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Preface to ”Symmetry in Special and 
General Relativity”

Symmetry has played a crucial role in the development and exploration of special and general 
relativity. The articles in this Special Issue focus on Lorentz symmetry while also highlighting some 
of the diverse roles that symmetry plays in these theories.

The first article provides some pedagogical introduction to ideas of symmetry and symmetry 
violation. The next set of articles focus on Lorentz and CPT symmetry in flat spacetime. 
They provide, respectively, a review of the phenomenology of Lorentz violation searches in atomic 
systems, new limits on Lorentz violation from Penning trap experiments, some formal theoretical 
tools for the study of Lorentz-violating fermions, and presentation of the first evidence of single-

antiparticle interferometry. The final three articles shift attention to general relativity, providing, 
separately, new limits on Lorentz violation from binary-pulsar observations, a study of plane 
gravitational waves in the presence of Lorentz violation, and an illustration that care must be 
exercised in using symmetry to extract solutions from the theory.

Jay Tasson

Special Issue Editor
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Abstract: Physics students are rarely exposed to the style of thinking that goes into theoretical
developments in physics until late in their education. In this work, we present an alternative to the
traditional statement of Newton’s second law that makes theory questions accessible to students
early in their undergraduate studies. Rather than a contrived example, the model considered here
arises from a popular framework for testing Lorentz symmetry used extensively in contemporary
experiments. Hence, this work also provides an accessible introduction to some key ideas in ongoing
tests of fundamental symmetries in physics.

Keywords: Lorentz symmetry; rotation invariance; Standard-Model Extension; Noether’s theorem

1. Introduction

Is Newton’s second law obvious? Some introductory physics students respond in the affirmative.
The idea that a force applied to a body results in an acceleration in proportion to the (constant) mass
of the body seems to them a clear description of the way nature must work. Here, we argue that
the answer ought to be “no”. We do so by developing a model that contains violations of rotation
invariance. Though we develop the model from basic Newtonian-physics considerations, we arrive at
the Newtonian limit of a quantum-field-theory based test framework known as the Standard-Model
Extension (SME) [1–3]. The SME has been used extensively in searching for violations of Lorentz
symmetry (invariance under boosts as well as rotations) in nature [4] with the goal of finding evidence
of new physics, such as string theory [5,6].

The construction of physical theories can be thought of as a logical structure, which begins with
primitive notations or undefined terms, defines additional concepts from them, and then makes
assumptions about how the concepts (defined and undefined) behave. These assumptions are then
tested against experimental and observational data to see if the theory so constructed is a description
of a physical effect. It is sometimes hard for students and physicists alike to see theories like Newton’s
laws, which have been around a long time, as fitting this form. This difficulty can make studying
the subject feel separate from doing modern science. Newton’s laws have also been identified as
a particularly challenging example of physical theory [7]. Presenting students with viable alternatives
to standard Newtonian theory can help bring the thought processes involved in doing theoretical
physics into the undergraduate classroom.

Old ideas in physics can also be difficult to test because physicists have trouble imagining
how to do physics without them. Those new to the field of Lorentz-symmetry testing must work to
imagine nature without perfect Lorentz symmetry. Rotation invariance is more visual than boost
invariance, and it can be readily explored with Newtonian physics. Hence, one can build intuition for
symmetry violation with the Newtonian limit of contemporary models of Lorentz-symmetry violation.
Testing Lorentz symmetry is an active area of contemporary physics research, and this work provides
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an accessible introduction to some of its foundational ideas for undergraduates and those new to
the field.

In this work, we develop an alternative version of Newton’s second law by lifting the assumption of
isotropy. In Section 2, we develop the rotation-invariance-violating model from Newtonian considerations,
and we address the use of such models in stimulating classroom discussion about the theoretical-physics
aspects of Newton’s laws. Section 3 introduces the idea of the SME and discusses how our alternative
version of Newton’s second law fits into it. In Section 4, we explore an example that provides some
intuition for how to do physics with the alternative law as well as for how tests of spacetime symmetries
are developed. Finally, Section 5 demonstrates the connection between spacetime symmetries and
conserved quantities using our alternative Newton’s second law as an explicit example.

2. Alternative Newton’s Second Laws

A common statement of Newton’s second law found in introductory physics courses proceeds
as follows: the net force �F applied to a body is proportional to the acceleration �a of that body.
The proportionality factor, typically taken as constant at this stage, is known as the mass m. The easiest
way to imagine an alternative to Newton’s second law is to provide a more general form that reduces
to the original in some limit. In this section, we consider such examples.

We frame these alternatives in the language above with unaltered force laws such that the simplest
limits of our examples may be accessible to students at this level. There are a variety of interpretations
of Newton’s second law [8]. Hence, some readers might prefer to use �F = d�p

dt as the definition of
Newton’s second law, while recasting the examples to follow as proposed alternative forms for the
conserved momentum. Others might wish to interpret the effects we consider as changes to the force
laws. We address some of these possibilities in the sections to follow.

Consider first a rotation-invariance-violating (RIV) model with a constant mass. Suppose one
applies a given force to a body at rest. One could imagine, for example, that our standard force
is defined by stretching a given spring a particular distance. Suppose that the body experiences
an instantaneous acceleration a in response to our applied force. Now, suppose that the system
is rotated 90 degrees, such that our standard force is applied in a new direction, and in the new
configuration a different acceleration, a′, results. If such an observation were made, one could imagine
modeling it with two Newton’s second laws, one for the east–west direction

F = ma, (1)

and one for the north–south direction
F = m′a′, (2)

with bodies now having two properties, east–west mass m and north–south mass m′. This is a clear
violation of rotation invariance. One is then faced with the question of what happens when the system
is rotated, not by 90 degrees, but by some other angle. The natural extension is to write Newton’s
second law in the form

Fj = mjkak, (3)

where Einstein summation convention has been used. In this model, we take mjk as symmetric.
While one can consider antisymmetric contributions to mjk here at the level of Newton’s second law,
such contributions prevent the definition of a kinetic term and hence such models appear to lie outside
of action-based theory. We also assume this matrix is invertible. Under these conditions, one finds that
forces exerted along three special directions produce accelerations aligned with the force while forces
exerted in other directions produce no such alignment. Note that coordinates can always be found
that diagonalize the matrix. In these special coordinates, forces aligned with the coordinate axes will
produce accelerations aligned with the force and the full model reduces to the original idea introduced
in Equations (1) and (2).
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Introducing this model to students in mechanics courses produces stimulating discussion that
simulates the thinking that happens in theoretical physics. Such discussions can be provoked by asking
questions such as, “is this alternative experimentally viable, or has it been ruled out?”, “is it internally
consistent?”, or “how could it be distinguished experimentally from the ‘usual’ form?”. Depending
on the level of the course, the presentation can be simplified by using matrix form, and/or using
diagonalizing coordinates up front.

Though it has not been confirmed by experiment to date, the RIV model is not pure fiction as it
has a clear connection to ongoing efforts in contemporary physics as we discuss in the next section.
Such connections can be used to bring recent literature into the classroom. Using notation suggestive
of the development to follow, the RIV can be rewritten in the form:

Fj = m(δjk + 2cjk)ak. (4)

Here, an overall factor m equal to 1/3 of the trace of mjk has been pulled out of mjk, and the
remaining matrix has been written as the identity (Kronecker delta) plus a traceless matrix 2cjk.
Though we could always choose to write mjk in the form above, this form is particularly convenient
when thinking of cjk as a small anisotropic correction to the usual isotropic mass as is typically
demanded by existing experimental constraints such as spectroscopy measurements. This form also
makes it clear that the model will always be viable for sufficiently small cjk.

The discussion around physical theories and Newton’s second law in mechanics courses can be
further enhanced by introducing additional examples, which, rather than rotation invariance violation,
introduce other modifications. Consider a proportionality factor between the force and acceleration
that is a function of some quantity, say the velocity. Hence experimentally, when the same force is
applied to a given body (in the lab frame), different accelerations result depending on the velocity the
body has at the instant when the force is applied. Consider the following example:

Fi = m
(

γδij +
1
c2 γ3vivj

)
aj, (5)

where
γ =

1√
1 − v2

c2

, (6)

and c is a constant with units of velocity. Note that in the limit v << c, this alternative would be
experimentally indistinguishable from the ordinary case. Hence, for a sufficiently large value of c,
this model would remain experimentally viable even if no such velocity dependence were present
in nature. Some readers may recognize Equation (5) as a special-relativistic version of Newton’s
second law [9] common in undergraduate treatments [10]. Introducing this result, or perhaps more
appropriately one of its simpler limiting forms such as the case where �v and�a are aligned,

F = mγ3a, (7)

to students not familiar with special relativity (without saying initially that it’s special relativity)
produces another model to which the above discussion questions can be applied. Moreover,
it demonstrates convincingly that the original notion of Newton’s second law is not obvious. For the
implication involved in calling something obvious, is that it is obviously right. Since Equation (5) is
more correct than the original version, it seems that the original version cannot be obvious. Note that
Equation (5) fits the basic form of Equation (3), but the mjk are no longer constant. Note also that,
although this match can be made, the directionality in the effective mass in the case of Equation (5)
originates from the velocity of the particle in the lab frame, rather than a fundamental violation of
rotation invariance. This distinction can be further clarified using the methods to follow in Section 4.

3
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3. The Standard-Model Extension

Among the most fundamental goals of contemporary theoretical physics is the unification of the
gravitational interaction with the other three interactions in nature into a single quantum-consistent
theory. Several decades ago, the realization that some such unification efforts could generate violations
of Lorentz symmetry [5,6] triggered an intense renewed interest in tests of this fundamental spacetime
symmetry [4] and the development of a comprehensive test framework for organizing the search [1,2].
This framework is the SME. The idea behind the SME is to add all Lorentz-violating terms to the
equations of known physics to form a structure similar to a series expansion about our current best
theories. The additional terms can then be sought in experiment. Though the SME expansion is
quantum field theory based, the idea is analogous to the addition of cjk to Newton’s second law in
Equation (4). One could imagine a researcher in Newtonian times proposing Equation (4) as a test
framework for deviations for Newtonian physics and seeking cjk in experiments. Such an effort could
in principle have discovered either of the models of Section 2. This connection is more than an analogy
as the RIV model arises as a subset of the Newtonian limit of the SME. In the remainder of this section,
we provide some comments on the connections between the RIV model of Section 2 and the SME,
and provide some SME-inspired insights on the RIV model. Some more advanced discussion of the
SME is provided in the Appendix A.

In developing the RIV model, we simply imagined the motion of a particle governed by different
masses when moving in different directions as modeled by the matrix mjk or equivalently cjk. However,
one can visualize objects such as cjk as providing an anisotropy [11] to empty spacetime itself, and the
existence of such a condensate of tensors in empty spacetime can be triggered by spontaneous
symmetry breaking [12] in analogy with the scalar Higgs field in the Standard Model. The background
ovals in Figure 1 illustrate this background condensate.

Figure 1. Block on an inclined plane with gravitational field �g and background field cjk: (left) the
systemwith the original coordinates (unprimed) and the observer-rotated coordinates (primed); (right)
the particle rotated system with the original coordinates. In each case, �g points toward the center of
the Earth.

Via the SME connection, it is straightforward to read off the current experimental limits [4] on how
anisotropic the mass in the RIV model can be. The current limits on cjk would permit mass anisotropies
(differences in inertia among experiments performed in different directions) at roughly the parts in
1017 level in Newtonian experiments in an Earth-based laboratory with conventional macroscopic
matter. The least constrained contribution to this number comes from the electron contribution in
matter as limited by ion trapping and atomic spectroscopy experiments [13,14]. Proton and neutron
contributions are more tightly constrained by a number of tests. Magnetometer experiments [15,16],
a type of clock comparison [17–20], are currently the most sensitive.

4. An Example

In this section, we consider one of the most famous examples in physics, the problem of a block
on an inclined plane without friction, as a simple example that illustrates some of the interesting

4
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features that arise when Newton’s second law is generalized to allow rotation-invariance violation [21].
In addition to providing some intuition for the RIV model, the example is of interest for several
reasons. It provides what is perhaps the simplest example of some of the conceptual challenges that
arise throughout the field of spacetime symmetry testing, some of which are quite foundational to
theoretical-physics work more broadly. It is also an interesting example for mechanics students because
it forces one to apply a theory without relying on potentially erroneous intuitions.

4.1. Basics

We begin with the simplest case as a starting point for working with nontrivial mjk and as a point
of comparison for the extensions to follow. This simplest case is generated when the problem is
aligned with the background such that the coordinates that diagonalize mjk are aligned with the plane,
as shown in the left-hand diagram of Figure 1, with the x-axis pointing down the plane while the y-axis
is perpendicular to the surface. In such coordinates, the gravitational field vector can be expressed
as follows:

�g = g(sin θx̂ − cos θŷ), (8)

where θ is the angle between the surface of the ramp and the horizontal and g = 9.81 m/s2 as usual.
The gravitational force is then �F = m�g. Solving for the magnitude of the particle’s acceleration down
the ramp (x-component here) under the constraint that the acceleration perpendicular to the ramp is
zero (ay = 0 here) yields

ax = aR = (1 − 2cxx)g sin θ + O(c2), (9)

at leading order in the cjk coefficients, which are known to be small. Note that the only difference
from the conventional case is the presence of cxx, and qualitatively the motion remains the same.
The particle moves down the ramp in a straight line with constant acceleration.

4.2. Rotations

When a spacetime symmetry is present, transforming the coordinates and the observer’s
perspective along with them is equivalent to applying the inverse transformation to the items
that make up a physical system. When the symmetry is broken, these transformations become
inequivalent. Consistent with much of the literature [3], we call the former an observer transformation
and the latter a particle transformation. Physical observables should not be affected by observer
transformations, while physical violations of spacetime symmetries should be apparent by comparing
the results of experiments before and after particle transformations on the experiment. In this section,
we apply both transformations in turn and demonstrate that they produce inequivalent results in
symmetry-violating models.

First, perform an observer rotation on the original experiment as shown in Figure 1 (left); that
is, consider the same problem in new coordinates. Here, we’ll consider a rotation by θ such that the
gravitational field vector now takes the form

�g = −gŷ′. (10)

Schematically, the effective inertial mass will take the form

mj′k′ = m

⎛⎜⎝ 1 + 2cx′x′ 2cx′y′ 0
2cx′y′ 1 + 2cy′y′ 0

0 0 1 + 2cz′z′

⎞⎟⎠ . (11)

5
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Again solving for the acceleration down the ramp subject to the constraint that the perpendicular
acceleration is zero yields the components of the acceleration in the new coordinates, which take
the form

ax′ = (1 − 2cx′x′ cos2 θ − 2cy′y′ sin2 θ + 4cx′y′ sin θ cos θ)g sin θ cos θ + O(c2), (12)

ay′ = −(1 − 2cx′x′ cos2 θ − 2cy′y′ sin2 θ + 4cx′y′ sin θ cos θ)g sin2 θ + O(c2). (13)

However, this is precisely the acceleration down the ramp found in Equation (9). The match can
be made explicit by expressing the components cj′k′ in terms of the components cjk via the application
of an appropriate rotation matrix:

mj′k′ = Rj′ jmjkRk′k (14)

and noting that the acceleration is still purely down the ramp with magnitude aR =
√

a2
x′ + a2

y′ . Hence,

this example explicitly maintains observer rotation invariance, with both observers agreeing on the
outcome of the experiment.

A particle rotation here means that we should pick up and rotate the elements of the experiment
(the block, the plane, and the Earth) leaving the coordinates unchanged as shown in Figure 1 (right).
Hence, the components of the gravitational field vector change while the components of the background
remain the same as we continue to use the original unprimed coordinates that made the mass matrix
diagonal. Solving for the motion of the particle in this new rotated configuration yields

ax = (1 − 2cxx cos2 θ − 2cyy sin2 θ)g sin θ cos θ + O(c2),

ay = −(1 − 2cxx cos2 θ − 2cyy sin2 θ)g sin2 θ + O(c2). (15)

Here, the magnitude of the acceleration along the ramp is

aR = (1 − 2cxx cos2 θ − 2cyy sin2 θ)g sin θ + O(c2). (16)

Note that this is different from the earlier cases, revealing observable spacetime-symmetry
violation. The idea of rotating an experiment illustrated above is a common way of searching for
Lorentz violation, most often (though not exclusively) taking advantage of Earth’s rotation.

4.3. Discussion

Note that in the above example the form of cjk (as with all vectors and tensors) is coordinate
dependent, while physical results are not. This is a general feature. The form of the coefficients for
Lorentz violation change under coordinate changes (observer rotations and boosts). Hence, when
reporting experimental results, it is convenient to pick a standard frame such that all researchers give
the measured coefficients the same name. This standard frame is discussed in Ref. [4]. Occasionally,
coordinates can be found that make the symmetry-violating background look special. Such coordinates
are sometimes called a preferred frame. The coordinates that diagonalize cjk above can be understood
as an example. Often the idea of a preferred frame refers to coordinates in which the physics is
rotationally invariant and only boost-symmetry is violated. In general, such preferred frames cannot
be found and models in which they exist are special limits of general Lorentz-violating theories.

Some readers might wonder why the mass in the gravitational force law is taken as normal here
as opposed to replacing it with mjk as well. There are several related reasons for this choice. First,
the mass in Newton’s second law and the mass in the law of gravitation reflect two rather different
properties in the context of Newtonian physics: the inertia of the body (inertial mass) and the amount
of interaction with the gravitational field (gravitational mass). The notion that that inertial mass
and gravitational mass are the same is key to the Weak Equivalence Principle [22] and a part of the
foundation of General Relativity. Particle-species dependent Lorentz violation typically introduces
effective Weak Equivalence Principle violation [23]. Possible violations of the Weak Equivalence

6
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Principle are the subject of much ongoing experimental work [24]. Hence, at this level, independent
decisions can be made about their structure.

Second, if the gravitational force contains the same anisotropic effects as the inertial mass,
the effects cancel. Hence, even though the equations look more complicated, no observable anisotropy
is present in the theory and the laws so written are equivalent to the standard laws. This highlights
one of the pitfalls of spacetime-symmetry testing and perhaps of theoretical work more generally:
just because a theory is written in a different form this does not necessarily imply a difference in its
physical predictions.

Finally, as a limit of the SME, cjk appears only as an effective modification to the inertial mass
and not as a modification to the gravitational mass at this level [23]. Another symmetry-violating
background in the gravitational sector of the SME quantifies possible Lorentz violation in the
gravitational field [25]. In the Newtonian limit, this background generates effective anisotropy of the
gravitational mass. It has been shown that a coordinate change can remove the relevant part of cjk
from the description of matter, while simultaneously causing it to appear in the gravity sector as an
addition to the gravitational field anisotropy [23]. If a special proportionality exists between cjk and
the gravitational sector anisotropy, the coordinate redefinition can remove all anisotropic effects from
the theory, a result compatible with the cancellation from the Newtonian limit noted above. We note in
passing that experimental investigations of gravitational-sector Lorentz violation are also of interest.
Recent work by the LIGO, Virgo, Fermi GBM, and INTEGRAL collaborations has placed impressive
new constraints via measurements of the speed of gravitational waves [26]. Readers might also have
wondered if the spring force law could have been modified instead of the mass during the motivating
comments of Section 2. In certain cases, the answer is yes, as these choices are related by a coordinate
change analogous to the gravitational force discussion above.

5. Noether’s Theorem

Continuous symmetries and conservation laws are intimately connected by Noether’s theorem [27].
Since the RIV model violates rotation invariance but maintains spacetime translation invariance, it lacks
angular momentum conservation while retaining energy and momentum conservation. In this section,
we provide a specific and familiar example that highlights these implications of Noether’s theorem.

The system under consideration is a dumbbell composed of a rigid massless rod of length 2l and
two identical point masses mjk in the RIV model. The system is constrained to the x–y plane with the
origin at the midpoint of the system. This set up is a simplified model of the standard “ice-skater-spin”
lecture demonstration in which a student spins on a stool holding masses in outstretched arms [28].
For convenience, we work with the Lagrangian formulation. In the RIV model, the kinetic energy T of
each mass takes the form

T = 1
2 mjkvjvk. (17)

For the system in question, the Lagrangian, the Hamiltonian, the kinetic energy, and the total
energy are all equal. Hence, the Lagrangian for the two-dimensional system can be written

L = mθ̇2l2(1 + 2cxx sin2 θ − 4cxy sin θ cos θ + 2cyy cos2 θ), (18)

after implementing the constraints and introducing the plane-polar angle θ in the x–y plane as
a generalized coordinate.

Angular momentum is the generalized momentum conjugate to θ, pθ = ∂L
∂θ̇

. As usual,
the Euler–Lagrange equations

dpθ

dt
=

∂L
∂θ

(19)

imply that pθ is conserved only if the Lagrangian is independent of θ. Calculation demonstrates that
indeed angular momentum is not constant

7
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dpθ

dt
= 2ml2θ̇2 ((cxx − cyy) sin 2θ − 2cxy cos 2θ

)
, (20)

assuming a nonzero angular speed and at least one nonzero component of cjk in the plane of rotation.
We also see on general grounds that energy is conserved since there is no explicit time dependence in L.

To make these conclusions more concrete, we plot angular speed, angular momentum, and energy
as a function of time in Figure 2 for a specific choice of parameters. The equation of motion is
complicated, but lends itself well to numerical solution. For definiteness and simplicity in this example,
we consider the case of cxx = 0.4 with all other components of cjk being zero. This large but still
perturbative value for cjk provides easily visible results in the plot. Calling the initial angular speed

ω0, we plot the dimensionless angular speed Ω = θ̇
ω0

, the dimensionless energy E = L
ml2ω2

0
, and the

dimensionless angular momentum Pθ = pθ

2ml2ω0
vs. the dimensionless time T = ω0t for the initial

conditions θ(0) = 0, Ω(0) = 1. In conventional physics, the skaters pull their arms closer to the
axis of rotation to increase their angular speed and extend their arms to slow their angular speed.
Here, we see the perhaps entertaining result that when rotation invariance is violated in this way,
the angular speed of the skater varies periodically without changes in the skater’s body configuration.
We also see explicitly that energy is conserved while angular momentum is not. An animation of these
results can be found at https://people.carleton.edu/~jtasson/animations.html.

0 5 10 15 20 25

0.8

0.9

1.0

1.1

1.2

1.3

time (T)

Figure 2. Rigid rotor results vs. dimensionless time: dimensionless angular speed (solid), dimensionless
energy (dashed), dimensionless angular momentum (dotted).

6. Conclusions

In this work, we introduced an extension to Newton’s second law that permits a generic
anisotropic mass. We discussed the use of this model in demonstrating foundational ideas in theoretical
physics, and we develop its connection with contemporary efforts to test Lorentz symmetry in the
context of the general test framework provided by the SME. We solved the block on the inclined
plane as an example to make the ideas concrete and the spinning dumbbell as an illustration of the
connection between symmetries and conservation laws. The material presented is useful in teaching
theoretical physics ideas in classical mechanics and as an introduction to contemporary efforts to test
spacetime symmetries.
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Appendix A

As discussed in Section 3, the RIV model arises as a special limit of the SME framework for testing
Lorentz symmetry. In this appendix, we display the SME Lagrange density explicitly such that more
advanced readers may see the origin of the object cjk in Equation (4) at this level.

The SME Lagrange density for a free fermion [1,2] can be written as follows:

L = 1
2 iψ(γν − cμνγμ − dμνγ5γμ + . . .)

↔
∂ν ψ − ψ(m + aμγμ + bμγ5γμ + . . .)ψ. (A1)

Here, Greek indices run over the four spacetime dimensions, m is the fermion mass, ψ is the
fermion field, ψ is the Dirac adjoint fermion field, and the γμ are the Dirac matrices. The action of

the derivative along with a generic operator Γν is defined by ψ
↔
∂ν Γμψ = ψΓμ(∂μψ) − (∂μψ)Γμψ.

The objects aμ, bμ, cμν, and dμν are coefficients for Lorentz violation, which can be identified with the
background condensates. They are typically taken as spacetime constants. These coefficients quantify
the amount of Lorentz violation in nature and are constrained in experimental and observational
searches. The ellipsis contains additional coefficients for Lorentz violation. The object cjk, which has
been the primary focus of this work, is the spacial components of the coefficient for Lorentz violation
cμν. In the limit that the coefficients for Lorentz violation go to zero, the conventional fermion Lagrange
density is recovered. Variation of the Lagrange density in this limit yields the Dirac equation, originally
developed as an extension of the Schrodinger equation to provide a description of fermions that
incorporated the principles of Special Relativity and quantum mechanics.

Since one could imagine the possibility that Lorentz-violating behavior might be observed in
association with just one type of particle, and the goal is a general test framework, the coefficients
for Lorentz violation are particle-species dependent. The terms explicitly displayed in Equation (A1)
are a part of what is known as the minimal SME: terms involving operators with the same mass
dimension [29] as found in the Standard Model and General Relativity. Terms with additional
derivatives have also been considered in the fermion [30] sector as well as in the photon [31] and
gravity [32] sectors. These nonminimal operators can generate additional effects such as vacuum
dispersion. We note in passing that in addition to searches for fundamental symmetry violation,
the SME has also been used to constrain and explore fields that can mimic Lorentz violation [33–35].

Several approaches to finding the Newtonian limit of this field theory can be found in the
literature [23,36]. In this work we focus on the Newtonian limit generated by the cjk coefficient at
leading order in the coefficients for Lorentz violation, as it provides the match to the RIV model as
written in Equation (4). In the limit used here, when a macroscopic body that contains many particle
species is considered, the effective cμν coefficient for the body is found to be the mass-weighted sum
of the cμν coefficients for the species contained in the body [23]. Many of the other coefficients have
been sought in observations and experiments [4] and have interesting implications in their own right,
though their Newtonian implications are beyond our present scope. Additional classical implications
can be explored via the Lagrangian formulation [36] as well as a geometric formulation based on
Finsler geometry [37,38].
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1. Introduction

Lorentz and CPT symmetry are two of the greatest principles in modern physics. In the last
few decades, the exactness of the symmetry has been put into question, and its violation has been
pursued as a candidate low energy signal for a quantum theory of gravity. The potential of Lorentz
and CPT symmetry as a low energy signal was first proposed following the realization that realistic
mechanisms for spontaneous Lorentz- and CPT-breaking in string theory are possible [1,2]. Since then,
other studies have suggested that Lorentz- and CPT violation might be low energy signals for several
theories beyond the standard model and general relativity such as noncommutative field theory [3–5],
loop quantum gravity [6], multiverse scenarios [7], and granular spacetime models [8].

The Standard Model Extension (SME) was introduced as an effective field theory designed to assist
in the systematic search for evidence of CPT and Lorentz violation [9,10]. Since the early years of the
SME, models for atomic systems in the presence of Lorentz and CPT violation have been proposed [11–15].
Based on these models, experimental bounds on coefficients for Lorentz violation have been reported [16–29].
The original SME, referred to as the minimal SME, only considered the contributions from Lorentz-violating
operators of mass dimensions three and four [9,10]. In the last decade, the SME has been extended
by considering operators of higher mass dimensions that are called nonminimal operators [30–33].
Relevant to this work is the systematic classification of the Lorentz-violating nonminimal Dirac fermion
operators [32]. This classification permitted the study of the prospects of searching for nonminimal Lorentz
and CPT violation in atomic spectroscopy experiments. The study of these prospects resulted in three
publications [34–36]. The first two publications [34,35] considered light atoms, including exotic atoms
such as antihydrogen, positronium, and muonic atoms. The third publication considered heavier atoms
that are usually used in high precision spectroscopy experiments or atomic clocks [36]. These publications
complement each other, and together, they form a picture of the phenomenology of Lorentz and CPT
violation in atomic systems.

This article is intended as a brief overview of the phenomenology of Lorentz and CPT violation in
atomic systems based on three recent publications [34–36]. Section 2 is an overview of the perturbative
Hamiltonian used in the publications [34–36]. The nonrelativistic coefficients for Lorentz violation are
introduced in this section. The next section, Section 3, justifies the use of the perturbation introduced
in Section 2. Section 4 discusses the Zeeman-hyperfine transitions of the ground state, which are the
most sensitive transitions to Lorentz violation in atomic spectroscopy experiments. Section 5 discusses
the prospects for measuring the electron coefficients that do not contribute to the Zeeman-hyperfine
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transitions of the ground state. Section 6 addresses the problem of testing CPT symmetry in the
presence of Lorentz violation. Section 7 discusses differences in the signals for minimal and nonminimal
Lorentz-violating terms. Section 8 gives an overview of what systems are more sensitive to certain
kinds of Lorentz-violating operators. Finally, we conclude with a brief outlook in Section 9.

2. Classification of the Lorentz- and CPT-Violating Dirac in the Quadratic Lagrange Density for
a Dirac Fermion

The first systematic classification of nonminimal Lorentz-violating operators of arbitrary mass
dimension was limited to Lorentz-violating photon operators [30]. This work was followed by systematic
classifications of nonminimal neutrino operators [31], nonminimal Dirac fermion operators [32], and
a more general classification of gauge field theories with nonminimal Lorentz-violating operators [33].
In this article, we will reproduce some of the results presented in [32] as most of the models to be
discussed in this review article will be based on the Lorentz violation perturbation terms derived in this
reference.

The authors of [32] considered the most general Lorentz-violating Lagrangian density for a free
Dirac fermion with flavor w, and it has the form:

L = 1
2 w̄w(γ

μi∂μ − mw + Q̂w)ww + h.c., (1)

where ww is the Dirac fermion field operator, mw the fermion’s mass, and Q̂w is a spinor matrix
containing the Lorentz-violating terms. The spinor matrix Q̂w can be represented as the linear
combination of the spinor matrices γI ∈ {I, γμ, γ5, γ5γμ, σμν}. The linear expansion of Q̂w is assumed
to have the form:

Q̂w = ∑
I
Q̂I

wγI = Ŝw + iP̂wγ5 + V̂μ
wγμ + Âμ

wγ5γμ + 1
2 T̂

μν
w σμν, (2)

where Q̂I
w ∈ {Ŝw, P̂w, V̂μ

w, Âμ
w, T̂ μν

w } are the expansion coefficients. The hat on top of the coefficients
identifies them as functions of the derivative operator i∂μ, and they can be expanded as:

Q̂I
w =

∞

∑
d=3

Q(d)Iα1α2...αd−3
w i∂α1 i∂α2 . . . i∂αd−3 , (3)

where the coefficients Q(d)Iα1α2...αd−3
w are the coefficients for Lorentz violation that are assumed to be

constant in an inertial reference frame.
The magnitude of a coefficient for Lorentz violation quantifies the degree of the breaking of the

Lorentz symmetry. The indexes in the coefficients refer to the properties of the Lorentz violation operators,
and Table 1 contains brief explanations of the indices most relevant to the discussion presented in this
work. In this discussion also, we will introduce several types of coefficients for Lorentz violation and
the terminology used to identify different subsets of the coefficients. For convenience, the terminology
needed for this work is collected in Table 2.

The superscript d of the coefficients is the mass dimension of the Lorentz-violating operator that is

multiplied by the coefficient Q(d)Iα1α2...αd−3
w in Equation (1) after using the expansions in Equations (2)

and (3). The expansions in Equations (2) and (3) consider Lorentz-violating operators of arbitrary mass
dimension as there is no upper bound on the mass dimension of the operators.
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Table 1. Definitions of some of the relevant superscripts and subscripts for the coefficients.

Symbol Description

d Mass dimension of the Lorentz-violating operator contracted with the coefficient in
the Lagrangian density. Used in effective Cartesian and spherical coefficients.

w Specifies the flavor of the Lorentz-violating operator contracted with the coefficient
in the Lagrangian density. Used in all coefficients.

j Specifies the rank of the spherical tensor contracted with the coefficient in the
one-particle Hamiltonian; j > 0. Used in nonrelativistic and spherical coefficients.

m Specifies the component of the spherical tensor contracted with the coefficient in the
one-particle Hamiltonian; m ∈ {−j,−j + 1, . . . , j − 1, j}. Used in nonrelativistic and
spherical coefficients.

n Specifies the power of the three-momentum when the the one-particle Hamiltonian
is expressed in terms of E0 and |p|. Used in spherical coefficients; see Equation (8).

k Specifies the power of the three-momentum when the the one-particle Hamiltonian
is expressed in terms of mw and |p|. Used in nonrelativistic coefficients; see Equation (10).

Table 2. Terminology used to refer to certain types of coefficients for Lorentz violation.

Terminology Description Types of Coefficients

Effective Cartesian Coefficients for Lorentz-violating operators Vw
(d)μα1...αd−3
eff

expressed as Lorentz tensors. T̃w
(d)μνα1...αd−3
eff

Spherical Coefficients for Lorentz-violating operators Vw
(d)
njm

expressed as spherical tensors Tw
(d)(0B)
njm , Tw

(d)(1B)
njm

Nonrelativistic Linear combinations of spherical coefficients Vw
NR
kjm

of arbitrary mass dimension d. Tw
NR(0B)
kjm , Tw

NR(1B)
kjm

Minimal Coefficients for minimal operators Coefficients with d ≤ 4

Nonminimal Coefficients for nonminimal operators Coefficients with d > 4

CPT-even Coefficients for CPT-invariant operators V-type with even d or c-type

T -type with odd d or H-type

CPT-odd Coefficients for CPT-violating operators V-type with odd d or a-type

T -type with even d or g-type

Spin-dependent Coefficients proportional to the Pauli matrices T -type; or equivalently

in the one-particle Hamiltonian g-type and H-type

Spin-independent Coefficients not proportional to the Pauli V-type; or equivalently

matrices in the one-particle Hamiltonian a-type and c-type

Isotropic Coefficients for rotational scalar Spherical or nonrelativistic

Lorentz-violating operators coefficients with j = 0

Anisotropic Coefficients for Lorentz-violating operators Spherical or nonrelativistic

that are not rotational scalars coefficients with j > 0

Starting from the Lagrange density (1), a Lorentz-violating perturbation to the one-particle Dirac
Hamiltonian was obtained [32]. The form of the perturbation is:
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δh = − 1
E0

[
V̂ν

eff +
˜̂T 0ν

eff
p · σ

mwi
+ ˜̂T iν

eff

(
σi + pi

p · σ

(E0 + mw)mw

)]
pν, (4)

where E0 is the energy of the fermion, p is the three-momentum of the fermion, and σ is the Pauli vector.

The terms V̂ν
eff and ˜̂T 0ν

eff can be expressed as polynomials of the components of the four-momentum;
see Equations (77) and (79) of [32]. This is similar to the expansion in Equation (3) with the
reinterpretation of the operator i∂μ as the one-particle four-momentum operator. The coefficients of the

expansion, denoted as Vw
(d)μα1...αd−3
eff and T̃w

(d)μνα1...αd−3
eff , are called the effective Cartesian coefficients

for Lorentz violation.
The operators contributing to the perturbation (4) can be classified into several categories.

The operators multiplied by the V-type coefficients are called spin-independent coefficients as they are
independent of the spin degree of freedom. In contrast, operators multiplied by the T -type coefficients
are called spin-dependent coefficients. The properties of the operators in (1) under CPT transformation
are determined by the mass dimension d of the operator. By convention, different letters are used for the
coefficients corresponding to CPT-violating operators and for the ones corresponding to CPT-invariant
operators. The spin-independent operators with even mass dimensions are CPT-invariant operators,
and the coefficients are c-type coefficients. In contrast, the spin-independent operators with odd mass
dimensions are CPT-violating operators, and the coefficients are a-type coefficients. These coefficients
are related to the V-type coefficients by:

Vw
(d)μα1...αd−3
eff =

{
−aw

(d)μα1...αd−3
eff if d is odd

+cw
(d)μα1...αd−3
eff if d is even

. (5)

The spin-dependent terms can also be divided into CPT-invariant and CPT-violating terms. The relation
between the T -type coefficients and the other set of coefficients is given by:

T̃w
(d)μνα1...αd−3
eff =

{
−H̃w

(d)μνα1...αd−3
eff if d is odd

+g̃w
(d)μνα1...αd−3
eff if d is even

, (6)

where H-type coefficients correspond to CPT-invariant operators and the g-type coefficients to
CPT-violating operators.

The perturbation Hamiltonian (4) can be expressed in momentum-space spherical coordinates
instead of Cartesian coordinates. The three-momentum p is the product of its magnitude |p| and
direction p̂. The unit vector in the direction of the three-momentum can be represented as a function of
the polar and azimuthal angles as p̂ = (sin θ cos φ, sin θ sin φ, cos θ). The direction of the Pauli vector
can be indicated in terms of the direction of the three-momentum by introducing a helicity basis with
unit vectors ε̂± = (θ̂± iφ̂)/

√
2 and ε̂r = p̂. After these changes, the Hamiltonian has the generic form:

δh = hw0 + hwrσ · ε̂r + hw+σ · ε̂− + hw−σ · ε̂+. (7)

The explicit expressions for the terms hw0, hwr, hw+, and hw− can be found in Equations (85) and (87)
in [32]. As an example, consider the expression for hw0,

hw0 =
∞

∑
d=3

d−2

∑
n=0

∑
j

j

∑
m=−j

Ed−3−n
0 |p|n Yjm(p̂) Vw

(d)
njm, (8)

where the sum over j is restricted to j ≥ 0 and j ∈ {n, n− 2, n− 4, . . .}. The coefficients Vw
(d)
njm are called

the spherical coefficients for Lorentz violation. The spherical coefficients for Lorentz violation are
linear combinations of the effective Cartesian coefficients for Lorentz violation. The relation between
the two sets of coefficients is explained in detail in Section IV of [32]. In the Equation (8), the symbol
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Yjm(p̂) represents the spherical harmonics and the subscripts j and m of the spherical coefficients label
the indices of the corresponding spherical harmonic. The index d is the mass dimension of the operator,
and the index k is the power of the magnitude of the three-momentum. The relation between the
indices j, d, and n for all the different types of coefficients is summarized in Table III of [32].

The Hamiltonian (7) is only valid at linear order on the coefficients for Lorentz violation. At this
order, the energy E0 can be assumed to be the energy for a free fermion given by E0 =

√
|p|2 + m2

w.
In nonrelativistic systems, the ratio p/mw is a small number that can be used to expand the energy as
a Taylor series. Using the binomial formula, we have that:

E0 = mw

√
1 +
( |p|

mw

)2

= mw

∞

∑
k=1

( 1
2
k

)( |p|
mw

)2k
, (9)

where
(

j
k

)
is the binomial coefficient. Using this formula, we can express Equation (8) as:

hw0 = − ∑
kjm

|p|n 0Yjm(p̂)Vw
NR
kjm , (10)

where Vw
NR
kjm is the linear combination of all the spherical coefficients Vw

(d)
njm that are proportional to

the same power of |p| after replacing the energy in Equation (8) in terms of |p| by using Equation (9).
The index n in Equation (8) is the power of |p| when the Hamiltonian was represented as a function of
the energy and three-momentum, and it is different from the index k in Equation (10) that corresponds
to the power of |p| after replacing the energy using Equation (9).

The coefficients Vw
NR
kjm are called the nonrelativistic coefficients and are the observable coefficients in

most nonrelativistic experiments. The term observable effective coefficients means that the Lorentz-violating
shift to the observables in nonrelativistic experiments can be expressed as linear combinations of the
nonrelativistic coefficients. The nonrelativistic coefficients are defined in Equations (111) and (112) of [32].
For instance, consider the definition of Vw

NR
kjm,

Vw
NR
kjm = ∑

d
md−3−k

w ∑
q≤k/2

(
(d−3−k+2q)/2

q

)
Vw

(d)
(k−2q)jm. (11)

The nonrelativistic coefficients are the linear combination of coefficients for Lorentz violation of
arbitrary mass dimension multiplied by powers of the fermion’s mass mw. The mass dimension of the
nonrelativistic coefficients can be determined with some basic dimensional analysis. If the operator
multiplied by the coefficient Vw

(d)
njm has mass dimension d, then the coefficient has mass dimension

4 − d. The mass dimension of the nonrelativistic coefficient Vw
NR
kjm is the mass dimension of Vw

(d)
njm

multiplied by the mass dimension of md−3−k
w . Putting the pieces together, we can conclude that the

mass dimension of Vw
NR
kjm is equal to 1 − k.

In many nonrelativistic experiments, it is impossible to distinguish between the spherical
coefficients that contribute to the same nonrelativistic coefficient [34–36]. For that reason, Lorentz
violation effects in atomic systems usually result in bounds on the nonrelativistic coefficients for
Lorentz violation. Exceptions to this rule are Lorentz-violating models that consider contributions due
to the electromagnetic fields [37] or boost effects [35,36]; see Section 8.

3. Hierarchy and the Lorentz-Violating Perturbation

The Lorentz-violating corrections to the free propagation of the electron and the proton in the
hydrogen atom are expected to be responsible for the dominant Lorentz- and CPT-violating effects if
we consider all the possible Lorentz-violating operators [12,35,38]. The previous statement needs some
clarification. In the context of models for Lorentz violation in atomic systems, there are two kinds of
small parameters. The first kind is the expansion parameters used to obtain corrections to the atomic
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energies using perturbative methods. Examples of these parameters are the ratio |p|/mw between the
magnitude of the three-momentum and the mass of the electron, the ratio mw/M between the mass of
the electron and the mass of the nucleus, and the fine structure constant α. These parameters introduce
a hierarchy on the atomic corrections.

The second kind of small parameter is the coefficients for Lorentz violation. The coefficients
for Lorentz violation are considered small parameters to be measured, but before measuring them,
we cannot compare two coefficients for Lorentz violation. For example, we cannot tell which one
of the following dimensionless terms cw

(4)
200, cw

(4)
210 or mw aw

(5)
200 is greater. A common practice is not

to assume a hierarchy between the coefficients for Lorentz violation in the absence of experimental
bounds. We consider all the coefficients to be independent of each other. We also usually consider
only linear contributions due to the coefficients for Lorentz violation; therefore, any hierarchy on the
perturbative corrections is due to the atomic expansion parameters. For each coefficient for Lorentz
violation, we have a perturbative series that has a similar hierarchy as the usual atomic corrections
in the absence of Lorentz violation. For example, the Lorentz-violating contributions to the energy
shift proportional to the same coefficient can be classified or ranked in terms of the nonrelativistic
expansion that is the expansion on the small parameter |p|/mw.

To illustrate the idea, we need to study the form of the nonrelativistic expansion for a free Dirac
fermion. Using Equation (9), we obtain:

E0 =
√
|p|2 + m2

f 	 m f

(
1 +

1
2

( |p|
mw

)2
− 1

8

( |p|
mw

)4
+ . . .

)
. (12)

The contributions at different orders in the expansion have the generic form mw(|p|/mw)n. Even in
the case of a Dirac fermion in the presence of an external electromagnetic field, we can expand the
Hamiltonian in terms of the small parameter |p|/mw using the Foldy–Wouthuysen transformation [39].
In the particular case of the hydrogen atom, the Coulomb-potential term appears at the first-order
in the nonrelativistic expansion, but it is suppressed by a factor of the fine structure constant α that
makes the Coulomb term of the same size as a second-order term such as the nonrelativistic kinetic
energy |p|2/2mw.

Consider the term E0|p|2cw
(6)
200 that contributes to the one-particle Hamiltonian (8). If we want

to determine the dominant contribution from the coefficient cw
(6)
200 to the energy shift, we can use the

nonrelativistic expansion of the energy and get:

E0|p|2cw
(6)
200 	 m f

(
1 +

1
2

( |p|
mw

)2
− 1

8

( |p|
mw

)4
+ . . .

)
|p|2cw

(6)
200. (13)

Using this result, we can recognize that a term of the form:

m f |p|2 cw
(6)
100 = mw

( |p|
mw

)
( |p| aw

(6)
200 ), (14)

is a zero-order term in the nonrelativistic expansion, and it is the dominant contribution from the
coefficient cw

(6)
200. In the context of the nonrelativistic expansion of the Lorentz-violating perturbation,

this term is a large term of the order of the rest energy of the particle, and it is greater than any
Lorentz-violating term proportional to cw

(6)
100 that is produced by the electromagnetic interaction in

the atom. However, its contribution to the atomic energy is really small because it is proportional to
a coefficient for Lorentz violation. The crucial point is that we know that any term that is proportional
to both the coefficient and an interaction term such as the Coulomb potential will be smaller than
this term.
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We can also consider the term of the form:

|p|4
mw

cw
(6)
100 = mw

( |p|
mw

)2

( |p|2cw
(6)
200 ) (15)

and recognize that it is a second-order term in the nonrelativistic expansion; it is not the dominant
contribution from the coefficient cw

(6)
200, and it can contribute at the same order as a Coulomb

potential term that is proportional to the same coefficient; for that reason, in order to study this
term, we must consider the Lorentz-violating electromagnetic interaction terms [12,35,38]. Fortunately,
in practice, we can ignore this term and only consider the term m f |p|2 cw

(6)
100 that dominates over the

Lorentz-violating terms that contain electromagnetic interactions.
Going back to the statement at the beginning of this section, the dominant contribution to the

atomic spectrum is obtained by considering only the dominant free-propagation corrections to the
proton and the electron for each coefficient. The implication is that it is enough to consider the
perturbative Hamiltonian (7) in order to study the dominant Lorentz-violating effects in the spectrum
of an atom [35,36].

4. Hyperfine Transitions and Anisotropic Terms

The best limits on Lorentz-violating operators obtained from atomic spectroscopy experiments are
from hyperfine transitions of the ground state [34–36]. In the standard atomic theory, effects that depend
on the total angular momentum of the atom, such as the hyperfine structure, are suppressed. For this
reason, in general, hyperfine structure transitions have lower frequencies than gross structure transitions.
On the other hand, many of the dominant Lorentz-violating terms are anisotropic, and their expectation
values depend on the atomic total-angular-momentum quantum number F. For example, consider
the term mwgw

(4)(0B)
010 σ · p̂ Y10(p̂). This is the dominant contribution of the coefficient gw

(4)(0B)
010 to the

perturbation Hamiltonian as the other contributions are suppressed by powers of |p|/mw. Because this
term depends on the spin expectation value, it does contribute to hyperfine structure transitions [34–36].
What makes this kind of term special is that its contribution has the same size as the gross structure or
hyperfine structure transitions. However, because the hyperfine transitions are usually more sensitive
to smaller frequency shifts than gross structure transitions, then the hyperfine structure transitions are
more sensitive to the coefficient gw

(4)(0B)
010 than other types of transitions [34–36].

At first-order in perturbation theory, the anisotropic terms in the Lorentz-violating Hamiltonian
affect the spectrum in a fashion that is analogous to the presence of small external electric and magnetic
fields. For example, some of the leading-order Lorentz-violating energy shifts have a structure that
resembles the Zeeman and Stark effects [12–15,34–36]. This is a challenge because transitions that
are insensitive to Zeeman or Stark effects may also be insensitive to these Lorentz-violating effects.
To understand this statement, we need to understand what are the common tests for Lorentz violation
in atomic systems.

The most common tests for Lorentz violation are sidereal and annual variations of the transition
frequency [16–23]. The idea behind these tests is to compare the transition frequency of the atom
at different velocities and orientations relative to a fixed inertial reference frame. For convenience,
the Sun-centered frame is used as the fixed reference frame [40]. The best approach to control the
orientation of the atom is to introduce an external magnetic field in the z-direction in the instantaneous
laboratory frame. Because of the presence of the magnetic field, the stationary states of the system are
quantum states of the z-component of the total-angular-momentum Fz relative to the laboratory frame.
As the applied magnetic field rotates with the Earth, the stationary states are rotated adiabatically
around the Sun-centered frame, and we can test the rotational symmetry of the atomic spectrum.
Similarly, the velocity of the atoms changes as the atoms are accelerated in the Sun-centered frame
due to the rotation of the Earth around its axis and the motion of the Earth around the Sun. In this
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scenario, the Lorentz-violating terms appear as small corrections to the Zeeman levels that depend on
the annual and sidereal time [12–15,34–36].

If we are forced to use applied magnetic fields, then we want to reduce the uncertainty due to
the magnetic fields. A common method is to use transitions insensitive to the linear Zeeman effect.
Examples of this kind of transition are the clock transitions in hydrogen masers and cesium atomic
fountain clocks. This is a bad idea in the context of Lorentz violation. Whatever makes these transitions
insensitive to the linear Zeeman effect also makes them insensitive to linear effects due to other uniform
anisotropic external fields such as the anisotropic Lorentz-violating background fields [35,36]. In other
words, these transitions are insensitive to the dominant CPT- and Lorentz-violating effects. Still,
there is one advantage of having transitions that are insensitive to the dominant Lorentz-violating
terms. We measure a frequency by comparing it to another frequency. We need to know if the
Lorentz-violating model predicts any variation in the reference frequency in order to search for time
variations of a transition frequency [13]. Using the perturbation (7), we know that the hydrogen
maser and the cesium standards are insensitive to the dominant Lorentz-violating effects and are good
reference frequencies for time variation studies of transition frequencies [35,36].

Other methods used to reduce the uncertainty due to the magnetic field, such as averaging over
Zeeman pairs, can also eliminate contributions due to the anisotropic Lorentz-violating terms [36].
For example, consider the measurement of the hyperfine transition of the ground state of antihydrogen [41].
In the experiment, two frequencies were averaged to suppress the contribution due to the magnetic
field. This process also eliminated the contributions from the dominant CPT-violating terms. In other
words, the sensitivity of the measurement to CPT violation is suppressed compared to other kinds of tests
that could be done using the same system. A method that can be used to eliminate the magnetic field
without eliminating the contribution of the Lorentz-violating terms is to extrapolate the frequency to the
zero-magnetic-field value [36]. The dominant CPT-violating terms are independent of the magnitude of the
magnetic field, and they will contribute to the extrapolated zero-field frequency. Another method that has
been proposed is to compare the σ and π1 antihydrogen transitions [42]. The σ transition is insensitive to
the dominant CPT-violating terms, and it can be used as a reference frequency for searching for a sidereal
variation of the Lorentz violation-sensitive π1 transition [35].

Averaging over Zeeman pairs does not always cancel all the contributions due to Lorentz violation.
For example, a Lorentz symmetry test with cesium fountain clocks cannot use the standard clock
transition as it is insensitive to the dominant Lorentz-violating terms. Time variation frequency studies
with cesium fountain clocks were done using an averaged pair of hyperfine-Zeeman transitions [22].
The process used to eliminate the linear Zeeman shift also canceled the contributions from the g-type and
H-type spin-dependent coefficients, but it allowed contributions from a-type and c-type spin-independent
ones [22,36]. The most successful method for eliminating the linear Zeeman effect without eliminating
the Lorentz-violating terms has been the use of comagnetometers [18,19,36]. The nonrelativistic g-type
and H-type coefficients for Lorentz violation with j = 1 produce small corrections to the Zeeman levels;
however, the corrections are not proportional to the gyromagnetic ratios and are by the method used to
eliminate the linear Zeeman shift in the comagnetometer.

The only spatially isotropic terms that can contribute to the Lorentz-violating shift to the
atomic spectrum are spin-independent operators that depend only on the magnitude of the
three-momentum [34–36]. These isotropic terms do not contribute to Zeeman-hyperfine transitions, and
for that reason, all the terms that contribute to these transitions are anisotropic. The Lorentz-violating
frequency shift for the Zeeman-hyperfine transitions depends on the orientation of the magnetic field
and the boost velocity of the instantaneous laboratory frame relative to the Sun-centered frame. Only
considering the rotation of the instantaneous laboratory frame due to the rotation of the Earth is not
enough to impose bounds on all the coefficients for Lorentz violation that contribute to the transition
frequencies. Models for space based experiments such as for the Atomic Clock Ensemble in Space
(ACES) [43] and for experiments on turntables have been considered to impose bounds on a greater
set of coefficients for Lorentz violation [35,36].
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5. Isotropic Terms and Optical Transitions

The isotropic term in the laboratory frame has the form V f
NR,lab
k00 |p|k, where the superscript “lab”

is a reminder that these coefficients are not constant and uniform because the laboratory frame is
not an inertial reference frame. The isotropic term does not contribute to the frequency shift for the
hyperfine-Zeeman transitions of the ground state, and for that reason, it cannot be measured using the
experiments mentioned in Section 4. This term does contribute to any gross structure transition such as
optical transitions. The best candidates to study the isotropic term are optical transitions such as the 1
s–2 s transition in hydrogen [35] or clock transitions used in optical clocks [36].

The isotropic term in the laboratory frame is independent of the orientation of the magnetic field,
and it is not canceled by any process that cancels the contributions from anisotropic external fields [36].
The implication is that the isotropic term can be studied using optical clocks without requiring the
optical clock to operate in a different way than usual. The drawback is that the isotropic term is
insensitive to changes in the orientation of the laboratory frame that is the dominant signal for Lorentz
violation. However, it is sensitive to boost effects, which are suppressed by a factor of 10−4 compared
to the dominant rotation effects.

An isotropic coefficient for Lorentz violation in the laboratory frame can be expressed in the
Sun-centered frame as:

V f
NR,lab
k00 = V f

NR,Sun
k00 + β⊕ fann(T) + βL fsid(T), (16)

where V f
NR,Sun
k00 is the isotropic coefficient in the Sun-centered frame, T is the time in the Sun-centered

frame, β⊕ = 10−4 is the orbital speed of the Earth, and βL = 10−6 is the rotational speed of the
Earth at the Equator. The function fann(T) is a linear combination of coefficients for Lorentz violation
with terms that vary with the first harmonic of the annual frequency and fsid(T) the same, but the
terms vary with the first harmonics of the sidereal frequency. The explicit expression for Equation (16)
can be found in Equation (63) in [35]. The best way to impose constraints on the coefficients that
contribute to fann(T) and fsid(T) is by searching for annual and sidereal variations of the optical
transitions in the first harmonic of the sidereal and annual frequency. The first term in Equation (16)
produces a constant shift that will be the same independent of wherever on the surface of the Earth the
experiment was done. This constant shift cannot be constrained by studying the time variation of the
transition frequency under consideration. However, the isotropic term in the Sun-centered frame has
been constrained by comparing the 1 s–2 s transitions frequency of hydrogen and antihydrogen [36] or
by comparing the experimental and theoretical values for the 1 s–2 s transitions in positronium [35]
and muonium [34].

6. The Problem of Testing CPT Symmetry Using Different Frames

A breaking of CPT symmetry implies Lorentz violation in interacting local field theories [44].
This result is also observed in the non-gravitational sector of the SME, where all the local CPT-violating
terms that can be added to the Lagrangian density also break Lorentz symmetry [9,10]. If we expect
CPT violation to emerge as small corrections to the standard model of particle physics, then we expect
CPT violation to be accompanied by Lorentz violation. This observation implies that CPT tests that
compare the properties of a system and its CPT counterpart must be conducted in the same laboratory
frame. Otherwise, Lorentz-violating effects that are not CPT-violating effects might be responsible or
might cancel any discrepancy between the two systems [37].

Even if the measurement of a system and its CPT counterpart is done in different reference frames,
we could use these results to test CPT symmetry by using a model for Lorentz violation. We can use the
model to transform the results from one frame to the other keeping track of all the Lorentz-violating
effects. In this case, the validity of the CPT test will be limited as it depends on the particular model
for CPT and Lorentz violation used. For example, consider the recent comparison between the value
of the 1 s–2 s transition in hydrogen [45] and antihydrogen [46]. As these two values were measured in
different reference frames, in principle, we should not compare the values without considering how
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Lorentz violation could impact these results. Using the Lorentz- and CPT-violating corrections for
the 1 s–2 s transition in hydrogen presented in [35], a model for comparing the two measurements
of the 1 s–2 s transition was developed [36]. The model considered only the isotropic contribution in
the Sun-centered frame to the frequency difference between the 1 s–2 s transition in hydrogen and
antihydrogen; see Section 5. In other words, even if the frequencies were measured in distinct reference
frames, there are corrections to the frequency difference that are independent of the frames used in the
measurements, and these terms correspond to the constant term in Equation (16). To justify this model
partially, some of the anisotropic or frame-dependent contributions to the frequency difference can
be disregard using results from time variation studies of transition frequencies in hydrogen [16,20].
More time variation studies in hydrogen and antihydrogen are needed to justify experimentally the
absence of many of the anisotropic terms that were not considered in the model. Fortunately, some of
these time variation studies are expected to happen soon [42]. The approach used to create the model
for the frequency difference between the 1 s–2 s transition in hydrogen and antihydrogen cannot be
replicated for the Zeeman-hyperfine transitions of the ground state as all the terms that contribute
to these transitions are anisotropic in the Sun-centered frame. Measurements of hyperfine transition
frequencies of the ground state for hydrogen and antihydrogen in the same location are pursued to
avoid any contributions from CPT-invariant Lorentz-violating operators [42].

7. Difference in the Signals for Minimal and Nonminimal Lorentz-Violating Terms

For experiments in laboratories on the surface of the Earth, the minimal Lorentz-violating
operators could produce sidereal variations in the first and second harmonic of the sidereal
frequency [11–14]. In the context of atomic spectroscopy experiments, we can understand this result
from the following observations. The minimal Lorentz violation a-type and c-type coefficients are
contained in the nonrelativistic coefficients Vw

NR
kjm with j ≤ 2, and similar relations hold for the

spin-dependent terms [32]. We can break the time-varying transition frequency shift in the Sun-centered
frame in terms of harmonics of the sidereal frequency [35,36]. If we ignore boost effects, we can break
the Sun-centered-frame transition frequency shift δν in the following way,

δν =
∞

∑
m=0

(
Am cos mω⊕T + Bm sin mω⊕T

)
, (17)

where ω⊕ 	 2π/(23 h 56 m) is the sidereal frequency and T is the time in the Sun-centered frame.
The amplitudes Am and Bm of the mth-harmonics are linear combinations of the coefficient Vw

NR
kjm

and Vw
NR
kj(−m) [35,36]. In other words, the absolute value |m| of the index m of the coefficient for

Lorentz violation in the Sun-centered frame indicates the harmonic of the sidereal frequency that
contributes together with the coefficient Vw

NR
kjm in the frequency shift. The absolute value of the index

m is related to the index j by 0 ≤ |m| ≤ j and for the minimal operators 0 ≤ |m| ≤ 2. As expected,
the minimal operators can only produce sidereal variations in the first and second harmonic of the
sidereal frequency.

In principle, the nonminimal Lorentz-violating operators can produce variations with all
harmonics of the sidereal frequency. However, nonminimal coefficients with an index j cannot
contribute to the energy shift of every atomic energy level. The maximum value of the index j that can
contribute to the energy shift depends on the angular momentum quantum numbers of the energy
level [35,36]. For instance, for the ground state of hydrogen, the angular moment quantum numbers
are L = 0 for the orbital angular momentum, J = 1/2 for the total electron angular momentum, and
F = 0 or F = 1 for the total atomic angular momentum. Based on the angular momentum quantum
numbers, we can conclude that only spin-independent terms with j = 0 and spin-dependent ones with
j ≤ 1 can contribute to the energy shift. A consequence of this observation is that even in the presence
of nonminimal terms, we should expect only first-harmonic sidereal variations of Zeeman-hyperfine
transitions of the ground state of hydrogen or the 1 s–2 s transition in hydrogen. These are the same
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signals predicted by the minimal SME, and for that reason, experimental constraints on these signals
already existed and were used to impose bounds on nonminimal coefficients [34–36].

In the minimal case, there was no advantage in considering transitions involving energy
levels with high angular momentum quantum numbers. However, the only way to use an atomic
spectroscopy experiment to search for Lorentz-violating operators with a high value of j is by
using transitions that involve high angular momentum states. In general, a transition could be
millions of times more sensitive to Lorentz violation than another transition, but because that more
sensitive transition only involves low angular momentum states, it will be sensitive to a small set
of Lorentz-violating operators, and if the less sensitive transition involves high angular momentum
states, it can provide the best bounds on coefficients for Lorentz violation on nonminimal operators
that cannot be studied with the more sensitive transition; see Section 8.

Another difference in the phenomenology of atomic spectroscopy in the presence of minimal
and nonminimal Lorentz violation is that the nonminimal terms depend on a higher power of the
three-momentum, and this means that the number of transitions that can be affected by Lorentz
violation increased significantly compared to the minimal case [35]. Furthermore, this means that
the sensitivity of the experiment to the nonminimal coefficients will be dependent on the expectation
values of the momentum, and that will make some systems more sensitive to some nonminimal
operators than others as is the case with muonic hydrogen and muonium, as discussed in [34].

8. Best Bounds on and Prospects for Coefficients for Lorentz Violation from
Spectroscopy Experiments

Table 3 contains the best bounds on the nonrelativistic spin-dependent coefficients for Lorentz
violation. The first column in the table specifies the type of nonrelativistic coefficient, and the other
columns specify the best bounds on the electron, neutron, proton, and muon coefficients. A time variation
study of hyperfine-Zeeman transition frequencies of the ground state of hydrogen is responsible for the
best bounds on nonminimal electron coefficients obtained in atomic spectroscopy experiments [16,35].
The bounds obtained on the coefficients ge

NR(0B)
011 , He

NR(0B)
011 , ge

NR(1B)
011 , and He

NR(1B)
011 are in the order of

10−27 GeV [35]. The superscript e in the coefficients means that these coefficients correspond to electron
operators. Technically, this experiment also has the best bounds on nonrelativistic proton coefficients, but
better bounds on proton coefficients might be obtained by just replacing the nuclear model used in [36].

An experiment using a 3He-129Xe comagnetometer imposed limits of the order of 10−33 GeV
on Lorentz-violating operators in the nucleon sectors of the SME [18,36]. To assign these bounds to
proton or neutron Lorentz-violating operators, we need to use a nuclear model. A simple nuclear
model assumes that only the neutron operators contribute to the Lorentz-violating frequency shift,
and using this simplistic model, bounds of the order of 10−33 GeV on the neutron coefficients gn

NR(0B)
011 ,

Hn
NR(0B)
011 , gn

NR(1B)
011 , and Hn

NR(1B)
011 were obtained [36]. From a more realistic nuclear model, we expect

to get contributions from both nucleons with smaller contributions from the proton than from neutron
operators. For instance, more realistic nuclear models showed that in the context of the minimal
SME, the corrections due to the proton operators were only suppressed by a factor of five compared
to the neutron operators [29]. Because the comagnetometer experiment is 106-times more sensitive
than the hydrogen experiment, we expect that by using a more realistic nuclear model, we will get
better bounds on the proton coefficients from the comagnetometer experiment than from the hydrogen
experiment. The best bounds on the proton or neutron coefficients depend on the nuclear models used
in the derivation of the Lorentz violation shift. However, in general, the best bounds on the nucleon
coefficients will be from hyperfine-Zeeman transitions of the ground states [16,22,35,36], as expected
from the discussion in Section 4.
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Table 3. Best bounds on the imaginary and real part of the spin-dependent anisotropic nonrelativistic
coefficients in the Sun-centered frame for electron, proton, neutron, and muon operators.

Coefficients Neutron [36] from Proton and Electron [35] from Muon [34] from

Xe-He Comagnetometer Hydrogen 1S Splitting Muonium 1S Splitting

Hw
NR(0B)
011 , gw

NR(0B)
011 4 × 10−33 GeV 9 × 10−27 GeV 2 × 10−22 GeV

Hw
NR(1B)
011 , gw

NR(1B)
011 2 × 10−33 GeV 5 × 10−27 GeV 7 × 10−23 GeV

Hw
NR(0B)
211 , gw

NR(0B)
211 4 × 10−31 GeV−1 7 × 10−16 GeV−1 1 × 10−11 GeV−1

Hw
NR(1B)
211 , gw

NR(1B)
211 2 × 10−31 GeV−1 4 × 10−16 GeV−1 6 × 10−12 GeV−1

Hw
NR(0B)
411 , gw

NR(0B)
411 4 × 10−29 GeV−3 9 × 10−6 GeV−3 2 × 10−1 GeV−3

Hw
NR(1B)
411 , gw

NR(1B)
411 2 × 10−29 GeV−3 5 × 10−6 GeV−3 8 × 10−2 GeV−3

The energy states involved in the Zeeman transitions used in the He-Xe comagnetometer
experiment have total angular momentum quantum number F = 1/2, and for that reason, the
transitions are only sensitive to nonrelativistic coefficients with j = 1. The best bounds on nucleon
coefficients with j > 1 are from the study of hyperfine-Zeeman transitions of the ground state
of cesium using a cesium fountain clock and front the sidereal variations studies with a Ne-Rb-K
comagnetometer [36]. In the case of the fountain clock, the energy levels involved in the transition have
quantum numbers F = 3 and F = 4, and these high angular momentum states permit contributions
from nonrelativistic coefficients with j ≤ 4 [36]. The experimental constraints obtained with the
atomic fountain clock on sidereal variations are only sensitive to proton coefficients if we assume
the nuclear model used in [36]. However, we expect that by using a more realistic nuclear model,
we can translate the experimental constraints as bounds on neutron and proton coefficients. Overall,
the comagnetometer is more sensitive to smaller frequencies than the cesium atomic clock, and the
bounds obtained from the comagnetometer are tighter than the bounds obtained from the atomic
fountain clock; however, the atomic fountain clock is sensitive to a greater number of coefficients for
Lorentz violation than the comagnetometer.

Hyperfine transitions in large atoms involve nuclear-spin flips, and they are not sensitive to
electron Lorentz-violating operators. To study the electron operators, we need to consider hyperfine
transitions in light atoms or electron transitions such as optical transitions. The hyperfine-Zeeman
transitions of the ground state of hydrogen or the 1 s–2 s transition in hydrogen are only sensitive
to electron coefficients with j ≤ 1. The best bounds on electron coefficients with j = 2 are obtained
from optical transitions in heavy ions such as 40Ca+ [24,25,36] and 171Yb+ [23]. These transitions
involve energy levels with high angular momentum. For example, the final energy state for the optical
transition in 171Yb+ has quantum number F = 3 [23], and it is sensitive to nonrelativistic coefficients
with j ≤ 6. The final energy state for the optical transition in 40Ca+ has F = 5/2 [24,25], and it is
sensitive to coefficients with j ≤ 4. Overall, the hyperfine-Zeeman transitions of the ground state
remain slightly more sensitive to Lorentz violation than the optical transition in 171Yb+; however, the
optical transition is sensitive to a greater number of coefficients for Lorentz violation. Unfortunately,
to translate the constraints obtained from the optical transition in 171Yb+ into bounds on nonminimal
coefficients for Lorentz violation, a many-body calculation is needed, and at the moment, this type of
calculation has only been done for minimal Lorentz-violating operators [23].

Lorentz violation operators that are isotropic in the laboratory frame cannot be studied using
Zeeman-hyperfine transitions of the ground state; see Section 5. The best limits on the coefficients
that contribute to fsid in Equation (16) are from an annual variation study of the 1 s–2 s transition
in hydrogen [20,35]; see the second and third column of Table 4. As mentioned in Section 5, optical
clocks are good candidates to improve these bounds. The best bounds on the isotropic CPT-violating
electron and proton terms in the Sun-centered frame are obtained from a comparison of antihydrogen
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and hydrogen 1 s–2 s transition [36] and for the CPT-even electron term from a comparison between
the theoretical and experimental value for the 1 s–2 s transition in positronium [35]. The bounds are
shown in Table 5 with the second, fourth, and sixth columns showing the constraints on the electron,
proton, and muon isotropic coefficients for Lorentz violation.

Table 4. Best bounds from atomic experiments on effective Cartesian coefficients of mass dimensions
d = 5 and d = 6 in the Sun-centered frame for electron [35], proton [35], and neutron [36]
Lorentz-violating operators.

Coefficient Electron [35] Proton [35] Coefficient Neutron [36] Coefficient Neutron [36]

GeV4−d GeV4−d GeV4−d GeV4−d

aw
(5)TTX
eff <3.4 × 10−8 <3.4 × 10−8 H̃w

(5)X(TXT)
eff <1 × 10−27 g̃w

(6)X(TXTT)
eff <9 × 10−28

aw
(5)TTY
eff <5.6 × 10−8 <5.6 × 10−8 H̃w

(5)X(TYT)
eff <8 × 10−28 g̃w

(6)X(TYTT)
eff <7 × 10−28

aw
(5)TTY
eff <1.3 × 10−7 <1.3 × 10−7 H̃w

(5)X(TZT)
eff <2 × 10−27 g̃w

(6)X(TZTT)
eff <2 × 10−27

aw
(5)KKX
eff <6.7 × 10−8 <6.7 × 10−8 H̃w

(5)Y(TXT)
eff <8 × 10−28 g̃w

(6)Y(TXTT)
eff <6 × 10−28

aw
(5)KKY
eff <1.1 × 10−7 <1.1 × 10−7 H̃w

(5)Y(TYT)
eff <8 × 10−28 g̃w

(6)Y(TYTT)
eff <7 × 10−28

aw
(5)KKZ
eff <2.5 × 10−7 <2.5 × 10−7 H̃w

(5)Y(TZT)
eff <2 × 10−27 g̃w

(6)Y(TZTT)
eff <2 × 10−27

cw
(6)TTTX
eff <3.3 × 10−5 <1.8 × 10−8 H̃w

(5)X(JXJ)
eff <4 × 10−25 g̃w

(6)X(JXJT)
eff <9 × 10−26

cw
(6)TTTY
eff <5.5 × 10−5 <3.0 × 10−8 H̃w

(5)X(JYJ)
eff <3 × 10−25 g̃w

(6)X(JYJT)
eff <7 × 10−26

cw
(6)TTTZ
eff <1.3 × 10−4 <6.9 × 10−8 H̃w

(5)X(JZJ)
eff <6 × 10−25 g̃w

(6)X(JZJT)
eff <2 × 10−25

cw
(6)TKKX
eff <3.3 × 10−5 <1.8 × 10−8 H̃w

(5)Y(JXJ)
eff <2 × 10−25 g̃w

(6)Y(JXJT)
eff <2 × 10−25

cw
(6)TKKY
eff <5.5 × 10−5 <3.0 × 10−8 H̃w

(5)Y(JYJ)
eff <3 × 10−25 g̃w

(6)Y(JYJT)
eff <7 × 10−26

cw
(6)TKKZ
eff <1.3 × 10−4 <6.9 × 10−8 H̃w

(5)Y(JZJ)
eff <6 × 10−25 g̃w

(6)Y(JZJT)
eff <2 × 10−25

H̃w
(5)TJTJ
eff <6 × 10−25 g̃w

(6)TJTJT
eff <5 × 10−25

Table 5. Best bounds on the spin-independent isotropic nonrelativistic coefficients in the Sun-centered
frame for electron, proton, and muon operators.

Constraint; Electron Constraint; Proton Constraint; Muon

|ae
NR
200| ∼4 × 10−9 GeV−1 [36] |ap

NR
200| ∼4 × 10−9 GeV−1 [36] |aμ

NR
200| ∼3 × 10−5 GeV−1 [34]

|ce
NR
200| ∼2 × 10−5 GeV−1 [35] |cμ

NR
200| ∼3 × 10−5 GeV−1 [34]

|ae
NR
400| ∼50 GeV−3 GeV−3 [36] |ap

NR
400| ∼50 GeV−3 [36] |aμ

NR
400| ∼4 × 105 GeV−3 [34]

|ce
NR
400| ∼3 × 105 GeV−3 [35] |cμ

NR
400| ∼4 × 105 GeV−3[34]

Table 4 contains bounds on effective Cartesian coefficients obtained from studying boost effects of
the 1 s–2 s transition in hydrogen and the Xe-He comagnetometer. The Lorentz-violating frequency
shift in the laboratory frame can be expressed in terms of the nonrelativistic coefficients; however,
to consider the annual or sidereal variations due to boost effects, we need to boost the frequency shift
from the local laboratory frame to the Sun-centered frame. The nonrelativistic coefficients have simple
transformation rules under rotation; however, their transformation under boost transformations is
quite complicated, and it is easier to expand the nonrelativistic coefficients in terms of the Cartesian
effective coefficients before studying boost effects [35,36]. For that reason, bounds due to boost effects
are usually on effective Cartesian coefficients.

Finally, the best bounds on the muon nonrelativistic coefficients were obtained from hyperfine
transitions of the ground state of muonium and the 1 s–2 s transition in muonium [17,34,47]; see
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Tables 3 and 5. The reader should be aware that many of the bounds reported in [34–36] have not been
reproduced in this section. Furthermore, the best bounds on minimal coefficients based on models that
do not consider nonminimal terms have also been omitted from the discussion.

9. Outlook

The current bounds on nonminimal Lorentz-violating operators from atomic spectroscopy
experiments are based on experimental studies that were designed to impose bounds on the minimal
operators [34–36]. Signals associated only with the nonminimal operators such as sidereal variations in
higher harmonics of the sidereal frequency have not been constrained experimentally, and they need
to be studied to impose bounds on the nonminimal Lorentz-violating operators. For example, time
variation studies of the Zeeman-hyperfine transitions of the ground state of cesium only considered
the possibility of time variations in the first and second harmonic of the sidereal frequency [22].
The nonminimal Lorentz-violating model predicts that Zeeman-hyperfine transitions are sensitive
to time variations up to the fourth harmonic of the sidereal frequency. Experimental constraints on
sidereal variations in the third and fourth harmonic of the sidereal frequency will produce limits on
coefficients for Lorentz violation that have not been bounded before. The same situation holds for the
time variation studies [23–25] of the optical transitions in 171Yb+ and 40Ca+. Sidereal variation studies
are also needed in the new field of high precision antihydrogen spectroscopy. The antihydrogen
collaborations must consider how to implement time variation studies in their experiments if they
want to test CPT symmetry systematically [35,36].

The recent publication [36] on the prospects of testing nonminimal Lorentz violation operators
in clock comparison experiments used simplistic models for the electron and nuclear configurations.
The advantage of using simple models is that they can be easily applied to a large range of systems and
the publication intended to recognize the signals for Lorentz violation in a broad range of systems. Using
more realistic models will not change the general form of these signals [36]; however, better models
are needed to translate experimental constraints on the signals for Lorentz violation into bounds on
coefficients. More realistic models have been used in the context of the minimal SME [22–24,29], and
similar calculations are needed in the context of the nonminimal SME.
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Abstract: The theoretical prospects for quantum electrodynamics with Lorentz-violating operators
of mass dimensions up to six are revisited in this work. The dominant effects due to Lorentz and CPT
violation are studied in measurements of magnetic moments of particles confined in Penning traps.
Using recently reported experimental results, new coefficients for Lorentz violation are constrained
and existing bounds of various coefficients are improved.
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1. Introduction

The recent measurements of the proton and antiproton magnetic moments have reached record
sensitivities of ppb levels by confining the particles in electromagnetic fields using a Penning
trap [1,2]. For the electron magnetic moment, a similar Penning-trap experiment has also been
carried out in an impressive precision of ppt level [3]. Experiments measuring the positron magnetic
moment are currently under development to aim for a comparable precision as that of the electron
[4,5]. These highly precise measurements in Penning-trap experiments offer a great way to study
fundamental symmetries, including Lorentz and CPT invariances, the foundation of Einstein’s theory
of relativity. It has been shown that tiny deviations from relativity could naturally emerge in
a fundamental theory unifying gravity with quantum physics at the Plank scale MP ∼ 1019 GeV,
such as strings [6,7]. In recent years, many high-precision tests of relativity in various subfields of
physics have been performed to search for Lorentz- and CPT-violating signals [8], including the
spectroscopic studies of particles confined in Penning traps.

Any tiny violation effects arising from a large unknown energy scale are well described by effective
field theory. The comprehensive framework describing Lorentz violation in the context of effective
field theory is given by the Standard-Model Extension (SME) [9–11], which is constructed by adding
all possible Lorentz-violating terms into the action of General Relativity and the Standard Model.
Each of the terms is formed from a coordinate-independent contraction of a Lorentz-violating operator
with the corresponding controlling coefficient. In the context of effective field theory, CPT violation
is accompanied by the breaking of Lorentz symmetry [9,10,12], so the SME also describes general
CPT-violating effects. The SME provides a general framework to study possible effects due to Lorentz
and CPT violation and the parameters in any specific model characterizing these violations can be
matched to a suitable subset of the SME coefficients.

The minimal SME contains Lorentz-violating operators of mass dimensions up to four, which is
power-counting renormalizable in Minkowski spacetime. Lorentz-violating operators of larger mass
dimensions can be viewed as corrections at higher orders to the low-energy limit. Study of the
nonminimal SME is of interest in many different contexts of physics, such as the causality and
stability [13,14], the pseudo-Riemann–Finsler geometry [15–18], the mixing of Lorentz-violating operators
of different mass dimensions [19], Lorentz-violating models in supersymmetry [20], and noncommutative
Lorentz-violating quantum electrodynamics [21–23].

In a Penning-trap experiment, the measurable effects due to Lorentz and CPT violation given
by the minimal SME include the charge-to-mass ratio and the magnetic moment of the confined
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particle [24,25], through the changes in the anomaly and cyclotron frequencies. The published work on
studying the minimal-SME effects involves comparison of the anomaly frequencies of the electron and
positron [26], sidereal-variation analysis of the electron anomaly frequency [27,28], and measurements
of cyclotron frequencies of the H− ion relative to that of the antiproton [29,30].

In the nonminimal SME, additional Lorentz- and CPT-violating effects beyond the minimal SME
can be generated by the interaction between the confined particle and the electromagnetic fields in the
trap. The general theory of quantum electrodynamics with Lorentz- and CPT-violating operators of
mass dimensions up to six has been constructed in Ref. [31]. Recently, this treatment was generalized to
include operators of arbitrary mass dimension using gauge field theory [32]. In this work we focus on
further studies of Lorentz- and CPT-violating effects in the nonminimal sector of the SME by using the
recent Penning-trap results, which include the sidereal-variation analysis of the anomaly frequencies
for electrons [28] and the comparison of magnetic moments for both protons and antiprotons [1,2],
to obtain new and improved constraints on the SME coefficients. The results from this work are
complementary to existing studies of Penning-trap experiments [31], the muon anomalous magnetic
moment [33,34], clock-frequency comparison [35], and spectroscopy of hydrogen, antihydrogen,
and other related systems [36].

This work is organized as follows. In Section 2, we review the theory of quantum electrodynamics
with Lorentz- and CPT-violating operators of mass dimensions up to six. We use perturbation theory
to obtain the dominant shifts arising from Lorentz violation to the energy levels of the trapped
fermion, and then derive the contributions to the cyclotron and anomaly frequencies. The discussion of
coordinate transformation is given at the end of this section. We next turn in Section 3 the experimental
applications related to Penning traps and use the reported results to extract new limits on various SME
coefficients, including some that were not constrained in the literature. The constraints on the SME
coefficients obtained in this work are summarized in Section 4.

2. Theory

The theoretical prospects of Lorentz- and CPT-violating quantum electrodynamics in Penning-trap
experiments have been studied in Ref. [31]. In this section, we review the main results.

For a Dirac fermion field ψ of charge q and mass mψ confined in an external electromagnetic field
specified by potential Aμ, the conventional gauge-invariant Lagrange density L0 takes the form

L0 = 1
2 ψ(γμiDμ − mψ)ψ + h.c., (1)

where the covariant derivative is given by the minimal coupling iDμ = (i∂μ − qAμ) and h.c.
means Hermitian conjugate. The general Lorentz-violating Lagrange density that preserves U(1)
gauge invariance for the Dirac fermion field ψ can be constructed by adding contraction terms of
Lorentz-violating operators with the corresponding SME coefficients [9,10],

Lψ = 1
2 ψ(γμiDμ − mψ + Q̂)ψ + h.c., (2)

where Q̂ is a general 4× 4 spinor matrix involving the covariant derivative iDμ and the electromagnetic
field tensor Fαβ ≡ ∂α Aβ − ∂β Aα. The hermiticity of the Lagrange density (2) guarantees that Q̂ satisfies
condition Q̂ = γ0Q̂†γ0. In the limit of the free Dirac fermion with Aα = 0, Ref. [37] has studied the
propagation of the fermion field ψ at arbitrary mass dimension. A similar analysis of the quadratic
terms in the photon sector at arbitrary mass dimension has been presented in Ref. [38], as well as
extensions to other sectors, e.g., nonminimal neutrino [39] and gravity [40].

In this work we focus on the dominant Lorentz-violating effects including the photon-fermion
interaction beyond the minimal SME and restrict our attention to operators in the Lagrange density (2)
with mass dimensions up to six. The related full Lagrange density (2) can then be expressed as
two parts, the conventional Lagrange density L0 plus a series of contributions L(d) according to the
mass dimension of the operators, presented in Ref. [31]. We note that the nonminimal operators in
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the Lagrange density (2) generate a new type of SME coefficients with subscript F which control
the sizes of interactions involving the fermion spinors ψ and the electromagnetic field strength Fαβ.
For example, the dimension-five terms in the Lagrange density (2) contain a contribution involving
b(5)μαβ

F Fαβψγ5γμψ.
In the Lagrange density (2), the presence of Lorentz-violating operators modifies the conventional

Dirac equation for a fermion in electromagnetic fields and generates corrections δH to the Hamiltonian.
Since no Lorentz violation has been observed so far, any corrections must be tiny. We thus can treat
δH as a perturbative contribution and apply perturbation theory to obtain the dominant Lorentz- and
CPT-violating shifts in energy levels,

δEn,s = 〈χn,s|δH|χn,s〉, (3)

where En,s are unperturbed eigenstates of nth level and s is the spin state taking values of +1 and −1
for spin up and down, respectively.

From the modified Dirac equation given by the Lagrange density (2)

(p · γ − m + Q̂)ψ = 0, (4)

the exact Hamiltonian H can be defined as

Hψ ≡ p0ψ = γ0(p · γ + m − Q̂)ψ, (5)

where p0 is the exact energy. The exact perturbative Hamiltonian δH can then be identified as

δH = −γ0Q̂. (6)

It is challenging to construct δH directly as terms proportional to higher powers of momentum
appear in Q̂ and these terms in general contain the perturbative Hamiltonian H itself. However,
any contributions to δH due to the exact Hamiltonian H are at second or higher orders in the SME
coefficients. To obtain the leading-order corrections, one thus can evaluate p0 in Q̂ at the unperturbed
eigenstates En,s,

δH ≈ −γ0Q̂|p0→En,s
. (7)

In a Penning-trap experiment the primary observables of interest are transition frequencies
generated by the energy shifts due to the electromagnetic fields in the trap. Among the key frequencies
are the Larmor frequency for spin precession νL ≡ ωL/2π and the cyclotron frequency νc ≡ ωc/2π.
The difference of the two frequencies gives the anomaly frequency νL − νc = νa ≡ ωa/2π [41].
The measurements of the magnetic moment and the related g factor of a particle confined in the trap
can then be determined by the following ratio,

νL
νc

≡ ωL
ωc

=
g
2

. (8)

The above frequencies can be shifted in the presence of Lorentz and CPT violation, as the energies
are modified by Equation (3). To show the explicit results of the shifts, we choose the apparatus frame
with cartesian coordinates xa ≡ (x1, x2, x3) so that the magnetic field B = Bx̂3 points at the positive x3

direction and fix the electromagnetic potential gauge to be Aμ = (0, x2B, 0, 0). For a confined particle
of fermion-flavor w = e, p for electrons and protons, and of charge polarity σ = +1, −1 for carrying
positive and negative charges, there is no leading-order contribution from Lorentz and CPT violation
to the cyclotron frequencies,

δωw
c = δEw

1,σ − δEw
0,σ ≈ 0. (9)
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The dominant Lorentz- and CPT-violating contributions appear in the shifts to the
anomaly frequencies,

δωw
a = δEw

0,−σ − δEw
1,σ = 2b̃3

w − 2b̃33
F,wB, (10)

where the tilde quantities are defined by

b̃3
w = b3

w + H12
w − mwd30

w − mwg120
w + m2

wb(5)300
w + m2

wH(5)1200
w − m3

wd(6)3000
w − m3

wg(6)12000
w ,

b̃33
F,w = b(5)312

F,w + H(5)1212
F,w − mwd(6)3012

F,w − mwg(6)12012
F,w .

(11)

Here the superscripts (d) of the nonminimal SME coefficients in the tilde quantities (11) denote
the mass dimensions of the corresponding coefficients.

For the Lorentz- and CPT-violating shifts to the cyclotron and anomaly frequencies of the
corresponding antifermion of flavor w, a similar analysis can be carried out by reversing the signs of
the CPT-odd SME coefficients in Equations (9) and (10). As with the fermion case, the leading-order
contributions to the cyclotron frequencies vanish,

δωw
c = δEw

1,σ − δEw
0,σ ≈ 0, (12)

and the shifts to the anomaly frequencies are given by

δωw
a = δEw

0,−σ − δEw
1,σ = −2b̃∗3

w + 2b̃∗33
F,wB, (13)

where the two sets of starred tilde coefficients are defined as

b̃∗3
w = b3

w − H12
w + mwd30

w − mwg120
w + m2

wb(5)300
w − m2

w H(5)1200
w + m3

wd(6)3000
w − m3

wg(6)12000
w ,

b̃∗33
F,w = b(5)312

F,w − H(5)1212
F,w + mwd(6)3012

F,w − mwg(6)12012
F,w .

(14)

The index pair 12 in the tilde quantities (11) and (14) is antisymmetric and transforms under
rotation like a single 3 index, thus the shifts (10) and (13) in the anomaly frequencies for both fermions
and antifermions depend on only the x̂3 direction, as expected from the cylindrical symmetry of
the trap.

The above results (10) and (13) show that the dominant contributions in the anomaly frequencies
for a trapped fermion and antifermion of flavor w in a Penning trap are given by the four tilde
combinations b̃3

w, b̃33
F,w, b̃∗3

w , and b̃∗33
F,w. The results are valid in the apparatus frame, in which the

magnetic field is aligned with the positive x̂3 axis. However, this apparatus frame is noninertial due
to the Earth’s rotation. The standard canonical frame adopted in the literature to compare results
from different experiments searching for Lorentz violation is the Sun-centered frame [42,43], with the
cartesian coordinates XJ ≡ (X, Y, Z). In this frame, the Z axis is aligned with the rotation axis of the
Earth and the X axis points towards the vernal equinox in the year 2000. The Sun-centered frame is
approximately inertial in a typical time scale for an experiment. To relate the SME coefficients from the
Sun-centered frame to the apparatus frame, we introduce a third frame called the standard laboratory
frame with cartesian coordinates xj ≡ (x, y, z). The z axis in this frame points towards the local zenith
and the x axis is aligned with the local south. The choice of the positive x̂3 axis in the apparatus
frame to be aligned with the direction of the magnetic field may result in a nonzero angle to the ẑ axis,
so the transformation xa = Rajxj relating (x, y, z) in the standard laboratory frame to (x1, x2, x3) in the
apparatus frame involves a rotation matrix Raj specified in general by suitable Euler angles α, β, and γ,

Raj =

⎛⎜⎝ cos γ sin γ 0
− sin γ cos γ 0

0 0 1

⎞⎟⎠
⎛⎜⎝ cos β 0 − sin β

0 1 0
sin β 0 cos β

⎞⎟⎠
⎛⎜⎝ cos α sin α 0

− sin α cos α 0
0 0 1

⎞⎟⎠ . (15)
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Neglecting boost effects, which are at the order of 10−4, the relationship xj = RjJ xJ between
(X, Y, Z) in the Sun-centered frame and (x, y, z) in the standard laboratory frame can be obtained by
applying the following rotation matrix [42,43]

RjJ(T⊕) =

⎛⎜⎝ cos χ cos ω⊕T⊕ cos χ sin ω⊕T⊕ − sin χ

− sin ω⊕T⊕ cos ω⊕T⊕ 0
sin χ cos ω⊕T⊕ sin χ sin ω⊕T⊕ cos χ

⎞⎟⎠ , (16)

where ω⊕ 	 2π/(23 h 56 min) is the sidereal frequency of the Earth’s rotation, T⊕ is the local sidereal
time, and the angle χ specifies the laboratory colatitude.

To relate the time T in the Sun-centered frame to the time t in the standard laboratory frame, it is
often convenient to match the origin of t with the local sidereal time T⊕, by defining its origin at the
moment when the y axis in the standard laboratory frame lies along the Y axis in the Sun-centered
frame. For a laboratory with longitude λ in units of degrees, this choice offsets t from T by an integer
number of the Earth’s sidereal rotations plus an additional shift

T0 ≡ T − T⊕ 	 (66.25◦ − λ)

360◦
(23.934 hr). (17)

The above discussion shows that the relationship between (X, Y, Z) in the Sun-centered frame
and (x1, x2, x3) in the apparatus frame is given by

xa(T⊕) = RajRjJ(T⊕)XJ . (18)

The transformation (18) generates the dependence on the sidereal time of the SME coefficients
observed in the apparatus frame. To show the explicit dependence of the shifts to the anomaly
frequencies (10), consider a fermion of flavor w confined in a Penning trap with the magnetic field
aligned with the local zenith and located at colatitude χ, applying the transformation matrix (16) yields
the results

b̃3
w = b̃Z

w cos χ + (b̃X
w cos ω⊕T⊕ + b̃Y

w sin ω⊕T⊕) sin χ, (19)

and

b̃33
F,w = b̃ZZ

F,w + 1
2 (b̃

XX
F,w + b̃YY

F,w − 2b̃ZZ
F,w) sin2 χ + (b̃(XZ)

F,w cos ω⊕T⊕ + b̃(YZ)
F,w sin ω⊕T⊕) sin 2χ

+
(

1
2 (b̃

XX
F,w − b̃YY

F,w) cos 2ω⊕T⊕ + b̃(XY)
F,w sin 2ω⊕T⊕

)
sin2 χ,

(20)

where the parenthesis around two indices (JK) in the tilde coefficients means symmetrization and
is defined as (JK) = (JK + KJ)/2. Similar results for the shifts to the anomaly frequencies (13) of
antifermions can also be derived by substituting the tilde coefficients with the starred tilde coefficients.
In more general cases with the magnetic field pointing a generic direction, information on the Euler
angles α, β, γ in Equation (15) are needed to obtain the explicit results.

The results given above show that the physical observables in a Penning-trap experiment
involving electrons, positrons, protons, and antiprotons are the 36 independent tilde quantities b̃J

w, b̃∗J
w ,

b̃(JK)
F,w , and b̃∗(JK)

F,w in the Sun-centered frame. Performing a sidereal-variation analysis of the anomaly

frequencies can give access to 28 of the coefficients as the other 8 contributions proportional to b̃Z
w,

b̃∗Z
w , b̃ZZ

F,w, and b̃∗(ZZ)
F,w are independent of sidereal time. A comparison of the results from two different

Penning-trap experiments is therefore required to study these 8 combinations of coefficients for Lorentz
violation that produce constant shifts to the anomaly frequencies.
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3. Experiment

3.1. Harvard Experiment

The recent measurement of the electron g factor performed at Harvard University has reached
a precision of 0.28 ppt [3]. A sidereal-variation analysis of the anomaly frequencies for the electron
was performed to search for variations in the sidereal time of the Earth’s rotation [28]. The data was
analyzed for oscillations over time and was fit by a five-parameter sinusoid model at the sidereal
frequencies of ω⊕ and 2ω⊕, yielding a 2σ limit in the amplitudes of the harmonic oscillation of
|δνe

a| ∼< 0.05 Hz. This result corresponds to |δωe
a| ∼< 2 × 10−25 GeV in natural units with c = h̄ = 1.

The magnetic field adopted in the experiment is B = 5.36 T in the local upward direction and the
geometrical colatitude of this experiment is χ = 47.6◦. Taking one sidereal oscillation at a time
places bounds

((
b̃X

e − (2 × 10−15 GeV2)b̃(XZ)
F,e

)2
+
(

b̃Y
e − (2 × 10−15 GeV2)b̃(YZ)

F,e

)2
)1/2

∼< 2 × 10−25 GeV (21)

in the first harmonic and((
10−15 GeV2(b̃XX

F,e − b̃YY
F,e )
)2

+
(

10−15 GeV2b̃(XY)
F,e

)2
)1/2

∼< 2 × 10−25 GeV (22)

in the second harmonic, respectively. The above results not only lead to a factor of four improvement
compared to the existing constraints obtained by a similar analysis of the Penning-trap experiment
searching for first-harmonic variation at the University of Washington [27,31], but also produce
the first-time bounds on tilde coefficients b̃(XX)

F,e − b̃(YY)
F,e and b̃(XY)

F,e as they only appear in the second
harmonic of the sidereal oscillation.

The experiments to measure the magnetic moment of a trapped positron are currently under
development at Harvard University and Northwestern University [4,5]. Performing a similar
sidereal-variation analysis of the anomaly frequency would offer not only the first-time limits on the
starred tilde coefficients b̃∗J

e , b̃∗(JK)
F,e , but would also constrain the CPT-odd coefficients in Equations (11)

and (14) by comparing with measurements of the electron. The constant parts in the sidereal variations
of the tilde coefficients b̃J

e , b̃(JK)
F,e , b̃∗J

e , and b̃∗(JK)
F,e could also be studied by this comparison.

3.2. BASE Experiments at Mainz and CERN

The BASE collaboration has recently measured the proton magnetic moment at a record sensitivity
of 0.3 ppb using a Penning trap located at Mainz [1], improving their previous best result [44] by
a factor of 11. A precision of 1.5 ppb of the antiproton magnetic moment measurement has also
been achieved by the same group using a similar Penning trap located at CERN [2]. A study of
sidereal variations of the anomaly frequencies for both protons and antiprotons is currently being
performed at BASE and this could, in principle, provide sensitivities to various tilde coefficients b̃J

p,

b̃(JK)
F,p , b̃∗J

p and b̃∗(JK)
F,p . Another version of this experiment is planned to be performed at CERN by

the BASE collaboration to measure the magnetic moments for both protons and antiprotons using
quantum logic readout [45], which will allow rapid measurements of the anomaly frequencies for the
proton and antiproton. This would offer an excellent opportunity to conduct the sidereal-variation
analysis, as well as to constrain the constant parts in the harmonics of the above coefficients through
a direct comparison of the two measurements.
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Here we combine the published results from the two recent BASE experiments [1,2] to obtain
constraints on the SME coefficients in the Sun-centered frame. A comparison between the two
measured g factors for protons and antiprotons gives

gp

2
− gp

2
=

ω
p
a

ω
p
c
− ω

p
a

ω
p
c
=

2

ω
p
c ω

p
c

(
Σω

p
c Δω

p
a − Δω

p
c Σω

p
a

)
, (23)

where the differences and sums of the cyclotron and anomaly frequencies are defined as

Δω
p
c ≡ 1

2 (ω
p
c − ω

p
c ),

Σω
p
c ≡ 1

2 (ω
p
c + ω

p
c ),

Δω
p
a ≡ 1

2 (δω
p
a − δω

p
a ),

Σω
p
a ≡ 1

2 (δω
p
a + δω

p
a ).

(24)

For the proton magnetic moment measured at Mainz, the experiment is located at χ 	 40.0◦

and the applied magnetic field B 	 1.9 T points θ = 18◦ from local south in the counterclockwise
direction, generating a cyclotron frequency ω

p
c = 2π × 28.96 MHz [1]. For the antiproton magnetic

moment measurement at CERN, the trap is located at χ∗ 	 43.8◦ and the magnetic field B∗ 	 1.95 T
points θ∗ = 120◦ from local south in the counterclockwise direction, producing a different cyclotron
frequency ω

p
c = 2π × 29.66 MHz [2]. Since the measurements of the frequencies for both experiments

were performed over an extended time period, any sidereal variations could be plausibly assumed
to be averaged out, leaving only the constant parts in the tilde coefficients. Therefore, applying the
general transformation (18) together with the related experimental quantities yields the following
expressions for the time-independent parts in Δω

p
a and Σω

p
a ,

Δω
p
a = b̃3

p − b̃33
F,pB + b̃∗3

p − b̃∗33
F,p B∗

= −b̃Z
p cos θ sin χ − b̃∗Z

p cos θ∗ sin χ∗

− 1
2 (b̃

XX
F,p + b̃YY

F,p)B(cos2 θ cos2 χ + sin2 θ)− 1
2 (b̃

∗XX
F,p + b̃∗YY

F,p )B∗(cos2 θ∗ cos2 χ∗ + sin2 θ∗)

−b̃ZZ
F,pB cos2 θ sin2 χ − b̃∗ZZ

F,p B∗ cos2 θ∗ sin2 χ∗,
Σω

p
a = b̃3

p − b̃33
F,pB − b̃∗3

p + b̃∗33
F,p B∗

= −b̃Z
p cos θ sin χ + b̃∗Z

p cos θ∗ sin χ∗

− 1
2 (b̃

XX
F,p + b̃YY

F,p)B(cos2 θ cos2 χ + sin2 θ) + 1
2 (b̃

∗XX
F,p + b̃∗YY

F,p )B∗(cos2 θ∗ cos2 χ∗ + sin2 θ∗)

−b̃ZZ
F,pB cos2 θ sin2 χ + b̃∗ZZ

F,p B∗ cos2 θ∗ sin2 χ∗.

(25)

Substituting expressions (25) into the difference (23) and adopting the numerical values of the
experimental quantities given above, the reported results for the measurements of g factors from both
BASE experiments give the following 2σ limit∣∣∣b̃Z

p − 0.6b̃∗Z
p + (2 × 10−16 GeV2)(b̃XX

F,p + b̃YY
F,p) + (2 × 10−16 GeV2)b̃ZZ

F,p

+(2 × 10−16 GeV2)(b̃∗XX
F,p + b̃∗YY

F,p ) + (7 × 10−17 GeV2)b̃∗ZZ
F,p

∣∣∣ ∼< 8 × 10−25 GeV.
(26)

4. Sensitivity

To get some intuition for the scope of the constraints (21), (22), and (26), a common practice is to
assume only one individual tilde coefficient is nonzero at a time. Considering no Lorentz and CPT
violation has been observed so far, this procedure offers a reasonable measure of the estimated limits
on each tilde coefficient by ignoring any cancellations among them. We list in Table 1 the resulting
constraints on the tilde coefficients from this work and include the previous limits obtained in Ref. [31],
as well as recent improved results presented in Ref. [2], for a direct comparison. In the electron sector,
Table 1 shows that not only a factor of four improvement for the limits on the tilde coefficients b̃X

e ,
b̃Y

e , b̃(XZ)
e , and b̃(YZ)

e has been achieved, but also that new coefficients b̃(XY)
F,e and b̃∗XX

F,e − b̃∗YY
F,e have
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been constrained. In the proton sector, the limits on the tilde coefficients have been improved by
factors of up to three compared to the existing results [2]. The constraints on the tilde coefficients
that are not sensitive to the corresponding work are left blank in Table 1. Please note that only
18 out of the 36 coefficients for Lorentz violation related to Penning-trap experiments have been
constrained so far. A sidereal-variation analysis for the measurements of the magnetic moments of
protons and antiprotons would permit access to other various components of the tilde coefficients in
the proton sector.

Table 1. New and improved constraints on the SME coefficients.

Coefficient Previous Constraint in [31] Recent Result in [2] This Work

|b̃X
e | < 6 × 10−25 GeV < 1 × 10−25 GeV

|b̃Y
e | < 6 × 10−25 GeV < 1 × 10−25 GeV

|b̃Z
e | < 7 × 10−24 GeV

|b̃∗Z
e | < 7 × 10−24 GeV

|b̃XX
F,e + b̃YY

F,e | < 2 × 10−8 GeV−1

|b̃ZZ
F,e | < 8 × 10−9 GeV−1

|b̃(XY)
F,e | < 2 × 10−10 GeV−1

|b̃(XZ)
F,e | < 4 × 10−10 GeV−1 < 1 × 10−10 GeV−1

|b̃(YZ)
F,e | < 4 × 10−10 GeV−1 < 1 × 10−10 GeV−1

|b̃∗XX
F,e + b̃∗YY

F,e | < 2 × 10−8 GeV−1

|b̃∗XX
F,e − b̃∗YY

F,e | < 4 × 10−10 GeV−1

|b̃∗ZZ
F,e | < 8 × 10−9 GeV−1

|b̃Z
p | < 2 × 10−21 GeV < 1.8 × 10−24 GeV < 8 × 10−25 GeV

|b̃∗Z
p | < 6 × 10−21 GeV < 3.5 × 10−24 GeV < 1 × 10−24 GeV

|b̃XX
F,p + b̃YY

F,p| < 1 × 10−5 GeV−1 < 1.1 × 10−8 GeV−1 < 4 × 10−9 GeV−1

|b̃ZZ
F,p| < 1 × 10−5 GeV−1 < 7.8 × 10−9 GeV−1 < 3 × 10−9 GeV−1

|b̃∗XX
F,p + b̃∗YY

F,p | < 2 × 10−5 GeV−1 < 7.4 × 10−9 GeV−1 < 3 × 10−9 GeV−1

|b̃∗ZZ
F,p | < 8 × 10−6 GeV−1 < 2.7 × 10−8 GeV−1 < 1 × 10−8 GeV−1

5. Summary

In conclusion, we present in this work the general theory for quantum electrodynamics with
Lorentz- and CPT-violating operators of mass dimensions up to six and study the dominant effects
arising from Lorentz and CPT violation in Penning-trap experiments involving confined particles.
Recently reported results of magnetic moments of the confined particles are used to improve existing
bounds on various SME coefficients, and to constrain new coefficients as well. The results obtained in
this work are summarized in Table 1. The methodology we outline in this work using Equation (23)
to derive these constraints can be used as a generic way to study Lorentz and CPT violation
involving comparisons of results from different Penning-trap experiments. The high sensitivities
of the measurements in current and forthcoming experiments offer strong motivation to continue the
efforts of studying Lorentz and CPT violation with great potential to uncover any possible tiny signals.
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Abstract: The current paper is a technical work that is focused on Lorentz violation for Dirac fermions
as well as neutrinos, described within the nonminimal Standard-Model Extension. We intend to
derive two theoretical results. The first is the full propagator of the single-fermion Dirac theory
modified by Lorentz violation. The second is the dispersion equation for a theory of N neutrino
flavors that enables the description of both Dirac and Majorana neutrinos. As the matrix structure
of the neutrino field operator is very involved for generic N, we will use sophisticated methods of
linear algebra to achieve our objectives. Our main finding is that the neutrino dispersion equation
has the same structure in terms of Lorentz-violating operators as that of a modified single-fermion
Dirac theory. The results will be valuable for phenomenological studies of Lorentz-violating Dirac
fermions and neutrinos.

Keywords: Lorentz and CPT violation; Standard-Model Extension; Dirac fermions; Dirac neutrinos;
Majorana neutrinos; determinants of block matrices

1. Introduction

Neutrinos are both interesting and elusive particles. According to the Standard Model of particle
physics, there are three neutrino flavors that correspond to the flavors of the three charged leptons—the
electron neutrino νe, the muon neutrino νμ and the tau neutrino ντ. Neutrinos do not carry electric
charge and are only produced in processes mediated by the weak interaction [1]. When neutrinos
propagate a distance, the probability of detecting a certain flavor changes with time. These neutrino
oscillations are quantum mechanical in nature. They have their origin in the fact that the eigenstates
of the kinematic Hamiltonian and the flavor eigenstates produced in interactions do not correspond
to each other. Instead, these two distinct bases are related by the unitary PMNS matrix [2]. Neutrino
oscillations indicate that neutrinos have mass, although their mass is that tiny to not have been
measured directly, so far. Therefore, they practically propagate with the speed of light.

Measuring the CP-violating phase that is contained in the PMNS matrix is currently one of the hot
topics in neutrino physics. Apart from CP-violation, neutrinos may be subject to CPT violation due to
physics at the Planck scale such as strings [3,4]. Since they travel almost with the speed of light, they are
strongly boosted with respect to the Sun-centered equatorial frame [5] and CPT-violating effects may
accumulate over long distances. A violation of CPT symmetry implies a violation of Lorentz invariance
in the context of effective field theory [6], whereby it makes sense to use neutrinos as a testbed for the
search for Lorentz violation. To do so, a general comprehensive framework to parameterize Lorentz
violation is desirable. The latter is provided by the Standard-Model Extension (SME). Its minimal
version including field operators of mass dimensions 3 and 4 was developed in References [7,8].
The nonminimal SME, which involves field operators of arbitrary mass dimensions, was constructed
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in a series of papers [9–11] for photons, neutrinos and single Dirac fermions. Within this framework,
each Lorentz-violating contribution is a proper contraction of a field operator and a background field.
The latter are composed of preferred spacetime directions and controlling coefficients parameterizing
the strength of Lorentz violation.

Phenomenology in the SME neutrino sector has been performed in a large collection of
papers [12–33], where this list is not claimed to be complete. All constraints obtained for Lorentz
violation in the neutrino sector are compiled in the data tables [5]. Interestingly, it was also observed
that neutrino oscillations could be explained by Lorentz-violating massless neutrinos in certain models.

The current article must be considered as a technical work that can be the preparing base for
further forthcoming phenomenological investigations. We have two objectives. The first is to present
the general result for the propagator of a single Dirac fermion in the nonminimal SME. The second is to
obtain the dispersion equation of the nonminimal neutrino sector. The latter goal will be accomplished
with a powerful method to compute determinants of large matrices that decompose into smaller blocks.

A description of Lorentz violation in the neutrino sector based on the SME permits N neutrino
flavors and allows for both Dirac and Majorana neutrinos. Majorana neutrinos are characterized by
the property of being identical to their own antiparticles such that neutrino-antineutrino mixing can
occur. Therefore, the differential operator that appears in the field equations of the theory is not simply
a (4 × 4) matrix in spinor space such as for a single Dirac fermion. For a set of N neutrinos of either
Dirac or Majorana type, it is a (8N × 8N) matrix instead. The determinant of this matrix directly
corresponds to the modified dispersion equation for neutrinos. Even for 3 flavors, its computation
is cumbersome.

In principle, it is possible to consider an observer frame with only a single nonzero coefficient
and to compute the determinant by brute force with computer algebra. Such a direct approach has
several disadvantages, though. First, an observer frame with a single nonzero controlling coefficient is
a very special case. Second, the result of the determinant is most probably still messy and its structure
is supposedly not very illuminating. Therefore, it would be desirable to employ a technique that
allows for a covariant and general treatment of the problem. Although the result is still expected to
be complicated due to the high dimensionality of the matrix, the method to be used can be applied
to obtain the dispersion equation for an arbitrary number of flavors. Thus, it may be of interest for
someone who wants to include sterile neutrinos in their analysis, which are beyond the scope of
the SME.

The paper is organized as follows. Section 2 gives a brief introduction to the SME fermion
sector. The properties most important to us are discussed and several definitions are introduced.
In Section 3 we derive the full propagator of the modified Dirac fermion sector. In Section 4 the
very base of the SME neutrino sector is described, as well as the algorithm that we intend to use to
obtain the neutrino dispersion equation. The individual steps of the calculation are carried out and
explained, too. We state the central result in Section 5 and discuss it subsequently, whereby some
properties of the first-order dispersion relations are obtained in Section 6. A brief comment on classical
Lagrangians in the neutrino sector follows in Section 7. Finally, all findings are summarized and
concluded on in Section 8. Relations and definitions that are not of primary interest to the reader are
relegated to Appendixes A and B. Natural units with the conventions h̄ = c = 1 will be used unless
otherwise stated.

2. Basic Properties of the SME Fermion Sector

The fermion sector of the SME describes a single Dirac fermion subject to Lorentz-violating
background fields that permit a construction of an observer Lorentz-invariant Lagrange density.
The minimal fermion sector was introduced in Reference [8] and its properties were investigated
in Reference [34]. The minimal framework was complemented by the nonminimal contributions in
Reference [11]. Our analysis will be carried out within the nonminimal SME, whereby we take over
the notation of the latter reference and also mainly refer to formulas stated in that paper.
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The framework rests on the Lagrange density of Equations (1) and (2) in [11]. The corresponding
modified Dirac equation reads

Dψ = 0 , D = �p − mψ14 + Q̂ , (1a)

Q̂ = Ŝ14 + iP̂γ5 + V̂μγμ + Âμγ5γμ +
1
2
T̂ μνσμν . (1b)

In the latter, ψ is a spinor, mψ the fermion mass, and γμ denote the usual Dirac matrices that satisfy
the Clifford algebra {γμ, γν} = 2ημν14 with the Minkowski metric ημν of signature (+,−,−,−).
Furthermore, 1n is the n-dimensional identity matrix, γ5 = γ5 ≡ iγ0γ1γ2γ3 is the chiral Dirac matrix
and σμν ≡ (i/2)[γμ, γν] involves the commutator of two Dirac matrices. The Lorentz-violating operator
Q̂ is decomposed in terms of the 16 matrices {ΓA} ≡ {14, γ5, γμ, iγ5γμ, σμν}. This set forms a basis
of (4 × 4) matrices and the dual basis {ΓA} is obtained by lowering the Lorentz indices with the
Minkowski metric. The basis obeys an orthogonality relation of the form Tr(ΓAΓB) = 4δ B

A where
Tr denotes the trace in spinor space. Lorentz violation is contained in a scalar Ŝ , a vector V̂ , and a
two-tensor operator T̂ . Additionally, a pseudo-scalar P̂ and a pseudo-vector Â occur when the
behavior of the operators under parity transformations is taken into account. Tensors of higher rank
than these do not exist, as more complicated matrices in spinor space can always be mapped in some
way to the 16 matrices mentioned before by using identities such as those listed in Appendix A.

It is worth pointing out the structure of the operators contained in Q̂. They are constructed as
sums of operators of increasing mass dimension suitably contracted with controlling coefficients. In
momentum space they can be written as the following infinite sums:

Ŝ =
∞

∑
d=3

S (d)α1α2...αd−3 pα1 pα2 . . . pαd−3 , (2a)

P̂ =
∞

∑
d=3

P (d)α1α2...αd−3 pα1 pα2 . . . pαd−3 , (2b)

V̂μ =
∞

∑
d=3

V (d)μα1α2...αd−3 pα1 pα2 . . . pαd−3 , (2c)

Âμ =
∞

∑
d=3

A(d)μα1α2...αd−3 pα1 pα2 . . . pαd−3 , (2d)

T̂ μν =
∞

∑
d=3

T (d)μνα1α2...αd−3 pα1 pα2 . . . pαd−3 , (2e)

where d is the mass dimension of the field operator that a specific controlling coefficient such as
S (d)α1...αd−3 is contracted with. These decompositions can be extracted from Equation (3) in [11]. Each
controlling coefficient has a mass dimension of 4 − d and is independent of the spacetime coordinates
to preserve energy and momentum.

Evaluating the determinant of the Dirac operator D leads to the dispersion equation for a single
fermion. The latter is given by Equation (39) of [11]:

Δ = 0 , Δ = (Ŝ2
− − T̂ 2

−)(Ŝ2
+ − T̂ 2

+) + V̂2
−V̂2

+ − 2V̂− · (Ŝ−η + 2iT̂−) · (Ŝ+η − 2iT̂+) · V̂+ , (3a)

with the definitions

Ŝ± ≡ −mψ + Ŝ ± iP̂ , V̂μ
± ≡ pμ + V̂μ ± Âμ , T̂ μν

± ≡ 1
2
(T̂ μν ± i ˜̂T μν) , (3b)
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and the dual of the two-tensor operator:

˜̂T μν ≡ 1
2

εμν�σT̂�σ . (3c)

The latter contains the totally antisymmetric Levi-Civita symbol εμν�σ based on the convention
ε0123 = 1. In the remainder of the paper, a definition of the observer scalars

X̂ ≡ 1
4
T̂μνT̂ μν , Ŷ ≡ 1

4
T̂μν
˜̂T μν , (4)

turns out to be fruitful. It is also beneficial to define the following combination of operators that we
will make frequent use of:

˜̂T μν
gen ≡ ˜̂T μν − 1

Ŝ − mψ

[
(p + V̂)μÂν − Âμ(p + V̂)ν

]
, T̂ μν

gen ≡ 1
2

εμν�σ( ˜̂T gen)�σ . (5)

Note that the operator previously introduced reduces to the effective dual two-tensor operator
in Equation (25) of Reference [11] at first order in Lorentz violation, which is why we denote it by the
index “gen” standing for “generalized.”

3. General Modified Dirac Propagator

The investigations to be performed in the neutrino sector require an evaluation of the
single-fermion propagator (Green’s function in momentum space) S. This result has not been
obtained so far for the full nonminimal fermion sector, which is why we would like to state it
here. The propagator is directly connected to the inverse of the Dirac operator in momentum space:
DS = SD = 14. It must be possible to express the propagator in terms of the basis {ΓA} mentioned
before. Therefore, it can be written in the form

iS =
i
Δ

(
Ŝ(p)14 + iP̂ (p)γ5 + V̂ (p)μγμ + Â(p)μγ5γμ +

1
2
T̂ (p)μνσμν

)
, (6)

where Δ = det(D) and the index (p) of each individual contribution stands for “propagator.” Note
that we introduced a prefactor of i to follow the conventions of Reference [35]. The denominator Δ
corresponds to the left-hand side of Equation (3). The individual contributions can be obtained by
multiplying the inverse with each of the 16 Dirac matrices and computing the trace of the matrix
product. In addition, we make use of the orthogonality relation for these matrices, which leads to:

Ŝ (p) =
Δ
4

Tr(14D−1) , P̂ (p) = −i
Δ
4

Tr(γ5D−1) , V̂ (p)μ =
Δ
4

Tr(γμD−1) , (7a)

Â(p)μ = −Δ
4

Tr(γ5γμD−1) , T̂ (p)μν =
Δ
4

Tr(σμνD−1) . (7b)

Now, these contributions are explicitly given by

Ŝ (p) = −(Ŝ − mψ)(2Θ − T̂μνT̂ μν
gen)− 2ŶP̂ , (8a)

P̂ (p) = −(Ŝ − mψ)(2Ŷ − T̂μν
˜̂T μν

gen) + 2ΘP̂ , (8b)

V̂ (p)μ = 2
[
Θ(p + V̂)μ − T̂ μνT̂ν�(p + V̂)� − (Ŝ − mψ)

˜̂T μν
genÂν + T̂ μνÂνP̂

]
, (8c)

Â(p)μ = 2
[
ΘÂμ − T̂ μνT̂ν�Â� − (Ŝ − mψ)

˜̂T μν
gen(p + V̂)ν + T̂ μν(p + V̂)νP̂

]
, (8d)
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T̂ (p)μν = 2
[
(Ŝ − mψ)

2T̂ μν
gen − ΘT̂ μν + Ŷ ˜̂T μν +

[
T̂ μ�(p + V̂)ν − (p + V̂)μT̂ ν�

]
(p + V̂)�

−(T̂ μ�Âν − ÂμT̂ ν�)Â� − (Ŝ − mψ)P̂ ˜̂T μν
gen

]
. (8e)

For convenience, we defined the observer scalar

2Θ ≡ (p + V̂)2 − (Ŝ − mψ)
2 − Â2 − 2X̂ − P̂2 , (8f)

which involves each of the five operators. Several remarks are in order. First, this result generalizes
the propagator obtained for the spin-degenerate operators Ŝ , V̂ in Reference [36] and that for
the spin-nondegenerate operators Â, T̂ in Reference [37]. It now applies to the full spectrum of
Lorentz-violating operators and is valid also for the nonminimal SME. The propagator reduces to the
special results published previously when the corresponding operators are set to zero. Second, all
operators of different types are coupled to each other and each contribution of Equation (8) transforms
consistently under parity transformations, as expected. For example, each term of P̂ (p) transforms as a
pseudoscalar. Third, for vanishing Lorentz violation, we have

2Θ = p2 − m2
ψ , Ŝ (p) = mψ(p2 − m2

ψ) , P̂ (p) = 0 , (9a)

V̂ (p)μ = (p2 − m2
ψ)pμ , Â(p)μ = 0 , T̂ (p)μν = 0 , Δ = (p2 − m2

ψ)
2 , (9b)

whereupon Equation (6) reproduces the standard fermion propagator

iS|LV=0 =
i(�p + mψ14)

p2 − m2
ψ

, (10)

stated in [35].

4. Modified Neutrino Dispersion Equation

We consider N flavors of modified neutrinos and also include a description of Majorana neutrinos.
To do so, the spinor field ΨA is constructed as a 2N-dimensional multiplet of spinors

ΨA =

(
ψa

ψC
a

)
, (11)

where a ranges over N flavors and A labels the 2N components of the multiplet. Furthermore, ψC
a

is the charge conjugate of ψa [10]. Due to the form of the construction, there is a redundancy in Ψ
encoded in the relationship

ΨC = CΨ , C =

(
0 1N
1N 0

)
, (12)

where the (2N × 2N) matrix C is defined in terms of (N × N) blocks in flavor space. With this
information at hand, we present the Lagrange density that incorporates Lorentz and CPT violation
into the neutrino sector:

L =
1
2

ΨA(i�∂δAB − MAB + Q̂AB)ΨB + H.c. , (13)

with the flavor indices A, B. The corresponding Dirac operator Dν in momentum space is a (8N × 8N)

matrix that can be expressed in the form [10]

Dν = 12N ⊗ �p − M ⊗ 14 + Q̂ , (14a)
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where
Q̂ = Ŝ ⊗ 14 + iP̂ ⊗ γ5 + V̂μ ⊗ γμ + Âμ ⊗ γ5γμ +

i
2
T̂ μν ⊗ σμν . (14b)

Here, ⊗ denotes a tensor product of (2N × 2N) matrices in flavor space and matrices in
four-dimensional spinor space. Furthermore, M is the (2N × 2N) neutrino mass matrix. Both the
mass matrix and the Lorentz-violating operator Q̂ are expressed in the basis of flavor eigenstates.
Therefore, the mass matrix cannot simply be taken as diagonal. The operator Q̂ can be decomposed
as in Equation (2), but now we need to remember that the individual contributions also have a
flavor structure.

The dispersion equation corresponds to the determinant of the Dirac operator set equal to zero.
Therefore, the basic problem is to obtain this determinant and to express the result in a convenient
manner. It turns out to be very useful to treat the Dirac operator as a (2N × 2N) matrix in flavor space
where each of these entries on its own is a (4 × 4) matrix in spinor space. Thus, the structure of this
operator is

Dν =

⎛⎜⎝ D1,1 . . . D1,2N
...

. . .
...

D2N,1 . . . D2N,2N

⎞⎟⎠ , (15a)

where

Di,j = δi,j�p − Mi,j14 + Q̂i,j , (15b)

Q̂i,j =

(
Ŝ14 + iP̂γ5 + V̂μγμ + Âμγ5γμ +

1
2
T̂ μνσμν

)
i,j

. (15c)

The indices stated explicitly are flavor indices, whereby spinor indices are suppressed, as usual.
Writing the Dirac operator in this form turns out to be advantageous to apply a sophisticated algorithm
for computing the determinant of a matrix in block form in a suggestive way [38]. The algorithm is a
recursive method that will be briefly described as follows.

The base is to define 2N sets of matrices α
(k)
i,j with k ∈ {0 . . . 2N − 1}. Each set for a fixed k contains

(2N)2 such matrices, i.e., we have i, j ∈ {1 . . . 2N}. To avoid confusion, we emphasize again that all
matrices are (4 × 4), i.e., the indices are not spinor indices, but they label these matrices in flavor space.
Now, the first step of the recursion is to assign the Dirac block at the position (i, j) in flavor space to
the matrix α

(0)
i,j :

α
(0)
i,j ≡ Di,j . (16)

A recurrence relation is defined that allows for constructing new sets of matrices from previous
ones. Hence, for k ∈ {0 . . . 2N − 2} fixed, we obtain a new set of (4 × 4) matrices {α(k+1)} from the set
{α(k)} via

α
(k+1)
i,j = α

(k)
i,j − α

(k)
i,2N−k(α

(k)
2N−k,2N−k)

−1α
(k)
2N−k,j , (17)

where A−1 denotes the inverse of the matrix A. Having these 2N sets of matrices at hand, the
determinant of the original block matrix in Equation (15a) is given by

detDν =
2N

∏
k=1

det(α(2N−k)
k,k ) . (18)

Hence, to compute the determinant, only a subset of the matrices obtained before is necessary. This
procedure has a great advantage compared to a brute-force evaluation of the determinant. In virtue
of Equation (18), the determinant of the full Dirac operator including the flavor structure decomposes
into a product of determinants of matrizes that have the form of single-fermion Dirac operators.
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Below, we intend to apply this powerful algorithm to the nonminimal neutrino sector. To simplify
our notation, we introduce a generic Lorentz-violating operator ÔX with a suitable Lorentz index
structure X. The latter can stand for one of the five possible operators: ÔX ∈ {Ŝ , P̂ , V̂μ, Âμ, T̂ μν}.
Now, the steps to be used for the algorithm are as follows:

1. Definition of initial operators:

According to Equation (16), the first step of the recursion is

α
(0)
i,j =

(
Ŝ14 + iP̂γ5 + V̂μγμ + Âμγ5γμ +

1
2
T̂ μνσμν

)(0)
i,j

, (19a)

with

Ŝ (0)
i,j = −Mi,j + Ŝi,j , P̂ (0)

i,j = P̂i,j , V̂ (0)μ
i,j = pμδi,j + V̂μ

i,j , (19b)

Â(0)μ
i,j = Âμ

i,j , T̂ (0)μν
i,j = T̂ μν

i,j . (19c)

2. Computation of inverse matrix:

The recurrence relation (17) requires the inverse of α
(k)
i,j , which has the form of a single-fermion

Dirac operator. Therefore, its inverse is linked to the fermion propagator obtained in
Equation (6) where

(α
(k)
2N−k,2N−k)

−1 = S|ÔX=Ô(k)X
2N−k,2N−k

. (20a)

The denominator that appears in the latter expression is given by the left-hand side of the
dispersion Equation (3):

Δ(k) ≡ det(α(k)2N−k,2N−k) = Δ|ÔX=Ô(k)X
2N−k,2N−k

. (20b)

3. Product of the second and third factor of recurrence relation:

Keeping the previous result in mind, the product necessary to evaluate Equation (17) contains all
kinds of combinations of Dirac matrices. As the 16 matrices of the set ΓA form a basis of (4 × 4)
matrices, these combinations can be completely expressed in terms of the 16 original matrices. To
do so, a slew of matrix identities are indispensable, which are to be found in Appendix A. The
result of the product then has the following form:

(α
(k)
2N−k,2N−k)

−1α
(k)
2N−k,j =

1
Δ(k)

(
ˆ̄S + i ˆ̄P + ˆ̄Vμγμ + ˆ̄Aμγ5γμ +

1
2

ˆ̄T μνσμν

)(k)
2N−k,j

, (21)

according to the single-fermion result of Equation (3). A bar is added to the new operators that
follow from this product. These are explicitly given by

ˆ̄S (k)
2N−k,j =

(
Ŝ (p)Ŝ − P̂ (p)P̂ + V̂ (p) · V̂ − Â(p) · Â − 1

2
T̂ (p) · T̂

)(k)
2N−k,j

, (22a)

i ˆ̄P (k)
2N−k,j =

(
iŜ (p)P̂ + iP̂ (p)Ŝ − V̂ (p) · Â+ Â(p) · V̂ + i[�(T̂ (p) ∧ T̂ )]

)(k)
2N−k,j

, (22b)

ˆ̄V (k)μ
2N−k,j =

(
Ŝ (p)V̂μ + V̂ (p)μŜ + i(V̂ (p) · T̂ + T̂ (p) · V̂)μ + i(P̂ (p)Âμ − Â(p)μP̂)

+[�(Â(p) ∧ T̂ + T̂ (p) ∧ Â)]μ
)(k)

2N−k,j
, (22c)
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ˆ̄A(k)μ
2N−k,j =

(
Ŝ (p)Âμ + Â(p)μŜ + i(P̂ (p)V̂μ − V̂ (p)μP̂) + i(Â(p) · T̂ + T̂ (p) · Â)μ

+[�(V̂ (p) ∧ T̂ + T̂ (p) ∧ V̂)]μ
)(k)

2N−k,j
, (22d)

1
2

ˆ̄T (k)μν
2N−k,j =

(
1
2
(Ŝ (p)T̂ μν + T̂ (p)μνŜ)− 1

2
(P̂ (p) ˜̂T μν + ˜̂T (p)μνP̂)− i

2
V̂ (p)μ ∧ V̂ν

+
i
2
Â(p)μ ∧ Âν +

1
2
[�(Â(p) ∧ V̂ − V̂ (p) ∧ Â)]μν + i(T̂ (p) · T̂ )[μν]

)(k)
2N−k,j

, (22e)

where, for brevity, we omit the indices summed over. In the latter results, ∧ stands for the exterior
product (wedge product) of two tensors and � is the Hodge dual of a tensor (cf. Appendix B for a
definition of these mathematical operations). We interpret the form of these expressions based on
the example of the vector operator of Equation (22c).

First, we will discuss the possible terms that occur. Only certain combinations of basic operators
are permitted. In particular, a vector operator can be formed from combinations of the scalar
Ŝ and the vector V̂ . Another possibility is to contract the vector V̂ with the tensor T̂ . The fact
that a combination of a pseudoscalar P̂ and a pseudovector Â transforms as a vector again,
explains the third term. Finally, the pseudovector Â can be contracted with the tensor T̂ to form a
pseudovector. The Hodge dual of the latter provides a vector.

Second, as one of the two operators of each term comes from the inverse (related to the propagator),
each of the previously discussed possibilities appears twice. In the second possibility, the roles of
the operators simply switch, i.e., what was the vector operator in the first possibility becomes the
scalar operator and vice versa.

4. Product of the first factor in recurrence relation and the result of step (3):

Now we can evaluate the product of the three matrices in Equation (17) completely,
which provides

α
(k)
i,2N−k(α

(k)
2N−k,2N−k)

−1α
(k)
2N−k,j =

1
Δ(k)

(
ˆ̄̄S14 + i ˆ̄̄Pγ5 + ˆ̄̄Vμγμ + ˆ̄̄Aμγ5γμ +

1
2

ˆ̄̄T μνσμν

)(k)
i,j

. (23)

Following the same procedure as before, we obtain a set of new operators indicated by a double
bar. For example, the new vector operator is given by

ˆ̄̄V (k)μ
i,j =

(
Ŝ ˆ̄Vμ + V̂μ ˆ̄S + i(V̂ · ˆ̄T + T̂ · ˆ̄V)μ + i(P̂ ˆ̄Aμ − Âμ ˆ̄P)

+[�(Â ∧ ˆ̄T + T̂ ∧ ˆ̄A)]μ
)(k)

i,j
. (24)

We see that the structure of the latter result is the same as that of Equation (22c). The simple
difference is that the operators have to be renamed according to Ô(p)X �→ ÔX and ÔX �→ ˆ̄OX.
Analog replacements must be performed for the remaining operators.

5. Recursive step k �→ k + 1:

Now we have the ingredients to evaluate Equation (17):

α
(k+1)
i,j = α

(k)
i,j − α

(k)
i,2N−k(α

(k)
2N−k,2N−k)

−1α
(k)
2N−k,j

=

(
Ŝ14 + iP̂γ5 + V̂μγμ + Âμγ5γμ +

1
2
T̂ μνσμν

)(k+1)

i,j
. (25a)
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Thus, the (k + 1)-th operators are expressed in terms of the k-th operators via

Ô(k+1)X
i,j = Ô(k)X

i,j − 1
Δ(k)

ˆ̄̄O(k)X
i,j . (25b)

6. Express final operators in terms of inicial ones:

We insert Equation (25b) k times into itself successively to obtain

Ô(k+1)X
i,j = Ô(0)X

i,j −
k

∑
l=0

1
Δ(l)

ˆ̄̄O(l)X
i,j . (26)

7. Final computation of determinant:

All the previous results are employed to compute the determinant according to Equation (18).
Doing so, it is reasonable to extract a product of denominators Δ(n) from the expression such that
the determinant itself is a polynomial instead of a sum of fractions of polynomials:

detDν =
2N

∏
k=1

det(α(2N−k)
k,k ) = det(α(2N−1)

1,1 )
2N

∏
k=2

Δ(2N−k) =
det(α̃(2N−1)

1,1 )

(Π(2N−2)
Δ )3

, (27a)

with

Π(k)
Δ ≡

k

∏
n=0

Δ(n) , (27b)

α̃
(2N−1)
1,1 ≡ Π(2N−2)

Δ α
(2N−1)
1,1 . (27c)

In the forthcoming section, the final result will be stated explicitly.

5. Full Dispersion Equation of Neutrino Sector

As the matrix α̃
(2N−1)
1,1 contained in the final form of the determinant in Equation (27a) has the same

structure as the single-fermion Dirac theory in Equation (1), we can directly compute the full dispersion
equation for the nonminimal SME neutrino sector based on the Dirac operator of Equation (14a). The
prefactors that we extracted from the determinant in Equation (27a) do not play a role any longer. So
neutrinos subject to any kind of Lorentz violation parameterized by the nonminimal SME obey the
dispersion equation

0 = (S̆2
− − T̆ 2

−)(S̆2
+ − T̆ 2

+) + V̆2
−V̆2

+ − 2V̆− · (S̆−η + 2iT̆−) · (S̆+η − 2iT̆+) · V̆+ , (28a)

with the operators

S̆± = (S̆ ± iP̆)
(2N−1)
1,1 , (28b)

V̆μ
± = (V̆μ ± Ăμ)

(2N−1)
1,1 , (28c)

T̆ μν
± =

1
2

[
T̆ μν ± i ˜̆T μν

](2N−1)

1,1
, (28d)

and
Ŏ(2N−1)X

i,j = Π(2N−2)
Δ Ô(2N−1)X

i,j . (28e)

The latter result is the central finding in the current paper. The interesting observation is that
the dispersion equation for N neutrino flavors (including the description of both Dirac and Majorana
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neutrinos) subject to Lorentz violation has a form completely analog to the dispersion equation of the
single-fermion sector stated in Equation (3). In general, the coefficients appearing in the dispersion
equation are (lengthy) combinations of the neutrino coefficients that are given by a subsequent
application of Equations (22) and (24) (for the vector operator, in particular) and Equation (25b). This
procedure has to be repeated a sufficient number of times to be able to compute the final necessary
operator via Equation (26). The advantage of the result given by Equation (28a) is that it is covariant
and does not apply to only a specific observer frame. We think that this form is also suitable to be used
in a computer algebra system.

6. First-Order Behavior of Dispersion Relations

As Equation (28a) is, in general, a polynomial in p0 of high degree, it is challenging to obtain exact
dispersion relations from it. Thus, in the current section we intend to get some idea on the general
structure of modified neutrino dispersion relations at leading order in Lorentz violation. Since Ŝ (k)

i,j

and V̂ (k)μ
i,j exhibit Lorentz-invariant parts, it is reasonable to decompose the latter operators into two

contributions to separate both pieces from each other. By doing so, we get

Ô(k)
i,j = Ô(0)

i,j −
k−1

∑
l=0

1

Δ(l)
2N−l,2N−l

ˆ̄̄O(l)
i,j ≈ Ô(k)

0;i,j + δÔ(k)
i,j . (29a)

The additional index “0” (without parentheses) denotes a Lorentz-invariant part. In an analog
manner, we generically expand the operators P̂ (k)

i,j , Â(k)μ
i,j and T̂ (k)μν

i,j in the form

Ô(k)
i,j = Ô(0)

i,j −
k−1

∑
l=0

1

Δ(l)
2N−l,2N−l

ˆ̄̄O(l)
i,j ≈ δÔ(k)

i,j . (29b)

Here, the notation δ indicates that all leading-order Lorentz-violating contributions are included
(recall that P̂ , Â and T̂ must be expanded to second order). Later on we can substitute those parts by
the corresponding expansions. The expanded dispersion equation then takes the form

0 ≈
[
(Ŝ (k)

0;i,j)
2 + 2Ŝ (k)

0;i,jδŜ
(k)
i,j − (V̂ (k)

0;i,j)
2 − 2V̂ (k)

0;i,j · δV̂ (k)
i,j

]2
+ 2
[
(Ŝ (k)

0;i,j)
2 − (V̂ (k)

0;i,j)
2
]
(δP̂ (k)

i,j )2 − 4(δŶ (k)
i,j )2 , (30a)

with the spin-nondegenerate part

(δŶ (k)
i,j )2 = (V̂ (k)

0;i,j · δÂ(k)
i,j )

2 − 1
2

[
(V̂ (k)

0;i,j)
2 + (Ŝ (k)

0;i,j)
2
]
(δÂ(k)

i,j )
2 + 2Ŝ (k)

0;i,jV̂
(k)
0;i,j · δ ˆ̃T(k)

i,j · δÂ(k)
i,j

+ V̂ (k)
0;i,j · δ ˆ̃T(k)

i,j · δ ˆ̃T(k)
i,j · V̂ (k)

0;i,j +
1
4

[
(V̂ (k)

0;i,j)
2 − (Ŝ (k)

0;i,j)
2
]
(δ ˆ̃T(k)

i,j )2 . (30b)

Note that the last term on the right-hand side of the latter equation vanishes for the single-fermion
sector. The leading-order expansion of the dispersion equation can be further expressed as

(V̂ (k)
0;i,j)

2 − (Ŝ (k)
0;i,j)

2 ≈ 2Ŝ (k)
0;i,jδŜ

(k)
i,j − 2V̂ (k)

0;i,j · δV̂ (k)
i,j

± 2

√
(δŶ (k)

i,j )2 − 1
2

[
(Ŝ (k)

0;i,j)
2 − (V̂ (k)

0;i,j)
2
]
(δP̂ (k)

i,j )2 . (31)

It shall be emphasized again that the Lorentz-invariant pieces are contained only in V̂ (k)
0;i,j and Ŝ (k)

0;i,j,

respectively. The term on the left-hand side of the equation above is a polynomial of order 8N in p0
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and contains the pure-mass part. The standard dispersion relations for the case of an arbitrary number
of N flavors seem to follow the pattern

E(u)
0

?
=

√
p2 +

1
2N

[
M+ (m(u)

eff )
2
]

, u ∈ {1 . . . 2N} , (32a)

where p is the spatial momentum of pμ and

M = Tr(M2) =
2N

∑
i,j=1

Mi,j Mj,i . (32b)

Furthermore, (m(u)
eff )

2 for u fixed is a complicated polynomial of mass matrix coefficients that we
simply called an “effective mass squared.” The validity of Equation (32a) is challenging to proof for an
arbitrary N, though. Taking Lorentz violation into account, the first-order modification is given by

E(u) ≈ E(u)
0 +

1

2NE(u)
0 (m(u)

eff )
2

{
Ŝ (k)

0;i,jδŜ
(k)
i,j − V̂ (k)

0;i,j · δV̂ (k)
i,j

±
√
(δŶ (k)

i,j )2 − 1
2

[
(Ŝ (k)

0;i,j)
2 − (V̂ (k)

0;i,j)
2
]
(δP̂ (k)

i,j )2

}
, (33)

with the operators defined in Equations (29a), (29b) and (30b). Here we see how the presence of
the spin-nondegenerate operators doubles the number of dispersion relations, as expected. In total,
there are then 8N modified dispersion laws, which corresponds to the degree of the polynomial in p0.
Furthermore, the pseudoscalar operator also leads to such a doubling. If the pseudo-scalar operator
is the only source for Lorentz violation, it contributes at second order, as δP̂ (k)

i,j is of second order in
Lorentz violation.

Special Case: N = 1

As even the general first-order expansion is quite complicated, it shall be exemplified as follows.
We consider the theory of a single neutrino flavor that can be of either Dirac or Majorana type. It is
reasonable to switch Lorentz violation off at first. The dispersion equation is then a polynomial of
fourth degree. (In principle, the polynomial on the right-hand side of the dispersion equation is raised
to the second power, that is, the degeneracy of all zeros is doubled.) It reads:

0 = p4 −Mp2 + M̃ , (34a)

where
M = Tr(M2) , M̃ = (det M)2 . (34b)

Solving for p0 delivers two distinct energies:

E(1,2)
0 =

√√√√
p2 +

M

2
±
√(

M

2

)2
− M̃ . (35)

Now, the neutrino energies modified by Lorentz violation are found to have the form

E(1,2)± = E(1,2)
0 − 1

2E(1,2)
0

(
Ŝ (1,2)

disp + p · V̂ (1,2)
disp ± δŶ

)
+ . . . , (36a)
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with

Ŝ (1,2)
disp = MabŜba ±

(Maa + Mbb)MabŜba − (M2
aa + Maa Mbb − 2Mab Mba)Ŝaa√

(M11 − M22)2 + 4M12M21
, (36b)

V̂ (1,2)μ
disp = V̂μ

aa ±
2MabV̂μ

ba − MaaV̂μ
bb√

(M11 − M22)2 + 4M12M21
, (36c)

(δŶ)2 =
1

(M11 + M22)2 [(M11 − M22)2 + 4M12M21]

×
{
(V̂0 · δÂ)2 − 1

2

[
(V̂0)

2 + (Ŝ0)
2
]
(δÂ)2 + 2Ŝ0V̂0 · δ ˆ̃T · δÂ

+V̂0 · δ ˆ̃T · δ ˆ̃T · V̂0 +
1
4

[
(V̂0)

2 − (Ŝ0)
2
]
(δ ˆ̃T)2

}(1)

1,1
. (36d)

Furthermore,

δÂ(1)μ
1,1 ≈ Â(1)μ

1,1 = Â(0)μ
1,1 − 1

Δ(0)
2,2

ˆ̄̄A(0)μ
1,1 , (37a)

δT̂ (k)μν
1,1 ≈ T̂ (1)μν

1,1 = T̂ (0)μν
1,1 − 1

Δ(0)
2,2

ˆ̄̄T (0)μν
1,1 , (37b)

and

Ŝ0 = −M11 −
M12M22M21

p2 − M22
, (37c)

V̂μ
0 =

p2 − M12M21 − M2
11

p2 − M22
pμ . (37d)

The flavor indices in Equations (36b) and (36c) are understood to be summed over. Note that
in Equation (36a) two signs can be chosen at different positions independently from each other. The
first sign is indicated by the suffices (1,2) and appears in the Lorentz-invariant and spin-degenerate
parts of the dispersion relation. The second sign is marked by the additional index ± and is related to
the spin-nondegenerate coefficients only, which are incorporated in the quantity (δŶ)2. Hence, for
N = 1 there can be already 4 different dispersion relations. With spin-nondegenerate Lorentz violation
present, there are two distinct dispersion relations for each of the two neutrino types. The number of
modified dispersion laws is supposed to increase with the number of neutrino flavors.

7. Classical Lagrangians

As a final application of all the previous results, we want to map the neutrino field theory to a
theory of classical, relativistic, pointlike particles. The latter is described by a Lagrange function in
terms of the four-velocity uμ. The technique to carry out such a mapping in the context of the SME was
developed in Reference [39] and has been subject to intense studies for the past ten years. Presently,
the procedure is well-known and has been applied to both the minimal and nonminimal SME fermion
sector. At leading order in Lorentz violation, it was demonstrated that a classical Lagrangian can be
obtained from the dispersion relation directly via a mapping procedure [40]. We will employ this
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method for the case N = 1, which leads to the classical Lagrangians corresponding to this field theory
of modified neutrinos. The Lagrangians can be cast into the form

L(1,2)± = −M(1,2)
√

u2

⎡⎣1 −
(Ŝ (1,2)

disp )∗ ± δŶ∗

2(M(1,2))2
−

u · (V̂ (1,2)
disp )∗

2M(1,2)
√

u2
+ . . .

⎤⎦ , (38a)

M(1,2) =

√√√√M

2
±
√(

M

2

)2
− M̃ , (38b)

with M and M̃ of Equation (34b). The quantities endowed with an asterisk emerge from the expressions
defined in Equation (36) in replacing each Lorentz-violating operator by a suitable contraction of the
corresponding controlling coefficients with four-velocities. Each contraction involves an additional
prefactor that depends on the mass dimension. For a generic Lorentz-violating operator of mass
dimension d, this contraction reads

(Ô(k)
i,j )∗ =

(
M(1,2)
√

u2

)d−3

O(k)α1...αd−3
i,j uα1 . . . uαd−3 . (39)

As there are four modified dispersion relations, there are also four classical Lagrangians. Each of
those describes a type of massive “classical neutrino.” For vanishing Lorentz violation, the Lagrangians
take the form L(1,2) = −M(1,2)

√
u2, which is analogous to the standard result L = −mψ

√
u2 for a single

Dirac fermion of mass mψ under the identification mψ = M(1,2). Here we see how the combinations
M(1,2) of mass matrix coefficients can be interpreted as something like a simple mass of the classical
neutrino analog. This behavior is a classical remnant of the quantum effect of neutrino mixing.
Furthermore, the classical Lagrangian can be checked to be positively homogeneous of degree 1 in uμ,
as expected.

Classical Lagrangians as those of Equation (38) are valuable in the description of Lorentz violation
for neutrinos in the presence of an external gravitational field. Since the current section serves only as
a demonstration of the basic procedure, we will not delve deeper into this interesting topic. Whenever
the neutrino masses are simply neglected, such classical Lagrangians simply lose their meaning.
Neutrino propagation in a gravitational background must then be described with a different formalism
such as the eikonal equation, which turned out to be fruitful for massless particles, e.g., photons [41].

8. Conclusions

In this paper we derived the full propagator of a single-fermion Dirac theory based on the
nonminimal SME as well as the full dispersion equation of modified neutrinos. Both results are
expressed in a covariant form. Although it is quite an essential tool in perturbation theory, the full
propagator of the nonminimal SME fermion sector has not been stated elsewhere, so far. The dispersion
equation is valid for the general case of N neutrino flavors with the description of both Dirac and
Majorana neutrinos included. Despite the additional flavor structure and the distinction between
Dirac and Majorana neutrinos, we found that the dispersion equation has a structure analogous to that
of a single Dirac fermion. However, it is also clear that the form of the Lorentz-violating operators
that occur in the neutrino dispersion equation is much more involved because of the additional flavor
structure. We also investigated the dispersion relations at leading order in Lorentz violation for
basic configurations. Finally, we included a brief comment on classical Lagrangians in the context of
neutrinos. Our findings are technical, but they may be valuable in forthcoming phenomenological
works on Lorentz-violating Dirac fermions and neutrinos.
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Appendix A. Useful Relations for Dirac Matrices

For future reference, we think that it is a good idea to list the relations for Dirac matrices that we
used to obtain our results. First, it is difficult to find the whole set of relations at a particular place.
Second, in some works we even encountered typos. Therefore, the validity of the following relations
was checked explicitly and they are supposed to be correct, as they stand:

γμγν = ημν14 − iσμν , (A1a)

σμνγ5 =
i
2

εαβμνσαβ , (A1b)

γμγνγ5 = ημνγ5 +
1
2

εμναβσαβ , (A1c)

γμγνγλ = ημνγλ + ηνλγμ − ηλμγν + iεμνλργργ5 , (A1d)

σμνγλ = i(ηνλγμ − ηλμγν)− εμνλργργ5 , (A1e)

γμσνλ = i(ημνγλ − ηλμγν)− εμνλργργ5 , (A1f)

γ5σμνγλ = i(ηνλγ5γμ − ηλμγ5γν) + εμνλργρ , (A1g)

γ5γμσνλ = i(ημνγ5γλ − ηλμγ5γν) + εμνλργρ , (A1h)

[σμν, σλα] = 2i(ημλσαν − ηνλσαμ + ηνασλμ − ημασλν) , (A1i)

{σμν, σλα} = 2
[
(ηανηλμ − ηαμηλν)14 + iεμνλαγ5

]
, (A1j)

σμνσλα = i(ημλσαν − ηνλσαμ + ηνασλμ − ημασλν) + (ηανηλμ − ηαμηλν)14 + iεμνλαγ5 . (A1k)

We employed these results mainly to obtain Equations (21) and (23).

Appendix B. Definition of Wedge Product and Hodge Dual

The wedge product and Hodge dual are concepts that are of wide use in algebra. They turned out
to be fruitful to express Equation (22) in a relatively compact form. We define the wedge product of
two (contravariant) tensors A and B as the antisymmetrized direct product of these tensors:

Na!Nb!
(Na + Nb)!

Aμν... ∧ Bαβ... ≡ A[μν...Bαβ... ] ≡ Cμν...αβ... , (A2)

where Na,b is the number of indices of the tensor A and B, respectively. The latter product gives rise
to a new tensor C with the union of Lorentz indices of the tensors A and B. The definition of the
Hodge dual of a tensor depends on the number of dimensions of the space considered. As we work
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in four-dimensional Minkowski spacetime, the Hodge dual of a covariant two-tensor A provides a
contravariant two tensor:

(�A)αβ ≡ 1
2

Aμνεμναβ . (A3)

On the other hand, the Hodge dual of a covariant three-tensor B gives a contravariant vector and
that of a four-tensor C is a scalar:

(�B)� ≡ 1
3!

Bμνλεμνλ� , �C ≡ 1
4!

Cμνλαεμνλα . (A4)

Note that we follow the convention of the prefactors used in mathematics.
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Abstract: The wave–particle duality hypothesis for massive particles has been confirmed by an
overwhelming variety of indirect experimental evidence. In addition, direct interferometric tests
have been made on particles like electrons, neutrons and even a few molecules, explicitly showing
wave-like diffraction and interference phenomena. Of particular interest in this direction, single
particle interference has also been demonstrated, but only for the electron case. No such kind of
direct information was available for antiparticles or antimatter in general. After briefly discussing the
subjects of antimatter research and interferometry, I present here the first evidence of single particle
antimatter interference, made with positrons.

Keywords: quantum mechanics; antimatter; interferometry

1. Introduction

The wave–particle duality hypothesis for massive particles was introduced by de Broglie almost
a century ago: The Planck constant h relates the momentum p of a massive particle to its de Broglie
wavelength: λdB = h/p [1]. This relation, together with the uncertainty principle and the superposition
principle, is at the heart of quantum mechanics. These principles have now been tested in an
overwhelming variety of experiments over more than 100 years.

Of particular interest is the direct evidence of wave-like behavior of quantum massive particles
showing diffraction and interference phenomena, for the first time with electrons [2,3]. Neutrons were
shown to display wave behavior in crystals [4], in the gravitational Colella–Overhauser–Werner set
of experiments [5,6] and later on using single and double slit diffraction [7]. Wave-like behavior is
nowadays established also for molecules like Na2 [8], and up to the complexity of fullerene [9].

Among the direct tests of wave-like nature of massive particles, a special place is held by
experiments where a single particle propagates through an interferometric system. According to
Feynman, this ideal experiment constitutes a decisive proof, a test “that has in it the heart of quantum
mechanics” [10].

Single-particle experiments were conducted for the first time with electrons in 1976 by G. Merli,
G.F. Missiroli and G. Pozzi, in a configuration featuring an electronic biprism, equivalent to the double
slit suggested by Feynman [11]. Several decades later, the same experiment was also realized with
material slits [12]. At the same time, no direct information on antiparticle wave properties was detected,
with the only exception that of an indication of positron diffraction [13].

2. Antimatter

Antimatter, introduced following the Dirac equation in 1928 [14], was observed a few years
later in cosmic rays [15]. The general relation between particle and antiparticle properties is the CPT
(charge-parity-time reversal) theorem [16], that holds for quantum field theories in a flat spacetime.

While antiparticles are routinely produced by cosmic (and man-made) accelerators, their presence
in our environment is negligible and experimentation always requires dedicated sources. CPT symmetry
can be studied in principle on any existing antiparticle; however, neutral antimatter (or symmetric
matter–antimatter) systems are of particular interest because of the possibility of testing the weak
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equivalence principle (WEP). The production of cold anti-hydrogen atoms at the CERN Antiproton
Decelerator [17,18] has been a milestone in this direction, followed by anti-hydrogen confinement [19]
and the development of an antiatom beam [20].

The simplest and most symmetric matter–antimatter system, positronium (Ps, the e+ e- bound
system), was discovered by M. Deutsch in 1951 [21]. It is constituted by an electron and a positron and
has been the subject of intense investigation in the last decades, holding the promise to allow tests of
fundamental laws (see [22] and references therein).

In addition to searching for violations of fundamental laws per se, antimatter studies are
relevant to the goal of understanding the fundamental baryonic and leptonic asymmetry in the
Universe [23]. The most natural mechanism that could predict the asymmetry relies in fact on the
Sakharov conditions [24] being verified at the grand unification scale of energy (≈ 10 16 GeV) and
their possible interplay with CPT conservation [25]. Antimatter studies (at both low and high energies)
might be necessary to solve this fundamental riddle, related to our own very existence.

3. Antimatter Interferometry

In spite of all the progress in studies about antimatter, no experiments featuring antiparticle
interference have ever been done. Preliminary ideas about interferometry for antimatter were
considered mainly in the frame of inertial sensing and possible measurements of gravitation for
antimatter [26].

Generally speaking, antimatter poses a special problem because of its paucity in terrestrial and
astronomical environments. For instance, the antiproton-to-proton ratio in cosmic rays is about 10−5

and virtually no antiparticle can survive in the environment because of immediate annihilation with
ordinary matter. For these reasons, controlled sources of antiparticles are restricted to high-energy
accelerators or radioactive sources. Interferometry also requires antimatter at relatively low energies,
suitable for controlled propagation or even confinement, as is the case for the above-mentioned
Antiproton Decelerator or the radioactive 22Na positron sources.

Considering the case of positrons, for instance, the available radioactive sources and the following
treatment necessary to lower the energy (generally in the keV range) results in beam intensities
of the order of 104 particles per second. In comparison, electron sources can easily reach the mA
range—11 orders of magnitude higher!

The QUPLAS (Quantum interferometry and gravitation with positronium) research group
has undertaken a systematic program of study on positrons and positronium, whose first step,
called QUPLAS-0 has been interferometry with a keV positron beam. Positronium and antimatter
interferometry requires addressing specific problems in addition to the scarcity of antiparticles,
including the background produced by annihilations, the finite lifetime of Ps (only 142 ns for the
longest-living ortho-Ps state) and the detection of the interferometric pattern [27].

4. Types of Interferometry

Quantum interferometry can be realized in several different ways. Defining relevant quantities
in one of the simplest configurations (two gratings and a detector, Figure 1), one can single out the
relevant parameters as:

• The wavelength of the radiation (the de Broglie wavelength of the particle) λ.
• The periodicity of the grating used to evidence the diffraction/interference effect d.
• The longitudinal scale L that is related to the integrating distance or to the observation distance.
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Figure 1. The relevant quantities in an interferometric measurement with gratings are the wavelength of
the particle/radiation, the period of the gratings d and the distance scale between gratings L. A detector
might be located at some distance (similar to L) from the second grating. The coherently illuminated
area from the first to the second grating is also shown.

The relations which are considered always valid are:

λ << d λ < L (1)

where the first one is often called the large aperture condition. At this point we can form the quantities:

DT = d/λ >> 1 DL = L/ d (2)

With respect to λ, DT is a measure of the dominance of the transverse scale, while DL indicates the
level of longitudinal dominance. If, DT is big in such a way as to also predominate over DL then

DT > DL → L < d 2/λ (3a)

If, on the other hand, it is DL which dominates DT, then one has

DT < DL → L > d 2/λ (3b)

Condition (3a) indicates the so-called moiré regime, or near field interferometry. Under these
conditions, the wave-like nature of the particle is not yet evident and the regime is a corpuscular or
ballistic one, which is basically the classical physics case. One can have a better appreciation of this
when considering a setup like the one in Figure 1. Because of diffraction, for a single slit on grating A
the coherence area on B will be Lλ/d. If (3a) holds, then the moiré condition reads Lλ/d < d and the
wave-like nature of the particle will not manifest itself. This regime, more than interferometry, should
be more aptly called deflectrometry.

The quantity:

LT =
d2

λ
(4)

is called the Talbot length and is a characteristic of both the grating period and the wavelength under
consideration. Three regimes can then be defined whenever (1) is satisfied:
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• L << LT: moiré regime, where particles behave like classical bullets (deflectometry).
• L ≈ LT: Talbot–Lau regime, where particles start to show interference.
• L >> LT: Fraunhofer regime, where the usual far-field approximation holds.

The Talbot (called the Talbot–Lau regime when multi-slit gratings are used) is an “intermediate
field” situation, where the second order term of the development in the Kirchoff integral expansion of
wave optics is kept; by contrast, only the first order is considered in the Fraunhofer mode.

The moiré and Talbot regimes have in common the repetition of the produced pattern at integer
(and, less evidently, fractional) multiples of the Talbot length. In spite of this numerical similarity,
a purely projective effect is at work in the moiré case, while Talbot-mode repetitions are due to a
quantum mechanical effect. In other words, the periodicity of the repetition patterns has a purely
geometrical origin in the moiré case, while also having a dependence on λ for the Talbot; in this latter
case, a change in energy of the particles would also change the longitudinal position of the maxima of
the interference pattern.

The Talbot and Fraunhofer configurations both feature the wavelength quantum mechanical
dependence of the interference pattern. However, the Talbot case strictly requires the monochromaticity
of the beam (and the energy will dictate the position of the repetition pattern). The Fraunhofer case has
much less sensitivity to energy so that, when the interference pattern is established, it will always be
present at any distance, provided the far-field condition L >> LT is satisfied. However, the Fraunhofer
interference will require a good initial collimation of the beam.

In order to tackle the problem of antimatter interferometry, the positron or the antiproton are the
simplest particles of choice. Positron sources are available at linear accelerator (LINAC) machines or by
exploiting radioactive sources such as the β+ emitter 22Na source. Antiprotons are available at particle
accelerators since they will need to be produced at very high energy. The Antiproton Decelerator at
CERN is the only machine dedicated to the production of antiprotons at the MeV scales or below that
can prove adequate for interferometry.

5. The Experiment

The QUPLAS-0 experiment, which I will discuss here, is the first stage of the QUPLAS (quantum
interferometry and gravitation with positronium) program and consisted in producing the first
interferometric pattern with an antiparticle: the positron. For this particular task, a 22Na radioactive
source followed by a beam line, an interferometer and a nuclear emulsion detector were used.

For this case, moiré and Talbot configurations are interesting, because of the large momentum
acceptance of these configurations. The Fraunhofer requirement of a good beam collimation in fact
typically implies a heavy loss of statistics. In addition, the Talbot configuration should be preferred
over the moiré in order to put in evidence the quantum mechanical origin of the effect.

After a careful study, the Talbot–Lau setup was considered to be the most promising for the
task [28]. One of the main reasons for this is the inevitably poor level of coherence of the beam
as well as the need to produce an interference pattern of a minimum periodicity of a few microns
to make detection feasible. With reference to Figure 2, the first grating periodicity was d1= 1.2 μm
and the second was d2= 1 μm, with 50% open fraction in both cases. The gratings and the detector
were positioned such that L1� 12 cm and L2� 60 cm (or L2= 5L1). This is an example of the so-called
Talbot–Lau asymmetric magnifying configuration [25] with a magnification factor of 5, so that the
periodicity to be detected at the detector position is of � 5d1= 6 μm. The pattern is therefore detectable
by the nuclear emulsion, which has a resolution of about 1 μm [29].
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Figure 2. Scheme of the QUPLAS-0 detector experimental configuration. The collimated positron beam
propagates through the interferometer, consisting of two gratings and the emulsion detector (tilted by
45◦, see text). The interference pattern is collected in the emulsion. A Ge detector is used to monitor
the positron beamline through the 511-keV gammas generated by positron annihilation.

The configuration of the interferometer and detector system was such as to be resonant at the
energy of 14 keV according to the equation

L1

L2
=

d1

d2
− 1 (5)

which implicitly contains the Talbot length and the wavelength of the particle by means of (4).
In the final configuration in Figure 2, the emulsion detector was tilted by 45 degrees; this was

due to the uncertainty on the longitudinal location of the Talbot revival which is affected by several
uncertainties on grating parameters and misalignments (see discussion in [30]).

The experiment made use of the positron beam of the L-NESS Laboratory of the Politecnico di
Milano in Como (Italy). The beam had an intensity of about 8× 103 e+/s and an angular divergence
of a few mrad. The positron source is followed by a tungsten (100) moderator and an electrostatic
beamline, so that its energy can be tuned between a few keV and 20 keV (with a resolution better than
1%) while maintaining a beam spot of about 2 mm.

6. Results

The QUPLAS-0 data taking took place in 2018, and consisted in a series of exposures of emulsions
to the L-NESS positron beam at different energies. After the analysis, the resulting patterns on the
detector were studied at 8,9,11 and 14 keV (Figure 3).

In order to investigate the origin of the signal, one has to study the behavior of the visibility
(or contrast C = (Imax − Imin)/(Imax + Imin) as a function of the energy, which corresponds to changing
the wavelength of the positrons. The result of such a study for energies 8, 9, 11, 14, 16 keV is
shown in Figure 4. It clearly indicates the quantum mechanical origin of the effect which is energy
dependent. By contrast, in the moiré regime no such behavior is expected since the particles would
behave classically.
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Figure 3. The contrast (Imaz − Imin)/(Imax + Imin) is shown on the left (A) as a function of the longitudinal
coordinate y. It is maximum for the resonant energy of 14 keV for which the actual interference pattern
is shown in the insert. Other energies are visible albeit with a reduced contrast. On the right (B),
the transverse position of the interference patterns on the emulsion is shown.

Figure 4. Visibility of the Talbot–Lau interference pattern as a function of energy (wavelength) in
QUPLAS-0. The dependence on E is the smoking-gun proof of the quantum mechanical origin of the
effect. The classical moiré effect (orange dashed line) would in fact have been achromatic.
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The result is the first demonstration of antimatter interferometry. In addition, since the flux of
particles is at most ~104 per second, generated by the time-incoherent 22Na source, and the transit time
through the interferometer is 10−8 s, this turns out to be a single-particle experiment, being therefore
the antimatter version of the celebrated Merli–Missiroli–Pozzi single electron result [11].

7. Conclusions

Quantum interferometry of antimatter has been made for the first time by means of Talbot–Lau
interferometry on positrons. This is also the second demonstration ever of single-particle interference
obtained with an elementary constituent of the standard model.
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Abstract: Lorentz symmetry is an important concept in modern physics. Precision pulsar timing
was used to put tight constraints on the coefficients for Lorentz violation in the pure-gravity sector of
the Standard-Model Extension (SME). We extend the analysis to Lorentz-violating matter-gravity
couplings, utilizing three small-eccentricity relativistic neutron star (NS)—white dwarf (WD)
binaries. We obtain compelling limits on various SME coefficients related to the neutron, the proton,
and the electron. These results are complementary to limits obtained from lunar laser ranging and
clock experiments.

Keywords: pulsar timing; Standard-Model Extension; binary pulsars

1. Introduction

The theory of general relativity (GR) and the Standard Model (SM) of particle physics represent
our contemporary condensed wisdom in the search of fundamental laws in physics. Nevertheless,
there exist various motivations to look for new physics. Among them, the possibility of Lorentz
violation is a well developed concept [1]. Lorentz violation could be resulted from a deep underlying
theory of quantum gravity [2]. At low energy, it is believed to be described by an effective field theory
(EFT). An EFT framework, the so-called Standard-Model Extension (SME), systematically incorporates
all Lorentz-covariant, gauge-invariant, energy-momentum-conserving operators that are associated
with GR and SM fields [3–5]. Field operators are sorted according to their mass dimension, and, for
some certain species, operators of arbitrary mass dimensions are classified [6–9].

The SME is supposed to be an effectively low-energy theory for the quantum gravity, thus, the
gravitational aspect of the SME is of particular interest. Kostelecký [5] presented the general structure
of the SME when the curved spacetime is considered. Bailey and Kostelecký [10] worked out different
kinds of observational phenomena associated with the minimal operators in the pure-gravity sector
of the SME, whose mass dimension d ≤ 4. After that, Kostelecký and Tasson [11] investigated in
great detail the theoretical aspects of the matter-gravity couplings, whose mass dimension d ≤ 4.
Phenomenological aspects and relevant experiments are identified. Moreover, the nonminimal SME
with gravitational operators, whose mass dimension d > 4, was studied and gained global interests
during the past few years [12–14].

Due to the advances on the theoretical side [5,10–12], phenomenological and experimental studies
of the gravitational SME became a hot topic [15–18]. Hees et al. [19] have a comprehensive summary
on this topic—see also the Data Tables for Lorentz and CPT Violation, compiled by Kostelecký and
Russell [20]. In the pure-gravity sector, binary pulsars turn out to be among the best experiments in
constraining (i) the d ≤ 4 minimal Lorentz-violating operators [21,22]; (ii) dimension-5 CPT-violating
operators [23]; as well as (iii) dimension-8 cubic-in-the-Riemannian-tensor operators, which are related
to the leading-order violation of the gravitational weak equivalence principle [24]. In a closely related
metric-based framework, the so-called parameterized post-Newtonian formalism [25,26], binary
pulsars similarly outperform many Solar-system-based experiments [27–30].
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In this work, we investigate the matter-gravity couplings in the SME and their signals in
binary pulsars [11,31]. In particular, we use small-eccentricity binary pulsars—PSRs J0348+0432 [32],
J0751+1807 [33], and J1738+0333 [34]—to put stringent constraints on various matter-gravity coupling
coefficients. The limits are compelling, and complementary to other experiments. They contribute to
the research field on the experimental examination of the SME.

The paper is organized as follows. In the next section, we review the matter-gravity couplings
in the SME [11]. Then, in Section 3, the orbital dynamics for a binary pulsar [31] are provided.
In particular, the secular change of the eccentricity vector (decomposed into the two Laplace–Lagrange
parameters [35]), and the secular change of the pulsar’s projected semimajor axis are discussed.
Constraints on the matter-gravity coupling coefficients are given in Section 4. The last section discusses
constraints from other experiments, the strong-field aspects of pulsars, and the prospects in improving
the limits on the Lorentz-violating matter-gravity couplings.

2. Matter-Gravity Couplings in the SME

In order to incorporate fermion-gravity couplings, we use the vierbein formalism [5]. In the SME,
the action for a massive Dirac fermion ψ reads [11]

Sψ =
∫

e
(

1
2

ieμ
aψΓa←→D μψ − ψMψ

)
d4x , (1)

where, for spin-independent cases,

Γa ≡ γa − cμνeνaeμ
bγb − eμeμa , (2)

M ≡ m + aμeμ
aγa . (3)

Here, e a
μ is the vierbein with e as its determinant; m is the mass of the fermion; γa is the Dirac

matrix; aμ, cμν, and eμ are species-dependent, spin-independent coefficient fields for Lorentz violation
(see Equations (7) and (8) in [11] for spin-dependent terms).

While being kept to the leading order, a field redefinition via a position-dependent component
mixing in the spinor space can be used to show that the CPT-odd coefficients aμ and eμ always appear
in the combination [11]

(aeff)μ ≡ aμ − meμ . (4)

Therefore, we shall consider only
(
aeff
)

μ
and cμν in the following.

At leading order, the point-particle action is [11],

Su =
∫

dλ

[
−m
√
−
(

gμν + 2cμν

)
uμuν − (aeff)μuμ

]
, (5)

where uμ ≡ dxμ/dλ. For a macroscopic composite object, the action Equation (5) is still applicable
with the replacements [11],

m → ∑
w

Nwmw , (6)

cμν →
∑w Nwmw (cw)μν

∑w Nwmw , (7)

(aeff)μ → ∑
w

Nw(aw
eff)μ , (8)

where w denotes the particle species and Nw is the number of particles of type w. We have neglected the
contribution from binding energies which could be at most ∼ 20% for neutron stars (NSs), unless some
unknown nonperturbative effects take place (see discussions in Section 5) [30]. In general, the role of
binding energy could further aid the analysis of signals for Lorentz violation, see Section VI B in [11]
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for more details. Hereafter, for simplicity we only consider three types of fermions—(i) the electron
w = e, (ii) the proton w = p, and (iii) the neutron w = n. In Table 1, we list the estimated composition
of these three species for NSs and white dwarfs (WDs), and their corresponding composite coefficient
fields for Lorentz violation.

Table 1. Estimated composition for neutron stars (NSs) and white dwarfs (WDs). Composite coefficient
fields for Lorentz violation are estimated according to Equations (6)–(8). In the table, MNS and MWD

are the masses for NS and WD, respectively, and mn (	 mp) is the mass for a neutron (proton) particle.
We define NNS ≡ MNS/mn and NWD ≡ MWD/mn.

Neutron Stars White Dwarfs

Electron number, Ne ∼ 0 1
2 NWD

Proton number, Np ∼ 0 1
2 NWD

Neutron number, Nn NNS
1
2 NWD

Composite m MNS MWD

Composite cμν cn
μν

1
2

(
cn

μν + cp
μν + 0.0005 ce

μν

)
Composite

(
aeff
)

μ
NNS
(
an

eff
)

μ
1
2 NWD

[(
an

eff
)

μ
+
(

ap
eff

)
μ
+
(
ae

eff
)

μ

]

In general, the coefficient fields,
(
aeff
)

μ
and cμν, are dynamical fields. In the Riemann–Cartan

spacetime, the Lorentz violation often needs to be spontaneous [36], instead of explicit [5]. The coefficient
fields obtain their vacuum expectation values via the Higgs-like spontaneous symmetry breaking
mechanism. We denote the vacuum expectation values of

(
aeff
)

μ
and cμν as

(
aeff
)

μ
and cμν, respectively.

The barred quantities are also known as the coefficients for Lorentz violation [20]. In asymptotically
inertial Cartesian coordinates, they are assumed to be small and satisfy [11]

∂α(aeff)μ = 0 , (9)

∂αcμν = 0 . (10)

The coefficients for Lorentz violation,
(
aeff
)

μ
and cμν [20], are the quantities that we want to

investigate with pulsar timing experiments [37,38] in this work.

3. Binary Pulsars with Lorentz-Violating Matter-Gravity Couplings

Jennings et al. [31] worked out the osculating elements for a binary system, composed of masses
M1 and M2, in the presence of the Lorentz-violating matter-gravity couplings. We consistently use the
subscript “1” to denote the pulsar; and use the subscript “2” to denote the companion which is a WD
in our study. We define q ≡ M1/M2 and M ≡ M1 + M2. To simplify some expressions, we also define
X ≡ M1/M = q/ (1 + q), then, M2/M = 1 − X = 1/ (1 + q).

Neglecting the finite-size effects, the Newtonian relative acceleration for a binary is aN =

−GM1M2/r2r̂, where r is the relative separation and r̂ ≡ r/r. In the Newtonian gravity, a two-body
system with a negative total orbital energy forms an elliptical orbit. An elliptical orbit in the celestial
mechanics is usually described by six orbital elements—(i) the semimajor axis a; (ii) the orbital
eccentricity e; (iii) the epoch of periastron passage T0; (iv) the inclination of orbit i; (v) the longitude
of periastron ω; and (vi) the longitude of ascending node Ω. The last three angles are illustrated in
Figure 1.
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â

ĉ b⌃

Ω
ω

i

Figure 1. Pulsar orbit and the coordinate system
(

â, b̂, ĉ
)

[10,22,23].

When there is a perturbing acceleration to aN, say, δa, the orbit is changed perturbatively. In the
osculating-element approach, one assumes that at any instant moment, the orbit is still an ellipse,
but the six orbital elements become functions of the time t [39]. The time derivatives of these six
functions are derived from the extra acceleration δa [39]. In the current case, after averaging over an
orbital period Pb, the secular changes read [31]〈

da
dt

〉
= 0 , (11)〈

de
dt

〉
=

nb
M

γ

(
e2 − 2ε

e3 Aâb̂ +
nbaε

e2 Bâ

)
, (12)〈

di
dt

〉
=

nb
Mγ

(
ε

e2 Aâĉ cos ω − e2 − ε

e2 Ab̂ĉ sin ω − nbεa
e

Bĉ sin ω

)
, (13)〈

dω

dt

〉
= − nb

Mγ tan i

(
ε

e2 Aâĉ sin ω +
e2 − ε

e2 Ab̂ĉ cos ω +
nbεa

e
Bĉ cos ω

)
+

nb
M

[
e2 − 2ε

2e4

(
Ab̂b̂ − Aââ

)
+

nba (1 − γ)

e3 Bb̂

]
, (14)

where we have defined γ ≡
√

1 − e2, ε ≡ 1 − γ = 1 −
√

1 − e2, and nb ≡ 2π/Pb. From Equation (11),
we can see that the energy of the orbit is conserved at leading order, which is compatible with the
action formulation of the system in the absence of gravitational waves. The expressions for 〈dΩ/dt〉
and 〈dT0/dt〉 are not important in the present context, and thus not shown. The 3-vector Bj and the
3 × 3 tensor Ajl are defined as [31],

Ajl = ∑
w

2nw
7 mwcw

(jl) , (15)

Bj = −∑
w

2
[
nw

2 (aw
eff)j + (nw

6 − 2nw
8 )mwcw

(0j)

]
, (16)

where nw
i (i = 1, · · · , 8) are defined in Equation (9) of [31], and their approximated values for NS–NS

and NS–WD binaries are given in Table 2 for convenience.
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Table 2. Expressions of nw
i /N (i = 1, · · · , 8; w ∈ {n, p, e}) for NS–NS and NS–WD systems

(see Equation (9) in [31]), where N ≡ N1 + N2 	 M/mn. Results in Table 1 are adopted for the
calculation here.

Neutron Star–Neutron Star Neutron Star–White Dwarf

n p e n p e

nw
1 /N 1 0 0 1

2 (1 + X) 1
2 (1 − X) 1

2 (1 − X)

nw
2 /N 2X − 1 0 0 1

2 (3X − 1) − 1
2 (1 − X) − 1

2 (1 − X)

nw
3 /N 2 0 0 3

2
1
2

1
2

nw
4 /N 0 0 0 − 1

2
1
2

1
2

nw
5 /N 2X (1 − X) 0 0 3

2 X(1 − X) 1
2 X(1 − X) 1

2 X(1 − X)

nw
6 /N 0 0 0 − 1

2 X(1 − X) 1
2 X(1 − X) 1

2 X(1 − X)

nw
7 /N 1 0 0 1 − 1

2 X 1
2 X 1

2 X

nw
8 /N 1 − 2X 0 0 1

2 X2 − 2X + 1 − 1
2 X2 − 1

2 X2

In the above two equations, only nw
i with i = 2, 6, 7, 8 are relevant. Using the results in Table 2,

we have

Ajl

M
=(2 − X)cn

(jl) + X
[
cp
(jl) + 0.0005ce

(jl)

]
, (17)

Bj

M
=

1 − X
mn

[(
ap

eff

)
j
+ (ae

eff)j

]
+

1 − 3X
mn (an

eff)j

+
(

X2 − 7X + 4
)

cn
(0j) − X(1 + X)

[
cp
(0j) + 0.0005ce

(0j)

]
. (18)

We can easily obtain the following conclusion from the above two equations. (I) The sensitivity
to ce

(jl) and ce
(0j) (compared with cp

(jl) and cp
(0j), respectively) is suppressed by the mass ratio of the

electron to the proton (me/mp 	 0.0005), while the sensitivity to
(
ae

eff
)

j (compared with
(

ap
eff

)
j
) is not

suppressed. (II) We have no sensitivity to
(
aw

eff
)

0 nor cw
00 (w ∈ {n, p, e}) from binary pulsars in this

simplified situation. This is similar to the case of s00 (the time–time component of the Lorentz-violating
field sμν) in the pure-gravity sector of the SME with dimension 4 operators [10,21], nevertheless, these
coefficients can be probed with the help of the “boost effect” introduced by the systematic velocity of
the binary (vsys/c ∼ 10−3) with respect to the Solar system [22]. We defer the investigation along this
line to future studies.

In Equations (11)–(14), Bj and Ajl are projected to the coordinate system
(

â, b̂, ĉ
)

[10,22,23], where
â is the unit vector points from the center of binary towards the periastron, ĉ is the unit vector points
along the orbital angular momentum, and b̂ ≡ ĉ × â (see Figure 1).

We are interested in the small-eccentricity binaries. In the limiting case of small eccentricity e → 0,
we have

γ = 1 − 1
2

e2 − 1
8

e4 +O
(

e6
)

, (19)

ε =
1
2

e2 +
1
8

e4 +O
(

e6
)

. (20)
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Therefore, Equations (12)–(14) are simplified to〈
de
dt

〉
	 n2

ba
2M

Bâ , (21)〈
di
dt

〉
	 nb

2M
(

Aâĉ cos ω − Ab̂ĉ sin ω
)

, (22)〈
dω

dt

〉
	 n2

ba
2eM

Bb̂ . (23)

We can convert the derivatives of e, i, and ω into derivatives of the projected semimajor axis of
the pulsar orbit xp, and the Laplace–Lagrange parameters, η ≡ e sin ω and κ ≡ e cos ω into〈

dxp

dt

〉
=

M2 cos i
2M2 (GMnb)

1/3 (Aâĉ cos ω − Ab̂ĉ sin ω
)

, (24)〈
dη

dt

〉
=

nb
2M

(GMnb)
1/3 (Bâ sin ω + Bb̂ cos ω

)
, (25)〈

dκ

dt

〉
=

nb
2M

(GMnb)
1/3 (Bâ cos ω − Bb̂ sin ω

)
, (26)

where we have used nba = (GMnb)
1/3.

4. Bounds on the SME Coefficients

We use the time derivatives of xp, η, and κ in Equations (24)–(26) to constrain the coefficients
for Lorentz violation. It is clear that the more relativistic the binary (namely, the larger nb), the better
the tests. Therefore, we use three well-timed NS–WD binaries whose orbital periods are shorter than
half a day [32–34]. Relevant parameters of these binaries are collected in Table 3. Due to the binary
interaction and matter exchange in the evolutionary history, these NS–WD binaries have small orbital
eccentricity e ≤ 10−6, thus, Equations (24)–(26) are sufficient to perform the tests.

Table 3. Relevant parameters for PSRs J0348+0432 [32], J0751+1807 [33], and J1738+0333 [34].
Parenthesized numbers represent the 1-σ uncertainty in the last digit(s) quoted. The parameter η

is the intrinsic value, after subtraction of the contribution from the Shapiro delay [35]. Masses are
derived without using information related to

〈
dxp/dt

〉
, 〈dη/dt〉, nor 〈dκ/dt〉 for consistency.

For PSRs J0348+0432 and J1738+0333, masses were derived independently of gravity theories [32,34],
while for PSR J0751+1807 we have used observed quantities related to the Shapiro delay and orbital
decay, assuming the validity of general relativity (GR) [33].

Pulsar J0348+0432 J0751+1807 J1738+0333

Observational span, Tobs (year) ∼3.7 ∼17.6 ∼10.0
Orbital period, Pb (day) 0.102424062722(7) 0.263144270792(7) 0.3547907398724(13)
Pulsar’s projected semimajor axis, xp (lt-s) 0.14097938(7) 0.3966158(3) 0.343429130(17)
η ≡ e sin ω (10−7) 19(10) 33(5) −1.4(11)
κ ≡ e cos ω (10−7) 14(10) 3.8(50) 3.1(11)
Time derivative of xp, ẋp – (−4.9 ± 0.9)× 10−15 (0.7 ± 0.5)× 10−15

NS mass, m1 (M�) 2.01(4) 1.64(15) 1.46+0.06
−0.05

WD mass, m2 (M�) 0.172(3) 0.16(1) 0.181+0.008
−0.007

From Table 3, we see that the time derivatives of η and κ are not reported in literature, as well
as the time derivative of xp for PSR J0348+0432. The reason is usually the following. In fitting the
times of arrival of pulse signals, these quantities would be measured to be consistent with zero if
they were included in the timing formalism. To have a simpler timing model, these quantities are
considered unnecessary for a good fit. Actually, the insignificance of these quantities is consistent with
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the spirit of our tests to put upper limits on the Lorentz violation. We estimate the upper limits for
these quantities using Ẋ ∼

√
12σX/Tobs (X ∈

{
xp, η, κ

}
) [21], where σX is the measured uncertainty

for the quantity X and Tobs is the observational span of the data from where these quantities were
derived. The factor “

√
12” approximately takes a linear-in-time evolution of the quantity X into

account [21]. It is verified that this approximation works reasonably well [21,23]. For PSRs J0751+1807
and J1738+0333,

〈
dxp/dt

〉
was measured to be nonzero. As the proper motion of the binary in the

sky could contribute to a nonzero
〈
dxp/dt

〉
for nearby pulsars [37,40], we use the measured value of〈

dxp/dt
〉

as an upper limit for the effects from Lorentz violation. For nearby pulsars, the contribution
to
〈
dxp/dt

〉
from the proper motion depends sinusoidally on Ω [37,40]—although Ω is not measured,

we do not expect the Nature’s conspiracy in assigning certain values of Ω case-by-case to different
binary pulsars, in order to hide the Lorentz symmetry breaking. Therefore, we believe the above
treatments introduce uncertainties no larger than a multiplicative factor of a few.

In order to use Equations (24)–(26), one also needs the absolute geometry of the orbit to properly
project the vector Bj and the tensor Ajl onto the coordinate system

(
â, b̂, ĉ

)
. In general, the longitude

of the ascending node Ω is not observable in pulsar timing [37]. Nevertheless, the procedure to
randomize the value of Ω ∈ [0, 360◦) and to systematically project vectors and tensors onto

(
â, b̂, ĉ

)
was worked out in [21]. It was successfully applied to binary pulsars in previous studies [21–24]. Since
here (i) we have already introduced an uncertainty with a factor of a few, and (ii) we are interested
in the “maximal-reach” limits in absence of the Lorentz violation, we take a simplified approach
and treat these projections as O(1) operators. The “maximal-reach” approach [18] assumes that
only one component of Lorentz-violating coefficients is nonzero in a test. We think our approach is
reasonable at the stage of setting upper limits to the coefficients for Lorentz violation. Nevertheless,
when people start to discover some evidence for the Lorentz violation, it is absolutely needed to take into
account more sophisticated analysis, for example, to use the 3-D orientation of the orbit (possibly in a
probabilistic way with an unknown Ω) as was done in [21–24]. In addition, if one wants to explore the
correlation between different coefficients for Lorentz violation, more sophisticated analysis is needed
as well. These improvements lay beyond the scope of this work.

In Table 4, we list the “maximal-reach” [18] limits on the coefficients for Lorentz violation with
matter-gravity couplings obtained from binary pulsars. As we can see, the best limits on cw

jk (w ∈ {n, p, e})
come from PSR J1738+0333 due to its very good measurement on the ẋp [34]. For cw

0k and
(
aw

eff
)

k, the best
limits come from PSR J0751+1807 due to its good measurement of the Lagrange–Laplace parameters [33].

Table 4. “Maximal-reach” limits from binary pulsars on the coefficients for Lorentz violation with
matter-gravity couplings, where only one component is assumed to be nonzero at a time. The limits on cw

jk
(w ∈ {n, p, e}) come from

〈
dxp/dt

〉
; while the limits on cw

0k and
(
aw

eff
)

k come from 〈dη/dt〉 or 〈dκ/dt〉,
and only the stronger one is listed in the table. For each row, the strongest limit is shown in boldface.

SME Coefficients PSR J0348+0432 PSR J0751+1807 PSR J1738+0333

cn
jk 3 × 10−11 2 × 10−10 1 × 10−11

cp
jk 4 × 10−11 2 × 10−10 1 × 10−11

ce
jk 8 × 10−8 4 × 10−7 3 × 10−8

cn
0k 3 × 10−8 1 × 10−8 7 × 10−8

cp
0k 2 × 10−8 1 × 10−8 6 × 10−8

ce
0k 5 × 10−5 2 × 10−5 1 × 10−4(
an

eff
)

k 2 × 10−8 GeV 1 × 10−8 GeV 6 × 10−8 GeV(
ap

eff

)
k

5 × 10−7 GeV 2 × 10−7 GeV 8 × 10−7 GeV(
ae

eff
)

k 5 × 10−7 GeV 2 × 10−7 GeV 8 × 10−7 GeV
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5. Discussion

Besides the streamlined theoretical analysis, the maximal-reach limits in Table 4 are the main
results of this paper. As far as we are aware, Altschul [41] was the first to put preliminary limits on the
SME neutron-sector coefficients with pulsar rotations. The pure-gravity sector of the SME at different
mass dimensions was systematically tested with binary pulsars in [21–24]. Early limits on

(
aw

eff
)

k were
given with K/He magnetometer and torsion-strip balance [42,43], but these limits, while constraining
different linear combinations of the Lorentz violating coefficients, are rather weak. Later, the
maximal-reach limits on

(
aw

eff
)

k were obtained systematically with superconducting gravimeters [44]
and lunar laser ranging (LLR) experiments [45]. The former got

(
aw

eff
)

k ≤ O
(
10−5 GeV

)
; while the

latter got
(
aw

eff
)

k ≤ O
(
10−8 GeV

)
. Our best limits from PSR J0751+1807 for the proton and the electron

are weaker than the LLR limits, while our limit for the neutron is slightly better. There is also a limit
from the observation of gravitational waves, but being weaker than our limits by almost 30 orders of
magnitude [46]. The limits on

(
aw

eff
)

0 were cast by analyzing nuclear binding energy, Cs interferometer,
torsion pendulum, and weak equivalence principle experiments [11,47–49]. The analysis with binary
pulsars in this work could not bound these SME coefficients. The limits on c̄w

μν from other experiments
(e.g., clock experiments [50]) are much better than the limits from binary pulsars [20]. However, our
limits are the best ones from gravitational systems. In a short summary, our limits are compelling,
and complementary to limits obtained from other experiments.

In using the SME, we have assumed the validity of the effective field theory (EFT) and the
smallness of the Lorentz violation. This is true for most ordinary objects. However, we shall be aware
of a caveat for NSs, because of the possible nonperturbative behaviors which might be triggered
by their strongly self-gravitating nature [38]. It was shown explicitly that, in a class of scalar-tensor
theories, highly nonlinear phenomena are possible within NSs and they may result in large deviations
from GR [51,52]. Although the nonperturbative behaviors were constrained tightly with binary pulsars
and the binary neutron star inspiral GW170817 [34,53,54], the possibility is not completely ruled out
yet [55–57]. With this caveat in mind, conservatively speaking, the tests in this paper are basically
testing the strong-field counterparts of the weak-field SME coefficients. Usually, when the strong-field
effects are considered, the constraints become even tighter. Therefore, we treat the limits here as
conservative ones [30].

The tests of Lorentz violation with binary pulsars improve with a longer baseline for data [21].
Specifically, even pessimistically assuming no advance in the quality of binary-pulsar observation for
the future, the tests in Equations (24)–(26) improve as T−1.5

obs , where Tobs is the total observational span.
In reality, the quality of observation improves rapidly, especially with the newly built and upcoming
telescopes, like the Five-hundred-meter Aperture Spherical Telescope (FAST), the MeerKAT telescope,
and the Square Kilometre Array (SKA) [58–61]. Therefore, we expect better tests than the T−1.5

obs scaling
in testing the Lorentz violation in the future.
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Abstract: General Relativity predicts two modes for plane gravitational waves. When a tiny violation
of Lorentz invariance occurs, the two gravitational wave modes are modified. We use perturbation
theory to study the detailed form of the modifications to the two gravitational wave modes from the
minimal Lorentz-violation coupling. The perturbation solution for the metric fluctuation up to the
first order in Lorentz violation is discussed. Then, we investigate the motions of test particles under
the influence of the plane gravitational waves with Lorentz violation. First-order deviations from the
usual motions are found.

Keywords: gravitational waves; Lorentz violation; standard-model extension; geodesic deviation

1. Introduction

General Relativity (GR), as the standard classical gravitational theory, has been making predictions
consistent with all the terrestrial experiments and most of the astrophysical observations [1,2]. However,
the fact that it is incompatible with quantum theory motivates ceaseless new tests and a large amount of
alternative theories [3,4]. Lorentz invariance, being one of the fundamental principles in GR, has been
suffering constant tests in various high-precision experiments and observations [5–9]. Especially,
gravitational wave observations, providing us the unique access to strong-field environments,
have recently put new stringent constraints on Lorentz violation based on the analysis of the modified
dispersion relation of gravitational waves in the Standard-Model Extension (SME) framework [10,11].

The SME framework is a tool to study Lorentz violation in a model-independent way [12–18].
It incorporates all possible Lorentz-violation couplings into the Lagrangian density of GR and the
Standard Model by employing the so called Lorentz-violation coefficients which can be measured
or constrained with experimental data. The sector that describes gravity with Lorentz violation in
vacuum is called the pure gravity sector of the SME [19,20], and it is the theoretical basis from which
the modified dispersion relation of gravitational waves is derived [10,21].

Using the modified dispersion relation to constrain Lorentz violation marks the beginning of
testing Lorentz invariance with gravitational wave observations [22]. As the number and sensitivity of
gravitational wave observatories increase [23,24], we can extract more information about the incoming
waves from the observed signals, including the polarization status of them. Recently, a detailed
investigation on plane-wave solutions for arbitrary Lorentz violation in the pure gravitationa SME
is carried out, and the modifications to the two polarization modes of the gravitational waves from
coalescing compact binaries are considered [25]. Here we study a similar question but only with the
simplest Lorentz-violation coupling in the pure gravity sector of the SME so that the calculations are
more transparent. We have to point out that there are much bigger indicators of Lorentz violation [26]
than what is described here. Therefore, our result is mostly pedagogical. In case it is to be used to
constrain Lorentz violation in gravitational wave observations, a more comprehensive treatment to
strain signals in gravitational-wave detectors is required.

We start with describing the basics of the minimal Lorentz-violation coupling [13,19] and show
that a plane wave ansatz gives a naive modification to the usual plane wave solution in Section 2.
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In Section 3, we generalize the naive modification to serve as a rigorous perturbation solution to the
Lorentz-violation field equations. In Section 4, the perturbation solution is used to find the geodesic
deviation of test particles on a ring under the effect of gravitational waves with Lorentz violation.

2. Plane Waves with Minimal Lorentz Violation

The Lorentz-violation couplings in the SME framework are constructed as coordinate scalars of
the Lorentz-violation coefficients and conventional field operators. The simplest term in the pure
gravity sector is [13,19]

L(4) = 1
16πG (−uR + sμνRT

μν + tαβγδCαβγδ), (1)

where u, sμν, and tαβγδ are called the minimal Lorentz-violation coefficients as the coupling involves
no derivatives of the Riemann tensor. sμν and tαβγδ inherit the symetries and traceless property of the
trace-free Ricci tensor, RT

μν, and the Weyl conformal tensor, Cαβγδ, separately. Note that the superscript
4 on L represents the mass dimension of the gravitational operators (including the gravitational
constant factor G). Therefore, the minimal Lorentz-violation coefficients u, sμν, and tαβγδ are also called
the Lorentz-violation coefficients with mass dimension d = 4.

Adding to the Einstein–Hilbert term, the Lagrangian density (1) gives modifications from minimal
Lorentz-violation to the Einstein field equations. The details on linearizing the modified field equations
and expressing them in terms of the background values of u, sμν, and tαβγδ are demonstrated in Ref. [19].
Here we just show the result which is the starting point of our calculation, namely the linearized
vacuum field equations with minimal Lorentz-violation. They are

Rμν = s̄αβRαμνβ, (2)

with s̄αβ being the background value of sμν. Note that the background values of u and tαβγδ do not
appear [19]. We also point out that the word "linearized" has two meanings here. One is the same as
usual, namely the gravitational field is linearized. The second is that Equation (2) holds up to the first
order in s̄αβ. There is no need to keep terms at higher orders in s̄αβ because Lorentz violation should
be tiny to be consistent with the experimental support for Lorentz invariance.

The dispersion relation implied by a generalized form of Equation (2) is studied in Ref. [27]
to predict gravitational Čerenkov radiation from Lorentz violation. They proposed the modified
harmonic gauge condition,

(ηλκ + s̄λκ)∂λhκμ = 1
2 (η

λκ + s̄λκ)∂μhλκ , (3)

that simplifies the field equation (2) to

(ηαβ + s̄αβ)∂α∂βhμν = 0, (4)

where hμν = gμν − ημν is the fluctuation of the metric. Using the plane wave ansatz

hμν(x) = Aμνeikx, (5)

the modified dispersion relation up to the first order in s̄αβ is found to be

k0 = |�k|+ 1
2

s̄αβkαkβ

|�k| . (6)
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Namely the wave vector can be written as kμ = (ω + δω,�k) with ω = |�k| and δω = 1
2

s̄αβkαkβ

|�k| . Thus,

the plane wave solution can be written as

hμν(x) = Aμνe−i(ωt−�k·�x) − i δω t Aμνe−i(ωt−�k·�x) + .... (7)

The first term, Aμνe−i(ωt−�k·x), is apparently the plane wave solution in GR, and the rest consists
of corrections from Lorentz violation. Up to the first order in s̄αβ, the correction is

h(1)μν = −i δω t Aμνe−i(ωt−�k·�x). (8)

As there is a factor of t in the amplitude of h(1)μν , the correction is only valid during a finite time
period. The plane wave solution (7) is insufficient to describe the entire content of the Lorentz-violation
modification to gravitational waves. However, Equation (8) provides us an insight into how the
modification might look. In the next section, we will take the generalized form of Equation (8), which is

h(1)μν = Cμναxαe−i(ωt−�k·�x), (9)

as an ansatz to solve the field equation (4) up to the first order in s̄αβ. The constants Cμνα are going to
be determined by the gauge condition (3) and the field equation (4). Note that the Lorentz-violation
modification shown in Equation (9) applies only to a finite spacetime region as the coordinates xα

appear in the amplitude.

3. The Perturbation Solution

We seek a perturbation solution up to the first order in s̄αβ for the field equation (4). To proceed, we
assume that the zeroth-order plane wave travels along the z direction with the conventional wave vector

k(0)μ = (ω, 0, 0, ω), (10)

and that its amplitude Aμν takes the usual form

Aμν =

⎛⎜⎜⎜⎝
0 0 0 0
0 A11 A12 0
0 A12 −A11 0
0 0 0 0

⎞⎟⎟⎟⎠ , (11)

where A11 is the amplitude of the plus wave and A12 is the amplitude of the cross wave. By substituting

hμν(x) = Aμνe−i(ωt−kz) + Cμναxαe−i(ωt−kz), (12)

into the field quation (4) and keeping only the first-order terms, we have

2Cμναik(0)α = s̄αβk(0)α k(0)β Aμν. (13)

Writing the above equations explicitly, they are

Cμν0 + Cμν3 = − iω
2 (s̄00 − 2s̄03 + s̄33)Aμν. (14)

In addition, using Equation (12) in the gauge condition (3), up to the first order we have

ηλκCκμαik(0)λ xα + ηλκCκμλ + s̄λκ ik(0)λ Aκμ = 1
2

(
Cαik(0)μ xα + Cμ + s̄λκ ik(0)μ Aλκ

)
, (15)
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where Cα = ημνCμνα. The relations (15) imply two sets of equations:

ηλκCκμαk(0)λ − 1
2 Cαk(0)μ = 0, (16)

and

ηλκCκμλ − 1
2 Cμ = i

2 s̄λκk(0)μ Aλκ − is̄λκk(0)λ Aκμ. (17)

Using the expressions (10) and (11), we find that Equation (16) can be simplified to

C00α + 2C03α + C33α = 0,

C11α + C22α = 0, (18)

C01α + C31α = 0,

C02α + C32α = 0,

and that Equation (17) can be simplified to

C011 + C022 = − 1
2 iω
(
(s̄11 − s̄22)A11 + 2s̄12 A12

)
,

C111 + C122 +
1
2 (C001 − C331) = iωA11(s̄01 − s̄31) + iωA12(s̄02 − s̄32), (19)

C121 − C112 +
1
2 (C002 − C332) = iωA12(s̄01 − s̄31)− iωA11(s̄02 − s̄32).

Note that Equation (17) turns out to have only 3 independent equations.
Equation (19) shows that there are 6 independent components in the first-order solution h(1)μν ,

which can be written as

h(1)μν =

⎛⎜⎜⎜⎜⎝
h(1)00 h(1)01 h(1)02 − 1

2 (h
(1)
00 + h(1)33 )

h(1)01 h(1)11 h(1)12 −h(1)01

h(1)02 h(1)12 −h(1)11 −h(1)02

− 1
2 (h

(1)
00 + h(1)33 ) −h(1)01 −h(1)02 h(1)33

⎞⎟⎟⎟⎟⎠ . (20)

The 6 independent components are easily divided into 3 groups, {h(1)11 , h(1)12 }, {h(1)00 , h(1)33 }, and

{h(1)01 , h(1)02 }. The remaining equations in (14), and (20) are insufficient to determine any of them. This
indicates that the ansatz (9) does not lead to a unique first-order solution. We need extra information
to fix h(1)μν . Next, we discuss the solutions for {h(1)11 , h(1)12 }, {h(1)00 , h(1)33 } and {h(1)01 , h(1)02 } separately.

3.1. {h(1)11 , h(1)12 }
We expect these two components recover the correction (8). This is indeed the case if we take all

the components of C11α and C12α to be zero except for

C110 = − iω
2 (s̄00 − 2s̄03 + s̄33)A11,

C120 = − iω
2 (s̄00 − 2s̄03 + s̄33)A12. (21)

In this way, h(1)11 and h(1)12 are fixed, and the dispersion relation (6) can be recovered in the
perturbation solution.
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3.2. {h(1)00 , h(1)33 }
With C111 = C112 = C121 = C122 = 0, we have

C001 − C331 = 2iωA11(s̄01 − s̄31) + 2iωA12(s̄02 − s̄32),

C002 − C332 = 2iωA12(s̄01 − s̄31)− 2iωA11(s̄02 − s̄32). (22)

It turns out the combinations C001 − C331 and C002 − C332 are the only terms involving C00α and C33α in
the first-order Riemann tensor (see the Appendix A). Therefore, without any ambiguity in observables,
we can safely assume all the components of C00α and C33α vanishing except for C001 and C002, which
are given by Equation (22).

3.3. {h(1)01 , h(1)02 }
In the Appendix A, we can see that C010, C013, C020, and C023 do not appear in the first-order

Riemann tensor. Therefore, they can be taken as zero. However, C011 and C022 appear, and they do not
appear as the combination C011 + C022 as shown in Equation (20). In addition, C012 and C021 also show
up in the first-order Riemann tensor. Namely, we have one equation in (20) to use but 4 unknowns,
C011, C012, C021, and C022, to determine. The inadequacy is likely from the fact that we are missing
certain information about the specific dynamic model of the Lorentz-violation coefficient sαβ. In other
words, we expect sαβ to have its own field equations with the metric involved. Then, when sαβ is
approximated by its background value s̄αβ, some of these field equations degenerate to constraints on
the metric though most of them vanish trivially.

Building a specific dynamic model for sαβ simply lies beyond the scope of the present work.
For the calculation in the next section, we decide to choose the simplest solution for h(1)01 and h(1)02 , by
which we mean that all the components of C01α and C02α vanish except for

C011 = − 1
2 iω
(
(s̄11 − s̄22)A11 + 2s̄12 A12

)
. (23)

4. Geodesic Deviation

Now we use the above first-order solution to calculate the effects of Lorentz violation on the
motions of test particles when plane gravitational waves pass through. Similarly to the usual case, it is
illustrative to consider a ring of test particles whose initial positions form a circle

(X(0))2 + (Y(0))2 = d2, (24)

in a local inertial frame with local coordinates {X, Y, Z}. Assuming the local coordinates are aligned
with the general coordinates {x, y, z}, then the nonrelativistic geodesic deviation equations that
determine the motions of the test particles in the local frame are [28]

d2X
dt2 = −R0101X(0)− R0102Y(0)− R0103Z(0),
d2Y
dt2 = −R0201X(0)− R0202Y(0)− R0203Z(0), (25)
d2Z
dt2 = −R0301X(0)− R0302Y(0)− R0303Z(0).

The zeroth-order solution for X(t), Y(t), and Z(t) is the usual deformation

X(0)(t)− X(0) = 1
2
(

A11X(0) + A12Y(0)
)
(e−iωt − 1),

Y(0)(t)− Y(0) = 1
2
(

A12X(0)− A11Y(0)
)
(e−iωt − 1), (26)

Z(0)(t)− Z(0) = 0.
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Note that we have assumed that the local frame is moving along the geodesic x(t) = y(t) = z(t) = 0.
The first-order solution turns out to be

X(1)(t) = − 1
ω2

(
αX + βX(ωt − 2i)

)
e−iωt + 1

ω2 (αX − 2iβX),

Y(1)(t) = − 1
ω2

(
αY + βY(ωt − 2i)

)
e−iωt + 1

ω2 (αY − 2iβY), (27)

Z(1)(t) = − 1
ω2 αZe−iωt + 1

ω2 αZ,

where

αX = −iω(C110 − C011)X(0)− iωC120Y(0) + 1
4 iωC001Z(0),

βX = − 1
2 ωC110X(0)− 1

2 ωC120Y(0),

αY = −iωC120X(0) + iωC110Y(0) + 1
4 iωC002Z(0), (28)

βY = − 1
2 ωC120X(0) + 1

2 ωC110Y(0),

αZ = 1
4 iωC001X(0) + 1

4 iωC002Y(0).

The solution (27) as well as Equation (28) is written with the understanding that only the real parts are
taken.

The most notable correction is that Lorentz violation causes an oscillation along the z direction in
general, which does not happen in the case of the usual plane gravitational waves. Then, for the ring
of the test particles in the XY plane, we find that the shape is still deformed into ellipses. But the semi
axes are corrected by Lorentz violation. Specifically speaking, when A11 is real and A12 = 0, the semi
axes of the ellipse at time t are

a = d
(
1 + 1

2 A11(cos ωt − 1)− 1
2 A11(s̄11 − s̄22)(cos ωt − 1)− 1

4 A11(s̄00 − 2s̄03 + s̄33)ωt sin ωt
)
,

b = d
(
1 − 1

2 A11(cos ωt − 1) + 1
4 A11(s̄00 − 2s̄03 + s̄33)ωt sin ωt

)
; (29)

when A12 is real and A11 = 0, the semi axes of the ellipse at time t are

a = d
(
1 + A12(cos ωt − 1)− A12 s̄12(cos ωt − 1)− 1

2 A12(s̄00 − 2s̄03 + s̄33)ωt sin ωt
)
,

b = d
(
1 − A12(cos ωt − 1)− A12 s̄12(cos ωt − 1) + 1

2 A12(s̄00 − 2s̄03 + s̄33)ωt sin ωt
)
. (30)

Last but not least, we point out that when A12 is real and A11 = 0, the rotation angle of the ellipses
from the standard position

X2

a2 + Y2

b2 = 1, (31)

is not ±π
4 any more. A time-independent deviation of 1

2 s̄12 occurs in the presence of Lorentz violation.

5. Conclusions

We used the ansatz (9) to find the correction to plane gravitational waves from minimal Lorentz
violation. It was shown that up to the first order in Lorentz violation, the correction, h(1)μν , has 6
independent components, with 4 of them fixed in the SME framework. To determine the remaining two
components, extra information about the dynamics of the Lorentz-violation coefficient sαβ is necessary.
This requires treating sαβ as a dynamic field and assigning it a kinetic term in the Lagrangian density.
This lies beyond the scope of the present work.

Then, to demonstrate the effects of Lorentz violation on the motions of test particles under the
influence of plane gravitational waves, we artificially fixed the two undetermined components of
h(1)μν . Together with the other 4 determined components, two notable effects were found. One is the
oscillation of a test particle along the propagating direction of the gravitational waves, and the other
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is the deviation from ±π
4 for the rotation angle of the deformed ellipse in the presence of the cross

wave. Note that the amplitude of the oscillation along the Z-direction is proportional to the amplitude
of the zeroth-order gravitational wave but suppressed by the components of the Lorentz-violation
coefficient s̄αβ. Taking the current best bound of 10−15 [11] on s̄αβ into consideration, it is unlikely that
this oscillation provides a viable test of Lorentz violation even in the near future. On the other hand, as
we are getting access to the polarization information of incoming gravitational waves with more and
more detectors in construction, the deviation of the rotation angle suggests a Lorentz-violation phase
difference between the two polarization modes to test in future observations of polarized gravitational
waves. To conduct such tests, a more comprehensive treatment in the context of existing and future
gravitational-wave detectors is required, which deserves another paper for investigation.
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Appendix A. The First-Order Riemann Tensor

The first-order Riemann tensor is calculated by

R(1)
αβγδ =

1
2 (∂γ∂βh(1)αδ + ∂α∂δh(1)βγ − ∂γ∂αh(1)βδ − ∂δ∂βh(1)αγ ). (A1)

Plugging Equation (9) into it, and using�k = (0, 0, ω), we find

R(1)
0101 = 1

2
(
2iω(C110 − C011) + ω2C11αxα

)
e−i(ωt−�k·�x),

R(1)
0102 = 1

2
(
iω(2C120 − C021 − C012) + ω2C12αxα

)
e−i(ωt−�k·�x),

R(1)
0103 = − 1

4 iω(C001 − C331)e−i(ωt−�k·�x), (A2)

R(1)
0202 = − 1

2
(
2iω(C110 + C022) + ω2C11αxα

)
e−i(ωt−�k·�x),

R(1)
0203 = − 1

4 iω(C002 − C332)e−i(ωt−�k·�x),

R(1)
0303 = 0,

R(1)
0112 = − 1

2 iω(C112 − C121)e−i(ωt−�k·�x),

R(1)
0113 = 1

2
(
iω(C110 − C113 − 2C011) + ω2C11αxα

)
e−i(ωt−�k·�x),

R(1)
0123 = − 1

2 iωC012e−i(ωt−�k·�x),

R(1)
0212 = − 1

2 iω(C111 + C122)e−i(ωt−�k·�x),

R(1)
0213 = 1

2
(
iω(C120 − C123 − C021 − C012) + ω2C12αxα

)
e−i(ωt−�k·�x), (A3)

R(1)
0223 = 1

2
(
− iω(C110 − C113 + 2C022)− ω2C11αxα)e−i(ωt−�k·�x),

R(1)
0313 = − 1

4 iω(C001 − C331)e−i(ωt−�k·�x),

R(1)
0323 = − 1

4 iω(C002 − C332)e−i(ωt−�k·�x),
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and

R(1)
1212 = 0,

R(1)
1213 = − 1

2 iω(C112 − C121)e−i(ωt−�k·�x),

R(1)
1223 = − 1

2 iω(C111 + C122)e−i(ωt−�k·�x),

R(1)
1313 = 1

2
(
− 2iω(C113 + C011) + ω2C11αxα

)
e−i(ωt−�k·�x), (A4)

R(1)
1323 = 1

2
(
− iω(C012 + C021 + 2C123) + ω2C12αxα

)
e−i(ωt−�k·�x),

R(1)
2323 = 1

2
(
2iω(C113 − C022)− ω2C11αxα

)
e−i(ωt−�k·�x).
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Abstract: The Weyl method for finding solutions in general relativity using symmetry by varying
an action with respect to a reduced set of field variables is known to fail in some cases. We add to the
list of failures by considering an application of the Weyl method to a magnetically charged spherically
symmetric source, obtaining an incorrect geometry. This is surprising, because the same method,
applied to electrically charged central bodies correctly produces the Reissner-Nordström spacetime.
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magnetic monopole

1. Introduction

We often use symmetry to simplify the field equations of general relativity (GR) and help solve
them. There is a particular approach, the Weyl method [1], that benefits from an early application of
assumed symmetry and can lead to striking simplification. The method has been used to successfully
generate the spherically symmetric vacuum spacetime of general relativity, its first application. It has
also been applied to modified theories like GR with cosmological constant, Einstein-Gauss-Bonnet
gravity [2] and conformal gravity, all of which are developed and/or reviewed in Reference [3].
For axial symmetry, the 2 + 1 dimensional “Kerr” solution for gravity with (negative) cosmological
constant (BTZ) is obtained in Reference [3], with 3 + 1 dimensional Kerr obtained using a targeted
form of the technique in Reference [4].

But we must be careful, the method does not always work, as was detailed in Reference [5].
In this note, we review the method, providing some of its successful examples and discuss its failure
in specific cases. We show that while the method is successful in finding the spacetime associated with
an electrically charged spherical mass, it fails when the electric charge is replaced by magnetic charge
(i.e., a magnetic monopole).

2. The Weyl Method

The Weyl method refers to the approach, invented and advertised by Weyl in Reference [1],
of using information, in particular symmetry information, prior to varying an action in order
to reduce the number, and simplify the form, of the field equations. Spherical symmetry in the
Einstein-Hilbert action provides a good first example. Starting from the spherically symmetric line
element, with two unknown function of r, the radial coordinate,

ds2 = −A(r)dt2 + B(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

, (1)

we can form the Lagrangian for the action (primes indicate r-derivatives),

Symmetry 2019, 11, 845; doi:10.3390/sym11070845 www.mdpi.com/journal/symmetry82
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L =
√
−gR =

sin θ

2 (A(r)B(r))3/2

[
r2B(r)A′(r)2 + 4A(r)2

(
−B(r) + B(r)2 + rB′(r)

)
+ rA(r)

(
rA′(r)B′(r)− 2B(r)

(
2A′(r) + rA′′(r)

))]
,

(2)

and then we can use the Euler-Lagrange equations for A(r) and B(r),

0 =
∂L

∂A(r)
− d

dr

(
∂L

∂A′(r)

)
+

d2

dr2

(
∂L

∂A′′(r)

)
=

sin θ√
A(r)B(r)3

[
B(r) (−1 + B(r)) + rB′(r)

]
0 =

∂L
∂B(r)

− d
dr

(
∂L

∂B′(r)

)
=

sin θ√
A(r)B(r)3

[
A(r) (−1 + B(r))− rA′(r)

] (3)

to find A(r) and B(r). Solving the top equation for B(r), we get

B(r) =
1

1 − α
r

(4)

for constant α. Then using this in the second equation, we can solve for A(r),

A(r) = 1 − α

r
. (5)

We have recovered the Schwarzschild solution, with constant α awaiting its usual physical
interpretation, α = 2M, with G → 1, c → 1.

The beauty of the Weyl approach is that the assumed form of the line element can simplify
(or complexify) the field equations for the unknown functions. For example, if we started with the
two-function (a(r), b(r) now) line element as in Reference [3],

ds2 = −a(r)b(r)2dt2 + 1/a(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

(6)

motivated by, for example, the single-function form of the determinant
√−g = b(r)r2 sin θ piece of the

action, then the Lagrangian is

L = − sin θ

[
b(r)
(
−2r +

(
r2a(r)

)′)′
+
(

2r2a(r)b′(r)
)′

+ r2a′(r)b′(r)

]
(7)

with field equations (obtainable even by dropping the total r-derivative in L),

2r sin θb′(r) = 0 2 sin θ
(
1 − (ra(r))′

)
= 0 (8)

a decoupled set that’s even easier to solve than those in (3) and leads, of course, to the same
Schwarzschild spacetime.

3. Symmetric Criticality

There is a problem with the Weyl approach, one that goes back to the idea of action variation
itself. Symmetries can be applied at the level of a field equation and lead to correct simplifications.
Indeed, the symmetry of a solution is implied by the form of the field equation and (more importantly),
the boundary conditions we impose on its solutions. Simplifications of this sort belong to the PDE
problem that the field equations and boundaries define. But any information that derives from the field
equations must be treated carefully when used prior to varying an action, that is, prior to developing
the field equations, precisely what Weyl invites us to do.
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As a reductio ad absurdum example from classical mechanics, suppose we take the free particle
action in one dimension,

S[x(t)] =
∫ t f

t0

1
2

mẋ(t)2dt (9)

and vary the action to get the equation of motion, mẍ(t) = 0 from which we learn that x(t) = f t + g
for constants f and g. If we insert this solution back into the action, we get

S =
∫ t f

t0

1
2

m f 2dt (10)

which cannot itself be varied to recover a valid equation of motion governing x(t). This is the logic
that shows the potential flaw in the Weyl procedure. We have fixed all the degrees of freedom by
solving the equation of motion, leaving us with nothing to vary in the action when that solution has
been introduced.

The previous example is contrived and extreme but consider the slightly more disguised error
in the following: We note that for the Schwarzschild solution (4) and (5), B(r) = 1/A(r) (this is
what suggests the two-function form of the line element in (6)). Suppose we use that information in
developing the Lagrangian, that is, start with the line element

ds2 = −a(r)dt2 + 1/a(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

. (11)

Then the Lagrangian becomes

L = − sin θ
(
−2 + 2a(r) + 4ra′(r) + r2a′′(r)

)
= − d

dr

[
sin θ

(
−2r +

(
r2a(r)

)′)]
(12)

which, since it is a total derivative, leads to a trivial field equation (0 = 0) leaving a(r) unconstrained.
One might naïvely conclude that any function a(r) solves the field equation in the spherically
symmetric case. This is, of course, incorrect. The actual field equation, Einstein’s in vacuum, Rμν = 0,
has non-zero entries:

R00 =
a(r)

2

(
2a′(r)

r
+ a′′(r)

)
Rrr = −R00/a(r)2 Rθθ = 1 − (ra(r))′ Rφφ = sin2 θRθθ , (13)

and these are solved by the usual a(r) = 1 − α/r. While we can start with (11) and get the correct
result from the field equations themselves, we have used too much simplifying information to recover
that result from the Weyl method [6]. It is easy to go back and check that a solution obtained via the
Weyl method is valid by running it through Einstein’s equation. What is more difficult is to determine,
a priori, whether a particular simplifying assumption will lead to problems. The equivalence of
“varying an action, then imposing symmetry assumptions” and “imposing symmetry assumptions and
then varying an action” is an example of Palais’ “principle of symmetric criticality” [5]. He cautions
that the principle is not universal and the current case provides an example of its failure.

Another case in which the principle fails is in establishing Birkhoff’s theorem in general relativity.
Birkhoff’s theorem says that the spherically symmetric vacuum solution to Einstein’s equation
(Schwarzschild) is static, with no time dependence. If you started with an ansatz like (1) but allowed
the functions A and B to depend on time, you would find no constraint on their temporal dependence
using the Weyl approach, while Einstein’s equations explicitly require Ȧ(r, t) = 0 = Ḃ(r, t) (dots
denoting t-derivatives), a statement of Birkhoff’s theorem. The Weyl method can be redeemed in this
case using an auxiliary field as detailed in Reference [7] (with the same fix applied to Lovelock gravity
establishing Birkhoff’s theorem there in Reference [8]) but using just the spherical symmetry by itself
is not enough to establish Birkhoff’s theorem. A similar auxiliary field is used in (6), where b(r) = 1 is
an uninteresting solution to a trivial field equation, yet the function b(r) is necessary to constrain a(r)
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to its correct value by preventing the collapse of the Lagrangian to a total derivative as in (12) which
lacked the b(r) starting field.

One way of viewing the problem with proving Birkhoff’s theorem is the focus on the
two-dimensional r − t subspace of spherically symmetric spacetimes that are, at least potentially,
time dependent. The diagonal metric ansatz does not probe enough of that space to capture the
time-independent constraint. A similar problem occurs if we attempt to carry out the procedure on a
static, axially symmetric spacetime like the Weyl class of metrics. These typically start with line element

ds2 = −e2a(s,z)dt2 + e−2a(s,z)+2b(s,z)
(

ds2 + dz2
)
+ s2e−2a(s,z)dφ2 (14)

for unknown functions a(s, z) and b(s, z) exhibiting cylindrical symmetry (no φ dependence). The Weyl
method again fails to return a complete set of field equations, in this case because we have started off
with the s − z subspace in its (guaranteed) conformally flat form. Here, again, a Lagrange multiplier
procedure can be used to restore the 3 independent field equations from Einstein’s equation in vacuum
but this must be done explicitly.

4. Reissner-Nordström and Magnetic Monopoles

Weyl’s method works for extended sources as well as the simpler vacuum solutions provided
the sources can themselves be fit into a field-theoretic action in combination with the Einstein-Hilbert
action. The gravitational field variables show up in the auxiliary action in the usual way, both through
the density

√−g and any explicit metric dependence, for example, gμν in the Lagrangian for a scalar
field φ: φ,μgμνφ,ν (the method is not available for non-Hilbert stress tensors, making it difficult to use
in a cosmology context with fluid stress tensor sources). We can obtain the spherically symmetric
spacetime for a charged massive spherical central body by starting with the combined Einstein-Hilbert
and E&M action:

S =
∫ √

−g
(

R + σFμνFμν

)
d4x (15)

where σ is just a constant to set the coupling between gravity and E&M.
Now let’s use the Weyl method to find the static, spherically symmetric solutions away from the

massive source as in Reference [3]. Start with the ansatz from (6) for the gravitational piece, then the
electromagnetic portion reads

FμνFμν ≡ FμνFαβgμαgνβ = 2
(

B2 − E2b(r)2
)

(16)

which depends on the metric used to contract the field strength tensor indices. The starting action is

S =
∫ √

−g
(

R + 2σ
(

B2 − E2b(r)2
))

d4x (17)

For a spherically symmetric electric charge source, B = 0 and E = E(r)r̂. The electric field comes
from the A0(r) term in the vector potential Aμ where the lower form is the relevant one (since the field
strength tensor is naturally covariant, Fμν ≡ ∂μ Aν − ∂ν Aμ). In terms of this single non-zero term in the
four-potential, E(r) = A′

0(r)/b(r)2 and the Lagrangian is

L = − sin θ

[
b(r)
(
−2r +

(
r2a(r)

)′)′
+
(

2r2a(r)b′(r)
)′

+ r2a′(r)b′(r) +
2σr2 A′

0(r)
2

b(r)

]
(18)

Using the Euler-Lagrange equations that come from varying the associated action with respect to
a(r), b(r) and A0(r) independently, we get
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0 = 2r sin θb′(r)

0 = −2 sin θ

(
−1 + (ra(r))′ − r2σA′

0(r)
2

b(r)2

)

0 =
4rσ sin θ

b(r)2

(
−rb′(r)A′

0(r) + b(r)
(
2A′

0(r) + rA′′
0 (r)
)) (19)

The first equation is trivially solved by setting b(r) = b0 a constant (that can be set to one
by coordinate rescaling). The third equation, simplified using the first, is 2A′

0(r) + rA′′
0 (r) =

(r2 A′
0(r))

′/r = 0. Its solution is A0(r) = V0 − β/r for constant V0, the value of the potential at
spatial infinity and a constant β that is proportional to the electric charge. With these two in place and
taking V0 → 0, the middle equation reads

− (ra(r))′ +
(

1 + σ
β2

r2

)
= 0 −→ a(r) = 1 − α

r
− σ

β2

r2 , (20)

where α is related to the mass of the central body as in the Schwarzschild case. The line element and
potential are

ds2 = −
(

1 − α

r
− σ

β2

r2

)
dt2 +

1(
1 − α

r − σ
β2

r2

)dr2 + r2
(

dθ2 + sin2 θdφ2
)

A0(r) = − β

r
,

(21)

which is the correct Reissner-Nordström solution. Note that A0(r) is related to the electric field
magnitude, for b(r) = 1, by E(r) = A′

0(r) = β/r2, the usual Coulomb field associated with a
spherically symmetric charge (the covariant zero-component of the four-potential, A0, plays the role of
−V(r) for the usual electrostatic potential V(r)).

Let’s now consider the spacetime associated with a massive spherical central body with magnetic
monopole charge (but no electric charge). All that changes is that we take E = 0 and B = B(r)r̂,
this time with B(r) = W ′(r)/b(r)2 for a magnetic monopole potential W(r) replacing A0(r) from
above. Looking at (17), it is clear that the sign associated with the magnetic field is opposite that of
the electric case and that ends up introducing a minus sign in the line element that solves the field
equations. The Lagrangian is now

L = − sin θ

[
b(r)
(
−2r +

(
r2a(r)

)′)′
+
(

2r2a(r)b′(r)
)′

+ r2a′(r)b′(r)− 2σr2W ′(r)2

b(r)3

]
(22)

In addition to the sign change, there is a factor of 1/b(r)3 attached to the potential, as opposed
to the 1/b(r) in (18). This ends up introducing an essentially irrelevant factor of 3 in the metric’s
dependence on magnetic charge.

For constant β̄ associated with the magnetic charge, the line element and potential that comes
from the Weyl method applied to (22) is:

ds2 = −
(

1 − α

r
+ 3σ

β̄2

r2

)
dt2 +

1(
1 − α

r + 3σ
β̄2

r2

)dr2 + r2
(

dθ2 + sin2 θdφ2
)

W(r) = − β̄

r
−→ B(r) =

β̄

r2

(23)

From this, we would conclude that the Reissner-Nordström solution for a magnetic monopole
has a fundamentally different structure than the electric monopole case, with β2 → −3β̄2 taking us
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from one metric to the other. Again it is the minus sign that is important here, that’s what changes the
structure of the spacetime (in particular, the horizon structure is different between the two).

Einstein’s field equations tell a different story—the correct one, of course [9,10]. For the electromagnetic
sourcing, we consider the full field equations,

Rμν −
1
2

gμνR = 8πTμν, (24)

and note that the elements of the electromagnetic stress tensor,

T00 =
1
2

(
E2 + B2

)
Tij =

(
1
2

δijE2 − EiEj
)
+

(
1
2

δijB2 − BiBj
) (25)

are symmetric in E ↔ B, while the Poynting vector contribution, T0i ∼ (E × B)i vanishes when
considering either field in isolation (this is true even in the extended setting in which magnetic
monopoles are incorporated in Maxwell’s equation from the start). Then the role of an electric or
magnetic monopole in gravity is the same, we have β2 → β̄2 in (21). The field equations give a different
result than the Weyl method, so this is another example where the Palais principle is violated.

The problem in this case comes from the move from the electromagnetic action, LEM ∼ √−gFμνFμν,
to the electromagnetic stress tensor (obtained by Hilbert’s procedure),

Tμν ≡ 2√−g
∂LEM

∂gμν . (26)

The variational procedure that generates the stress tensor source for gravity from (15) requires
that we probe the full metric dependence of the electromagnetic action. In the Weyl method, we probe
only a subset and evidently, that subset is too small to reproduce the correct stress tensor structure.
Indeed, the electromagnetic piece of the Lagrangian,

LEM =
√
−gFμνFμν = 2r2b(r) sin θ

(
B2 − b(r)2E2

)
(27)

depends on only one of the metric’s two independent functions, a clear warning sign that we will be
looking at only a portion of the stress tensor defined by (26).

The situation is similar to the failures described in Section 3 but in those cases, only the
gravitational piece was relevant. We know that the line element ansatz (6) used here is enough
to capture the spherically symmetric vacuum solution but it is not enough to provide the correct source
term. It is conceivable that we could introduce Lagrange multipliers to restore the procedure, as with
Birkhoff’s theorem or the axially symmetric Weyl metrics. But the ease with which we obtain the
correct solution from the full field equations makes the task of finding such fixes unnecessary.

5. Conclusions

Symmetry is a powerful simplifying tool in many settings. In general relativity, the Weyl method
makes good use of symmetry observations by reducing the number of degrees of freedom in the
Einstein-Hilbert action. The method does not always work and it is important to test solutions obtained
in this way by running them through the Einstein field equations. While the Weyl method can be
used to correctly obtain the Reissner-Nordström spacetime outside of an electrically charged spherical
central body, it fails to produce the correct spacetime when the central body is magnetically charged.

For most applications, the problem with the Weyl method is similar in spirit to the extreme
example from Section 3, where the degrees of freedom in the action have been over-reduced, leaving
us with no information. That’s what happens for the spherically symmetric starting point (11) and the
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same deficiency occurs when trying to prove Birkhoff’s theorem and establish the Weyl class of metrics
starting from (14). In each of these cases, the hallmark is a lack of information, the field variables are
unconstrained in some way that they should be, according to Einstein’s equation. We are left with no
information and that lack of information tells us that the error has occurred and suggests a fix.

The monopole case discussed here is different. We are not simply missing information that we
suspect should be there. Rather, the information we have is incorrect. The symptom is different but
the deficiency is the same, a lack of ability to probe the starting action’s full field degrees of freedom.
This time, it is the “source” term, the electromagnetic action, rather than the gravitational one that is
the culprit.
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