used in [21], because it is the most popular
realistic dataset used in D2D communications, although it does not include the actual locations of UEs.
To the best of our knowledge, there is no typical dataset that includes UE contacts and UE locations.
Thus, in this study, we adopted the dataset in [21] and simulated the UE locations and their mobility
by ourselves.

Each simulation was run for 1000 seconds. The plotted simulation results were then computed
as the average value obtained over 100 simulations that were performed under identical conditions.
The default environmental parameters were set as shown in Table 5. In accordance with the Infocom06
dataset, the number of UEs was set as N = 98. Moreover, the path loss exponent, v, of the BS and
CD RF transmissions was set as 2, the energy harvesting efficiency factor, σ, was set as 0.7, and the
transmission power of the beacon messages was set as 20 mW. The BP of the peer discovery process
(with a duration of 1000 s) was set as 10 W. Finally, the mobility (moving speed) of the UEs was set as 1
under the assumption that the mobility in the Infocom06 dataset is 1. In general, as the moving speed of
the UEs increases, the contact interval between them reduces, and vice versa. Thus, for a mobility value
that is equal to 2, the contact interval between the UEs is equal to half that in the Infocom06 dataset.

Some assumptions are made for simplifying the simulations: (1) The harvested power quantum is
according to Equation (6), although this quantum will be affected by interferences or other factors in a
real environment. (2) The locations of UEs are limited in this area 600 × 600 m2. That is, if a UE moves
outside this area, then its location will be randomly located within this area. (3) The beacon is perfectly
transmitted, i.e., it will not encounter any collision or be interfered by other noises.

The simulations compared the performance of the ERRD algorithm with that of SBG under
different settings of the BP, CDP, and mobility parameters. We compared ERRD and SBG, rather than
other solutions because of two points. (1) As described in Section 2, ERRD and SBG belong to the
same type: social-aware and network-assisted, but other solutions belong to different types. (2) As
SBG used social features to adjust the beacon rate, it always outperforms other solutions without
social-awareness. The evidence was exhibited in [21]. The UEs were classified into two types to
facilitate the comparison between the two schemes, namely those with an increased beacon rate (IBR)
and those with a decreased beacon rate (DBR), respectively. In the former case, the UEs using ERRD
had a higher beacon rate than those using SBG, while, in the latter case, the beacon rate of the UEs
using ERRD was lower than that of those using SBG.
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Table 5. Default parameter settings in performance evaluation simulations.

Parameter Default Value

N 98
T 1000 seconds
v 2
σ 0.7

CDPm
10 watts (m = 0, i.e., BS)

5 watts (m = 1–8)
CDRm 100 meters

BP 10 watts
TP 20 milliwatts
Pi 300 milliwatts

Mobility 1

5.2. Effect of BP

Figure 3 shows the PDR that was obtained under the two schemes for various values of the BP in
the range of 0–20 W. For both schemes, the PDR exhibits a logarithmic-type increase as BP increases.
This result is reasonable, since, intuitively, as the BP initially increases, the beacon rates of the UEs also
increase, and hence a greater number of peers can be found. However, as the BP continues to increase,
the number of originally unfound peers reduces, and hence the improvement in the PDR also reduces.
The contact intervals in the Infocom06 dataset are not uniformly distributed and some of the intervals
are extremely short. Thus, if the beacon rate is assigned a very high value in an attempt to increase
the number of discovered peers, the consumed BP significantly increases. Therefore, in practical
implementations, the BP should be set in such a way as to achieve a satisfactory tradeoff between the
PDR and the consumed BP.

Figure 3. Peer Discovery Ratio (PDR) vs. total budget power quantum of the network (BP).

For a given value of the BP, ERRD consistently achieves a higher PDR than SBG. For example,
the PDR achieved under ERRD for a BP of 1 W is around 190% higher than that obtained under SBG,
while for a BP of 20 W, the PDR is approximately 8% higher. This performance improvement can be
attributed to two main factors. First, the IBR UEs using ERRD can send more beacons than those
using SBG, and hence achieve a higher PDR. Second, although the DBR UEs using ERRD send fewer
beacons than those using SBG, they have a longer lifetime. Consequently, the UEs can still achieve a
higher PDR than those using SBG. However, the performance improvement that is offered by ERRD
reduces with an increasing BP. This finding is reasonable, since, under a large BP, the amount of
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harvested energy is relatively smaller than that directly allocated by the BS. In other words, for most
UEs, OPi < GPi, and hence the value of GPi under ERRD is similar to that under SBG. Consequently,
the PDR performance gap between the two schemes reduces.

Some intermediate results can be observed to better understand the differences between ERRD
and SBG. First, note that the overall power consumptions for ERRD and SBG are the same as the
overall power consumption is always limited by the budget power quantum; so, showing this value is
unnecessary. However, the power consumption of each UE is quite different for these two approaches.
Thus, we observe two intermediate results: Number of out-of-energy UEs (NoE) and the coefficient of
variation (CV) of power in UEs. The NoE represents the number of UEs that power quantum reserved
for peer discovery has been exhausted, that is, the power consumption exceeds the value of the power
quantum reserved for peer discovery plus the harvested power quantum. The out-of-energy UEs
cannot find other peers and cannot be found by other peers. The CV represents the power distribution
among the UEs. The lower CV means a better balance of UE battery power.

Figure 4 shows the NoE and CV that were obtained under the two schemes for various values of
the BP. Observing this figure, NoE increases as BP exceeds a threshold. When BP increases, the UE
can send more beacons. Therefore, the probability that a UE exhausts its battery power becomes
larger, resulting in the increase of NoE. The out-of-energy UE appears when BP is 6 for SBG, while the
out-of-energy UE appears when BP is 16 for ERRD. This is because SBG only considers the social
ratio to send the beacons, while ERRD not only considers the social ratio, but also harvested power.
When a UE has low harvested power and a high social ratio, ERRD reduces its beacon rate to reduce
the probability of out-of-energy. However, in this case, SBG still lets this UE send beacons at a high
rate, so it is very likely to be out-of-energy. On the other hand, CVs for ERRD and SBG almost linearly
increase as BP increases, but SBG has a sharper slope. SBG generates many out-of-energy UEs and
many UEs having much power, as they obtain much harvested power and send few beacons, resulting
in more unbalanced battery power distribution among UEs, i.e., a higher CV.

0

5

10

15

20

25

30

35

40

45

50

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20

CV
 o

f p
ow

er
 in

 U
Es

 (%
)

Nu
m

be
r o

f o
ut

-o
f-e

ne
rg

y U
Es

BP (W)

ERRD(NoE) SBG(NoE) ERRD(CV) SBG(CV)

Figure 4. Number of out-of-energy User Equipments (NoE) and coefficient of variation (CV) vs. BP.

5.3. Effect of CDP

Figure 5 shows the variation of the PDR with the CDP. In general, a larger CDP indicates that
more UEs can harvest energy, or individual UEs can acquire a greater amount of energy. However,
the total consumed power in the network is limited to BP, irrespective of the value assigned to CDP.
In other words, for a larger CDP, ERRD cannot consume more power than BP, but can only allocate the
power quantum to each UE more precisely, such that all of the UEs can more efficiently send their
beacons. As shown in Figure 5, the PDR obtained under ERRD rapidly increases as the CDP first rises
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since the beacon rate decision made by ERRD reduces the probability that the UEs run out of energy.
For a CDP value greater than 2, almost none of the UEs are out of energy. In this case, the PDR slightly
increases, since the IBR UEs can find a greater number of peers. However, the PDR is not guaranteed to
continuously increase when the number of UEs with an energy-harvesting capability exceeds a certain
threshold. Therefore, in implementing the ERRD algorithm, a threshold should be set, whereby when
the number of UEs with an energy-harvesting capability is greater than this threshold, ERRD should
let some of the UEs store the harvested energy in their batteries, rather than expending it on beacon
transmissions in order to provide power for other applications.

Figure 5. PDR vs. CDP.

For the SBG scheme, the PDR also increases with an increasing CDP. However, it increases at a
slower rate than under ERRD, since, even though SBG does not explicitly consider the power obtained
from energy harvesting, the number of out-of-energy UEs still decreases as the number of UEs having
an energy-harvesting capability increases.

Figure 6 shows the NoE and CV that were obtained under the two schemes for various values of
the CDP. Observing this figure, NoE decreases as CDP increases, because UEs can harvest more power.
Therefore, the probability that a UE exhausts its battery power becomes lesser, resulting in the decrease
of NoE. However, the NoE of SBG is significantly larger than that of ERRD, because of the reasons that
are described in Figure 4. On the other hand, CVs for ERRD and SBG almost linearly decrease as CDP
increases. When CDP is small, the UE in the BS coverage still can harvest much power, but the UEs in
the CD coverage only harvest less power, resulting in a larger CV. Similar to Figure 4, we can see SBG
has a sharper slope of CV than ERRD.

5.4. Effect of Mobility

Figure 7 shows the effect of the UE mobility on the PDR under the two schemes. As expected,
the PDR reduces with an increasing mobility for both schemes, since, as the UEs move more rapidly,
the contact rate between them increases, and hence the peers are less easily found for a given beacon
rate. Nonetheless, the ERRD algorithm consistently outperforms SBG by around 10% for all the values
of the UE mobility. Although the duration available for energy harvesting from one particular CD
reduces as the UE mobility increases, the chance of harvesting energy from the other CDs increases.
As a result, the UE mobility has no significant effect on the amount of harvested energy under the
ERRD scheme. A similar tendency also occurs under the SBG scheme. Consequently, the performance
advantage of ERRD over SBG is maintained, irrespective of the value of the UE mobility.
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Figure 6. NoE and CV vs. CDP.

Figure 7. PDR vs. mobility.

6. Conclusions and Future Works

This study has proposed a social-aware peer discovery mechanism, designated as ERRD, for energy
harvesting-based D2D communications. ERRD first allocates the budget power of the network among
the UEs, depending on their social ratios and then adjusts the allocated power quantum of each UE,
depending on its harvested energy. Finally, ERRD sets the beacon rates of the UEs based on their
adjusted power quanta subject to the constraint that the total power allocated to the UEs may not
exceed the BP quantum of the network. ERRD improves the PDR performance by increasing the
beacon rates of the high-energy-harvesting UEs, thereby increasing the number of peers that they
can discover; and, reducing the beacon rates of the low-energy-harvesting UEs, thereby extending
their lifetimes and prolonging the period for which they can participate in the peer discovery process.
The simulation results have shown that ERRD outperforms the SBG scheme that is reported in the
literature by around 8–190%, depending on the BP quantum of the network. The PDR performance of
ERRD does not significantly increase as the BP increases beyond 10 W or the CDP exceeds 2. However,
in mobile environments, ERRD retains a 10% performance advantage over SBG, irrespective of the
moving speed of the UEs.

Currently, 5G D2D communications and energy-harvesting devices are not so popular to give a
realistic example of use case. Therefore, the paper is more research-oriented, rather than system-oriented.
However, we believe that D2D communications and energy-harvesting devices will become more
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popular in the future. The scenario that is considered in the study will actually happen and our
proposed solution, ERRD, can be applied.

A complete D2D communication not only includes peer discovery, but also mode selection and
resource allocation. Future studies will aim to establish a more comprehensive energy harvesting-based
D2D communication model that includes mode selection and resource allocation. In its current form,
ERRD considers the past behavior (sociality) and present condition (energy harvesting) of the UEs,
but it does not consider the impact of the surrounding information, such as the number of peers in
the network or the interference. Therefore, in future studies, ERRD will be extended to take such
information into account in order to obtain a more robust estimation of the most appropriate beacon
rate for D2D communications. Finally, the performance of ERRD in a realistic environment should be
further investigated, as our study proves the outperformance of ERRD by simulations. For example,
a UE who has a social-network account and, at the same time, can harvest energy can enhance how
much of PDR. To observe this, ERRD should be realistically implemented in BS. We will pay the efforts
on this implementation in the future.
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Abstract: Heterogeneous networks (HetNets), consisting of macro-cells and overlaying pico-cells,
have been recognized as a promising paradigm to support the exponential growth of data traffic
demands and high network energy efficiency (EE). However, for two-tier heterogeneous architecture
deployment of HetNets, the inter-tier interference will be challenging. Time domain further-enhanced
inter-cell interference coordination (FeICIC) proposed in 3GPP Release-11 becomes necessary to
mitigate the inter-tier interference by applying low power almost blank subframe (ABS) scheme.
Therefore, for HetNets deployment in reality, the pico-cell range expansion (CRE) bias, the power
of ABS and the density of pico base stations (PBSs) are three important factors for the network EE
improvement. Aiming to improve the network EE, the above three factors are jointly considered in
this paper. In particular, we first derive the closed-form expression of the network EE as a function
of pico CRE bias, power reduction factor of low power ABS and PBS density based on stochastic
geometry model. Then, the approximate relationship between pico CRE bias and power reduction
factor is deduced, followed by a linear search algorithm to get the near-optimal pico CRE bias and
power reduction factor together at a given PBS density. Next, a linear search algorithm is further
proposed to optimize PBS density based on fixed pico CRE bias and power reduction factor. Due
to the fact that the above pico CRE bias and power reduction factor optimization and PBS density
optimization are optimized separately, a heuristic algorithm is further proposed to optimize pico
CRE bias, power reduction factor and PBS density jointly to achieve global network EE maximization.
Numerical simulation results show that our proposed heuristic algorithm can significantly enhance
the network EE while incurring low computational complexity.

Keywords: HetNets; interference coordination; energy efficiency; stochastic geometry

1. Introduction

The exponential growth of data traffic demand, huge energy consumption and large amounts
of global carbon dioxide emissions severely restrict the sustainable development of wireless cellular
networks. According to the statistics, the data traffic volume demand in the fifth-generation (5G)
wireless communication network will increase of 1000× by 2020. Moreover, the limited spectrum
resources also constrain the network capacity improvement [1]. Therefore, the network energy
efficiency (EE) which considers both spectral efficiency (SE) and energy consumption has been valued
not only as an important network performance indicator for modern wireless networks, but also for
the operational expenditure reduction and sustainable development [2].
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Heterogeneous networks (HetNets) consisting of macro base stations (MBSs) and low-power
pico base stations (PBSs) can improve SE by reusing the spectrum geographically [3] and enhance
the wireless link quality by shortening the distance between the transmitter and the receiver [4].
Therefore, HetNets are deemed as a promising technique to support the deluge of data traffic with
high network EE. Nonetheless, due to the complex two-tier heterogeneous architecture deployment
of HetNets, the challenging inter-tier interference and PBS deployment density will deteriorate the
network EE if they are not treated carefully, which are the concerns of this paper for aiming to improve
the network EE.

1.1. Motivation

In HetNets consisting of MBSs and PBSs, as shown in Figure 1, the great difference of transmitter
power leads to load imbalance between macro tier and pico tier. To address this issue, PBSs adopt
cell range expansion (CRE) technology to enlarge the PBS coverage area by adding a positive bias on
the reference signal received power (RSRP) of PBSs without increasing transmission power [5,6].
Unfortunately, CRE user equipments (UEs) located in the pico CRE region will suffer serious
downlink interference from dominating MBSs, even causing the outage of control signals. As a result,
it is important to mitigate the downlink interference to improve the wireless link quality between
transmitter and receiver. Then the network EE can be improved.

Figure 1. The network scenario.

To mitigate the downlink inter-tier interference for HetNets, further enhanced inter-cell
interference coordination (FeICIC) scheme has been specified in 3GPP Release 11 [7]. In FeICIC
scheme, MBSs can transmit data to macro center UEs with low transmission power over certain
subframes, termed as low power almost blank subframes (ABS), over which PBSs can schedule CRE
UEs with reduced interference [8]. On the basis of FeICIC technique, for user association, the pico CRE
bias will directly affect the value of user received RSRP from PBSs, which will eventually affect the
number of CRE UEs associated to PBSs. As CRE UEs are scheduled in the subframes corresponding to
the ABS of MBSs, the transmission power of MBSs in ABS, i.e., ABS power, will decide the interference
degree suffered by CRE UEs. Therefore, pico CRE bias and ABS power are two important factors for
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the wireless link quality of UEs, especially for CRE UEs, which eventually have significant effect on
the network EE performance.

To meet the super-large capacity demand in 5G wireless communication networks, more and
more base stations (BSs), especially small base stations (SBSs), are deployed in HetNets [9,10]. On the
one hand, irregular deployment of massive BSs causes additional and intractable inter-tier interference.
On the other hand, although high-density PBSs are deployed to satisfy the peak traffic volume, highly
dynamic wireless traffic may deteriorate EE if the capacity gains of numerous PBSs are utilized
insufficiently. In short, the BSs deployment strategy based on network load is also one of the key issues
to realize 5G green cellular network [11].

In addition, the network EE of HetNets is also affected by some other aspects of factors.
For instance, it is proved that the reasonable adjustments of BS transmit power, inter-site distances and
the number of MBSs or SBSs contribute to the improvement of EE of HetNets [12]. In [13], assuming
that SBSs have performed traffic offloading from MBS, the authors investigated the MBS and SBS
power allocation scheme to improve network EE. In [14], the authors investigated the user scheduling
and resource allocation method to optimize the network EE for HetNets.

To sum up, for complex HetNets, network EE is affected by many different aspects of factors,
e.g., MBS transmit power in low power ABS, MBS transmit power in non-ABS, MBS density, ABS ratio,
pico CRE bias, PBS density, PBS transmit power in low power ABS, PBS transmit power in non-ABS,
etc. Thus, it will be a very challenging work to analyze the effects of all of these factors together on
network EE. In this paper, for HetNets deployment in reality with inter-tier interference coordination
by adopting FeICIC scheme, the pico CRE bias, the power reduction factor of low power ABS, and the
density of PBSs are three more related factors for the network EE improvement compared with others.
Therefore, the above three factors are focused and jointly optimized for the network EE maximization
in this paper.

1.2. Contributions

In this paper, we investigate the joint optimization of FeICIC parameters and PBS density in
HetNets for network EE improvement. Initially, the system model for two-tier HetNets by using
stochastic geometry is described. Then, an analytical expression of the network EE as a function of pico
CRE bias, power reduction factor and PBS density is derived. At last, heuristic algorithms are proposed
to obtain the optimal values of pico CRE bias, power reduction factor and PBS density to maximize
the network EE. The main contributions of this paper are summarized as follows: (1) the closed-form
expression of network EE as a function of pico CRE bias, power reduction factor and PBS density
is deduced by stochastic geometry theory. (2) The equivalent relationship between pico CRE bias
and the power reduction factor is obtained by an approximation calculation. Based on the equivalent
relationship, an efficient optimization algorithm is designed to get the near-optimal values of pico
CRE bias and power reduction factor at a given PBS density. (3) To achieve the global optimization of
network EE, a low computational complexity heuristic algorithm is proposed to jointly optimize pico
CRE bias, power reduction factor, and PBS density.

1.3. Organization

The rest of this paper is organized as follows. The system model and user association strategy
are described in Section 3. In Section 4, we deduce the closed-form expression of network EE. A low
complexity heuristic algorithm is proposed to optimize pico CRE bias, power reduction factor, and PBS
density jointly for the network EE maximization in Section 5. Numerical results and discussions are
presented in Section 6. Concluding remarks are given in Section 7.

2. Related Works

Early literatures mainly focused on pico CRE bias, ABS ratio, and ABS power optimization for
the network capacity maximization [15–18] and recent works began to investigate the network EE
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improvement from different perspectives including resource management [19–23], FeICIC parameters
optimization [24–31] and BS deployment strategy [32–39]. As for resource management, centralized
resource allocation algorithms based on convex-optimization [19,20], graph-theory [21] or even
game-theory [22,23] were proposed to achieve the maximum EE gain.

As for FeICIC parameter optimization, the ABS ratio dynamical optimization algorithm based on
network load was proposed to enhance the network EE in [24]. For improving the network capacity
and EE, pico CRE bias optimization problem was further developed combined with power control
in [29]. Using the stochastic geometric approach, the expressions for SE and cell-edge throughputs
have been derived as a function of the power reduction factor of low power ABS in [30]. To move one
step further, pico CRE bias, ABS ratio and ABS power are jointly optimized by a robust EE optimization
framework in [25]. In [31], it was proved that FeICIC can achieve a better gain in view of network EE,
cell-edge throughput and user fairness compared with eICIC. In addition, the distributed algorithms
based on the exact potential game framework for both eICIC and FeICIC optimizations were proposed
to offer better network performance. The authors of [26] deducted and analyzed the EE coverage
performance of FeICIC with extra pico CRE bias. In [28], FeICIC technique was applied to mitigate the
inter-tier interference in HetNets deployed with unmanned aerial vehicles (UAVs). In such a scenario,
the locations of UAVs, pico CRE bias and inter-cell interference coordination parameters were jointly
optimized by using a genetic algorithm. In [27], the EE of HetNets with joint FeICIC and adaptive
spectrum allocation was analyzed by the stochastic geometric approach. The research on FeICIC
parameters optimization on the basis of stochastic geometry is relatively few in the existing literatures.

As for BS deployment strategy, general linear power consumption models were developed by
means of linear regression in [38]. Meanwhile, the effects of MBS transmition power and on/off
switching on instantaneous MBS power consumption were analyzed. A threshold of SBS density in
ultra-dense HetNets was investigated in consideration of the backhaul network capacity and network
EE in [32]. In [33], the authors came up with an approximation algorithm to solve the intractable user
association problem by controlling the PBS density dynamically. The relationship between PBS density
and network EE was analyzed under different UE density in [34]. It was proved that both PBS density
and MBS density have a notable impact on the network EE in [35]. In [36,37], PBS density and MBS
density were jointly optimized based on traffic-aware sleeping strategies and stochastic geometry
to enhance the network EE, respectively. In [39], taking the traffic pattern variations into account,
the BSs can not only adaptively switch on/off states but also can dynamically scale its transmit power
according to network capacity demands. In this way, network energy consumption is reduced.

Despite the aforementioned research works, few works in the literatures focused on FeICIC
parameters and PBS density joint optimization for network EE improvement in HetNets, which will be
investigated and developed in this paper.

3. System Model

The traditional network models with a hexagonal grid cannot accurately match the actual network
deployment. Under such deterministic grid models, Monte Carlo simulations consume huge amounts
of time and resources to obtain the statistical results. Recently, a stochastic geometry model was
proven to be a tractable analytical model for homogeneous networks and HetNets, where the location
distribution of BSs is modeled as a spatial Poisson point process (PPP) [40]. Using PPP, the network
performance, like signal to interference plus noise ratio (SINR) coverage [41], rate coverage [8], average
rate [42], can be analyzed conveniently by theoretical derivation. Thus, we adopt a stochastic geometry
model to model a two-tier HetNets consisting of MBSs and PBSs in this paper.

Let k ∈ {m, p} denote the subscripts of a tier, where k = m represents macro tier and k = p
denotes pico tier. MBSs and PBSs are modeled as two identically independent distributions (iid.) PPPs
Φm and Φp with density λm and λp in the Euclidean plane, respectively. The UEs are also distributed
according to a different iid PPP Φu with density λu. The total spectrum bandwidth is defined as W.
To mitigate the downlink interference over the control channel from MBSs to CRE UEs, MBSs adopt the
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FeICIC scheme, where all the subframes are divided into protected subframes (PSF), i.e., low power
ABS, and unprotected subframes (USF), i.e., non-ABS. The MBSs transmit data at reduced power ρPm

on PSF, where 0 ≤ ρ < 1 is the power reduction factor. In fact MBS transmit power in USF and PBS
transmit power will also have effects on network EE. However, to focus on the effects of PBS density,
pico CRE bias and power reduction factor on network EE and also for analysis simplification, we
assume that MBSs transmit power in USF and PBSs transmit power are set to be the maximum fixed
power Pm and Pp, respectively. Let θ to be PSF ratio, which is defined as the proportion between the
number of PSF subframes and that of all subframes. Each user is associated with the strongest BS
according to the biased received reference signal received power (RSRP) at the user. In this paper,
the association bias for MBS is assumed to be unity (Bm = 1 = 0 dB) and that of PBS is pico CRE bias
depicted as Bp, where Bp ≥ 0 dB.

Based on the user association strategy, all UEs can be divided into four different types: the type
of PSF macro-cell UEs (MUEs) contains the users within the macro-cell center region, the type of
USF MUEs includes the users outside the macro-cell center region, the type of PSF pico-cell UEs
(PUEs) correspond the users located in the pico CRE region and the type of USF PUEs comprises
the users scattered in the original coverage of pico-cell. As shown in Figure 1, we adopt the index
l ∈ L = {pm, um, pp, up} to denote the indication of the above four types of users, respectively, where
pm represents PSF MUEs, um denotes USF MUEs, pp signifies PSF PUEs, and up indicates USF PUEs.
In HetNets with FeICIC, the UEs scheduling strategy for MBS and PBS is shown in Figure 2. The USF
MUEs and USF PUEs are scheduled by MBSs and PBSs on USF, respectively. Each MBS schedules PSF
MUEs on PSF with reduced power. Then PBS can schedule PSF PUEs in the corresponding subframes
with reduced interference.

Figure 2. The user equipments (UEs) scheduling strategy for macro base station (MBS) and pico base
stations (PBS) with the further-enhanced inter-cell interference coordination (FeICIC) scheme.

According to the Slivyak theorem, there is no difference in properties observed either at a point of
the PPP or at an arbitrary point [8]. Therefore, we can simply analyze a typical UE located at the origin.
The received signal power of a typical user l from a BS of k tier at a distance of rk can be represented as
Pkhr−α

k , where Pk is the full transmission power of BS in k tier, h represents the channel fast fading gain,
which is defined as Rayleigh distributed with average unit power, i.e., h ∼ exp(1). The term α denotes
the large-scale path loss exponent, which is assumed to be the same in both macro tier and pico tier for
convenient analysis. Hence, the SINR of a typical user l based on its user type can be depicted as:
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γl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρPmhr−α
m

ρIm + Ip + σ2 , if l = pm

Pphr−α
p

ρIm + Ip + σ2 , if l = pp

Pmhr−α
m

Im + Ip + σ2 , if l = um

Pphr−α
p

Im + Ip + σ2 , if l = up

, (1)

where Im and Ip denote the full power aggregate interference from the macro tier and pico tier to UE l,
respectively, σ2 represents the thermal noise, ρ is the power reduction factor of MBS transmit power
in PSF. Pm and Pp are the full transmission power of MBSs and PBSs, respectively. rm and rp are the
nearest distance from MBSs and PBSs to a typical UE l, respectively.

The notations used in this paper are shown in Table 1.

Table 1. Notations summary.

Notation Description

λm, λp, λu Density of MBS, PBS and UE
L, l Set of user types, indication of the user type
W Total spectrum bandwidth
h Channel fast fading gain
α Large-scale path loss exponent
σ2 Thermal noise
Pm, Pp Maximum transmission power of MBS and PBS
ρ Power reduction factor
θ PSF ratio
Bp Pico CRE bias
γl SINR of a typical UE l
Im, Ip Full power aggregate interference from macro tier and pico tier
rm, rp Distance from a UE to its nearest MBS and its nearest PBS
Al Probability of a typical UE belongs to the user type l
kc, ke, kp Factor of macro-cell center region, pico CRE region and pico-cell original coverage region
rl Distance from a typical UE l and its serving BS
fl(r) PDF of the distance between a UE and its serving BS
λl Density of BSs associated with user type l
Rl Mean achievable downlink data rate of a typical UE l
Wl Spectrum bandwidth allocated to a typical UE l
Nl , Ntotal

l Mean number of UEs with user type l in a Voronoi cell, total number of UEs with user type l
Pm,s, Pp,s Static power of MBS and PBS
P̂m Proportion between maximum transmission power of MBS and that of PBS
P̂p Proportion between maximum transmission power of PBS and that of MBS
λp,m Proportion between PBS density and MBS density
Rtotal Total network throughput
Ptotal Total network power consumption
ρ′ Approximate value of power reduction factor
B̂∗

p, ρ̂∗, λ̂∗
p Near-optimal value of pico CRE bias, power reduction factor and PBS density

B∗
p, ρ∗, λ∗

p, EE∗ Optimal value of pico CRE bias, power reduction factor, PBS density and EE

3.1. User Type Probability

Normally, the user type of a typical UE l can be decided by the relationship between the biased
RSRP from its nearest MBS and its nearest PBS as follow:

l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pm, if ρPmhr−α

m > BpPphr−α
p

pp, if Pphr−α
p < Pmhr−α

m < BpPphr−α
p

um, if ρPmhr−α
m < BpPphr−α

p < Pmhr−α
m

up, if Pmhr−α
m < Pphr−α

p

, (2)
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where Bp is the pico CRE bias. In Equation (2), the conditions for determining user type can be
further translated from biased RSRP based inequation into distance based inequation, which is shown
as Equation (3).

l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pm, if kcrm < rp

pp, if kprm < rp < kerm

um, if kerm < rp < kcrm

up, if kprm > rp

, (3)

where kc =
[
BpPp/ (Pmρ)

]1/α, ke =
(

BpPp/Pm
)1/α and kp =

(
Pp/Pm

)1/α are defined as macro-cell
center region factor, pico CRE region factor and pico-cell original coverage region factor, respectively [8],
determining the coverage bound of the macro-cell center region, the pico CRE coverage region and the
pico-cell original coverage region, respectively.

In order to obtain the probabilities of four user types, the following lemma is proposed.

Lemma 1. Due to the locations of MBSs and PBSs follow two iid. PPPs, given two arbitrary coefficient values
of na and nb, the probability of narm < rp < nbrm can be expressed as:

Prob
(
narm < rp < nbrm

)
= Prob

(
rp > narm

)
− Prob

(
rp > nbrm

)
= λm

λm+n2
aλp

− λm
λm+n2

bλp
, (4)

where λm and λp are the MBS density and PBS density.

Proof. The proof of Lemma 1 is presented in Appendix A.

Then, the probabilities of the PSF MUEs and the USF PUEs can be calculated similarly based
on Lemma 1 and can be expressed by Prob

(
rp > narm

)
= λm

λm+n2
aλp

and Prob
(
rp < nbrm

)
= 1 −

Prob
(
rp > nbrm

)
= 1 − λm

λm+n2
bλp

, respectively. Combining Equation (4) with the user association

strategy in Equation (3), the probability of this typical UE belonging to the user type l can be defined
as Al = Prob(l ∈ L), which is expressed as:

Al=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λm

λm + k2
c λp

, if l = pm

λmλp

(
k2

e − k2
p

)
(

λm + k2
pλp

) (
λm + k2

e λp
) , if l = pp

λmλp
(
k2

c − k2
e
)(

λm + k2
e λp

) (
λm + k2

c λp
) , if l = um

k2
pλp

λm + k2
pλp

, if l = up

. (5)

In particular, if ρ = 0, then kc = ∞ and Apm = 0, which means that the PSFs are zero power ABS.
The association probabilities of USF MUEs and PSF MUEs versus ρ with different Bp are simulated
according to Equation (5) in Figure 3. As shown in Figure 3, with the increase of power reduction
factor ρ, the transmission power of MBSs over PSF will increase, resulting in the association probability
of USF MUEs decreasing and that of PSF MUEs increasing. It can also be found that the sum of Apm

and Aum will decrease with the growth of Bp, because more UEs will be offloaded into pico-cells with
larger Bp.
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Figure 3. The user association probability of unprotected subframes (USF) micro-cell user equipments
(MUEs) and protected subframes (PSF) MUEs versus ρ with fixed λp = 3λm and fixed λu = 0.0018.

3.2. Distribution of Serving BS Distance

After a typical UE type is classified according to the user association strategy, the probability
density function (PDF) of distance r between this typical UE and its serving BS can be obtained
according to Lemma 2 as below.

Lemma 2. On the basis of user association probability deduced in Equation (5), the probability density function
(PDF) fl(r) of the distance r between the typical UE l and its serving BS can be derived as:

fl(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2πrλm

Apm
exp

[
−πr2

(
λm + k2

c λp

)]
, if l = pm

2πrλp

App

{
exp

[
−πr2

(
λm/k2

e + λp

)]
− exp

[
−πr2

(
λm/k2

p + λp

)]}
, if l = pp

2πrλm

Aum

{
exp

[
−πr2

(
λm + k2

e λp

)]
− exp

[
−πr2

(
λm + k2

c λp

)]}
, if l = um

2πrλp

Aup
exp

[
−πr2

(
λm/k2

p + λp

)]
, if l = up

. (6)

Proof. The proof is shown in Appendix B.

4. Derivation of Energy Efficiency Expression

This section introduces our main analysis model and derives the closed-form expressions of the
average achievable downlink rate, the network power consumption and the network EE, respectively.
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4.1. The Ratio of PSF

PSF ratio can be denoted to be the proportion between the association probability of PSF PUE and
the sum of the association probability of PSF PUE and that of USF PUE, as shown in Equation (7).

θ =
App

App + Aup
=

λm

(
k2

e − k2
p

)
k2

e

(
λm + k2

pλp

) , (7)

where the expressions of App and Aup are obtained according to Equation (5).
Referring to Equation (7), the PSF ratio versus Bp with different PBS densities λp is depicted in

Figure 4. As shown in Figure 4, with Bp increasing, the pico CRE area will be enlarged. As a result,
the PSF ratio will rise. Moreover, with the PBS density λp increasing, the distance between PBSs will
be smaller, which will limit the further expansion of pico CRE area, so that the effect of Bp on θ will be
weakened with λp increasing.
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Figure 4. The PSF ratio versus Bp with fixed λu = 0.0018.

4.2. Average Achievable Downlink Rate

Assume that the network system adopts full buffer model and the frequency resource is allocated
to all UEs in the coverage of a BS equally. Thus, the mean achievable downlink data rate of a typical
UE l can be denoted as:

Rl =
Wl

E [Nl ]
E [log2 (1 + γl)] (8)

where Wl is the spectrum bandwidth allocated to UE l. Specifically, when l ∈ {pm, pp}, Wl = θW
and when l ∈ {um, up}, Wl = (1 − θ)W. Nl is the mean number of serving UEs with user type l in
a Voronoi cell and its expectation is E [Nl ] = (Alλu/λl) + 1. If l ∈ {pm, um} , λl = λm, otherwise
λl = λp.

According to the analysis above, we get Lemma 3 as follow:
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Lemma 3. The average achievable downlink rate of a typical UE l can be further represented by

Rl =
2πλlWl

Al Nl

∫ ∞

0

∫ ∞

0
exp

(
−ϕl − πr2Cl

)
fl (r)drdt (9)

where τ = 2t − 1, ϕl = −τσ2rα
l ρ−1

l P−1
l ,

Cl =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λmZ (τ, α, 1) + λp

(
P̂p/ρ

)2/αZ
(
τ, α, Bp

)
, when l = pm

λm
(
ρP̂m

)2/αZ
(

τ, α, Bp
−1ρ−1

)
+ λpZ (τ, α, 1) , when l = pp

λmZ (τ, α, 1) + λp(P̂p)2/αZ
(
τ, α, Bp

)
, when l = um

λm
(

P̂m
)2/αZ (τ, α, 1) + λpZ (τ, α, 1) , when l = up

,

where Z (τ, α, β) = τ2/α
∫ ∞
(β/τ)2/α

1
1+xα/2 dx, P̂m = Pm/Pp and P̂p = Pp/Pm.

Proof. The proof is presented in Appendix C.

Corollary 1. To further simplify the analysis, we ignore the noise, i.e., σ2 = 0 and set the large-scale path loss
exponent α= 4. In that case, corresponding to the user type, the average achievable downlink rate of four user
types can be expressed as:

Rpm =
∫ ∞

0
θW/ApmNpm

λp,mQ
(

P̂pτ/ρ, BpP̂p/ρ
)
+Q (τ, 1)

dt

Rpp =
∫ ∞

0
θW/AppNpp

λ−1
p,mQ

(
ρP̂mτ, Bp

−1P̂m

)
+ Q (τ, 1)

− θW/AppNpp

λ−1
p,m

[
Q

(
ρP̂mτ, Bp

−1P̂m

)
− k−2

e +k−2
p

]
+ Q (τ, 1)

dt

Rum =
∫ ∞

0
(1 − θ)W/AumNum

λp,mQ
(

P̂pτ, BpP̂p
)
+ Q (τ, 1)

− (1 − θ)W/AumNum

λp,m
[
Q

(
P̂pτ, BpP̂p

)
− k2

e + k2
c
]
+ Q (τ, 1)

dt

Rup =
∫ ∞

0
(1 − θ)W/AupNup

λ−1
p,mQ

(
P̂mτ, P̂m

)
+ Q (τ, 1)

dt,

(10)

where Q (τ, x) =
√

x +
√

τ arctan
(√

τ/x
)
, λp,m = λp/λm, P̂p = Pp/Pm, P̂m = Pm/Pp.

Proof. Set α = 4 and σ2 = 0, then we can get ϕl = 0 and Z (τ, α, β) =
√

τ
∫ ∞√

β/τ
1

1+x2 dx =
√

τ arctan
(√

τ
/

β
)

. Combining with Equation (6), the desired results in Equation (9) can
be obtained.

4.3. Network Power Consumption

Generally, the BS power consumption comprises static power consumption and transmit power
consumption [35]. The static power consumption is caused by signal processing, battery backup,
as well as site cooling, and independent with the BS transmit power consumption. The transmit power
consumption is determined by the transmission power of this BS and the load-dependent power
consumption coefficient of this BS which is denoted as the number of its serving UEs. Define Pm,s and
Pp,s are the static power consumption of each MBS and each PBS, respectively. With FeICIC scheme,
the power consumptions of each MBS in PSF and USF can be expressed as PPFS

m = Pm,s + NpmρPm and
PUFS

m = Pm,s + NumPm, respectively. Similarly, the power consumptions of each PBS in PSF and USF
can be given as PPFS

p = Pp,s + NppPp and PUFS
p = Pp,s + NupPp , respectively.

In PFS, the unit area mean power consumption PPFS can be expressed as:

PPFS = λmPPFS
m + λpPPFS

p = λmPm,s + λpPp,s + ApmλuρPm + AppλuPp. (11)

Similarly, the unit area mean power consumption in UFS PUFS can be obtained as follow:

PUFS = λmPUFS
m + λpPUFS

p = λmPm,s + λpPp,s + AumλuPm + AupλuPp. (12)
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Hence, the network power consumption can be expressed as:

Ptotal = θPPFS + (1 − θ) PUFS
= λmPm,s + θ

(
ApmλuρPm + AppλuPp

)
+ λpPp,s + (1 − θ)

(
AumλuPm + AupλuPp

)
.

(13)

4.4. Network Energy Efficiency

The network EE can be defined as the ratio of the achievable network throughput to the network
power consumption [37]. For the convenience of derivation, we set σ2 = 0 and α = 4. Based on
Equations (10) and (13), we can get the closed-form expression of network EE in the following:

EE = Rtotal

Ptotal =
λu(Rpm Apm+Rpp App+Rum Aum+Rup Aup)

Ptotal

= λu
Ptotal

∞∫
0

θW/Npm

λp,mQ(P̂pτ/ρ,BpP̂p/ρ)+Q(τ,1)

+
θW/Npp

λ−1
p,mQ(ρP̂mτ,Bp

−1 P̂m)+Q(τ,1)
− θW/Npp

λ−1
p,m[Q(ρP̂mτ,Bp

−1 P̂m)−k−2
e +k−2

p ]+Q(τ,1)

+ (1−θ)W/Num
λp,mQ(P̂pτ,BpP̂p)+Q(τ,1)

− (1−θ)W/Num
λp,m[Q(P̂pτ,BpP̂p)−k2

e+k2
c ]+Q(τ,1)

+
(1−θ)W/Nup

λ−1
p,mQ(P̂mτ,P̂m)+Q(τ,1)

dt

(14)

5. Joint Optimization of FeICIC Parameters and Base-Station Density

Due to the fact that MBSs are usually deployed by network operators, MBS density will change
slowly and can be assumed to be constant for analysis simplification. Further simplification of the
problem analysis, MBS transmit power in USF and PBS transmit power can also be assumed to be
constant without considering power control. Moreover, the PSF ratio can be calculated according to
Equation (7). Hence, the network EE is mainly impacted by pico CRE bias, power reduction factor,
and PBS density under different UE density, i.e., network load. As MBS density is a constant value, we
can first obtain the optimal value of the ratio between PBS density and MBS density λp,m, denoted as
λ∗

p,m, to maximize the network EE. Then the optimal PBS density λ∗
p can be calculated by λ∗

p = λmλ∗
p,m.

Thus, the joint optimization problem with the object of network EE maximization can be formulated
as follows:

arg max
ρ,Bp ,λp,m

EE

s.t. 0 <Bp ≤ 25 dB
0 ≤ ρ < 1
0 <λp,m ≤ 30

(15)

However, the network EE is nonlinear with λp,m, Bp and ρ, which is difficult to obtain the
optimal λp,m, Bp and ρ at the same time with reasonable complexity. Note that the value ranges of
λp,m, Bp and ρ are limited, which make it possible to seek out the optimal values of λp,m, Bp and
ρ through a linear search algorithm by fixing two of these three variables, respectively. Therefore,
we propose a heuristic algorithm to obtain the sub-optimal solution of the joint optimization problem
in Equation (15). The proposed heuristic algorithm decomposes the original optimization problem
into two sub-problems including FeICIC parameters optimization and PBS density optimization.
For FeICIC parameters optimization, we first derive the approximate relation between Bp and ρ.
Then, we get the sub-optimal values of Bp and ρ with given λp,m by an alternating algorithm. For PBS
density optimization, the optimal value of λp,m can be obtained by a linear search method based on
fixed Bp and ρ. Finally, we alternately solve two sub-problems to achieve globally optimal values of
these variables.
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5.1. Joint Optimization of Pico CRE Bias and Power Reduction Factor

In order to get the optimal values of Bp and ρ for network EE maximization, suppose that λp,m

and λu are given. Thus, the pico CRE bias and power reduction factor joint optimization problem can
be formulated as follow:

ρ∗, B∗
p = arg max

ρ,Bp

EE|λp,m

s.t. 0 <Bp ≤ 25 dB
0 ≤ ρ < 1
λp,m is an arbitrary constant between 0 and 30,

(16)

where B∗
p and ρ∗ are the optimal values of pico CRE bias and power reduction factor, respectively.

To simplify the solving process, we assume that the overall SINR of PSF MUEs is identical to that of
the USF MUEs. Hence, the result of resource allocation will have a direct influence on the network EE.
In view of user fairness, the optimal network EE can be achieved when the relationship of association
probabilities of PSF MUEs and USF MUEs obey the Equation (17).

θ =
Apm

Apm + Aum
. (17)

Combining with Equation (7), we can get the approximate relation of ρ and Bp as:

ρ′=
BpPp

Pm

(
k2

e /App − λm/λp

)2 , (18)

where ρ′ denotes the approximate near-optimal value of ρ. The relationships between ρ and Bp under
different λp are shown in Figure 5. We can find that ρ′ is a strictly increasing function with respect to
Bp at a given PBS density.
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Figure 5. The near-optimal power reduction factor ρ′ versus Bp with fixed λu = 0.0018.

224



Sensors 2019, 19, 2154

Substituting ρ′ into Equation (14), we can get the near-optimal value of Bp, denoted as B̂∗
p by

solving the following univariate problem.

B̂∗
p = arg max

Bp

EE|λp,m, ρ = ρ′

s.t. 0 <Bp ≤ 25 dB
λp,m is an arbitrary constant between 0 and 30

(19)

Then, combining the value of B̂∗
p with Equation (14), the near-optimal value of ρ, denoted as ρ̂∗

can be obtained by following univariate problem.

ρ̂∗ = arg max
ρ

EE|λp,m, B̂∗
p

s.t. 0 ≤ ρ < 1
λp,m is an arbitrary constant between 0 and 30

(20)

Thus, B̂∗
p and ρ̂∗ are obtained by an alternating algorithm, which is shown in Algorithm 1. Δ1 and

Δ2 represent the step lengths of Bp and ρ, which are set to be 0.1 and 0.05, respectively. EE∗ denotes the
optimal value of the network EE. The main idea of this altering algorithm is to obtain the near-optimal
values of pico CRE bias and power reduction factor by a two-step linear search approach on the basis of
the approximate relationship between them. In line 1 of Algorithm 1, the network scenario and relative
parameters are initialized. From line 2 to line 10, the optimal pico CRE bias is obtained by a linear
search way on the basis of approximate relationship between pico CRE bias and power reduction
factor. From line 11 to line 18, the optimal power reduction factor is calculated based on Equation (14).

Algorithm 1: Joint pico CRE bias and power reduction factor optimization (JBPO) algorithm.
1: Initialization: Initialize the network scenario and the values λu, λm and λp,m, where

λp,m ∈ (0, 30]. Set Δ1 = 0.5 dB, Δ2 = 0.05, B̂∗
p = Bp = 0.5 dB and EE∗ = 0.

2: while Bp ≤ 25 dB do

3: Substituting Bp into Equation (18), the approximate near-optimal value of the power
reduction factor ρ can be obtained as ρ′.

4: ρ = ρ′.
5: Substituting Bp and ρ into Equation (14) with given λu, λm and λp,m, the current network

energy efficiency EE′ can be obtained as: EE′ = EE
(

Bp, ρ
)
|λu, λm, λp,m.

6: if EE′ > EE∗ then

7: B̂∗
p = Bp, EE∗ = EE′.

8: end if

9: Bp = Bp + Δ1.
10: end while

11: ρ̂∗ = ρ = 0, Bp = B̂∗
p.

12: while ρ < 1 do

13: Substituting ρ into Equation (14) with given λu, λm, λp,m and Bp, the current network
energy efficiency EE′ can be obtained as: EE′ = EE (ρ) |λu, λm, λp,m, Bp.

14: if EE′ > EE∗ then

15: ρ̂∗ = ρ, EE∗ = EE′.
16: end if

17: ρ = ρ + Δ2.
18: end while
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5.2. Optimization of PBS Density

Similarly, suppose that Bp, ρ and λu are known. Thus, the PBS density optimization problem can
be formulated as follow:

λ∗
p,m = arg max

λp,m

EE|ρ, Bp

s.t. 0 <λp,m ≤ 30
Bp is an arbitrary constant between 0 and 25
ρ is an arbitrary constant between 0 and 1

(21)

Assume that the step length of λp,m is Δ3, which is set to be 0.03. Thus, the optimal PBS density
can be obtained by a linear search algorithm to maximize the network EE, which is described in
Algorithm 2. Line 1 of Algorithm 2 indicates the network scenario and parameters initialization.
From line 2 to line 8, the optimal PBS density is acquired by a linear search method to maximize the
network EE.

Algorithm 2: Pico base stations (PBS) density optimization (PDO) algorithm.
1: Initialization: Initialize the network scenario and the values λu, λm, Bp and ρ, where

Bp ∈ (0, 25] and ρ ∈ [0, 1). Set Δ3 = 0.03, λp,m = 0.3, λ∗
p = λp,mλm and EE∗ = 0.

2: while λp,m ≤ 30 do

3: Substituting λp,m into Equation (14) with given λu, λm, Bp and ρ, the current network
energy efficiency EE′ can be obtained as: EE′ = EE

(
λp,m

)
|λu, λm, Bp, ρ.

4: if EE′ > EE∗ then

5: λ∗
p = λp,mλm, EE∗ = EE′.

6: end if

7: λp,m = λp,m + Δ3.
8: end while

5.3. Joint Optimization of Pico CRE Bias, Power Reduction Factor and PBS Density

The FeICIC parameter optimization sub-problem and the PBS density optimization sub-problem
are solved independently by the aforementioned optimization algorithms. Due to the fact that these
variables are affected by each other, we further propose a heuristic pico CRE bias, power reduction
factor and PBS density joint optimization algorithm to globally optimize network EE based on the
joint pico CRE bias and power reduction factor optimization (JBPO) algorithm and PDO algorithm.
The detailed procedure of our proposed heuristic algorithm is summarized in Algorithm 3. ε represents
the positive tolerance value. Nloop is the iteration times of the algorithm. Line 1 of Algorithm 3 signifies
the network scenario and parameters initialization. From line 3 to line 4, the JBPO algorithm is
executed to obtain the current optimal pico CRE bias and power reduction factor at a given PBS density.
From line 5 to line 6, the PDO algorithm is performed to acquire the current optimal PBS density based
on the above obtained pico CRE bias and power reduction factor. From line 2 to line 9, the network
EE is iteratively optimized until it cannot improve further within an arbitrary value ε. As a result,
the optimal pico CRE bias, power reduction factor and PBS density are obtained and the network EE
is maximized.
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Algorithm 3: Joint pico pico-cell range expansion (CRE) bias, power reduction factor and PBS
density optimization (JBPDO) algorithm.

1: Initialization: Initialize the network scenario and the values λu, λm, Bp, ρ and λp,m, where
Bp ∈ (0, 25], ρ ∈ [0, 1) and λp,m ∈ (0, 30]. Set EE∗ = 0, Nloop = 0 and ε > 0.

2: repeat

3: Solving the optimization problem in Equation (16), the near-optimal pico CRE bias B̂∗
p

and the near-optimal power reduction factor ρ̂∗ at given λp,m can be obtained based on
the JBPO algorithm.

4: Bp = B̂∗
p, ρ = ρ̂∗.

5: Solving the optimization problem in Equation (21), the near-optimal PBS density λ̂∗
p at

given Bp and ρ can be obtained based on the PDO algorithm.
6: λp = λ̂∗

p, λp,m = λ̂∗
p/λm.

7: Substituting Bp, ρ and λp,m into Equation (14) with given λu and λm, the current network
energy efficiency EE′ can be obtained as: EE′ = EE

(
Bp, ρ, λp,m

)
|λu, λm.

8: B∗
p = Bp, ρ∗ = ρ, λ∗

p = λp, EE∗ = EE′, Nloop = Nloop + 1.
9: until |EE′ − EE∗| < ε

5.4. Computational Complexity

The computational complexity of the JBPO algorithm can be calculated as O
(

nBp + nρ

)
, where

nBp and nρ are the space sizes of the linear search for Bp and ρ, respectively. The computational

complexity of the PDO algorithm is O
(

nλp

)
, where nλp is the space size of the linear search for λp.

Thus, the computational complexity of the JBPDO algorithm is O
[(

nBp + nρ+nλp

)
× Nloop

]
.

Due to the fact that there does not an exist effective algorithm for solving Equation (15),
we compare the computational complexity of our proposed JBPDO algorithm with that of a traversal
algorithm. As for solving Equation (15), the optimal values of pico CRE bias, power reduction factor
and PBS density can be obtained by a traversal way, i.e., traversal pico CRE bias, power reduction
factor and PBS density optimization (TBPDO) algorithm, which refers to traversing all possible values
of these three parameters to maximize the objective function in Equation (15). Thus, the computational
complexity of TBPDO algorithm will be O

(
nBp × nρ × nλp

)
, which signifies that the computational

complexity of our proposed JBPDO algorithm is reduced effectively.
As for solving the objective function in Equation (16), the optimal values of pico CRE bias and

power reduction factor can also be obtained by a traversal way, i.e., traversal pico CRE bias and
power reduction factor optimization (TBPO) algorithm, which refers to traversing all possible values
of these two parameters to maximize the objective function in Equation (16). Indeed, TBPO algorithm
consists of two nested ergodic sub-processes: (1) traversal pico CRE bias optimization (TBO) algorithm,
which is executed by traversing all pico CRE bias to maximize the objective function in Equation (19)
under fixed power reduction factor and PBS density; (2) traversal power reduction factor optimization
(TPO) algorithm, which is executed by traversing all power reduction factor to maximize the objective
function in Equation (20) under fixed pico CRE bias and PBS density. Therefore, the computational
complexities of the TBO and TPO algorithms are O

(
nBp

)
and O

(
nρ

)
, respectively. As a result,

the computational complexity of the TBPO algorithm will be O
(

nBp × nρ

)
, which is obviously higher

than that of our proposed JBPO algorithm.

6. Numerical Results and Analysis

In this section, we not only provide theoretical simulation, but also verify the effectiveness of
proposed heuristic algorithms by Monte Carlo simulation. In the theoretical simulation, we considerws
a network coverage area within a square region of 1000 m × 1000 m. The deployments of PBS and
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MBS follow the PPP model and the typical UE is deployed in the origin. The simulation parameters
used in this paper are summarized in Table 2. We took the average results from 30 times of network
implementations as Monte Carlo simulations results. In each network implementation, the locations of
MBSs, PBSs and UEs were modeled as spatial PPP, respectively. Then, the network EEs was calculated
for all the different combination of pico CRE bias, power reduction factor, and PBS density values
within their value ranges based on wireless channel quality. Finally, the maximum network EE and
the optimal pico CRE bias, power reduction factor and PBS density can be obtained by comparing
the calculated network EEs under all combinations. Indeed, the results of Monte Carlo simulation,
including the maximal network EE, the optimal pico CRE bias, the optimal power reduction factor and
the optimal PBS density, were obtained by a traversal way in each network implementation. Meanwhile,
the performances of algorithms shown in the following simulation figures were just simulated based on
theoretical derived Equation (14). Therefore, Monte Carlo simulation results had the best performance
and can be referred to as a baseline for valuing the performances of those algorithms.

Table 2. Network scenario parameters.

Parameters Value

Carrier frequency f 2 GHz
Total spectrum bandwidth W 10 MHz

Path loss exponent α 4

Path loss L
L = 10 log (L0) + α10 log (r),

where L0 =
(
4π f

/
c
)2,

c = 3 × 108 m/s
MBS transmission power Pm 43 dBm
PBS transmission power Pp 30 dBm

MBS static power Pm,s 800 W
PBS static power Pp,s 130 W

MBS density λm 0.00003

At first, the network EE performances of the JBPO algorithm were compared with those of the
TPO algorithm, TBO algorithm, theoretical simulation and Monte Carlo simulation, as shown in
Figures 6 and 7, respectively. As shown in Figure 6, with the increase of PBS density, network EE
increased accordingly. With PBS density increase, more UEs were offloaded into the coverage of low
power PBSs. Then the distance between the transmitter and the receiver was shorted, resulting in
network EE improvement. As shown in Figure 7, with the increase of UE density, the curves of network
EE also rose accordingly. As the UE density increased, more UEs can be offloaded into the coverage of
low power PBSs by adjusting pico CRE bias and power reduction factor via network EE optimization
algorithms. Then network EE can be improved. For the theoretical simulation curve, because the
network EE was not optimized and just calculated according to Equation (14) with pico CRE bias and
power reduction factor being set to be fixed values 5 dB and 0.25, respectively, so it had the worst
performance. The TPO algorithm and the TBO algorithm optimized power reduction factor and CRE
bias, respectively. Therefore, the performances of these two algorithms with one parameter optimized
were better than that of the theoretical simulation. Our proposed JBPO algorithm can jointly optimize
pico CRE bias and power reduction factor together. Therefore, it can further improve the network EE
and match the Monte Carlo simulation results very well. Furthermore, the performance of the TPO
algorithm was far less than that of the TBO algorithm, which signifies that the influence of pico CRE
bias was more than that of the power reduction factor on the network EE, especially in low PBS density.
In addition, in Figure 7 the performance gap between the JBPO algorithm and theoretical simulation
increases accordingly with the growth of UE density, which further indicates the importance of joint
pico CRE bias and power reduction factor optimization for the heavy network load scenario.
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Figure 6. The network energy efficiency (EE) versus λp with fixed λu = 0.0018.
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Figure 7. The network EE versus λu with fixed λp = 10λm.

Then, the performances of our proposed JBPO algorithm were compared with that of the TBPO
algorithm in Figures 8 and 9 from different aspects, respectively. The relationship between network EE
and λp with different λu are shown in Figure 8. We can see that the performance of our proposed JBPO
algorithm was just slightly worse than that of the TBPO algorithm, but the computational complexity
of JBPO was much lower than that of the TBPO algorithm. In addition, all curves of network EE
increased first and then fell down slightly with PBS density increase, which illustrates that increasing
PBS density can improve the network EE significantly within a certain network load. Nonetheless,
when the PBS density exceeded a certain limit, further increasing will cause more complex interference
and more power consumption, which will result in the network EE deterioration.
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Figure 8. The network EE versus λp with different λu.
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Figure 9. The network EE versus λu with different λp.

The relationship between network EE and λu with different λp are depicted in Figure 9. Due to
the curves cross with each other under different UE densities, the PBS density should be carefully
adjusted according to the network load fluctuation. In addition, for a given PBS density, we can see
that the network EE become greater with a higher network load. Referring to Figures 8 and 9 together,
although the network EE performance of the TBPO algorithm is just slightly better than that of the
JBPO algorithm, the computational complexity of it is O(nBp × nρ), which is much higher than that of
the JBPO algorithm.

Finally, the network EE performances of the JBPDO algorithm were compared with those of the
PDO algorithm, JBPO algorithm with fixed λp = 10λm, TBPDO algorithm, and Monte Carlo simulation
in Figure 10. In the TBPDO algorithm, pico CRE bias, power reduction factor and PBS density are

230



Sensors 2019, 19, 2154

jointly optimized to maximize network EE by an exhaustive traversal algorithm based on Equation (14).
The Monte Carlo simulation results show the maximum network EE within the value range of pico
CRE bias, power reduction factor and PBS density at different network load.

As shown in Figure 10, the proposed JBPDO algorithm can obtain better network EE than that
of the JBPO algorithm since the JBPDO algorithm further optimizes the PBS density on the basis of
the JBPO algorithm. Meanwhile, the accuracy and effectiveness of our proposed JBPDO algorithm
are once again verified by Monte Carlo simulation results. In addition, although the network EE of
the TBPDO algorithm outperforms our proposed JBPDO algorithm, the computational complexity
of TBPDO algorithm is O

(
nBp × nρ × nλp

)
, which is far higher than that of the JBPDO algorithm.

The convergence of JBPDO algorithm is provided in Figure 11. From Figure 11, we can find that
JBPDO algorithm can converge after three iterations. It is proved that the computational complexity
of the JBPDO algorithm is much lower than that of the TBPDO algorithm and more suitable for the
real-time network.
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Figure 10. The network EE versus λu with different optimization algorithms.
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7. Conclusions

In this paper, pico CRE bias, PSF power reduction factor and PBS density are jointly optimized to
maximize network EE for a two-tier HetNets with FeICIC. First, we derive the closed-form expression
of network EE based on stochastic geometry theory. Then, the near-optimal values of pico CRE
bias and power reduction factor are obtained by an alternating algorithm based on the equivalence
relation between them at a given PBS density deployment. With fixed pico CRE bias and power
reduction factor, the PBS density is optimized by a linear search method. Finally, a heuristic algorithm
is proposed to optimize the pico CRE bias, power reduction factor, and PBS density jointly for network
EE maximization. Extensive simulation results show the accuracy of network EE theoretical deduction
and the effectiveness of our proposed low-complexity heuristic algorithm for network EE improvement.
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Appendix A. Proof of Lemma 1

Considering a typical UE, it is at a distance rk away from its nearest BS in the k tier, that is to say,
there is no BS closer than rk in the k tier. Due to the locations of MBSs and PBSs follow two iid. PPPs,
the cumulative distribution function (CDF) of two-point distance rk is

Frk (r) = 1 − Prob (rk > r)
= 1 − Prob (no BS closer than rk)

= 1 − exp
(
−πr2λk

)
,

(A1)

where λk is the BS density of k tier. We can obtain the PDF of the distance by the differential of
Equation (A1) over r as follows:

frk (r) = 2πrλk exp
(
−πr2λk

)
. (A2)

Hence, given an arbitrary coefficient value of n, the probability of rp > nrm can be given as:

Prob
(
rp > nrm

)
= Prob (no BS closer than nrm|rm)

= Prob
(
rp > nrm, rm

)
=

∫ ∞
0 Prob

(
rp > nrm, rm

)
frm (r)dr

=
∫ ∞

0

[∫ ∞
nr frp (r) dr

]
frm (r)dr

=
∫ ∞

0

[∫ ∞
nr 2πrλp exp

(
−πr2λp

)
dr

]
frm (r) dr

=
∫ ∞

0

[
− exp

(
−πr2n2λp

)]
2πrλm exp

(
−πr2λm

)
dr

= λm
λm+n2λp

.

(A3)

Further, given two arbitrary coefficient values of na and nb, the probability of narm < rp < nbrm

can be expressed as:

Prob
(
narm < rp < nbrm

)
= Prob

(
rp > narm

)
− Prob

(
rp > nbrm

)
= λm

λm+n2
aλp

− λm
λm+n2

bλp
. (A4)
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Combing Equation (A4) with Equation (2), the association probabilities of the typical UE can be
obtained as Equation (5).

Appendix B. Proof of Lemma 2

According to the Bayes rule, we can obtain the conditional probability as

Prob
(
rm|rp > nrm

)
=

Prob
(
rm < r,rp > nrm

)
Prob

(
rp > nrm

) , (A5)

where Prob
(
rp > nrm

)
is given in Equation (A3). After taking partial derivation with respect to

the variable r, the PDF of distance r between a typical UE to its serving BS under the condition of
rp > nrm is

frm |rp>nrm (r) =
d
dr

Prob
(
rm|rp > nrm

)
=

1
Prob

(
rp > nrm

) d
dr

Prob
(
rm < r, rp > nrm

)
=

2πλm

Prob
(
rp > nrm

) d
dr

∫ r
0 Prob

(
rp > nrm|rm = r

)
frm (r) dr

=
2πλm

Prob
(
rp > nrm

) d
dr

∫ r
0 r exp

(
−πr2n2λp

)
exp

(
πr2λm

)
dr

=

λm

λm + n2λp

Prob
(
rp > nrm

) d
dr

{
1 − exp

[
−πr2 (

λm + n2λp
)]}

=
2πrλm

Prob
(
rp > nrm

) exp
[
−πr2 (

λm + n2λp
)]

.

(A6)

Further, we can obtain as:

frm |narm<rp<nbrm (r) =
d
dr

Prob
(
rm|narm < rp < nbrm

)
=

d
dr

Prob
(
rm < r, narm < rp < nbrm

)
Prob

(
narm < rp < nbrm

)
=

1
Prob

(
narm < rp < nbrm

) d
dr

[
Prob

(
rm < r, rp > narm

)
−Prob

(
rm < r, rp > nbrm

)]
=

2πrλm

Prob
(
narm < rp < nbrm

) {
exp

[
−πr2 (

λm + n2
aλp

)]
− exp

[
−πr2 (

λm + n2
bλp

)]}
.

(A7)

According to Equations (5) and (A7), we can get the PDFs of distance r between a typical UE l to
its serving BS in Equation (6).

Appendix C. Proof of Lemma 3

Due to Wl and Nl can be seen as constant and fl(r) can be obtained based on Equation (6), we can
deduce the closed-form expression of the average achievable downlink rate of UE l as:

Rl =
Wl
Nl

E [log2 (1 + γl)]

= Wl
Nl

∫ ∞
0 E

[
log2

(
1 + ρl Pl hr−α

l
ρ′ l Im+Ip+σ2

)]
fl (r) dr,

(A8)

where Pl is full transmission power of serving BS of user type l, rl represents the distance between UE
l and its serving BS. ρl is determined as ρl = ρ when l ∈ {pm} and ρl

′ is determined as ρl
′ = ρ when
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l ∈ {pm, pp}. Otherwise ρl = ρl
′ = 1. Considering the complexity of Equation (A8), we can deduce

E [log2 (1 + γl)] first as Equation (A9).

E
[

log2

(
1 + ρl Pl hr−α

l
ρ′ l Im+Ip+σ2

)]
(a)
=

∫ ∞
0 Prob

[
log2

(
1 + ρl Pl hr−α

l
ρ′ l Im+Ip+σ2

)
> t

]
dt

=
∫ ∞

0 Prob
[

h >
(
2t − 1

) (
ρ′ l Im + Ip + σ2) rα

l ρ−1
l P−1

l

]
dt

(b)
=

∫ ∞
0 exp

[
−

(
2t − 1

)
ρ′ l Imrα

l ρ−1
l P−1

l

]
exp

[
−

(
2t − 1

)
Iprα

l ρ−1
l P−1

l

]
· exp

[
−

(
2t − 1

)
σ2rα

l ρ−1
l P−1

l

]
dt

(c)
=

∫ ∞
0 LIm

(
τrα

l ρ′ lρ
−1
l P−1

l

)
LIp

(
τrα

l ρ−1
l P−1

l

)
· exp

[
−τσ2rα

l ρ−1
l P−1

l

]
dt,

(A9)

where (a) is derived according to E (X) =
∫ ∞

0 P [X > x]dx, (b) is obtained referring to h ∼ exp (1),
(c) is obtained through the Laplace transform of Im and Ip by setting τ = 2t − 1. Referring to [6],
the Laplace transform formulations can be expressed as:

LIm

(
τrα

l ρl
′ρ−1

l P−1
l

)
= exp

{
−πλm

(
ρl

′Pm

ρl Pl

)2/α

r2τ2/α
∫ ∞

[Bm/(ρl
′ρ−1

l Bl τ)]
2/α

1
1 + xα/2 dx

}
(A10)

LIp

(
τrα

l ρ−1
l P−1

l

)
= exp

{
−πλp

(
Pp

ρl Pl

)2/α

r2τ2/α
∫ ∞[

Bp,l

/
(Bl τ)

]2/α

1
1 + xα/2 dx

}
, (A11)

where Bl denotes the association bias of the typical UE l to select its serving BS. When l = pp, Bl = Bp;
otherwise Bl = 1. In order to simplify the analysis, we can define variable β = Bk,l/Bl , k ∈ {m, p},

where Bm,l=Bm/
(

ρl
′ρ−1

l

)
and Bp,l=

{
1, if l = up
Bp, otherwise

.

Substituting Equations (A10) and (A11) into Equation (A9), and further substituting Equation (A9)
into Equation (A8), we can obtain the closed-form expression of the average achievable downlink rate
of a typical UE l as Equation (9).
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Abstract: In this paper, we propose a clustering based physical-layer authentication scheme (CPAS)
to overcome the drawback of traditional cipher-based authentication schemes that suffer from heavy
costs and are limited by energy-constrained intelligent devices. CPAS is a novel cross-layer secure
authentication approach for edge computing system with asymmetric resources. The CPAS scheme
combines clustering and lightweight symmetric cipher with physical-layer channel state information
to provide two-way authentication between terminals and edge devices. By taking advantage of
temporal and spatial uniqueness in physical layer channel responses, the non-cryptographic physical
layer authentication techniques can achieve fast authentication. The lightweight symmetric cipher
initiates user authentication at the start of a session to establish the trust connection. Based on
theoretical analysis, the CPAS scheme is secure and simple, but there is no trusted party, while it can
also resist small integer attacks, replay attacks, and spoofing attacks. Besides, experimental results
show that the proposed scheme can boost the total success rate of access authentication and decrease
the data frame loss rate, without notable increase in authentication latencies.

Keywords: edge computing; clustering; physical-layer authentication; lightweight cipher; channel
state information; lightweight authentication

1. Introduction

With the rapid development of Internet of things (IoT) technologies, various intelligent terminals
(devices) have penetrated into our daily lives and works. As is well known, the traditional cloud
computing system has some inherent limitations, namely real-time control incompetence [1], heavy
network traffic, cloud data privacy insecurity, and so on. Luckily for us, the edge computing paradigm
can also meet the key industrial requirements (such as instant links, real-time business, low latency
and jitter, data security and privacy protection, and so on) by building small edge data centers [2].
As shown in Figure 1, the edge computing system consists of edge devices (edge servers) who are
usually specific high-end servers with powerful central processing unit (CPU), larger memory and
storage, and various terminals that usually have limited resources [3] (such as limited computation
power, battery, memory, and bandwidth) due to cost constraints. Thus, it is vulnerable for IoT
devices to be attacked by hackers or illegal users (such as replay, impersonation, eavesdropping,
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tampering, and so on) due to asymmetric resources. Identity authentication for communication
participants (edge devices and terminals) is the basis and key to information security and privacy
protection. Once the authentication system crashes, the whole system will be insecure. Traditional
cryptographic ciphers can be divided into two categories, symmetric and asymmetric ciphers. Some of
conventional symmetric ciphers are AES, DES or 3DES, and so on. RSA (Rivest, Shamir, and Adleman)
and ECC (Elliptic Curve Cryptography) are the common asymmetric algorithms. They have one
thing in common, namely large key size, which makes encryption or decryption slow and increases
the complexity [4]. However, resource-constrained terminals often fail to satisfy the large memory
requirements to store the large key size. Due to the limited resources about terminals, it is not suitable
to use traditional complex encryption algorithms to implement access authentication. Therefore, it is
necessary to design a lightweight identity authentication program for edge computing systems with
asymmetric resources.

Figure 1. A simplified model of edge computing system.The edge computing system consists of edge
computing devices who are usually specific high-end servers with powerful central processing unit,
larger memory and storage, and various terminals that usually have limited resources [3] (such as
limited computation power, battery, memory and bandwidth).

To provide security for resource-constrained devices, many lightweight symmetric ciphers have
been proposed, such as MCRYPTON, HIGHT, PRESENT, MIBS, Piccolo, KLEIN, and so on [5]. They are
secure and relatively fast but with low costs, and usually use the same key for both encryption
and decryption of data [4]. Additionally, non-cryptographic authentication mechanisms based on
physical-layer characteristics have been proposed for information security and privacy protection of
devices in recent years [6–9], which have higher levels of security [10]. The authentication technique of
physical layer based on channel state information (CSI) is one of the non-cryptographic authentication
mechanisms [11], which can augment traditional network security [12]. It is carried out via comparing
the similarity of CSI [13,14], which has the physical-layer channel characteristics of spatial-temporal
uniqueness and can be extracted from the received data frames. In recent years, there have been many
physical layer authentication methods based on machine learning (ML) [15–20]. However, the ML
based physical layer authentication approach needs a large number of samples to train the network,
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which is unrealistic for real-time application. For the authentication technique of physical layer CSI,
many research results have also been obtained [12–14,21–25]. However, the authentication rates of
these methods need to be improved for their applications. The authentication rate mainly relies on the
accuracy of CSI and the determination of test threshold. Finding suitable method to set the threshold
according to environment is the most important to get high authentication rate, especially dynamically
setting the threshold. Therefore, this paper present a clustering based physical-layer authentication
scheme (CPAS). The proposed approach is a tradeoff between the traditional schemes [12–14,22] and
machine learning based methods [15–20] for complexity and authentication rate. The advantage of the
CPAS scheme is that the proposed method can adjust the decision threshold adaptively by updating
the physical-layer channel authentication model and can be performed under limited data frames in
the beginning, which can support the fast access.

Clustering is the unsupervised classification of data items into clusters [26]. Cluster analysis
with little or no prior knowledge includes advanced techniques across various fields [27].
It plays a significant role in many disciplines [28]. Many researchers have proposed clustering
algorithms [29,30]. However, there is little research on physical-layer security using clustering
techniques. Considering the idea of clustering, in this research paper, we propose a clustering based
physical-layer authentication scheme (CPAS), which is a novel cross-layer secure authentication
approach for edge computing system with asymmetric resources. The CPAS scheme combines
clustering technique and lightweight symmetric cipher with physical-layer channel state information
to achieve two-way authentication between edge devices and terminals. The edge device does not
drop data frames directly when physical-layer channel authentication fails, but to activate upper layer
authentication to verify the legality of the data frames, which can resist losing legitimate data frames
but lead to some processing delay. Moreover, multiple channel state information are used to establish
a physical layer channel authentication model in the CPAS scheme, which magnify the differences
between the multiple channel state information, but no effect on the performance of authentication.
Experimental results show that our proposed scheme can effectively improve the success rate of
physical-layer channel authentication, total success rate of access authentication and decrease the data
frame loss rate without significantly increasing processing time. It is not only secure but also simple
and flexible, especially independent of a third party. In addition, our scheme could resist spoofing
attacks, replay attacks and small integer attacks. It can significantly reduce the access authentication
complexity and achieve greater security for the edge computing system with asymmetric resources.

We summarize our main contributions as follows.

• We propose the first CPAS scheme, which combines clustering and lightweight symmetric cipher
with physical-layer channel state information firstly and can be employed to authenticate mutually
between terminals and edge devices. We also show the detailed implementing procedures of the
proposed scheme.

• We analyze the security of the proposed scheme and prove that it can resist small integer attacks,
replay attacks, and spoofing attacks.

• The CPAS scheme is implemented in a real world environment based on MIMO-OFDM systems.
We also show the impacts of adjusting parameters of clusters on the success rate of physical-layer
channel authentication, the data frame loss rate, the total success rate of access authentication,
and the time cost through experimental results demonstration.

The rest of this paper is organized as follows. Section 2 introduces the basic principles of physical
layer channel authentication. The system model and proposed CPAS scheme are presented in Section 3.
The security of the proposed scheme is analyzed in Section 4. In Section 5, the experiment results
indicate that the proposed CPAS scheme is effective for authentication. We conclude this paper
in Section 6.
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2. Basic Principles of Physical Layer Channel Authentication

In this section, we briefly present the basic principles of physical-layer channel authentication
and show the shortcomings of some authentication schemes.

Xiao et al. designed a physical-layer authentication scheme via exploiting the spatial variability
of the radio channel response [13]. However, the proposed scheme in [13] has the disadvantage of
authenticating the initial data frame that is usually assumed to be valid. In their scheme, the receivers
need to estimate the radio channel response, shown below

Hk = [Hk ( f1) , · · ·, Hk ( fi) , · · · , Hk ( fM)]T , (1)

where k denotes the data frame index, fi = f0 +
(

i
M − 1

2

)
W, i = 1, 2, · · · , M, f0 is the center

measurement frequency, W is the measurement bandwidth, and M is the number of measurement
frequency over the measurement bandwidth.

The receiver utilizes channel state information in two consecutive data frames, Hk−1 and Hk,
and hypothesis testing to determine whether they come from the same sender or not. Hypothesis
testing is the task of deciding which of the two hypotheses, H0 or H1, is true, when one is given
the value of a random variable [22]. Hk−1 and Hk can be estimated by ILS channel estimation
method [23–25]. In the null hypothesis, H0, the claimant user is the initial sender. The base station
accepts this hypothesis if the test statistic T is below some threshold Γ. Otherwise, in the alternative
hypothesis, H1, the claimant is someone else. The notation “∼” is used to indicate accurate values
without measurement errors, and thus have

H0 : H̃k = H̃k−1
H1 : H̃k �= H̃k−1

. (2)

The inherent physical parameters of the multi-path fading channels were exploited to support
continuous mutual authentication between wireless terminals by He et al. [22]. He et al. [22] used
the information of both amplitude and phase in the channel signature to enhance the communication
security. They employed three statistical channel signature information to strengthen physical security.
However, in reality, the noisy power is unknown. Thus, the test statistic of channel responses is
normalized as follows

Λi =
Kco||(Hk−i+1(i)− Hk−i(i)ejϕ)||2

||Hk−i(i)||2
, (3)

where “i” is an index, i = 1, 2, · · · , S, “S” is a positive integer, and S � 1. Then, the cumulative
summation of the log-likelihood ratio Λ is calculated as

Λ=Kco_S

S

∑
i=1

Λi
> H1

< H0
Γ, (4)

where Kco_S denotes the normalization factor to let the threshold value Γ ∈ [0, 1]. When S > 1, it is
sequential probability ratio test (SPRT). A SPRT could compare H̃k with all past records (H̃i), where
i < k in some way. When S = 1, it is a likelihood ratio test (LRT). The LRT only compares the estimation
in the kth data frame (H̃k) with that in the (k − 1)th data frame (H̃k−1).

3. System Model and Proposed Scheme

We consider the edge computing scenario shown in Figure 2, which consists of various terminals
(TE), also called Alice, and edge computing devices (ED), also called Bob. They want to exchange
messages across a wireless link. It must be assured that the received data frames are all coming from
the correct communication pair. Compared with the terminals with limited resources, edge devices
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are usually specific high-end servers with powerful CPUs, larger memory and storage units. Alice
and Bob can perform authentication with each other via exchanging messages in the edge computing
system with asymmetric resources. Their evil adversary, Eve, will play the part of an active opponent
that injects undesirable messages into the medium in the expectations of spoofing Bob.

Figure 2. Scenario with Alice (TE), Bob (ED), and Eve.

The proposed authentication scheme is divided into secret key sharing, initial authentication,
physical-layer channel modeling, physical-layer channel authentication, lightweight cryptographic
authentication, and model update of physical-layer channel authentication.

3.1. Secret Key Sharing

A secret key named Key is shared between Alice and Bob over a secure channel. This is not the
essence of this article, thus we omit it here.

3.2. Initial Authentication

The initial authentication between the terminal and the edge computing device is completed
through a lightweight cryptographic algorithm by using the same secret key. As shown in Figure 3,
the initial full authentication phases are as follows:

(1) Alice generates a pseudorandom number PS1, and encrypts PS1 with a lightweight
cryptographic algorithm to obtain ciphertext Y1 = E(key)(PS1), where E(key)(PS1) means that
encrypting message, such as the random number PS1 in the parentheses by using a lightweight
cryptographic algorithm and a secret key. Then, the terminal generates a login request message
M1 and sends it to the edge computing device, where the request message M1 includes the
ciphertext Y1.

(2) Bob extracts the channel state information H1 from the received signal sent by Alice, and then
gets the ciphertext Y′

1 from decoding data and the plaintext PS1′ via decrypting Y′
1 with the same

lightweight cryptographic algorithm and secret key, where PS1′ = D(key)(Y′
1), D(key)(Y′

1) means
that decrypting message, such as Y′

1 in the parentheses via using a lightweight cryptographic
algorithm and a secret key, and the channel information H1 is a complex matrix of m rows and n
columns.

(3) Bob generates two pseudorandom numbers PS2 and PS3, and calculates the ciphertext
Y2 = E(key)(PS1′ || PS2 || PS3). Then, Bob sends a response message M2 to Alice, where M2

contains the ciphertext Y2.
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(4) Alice verifies the legitimacy of Bob. When Alice receives the response message M′
2, it decodes

M′
2 to obtain the ciphertext Y′

2, and then decrypts Y′
2 to obtain the plaintext (PS1′ || PS2′ || PS3′)

= D(key)(Y′
2). If the PS1′ is not equal to PS1, Bob is an illegal edge device and Alice cancels the

login; otherwise, Alice considers Bob to be a legitimate edge computing device, calculates two
response messages M3 and M4, and continuously sends them to the edge computing device,
where M3 includes ciphertext Y3 = E(key)(PS2′), and M4 contains ciphertext Y4 = E(key)(PS3′).

(5) Bob verifies the legitimacy of Alice. Bob extracts the channel information H2 and H3 from the
received response messages M3 and M4 sent from Alice, and then gets the ciphertext Y′

3 and Y′
4

from decoding and the plaintext PS2′ and PS3′ by decrypting Y′
3 and Y′

4 with the same lightweight
cryptographic algorithm and secret key, where PS2′ = D(key)(Y′

3), PS3′ = D(key)(Y′
4), the channel

information H2 extracted by Bob from M3 and H3 from M4, H2 and H3 are complex matrices of
m rows and n columns. If PS2′ is equal to PS2 and PS3′ is matching to PS3, Bob considers Alice
as a legitimate terminal, and the initial authentication ends; otherwise, Alice is an illegal terminal
and Bob cancels the login.

Figure 3. Process flowchart of initial authentication.

3.3. Physical-Layer Channel Modeling

Bob uses the channel state information, detected and estimated within the correlated time, for
the physical-layer channel modeling. We consider the idea of clustering that is the task of organizing
a set of objects into groups whose members are more similar to each other than to those in other
groups (clusters). Bob needs at least three data frames to model the physical layer channel (organize
a cluster of similar data frames). As shown in Figure 4, the physical-layer channel model consists
of four parts: preprocessing channel state information, locating central position of cluster (channel
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model), estimating coverage radius of cluster, and clustering physical-layer channel model. Figure 5 is
the detailed modeling principle of physical-layer channel.

(1) Preprocessing channel state information

The channel information H1, H2, and H3, which are extracted during the initial full authentication
phase, are complex matrices of m rows and n columns, where m denotes the number of carriers,
and n indicates the number of antennas. To obtain the statistical characteristics of channel
information, we accumulate the absolute value of the real part and the imaginary part about the
complex matrices, respectively. The statistical coordinates of channel information are named as
H′

1(x1, y1), H′
2(x2, y2), and H′

3(x3, y3), which are coordinate pairs on the complex plane.
(2) Locating central position of cluster

After completing the previous sub-step, preprocessing channel information, the central position
of cluster (channel model), named as W(x, y), is estimated by⎧⎪⎨⎪⎩x =

min
{

x1, x2, x3
}
+max

{
x1, x2, x3

}
2

y =
min

{
y1, y2, y3

}
+max

{
y1, y2, y3

}
2

, (5)

where min{·} represents minimum value, while max{·} implies maximum value.
(3) Estimating coverage radius of cluster

The Euclidean distances between the central position W(x, y) and the statistical position of
channel information H′

1(x1, y1), H′
2(x2, y2), and H′

3(x3, y3) are given by∣∣∣∣∣∣WH
′
n

∣∣∣∣∣∣ = √
(xW − xH′

n
)2 + (yW − yH′

n
)2, (6)

where ||WH′
n|| (n = 1, 2, 3) denotes the Euclidean distances between W(x, y) and H′

1, H′
2, and H′

3,
respectively. Then, the maximum Euclidean distance is taken as the radius (R) of cluster.

R = max
{∣∣∣∣∣∣WH

′
1

∣∣∣∣∣∣ ,
∣∣∣∣∣∣WH

′
2

∣∣∣∣∣∣ ,
∣∣∣∣∣∣WH

′
3

∣∣∣∣∣∣} , (7)

where R denotes the radius of cluster. Further, the coverage radius of channel model is
obtained by

dist = R + θ, (8)

where θ is the adjusting parameter of the coverage radius of channel model.
(4) Clustering physical-layer channel model

When the central position and the coverage radius of channel model are determined,
the categories of physical-layer channel model are defined as

Ci = {Wi, disti}, (9)

where i indicates the index of terminal, and different Ci is specified for a different cluster,
i.e., a different terminal.

The physical-layer channel modeling is completed.
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Figure 4. Process flowchart of physical-layer channel modeling.

Figure 5. Principle map of physical-layer channel modeling.

3.4. Physical-Layer Channel Authentication

When Bob receives a new data frame, it can directly verify the legality of the data frame according
to the established physical-layer channel model. Figure 6 is the process flowchart of physical-layer
channel authentication. The detailed authentication principle map of physical-layer channel is
exhibited in Figure 7.

Figure 6. Process flowchart of physical-layer channel authentication.
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Figure 7. Principle map of physical-layer channel authentication.

(1) Bob extracts the channel information Hk from the received data frame Mk sent from Alice, where,
the channel information Hk is a complex matrix of m rows and n columns, the data frame Mk
contains the cipher text Y′

k = E(key)(PS2′i ⊕ PS3′i), “
⊕

” means XOR function, and the k indicates
the index of data frame.

(2) Bob preprocesses the channel information Hk. To obtain the statistical characteristics H′
k(xk, yk)

of channel information, Bob accumulates the absolute value of the real part and the imaginary
part of Hk, respectively. The statistical characteristics H′

k(xk, yk) denote the coordinate pairs on
the complex plane.

(3) Bob checks the validity of the data frame Mk. Firstly, Bob calculates the Euclidean distances,
named as ||H′

kWi||, between the H′
k and the central position Wi of the cluster, respectively.

Then, Bob compares the sizes of ||H′
kWi|| and disti: when || H′

kWi || < disti (i ∈ S = {1, 2, · · · })
and ||H′

kWj|| > distj (∀j ∈ {j|j ∈ S, j �= i}), Bob considers the data frame Mk to be valid and that
belongs to the Ci-th cluster (physical-layer channel model); otherwise, Bob activates lightweight
cryptographic authentication.

3.5. Lightweight Cryptographic Authentication

During the non-initial authentication phase, if Bob cannot check the validity of the data frame Mk
coming from terminal through the physical-layer channel authentication, the lightweight cryptographic
authentication will be activated. The process flowchart of lightweight cryptographic authentication is
shown in Figure 8.

(1) Bob gains the ciphertext, Y′
k, and the number of data frame, PSk, which is also a pseudorandom

number, via decoding the data frame Mk sent from Alice, where Y′
k = E(key)(PS2′i ⊕ PS3′i),

and the length of the random number is determined according to the actual application scenario.
If PSk matches the previous number of data frame, ED considers Mk as a replayed packet and
throws it away; otherwise, Bob goes to next step.

(2) Bob decrypts the ciphertext Y′
k to get the plaintext (PS2′i ⊕ PS3′i) = D(key)(Y′

k).
(3) Bob checks the validity of the data frame Mk. If (PS2′i ⊕ PS3′i) does not match (PS2i ⊕ PS3i),

the data frame Mk is illegal and Bob discards it. If (PS2′i ⊕ PS3′i) is equal to (PS2i ⊕ PS3i),
Bob considers Mk as a valid data frame, and then extracts and records its channel information Hk.
When Bob receives j data frames {M′

k, M′
k+1, · · · , M′

k+(j−1)}, namely lightweight cryptographic
authentication being activated j times continuously, the model update of physical-layer channel
authentication will be activated.
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Figure 8. Process flowchart of lightweight cryptographic authentication.

3.6. Model Update of Physical-Layer Channel Authentication

When lightweight cryptographic authentication is activated continuously j times to verify the
validity of data frames{M′

k, M′
k+1, · · · , M′

k+(j−1)}, Bob needs to update the physical-layer channel
model for a renewed physical-layer authentication, where j � 3. Figure 9 presents the process flowchart
of model update of physical-layer channel authentication, which similar to the physical-layer channel
modeling also contains four parts: preprocessing the new channel information, locating the new
central position of the cluster, estimating the new coverage radius of the cluster, and re-clustering the
physical-layer channel model. The detailed model update principle map of the physical-layer channel
is displayed in Figure 10.

Figure 9. Process flowchart of model update of physical-layer channel authentication.
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Figure 10. Principle map of model update of physical-layer channel authentication.

(1) Preprocessing the new channel information

The sequences of channel information Hk, Hk+1, · · · , Hk+(j−1), which are extracted during
the lightweight cryptographic authentication phase, are complex matrices of m rows and n
columns. To obtain the statistical characteristics of channel information, we accumulate the
absolute values of the real part and the imaginary part about the complex matrices, respectively.
The statistical sequences of channel information are named as H′

k(xk, yk), H′
k+1(xk+1, yk+1), · · · ,

H′
k+j−1(xk+j−1, yk+j−1), which are coordinate pairs on the complex plane.

(2) Locating new central position of cluster

After completing the previous sub-step, preprocessing the new channel information, the new
central positions of physical-layer channel model, named as Wnew(xnew, ynew), are estimated
by Equation (10). {

xnew =
min{xk ,xk+1,··· ,xk+j−1}+max{xk ,xk+1,··· ,xk+j−1}

2

ynew =
min{yk ,yk+1,··· ,yk+j−1}+max{yk ,yk+1,··· ,yk+j−1}

2

. (10)

(3) Estimating new coverage radius of cluster

The Euclidean distances between the new central position Wnew(xnew, ynew) and the statistical
sequences of channel information H′

k(xk, yk), H′
k+1(xk+1, yk+1), · · · , H′

k+j−1(xk+j−1, yk+j−1), are
given by ∣∣∣∣∣∣WnewH

′
n

∣∣∣∣∣∣ = √
(xWnew − xH′

n
)2 + (yWnew − yH′

n
)2, (11)

where ||Wnew H′
n|| (n = k, k + 1, · · · , k + j − 1) denote the Euclidean distances.

Then, the maximum Euclidean distance is taken as the new radius (Rnew) of cluster.

Rnew = max{||Wnew H′
k||,||WnewH′

k+1||, · · · , ||Wnew H′
k+j−1||}, (12)

where Rnew denotes the new radius of channel model. Further, the new coverage radius of cluster
is obtained by

distnew = Rnew + θ, (13)

where θ indicates the adjusting parameter of the coverage radius of channel model.
(4) Re-clustering physical-layer channel model
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When obtaining the new central position and the new coverage radius of channel model, the new
cluster of physical-layer channel model is redefined as

Ci-new = {Wi-new, disti-new}. (14)

The model update of physical-layer channel authentication is completed.

4. Security Analysis

In this section, the proposed CPAS scheme is analyzed with respect to the security.
The proposed CPAS scheme can be used to authenticate mutually between terminals (Alice) and

edge devices (Bob) for the edge computing system with asymmetric resources, despite the presence of
Eve. In the CPAS scheme, the following security measures are adopted.

Firstly, the lightweight cipher algorithm is one of the security measures. A different lightweight
cipher has a different security intensity. CPAS scheme can choose different lightweight cipher flexibly
to encrypt data. Bob is usually a specific high-end server. He has the ability to withstand complex
computations for different cryptographic algorithms. However, the appropriateness of Alice’s ciphers
depend on her resources. Besides, there is no trusted party involved in the authentication process.
Thus, the strategy is feasible for resource-constrained terminals, if lightweight cipher just keep them
safe in a certain time, according to the requirement of application.

The second security measure is the use of pseudorandom number. The replay attacks and small
integer attacks cannot be successful since the authentication messages are not the same every time.
This is due to the use of dynamic authentication messages combined with a different pseudorandom
number in every communication session and every data frame. In other words, the authentication
packets generated in different valid phases are different, and the current authentication messages
are valid only for the current authentication phase, since the pseudorandom number cannot be
enumerated and the valid authentication messages cannot be generated in a period of data transmission.
Thus far, researchers have proposed a lot of pseudorandom number generators [31–34]. The periods
of different pseudorandom generators are different. For example, the Mersenne Twister MT19937 is
a pseudorandom number generator and it has a large period of 219937−1 [34]. Bob could still bear its
computational complexity. In practical applications, users can choose the appropriate pseudorandom
number generator according to their own needs. Thus, the exhaustive attacks and guessing attacks are
also impossible, since the authentication messages are not the same every time.

In addition, physical-layer channel state information recognition technique is another security
measure. It depends on the spatiotemporal uniqueness of physical-layer channel characteristics,
which can be estimated from the received data frames. This can assist CPAS scheme to resist the
spoofing attacks. Eve could not convince Bob that she is Alice.

Therefore, the proposed CPAS scheme not only can implement bidirectional authentication
between Alice and Bob, but also can withstand replay attacks, small integer attacks, and
spoofing attacks.

5. Performance

To examine the performances of the proposed CPAS scheme, we firstly simulated it in MATLAB
under different signal-to-noise ratios (SNRs). In the simulations, we set the maximum Doppler shift of
15 Hz, the bandwidth of 1 MHz, the digital modulation method of QPSK, the number of subcarrier
128, the number of multi-paths 5, and 1000 times test.

Detection rate and false alarm rate of physical-layer channel authentication are two critical
measurements. Detection rate of physical-layer channel authentication indicates the probability of
illegal data frames detection and false alarm rate of physical-layer channel authentication denotes the
probability of legitimate data frames detected as illegitimate. When the false alarm rate is smaller and
detection rate is bigger, the authentication performance is better, where the false alarm rate of 0 and the
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detection rate of 1 are the ideal performances. Figure 11 depicts the diagram of detection rate and false
alarm rate of physical layer channel authentication for different adjusting parameter θ. The proposed
scheme was compared with the LRT and SPRT schemes. The performances of these schemes upgraded
gradually with the increase of SNR, while the performance of CPAS was better than those of the other
schemes under the same SNR.

Figure 11. Comparisons of detection rate and false alarm rate under different SNRs.

The simulations in MATLAB demonstrated the advantages of the CPAS scheme, which was
also implemented over universal software radio peripheral (USRP) platform [35–37]. Experiments
were performed in an office room, which is 8 m long, 7.5 m wide, and 3 m high. Edge computing
device was equipped with an 8 × 8 MIMO system. Terminal was equipped with a 2 × 2 MIMO
system. They worked on the center frequency 3.5 GHz with the sub-bandwidth 2 MHz, the number
of subcarrier 128, and the interval of sub-carriers 15.625 kHz. The wavelength of the transmission
signal was about 0.086 m. The maximal transmitting power was 15 dBm and transmission gain
20 dB. The communication scheme was based on MIMO-OFDM (Multiple Input and Multiple
Output—Orthogonal Frequency Division Multiplexing) and ILS (Improved-scaled Least Squares) was
adopted to estimate channels. In our experiments, we employed RC4 algorithm to act a lightweight
cryptographic algorithm, which is not the focus of this paper.

We considered the following performance metrics to evaluate the proposed scheme: success rate
of physical-layer channel authentication, data frame loss rate, total success rate of authentication,
and time cost. Success rate of physical-layer channel authentication indicates the probability of success
in physical-layer channel authentication. Data frame loss rate means the ratio of the data frames lost
to the data frames received by the receiver. Total success rate of authentication contains the success
rate of physical-layer channel authentication and lightweight cryptographic authentication. Time cost
represents the time required to authenticate data frames in simulation work, which consists of the
time overhead of RC4 key initialization, physical-layer channel authentication (physical-layer channel
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modeling and model update also included in CPAS scheme), data demodulation, and upper layer
cipher authentication. The comparative results are shown in Figures 12–16. The values in the figures
are all statistics in 1000 trials.

Figure 12 plots the success rate of physical-layer channel authentication at a given j = 3 for varying
threshold values or adjusting parameter θ. The success rates of physical-layer channel authentication
gradually increased with the increasing adjusting parameter θ. When the adjusting parameter θ

was high, greater than 1, the LRT, SPRT, and CPAS schemes contributed to high success rates of
physical-layer channel authentication. When θ was less than 1, the success rate of physical-layer
channel authentication decreased with the decreasing adjusting parameter θ. This decrease was,
however, more significant in the case of the LRT and SPRT schemes. Especially, the LRT and SPRT
schemes had near zero success rate of physical-layer channel authentication for θ close to zero due
to each data frame received by the edge device being different, but the proposed CPAS scheme
had a higher success rate due to three data frames being used to establish a physical-layer channel
authentication model. Thus, the proposed scheme had a higher success rate of physical-layer channel
authentication when θ was small.

Figure 12. Success rate of physical-layer channel authentication versus threshold values or adjusting
parameter θ. It shows the success rate of physical-layer channel authentication of different schemes at
different θ.

Figure 13 demonstrates the comparisons among these schemes in terms of data frame loss rate.
The data frame loss rate of LRT and SPRT gradually decreased with the increase of the adjusting
parameter θ, while the data frame loss rate of the proposed scheme was always close to 0. It is worth
noting that LRT scheme had 50% data frame loss rate and SPRT scheme had 33.3% data frame loss
rate but the proposed scheme had near zero data frame loss rate when θ = 0. The reason was that Bob
dropped the data frame directly when the physical-layer channel authentication failed and upper layer
authentication was required before each physical-layer channel authentication in the LRT and SPRT
schemes. Our scheme did not discard data frames directly but activated upper layer authentication to
check the validity of the data frames. Thus, no matter the value of parameter θ, the data frame loss
rate of our proposed scheme was close to zero, as long as the data frame was legitimate.
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Figure 13. Data frame loss rate.

Figure 14 shows the comparisons among the LRT, SPRT, and CPAS schemes in terms of total
success rates of authentication, assumed to be free of attack. The total success rates of physical-layer
channel authentication gradually increased with the increase of the threshold value in the LRT
and SPRT schemes, while it was always close to 100% with the increase of adjusting parameter
θ in the proposed scheme. The reason was that the edge device did not drop data frames directly,
when physical-layer channel authentication failed, but activated upper layer authentication to verify
the legality of the data frames in the CPAS scheme. This resisted losing legitimate data frames when
physical-layer channel authentication failed. However, this led to some processing delay.

Figure 14. Total authentication success rate of different authentication scheme.

Figures 15 and 16 plot the time costs of data frames authentication in different authentication
schemes. The time costs of the LRT, SPRT, and CPAS schemes increased with the increase of the
number of data frames on the whole, but decreased with the increase of threshold value. In many
experiments, the time cost of traditional cipher authentication scheme (TCAS) also increased linearly
with the increase of the number of data frames.

However, as evident from the results, the SPRT scheme needed more time costs than LRT and
CPAS schemes when θ = 0, especially with the increase of data frames. The reason was that the data
frames must be demodulated before upper layer authentication. That is to say, data demodulation took
more time cost before upper layer authentication, which was also a pivotal reason. In the LRT and
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SPRT schemes, Bob dropped the data packet directly when the physical-layer channel authentication
failed and upper layer authentication was required before each physical-layer channel authentication.
In the TCAS scheme, upper layer cipher authentication, which was after demodulation, was needed to
verify the validity of each data frame. In the CPAS scheme, Bob did not discard data frames directly,
when physical-layer channel authentication failed, but activated upper layer cipher authentication.
The low time cost indicates that the CPAS scheme activated the upper layer authentication less
frequently, because it had a higher successful rate of physical-layer channel authentication, when
θ = 0. The proposed scheme employed j (j = 3, in our experiments) data frames to establish
a physical-layer channel authentication model, which was more meaningful for practical application,
and upper layer authentication to verify the legality of the data frames when physical-layer channel
authentication failed.

(a) Time cost of LRT scheme. (b) Time cost of SPRT scheme.

(c) Time cost of CPAS scheme. (d) Time cost of TCAS scheme.

Figure 15. Three dimensional plots of time cost. Note that RC4 algorithm was employed to act
a lightweight cryptographic algorithm in the experiments: (a) the time cost of LRT scheme; (b) the
time cost of SPRT scheme; (c) the time cost of the proposed scheme, CPAS; and (d) the time cost of the
traditional cipher authentication scheme, TCAS.

In addition, the CPAS scheme needed more time cost than LRT and SPRT schemes with the
increase of parameter θ. The low time cost also manifested that the LRT and SPRT schemes had
a higher successful rate of physical-layer channel authentication when the adjusting parameter θ

was large. It is worth noting that the time cost differences among the LRT, SPRT, and CPAS schemes
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decreased with the increase of parameter θ. Therefore, it is feasible to satisfy the requirement of the
edge computing system with asymmetric resources, as long as the adjusting parameter θ is appropriate.

(a) Time cost of LRT, SPRT, and CPAS schemes.

(b) Time cost of TCAS scheme.

Figure 16. Time cost of data frames authentication, where the time cost included the physical layer
channel authentication time cost (if any), upper layer cipher authentication time cost, and data
demodulation time cost: (a) the time cost of LRT, SPRT, and CPAS schemes under different threshold
values; and (b) the time cost of the TCAS scheme.

6. Conclusions

In this paper, we propose a novel cross-layer secure physical-layer authentication program
for edge computing system with asymmetric resources. The proposed scheme combines clustering
technology and lightweight symmetric cipher with physical-layer channel state information to achieve
mutual authentication between terminals and edge devices. Theoretical analysis and experimental
results show that our proposed scheme can effectively boost the total success rate of access
authentication and decrease the data frame loss rate but it increases time cost slightly. It is not only
secure but also simple and flexible, especially independent of a trusted party. In addition, our scheme
could resist spoofing attacks, replay attacks, small integer attacks, exhaustive attacks, and guessing
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attacks. It can significantly reduce the access authentication complexity and achieve greater security
for the edge computing system with asymmetric resources. Therefore, the proposed scheme is very
suitable for the resource asymmetric authentication scenario.
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LRT Likelihood ratio test
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SPRT Sequential probability ratio test
TCAS Traditional cipher authentication scheme
USRP Universal software radio peripheral
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Abstract: Many IoT (Internet of Things) systems run Android systems or Android-like systems.
With the continuous development of machine learning algorithms, the learning-based Android
malware detection system for IoT devices has gradually increased. However, these learning-based
detection models are often vulnerable to adversarial samples. An automated testing framework is
needed to help these learning-based malware detection systems for IoT devices perform security
analysis. The current methods of generating adversarial samples mostly require training parameters
of models and most of the methods are aimed at image data. To solve this problem, we propose a
testing framework for learning-based Android malware detection systems (TLAMD) for IoT Devices.
The key challenge is how to construct a suitable fitness function to generate an effective adversarial
sample without affecting the features of the application. By introducing genetic algorithms and some
technical improvements, our test framework can generate adversarial samples for the IoT Android
application with a success rate of nearly 100% and can perform black-box testing on the system.

Keywords: Internet of Things; malware detection; adversarial samples; machine learning

1. Introduction

Since many IoT (Internet of Things) devices run Android systems or Android-like systems,
with the popularity of IoT devices, Android malware for IoT devices is also increasing. Meanwhile,
machine learning has received extensive attention and has gained tremendous application development
in many fields, such as financial economics, driverless, medical, and network security. Thus, there are
many learning-based Android malware detection systems [1–6].

However, while machine learning brings us great convenience, it also exposes a lot of security
problems [7]. Several papers have studied related Android and IoT security issues [8–13]. Scholars in
the security field are increasingly concerned about the security issues associated with the lack of
fairness and transparency in machine learning algorithms. An attacker can predict certain sensitive
information by observing the model, or recover sensitive data in the data set through existing partial
data. A current attack method is called a poisoning attack. Biggio B and Zhu attempted to attack
the adaptive facial recognition system by a poisoning attack [14–17]. During the model update,
they injected malicious data to offset the central value of the recognition feature in the model, so as
to achieve the purpose of verifying the attacker’s image. Biggio B and Nelson B also attacked the
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supervised learning algorithm SVM [18]. Experiments show that the test error of the model classifier
can be significantly increased during the gradient rise. However, the injected sample data must meet
certain constraints in order to deceive the model, and must be the attacker to control the label of the
injection point. Yang et al. conducted an experiment on poisoning attacks against neural network
learning algorithms [19]. Compared with the direct gradient algorithm, this proposed method can
increase the attack sample generation speed by about 240 times.

In fact, although a poisoning attack can make the model go wrong, the attacker has to work hard
on how to inject malicious data. Another common method can let models get the wrong result in a
short time, that is, adversarial sample attack. Christian Szegedy et al. first proposed the concept of
adversarial samples [20]. By deliberately adding minor changes in the dataset, the perturbed samples
will cause the model to output a false result with high confidence. Adversarial samples can increase
the prediction error of the model, so that the originally correctly classified sample migrates to the other
side of the decision area, thereby being classified into another category.

Existing models are vulnerable to adversarial samples [21–24]. For example, in a malware
recognition system, by adding a small perturbation to the original software sample, the result of the
sample classification can be changed with a high probability, and even the sample can be classified
into an arbitrarily designated label according to the attacker’s idea. This makes adversarial samples
attack a huge hazard to malware recognition systems [25–27].

All of the learning-based Android malware detection systems for IoT devices have the above
problems, so a testing framework is needed to test the robustness of these detection systems. To address
this challenge, we propose TLAMD, a testing framework for learning-based Android malware detection
systems for IoT Devices. When the test results show that the detection system cannot resist the attack
of the adversarial samples, it indicates that this detection system has potential safety hazards, and it
needs to be reinforced.

Therefore, how to generate effective adversarial samples is the core issue of the entire testing
framework. Our approach to generating adversarial samples for the Android IoT malware detection
model is based on genetic algorithms. Without the knowledge of the model parameters, the original
sample is used as the input of the approach, and finally the adversarial sample of the specific label is
generated. The information used is only the probability of the various types of labels output by the
model. We hope that this method can be a robust benchmark for the learning-based Android malware
detection model for IoT devices. Our contribution is mainly reflected as follows:

1. We migrated the application of adversarial samples from the image recognition domain to
the Android malware detection domain of IoT devices. In this process, simply replacing the
model’s training data from a picture to an Android application is not possible. On the one
hand, the data of the binary program is not continuous like the image data. On the other hand,
random perturbation of the binary program may lead to the crash of the program, so special
processing is required for the Android application to ensure the validity of the adversarial samples.
We borrowed the processing method of Kathrin Grosse [28], which realized the disturbance to
the Android application by adding the request permission code in the AndroidMani f est.xml file.
The difference is that we have made corresponding analysis and restrictions on the types and
quantities of permissions that can be added. This method can ensure that the original function of
the app is not affected and can be used normally; and the app can be disturbed in the simplest
way to achieve the effect of changing the model detection result;

2. We introduce the genetic algorithm into the adversarial sample generation method and implement
the black-box attack against the machine learning model. Without knowing the internal
parameters such as the gradient and structure of the target network, it is only necessary to
know the probability of various types of labels output by the model. Compared to Kathrin
Grosse’s approach, our approach not only implements black-box attacks, but also has a higher
success rate, almost 100%.
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The rest of the paper is organized as follows. Section 2 introduces the related background of our
approach. Section 3 presents TLAMD (A Testing Framework for Learning-based Android Malware
Detection Systems for IoT Devices). Section 4 presents and discusses our experimental results. Finally,
further discussions and conclusions are accomplished in Section 5.

2. Related Background

2.1. Neural Network

The essence of the neural network is a function y = F(x), the input x is an n-dimensional
vector, and the output y is an m-dimensional vector. The function F implies the model parameter
θ. The purpose of the training network is to calculate the value of the parameter θ from the known
partial sample information. After the model is completed, the result of predicting x is to solve the
value of y by the function F. In this paper, we mainly study the neural network of the m classifier (that
is, the output y is an m-dimensional vector). The output of the last layer of the neural network uses
a fully connected layer. The classifier outputs the index with the largest value in the output vector
dimension as the result, that is:

L(x) = arg max
j=1

[F(x)]i, (1)

where L(x) is the category of x.
Define F as a single-layer fully-connected neural network. The output of the (n − 1)-th layer is the

input of the n-th layer, then:
yn = Fn(yn−1). (2)

Typical n-layer fully connected neural networks are:

F = Fn ∗ Fn−1 ∗ ... ∗ F2 ∗ F1, (3)

Fn(x) = σ(wn ∗ x + bn), (4)

where σ is a linear or nonlinear activation function. The commonly used activation functions are
RELU [29], tanh [30], sigmoid, etc., ω is the weight of this layer, and b is the layer offset.

2.2. Genetic Algorithm

The idea of the genetic algorithm is to simulate the biological evolution process of natural selection.
Using the thought of evolutionary theory, the process of finding the optimal solution of a certain
objective function is simulated into the evolution process of the population. Based on the idea of the
population, the algorithm uses a population containing information to perform an optimal search in
multiple directions and completes the exchange and reconstruction of information in the search process.

The genetic algorithm can be used to search for the feasible solution space of a problem,
and then find the possible optimal solution, which is the uncertainty optimization in the optimization
problem. Uncertain optimization is to rely on random variables in the search direction, rather than a
certain mathematical expression. Compared with other algorithms, the advantage is that, when the
optimization converges to the local extremum, the search result can jump out of an optimal solution
and continue to search for a better feasible solution.

By choosing the appropriate objective function, the generation of the adversarial sample can be
transformed into a solution to the optimization problem. The process of solving the optimal solution
corresponding to the objective function is actually the process of generating the adversarial sample.
This shows that genetic algorithms can be effectively applied to machine learning and other fields in
terms of parameter optimization and function solving. In terms of parameter optimization, Chen et al.
used a parallel genetic algorithm to optimize the parameter selection of Support Vector Machine
(SVM) [31]. Experiments show that the proposed method is superior to the grid search in classification
accuracy, the number of selected features and running time. Phan et al. proposed a GA-SVM model that

259



Sensors 2019, 19, 974

can effectively improve classification performance based on genetic algorithm and SVM classifier [32].
Alejandre et al. selected features based on machine learning to detect botnets [33]. A genetic algorithm
is used in this method to select the set of features that provide the highest detection rate.

2.3. Adversarial Samples

On many machine learning models, the decision boundary of the classifier has a certain margin of
error. That is, when the disturbance satisfies ||η||∞ < ε, the classifier considers that the perturbed input
x′ = x + η is the same as the original input x. Therefore, when the perturbation value on each feature
element is less than ε, the classifier cannot discern the difference in the sample. However, changes in
input characteristics have a cumulative effect on model predictions. Although the perturbation
value on each feature element is small, the accumulated error is sufficient to influence the model
prediction result.

On each neuron, the adversarial sample will have the following operations:

ωTx′ = ωT(x + η) (5)

although the adversarial sample has no effect on the classification results of the single-dimensional
neuron classifier. However, deep learning has a considerable number of neurons. The weight in each
neuron has n dimensions. If the average variation of an element in the weight vector is m, the activation
effect will increase by n ∗ m. Furthermore, in a high dimensional linear classifier, each individual input
feature is normalized. The result is that in the process of deep learning, a small change may not be
enough to change the input result, but multiple disturbances to the input will cause the classifier to
make a wrong classification result.

Many methods of generating adversarial samples need to know the parameters of the learning
model to calculate the perturbation values, but some subsequent studies have shown that without
knowing the parameters of the learning model [34–37]. The attacker can interact with the black-box
learning model to calculate the samples. Specifically, the attacker can estimate the boundary of the
decision region of the model according to the difference of the model output brought by different
samples, and then use the estimated boundary as a substitute model. Finally, the adversarial samples
are calculated by the parameters of the substitute model. Considering that more and more malicious
Android application detection methods based on machine learning, how to evaluate the robustness
of these detection methods becomes a new problem. Since most machine learning algorithms are
vulnerable to adversarial samples, we have thought of using the generated adversarial samples to test
the robustness of these detection methods.

3. Methodology

3.1. Framework

The overview of TLAMD is shown in Figure 1.
When the test results show that the detection system cannot resist the attack against the adversarial

sample, it indicates that the system has potential safety hazards and it is necessary to implement such
reinforcement measures as distillation defense [38] on the detection system. As we can see, how to
generate an adversarial sample is the main challenge of this testing framework. Therefore, we will
describe the algorithm in detail for generating an adversarial sample for Android malware.
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Figure 1. Overview of our testing framework for learning-based Android Malware detection systems
for IoT devices. (1) Original Sample Input; (2) Calculate the disturbance size; (3) Generate the
adversarial samples; (4) Get detection result from learning-based systems; (5) Determine if the exit
condition is met; (6) If not, calculate the new disturbance size using genetic algorithm; (7) If yes,
output the final adversarial android application.

3.2. Algorithm

Our goal is to add minor perturbations to the malware without changing the malware
functionality, so that the previously trained detection model misidentifies it as normal software.
Therefore, our approach generates an adversarial sample by adding permission features to the
AndroidMani f est.xml, and in order not to affect the function of the original malware, the disturbance
does not reduce the existing permission features. For a single input sample X, the classifier returns a
two-dimensional vector F(X) = [F0(X), F1(X)], where F0(X) indicates the probability that the software
is a normal software, F1(X) indicates the probability that the software is a malware, and satisfies the
constraint F0(X)+ F1(X) = 1. We aim to add a perturbation δ to make the classification result F1(X + δ)

is less than F0(X + δ). At the same time, the smaller the δ, the better, that is, the fewer the number of
permission features added in the manifest file, the better. For example, for a specific malware x, we use
a genetic algorithm to find out which permission features δ are added to x, and finally make x detected
as normal software with minimum number of permission added.

From a mathematical point of view, the process of misjudging the detection model by adding
the permission features is regarded as a problem to be solved. The feasible solution space of the
problem is the disturbance if the detection model is successfully misjudged. The optimal solution is
to minimize the disturbance value, that is, add the least permission feature. A genetic algorithm is a
type of algorithm that finds the possible optimal solution by searching for a feasible solution space
of a problem. Our approach is to use genetic algorithms to search for the minimum perturbation
value that causes the detection model to be misjudged. The pseudo code of our approach is shown in
Algorithm 1.

261



Sensors 2019, 19, 974

Algorithm 1 Generating an adversarial sample.

Require: Popluation Size pop_size
δ ← initialization()
for i = 0 → pop_size do

Pi ← Crossover_Operator()
Pi ← Mutation_Operator()
Compute → S(δ)
if F(X + δ) > 1 − F(X + δ) then

Continue

else

Output → δ

end if

end for

The specific steps are as follows:

(1) Randomly generate the population δ = P1, P2, ..., PM. M is the number of individuals,
the individual Pi ∈ {0, 1}n refers to the permission characteristics to be added in the category,
and n is the number of permission features in the category. In addition, 1 means to add the
corresponding permission; otherwise, 0 means not to add. Our strategy is to only add permissions
and not reduce permissions. Therefore, if the original malicious sample has a certain permission
feature, the permission cannot be removed, that is, the disturbance is 0.

(2) Determine the fitness function.

S(δ) = min w1 · F(X + δ) + w2 · num(δ), (6)

where w1 and w2 represent the two weights, δ is the added small disturbance, F(X + δ) ∈ [0, 1]
means that the probability of original malicious sample is still detected as a malware, num(δi)

indicates the number of permission features added.

When w1 is much larger than w2, the sample after the addition of the disturbance must be
detected as normal by the detection model to survive, and the individual detected as a malicious
sample will be eliminated. The surviving individual must meet the minimum number of added
permission features; otherwise, it will also be eliminated. The fitness function defined in this way
searches for an optimal solution that can successfully cause the detection model to be misjudged.

(3) Perform mutation operations according to a certain probability to generate new individuals.
The mutation refers to adding a disturbance to the corresponding category according to a certain
probability, that is, changing the value from 0 to 1, and satisfying the constraint proposed in
step (1).

(4) Generate a new generation of the population from the mutation and return to step (2). If the
preset number of iterations is reached, the loop is exited.

4. Experiments

4.1. Data Set and Environment

In order to verify the effectiveness of the adversarial sample, we attempt to train five different
classifier models, including logistic regression (LR), decision tree (DT), and fully connected neural
network (NN) and so on. The hardware environment and software environment of all experiments are
shown in Table 1:

All the data we use in the experiments come from the DREBIN dataset [39,40]. The DREBIN
dataset has a total of 123,453 sample data for Android applications, including 5560 malicious samples
and contains as many as 545,333 behavioral features.
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The features of the Android app in this dataset consist of eight categories and are shown in
Table 2:

(S1) Hardware components, which are used to set the hardware permissions required by the software.
(S2) Requested permissions, which are granted by the user at the time of installation and allow the

application software to access the corresponding resources.
(S3) App components, which include four different types of interfaces: activities, services,

content providers and broadcast receivers.
(S4) Filtered intents, which are used for process communication between different components

and applications.
(S5) Restricted API (Application Programming Interface) calls, access to a series of key API calls.
(S6) Used permissions, a subset of permissions that are actually used and requested in S5.
(S7) Suspicious API calls, API calls for allowing access to sensitive data and resources.
(S8) Network addresses, the IP addresses accessed by the application, including the hostname

and URL.

Table 1. The environment of all experiments.

CPU Inter(R) Core(TM) i5-7400 CPU @ 3.00GHz

Memery 8 GB
Video Card Inter(R) HD Graphics 630

Operating System Windows 10
Programming Language Python 3.6
Development Platform Jupyter Notebook

Dependence Tensorflow, Keras, numpy etc.

The first four classes are extracted from the manifest file, and the last four classes are extracted from
the disassembly code. Since our method only adds permission requests to the AndroidMani f est.xml
file, we only cover the features in S1 to S4. In Section 4.2.1, we further reduce the feature categories used.

Table 2. Eight features in the DREBIN dataset.

Class Name Numbers Rate (/Total)

S1 Hardware Components 72 0.013%
S2 Requested Permissions 3812 0.704%
S3 App Components 218,951 40.488%
S4 Filtered Intents 6379 1.178%
S5 Restricted API Calls 733 0.136%
S6 Used Permissions 70 0.013%
S7 Suspicious API Calls 315 0.058%
S8 Network Address 310,447 57.4%

4.2. Android Malware Detection Model

First, a detection model is trained to determine whether an Android sample is malware. When the
detection model reaches a certain accuracy, our approach is used to generate an adversarial sample for
the model.

4.2.1. Feature Extraction

We use a random forest approach to measure the importance of features in the feature extraction
phase. The number of features is effectively reduced without affecting the accuracy of detection.

Random forest is an integrated learning in machine learning. It is an integrated classifier
composed of multiple sets of decision trees: h(X, θk), k = 1, 2, ..., where θk is a random variable subject
to independent and identical distribution, and k represents the number of decision trees. The principle
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is to generate multiple decision trees and let them learn independently and make corresponding
predictions. Finally, observe which category is selected the most and get the result.

The specific steps are as follows:

(1) Select out of bag (OOB) to calculate the corresponding out-of-bag data deviation error1 for each
decision tree.

(2) Add random noise, perturb all samples of OOB, and then calculate the out-of-bag data deviation
error2 again.

(3) Define and calculate the importance of the features:

I = ∑(error1 − error2)/N, (7)

where N is the number of forest decision trees.

If error2 is greatly increased after adding random noise, the OOB accuracy rate decreases,
indicating that this type of feature has a greater impact on the prediction result, that is,
the importance is higher.

The sorting result of feature importance is shown in Figure 2.

Figure 2. The sorting result of feature importance. The ordinate represents different behavioral feature
categories and the abscissa represents the proportion of importance.

As we mentioned before, we only cover the four types of features from S1 to S4. Taking into
account the number and importance of various features, we finally choose the two characteristics of S1
and S2.

4.2.2. Training Detection Model

To test the effectiveness of our method for different detection models, we trained five kinds of
detection models.
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a. Neural Network

Our neural network chooses a two-layer fully connected model with 200 neurons in each
connected layer and the activation function is RELU. The output layer of the last layer has two
neurons and is the so f t max activation unit. Furthermore, no dropout operation is performed on each
layer. To train our network, we used the gradient descent training method with a batches size of 256.
All data was trained five times per iteration.

b. Logistic Regression

Since there are only two types of target predictions, we adopt a two-class logistic regression
model. The penalty term selects the L2 paradigm, and the model parameters satisfy the Gaussian
distribution, that is, the parameters are constrained so that they do not over-fitting. Considering that
the solution problem is not a linear multi-core, and the number of samples is selected to be larger than
the number of features, the dual method is not set. Set the condition for stopping the solution is that
the loss function is less than or equal to 1 × e−4; the category weight defaults to 1. The maximum
number of iterations of the algorithm convergence is set to 10.

c. Decision Tree

The decision tree is a tree structure used for classification. The maximum depth of the decision
tree is set to 15 to prevent overfitting. The min_impurity_decrease is set to 0. The min_samples_split
is set to 2, indicating the minimum number of samples required for internal node subdivision.
The min_samples_lea f is set to 10, indicating the minimum number of samples in the leaf node.
The max_lea f _nodes is set to None, which is expressed as the maximum number of leaf nodes in the
decision tree. The min_weight_ f raction_lea f is set to 0, which represents the minimum value of all
sample weights and sums of leaf nodes.

d. Random Forest

Random forest is an integrated learning. Through the bootstrap resampling technique, a number
of sample inputs are randomly selected from the original training set with repeated iterations. In this
way, a new training set is obtained, and then several decision trees are generated to form a random
forest. The max_ f eature is set to auto, that is, a single decision tree can utilize all permission features.
The n_estimators is set to 20, which means there are 20 decision trees to form the random forest to
be trained. The min_sample_lea f is set to 20, that is, the minimum number of sample leaves in each
decision tree is 20.

e. Extreme Tree

Extra Tree is equivalent to a variant of the random forest. Compared with random forests,
the randomness is further calculated when dividing the local best, that is, the selection of the division
points is calculated. Most of its parameters are the same as those of random forests, except that
n_estimators is set to 10 and max_depth is set to 50.

Finally, when the five detection models are trained, we test 42,570 samples and the results are
shown in Table 3.

Table 3. The detection results of five models.

Models TPa FP a FN a TN a Accuracy Precision Recall

NN (Neural Network) 40770 0 74 1726 99.83% 1 95.95%
LR (Logistic Regression) 40770 0 234 1566 99.45% 1 96.32%

DT (Decision Tree) 40770 0 60 1740 99.86% 1 95.91%
RF (Random Forest) 40770 0 32 1768 99.92% 1 95.85%
ET (Extreme Tree) 40770 0 16 1784 99.96% 1 95.81%

a TP = True Positive, FP = False Positive, FN = False Negative, TN = True Negative.
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4.3. Simulation Experiments

After getting the trained detection models, we will generate adversarial samples for the five
models. The features we add to the AndroidMani f est.xml file are from S1 or S2. The parameters of
the generation algorithm are also different depending on the permission category. The details are as
shown in Table 4.

Table 4. The parameters of our approach.

Features S1: Hardware Components S2: Requested Permissions

Initialize Probability 1% 0.01%
Mutation Probability 30% 0.5%

Iterations 50 50
Population 150 150

Attacked Samples 1000 1000

The final experimental results are shown in Table 5. In the ten sets of adversarial sample generation
experiments for the five detection models, the success rates are above 80%, and most of them are close
to 100%. In order to generate these adversarial samples, the average number of permission features
added is less than three. On the one hand, it shows that the adversarial sample generated by our
method is very effective and our approach is able to be a robust benchmark for the learning-based
Android malware detection model for IoT devices; on the other hand, it shows that the existing machine
learning algorithms are very vulnerable to the adversarial sample. Our TLAMD test framework is
very necessary.

In subsequent experiments, we also performed a reinforcement method for the distillation defense
of these models. However, the reinforced model is still unable to resist the attack of adversarial
samples, and the success rate of our approach is still close to 100%. This means that, when we want
to reinforce existing machine learning models, common methods such as distillation defenses work
poorly. We need to find a more effective defense method.

Figure 3 shows the most frequently added permissions in the ten sets of adversarial sample
generation experiments for the five kinds of detection models. Compared to other permission features,
these permissions are mostly permissions that involve sensitive privacy. In order to verify whether
these features have a decisive influence on the model discrimination results, we have conducted further
experiments. In the new experiment, we will not allow the algorithm to add the features listed in the
figure. However, the success rate of the generated adversarial samples is consistent with the previous
one in Table 5, and the number of permission features added is slightly increased. It can be seen that
those features that are added more frequently only have greater weight, but have no decisive influence
on the results.

Table 5. The results of our approach. b

Model Category Success Rate Average of num (δ)

NN S1 1 2.25
S2 1 2.33

LR S1 0.998 2.66
S2 0.995 1.94

DT S1 0.896 1.05
S2 0.992 1.68

RF S1 0.866 2.89
S2 0.995 9.54

ET S1 0.833 2.81
S2 0.945 9.36

b Each line of data in the table is the average of the 1000 sample tests results.
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Figure 3. The most frequently added permissions in our adversarial sample generation experiments.
The data is the average of 5 × 2 × 1000 samples test results.

Figure 4 is a trend graph of fitness function values as a function of the number of iterations. As the
number of iterations increases, the value of the fitness function decreases rapidly. It shows that it is
very effective to use the genetic algorithm to solve the problem of generating adversarial samples.

Figure 4. Trend graph of fitness function values with number of iterations.

By comparing the individual models, it can be found that the more complex the detection model,
the better the effect of the adversarial samples generated for the model. This phenomenon may be
different from what we expected. We believe that one possible reason is that the more complex the
model, the more times the feature is processed. This makes small changes in features easily magnified,
making the model very sensitive to adversarial samples.

Figure 5 is a box plot of the fitness function values of adversarial samples for five detection
models with S1 permission features and Figure 6 is with S2 permission features. As can be seen from
the figures, the adversarial samples generated by our approach is very stable. There are only a very
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small number of divergence points out of 1000 samples. By comparing Figures 5 and 6, the stability
of the adversarial sample generated by S2 is better. The reason is that the number of permission
features in the S2 list is much larger than the number in the S1 list. This is equivalent to finding the
optimal solution of the objective function in a larger space, so there is a greater probability of finding a
better solution. Combined with Figure 3, it also provides us with an idea of how to strengthen the
learning-based detection model. It is not useful to improve the defense of high-weight permission
features. It is necessary to optimize the detection model so that it is not sensitive to small disturbances
of all sample features.

Figure 5. The fitness function values of adversarial samples for five detection models with S1
permission features.

Figure 6. The fitness function values of adversarial samples for five detection models with S2
permission features.

5. Conclusions

To address the challenge of the lack of the testing framework for learning-based Android malware
detection systems for IoT devices, we approach TLAMD. Our experimental results show that our
approach generates high-quality adversarial samples with a success rate of nearly 100% by adding
permission features. In the technical implementation of the TLAMD algorithm, the selection of feature
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and the range of disturbance are the keys to have a good result. We hope TLAMD can be a benchmark
for learning-based IoT Android malware detection model. The limitations of TLAMD is our black-box
approach need frequent model requests and our future work includes reducing the requesting times
and designing an effective defense approach to reinforce the malware detection model.
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Abstract: Image compressive sensing (CS) is a potential imaging scheme for green internet of things
(IoT). To further make CS-based sensor adaptable to low bandwidth and low power, this paper
focuses on finding a good measurement structure, i.e., the organization and storage format of CS
measurements. Three potential measurement structures are proposed in this paper, respectively
raster structure (RA), patch structure, and layer structure (LA). RA stores CS measurements of each
column in an image, and PA packets CS measurements of overlapping patches forming an image.
LA enables the measuring of small blocks and recovery of large blocks. All of the three structures
avoid high computation complexity and huge memory in the process of measuring and recovery, and
efficiently suppress the annoying blocking artifacts which often occur in traditional block structures.
Experimental results show that RA, PA, and LA can efficiently reduce blocking artifacts, and produce
comforting visual qualities. LA, especially, presents both good time-distortion and rate-distortion
performance. By this paper, it is proved that LA is a suitable measurement structure for green IoT.

Keywords: image compressive sensing (CS); green internet of things (IoT); measurement structure;
random structural matrices; linear recovery

1. Introduction

1.1. Motivation and Objective

Up to this day, compressive sensing (CS) [1,2] has already become a commonplace technology, and
it is widely used in imaging applications to sample various signals, e.g., magnetic resonance imaging
(MRI) [3], multispectral imaging [4], synthetic aperture radar (SAR) imaging [5], etc. Moreover, in
the field of microwave tomography and antenna synthesis, CS also becomes a popular tool, e.g., [6,7]
use CS to solve the non-linear inverse scattering problems, and [8,9] use CS to solve power synthesis
of maximally-sparse arrays. These applications reflect the low cost of CS in capturing invisible light
which brings a cheap and portable sensor. Many researchers recognize that CS is an energy-efficient
sampling method which provides a good imaging quality at the same time, so they have turned their
attention to the application of CS to green internet of things (green IoT) [10,11].

To achieve green IoT, some frameworks [12–14] of image CS are reviewed and newly developed
to meet the demand for these energy-hungry devices. These works focus on how to design sampling
and recovery algorithms to get better imaging quality in low-rate and low-power cases, but they have
not considered how to organize and store CS measurements to improve the efficiency of sensors in
performing CS. In green IoT, measurement structure, i.e., the organization and storage format of CS
measurements, is important for sensors to produce a compact bitstream that could reduce the energy
consumption of transmission. Therefore, the objective of this paper is to find a good measurement
structure to make CS-based sensors energy-efficient.
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1.2. Related Work

In existing works, two kinds of measurement structures are used to organize CS measurements,
i.e., whole structure (WH) and block structure (BL). WH regards whole image as a column vector, and
measures it by using a random matrix. The early works [15–18] on image CS extensively applied WH
in CS measuring, and they often spent much time in recovering a small size image by some complex
numeric iterations. The limitation of these works results from the difficulty in constructing some
excellent matrices, e.g., i.i.d. Gaussian matrix, under WH. When enlarging the image size, WH leads
to high computation complexity for measuring and huge memory for storage, e.g., for an image of
512 × 512 in size, 512 gigabytes storage is required to construct a random matrix with entries being
64-bit floating points. This is impractical especially for low-power sensors in green IoT. To make WH
suitable for large-scale image, some memory-friendly structural matrices were proposed, in which
the pioneering work is structurally random matrix (SRM) proposed by Do et al. [19]. SRM replaces
the matrix entries with operators of scrambling, fast transforming and sub-sampling, and it enables
WH to fast encode a large-scale image while providing a good recovery quality. Based on SRM, some
works added some special operators to construct better structural matrices, e.g., Zhang et al. [20]
used a unit-norm tight frame as a part of SRM, and Hsieh et al. [21] used sparse FFT as the core of
SRM. Two defects still exist in SRM-based WH. First, CS measurements are only encoded by scalar
quantization (SQ) which, however, does not perform well in rate-distortion performance due to the
randomness of measurements. Second, SRM enforces the recovery algorithm to perform matrix-vector
product in the form of function handle which, however, are not supported by some popular recovery
algorithms. These defects limit the wide use of WH in practice, so some researchers turn their interest
to the structure BL.

BL splits a whole image into non-overlapping blocks and then regards a block as a column vector
and finally, measures it by using a random matrix. Because blocks are small in size, the unstructured
matrix like i.i.d. Gaussian matrix can be used, without the worry of high computation complexity and
huge memory. This makes BL practical especially when sensors have limited power and computation
resource in green IoT. Many works focus on BL-based sampling, quantization, and recovery methods,
e.g., Gan [22] and Mun et al. [23] proposed the smoothed projected Landweber (SPL) algorithm to
recover blocks; Yu et al. [24] and Zhang et al. [25] proposed to adaptively measure blocks according to
their features; Mun et al. [26], Wang et al. [27], Dinh et al. [28], and Gao et al. [29] proposed various
predictive schemes to quantize block measurements. These works win BL more popularity than WH
in image CS. However, blocks are different in sparse degree in a fixed space, thus they vary in recovery
quality when the same algorithm is performed, which leads to blocking artifacts. The challenge for
BL is to suppress the annoying blocking artifacts. The existing works try to overcome this defect by
designing sampling and recovery algorithms, but they neglect the fact that BL is the root cause of
blocking artifacts. Therefore, we need to find other potential structures to make up for this deficiency
of BL.

1.3. Main Contribution

This paper presents three potential measurement structures—raster structure (RA), patch structure
(PA), and layered structure (LA)—and they can effectively reduce the blocking artifacts in BL.
Compared with WH, these structures have lower power and rate, especially for RA and LA, so
they are suitable to be used in sensors of green IoT. We carefully analyze the time-distortion and
rate-distortion performance of image CS when deploying various structures, and conclude that LA is
the most potential structure among them. Combining LA with linear recovery, CS-based sensor will be
more suitable for green IoT.

The rest of this paper is organized as follows. Section 2 briefly describes the two traditional
structures: WH and BL. Section 3 presents the three potential structures: RA, PA, and LA. Experimental
results are presented in Section 4, and we conclude this paper in Section 5. For easy understanding,
the acronyms and notations in this paper are listed in Table 1.
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Table 1. List of acronyms and notations.

CS Compressive Sensing
Green IoT Green Internet of Things

WH Whole Structure
BL Block Structure
RA Raster Structure
PA Patch Structure
LA Layered Structure
SQ Scalar Quantization

DPCM Differential Pulse Code Modulation
SRM Structurally Random Matrix
DCT Discrete Cosine Transform
FFT Fast Fourier Transform

GPSR Gradient Projection for Sparse Reconstruction
PSNR Peak Signal-to-Noise Ratio

2. Traditional Structures

2.1. Whole Structure

As shown in Figure 1, WH first transfers the 2-D image X ∈ R
Ic×Ir (N = Ic × Ir) to 1-D vector

x ∈ R
N×1 through raster scanning, i.e.,

x = Raster(X) (1)

in which Raster(·) is an operator of raster scanning. Then, the measurement matrix Φ ∈ RM×N is
constructed, and we get the CS measurements y ∈ RM×1 of x as follows,

y = Φ · x (2)

in which M is the number of CS measurements, and the subrate S is defined as M/N. These CS
measurements y are quantized by SQ to bits, and finally, these bits are packaged, and stored in the
output buffering of sensor.

 

Figure 1. Illustration on WH format.
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For a large-size image, limited by the memory size of sensor, it is impossible to construct the
measurement matrix Φ, so we cannot perform Equation (2). However, by SRM, we can get an operator
equivalent to Equation (2) as follows,

y = Φ(x) (3)

in which Φ(·) is a function handle of SRM. SRM is defined as a product of three matrices, i.e.,

Φ =

√
N
M

DFR (4)

in which R is a uniform random permutation matrix, F is an orthonormal matrix selected from some
popular fast computable transforms, e.g., fast Fourier transform (FFT), discrete cosine transform (DCT),

etc. D is a sub-sampling matrix, and
√

N
M is to normalize the transform so that the energy of the output

vector is almost similar to that of the input vector [19]. The three matrices have all the equivalent
operators corresponding to their matrix-vector products, so a function handle of SRM can be designed
to replace Equation (2).

WH introduces a challenge for image recovery: the recovery algorithm must support the function
handles of measurement and transform matrices. The WH-based recovery model is listed as

α̂ = argmin
α

‖α‖0 s.t. y = Φ(Ψ(α)) (5)

x̂ = Ψ(α̂) (6)

in which ||·|| is l0 norm, Φ(·) is a handle of SRM, and Ψ(·) is a fast transform operator, e.g., DCT, FFT,
etc. The existence of Φ(·) and Ψ(·) requires that Φ·x, ΦT·x, Ψ·x, and ΨT·x have the equivalent function
handles (the superscript T represents transposition). From the above, it can be seen that WH requires
the recovery algorithm to support function handle, so we only select some special algorithms, e.g.,
gradient projection for sparse reconstruction (GPSR) [15], to recover an image once from WH-based
measurements.

2.2. Block Structure

As shown in Figure 2, BL first splits the 2-D image X into L non-overlapping blocks Xbi ∈ RB×B

(Nb = B × B) and transfer these blocks to 1-D vector xbi ∈ R
Nb×1 through raster scanning, i.e.,

{Xbi|i = 1, 2, · · · , L} = Split(X) (7)

xbi = Raster(Xbi) (8)

in which Split(·) is an operator of splitting image into non-overlapping blocks. Then, by constructing
the block measurement matrix Φbi ∈R

Mb×Nb , the CS measurements ybi ∈R
Mb×1 of xbi are generated as

ybi = Φbi · xbi (9)

in which Mb is the number of CS measurements for each block, and the subrate S can be computed
by Mb/Nb. Due to the small size of block, it requires a small memory size to construct the block
measurement matrix Φbi, and the less computations are invested when performing Equation (9)
block-by-block. These block measurements can be quantized to bits by the predictive quantization,
e.g., DPCM [26], and finally, these bits are packaged block by block, and progressively stored in the
output buffering of sensor. The predictive quantization shows better rate-distortion performance than
SQ, so BL has a compact packet, which reduces the size of buffering in sensor.
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Figure 2. Illustration on BL format.

BL has no special requirement on recovery algorithm. Each block can be reconstructed independently
by any recovery algorithm, and especially, different from WH, a linear recovery method can be used to
reconstruct blocks, i.e.,

x̂bi =

{
R · ΦT

bi ·
[
Φbi · R · ΦT

bi

]−1
}
· ybi (10)

in which R is statistic auto-correlation matrix of xbi, and its element Rm,n is approximated as follows,

Rm,n = (0.95)δm,n (11)

in which δm,n is the spatial distance between two pixels in xbi, xbi,m and xbi,n. Compared with conventional
recovery algorithms, the linear recovery costs less computation while presenting a good recovery
quality. Therefore, BL can both reduce the energy consumption of encoder and decoder, which is more
suitable for green IoT. However, there are annoying blocking artifacts in BL-based recovery, so we
need to explore potential structures to suppress blocking artifacts while preserving the advantages of
BL at the same time.

3. Three Potential Structures

3.1. Raster Structure

A key reason for blocking artifacts in BL is that the block is the basic unit of measuring and
recovering. Blocking artifacts are gone once we irregularly spilt an image into sub-areas in other
shapes. A simple way is to write the 2-D image in column form as

X =

⎡⎢⎣ | | |
xc1 xc2 · · · xcIc

| | |

⎤⎥⎦ (12)

in which xci ∈ RIr×1 represents the i-th column vector. We can view these column vectors as the raster
of image, so this segmentation is called raster structure (RA). As shown in Figure 3, these column
vectors can be measured by a small-size matrix Φci ∈ RIr×Ir, and the corresponding CS measurements
yci ∈ R

Mc×1 can be achieved as
yci = Φci · xci (13)

in which Mc is the number of CS measurements for each column, and the subrate S can be computed
by Mc/Ir. Because of high similarity between columns, the predictive quantization shows better
rate-distortion performance for RA. Similar to BL, by replacing Φbi and ybi in Equation (6) with Φci
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and yci, each column vector can be recovered by the linear algorithm, so RA retains the advantages
of BL.

 
Figure 3. Illustration on RA format.

3.2. Patch Structure

BL performs the recovery algorithm block by block, any two blocks are different in recovery quality
because the statistical characteristic of block is non-stationary. Blocking artifacts are usually perceived
in the regions where one block has significantly different statistics from its neighbors. By extending
BL, we present a patch structure (PA) which split the 2-D image into overlapping patches. As shown
in Figure 4, PA first splits the 2-D image X into K overlapping blocks Xpi ∈ RP×P (Np = P × P), and
transfer these patches to 1-D vector xpi ∈ R

Np×1 through raster scanning. The size of overlap region
between two neighboring patches is P/2, i.e., we slide a P×P patch in an image with the step size
being P/2. By constructing the block measurement matrix Φpi ∈ R

Mp×Np , the CS measurements
ypi ∈ R

Mp×1 of xpi are generated as
ypi = Φpi · xpi (14)

in which Mp is the number of CS measurements for each patch, and the subrate S can be computed
by Mp/Np. The storage of Φpi is moderate, so PA cannot introduce for sensors excessive burdens of
computing and storing. By the predictive quantizing, these measurements are transferred to bits, and
transmitted to decoder. By replacing Φbi and ybi in Equation (6) with Φpi and ypi, the linear recovery
algorithm is used to recover each patch, and these patches are spliced together into a whole image.
PA smooths the boundary between two blocks, so it shows efficiency of reducing blocking artifacts.
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Figure 4. Illustration on PA format.

3.3. Layered Structure

Blocking artifacts results from the differences of neighboring blocks in recovery quality.
The smaller the block size is, the more serious blocking artifacts are. The recovery quality is known to
be better with a large block [22], so blocking artifacts can be effectively suppressed when we set a large
block size in BL. However, considering the light burden of sensor, a small block size is more desired.
Especially for predictive quantization, a high spatial correlation exists among small-size blocks, which
would increase predicting efficiency of quantization. In view of that, as shown in Figure 5, we present
the layered structure (LA) which can splice CS measurements of small blocks into those of large blocks,
thus enabling the measuring of small blocks and the recovery of large blocks.

 

Figure 5. Illustration on LA format. The block-size pair is (B1, B2), and B2/B1 is 2.

In LA, we set a block-size pair (B1, B2), in which B1 and B2 are the block size for measuring and
recovery, respectively. To achieve measuring small block and recovering large block, B1 is smaller than
B2, and they satisfy that,

B2 = 2l · B1 l = 1, 2, · · · (15)

where l is a positive integer. When performing CS measuring, as the same with BL, LA splits the
2-D image X into L non-overlapping blocks Xbi ∈ R

B1×B1 (Nb = B1 × B1) and transfer these blocks
to 1-D vector xbi ∈ R

Nb×1 through raster scanning. By constructing the block measurement matrix
Φbi ∈ R

Mb×Nb , the CS measurements ybi ∈ R
Mb×1 of these small blocks are produced, and we gather
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these CS measurements into the structure at the low layer. By re-organizing the low-layer structure,
these CS measurements of small blocks are converted into those of large blocks which form the
structure at high layer. The following describes the process of converting structure from low layer to
high layer when l is set to be 1. As shown in Figure 5, each red block contains four black blocks which
are measured as

ybi = Φbi · xbi i = 1, 2, 3, 4 (16)

and splice ybi into y in rows, i.e.,

y =

⎡⎢⎢⎢⎣
yb1
yb2
yb3
yb4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Φb1

Φb2
Φb3

Φb4

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

xb1
xb2
xb3
xb4

⎤⎥⎥⎥⎦ = ΦΛ ·

⎡⎢⎢⎢⎣
xb1
xb2
xb3
xb4

⎤⎥⎥⎥⎦ (17)

in which Φ is the diagonal matrix composed of the block measurement matrices of four black blocks.
These CS measurements of red blocks are gathered into the high-layer structure. However, from
Equation (17), it can be seen that the column vector y does not correspond to the column vector x
of the red block, so ΦΛ needs to be transformed into a proper matrix. By an elementary column
transformation, it is easy to transform [xb1; xb2; xb3; xb4] into x, which can be represented as⎡⎢⎢⎢⎣

xb1
xb2
xb3
xb4

⎤⎥⎥⎥⎦ = E · x (18)

in which E is an elementary column transformation matrix. Plugging Equation (18) into Equation (17),
we can get

y =

⎡⎢⎢⎢⎣
yb1
yb2
yb3
yb4

⎤⎥⎥⎥⎦ = ΦΛ ·

⎡⎢⎢⎢⎣
xb1
xb2
xb3
xb4

⎤⎥⎥⎥⎦ = ΦΛE · x = Θ · x (19)

in which Θ = ΦΛE. According to Equation (19), we construct CS measuring formula of the red block,
so we can use the CS measurements of black blocks to linearly recover the red ones by Equation (6).
When l is set to be larger than 1, the construction of LA can be done in the manner similar to the above.

4. Experimental Results

In this section, we subjectively and objectively evaluate the reconstruction quality of some
512 × 512 test images using different measurement structures in image CS. These test images include
Lenna, Barbara, Peppers, Goldhill, and Mandrill. In all experiments, the subrate S is set to be in the range
of [0.1, 0.5]. For WH, DCT-based SRM [19] is used to construct the measurement matrix, SQ is used
to quantize CS measurements, and GPSR algorithm is used to recover images. For BL, RA, PA, and
LA, to ensure a fair comparison, i.i.d. Gaussian matrix is selected to be measurement matrix, DPCM is
used to quantize CS measurements, and images are recovered linearly. The block size is set to be 16
in BL, and LA uses different block-size pairs in different experiments. Subjective evaluation shows
the reconstructed images at different subrates using different structures. In objective evaluation, we
measure the recovery quality in terms of peak signal-to-noise ratio (PSNR), bitrate, and encoding time.
The variation of PSNR with bitrate is called rate-distortion, and the variation of PSNR with encoding
time is called time-distortion. Bitrate indicates the size of data transmitted by sensor, and encoding time
gives an indication of the amount of energy expended while encoding, so rate-distortion reflects the
transmission efficiency, and time-distortion the energy efficiency. All experiments are conducted under
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the following computer configuration: Intel(R) Core (TM) i7@3.30 GHz CPU, 8 GB RAM, Microsoft
Windows 764 bits, and MATLAB Version 7.6.0.324 (R2008a).

4.1. Subjective Evaluation

Figure 6 presents the visual recovery results of Lenna by various measurement structures at
different subrates. When subrate S is 0.1, due to insufficient CS measurements, the reconstructed
image by any structure lose structural details. It can be seen that, WH presented a disappointing result
due to serious blurs, and BL bring lots of blocking artifacts. Although RA and PA can remove the
blocking artifacts, they introduce other problems—e.g., obvious stripes in RA, global fuzzy in PA.
When setting the block-size pair (8, 16), LA has a good visual perception when compared with BL,
though many blocking artifacts still exist. When subrate S is increased to be 0.3, bad effects can be
efficiently suppressed in WH, PA, and RA, and blocking artifacts almost disappear in BL and LA.
When subrate S is 0.5, all structures provide satisfying visual results. we can see from the above
that, none of the structures can guarantee good visual results when subrate S is 0.1, therefore, we
expect to improve the visual quality at a low subrate. As shown in Figure 7, with a large l, LA can
satisfy our expectation. When l is set to be 2, i.e., the block-size pair is (8, 32), blocking artifacts are
reduced efficiently at subrate S = 0.1, and even when the block-size pair is (8, 64), blocking artifacts are
almost imperceptible. When setting a small block size, as shown in Figure 7d–f, LA can still ensure a
high efficiency for reducing blocking artifacts. Given the above, LA has greater potential than other
structures from subjective view.

 S = 0.1 S = 0.3 S = 0.5 

WH 

 

BL 

 

Figure 6. Cont.
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RA 

PA 

LA 

Figure 6. Visual quality comparison on test image Lenna for various measurement structures. Note:
the block-size pair of LA is (8, 16).

   
(a) (8, 16) (b) (8, 32) (c) (8, 64) 

Figure 7. Cont.
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(d) (4, 16) (e) (4, 32) (f) (4, 64) 

Figure 7. Visual quality comparison on test image Lenna for LA structures with various block-size
pairs when the subrate is 0.1.

4.2. Objective Evaluation

Table 2 presents the average encoding time of various structures on all test images when setting
different subrates. WH and PA have a high execution time at any subrate, and their average time is
respectively 31.74 and 36.05 ms on all subrates. BL, RA, and LA have a low execution time, among
which RA does the best with only 10.86 ms on all subrates. Table 3 presents the average decoding
time of various structures on all test images at different subrates. We can see that, the decoding time
of WH is much longer than those of other structures, indicating that the non-linear recovery brings
a heavy burden for WH. Due to linear recovery, BL, RA, PA, and LA all have a low decoding time,
especially for LA, with only 6.03 ms at all subrates. Tables 2 and 3 both considered, we can see that
LA is a good structure for green IoT because it guarantees a low complexity at both encoder and
decoder. Figure 8 shows average time-distortion and rate-distortion curves on test images for various
measurement structures. It can be seen that, WH and PA have a poor time-distortion performance due
to high encoding time, the time-distortion performance of BL is close to that of LA, and RA works the
best among all structures. As for rate-distortion performance, WH and PA perform poorly, and LA
works the best among all structures. Although RA has a good time-distortion performance, it produces
more bits than LA. Figure 9 shows average time-distortion and rate-distortion curves on test images
for LA structures with various block-size pairs. It can be seen that the rate-distortion performance
can be significantly improved when block size B1 of measuring is much smaller than block size B2 of
recovery, but different block-size pairs have little impact on time-distortion performance. To sum up,
LA can save more bits while keeping both a low encoding time and a good recovery quality. Given the
positive relation between encoding time and energy consumption, LA is the most suitable one among
all structures for Green IoT from the objective view.

Table 2. Execution time (ms) of encoder for various measurement structures.

Subrate 0.1 0.2 0.3 0.4 0.5 Average

WH 30.68 31.17 31.57 31.97 33.28 31.74
BL 16.09 16.63 17.46 18.57 19.52 17.65
RA 6.82 8.57 10.69 12.91 15.31 10.86
PA 33.01 35.72 36.06 37.36 38.12 36.05
LA 16.66 17.37 18.46 19.31 20.41 18.44

Note: the block-size pair of LA is (8, 16).
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Table 3. Execution time (ms) of decoder for various measurement structures.

Subrate 0.1 0.2 0.3 0.4 0.5 Average

WH 1.22 × 105 1.00 × 105 0.65 × 105 0.52 × 105 0.31 × 105 0.74 × 105

BL 10.12 10.21 10.16 10.14 10.33 10.19
RA 5.67 7.92 8.66 10.05 12.88 9.04
PA 21.18 21.71 21.92 21.72 21.59 21.62
LA 5.39 5.69 6.03 6.51 6.54 6.03

Note: the block-size pair of LA is (8, 16).

  
(a) Time-distortion curve (b) Rate-distortion curve 

Figure 8. Average time-distortion and rate-distortion curves on test images for various measurement
structures. Note: the block-size pair of LA is (8, 16).

  
(a) Time-distortion curve (b) Rate-distortion curve 

Figure 9. Average time-distortion and rate-distortion curves on test images for LA structures with
various block-size pairs.

4.3. Effects of Measurement Matrices

In this section, we present the effects of different measurement matrices on the performance of
BL, RA, PA, and LA. We select two classic measurement matrices, Gaussian matrix and permuted fast
Fourier transform (PFFT) matrix [30], and two hardware-friendly matrices, ±Bernoulli matrix [31] and
DCT-based SRM [19]. To ensure a fair comparison, all structures use linear algorithm to reconstruct
test images. Table 4 presents the average encoding time of various structures on all test images at all
subrates using different measurement matrices. It can be seen that, no matter which matrix is used,
RA costs less encoding time than other structures, PA requires the most time among all structures, and
BL and LA have a moderate encoding complexity. For any structure, the encoding time varies slightly

283



Sensors 2019, 19, 102

even when different matrices are used. Table 5 presents the average PSNR values of various structures
on all test images at all subrates using different measurement matrices. It can be seen that LA gets
higher PSNR values than others regardless of matrix used. For any structure, Gaussian matrix provides
higher PSNR values than others, and ±Bernoulli and SRM matrices have a little PSNR degradation
compared with Gaussian matrix. We can find from the above that both encoding time and imaging
quality considered, LA provides a good balance for any measurement matrix, and ±Bernoulli and SRM
matrices have little effect on the performance of different structures compared with Gaussian matrix.
In order to make LA hardware-friendly, therefore, Gaussian matrix can be replaced with ±Bernoulli
and SRM matrices.

Table 4. Average execution time (ms) of encoder for different structures using different measurement
matrices.

Gaussian PFFT ±Bernoulli SRM

BL 17.65 18.35 18.14 18.17
RA 10.86 11.13 10.67 10.66
PA 36.05 34.23 33.11 33.28
LA 18.44 18.71 18.14 18.61

Note: the block-size pair of LA is (8, 16).

Table 5. Average PSNR values (dB) for different structures using different measurement matrices.

Gaussian PFFT ±Bernoulli SRM

BL 27.28 25.70 26.88 26.69
RA 26.94 16.22 26.92 26.94
PA 24.63 24.22 24.38 24.24
LA 27.82 26.09 27.53 27.48

Note: the block-size pair of LA is (8, 16).

4.4. Effects of Recovery Algorithms

In this section, we present the effects of different recovery algorithms on the performance of
different structures. All structures use DCT-based SRM to measure test images. The four recovery
algorithms, namely GPSR, orthogonal matching pursuit (OMP) [32], Bayesian recovery [33], and linear
recovery, are used to reconstruct test images. To ensure good performance of non-linear algorithms,
the block size is set to be 32 for BL and PA, and the block-size pair of LA is set to be (32, 64). Table 6
presents the average decoding time of different structures on all test images at all subrates using
different recovery algorithms. We can see that non-linear algorithms cost far more decoding time
than linear algorithm for any structure, and LA costs more decoding time than BL, RA, PA, for
linear algorithm, indicating that linear algorithm has a light computational burden compared with
non-linear algorithms, and LA increases the decoding computation. Table 7 presents the average PSNR
values of different structures on all test images at all subrates using different recovery algorithms.
It can be seen that linear algorithm provides higher PSNR values than non-linear algorithms for any
structure, especially that LA cooperated with linear recovery achieves the highest PSNR value. From
the above, we can find that linear algorithm is more suitable for BL, RA, PA, and LA in terms of either
computational complexity or objective quality, and LA can improve the recovery quality at the cost of
some computational burden increase.
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Table 6. Average execution time (ms) of decoder for different measurement structures using different
recovery algorithms.

GPSR OMP Bayesian Linear

WH 7.44 × 104 – – –
BL 9.34 × 104 5.57 × 103 6.26 × 104 114.36
RA 9.00 × 104 5.56 × 103 6.64 × 104 127.11
PA 1.14 × 105 2.99 × 103 7.73 × 104 71.97
LA 5.32 × 105 1.70 × 105 2.14 × 105 3.94 × 103

Note: due to the unavailability of function handle, OMP, Bayesian and linear algorithms cannot be used for WH.

Table 7. Average PSNR values (dB) for different measurement structures using different recovery
algorithms.

GPSR OMP Bayesian Linear

WH 25.08 – – –
BL 22.93 23.07 24.13 28.01
RA 19.80 20.63 21.63 26.94
PA 21.03 21.61 21.57 25.44
LA 23.04 23.32 24.47 28.12

Note: due to the unavailability of function handle, OMP, Bayesian and linear algorithms cannot be used for WH.

5. Conclusions

In this paper, we have reviewed two traditional measurement structures of image CS, i.e., WH
and BL, and propose three potential structures for Green IoT, i.e., RA, PA, and LA. As a straightforward
structure, WH stores CS measurements of a whole image at a time, but must use SRM to measure and
recover image in order to avoid the huge storage and computations. BL organizes CS measurements
block by block, with high energy efficiency and low storage, but it produces serious blocking artifacts
at the low subrate. By replacing non-overlapping block in BL with raster and overlapping block,
RA and PA can remove blocking artifacts, though bringing other problems. LA splits image into
small blocks, and re-organizes these measurements of small blocks into those of large ones. Since
small block improves the efficiency of predictive quantization, and large block enhances the recovery
quality, LA can efficiently suppress blocking artifacts. We perform several experiments to evaluate
the subjective and objective performances of all structures. At a low subrate, by setting a proper
block-size pair, LA almost eliminates blocking artifacts, and provides better visual quality than
other structures. It shows good time-distortion and rate-distortion performances, especially for
rate-distortion performance, it can significantly improve it by setting a large block size of recovering.
Both subjective and objective evaluation considered, it can be seen that LA is the most suitable for
green IoT among structures.

This paper only presents an exploratory research, and there are many intriguing questions that
future work should consider. For instance, for PA, a patch overlaps its neighbors, so we can design
more efficient recovery algorithm by using the correlation among patches. Also, parallel computing
can be adopted to speed up the linear recovery for LA.
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Abstract: Both economic and environmental costs are driving much research in the area of the
energy efficiency of networking equipment. This research has produced a great amount of proposals.
However, the majority of them remain unimplemented due to the lack of flexibility of current
hardware devices and a certain lack of enthusiasm from commercial vendors. At the same time,
Software-Defined Networking (SDN) has allowed customers to control switching decisions with
a flexibility and precision previously unheard of. This paper explores the potential convergence
between the two aforementioned trends and presents a promising power saving algorithm that can
be implemented using standard SDN capabilities of current switches, reducing operation costs on
both data centers and wired access networks. In particular, we focus on minimizing the energy
consumption in bundles of energy-efficient Ethernet links leveraging SDN. For this, we build on
an existing theoretical algorithm and adapt it for implementing with an SDN solution. We study
several approaches and compare the resulting algorithms not only according to their energy efficiency,
but also taking into account additional QoS metrics. The results show that the resulting algorithm
is able to closely match the theoretical results, even when taking into account the requirements of
delay-sensitive traffic.

Keywords: energy-efficient Ethernet; QoS; SDN; real-time traffic; ONOS

1. Introduction

Nowadays, public concern about energy consumption of networking equipment is increasing
due to not only environmental reasons, but also economic ones. Inside data centers, the network
consumes up to 20% of its total power [1]. If we focus on wireless networks, the reduction of energy
consumption is also a Key Performance Indicator (KPI) according to the 5G Infrastructure Public
Private Partnership (5G-PPP) [2]. As a result, a wide range of solutions has been proposed to reduce
the energy consumption of networking equipment. However, many of these new techniques remain
unimplemented due to the lack of flexibility in current networks. For instance, some of the recent
proposals in the literature require changes to basic protocols, whereas others require changes to the
networking equipment [3–6].
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In parallel, the Software-Defined Networking (SDN) paradigm is being embraced by the
networking community. The SDN paradigm moves the forwarding logic from the devices themselves
to the SDN applications, which run on top of the logically-centralized controller. In these networks,
switches are just pure forwarding fabrics instructed by the SDN controller, and the network policies
are programmed through software applications, which run on top of the SDN controller. The flexibility
that this paradigm introduces has led to its extensive adoption in data centers. SDN is also deemed
as a key enabler technology for 5G networks [7]. The adoption of SDN in these networks is seen as
an opportunity to improve the energy efficiency of the communications infrastructure, overcoming the
limitations of current networks by virtue of its programmability and flexibility.

Energy-Efficient Ethernet (EEE) [8,9] is the standard for saving energy in Ethernet interfaces.
Despite the large savings in energy consumption achievable with EEE over single Ethernet links,
the overall consumption in Ethernet link aggregates is not proportional to the offered load and depends
largely on the actual traffic share among the links. In this paper, we adapt efficiently an analytical
solution to the problem of minimizing energy in bundles of EEE links by leveraging the operational
principles of SDN networks. Therefore, combining analysis with SDN capabilities, legacy switches
equipped with EEE line cards can run energy-aware traffic distribution algorithms even if the vendors
do not build support for them in the hardware/firmware. Specifically, we design, build and analyze
three energy-efficient SDN-compatible flow allocation algorithms from the point of view of energy
consumption, packet loss rate and transmission latency, both through simulations and also with an
implementation on top of the Open Network Operating System (ONOS) SDN controller. Since the
energy saving nature of the algorithms can make latency increase, we also consider traffic with different
QoS requirements. Subsequently, two different solutions are proposed to handle the low-latency traffic
while at the same time reducing the energy consumption. Our solutions are validated both through
extensive simulation experiments and by implementing the algorithms in ONOS.

This paper extends our previous work presented in [10,11] by discussing further the related work,
describing the solutions in detail, studying a new mechanism for estimating the rate of each flow
and providing a thorough analysis of the algorithms. The rest of the paper is organized as follows.
Section 2 introduces the related work. We describe our proposal for minimizing energy consumption
in Section 3. Section 4 shows the QoS-aware algorithms. Results are discussed in Section 5. Finally,
we draw some conclusions in Section 6.

2. Related Work

The advantages offered by SDN networks for advanced traffic management have been the subject
of study of prior works that helped to understand the best way to use SDN for spending less energy.
In [12], the authors carried out a survey on energy efficiency, identifying which components involved
in the SDN networks can be configured in a dynamic way in order to reduce energy usage. Most of the
solutions analyzed rely on re-routing the flows in the network so that the number of active switches is
minimized. Thus, these devices can be put in a low-energy state or eventually turned off, reducing
the power consumption of the network. These proposals are termed traffic-aware, since they need to
know the traffic load that is currently passing through the network. The use of the centralized view of
the topology provided by the SDN controller is a key assumption in this approach.

GreenSDN [13] is an emulation environment built using Mininet and POX, which is
a Python-based SDN controller. The authors summarized the difficulties they found implementing
an SDN environment with green capabilities. They presented an integration of three energy-saving
protocols operating at different layers: adaptive link rate operating at the chip level, synchronized
coalescing working at the node level and the sustainability-oriented network management system,
which considers the whole topology to maintain the balance between QoS and energy savings.
Particularly relevant to this paper is the mechanism proposed at the node level, which also exploits
the Low Power Idle (LPI) state defined in the IEEE 802.3az standard. Nevertheless, GreenSDN does
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not consider setting individual ports in low power idle mode when the traffic traverses an aggregate
between switches.

The energy-efficient flow routing problem is formulated in [14] as an optimization problem
and solved with a heuristic—named the Energy Monitoring and Management Application
(EMMA)—which aims to concentrate the traffic on the smallest possible set of nodes in the whole
topology, so that the number of idle switches is maximized. EMMA is implemented as an ONOS
application and evaluated in a network emulated through Mininet. The solution requires that the
flows have previously declared their demanded rates. Thereby, when a new flow arises, EMMA tries
to allocate all the active flows in the subset of the network topology that is currently active. If the active
topology cannot support the flows, a new allocation for the whole network topology is computed.
Analogously, when a flow is removed, EMMA attempts to re-route existing flows so that energy
consumption of the network diminishes.

ElasticTree [1] and ECODANE [15] present solutions focused on data center networks, exploiting
the redundancy in their internal switching networks and the variability in the workload that the data
center must support over time. ElasticTree is a heuristic algorithm that adjusts the set of active devices
to gauge the changes in the traffic load. The heuristic was validated over a testbed composed of
production OpenFlow switches, using real traffic traces from an e-commerce website, saving up to 50%
of energy. In ECODANE, an emulation framework, is built around Mininet and NOX, composed of
five modules: the optimizer, which is in charge of determining the minimum subset of the topology
that needs to be active, the power control module that manages the power states of the switches,
the forwarding module that manages the flow rules installed in the switches to forward the traffic,
the traffic generator, which generates the traffic to perform simulations, and the data center network
itself. Their results obtained between a 10% and 35% energy reduction, depending on the source
and destination of the traffic. However, none of these two solutions considers the characteristics
of EEE links to reduce their energy consumption or explore the particular case of link aggregates
between switches.

There is a clear line of work dedicated to exploring the interactions between resource
activation/deactivation, routing decisions and energy savings. Early works focused on powering
down redundant resources, e.g., switches and links, to reduce energy consumption during periods
with low load. Some examples of these early works are [3,16–18], where the authors studied the energy
savings obtained by link aggregation in metropolitan optical networks. All of these proposed different
formulations to obtain the proper set of nodes to keep active, but only under the assumption of on-off
power profiles in the devices. There is also research considering other more advanced link power
profiles. For instance, transmission links with super-linear cost functions were studied in [19] with
the goal of calculating the maximum power savings. New insights were provided in [20], after it was
demonstrated that traffic consolidation can increase energy consumption for certain power profiles.
The main problem with all these proposals was their high complexity, since the energy minimization
problem is NP-complete [5]. Accordingly, a number of proposals in the literature resorted to heuristics
for solving the problems. For instance, reference [21] took advantage of genetic algorithms to get close
to the optimum, and [22] provided a heuristic based on particle swarm optimization. In general, these
works overlook the problems derived from the practical implementation of the algorithmic results.
Finally, only [23] reformulated the energy-saving problem considering an SDN-capable network and
extended the problem to consider the usage of network function virtualization, so that computing
tasks can also be moved across the network to enable greater energy savings.

A common feature of the prior works is that the underlying algorithms operate in relatively long
time frames, and so, their response can be slow. Moreover, they address a network flow allocation
problem, globally. In contrast, we focus on flow allocation in a single-link aggregate between two
switches (see [6], which is the theoretical basis of this paper), and our techniques work in much
shorter timescales, in the order of a single frame transmission. It was found therein that the optimum
minimum-energy allocation of flows into a bundle of EEE links turns out to follow a water filling
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policy for typical consumption profiles, as explained in [6]. That is, a new port will only be used to
transmit a packet if the packet cannot be transmitted by any of the ports already being used, since
they are operating at its full capacity. This result holds for the main classes of mechanisms used to
manage the power state of the IEEE 802.3az ports, i.e., frame transmission and burst transmission
modes [24]. In addition, reference [6] presented an algorithm to achieve these results, which operates
on a per-packet basis, deciding the port that will be used for each packet based on the occupation of
the ports. Following a naive water filling algorithm and only diverting traffic to a new idle port when
the previous ones are completely used at their full capacity will lead to an unbounded delay. Hence,
a simple modification is proposed to maintain the average delay bounded to a target value, by using
the average delay of the already queued packets to determine the output port.

3. SDN Application Design

In this section, we address the energy-efficient allocation of traffic flowing between two switches
through an aggregate of EEE links, from the point of view of a software-defined network.

3.1. Background and Problem Statement

We will consider a link aggregate composed of L IEEE 802.3az links, of identical capacity C.
The traffic traversing that bundle is represented by F flows. Let xi ∈ [0, C) denote the estimated
rate of flow i, and let pi ∈ {1, . . . , L} be the port where that flow is allocated. According to [25],
the normalized individual energy consumption of a single EEE interface for any uncorrelated incoming
traffic distribution is:

E(ρ) = 1 − (1 − σoff)(1 − ρ)
Toff(ρ)

Toff(ρ) + TS + TW
, (1)

where ρ is the traffic load, σoff is the relative energy consumption of the EEE idle mode and TS and
TW are the time needed to enter and exit the LPI mode, respectively. They are constant parameters
dependent on the physical interface characteristics. Finally, Toff(·) is the average length of the idle
periods, which depends on both the algorithm governing the idle mode and the actual traffic load.
Let �ρ = [ρ1, . . . , ρL] be the load allocation to the links forming the bundle. Then,

EB(�ρ) =
1
L

L

∑
i=1

E(ρi) (2)

is the normalized energy consumption of the whole bundle for a given load allocation. In [6], it was
proven that, for any arbitrary algorithm governing the idle mode, EB(·) is minimized iff:

xi = min

{
C, X − ∑

j<i
xj

}
, i = 1, . . . , L, (3)

where X denotes the total traffic allocation and xi is the traffic allocation to the i-th port, i.e., ρi = xi/C.
That is, the minimum energy consumption is obtained when a water filling algorithm is used to assign
the traffic among the links in the bundle. This is because the typical energy consumption profile
of a single Ethernet link is a concave function of the traffic load (see Figure 1). In addition to the
theoretical solution, a practical algorithm is also provided by [6], but assuming that the switches
operate on a packet-by-packet basis. For two reasons, this algorithm cannot be directly implemented
as an SDN application:

• The ideal algorithm considers that the switch individually decides for each packet which port
will be used to forward it, based on the instantaneous occupation of the ports, a packet-level
operation. SDN does not allow forwarding each packet individually, since its data plane works at
the flow level, applying the same actions to the packets of a flow once a matching rule is found in
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its flow table (i.e., forwarding the packets to the same port). In addition to the action prescribed
by the flow rule, the counters associated with the port are updated.

• The current queue occupation of each port is used to determine the forwarding port.
Unfortunately, this state variable is not usually provided by SDN switches (e.g., it is not considered
in OpenFlow).

Throughout the rest of this section, we will present the main architecture of the SDN application
and the new flow allocation algorithms that realize the solution presented in [6].
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Figure 1. Consumption of a 10 Gb/s IEEE 802.3az port using frame transmission. © 2018 IEEE. Reprinted,
with permission, from [10].

3.2. Designing the SDN Application

We devised a reactive forwarding behavior. That is, a low-priority rule will be installed in the
switches to send the packets to the SDN controller, so the packets that do not match any flow rule with
higher priority will be sent to the SDN controller, which has a centralized view of the topology and
will act in response. The controller will transfer this packet to our application, which runs on top of
the controller. Next, the application will determine which port the packet should be forwarded to and
install a medium-priority flow rule in the switch. Future packets classified in this same flow will be
directly forwarded by the switch at the line rate.

The medium-priority flows installed are defined by the destination MAC address of the packets
and also the first eight bits of the destination IP address. Eight bits attain a good trade-off for the
granularity of flows: enough to spread the traffic among the ports of the bundle and to keep the flow
tables of the switches small to avoid performance degradation.

Since the controller maintains a full view of the network topology, it can compute shortest paths
to the packet destination. For unknown destinations, the controller floods the packet out of all ports
except the input port and using only one port of each bundle, without installing a flow rule for this
packet yet. Therefore, when a packet is received, the application determines the next hop switch to
which the packet should be forwarded. When the next hop is behind a bundle of links, our application
selects at random a port of the bundle to forward the packet and installs the flow in the switch
accordingly. The random selection is performed since the application does not have prior information
about the transmission rate of this new flow. Allocating the flow to the highest loaded port would
cause excessive losses if the flow demands a high rate. On the contrary, using an idle port would
activate its hardware, drastically increasing the energy consumption if the flow demands a rate that
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can be handled by ports already active. In any case, it is important to note that this is just an initial
transient when a new flow appears on the network.

The above description is the part of the SDN application that manages the packet forwarding
in the transport infrastructure. It uses a customized flow definition, but spreads flows at random in
the bundles between switches since there exists no a priori information about the flow rates, thus
not performing any energy-aware optimization. Now, we proceed to describe how to optimize the
energy consumption in the bundles. Figure 2 displays the flow diagram of the control application.
The application performs the following tasks, some of them periodically:

1. Retrieve the list of switches.
2. For each switch, identify the neighbors of the switch (i.e., the switches that a link to it).
3. For each neighbor, retrieve the ports in the switch that are connected with the neighbor.
4. If there is more than one port (i.e., there is a bundle between the two switches), retrieve the flows

installed in the switch that forward packets to a port of this bundle.
5. Predict the rate of each flow; that is to say, the amount of traffic that the flow will transmit in the

next interval.
6. Compute a new allocation for these flows to the ports of the bundle in a way that energy

consumption is minimized.
7. Instruct the switch to modify the flow rules that have changed their allocation.

Two of these deserve further discussion: rate prediction and flow allocation.

Begin

swtiches = get list of
switches

More elements in
switches?

neighbors = get neighbors of
switch

switch = next element in
switches

More elements in
neighbors?

neighbor = next element in
neighbors

flows = get flows installed in
switch with output in ports 

Estimate load of
flows

Allocate flows in
ports

Instruct switch with new
flow allocation

ports = get ports of switch
directly connected to neighbor 

Length of ports > 1? 

End

Yes

Yes

Yes

No

No

No Communication
with ONOS

Local
processing

Figure 2. High level application logic.

3.3. Flow Rate Prediction

The rate demanded by a flow in the following measurement interval is estimated leveraging
the counters associated with the flow rules. These counters include the number of packets and bytes
that have matched with this flow along with the duration of the flow (i.e., the time that the flow has
been active). Thus, the bytes transmitted in the current measurement period are the difference between
two counter queries by the controller. The estimated rate is simply the number of transmitted bytes
divided by the sampling period. If the flow was not present in the previous interval, we use the value
of the duration of the flow instead of the sampling period, for an accurate measure. For the prediction
of the flow rate in the next measurement period, we tested two simple estimators:
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1. The measured value in the previous interval.
2. An exponentially-weighted moving average (EWMA) with the measured rates of the flow in past

intervals. The estimated rate is:

Rn =

{
Mn, n = 0

α · Mn + (1 − α) · Rn−1, n > 0
(4)

where Rn is the value of the EWMA at time n (thus, the rate estimated for the interval n + 1), Mn is the
measured rate in the interval n and the constant α ∈ (0, 1] is a parameter that tunes the relevance of
the samples as time goes by.

We have analyzed the quality of the estimation with the two methods, calculating the error in
the estimation as the absolute value of the difference between the estimated value and the real value,
for each flow in each interval. Just for a reference, the results for a 32.5 Gb/s trace are shown in
Figure 3 (Although we have not included them for space reasons, results for several other traffic traces
have been produced with similar results. The traffic traces are the same as those used in Section 5,
where their exact characteristics are described).

Clearly, using directly the measurements performs very similar to the usage of the EWMA for the
different values of α and the sampling periods studied. We can also notice large errors in the estimated
rate for sampling periods lower than 0.1 s. This is due to the high variability of the rates for such a
small time window. Therefore, we will directly use the rate of each flow in the previous interval to
forecast its rate in the next interval, since it is a simpler method than the EWMA one and provides
almost the same accuracy.
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Figure 3. Average error in the estimation of the flow rate for different periods. EWMA, exponentially-
weighted moving average.

3.4. Flow Allocation Algorithm

In this section, we describe three new flow allocation algorithms implemented to reduce the
energy consumption. The purpose of these algorithms is to select the flows according to their traffic
rate and assign them to the available links according to the optimum flow allocation algorithm [6].
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The input of this algorithm will be the set of flows to be allocated along with their estimated rates,
and also the set of ports that make up the aggregate.

3.4.1. Greedy Algorithm

GA attempts to fill the ports to the maximum of their capacity, only allocating a flow in an empty
port if it does not fit in any of the already active ones. Therefore, GA attempts to use only the minimum
number of ports, filling them up to their nominal capacity and leaving the maximum number of ports
empty. The latter problem is actually a combinatorial NP-hard problem (bin packing), so we propose
using the first-fit decreasing (FFD) [26] algorithm as a heuristic suboptimal solution. Note that finding
the optimum one would require evaluating |ports||flows| combinations and is not scalable. Instead of
this, our GA algorithm will consider the flows in a decreasing order based on their estimated rates and
will allocate them to the highest loaded port. Note that although similar to a water filling approach,
GA does not operate at the packet level, but at the flow level.

The pseudocode of the GA algorithm is shown in Figure 4, where the bound is always set to zero.
Firstly, the flows are sorted decreasingly on their estimated rate. Next, the flows are allocated in a
sequential order so that the port occupation is maximized: the ports are evaluated in a predefined
order (e.g., by port identifier), and the flow is allocated to the first port it fits. We consider that a flow
fits in a port when the sum of all the flow rates assigned to the port is less than the capacity of the
port. This algorithm is akin to the classical FFD heuristic solution of the bin packing problem [26].
We expect GA to yield low values of energy consumption. Nevertheless, since it pushes to use the full
capacity of the ports, packet delay can grow quickly, as pointed out in [6]. Furthermore, since rate
estimations are noisy, the estimation errors could lead to a non-negligible level of packet losses for
almost any buffer size.

1 a l l o c a t e _ g r e e d y ( f lows , p o r t s , bound=0) {
2 // Hold assigned port for each flow
3 f l o w _ a l l o c a t i o n [1.. | f l o w s |] = ∅

4
5 // Sort flows by decreasing load value
6 o r d e r e d _ f l o w s = s o r t ( load ( f l o w s ), DECREASING)
7
8 // Initialize occupation of the ports to 0
9 p o r t _ l o a d [1.. |p o r t s |] = 0

10 p o r t _ f l o w s [1.. |p o r t s |] = 0
11
12 for f low ∈ o r d e r e d _ f l o w s {
13 for p o r t ∈ p o r t s {
14 if (( p o r t _ f l o w s [ p o r t ] == 0) ||
15 ( p o r t _ l o a d [ p o r t ] + load ( f l o w s )[ f low ]
16 ≤ 1 - bound/ p o r t _ f l o w s [ p o r t ])) {
17 // Update port with the load of this flow
18 p o r t _ l o a d [ p o r t ] += load ( f l o w s )[ f low ]
19 p o r t _ f l o w s [ p o r t ] += 1
20 f l o w _ a l l o c a t i o n [ f low ] = p o r t
21 break
22 }
23 }
24 }
25
26 return f l o w _ a l l o c a t i o n
27 }

Figure 4. Pseudocode for the greedy algorithms. Note that the greedy algorithm (GA) is identical to
bounded GA (BGA) when setting the variable bound to zero. © 2018 IEEE. Reprinted, with permission,
from [10].

3.4.2. Bounded Greedy Algorithm

BGA is a straightforward modification of GA, in that it attempts to bound the packet delay and
also to reduce the packet losses in GA. One reason for the losses is that using the ports very close to
their capacity leads easily to buffer overload if the rate is not accurately estimated. Thus, BGA avoids
using links close to their capacity just by setting a threshold in the maximum allowable load allocated
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on a port. Specifically, we limit the fraction of the port capacity that can be used to an increasing
function in the number of flows already allocated to each port p, with the following function:

ρ
p
max = 1 − B/Fp, (5)

where Fp is the number of flows already allocated to the port and B denotes the fraction of space that
cannot be used in a port when there is only one flow allocated to it. The idea is that rate prediction
errors between the different flows should compensate the global estimation error, and thus, the higher
the number of flows, the higher the link occupation that is safe to attain. For the rest, the algorithm
operates in the same way as GA. The pseudocode is also shown in Figure 4, where bound is the fraction
of space that cannot be used in a port when there is only one flow allocated to it, i.e., bound = B.

3.4.3. Conservative Algorithm

Despite the effort of the BGA to mitigate packet losses and control the delay of the packets,
the results might not be acceptable yet, as we will later show. Hence, we designed a better algorithm
that does not only minimize energy consumption, but also reduces packet losses. The idea behind this
algorithm is to first compute the minimum number of ports necessary for the next interval. This value
is lower bounded by:

Lused =

⌈
∑F

i=1 xi

C

⌉
. (6)

Then, the flows are distributed among the Lused ports in a way that tries to spread the load
evenly. Although this minimizes the individual occupation of each link, it does not follow a water
filling approach. However, as we will show later, this does not really degrade energy consumption.
The reason is that the individual energy consumption rises very quickly with the occupation of the
link, as Figure 1 illustrates.

As a consequence, once a port reaches an occupation higher than 20%, it makes little difference
for the energy consumption the actual traffic load assigned to it. Thus, the conservative algorithm (CA)
prefers to have its used ports with a balanced traffic occupation avoiding the need for using the ports
at full capacity in many situations, like frequently happens with the GA and BGA. Figure 5 shows
normalized power profiles of an eight-link bundle with the ideal water filling algorithm and the power
profile expected for the conservative algorithm.
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Figure 5. Comparison between the normalized power profiles of an eight-link bundle when using the
water filling and the conservative algorithm.

For further reduction of the likelihood of packet losses, rather than using the total estimated load
to compute the number of ports, we add to this value a safety margin, M, which we empirically set
to 20%. The number of ports to be used is calculated therefore as:

Lused =

⌈
∑N

i=1 xi

C
+ M

⌉
. (7)

After determining the Lused, the CA proceeds with the allocation of the flows attempting to achieve
a balanced distribution of the flows to ports, both in terms of rate and number of flows. To accomplish
this, the algorithm performs a minimization of the occupation of the ports. The pseudocode is shown
in Figure 6, which first sorts the flows in decreasing order of their estimated rate and then sequentially
allocates the flows to the port with the lowest occupation among those that will be used in the interval.
Note that this algorithm is also capable of maintaining some ports idle, reducing energy consumption.
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1 s a f e t y _ m a r g i n = 20%
2
3 a l l o c a t e _ c o n s e r v a t i v e ( f lows , p o r t s ) {
4 // Hold assigned port for each flow
5 f l o w _ a l l o c a t i o n [1.. | f l o w s |] = ∅

6
7 e x p e c t e d _ l o a d = sum( load ( f l o w s )) + s a f e t y _ m a r g i n
8 minimum_ports = c e i l ( e x p e c t e d _ l o a d )
9

10 // Only use the minimum number of ports
11 u s e d _ p o r t s = p o r t s [1..minimum_ports]
12
13 // Sort flows by decreasing load value
14 o r d e r e d _ f l o w s = s o r t ( load ( f l o w s ), DECREASING)
15
16 // Initialize occupation of the ports to 0
17 p o r t _ o c c u p a t i o n [1.. |u s e d _ p o r t s |] = 0
18
19 for f low ∈ o r d e r e d _ f l o w s {
20 p o r t = g e t _ p o r t _ m i n _ o c c u p a t i o n ( p o r t _ o c c u p a t i o n )
21 // Update port with the load of this flow
22 p o r t _ o c c u p a t i o n [ p o r t ] += load ( f l o w s )[ f low ]
23 f l o w _ a l l o c a t i o n [ f low ] = p o r t
24 }
25
26 return f l o w _ a l l o c a t i o n
27
28 }

Figure 6. Pseudocode for the conservative algorithm. © 2018 IEEE. Reprinted, with permission,
from [10].

4. Energy-Efficient Algorithms with Bounded Delay

In this section, we consider flows with different quality of service (QoS) requirements in terms of
latency. We will introduce two modifications to the energy-efficient algorithms described in Section 3
in order to consider the demands of low-latency flows. The specific mechanism used to identify
low-latency flows is not relevant for this work since the method actually employed does not affect
the algorithm at all. Thus, we will assume that the low-latency flows are tagged with a well-known
differentiated services code point (DSCP), which is carried in the IP header. As a result, we will work
with two types of flows: low-latency flows and best-effort flows.

These modifications are generic enough to be applied to any of the different energy-efficient
algorithms presented above. However, since CA outperforms the other two algorithms in packet losses
and delay with a minimum penalty in energy savings, as will be later shown in Section 5.1, during the
rest of this paper, we will only use CA as the energy-efficient algorithm, for the sake of simplicity.

4.1. Spare Port Algorithm

The spare port algorithm (SPA), shown in Figure 7, exploits the fact that, when the traffic load is
moderate, the energy-efficient algorithms concentrate the traffic and leave some spare ports. Therefore,
this new algorithm trades an increase of energy consumption in unused ports so as to provide expedited
service to low-latency flows. SPA works in two phases, first allocating best-effort flows and then the
low-latency ones.

1. In the first phase, the energy-saving algorithm is directly applied without modifications, but only
to the best-effort flows.

2. In the second phase, the remaining low-latency flows are assigned to the least occupied port
among those in the bundle.
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Figure 7. Conceptual diagram of the spare port algorithm in a four-link bundle.

SPA can perform well under the assumptions that low-latency traffic represents a small fraction of
both the total traffic and the spare port capacity and that best-effort flows do not exhaust the capacity of
the bundle. Then, in the next step, one of the unused ports will be used to forward low-latency traffic,
without increasing the delay of the best-effort traffic. However, we need to discuss the limitations of
this algorithm when some of the assumptions do not hold:

1. If the traffic demand is so high such that all the ports in the bundle must be dedicated to
best-effort flows, low-latency traffic will not be forwarded through a single port. As a result, both
low-latency and best-effort traffic will be treated in the same way, without meeting the needs of
premium traffic.

2. If the amount of low-latency traffic is significant, the energy consumption of the spare port can
drastically increase because of the energy profile of an EEE link, which rises very quickly with
the port occupation (cf. Figure 1).

4.2. Two Queues Algorithm

The spare port algorithm may increase the energy consumption if the amount of delay-sensitive
traffic is significant. More importantly, SPA will not be able to satisfy the demands of flows with
low-latency requirements when there is a high load due to best-effort traffic. To solve this, we leverage
the ability of most SDN switches to have multiple queues attached to a physical port. These queues
can be defined with different priorities. In fact, this is the standard way of providing QoS in SDN
devices as stated in the OpenFlow (OF) specification [27]. Although this capability is not required, it is
provided by most of the devices, such as Open vSwitch, which is presumably the most widely-used
OF-enabled switch.

In the two queues algorithm (TQA), we define two queues with different priorities inside each
physical port of the switches, as shown in Figure 8: the queue with the highest priority will only serve
low-latency traffic, and the other will forward best-effort traffic. The algorithm operates in two phases,
determining first the port and then the queue inside each port:

1. The first phase consists of directly applying the unmodified energy-efficient algorithm described
in Section 3 to the whole set of flows, both including low-latency and best-effort, treated equally.
The whole set of flows is allocated in a few ports.

2. The second phase sets the queue inside the assigned port for every flow. Low-latency flows
are assigned to the high-priority queue of the ports, whilst best-effort flows are assigned to the
low-priority queue.

Clearly, the allocation of flows to ports is actually given by the energy-efficient algorithm,
but thanks to the introduction of multiple first-in first-out (FIFO) queues inside the port, we prioritize
flows with stringent QoS requirements in terms of latency, thus providing an expedited service.
The decision of the next packet to be served by a port is straightforward: each time the port ends the
transmission of a packet, it will pick the next packet to be transmitted from the non-empty queue with
the highest priority. In other words, delay-sensitive packets have non-preemptive priority over the rest.
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Figure 8. Conceptual diagram of the two queues algorithm in a four-link bundle.

Using two queues per port overcomes the limitations of SPA. Firstly, the service received by the
high-priority traffic is independent of the amount of best-effort traffic load. Secondly, the expedited
service does not lead to increased energy consumption, since the joint allocation phase still uses the
energy-efficient algorithm. Thus, the energy consumption will be equal to the original energy-efficient
algorithm described in Section 3. The main drawback is that using two queues increases the delay
of best-effort traffic, and this becomes more noticeable as the share of traffic demanding expedited
service is higher. However, since the use of the priority queues only implies a reordering of the packets
in a port, the average delay of all the packets will not change. Thus, the maximum delay of best-effort
packets is still bounded.

5. Results

Throughout this section, we analyze the performance of the proposed algorithms to then assess
the correct behavior of the proper ONOS application.

The algorithms have been analyzed in a scenario composed of bundle of five 10 Gb/s copper
based Ethernet links (10 GBASE-T) aggregated between two switches with two hosts attached to them,
one of them serving as the source for the traffic, and the other one acting as the traffic sink. Figure 9
shows a diagram of the setup.

Figure 9. Basic experimental topology.

The experiments have been carried out with an in-house developed simulator available for
download [28]. The simulator shares most of the code with the ONOS implementation, thus reducing
the developing time and helping in the validation. As for the traffic itself, we have employed real traffic
traces from the public CAIDA (Center for Applied Internet Data Analysis) dataset [29]. As the original
traces have been captured in 10 Gb/s Ethernet links, they have a relative low average throughput, so we
have constructed new traffic traces, reducing the inter-arrival times by a constant factor, producing
new 6.5, 13, 19.5, 26 and 32.5 Gb/s traces.

300



Sensors 2018, 18, 3915

5.1. Flow Allocation Algorithms

The first experiment evaluated the variation of the energy consumption with the duration of the
sampling period of the algorithms for a rate of 32.5 Gb/s. Figure 10a shows the results of the three flow
allocation algorithms for a buffer size of 10,000 packets. There was a fourth algorithm, named equitable,
that distributed the flows uniformly among all the ports without regards to energy efficiency, serving
as a baseline for comparison. The energy consumption attained by the three energy-saving algorithms
was practically the same. Besides, we can also observe from Figure 10a that low sampling periods
(e.g., lower than 0.1 s) presented higher consumption than those greater than 0.1 s. This probably
corresponds to mispredictions of the flow characteristics, as already shown in Figure 3. Finally, note that
the obtained energy consumption was very close to the optimum. According to (3), the best allocation
was obtained when the rate allocation vector was �x = [10 Gb/s, 10 Gb/s, 10 Gb/s, 2.5 Gb/s, 0 Gb/s];
in other words, this minimum consumption was achieved when the 32.5 Gb/s load was distributed
in the bundle in the following way: three ports fully utilized carrying 10 Gb/s, one transmitting
2.5 Gb/s and the last one with no traffic. In that case, and for the usual EEE parameters (σoff = 0.1,
TW = 4.48 μs, TS = 2.88 μs for 10 Gb/s links and Toff(λ) = λ−1e−λTS for the frame transmission
mode [25]), the bundle consumption was 1

5 (1 + 1 + 1 + 0.83 + 0.1) = 0.78 using (2). This is just a little
less than the 79% energy consumption obtained by CA.
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Figure 10. Energy consumption. (a) Energy consumption for different sampling periods, (b) Energy
consumption for different traffic traces.

The energy consumption for the different traffic traces is shown in Figure 10b for a sampling
period of 0.5 s and a buffer size of 10,000 packets. We can observe that the energy consumption was
almost identical for the three proposed algorithms and that it was considerably lower than that of
the non-energy-efficient equitable algorithm. There was just a slight difference in the case of the
19.5 Gb/s, where CA consumed a bit more than the greedy algorithms. This was because its safety
margin (M) made it use three ports, while the greedy algorithms would try to allocate the flows using
just two ports. Nevertheless, the consumption attained by CA was indeed much lower than that of the
equitable one.

Figure 11a presents the variation of the packet loss rate with the sampling period for a
10,000-packet buffer size, while Figure 11b explores the packet losses introduced for different buffer
sizes, using a sampling period of 0.5 s. GA was the one with the highest losses, followed by BGA,
then CA and finally the equitable algorithm. These results confirm that the greedy algorithms can
lead to high loss rates when the flow rates are underestimated. The conservative algorithm, however,
was able to trade a small increment in energy consumption for an acceptable loss rate for buffer sizes
from 1000 packets onward. Furthermore observe how for the highest sampling rates, packet losses
diminished, as the algorithm adapted faster to rate variations; although, as seen before, energy usage
also incremented.
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Figure 11. Packet loss rate. (a) Packet loss percentage variation with the duration of the sampling period.
(b) Packet loss percentage variation with the buffer size. © 2018 IEEE. Reprinted, with permission,
from [10]. (c) Packet loss for different traffic traces.

The packet loss rates for the different traffic traces are shown in Figure 11c, where the sampling
period is set to 0.5 s and the buffer size to 10,000 packets. As expected, GA and BGA were the ones
having the highest losses in every case, with CA and equitable algorithms showing negligible losses.
In the case of the 6.5 Gb/s trace, losses were not recorded, as expected.

The results for packet transmission delay are depicted in Figure 12. In particular, Figure 12a shows
average packet delay variation versus sampling period for a 10,000-packet buffer size. The average
delay for GA was about 4 ms, which is considerably higher than that of the other algorithms, whereas
the delay for BGA was about 1.5 ms, which is still a high value. The delay for CA was, however, an order
of magnitude lower, about 250 μs. For reference, the delay of the equitable algorithm sat around 50 μs,
being, as expected, the lowest one. Figure 12b shows the average packet delay experienced by the
different traffic traces with the different algorithms. For the 6.5 Gb/s trace, the three energy-saving
algorithms behaved identically, using just one port for all the traffic. Furthermore, for CA, the delay
of the packets using the 26 Gb/s trace was higher than that using the 32.5 Gb/s one, as, in the latter
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case, there was one more link in use, but with lower load. For the rest of the traces, the results were in
accordance with those shown in Figure 12a.
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Figure 12. Packet delay. (a) Packet delay for different sampling periods, (b) Average packet delay for
the different traffic traces.

5.2. QoS-Aware Algorithms

To test the performance of the two proposed QoS scheduling algorithms, we have created an
additional traffic trace of 45.5 Gb/s reducing again the inter-arrival times of the original CAIDA trace.
Additionally, we have added a source of low-latency traffic, consisting of a synthetic traffic trace made
of relatively small packets (100 and 200 bytes) and deterministic inter-arrival times corresponding to
the desired final average rate. We have used CA as the flow allocation algorithm using a sampling
period of 0.5 s and a buffer size limited to 10,000 packets to provide negligible (below 0.05%) packet
losses, as per the results of the previous section.

Figure 13a shows the average delay of the packets with low-latency requirements using the
QoS-aware algorithms and that obtained using the baseline conservative one. The results in the figure
correspond to the best-effort traffic trace of 32.5 Gb/s, while we varied the rate of the low-latency
traffic (We have omitted the results using lower rates for the best-effort traffic for the sake of brevity,
since the results are analogous). The unmodified CA yielded considerably worse results than the
QoS-aware algorithms, producing a delay higher than 100 μs. The fluctuations for the different rates of
the low-latency traffic come from the fact that the low-latency flows would be allocated to a different
port in each case, being forced to compete with a different amount of normal traffic.

Both QoS-aware algorithms significantly reduced the average delay. The SPA delay stayed around
5 μs, while TQA added less than 2 μs for all the tested transmission rates. The main delay contribution
for SPA was the time needed to wake up the interface (TW = 4.48 μs), which would be usually idle at
the arrival of a low-latency packet. This was not the case for TQA, as low-latency traffic shared the
port with best-effort traffic.
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Figure 13. Average delay of the low-latency traffic.

Figure 13b shows the results when the system is already experiencing a very high load due to
best-effort traffic (45.5 Gb/s). Both SPA and the non-QoS-aware CA experimented with an average
delay higher than 200 μs, fluctuating up to 1000 μs, depending on the actual low-latency rate. On the
other hand, TQA maintained the latency lower than 2 μs. These results confirm that SPA was not
capable of providing a low latency service in high load scenarios, since all the ports were already busy
forwarding best-effort traffic.

Figure 14 compares the average delay of the best-effort packets using the QoS-aware algorithms
with the average delay of these packets when using CA for the 32.5 Gb/s best-effort traffic trace and
varying low-latency traffic. When the rate of low-latency packets was very low (e.g., lower than
100 Mb/s), the average delay of best-effort packets was identical for the two QoS algorithms and CA,
being around 264 μs. Nevertheless, as this rate increased, the delay exhibited by CA and TQA rose.
On the other hand, the delay of the SPA remained unaffected by the rate of the low-latency traffic,
since it was being forwarded through a different port than the best-effort traffic.
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Figure 14. Average delay of the normal packets for the 32.5 Gb/s best-effort traffic trace.

Finally, Figure 15 shows the average energy consumption of the bundle using the different
QoS-aware algorithms and also CA in the same traffic conditions. Again, while the amount of
high-priority traffic was negligible (i.e., lower than 10 Mb/s), the three algorithms drew the same
amount of energy. As expected, TQA achieved exactly the same consumption as CA irrespective of the
low-latency traffic rate. However, for values higher than 10 Mb/s, the energy usage increased rapidly
for SPA, reaching nearly 100% for rates above 100 Mb/s. This confirms that energy consumption
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can rise quickly in SPA as soon as the amount of high-priority traffic forwarded in the spare port
becomes significant.
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Figure 15. Normalized energy consumption for the 32.5 Gb/s best-effort traffic trace.

5.3. ONOS Application Results

The previous sections have measured the efficiency of the proposed algorithms via a simulation
study. We also tested the correctness and feasibility of the proposal with an actual implementation
of the application. To this end, we implemented the proposed SDN application on top of the ONOS,
emulating the experimental topology with Mininet in order to evaluate the proper operation of the
application. The Open vSwitch switches employed by Mininet have an OpenFlow API accessible by
ONOS, but it cannot reproduce exactly the EEE capabilities, so we measured the average occupation of
each outgoing link as a proxy for the corresponding energy consumption.

We evaluated our application with the 32.5 Gb/s traffic trace used in the previous experiments
(Results for the other traffic traces, namely the 6.5, 13, 19 and 26 Gb/s ones, have been omitted for the
sake of brevity, but otherwise show consistent results).

We used tcpreplay to transmit it, but at a rate of just about 330 Mb/s, since the computer used
for the experiments was not capable of transmitting this traffic trace at higher rates (We have used an
Intel® Core™ i7-4710HQ (4th Generation) at 2.5 GHz).

Accordingly, the nominal capacity of the interfaces of the bundle had been scaled to 100 Mb/s,
and we have also scaled the sampling period to 10 s. The occupation of each port of the bundle
averaged throughout twelve intervals in ten independent executions is shown in Table 1. Despite the
fact that the actual consumption of 100 Mb/s interfaces would be different, this experiment allowed us
to validate the behavior of the algorithm.

Table 1. Average port occupation of the ports of the bundle.

Algorithm
Occupation (%)

Port 1 Port 2 Port 3 Port 4 Port 5 Average

Greedy 92.57 97.83 97.05 30.36 0.02 63.57
Bounded-Greedy 83.46 81.16 95.08 61.27 0.02 64.20
Conservative 84.17 83.60 80.78 79.76 0.02 65.67
Equitable 83.89 80.52 54.13 53.63 57.23 65.88

The results of the real implementation matched the simulation results. We see that GA used three
ports to more than 90% of their nominal capacity, one to about 30%, and left the other one unused.
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These values describe the behavior of a water filling algorithm, as desired per design. BGA avoids
having three ports so close to their nominal capacity, although one port still presented an occupation
higher than 95%. As the flows were assigned in decreasing rate order, less flows were allocated to the
first ports. In fact, in this case, 1.56 were allocated on average to the first port, 6.56 to the second and
96.91 to the third one. The high number of flows allocated to the third port explains why its occupation
was so high. CA behaved exactly as desired, using four ports around 80% occupation and leaving the
last one empty. The equitable algorithm spread the traffic evenly among all the ports of the bundle.
Note that the 0.02% usage of the last port in the three energy-efficient algorithms was due to the flows
being assigned randomly during the first interval. The small average occupation differences were
mostly due to packet losses, which occurred whenever more than 100 Mb/s were assigned to a port
during an interval.

Table 2 collects the average energy consumption averaged throughout the intervals for the same
ten independent executions. As we can observe, the differences in the energy consumption among the
three energy-efficient algorithms were minimal, and all of them consumed about 18% less than the
baseline equitable algorithm. They only differed in the consumption in port 4, which consumed about
7% less with GA than with BGA and CA. This is in accordance to the simulations.

Table 2. Average energy consumption of the ports of the bundle.

Algorithm
Energy Consumption (%)

Port 1 Port 2 Port 3 Port 4 Port 5 Average

Greedy 99.89 99.99 99.99 92.36 10.24 80.49
Bounded-Greedy 99.80 99.90 99.98 99.38 10.24 81.86
Conservative 99.77 99.92 99.88 99.89 10.24 81.94
Equitable 99.78 99.90 99.04 98.97 99.27 99.39

We have also validated the QoS algorithms with the ONOS application using the setup depicted
in Figure 16. This time, the setup consisted of three switches (numbered from 1 to 3) and eight hosts
(numbered from 1 to 8). Hosts 1 to 4 were connected to Switch 1 and Hosts 5 to 8 are connected to
Switch 3. These edge switches were connected to an inner switch by their respective four-link bundles.
All the interfaces in this scenario had a nominal capacity of 1 Gb/s.

Figure 16. Experimental topology used for QoS-aware algorithms’ validation.

In this network, three UDP flows without latency requirements were originated in Hosts 1,
2 and 5, with respective destinations in Hosts 5, 6 and 7. These flows have been created with the
iperf3 tool. The first two clients send traffic at 700 Mb/s, while the third one at 600 Mb/s. This way
we force the flows to be allocated on the first three ports of each bundle. Then, we added three
lightweight flows from Host 4 to Host 8 tagged with a predefined differentiated services code point
(DSCP)value, so that they can be identified as low-latency by our ONOS application. The purpose
of these lightweight flows is to measure the latency suffered by the low-latency packets, using the
different scheduling algorithms.

Figure 17 shows box and whisker plots with the round-trip time (RTT) of 10,000 packets of the
lightweight flows using the different algorithms. The whiskers show that 95% of the samples and
outliers have been removed for the sake of clarity. We can see that traffic without real-time requirements
suffered a substantial latency in this scenario, around 50 ms. This performance is expected, since the
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flow was allocated in the same port and queue as the 600 Mb/s big flow. As a result, the packets of the
small flows have to contend with the packets of the big flow, yielding considerable waiting times in
the queue of the port, which are indeed the main contributions to this large RTT.
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Figure 17. Round-trip time (RTT) for the different algorithms.

Regarding the QoS-aware algorithms, both of them managed to decrease the round-trip time
of low-latency traffic by three orders of magnitude in this scenario. The SPA algorithm was using
the low-priority queue of the port that does not contain any big flow, thus providing low latency.
On the other hand, the TQA algorithm was using the same port as the 600 Mb/s flow, but using the
high-priority queue for the lightweight flow rather than the low-priority one as in the case of the big
flow. Additionally, despite the algorithms using different ports and queues, their performance in terms
of latency was really solid and stable, without major fluctuations, as desired.

5.4. Discussion

Simulation results exhibit the existing trade-off between energy consumption, traffic delay and
packet losses. Certainly, the analysis shows that CA is the best algorithm. Although the greedy
algorithms can be slightly more energy efficient than CA in some scenarios, they could lead to
unacceptable packet delays and losses. On the other hand, the computational complexity of the three
algorithms is roughly the same. However, CA allows tuning in a fine-grained manner the trade-off
between packet delay and energy savings through the safety margin. Increasing the safety margin will
contribute to reducing the packet delay and the likelihood of losses, at the cost of a slight increment in
the energy consumption in some situations.

It is also important to ponder about the adequate value for the sampling period. Although the
use of low values of the sampling period (e.g., 0.01 s) exhibits low delays and packet losses (with the
subsequent increase in energy consumption), values lower than 0.5 s are hardly implementable in
practice, since they result in a huge (and unmanageable) overhead of control traffic. Moreover, for low
sampling periods, this frequent rerouting can harm the performance of TCP, as studied in [30].

6. Conclusions

The main focus of this paper has been the minimization of the energy consumption in networking
equipment with SDN capabilities when the traffic traverses an aggregate of links between two switches.
We elaborated a solution in the form of an SDN application that efficiently concentrates the traffic flows
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in a few ports of the bundle, dynamically adapting to the variations in the traffic demand. We firstly
proposed three allocation algorithms and analyzed them in terms of energy consumption, packet delay
and packet losses. We validated the algorithms using real traffic traces through simulation and also in
a real implementation on top of the ONOS SDN controller. The obtained results confirm the expected
operation of the algorithms, showing that the SDN capabilities of networking equipment can be used
to reduce energy consumption in bundles of EEE links up to 50%, without the need for modifying the
firmware of the devices.

We also proposed two modifications to the previous algorithms to offer a low-latency service
to traffic with stringent QoS requirements while keeping the energy consumption reduced: the SPA
algorithm uses the last port of the bundle to transmit high-priority traffic, while the TQA algorithm
sets up a low priority and a high priority queue in each output port and transmits low-latency traffic
on the high-priority queue. The results showed that the algorithms are able to provide a low-delay
service to time-sensitive traffic, achieving a reduction of some orders of magnitude. Moreover, even
under the situation of normal traffic congestion, one of the proposals manages to continue offering
an accelerated service.

This work could be extended in some lines. First, the centralized view of the whole topology that
the SDN controller provides to the applications can be harnessed so that inner switches can reuse the
flow allocations performed in the edge switches, in the case where multiple link bundles are present
in the network. It will also be interesting to test our solutions in a testbed composed of hardware
OF-enabled devices with IEEE 802.3az ports controlled by our ONOS application. Finally, we see a
research opportunity in reducing the control plane traffic required, since our work has been focused just
on data plane traffic. Minimizing control plane traffic will contribute to the overall energy reduction.
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Abstract: Wireless power transfer (WPT) is a promising technology to realize the vision of
Internet-of-Things (IoT) by powering energy-hungry IoT nodes by electromagnetic waves, overcoming
the difficulty in battery recharging for massive numbers of nodes. Specifically, wireless charging
stations (WCS) are deployed to transfer energy wirelessly to IoT nodes in the charging coverage.
However, the coverage is restricted due to the limited hardware capability and safety issue,
making mobile nodes have different battery charging patterns depending on their moving speeds.
For example, slow moving nodes outside the coverage resort to waiting for energy charging from
WCSs for a long time while those inside the coverage consistently recharge their batteries. On the
other hand, fast moving nodes are able to receive energy within a relatively short waiting time. This
paper investigates the above impact of node speed on energy provision and the resultant throughput
of energy-constrained opportunistic IoT networks when data exchange between nodes are constrained
by their intermittent connections as well as the levels of remaining energy. To this end, we design
a two-dimensional Markov chain of which the state dimensions represent remaining energy and
distance to the nearest WCS normalized by node speed, respectively. Solving this enables providing
the following three insights. First, faster node speed makes the inter-meeting time between a node and
a WCS shorter, leading to more frequent energy supply and higher throughput. Second, the above
effect of node speed becomes marginal as the battery capacity increases. Finally, as nodes are more
densely deployed, the throughput becomes scaling with the density ratio between mobiles and
WCSs but independent of node speed, meaning that the throughput improvement from node speed
disappears in dense networks. The results provide useful guidelines for IoT network provisioning
and planning to achieve the maximum throughput performance given mobile environments.

Keywords: internet-of-things; opportunistic networks; wireless power transfer; inter-meeting time;
Markov chain; node speed; battery capacity; node density

1. Introduction

Wireless mobile devices are currently pervasive, and the number of the devices is expected to be
ever-growing when Internet-of-Things (IoT) and smart cities emerge in the near future [1]. This tendency
makes their energy supply required not only huge but also so frequent that the existing wired charging
technologies cannot cope with them. Faced with the energy supply problem, wireless power transfer
(WPT) is fast becoming recognized as a viable solution [2] enabling the recharging of batteries without
plugs and wires if there is an apparatus to perform WPT, known as a wireless charging station (WCS).
However, due to the limited capability of the state-of-art WPT technique and concerns about human
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safety [3], it is impractical to radiate electromagnetic waves with higher power from a WCS, making the
charging coverage restricted. Multiple numbers of WCSs can be installed to cover the entire network
area, but excessive deployment cost is required.

This paper addresses the energy provisioning issue of energy-constrained opportunistic IoT networks
(This is originated from an opportunistic IoT network where IoT nodes exchange information via
device-to-device (D2D) communications based on their interaction [4,5]). These have been extensively
studied in a wide range of fields, e.g., healthcare, logistics, and car navigation. We add the term
“energy-efficient” to highlight the energy provision problem where nodes’ opportunistic connections
to other nodes and WCSs lead data transmission and energy charging, respectively. These features
of energy supply and consumption yield the following energy dynamics, which is the main theme
of this work. Particularly, we pay attention to the random mobility of an IoT node followed by its
moving pattern, making it possible to supply energy in spite of WCSs’ limited charging coverage.
In other words, a WCS can transfer energy to nodes who get into the charging coverage, which is
referred to as “meeting” throughout the paper. The resultant energy provision of the IoT node thus
depends on its meeting pattern, dominantly affected by moving speed as shown in Figure 1. When a
node moves slowly, as an example, it remains in the charging coverage of the WCS and can receive
energy continuously. Once out of the coverage, on the other hand, it may take an extremely long
time to receive energy again. Consequently, such an irregular energy provision occurs where some
devices consistently receive energy while others suffer from the lack of energy. As a node moves
faster, this energy-starving duration is likely to be shorter, leading to a more regular pattern of energy
supply. This difference motivates us to investigate the relation between speed, energy provision and
the resultant throughput.

Figure 1. The pattern of wireless charging when node speed is slow. During the period that a node is
in the charging coverage of the WCS, it receives energy from WCS continuously. Once a node is out of
the charging range, on the other hand, it takes a long time to receive energy from WCS again.

1.1. Wireless Power Transfer

WPT is a key enabler to realize the vision of next-generation mobile networks, e.g., IoT and
smart cities by overcoming the challenge with battery charging. With the aid of WPT, it is possible to
deploy thousands of IoT sensors at a low cost. In addition, WPT along with energy harvesting enables
the facilitating of designing green networks (see, e.g., [6,7]). Due to its promising potential and the
interdisciplinary nature, many new research issues arise in the area of WPT and are widely studied in
different fields. Recent advancements in the area can be found in numerous surveys such as [8].

The most widely-used WPT method is the magnetic inductive coupling that electric power is
delivered by means of an induced magnetic field. The drawback of this method is its power transfer
efficiency that diminishes significantly unless the transmitter and the receiver are close in contact.
Recently, there have been efforts to develop WPT technology of which the efficiency remains high
within the range from several to tens of meters. In [9], Kurs et al. suggest a novel method called magnetic
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resonant coupling where electric power is transferred from one to the other with high efficiency when
two devices are tuned to the same resonant frequency. However, its high efficiency requirement is so
tight that it is vulnerable to the misalignment between a transmitter and a receiver especially when
the distance between the two becomes larger. Some sophisticated tracking and alignment techniques
are proposed for practical use, e.g., frequency matching [10], impedance matching [11] and resonant
isolation [12], but the use of magnetic resonant coupling for long-range battery charging in harsh mobile
environments like vehicular scenarios is still doubtful. Another approach is microwave power transfer
where radio-frequency (RF) waves are delivered to recharge the battery by using advanced techniques
of wireless communications, e.g., directional beamforming [13], backscatter communication [14,15],
and full duplex communication [16]. Recent studies on WPT consider practical factors to design and
optimize realistic systems, e.g., imperfect channel state information [17], nonlinear energy harvesting
efficiency [18,19], and waveform design [20]. Microwave power transfer theoretically enlarges the
charging coverage more than tens of meters, but controversial issues on health impairments caused by
RF exposure have not been resolved yet, making it difficult to use commercially.

1.2. Applying Wireless Power Transfer to Wireless Networks

There have been several studies incorporating WPT into the design of energy-constrained wireless
networks. One research thrust focuses on the design of the efficient recharging protocol to make every
node always active. For example, a wireless charging vehicle (WCV) is suggested in [21] that visits all
nodes to recharge their batteries. The optimal travel path is derived to avoid the battery depletion of
each node. The work of the optimal WCV routing is generalized in [22] such that the battery charging is
enabled in every place in the entire network under the consideration of the trade-off between charging
efficiency and distance. In [23], the optimal routing for safe charging problem is studied where no
location in the networks has electromagnetic radiation exceeding a given threshold. A prototype
testbed of the routing platform is constructed by using off-the-shelf RF energy transfer hardware
equipment in [24] to demonstrate the performance of wireless sensor networks powered by RF energy
transfer. A distributed recharging protocol is proposed in [25] where multiple WCVs wirelessly
provide energy to nodes given the limited network information. The concept of Qi-ferry is introduced
in [26], which is similar to WCV except the fact that Qi-ferry consumes its own residual energy when
it is moving. In other words, longer travel distance of Qi-ferry visits more nodes but accelerates
its energy depletion. They optimize its travel path reflecting the above trade-off. Nevertheless,
these papers [21–26] are based on the assumption that WPT-enabled devices have knowledge of full or
limited geographical information for all rechargeable nodes, hardly estimated in mobile environments.

Recently, there have been some trials to exploit node mobility for battery charging in WPT-aided
mobile networks. In [27], the energy provision based on the node mobility is introduced where
nodes can harvest excessive energy in a power-rich area and store it for later use in a power-deficient
area. The number of necessary WCSs for continuous operation of every node is analyzed, but some
practical aspects like node speed and battery capacity are ignored. In [28], the performance of
energy-constrained mobile networks is analyzed using stochastic geometry assuming that the energy
arrival process of each node as an independent and identically distributed (i.i.d.) sequence, which is
reasonable only when the speed of each node is extremely fast. Delay-limited and delay-tolerant
communications with WPT are respectively studied in [29,30], where a node can move to a few
rechargeable points according to predetermined transition probabilities. In [31], an intentional mobility
to WPT-enabling locations for battery charging, called a spatial attraction, is modeled as a Markov chain
and analyzed to show the improvement of the coverage rate by the optimally controlled power and
charging range. These papers [27–31] do not consider node speed in spite of its significant effects on the
energy arrival process. In [32], a quality of energy provisioning (QoEP) is defined as the expected portion
of time a node sustains its operation when mobiles are moving within a given range of node speed. It is
shown that QoEP converges to one as battery capacity or node speed increases. The analytical results
are based on the continuous transmission model where a node keeps transmitting data whenever it
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has energy. In IoT networks, on the other hand, data is transmitted discontinuously according to a few
specific conditions, making it more challenging to analyze.

1.3. Contributions and Organization

In this work, we study the performance of energy-constrained opportunistic IoT networks where
the opportunistic behaviors of mobile nodes affect the patterns of data transmission and energy
charging. Specifically, data delivery is enabled between nodes when (1) they are intermittently
connected and (2) a transmitting node receives energy from WCSs enough to deliver data. To reflect
the above energy dynamics, we design a two-dimensional Markov chain of which the horizontal
and vertical state dimensions represent the remaining energy and the distance to the nearest WCS,
respectively. We derive its steady-state probabilities and aim at explaining the effect on throughput.
The main contributions of this paper are summarized below.

• Inter-meeting time vs. Throughput: Higher node speed reduces the frequency of lengthy
inter-meeting times between a node and a WCS and eventually improves the throughput.
The inter-meeting time is interpreted as an energy-starving duration. We explain the phenomenon
through the stochastic distribution of the inter-meeting time in Proposition 1.

• Node speed vs. battery capacity: A slow-moving node stays in the charging coverage for a
long time. It saves enough energy to endure a lengthy inter-meeting time if its battery capacity,
the maximum amount of energy stored in the battery, is large enough. In Proposition 2, we show
that a fast-moving node achieves the same throughput when the battery capacity becomes infinite.

• Throughput scaling law: In Proposition 3, we prove that the throughput scaling is given as
Θ

(
min

(
1, m

n
)

cmin(1, m
n )

)
(We recall that the following notation: (i) f (n) = O(g(n)) means that

there exists a constant c and integer N such that f (n) ≤ cg(n) for n > N. (ii) f (n) = Θ( f (n))
means that f (n) = O(g(n)) and g(n) = O( f (n)).) where n and m denote the number of nodes
and WCSs respectively, and c is a constant (0 < c < 1). As the network becomes denser,
the throughput depends on the ratio m

n and becomes independent of node speed.

Note that the approach in this work is similar to that of our previous work [33] as both apply a
Markov chain to model an energy-constrained mobile network. In [33], it is assumed that nodes follow
the i.i.d. mobility model, which allows us to include only the residual energy status as a Markov chain
state. On the other hand, our current work focuses on finite node speed, which limits node movement
within a restricted area. In other words, the current node location depends on the previous one.
Therefore, we should take into account not only the residual energy, but also the location information
of a node when designing a Markov chain model. Our paper illustrates that the throughput under the
i.i.d. mobility model in [33] can be understood as an upper bound, which is achievable when (i) node
speed becomes faster; (ii) battery capacity becomes larger or (iii) node density increases.

The rest of this paper is organized as follows: In Section 2, we explain our models and metrics.
In Section 3, we introduce a two-dimensional Markov chain design and derive its steady state
probabilities. In Section 4, we verify how the node speed effect is affected by battery capacity and node
density. Finally, we conclude this paper in Section 5.

2. Models and Metrics

2.1. Network Description

Consider an energy-constrained IoT network where n nodes and m WCSs are randomly
distributed in a torus area (A torus area refers to finite and boundary-less region such that one
side’s edge is connected to the opposite one. In this model, the boundary effect disappears, enabling
the analysis of the performance tractably from the viewpoint of one typical node. ) of size

√
S ×

√
S

314



Sensors 2018, 18, 2398

(in meter2). Time is slotted and one slot is large enough to transmit a single packet. A node is assumed
to change its direction randomly at every slot with constant speed of v (meter/slot), namely, we have:

‖X�(t + 1)− X�(t)‖ = v, (1)

where X�(t) is the location of node � at slot t and ‖ · ‖ means the Euclidian distance. The assumption
makes sense because an IoT node requires much longer latency than conventional cellular networks to
transmit data, say up to a few seconds [34].

A node enables transmitting its packet to one of its neighbors within r (in meters) defined as the
transmission range. For an interference model, we use the well-known protocol model [35] where the
packet transmission is successful only when the other transmitting nodes are no less than r. Too large r
leads to frequent transmission failures because there are many interfering nodes. To avoid excessive
interference, the transmission range r is set to the average distance to the nearest node in the area.

2.2. Two-Phase Routing

A pair of source and destination nodes is given randomly. Unless there is the corresponding
destination node of a source node within the range r, its packet should be delivered via a relay node.
This paper adopts the two-phase routing [35] as follows:

• Mode switch. In the beginning of each slot, a node becomes a transmitter or a receiver with
probability q or 1 − q, respectively. Without loss of generality, we set q = 0.5.

• Phase 1. In odd slots, let us consider node � becomes a transmitter. If there is at least one receiver
within transmission range r, node � forwards its packet to one of them. This receiver node can be
the destination of node �.

• Phase 2. In even slots, let us consider node � becoming a receiver. If there is at least one transmitter
within transmission range r and one of them has a packet whose destination is node �, it forwards
the packet to node �. This transmitter can be the source of node �.

In [35], the throughput of the two-phase routing is defined as follows:

Definition 1. (Throughput) Let M�(t) be the number of node �’s packets that its corresponding destination
node receives during t slots. We say that the throughput of Λ is feasible for every S-D pair if:

lim inf
t→∞

1
t

M� (t) ≥ Λ. (2)

When a node transmits a packet, a constant amount of energy is consumed defined as one unit of
energy (It is implicitly assumed that a modulation and coding scheme (MCS) is fixed and constant power
is required to deliver a packet within the transmission range. It is interesting to adjust the level of MCS
to improve the energy efficiency, which is outside the scope of current work.). A node is called active
when it has at least one unit of energy. Otherwise, the node is inactive. Let pon denote the probability
that a node is active, defined as an active probability. In [33], the throughput Λ is given as follows:

Λ =
1
2

qpon exp
(
−π

4
qpon

) (
1 − exp

(π

4
(−1 + q)

))
. (3)

It is shown that the throughput Λ (3) depends on pon, which is determined by the process of
energy recharging introduced in the sequel.

2.3. Recharging Mechanism by Wireless Charging Stations

Inactive nodes are unable to transmit packets in their buffers. To supply energy to them,
m WCSs are deployed in the network. WCSs recharge nodes via WPT. No interference between
data transmission and energy transfer exists because each of them use a separated band.
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The energy transferred to a mobile is given by the product of the maximum deliverable units of
energy E and the energy transfer efficiency τ(x), where x is the distance to a WCS. Let Ry denote the
maximum distance that a node can receive y units of energy. Without loss of generality, the efficiency
τ(x) is a monotone decreasing function of x, and the charging range Ry is determined by finding the
value of x that E · τ(x) becomes y, such that Ry = {x : E · τ(x) = y}. Let Ys(t) denote the location of
WCS s at slot t. The distance between node � and WCS s is given as ‖X�(t)− Ys(t)‖, and the amount
of recharged energy υ (in units of energy) is

υ(‖X�(t)− Ys(t)‖) =

⎧⎪⎨⎪⎩
E, if ‖X�(t)− Ys(t)‖ ≤ RE,
k, if Rk+1 < ‖X�(t)− Ys(t)‖ ≤ Rk, k = 1, · · · , E − 1,
0, otherwise,

(4)

where RE < RE−1 < · · · < R1. Define a charging range as the maximum distance that a node receives at
least one unit of energy from the connected WCS. Given the above recharging mechanism, the charging
range is equivalent to R1. The time required to transfer energy from a WCS to a node is extremely
short compared to one slot. This means that the contact duration is long enough to deliver up to E
units of energy under finite speed. It is a reasonable assumption because the maximum power transfer
rate of magnetic resonance coupling is 12 (in Watts) [36], whereas that of an IoT device is 23 (in dBm),
approximately 0.2 (in Watts).

The battery of each node is recharged by one of WCSs. When a node is in the coverage of multiple
WCSs, it is assumed to receive energy from one of them due to the practical alignment technique
limitation. The maximum battery capacity of each node is set to L units of energy. If the sum of residual
and recharged energy are larger than L, a node stores up to L units of energy, and the remaining
is thrown out. A WCS can recharge up to u nodes within one slot using the technique of tracking
resonance frequencies. For example, it is experimentally shown in [37,38] that up to two devices
can be charged by using the technique of the said resonant frequency splitting and load balancing,
respectively. When there are more than u nodes within the coverage, the WCS randomly selects
u nodes among them.

Each WCS always monitors its own remaining energy. If the remaining energy is below a certain
level, it communicates with an operator station by using its communication module. The operator
station then sends the charging vehicle, which recharges the WCS before its battery runs out.
This means that all WCSs always have sufficient energy.

3. Stochastic Modeling of Energy-Efficient Opportunistic Internet-of-Things

In this section, we design a two-dimensional Markov chain in which the horizontal and vertical
state dimensions represent the residual energy and the distance to the nearest WCS, respectively.
We first outline our Markov chain design, and then derive the steady state probabilities to determine
the active probability Pon (3).

3.1. Two-Dimensional Markov Chain

The state space of the proposed two-dimensional Markov chain Ψ is given as follows:

Ψ = {(e, d) : 0 ≤ e ≤ L, 0 ≤ d ≤ M} , (5)

where parameter e is the number of remaining units of energy, and d is a discrete number indicating
the distance to the nearest WCS by the following rule:
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d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if mins ‖X�(t)− Ys(t)‖ ≤ R1,
1, else if mins ‖X�(t)− Ys(t)‖ ≤ R1 + v,

...
k, else if mins ‖X�(t)− Ys(t)‖ ≤ R1 + kv,

...
M, otherwise,

(6)

where mins ‖X�(t)−Ys(t)‖ represents the distance from node � to the nearest WCS (in meters), and the
charging coverage R1 and node speed ν are specified in (1) and (4), respectively. The number M in (6)
can be interpreted as the resolution of the Markov chain in the sense that larger M is able to express
the trajectory of node � more accurately. The number d is defined as a relative distance meaning that a
physical distance (in meters) is normalized by node speed v.

Figure 2 represents an example of the two-dimensional Markov chain when WCS can deliver up
to two units of energy to a node within one slot (E = 2). The state transitions are explained as follows:

• State transition by node mobility: The state transitions to the up or down arise when the relative
distance d (6) becomes shorter or longer, respectively. Let Pi,j denote the probability that the
relative distance d is changed from a to b, i.e.,

Pi,j(t) = Pr [d = j at slot t + 1 |d = i at slot t ] . (7)

The mobility model follows a time-invariant Markov process of which the transition probabilities
are constant regardless of slot t, and Pi,j(t) can be simply expressed as Pi,j by omitting the index t.
The exact form of Pi,j is in Appendix A.1 with its derivation. All transition probabilities Pi,j are
constant regardless of the residual energy status.

• State transition by data transmission: The state transition to the left happens when node �

transmits a packet to one of neighbors nodes. Let pt denote a probability that an active node can
transmit its packet as

pt = q ·
[

1 −
{

1 − (1 − q)
πr2

S

}n−1]
. (8)

The detailed derivation is in [33]. Unless its residual energy e is zero, the transmission probability
pc is constant regardless of the relative distance d (6).

• State transition by energy charging: The state transition to the right arises when the node is
recharged by a WCS. This event only happens when the node is selected by one of WCSs is in the
charging coverage, and these are only stipulated on the lowest state transition (d = 0). Recall that
each WCS can charge up to u nodes in a given slot. We define a charging probability pc as the
probability that node � becomes one of u selected nodes, i.e.,

pc =
1 − γ(u, n)m

1 −
(

1 − πR1
2

S

)m , (9)

where γ(u, n) = 1 − πR1
2

S F(u − 2; n − 1, πR1
2

S ) − u
n

(
1 − F(u − 1; n, πR1

2

S

)
and F(k; n, p) =

∑k
i=0 (

n
i )pi(1 − p)n−i is the cumulative distribution function (CDF) of the binomial distribution

with parameters k, n and p. The derivation is given in Appendix A.2. The number of recharged
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units of energy depends on the distance to its associated WCS. Let β(k) denote a probability a
node receives k units of energy as follows:

β(k) =

⎧⎨⎩
Rk

2−Rk+1
2

R1
2 , if k = 1, · · · , E − 1,

Rk
2

R1
2 , if k = E.

A node in the charging coverage thus receives k units of energy with probability pcβ(k).

0, 0

0, 1

1, 0

1, 1

2, 0

2, 1

3, 0

3, 1

4, 0

4, 1

L, 0

L, 1

L-1, 0

L-1, 1

PT PT PT PT

PT PT PTPT PT

PT

PC (1) PC (1) PC (1) PC 

0. 2 1, 2 2, 2 3, 2 4, 2 L-1, 2PT PT PTPT PT L, 2PT

PT

PT PT

PT

PT

0, M 1, M 2, M 3, M 4, M L-1, MPT PT PTPT PT L, MPT PT

P 1,0 P 1,0 P 1,0 P 1,0 P 1,INP 0,1

P 2,1P 1,2

P 0,1 P 0,1 P 0,1

P 2,1 P 2,1P 1,2 P 2,1 P 2,1P 1,2 P 2,1P 1,2

P 2,3 P 2,3 P 2,3 P 2,3 P 2,3P 3,2 P 3,2 P 3,2 P 3,2 P 3,2 P 3,2

...

...

...

...

... ... ... ... ... ... ...

Figure 2. Two-dimensional Markov chain of which the horizontal and vertical state dimensions
represent the number of remaining units of energy and the relative distance to the nearest WCS
normalized by node speed, respectively.

3.2. Steady State Probability and Throughput

Let πe,d denote the steady state probability when the residual energy of node � is e units
of energy and the relative distance is d. Then, we make the following steady state vector
π =

[
π0,0, · · ·π0,M, π1,0, · · ·π1,M, · · · πL,0, · · ·πL,M

]
, which is partitioned according to the

number of remaining units of energy, i.e., π =
[

π0 π1 · · · πL

]
, where

πe =
[

πe,0 πe,1 · · · πe,M

]
. (10)

In order to derive π, we make the following balance equation:

πQ = 0, π1 = 1, (11)

where 1 is the column vector where every entity is one, and Q is the generating matrix of the
corresponding Markov chain:
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Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 A2 A3 0 0 . . . 0 0 0
A0 A1 A2 A3 0 . . . 0 0 0
0 A0 A1 A2 A3 . . . 0 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 . . . A1 A2 A3

0 0 0 0 0 . . . A0 A1 A2 + A3

0 0 0 0 0 . . . 0 A0 A1 + A2 + A3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (12)

Its sub-matrices B0, A0, A1, A2 and A3 are expressed as follows:

B0 =

⎛⎜⎜⎜⎜⎜⎜⎝
−P0,1 − pc P0,1 0 · · · 0

P1,0 −P1,0 − P1,2 P1,2 · · · 0
0 P2,1 −P2,1 − P2,3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −PM,M−1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

A0 =

⎛⎜⎝ pt · · · 0
...

. . .
...

0 · · · pt

⎞⎟⎠ = ptI, A1 = B0 − A0, A2 =

⎛⎜⎝ pcβ(1) · · · 0
...

. . .
...

0 · · · 0

⎞⎟⎠ , A3 =

⎛⎜⎝ pcβ(2) · · · 0
...

. . .
...

0 · · · 0

⎞⎟⎠ .

After solving the balance equation of (11), we can caculate the active probability Pon as

Pon =
L

∑
e=1

πe1 = 1 − π01. (13)

With (3), the throughput Λ is given as

Λ =
1
2

q (1 − π01) exp
(
−π

4
q (1 − π01)

) (
1 − exp

(π

4
(−1 + q)

))
. (14)

4. Performance Evaluation of Energy-Efficient Opportunistic Internet-of-Things

Based on the aforementioned mathematical framework, this section attempts to analyze the effects
of node speed on throughput in terms of inter-meeting time, battery capacity, and node density, each of
which is verified by comparing Monte-Carlo simulations.

4.1. Inter-Meeting Time and Throughput

This subsection aims at analyzing the effect of node speed v on throughput Λ using the
inter-meeting time defined as follows:

Definition 2. (Inter-meeting time) Consider that there are node � and WCS s in the network. The inter-meeting
time TI is the interval between adjacent meeting events between node � and WCS s:

TI = inf {t ≥ 0 : Zt+k = 1 | Zk = 1} , (15)

where Zt is an indicator to check whether a meeting event occurs between node � and WCS s at time t.
If ‖X�(t)− Ys(t)‖ ≤ R1, we set Zt to one. Otherwise, Zt = 0.
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The inter-meeting time TI is related to the energy starving period of the node because the node
has no opportunity to receive energy until it meets one of WCSs. The stochastic features of TI is thus
related to an energy provision process of an arbitrary node. Let P denote an M by M matrix of which
the elements represents the transition probability Pi,j (7) (1 ≤ a, b ≤ M):

P =

⎛⎜⎜⎜⎜⎝
p1

p2

...
pM

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
P1,1 P1,2 . . . P1,M−1 P1,M
P2,1 P2,2 . . . P1,M−1 P2,M

...
...

. . .
...

...
PM,1 PM,2 . . . PM−1,M PM,M

⎞⎟⎟⎟⎟⎠ , (16)

where pd =
(

Pd,1 Pd,2 . . . Pd,M−1 Pd,M

)
. From P (16), we derive the stochastic distribution of

inter-meeting time TI in the following Proposition:

Proposition 1. The complementary cumulative distribution function (CCDF) of the inter-meeting time TI is

Pr [TI > t] =
M

∑
i=1

γiλ
t−1
i , (17)

where λi is the ith eigenvalue of P (16) (1 > λ1 > · · · > λM > 0). The coefficient γi is

γi = p0aibT
i ,

where vectors ai and bi are the right-hand and left-hand eigenvectors of λi such that Pai = λiai and
b∗

i P = λib∗
i , respectively.

Proof. see Appendix A.3.

Figure 3a shows the CCDFs of inter-meeting time TI . We use the energy transfer efficiency
function in [39], i.e., τ(x) = −0.0958x2 − 0.0377x + 1.0, which is obtained through the curve fitting
of the experimental results of [40]. We numerically measure the inter-meeting time TI by changing
the node speed as v = 1, 2, 3 and 6 (meters/slot). When the length of one slot is set to a second,
the concerned sets of speed represent the cases of stationary, walking, slow vehicle and fast vehicle,
respectively [41]. It is shown that higher node speed v reduces the number of lengthy inter-meeting
times. A node with faster speed can reach the charging coverage of the WCS within a few slots,
reducing the occurrence of lengthy inter-meeting times. A node with higher speed enables to move a
new location far away from its previous one. In other words, the event of meeting WCS depends on

the ratio of the charging coverage to the network area, i.e., 1
μ = πR1

2

S2 ≈ 0.053 as does the i.i.d. mobility
model. With increased node speed, the distribution converges to that of the i.i.d. mobility model
following the exponential distribution with parameter μ ≈ 18.7174. It is verifed by simulation that the
analytic result in Proposition 1 follows similar tendencies of practical mobility models e.g., Brownian
motion and random waypoint (See Appendix A.4).

The CCDF of TI of (17) is the sum of powered eigenvalues with the exponent t. As t becomes
larger, it is simplified by the largest eigenvalue λ1 because other terms decay faster:

Pr [TI > t] ≈ λt
1. (18)

The eigenvalue λ1 is called the spectral radius of matrix P (16). As the spectral radius becomes
smaller, the approximated CCDF (18) decreases much faster in the regime of large t. This indicates that
lengthy inter-meeting times are infrequent when λ1 is small. In Table 1, we summarize this spectral
radius λ1 as a function of node speed v and show that λ1 is a non-increasing function of node speed
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v. Consequently, higher node speed decreases spectral radius λ1 and produces fewer occurrences of
lengthy inter-meeting times.
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Figure 3. (a) The CCDF of inter-meeting time under different node speed v (meter/slot); (b) expected
throughput as a function of node speed v (meter/slot). Parameters: Network size S = 400 (in meter2),
battery capacity L = 10 (units of energy), the maximum number of simultaneous transferable nodes
u = 1, the maximum transferable energy per slot E = 3 (in units of energy), the number of nodes
n = 10, and the number of WCSs m = 1.

Table 1. Spectral radius λ1 as a function of node speed v (meters/slot). The same parameter setting is
used as Figure 3.

v = 0.5 v = 1.0 v = 1.5 v = 2.0 v = 2.5 v = 3.0 v = 3.5 v = 4.0 v = 4.5 v = 5.0 v = 5.5 v = 6.0

λ1 0.9985 0.9953 0.9903 0.9845 0.9780 0.9714 0.9649 0.9585 0.9534 0.9492 0.9471 0.9457

The above feature of the inter-meeting time affects the energy provision process as shown in
Figure 3b. When node speed v is 0.5 (meters/slot), the throughput Λ is nearly one-third of that
of the i.i.d. mobility model. A node is unable to receive energy for a long time due to frequent
lengthy inter-meeting time and remains in an inactive state. This results in the decrease in throughput.
As v increases, on the other hand, the inter-meeting time decreases. This leads to the reduction in
energy-starving period and the improvement of throughput.

4.2. Battery Capacity and Throughput

Consider a slow-moving node who stays in the charging coverage for a long duration. The node
can receive energy continuously from the connected WCS. Nevertheless, the node is unable to
save more than L units of energy due to the battery capacity constraint. In other words, the node
can remain active longer with larger battery capacity. To explain the phenomenon, we make the
following proposition.

Proposition 2. When the battery capacity L becomes infinite, the throughput of an energy-constrained network
Λ becomes independent of node speed v as

Λ =
q
2

ρ

(
1 − exp

(
π(q − 1)

4

))
· exp

(
−π

4
q · ρ

)
, (19)

where

ρ = min

[
1,

pc

pt

{
1 −

(
1 − πR1

2

S

)m} (
E

∑
i=k

kβ(k)

)]
. (20)
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Proof. See Appendix A.5.

Figure 4 represents the throughput Λ as a function of battery capacity L. As L increases,
Λ increases and converges as mentioned in Proposition 2 (see the black dotted line). A noticeable
point is that Proposition 2 is achievable under a finite battery capacity. If a node can store enough
energy to sustain the inter-meeting time, it remains in an active state and achieves the throughput in
Proposition 2. We calculate the mean of the inter-meeting time E[TI ] from (18) and the spectral radius
λ1 in Table 1:

E[TI ] =
∞

∑
t=0

Pr [TI > t] ≈
∞

∑
t=0

(λ1)
t =

1
1 − λ1

. (21)

When the battery capacity L is no less than E[TI ], the throughput Λ becomes the same as that in
Proposition 2 (19). For example, when node speed v is 0.5 or 1.5 (meters/slot), its spectral radius λ1 is
0.9985 or 0.9903 (see Table 1) and its corresponding E[TI ] becomes 666.67 or 103.09, respectively. As a
result, a battery capacity larger than E[TI ] is understood as a necessary condition to achieve the upper
bound in Proposition 2.
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Proposition 2

Figure 4. Throughput vs. battery capacity L. The same parameter setting as in Figure 3 is used
unless specified.

4.3. Node Density and Throughput

Since the seminal work by Grossglauser and Tse [35], investigating the relationship between
throughput Λ and node density n has been the most fundamental issue with mobile networks;
therefore, the impact of irregular energy provision due to low node speed has not yet been studied.
In this subsection, we investigate this effect through some numerical evaluations and the following
throughput scaling law.

Proposition 3. The scaling law of the throughput Λ is:

Λ = Θ
(

min
(

1,
m
n

)
cmin(1, m

n )
)

, (22)

where 0 < e−
π·u
4·a < c ≤ e−

π·u
4·a (∑E

k=1 kβ(k)) < 1, and a = 1 − e−
π
4 (1−q).

Proof. See Appendix A.6.
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Proposition 3 indicates that the throughput Λ is a function of the ratio of the number of WCSs m
and the number of nodes n, and independent of node speed v. A node with low speed receives energy
from WCSs irregularly, yielding the decrease of throughput. Compared with fast-moving one, it needs
more WCSs to maintain the same throughput. As the network becomes denser, however, the penalty
due to slow speed disappears and we only consider the ratio m

n when installing WCSs. In order to
achieve the constant throughput of Θ(1) as in [35], for example, Θ(n) WCSs is required regardless of
node speed.

Note that the scaling law in Proposition 3 of (22) is the same as that of the i.i.d. mobility model
in [33]. Figure 5 shows that the throughput Λ always converges to that of the i.i.d. mobility model as
the number of nodes n increases. This implies that a high node density makes nodes look as if they are
moving at a fast speed in the sense that the i.i.d. mobility model allows a node to increase moving
speed v up to the network size. When calculating the throughput of a dense mobile network with
WPT, it is a reasonable assumption that nodes move according to the i.i.d. mobility model.
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Figure 5. Throughput vs. node density n. The same parameter setting as in Figure 3 is used
unless specified.

5. Conclusions

In this paper, we have investigated the throughput of an energy-constrained opportunistic IoT
network where WCSs are deployed to recharge IoT nodes when they are in the charging coverage.
Given the network architecture, the energy provision pattern follows the speed of the corresponding
node. Namely, a slow-moving node outside a WCS’s charging coverage waits a long time for energy
supply from WCSs, whereas a fast-moving one can receive energy from a WCS within a short interval.
The analytical and numerical results have shown that this distinct energy provisioning difference leads
to the throughput gap between slow- and fast-moving nodes especially when the battery capacity
is finite and IoT nodes are sparsely deployed. This finding provides useful guidelines for designing
energy-efficient opportunistic IoT networks. First, a WCS should prioritize the charging opportunity
of nodes depending on its speed to improve energy provision efficiency. Second, the battery capacity
of an IoT node can be minimized by predicting its speed. Finally, the deployment strategy of WCSs
should be different depending on node speed such that a relatively less number of WCSs per node is
enough to support the whole nodes in area of high mobility, e.g., motorway, while more WCSs per
node are required to guarantee the same throughput in area of slow mobility, e.g., pedestrian way.

The current work can be extended in several directions. In this work, we consider the simple
mobility model where each node moves without preference. In practical, on the other hand, people are
likely to visit some popular places frequently, making it very challenging to supply enough energy
due to the relatively high node density in the area. Next, considering vehicular scenarios such that
safety-information is disseminated based on vehicle-to-everything (V2X) communication is aligned with
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the recent trend of wireless communications. Moreover, considering the economic aspect of WCSs is
another interesting avenue for future research.
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Abbreviations

The following abbreviations are used in this manuscript:

WPT Wireless power transfer
IoT Internet-of-things
WCS Wireless charging station
D2D Device-to-device
RF Radio-frequency
WCV Wireless charging vehicle
i.i.d. Independent and identically distributed
QoEP Quality of energy provisioning
MCS Modulation and coding scheme
CDF Cumulative distribution function
CCDF Complementary cumulative distribution function
V2X Vehicular-to-everything
BM Brownian motion
RWP Random way point
BMAP Batch Markovian arrival process
QBD Quasi-birth-death

Appendix A

Appendix A.1. Derivation of Transition Probability Pi,j (7)

Let Dt denote the distance between a node and a WCS at time t. Since nodes and WCSs are
uniformly distributed in a torus area, the conditional probability that Dt+1 is smaller than or equal to
x2 given Dt = x1 is

Pr [Dt+1 ≤ x2|Dt = x1] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if v + x2 < x1 or v − x2 > x1,

arccos
(

v2+x1
2−x2

2
2vx1

)
π , if |v − x2| ≤ x1 < v + x2,

1, if x2 − v > x1,

(A1)

which is based on the fact that nodes and WCSs are uniformly distributed in a torus area. From the
conditional probability (A1), we derive the joint cumulative distribution function (CDF) that Dt is
smaller than or equal to x1, and Dt+1 is smaller than or equal to x1:

Pr [Dt ≤ x1, Dt+1 ≤ x2] =
∫ x1

0
Pr [Dt+1 ≤ x2|Dt = x] fDt(x)dx. (A2)

Using (A2), we calculate the following joint probability:

cc Pr [x1 ≤ Dt ≤ x2, x3 ≤ Dt+1 ≤ x4] = Pr [Dt ≤ x2, Dt+1 ≤ x4]

− [Dt ≤ x1, Dt+1 ≤ x4]− Pr [Dt ≤ x2, Dt+1 ≤ x3] + Pr [Dt ≤ x1, Dt+1 ≤ x3] .
(A3)
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By inserting the boundary values of the i and j states in (6) into x1, x2, x3 and x4 in (A3), we can
derive the joint probability αi,j that relative distances d of (6) in slot t and t + 1 are i and j, respectively.
For example, to calculate α0,1, we set x1 = 0, x2 = R1, x3 = R1 and x4 = R1 + v.

Define Aa,b as the joint CCDF that distances dt and dt+1 are respectively no less than a and b
when the number of WCSs m is one, which is expressed as the sum of αi,j, i.e., Aa,b = ∑M

i=a ∑M
j=b αi,j.

Noting that each location of WCSs is independent, we derive Pi,j in terms of Aa,b as follows:

• If i = 0,

P0,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − A0,1
m−A1,1

m

1−
(

1− πR1
2

S

)m , if j = 0,

A0,1
m−A1,1

m

1−
(

1− πR1
2

S

)m , if j = 1,

0, otherwise.

• If 0 < i < M,

Pi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − Ai,i
m−Ai+1,i

m{
1− π(R1+(i−1)v)2

S

}m

−
{

1− π(R1+iv)2

S

}m , if j = i − 1,

Ai,i
m−Ai+1,i

m−Ai+1,i
m+Ai+1,i+1

m{
1− π(R1+(i−1)v)2

S

}m

−
{

1− π(R1+iv)2

S

}m , if j = i,

Ai,i+1
m−Ai+1,i+1

m{
1− π(R1+(i−1)v)2

S

}m

−
{

1− π(R1+iv)2

S

}m if j = i + 1,

0, otherwise.

• If i = M,

PM,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

AM,M−1
m−AM,M

m(
1− π(R1+Mv)2

S

)m , if j = M − 1,

AM,M
m(

1− π(R1+Mv)2

S

)m , if j = M,

0, otherwise.

Appendix A.2. Derivation of Charging Probability pc (9)

Given that there are h WCSs within R1 from a node, the probability that the node is charged by
one of the WCSs pc(h) is

pc(h) = 1 −
[

1 −
n−1

∑
�=0

min
[

1,
u

�+ 1

]
f

(
�; n − 1,

πR1
2

S

)]h

= 1 − Γh, (A4)

where f (n; k, p) is the probability density function of the binomial distribution with parameters n, k
and p, and

Γ = 1 − F

(
u − 2; n − 1,

πR1
2

S

)
−

u
(

1 − F
(

u − 1; n, πR1
2

S

))
nπR2 . (A5)
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The probability that there are h WCSs within R1 from a node is f
(

h; m, πR1
2

S

)
.

Therefore, the charging probability pc is

pc =
∑m

h=1 pc(h) f
(

h; m, πR1
2

S

)
1 −

(
1 − πR1

2

S

)m . (A6)

The denominator of (A6) represents the probability that the node is in one of the WCS’s charging
coverage. After substituting (A4) into (A6), the charging probability pc becomes

ccpc = 1 −
∑m

h=1 (
m
h )

(
A πR1

2

S

)h (
1 − πR1

2

S

)m−h

1 −
(

1 − πR1
2

S

)m =
1 − ∑m

h=0 (
m
h )

(
A πR1

2

S

)h (
1 − πR1

2

S

)m−h

1 −
(

1 − πR1
2

S

)m

=
1 −

(
A πR1

2

S + 1 − πR1
2

S

)m

1 −
(

1 − πR1
2

S

)m .

(A7)

Plugging (A5) into (A7) completes the proof.

Appendix A.3. Proof of Proposition 1

According to [42], the CCDF of TI is Pr [TI > t] = p0Pt−11. Assume that matrix P (16) is
invertible (It is a reasonable assumption that the transition probability, expressed as a row vector in
P, is independent of the current location status d (6) unless speed is infinite, and P is likely to be a
full rank matrix guaranteeing the existence of M eigenvalues. It is also verified numerically under
numerous combinations of parameter settings.), and it can be diagonalized as follows:

P = V DV−1 =
(

a1 a2 · · · aM

)
⎛⎜⎜⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λM

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

bT
1

bT
2
...

bT
M

⎞⎟⎟⎟⎟⎠ . (A8)

Therefore, Pt−1 is

Pt−1 = V(D)t−1V−1 =
M

∑
i=1

Gi · (λi)
t−1, (A9)

where Gi = aibT
i are M × M matrices of which the sum is an identity matrix

(
∑M

i=1 Gi = I
)

.
From (A9), Pr [TI > t] is given as

Pr [TI > t] =
M

∑
i=1

p0Gi1λi
t−1 =

M

∑
i=1

γi · λi
t−1.

Matrix P (16) is called a sub-stochastic matrix because every row sum is 1 except the first one
due to a strictly positive transition probability P1,0. Noting that every eigenvalue of an irreducible
sub-stochastic matrix is less than 1, λi should be smaller than one for every i.

Appendix A.4. Comparison with Practical Mobility Models

We measure the inter-meeting time of Brownian motion (BM) and random way point (RWP),
which is shown in Figure A1 that the analytic result tends to overestimate the frequency of long
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inter-meeting than the practical models due to its constant moving speed. Nevertheless, the overall
tendencies are quite similar especially when speed becomes high.
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Figure A1. The CCDF of inter-meeting time of practical mobility models. The same parameter setting
as in Figure 3 is used unless specified.

Appendix A.5. Proof of Proposition 2

As L → ∞, this Markov process (12) becomes batch Markovian arrival process (BMAP), of which
the stochastic process can be described by the mean steady-state arrival rate λ̄ derived as follows.
First, an infinite generator D is given as

D = B0 + A2 + A3 + · · ·+ AE−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
−P0,1 P0,1 0 · · · 0
P1,0 −P1,0 − P1,2 P1,2 · · · 0
0 P2,1 −P2,1 − P2,3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −PM,M−1

⎞⎟⎟⎟⎟⎟⎟⎠ . (A10)

Let φk denote steady state probability that the relative distance d is k. We make the following row
vector φ as

φ =
[

φ0, φ1, φ2, · · · , φM

]
=

[
∑L

j=0 π0,j, ∑L
j=0 π1,j, ∑L

j=0 π2,j, · · · , ∑L
j=0 πM,j

]
,

which can be derived by solving the following equations.

φD = 0, φ1 = 1. (A11)
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From (A11), we have

φk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1−

(
1−πR1

2

S

)m
, if k = 0,(

1−π(R1+Mv)2

S

)m
, if k = M,{

1−π(R1+(k−1)v)2

S

}m
−

{
1−π(R1+kv)2

S

}m
, otherwise.

(A12)

Finally, we derive the mean steady-state arrival rate λ̄ from (A12),

λ̄ = φ

(
E

∑
k=1

kAk+1

)
1 = pc

{
1−

(
1−πR1

2

S

)m}(
E

∑
k=1

kβ(k)

)
.

If λ̄ < pt, the active probability Pon is

Pon =
λ̄

pt
=

pc

pt

{
1−

(
1−πR1

2

S

)m}(
E

∑
k=1

kβ(k)

)
. (A13)

Otherwise, Pon = 1. After inserting (A13) into (3), we complete the proof.

Appendix A.6. Proof of Proposition 3

For the first step, we check the ratio pc
pt

as the number n increases,

pc

pt
≈ 1−

(
1−u

n
)m

q
(

1−(1−πR2
1

S )m
)(

1−e−
π
4 (1−q)

) =

⎧⎪⎪⎨⎪⎪⎩
m
n

u

q
(

1−(1− πR2
1

S )m
)(

1−e−
π
4 (1−q)

) if m = O(n),

1

q
(

1−(1− πR2
1

S )m
)(

1−e−
π
4 (1−q)

) , otherwise.
(A14)

We already proved the upper bound in Proposition 2 (19) as follows:

Λ ≤ Λupper = Θ
(

min
(

1,
m
n

)
c1

min(1, m
n )

)
, (A15)

where c1 = e−
π·u
4·a (∑E

k=1kβ(k)).
In order to derive the lower bound, consider that each WCS only delivers one unit of energy to a

node in a slot (E = 1). Since the submatrices A2 and A3 in the generating matrix Q (12) is null matrices,
the Markov process becomes finite Quasi-Birth-Death (QBD) Process. In [43], the authors showed that
the steady state probability vector πk (10) of finite QBD can be expressed in a matrix geometric form:

πk = v1R1
k+v2R2

L−k. (A16)

Here, matrices R1 and R2 are

R1 = −A2(A1+ηA0)
−1, (A17)

R2 = −A0(A1+A0G)−1, (A18)
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where η is the spectral radius of R1, and G is the square matrix that the every element of the first
column is one and the others are zero. Detailed derivations of R1 and R2 are in [44]. Row vectors v1

and v2 satisfy the following conditions:

[
v1 v2

][ B1+R1 A0 R1
L−1(A0+R1(A0+B0))

R2
L−1(R2B0+A0) A0+A1+R2 A0

]
= 0, (A19)(

v1

L

∑
i=0

R1
i+v1

L

∑
i=0

R1
i

)
1 = 1. (A20)

The boundary condition (A19) is derived by inserting (A16) into the first and last columns of the
balance Equation (11), and condition (A20) means the summation of the entire steady state probabilities
is one:

X1 =

∣∣∣∣∣∣
pt
pc

P0,1+pc
P1,0

+1 pt
pc

P0,1+pc
P1,0

P1,2
P2,1

pt
pc

P0,1+pc
P1,0

+1 pt
pc

P0,1+pc
P1,0

P1,2
P2,1

+ pt
P2,1

+1

∣∣∣∣∣∣, X2 =

∣∣∣∣∣∣
pt
pc

P0,1
P1,0

pt
pc

P0,1
P1,0

P1,2
P2,1

pt
pc

P0,1+pc
P1,0

+1 pt
pc

P0,1+pc
P1,0

P1,2
P2,1

+ pc
P2,1

+1

∣∣∣∣∣∣,
X3 =

∣∣∣∣∣∣
pt
pc

P0,1
P1,0

pt
pc

P0,1
P1,0

P1,2
P2,1

pt
pc

P0,1+pc
P1,0

+1 pt
pc

P0,1+pc
P1,0

P1,2
P2,1

∣∣∣∣∣∣, (A21)

where
∣∣∣∣ a b
c d

∣∣∣∣ = ad−bc.

From the Equation (A16), the active probability Pon (13) is rewritten as follows:

Pon = 1−(v1+v2R2
L)1. (A22)

Since the active probability Pon is a non-decreasing function of the battery capacity L, we make
the following inequality condition:

Pon ≥ 1−(v1+v2R2)1 =

(
v1

1

∑
i=0

R1
i+v1

1

∑
i=0

R1
i

)
1−(v1+v2R2)1 = (v1R1+v2)1. (A23)

All elements in matrix R1 is zero except the first row, and the first element of v1 is zero. Therefore,
v1R1 becomes zero and the above inequality (A23) becomes

Pon ≥ v21 =
M

∑
i=0

v2,i ≥ v2,0. (A24)

From the condition (A19), we make the following relations between v1 and v2,

v1 = −v2

(
R2+ptB0

−1
)

, (A25)

v1+v2(I+R2) = φ. (A26)

After inserting (A25) into (A26), we derive v2 as

v2 = φ
(

I−ptB0
−1

)−1
. (A27)
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According to numerical verifications, it is checked that v2,0 is an increasing function of the
resolution factor M. When M = 3, the vector v2 becomes:

v2,0 = φ
1

( pt
pc
+1)X1− pt

pc
X2+

pt
pc

X3

⎛⎜⎝ X1

−X2

X3

⎞⎟⎠ =
φ1X1−φ2X2+φ3X3

( pt
pc
+1)X1− pt

pc
X2+

pt
pc

X3
>

pc

pt

(
φ1−φ2

X2
X1
+φ3

X3
X1

)
2

, (A28)

where X1, X2 and X3 are described in (A21). As n increases, the ratios X2
X1

and X2
X1

reduce to zero.
From the inequalities (A24) and (A28), the active probability Pon is

Pon >
pc

pt

φ1

2
=

pc

pt

{
1−

(
1−πR1

2

S

)m
}

2
. (A29)

We can derive the lower bound of the throughput Λ as

Λ > Λlower = Θ
(

min
(

1,
m
n

)
c2

min(1, m
n )

)
, (A30)

where c2 = e−
π·u
8·a . From the upper bound (A15) and lower bound (A30), we complete the proof.
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Abstract: Full-duplex (FD) communication and spatial modulation (SM) are two promising
techniques to achieve high spectral efficiency. Recent works in the literature have investigated
the possibility of combining the FD mode with SM in the relay system to benefit their advantages.
In this paper, we analyze the performance of the FD-SM decode-and-forward (DF) relay system
and derive the closed-form expression for the symbol error probability (SEP). To tackle the residual
self-interference (RSI) due to the FD mode at the relay, we propose a simple yet effective power
allocation algorithm to compensate for the RSI impact and improve the system SEP performance.
Both numerical and simulation results confirm the accuracy of the derived SEP expression and the
efficacy of the proposed optimal power allocation.

Keywords: spatial modulation; multiple-input multiple-output; full-duplex; self-interference
cancellation; symbol error probability

1. Introduction

Full-duplex (FD) communication and spatial modulation (SM) are two promising techniques to
increase the spectral efficiency of wireless systems [1–3]. Theoretically, an FD communication system
can double the spectral efficiency as its transceivers can transmit and receive signals at the same time
and on the same frequency [4,5]. Besides increasing the channel capacity, the FD communication
systems can also reduce the end-to-end and feedback delay, improve network security and solve
the hidden terminal problem. Therefore, the FD mode has found its applications in various wireless
systems such as sensor networks, massive MIMO , relaying networks and possibly future wireless
networks such as the fifth-generation (5G) and beyond. Unfortunately, the residual self-interference
(RSI) due to imperfect self-interference cancellation (SIC) limits the capacity and performance of the FD
communication systems [6]. In the literature, numerous solutions such as relay selection scheme and
adaptive transmission [7,8] and optimal power allocation [9–11] were proposed to reduce the impact
of the RSI and improve the performance of the FD relay communication system. These solutions
significantly improved the capacity, outage performance and energy efficiency of the single-input
single-output (SISO) systems.
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Meanwhile, the multiple-input multiple-output (MIMO) transmission is another solution that can
also achieve high capacity and better performance over the SISO systems [12]. However, the hardware
of the MIMO system is more complex, that is, more radio frequency (RF) chains, as both transmitter and
receiver user multiple antennas. The MIMO receiver also requires a high-complexity detector to deal
with the inter-channel interference (ICI) due to simultaneous transmissions on the same frequency from
different antennas. In that context, SM can tackle these issues correctly as it activates only one transmit
antenna for transmission and requires only low-complexity iterative maximal-ratio combining (MRC)
at the receiver for signal estimation [12–15]. Therefore, the combined SM and FD system achieves
higher spectral efficiency while reducing the complexity requirement at the transceiver, particularly of
the relay node.

In the literature, using FD relay in SM systems has attracted great interest because this
integrated FD-SM system has the advantages of both spectral efficiency improvement and performance
enhancement. Numerous works focused on analyzing the system performance in terms of the
outage probability (OP) [2], bit error rate (BER) [3], average symbol error probability (SEP), ergodic
capacity [16] and average BER [17,18]. Specifically, in Reference [2], the lower and upper bounds of
the OP of the SM-MIMO system with decode-and-forward (DF) FD relay were derived over cascaded
α − μ fading channels. It also demonstrated that the RSI had a strong impact on the OP performance
of the system. The work in Reference [3] considered the SM-MIMO system with amplify-and-forward
(AF) FD/half-duplex (HD) relaying. It successfully derived a new unified tight upper-bound for the
system BER. The results of the paper indicate that the SM-MIMO-FD relay system can improve the
BER and the spectral efficiency if suitable SIC techniques are applied. Under the same assumption
of the RSI, References [16–18] investigated the SM-MIMO-FD relay systems which can exploit the
benefits of the FD transmission mode. The approximate expressions of SEP ([16]) and BER ([17,18])
were also derived for performance evaluation.

Although the previous works conducted various performance analyses, their results were
limited to either upper and lower bounds or approximate expressions but not the exact closed-form
expressions of SEP and BER. Therefore, it is required to have exact mathematical expressions for the
performance evaluation rather than the upper bound or approximate ones for better understanding
the system behaviors. Moreover, since the FD mode significantly degrades the system performance,
besides effective SIC techniques, there should be other solutions such as power allocation to compensate
for this degradation. Motivated by the previous works, in this paper, we aim to derive the exact
closed-form expression of the SEP of the SM-FD relay system with DF protocol applied at the relay
to enhance the system performance. Based on the derived expression of SEP, we can determine the
optimal power allocation for the FD relay to reduce the RSI impact on the SEP performance. So far,
this is the first work that successfully derives the exact closed-form expression of SEP and use it for
optimizing the power allocation for SM-MIMO-FD relay systems. The main contributions of this paper
can be summarized as follows:

• We analyze the SM-MIMO-FD relay system where SM is used at the source and the relay nodes
under the impact of the RSI caused by the imperfect SIC. Unlike previous works, we derive the
exact closed-form expression of SEP for the system over the Rayleigh fading channel.

• We propose an algorithm to calculate the optimal transmission power of the FD relay.
Based on this algorithm, we obtain the optimal power allocation for the considered system.
The proposed optimal transmission power algorithm significantly improves the SEP performance,
especially in the low SNR region. Additionally, using the derived expression of SEP, we can also
examine the influences of the number of transmitting/receiving antennas and the RSI on the
system performance in the case with and without optimal power allocation.
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The rest of this paper is organized as follows. Section 2 presents the system model. Section 3
provides the detailed derivations of the closed-form expression of SEP. The optimal power allocation
algorithm for the FD relay is developed in Section 3. Section 4 presents the analytical and simulation
results for performance evaluation. Finally, Section 5 concludes the paper.

2. System Model

We consider a single-user single-carrier SM-MIMO-FD relay system with a source node S,
which transmits its signal to a destination node D via a relay node R as shown in Figure 1. Particularly,
S and D operate in the half-duplex (HD) mode with NS transmitting antennas and ND receiving
antennas, respectively. The relay node operates in the FD mode with NtR transmitting antennas and
NrR receiving antennas.

f
f

Desired signal Desired signal

S R D

Self-Interference

Figure 1. System model of the considered SM-MIMO-FD relay system.

At time slot t, the received signal at R can be calculated as

yR(t) =
√

PShR
i xS(t) +

√
PRhR

j xR(t) + zR(t), (1)

where hR
i and hR

j are respectively the channel vector from the ith active antenna of S to NrR receiving
antennas of R and from the jth active antenna of R to all reception antennas of R. These channels
are assumed to undergo flat Rayleigh fading, which can be modeled by independent and identically
distributed complex Gaussian random variables with zero mean and unit variance. xS and xR are the
transmitted signals at the ith antenna of S and the jth antenna of R, respectively; PS and PR are the
average transmission power at S and R, respectively; zR is the noise vector whose elements follow a
complex Gaussian distribution with variance σ2.

At the FD relay, we assume that the transmitting and receiving antennas are both directional,
thus there will be no direct link which causes the self-interference (SI) from the transmit to the receive
antenna. This SI is mainly due to reflections caused by multipath propagation. We also assume that
the system can use all SIC techniques in the three domains, that is, propagation, analog and digital,
to remove the SI [19,20]. Specifically, R can use all available isolation techniques to suppress SI. It can
use the cross-polarization transmission to isolate the transmitting and receiving antennas [19,21]. In the
analog domain, thanks to the SI awareness of analog circuits, the transmitted signal via the transmit
antenna is collected and then subtracted from the received signal. The RSI is then converted to the
digital domain for further SIC via digital signal processing. As R knows its transmitted signal, it can
subtract the SI from the received signal by using SI channel estimation [20,22]. Thanks to all these
SIC techniques, the relay node can achieve up to 110 dB SI suppression [23]. Moreover, since the SI
is canceled from the received signal in the analog and digital domain by reconstructing the SI signal,
the RSI is in effect the resulted errors due to the imperfect reconstruction or more correctly, the imperfect
SI channel estimation. Moreover, as the digital-domain cancellation is done after a quantization
operation, RSI at the relay rSI can be modeled using complex Gaussian random variable [4,17,20,23]
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with zero mean and variance of σ2
RSI, that is σ2

RSI = Ω̃PR where Ω̃ denotes the SIC capability at the
relay. Therefore, the received signal at R can be rewritten from (1) as

yR(t) =
√

PShR
i xS(t) + rSI(t) + zR(t), (2)

and the received signal at the destination D is then given by

yD(t) =
√

PRhD
j xR(t) + zD(t), (3)

where hD
j is the channel vector from the jth antenna of R to ND receiving antennas of D; zD is the

noise vector at D. Both S and R are assumed to have the same Nt transmitting antennas for the same
expected spectral efficiency. In the SM system, to estimate the transmitted bits, the receiver needs to
use joint ML detection for both the activated transmit antenna and the M-ary modulated symbols.
This joint detector is computationally complex, especially for the SM system with a large number of
antennas. Near-ML low-complexity detectors such as those summarized in Reference [24] or that for
the index modulation in the frequency domain [25] are more favorable for practical implementation.
In this paper, as we are interested in analyzing the effect of the RSI due to the FD mode on the system
performance, we assume that the receivers of both R and D can perfectly estimate the transmitted
antenna index of the respective transmitters for the ML detection.

From (2) and (3), we can calculate the instantaneous signal-to-interference-plus-noise-ratios
(SINRs) of S − R and R − D links as follows

γR =
PS‖hR

i ‖2

σ2
RSI + σ2

= ‖hR
i ‖2γ̄R, (4)

γD =
PR‖hD

j ‖2

σ2 = ‖hD
j ‖2γ̄D, (5)

where γ̄R = PS
σ2

RSI+σ2 and γ̄D = PR
σ2 denote the average SINR at R and the average signal-to-noise-ratio

(SNR) at D, respectively.
Since the relay node uses the DF protocol, the instantaneous end-to-end SINR of the considered

system is defined as

γe2e = min(γR, γD). (6)

where γR and γD are respectively the instantaneous SINRs at R and D.

3. Optimal Power Allocation for FD Mode

To find the optimal power allocation for the FD relay, we first calculate the SEP of the considered
system using the definition given in Reference [26] as follows

SEP = aE{Q(
√

bγe2e)} =
a√
2π

∞∫
0

Fγe2e

( t2

b

)
e−

t2
2 dt, (7)

where a and b are constants whose values depend on the modulation types, for example, a = 1, b = 2
for the binary phase-shift keying (BPSK) modulation [26]. The values of a and b are determined using
Table 6.1 of Reference [26]; Q(x) is the Gaussian function; γe2e is the instantaneous end-to-end SINR of
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the considered system which is determined in (6); Fγe2e(.) is cumulative distribution function (CDF) of
γe2e [21,27]. After some mathematical manipulations, (7) becomes

SEP =
a
√

b
2
√

2π

∞∫
0

e−bx/2
√

x
Fγe2e(x)dx. (8)

To obtain the closed-form expression of (8), we calculate the CDF, Fγe2e(x), of the probability
that the instantaneous end-to-end SINR falls below a defined threshold. Mathematically, Fγe2e(x) is
expressed as

Fγe2e(x) = Pr {log2(Nt) + log2(1 + γe2e) < R}
= Pr

{
γe2e < 2R−log2(Nt) − 1

}
, (9)

where R is the minimum data transmission rate of the considered system; the term log2(Nt) denotes
the number of bits which is used for activating the transmit antenna at the transmitters of (S or R).

Using the probability law of two independent variables A and B [28], that is Pr{A ∪ B} =

Pr{A}+ Pr{B} − Pr{A}Pr{B}, we have

Fγe2e(x) =Pr
{

γe2e < 2R−log2(Nt) − 1
}
= Pr{γe2e < x}

=Pr{γR < x}+ Pr{γD < x}
− Pr{γR < x}Pr{γD < x}, (10)

where x = 2R−log2(Nt) − 1.
To calculate Fγe2e(x) in (10), we first start with the CDF and probability distribution function (PDF)

of the channel gain which follows Rayleigh fading distribution, that is,

F|h|2(x) = Pr{|h|2 < x} = 1 − exp
(
− x

Ω

)
, x � 0, (11)

f|h|2(x) =
1
Ω

exp
(
− x

Ω

)
, x � 0, (12)

where Ω = E{|h|2} is the average channel gain; E denotes the expectation operator. In this paper,
for the ease of presentation, we choose Ω = 1 for all channel gains.

Then, we apply (11) and (12) to compute the probability in (10) as

Pr{γR < x} = Pr
{
‖hR

i ‖2γ̄R < x
}

= Pr
{
‖hR

i ‖2 <
x

γ̄R

}
. (13)

Based on the CDF of the summation of channel gains [20], this probability is calculated as

Pr{γR < x} = 1 − e−
x

γ̄R

NrR−1

∑
i=0

1
i!

xi

γ̄i
R

. (14)

Using similar calculations, we can obtain Pr{γD < x} as

Pr{γD < x} = 1 − e−
x

γ̄D

ND−1

∑
j=0

1
j!

xj

γ̄
j
D

. (15)
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Finally, Fγe2e(x) in (10) can be given by

Fγe2e(x) = 1 − e−
x

γ̄R
− x

γ̄D

NrR−1

∑
i=0

ND−1

∑
j=0

1
i!j!

xi+j

γ̄i
Rγ̄

j
D

. (16)

Remark: As shown in (16), the active antenna at the transmitter is hidden in the variable x because
x = 2R−log2(Nt) − 1. Moreover, under the assumption that the receiver can estimate the index of the
transmitter’s activated antenna, it can successfully decode the transmitted bits used to modulate the
active antenna. Substituting Fγe2e(x) in (16) into (8), we obtain the closed-form expression of SEP
as follows:

SEP =
a
√

b
2
√

2π

[ ∞∫
0

e−bx/2
√

x
dx −

∞∫
0

e−bx/2
√

x
e−

x
γ̄R

− x
γ̄D

NrR−1

∑
i=0

ND−1

∑
j=0

1
i!j!

xi+j

γ̄i
Rγ̄

j
D

dx

]

=
a
2
− a

√
b

2
√

2π

NrR−1

∑
i=0

ND−1

∑
j=0

Γ(i + j + 1
2 )

i!j!γ̄i
Rγ̄

j
D(

1
γ̄R

+ 1
γ̄D

+ b
2 )

i+j+ 1
2
·

(17)

It is worth noting that we have used equations ([29] (3.361.2)) and ([29] (3.381.4))to solve the first
and second integrals in (17), respectively.

For the purpose of improving system performance and reducing the impact of the RSI in FD
mode, we can calculate the optimal transmission power of R to minimize the system SEP. The optimal
transmission power of R for minimizing the system SEP, denoted by P∗

R, is defined as

P∗
R = arg min

PR
SEP. (18)

To explicitly determine the minSEP in (18), we begin with two terms in (17), that is, SEP1 and
SEP2, as follows

SEP =
a
2︸︷︷︸

SEP1

− a
√

b
2
√

2π

NrR−1

∑
i=0

ND−1
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Γ(i + j + 1
2 )

i!j!γ̄i
Rγ̄

j
D(

1
γ̄R

+ 1
γ̄D

+ b
2 )

i+j+ 1
2︸ ︷︷ ︸

SEP2

, (19)

where

SEP1 =
a
2

, (20)

and

SEP2 =
a
√

b
2
√

2π

NrR−1

∑
i=0

ND−1

∑
j=0

Γ(i + j + 1
2 )

i!j!γ̄i
Rγ̄

j
D(

1
γ̄R

+ 1
γ̄D

+ b
2 )

i+j+ 1
2

. (21)

As mentioned in Section 3, after (7), since a and b are constants, SEP1 = a
2 is also constant.

Therefore, we have

min SEP = min(SEP1 − SEP2) = SEP1 − max SEP2 = max SEP2. (22)

Next, (22) can be rewritten as

min SEP = max SEP2 = max

(
a
√

b
2
√

2π

NrR−1

∑
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ND−1

∑
j=0

Γ(i + j + 1
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j
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1
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+ 1
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2

)
, (23)
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and (23) can be presented as

min SEP = max

(
a
√

b
2
√

2π

NrR−1

∑
i=0

ND−1

∑
j=0

Γ(i + j + 1
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× 1

γ̄i
Rγ̄

j
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1
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2 )

i+j+ 1
2

)
. (24)

It is noted that, in (24), a, b, NrR and ND are constants; i and j are antenna indices which do not
depend on the transmission power of S and R. Moreover, Γ(i + j + 1

2 ) is also a constant for the certain
values of i and j. Therefore, (24) is maximized when

1

γ̄i
Rγ̄

j
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1
γ̄R
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+ b
2 )

i+j+ 1
2

(25)

is maximized or

γ̄i
Rγ̄

j
D(

1
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+
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+

b
2
)i+j+ 1

2 (26)

is minimized.
In summary, the minSEP in (18) is given by

min SEP = min

(
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Denote PR = αPS and f (α) = γ̄i
Rγ̄

j
D(

1
γ̄R

+ 1
γ̄D

+ b
2 )

i+j+ 1
2 . Now we need to find α∗, which is the

optimal value of α. Then for this given α∗, we can obtain P∗
R. The procedure for obtaining α∗ and P∗

R is
summarized in the following Algorithm 1.

Algorithm 1 Calculation of optimal α∗ and P∗
R

1: Solve ∂ f (α)
∂α = 0 for α = α0;

2: if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α0 > 0

∂ f (α)
∂α

< 0 for α < α0

∂ f (α)
∂α

> 0 for α > α0
3: then
4: Output optimal value of α

α∗ = α0;
thus
P∗

R = α∗PS
5: else
6: Output optimal value α∗ = ∅;
7: end

We will explain step-by-step the process of Algorithm 1 as follows.

• Step 1: We take the derivative of ∂ f (α)
∂α with respect to α and solve ∂ f (α)

∂α = 0 to obtain the stationary
point α0. Specifically, after some basic algebra calculations, we obtain the following equation

f ′(α) ≤ 2Ω̃PSα2 − 2bPSα − 9. (28)
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Then, α0 can be calculated as

α0 =
bPS +

√
PS(b2PS + 18Ω̃)

2Ω̃PS
. (29)

• Step 2: We check whether ∂ f (α)
∂α is negative or positive in a specific interval to determine maximum

or minimum point. If ∂ f (α)
∂α is negative when α < α0 and positive when α > α0, an optimal

transmission power P∗
R exits and it is given by

P∗
R =

bPS +
√

PS(b2PS + 18Ω̃)

2Ω̃
. (30)

It is worth noting that (30) is the bounded optimal transmission power at the FD relay node and
it is often used for the systems with complex mathematical expressions.

• Step 3: Otherwise, if α∗ = ∅, depending on whether ∂ f (α)
∂α is less or greater than 0, we can select

an appropriate value of α∗ to get P∗
R.

4. Numerical Results

In this section, to validate the derived mathematical expressions in the previous sections,
we provide analytical results together with the Monte-Carlo simulation results for comparison.
For ease of presentation, both S and R use two transmitting antennas, that is Nt = 2, while the
number of receiving antennas NrR and ND are set to be equal and varies from 2 to 4 for performance
evaluations. The SIC capability used for evaluation is Ω̃ = {−10,−5, 0} dB. For an LTE relay,
the typical transmission power ranges from 23 dBm to 30 dBm. Taking 30 dBm for consideration,
the RSI levels are σ2

RSI = {20, 25, 30} dBm, respectively. In all figures, we define the average SNR for
the case without optimization as follows: SNR = PS

σ2 = PR
σ2 . In the case with optimization, the average

SNR is defined by SNR at R, that is, SNR = PS
σ2 . The analytical curves are plotted using Equation (17)

while the markers refer to Monte-Carlo simulation results. The simulation results were obtained using
106 channel realizations.

Figure 2 plots the SEP of the considered SM-MIMO-FD relay system versus the SNR in dB for
two modulation schemes, that is, BPSK (a = 1, b = 2) and 4-QAM (a = 2, b = 1). We should remind
that a and b are constants, which depend on the types modulation scheme. These values for each
type of modulation are given in Table 6.1 of Reference [26]. As shown in Figure 2, similar patterns
of SEPs can be observed in both BPSK and 4-QAM modulation schemes. However, the system with
4-QAM modulation has higher SEP than the system with BPSK modulation. Moreover, the benefit
of optimization is also reduced as the modulation order increases. Therefore, although our analysis
method can be applied for all modulation types, we use the BPSK modulation in the following figures
to clearly show the advantage of our proposed optimization algorithm in reducing the SEP of the
considered SM-MIMO-FD relay system.

Figure 3 compares the SEPs of the SM-MIMO-FD relay system in two cases, that is α = 1 (without
optimal power allocation, PR = PS) and α = α∗ (with optimal power allocation, PR = P∗

R) in (30) for
different numbers of receiving antennas of R and D. Although we have used NrR = ND = 2, 3, 4 to
obtain this figure, it is worth noting that we can use different numbers of receiving antennas at R
and D for numerical calculation using the closed-form expression of SEP. The modulation used for
evaluation is BPSK with parameters a = 1, b = 2. The typical SIC capability of Ω̃ = −10 dB is used for
calculation. It is easy to see from the figure that the analytical results perfectly match the simulation
ones. Although the SEPs of both the cases with and without optimal power allocation suffer the same
error floors in high SNR regime, the SEP with optimal power allocation is significantly lower than that
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without optimal power allocation in low SNR regime. For example, when SNR = 8 dB, the SEP in the
case with α∗ is approximately ten times less than the case without α∗.

4Q

BPSK

Figure 2. The SEP of the considered SM-MIMO-FD relay system with and without optimal power
allocation versus the SNR for different modulation schemes, NrR = ND = 4.

rR D
2,3,4N N

Figure 3. The SEP of the considered SM-MIMO-FD relay system with and without optimal power
allocation when BPSK modulation is used, NrR = ND = 2, 3, 4; Ω̃ = −10 dB.

Figure 4 shows the impact of the RSI on the SEP of the system with and without optimal
power allocation for different SIC capabilities, that is, Ω̃ = −10,−5, 0 dB. When the RSI is small
(Ω̃ = −10 dB), the difference in SEPs in the cases with and without using α∗ is large. However, when
the RSI becomes larger (Ω̃ = −5 dB), the benefit of using α∗ decreases. Therefore, it is necessary to
combine SIC techniques with optimal power allocation to achieve the best performance for this system.
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Figures 3 and 4 can be served as the guideline to determine when the optimal power allocation should
be used. Specifically, for SNR < 20 dB, we use P∗

R to improve the system performance. For higher
SNR, that is SNR > 20 dB, we use PR = PS to reduce the signal processing complexity at the FD relay.
The advantage of the system with optimization is that it requires only SNR ≥ 8 dB to achieve a reliable
voice transmission.

10dB

5dB

0dB

Figure 4. The impact of RSI on the SEP of the considered SM-MIMO-FD relay system with and without
optimal power allocation; Ω̃ = −10,−5, 0 dB; NrR = ND = 4.

5. Conclusions

In this paper, we have analyzed the performance of the SM-MIMO-FD DF relay system and
derived the closed-form expression of the system SEP. Understanding the importance of the
optimal power allocation to the SM-MIMO-FD relay system, especially in the case of imperfect
SIC, we have proposed an optimal power allocation algorithm for the FD relay to minimize the system
SEP. Both numerical and simulation results showed that the RSI has a substantial impact on the
SEP performance. However, the SEP of the system with optimal power allocation is significantly
lower compared with that of the system without optimal power allocation. This result confirms
the effectiveness of using optimal power allocation for compensating the impact of the RSI in the
SM-MIMO-FD DF relay system.
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Abstract: The rapidly increasing interest from various verticals for the upcoming 5th generation
(5G) networks expect the network to support higher data rates and have an improved quality of
service. This demand has been met so far by employing sophisticated transmission techniques
including massive Multiple Input Multiple Output (MIMO), millimeter wave (mmWave) bands as
well as bringing the computational power closer to the users via advanced baseband processing
units at the base stations. Future evolution of the networks has also been assumed to open many
new business horizons for the operators and the need of not only a resource efficient but also an
energy efficient ecosystem has greatly been felt. The deployment of small cells has been envisioned
as a promising answer for handling the massive heterogeneous traffic, but the adverse economic
and environmental impacts cannot be neglected. Given that 10% of the world’s energy consumption
is due to the Information and Communications Technology (ICT) industry, energy-efficiency has
thus become one of the key performance indicators (KPI). Various avenues of optimization, game
theory and machine learning have been investigated for enhancing power allocation for downlink
and uplink channels, as well as other energy consumption/saving approaches. This paper surveys
the recent works that address energy efficiency of the radio access as well as the core of wireless
networks, and outlines related challenges and open issues.

Keywords: 5G; energy-efficiency; sustainability

1. Introduction

Advances in telecommunication systems around the world have always been pushing the wireless
infrastructure to be more resilient and scalable. Ever growing faster data rates and a demand for
the highest quality of service has been a strong constraint when energy conservation needs to be
considered. Data rates as high as that of 1 Gbps have been foreseen with the advent of 5G. In
addition, with an explosive number of heterogeneous devices coming online, including sensors for
home security, tablets, and wearable health monitors, the computational power of base stations must
increase. An estimated 50% increase in the computing power of baseband units has been predicted
to handle this traffic burst [1]. Thus, the focus on energy-efficiency needs to include optimization of
computational complexity in addition to optimization of transmission power.

An estimated 75% of the Information and Communications Technology (ICT) industry is supposed
to be wireless by 2020 and today 5% of the world’s carbon footprint is coming from this industry alone.
A consensus between academia and industry dictates that the foreseen 1000× capacity gain must be
achieved with either the present energy consumption or lower [2]. Thanks to energy-efficiency efforts
world-wide, energy consumption in the 5G realm, in terms of bits/joule, has been considered as an
important design parameter. In 4th generation (4G), the concept of small cells has been introduced
to increase the coverage and capacity. Therefore, [3] conducted an analysis on energy consumption
per unit area for a heterogeneous deployment of cells for fourth generation networks. With 5G, small
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cells are inevitable in deployments due to their advantage of improved traffic handling within a
smaller area as well as the shorter cell ranges that result from the use of higher frequencies. Yet, the
increasing number of base stations translate into more energy consumption, although the increase
in consumption will not be linear. Small cells, or in other words densification, calls for sophisticated
management of resources. Most recently, intelligent resource allocation and control techniques
utilizing machine learning algorithms have been suggested to help next generation radios in their
autonomous reconfiguration for improving the data rates, energy efficiency and interference mitigation.
Overall, the emerging sophistication in both User Equipment (UE) and network side has increased
the energy consumption and thus objective functions have been devised to maximize the energy
efficiency, harvested energy and energy aware transmission [4]. Many of the existing energy efficiency
improvement techniques include the use of green energy sources for base stations, modifying the
coverage area of a base station depending upon the load level, putting lightly loaded base stations
to sleep and load balancing by handing over the UEs to the macro base station. A survey on these
technologies for the 5G Radio Access Network (RAN) can be found in [5].

This survey has been aimed to contribute towards a greener and a sustainable telecommunication’s
ecosystem by reviewing and bringing together some of the latest ideas and techniques of energy
conservation at base station and network level. A high level diagram shows the areas addressed in
Figure 1. A few of the prominent examples include the introduction of a newer Radio Resource Control
(RRC) state for context signalling and cutting down on the redundant state changes [6]. Utilization
of advanced clustering and caching techniques on the RAN side have been highly appreciated for
their benefits of improving the latency of getting the data requested by a group of users and possibly
eliminating the factor of clogging the network by a huge number of requests for the same content [7,8].
A case study of commercial resource sharing among different operators bears fruitful results in
terms of reduced deployment costs and good data rates with minimum interference among them [9].
The upcoming sections introduce the basics of energy efficiency, provide justification for the need
of gauging the energy consumption and then present the most recent research works carried out for
the optimization at different levels of the architecture. This survey bears its uniqueness in its holistic
approach to energy-efficiency by covering radio, core and computing side of 5G. This paper is also
different than the surveys in the literature [1–4], as it focuses on works published in the last few years
where the majority of the studies focus on concepts specific to the new 5G standard.

Figure 1. Outline of the energy-efficiency schemes included in this survey.

2. Background on Energy Efficiency

A formal relationship between energy efficiency and Signal to Interference Noise Ratio (SINR)
has been presented in [2] using the bit/joule notion. Meanwhile, Reference [4] lays the foundation
for energy efficiency in different parts of the network including base stations and the core network.
In the literature, energy saving and use of green energy resources have been the two mainstream
approaches to offer energy efficiency. Among the energy saving techniques, cell-switch off techniques
have been widely exploited. For instance, in the EU FP7 ABSOLUTE project, an energy aware
middleware has been proposed that would use the capacity-based thresholds for activation of the
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base stations [10]. In several other studies, data offloading has been considered as an energy-efficient
approach. Furthermore, authors in [11] have put together several techniques for not only reducing
the energy consumption from the traditional energy sources but also for surveying newer Energy
Efficiency (EE) schemes in the End-to-End (E2E) system. One of the remarkable mentions by the authors
includes the implementation of 3rd Generation Partnership Project (3GPP) compliant EE manager that
would be responsible for monitoring energy demands in an E2E session and for implementation of the
policies needed for catering to the ongoing energy demand.

In addition to energy saving approaches, recently simultaneous wireless energy transfer has
been studied. Furthermore, local caching techniques have been proved to be beneficial for relieving
the load on the backhaul network by storing the content locally and limiting the re-transmissions,
hence reducing energy consumption. Similarly, a cloud based RAN has been envisioned as a possible
solution for the computational redistribution in [2,4,12]. Many of the tasks previously performed by a
base station (BS) would be taken away to a data center and only decision making for Radio Frequency
(RF) chains as well as baseband to RF conversion would be given to base stations. Traffic pattern
and demands would then be catered for well before time and redundant BS would be put to sleep
mode according to [13]. Furthermore, full duplex Device-to-Device (D2D) communication with uplink
channel reuse has been considered to improve SINR and transmission power constraints. A gain of 36%
energy efficiency has been demonstrated using the full duplex scheme with enhanced self-interference
mitigation mechanism instead of half duplex [14].

As machine learning is penetrating more and more into the operation of wireless networks,
Reference [15] suggests that machine learning algorithms would greatly help to predict the hot spots
so that other resources could be switched off when not needed.

The concept of energy efficiency being treated as a key performance indicator in the upcoming
5G standard considers it to be a global ambition, but it cannot be declared as a specific actionable
item on either the operator or vendor side. Divide and conquer approach has been applied to the
entire network and improvements have been targeted at either component level, equipment level or at
network level employing newer algorithms at both BS and UE side. This discussion advocates the fact
that operators would have the leverage of tuning their network for a balance between quality of service
and energy consumption. In the following sections, we introduce the recent works in energy-efficiency
in 5G as highlighted in Table 1 preceding to a discussion on open issues and challenges.

Table 1. Summary of surveyed works.

Optimization Scope Problem Addressed Citation

EE at the BS level

Dissection of a BS and figures for energy consumption [1]

Downlink Massive MIMO Systems: Achievable Sum Rates
and Energy Efficiency Perspective for Future 5G Systems

[16]

Energy Efficiency in massive MIMO based 5G networks:
Opportunities and Challenges

[17]

EE improvement by a Centralized BB processing design [18]

Analytical modelling of EE for a heterogeneous network [19]

Energy Efficiency Metrics for Heterogeneous Wireless
Cellular Networks

[20]

Incentive based sleeping mechanism for densely deployed
femto cells

[21]

Sector based switching technique [22]
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Table 1. Cont.

Optimization Scope Problem Addressed Citation

On interdependence among transmit and consumed power
of macro base station technologies

[23]

Utilization of Nash product for maximizing cooperative EE [24]

Energy Efficiency in Wireless Networks via Fractional
Programming Theory

[25]

Energy efficiency maximization oriented resource
allocation in 5G ultra-dense network: Centralized and
distributed algorithms

[26]

Comparison of Spectral and Energy Efficiency Metrics
Using Measurements in a LTE-A Network

[27]

Energy Management in LTE Networks [28]

Energy-efficient resource allocation scheduler with QoS
aware supports for green LTE network

[29]

Interference-area-based resource allocation for full-duplex
communications

[30]

A resource allocation method for D2D and small cellular
users in HetNet

[31]

Highly Energy-Efficient Resource Allocation in Power
Telecommunication Network

[32]

EE enhancement with RRC Connection Control for 5G New
Radio (NR)

[6]

Proactive caching based on the content popularity on small
cells

[7]

Cooperative Online Caching in Small Cell Networks with
Limited Cache Size and Unknown Content Popularity

[33]

Economical Energy Efficiency: An Advanced Performance
Metric for 5G Systems

[34]

Energy-efficient design for edge-caching wireless networks:
When is coded-caching beneficial?

[35]

Content caching in small cells with optimized UL and
caching power

[36]

An effective cooperative caching scheme for mobile P2P
networks

[37]

EE analysis of heterogeneous cache enabled 5G hyper
cellular networks

[8]

EE at the network level

Motivation for infrastructure sharing based on current
energy consumption figures

[2,38]

Energy efficiency in 5G access networks: Small cell
densification and high order sectorisation

[39]
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Table 1. Cont.

Optimization Scope Problem Addressed Citation

EE at the network level

Energy-Efficient User Association and Beamforming for 5G
Fog Radio Access Networks

[40]

Global energy and spectral efficiency maximization in a
shared noise-limited environment

[9]

EE Resource Allocation in NOMA [41]

Concept and practical considerations of non-orthogonal
multiple access (NOMA) for future radio access

[42]

Optimum received power levels of UL NOMA signals for
EE improvement

[43]

Spectral efficient nonorthogonal multiple access schemes
(NOMA vs RAMA)

[44]

Non-Orthogonal Multiple Access: Achieving Sustainable
Future Radio Access

[45]

Mode Selection Between Index Coding and Superposition
Coding in Cache-based NOMA Networks

[46]

Use case of shared UE side distributed antenna System for
indoor usage

[47]

Optimized Energy Aware 5G Network Function
Virtualization

[48]

Energy Efficient Network Function Virtualization in 5G
Networks

[49]

Network Function Virtualization in 5G [50]

A Framework for Energy Efficient NFV in 5G Networks [51]

Energy efficient Placement of Baseband Functions and
Mobile Edge Computing in 5G Networks

[52]

Energy Efficiency Benefits of RAN-as-a-Service Concept for
a Cloud-Based 5G Mobile Network Infrastructure

[53]

Dynamic Auto Scaling Algorithm (DASA) for 5G Mobile
Networks

[54]

Design and Analysis of Deadline and Budget Constrained
Autoscaling (DBCA) Algorithm for 5G Mobile Networks

[55]

EE using SDN technology

Impact of software defined networking (SDN) paradigm
on EE

[56]

EE gains from the separated control and data planes in a
heterogeneous network

[57]

EE using ML techniques

Machine Learning Paradigms for Next-Generation Wireless
Networks

[58]

Switch-on/off policies for energy harvesting small cells
through distributed Q-learning

[59]
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Table 1. Cont.

Optimization Scope Problem Addressed Citation

EE using ML techniques

Duty cycle control with joint optimization of delay
and energy efficiency for capillary machine-to-machine
networks in 5G communication system

[60]

Distributed power control for two tier femtocell networks
with QoS provisioning based on Q-learning

[61]

Spectrum sensing techniques using both hard and soft
decisions

[62]

EE resource allocation in 5G heterogeneous cloud radio
access network

[63]

3. Review of EE Techniques at the Base Station Level

Radio access network (RAN) has been considered as single unit for energy efficiency improvement,
and inclusion of these enhancements across the network would have a significant impact on the
overall energy efficiency. Metrics for gauging EE in this perspective include the improvements in the
architecture and chipset design for the baseband units, cell switch off techniques, incorporation of
small cells, interference reduction among the neighboring cells and caching as well as the newer RRC
state for UEs for conservation of the battery power.

3.1. Base Station Energy Consumption and Cell Switch Off Techniques

Knowing the accurate energy consumption of a base station constitutes an important part of
the understanding of the energy budget of a wireless network. For this purpose, authors in [1] have
specifically discussed energy conservation at equipment level by presenting the breakdown of a base
station. A typical BS has been presented by dividing it into five parts, namely antenna interface,
power amplifier, RF chains, Baseband unit, mains power supply and the DC-DC supply. These
modules have been shown in Figure 2. An important claim has been made stating that up to 57% of the
power consumption at a base station is experienced at the transmission end, i.e., the power amplifier
and antenna interface. Yet, with small cells, the power consumption per base station has been reduced
due to shorter distances between the base stations and the users [1,19]. In [19], analytical modelling
of the energy efficiency for a heterogeneous network comprising upon macro, pico and femto base
stations has been discussed. To a certain extent emphasis has been put on the baseband unit which
is specifically in charge of the computing operations and must be sophisticated enough to handle
huge bursts of traffic. A baseband unit has been described to be composed of four different logical
systems including a baseband system used for evaluating Fast Fourier Transforms (FFT) and wireless
channel coding, the control system for resource allocation, the transfer system used for management
operations among neighbouring base stations and finally the system for powering up the entire base
station site including cooling and monitoring systems. Furthermore, the use of mmWave and massive
MIMO would need an even greater push on the computation side of the base station since more
and more users are now being accommodated. The study in [16] discusses the achievable sum rates
and energy efficiency of a downlink single cell M-MIMO systems under various precoding schemes
whereas several design constraints and future opportunities concerning existing and upcoming MIMO
technologies have been discussed in [17]. The computation power of base station would increase when
number of antennas and the bandwidth increases. In the case of using 128 antennas the computation
power would go as high as 3000 W for a macrocell and 800 W for a small cell according to [1].
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Figure 2. Modules of a typical base station.

Authors in [18] have discussed the utility of taking most of the baseband processing functionality
away from the base station towards a central, more powerful and organized unit for supporting higher
data rates and traffic density. Users have envisioned experiencing more flexibility using this central
RAN since they would be able to get signaling from one BS and get data transfer through another best
possible neighboring BS. Visible gains in latency and fronthaul bandwidth have thus been observed by
having stronger backhaul links but this research avenue still needs to be formally exploited for devising
globally energy efficient mechanisms. The choice of the best suited BS would allow the network to
have a lower transmission power thus increasing the energy efficiency. An analysis of throughput as a
performance metric has been provided for a two-tier heterogeneous network comprising upon macro
and femto cells in [20]. The claimed improvement in throughput originates from a distributed mesh of
small cells so that the minimal transmission distance between the end user and the serving base station
would be cashed out in terms of reduced antenna’s transmission power. Considering these findings on
BS energy consumption, cell switch-off techniques have been explored in the literature. An incentive
based sleeping mechanism for densely deployed femtocells has been considered in [21] and energy
consumption reduction up to 40% has been observed by turning the RF chains off and only keeping
the backhaul links alive. The key enabler here would be to have prompt toggling between active and
sleep modes for maintaining the quality of service. According to [21], a “sniffer” component installed
at these small cells that would be responsible for detecting activity in the network by checking the
power in uplink connections, a value surpassing the threshold, would indicate a connection with the
macrocell. Mobility Management Entity (MME) has also been suggested to potentially take a lead by
sending wake up signals to the respective femtocells and keeping others asleep. In contrast to the usual
techniques of handing their users over to the neighbouring base stations and turning that cell off, it
would be beneficial to give incentives to users for connecting to a neighbouring cell if they get to have
better data rates. Authors in [22] have conducted a thorough study for classification of the switching
techniques as well as calculation of the outage probability of UEs, under realistic constraints. Their
claim states that the energy consumption of the base station is not directly proportional to its load so an
improved switching algorithm was needed that would allow the UEs to maintain the SINR thresholds.
They have thus brought forward a sector based switching technique for the first time. Furthermore,
their claim favors an offline switching technique instead of a more dynamic online scheme because of
practical constraints such as random UE distribution and realistic interference modelling. Authors
in [23] discuss influence of the transmit power scaling and on/off switching on instantaneous macro
base stations power consumption. The proposed power consumption models have been claimed to be
used as generic models for the relationship between transmitted and consumed power for macro base
stations of different technologies and generations. In addition to these techniques, recently, machine
learning techniques have been used to implement cell switch off which are discussed in Section 6.
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3.2. Interference-Aware Energy Efficiency Techniques in 5G Ultra Dense Networks

The advantages of small cell deployment, in terms of increased system capacity and better load
balancing capability, have been discussed in the previous sections. Yet, it is important to mention
that densification suffers from added system complexity. Therefore, energy efficiency as well as
spectral efficiency becomes harder to evaluate. Nash energy efficiency maximization theory has been
presented for discussing the relationship between energy and spectral efficiency in [24]. Both are
inversely related to each other, increase in one of them demands a natural decrease in the other
quantity which usually has been the case of medium to high transmission power. Most of the research
conducted in ultra-dense small cell networks has been on coming up with techniques optimizing
both energy efficiency (EE) and spectral efficiency (SE). Authors in [24] also brings forth the idea of
gaining energy efficiency at the cost of spectral efficiency where the small cells are under the coverage
of a macro cell and pose interference issues due to the sharing of bandwidth among them.In such a
scenario, all the small cells participate in energy efficiency maximization according to a game theoretic
methodology. The suggested game theoretic model has been deemed to be a distributed model and
utilizes Nash product for maximizing cooperative energy efficiency. Analysis of the algorithms shows
that energy efficiency, although it increases with the increase in the number of small cells, it saturates
after about 200 cells and afterwards only experiences a minor increase. Fractional programming
has been extensively used in [25] for modelling the energy efficiency ratio for a Point-to-Point (P2P)
network as well as for a full scaled communication network using MIMO. EE has been considered
as a cost benefit ratio and minimum rate constraints have been put together for modelling real life
scenarios. In addition, fairness in resource allocation has been considered a major factor in the overall
energy distribution. These two constraints might tend to increase the power consumption in case the
minimum thresholds tend to be too high. Adding to the use cases of fractional programming, [26] laid
out a robust distributed algorithm for reducing the adverse effects of computational complexity and
noise towards resource allocation. Authors in [27], have presented an experimental setup for defining
the right kind of key performance indicators when measuring either EE or SE. The setup includes
a set of UE(s), three small BS(s) and running iperf traffic using User Datagram Protocol (UDP) and
File Transfer Protocol (FTP). Results have indicated that utilization of a higher bandwidth would not
increase the power consumption, that throughput must incorporate the traffic density and that the idle
power of the equipment needs to be considered for energy consumption calculations. In [28], use of
varying transmission power levels by the aid of custom power levels in a two-tier network has been
encouraged for the optimization of needed power in Long Term Evolution (LTE). Intelligent switching
of control channels in the DL and tuning the power levels according to the UE’s feedback have been
envisioned to aid in allocation of the resource blocks with an optimum power. Authors in [29], have
discussed the opportunities for the less explored domain of user scheduling in LTE. 3GPP has no
fixed requirement on scheduling and thus researchers have devised their own mechanisms depending
upon their pain points. Authors have proposed the idea of associating Quality of Service (QoS) with
scheduling for accommodating cell edge users. Authors in [30] have proposed a resource allocation
technique for minimizing the interference at the UE side. Considering a full duplex communication
setup, a circular interference area for a DL UE has been demarcated by the BS based upon a predefined
threshold. Resource block for this UE has been shared by an UL UE from outside the interference
region for keeping the mutual interference to a minimal level. Simulation results claim to improve the
overall network throughput based on the efficient pairing of UEs but the throughput might degrade
with a large increase in the distance between the paired UEs. A heuristic algorithm presented in [31]
improves the system throughput using resource reuse in the three-tier architecture while regulating
the interference regions of UEs being served by either macro BS, small BS or in a D2D way. Visible
gains in the throughput have been noted with an increased user density for an efficient user selection
and having a minimum distance between the UEs being served in a D2D fashion for a stronger link
retention. Moreover in [32], authors have constructed objective functions for EE maximization and have
thus compared max-min power consumption model against their nonlinear fractional optimization
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model. Results have been promising for a reduction in the power consumption because of the mutual
participation of cells as their number starts to increase.

3.3. Energy Efficiency Enhancement with RRC Connection Control for 5G New Radio (NR)

In [6], the authors discuss the rapid UE battery drainage which is due to the fact that terminals
remain in radio resource control’s (RRC) ACTIVE state even when they are not interacting with the
network. In the 5G networks, the RRC INACTIVE state has greatly been altered where a UE could
benefit from the stored context and go through a lower number of state transitions. 5G NR would thus
get rid of the constant monitoring of physical downlink control channel (PDCCH) for the incoming
transmissions. The proposed improvement brings a 50% less energy consumption at the modem and
18% for the entire device. Referring to the traditional RRC mechanism, only two states were available,
namely RRC ACTIVE and RRC IDLE mode. Consumer’s usage mainly dictates the time being spent in
either of the two states. Typically, when a phone has not been used, the user inactivity timer would
expire, putting the UE in IDLE state and as soon as it would go into the IDLE state its context would
be removed from the core network. With the new RRC INACTIVE state, the UE context would still
be stored when it would stop its communication with the network resulting in a reduced signaling
overhead. However, the UE would still need to update eNodeB/gNodeB (evolved NodeB/next
generation evolved NodeB) with its context for a valid state change. Figure 3 illustrates the state
diagram of the new model. For this state to be widely utilized it should ensure minimum signaling
and power consumption. The authors have evaluated the performance of this proposed scheme
based on the shorter user inactivity timer achieving quicker state transitions to INACTIVE state and
incurring less signaling. Power consumption analysis has been conducted for usage between different
applications which validates the claim of authors. Similar analyses have been conducted to eliminate
the prolonged connected mode discontinuous reception or better known as the Connected mode
DRX (C-DRX) of upto 10 s for short data transfers and avoid the state changes. Signaling overhead
also increases with the increase in either UE mobility or shorter user activity timers. However, the
worst-case scenario would be to have the UE receive content just after its transition to the INACTIVE
state, thus incurring extra RRC signaling. According to the proposed scheme, 5G NR can greatly
benefit from this state by having an extended UE life and a lower need for S1 signaling.

Figure 3. State diagram for radio resource control (RRC) signalling including the ’inactive’ state.

3.4. Energy Efficient and Cache-Enabled 5G

In [7], the idea of proactive caching based on the content popularity on small cells has been
proposed for improving the energy efficiency. Owing to the abundance of small cells, networks are
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getting constrained by the overall backhaul link capacity and much of the load is corresponding to
transactions of the same requests repeatedly. Energy efficiency has been evaluated with regards to
the content placement techniques and more emphasis has been put into organizing the content based
on user locations and constantly fine tuning the clusters based on the content popularity distribution
instead of spanning the same content across the network. Various topologies are shown in Figure 4.
Energy efficiency has been formulated in relation to the small cell density vector. A heterogeneous file
popularity distribution has been considered and a popularity vector has been maintained at every user.
Users have been grouped into clusters depending upon the similarity in their interests and the cached
files are an average of these popularity vectors. Users would usually be allowed to communicate
with the base station within a specified distance of their cluster and in case of a cache miss event, the
content would then be requested from the core via backhaul links. Spanning the same data across the
network tends to sacrifice the information diversity and hence a content-based clustering approach
has been brought forward. Simulations have been presented to demonstrate that with the increased
base station density, significant energy efficiency gains have been experienced since the allocation
problem gets simplified and interference and transmission powers would be reduced. In [34] a unique
approach for addressing the energy efficiency challenge has been presented. The proposed E3 ratio
thus incorporates a cost factor when calculating the number of UEs being served against the power
spent over this operation by the BS. It has been made clear that although the cost factor might not have
a direct impact on the spectral efficiency, it would be an important factor when regulating the cost of
the entire network. Thus, operators have been addressed to carefully incorporate the features of edge
caching and gigabit X-haul links to strike a fair balance between the cost overhead and the need of the
feature. Otherwise it would be an overkill which has been meant to be strictly avoided. Mathematical
analysis for EE maximization presented in [35] supports the fact that for the cases of low user cache
size, non coded schemes should be utilized for a faster delivery system. Highlight of the research work
conducted in [33] has been the assumption of a finite cache memory for a more realistic analysis. Delay
bounds of an online cooperative caching scheme have been brought forward as compared to offline
and a random caching scheme. The cache being periodically updated promises to deliver a tighter user
association and aims to have minimum possible latency. The algorithm also aims to accurately cache
the data in highest demand with an increased user density. Application of cooperative caching on P2P
networks has been discussed in [37], authors have demonstrated the effectiveness of the algorithm by
the segmentation of cache memory at the base stations. It would not only keep track of the cached
data of the highly demanded information but would also record data paths and the newly requested
data. The simulations have illustrated the usefulness of this optimization technique by the reduced
number of hops and latency. On the other hand, uplink energy conservation has been considered in
the context of dense small cells [36].

In [8], energy efficiency analysis of heterogeneous cache enabled 5G hyper cellular networks was
performed. The control and user plane separation is considered to aid in devising enhanced access
schemes and retain fairness in service. Furthermore, base station on-off strategy is taken into account
to help in cutting down costs spent on redundant small cells [8]. In that scenario, macro cells would be
the masters handling mobility, home subscriber and the user admission whereas small cells would be
the slave part of the radio resource management scheme. With this increasing growth of the network
infrastructure, irregularities in traffic behavior must be taken into account along with the actual user
distribution for a realistic scenario. Caching has been sought after as a viable solution for reducing the
end to end latency by storing content at the base stations. Small cells would typically involve macro
base station in its communication with the UE in a semi sleep mode and ensure that it would always
be aware of the UE positioning in the network as well as the cache memory statistics. Macro cell also
ensures that the UE would be served by the closest and best possible small cell and would turn off
the remaining ones to concentrate on a specified area for improving the throughput. On the other
hand, there would be a predefined search radius and content would be fetched from a neighbouring
base station within that distance. Otherwise, UE would associate to the macro base station for getting
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access to the needed content. Expressions for the coverage probability for the UE to get signal to
interference (SIR) ratio within the threshold, throughput and power consumption and efficiency have
been documented in [8].

Figure 4. Illustration of different cache topologies.

4. Review of EE Techniques at the Network Level

A collective approach has been adopted for addressing the overall EE challenge considering
both access and core network. EE has thus been gauged by the extent of resource sharing among
different operators in the urban environment, utilization of efficient resource allocation schemes for
fully exploiting the available spectrum, deploying middle ware for coverage enhancement (reduction in
the distance between UE and BS would lower the needed transmission power), harnessing maximum
computational muscle for accommodating massive incoming user requests yet have the ability to
scale instantly (virtualization) and deploying machine learning and Software Defined Network (SDN)
technologies for a fine grained control over the resources. An efficient usage of these capabilities would
thus lead to the quality of service retention as well as an excellent power management methodology.

4.1. Resource Sharing in 5G with Energy-Efficiency Goal

Spectrum and physical resource sharing needs to be considered for accomplishing the energy
efficiency goal of 5G. However, the need of service quality retention with respect to throughput and
packet drops must also be addressed. Thoughts on infrastructure sharing have been gaining enough
traction owing to several factors, for example, lack of space acquisition for site deployment or utilizing
the available resources at their full potential and refraining from any new deployment. This section
puts together the studies for bringing improvements in energy efficiency by a mutual sharing of
infrastructure. Operators would have the flexibility of resource sharing at either full or partial level
naturally emphasizing improved security for their equipment. Additionally, the cost of commissioning
every site would lead to a higher expenditure and would minimize the expected revenues. Projects
such as EARTH and GREEN TOUCH detail this avenue and brings forth an expectation of a decreased
energy consumption by 1000 folds [2,38]. For this level of sophisticated resource sharing, a complete
knowledge about the functionality and capacity of the network entities needs to be available which
may not be possible in practice. However, the avenue of spectrum sharing still welcomes more
discussion and aims to be a potential pathway for gaining solutions to the resource scarcity problem.
Details of system level simulations for comparisons drawn between energy consumption and shared
infrastructure at different load levels have been documented in [38] where a gain of up to 55% for energy
efficiency in the dense areas has been demonstrated. Other significant advantages of resource sharing
would include less interference by a planned cell deployment in accordance with the user demands
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per area. These efforts aim to eliminate the problems of either over provisioning or under-utilization
of the deployed network entities. Authors in [40] have discussed the application of an improved
resource allocation in a fog RAN. The suggested idea relies upon the fact that the usage of a centralized
baseband processing unit, which, while increasing the processing power of the system, remains at
risk of getting outdated measurements from the radio heads because of larger transport delays. The
suggested algorithm starts off by switching off the redundant access points for conserving the energy
and then modifying the beam weights for providing the end user with an optimum signal to leakage
and noise ratio. User association is made centrally and then the information gets passed on to the fog
access points after being scheduled for users. Following this phase, the proposed greedy algorithm
tracks the global as well as the local energy efficiency readings and switches off the access points not
needed until the rising trend of global energy efficiency ceases. Simulations have been carried out
using a layout of macro and pico cells showing about a three-fold increase in the reported Channel
State Information (CSI). Furthermore, authors in [39] have demonstrated the EE gains in a dynamic
six-sector BS, capable of operating at either one or a maximum of all the sectors fully functioning, to be
up to 75% as compared to the case of an always on approach.

In [9], a case study of infrastructure sharing between different operators has been presented
as well. Service level agreement between the participating operators is defined and handled by
multi-objective optimization methods. In such a shared environment, QoS should go hand in hand
with fair resource utilization. Authors have specifically considered the case of obeying operator
specific energy and spectral efficiency criteria along with the global spectral and energy efficiency
maximization. The most prominent outcomes of this research are the global energy and spectral
efficiency maximization in a shared noise-limited environment and the application of the framework to
a network shared by any number of operators each serving different numbers of users and an optimal
fulfillment of utility targets. Detailed mathematical analysis has been presented for system modelling
with noise and interference constraints. SINR equations, which originally were used as a starting
point, were thus gradually modified by incorporating weighting factors for influencing the priorities.
This model turns out to be working in a polynomial complexity and maximizes the given objective
function. Moreover, maximum and minimum bounds have been enclosed. In the paper, authors have
presented the application of the mathematical tools by presenting the case of a base station installed in
a crowded place such as an airport or shopping mall where the site owner is the neutral party and
the frequency resources are either pooled or one of the operators grants some of his portion to others.
Firstly, the case of two operators has been presented when they do not have any global constraints and
the multi-objective problem set of noise limited scenario would be used. Secondly, site owner restricts
the interference level or the global energy efficiency for both the operators and both of them target a
minimum QoS constraint. Thirdly, there would be three operators with the same condition as of the
first case. The work has laid the foundation to establish the criterion for the energy-spectral trade off
in a single/multi carrier scenario.

4.2. Energy Efficient Resource Allocation in NOMA

In 5G, attempts have been made to possibly explore the area of non-orthogonal multiple
access (NOMA), employing power control for saving resources in both time and frequency domain.
This concept is highlighted in the following Figure 5. Operators would benefit from this technique
by getting to serve the maximum number of users within the same frequency band, thus improving
spectral efficiency [41]. This research area has been active for a while now for the reasons of increasing
the network capacity and improving the data rates. An intelligent coordination among the base stations
must be in place for maximum utilization of the available overall network energy. This corresponds to
the fact that the harvested green energy has mostly been volatile, and a constant input source could
not be guaranteed. For this reason, a detailed mathematical model has been presented for the power
control of the UEs being serviced for minimizing interference as much as possible. A comparison of
user association based genetic algorithms against a fixed transmit power was drawn. NOMA based
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techniques were demonstrated to outperform the conventional techniques for EE improvement for a
larger number of nodes. The application was extended to a two-tier RAN having a macro base station
covering a region of several pico base stations, being powered by both green and conventional energy
sources. The proposed mathematical model uses a ratio of the network’s data rate over the entire
energy consumption as the network utility. Incorporation of improved user association techniques
were suggested in [42] for improvement of user throughput and error containment in NOMA. In [43],
authors presented the mathematical feasibility for the utilization of successive interference cancellation
at the receiver side. The signal that is being processed considers others to be noise, cancels them out
and its iterative nature aims to decode all of them. With an increase in the number of transmitters
having a fixed SINR, a linear relationship has been observed. On the other hand, this formulation
might lead to a saturation point for the explosive number of IoT devices.

The authors in [44], have taken an interesting approach for a fair comparison of NOMA and a
relay-aided multiple access (RAMA) technique and a simulation was carried out for maximization of
the sum rate. It was established via mathematical formulation that sum rate is an increasing function
of user’s transmission power and for the cases of a high data rate demand of the farthest user, NOMA
proved to have maximized the sum rate. Distance between the users has been a key figure and with
an increased separation between them, NOMA provides maximum rates whereas for the smaller
separation relay-based setup provides a good enough sum rate. Authors in [45] have endorsed the
advantages of nonorthogonal multiple access (NOMA) for the future radio access networks. Apart
from the fact that the technique aids in getting a better spectral efficiency, authors instead have analyzed
the feasibility of acquiring a better energy efficiency out of it as well. Considering the example of one
base station serving two users, relationships between SE and EE have been observed which reflects that
NOMA can potentially regulate the energy within the network by the allocation of more bandwidth to
a cell center user in the uplink and more power to the cell edge user in the downlink. Considering
the potential of NOMA, the problem was tackled with respect to its deployment scenario for the
maximum exploitation. For a single cell deployment, EE mapping against resource allocation was
considered as an NP hard problem because each user would be competing for the same radio resource,
however, user scheduling and multiple access methods would aid for improving this situation. For
the network level NOMA, a joint transmission technique could be beneficial for organizing the traffic
load on the radio links and users must be scheduled accordingly when it comes to energy harvesting
to keep the users with critical needs prioritized. Lastly, Grant free transmission has been studied
for saving the signaling overhead, as soon as the user acquires data in its buffer it should start the
uplink transmission and selection of the received data would be based upon its unique multiple access
signature. Multiple access signature is deemed to be the basis of this proposal, but the signature pool
must be carefully devised with an optimal tradeoff between the pool size and mutual correlation.
It would greatly help for collision avoidance and detection. The users remain inactive for cutting
down on the grant signaling and hence more energy is typically conserved. The proposed hybrid
technique transitions between grant free and scheduled NOMA based on the current traffic load which
eventually lowers down the collision probability and improves latency. In contrast with the above
works that have discussed the use cases of caching in orthogonal multiple access (OMA), authors in
[46] explored index based chaching instead of superposition chaching while adopting a sub optimal
user clustering technique for significant reductions in the transmitted power while using NOMA.
Owing to the enormous number of users, optimal user clustering was discouraged and user association
based upon their differences in terms of link gain and cached data was suggested instead. The iterative
power allocation algorithm was demonstrated to converge after several iterations.
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Figure 5. Concept of non-orthogonal multiple access (NOMA) technology.

4.3. Energy Efficient 5G Outdoor-Indoor Communication

The research in [47] discusses a use case of shared UE side distributed antenna system for
indoor usage where a combination of distributed antenna and MIMO technology is used for getting
enhancements in the coverage area and utilization of unlicensed frequencies for accommodating more
users. The use of both licensed as well as unlicensed bands simultaneously needs a redesign of the
current resource allocation algorithms [47]. In this work, resource allocation has been considered
to be a non-convex optimization for increasing the end to end energy efficiency. The suggested
topology demands installation of a shared UE side multiple antenna hardware between a single
antenna base station (outdoor) and arbitrary number of single antenna UEs (indoor) which are called
shared user equipment (UE)-side distributed antenna system (SUDACs). These SUDACs would be
able to communicate the channel information with their neighbouring SUDAC units installed. In
contrast with the relaying in the LTE-A system, SUDACs could be installed at different locations by the
users and still be able to operate in both licensed and unlicensed bands simultaneously. The problem
statement boils down to defining the energy efficiency in terms of the bits exchanged between base
station and the UEs via SUDACs per joule of energy. It has been shown in [47] that application of this
model exploits the frequency and spatial multiplexing of UEs and increases the system efficiency as
compared to the case when SUDACs is not involved.

4.4. Energy Efficient Virtualization in 5G

Virtualization has been a very sought out way of reducing the time to market for the newer mobile
technologies but with the emerging technological trends it might be a very useful way forward for
reducing the energy consumption. In this case, hardware would serve as a bare metal for running
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multiple applications simultaneously for saving up on the cost of additional deployments of dedicated
hardware and software components [48]. Most of the functions previously deployed on dedicated
hardware would now be rolling out as software defined network functions thus promising scalability,
performance maximization and mobility with in the cellular network. The virtual network architecture
described in [50] lays out the interconnection between several virtual as well as the physical units being
interconnected to form a larger system. A generalized 5G architecture incorporating virtualization
has been illustrated in Figure 6. The smooth integration of different technologies with virtualized
environment thus becomes the key of reaping the expected efficiency outcomes. Resource and
operations management plays a vital role in actively regulating the system for a fine tuned state
of execution that helps mitigate issues including redundancy and keeping the operating expenses
under control. Furthermore, usage of an openflow switch would come in handy for efficient packet
traversal within the network. Significant advantage in terms of reduced energy consumption of
about 30% have been experienced by incorporating the current architecture with Network Function
Virtualization (NFV). Authors have assumed an ideal case scenario that the virtual BBU will not
consume any energy when it stays idle and also the advantage of the enormous computational pool in
the form of cloud have been used.

Authors in [49] presented the significant energy conservation advantages of having virtual nodes
in both access as well as the core network instead of having the physical nodes for executing only
a single function. The proposed topology suggests baseband pooling for higher performance in the
cloud, a direct gigabit optical connection from the remote radio heads to the core network and an
even distribution of the core network nodes. The nearest available core network node would then be
the one responsible of serving the incoming requests from the respective radio heads. The proposed
architecture boasts the flexibility of resource distribution by having a single node running multiple
virtualized access/core network functions e.g., serving gateway, packet gateway, etc. and the readiness
of activating these functions wherever needed based on the work load. A visible gain of about 22%
was recorded using mixed integer linear programming for modelling the work load across the nodes
and both the core and access network were virtualized. Apart from the EE gains, a higher performance
would also be achieved because of a reduced distance between the node requesting and the node
serving the request. Research in [51] extends the same idea where the EE gains are deemed to be higher
with an increased number of virtual function deployments in the access network which typically
consumes more energy, about 70% of the entire demand of the end to end network. The suggested
topology entails gigabit optical connectivity as the fronthaul technology instead of the Common
Public Radio Interface (CPRI) connection between radio and baseband units. This brings out more
deployment opportunities for the virtual machines by having more active nodes closer to the user.
Authors documented a gain of about 19% with the proposed architecture. According to the authors
in [52], existing RAN architecture needs modification for meeting the upcoming traffic demands.
Baseband unit has been decomposed into two main parts, namely distributed unit and a central unit.
Both units find their optimal placements either close to the users for serving the low latency demands
or in remote areas for providing a pool of computational power. Mobile edge computing uses the
same concept and NFV proves to be an enabling technology to use it to its full potential. The network
layout comprises upon active antenna units and the central office for edge and access computation.
Mobile edge computing units were housed along with the distributed and the central units and was
the aggregator for the traffic. Both latter functions were virtualized on general purpose processors
and finally the electronic switch was responsible for the traffic routing. Simulations conducted on
this topology have revealed about 20% power saving as compared to the case of fixed deployment
of hardware units. Moreover, Reference [53] also supports the idea of flexible centralization of RAN
functions of small cells. Prominent outcomes would comprise upon interference mitigation in a dense
deployment and reduced radio access processing. Authors in [54] devised an analytical model for
calculating the optimal number of active operator’s resources. Dynamic Auto Scaling Algorithm, or
DASA, was envisioned to provide a way for operators to better understand their cost vs performance
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trade off and authors have thus used real life data from Facebook’s data center for a realistic estimation.
On top of the already established legacy infrastructure comprising mainly upon mobile management
entity, serving gateway, packet gateway and the policy & charging function, 3GPP has now proposed
specifications for a virtualized packet core providing on demand computational resources for catering
to the massive incoming user requests. A comparison was drawn between the consumed power and
the response time of the servers for the jobs in a queue by varying different factors including total
number of virtual network function (VNF) instances, total number of servers available as well as the
rate of the incoming jobs, total system capacity and the virtual machine (VM) setup times. Trends
recorded from the plots have signified the saturation point of the system and have paved a way for
operators to optimize their infrastructure to be robust without taking in more power than needed.
Similarly [55] extends the above mentioned approach by taking into account the rejection of incoming
requests in case the saturation point has been reached. A more realistic framework was presented that
incorporates either dropping the jobs from the queue or even blocking them out from being registered
until some resources could be freed up.

Figure 6. A ’virtualized’ 5G architecture.

5. Review of SDN Technology for Enhancing EE

5.1. Energy Monitoring and Management in 5G with Integrated Fronthaul and Backhaul

The impact of software defined networking (SDN) on energy-efficiency was explored in [56].
The tremendous increase in the user density in a given area not only demands an energy efficient
hardware but also demands for certain modifications in the control plane. Energy Management and
Monitoring Applications (EMMA) were designed for observing the energy consumption in fronthaul
as well as the backhaul network constituents. A monitoring layer was implemented over an SDN
controller which observes the underlying operational domains including mmWave links and analogue
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Radio over Fiber technology (RoF). This topology is shown in Figure 7. The energy management
framework was extended to provide analysis on virtual network slices as well by gathering the real
time power consumption data of a server by a power meter installed with it and then incorporating it
with the respective flows. EMMA is based upon a SDN/NFV integrated transport network using a
Beryllium framework and supports features including energy monitoring of the access network and
the optimization of power states for the nodes. Furthermore, an analytics module provide statistics
on the traffic consumption by the currently ongoing services, Provisioning manager would help in
setting up new network connections and dynamic routing of connections for the ongoing sessions
based upon the energy aware routing algorithms. Authors have envisioned EMMA as a fronthaul
technology for providing coverage for high speed trains. It comprises upon a context information
module for collection of data for mobility, a statistics module for storing the contextual data and
updating it regularly, and lastly the management module for consuming this data and making real
time moves in the network by switching on the nodes as the train approaches and switching them off
when it leaves. Significant energy savings ranging between 10 to 60% were demonstrated using the
real life data by switching on the nodes exactly when needed and keeping them asleep otherwise [56].

Figure 7. Energy Monitoring and Management via software defined networking (SDN).

5.2. Utility of Sleep Mode Energy Savings

In [57], authors discussed about getting benefited from the separated control and data planes in
a heterogeneous network. Since this concept was not used in the previous generation of networks,
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further exploitation of this feature is expected to yield significant energy reductions. It was proposed
that control plane communication would be done via low frequency macro cells and data plane
information exchange would take place through high frequency femto cells. Detailed statistics about
the daily traffic load and information about the kind of base stations deployed were tabulated. The
application of the regular cell switch off technique especially in the off peak hours would yield reduced
energy consumption of up to 48%. On the other hand, incorporation of power modulation at the
femto cells would keep them operational and would yield energy savings of up to 27%. If the extreme
isolation of control and data plane could be relieved then the macro cell would be able to serve the
users with not just the control signaling but also with data transfer at low frequencies, resulting in
a higher percentage of energy savings in the network. In addition to this concept, Reference [64]
discusses the possibility of achieving 50–80% energy savings by incorporation of the energy aware
heuristic algorithms.

6. Machine Learning Techniques for Energy-Efficiency in 5G

Recently, machine learning techniques have been employed to various areas of wireless networks
including approaches to enhance energy efficiency of the wireless network [58]. A typical example
would include a smart transmission point, such as the one shown in Figure 8 that would evolve itself
overtime by its observations.

Figure 8. Dissection of a smart antenna.

In [59], the authors proposed switch-on/off policies for energy harvesting small cells through
distributed Q-learning. A two tier network architecture was presented for discussion on on-off
switching schemes based upon reinforcement learning. It is assumed that small cells are equipped
to get their associated macrocell to transfer its load over to them and they themselves would rely
upon the harvested energy, for example, solar energy. Application of Q-learning enables them to
learn about the incoming traffic requests over time so they could tweak their operation to an optimal
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level. The proposed scenario includes a macro cell running on electricity and small cells running on
solar energy with a distributed Q learning technique being used to gain knowledge about the current
radio resource policies. Reward function for the online Q-learning proposes to turn off the small cells
if users experience higher drop rates or use the ones that would already be on to take the burden
from the macro cell. On the other hand, authors in [60] devised a novel EE and E2E delay duty cycle
control scheme for controllers at the gateway of cellular and capillary networks. Formulation of a duty
cycle control problem with joint-optimization of energy consumption and E2E delay was addressed
followed by the distributed duty cycle control scheme.

In [61], the authors highlighted a distributed power control for two tier femtocell networks
with QoS provisioning based on q-learning. Power control in the downlink of the two tier femtocell
network was discussed and an effective network capacity measure was introduced for incorporating
the statistical delay. Self-organization of small cells was also discussed with the perspective of
Q-learning and utilization of a non cooperative game theory [61]. The proposed system model involves
a macro base station covering several femtocells in its vicinity, each of them serving their own set
of users. Expressions for SINR for both macro and femto cell users were also documented [61]. For
the consumer’s energy efficiency, Pareto optimization was opted for as compared to the traditional
multi-user scenarios, focusing on a system level energy efficiency instead.

Meanwhile in [62], the deployment of macro and pico base stations were made similar to the above
scenario. However, the random deployment of femto BS by consumers cause interference problems
and cognitive radio technology was put together with these femto BS for an improved spectrum
access. Spectrum sensing techniques provide benefits for UL transmission since the femto cells are
power limited as compared to the macro cells. Detailed mathematical analysis for spectrum sensing
techniques using both hard and soft decisions were demonstrated in [62]. Authors formulated objective
functions in such a way that although they are computing optimal power allocation for the users, the
whole scheme incorporates constraints for energy efficiency maximization. In [63], the authors also
use machine learning techniques for energy-efficient resource allocation in 5G heterogeneous cloud
radio access network. Cloud radio access networks are considered as a key enabler in upcoming 5G
era by providing higher data rates and lower inter cell interference. It consists of both small cells
and macro base stations for accommodating more users, providing them with superior quality of
service and for enhancing coverage area respectively where resources are scheduled through a cloud
RAN. A resource allocation scheme was put together with the aim of maximizing energy efficiency of
UEs served by the radio heads while minimizing inter tier interference [63]. Available spectrum was
divided into two resource blocks and assigned to different UE groups depending upon their location
and QoS demands. A central controller interfaced with the baseband unit pool gets to learn about the
network state through the interfaced macro base station and then take certain actions needed for energy
efficiency optimization. Furthermore, compact state representation was utilized for approximating
algorithm’s convergence. The resource block as well as the power allocation with respect to energy
saving in the downlink channel of remote radio heads in accordance with the QoS constraints has
also been documented. Since the given model depends upon the prior UE knowledge for it to make
transitions for optimization, Q-learning was proposed to practically model the objectives and system
specifications. The resource allocation is mainly carried out at the controller in the BBU pool and the
control signalling is carried out via the X1 and S1 links. The hierarchy of UEs and RRHs operate under
macro base station and convey their states to the controller.

7. Challenges and Open Issues

In accordance with the increase in the computational demand from the base stations, in the
upcoming 5G networks, energy efficiency needs to be scaled up by 100–1000 times in contrast with
the traditional 4G network [1]. Since the transmission ranges would have been scaled down due
the dense small cell deployment, the energy efficiency evaluation will potentially revolve around
the computational side as compared to the transmission side previously. Storage functions for local
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data caching should also be considered in this evaluation, since it would potentially be common
in the forthcoming networks. Scheduling schemes should be enhanced to involve an optimal
number of antennas and bandwidth for resource allocation. The trade-off between transmission
and computational power should be optimized considering the effects of the kind of transmission
technology involved. Software Defined Networking might be a potential fix for this issue, yet
it needs further exploration. Moreover, authors in [65] proposed the intermediate delays from
source to destination to be incorporated in the energy efficiency formulation for an even more
realistic estimation.

Most of the ongoing research has been discussing energy efficiency from a lot of different
perspectives but so far a unifying approach has not been reached. Green Touch project has taken such
an initiative but more exploration is needed for a stronger understanding [2].

With the explosive small cell deployment, 5G network would be interference limited so orthogonal
transmission techniques might not be practical. The framework of sequential fractional programming
might be extended for energy efficiency optimization with affordable complexity as suggested in [9].
Random Matrix theory and stochastic geometry appear as suitable statistical models for evaluating the
randomness within the wireless networks, but a thorough research on energy efficiency needs to be
conducted employing these tools.

Finally, the avenue of self-learning mechanisms is still less explored. Since local caching has
been considered a potential answer for reducing the load on backhaul networks, novel approaches
including this consideration need to be developed.

8. Conclusions

In this paper, we provide a survey of the state-of-the-art in energy-efficiency efforts in 5G.
These new studies touch on several novel paradigms such as new radio, NOMA, ML-driven techniques
and cache-enabled networks. Although there are several studies surveying the literature, our paper
provides a clear classification of the proposed techniques with in-depth comparison. The paper is
expected to be a road map for researchers in this field.
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