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José A.F.O. Correia 
University of Porto 
Portugal

Guian Qian

Institute of Mechanics 
Chinese Academy of Sciences 
China

Editorial Office

MDPI
St. Alban-Anlage 66 
4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Energies

(ISSN 1996-1073) from 2018 to 2019 (available at: https://www.mdpi.com/journal/energies/special

issues/sphm)

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03921-766-3 (Pbk)

ISBN 978-3-03921-767-0 (PDF)

c© 2019 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Gang Chen
Tianjin University China



Contents

About the Special Issue Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface to ”Structural Prognostics and Health Management in Power & Energy Systems” . . . xi

Phattara Khumprom and Nita Yodo

A Data-Driven Predictive Prognostic Model for Lithium-Ion Batteries Based on a Deep
Learning Algorithm
Reprinted from: Energies 2019, 12, 660, doi:10.3390/en12040660 . . . . . . . . . . . . . . . . . . . 1

Hong Wang, Hongbin Wang, Guoqian Jiang, Jimeng Li and Yueling Wang

Early Fault Detection of Wind Turbines Based on Operational Condition Clustering and
Optimized Deep Belief Network Modeling
Reprinted from: Energies 2019, 12, 984, doi:10.3390/en12060984 . . . . . . . . . . . . . . . . . . . . 22

Zheng Liu, Xin Liu, Kan Wang, Zhongwei Liang, José A.F.O. Correia and Abı́lio M.P. De Jesus
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Preface to ”Structural Prognostics and Health

Management in Power & Energy Systems”

The idea of preparing an Energies Special Issue on “Structural Prognostics and Health 
Management in Power & Energy Systems” is to compile information on the recent advances in 
structural prognostics and health management (SPHM). Continued improvements on SPHM have 
been made possible through advanced signature analysis, performance degradation assessment, 
as well as accurate modeling of failure mechanisms by introducing advanced mathematical 
approaches/tools. Through combining deterministic and probabilistic modeling techniques, research 
on SPHM can provide assurance for new structures at a design stage and ensure construction integrity 
at a fabrication phase. Specifically, power and energy system failures occur under multiple sources 
of uncertainty/variability resulting from load variations in usage, material properties, geometry 
variations within tolerances, and other uncontrolled variations. Thus, advanced methods and 
applications for theoretical, numerical, and experimental contributions that address these issues on 
SPHM are desired and expected, which attempt to prevent overdesign and unnecessary inspection 
and provide tools to enable a balance between safety and economy to be achieved. This Special 
Issue has attracted submissions from China, USA, Portugal, and Italy. A total of 26 submissions were 
received and 11 articles finally published.

The paper entitled “An Improved Signal Processing Approach Based on Analysis Mode 
Decomposition and Empirical Mode Decomposition” reported an improved sifting stop criterion and 
the combination of analysis mode decomposition and empirical mode decomposition for solving the 
problem of end effects and mode-mixing. Results showed that the proposed method is better than 
empirical mode decomposition for data preprocessing.

The paper entitled “A Lithium-Ion Battery RUL Prediction Method Considering the Capacity 
Regeneration Phenomenon” reported a prognostic method that solved the problem of degradation 
jumps caused by capacity regeneration phenomenon. Results showed that the proposed method 
can achieve high remaining useful life prediction accuracies in the case of battery degradation with 
capacity regeneration phenomenon.

The paper entitled “Weighted Regression-Based Extremum Response Surface Method for 
Structural Dynamic Fuzzy Reliability Analysis” reported a weighted regression-based extremum 
response surface method for improving structural dynamic fuzzy reliability analysis. The main 
contribution of this paper provided a method for structural dynamic reliability evaluation with 
respect to working processes.

The paper entitled “GA–BP Neural Network-Based Strain Prediction in Full-Scale Static Testing 
of Wind Turbine Blades” reported a method for strain prediction of wind turbine blades based on 
genetic algorithm back propagation neural networks. Results showed that the proposed method can 
predict the strain of unmeasured points of wind turbine blades accurately.

The paper entitled “Early Fault Detection of Wind Turbines Based on Operational Condition 
Clustering and Optimized Deep Belief Network Modeling” reported a generalized wind turbine 
health monitoring framework based on supervisory control and data acquisition (SCADA) data. 
A demonstration on structural health monitoring and fault detection was shown to support the 
effectiveness of the proposed idea.

The paper entitled “A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries 
Based on a Deep Learning Algorithm” reported a battery prognostic method based on deep neural

xi



networks. Results showed that in the case of NASA battery degradation data, the deep neural

network-based prognostic method can predict the battery state of health better than other traditional

machine learning algorithms, including support vector machine (SVM), k-nearest neighbors (k-NN),

artificial neural networks (ANN), and linear regression (LR).

The paper entitled “Initial Design Phase and Tender Designs of a Jacket Structure Converted into

a Retrofitted Offshore Wind Turbine” reported an investigation of the possibility of converting actual

structures for gas extraction into offshore platforms for wind turbine towers. The proposed method

simplified the structural study of jacket structures that are commonly used in the Adriatic Sea for

extracting natural gas.

The paper entitled “Dynamic Study of a Rooftop Vertical Axis Wind Turbine Tower Based on

an Automated Vibration Data Processing Algorithm” reported an investigation of ambient dynamic

responses of a rooftop vertical axis wind turbine. This paper revealed that blade rotation speed is the

greatest contributing factor to vibration responses.

The paper entitled “Study on Vibration Transmission among Units in Underground Powerhouse

of a Hydropower Station” reported on field structural vibration tests conducted in an underground

powerhouse of a hydropower station on Yalong River. This paper provided guidance for further

study on the vibration of underground powerhouse structures.

The paper entitled “A Non-Probabilistic Solution for Uncertainty and Sensitivity Analysis

on Techno-Economic Assessments of Biodiesel Production with Interval Uncertainties” reported

a non-probabilistic strategy for uncertainty analysis of technoeconomic assessments of biodiesel

production. Results showed that the proposed nonprobabilistic reliability index in a focused biodiesel

production of interest is 0.1211. Moreover, the price and cost of biodiesel, feedstock, and operating

can considerably affect technoeconomic assessments of biodiesel production.

The paper entitled “Remaining Useful Life Estimation of Aircraft Engines Using a Modified

Similarity and Supporting Vector Machine (SVM) Approach” reported an aircraft engine prognostic

method based on the hybrid of a similarity method and SVM. Results showed that the proposed

method is effective in analyzing 2008 PHM data challenge competition data and performed well in

remaining useful life prediction.

The authors of this Special Issue covered very important topics connected with structural

prognostics and health management in power & energy systems and contributed their knowledge

to this research community. Future directions in structural prognostics and health management in

power & energy systems will go towards prognostics and health management of more complicated

and multiple components in power & energy systems, rather than individual components. Moreover,

varying and nonstationary operating conditions must be considered in order to make prognostics and

health management more practical.

Dong Wang, Shun-Peng Zhu, Xiancheng Zhang, Gang Chen, José A.F.O. Correia, Guian Qian

Special Issue Editors
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Abstract: Prognostic and health management (PHM) can ensure that a lithium-ion battery is working
safely and reliably. The main approach of PHM evaluation of the battery is to determine the
State of Health (SoH) and the Remaining Useful Life (RUL) of the battery. The advancements of
computational tools and big data algorithms have led to a new era of data-driven predictive analysis
approaches, using machine learning algorithms. This paper presents the preliminary development of
the data-driven prognostic, using a Deep Neural Networks (DNN) approach to predict the SoH and
the RUL of the lithium-ion battery. The effectiveness of the proposed approach was implemented in a
case study with a battery dataset obtained from the NASA Ames Prognostics Center of Excellence
(PCoE) database. The proposed DNN algorithm was compared against other machine learning
algorithms, namely, Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Artificial Neural
Networks (ANN), and Linear Regression (LR). The experimental results reveal that the performance
of the DNN algorithm could either match or outweigh other machine learning algorithms. Further,
the presented results could serve as a benchmark of SoH and RUL prediction using machine learning
approaches specifically for lithium-ion batteries application.

Keywords: data-driven; machine learning; deep learning; DNN; prognostic and Health Management;
lithium-ion battery

1. Introduction

In the past, nickel–cadmium batteries were generally the only electrical power source for various
portable equipment, until nickel metal hybrid and lithium-ion batteries were developed in the 1990s [1].
In the present-day, lithium-ion battery technology is rapidly growing, and it is the most reliable
electrical power source for numerous appliances. Lithium-ion batteries are extensively equipped in
both high-power applications and low-power electronics products, such as hybrid-motor engines,
electric cars, smartphones, tablet, laptops, etc. To date, lithium-ion technology is considered to be a
standard power source, and its performance continues to improve. There is currently no any other
technology that has proven to perform better than the lithium-ion battery. Therefore, there will be
no other battery technologies that lithium-ion anytime soon, and the main focus of the ongoing
technology is still aimed at improving the lithium-ion system in term of both its performance and
reliability. The following are the main advantages of lithium-ion batteries: (1) high energy density
(up to 23–70 Wh/kg), (2) high efficiency (close to 90%), and (3) long life cycle (provides 80% capacity
at 3000 cycles) [2].

To ensure that the lithium-ion battery system performing reliably, there must be a method that
helps to track and to determine the state of health (SoH) of the battery system, along with its remaining
useful life (RUL). This method gives useful information for the prediction of when the battery should

Energies 2019, 12, 660; doi:10.3390/en12040660 www.mdpi.com/journal/energies1
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be removed or replaced. This type of evaluation is known as the system’s prognostic and health
management (PHM). There have been many advancements contributed by researchers from various
disciplines to PHM of lithium-ion batteries. Downey et al. proposed a physics-based prognostic
approach that considered multiple concurrent degradation mechanisms [3]. Susilo et al. studied the
estimation of the lithium-ion battery SoH with the combination of Gaussian distribution data and
the least square support vector machines regression approach [4]. Mejdoubi et al. employed the
Rao-Blackwellization particle filter to evaluate the aging condition of lithium-ion batteries, and to
estimate SoH and RUL of the battery system [5]. Bai et al. developed a generic model-free approach
based on ANN and the Kalman filter, to help to improve the health management system of the
lithium-ion battery [6]. Other filtering techniques, for example, particle filtering [7] or its variation of
the unscented particle filtering technique [8] had been employed in the PHM aspect for lithium-ion
batteries. Recently, Li et al. proposed Gauss–Hermite particle filter (GHPF) technique for battery
state-of-charge estimation, which is another extension of the particle filter technique, which not only
improves the estimation accuracy, but also reduces the number of sampling particles, which reduces
the complexity of the algorithm [9]. Another interesting work also aims to predict the health state
of the lithium-ion battery, as proposed by Wang et al. This work employed the Brownian motion
technique, which is the combination of the Kalman filter and the Gaussian distribution state space
technique, to determine battery prognostics based on the drift coefficient [10].

A data-driven model based on the deep learning approach for lithium-ion battery prognostics
is the main focus of this paper. Although various approaches had been proposed to improve
the PHM prediction of lithium-ion batteries, the deep learning approach for PHM is still limited.
The advancement of computational tools and big data algorithms have largely impacted the
development of this approach. The machine learning algorithms, in particular, ANN, have been
proven to be able to empirically learn and recognize the more complex patterns of the system’s data
in many applications. This feature of machine learning algorithms also benefits prognostic analysis
modeling as well. This paper presents the preliminary development of a data-driven model using
Deep Neural Networks (DNN) to predict the SoH and RUL of lithium-ion batteries. DNN is a deep
learning approach that was developed based on Artificial Neural Networks with multiple hidden
layers, to analyze more complex data and features. Although some deep learning algorithms, such as
Recurrent Neural Network (RNN) and Long Short-Term Memory Network (LSTM), are employed
to model prognostic of lithium-ion battery recently, to date, there is no work that has employed a
DNN model to perform similar tasks. In addition, there are limited works that have performed a
deep learning approach against other data-driven algorithms. For this reason, this paper can also act
as a benchmarking reference for employing a deep learning approach to prognostic data in general.
The effectiveness of the proposed approach was tested in the lithium-ion battery dataset derived from
the NASA Ames Prognostics Center of Excellence (PCoE). A DNN approach was employed to predict
the SoH and RUL and the results were compared against other machine learning algorithms such
as Linear Regression (LR), k-Nearest Neighbors (k-NN), Support Vector Machine (SVM), and ANN.
This paper is constructed with the following sections: Section 2 discusses the overview of the PHM
application and the characteristics of the lithium-ion battery used in this paper, Section 3 provides
a concise literature review of the proposed approach for DNN analysis and modeling, Section 4
details the experimental results and the comparison of DNN and other machine learning algorithms,
and Section 5 concludes the findings and investigates possible future work.

2. Prognostics and Health Management

This paper extends the application of artificial intelligence through machine learning in PHM
applications, specifically for lithium-ion battery PHM applications. In this section, an overview
of data-driven prognostics and the general prognostic approach for the lithium-ion battery will be
discussed briefly.
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2.1. Overview of Data-Driven Prognostics

The PHM of the battery has to be included as part of the condition-based maintenance (CBM) plan
of the system. The CBM plan is considered as a preventive strategy, which means that maintenance
tasks will be performed only when need arises. This need can be determined by continuously
evaluating health status of a particular system’s components, or the health state of the system as
a whole [11]. CBM has included two major tasks: diagnostics and prognostics. Diagnostics is the
process of the identification of faults and part of the current health status of the system, which is
described as an SoH, whereas prognostics is the process of forecasting the time to failure. The time
left before observing a failure is described as the remaining useful life (RUL) of such a system [12].
To avoid severe negative consequences when systems run until failure, the maintenances must be
performed when the system is still up and running. These type of maintenance require early plans and
preparation [13]. Thus, CBM must properly be included as part of the system’s operation, especially
for the critical systems. The prognostic of the system is a crucial factor in CBM.

The prognostic process additionally involves two phases. The first phase of prognostics aims
to assess the current health status or state of health (SoH). Terms that are usually used to describe
this phase in most of the literature are severity detection and degradation detection, which can also
be considered under diagnostics. Classification or clustering techniques can be utilized to perform
tasks such as pattern recognition in this phase. The second phase aims to predict the failure time by
forecasting the degradation trend, and by identifying the remaining useful life (RUL). Trend projection,
tracking techniques, or time series analysis are included in this phase. Most of the academic articles
regarding prognostics analysis only consider the first phase [14]. This paper aims to construct and
analyze both SoH and RUL, in which focus is made on both the first and second phases of prognostics
for the battery system.

Generally, there are two existing major approaches for prognostics evaluation; the data-driven
model, and physics-based models. Data-driven methods require adequate data or samples from
systems that were run until failure, while physics-based methods evaluate the system’s failures via
the physics of failure progression. Both the data-driven and physics-based model also have different
requirements and use cases, and both also have different advantages and drawback as well. Table 1
summarizes the information on the differences and advantages of each model.

Table 1. Difference between data-driven and physics-based models for diagnostics and prognostics.

Data-Driven Model [15] Physics-Based Model [16,17]

Based on
The empirical lifetime data and the use of
previous data of the operation of the system

Physical understanding of the physical rules of the
system, the exact formulas that represent
the system

Advantages
The real behavior of the complex physical
system is not required.

Higher accuracy because the model is based on an
actual (or near-actual) physical system

Models are less complex, easier to employ
into a real application

The model represents a real system, the model can
be observed and judged in a more realistic manner

Drawbacks

Needs a large amount of empirical data in
order to construct a high accuracy model

Highly complex, requires extensive computational
time/resources, which may not be very suitable for
employment in real-world applications

The models do not represent the actual
system, it requires more effort to
understand the real system behavior based
on the collected data

Limitations in modeling, especially in cases of large
and complex systems with
non-measurable variables

One of the data-driven model approaches for prognostics and diagnostics mentioned earlier are
machine learning approaches, which will be the main discussion topic of this paper.
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2.2. Prognostics of the Lithium-ion Battery

The lithium-ion battery data employed in the prognostics analysis of this work was retrieved
from the NASA Ames Prognostics Center of Excellence (PCoE) data repository [18]. This dataset
contains the test results of commercially available lithium-ion 1850-sized rechargeable batteries, and
the experiment has been performed under controlled conditions in the NASA prognostics testbed [19].

Experimental data were obtained from three different lithium-ion battery-operational test
conditions: charge, discharge, and impedance. All experiments were performed at room temperature.
The charge was performed at a constant current of 1.5 A until the voltage reached 4.2 V, and then it
continued charging at a constant voltage until the charge current dropped to 20 μA. The discharge was
also performed at a constant current of 2 A until the voltage dropped to 2.7 V, 2.5 V, 2.2 V, and 2.5 V.
These same tests were performed for batteries No. 05, No. 06, No. 07, and No. 18. The impedance test
was done by using EIS (Electrochemical Impedance Spectroscopy) frequency adjustment from 0.1 kHz
to 5 kHz. By repeatedly performing charge and discharge tests in multiple cycles, this accelerated the
aging characteristics of the batteries. This aging effects of the lithium-ion battery can be explained by
using the physics-based model established in [20]. The tests were stopped when the batteries reached
the end of life criteria, which was defined as a 30% fade from the rated capacity.

Figure 1 is the schematic diagram of the tested battery. The parameters of the schematic diagram
included the Warburg impedance (RW) and the electrolyte resistance (RE), the charge transfer resistance
(RCT), and the double-layer capacitance (CDL). The two parameters RW and CDL showed a negligible
change over the aging process of the battery, and these might be excluded from further analysis [21].
Based on the schematic diagram of the tested battery, below is the characteristic profile of battery
No. 05, which will be used as a training data set. Figure 2 shows some details of the current and
voltage behaviors during the charging and discharging cycles of battery No. 05. Figure 1 is the
schematic diagram of the tested battery. The parameters of the schematic diagram included the
Warburg impedance (RW) and the electrolyte resistance (RE), the charge transfer resistance (RCT),
and the double-layer capacitance (CDL). The two parameters RW and CDL showed a negligible change
over the aging process of the battery, and these might be excluded from further analysis [21]. Based on
the schematic diagram of the tested battery, below is the characteristic profile of battery No. 05, which
will be used as a training data set. Figure 2 shows some details of the current and voltage behaviors
during the charging and discharging cycles of battery No. 05.

In order to evaluate the prognostics of the battery, the SoH of the battery must be defined.
The prognostics of the battery data are often based on the identification of the SoH of the battery.
Therefore, it is important to understand the clear definition of SoH, as the SoH will be the main
prediction attribute of the proposed data-driven model, along with RUL. It is also important to note
that in this work, all attributes from the test data will be used as training attributes. Some of the
attributes (or parameters), and the definition of State of charge (SoC) and SoH in the battery dataset
for the prognostics analysis of the battery will be discussed in the following paragraphs.

Figure 1. The schematic diagram of the tested battery.
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Figure 2. The current and voltage during the discharging and charging of battery No. 05: (a) the
current of discharging, (b) the current of charging, (c) the voltage of discharging, and (d) the voltage
of charging.

The SoC of the battery indicates the reliability of the battery system. In the literature, the ratio
between the available amount of charge and the maximum amount of charge is commonly referred
to as the SoC [6]. In some cases, the available amount of charge can also be replaced by the rated
capacity (or nominal capacity) provided by battery manufacturers. The SoC can be mathematically
expressed as:

Soc =
Qavailable

CN
(1)

where Qavailable represents the available amount of charge and CN represents the rated capacity from
battery manufacturers.

The SoC definition from Equation (1) seemed to be a straightforward and easy to employ the
formula. However, there are some problems using SoC as battery health measurement. First, the only
way to derive the rated capacity of a battery is through experiments under a constant discharge rate
within a controlled experimental environment. This reason explains the difficulty in using a rated
capacity as a reference point in real-world applications [22]. Second, SoC is not considered to have
a strong correlation with battery capacity. This is a vital point for making a long-term estimation of
the battery’s health, since the capacity is the main indication of the battery’s health, which will fade
over time.

Many alternative SoC equations are defined in several studies to address the aforementioned
issues. One interesting definition is practical state-of-charge, or SoCN [23]. This definition uses the
maximum practical operational capacity, instead of the manufactured rated capacity, as the maximum
amount of charge. SoCN can be expressed as:

SoCN =
Qavailable
C max,p

(2)
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where Cmax,p represents the maximum practical capacity as measured from the operating battery at
the current time. Cmax,p may fade over time, due to the effect of battery aging.

Apart from the different ways of quantifying SoC, SoH is another important parameter for battery
health management. SoH is the direct indication of the health condition of the battery system. SoH can
be generally defined as:

SoH =
Cmax,p

CN
(3)

One of the most important tasks in prognostics health management of a battery is to accurately
estimate the Cmax,p, as Cmax,p is required in both Equations (2) and (3) for SoC and SoH estimations,
respectively. Our tested battery dataset contained all the aging information of the battery, and the
battery SoH was calculated from cycle 0 to cycle 168. As shown in Figure 3, the estimated SoH of
battery No. 05 exponentially degraded as the cycle number increased. The acceptable predicted results
must be within the 95% confidence bound [24]. The regression model for SoC and SoH estimation,
which aimed to perform similar tasks, was also proposed in [25]. This work introduced a new variable
to directly indicate the voltage drop of the battery cell as the prediction variable. This work delivered
very interesting results. However, it is not within the scope of our deep learning approach. Our work
aimed to use only existing test variables to train and generate the deep learning model for the SoH and
RUL estimation of lithium-ion batteries.

60
65
70
75
80
85
90
95
100
105

0 20 40 60 80 100 120 140 160

SO
H 
(%
)

CYCLES

Figure 3. The state of health of battery No. 05.

As a quantification metric to evaluate the performance of the prediction model in this work,
the root mean square error (RMSE) was employed for SoH, and the error of RUL cycle (ERUL) was
employed for RUL. The following are the formulas of RMSE and ERUL:

RMSE =

√
1
n

n

∑
i=1

[xi − xi]
2 (4)

ERUL =
∣∣∣RULreal − RULprediction

∣∣∣ (5)

where n is the number of prediction datasets, xi is the real value of testing and monitoring the battery
capacity, and xi is the prediction value. RMSE and ERUL are used as the key performance measures
of the performance of all traditional machine learning approaches and the proposed deep learning
algorithm. RMSE and ERUL will be calculated within the testing phase of the modeling framework,
which will be discussed in the next section.

3. Data-Driven Prognostic Analysis and Modeling

The reason that the machine learning approach works well with the prognostic data, in general,
is due to the condition monitoring system, where it collects massive data from equipment. This large
amount of data benefits data-driven PHM models, which requires large empirical data in order
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to create a high accuracy model of the systems. The traditional machine learning methods, called
shallow learning models employed in this paper, include: Linear Regression (LR) [26] with the Akaike
Information Criterion (AIC) [27,28], k-NN [29], SVM [30,31], and ANN [32–36]. Although there are
multiple machine learning algorithms implemented in this work, the main focus is the concept of
deep learning, which will be extensively discussed in this section. The rest of the algorithms are
well-documented, and will not be further discussed in this paper. Interested readers are encouraged to
refer to the associated references for further information. As the deep learning concept was developed
based on the ANN, the first discussion in this section will be an initial description of ANN, then the
deep learning algorithm and its applications to prognostics assessments will be discussed accordingly.

3.1. Artificial Neural Networks

An ANN, usually called a neural network, is a mathematical model or computational model
that is inspired by the structural and functional aspects of biological neural networks [32]. A single
neural network call, or a perceptron, has an interconnected group of artificial neurons, which process
computational information by using a connectionist approach from node to node. An ANN is
considered to be an adaptive system, which means that it is able to change its shape based on
the different structure of information flow gains for the learning phase. Basically, there are two
configuration modes in ANN. First are the feed-forward, and second is the back-propagation ANNs.
For the feed-forward network, the connections between the units or nodes do not form a completed
back-and-forth cycle. Instead, the information in the network moves only one way forward from the
input units, through the hidden units, to the output units. Meanwhile, back-propagation moves the
information backward, in order to update weights in the network.

Back-propagation is a supervised learning method that has two phases, the propagation phase
and the weight update phase [33]. These two phases are repeated until the performance of the network
is satisfied. In back-propagation algorithms, the output values from the network are compared with
the actual or correct value, through the calculation of the error-function value. This error-function
value is fed back through the network as a reference, to make an appropriate adjustment of the weights
of each connection. The goal is to reduce the value of the error-function by selecting the proper weights.
This process is repeatedly performed in the training cycle until the condition is satisfied. Usually,
the network will converge to a certain state where the error of the calculations is small. This scenario
can be considered as if the network has the capability to learn a certain target function.

A Multi-Layer Perceptron (MLP) is a feed-forward ANN model that maps multiple sets of input
data onto a set of appropriate output. An MLP consists of multiple layers of nodes, with each layer
being connected to the next one, except for the input nodes. Each node in MLP is an artificial neuron
apply with a nonlinear activation function. MLP employs back-propagation to train the network, while
multiple network layers consist of many computational units that are interconnected in a feed-forward
fashion. Many applications apply a sigmoid function as an activation function.

There are multiple activation functions that can be implemented in ANN, for example, linear or
identity functions, binary step functions, hyperbolic tangent function, and sigmoid function. In this
paper, the sigmoid activation function of the hidden layer used in the implementation (Section 4) is a
Gaussian spheroid function, expressed as follows:

y(x) = e−( ||x−c||2
2σ2 ) (6)

The output of the hidden neuron gives a measure of distance between the input vector x and
the centroid c of the data cluster. The parameter σ represents the radius of the hypersphere, which is
generally determined by using an iterative process of selecting an optimum width. In addition to the
activation function of the neural network, another condition that needs to be considered in order to
construct the classification model is the learning or training algorithm of the neural network. A learning
algorithm is a systematic step-by-step procedure through which the connection weights among the
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neurons are adjusted to minimize the difference between the predicted and the actual values of an
output variable [34]. This adjustment was performed in this study by using the most popular method of
training, as mentioned earlier, which is known as the back-propagation learning algorithm. In addition
to its broad employments in various applications, the back-propagation learning algorithm has been
shown to be more efficient than other learning algorithms for solving most regression problems [35].

There are three main reasons that are impacted by the efficiency of the back-propagation learning
algorithm. First, this learning algorithm is simple to perform. Second, the back-propagation learning
algorithm is able to provide reasonably accurate results for complicated applications in which the
input and output relationships are nonlinear [36]. Finally, and most importantly, the back-propagation
learning algorithm has revealed an acceptable level of generalization ability. The performance of
the MLP networks trained by the back-propagation learning algorithm is usually controlled by the
learning rate and momentum. Varying in a range between 0 and 1, the learning rate is a parameter that
affects how the connection weights within a network are updated. These updates also include a portion
of the last weight change, to accelerate the training convergence, and to improve the training precision.
This portion is defined by the momentum, which, like the learning rate, varies over a range of 0–1.
Similar to the number of hidden neurons, a specific rule that determines the best values for the learning
rate and momentum has not yet been proposed in the literature. As a result, this determination was
performed in this study by examining different values from 0–0.9, with a constant step size of 0.1.

3.2. Overview of the Deep Learning Concept

The deep learning concept was first suggested by Geoffrey Hinton in 2006, and it has become
well-known in both academia and industry [37]. Deep learning is an improvement of a Multi-Layer
Perceptron with a better power of learning representation, which holds the potential to overcome the
deficiencies in traditional machine learning methods [38]. The notable advantage of deep learning is
that it is able to capture the representation of information from raw data through multiple complex
non-linear transformations and approximations. In order to accurately evaluate the state of systems,
to decide whether or not the equipment in the systems need to be maintained or not as part of CBM,
fault diagnosis and prognostics may benefit from the utilization of deep learning.

The main algorithms of deep learning include the Deep Neural Network, the Convolutional
Neural Network (CNN), the Recurrent Neural Network (RNN), and the expansion of CNN and RNN,
such as the Long short-term memory network (LSTM). There are also hybrid networks that combine
different types of stacked layers. The following are the characteristics of each deep learning algorithm.

The Deep Neural Network (DNN) is generally a stack of multiple hidden layers instead of
only one hidden layer in the standard ANN architecture [39]. The DNN hidden layers are the
multiple feed-forward layers that are trained with a back-propagation stochastic gradient descent.
The hidden layers consist of neurons nodes with tanh, rectifier (ReLU), and maxout activation functions.
DNN has features such as an adaptive learning rate, rate annealing, momentum training, dropout,
and regularization. These features are believed to enable a higher predictive accuracy compared to the
regular ANN.

The Convolutional Neural Network (CNN) is basically composed of layers of convolutions
consisting of neurons, with tanh, ReLU being applied to the results. CNN uses convolutions over
the input layer to compute the output. An individual layer of CNN applies different types of filters.
The edges of the layers capture the shape of the data, and then they use these shapes to determine
higher-level features. The last layer classifies the output by using these high-level features.

The Recurrent Neural Network (RNN) makes use of sequential information. The RNN defines
the inputs and outputs as a dependent variable based on a time sequence. RNN performs the same
task for every element of a sequence. The output at the last time step of RNN is dependent on the
previous computations. RNN may be considered to have a “memory”, as it can capture information
about calculations in past sequences. However, RNN has a limitation in capturing the length of the
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data. This leads to the development of the LSTM network, which can capture longer sequences of
information [40,41].

3.3. Employment of Deep Learning to Prognostic Data

In the diagnostics and prognostics fields, the developing trend of employing the deep learning
approach has evolved from fault detection and failure diagnosis to degradation pattern recognition
and time series predictive analysis. The modeling methods have grown from using only a single
algorithm such as DNN, CNN, and RNN, to the Hybrid model, or a combination of multiple layer
types and traditional algorithms. The application range of using deep learning has also been expanding
continually over the years, from machinery, electrical, and electronics systems, to wind-power and
high-end aerospace equipment [38].

In this paper, only DNN was employed to model the SoH and RUL of the battery data against
other traditional machine learning algorithms. Each of these deep learning algorithms have their
own advantages and disadvantages. It has apparently been discovered that ANN and DNN are more
suitable for tackling one-dimensional data. CNN is better handling multidimensional data, as it has
adopted types of convolutional techniques. RNN is suitable for applications that deal with time series
or dependent input data, and DNN is usually employed for extracting global features from fault data,
which will be suitable for the lithium-ion battery data. Additionally, as aforementioned, the layers of
CNN and RNN are far more complex than those of DNN. Therefore, CNN and RNN take more time
for training the model, which is their major drawback. These reasons make DNN more suitable for
employment in real applications for the most case.

3.4. The Deep Neural Network Framework and Model for Prognostic Data

Currently, deep neural network (DNN) has become a well-employed approach in machine
learning, due to its promising performance and advantages. DNN employs a multi-layered
feed-forward neural network that is similar to the vanilla artificial neural network, but with densely
stacked or fully-connected hidden layers instead of one hidden layer. In order to develop a DNN
framework for prognostic data, the similar practice of developing the ANN framework has been used.

In this work, the DNN framework for prognostic data was developed based on a Cross-industry
standard process for data mining (CRISP-DM) [42], and this is illustrated in Figure 4. This can
be considered as the general framework of fault prognostics by using a deep learning algorithm.
The framework is generally divided into five phases: the definition states phase, the pre-processing
phase, the training phase, testing phase, and evaluating phase. The details of each phase are as follows:

1. Definition states phase. This phase specifically focuses on defining the failure of the system,
identifying the prognostic problem, and evaluating system health states.

2. Pre-processing phase. In this phase, sensory data are collected according to the predefined health
state, in order to build a raw dataset for the experiment. The raw datasets are preprocessed and
normalized, and then divided into a training and a testing dataset.

3. Training phase. In this phase, initial parameters are developed, and the classification model is
trained by the training dataset, based on deep learning theory. It is particularly important to
fine-tune the classification model through misclassification errors (such as RSME).

4. Testing phase. In this phase, the testing dataset is put into the trained classification model to
identify prognostic predictions or projection results.

5. Evaluating phase. This phase mainly finishes with computing the accuracy, reporting on,
and evaluating the diagnosis results from the final model.
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Figure 4. The process of a prognostic framework using deep learning.

The prognostic model of the battery data using DNN was developed based on the aforementioned
framework. The experiment with the data was constructed by varying the number of dense layers
in DNN. In this experiment, the hidden layer was varied to analyze the SoH of battery data until it
delivered the best RMSE results. In addition, the dropout layer was also applied as the last layer before
the output layer, to prevent the overfitting problem. The dropout layer applied to the last layer of
DNN, to randomly drop neurons during the model training, as shown in Figure 5. Each neuron is
retained with a fixed probability, p which is independent of other neurons. The neural network after
being sampled, the so-called “thinned” network, will contain only the surviving neurons (Figure 5b).

By training a neural network with some dropouts, the whole network can be trained more often
than training regular networks without dropout, because the network is thinned so that it can be
trained at less frequency. The network then becomes less sensitive to some specific weights. This results
in the network being better at generalization. In this work, a p-value of 0.25 is applied to the network,
as suggested, to be the optimal dropout rate for the network to avoid overfitting, but to still maintain
the best prediction accuracy [43].
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(a)                                              (b) 

Figure 5. Dropout deep neural network model: (a) A standard network with two hidden layers; (b) the
network after applying dropout.

By varying the hidden layers of DNN from two layers to four layers, the RMSE results from
Table 2 show that the best formation of DNN consists of three stacked dense or fully-connected hidden
layers, with the ReLU activation function (see Appendix A for the explanation of the ReLU function),
as described in Figure 6. It might also be worthwhile to note that there are some predictions of
fluctuation in the DNN model that are implemented by using the Keras library, which is the open
source neural network library that is employed in this experiment. Therefore, each DNN experiment
was performed with 10 trials. The RMSE results of the final model (three dense layers) are as shown in
Table 3. The best result from the trials was chosen to be the final model.

Table 2. RMSE results of each stacked hidden layer model.

Number of Hidden Layers RMSE

2 3.815
3 3.247
4 3.275

Table 3. RMSE results of 10 trials for a model with three stacked hidden layers.

Trials 1 2 3 4 5 6 7 8 9 10

RMSE 3.917 3.877 3.667 3.507 3.487 3.321 3.296 3.253 3.249 3.247

From this section, the preliminary model of deep learning was developed, based on the deep
neural network. The objective of this paper was to prove that the deep learning algorithm outperformed
other traditional machine learning algorithms, and ultimately, to provide a complete benchmark of SoH
and RUL prediction for the lithium-ion battery. In the next section, the prognostic of the lithium-ion
battery data mentioned in Section 2 will be tested by using the machine learning approach, and a deep
learning model that has been mentioned previously.

4. Case Study

In this section, an analysis of battery No. 06, No. 07, and No. 18 degradation datasets obtained
from NASA Ames Prognostics Center of Excellence (PCoE) database [18] was conducted to validate
the effectiveness of the developed DNN approach. The dataset of battery No. 05 was used as a training
dataset for all algorithms. A detailed description of the experimental data has been provided in
Sections 2 and 3, along with the validation method for SoH and RUL. The SoH experimental results
from tradition machine learning algorithms and the developed DNN will be presented in Section 4.1.
The RUL results from the tradition machine learning algorithms and the developed DNN will be
shown in Section 4.2, and all results for both the SoH and RUL estimations from all algorithms will be
discussed in Section 4.3.
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Figure 6. The proposed deep neural network model.

4.1. Results for SoH Estimation

In this experiment, the discharge data for all 164 cycles and 11,345 sample points from battery
No. 05 were employed. The SoH was calculated from the initial capacity as being 1.9 AHr. The result
is considered to be a long-term SoH estimation of the battery. Figure 7a–c show the SoH estimation
performance for batteries No. 06, 07, and 18, using k-NN, LR, SVM, ANN, and DNN respectively.
The x-axis represents the cycles, and the y-axis represents the SoH. The triangle marked with a light
blue line curve shows the true SoH, and the rest of the curves show the predicted SoH by the k-NN,
LR, SVM, ANN, and the developed DNN. The SoH estimators will be employed in each discharge
cycle for the SoH estimation.

It might also be worthwhile to mention that the SVM formulation employed in this work was
based on the radial basis kernel function, with a regularization parameter of 200, and tolerance-of-loss
function of 0.1. LR employed the greedy algorithm with 0.1 minimum tolerance parameters.
Additionally, k-NN employed the Euclidean distance measurement to evaluate distances among
the neighbor data points.

It is clearly shown in the figures that due to the accurate curve fitting of the trained DNN model
with batteries No. 06, 07, and 18, the RMSEs of the SoH estimated by the proposed model are much
less than the ones estimated by k-NN, LR, SVM, and ANN. In addition, after the batteries aged
from the first cycle to the 164th cycle, it is obvious that the proposed DNN approach could capture
the degradation pattern far better than the other algorithms. The input capacity in the developed
DNN model could provide sufficient information for the stability of the SoH estimation when the
batteries were aged. On the other hand, the lack of the knowledge of other approaches resulted in
an increasing error for the SoH estimation in the aged cycles. Furthermore, the performance of the
capacity convergence by the proposed DNN approach was better, since the knowledge of capacity fade
could be captured better by using the DNN model. Considering the result illustrated in Figure 7, it is
also important to note that the results from battery No. 06 performed slightly worse when compared to
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battery No. 07 and 18. This could be due to the aging pattern of battery No. 06 being slightly different
from the training dataset. Additionally, there was a greater distribution of the data of battery No. 06,
compared to the other batteries.

(a) Battery No. 06 

(b) Battery No. 07 

(c) Battery No. 18 
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Figure 7. The SoH estimation with all algorithms for battery No. (a) 06, (b) 07, and (c) 18.

The RMSE results between traditional machine learning, k-NN, LR, SVM, and ANN, along with
the developed DNN, are shown in Figure 7 and Table 4. SVM has some drawbacks in terms of capturing
the patterns of data; yet, it still outperformed other algorithms based on RMSE. When comparing other
algorithms against DNN, DNN was shown to perform the best among the four approaches in terms of
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capturing both data patterns and RMSE. Additionally, the models constructed from each algorithm
could also be observed in detail, from Table 5.

Table 4. RMSE of the SoH estimation by using DNN and traditional machine learning algorithms.

RMSE
k-NN LR SVM ANN DNN

5.598 4.558 4.552 4.611 3.427

Table 5. Models created from the training dataset.

Algorithm Model Description

k-NN
22-Nearest Neighbor model for regression

The model contains 624 examples with seven dimensions

LR
228.765 * Voltage_measured + 237.439 × Current_measured − 1.495 * Temperature_measured − 1098.506 ×

Current_charge + 50.156 * Capacity − 918.727

SVM

Total number of Support Vectors: 613
Bias (offset): −85.065

w[Voltage_measured] = 42686654.125
w[Current_measured] = –17208.396

w[Temperature_measured] = 243822393.316
w[Current_charge] = 3952.097

w[Voltage_charge] = 0.000
w[Time] = 0.000

w[Capacity] = 16430099.458
number of classes: 2

number of support vectors: 613

ANN

Node 1 (Sigmoid)
Voltage_measured: –0.172
Current_measured: –0.448

Temperature_measured: 2.894
Current_charge: –1.458
Voltage_charge: 0.005

Time: 0.042
Capacity: –0.155

Bias: –2.726

Node 2 (Sigmoid)
Voltage_measured: 1.954
Current_measured: 0.328

Temperature_measured: –1.124
Current_charge: –0.397
Voltage_charge: 0.036

Time: –0.014
Capacity: 0.943

Bias: –1.930

Node 3 (Sigmoid)
Voltage_measured: 0.406
Current_measured: 1.254

Temperature_measured: 1.472
Current_charge: 1.391
Voltage_charge: –0.049

Time: –0.036
Capacity: 1.107

Bias: –1.055

Node 4 (Sigmoid)
Voltage_measured: –3.468
Current_measured: –0.975

Temperature_measured: 0.080
Current_charge: –0.018
Voltage_charge: 0.044

Time: –0.020
Capacity: 2.457

Bias: –0.108

Node 5 (Sigmoid)
Voltage_measured: –7.072
Current_measured: –0.455

Temperature_measured: 2.095
Current_charge: 2.091
Voltage_charge: –0.004

Time: 0.045
Capacity: –0.464

Bias: –4.078

Output
Regression (Linear)

Node 1: 1.278
Node 2: 1.460
Node 3: 0.865
Node 4: 1.214

Node 5: –1.134
Threshold: –0.819

Neural Network created:

DNN

Layer (type) No. of Hidden Nodes No. of Parameters

Total parameters: 217
Trainable parameters: 217

Non-trainable parameters: 0

dense_1 (Dense) 8 64
dense_2 (Dense) 8 72
dense_3 (Dense) 8 72

dropout_1 (Dropout) 8 0
dense_4 (Dense) 1 9
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There are some other aspects of the DNN that should also be considered further, which are the
optimizer of the network, and the loss function. DNN in this work was performed by employing
“Adam” or Adaptive Moment Estimation, as an optimizer (see Appendix B for more details).
Additionally, based on the nature of the battery dataset in this work, the absolute error function
was employed as the loss function [44]. Absolute errors measured the mean absolute value of the
difference between the elementwise inputs. The absolute error formula used as the loss function can
be expressed by the following equation:

Absolute error loss =
1
k ∑k

i=1|yi − yi|2 (7)

where yi and yi are, respectively, the predicted data and the input data of each iteration or epoch i,
and k is the number of iterations or epochs. In this work, the total number of iterations or epochs was
set to be equal to 1024, as suggested in reference [45].

4.2. Results for RUL Estimation

In addition to the SoH prediction of the batteries from the previous section, another aspect of
the prognostic analysis of the battery data was to predict the RUL of the batteries. RUL prediction
focuses on projecting the degradation results from a certain cycle until the EoL of the batteries, which is
different from that of the SoH prediction, which focuses on detecting the pattern of degradation. In this
experiment, the goal was to compare the RUL prediction result by using k-NN, LR, SVM, and ANN
against the proposed DNN algorithm.

The RUL predictions experiments were performed from three different starting points, which
were at the 40th cycle, 80th cycle, and the 120th cycle of battery No. 05. The threshold of the EoL of
the battery data was set to be at 30% remaining capacity, or at the 164th cycle. This was deemed to be
the rule of thumb of the EoL threshold, for the battery to remain active. The data before the starting
cycle was used as a training dataset to make the prediction from each starting cycle, and the error
of RUL (Equation (5)) was calculated to compare the accuracy of each machine learning algorithm.
The accumulated errors of the RUL results are as shown in Table 6, and the projection results of RUL
are as shown in Figure 8. Note that the RUL results focus on making a projection, not to recognize the
data’s pattern.

Table 6. The error of RUL estimation by using DNN and traditional machine learning algorithms.

Error of RUL

Starting Points k-NN LR SVM ANN DNN

40th cycle 24 19 12 6 5
80th cycle 17 12 10 3 2
120th cycle 19 9 4 1 1

The results from Table 6 and Figure 8 show that, overall, the proposed DNN algorithm
outperformed all other machine learning algorithms. The prediction result at the 120th cycle of DNN
and ANN are the same. However, DNN still performed better than ANN in term of accuracy while
having a smaller set of training data. As shown by the result, DNN provided a slightly better result
when starting at the 40th cycle and the 80th cycle. Additionally, the trend of the result also showed
that having more training data improves the prediction result for every algorithm in this experiment.
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(a) The RUL estimation using k-NN 

(b) The RUL estimation using LR 

(c) The RUL estimation using SVM 

(d) The RUL estimation using ANN 
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(e) The RUL estimation using DNN 
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Figure 8. The RUL estimation of battery No. 05 using (a) k-NN, (b) LR, (c) SVM, (d) ANN, and
(e) DNN.

4.3. Discussion and Future Work

From the experimental results in Sections 4.1 and 4.2, it is obvious that the proposed DNN
algorithm can outperform k-NN, LR, SVM, and ANN in these specific lithium-ion battery datasets.
However, there are two points that need to be addressed here. First, the DNN proposed in this
work can outstandingly capture the degradation pattern based on the prediction of the SoH result in
Section 4.1. In contrast, in terms of predicting the projection of the RUL (Section 4.2), the performance
of DNN is only comparable to ANN. This is suspected to be due to the fundamentals of DNN being
based on ANN. The second point is in the case of having smaller training dataset, the DNN performed
better overall. This can be observed from the RUL prediction results. DNN provided better results
when started from the smaller amount of training data at the 40th and 80th cycles, compared to the
typical neural network.

The results obtained from this work also prove that the deep learning algorithm is effective and
suitable for employment for prognostic and diagnostic data modeling, particularly in the prognostics
of the battery data set. The prognostic results will eventually aid in condition-based monitoring
of maintenance activities, to obtain the best time to replace the batteries without causing a long
downtime in the main systems. Based on this experiment, the downsides of using a deep learning
algorithm include: (1) a higher computational time and (2) more resources are required by DNN than
for the other two algorithms. These drawbacks are also true for other deep learning algorithms as
well. This conclusion is that deep learning is more suitable for studies that require a higher accuracy,
but which may not be the most suitable for works that need real-time processing. In the battery
PHM application, real-time processing is not very crucial, since the prediction should be prior to the
end-of-life of the batteries. In addition, with the advancement of the computational tools, the real-time
processing concern could be minimized, and the computational time will be improved. In the future,
real-time processing might no longer be an issue for implementing deep learning in most PHM cases.

The deep learning model in this paper was only developed based on the Deep Neural Network
algorithm (DNN). As mentioned in Section 3.4, there are other more complex deep learning
algorithms that have been developed over the years, such as the Convolutional neural network
(CNN), the Recurrent neural network (RNN), and the Long short-term memory network (LSTM).
These deep learning algorithms will be explored in the field of prognostics analysis in the future. It is
also worth noting that some researchers have started to employ the LSTM network for similar battery
prognostic data, to predict the remaining useful life (RUL) of the battery [46]. Although this has already
been done, it is incomparable to the experiments in this work based on the fact that the experiment on
LSTM in the literature implemented a different dataset, and more importantly, the experiment only
focused on testing the LSTM network in the model, and did not provide a complete comparison to
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other models that use traditional machine learning algorithms. This leaves gaps to be explored in the
future, particularly with benchmarking all deep learning algorithms.

In addition to benchmarking deep learning approaches with other machine learning algorithms,
in the future, physical experiments will be explored, to bridge the gap between data-driven models
and physics-based models for PHM applications. Data-driven models will be employed to help in
easing the modeling complexity in physics-based models of lithium-ion batteries. Thus, an accurate
battery models that mimics models in real-world applications could be obtained without the need
for extensive outputs of time and resources. The advancements in artificial intelligence and machine
learning algorithms play an important role in defining future approaches in PHM for lithium-ion
batteries, as well as many other engineering applications.

5. Conclusions

This work aims to accomplish two tasks. First, a complete benchmarking of the data-driven model
by using a machine learning algorithm with the battery prognostic data is made. Second, a preliminary
data-driven model is developed by using a deep learning algorithm for the prognostic data. This paper
has achieved its goal to aid, as a benchmark, the prognostic data-driven model for battery data using
machine learning algorithms, and based on the results from the case studies, it shows that the deep
learning algorithm provides a promising outcome for predicting and modeling the prognostic data,
especially in the battery prognostic and health management applications. Based on the accuracy
archived, we also believe that the traditional physics-based model may be replaced by data-driven
models in the near future, in various fields and applications. The reliable data-driven model has many
advantages over a traditional physics-based model. The first major advantage is that it overcomes the
complexity of the physics-based model. This attribute of less complexity in a data-driven model helps
to reduce the involvement of the domain experts in particular fields. In the future, the predictive model
might be able to be generated and constructed without any opinion or knowledge from experts at all.
The second advantage is that data-driven models can be employed in real-time situations, due to the
shorter computational time needed, when compared to physics-based models in general. The last point
is that the data-driven model is more cost-effective to construct and to employ in real applications.
As an example, a data-driven model can be generated and monitored by using only regular personal
computing devices, without the need for exclusive and excessive resources. This future trend of
data-driven models is in line with the recent achievement of deep learning algorithms and artificial
intelligence. These methodologies are believed to be the main approaches in the further development
of data-driven models. However, the accuracy of prediction and the higher performance of using
deep learning algorithms also comes with the drawback of higher computational time. With rapid
advancements in technology, the computational time could be substantially reduced. The future
direction of this work will focus on developing a hybrid-deep learning model that could be universally
applicable to multiple types of prognostic data.
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Appendix A

Rectified Linear Units (ReLU) is an activation function of neural networks, defined as:

f (x) = x+ = max(0, x) (A1)
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where x is the input to a neuron, and + represents the positive part of its arguments. ReLU has been
demonstrated to achieve better training for deeper networks [47–49] compared to other activation
functions such as the logistic sigmoid and the hyperbolic tangent [50,51].

Appendix B

The Adaptive Moment Estimation (Adam) optimizer keeps an exponentially decaying average of
past gradients M(t), similar to momentum [52]. M(t) and V(t) are values of the first moment, which
is the Mean, and the second moment, which is the Un-centered variance of the gradients, respectively.
The following is the formulas for the First Moment (Mean), and the Second Moment (Variance):

m̂t =
mt

1 − βt
1

(A2)

v̂t =
vt

1 − βt
2

(A3)

The following is the final formula for the Parameter update:

θt+1 = θt − η√
v̂t − ε

(A4)

The value for β1 is 0.9, and 0.999 for β2 and 10*exp(−8) for ε.
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Abstract: Health monitoring and early fault detection of wind turbines have attracted considerable
attention due to the benefits of improving reliability and reducing the operation and maintenance
costs of the turbine. However, dynamic and constantly changing operating conditions of wind
turbines still pose great challenges to effective and reliable fault detection. Most existing health
monitoring approaches mainly focus on one single operating condition, so these methods cannot
assess the health status of turbines accurately, leading to unsatisfactory detection performance.
To this end, this paper proposes a novel general health monitoring framework for wind turbines
based on supervisory control and data acquisition (SCADA) data. A key feature of the proposed
framework is that it first partitions the turbine operation into multiple sub-operation conditions by
the clustering approach and then builds a normal turbine behavior model for each sub-operation
condition. For normal behavior modeling, an optimized deep belief network is proposed. This
optimized modeling method can capture the sophisticated nonlinear correlations among different
monitoring variables, which is helpful to enhance the prediction performance. A case study of main
bearing fault detection using real SCADA data is used to validate the proposed approach, which
demonstrates its effectiveness and advantages.

Keywords: wind turbines; health monitoring; fault detection; optimized deep belief networks;
supervisory control and data acquisition system; multioperation condition

1. Introduction

With increasing global energy demand, wind energy as a promising clean source of renewable
energy has become an indispensable force in solving world energy problems. The latest annual
report released by the Global Wind Energy Council (GWEC) [1] shows that the cumulative and new
installed capacity in the world had reached 539,123 MW and 52,492 MW, respectively, by the end of
2017. However, wind turbines are generally situated in remote locations and have harsh operating
environments, resulting in frequent failures and undesired shutdowns. High maintenance costs and
downtime losses seriously affect the economic benefits of wind farms and also have a powerful impact
on the healthy development of the wind power industry [2]. There is an urgent need for effective
prognostics and health management (PHM) technologies to address these problems. In particular,
fault detection is a premise for PHM. Therefore, it is crucial and valuable to develop advanced health
monitoring and fault detection methods to detect impending wind turbine faults as early as possible
in order to avoid secondary damage and even catastrophic accidents.

Vibration analysis and oil monitoring have become two commonly used techniques for wind
turbine condition monitoring [3–6]. However, both techniques are sophisticated and expensive in
their practical application, since additional investments, including installing extra sensors and data
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acquisition devices, are required. Alternatively, supervisory control and data acquisition (SCADA)
systems, which have been widely installed in large-scale wind turbines, can collect and record the
operational state information from wind turbines and their critical components on a regular basis [7].
Compared with the vibration and oil monitoring methods, SCADA-based monitoring has been
considered to be cost-effective due to the availability of a large amount of monitoring data and
no additional cost. As a result, SCADA-based wind turbine health monitoring has attracted wide
attention in recent years [8], and different SCADA data analysis methods have been proposed.

Zaher et al. [9] developed normal behavior models for gearboxes and generators based on artificial
neural networks by analyzing SCADA data. The case study results demonstrated that it was possible to
detect faults as early as 6 months and 16 months before final replacement of the gearbox and generator,
respectively. Guo et al. [10] employed a nonlinear state estimation method to construct a normal
behavior model of generator temperature using 2 min and 10 min averaged SCADA data. A real case
study showed that the method was able to predict generator faults about 8.5 h before the actual failure.
Kusiak et al. [11] introduced a neural network to model the normal behavior of generator bearings
by using 10 s SCADA data. The research showed that the method could identify anomalies about
1.5 h ahead of the eventual failure. Schlechtingen et al. [12,13] proposed an adaptive neuro-fuzzy
inference system combining artificial neural network and fuzzy logic analysis and constructed 45
normal behavior models using 10 min averaged SCADA data. Case studies illustrated that the
system could detect the potential failures of wind turbines months in advance and provide the root
causes of these failures based on simple if–then rules. Bangalore et al. [14,15] applied artificial neural
networks to establish normal behavior models of gearboxes. Case studies with 10 min averaged
SCADA data showed that the proposed methods were able to detect gearbox anomalies ahead of
the condition monitoring system. Bi et al. [16] presented a pitch fault detection procedure using a
normal behavior model based on the performance curve and carried out six case studies. The results
illustrated that the proposed method could detect pitch faults earlier than the artificial intelligence
approaches investigated. Different methods have been used to model the normal behavior of wind
turbines. Further, residuals between the predicted values of the models and actual measured values
of the expected output variable were used to identify the anomalies of wind turbines. Practically,
wind turbine operating conditions are complicated and changeable and present multiple operation
regions due to varying external wind speed and a complex internal control scheme, which poses great
challenges for effective and reliable fault detection. However, most existing monitoring approaches
only focus on a single whole operating condition, so they cannot fully consider the dynamic operating
characteristics of wind turbines, leading to unsatisfactory detection performance, such as high rates of
false alarms or missed detections. On the other hand, conventional health monitoring methods, such
as neural networks, naturally have classical shallow structures, which poses a difficulty in effectively
capturing sophisticated nonlinear relationships among monitoring variables.

To address the above issues, a novel general health monitoring approach for wind turbines under
varying operating conditions is proposed in this paper. This approach is data-driven and based on
monitoring data collected from wind turbine SCADA systems. First, to consider the dynamic behavior
and multiple operating characteristics of wind turbines, an operation condition partition scheme
using a clustering algorithm is proposed to partition the whole operation into multiple sub-operation
conditions. This is a divide-and-conquer strategy and can enable the building of local monitoring
models in different sub-operation conditions, which can improve the reliability and accuracy of fault
detection compared to a global monitoring model. Second, to overcome the shortcoming of traditional
shallow structure–based methods, a deep learning–based modeling approach is proposed to deal with
relevant SCADA data to capture the sophisticated nonlinear correlations among monitoring variables.
In recent years, motivated by the powerful ability of feature learning and nonlinear modeling of deep
learning methods, convolutional neural network [17], autoencoder [18], denoising autoencoder [19],
and multilayered extreme learning machines [20] have been used in many classification and regression
tasks. Specifically, deep belief networks (DBNs) [21], a typical class of deep learning methods, are
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used in this study, which are naturally probabilistic generative models with multilayered architecture.
Compared with shallow neural network methods, DBNs can capture complex nonlinear features,
have a powerful modeling capacity and are quite suitable for modeling complex SCADA data [22].
DBNs have received attention in the fields of wind speed prediction [23], mechanical engineering
fault diagnosis [24] and complex system fault detection [25]. The performance of DBNs is largely
dependent on their structural parameters. However, there is no uniform rule for parameter selection.
Various optimization algorithms have shown the ability to deal with complex problems, such as
particle swarm [26] and genetic algorithm [27]. In particular, chicken swarm optimization (CSO), a
novel bionic heuristic optimization algorithm, is introduced for optimizing model parameters of DBNs.
In summary, the main contributions of this paper are as follows:

(1) A general multioperation condition partition scheme is proposed to partition normal state data
into several different clusters. Then, normal behaviors are built under different condition clusters.
This divide-and-conquer strategy can help reduce false alarms caused by methods that only
consider a single operating condition.

(2) An optimized DBN (ODBN) model with CSO is designed to capture the normal behavior in
each cluster, which reduces the complexity of parameter selection of DBNs. To the best of our
knowledge, it is the first time DBN is applied to deal with complex SCADA data from wind
turbines for the purpose of fault detection.

(3) A real case from wind turbine main bearing fault was used to evaluate the performance of the
proposed health monitoring approach using the SCADA data of multiple wind turbines from a
real wind farm, and comparative studies were conducted.

The remainder of this paper is organized as follows. Section 2 describes the multioperation
condition problem and the operation parameters studied in this paper. In Section 3, the proposed
health monitoring framework is presented, the steps are explained, and the presented methodologies
are described in detail. Section 4 presents the case study and discussion, and results are compared and
analyzed. Conclusions are summarized in Section 5.

2. Problem Description

As critical equipment for wind power generation, a wind turbine is typically a complex
electromechanical system composed of a variety of components and subsystems, including gearbox,
generator, shaft, bearing, and power electronics, among many others [28]. In practical applications,
wind turbines are generally located in remote areas and perennially operate under adverse weather
conditions, such as storms, dust, and extreme temperature differentials. In addition, they are also
affected by mechanical, electrical, and control strategies. These kinds of situations lead to operating
conditions characterized by complexity and variability. As discussed in the first section, one of the
primary disadvantages of existing data-driven condition monitoring approaches for wind turbines is
that they only take into account a single operating condition, ignoring the characteristics that exist in
the process of operating wind turbines. Due to their highly dynamic operating conditions, variations
in the abnormal states of turbines are always easily masked by the condition fluctuations, making it
difficult to accurately assess the health status and thereby causing frequent false alarms. In this case, it
is highly desirable to develop reliable health monitoring approaches to deal with the dynamic and
varying operating conditions of wind turbines.

Wind turbine SCADA data contain hundreds of monitoring parameters related to the health of
the wind turbine and its critical components. Typically, these parameters include wind conditions
(e.g., wind speed, wind direction), power output, blade pitch angle, generator torque and speed,
temperatures (e.g., main bearing temperature, gearbox oil temperature, nacelle temperature, and
ambient temperature) among others [29]. Several parameters are closely related to the wind turbine
operating conditions, which can be referred to as operation parameters, describing the external
and internal changes of the turbine operation due to constantly changing wind speed and complex
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switched control schemes. Typically, these primarily include environmental parameters such as wind
speed, wind direction, and ambient temperature, and control parameters such as generator speed
and torque [30]. To facilitate the understanding of the operating characteristics of the wind turbine,
historical SCADA operation data were collected from a 1.5 MW turbine under normal operation from
July to August 2014, shown in Figure 1. Obviously, these operation parameters segment the wind
turbine operating conditions into different operation regions to varying degrees, which truly reflects
the multiple operating characteristics of the wind turbine. In this case, a global health monitoring
model cannot describe the turbine behavior accurately and even fails to produce reliable detection
results. Therefore, it is of great practical value to investigate efficient and reliable health monitoring
methods, considering varying operating conditions in order to improve the accuracy of fault prediction
and reduce operation and maintenance costs.

0 1000 2000
-5000

0

5000

10,000

Generator speed (rpm)

G
en

er
at

or
 to

rq
ue

 (N
·m

)

0 10 20
-5000

0

5000

10,000

Wind speed (m/s)

G
en

er
at

or
 to

rq
ue

 (N
·m

)

0 10 20 30
-5000

0

5000

10,000

Ambient temperature (°C)

G
en

er
at

or
 to

rq
ue

 (N
·m

)

0 200 400
-5000

0

5000

10,000

Wind direction (°)

G
en

er
at

or
 to

rq
ue

 (N
·m

)

Figure 1. Operating characteristic curves of a wind turbine in normal conditions.

3. Proposed Health Monitoring Framework

In this study, a novel health monitoring framework for wind turbines under varying operating
conditions is proposed, and its flowchart is shown in Figure 2. It is general and can be used for fault
detection of different wind turbine subsystems and components. The main idea of the proposed
framework is to build normal behavior models relying on only historical normal SCADA data from
wind turbines and then perform fault detection based on the evaluation results of residuals between
the predicted values and actual measured values. The changes of the residuals will give an indication
of possible faults. Usually, normal test samples will produce a low residual value since they can well
satisfy the learned normal model, whereas faulty test samples will produce high residual values and
therefore be identified as faults. Generally, the proposed framework mainly consists of four sequential
parts: operation condition partition, variable selection, model development and anomaly detection.
The detailed procedures are summarized as follows:

(1) Collect normal SCADA data from multiple wind turbines on a wind farm.
(2) Choose operation parameters that characterize the complex operating conditions of wind turbines

and segment the operation parameter data into K clusters using the k-means method and
silhouette index. The obtained K clusters represent the corresponding K operating conditions, i.e.,
[C1, C2, · · · , CK]. Then, divide the normal state data into corresponding K parts based on the
partitioned operating conditions.

(3) Select appropriate modeling variables for each operating condition by combining three variable
selection techniques, and the final selected variables for different operating clusters can be
represented as [V1, V2, · · · , VK].
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(4) Build a normal behavior model under each operating condition using ODBNs to explore the
sophisticated nonlinear characteristics among modeling variables, resulting in multiple DBN
models, denoted as [DBN 1, DBN2, · · · , DBNK] for K operating clusters.

(5) Calculate the threshold for abnormal detection under different operating conditions using the
Mahalanobis distance (MD) measure to automatically identify the anomalies that occur in the
operation of the wind turbines, i.e., [MD1, MD2, · · · , MDK].

(6) For the new incoming SCADA data, first recognize the operating condition Ci that it belongs
to, then select the corresponding modeling input variable Vi and predict the output using the
constructed DBNi. Next, compute the MD value and compare it with the threshold MDi under
condition Ci, and then output the real-time online health monitoring results.

Figure 2. Flowchart of the proposed health monitoring framework. SCADA, supervisory control and
data acquisition; DBN, deep belief network; MD, Mahalanobis distance.

3.1. Data Preprocessing

It should be noted that data preprocessing is a necessary step in wind turbine condition monitoring
prior to modeling using SCADA data [7]. During the long-time continuous operation of a wind turbine,
a large number of outliers and invalid values may be generated and included in the SCADA data
because of sensor failures, communication errors, or other issues. These outliers and invalid values
will directly impact the performance of the model to be trained, and they should be removed first. To
reduce the effects of noise and randomness contained in SCADA data, all data are smoothed prior to
selecting modeling variables. Additionally, considering that different operation parameters often have
different value ranges, it is a common step to normalize the initial operation data before partitioning
the conditions to ensure that each operation variable lies within the specified range between 0 and 1.
Specifically, in this study, this step can be simply realized by using the following equation [31]:

Yij =
xij − min(xj)

max(xj)− min(xj)
, (1)

where xij is the ith value of variable j, and min(xj) and max(xj) are the minimum and maximum
values of variable j, respectively.

3.2. Operation Condition Partition Using K-Means Clustering

The reasonable selection of wind turbine operation parameters is a prerequisite to realize the
partition of operating conditions. As mentioned in Section 2, for a wind turbine, the operation
parameters mainly include the following five variables: wind speed, wind direction, ambient
temperature, generator speed, and generator torque, which are closely related to the operating
conditions. Generally, the operating conditions can be partitioned into several typical operation
regions depending on the above operation parameters. As an unsupervised learning method, k-means
clustering [32] has become one of the most prevalent and widely used partitioning clustering algorithms
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due to its advantages of usability, efficiency, simplicity and successful experience [33]. Hence, in this
study, this method is adopted for the condition partition. Certainly, other clustering methods can also
be considered. The aim of k-means is to allocate all data samples into K clusters by minimizing the
sum of the squared error over all K clusters, denoted as follows [33]:

J = arg min
O

K

∑
i=1

∑
xj∈Oi

∥∥xj − μi
∥∥2, (2)

where O = {O1, O2, . . . , OK} is the set of K clusters, μi is the cluster centroid of the ith cluster,
{x1, x2, . . . , xN} is the cluster samples, and N is the number of samples.

In the k-means algorithm, the number of clusters K is a key parameter. Silhouette [34] is one
of the indices for evaluating the clustering number by combining the two factors of cohesion and
resolution, which is employed to determine K in this paper. The silhouette value for the ith point, S(i),
is expressed as

S(i) =
b(i)−a(i)

max{a(i), b(i)} , i = 1, 2, . . . , N, (3)

where a(i) represents the average distance from the ith point to the other points in the same cluster
and b(i) denotes the minimum average distance from the point to points in a different cluster. The
range of S(i) is [–1, 1]. A higher value of S(i) indicates that the ith point is clustered more properly.
The average of all S(i) is then the final silhouette value for a given cluster number.

3.3. Variable Selection

To construct the normal behavior model, it is necessary to first determine the modeling variables
in each operating condition. Usually, there are multiple types of relationship among the variables
and various techniques can be applied to assess each type of relationship [35]. Three typical
variable selection techniques are proposed in [36–38], the Pearson, Spearman, and Kendall correlation
coefficients, which are statistics for measuring the linearity, monotonicity, and dependence among
variables, respectively. This paper combines the three technologies to select the input variables most
relevant to the output variables. It is worth noting that the computation results of these three methods
are all in the range of –1 to 1, and a higher absolute value indicates a stronger correlation between the
input and output.

3.4. Proposed ODBN Method

The use of wind turbine SCADA systems becomes the primary option for most wind farms,
and as a result, large amounts of monitoring data can be acquired and archived regularly. The
measured SCADA data have notable features of complex nonlinearity and strong coupling due to
the interdependence and interaction between the different subsystems of the wind turbines during
operation. Consequently, in this section, ODBNs are proposed to capture the latent nonlinear
correlations in the SCADA monitoring data, and the details are described as follows.

3.4.1. DBN Architecture

The structure of DBNs comprises probabilistic generative models composed of multiple stacked
restricted Boltzmann machines (RBMs). As displayed in Figure 3, each RBM is a kind of two-layer
stochastic neural network consisting of one visible layer and one hidden layer. There are connection
weights between the visible layer and the hidden layer, while the units in each layer are restricted to
each other.
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Figure 3. Topological structure of a restricted Boltzmann machine (RBM).

Assuming that the RBM is a Bernoulli–Bernoulli model (BB-RBM), for a given set of states (v, h),
the energy function is defined as

E(v, h; θ) = −
V

∑
i=1

H

∑
j=1

ωijvihj −
V

∑
i=1

bivi −
H

∑
j=1

ajhj, (4)

where θ = {w, a, b} denotes the model parameters; vi and hj are the visible unit i and the hidden unit
j, respectively; ωij is the connection weight between i and j; bi and aj are the biases of vi and hj; and V
and H are the number of visible and hidden units, respectively. Given the energy function, the joint
probability over the visible and hidden units can be described as follows:

p(v, h; θ) =
1
Z

exp(−E(v, h; θ)), (5)

where Z = ∑
v

∑
h

exp(−E(v, h; θ)) is the partition function.

Since the visible–visible and hidden–hidden units are not connected, the probabilities of the
visible unit vi and the hidden unit hj are independent. Therefore, the conditional distributions can be
expressed as

p(hj = 1|v; θ ) = δ(
V

∑
i=1

ωijvi + aj), (6)

p(vi = 1|h; θ ) = δ(
H

∑
j=1

ωijhj + bi), (7)

where δ(x) = 1/(1 + exp(x)) represents the logistic sigmoid function. The model parameters θ of the
RBM can be obtained by a contrastive divergence method [39]. The update rule for the weight w is
written as follows:

Δωij = ε
(〈

vihj
〉

data − 〈
vihj
〉

k
)
, (8)

where ε refers to the learning rate, 〈·〉data denotes the expectation of the training data, and 〈·〉k represents
the expectation of the sample distribution after k-step Gibbs sampling. A more detailed description of
the training process of the RBM can be seen in [40].

The general architecture of a DBN model with n hidden layers is shown in Figure 4. The bottom
layer of the DBN accepts input data and then passes the data to hidden layers to complete the learning
process. To handle real-valued data, a Gaussian–Bernoulli RBM (GB-RBM) should be adopted in the
first RBM model, and BB-RBM is applied in the rest of the RBM models. The learning process of the
DBN consists of two phases, pretraining and fine-tuning. Pretraining is the process of initializing the
connection weights and biases of the network in a greedy layer-wise unsupervised manner. In this
phase, each RBM is trained from bottom to top individually. In the fine-tuning phase, the parameters
of the DBN model are updated with the back-propagation algorithm in a supervised fashion. Thus,
DBNs realize the organic combination of unsupervised and supervised learning, which can effectively
improve the modeling capacity. In this study, a four-layer DBN, including the bottom input layer, the
top output layer, and two hidden layers, are used for SCADA data modeling.
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Figure 4. Structure of DBN with n hidden layers.

3.4.2. ODBN Method

It is worth noting that although DBNs can enhance the performance of prediction to some extent,
the performance is highly influenced by their structural parameters. Therefore, how to determine and
achieve optimal model parameters has become a primary challenge for DBNs. The main parameters
of concern in this paper are the number of neurons in the two hidden layers of the DBN. In general,
these parameters can be obtained experimentally, but it is time-consuming and laborious. CSO is a
novel bionic heuristic optimization algorithm that mimics the hierarchy in the chicken swarm and the
food search behavior [41]. The optimization algorithm obtains the optimal parameters by dividing
the chicken swarm into several subgroups and competing among different subgroups. Therefore,
this algorithm is used for the adaptive optimization of the model parameters. The position of each
individual in the chicken swarm represents a potential solution to the optimization problem. There are
three types of chickens in the CSO: roosters, hens, and chicks. To search for the optimal solution in
the search space, it is necessary to update the position of each type of chicken. The position update
equation for the roosters is depicted as follows:

xt+1
i,j = xt

i,j · (1 + Randn(0, σ2)), (9)

σ2 =

{
1, if fi ≤ fk

exp( ( fk− fi)
| fi |+ε

), otherwise
, (10)

where t is the number of iterations; Randn(0, σ2) is a Gaussian distribution with mean 0 and standard
deviation σ2; i, k ∈ [1, rsize] and i �= k, rsize represent the number of roosters; fk and fi are the fitness
values of rooster particles i and k, respectively; and ε is a constant that is small enough. The position
update equation for hens is as follows:

xt+1
i,j = xt

i,j + S1 · Rand · (xt
r1,j − xt

i,j) + S2 · Rand · (xt
r2,j − xt

i,j), (11)

S1 = exp(
( fi − fr1)

| fi|+ ε
), (12)

S2 = exp( fr2 − fi), (13)

where Rand is a uniform number over [0,1]; r1 is an index of the rooster, which is the ith hen’s group
mate; and r2 is a randomly chosen index of a chicken (rooster or hen) from the swarm, and r1 �= r2.
The position update equation for chicks is as follows:

xt+1
i,j = xt

i,j + FL · (xt
m,j − xt

i,j), (14)
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where FL refers to a parameter that means the chick would follow its mother to forage for food, and
the range is [0, 2]; and xt

m,j is the position of the ith chick’s mother. In this paper, the position of each
individual represents the number of neurons in the two hidden layers of the DBN. Figure 5 gives the
flowchart of ODBN with CSO, and the detailed procedure is explained as follows:

(1) Initialize the parameters, including number of chickens, dimensions of individual positions,
maximum iteration number, updated frequency of chicken swarm, and proportions of roosters,
hens, and mother hens.

(2) Randomly produce an initial population of chickens. Train the DBN and compute the fitness
values, and determine the optimal individual and global fitness values and corresponding
positions. Here, the root mean square error (RMSE) of the validation set is considered as the
fitness function.

(3) In the next iteration, first determine the relationship between the roosters, hens, and chicks
in a group, and then update their positions according to Equations (9)–(14) and calculate
their fitness values. Next, update the optimal individual and global fitness values and their
corresponding positions.

Repeat step 3 until the maximum iteration number is reached and output the optimal parameters
of the DBN. Note that the original CSO is a method for optimizing continuous values. Since the number
of neurons in hidden layers of the DBN is an integer, the CSO that optimizes the continuous values
is not applicable. Hence, when initializing the population of chickens and updating the positions of
roosters, hens, and chicks, discretize them to meet the requirements.

Figure 5. Flowchart of optimized DBN with chicken swarm optimization (CSO).

3.5. Anomaly Detection Approach

The purpose of establishing ODBN normal behavior models is to continuously monitor the
working status of the components being modeled and identify impending faults in a timely manner,
which is important to avoid major faults of components and ensure the secure and stable operation
of wind turbines. In this paper, an advanced health monitoring approach called MD is utilized for
operational state monitoring and abnormal behavior identification. MD has been successfully adopted
in the detection of abnormalities of wind turbines [14,15].
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MD is a unitless distance measurement that can capture the correlation of variables in a process
or system and is defined as follows:

MDi =

√
(Xi − μ)C−1(Xi − μ)T , i = 1, 2, . . . , n, (15)

where Xi = [Xi1, Xi2, . . . , Xim] is the ith observation vector, n is the number of observations, m is the
total number of parameters, μ = [μ1, μ2, . . . , μm] is the vector of mean values, C is the covariance
matrix, and MDi is the MD value for the ith vector Xi.

For health monitoring, the MD values for the validation set are used to calculate the threshold
for anomaly detection. During the validation stage, wind turbines are in normal operation and no
abnormal behavior occurs. The MD for the validation set can be expressed as follows:

MDre f i =
√
(Xre f i − μre f )C−1

re f (Xre f i − μre f )
T, (16)

where Xre f i = [VEi, TVi] represents the ith vector; TVi denotes the ith target value during the
validation stage and VEi is the corresponding validation error; μre f and Cre f are the mean value vector
and the covariance matrix of Xre f , respectively. MDre f i refers to the MD value for the ith vector Xre f i.

After obtaining the healthy MD values in the validation stage, the anomaly detection threshold
can be determined by fitting a two-parameter Weibull probability distribution function on these MD
values [42]. The two-parameter Weibull distribution is described as

f (t) = βη−β(t)β−1e−( t
η )

β

, (17)

where β denotes the shape parameter and η stands for the scale parameter.
The MD during the condition monitoring stage is depicted as follows:

MDnewi =
√
(Xnewi − μre f )C−1

re f (Xnewi − μre f )
T, (18)

where Xnewi = [PEi, MVi], MVi is the ith actual measured value from the SCADA system during the
condition monitoring stage, and PEi is the model prediction error.

In this study, in order to reduce the false alarm rate, the MD value from the condition monitoring
stage is identified as an anomaly if f (MDnewi) is less than 0.1%. At this point, an alarm signal is
triggered to alert the operators about the operational states of the turbine so they can take appropriate
action to avoid major faults.

4. Case Study and Discussion

In this section, a real case for main bearings is investigated to demonstrate the feasibility of
the proposed approach in practical applications of wind turbine health monitoring, and the results
obtained in each part are presented in detail.

4.1. Data Description

The SCADA data used in this paper are from a wind farm located in Inner Mongolia, China. All
wind turbines in the wind farm are variable speed constant frequency with a rated power of 1.5 MW.
The sampling interval of the SCADA data is 30 s. Each record includes a total of 25 discrete pieces
of information, such as turbine state, time stamp, yaw state, etc. At the same time, 49 continuous
parameters are also recorded, listed in Table 1. The SCADA data for the majority of the turbines were
available during the period from 1 July to 23 September 2014. In this paper, the SCADA data from 13
available turbines during the period 1 July to 31 August 2014 are investigated. Detailed descriptions of
the datasets are listed in Table 2.
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Table 1. Continuous parameters in SCADA data.

Continuous Parameter

Gearbox oil temperature Wind direction Current phase C Absolute wind direction
Gearbox front bearing temperature Generator speed Converter side speed Blade 1 motor current
Gearbox inlet oil temperature Gearbox speed 1 Converter side torque Blade 2 motor current
Generator front bearing temperature Wind speed 1 Wind speed 1 s average Blade 3 motor current
Generator rear bearing temperature Wind speed 2 Wind speed 1 min average Blade 1 motor temperature
Generator stator winding temperature Active power Wind speed 10 min average Blade 2 motor temperature
Converter ambient temperature Reactive power Ambient temperature Blade 3 motor temperature
Gearbox rear bearing temperature Wind speed Main bearing temperature Hub temperature
Wind direction 1 s average Voltage phase A Nacelle temperature Cable winding angle
Wind direction 1 min average Voltage phase B Active power 1 s average Generator torque
Wind direction 10 min average Voltage phase C Active power 1 min average
Gearbox oil pump pressure Current phase A Active power 10 min average
Gearbox inlet oil pressure Current phase B Hydraulic system pressure

Table 2. Description of SCADA datasets.

Dataset Time Stamps Turbines Considered

Modeling 1/7/2014–31/8/2014 6, 17, 24, 33–34, 37, 49, 53, 88

Testing normal behavior 30/7/2014–2/8/2014 20
14/8/2014–17/8/2014 46

Testing abnormal behavior 10/9/2014–14/9/2014 42
2/7/2014–4/7/2014 13

To obtain a reliable health monitoring model of the main bearing, it is necessary to include as
much data as possible to cover all normal operation regions of the turbine. Therefore, Turbines 6, 17,
24, 33–34, 37, 49, 53, 88 were randomly selected for modeling. During the period from 1 July to 31
August 2014, there were no main bearing faults in these 9 turbines, which are suitable for establishing
the normal behavior model of the main bearing. The number of samples of normal SCADA data from
the nine turbines in normal operation during this period is 353,131.

Similarly, Turbines 20 and 46 did not experience main bearing faults, so are used to test the
performance of the normal behavior of wind turbines. Whereas Turbines 42 and 13 experienced main
bearing over temperature faults, so are employed to detect the abnormal behavior of the main bearing.

4.2. Model Development

In this section, the proposed health monitoring model for wind turbine main bearings is developed
in detail based on the above methods. To investigate the prediction performance of the proposed
modeling method in different operating conditions, the traditional algorithms are used for comparison.
Several methods are also compared without considering the operating characteristics of wind turbines.

4.2.1. Operation Condition Partition

For the SCADA data from nine turbines in normal operation from 1 July to 31 August 2014,
described in Section 4.1, the operation parameters representing the wind turbine operating conditions
should first be extracted. Normally, the normalization of operation data is a basic step before
partitioning the operating condition depending on the operation parameters to ensure the reliability of
the clustering results. In this paper, in order to be more consistent with the operating characteristics
of wind turbines, the number of clusters is set from two to eight, and the calculation results of the
silhouette values are shown in Figure 6. From Figure 6, it can be seen that when the number of
clusters is two, the silhouette value reaches the maximum value of 0.75. This result indicates that it is
optimal to segment the wind turbine operating conditions into two sub-conditions, condition 1 (C1)
and condition 2 (C2).
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Figure 6. Calculation results of silhouette values.

To explicitly show the optimal clustering results obtained, principal component analysis is used
to reduce high-dimensional operation data to a low-dimensional space for data visualization. Figure 7
shows the three-dimensional visualization of the operation parameters based on the first three principal
components. It can be clearly observed that two separate operation condition spaces are presented,
which proves the multiple condition characteristics of wind turbines. Table 3 summarizes the clustering
distribution of operation parameters to further quantitatively understand the clustering results.

Figure 7. Optimal clustering results by k-means and silhouette index.

Table 3. Summary of clustering distribution.

Distribution C1 C2

Wind speed (m/s) 0.3–29.28 0.3–25.33
Wind direction (◦) 186.73–359 0.38–186.73

Ambient temperature (◦C) 4.97–37.33 4.96–37.58
Generator speed (rpm) 0.17–1852.8 0.17–1859.2

Generator torque (N · m) −970–8600 −970–8600

As can be seen in Table 3, as far as the wind direction is concerned, the ranges under the two
conditions are obviously different. In the case of C1, the range is 186.73 to 359, whereas in C2, the range
is 0.38 to 186.73. In terms of wind speed, ambient temperature, generator speed, and generator torque,
there is little difference in the ranges under the two conditions. One can see from the comparison
results that the wind turbine operating conditions are clearly partitioned according to this operation
parameter, i.e., wind direction, and thus this parameter can be used for subsequent real-time condition
recognition purposes. However, it is well known that wind direction ranges from 0◦ to 360◦, so here, if
the wind direction is between 359◦–360◦ and 0◦–0.38◦, they will be automatically categorized as C1

and C2 separately. It should be noted that there is no theoretical (i.e., no mechanical or electrical basis)
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reasoning for the choice of wind direction as the partitioning parameter here and that this based purely
on the analysis of the clustering data.

In the following study, the original normal SCADA data from nine turbines are divided into two
portions based on the above condition partition results, and the sample numbers under C1 and C2 are
154,089 and 199,042, respectively.

4.2.2. Parameter Selection for Each Condition Cluster

Before dealing with forecasting problems, the integration of Pearson, Spearman, and Kendall
is used for variable selection. In this study, the main bearing temperature, closely related to the
health of the main bearing, is taken as the target modeling variable for the output of each model.
Meanwhile, state variables that are highly correlated with the main bearing temperature should be
carefully considered. The correlation coefficients between the main bearing temperature listed in
Table 1 and 48 other variables are calculated. There is no doubt that data preprocessing is required
before calculating the correlation coefficients, including smoothing and normalization. Figure 8 shows
the 10 most relevant variables for each method under the two conditions. For these three methods, it
is essential to set a threshold according to the computation results, as shown in Figure 8, and in this
paper, variables whose absolute value of the correlation coefficient is greater than 0.5 are selected as
the final modeling input.
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Figure 8. Correlation coefficients with different variable selection methods for (a) C1 and (b) C2.

As shown in Figure 8a, in C1, nine state variables are regarded as V1 to construct the prediction
model: hub temperature, generator front bearing temperature, gearbox rear bearing temperature,
nacelle temperature, ambient temperature, gearbox inlet oil temperature, gearbox oil temperature,
converter ambient temperature, and generator rear bearing temperature. As can be seen in Figure 8b,
in addition to the nine input variables under C1, blade 1 and 3 motor temperatures also meet the
set threshold requirements, so 11 variables are considered to be V2 to develop the regression model
under C2. Moreover, it is not difficult to see in Figure 8 that although the Kendall technique produces
relatively small values under these two conditions, a similar ordering is generated compared to the
first two approaches.

4.2.3. Performance Evaluation and Comparison

In this subsection, ODBNs are employed to develop a normal behavior model of each operating
condition. In this study, four-layer DBNs are used for model development. To obtain higher prediction
accuracy, the CSO algorithm is used to optimize the number of neurons in two hidden layers adaptively.
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Practically, a series of training parameters needs to be designed before establishing each normal
behavior model. The detailed parameter settings are listed in Table 4. In each condition, the dataset is
respectively divided into a training set, a validation set, and a testing set at a ratio of 80%, 10%, and
10%, respectively. The training set is utilized to train the DBN model, the validation set is applied to
evaluate the performance of the model and optimize the fitness function, and the testing set is used for
the final performance evaluation. Figure 9 shows the CSO optimization results under C1 and C2. The
architecture of DBN1 and DBN2 is determined as 9-39-82-1 and 11-56-21-1, respectively.

Table 4. Description of parameter settings for modeling.

Description Parameter Setting

DBN pretraining phase size of batch training 100, training iterations 10, learning rate 1, momentum 0
DBN fine-tuning phase size of batch training 10, training iterations 20

CSO for optimization
max iterations 20, dimension 2, population size 20, range of each dimension
[1, 100], updated frequency of chicken swarm 10, proportions of roosters,
hens, and mother hens 0.15, 0.7, 0.5
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Figure 9. CSO optimization results under C1 and C2: (a) CSO-DBN1 and (b) CSO-DBN2.

In this study, to evaluate the prediction performance of the built model, four commonly
used metrics, RMSE, mean absolute error (MAE), mean absolute percentage error (MAPE), and
determination coefficient (R2), are adopted, which are defined as follows [43]:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (19)

MAE =
1
n

n

∑
i=1

|yi − ŷi|, (20)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100, (21)

R2 = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

, (22)

where yi represents the ith measured value, ŷi refers to the ith predicted value, and y is the mean value
of the measurements.

Moreover, a back-propagation network with a single hidden layer (SHL-BP), a back-propagation
network with double hidden layers (DHL-BP), and a support vector machine (SVM) are used for
comparison. For SHL-BP and DHL-BP networks, the number of neurons in hidden layers is also
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optimized with CSO. For SVM, the radial basis kernel function is used to train the SVM model, and the
kernel parameters and penalty factors are obtained by the cross-validation method. The quantitative
evaluation results of the four models with three datasets under C1 and C2 are displayed in Table 5.

Table 5. Comparison of prediction results. SHL-BP, back-propagation network with single hidden
layer; DHL-BP, back-propagation network with double hidden layers; SVM, support vector machine;
RMSE, root mean square error; MAE, mean absolute error; MAPE, mean absolute percentage error.

Dataset Criteria
C1 C2

SHL-BP1 DHL-BP1 SVM1 DBN1 SHL-BP2 DHL-BP2 SVM2 DBN2

Training

RMSE 1.9274 1.8044 1.8846 1.1463 1.8365 1.8325 1.9066 1.0858
MAE 1.5034 1.4665 1.5361 0.8815 1.4444 1.4880 1.5696 0.8392

MAPE (%) 0.6370 1.4872 0.7092 0.4393 0.3451 0.3097 0.9101 1.0432
R2 0.7095 0.7454 0.7223 0.8973 0.7345 0.7356 0.7138 0.9072

Validation

RMSE 1.8908 1.8014 1.8898 1.1448 1.8333 1.8191 1.9108 1.0859
MAE 1.4865 1.4627 1.5467 0.8822 1.4428 1.4731 1.5731 0.8329

MAPE (%) 0.6054 1.4638 0.7382 0.3806 0.2916 0.3384 0.9469 0.9889
R2 0.7219 0.7476 0.7222 0.8980 0.7348 0.7388 0.7119 0.9069

Testing

RMSE 1.9255 1.7982 1.8869 1.1607 1.8188 1.8198 1.9095 1.0790
MAE 1.4941 1.4625 1.5390 0.8836 1.4319 1.4787 1.5694 0.8335

MAPE (%) 0.6141 1.5531 0.7079 0.4485 0.3051 0.3315 0.9274 0.9726
R2 0.7118 0.7486 0.7232 0.8953 0.7394 0.7391 0.7127 0.9083

It can be found from Table 5 that in the forecasting performance of C1 for the training set, validation
set, and testing set, DBN1 is better than the SHL-BP1, DHL-BP1, and SVM1 models, as it offers the
lowest RMSE, MAE, and MAPE and highest R2 values. In terms of the prediction results in C2, DBN2

produces the lowest RMSE and MAE values and the highest R2 values in the three datasets, whereas
MAPE is slightly higher than the other three models. As indicated from quantitative evaluation results,
the ODBNs generally get a higher modeling accuracy than the three traditional methods. The main
reason is that the SHL-BP network is based on the principle of empirical minimization, which is
prone to fall into local minima during the training process and thus produces poor results. At the
same time, because it is difficult to train the depth structure effectively with the BP algorithm, the
prediction accuracy of the DHL-BP model is not much different from that of SHL-BP model. The
SVM algorithm also obtains poor prediction results because it is not suitable for large-scale training
samples, whereas ODBNs can deeply learn and uncover the sophisticated nonlinear relationships
among modeling variables by establishing a depth model, which results in better prediction accuracy.
Hence, the proposed ODBN approach is used for real-time health monitoring of main bearings under
varying operating conditions.

Additionally, to evaluate the monitoring performance of the proposed multioperation condition
framework, the same 353,131 samples are analyzed without considering the wind turbine operating
characteristics. Similarly, the three variable selection methods mentioned in Section 3.3 are employed
to select the modeling input variables. A total of 10 variables (gearbox oil temperature, gearbox inlet
oil temperature, generator front bearing temperature, generator rear bearing temperature, converter
ambient temperature, gearbox rear bearing temperature, ambient temperature, nacelle temperature,
blade 1 motor temperature, and hub temperature) are selected. After that, the samples are split into
the training set, validation set, and testing set, and four models are deployed to capture the normal
behavior of the main bearings. Note that the division of the dataset and the optimization of the model
parameters adopt the same way of considering the multi-condition operating characteristics. The
prediction performances of the four models are summarized in Table 6.

As shown in Table 6, in terms of the training set, validation set, and testing set, the MAPE
generated by the DBNs is slightly higher than the SHL-BP but lower than the DHL-BP and SVM
models. Furthermore, the DBNs perform better with the lowest RMSE and MAE and highest R2 values.
As the results indicate, the ODBNs achieve the best prediction performance compared to the other
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three conventional models, illustrating the predominance of DBN method in modeling. Thus, it is
deemed to be the more appropriate model for monitoring the main bearing temperature.

Table 6. Comparison results of four models without clustering.

Dataset Evaluation Criteria
Model

SHL-BP DHL-BP SVM DBNs

Training

RMSE 1.9784 1.8538 1.8929 0.9615
MAE 1.5959 1.4438 1.5574 0.7310

MAPE (%) 0.0717 0.3721 0.7373 0.2933
R2 0.6930 0.7305 0.7190 0.9275

Validation

RMSE 1.9737 1.8477 1.8879 0.9509
MAE 1.5910 1.4397 1.5518 0.7242

MAPE (%) 0.0907 0.3959 0.7543 0.2984
R2 0.6941 0.7319 0.7201 0.9290

Testing

RMSE 1.9680 1.8470 1.8857 0.9536
MAE 1.5852 1.4366 1.5518 0.7251

MAPE (%) 0.0917 0.4039 0.7468 0.3066
R2 0.6955 0.7318 0.7205 0.9285

4.3. Health Monitoring Results

The examples given in this section are real wind turbine events from a wind farm recorded by
SCADA systems. The MD is constructed to monitor the operating states of each wind turbine. The best
performance algorithm for each condition is chosen to demonstrate the advantages of the proposed
framework, and the monitoring performances are also compared with the best model considering only
the single operating condition.

4.3.1. Testing Normal Wind Turbine Behavior

In this subsection, the proposed approach is used to analyze the normal behavior of wind turbines.
Turbines 20 and 46 were in normal operation during 30 July to 2 August 2014 and 14–17 August 2014,
respectively. The available historical SCADA data were collected and preprocessed for testing. The
ODBN model was conducted for comparison. The prediction results with the two models are presented
in Table 7. The computational cost is also recorded in Table 7, with the computation environment Intel
Core i7 CPU @1.73 GHz, and 8.00 GB memory.

Table 7. Comparison of prediction results between two models.

Turbine Model
Evaluation Criteria

Time (s)
RMSE MAE MAPE (%) R2

20
K-means based ODBNs 0.8125 0.6621 0.3725 0.9067 126.541

ODBNs 0.8566 0.7021 0.7172 0.8963 4.308

46
K-means based ODBNs 1.5225 1.3038 4.1577 0.6272 124.126

ODBNs 1.8409 1.5830 5.3136 0.4550 4.622

From Table 7, one can see that the models considering the operating condition characteristic
produce lower RMSE, MAE, and MAPE and higher R2 values for the two turbines than the model
without this characteristic, which illustrates the superiority of the operating condition partition. In
view of the better prediction performance of the proposed method, the loss of computational cost is
acceptable. The condition monitoring results are displayed in Figures 10 and 11.
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Figure 10. Condition monitoring results for Turbine 20: (a) K-means–based ODBNs and (b) ODBNs.
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Figure 11. Condition monitoring results for Turbine 46: (a) K-means based ODBNs and (b) ODBNs.

As can be seen from Figure 10a,b, all MD values of Turbine 20 fall within the detection thresholds,
indicating that both methods can precisely capture normal wind turbine behavior. All MD values in
Figure 11a are within the detection thresholds, whereas outliers are detected near points 7000 and
11,000 in Figure 11b. According to the monitoring results in Figure 11, the k-means based ODBN
approach successfully monitors the operating state of Turbine 46 without false alarms, whereas the
ODBN model produces false alarms. Hence, it can be concluded that the condition monitoring
capability of the ODBN considering the operating condition feature is generally superior to that of the
ODBN without that feature, and the fault thresholds under the two conditions, that is, MD1 and MD2

are 4.122 and 4.127, respectively. Since the two values in this study are not much different, they are
approximated as straight in Figures 10a and 11a.

4.3.2. Detecting Abnormal Main Bearing Behavior

To further verify the effectiveness of the proposed approach in detecting the abnormal behavior of
wind turbine main bearings, Turbines 42 and 13 are utilized for investigation. According to the SCADA
records of Turbine 42, the main bearing over temperature fault occurred at 11:25 on 14 September 2014.
The 11,324 SCADA samples from 12:50 on 10 September to 11:25 on 14 September before the event
occurred are applied for anomaly detection. For Turbine 13, the 5855 SCADA samples from 00:00 on
2 July to 07:48 before the main bearing over temperature fault happened at 07:48 on 4 July are used for
analysis. The ODBN model is used for comparison. The forecasting results with the two models are
displayed in Figures 12 and 13.
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Figure 12. Forecasting results for Turbine 42: (a) K-means based ODBNs and (b) ODBNs.
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Figure 13. Forecasting results for Turbine 13: (a) K-means based ODBNs and (b) ODBNs.

Figures 12 and 13 demonstrate the trends of actual and predicted main bearing temperatures of
Turbines 42 and 13 separately. It can be observed that the prediction errors between actual measured
values and predicted values of the two models distinctly increased before the main bearing over
temperature faults occurred, which indicates that the health conditions of the main bearings varied.
The condition monitoring results are shown in Figures 14 and 15.
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Figure 14. Condition monitoring results for Turbine 42: (a) K-means based ODBN and (b) ODBN.
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Figure 15. Condition monitoring results for Turbine 13: (a) K-means based ODBN and (b) ODBN.

Figure 14a displays the monitoring results of the proposed framework for Turbine 42, while
Figure 14b illustrates the monitoring results of the ODBN model in the same turbine. As shown in
Figure 14a, the MD value first crosses the fault threshold at sample point 1183, and an incipient main
bearing fault is detected. However, the actual fault occurred at 11:25 on 14 September 2014, which
is the 11,325th sample point. Each sample point is separated by an interval of 30 s, so the k-means
based ODBN approach can detect the main bearing fault approximately 84.5 h in advance. As can
be seen from Figure 14b, the MD value first exceeds the threshold at sample point 1448, and an early
alarm is signaled, thus predicting the over temperature event almost 82.3 h ahead of the actual fault.
From the computation results in Figure 14, both models can identify the upcoming main bearing fault
successfully. Nevertheless, the proposed k-means based ODBN model is able to detect the anomaly of
the main bearing nearly 2.2 h earlier than the ODBN approach. At the same time, it also means that
there is only a 2.2 h improvement in using the k-means based ODBN model over the ODBN model
(82.3 vs. 84.5 h), which represents only a 2.6% improvement. Still, this can also provide more time for
wind farm operators to take appropriate measures. If the abnormal main bearing can be repaired and
replaced in time, possible major accidents and unnecessary maintenance costs and downtime can be
avoided. The computational time of k-means based ODBN and ODBN methods during the condition
monitoring is 129.596 s and 4.748 s, respectively.

Figure 15a,b plot the monitoring results of the k-means–based ODBN and ODBN models,
respectively, for Turbine 13. From Figure 15a, one can see that based on the fault thresholds, the
alarm is first issued at sample point 1457, while the actual fault happened at 07:48 on 4 July 2014,
which is the 5856th sample point. Therefore, the proposed approach can detect the fault almost 36.6 h
in advance. As shown in Figure 15b, the MD value also first crosses the fault threshold at point 1457,
and an early alarm is triggered. According to the computation results in Figure 15, one can conclude
that the two models are able to simultaneously identify the anomaly of the main bearing nearly 36.6
h in advance, and the computational time of k-means-based ODBN and ODBN methods during the
condition monitoring is 2.567 s and 68.046 s, respectively.

Based on the application analysis of the above real case, the proposed framework has
certain advantages in the real-time health monitoring of wind turbines, which can mainly be
attributed to the integration of multioperation condition monitoring and deep feature characterization.
Meanwhile, the computational time is relatively high due to the complex procedures of the proposed
divide-and-conquer strategy, but within acceptable limits. It is worth noting that the study is limited by
the use of only three months of SCADA data and that the results are not valid for longer time periods.

5. Conclusions

A health monitoring method for wind turbine operational states has been proposed to consider the
dynamic operating conditions of wind turbines and address the difficulty in accurately building normal
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behavior models. In the proposed approach, on the one hand, considering the multiple operating
characteristics of wind turbines, a general multioperation condition partition scheme based on the
k-means clustering method was utilized to segment the whole operation into multiple sub-operation
conditions. One the other hand, ODBNs were applied to construct a healthy prediction model in each
condition cluster where model parameters are optimally selected by the CSO algorithm. Compared
with the conventional back-propagation and support vector machine models, the optimized modeling
method can achieve higher prediction accuracy due to its deep feature representation capability.

A case for wind turbine main bearings was used to verify the effectiveness of the proposed health
monitoring framework by real SCADA data. Compared with the ODBN model without considering
the operating characteristics, the proposed framework does not generate false alarms under the normal
conditions of wind turbines. In addition, both models are capable of detecting the anomalies of wind
turbine main bearings in advance. Specifically, the proposed method could detect the faults either
sooner, although only a 2.6% improvement, or at the same time. The results of normal and abnormal
behavior testing demonstrate that the proposed approach generally achieves more effective and reliable
detection accuracy.

This study also brings a loss of computational cost while having good detection performance.
Also, due to data constraints, the study is limited by the use of only three months of SCADA data and
the results are not valid for longer time periods. In future work, our developed framework will also be
used for long-term monitoring of the main bearing operational states when more available SCADA
data are collected. Other optimization methods will be used for the main bearing health monitoring.
In addition, the approach will be extended to the application of other components in wind turbines.
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Abstract: This paper proposes a strain prediction method for wind turbine blades using genetic
algorithm back propagation neural networks (GA-BPNNs) with applied loads, loading positions,
and displacement as inputs, and the study can be used to provide more data for the wind turbine
blades’ health assessment and life prediction. Among all parameters to be tested in full-scale static
testing of wind turbine blades, strain is very important. The correlation between the blade strain
and the applied loads, loading position, displacement, etc., is non-linear, and the number of input
variables is too much, thus the calculation and prediction of the blade strain are very complex and
difficult. Moreover, the number of measuring points on the blade is limited, so the full-scale blade
static test cannot usually provide enough data and information for the improvement of the blade
design. As a result of these concerns, this paper studies strain prediction methods for full-scale blade
static testing by introducing GA-BPNN. The accuracy and usability of the GA-BPNN prediction
model was verified by the comparison with BPNN model and the FEA results. The results show that
BPNN can be effectively used to predict the strain of unmeasured points of wind turbine blades.

Keywords: wind turbine blade; full-scale static test; neural networks; strain prediction

1. Introduction

Wind turbine blades are one of the core force-bearing components of the wind turbine, and
their stability and reliability directly affect the safety of the whole machine. Structural testing is a
main way to check the rationality of the design and to verify the safety of manufacturing for turbine
blades, and it is also a necessary means to ensure the operational reliability and safety of wind
turbines [1]. The purposes of full-scale static testing of wind turbine blades are mainly to obtain
two kinds of information from the blade by applying static loads to the blade. One is to verify the
blade’s ability under complex design loads, and another is to obtain structural characteristics, such as
strain and deformation of the blade. Many studies have been conducted regarding blade structural
testing. For example, Fagan et al. [2] presented an experimental testing on a 13-m long wind turbine
blade and used the test results to calibrate finite element models, and then the materials used in the
blade construction and manufacturing costs were reduced by optimization design using a genetic
algorithm. Yang et al. [3] tested the limit loads in full-scale static testing of a wind turbine blade and
the deformation situation of the blade under the limit loads. The test results can provide important
technical parameters for the blade design. Pan [4] studied the effects of structural non-linearity on the
full-scale static testing of wind turbine blades, and analyzed the relationship between bending moment,
strain, stiffness, and deflection, and then provided more accurate stiffness data for a numerical model
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of load calculations for wind turbines. Thus, many achievements have been obtained in the blade
load bearing capacity and parameter measurement methods, and some studies have also focused
on structural characteristics and damage analysis of the blades [5–12]. Besides, some surrogate
models for wind turbine blade stress/strain prediction due to the significant computational burden
of physics-based simulation were constructed [13,14]. However, studies on the effects of the applied
load, loading positions, and blade displacement on the test results are rare, and in the full-scale static
testing of the wind turbine blade, the numbers of measuring points and strain gauges are also limited.
Therefore, full-scale static testing only plays a role in the blade certification and has little significance to
the blade design [4]. Blade strain is correlated to the applied load, loading position, displacement, etc.
If the correlation is neglected, the test environment will have a huge deviation with the actual working
conditions and the test result will be unreliable. The relation between blade strain and the applied
load, loading position, displacement, etc. is non-linear, and the number of input variables is many,
thus, the calculation and prediction of blade train are very complex. Back propagation neural networks
(BPNNs) use an error back propagation algorithm to learn and adapt unknown information and has
significant advantages in dealing with non-linear fitting and multi-input parameters. Yang et al. [15]
showed that BPNNs have a good performance in solving non-linear problems by comparing with
other methods in terms of absolute distance as a similarity measure. Moghaddam et al. [16] showed
that BPNNs were good at solving non-linear and multi-input parameter problems. The methods of
BPNNs were also introduced in the field of wind turbines. Huang et al. [17] applied the BPNN method
to vibration fault diagnosis of wind turbine gearboxes and the accurate diagnostic results proved to be
effective for analyzing the standard fault samples (training samples) and simulation samples (testing
samples). Chen et al. [18] concluded that BPNNs can be effectively utilized to detect the incipient
wind turbine faulty condition based on the data collected from wind farm supervisory control and
data acquisition. Zhang et al. [19] presents an anomaly identification model for wind turbine state
parameters by genetic algorithm back propagation neural network (GA-BPNN). But there are fewer
studies about wind turbine blade structures. Liu [20] investigated BPNN control methods for divergent
instability based on classical flutter of five degrees of freedom (DOF) wind turbine blade sections
driven by pitch adjustment, and the obvious effects of fuzzy control and BPNN control are illustrated
by numerical comparisons of vibration suppression from non-linear time response, amplitude of LCO,
and frequency spectrum analysis.

Compared with traditional BPNN methods, BPNNs improved by genetic algorithm (GA-BPNNs)
can find better initial weight and threshold and avoid falling into local optimal situations, which
traditional BPNNs often meet. Moreover, the systems constructed by GA-BPNNs have better
robustness and applicability in dealing with complex problems [21]. Therefore, taking the advantages
of the neural network in dealing with non-linear fitting and multi-input parameters, a strain-predictive
GA-BPNN model for the full-scale wind turbine blades static testing was established, and the strain
value prediction of the unmeasured points was realized. The accuracy of the GA-BPNN prediction
model was verified by comparison with BPNN model and FE analysis results. The applicability and
usability of a neural network prediction model was verified by comparing the prediction results with
the ANSYS simulation data. The study can provide the basis for the design and calibration of wind
turbine blades.

The remainder of this article is designed as follows. In Section 2, the basic concepts of neural
networks and the basic framework and algorithms of GA-BPNNs are introduced. The conditions
and test procedures for the full-scale wind turbine blades static testing are introduced in Section 3.
In Section 4, firstly, a strain-predictive GA-BPNN model was established for the center and trailing edge
of the suction side based on a full-scale static testing. Secondly, the accuracy of the strain–predictive
GA-BPNN model was verified by comparison with that of BPNN and FE analysis results. Then,
the strain on the positions of the maximum chord length, the gravity center, and the root of the wind
turbine blade are predicted. Finally, the reliability and applicability of the proposed model are proved
by comparing with the ANSYS simulation result. Ultimately, conclusions are dawn in Section 5.
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2. The Method of GA-BPNN

2.1. The Principles of BPNN

A relational model between the input set {Xj|j = 1,2, . . . ,M} and the dependent variable Y was
established using the improved neural network algorithm. Sample X1, . . . ,XM was used as the input
value and Y1, . . . ,YL was the output value for training the dependent variable prediction model.
The BPNN builds the network structure of the strain–prediction model for the full-scale wind turbine
blade static testing, as shown in Figure 1.

X

Xj

XM

Y

Yk

YL
wij wki

i

q

a

aL

ak

 
Figure 1. Back propagation neural network (BPNN) structure.

In Figure 1, Xi represents the input of the j-th node of the input layer, j = 1, 2, · · · , m; wij represents
the weight value between the i-th node of the hidden layer and the j-th node of the input layer; and
θi represents the threshold value of the i-th node of the hidden layer. φ(x) represents the excitation
function of the hidden layer; wki represents the weight between the k-th node of the output layer and
the i-th node of the hidden layer, i = 1, 2, · · · , q; ak represents the threshold value of the k-th node of the
output layer, k = 1, 2, · · · , l; ψ(x) represents the excitation function of the output layer; Yk represents
the output of the k-th node of the output layer. The data about the location of strain gauge, the loads
with different percentage, and the displacement of loading positions were used as input data, and the
data about strains and stresses were used as output data.

2.2. The Principles of GA-BPNN

Since the gradient descent method is used by BPNN algorithms, it is easy to fall into a situation
of local optimization. Using a genetic algorithm to optimize the weight and threshold of BPNNs,
which is improved by the Levenberg–Marquardt formula, can minimize the training error of the neural
network, which can effectively avoid the training falling into a local optimization situation [22,23].
The weight and threshold of the BPNN are the chromosomes of the genetic algorithm. Each element
of a chromosome is called a gene. The chromosomes with poor fitness values are eliminated, and
the best genomes are selected to obtain the optimal solution by calculating the fitness values of each
chromosome continuously. The method of BPNN improved on the basis of the genetic algorithm is
shown in Figure 2 [24,25].
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Figure 2. Flow chart of genetic algorithm (GA)-BPNN.

Step 1: Data processing. The input and output variables are determined. The input data are
trained to speed-up network calculating.

Step 2: The weight and threshold are optimized. (1) The evolution numbers, population size,
crossover probability, and mutation probability are initialized. (2) The network weight and threshold
are encoded, and the fitness function, which is the reciprocal of the sum of errors squared is determined.
(3) The selection operation: the chromosome with the fitness value “good” from the current population
is selected as the parent. The higher the individual fitness value is, the greater the probability of
the chromosome selected. The roulette method is used to select chromosomes. That is, a uniformly
distributed random number is generated in [0, 1], and if r ≤ q1, the chromosome x1 is selected. If qk–1

< r ≤ qk (2 ≤ k ≤ N), the chromosome xk is selected, and qi is called the accumulation probability
of chromosome xi (i = 1,2, . . . ,n), and its calculation formula is as shown in Equation (1). (4) Cross:
two chromosomes are selected according to a certain probability, one or more points in the two
chromosomes are exchanged with each other randomly to obtain two new chromosomes. (5) Variation:
according to a certain mutation probability, in the binary coding of chromosomes, 1 becomes 0, and 0
becomes 1. This operation can effectively avoid premature convergence in the evolution process and
thus falling into a local optimum. (6) Repeat steps (3), (4), and (5) until the number of evolutions is
reached, then the optimal weights as well as the thresholds will be obtained.

Step 3, the BPNN model is built. The optimal initial weights and thresholds are obtained to
construct the BPNN [25]. Any non-linear mapping can be realized by the three-layer BPNN in
theory. The hidden-layer number, number of times, step size, and target of the BPNN are constructed.
A tangent S-type transfer function as Equation (2) is used between the input layer and the hidden layer,
while a linear transfer function as Equation (3) is used between the hidden layer and the output layer.

Step 4: the results are obtained by BPNN. The sample data are inputted into the BPNN model to
predict the output data and then the output data are obtained if the results meet the terminal condition.

qi =
i

∑
j=1

P(xj) (1)
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f (x) =
1

1 + e−x (2)

f (x) = kx (3)

3. Full-Scale Static Test of Wind Turbine Blades

3.1. The Wind Turbine Blade Specification

The full-scale static testing was conducted in cooperation with a certain blade company, and
the testing result was used to verify the safety of the blade prototype, and was also used for further
improvement. The testing process followed GB/T 25384-2010 [26].

The blade prototype was mainly made of fiber reinforced polymer. The blade had a mass of
15,968 kg and a natural frequency of 1.41 Hz. The maximum chord length was 3.8 m. The main
elements of a wind turbine blade are shown in Figure 3.

Figure 3. The structure of a wind turbine blade.

In the full-scale static testing, 56 strain gauges were attached to the surface of the wind turbine
blade on the center of the pressure side (PS), the center of suction side (SS), the leading edge, and the
trailing edge before testing. The locations and positions of strain gauges attached on the blade are
shown in Figure 4.

 
Figure 4. The locations and positions of strain gauges on the wind turbine blade.

3.2. Testing Procedure

The blade is fixed to the test platform by 64 bolts on the blade root, the limit loading was performed
by pulling from one side, and the applied loading diagram is shown in Figure 5, where P1-P5 are the
positions of the tensile machine, S1-S5 are the load application points. From Figure 5, we can see that
the loading points were respectively arranged at a distance of 18.00 m, 30.00 m, 42.00 m, 50.00 m, and
60.00 m from the root of the blade, and the loading direction was perpendicular to the normal direction
of the loading section.
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Figure 5. Applied loading diagram of the full-scale static testing.

As this paper aims at proposing a strain–predictive method, it only considers the situation of
static testing in the flap+ direction as an example. The structure of every cross-section is different, thus
their load bearing capacity is different. The target load of each loading point in the static testing was
the design load which was obtained by finite element analysis (FEA) during the initial phase of design,
and the applied target load had a certain deviation from the design value for existing equipment
loading errors. In the direction of the flap+, the target load of each loading point is shown in Table 1.
Following the test process of GB/T 25384-2010, the applied load, displacement, and strain of the blade
were cleared before starting the test. Then, using the lateral loading device, the blade was loaded
step by step according to 0%, 40%, 60%, 80%, and 100% of the target load, and the data was recorded.
The load of each stage is shown in Table 2. The duration of each stage of load was not less than 10 s.
After the loading was completed, the unloading was performed step by step, the blade load was
unloaded to the zero state, and the displacement data and the strain gauge data were recorded during
the loading process.

Table 1. The target load of each loading point.

Items
The Distance of Loading Positions from the Blade Root (m)

18.0 30.0 42.0 50.0 60.0

target load (kN) 94.6 143.0 59.8 104.4 68.0

Table 2. The applied load of each stage in flap+.

The Applied Load (kN)

The Distance of Loading Positions
from the Blade Root (m)

0 40% 60% 80% 100%

18.00 0 37.85 57.48 75.76 94.74
30.00 0 57.42 86.17 114.60 143.15
42.00 0 24.09 35.85 48.16 60.15
50.00 0 42.34 62.75 83.04 104.67
60.00 0 27.25 40.98 54.51 68.07

4. GA-BPNN-Based Strain Prediction in Full-Scale Static Testing

4.1. GA-BPNN-Based Strain Prediction for the Center of Suction Side

During the loading process of the full-scale static testing, there was a non-linear mapping
relationship between the strain and the applied load, loading positions, and displacements. The neural
network, with its good learning method, can approximately express the non-linear mapping
relationship between the above parameters through the establishment of the network model. Thereby,
the strain of the blade is predicted. In the GA-BPNN model for strain prediction, the applied load,
the loading positions, and the displacements were used as training inputs, and the strain of wind
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turbine blade was output. In the full-scale static test, there were 56 sets of data which all come from
actual strain gauges, 50 set of data were trained to construct the NN models, while the remaining six
sets of data were used to test the model accuracy, then a GA-BPNN model for wind turbine blade
strain prediction was established. The training samples and test samples of the GA-BPNN are shown
in Tables 3 and 4, respectively. The measurement method was up to standard. According to the test
program, 14 strain gauges were arranged in the center of the suction side and the target load was
imposed gradually by four steps with the duration of every step more than 10 s, thus 56 sets of data
were obtained in the four different cases. Since the BPNN model needed enough training samples to
ensure effectiveness, and the data used to test could not be selected as training data, the sample size
of test data should try to be minimized without too much manual interference, so six samples were
randomly selected as the test samples.

Table 3. The training samples of the GA-BPNN.

Items
The Location of

Strain Gauge

Load (kN)
The Distance to the

Blade Root (m)

F1 F2 F3 F4 F5 l1

1 2000 37.85 57.42 24.09 42.34 27.25 0
2 6000 57.48 86.17 35.85 62.75 40.98 1.16
3 9000 75.76 114.6 48.16 83.04 54.51 5.69

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .
50 48,000 75.76 114.6 48.16 83.04 54.51 5.69

Items
The Displacement of Loading Positions (m)

s1 s2 s3 s4 s5 s6 s7

1 159 755 2159 3717 6384 7900 −1186
2 264 1158 3257 5596 9605 11,876 −1898
3 368 1557 4350 7469 12,773 15,770 −2383

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .
50 368 1557 4350 7469 12,773 15,770 −2971

Table 4. The test samples of the GA-BPNN.

Items
The Location of

Strain Gauge

Load (kN)
The Distance to the

Blade Root (m)

F1 F2 F3 F4 F5 l1

1 2000 57.48 86.17 35.85 62.75 40.98 1.16
2 15,000 75.76 114.6 48.16 83.04 54.51 5.69
3 24,000 37.85 57.42 24.09 42.34 27.25 0
4 36,000 94.74 143.15 60.15 104.67 68.07 8.51
5 51,000 75.76 114.6 48.16 83.04 54.51 5.69
6 33,000 57.48 86.17 35.85 62.75 40.98 1.16

Items
The Displacement of Loading Positions (m)

s1 s2 s3 s4 s5 s6 s7

1 264 1158 3257 5596 9605 11,876 −1790
2 368 1557 4350 7469 12,773 15,770 −2748
3 159 755 2159 3717 6384 7900 −1964
4 477 1976 5490 9405 16,019 19,741 −4849
5 368 1557 4350 7469 12,773 15,770 −2490
6 264 1158 3257 5596 9605 11,876 −3047

The specific procedure of the GA-BPNN is set as follows: The input dimension is 13, and the
output dimension is 1. Seven neurons are set in the hidden layer, and a tangent S-type transfer function
such as Equation (2) was used between the input layer and the hidden layer. A linear transfer function
such as Equation (3) between the hidden layer and the output layer was used. The network maximum
number of training steps was 2000 steps, the network learning rate was six, the momentum factor is one,
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the training target was allowed to have a minimum convergence error of le-3, and the training result
were displayed at intervals of 50 steps. The learning process of the training samples was simulated.
Set the genetic algorithm population size to 1800 and the genetic iteration to 200. Call the GAOT
which is the genetic algorithm toolbox in MATLAB and get the predicted correlation values. In order
to verify the accuracy and validity of the GA-BPNN, traditional BPNN was also used to predict the
strain. The specific procedure of the BPNN was set as follows: The input dimension was 16, and the
output dimension was 1. There were seven neurons in the hidden layer, with a tangent S-type transfer
function between the input layer and the hidden layer. In addition, a linear transfer function between
the hidden layer and the output layer was used. The network maximum number of training steps was
2000 steps, the network learning rate was two, the training target was allowed to have a minimum
convergence error of le-3, and the training result was displayed at intervals of 50 steps. The learning
process of the training samples was simulated. The comparison results are shown as Figure 6.

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 6. (a) Regression curve of the BPNN model error; (b) regression curve of the GA-BPNN model
error; (c) GA iteration curve graph of mean square error; (d) GA iteration curve graph of fitness
function value. (e) The fitting results comparison of the training set about BPNN; (f) The fitting results
comparison of the training set about GA-BPNN.
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Figure 6a,b shows regression curve of BPNN model error and GA-BPNN model error, respectively.
In Figure 6a, it shows regression analysis of the training samples by BPNN model, the relevant
regression coefficient was 0.99331, The relevant regression coefficient was good, which means strain
prediction in full-scale static testing of wind turbine blades has good performance based on BPNN.
However, Figure 6b shows that the relevant regression coefficient of GA-BPNN was 0.99838, the
relevant regression coefficient was closer to 1. Figure 6c is the curve graph of mean square error, where
the blue line represents the minimum sum of squared errors and the red line represents the sum of
squared errors; Figure 6d is the iteration curve graph of the fitness function value, the best fitness
function value is shown by a blue line, whereas the average fitness function value is shown by a red
line. The genetic algorithm runs 200 times during an iteration step. In addition, from Figure 6e,f,
the curve of the prediction values fitted by GA-BPNN was more similar to that of the actual values
than BPNN, so we can conclude that the fitting results of GA-BPNN were better than BPNN, which
means GA-BPNN has a better performance than BPNN. From Tables 5 and 6, the input weighting
values of the traditional BPNN method and the GA-BPNN method have been presented, respectively.
The input weighting values were a 13 × 7 matrix because of the input data with 13 variables and the
7 hidden-layer nodes and all of the BPNN and GA-BPNN were set this way.

Table 5. The input weight values of the BPNN.

−1.624 −0.512 −0.417 −0.084 −0.001 0.320 0.260 0.712 0.008 0.111 −0.382 −0.780 0.660
−0.444 −0.136 0.609 −0.492 −0.509 −0.182 −0.598 −0.761 −0.186 −0.243 −0.786 −0.296 −0.198
0.752 0.050 −0.181 0.496 0.566 0.578 −0.792 −0.285 −0.212 −0.684 −0.236 −0.142 −0.203
0.958 −0.057 0.577 −0.194 0.442 0.591 −0.815 −0.558 −0.676 0.162 0.675 0.206 0.091
−0.635 −0.264 0.651 −0.449 0.632 0.333 0.226 0.340 −0.109 −0.219 0.298 −0.844 0.505
0.217 0.182 0.478 −0.769 0.072 −0.530 0.283 −0.203 −0.106 0.436 0.570 −0.286 −0.373
1.450 −0.685 0.204 0.173 0.117 −0.745 −0.620 0.052 0.535 −0.263 0.598 −0.487 −0.182

Table 6. The input weight values of the GA-BPNN.

−3.288 0.581 −0.291 −0.754 −0.506 0.911 0.032 −0.245 0.185 −0.532 −0.308 0.648 0.230
−2.997 0.292 −0.991 −0.479 0.125 0.2931 −0.114 −0.357 −0.606 1.1067 −0.465 0.768 0.473
0.188 −0.658 −0.602 −0.798 0.145 −1.308 −0.993 −0.486 −0.466 −1.517 0.0098 0.063 0.233
0.115 0.649 −0.239 −0.401 0.574 −0.624 −0.898 −0.949 −0.045 0.681 −0.834 −0.593 −0.559
−0.840 0.154 −0.366 1.023 0.784 −0.651 −0.378 0.3140 0.922 0.233 −0.807 −0.184 −0.164
−2.537 0.575 −0.386 0.625 0.151 −0.056 −0.062 −0.721 −0.067 −0.654 0.579 −0.715 0.440
0.415 1.046 0.047 −0.508 1.002 −0.638 −0.023 −0.274 −0.669 −0.590 0.483 0.112 0.636

The test sample was used to verify the recognition ability of the GA-BPNN compared with
the traditional BPNN, the comparison results are shown as Figure 7. The errors are calculated by
difference between the true values which were used as testing samples and the predictive values which
were trained by GA-BPNN and BPNN, respectively. It can be seen from Figure 7 that the GA-BPNN
corresponding to the variable forecasting results were much more accurate, and the relative error rate
of the test sample output was within 6.5%. Moreover, the relative error of every test sample analyzed
by GA-BPNN was less than those analyzed by BPNN. So, GA-BPNN was more accurate than BPNN.

In order to verify the reliability and availability of the BPNN and GA-BPNN, the prediction
results were used to compare it with the simulation data made by ANSYS. The unmeasured points on
the center of the suction side at 33.00 m, 42.00 m, 48.00 m, 52.00 m, 54.00 m, 56.00 m, 58.00 m, 63.00 m,
and 65.00 m from the root of the blade were chosen to predict their strain by using BPNN. Comparing
the prediction data with the simulation data, the comparison results are shown in Figure 8. It can be
seen from Figure 8 that both BPNN and GA-BPNN have a high accuracy to predict the strain, and that
the GA-BPNN had a smaller error.
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Figure 7. The comparison results of prediction errors for the center of suction side.

 
Figure 8. The comparison of GA-BPNN, BPNN, and the simulation test.

4.2. GA-BPNN-Based Strain Prediction for the Trailing Edge

As the same with the previous approaches in Section 4.1, the strain forecasting model based on
GA-BPNN for the trailing edge was established by GA-BPNN. The training samples and test samples
of the GA-BPNN are shown in Tables 7 and 8, respectively.

The comparison results of the GA-BPNN and traditional BPNN for the strain prediction of the
full-scale static testing of the wind turbine blade are shown as Figure 9.

Figure 9a,b show the training state of BPNN and GA-BPNN, respectively; Figure 9c,d show the
regression of BPNN and GA-BPNN, respectively; Figure 9e is the curve graph of mean square error,
where the blue line represents the minimum sum of squared errors and the red line represents the
average sum of squared errors; Figure 9f is the iteration curve graph of fitness function value, where
the best fitness function value is shown by a blue line, whereas the average fitness function value is
shown by a red line.

Figure 9a,b show the regression curve of BPNN model error and GA-BPNN model error,
respectively. In Figure 9a, it is regression analysis of training samples by the BPNN model, the relevant
regression coefficient was 0.91038, the training result is modest according to the relevant regression
coefficient. The regression results trained by the BPNN are more different than the theoretical values
compared with the regression results from the center of suction side. The reason for this result is that
the trailing edge is the joint of two different materials. In Figure 9b, the relevant regression coefficient
of GA-BPNN was 0.96706, which is closer to 1, and the number of relevant regression coefficients
of GA-BPNN training was bigger than that of the BPNN, which means the regression results of the
GA-BPNN was better than the BPNN. In addition, from Figure 9e,f, the fitting results of the GA-BPNN
were better than the BPNN, so the GA-BPNN training had the better performance than the BPNN
training. From Tables 9 and 10, the input weighting values of the traditional BPNN method and
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the GA-BPNN method are presented, respectively. The input weighting values are a 13 × 5 matrix
because of the input data with 13 variables and the five hidden-layer nodes, and all of the BPNN and
GA-BPNN models were set by this way.

Table 7. The training samples of the GA-BPNN.

Items
The Location of

Strain Gauge
Load (kN)

The Distance to the
Blade Root (m)

F1 F2 F3 F4 F5 l1

1 2000 37.85 57.42 24.09 42.34 27.25 0
2 6000 57.48 86.17 35.85 62.75 40.98 1.16
3 9000 75.76 114.6 48.16 83.04 54.51 5.69

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .
50 48,000 75.76 114.6 48.16 83.04 54.51 5.69

Items
The Displacement of Loading Positions (m)

s1 s2 s3 s4 s5 s6 s7

1 159 755 2159 3717 6384 7900 −146
2 264 1158 3257 5596 9605 11,876 −418
3 368 1557 4350 7469 12,773 15,770 −497

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .
50 477 1976 5490 9405 16,019 19,741 −396

Table 8. The test samples of the GA-BPNN.

Items
The Location of

Strain Gauge
Load (kN)

The Distance to the
Blade Root (m)

F1 F2 F3 F4 F5 l1

1 24,000 37.85 57.42 24.09 42.34 27.25 0
2 21,000 75.76 114.6 48.16 83.04 54.51 5.69
3 33,000 37.85 57.42 24.09 42.34 27.25 0
4 36,000 94.74 143.15 60.15 104.67 68.07 8.51
5 21,000 94.74 143.15 60.15 104.67 68.07 8.51
6 24,000 75.76 114.6 48.16 83.04 54.51 5.69

Items
The Displacement of Loading Positions (m)

s1 s2 s3 s4 s5 s6 s7

1 159 755 2159 3717 6384 7900 −189
2 368 1557 4350 7469 12,773 15,770 −532
3 159 755 2159 3717 6384 7900 −147
4 477 1976 5490 9405 16,019 19,741 −652
5 477 1976 5490 9405 16,019 19,741 −717
6 368 1557 4350 7469 12,773 15,770 −598

Table 9. The input weight values of the BPNN.

0.182 0.134 −0.272 −1.017 −1.216 −0.874 −1.074 −0.827 −0.489 −0.865 −0.668 0.041 0.167
−0.216 1.769 2.422 1.784 1.773 2.682 1.436 1.961 1.403 1.449 1.070 1.780 2.273
0.0524 −0.305 0.762 −0.029 −0.317 −0.078 −0.368 0.324 −0.364 0.009 −0.116 0.725 −0.416
−0.317 2.778 1.776 3.031 1.922 3.017 2.795 2.940 2.743 2.104 2.824 2.203 2.066
0.115 −1.131 −0.772 −0.829 −0.806 −0.417 −1.82 −0.654 −1.715 −1.022 −1.058 −0.487 −1.129

Table 10. The input weight values of the GA-BPNN.

41.803 −0.991 −1.52 −0.70 2.601 −1.894 0.510 1.772 1.574 0.787 0.038 −1.27 −1.056
0.763 −0.671 −0.05 0.95 −1.021 −0.596 11.960 −0.777 0.365 −0.601 −1.262 −1.40 0.277
−1.333 2.607 1.381 1.42 3.559 0.850 −15.57 3.153 3.654 2.847 2.374 3.27 2.519
−28.76 5.738 4.997 4.46 6.254 5.188 5.005 5.217 6.533 5.527 5.109 4.64 5.508
1.322 3.529 3.600 2.85 −8.248 3.232 3.252 −4.561 −4.716 −3.261 −2.641 1.17 1.212
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Figure 9. (a) Regression curve of the BPNN model error; (b) regression curve of the GA-BPNN model
error; (c) GA-iteration curve graph of mean square error; (d) GA-iteration curve graph of fitness
function value. (e) The fitting results comparison of the training set about BPNN; (f) The fitting results
comparison of the training set about GA-BPNN.

The test sample was used to verify the recognition ability of the GA-BPNN in contrast to traditional
BPNN, and the test results were compared as shown in Figure 10. It can be seen from Figure 10 that the
average error of GA-BPNN was smaller than that of BPNN which means the GA-BPNN corresponding
to the variable prediction results were more accurate, and the relative error rate of the test sample
output was within 18%. Compared with the prediction results of the center of the suction side, the error
was relatively larger. For the trailing edge is the faying surface of the suction side and pressure side,
the strain was influenced by more factors such as binder type, binder parameters, physical dimension,
etc.; thus, more inputs are needed to get a more accurate prediction.
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Figure 10. The comparison results of prediction errors for the trailing edge.

The unmeasured points on trailing edge at 33.00 m, 42.00 m, 48.00 m, 52.00 m, 54.00 m, 56.00 m,
58.00 m, 63.00 m, and 65.00 m from the root of the blade were chosen to predict their strain by using
the BPNN. The contrast figures of BPNN, GA-BPNN, and the ANSYS simulation data are shown in
Figure 11. The conclusion is the same as the analysis of the center of the suction side, both BPNN and
GA-BPNN had a high accuracy to predict the strain, and the GA-BPNN had a smaller error. Thus,
GA-BPNN is more suitable for the strain forecast of the full-scale static testing of wind turbine blades.

 
Figure 11. The comparison of BPNN, GA-BPNN, and the simulation test.

5. Conclusions

The calculation and prediction of blade strain in the full-scale static testing of wind turbine blades
are very complex and difficult by traditional numerical methods, and the numbers of measuring
points as well as strain gauges arranged on the blade are limited, so the test data have insufficient
significance to the calibration of the blade design. As a result of these concerns, this paper proposed
a strain prediction method for wind turbine blades using a GA-BPNN with applied loads, loading
positions, and displacement as inputs, and tried to provide more data for the wind turbine blades’
health assessment and life prediction when the measurement points in full-scale static testing of wind
turbine blades are limited:

(1) Taking advantage of the neural network in dealing with complex problems, this paper established
a strain–predictive GA-BPNN model for the center and the trailing edge of the suction side based
on the full-scale static testing results of a certain wind turbine blade.
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(2) The GA-BPNN had a better performance on strain prediction in full-scale static testing of wind
turbine blades than the BPNN. In the training process, the relevant regression coefficient trained
by GA-BPNN was closer to 1 than the BPNN. In the test process, all the average errors of
GA-BPNN were smaller than those of the BPNN. In the prediction process, the values analyzed
by the GA-BPNN were closer to the theoretical values (simulation test values) than those analyzed
by the BPNN.

(3) The strain of unmeasured points at the center and the trailing edge of the suction side were
predicted by strain–predictive BPNN model, respectively. For strain prediction of the points at
the center of the suction side, the relative error rate of the test sample output was within 6.5%.
While for strain prediction of the points at the trailing edge of the suction side, the relative error
rate of the test sample output was within 18%. Compared with the prediction results of the center
of suction side, the error of the trailing edge was relatively larger. For the trailing edge is the
faying surface of suction side and pressure side, and the strain is influenced by more factors such
as binder type, binder parameters, physical dimension, etc., thus, more inputs are needed to get a
more accurate prediction.

(4) The unmeasured points at 33.00 m, 42.00 m, 48.00 m, 52.00 m, 54.00 m, 56.00 m, 58.00 m,
63.00 m, and 65.00 m from the root of the blade were chosen to predict their strain using the
BPNN. Comparing the prediction results with the ANSYS simulation data, both the BPNN and
GA-BPNN had a high accuracy in predicting the strain, and the GA-BPNN had a smaller error.
Thus, the GA-BPNN is more suitable for strain prediction of wind turbine blade static testing.
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Abstract: Empirical mode decomposition (EMD) is a widely used adaptive signal processing method,
which has shown some shortcomings in engineering practice, such as sifting stop criteria of intrinsic
mode function (IMF), mode mixing and end effect. In this paper, an improved sifting stop criterion
based on the valid data segment is proposed, and is compared with the traditional one. Results show
that the new sifting stop criterion avoids the influence of end effects and improves the correctness of
the EMD. In addition, a novel AEMD method combining the analysis mode decomposition (AMD)
and EMD is developed to solve the mode-mixing problem, in which EMD is firstly applied to dispose
the original signal, and then AMD is used to decompose these mixed modes. Then, these decomposed
modes are reconstituted according to a certain principle. These reconstituted components showed
mode mixing phenomena alleviated. Model comparison was conducted between the proposed
method with the ensemble empirical mode decomposition (EEMD), which is the mainstream method
improved based on EMD. Results indicated that the AEMD and EEMD can effectively restrain the
mode mixing, but the AEMD has a shorter execution time than that of EEMD.

Keywords: empirical mode decomposition; analysis mode decomposition; analysis-empirical mode
decomposition; mode mixing; sifting stop criterion

1. Introduction

The analysis of time-frequency of vibration signals is one of the most effective and important
methods for fault diagnosis of rotating machinery, since the vibration signal includes massive
information that reflects the running state of rotating machinery [1]. The empirical mode decomposition
(EMD) is one of most commonly used methods for signal processing in the time-frequency domain.
EMD can decompose a complex signal into the finite intrinsic mode functions (IMF) based on the
local characteristic time scale of signals, and each IMF represents one intrinsic vibration mode of
the original signal. Then the characteristic information of the signal can be extracted by analyzing
such stationary stable IMFs [2]. EMD has attracted increasing attention since it appeared [3–5], and it
has been widely used in economics, biomedicine and engineering science fields, especially for fault
diagnosis. Ali et al. [6] applied the EMD method and artificial neural network in fault diagnosis of
rolling bearings automatically. Xue et al. [7] presented an adaptive, fast EMD method and applied
it to rolling bearings fault diagnosis. Yu et al. [8] introduced various applications of EMD in fault
diagnosis. Cheng et al. [9] combined EMD with a Hilbert transform to conduct the recognition for
mode parameters. Then, they introduced how to apply the EMD to the fault diagnosis for local
rub-impact of rotors [10]. Rilling [11] investigates how the EMD behaves under the case of a composite
two-tone signal.
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Though EMD has been commonly utilized in reality, some shortcomings are exposed, including
mode mixing, end effects, stop criteria of IMF, over-envelope and under-envelope. These deficiencies
normally restrict the further promotion and application of EMD [12]. Since the criterion to judge IMF is
that the average value of its upper and lower envelope spectrums is zero in the EMD method, but in the
real decomposition process, that average value is impossible to be zero due to the disturbance of cubic
spline interpolation, the influence of end effect and adopted frequency. Thus, it is necessary to define
a valid stop criterion for the decomposition process in engineering, namely the stop criterion problem
of IMF for the EMD method, also named as the sifting stop criterion. Some researchers have attempted
to improve the efficiency of EMD. Among them, Pustelnik [13] mainly developed an alternative to the
sifting process for EMD, based on non-smooth convex optimization allowing integration flexibility in
the criteria, proposed algorithm and its convergence guarantees.

Mode mixing means that one IMF contains vastly different characteristic time scales, or similar
characteristic time scales that are distributed in different IMFs, which results in the waveform mixing
of the two adjacent IMFs. These mixing modes influence each other so that it is difficult to identify
them. Mode mixing is the fatal flaw of EMD. It makes the physical significance of IMF components
uncertain finally, which influences the correctness of signal decomposition and seriously restricts its
application in engineering [14].

Until now, various methods have been developed to restrain the mode-mixing problem in the
EMD. Zhao [15] directly filtered abnormal information related to the IMF and fitted filtered data
segment by spline interpolation, but it only proved to dispose the mode mixing problems caused
by a known transient abnormity. The masking signal method [16] and the high frequency harmonic
method [17] are simple and effective, but they are susceptible to distortion and need to be reprocessed
for practical engineering signals.

The ensemble empirical mode decomposition (EEMD) presented by Huang is generally considered
an effective one [18]. EEMD takes advantage of the statistical characteristics of white Gaussian noise
while frequency is uniformly distributed, so the signal after adding white Gaussian noise shows
continuity in different scales, which solved the mode mixing problem to some extent. However, it also
raised some other issues. For example, the number and the amplitude of white noises which are added
in the signal are greatly subjective, and the EEMD sacrifices some adaptivity. In addition, although the
number and the amplitude of added white noises are chosen reasonably, the mode mixing in low
frequency may be aroused artificially while high-frequency mode mixing is restricted [19]. Moreover,
the algorithm of the EEMD method is complex and it takes a long time to run the program, which will
restrict its application on the signal process that demands to be processed in real-time. Accordingly,
some researchers presented improved methods to overcome the deficiencies of EEMD. Among them,
Lei [20] proposed adaptive EEMD to improve its adaptivity. Zheng [21] developed partial EEMD
and Tan [22] presented multi-resolution EMD to solve mode mixing problem. Mohammad [23] uses
approximate entropy and mutual information to improve EEMD to generate statistical features in
order to increase the performance of early fault appearance detection, as well as the fault type and
severity estimation.

In this paper, a new sifting stop criterion was proposed based on valid data segments to solve the
problem of sifting stop criteria in the EMD, and an improved method, namely AEMD, combined the
analysis mode decomposition (AMD) and EMD. It was developed to solve the mode-mixing problem.
The sifting stop criteria and AEMD proposed were applied to a simulation signal and an engineering
case to illustrate the validity and superiority of the proposed method. The structure of the paper is as
follows: Section 2 introduces the basic principles of EMD; Section 3 narrates the proposed sifting stop
criteria based on valid data segment and compares it with the original one; in Section 4, the principle
and steps of AEMD are expounded firstly, then applied to decompose simulation signals and a rotor
vibration signal, and it is compared with the EMD and EEMD methods; finally, Section 5 draws a brief
conclusion of current work.
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2. Basic Principles of EMD

EMD refers to a “sifting” process, in which, the component with the smallest extreme time feature
scale is sifted out firstly, then those with larger extreme time feature scales, and the component with
the largest feature scales are finally sifted out. That is to say, the average frequency of IMF components
obtained from the EMD is reduced gradually, and the main steps of the EMD are introduced as follows [24]:

(1) Firstly, identify all the local maximum points and minimum points of original signal x(t),
then match the upper and lower envelope spectrums of extreme points with cubic spline line
respectively. Furthermore, ensure that the signal x(t) is between the upper and lower envelope
spectrums; (2) calculate the local mean of upper and lower envelope spectrums, denoted as m1;
(3) calculate the first component h1(t) according to Equation (1):

h1(t) = x(t) −m1 (1)

(4) Judge that whether h1(t) can satisfy the conditions to be an IMF. If not, h1(t) should be treated
as an original signal to repeat steps (1), (2) and (3) until h1(t) can meet the conditions, designated as
C1(t) = h1(t). C1(t) is the first IMF component after decomposition. (5) Separate C1(t) from the signal
x(t), i.e., r1(t) = x(t) − c1(t). (6) Treat r1(t) as an original signal to repeat steps (1)–(5), and after n
cycles, n IMF components and 1 residual value rn(t) can be derived; i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r2 = r1 − c2

r3 = r2 − c3
...
rn = rn−1 − cn

(2)

Then, the original signal x(t) can be expressed as:

x(t) =
n∑

i=1

ci+rn (3)

where ci refers to the ith IMF component and rn is the residual function.
This cycle comes to the end when rn becomes a monotonic function, but in the real decomposition

process, when rn meets the conditions of monotonic function, the cycle number is usually large, and the
number of IMF components will be too large. Furthermore, a mass of EMD tests have revealed that
most of these final components obtained from EMD are false IMF components, without substantive
physical significance. Thus, a good sifting stop criterion can not only improve the decomposition
efficiency, but also increase the decomposition accuracy.

The stop criteria of decomposition process proposed by Huang was realized by limiting the
standard deviation of the two adjacent IMFs and the sifting times are eventually controlled by the
iteration threshold Sd [25]. In particular, Sd is defined as:

Sd =
T∑

t=0

[hk(t) − hk−1(t)]
2

h2
k−1(t)

(4)

where T refers to the time span of a signal, hk(t) and hk−1(t) denote the two adjacent processing
sequences in the process of EMD and the value of Sd is usually between 0.2 and 0.3.

It is of great significance to determine reasonable iteration threshold Sd. If the threshold is too
small, the computational cost will increase greatly and the IMF components finally obtained will be of
no significance; while if it is too large, it will be difficult to satisfy the condition of IMF.
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3. The Sifting Stop Criteria Based on the Valid Data Segment

The sifting stop criteria of IMF proposed by Huang is valid for most cases, but there are some
problems; it can be noted from Equation (3) that when hk(t) = 0, the iteration threshold will become
an uncertain value. It is evidently inappropriate if the iteration threshold is used to control sifting
number at the time. In addition, the sifting stop criteria ignored the influence of end effect. Consequently,
the decomposition result may produce errors if the distorted endpoint data are adopted. In most cases,
the end effect of EMD is obvious, though some effective measures will been taken to restrain it, the end
effect still exists.

In this paper, an improved sifting stop criterion of IMF based on the valid data segment is
proposed, where the valid data segment means the residual data segment after kicking out the distorted
endpoint data. The sifting stop criteria fully consider the influence of end effect to sifting stop criteria,
and only use the valid data segment to calculate the iteration threshold. The sifting stop criterion is
expressed as follows:

If hk(t) is an IMF, it satisfies the following inequality:

− δ < m̃k+1 < δ (5)

where m̃k+1 denotes the valid data segment of the mean curve of upper envelope and lower envelope;
δ represents the error threshold, which ranges from 0.01 to 0.1.

The EMD is applied to decompose a simulation signal respectively based on the proposed sifting
stop criterion and the traditional one below. The simulation signal is

x(t) = x1(t) + x2(t), t ∈ [0, 1] (6)

x1(t) = (1 + 0.5 sin(2π ∗ 4t)) ∗ 2 cos(2π ∗ 80t),
x2(t) = sin(2π ∗ 24t)

(7)

The simulation signal consists of x1(t) and x2(t) (as shown in Figures 1–3) are the decomposition
results by using EMD based on the proposed sifting stop criterion and the traditional one, respectively.
It is worth noting that the EMD can efficiently decompose the original signal by using the two sifting
stop criteria, but it is clear from the two edges of these two figures that the decomposition result c1 and
c2 in Figure 2 are more accurate than imf 1 and imf 2 in Figure 3, which show an evident end effect.

x
t

x
t

t

x
t

Figure 1. The simulation signal and its two components.

62



Energies 2019, 12, 3077

t

Figure 2. The result of empirical mode decomposition (EMD) method using the sifting criterion based
on the valid data segment.

 t

Figure 3. The result of EMD method using the sifting criterion proposed by Huang.

Figure 4 plots the vibration signal of a real gear with broken teeth. The number of gear teeth
z = 75; module m = 2; the rotating frequency f = n2/60 ≈ 13.6. EMD based on the proposed sifting
stop criteria is used to decompose the vibration signal of a gear, and obtain five IMFs. The first IMF
imf 1 contains massive fault information of the gear. Note from its time domain graph (see Figure 5)
that the waveform of imf 1 presents an obvious modulation feature, and its cycle of modulation wave
(T, approximately 0.074 s) accordingly had a frequency of about 13.6 Hz, which is exactly the rotating
frequency of the faulty gear. Thus, it can be concluded that the fault information has been exacted
from the vibration signal of the practical gears by using the proposed sifting stop criterion.

t

x
x(

t)/
um

t/s
Figure 4. The vibration signal of gear with broken teeth.
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Figure 5. The first IMF of EMD for the vibration signal with broken teeth.

4. AEMD Method

4.1. Analytical Mode Decomposition (AMD) Method

AMD can separate the harmonic components of each frequency band from a multiband signal,
its principle is as follows:

A signal x0(t) is separated into the two components by boundary frequency f b, one is the
fast-changing signal xf(t) and another is slowly-changing signals xs(t):

x0(t) = x f (t) + xs(t) (8)

Their corresponding Fourier transforms Xf(ω), Xs(ω) have no overlap in the frequency band.
The Hilbert transforms of cos(2π fbt) · x0(t) and sin(2π fbt) · x0(t) are as follows:

H[cos(2π fbt) · x0(t)] = xs(t) ·H[cos(2π fbt)] + cos(2π fbt) ·H[x f (t)] (9)

H[sin(2π fbt) · x0(t)] = xs(t) ·H[sin(2π fbt)] + sin(2π fbt) ·H[x f (t)] (10)

xs(t) and xf(t) can be derived from the above formulas:

xs(t) = sin(2π fbt) ·H[cos(2π fbt) · x0(t)] − cos(2π fbt) ·H[sin(2π fbt) · x0(t)] (11)

x f (t) = x0(t) − xs(t) (12)

As aforementioned, the signal x0(t) is decomposed into xs(t) and xf(t) by using the analysis
mode decomposition.

4.2. Steps of the AEMD Method

When the signal to be decomposed contains high-frequency intermittent signals or some similar
compositions in time feature size, it is inevitable that the mode mixing appears in decomposition
result by using EMD directly [11]. In this section, the AEMD that combines AMD with EMD is
proposed to restrain the mode mixing in EMD. In particular, EMD is first applied to dispose the original
signal, and then AMD is used to decompose these mixed modes. Then, these decomposed modes are
reconstituted according to a certain principle. These reconstituted components show mode mixing
phenomena alleviated. The specific steps are given as follows:

(1) EMD is applied to the original signal and obtain some IMFs and a residual component r;
(2) A fast Fourier transform (FFT) is conducted on IMFs, and the spectral diagrams of these IMFs

are obtained. The first IMF1(t) with mode mixing is performed by AMD. The boundary frequency
f b1 can be determined according to the spectrum. The average frequency of the two confused modes
is used as the boundary frequency in this analysis. Then IMF1(t) is separated into the two signals
c1(t) and ĉ1(t) by using AMD. c1(t) is the correction component of IMF1(t) and ĉ1(t) is the residual
component of c1(t). Thus, IMF1(t) can be expressed as follows:

IMF1(t) = c1(t) + ĉ1(t) (13)
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(3) Add ĉ1(t) to the IMF2(t) and get the renewed IMF2(t), denoted as IMF*2(t). The boundary
frequency fb2 can be obtained according to the amplitude spectrum of IMF*

2(t). Then IMF*
2(t) is

decomposed into the two signals c2(t) and ĉ2(t) by using AMD. c2(t) is the correction component of
IMF*2(t) and ĉ2(t) is the residual component of c2(t). Similarly, IMF*2(t) is expressed as follows:

IMF∗2(t) = c2(t) + ĉ2(t) (14)

(4) By that analogy, the similar approach is utilized to dispose all the subsequent IMF components
with mode mixing. The final residual component cˆ

k(t) is added to the residual error r and obtain the
final residual error, denote as vk(t).

4.3. The Comparison of Simulation Signal Analysis by Different Methods

A simulation signal was decomposed by using EMD, EEMD and the proposed AEMD
respectively, and their disposal results were compared, to demonstrate AEMD efficiency and superiority.
The simulation signal x(t) is:

x(t) = x1(t) + x2(t) + x3(t); t ∈ [0, 1] (15)

x1(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0.8 cos(600πt); 0.12 ≤ t ≤ 0.18
0.9 cos(600πt); 0.42 ≤ t ≤ 0.48
0.8 cos(600πt); 0.75 ≤ t ≤ 0.81

0; else

(16)

x2(t) = 2 cos(60πt); t ∈ [0, 1]
x3(t) = 2.5 cos(28πt); t ∈ [0, 1]

(17)

The simulation signal is shown in Figure 6. The decomposition result of EMD, in Figure 7,
shows more serious mode mixing. For the first mode, the high frequency intermittency signal c1(t)
is confused with the sinusoidal signal at 30 Hz, for the second mode c2(t), the sinusoidal signal at
30 Hz with the sinusoidal signal at 14 Hz. The third and fourth modes are false IMF components.
The decomposition result of EEMD is imf 1, imf 2, imf 3, imf 4, as shown in Figure 8, with ensemble
average number N = 30, and the amplitude of noise is set as 0.01 standard deviation of the original
signal. The decomposition result of AEMD is shown in Figure 9. A successful decomposition result
should distinctly obtain the several components of the original signal. In order to compare the results
of decomposition results by these different methods, the green lines in Figures 7–9 represent the several
components of the original signal; The blue lines represent the composition results by these different
methods. Table 1 lists the run time by these three methods using the same computer.

Note from Figures 7–9 that the goodness of fit between the blue line and green line by EEMD
and AEMD methods is higher than that of EMD. The comparison of these three methods reveals that
EEMD and AEMD can restrain effectively the mode confusion phenomena, but the running time of
EEMD is much longer than those of AEMD and EMD, because the EEMD method adds white noise
to original signals to alleviate mode mixing problem, which makes the decomposition process more
complex and time-consuming. The executed time of EMD is approximately equal with AEMD’s, but it
has inevitable mode mixing problem. Thus, AEMD has shown certain comprehensive advantages in
alleviating mode mixing and making decomposition efficient.
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Figure 6. The time domain chart of simulation signal x(t).

Figure 7. The decomposition result of the simulation signal by EMD.

Figure 8. The decomposition result of the simulation signal by ensemble empirical mode
decomposition (EEMD).

Table 1. The running time of the three methods (unit: seconds).

Method First Second Third Fourth Fifth Sixth

EMD 1.3988 1.3860 1.3930 1.3846 1.3820 1.3940
EEMD 41.4875 44.8383 44.1800 42.8480 43.2321 44.024
AEMD 1.4027 1.3832 1.3843 1.3934 1.3880 1.3848
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Figure 9. The decomposition result of the simulation signal by AEMD (combined AMD and EMD).

4.4. Case Study

Figure 10 presents the experimental device to simulate the local rubbing fault of rotors,
during which the rotate-speed was at 300 RPM, controlled by the inputted motor. The displacement
sensor that was horizontally installed was employed to sample the vibration signals, with sampling
frequency 4k Hz. Figure 11 plots the vibration signal of a practical rotor system with rub-fault.
The decomposition result for the vibration signal by using the EMD and the AEMD are shown as
Figures 12 and 13, respectively. Figure 14a,b is the spectrum diagram by fast Fourier transform (FFT)
for the composition results of EMD and AEMD, respectively.

Note from Figures 12 and 14a that the mode mixing problem still distinctly exists in the
decomposition results by EMD. In the imf 2 diagram, the characteristic frequency of the rotor rubbing
fault is confused in multiple frequencies, caused by the slight rubbing fault of the rotor, which affects
the identification for the fault. In the imf 3 diagram, the triple frequency of the characteristic frequency
of the rotor rubbing fault—150 Hz is nearly invisible, which is mixed in the fundamental frequency of
the rotor rubbing fault—50 Hz.

 
Figure 10. The experimental device for simulating local rubbing fault of rotors.
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Figure 11. The vibration signal of rub-fault for rotors.
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Figure 12. The decomposition result for the vibration signal of rub-fault by EMD.
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Figure 13. The decomposition result for the vibration signal of rubbing-fault by AEMD.
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Figure 14. (a) The spectrum of intrinsic mode functions (IMFs) by EMD. (b) The spectrum of IMFs
by AEMD.

In addition, note from Figures 13 and 14b that the tripling frequency 150 Hz and ten times
frequency—500 Hz of the characteristic frequency of the rotor rubbing fault are distinctly decomposed.
This spectrum character with multiple higher harmonics is in accordance with the slight rubbing fault
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of the rotors. Thus, the characteristic frequency of the rotor rubbing fault is successfully obtained by
AEMD, though there is still slighter mode mixing.

5. Conclusions

In this paper, an improved sifting stop criterion based on valid data segment was proposed.
Compared with the traditional one, results indicated that the newly proposed sifting stop criterion
avoids the influence of end effects and improves the correctness of the EMD. In addition, a novel
method, namely AEMD, which combines the AMD and EMD, was developed to solve the mode
mixing problem of EMD. Model comparison was conducted between the proposed method and the
EEMD. It is worth mentioning that both the AEMD and EEMD can effectively restrain the mode mixing,
but the AEMD needs less execution time than that of EEMD. The proposed method overcomes some
shortcomings of EMD to some extent and makes it better for use in the fault diagnosis of rotating
machinery. However, the proposed method has certain imitations; the boundary frequency of AMD
method requires human intervention, which means worse adaptivity than EMD. It can achieve better
results for more simple signals, but its advantage is not obvious for complex engineering signals,
since they take more time than EMD.
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Abstract: Prediction of Remaining Useful Life (RUL) of lithium-ion batteries plays a significant
role in battery health management. Battery capacity is often chosen as the Health Indicator (HI) in
research on lithium-ion battery RUL prediction. In the rest time of batteries, capacity will produce
a certain degree of regeneration phenomenon, which exists in the use of each battery. Therefore,
considering the capacity regeneration phenomenon in RUL prediction of lithium-ion batteries is
helpful to improve the prediction performance of the model. In this paper, a novel method fusing
the wavelet decomposition technology (WDT) and the Nonlinear Auto Regressive neural network
(NARNN) model for predicting the RUL of a lithium-ion battery is proposed. Firstly, the multi-scale
WDT is used to separate the global degradation and local regeneration of a battery capacity series.
Then, the RUL prediction framework based on the NARNN model is constructed for the extracted
global degradation and local regeneration. Finally, the two parts of the prediction results are combined
to obtain the final RUL prediction result. Experiments show that the proposed method can not only
effectively capture the capacity regeneration phenomenon, but also has high prediction accuracy and
is less affected by different prediction starting points.

Keywords: lithium-ion battery; remaining useful life; regeneration phenomenon; wavelet decomposition;
NAR neural network

1. Introduction

Lithium-ion batteries are considered to be the best energy storage devices for many applications
because of their light weight, high energy density, and long life [1–3]. From tiny Bluetooth headsets,
cameras, mobile phones, and laptops to hybrid electric cars and aerospace power systems, batteries are
very important and critical components. At the same time, battery failures can lead to performance
degradation of the power system, or even directly lead to the failure of the task, and increase costs.
Improper management of lithium-ion batteries in electric vehicles may cause fire or even explosions [4],
and power system malfunction is the main cause of mission failure in the aerospace field [5–7]. Therefore,
it is significant to study the prediction of RUL of lithium-ion batteries in practical applications.

In the field of lithium-ion battery RUL prediction, the gradually degraded battery capacity is often
used as an effective health indicator in order to track the attenuated process of the battery. In general,
a lithium-ion battery is deemed to fail when its capacity fades by 20–30% of the rated value [8]. In
some online applications of lithium-ion battery health prognostics, impedance, voltage, and current
are often used as HIs to reflect the battery degradation [9,10]. However, the RUL prediction using
capacity as the HI is generally more accurate and effective than other HIs as the change in battery
capacity directly reveals the health states of batteries [8]. Therefore, battery capacity as the HI is
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widely used in the RUL prediction of lithium-ion batteries. Additionally, the procedure of battery
degradation is not monotonous, the working process of the battery consists of charging, discharging,
and the rest stage. Overall, the capacity of a lithium-ion battery shows a degradation trend during
usage because of the side reactions that occur between the electrodes and electrolyte of the battery.
However, when the battery rests during charge/discharge profiles, the residual reaction products have
a chance to dissipate, thus increasing the available capacity for the next cycle. This phenomenon,
which emerges during the use of lithium-ion batteries, is called regeneration. The regeneration
phenomenon of lithium-ion batteries can alter the trend of the capacity prediction curve, thus affecting
the performance of prognostic models [11,12]. Therefore, it is important to consider the capacity
regeneration phenomenon in RUL prediction of lithium-ion batteries. Furthermore, the capacity time
series should be considered as a hybrid signal of multi-scale components, where global degradation and
local regeneration are signals of different scales. It is necessary to decouple the correlative components
from the original capacity time series in RUL prediction for extracting the most useful information [13].

In recent years, the RUL prediction methods for lithium-ion batteries can be divided into two types:
model-based and data-driven [7]. The data-driven prediction method has become a current research
hotspot because it does not need to analyze the complex internal mechanism and electrochemical
reaction process of batteries, only relies on the existing historical monitoring data, and avoids the defects
of a complex modeling process and large interference caused by environmental factors. Data-driven
methods [8,13–21] for health prediction of lithium-ion batteries usually use machine learning models
(support vector machines, logistic regression, and neural networks, etc.) to establish the relationship
between monitoring data and system health, so as to track the battery degradation and estimate the
RUL of batteries. Most of above methods [14–20] only focus on the global degradation trend of batteries
and ignore the regeneration phenomenon in battery rest time. In [21], Deng et al. propose an improved
empirical model based on that of Saha et al. [12], where they relax the fixed Coulombic efficiency and
estimate it with measured data; the dual EKF estimation is then employed to deal with the coupled
problem of parameter and state capacity. However, the experimental results show that the sudden
rise in capacity during regeneration is not predicted obviously. In [13], He et al. utilize a wavelet
decomposition and Gaussian regression combined method to capture the regeneration phenomenon in
battery health prognostics, but the performance is not ideal for capturing the regeneration part. In [8],
Yu proposes a method that combines empirical mode decomposition (EMD), logistic regression, and
Gaussian regression with consideration of the regeneration phenomenon, where an adaptive moving
window is added to the regression process to capture the regeneration of batteries by constantly changing
the size of the window. Compared with reference [13], this method performs better in capturing
the regeneration section. However, the RUL prediction accuracy of such regression methods [8,13]
is greatly affected by different prediction starting points. Therefore, it is still a challenging task to
design an appropriate RUL prediction method for lithium-ion batteries which can capture the capacity
regeneration phenomenon well and acquire a good prediction performance.

In addition, the degradation process of batteries is a complex, dynamic, and nonlinear
electrochemical process [22]; in the use of a battery, the capacity and service life of batteries show an
irreversible trend of gradual decline with time. Moreover, the degradation of capacity accelerates
in the later cycle life, showing a nonlinear characteristic. Therefore, battery capacity degradation
data is a kind of nonlinear time series data based on monitoring. In order to predict RUL better, it is
necessary to establish an appropriate model that can effectively deal with capacity degradation data
with the characteristics of nonlinear time series. With the rise of neural networks, many neural network
based methods have been applied in the field of health management and life prediction [18,23–31].
Among them, the NARNN [25,26,29,30] is a dynamic recurrent neural network with time series
prediction capability, which can effectively simulate nonlinear processes and deal with stationary and
non-stationary time series. Therefore, this paper chooses NARNN to establish the RUL prediction
model of lithium-ion batteries.
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Driven by the desire to capture capacity regeneration effectively and improve prediction accuracy,
a novel WDT–NARNN method for lithium-ion battery RUL prediction is proposed based on a
combination of WDT and NARNN. The WDT with multi-resolution characteristics is used to decompose
the capacity time series in multi-scale to get both the global degradation trend and the local regeneration.
The NARNN is utilized to recursively predict global degradation and local regeneration. Finally,
the NARs are integrated to achieve RUL prediction of lithium-ion batteries. Therefore, the main
contributions and innovations of this paper include the following: (1) The global degradation and
local regeneration in battery capacity time series can be separated effectively by WDT, which will
be helpful to improve the prediction performance of the prediction model; (2) A combined model
based on WDT and NARNN is established to model the local and global tendency of the battery
capacity changes, which enables the prediction model to capture the actual capacity decay tendency of
batteries effectively.

2. Related Algorithms

2.1. Wavelet Decomposition

Wavelet decomposition technology is a powerful tool to analyze non-linear and non-stationary
time series, which is widely used in various fields of engineering [13,32–35]. The global degradation and
local regeneration of battery capacity can be decomposed by using wavelet decomposition technology,
and the two parts can be processed respectively to achieve accurate prediction.

Wavelet analysis utilizes the wavelet function ψ(ω) and scaling function ϕ(ω) to perform the
multiresolution analysis decomposition and reconstruction of the signal. Following the idea used in
deriving the Meyer’s wavelet, Gilles [32] defines the empirical scaling function as

ϕi(ω) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if |ω| ≤ (1− ξ)ωi

cos(πρ(ξ,ωi)
2 ), if (1− ξ)ωi ≤ |ω| ≤ (1 + ξ)ωi

0, otherwise
(1)

and the empirical wavelet function as

ψi(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
1, if (1 + ξ)ωi ≤ |ω| ≤ (1− ξ)ωi+1

cos(πρ(ξ,ωi+1)
2 ), if (1− ξ)ωi+1 ≤ |ω| ≤ (1 + ξ)ωi+1

sin(πρ(ξ,ωi)
2 ), if (1− ξ)ωi ≤ |ω| ≤ (1 + ξ)ωi

0, otherwise

(2)

where ρ(x) is any arbitrary function with values in the range [0, 1] with the following properties:

ρ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if x ≤ 0
and ρ(x) + ρ(1− x) ∀x ∈ [0, 1]
1, if x ≥ 1

(3)

Then, the inherent mechanism of empirical wavelet transform is based on the formation of
adaptive wavelet based filters. In the wavelet analysis, the Mallat algorithm is used to decompose the
signals and obtain trend information (low frequency) and regeneration information (high frequency).
The decomposition equations are expressed as

Aj+1,k =
∑

m
h(m− 2k)Aj,m (4)

Dj+1,k =
∑

m
g(m− 2k)Aj,m (5)
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where j is the decomposition scale, k and m are translation variables, h is the low-pass filter, and g is the
high-pass filter.

The decomposed data is reconstructed by reconstruction algorithm to restore it to the original
spatial scale. The reconstruction equation is described as

Aj+1,k =
∑

m
h∗(m− 2k)Aj,m +

∑
m

g∗(m− 2k)Aj,m (6)

where h* and g* are the inverse functions of low-pass and high-pass filters respectively.

2.2. NAR Neural Network

NARNN is a kind of dynamic recurrent neural network with time series prediction ability. It
forms a discrete nonlinear autoregressive system with endogenous input [26,29], and the mathematical
representation of NARNN can be defined as follows:

y(t) = f (y(t− 1), y(t− 2), . . . , y(t− d)) (7)

where y(t) is the current output, y(t − 1), y(t − 2), . . . , y(t − d) are the historical outputs, d is the delay of
the network.

NARNN is composed of an output layer, hidden layer, and feedback layer. The function of the
feedback layer is to store the previous outputs, which can be regarded as a kind of ‘memory’ operator.
The network structure of NARNN is shown in Figure 1.

Figure 1. The structure of the Nonlinear Auto Regressive (NAR) neural network, where the w1 is the
connection matrix between input layer and hidden layer, w2 is the connection matrix between hidden
layer and output layer.

3. WDT–NARNN Prediction Method

3.1. Experiment Data Analysis

In this article, the experimental battery data used are derived from the data repository of NASA
Ames Prognostics Center of Excellence (PCoE) [36]. Four typical types of 18,650 sized rechargeable
batteries (#5, #6, #7 and #18) were used to illustrate the performance of our proposed approach for
RUL prediction of lithium-ion batteries. Figure 2 shows the true capacity degradation curves of the
four batteries. It can be seen that there is a clear descending trend, namely, the global degradation, and
several capacity regenerations (black circles). Obviously, the existence of these capacity regeneration
phenomena changes the normal degradation trend of the batteries.
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Figure 2. The capacity degradation curves of four batteries (#5, #6, #7, and #18).

A key step of the proposed model in this paper is to use WDT to decompose the capacity time
series at multi-scale to obtain the global degradation trend and local regeneration. Take battery #5 as
an example, the results of 6-layer decomposition by using the ‘dmey’ wavelet is shown in Figure 3. The
curve ‘a6’ in Figure 3(a6) is the low frequency signal, which reveals the normal degradation tendency
of the battery capacity. Curve ‘C’ in Figure 3(a6) is the real capacity degradation curve. d1–d6 are
the high frequency signals, and the peak value of the fluctuations corresponds to the captured local
regenerations. It can be seen that wavelet decomposition can get more degradation information of
battery capacity at different scales, and taking these parts into account will be beneficial to improve the
prediction accuracy of the RUL prediction model for lithium-ion batteries.

Figure 3. The wavelet decomposition of capacity for battery #5.

3.2. WDT- NARNN Modeling Process

As can be seen from the above decomposition results, the global degradation trend and local
regenerations of capacity are quite different in frequency characteristics and shapes. If the prediction is
performed directly, it is difficult to capture both features at the same time. Therefore, we proposed
a multi-scale decomposition and fusion prediction method WDT–NARNN for the RUL prediction
of lithium-ion batteries. The major procedures of the proposed WDT–NARNN modelling method is
shown in Figure 4, which is mainly divided into the following steps:
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Figure 4. Procedures of lithium-ion battery Remaining Useful Life (RUL) prediction based on the
proposed method.

(1) Extract the raw battery capacity series
{
Cap(i), i

}N
i=1, N means the total cycle number of

each battery.
(2) Decomposition of capacity time series. Firstly, wavelet function ψ(t) and the decomposition

level l are initialized. Based on that, the raw capacity time series are decomposed into l levels. At
the same time, several high frequency signals and one low frequency signal are obtained by low and
high pass filters. The low frequency signal reflects the global trend of capacity degradation and high
frequency signals reflect local fluctuations of capacity regeneration.

(3) Constructing prediction models for low-frequency and high-frequency parts respectively. The
prediction starting point is set to T. The low- and high-frequency parts after wavelet decomposition{
WDT_Cap(i), i

}T−1
i=1 are used as the training samples respectively. Then, NAR neural networks for

each decomposition component are designed and trained. Next, the trained NAR models are used to
predict the later time series data of each decomposed component.

(4) Combining prediction results. The final capacity prediction result is obtained by combining
and reconstructing the prediction results of all the NAR models. Then, according to the relationship
between the capacity and cycle numbers, the final RUL value is calculated by the following equation:

NRUL = NEOL −NECL (8)

where NRUL is the remaining useful life. NEOL is the total charge and discharge cycles when the actual
battery capacity degrades to the threshold. NECL is the charge and discharge cycles at the current time
of the battery.

For clarity, the integrated method with WDT and NARNN can be summarized in Algorithm 1.
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Algorithm 1. The integrated method with WDT and NARNN

(1) Initialization:
Select the wavelet function ψ(t) and the decomposition levels l;
(2) Decomposition:
Decompose the capacity series

{
Cap(i), i

}T−1
i=1 for the l levels to obtain the low and high-frequency signals at

different scales by Equations (4) and (5);
(3) Initialize the NAR neural network:
Initialize the parameters of NAR neural network, the numbers of input layer, hidden layer, and output layer are
set to Ni, Nh, and No respectively, the delay of the network is set to d, and the training function is set to ‘trainbr’;
(4) Output the prediction results:
Input the decomposed signals

{
WDT_Cap(i), i

}T−1
i=1 into the NAR models to predict the following changes after

time T, then prediction results
{
WDT_Cap(i), i

}N
i=T are obtained;

(5) Wavelet reconstruction:
The signals

{
WDT_Cap(i), i

}N
i=T are reconstructed from 1 to l levels by Equation (6) to obtain the fusing

predicted series corresponding to capacity series, and then RUL value can be calculated by Equation (8);
(6) Evaluate the prediction results:
The evaluation is given with original testing data and prediction results through some criteria to evaluate the
performance of the integrated method WDT–NARNN.

3.3. Performance Analysis

We use the following four evaluation criteria to measure and demonstrate the accuracy and
stability of the proposed method:

(1) Root Mean Square Error (RMSE) to evaluate the prediction accuracy. The smaller the RMSE is, the
better the prediction performance:

RMSE =

√√√√ n∑
i=1

(yi − ŷi)
2

n
(9)

(2) R2 to evaluate the prediction performance. If the fitting degree between the prediction curve and
real curve is high, R2 will be close to 1:

R2(y, ŷ) = 1−

n−1∑
i=0

(yi − ŷi)
2

n−1∑
i=0

(yi − yi)
2

(10)

(3) Absolute Error (AE) to evaluate the RUL accuracy of the prediction model:

AE =
∣∣∣R− R̂

∣∣∣ (11)

(4) Prediction Accuracy Improvement Ratio (ηAE) to evaluate the RUL prediction accuracy
improvement ratio of two different methods. If ηAE > 0, the first method is more accurate,
on the contrary, the second method has higher prediction accuracy:

ηAE =
AE2 −AE1

R
(12)

where n is the sample size, yi is the real value of battery capacity, ŷi is the predicted value of
battery capacity, and yi is the mean value of predicted battery capacity. R is the real RUL, R̂ is the
predicted RUL.
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4. Results and Discussion

4.1. RUL Prediction of Lithium-Ion Battery

In order to verify the effectiveness of the proposed RUL prediction model for lithium-ion batteries
based on WDT–NARNN (named M1), we design two comparative models M2 and M3 as shown in
Table 1. Model M2 uses the NAR neural network to directly establish the original capacity time series
prediction model without using wavelet decomposition technology to decompose the capacity series.
Model M3 uses BP neural network to establish the prediction model, and the other steps are the same
as model M1. In this comparison, M2 is tested to analyze the effect of WDT in the proposed model
M1. M3 is considered to illustrate the ability of the NAR neural network to predict capacity time
series. Experimental setting: We select the data from cycle 1 to cycle 69 as the training samples, and
the predicted starting point is 70. The ‘dmey’ wavelet is selected to carry out 6-layer decomposition of
capacity series. The Bayesian regularization algorithm (trainbr) is utilized as the training function of
NARNN. The hidden layer nodes are set to 10 and the feedback delay is set to 2. The training samples
of network are divided into 70% training samples, 15% verification samples, and 15% test samples.

Table 1. The proposed three models (M1–M3).

Model Model Description

M1 WDT combine with NARNN
M2 NARNN without using WDT
M3 WDT combine with BPNN

Figure 5 shows the comparison of prediction results of different models. It can be observed that
the prediction curve of model M1 is closest to the real capacity degradation curve and the capturing of
capacity regeneration is most accurate. Compared with model M1, the prediction result of model M2
is less effective in capturing capacity regeneration, and is more far away from the real capacity with
the increase in cycle numbers. The comparison reflects the validity of using WDT to extract capacity
global degradation and local regenerations to build prediction models respectively. Meanwhile, model
M3 uses the WDT to separate the global degradation and local regeneration, but the prediction curve
of M3 still shows a smooth trend. This phenomenon indicates that the traditional BP neural network
does not learn the regeneration phenomenon well in the training stage of network, which is mainly
due to its lack of feedback connection structure, resulting in its lack of ‘memory’ ability. So, BP neural
network is not very effective in dealing with RUL prediction of lithium-ion batteries, which is a time
series prediction problem. However, the model M1 utilizes NARNN with time series prediction ability
that can learn the capacity regeneration well and has a better prediction performance.
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Figure 5. The comparisons for different models. (a) #5; (b) #6; (c) #7; (d) #18.

In addition, Table 2 gives the prediction performance of different models for four batteries (#5,
#6, #7, and #18). It can be seen that the RMSE of four batteries predicted by model M1 are all smaller
than 0.03 and R2 are all larger than 0.9, indicating that model M1 has good prediction performance
and high fitting degree to the original capacity curve. Meanwhile, as can be seen from columns 3–6
in Table 2, for RMSE, model M1 of each battery is significantly smaller than model M2 and M3. For
R2, M1 is significantly larger than model M2 and M3. The above analysis illustrates that model M1
can effectively capture the regeneration of capacity and has good prediction performance, and the
prediction performance of model M1 is significantly better than that of model M2 and M3.

Table 2. Comparison of different models (M1–M3) for four batteries.

Evaluate Criteria Model #5 #6 #7 #18

RMSE
M1 0.0270 0.0087 0.0175 0.0064
M2 0.0949 0.0436 0.0678 0.0260
M3 0.0500 0.0616 0.0234 0.0253

R2
M1 0.9226 0.9933 0.9460 0.9751
M2 0.4151 0.8457 0.4611 0.6494
M3 0.7745 0.7298 0.9035 0.6091

4.2. Different Starting Point Predictions and Comparison

Considering the EMD decomposition combined with logic regression and Gaussian regression
model (named M-LG) proposed in reference [8] also realized the lithium-ion battery health prognostics
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with capturing the capacity regeneration phenomenon. In order to analyze the validity of model M1
more comprehensively, the prediction experiments of model M1 at four different prediction starting
points (60, 70, 80, and 90) are designed, and the prediction results of RUL are compared with those of
M2, M3, and M-LG models.

Figure 6 shows the capacity series prediction of model M1 at different prediction starting points
for four batteries. It can be observed from the overall that, the later the prediction starting point is, the
closer the prediction result is to the real value for the four batteries. For battery #5 and #7, the effect of
prediction starting point on predicted results is relatively obvious. For battery #6, the predicted curves
at the starting points 70, 80, and 90 are near to the real capacity curve. For battery #18, the prediction
results at each starting point are very close to the real value, which means the prediction result is not
influenced evidently by the different prediction starting point.

 
(a) (b) 

 
(c) (d) 

Figure 6. Capacity series prediction of model M1 at different prediction starting points: (a) battery #5;
(b) battery #6; (c) battery #7; (d) battery #18.

Table 3 gives the RUL prediction results using model M1 at different starting points for battery #5,
#6, and #18 (Since the degradation of battery #7 does not reach the failure threshold, no research is
done for the time being). We can see that for each battery, the AE of RUL prediction results decreases
with the prediction starting point moving backward. For battery #5, the RUL AE is equal to 28 and 12
at the prediction starting points 60 and 70, respectively, and the errors are relatively large. However,
the RUL AE is 0 and 1 at the prediction starting point 80 and 90 respectively. For battery #6, the RUL
AE at prediction starting point 60 is 5, and the RUL AE is less than or equal to 1 at the starting point
70 and later. For battery #18, the RUL AE at each prediction starting point is less than or equal to
2, which is obviously less effected by the prediction starting point. The above experimental results
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show that the model M1 is relatively less affected by the prediction starting point, and the prediction
performance is relatively stable.

Table 3. RUL prediction results of model M1 at different prediction starting points.

Battery Prediction starting point Predicted RUL RUL AE

#5

60 96 28
70 70 12
80 48 0
90 37 1

#6

60 57 5
70 42 0
80 33 1
90 22 0

#18

60 42 2
70 30 0
80 20 0
90 10 0

Besides, we did 50 times prediction experiments for batteries #5, #6, and#18 using model M1 at
different prediction starting points respectively, and gave the PDF of predicted End of Life (EOL) in
Figure 7 (Color Filling Part), that is, within the PDF distribution range, the battery is likely to reach
the EOL. As a whole, each distribution at different starting points is relatively concentrated, and as
the predicted starting point moves backward, the center of the PDF is closer to the actual EOL, which
indicates that the predicted result is more accurate.
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Figure 7. Uncertainty of predicted End of Life (EOL) at different prediction starting points. (a) battery #5;
(b) battery #6; (c) battery #18.

Table 4 gives the comparison of average RUL AE and average ηAE under four different starting
points of models M1, M2, M3, and M-LG for three batteries, where ηAE is the prediction accuracy
improvement ratio of model M1 corresponding to other models, so the average ηAE of M1 is null. As
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can be seen from the third column, for batteries #5, #6, and #18, the average RUL AE of model M1 is
obviously smaller than that of other models. From the fourth column, we can see that the average
ηAE is between 14.3% and 54.9%, which shows the prediction performance of model M1 is obviously
better than that of model M2, M3, and M-LG on the whole. All the above experiments show that the
proposed WDT–NARNN method is reasonable and suitable for RUL prediction of lithium-ion batteries
with capturing capacity regeneration phenomenon.

Table 4. Comparisons of the average RUL prediction accuracy at four prediction starting points under
model M1 and other three methods (M2, M3, and M-LG).

Battery Method Average RUL AE Average ηAE

#5

M1 10.3 -
M2 14 34.2%
M3 12 21.1%

M-LG 16.3 14.3%

#6

M1 1.5 -
M2 17.8 37.8%
M3 12 34.6%

M-LG 22.3 54.9%

#18

M1 0.5 -
M2 6.5 35.6%
M3 14.8 50%

M-LG 6 25.8%

5. Conclusions

Considering that the capacity regeneration phenomenon has a great impact on the RUL prediction
of lithium-ion batteries, in order to improve the RUL prediction accuracy, a WDT–NARNN method
with considering capacity regeneration phenomenon is proposed. Firstly, the Wavelet decomposition
technology is used to decompose the capacity time series at multi-scales to extract the global degradation
part and local regeneration part. Then, the time series prediction models based on NAR neural network
for the two parts are constructed respectively. Finally, the two parts of the prediction results are
combined to obtain the final RUL prediction value. Experimental results show that the proposed method
can effectively capture the regeneration phenomenon and has high prediction accuracy. Additionally,
the prediction performance is stable and less affected by different prediction starting point.
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Abstract: The parameters considered in structural dynamic reliability analysis have strong
uncertainties during machinery operation, and affect analytical precision and efficiency. To improve
structural dynamic fuzzy reliability analysis, we propose the weighted regression-based extremum
response surface method (WR-ERSM) based on extremum response surface method (ERSM) and
weighted regression (WR), by considering the randomness of design parameters and the fuzziness of
the safety criterion. Therein, we utilize the ERSM to process the transient to improve computational
efficiency, by transforming the random process of structural output response into a random variable.
We employ the WR to find the efficient samples with larger weights to improve the calculative accuracy.
The fuzziness of the safety criterion is regarded to improve computational precision in the WR-ERSM.
The WR-ERSM is applied to perform the dynamic fuzzy reliability analysis of an aeroengine turbine
blisk with the fluid-structure coupling technique, and is verified by the comparison of the Monte Carlo
(MC) method, equivalent stochastic transformation method (ESTM) and ERSM, with the emphasis
on model-fitting property and simulation performance. As revealed from this investigation, (1) the
ERSM has the capacity of processing the transient of the structural dynamic reliability evaluation, and
(2) the WR approach is able to improve modeling accuracy, and (3) regarding the fuzzy safety criterion
is promising to improve the precision of structural dynamic fuzzy reliability evaluation, and (4) the
change rule of turbine blisk structural stress from start to cruise for the aircraft is acquired with the
maximum value of structural stress at t = 165 s and the reliability degree (Pr = 0.997) of turbine blisk.
The proposed WR-ERSM can improve the efficiency and precision of structural dynamic reliability
analysis. Therefore, the efforts of this study provide a promising method for structural dynamic
reliability evaluation with respect to working processes.

Keywords: dynamic fuzzy reliability analysis; extremum surface response method; weighted
regression; turbine blisk; fuzzy safety criterion

1. Introduction

In mechanical systems, the structures always endure complex loads in the extreme environment.
For instance, an aeroengine turbine blisk always suffers from high temperature, high pressure and high
speed under operation [1]. With the increasing complexity of a mechanical system, the requirements on
structural design have become higher. A structural failure during operation could seriously threaten
the safety of the entire system and could even be catastrophic. Therefore, it is worthwhile to perform
reliability analysis to improve the performance of mechanical system.

In respect of a large number of investigations on the structural reliability evaluations, many
methods were developed and briefly described below. Liu et al. [2] adopted a first-order reliability
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method (FORM) in the chatter reliability analysis of milling system. Keshtegar [3] used the hybrid
conjugate search direction to improve the efficiency and robustness of FORM in structural reliability
analysis. Zhang et al. [4] proposed a second-order reliability method (SORM) for mechanical reliability
design. Huang et al. [5] developed a new SORM with saddlepoint approximation for reliability analysis.
Hu et al. [6] explored a novel second order approximation for structural reliability analysis. Nakamura
et al. [7] discussed the Monte Carlo (MC) method by the probabilistic transient thermal analysis of an
atmospheric reentry vehicle structure. Martinez-Velasco et al. [8] studied the reliability of distribution
systems with distributed generation using the parallel MC method. Yang et al. [9] evaluated the
structural reliability of a beam pumping unit by the finite element (FE) method with the MC simulation.
However, it is difficult to employ FORM and SORM in complicated calculations in structural reliability
analysis for low computing accuracy. Moreover, the MC method always spends tremendous time on
structural reliability analysis for the requirement of a large number of iterations and simulations.

To address the above issues, surrogate models (called response surface methods, RSM) emerged
and underwent rapid development. So far, various surrogate models have been appeared, such as
RSM-based polynomials, Kriging model, neural network method, support vector machine, and so
forth. Yang et al. [10] used the RSM and FE model to optimize preform shapes, to improve deformation
homogeneity in aerospace forgings. Allaix and Carbone [11] proposed the coupling method of the
RSM and FE method for structural reliability analysis to prohibit computational cost. In the above
works, the RSM has been validated to hold higher computational efficiency than the MC simulation.
However, it is troublesome to apply the RSM to process the nonlinearity and transient problems of
complex structural reliability analyses, because it is impossible for the RSM model to perfectly reflect
the parameter features in high-dimensional space and thus ensure modeling precision. In this case, the
Kriging model was developed by Danie G. Krige (after whom the method is named), and then also
applied in the field of structural reliability [12,13]. As a classical implicit and intelligent algorithm,
the neural network method was investigated in structural reliability analyses [14,15]. Additionally, a
support vector machine is also widely focused on since the outstanding performance in overcoming
high-dimensional and nonlinear features in structural reliability [16,17]. Although these methods have
acceptable accuracy in modeling and reliability assessment in static reliability analysis, it is difficult for
these methods to accurately evaluate structural dynamic reliability with time-varying features and the
increasing limit state functions.

With respect to the solution of the above questions, extremum RSM (ERSM) was first proposed to
handle the transient problem of two-link flexible rotor manipulator reliability analysis, by regarding the
time-varying feature and the extremum values of output responses [18]. Later, the ERSM was extended
to the dynamic probabilistic designs of aeroengine typical components such as disks and blades [19,20].
The investigations revealed that the ERSM is efficient to reduce computational burden in structural
dynamic reliability design to some extent. As for the transients and nonlinearity of structural dynamic
reliability analyses, however, the ERSM still face with the low and even unacceptable computational
accuracy. In addition, the use of the parameters always influences the modeling precision. In the
improvement of modeling accuracy, the weighted regression (WR) is an efficient way by seeking for the
better values of the parameters in modeling. Broadie et al. [21] improved the risk estimation model of a
financial budget via the WR. The WR technique was also applied to the surrogate modeling of structural
reliability analyses. Kaymaz and McMahon [22] utilized the WR to improve the response surface model.
In the related published works, it has not been found that the technique is employed in structural
dynamic reliability analysis. Along with the heuristic thought, we apply the WR to structural dynamic
reliability analysis to refine the modeling precision and accuracy. Meanwhile, the strong fuzziness
of parameters is ubiquitous in the material property, boundary conditions, geometry sizes, safety
criteria, and so forth [23–25]. Herein, the safety criterion is fuzzy when a specific failure value cannot
be determined. The fuzzy safety criterion is more reasonable in structural fuzzy reliability analyses,
because the analytical accuracy is improved by transforming fuzzy safety criterion to stochastic safety
criterion [26–28].
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To perform a structural dynamic reliability analysis with high-precision, this study proposes an
efficient approach based on the ERSM and WR, called as WR-based ERSM (WR-ERSM), to improve the
accuracy of surrogate modeling and reliability analysis. In the WR-ERSM, the ERSM is employed to
address the transient problem of structural dynamic reliability analysis by simplifying the stochastic
process of output response as a random variable, the WR is introduced to find the efficient samples
for the ERSM modeling to improve modeling accuracy, and the fuzziness of the safety criterion is
considered to improve the precision of dynamic reliability analysis by transforming fuzzy safety
criterion into stochastic safety criterion. The proposed WR-ERSM is validated by the dynamic fuzzy
reliability analysis of a turbine blisk with regard to both the randomness of input variables and the
fuzziness of safety criterion.

In Section 2 WR-ERSM is developed for structural dynamic fuzzy reliability analysis. Section 3
investigates the dynamic fuzzy reliability analysis of an aeroengine turbine blisk based on the WR-ERSM
by considering fluid-structure interaction and fuzzy safety criterion. The developed WR-ERSM is
validated by the comparison of methods in Section 4. The conclusions on this study are summarized in
Section 5.

2. Basic Theory on Dynamic Fuzzy Reliability Analysis

In this section, we discuss the basic principle of the WR-ERSM for structural dynamic fuzzy
reliability analysis as drawn in Figure 1.

Figure 1. Flow chart of structural dynamic fuzzy reliability analysis with weighted regression extremum
response surface method (WR-ERSM).

As revealed in Figure 1, the process of structural dynamic fuzzy reliability analysis comprises
analytical preparation, WR-ERSM modeling, sample extraction, safety criterion transformation and
reliability analysis. The analytical preparation is to structure finite model (FE) model and set all
constraint conditions, workloads and time domain. The objective of the samples’ extraction is to
collect all input and output samples from dynamic deterministic analyses as one pool of samples for
dynamic probabilistic analysis. Herein, the samples of random inputs are extracted by the full factorial
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design [29,30], and then the extrema of response processes are gained as new output responses based
on dynamic deterministic analysis in the time domain of interest, and their weights are confirmed
by a series of deterministic analyses with the acquired input samples and FE model. In the process
of WR-ERSM modeling, the samples with larger weights, which include input samples and output
samples, are chosen from the pool of samples as the fitting samples for the WR-ERSM modeling. When
the fitting accuracy does not satisfy the requirements, the fitting samples are reselected to achieve the
weighted values. Otherwise, the probability density functions (PDFs) of outputs are gained by MC
method. The objective of safety criterion transformation is to transform the fuzzy safety criterion into
a stochastic safety criterion based on the fuzzy entropy principle [31,32]. Lastly, structural dynamic
fuzzy reliability analysis is performed to achieve the reliability degree considering the randomness of
input variables and the fuzziness of safety criterion.

2.1. Weighted Regression Extremum Response Surface Method (WR-ERSM) Modeling

The ERSM was developed to evaluate structural dynamic reliability by considering the extremum
values instead of all the output responses within the time domain of interest, and was proved to be
efficient in terms of the efficiency improvement [18,33]. In other words, the random process of an
output response in the time domain is transformed into a random variable as the ERSM is modeled.
When y(x) denotes the extremum of output response within the time domain [0, T], corresponding
to the input variables x = [x1, x2, . . . , xk]T, where k is the number of inputs, the ERSM model can be
expressed as:

y(x) = A + Bx + xTCx (1)

in which A, B and C indicate constant term, linear term and quadratic term. B and C are denoted as:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
B = [b1, b2, · · · , bk]

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c1 0

. . .
0 ck

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

here i = 1, 2, . . . , k. Thus, the ERSM function can be rewritten as:

y(x) = a +
k∑

i=1

bixi +
k∑

i=1

cix2
i (3)

In this equation, the number of undetermined coefficients is 2k + 1. To compute these coefficients,
we extract a series of input samples by the full factorial design method in Equation (4).

E1 = (μ1,μ2, · · · ,μk)

E2 = (μ1,μ2, · · · ,μi ± fσi, · · · ,μk)

E3 =
(
μ1,μ2, · · · ,μi ± fσi, · · · ,μ j ± fσ j, · · · ,μk

)
...
Es = (μ1 ± fσ1,μ2 ± fσ2, · · · ,μi ± fσi, · · · ,μk ± fσk)

(4)

where El (l = 1, 2, . . . , s) is the l-th sampling category, namely experimental condition, which is the rule
of generated sample set of random variable with respect to both the mean μ and standard deviation σ;
the subscripts i, j indicate the i-th and j-th random variables; the subscript s expresses the number of
sampling types; f denotes the empirical coefficient which is usually selected from 1 to 3.
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Based on structural dynamic deterministic analysis and the least square method [1,19,34], the
output responses are then acquired by Equation (5).

d =
(
vTv

)−1
vTy

v =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 x11 x12 · · · x1k x2

11 x2
12 · · · x2

1k
1 x21 x22 · · · x2k x2

21 x2
22 · · · x2

2k
...

...
...

. . .
...

...
...

. . .
...

1 xn1 xn2 · · · xnk x2
n1 x2

n2 · · · x2
nk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
d = [a, b1, b2, · · · , bk, c1, c2, · · · , ck]

(5)

The symbol v is the n × (k + 1) matrix of input variables, in which n is the number of samples; d is
the vector of undetermined coefficients in the ERSM model.

In respect of the ERSM, the computational burden is effectively reduced in structural dynamic
reliability evaluation. However, the modeling precision is still unacceptable because of the limitations
of quadratic polynomials in processing the high non-linearity problem and large-scale parameters.
To resolve this issue, this study develops the WR-ERSM with respect to the ERSM and WR. We adopt
the ERSM to compute the global extreme value rather than all the values for the dynamic output
responses under different input parameters in the time domain [0, T], and employ the WR to find the
optimal parameters in the process of the ERSM modeling.

The comparison of the ERSM and the WR-ERSM are shown in Figure 2. The ERSM model
(indicated by the red dotted curve) is established by all the samples based on the least square method.
For the WR-ERSM modeling (denoted by the blue solid curve), we first apply the WR to select the
efficient samples (annotated by the blue dots) with larger weights from the pool of n samples, to
determine the undetermined coefficients and gain the WR-ERSM model. This method is termed the
weighted least square method.

Figure 2. Basic thoughts of ERSM and WR-ERSM.

Regarding the ERSM model (Equation (1)), the WR-ERSM model yWR(x) is structured as:

yWR(x) = AWR + BWRx + xTCWRx (6)

where AWR, BWR and CWR are the weighted constant, weighted linear vector and weighted quadratic
matrix, respectively. BWR and CWR are denoted as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BWR =
[
bWR,1, bWR,2, · · · , bWR,k

]
CWR =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cWR,1

cWR,2
. . .

cWR,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)
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To intuitively express the WR-ERSM model, the Equation (6) is written as quadratic polynomial,
i.e.,

yWR(x) = aWR +
k∑

i=1

bWR,ixi +
k∑

i=1

cWR,ix2
i (8)

in which aWR, bWR,i and cWR,i are the weighted coefficient of A, B and C, respectively.
To determine these weighted coefficients in Equation (8), we first need to search the minimum of

output responses yobj(x) with respect to n samples, the weighted values are then obtained by dividing
the minimum value yobj(x) from all the output responses ytrue(x), which are ensured by dynamic
deterministic analysis with the FE model. The m efficient samples with larger weights are selected
from this pool of n samples, and the weighted matrix w is restructured. The related formulas are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yobj(x) = min
∣∣∣ytrue, j(x)

∣∣∣
wj =

yobj

ytrue, j(x)

w =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w1

. . .
wm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

here j = 1, 2, . . . , n; ytrue, j(x) indicates the true value of the j-th output response; wj is the weighted
value of the j-th sample; m (m ≥ (2k + 1)) is the number of efficient samples.

We confirm the undetermined coefficients of WR-ERSM model, i.e.,

dWR =
(
vT

WRwvWR
)−1

vT
WRwyWR (10)

where dWR denotes the vector of undetermined coefficients in the WR-ERSM model; vWR is the matrix
of efficient samples; yWR is the output response corresponding to the efficient samples. dWR, vWR and
yWR are structured as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dWR =
[
aWR, bWR,1, bWR,2 · · · , bWR,k, cWR,1, cWR,2 · · · , cWR,k

]

vWR =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 xWR,11 xWR,12 · · · xWR,1k x2

WR,11 x2
WR,12 · · · x2

WR,1k
1 xWR,21 xWR,22 · · · xWR,2k x2

WR,21 x2
WR,22 · · · x2

WR,2k
...

...
...

. . .
...

...
...

. . .
...

1 xWR,m1 xWR,m2 · · · xWR,mk x2
WR,m1 x2

WR,m2 · · · x2
WR,mk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
y = [y(x1), y(x2), · · · , y(xn)]

T

(11)

Based on the above analysis, we can derive the WR-ERSM model.

2.2. Safety Criterion Transformation

In engineering practice, most factors have stochastic and fuzzy characteristics. For structural
dynamic reliability analysis, various methods have been developed so far to process the effect of the
random parameters. However, those methods are unable to resolve the influences of the randomness
and fuzziness simultaneously. As typical fuzzy factors, the allowable values, e.g., deformation, stress,
strain, and so forth, of the safety criterion generally depend on experimental statistics. Actually, these
parameters always vary in small range in engineering. Hence, it is more reasonable to consider the
randomness of inputs and the fuzziness of safety criterion in structural dynamic reliability analysis.

To address this issue, we transform the fuzzy safety criterion into a random safety criterion in the
structural dynamic fuzzy reliability evaluation. This paper deals with the fuzzy safety criterion by
the fuzzy entropy principle, which has been validated to be feasible [31,32,35,36]. For transforming
the fuzzy safety criterion into random safety criterion, we first determine the membership function of
safety criterion distribution feature, which is generally chosen as a triangular membership function in
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engineering practice [23,28,36]. Hence, we also select a triangular membership function to describe the
information for the safety criterion as shown in Equation (12).

uỹ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x−a1
a−a1

, a1 < x ≤ a
a2−x
a2−a , a < x ≤ a2

0, otherwise
(12)

We can compute the mean and standard deviation of stochastic safety criterion with a normal
distribution based on the fuzzy entropy principle in Equation (13), and then acquire the PDF of safety
criterion:

μeq =

(
1∫ +∞

−∞ uỹ(x)dx

)∫ +∞
−∞ xuỹ(x)dx

σeq =
1√
2π

exp(Gx − 0.5)
(13)

where μeq and σeq indicates the mean and standard deviation of equivalent random parameter; μỹ(x) is
the membership function of fuzzy safety criterion; Gx is defined as:

Gx = −
∫ +∞

−∞
u′ỹ(x) ln u′ỹ(x)dx = −

∫ uu

ul

uỹ(x)∫ uu

ul
uỹ(x)dx

ln
uỹ(x)∫ uu

ul
uỹ(x)dx

dx (14)

here uu and ul are the upper bound and lower bound of fuzzy variable interval, respectively.
Finally, the PDF of safety criterion is reshaped as:

feq
(
zeq

)
=

1√
2πσeq

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
(
zeq − μeq

)2

2σ2
eq

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (15)

Through the above analysis, we can transform the fuzzy safety criterion into a stochastic safety
criterion by using the fuzzy entropy principle.

2.3. Structural Dynamic Fuzzy Reliability Analysis

To accomplish structural dynamic reliability analysis, we need to build the PDF of output. In this
case, we take structural stress as analytical object (output response). Based on the derived WR-ERSM
model in Equation (8), we extract a large number of samples of the output based on MC method, and
achieve the mean and standard deviation. The formula of PDF is then established, i.e.,

f (z) =
1√

2πσz
exp

⎛⎜⎜⎜⎜⎝− (z− μz)
2

2σ2
z

⎞⎟⎟⎟⎟⎠ (16)

where z expresses the structural stress; μz and σz are both mean value and standard deviation,
respectively.

With the PDF of safety criterion, the fuzzy reliability index β and reliability degree Pr of the
complex structure are: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

β =
μz−μeq√
σ2

z+σ
2
eq

Pr = Φ(β)
(17)

where μz and σz present the mean value and standard deviation of output response; μeq and σeq indicate
the mean value and standard deviation of the safety criterion.

3. Example Analysis

In this section, we regarded the dynamic fuzzy reliability analysis of an aeroengine turbine blisk
as one case to verify the feasibility and effectiveness of the proposed WR-ERSM algorithm.
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3.1. Deterministic Analysis for Turbine Blisk

Working in the extreme environment, turbine blisk endures high temperature, high pressure
and high speed. To simulate the variation of turbine blisk stress under different operation status,
the analytical range of start, idle, take off, climb and cruise is selected from the flight profile of the
aeroengine in the time domain [0 s, 215 s] [37,38]. In this time domain [0 s, 215 s], 12 critical points of
angular speed shown in Figure 3 are selected during the aeroengine operation of time domain. In this
study, nickel-base alloy is selected as the material of the gas turbine blisk.

Figure 3. Change curve of angular speed in time domain [0 s, 215 s].

The turbine blisk is a typically cyclic symmetric structure comprising one disk and 40 blades,
and is shown in Figure 4. To reduce the calculation burden, the 1/40 of the blisk model is regarded as
the study object, besides the cooling holes on blisk are simplified. The FE models of the turbine blisk
(29,332 elements and 47,933 nodes) and flow field (222,370 elements and 321,632 nodes) are shown in
Figures 5 and 6, respectively.

Figure 4. Geometric model of turbine blisk.

Figure 5. Finite element (FE) model of turbine blisk.

To simulate the variation of structural stress caused by fluid and structural loads within the time
domain [0 s, 215 s], the dynamic deterministic analysis of the turbine blisk is fulfilled by both the close
coupled analysis method and fluid–structure interaction [39–41]. The variation curve of turbine blisk
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stress in the time domain [0 s, 215 s] is displayed in Figure 7, in which σ is the stress of turbine blisk
(similarly hereinafter).

Figure 6. FE model of flow field.

 
Figure 7. Stress variation curve of turbine blisk during [0 s, 215 s].

As revealed in Figure 7, the turbine blisk stress rises with the increasing angular speed.
The maximum of stress emerges at t = 165 s in cruise phase. Thus, we regarded t = 165 s as
the computational point of turbine blisk dynamic fuzzy reliability analysis. The nephograms of
pressure and stress distributions on the fluid–structure coupling interface at t = 165 s are acquired in
Figures 8 and 9, in which P is the pressure on the fluid–structure coupling interface. As revealed in
Figure 9, the maximum stress is at the root of the turbine blade.

Figure 8. Pressure distribution on fluid–structure coupling interface.

Figure 9. Stress distribution on turbine blisk.
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3.2. The WR-ERSM Model of Turbine Blisk

To achieve the surrogate model of turbine blisk, the factors (parameters) impacting the analytical
results are selected as the random input variables as listed Table 1, including inlet velocity, inlet
pressure, material density and angular speed.

Table 1. The statistical characteristics of random input variables.

Parameters Variable Distribution Mean, μ St.Dev., δ

Inlet velocity (m·s−1) v Normal 168 5.04
Inlet pressure (Pa) P Normal 600,000 12,000

Material density (kg·m−3) ρ Normal 8210 246
Angular speed (rad·s−1) w Normal 1168 35

As revealed in Table 1, the mean μ of the random input variables is determined within the time
domain by using the extremum selection method [42]. To establish the WR-ERSM model of turbine
blisk, the samples are extracted from the random inputs and outputs at the selected calculation points
by the full factorial design in Equation (4). The weighted values of output responses are calculated by
Equation (5). The 40 samples are listed in Table 2.

Table 2. Weighted samples based on weighted regression analysis.

Parameters and Weighted Coefficient Parameters and Weighted Coefficient

v
m·s−1 P, ×105 Pa

ρ
kg·m−3

w
rad·s−1 σ × 108 Pa W v,

m·s−1 P, ×105 Pa
ρ,

kg·m−3
w,

rad·s−1 σ, ×108 Pa W

168.00 6.00 8210 1168 9.687 0.9105 173.04 6.00 8210 1133 9.098 0.9694
162.96 6.00 8210 1168 9.693 0.9099 168.00 6.12 8210 1133 9.105 0.9687
168.00 5.88 8210 1168 9.686 0.9106 168.00 6.00 7964 1133 8.827 0.9992
168.00 6.00 7964 1168 9.392 0.9391 173.04 5.88 7964 1168 9.385 0.9398
168.00 6.00 8210 1133 9.105 0.9687 173.04 5.88 8210 1133 9.098 0.9694
173.04 6.00 8210 1168 9.686 0.9391 162.96 6.12 7964 1168 9.398 0.9385
168.00 6.12 8210 1168 9.687 0.9105 162.96 6.12 8210 1133 9.111 0.9681
168.00 6.12 8210 1203 10.29 0.8576 168.00 6.00 8456 1203 10.59 0.8575
162.96 5.88 8210 1168 9.687 0.9105 168.00 6.12 7964 1133 8.829 0.9989
162.96 6.00 7964 1168 9.391 0.9392 162.96 6.00 8456 1133 9.389 0.9394
162.96 6.00 8210 1133 9.105 0.9687 168.00 5.88 8456 1133 9.383 0.9400
168.00 5.88 7964 1168 9.391 0.9392 173.04 6.12 7964 1168 9.385 0.9398
168.00 5.88 8210 1133 9.105 0.9687 173.04 6.12 8210 1133 9.098 0.9694
168.00 6.00 7964 1133 8.827 0.9992 173.04 6.00 8456 1133 9.376 0.9407
173.04 6.12 8210 1168 9.687 0.9105 168.00 6.12 8456 1133 9.383 0.9400
162.96 6.12 8210 1168 9.693 0.9099 162.96 5.88 7964 1168 9.398 0.9385
168.00 6.00 8210 1203 10.28 0.8576 173.04 6.00 8210 1203 10.28 0.8576
173.04 5.88 8210 1168 9.681 0.9111 162.96 5.88 8210 1133 9.111 0.9681
173.04 6.00 7964 1168 9.385 0.9398 162.96 6.00 7964 1133 8.827 0.9992
168.00 6.12 7964 1168 9.391 0.9392 168.00 5.88 7964 1133 8.826 0.9993

Note: the symbols v, P, ρ and w are the inlet velocity, inlet pressure, material density and angular speed, respectively;
σ presents the turbine blisk stress; W denotes the weighted value. Additionally, the underlined samples (20 samples)
are used to establish the WR-ERSM model, and the underlined and bold samples (30 samples) are applied to derive
the ERSM model.

Based on 20 groups of samples with larger weights underlined in Table 2, the coefficients of
Equation (8) are acquired, and then the WR-ERSM model of turbine blisk is

y(x) = −2.746× 109 + 2.258× 106x1 − 9.681× 102x2 + 1.063× 105x3 + 3.053× 106x4 − 7.036× 103x2
1

+8.078× 10−4x2
2 + 0.418x2

3 − 4.722× 102x2
4

(18)

Let the response y(x) in Equation (18) obey a normal distribution, the dynamic fuzzy reliability
analysis of turbine blisk is accomplished with the MC method. The simulation histories and stress
histograms of turbine blisk are drawn in Figures 10 and 11, respectively.
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Figure 10. The simulation history of turbine blisk stress.

Figure 11. The histogram of turbine blisk stress.

As shown in Figures 11 and 12, the histogram of turbine blisk stress obeys a normal distribution
with the mean value μz = 9.669 × 108 Pa and standard deviation σz = 5.743 × 106 Pa. Moreover, in light
of Equation (16), the built model in Equation (18) is rewritten as the PDF, i.e.,

f (z) =
1√

2π× (5.743× 106)
exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
(
z− 9.669× 108

)2

2× (5.743× 106)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (19)

 
Figure 12. The triangular membership function of the turbine blisk.

3.3. Turbine Blisk Reliability Evaluation

The safety criterion is a typical fuzzy parameter because its allowable values are uncertain in
practical engineering. To accomplish the dynamic fuzzy reliability analysis of the turbine blisk with
the PDF, the fuzzy safety criterion needs to be transformed into a stochastic safety criterion by the
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fuzzy entropy principle. When the membership function of fuzzy safety criterion obeys a triangular
distribution, the formula and distribution characteristics of the triangular membership function for the
turbine blisk are obtained as shown in Equation (20) and Figure 12, respectively.

uỹ(x) =

⎧⎪⎪⎨⎪⎪⎩ x−9.812×108

5×106 , 9.812× 108 < x ≤ 9.862× 108

9.912×108−x
5×106 , 9.862× 108 < x ≤ 9.912× 108 (20)

After confirming the membership function of fuzzy safety criterion, the triangular membership
function is transferred into the PDF of safety criterion (namely a stochastic safety criterion) with a
normal distribution by the fuzzy entropy theory. The mean value μeq and standard deviation σeq are
consequently achieved. The PDF f (zeq) can be expressed by:

f
(
zeq

)
=

1√
2π× (4.980× 106)

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
(
zeq − 9.862× 108

)2

2× (4.980× 106)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (21)

With respect to Equations (19) and (21), the probability density curves f (z) and f (zeq) of stress and
the safety criterion of the turbine blisk are drawn in Figure 13, respectively.

Figure 13. Distribution features of structural stress and safety criterion.

As demonstrated in Figure 13, the mean values (9.669 × 108 Pa and 9.862 × 108 Pa) and standard
deviations (5.743 × 106 Pa and 4.980 × 106 Pa) of the two methods are acquired. In line with Equation
(17), the structural reliability index and reliability degree are β = 2.751 and Pr = 0.9970, respectively.

4. WR-ERSM Verification Procedure

In this section, the proposed WR-ERSM is verified by the comparison with the MC method, ERSM
based on least-square and equivalent stochastic transformation method (ESTM).

4.1. Model-Fitting Properties

By the 30 groups of underlined and bold experimental data in Table 2, the model of ERSM is
established as:

y(x) = −2.015× 108 + 3.734× 106x1 + 1.998× 103x2 + 9.989× 104x3 − 2.756× 106x4 − 1.137× 104x2
1−1.669× 10−3x2

2 + 9.166× 10−1x2
3 + 1.907× 103x2

4
(22)
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In this paper, we adopt the square-error r2 and maximum absolute error rmax to test the fitting
accuracy for the WR-ERSM and ERSM. The r2 and rmax are illustrated as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r2 = 1−
n∑

i=1
(yi−ŷi)

2

n∑
i=1

(yi−y)2

rmax =
n

max
i=1

( |yi−ŷi|
S

) (23)

in which n is the number of experimental data; yi denotes the authentic output responses; ŷi is the
output responses gained by the mathematical models; y indicates the mean of the experimental data;
S expresses the standard deviation of experimental data. If the square-error r2 is close to 1 and the
relative maximum absolute error rmax is close to 0, the fitting accuracy is high.

The remaining 10 groups of the experimental data in Table 2 are employed to test the fitting
accuracy of the models (Equations (18) and (22)) with respect to r2 and rmax. The results are listed in
Table 3.

Table 3. The computational results of the ERSM model and WR-ERSM model.

Method
Fitting ERSM Model Fitting Accuracy

Sample Number Fitting Time, h r2 rmax

WR-ERSM 9 7.05 0.9984 0.0535
ERSM 29 22.39 0.9742 0.0834

As illustrated in Table 3, the proposed WR-ERSM only needs 9 samples for modeling, which is far
less than 29 samples for the ERSM. Besides, the fitting time of WR-ERSM is 7.5 hours which is also
far less than the 22.39 hours of the ERSM. As for the fitting accuracy, the square-error and maximum
absolute error of the WR-ERSM and ERSM are 0.9984, 0.9742 and 0.0535, 0.0834, respectively. Because
of the square error 0.9742 < 0.9984→1 and the relative maximum absolute error 0.0834 > 0.0535→0, the
fitting accuracy of WR-ERSM is obviously higher than ERSM in modeling precision. Therefore, the
WR-ERSM is superior to ERSM in fitting efficiency and accuracy. Because of the high computational
accuracy of WR-ERSM, it is also demonstrated to be reasonable and efficient that WR is considered to
select better samples to establish ERSM model.

4.2. Simulation Performances for Dynamic Fuzzy Reliability Analysis of Turbine Blisk

In this section, we compare the reliability degree assessments as using four methods, i.e., the
MC method, ESTM, ERSM and WR-ERSM. The MC method with direction simulation is considered
as the reference when the simulation precisions of other three methods are evaluated. The fuzzy
reliability evaluation with the ESTM considers all calculations in the response process in the time
domain [0 s, 215 s] without the simplification of the response process just like the ERSM. The ERSM
is employed for the dynamic reliability analysis by simplifying the response process as a random
parameter without the consideration of both the WR of the output responses in the sample selection for
the modeling and the fuzziness of the safety criterion in the reliability analysis. When the WR-ERSM
is applied to the dynamic fuzzy reliability estimation of turbine blisk, we completely regard the
simplification of the response process, the WR of output responses and the fuzziness of safety criterion.
All the calculations and simulation are completed based on the same input variables in Table 1 and
computer environment. The computational results are shown in Table 4.

As revealed in Table 4, the WR-ERSM is closer to the MC method than both ESTM and ERSM for
the reliability degree of turbine blisk. Besides, the proposed WR-ERSM has higher analytical accuracy
than the ERSM and ESTM as the precision 0.9989 for the WR-ERSM is larger than the precision 0.9956
for the ERSM and the precision 0.9981. The result that the precision of the WR-ERSM is superior to the
ERSM indicates that considering the fuzziness of the safety criterion besides the WR is efficient for the
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improvement of structural dynamic reliability analysis. The fact that the precision of the WR-ERSM is
superior to the ESTM reveals that the ERSM is effective to deal with the transient in structural dynamic
reliability analysis instead of the ESTM. In brief, the WR-ERSM, which considers both the WR of the
parameters in the model and the fuzziness of the safety criterion in the analysis, is able to improve
the computational accuracy of structural dynamic reliability analysis while keeping to a high degree
of reliability. Besides, the structural dynamic fuzzy reliability analysis with the fuzziness of safety
criterion is more reasonable and accurate than the structural dynamic reliability analysis without the
fuzziness of the safety criterion.

Table 4. The simulation results of turbine blisk dynamic reliability analyses with four methods.

Methods Pr Errors Precision, %

MC method 0.9981 - -
ESTM 0.9962 0.0019 99.81
ERSM 0.9937 0.0044 99.56

WR-ERSM 0.9970 0.0011 99.89

Based on the above results, it is fully demonstrated that the developed WR-ERSM is able to
improve computational efficiency and precision for structural dynamic reliability analysis while
maintaining a high degree of reliability, by both introducing the WR method to find more effective
samples for the ERSM modeling and considering the fuzziness of safety criterion in reliability analysis.
The structural dynamic fuzzy reliability analysis with the WR-ERSM is effective and feasible for
improving the designs of structures and mechanical system.

5. Conclusions

To improve the computational accuracy and efficiency of structural dynamic fuzzy reliability
analysis, we present the weighted regression-based extremum response surface method (WR-ERSM)
based on the extremum response surface method (ERSM) and weighted regression (WR), for structural
dynamic fuzzy reliability analysis. Through this study, some conclusions are summarized as follows:

(1) The WR-ERSM is highly precise and efficient in structural dynamic reliability evaluation, since
ERSM has the capacity of processing the transient problem;

(2) The WR approach can improve modeling accuracy so that the proposed WR-ERSM possesses
high fitting efficiency and accuracy, due to the requirement of small samples;

(3) WR-ERSM possesses good simulation performance in structural dynamic fuzzy reliability
evaluation, as the fuzzy safety criterion is considered to improve the precision;

(4) The change rule of turbine blisk structural stress from start to cruise for an aircraft is acquired
with the maximum value of structural stress at t = 165 s and the reliability degree (Pr = 0.997) of
the turbine blisk.

(5) The efforts of this study provide a promising method for the dynamic reliability analysis and
evaluation of complex structures with respect to the working process.
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Abstract: Jackets are the most common structures in the Adriatic Sea for extracting natural gas.
These structural typologies are suitable for relative low water depths and flat sandy sea floors. Most of
them have been built in the last 50 years. When the underground source finishes, these structures
should be moved to another location or removed if they have reached their design life. Nevertheless,
another solution might be considered: change the future working life of these platforms by involving
renewable energy and transforming them into offshore wind towers. The present research proposal
aims to investigate the possibility of converting actual structures for gas extraction into offshore
platforms for wind turbine towers. This simplified analysis is useful for initial design phases and
tender design, or generally when available information is limited. The model proposed is a new
simplified tool used to study the structural analysis of the jacket structure, developed and summarized
in 10 steps, firstly adopted to study the behavior of the oil and gas structure and then for the retrofitted
wind tower configuration.

Keywords: offshore structures; oil and gas platforms; offshore wind turbines; retrofitting activities;
renewable energy; dynamic analysis; wind and wave analysis; dynamic analysis of the structure;
wave–structure interaction (WSI); probabilistic analyses of stochastic processes and frequency

1. Introduction

Policy support, technology advances, and a maturing supply chain are making offshore wind
farms an increasingly viable option for renewable-based electricity generation, harnessing the more
consistent and higher wind speeds available offshore instead the onshore solutions. Investment has
picked up sharply in recent years, and with fewer restrictions on size and height with respect to their
onshore counterparts, offshore wind turbines are becoming giants [1]. The growth of offshore wind
creates potential synergies with the offshore hydrocarbons sector; integration could bring benefits in
terms of reduced costs and improved environmental performance and utilization of infrastructure [2,3].
The possibility to electrify offshore oil and gas operations where there are wind farms nearby, or via
floating turbines, reduces the need to run diesel or gas-fired generators on the platform and emissions
of carbon dioxide (CO2) and air pollutants [4]. The scope is to find new uses for existing offshore
infrastructure once it reaches the end of its operational life or when the underground source finishes,
in ways that might aid energy transitions [5,6]. The North Sea, a relatively mature oil and gas
basin with a thriving renewable electricity industry, is already seeing some crossover between the
sectors: some large oil and gas companies are major players in offshore wind; one former oil and
gas company, Orsted in Denmark, has moved entirely to wind and other renewables [7,8]. A major
problem in offshore wind energy design is the estimation of fatigue life and fatigue loads in an offshore
environment [9,10]. The study of the best locations of offshore wind turbines is worth investigation as
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well [11]. However, many studies have been devoted to how the dynamic behaviors of wind turbines
couple with jacket and pile-supported foundations [12–21].

This work aims to provide a tool for a general structural check analysis of a different retrofitting
activities for the same offshore lattice structure. The research should allow the structural designer
to evaluate the environmental loads, the dynamics of the structure, and the effects of changing the
structural behavior of the platform over the different cases of study. All these analyses should be
available in the early design phase when the data available about the site’s environment and seabed
conditions are limited. Furthermore, the tools shown should skip the use of the sophisticated and
expensive software analysis that requires detailed data and a high level of understanding of the
underlying physics. It follows that the calculation procedure will be faster than the long run-times
of the software, which is based on time domain simulations of a high number of different load cases.
MATLAB and Strand7 have been used as software programs in this research. In terms of accuracy,
the most important requirement is that the approach should provide conservative results and at the
same time avoid underestimation of loads and deformations. The issue of this project is to find a useful
tool that is able to represent the behavior of a generic offshore structure subjected to environmental
actions. The structure under investigation can be one of the oil and gas platforms sustained by
jacket structures with a long pile foundation. The authors are aware of the complex problem that is
presented here. Therefore, the present research is limited, but in agreement with the assumptions
considered in this study. Further investigations can be performed in a future work such as tubular joint
design [22] and fatigue assessment [23,24]. The influence of a different wind turbine such as vertical
axis wind turbines [25] and wind turbines in other environments [26,27] is also worth investigating.

2. Theoretical Background

Offshore structures are complex systems subjected to severe dynamic loads due to wind, waves,
currents, and mechanical loads. This makes the design of these structures a complex process that
requires expertise from a wide range of fields. Foundations and substructures are specifically the
key structural components that differentiate the design of wind towers from those of onshore ones.
Due to the long service lifetime of offshore systems, the analysis of the performance of the substructure
is a complex task that involves many steps including load analysis, dynamic analysis, evaluation of
the fatigue life, as well as long-term deformations. This research presents a simplified methodology
for the analysis of the ultimate and dynamics loads with a check on the most stressed pile of the
different offshore retrofitted systems. The analysis was carried out such that the data required
about the oil and gas platform, wind turbines, and the site are available in the early design phases.
Thus, the methodology appears to obtain a conservative estimation. An apparent limitation in the
research is the modeling of first the oil and gas platform and second of the offshore wind turbine
called 6DOF with all the retrofitting configurations, which was realized in general form, and it found
adaptation in different specific applications. The model proposed considers a discrete system of
masses and stiffness, which is just a first rough representation of the real offshore lattice structure
with pile foundation. Another inherent limitation in the methodology, which is a natural consequence
of the approach taken, is the load estimation based on linear analysis and where they are applied.
In the model proposed, all the environmental actions are considered at each node of the cantilever
beam, while in the real world, all the steel elements are subjected to the wave and wind force. Another
issue of the loads is that in this research is that they have not been calculated using partial safety
factors regarding the load combination. The present analysis is performed only over one direction
with the assumption that the wind and the wave act in the same direction at the same time. Fatigue
state analysis is out of the scope of the present research; nevertheless, this is central to the structural
analysis, the earthquake analysis, and the checking of the state of the structure like welding, bolts,
and grouting, which for sake of simplicity’s, have been bypassed. The simplified analysis proposed
in this research can be used in the fatigue design and evaluation including the effects of welding,
bolts, and the stiffness of tubular connections [28,29]. The next stage of the current research study will
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address fatigue analysis using current (global rules) and advanced approaches (local rules) for the
critical structural detail considering the wave and wind loads as indicated in the DNVGLstandards.

The equation of motion associated with a generic structure is a second order linear differential
equation with constant coefficients, and it changes form in relation to the structural properties that
have to be modeled. The general set of equations representing structural motion can be defined by the
following matrix form:

M ξ̈ + Cξ̇ + Kξ = p (1)

that represents a finite set of N ordinary, linear differential equations in N independent coordinates
that contain the dominant features of the structural motion. These coordinates are the elements of the
column vector:

ξ = [ξ1, ξ2, . . . , ξN ]
T (2)

The loading vector p = p(t) is comprised of N loads pi, i = 1, 2, . . . , N where the load pi = pi(t)
is located at the respective node i. The vector representation is:

p = [p1, p2, . . . , pn, . . . , pN ]
T (3)

In this analysis, the mass matrix M is assumed to be a diagonal matrix with elements mi > 0,
i = 1, 2, . . . , N, in which the element’s subscript is its associated node point. It has been said that each
generalized coordinate represents either the displacement or the rotation of a portion of the structure’s
mass at a specific node point. The mass lumping method is probably the most popular method of
discretizing the supporting framework and the rigid body portions of an offshore structure. In this
research, the mass lumping method will be applied where all the offshore mass structure is modeled
as lumped at the top of a cantilever beam. The stiffness matrix K for an N degree of freedom structure
is a symmetric matrix of N × N elements. The stiffness is defined as the force applied to the structure
in order to produce a unitary displacement. The constant kij in other terms is that force that is required
at node i to counteract a unit elastic displacement ξsj = 1 imposed at node j, under the condition that
all displacements ξsi = 0 for i �= j. If a displacement condition is applied sequentially to each node,
then the net force at each node j can be obtained by superposition. For a structure with N degrees of
freedom, the damping matrix C is defined as a symmetric array of N × N constants cij. Damping is an
influence within or upon an oscillatory system that has the effect of reducing, restricting, or preventing
its oscillations. In physical systems, damping is the capacity of the system to dissipate the energy
stored in the oscillation within itself without damage. In this analysis, the damping force qDi for the
structural mode coordinate ξ is assumed to be a linear combination of the generalized coordinate
velocities ξ̇i, i = 1, 2, . . . , N:

qD = Cξ̇ (4)

The damping matrix can be cast in several different specialized forms, each of which has the
advantage of easily utilizing available experimental data to determine the elements cij. One such form
is Rayleigh damping in which C is proportional to the system’s mass and also the system’s stiffness:

C = a1M + a2K (5)

in which a1 and a2 are Rayleigh constants, and they are fixed for a given dynamic system. Rayleigh
constants are determined using a standardized procedure [30]. The latter equation is pre- and
post-multiplied by the matrix of the shape functions as XTCX = a1XTKX + a2XT MX with the
orthogonal properties XTKX = diag(ωn) and XT MX = I. Introducing the nth modal damping factor
ζn, the last result becomes XTCX = diag(a1ω2

n + a2) = diag(2ζnωn). After equating the nth diagonal
terms above, it follows that ζn = (ωn/2)a1 + (0.5ωn)a2. This last result shows that, for an N degree of
freedom system for which the N frequencies ω1, ω2, . . . , ωN are known, the two Rayleigh constants a1

and a2 are uniquely determined if any two of ζn are specified. For instance, if ζk and ζm are specified,
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then the equation yields the following two simultaneous equations from which a1 and a2 can be
calculated ζk = (ωk/2)a1 + (0.5ωk)a2 and ζm = (ωm/2)a1 + (0.5ωm)a2. Then, the remaining N − 2
values of ζn for all n �= m can be determined.

3. Reference Model

Let us suppose that the oil and gas platform studied in this detection is part of a wide context of
a gas field, in a water depth of 87 m. The platform sub-structure is a steel jacket, installed by lifting,
supporting a three generic level deck for the drilling and extraction activities. The jacket configuration
is represented by a four-legged tubular structure, and the jacket base dimensions are approximately
32 m by 20 m (excluding the sleeves). The jacket dimensions at the top interface are 8 m × 8 m. Jacket
planes are located at the following elevations from top the bottom with respect to the still water level:
+6 m, −8.5 m, −24.5 m, −43.5 m, −64.5 m. The leg diameter varies from 1200 mm by 40 mm at the top
to 1600 mm by 50 mm at the bottom. For the bracing elements, the diameter varies from 600 mm by
10 mm–800 mm by 15 mm. Figure 1 is a possible representation of the jacket substructure, the subject
of this analysis, realized using Strand7 and MATLAB software.

Figure 1. Jacket modeled by Strand7 and MATLAB.

All analysis steps necessary for the simplified design of an offshore structure have been done
introducing a 10-step modeling approach:

1. Structural and environmental parameters
2. Undamped motion of the structure
3. Damped frequencies’ definition
4. Response to environmental loads
5. Maximum load pile applied
6. Time domain solution
7. Transfer function definition
8. Spectral density function of the generic load
9. Response spectrum

10. 3σ approach

In order to test if the activity model conforms to the real response of the structure, two methods
of analysis will be tested for the same structure. One has been developed using MATLAB software
and the other one using the Strand7 software. If the results are coherent, the modeling could be said to
be efficient and suitable for the representation of the behavior of a generic jacket steel structure.
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Platform properties and environmental parameters are described below. The steel jacket is
modeled with five lumped masses placed at different heights, one at each horizontal plane and
clamped at the bottom. The generic lumped mass is the sum of all the tubular masses surrounding the
center of the horizontal plane, in particular half above and half below the generic horizontal plane.
A real complex steel jacket structure can be studied using an FE model in Strand7. All the masses
have been calculated considering the specific weight of steel 7850 kg/m3 multiplied by the generic
cross-section and multiplied by the length of the tubular members. The diagonal mass matrix M of the
5DOF model expressed in kg developed in MATLAB:

M =

⎡
⎢⎢⎢⎢⎢⎣

m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 m5

⎤
⎥⎥⎥⎥⎥⎦ = diag[581,889, 122,432, 147,074, 242,301, 206,739] (6)

The stiffness matrix K has been determined along the direction x. Once having applied the
definition of stiffness to all the system, it is possible to define (using MATLAB) the matrix K in N/m as:

K =

⎡
⎢⎢⎢⎢⎢⎣

k11 k21 k31 k41 k51

k12 k22 k32 k42 k52

k13 k23 k33 k43 k53

k14 k24 k34 k44 k54

k15 k25 k35 k45 k55

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0.6568 −0.6568 0 0 0
−0.6568 1.1290 −0.4722 0 0

0 −0.4722 0.9560 −0.4838 0
0 0 −0.4838 1.0523 −0.5685
0 0 0 −0.5685 1.0390

⎤
⎥⎥⎥⎥⎥⎦ · 109 (7)

The sea state analysis has been simplified, and sample values have been chosen through
Pierson–Moskowitz spectra. Such a distribution is an empirical equation for deep water waves
that defines how the energy is distributed with respect to the wave frequency. It is based on the
assumption of the fully-developed sea in which the wind blows constantly for a long time over an
unlimited fetch area. Another wave spectrum (termed JONSWAP) might be taken into account. It is
typical of the North Sea characterized by a limited fetch area. The aim of this project is not to reproduce
a specific study of a particular case, but to find a generic tool to reproduce an easier and faster way
expressed in terms of analysis cost of the dynamic behavior of a generic lattice structure. The quality
of this model is also promoted by the flexibility, the adaptability of the frame, which represents a
valid approach to consider different cases. The reader is free to reproduce the analysis using the
JONSWAP spectra.

These data characterize the definition of the wave loads defined by Morison’s equation against the
structure. The following sea state conditions have been chosen as wave height H = 11.6 m, the wave
period T = 12 s, the wavelength λ = 1.56T2 = 226 m, the wave frequency ω = 2π/T = 0.5236 rad/s,
and the salt water density ρ = 1031 kg/m3.

The free undamped motion of the structure is investigated solving the eigenvalue problem:

det(K − ω2M) = 0 (8)

Thus, the five undamped natural structural frequencies for free vibration in rad/s of the 5DOF
model in rad/s are:

ω1 = 11.4498, ω2 = 35.8886, ω3 = 68.9503, ω4 = 87.9880, ω5 = 110.9217 (9)

Modal shape matrix X is also identified for each natural structural frequency ωn. Each modal
vector is identified by ξ̂n = [ξ̂1n, ξ̂2n, . . . , ξ̂Nn]

T = [1, ξ̂2n, . . . , ξ̂Nn]
T . Those vectors are normalized with

respect to the mass matrix to form the new modal vectors xn = ξ̂n/en, where en is a set of positive and
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real constants computed from ξ̂T
n M ξ̂n = e2

n. It follows that the modal shape matrix X of the 5DOF
model is defined as the assembly of the normalized modal vectors xn:

X = [x1, x2, . . . , x5] =

⎡
⎢⎢⎢⎢⎢⎣

1.1 0.6 0.3 −0.2 0.2
1.0 −0.1 −1.0 1.1 −2.2
0.8 −0.9 −1.7 0.7 1.5
0.5 −1.4 0.1 −1.3 −0.4
0.3 −1.0 1.4 1.3 0.2

⎤
⎥⎥⎥⎥⎥⎦ · 10−3 (10)

Associated with five undamped natural structural frequencies for free vibration ωn with
n = 1, 2, . . . , 5 are the five corresponding vibration modes of the 5DOF model.

A benchmark test with Strand7 software is carried out for verification purposes using natural
frequency analysis. Forty vibration modes have been considered, because the FE model is made of
several 1D beam elements. The five vibration modes given by the MATLAB code are compared to
the ones obtained via FE in Figure 2. The undamped natural frequencies in rad/s are: ω1 = 14.33,
ω2 = 35.00, ω3 = 57.93, ω4 = 76.97, and ω5 = 104.62.

It can be noted that the mode shapes obtained by MATLAB are close to the ones obtained by FE
simulation, as well as the corresponding natural undamped frequencies.

Subsequently, damped natural frequencies should be computed because they better represent
the structural behavior of real structures. Rayleigh damping is considered for this purpose. Damped
frequencies are characterized by the two Rayleigh constants a1 and a2, which are uniquely determined
if any two of the modal damping factors ζn are specified. Since the first few modes will dominate the
motion, it is reasonable to choose ζ1 = ζ2 = 0.05.

Thus, the five damped natural structural frequencies for free vibration in rad/s of the 5DOF
model are:

ωd1 = 11.4355, ωd2 = 35.8437, ωd3 = 68.7227, ωd4 = 87.5516, ωd5 = 110.0883 (11)

The fourth step, of the present procedure, regards the response of the structure to the harmonic
wave. Airy theory is considered, and it is assumed that the motion of the structure is much smaller
than the motion of the wave; thus, Morison’s equation can be applied. The inertia counterpart of the
flow is represented through the inertia coefficient CM = 2, while the drag counterpart by the drag
coefficient CD = 0.8. The structure has been modeled with four vertical legs Nl = 4 plus two horizontal
cross braces Nc = 2, which are normal to the flow. The calculation of the wave forces follows the
guidelines reported by classical books of offshore structural modeling [30]. Wave loads for the present
problem in kN are:

p1 = 580.53, p2 = 1132, p3 = 1125.3 p4 = 1092, p5 = 1111.1 (12)

The fifth step is related to the pile stress analysis at the foundation level. Global bending moment
at the foundation level is considered due to all the forces of the model. The final stress on the pile is
determined by the bending moment and the weight of the structure (Figure 3).
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Figure 2. Mode shape comparison between 5DOF and the FE model.
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Figure 3. Pile stress analysis of the 5DOF model.

Moreover, a wind force Fwind= 410 kN is considered acting on the superstructure zwind = +7.5 m.
Therefore, the force applied on the pile B-1 is FB1 = −8316.28 kN. As the numerical benchmark,
the same analysis is performed in the FE model. The maximum compression value of the stress in piles
given by Strand7 is in the pile B1 and is equal to FB1 = −9922 kN, while the MATLAB calculation has
given FB1 = −8316 kN. There is a high correlation between the two values; indeed, they differ by only
of 16%. It follows that the 5DOF model proposed in this research is working properly.

The sixth step is based on the time domain solution. These five structural steady state
displacements over a time of 30 s, or in other words, the response of the structure subjected to
five cycles of wave loading, are depicted in Figure 4.

Figure 4. Time domain plot of the 5DOF model.

The absolute value of the maximum peaks in m are: ξ1 = 0.02813, ξ2 = 0.027214, ξ3 = 0.02356,
ξ4 = 0.017664, ξ5 = 0.01073. These values are then compared with the results obtained with the 3σ

approach that defines structural safety according to the stochastic approach. The simulation is verified
via FE analysis, leading to ξ1 = 0.0384, ξ2 = 0.0348, ξ3 = 0.0278, ξ4 = 0.0187, ξ5 = 0.0101.

The maximum displacements obtained with MATLAB and FE are of the same magnitude.
The ratios between the displacement obtained with MATLAB and Strand7 are listed in Table 1.
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Table 1. Comparison between MATLAB and Straus7 displacements.

MATLAB FE Ratio

ξ1 0.0281 0.0384 0.73
ξ2 0.0272 0.0348 0.78
ξ3 0.0236 0.0278 0.85
ξ4 0.0177 0.0187 0.95
ξ5 0.0107 0.0101 1.06

Small deviations can be observed. However, this is due to the simplifications introduced;
nevertheless, as a preliminary design phase, the results can be considered worthy for proceeding in
the present study. It follows that the model fully satisfies the requirements of this research.

The seventh step defines the wave transfer functions for the model. The transfer function G(ω) is
a function that relates the wave height H of the incident wave to the load imparted to the structural
component. It is generally defined in harmonic form: G(ω) = G0ejωt with j =

√−1, and G0 is a
complex number independent of time. The transfer function depends on the flow regimes and the
structural component. Transfer functions are computed for all components and assembled for the
structure. The transfer function can be applied only to linear analysis (as in the present case), and the
effect of multiple wave excitation can be considered (which is not possible in the nonlinear regime).
The calculation of the wave transfer function follows the indication provided in [30], and the plot of
the modulus square of the five transfer functions |xT

k G(p, ω)|2 = |G(q̄k, ω)|2 is given in Figure 5.

Figure 5. Wave transfer functions for the 5DOF model.

Spectral Density Function of the Generalized Force Component in Modal Coordinates

The eighth step is based on the definition of the spectral density function of the generalized
force component in modal coordinates. It is necessary to determine first the Pierson–Moskowitz
wave spectrum [30]:

Sη(ω) = 0.0081
g2

ω5 e−B/ω4
(13)

with B = 0.74(g/V)4 where v is the wind speed in m/s at a height of 19.5 m above the still water level
and ω is expressed in rad/s. Multiplying the transfer function of the load in modal coordinates by
the Pierson–Moskowitz spectrum, it achieved the spectral density function of the generalized force
component in modal coordinates (Figure 6).
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Figure 6. Spectral density functions of the generalized force component in modal coordinates for the
5DOF model.

The ninth step is focused on the spectral density in terms of modal coordinates, and it is given
by S(yk, ω) = |Hk(ω)|2S(q̄k, ω) with k = 1, 2, . . . , 5. S(q̄k, ω) is the spectral density function of the
generalized force component in modal coordinates, and |Hk(ω)| = [(ω2

k − ω2)2 + (2ζKωkω)2]−1/2 is
the modulus of the harmonic response function for the kth mode. Once the spectral density in terms of
modal coordinates S(yk, ω) has been determined, is possible to define the spectral density in terms of
physical coordinates S(ξk, ω) = ∑N

n=1 x2
knS(yk, ω) applying the inverse of the modal analysis, as shown

in [30] (Figure 7).

Figure 7. Response spectra for the displacement in physical coordinates of the fixed-leg platform.

The last step includes the stochastic approach design using the 3σ approach. By computing the
area covered by the response displacement spectra, the variance of such displacement can be carried
out σ2(ξk). The extreme limits of ξk are ±3σ(ξk) with k = 1, 2, . . . , 5. If the static stresses and deflection
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of the members are within these extreme limit values, then the structure is assumed safe. Assuming
a Gaussian process, there is only a 0.026% chance that each response exceeds the ±3σ(ξk) limits.

The extreme displacement limit values in m are:

3σ(ξ1) = 0.3577, 3σ(ξ1) = 0.3158, 3σ(ξ1) = 0.2491, 3σ(ξ1) = 0.1763, 3σ(ξ1) = 0.1014 (14)

After comparing these results with the maximum peak displacements (Figure 4), the reader will
easily state that the structure can be said to be safe.

4. Jacket Supporting the Wind Turbine

The aim of the present paper is to find a useful tool able to model the behavior accurately of a new
offshore structure that supports the wind turbine subjected to environmental actions. The structure
under investigation presents the same jacket structure with a long pile foundation placed in the same
position with the same characteristics. All analysis steps necessary for the simplified design for the
new offshore structure have been introduced in the previous section. The introduced 10-step modeling
approach will be considered also in the following.

The wind tower is made of steel with a length of 80 m. The nacelle mass is 240 tons. The rotor
mass is 110 tons. The turbine diameter is 126 m (Figure 8). The wind tower has a truncated cone shape;
at the bottom, the diameter is 4 m and the thickness is 0.18 m; at the top, the diameter is 3.5 m and the
thickness is 0.10 m. At half tower height, the diameter is 3.75 m and the thickness is 0.14 m. The hub
is at z = +90 m. The wind tower produces a rated power of 5 MW. It is attached to the substructure
through a concrete (density 1600 kg/m3) transition piece with 9.6 × 9.6 × 4 m3 of volume. The whole
structure will be treated as a discrete system with 5 + 1 lumped masses.

Figure 8. Wind tower model.

The lumped masses of the jacket are calculated using the same procedure illustrated above.
It follows that the mass matrix M of the 6DOF model in kg is:
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M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

937,000 0 0 0 0 0
0 1,587,300 0 0 0 0
0 0 122,400 0 0 0
0 0 0 147,100 0 0
0 0 0 0 242,300 0
0 0 0 0 0 206,700

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(15)

The stiffness matrix K has been determined along the x direction using the proper definition.
Thus, matrix K in N/m is:

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.121 −0.121 0 0 0 0
−0.121 0.6689 −0.6568 0 0 0

0 −0.6568 1.1290 −0.4722 0 0
0 0 −0.4722 1.0345 −0.5622 0
0 0 0 −0.5622 1.1307 −0.5685
0 0 0 0 −0.5685 1.2073

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
· 109 (16)

The same sea state of the previous section has been considered.
The free undamped motions of the present structure can be determined solving the corresponding

eigenvalue problem. The six undamped natural frequencies computed using MATLAB and the FE
model are listed in Table 2 in rad/s.

Table 2. Undamped natural frequencies computed using MATLAB and the FE model.

MATLAB FE Ratio

ω1 3.38 3.39 ≈1
ω2 8.53 8.54 ≈1
ω3 36.02 36.00 ≈1
ω4 71.90 71.88 ≈1
ω5 90.62 90.60 ≈1
ω6 111.50 111.53 ≈1

ω1 = 3.3879, ω2 = 8.5393, ω3 = 36.0211, ω4 = 71.8985, ω5 = 90.6182, ω6 = 111.5014.
The modal shape matrix X of the 6DOF model is defined as the assembly of the normalized modal

vectors xn as:

X = [x1, x2, . . . , x6] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.0 −0.2 −0.0 0.0 −0.0 −0.0
0.1 0.7 0.2 −0.1 0.1 0.1
0.1 0.6 −0.5 1.3 −1.3 −2.1
0.1 0.5 −1.2 1.5 −0.4 1.6
0.0 0.3 −1.5 −0.3 1.2 −6.0
0.0 0.1 −0.9 −1.4 −1.4 0.2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
· 10−3 (17)

and its vibrational modes of shape are compared to the ones obtained by FE analysis in Figure 9.
As follows, all the frequencies computed via FE analysis in rad/s are: ω1 = 2.74, ω2 = 7.16,

ω3 = 26.13, ω4 = 50, ω5 = 63.81, and ω6 = 80.39. The modes of shape obtained by MATLAB
calculation and the ones obtained by Strand7 are quite similar, as well as the corresponding natural
undamped frequencies. The correlation between the two approaches shows the quality of the model.

As done for the previous case, damped frequencies of the 6DOF model in rad/s are computed as:
ωd1 = 3.3836, ωd2 = 8.5286, ωd3 = 35.2135, ωd4 = 67.8688, ωd5 = 82.9486, ωd6 = 97.4530.
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Figure 9. Vibrational mode comparison between the 6DOF and FE models.

The harmonic wave of the previous case is considered below. Regarding the wind load,
the correspondent force is calculated at z = +90 m. The wind force is given by two contributions:
one from the wind acting against the swept rotor area and the other from the wind acting against the
tower. The force considered at the top node of the model p1 = 3055 kN will take into account the
wind on the swept rotor area and the wind on the half tower. The remaining half part of the wind on
the tower will be add to the first wave load. The wind force is given by two contributions: one from
the wind acting against the swept rotor area and the other from the wind acting against the tower.
The force considered at the top node of the model p1 will take into account the wind on the swept
rotor area and the wind on the half tower. The remaining half part of the wind on the tower will be
added to the first wave load. The counterpart wind on the tower is calculated by integrating the wind
velocity over the tower height, and it is equal to fw =

∫
u(z)dz = 191.58 N with u(z) = 1.5(z/3)1/7
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and with 0 ≤ z ≤ 90 m. The counterpart wind on the rotor is frot = 0.5ρurot A = 3054.9 kN, where the
wind velocity at the rotor hub is urot = 20 m/s. It follows that the wind load applied at the top of the
wind turbine is p1 = fw/2 + frot = 3055 kN.

The pile foundation check is carried out as previously described with reference to Figure 10.
For this new configuration, the maximum compression value in the piles given in B-1 is equal to
FB1 = −21,131 kN. The same pile in the 5DOF configuration withstood a compression equal to
FB1 = −8316 kN. In the new configuration, the pile B-1 carries more than two and half-times the stress
carried in the previous one. Supposing that the compression threshold pile limit is Fmax = −18,000 kN,
it is quite clear that the new load produced by the 6DOF configuration is no longer bearable for the
pile B-1.

The generic long steel pile foundation in this structure presents the following characteristics:
diameter of 2.13 m, wall thickness of 50 mm, pile length of 96 m, of which 75 m are embedded.
The corresponding axial pile capacity is Qr = 28,800 kN. In order to take into account the differences
between the structure with the cantilever model, a safety factor equal to γr = 1.60 has been chosen.
It follows that the maximum bearing load for the pile is Fmax = Qr/γr = 18,000 kN.

Figure 10. Pile stress analysis of the 6DOF model.

Performing the static analysis with Strand7 of the 6DOF model, the maximum displacement for
each node is: ξ1 = 1.3893, ξ2 = 0.1012, ξ3 = 0.712, ξ4 = 0.434, ξ5 = 0.0244, ξ6 = 0.0103.

These values will be compared with the 3σ(ξk) approach below.
Although the jacket substructure has the same configuration as the 5DOF model, the wave transfer

functions are not identical, but similar to the previous case. This is due to the mode shape matrix
X of the 6DOF model. It follows that the equations are the same as the 5DOF configuration, but the
functions of the five wave transfer functions are slightly different.

In order to define the spectral density function of the generalized force component, it is requested
to define first the wave and wind spectra. For the wind analysis, the Kaimal spectrum is used.
The parameters chosen for the Kaimal spectrum are:

Su(ω) = σ2
U

6.868 Lu
Umean

(1 + 10.32 ωLu
Umean

)5/3
(18)
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where the mean wind velocity Umean = 6 m/s, the variance of the wind speed σ2
U = λ2

w ·
(Γ(1 + 2

kw
− (Γ(1 + 1

kw
))2 = 12.81 (m/s)2 with λw = 6.7 and kw = 1.72 Weibull parameters of

probability density of gamma function Γ, roughness parameter z0 = 0.001, the integral length scale
Lu = 300( el1

300 )
0.46+0.074log(z0) = 321 m, and the air density ρair = 1.225 kg/m3 (Figure 11).

Wave modeling is carried out using the Pierson–Moskowitz spectrum. Multiplying the wind
transfer function of the load Hu f = CT AρairUmean in the modal coordinates with the thrust coefficient
CT = 0.8 by the Kaimal spectrum Su for the wind and the wave transfer functions |xT

k G(p, ω)|2
by the Pierson–Moskowitz Sη , the spectral density function of the wind force in modal coordinates
S f = H2

u f · Su and the spectral density of the generalized wave force in modal coordinates Sqi,
respectively, are achieved (Figure 12).

Figure 11. Wave and wind spectral density function.

Figure 12. Spectral density of the generic environmental load in modal coordinates of the 6DOF model.

The spectral density of the wind load in modal coordinates i = 1 has values much higher than
the wave loads; in particular, it tends to infinity when ω tends to zero. For the sake of simplicity,
the spectral density function of the wind force in modal coordinates will be limited. The wind transfer
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function of the load Hu f in modal coordinates, which converts the wind speed spectrum to the wind
load spectrum, is based on the assumption that u(t) has the same value over the area, which in general
is not true.

Once the spectral density function of the wind load and generalized wave component are defined
in modal coordinates S f and Sqi, the wind transfer function from the spectral density of wind force
into spectral density in modal coordinates is carried out as:

|Hwind(ω)|2 =
1

mi · 4πω4
i

1{
1 − ( ω

ωi

)2}2
+ 4ζ2

i
(

ω
ωi

)2 (19)

and the wave transfer functions from spectral density of the generalized wave force component
into spectral density in modal coordinates |Hk(ω)|2. The spectral density function in terms of
modal coordinates S(yk, ω) is given by multiplying the spectral density function of the load in
modal coordinates with the correspondent transfer function in modal coordinates. Let J1 be the
joint acceptance of the mode, which accounts for the correlation of wind loading along the rotor,
considering the mode shape.

J1 =
1

X4 |Hwind(ω)|2 (20)

Once the spectral density in terms of modal coordinates S(y,ω) has been determined, it is possible
to define the spectral density in terms of physical coordinates S(ξk, ω) (Figure 13).

Figure 13. Response spectra for the displacement in physical coordinates of the offshore wind
turbine plot.

The last 10-step methodology phase defines the variance of the structural displacements in
physical coordinates σ2(ξk). The extreme limits of ξk are ±3σ(ξk) with k = 1, 2, . . . , 6. If the static
stresses and deflection of the members are within these extreme limit values, then the structure is
assumed safe. Considering a Gaussian process, there is only a 0.026% chance that each response
exceeds the ±3σ(ξk) limits. The extreme displacement values of the 6DOF configuration in m are:
3σ(ξ1) = 1.3822, 3σ(ξ2) = 0.3471, 3σ(ξ3) = 0.2917, 3σ(ξ4) = 0.2154, 3σ(ξ5) = 0.1505, 3σ(ξ6) = 0.0748.
After comparing these results with the ones given above, it can be stated that the structure cannot
be safe for the first node at the top of the wind tower, in particular ξ1 = 1.40 m, whereas the limit is
3σ(ξ1) = 1.38 m. The 6DOF model built from the adaptation and extension of the 5DOF model has to
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be modified in order to find the safety condition. In order to do that, hereafter, different retrofitting
examples will be presented.

5. Improved Retrofitting Models

Retrofitting refers to the addition of new technology or features to older systems, extending
the service life. In this case, different retrofitting typologies are illustrated. The retrofitting models
proposed in this section are analyzed following the same methodology previously shown. The approach
is suitable for tender design and early design steps of jacket structures. The aim is to identify a useful
tool that is able to represent the behavior of the new offshore structure subjected to environmental
actions. The system under investigation presents the same jacket and a big wind tower installed on
top of it. The whole system will be analyzed with MATLAB calculation and supported by Strand7
software. The aim is to find the right intervention that will ensure the modified offshore structure
without causing stability trouble for the system. This research proposes three main retrofitting activities
that can be adopted for the offshore wind turbine. They are: crown pile, mooring lines, and 2-MW
wind turbine.

5.1. Crown Pile Configuration

The crown pile solution represents the same configuration of the 6DOF model except for the piles
at the base of the jacket. In addition to the four corner piles, here there are an extra four piles placed at
the midspan of each side at z = −d connected each to the other piles with a rectangular ring (Figure 14).
Regarding Figure 14 and all the following configurations, z = −d represents the sea bottom level when
the vertical axis z is zero at the Still Water Line (SWL) pointing upward. The reference system shown
in Figure 14 of the FE model considers the reference system at the sea bottom, so z = 0. However,
all the present MATLAB models consider the z axis pointing upward with the sea bottom at z = −d.

Figure 14. Crown pile model detail.

The difference from the previous model is in the definition of the mass matrix M, where the
mass m6 = 19,202 kg. The six undamped natural structural frequencies for free vibration in rad/s
are: ω1 = 3.3879, ω2 = 8.5391, ω3 = 35.7613, ω4 = 70.5186, ω5 = 89.1430, ω6 = 111.4539. For the nth
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frequency ωn exists a modal vector ξn, which can be computed solving the linear eigenvalue problem
(see [30] p. 226).

The crown pile mode shapes are represented in Figure 15.
The damped frequencies of the 6DOF model in rad/s are: ωd1 = 3.3837, ωd2 = 8.5284,

ωd3 = 34.9825, ωd4 = 66.6939, ωd5 = 81.8239, ωd6 = 97.4230.
Wave and wind loads do not change with respect to the previous 6DOF case.
The pile foundation check leads to a maximum compression in the pile B-1 equal to

FB1 = −17,178 kN lower than the pile compression limit Fmax = −18,000 kN. The reader can easily
state that this first configuration helps the wind turbine in terms of stability. The maximum node
displacements of the crown pile model in m are: ξ1 = 1.3893, ξ2 = 0.1011, ξ3 = 0.711, ξ4 = 0.433,
ξ5 = 0.0243, ξ6 = 0.0101. These values will be compared with the results obtained with the 3σ(ξk)

approach to ensure structural safety.
The five wave transfer function are rather similar to the ones obtained for the 6DOF.
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Figure 15. Crown pile vibration modes.

Multiplying the wind transfer function of the load Hu f in modal coordinates by the Kaimal
spectrum Su for the wind and the wave transfer functions |xT

k G(p, ω)|2 by the Pierson–Moskowitz Sη ,
the spectral density function of the wind force in modal coordinates S f and the spectral density of the
generalized wave force in modal coordinates Sqi, respectively, are achieved. Such spectral densities are
depicted in Figure 16.
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Figure 16. Crown pile spectral density of the generic environmental load in modal coordinates.

The response spectra (Figure 17) for the displacements in physical coordinates of the offshore
wind turbine crown pile configuration have been determined.

Figure 17. Response spectra for the displacements in physical coordinates of the offshore wind turbine
crown pile configuration.

The area beneath these spectral density functions represents the variance of the generic
displacement in physical coordinates σ2(ξk). The extreme limits of ξk are ±3σ(ξk) with k = 1, 2, . . . , 6.
If the static stresses and deflection of the members are within these extreme limit values, then the
structure is assumed safe. Considering a Gaussian process, there is only a 0.026% chance that each
response exceeds the ±3σ(ξk) limits.

The extreme displacement values of the crown pile configuration in m are: 3σ(ξ1) = 1.3821,
3σ(ξ2) = 0.3470, 3σ(ξ3) = 0.2916, 3σ(ξ4) = 0.2152, 3σ(ξ5) = 0.1503, 3σ(ξ6) = 0.0751.

Comparing these results with the ones given by Figure 15, the reader will easily state that the
structure cannot be safe for the first node at the top of the wind tower, in particular ξ1 = 1.3893 m and
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3σ(ξ1) = 1.3821. The crown pile configuration has obtained higher values of safety expressed by the
3σ(ξ) approach results, but this is not enough yet for the global stability.

5.2. Mooring Line Configuration

The mooring line configuration presents the same configuration of the 6DOF model, which in
addition has a mooring line system that links the midspan second horizontal plane point of the jacket
to the seabed, limiting the movement (Figure 18). The mooring line has been modeled as a steel truss
element subjected to tension action given by the environmental loads. It has a diameter cross-section
of 0.1 m and a length of 98 m, and it creates an angle of 60◦ with the seabed. For this proposal, only the
x direction will be considered, but for real cases, it could be extended and applied for each direction.

Figure 18. Mooring line configuration model detail.

The mooring line masses are calculated following the same approach shown previously. Here,
the mooring pile configuration mass matrix M in kg:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.9370 0 0 0 0 0
0 1.5873 0 0 0 0
0 0 0.1224 0 0 0
0 0 0 0.1471 0 0
0 0 0 0 0.2423 0
0 0 0 0 0 0.2067

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
· 106 (21)

The stiffness matrix K has been determined over the x direction. Once having applied the
definition of stiffness to all the system, it is possible to define the matrix K in N/m as:
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K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.121 −0.121 0 0 0 0
−0.121 0.6689 −0.6568 0 0 0

0 −0.6568 1.1342 −0.4722 0 0
0 0 −0.4722 0.9560 −0.4838 0
0 0 0 −0.4838 1.0523 −0.5685
0 0 0 0 −0.5685 1.0390

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
· 109 (22)

The sea state is unchanged with respect to the previous cases.
The six undamped natural structural frequencies for free vibration in rad/s are: ω1 = 3.3737,

ω2 = 8.2907, ω3 = 33.7583, ω4 = 67.6558, ω5 = 87.5002, ω6 = 111.0619. Natural frequencies of the
present case are depicted in Figure 19.

The response of the mooring line configuration to the harmonic waves has been considered using
the same hypothesis for the 6DOF model. The wave loads and the wind load present the same values
for the 6DOF system.
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Figure 19. Mooring line vibrational modes.

A foundation check is performed for both the piles and the mooring line anchoring. The tension
in the mooring line from Strand7 calculation is Fml = 427.5 kN. The calculation of the stress applied on
the pile B-1 considers all the environmental loads pi with the horizontal and vertical component of
Fml that are applied to the structure. The compression in the pile B-1 is equal to FB1 = −20,959 kN,
which is still too high for the compression pile limit capacity.
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The damped frequencies of the 6DOF model in rad/s are: ωd1 = 3.3695, ωd2 = 8.2803,
ωd3 = 33.0309, ωd4 = 64.0793, ωd5 = 80.2370, ωd6 = 95.8081.

The maximum nodal displacements of the mooring model in m are: ξ1 = 1.3854, ξ2 = 0.0983,
ξ3 = 0.0685, ξ4 = 0.0416, ξ5 = 0.0235, ξ6 = 0.0099. These values will be then compared with the results
obtained with the 3σ(ξk) for checking structural safety.

The five wave transfer functions are similar to the ones obtained for the previous case.
Multiplying the wind transfer function of the load Hu f in modal coordinates by the Kaimal

spectrum Su for the wind and the wave transfer functions |xT
k G(p, ω)|2 by the Pierson–Moskowitz

Sη , the spectral density function of the wind force in modal coordinates S f and the spectral density
of the generalized wave force in modal coordinates Sqi, respectively, are achieved. These spectra are
illustrated by Figure 20.

Figure 20. Mooring line spectral density of the generic environmental load in modal coordinates.

The response spectra (Figure 21) for the displacements in physical coordinates of the offshore
wind turbine crown pile configuration have been determined.

Figure 21. Response spectra for the displacements in physical coordinates of the offshore wind turbine
mooring line configuration.
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The area beneath these spectral density functions represents the variance of the generic
displacement in physical coordinates σ2(ξk). The extreme limits of ξk are ±3σ(ξk) with k = 1, 2, . . . , 6.
If the static stresses and deflection of the members are within these extreme limit values, then the
structure is assumed safe. Considering a Gaussian process, there is only a 0.026% chance that each
response exceeds the ±3σ(ξk) limits. The extreme displacement values of the crown pile configuration
in m are: 3σ(ξ1) = 1.3965, 3σ(ξ2) = 0.3768, 3σ(ξ3) = 0.3204, 3σ(ξ4) = 0.2459, 3σ(ξ5) = 0.1724,
3σ(ξ6) = 0.0995.

Comparing these results with the ones previously given, the reader will easily state that the
structure cannot be safe for the first node at the top of the wind tower, in particular ξ1 = 1.3854 m and
3σ(ξ1) = 1.3965. The mooring configuration has obtained higher values of safety expressed by the
3σ(ξ) approach results, but it is not enough yet for the global stability.

5.3. The 2-MW Wind Turbine Configuration

The modeling of the 2-MW configuration is characterized by the same jacket sub-structure,
but with a smaller wind tower. Tower length is 60 m. The nacelle mass is 57 tons. The rotor mass is
23 tons. The diameter is 66 m. The wind tower has a truncated cone shape. At the bottom, the diameter
is 4 m and the thickness is 0.18 m. At the top, the diameter is 3.5 m and the thickness is 0.10 m.
At half the tower height, the diameter is 3.75 m and the thickness is 0.14 m. The hub is at z = +70 m.
The wind tower produces a rated power of 2 MW. As for the 6DOF model, it is attached to the
sub-structure through the same concrete transition piece. The sketch of the 2-MW offshore wind
turbine configuration is given in Figure 22.

Figure 22. The 2-MW model detail.

All the masses have been calculated considering the specific weight of the steel 7850 kg/m3

multiplied by the generic cross-section and multiplied by the length of the tubular member. It follows
that the mass matrix M of the 6DOF model in kg is:
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M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.5203 0 0 0 0 0
0 1.4834 0 0 0 0
0 0 0.1224 0 0 0
0 0 0 0.1471 0 0
0 0 0 0 0.2423 0
0 0 0 0 0 0.2067

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
· 106 (23)

The stiffness matrix K has been determined over the x direction. Once having applied the
definition of stiffness to all the system, it is possible to define the matrix K in N/m as:

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.121 −0.121 0 0 0 0
−0.121 0.6689 −0.6568 0 0 0

0 −0.6568 1.1290 −0.4722 0 0
0 0 −0.4722 1.0345 −0.5622 0
0 0 0 −0.5622 1.1307 −0.5685
0 0 0 0 −0.5685 1.2073

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
· 109 (24)

The sea state remains unchanged with respect to the other configurations.
The six undamped natural structural frequencies for free vibration in rad/s are: ω1 = 4.5039,

ω2 = 8.8834, ω3 = 36.1127, ω4 = 71.9487, ω5 = 90.6417, ω6 = 111.5328. They are also graphically
represented in Figure 23.
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Figure 23. The 2-MW configuration vibrational modes.
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The damped frequencies of the 6DOF model in rad/s are: ωd1 = 4.4983, ωd2 = 8.8723,
ωd3 = 35.5149, ωd4 = 68.8136, ωd5 = 84.6690, ωd6 = 100.6118.

The response of the harmonic wave has been considered the same as the 6DOF model. The wind
load due to the different wind towers will be lower in particular if it is applied at z = +70 m and is
equal to Pw = 838 kN.

The compression in the pile B1 is equal to FB1 = −13,288 kN, lower than the compression limit
value of the pile.

The maximum node displacements of the mooring model in m are: ξ1 = 0.2989, ξ2 = 0.0504,
ξ3 = 0.0413, ξ4 = 0.0302, ξ5 = 0.0.0194, ξ6 = 0.0099. These values will be then compared with the
results obtained with the 3σ(ξk) approach that will define the structural safety.

The five wave transfer functions are similar to the ones obtained for the previous cases.
Multiplying the wind transfer function of the load Hu f in modal coordinates by the Kaimal

spectrum Su for the wind and the wave transfer functions |xT
k G(p, ω)|2 by the Pierson–Moskowitz Sη ,

the spectral density function of the wind force in modal coordinates S f and the spectral density of the
generalized wave force in modal coordinates Sqi, respectively, are achieved (Figure 24).

Figure 24. The 2-MW configuration spectral density of the generic environmental load in modal coordinates.

For the spectral density of the wind load in modal coordinates, the same consideration is made
for the 6DOF case.

As done for the previous model, the response spectra for the displacements in physical coordinates
of the offshore wind turbine crown pile configuration have been determined and are shown in
Figure 25.
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Figure 25. Response spectra for the displacements in physical coordinates of the 2-MW offshore wind
turbine configuration.

The area beneath these spectral density functions represents the variance of the generic
displacement in physical coordinates σ2(ξk). The extreme limits of ξk are ±3σ(ξk) with k = 1, 2, . . . , 6.
If the static stresses and deflection of the members are within these extreme limit values, then the
structure is assumed safe. Considering a Gaussian process, there is only a 0.026% chance that each
response exceeds the ±3σ(ξk) limits.

The extreme displacement values of the 2-MW wind turbine configuration in m are:
3σ(ξ1) = 0.4208, 3σ(ξ2) = 0.1847, 3σ(ξ3) = 0.1572, 3σ(ξ4) = 0.1234, 3σ(ξ5) = 0.0950, 3σ(ξ6) = 0.0503.

Comparing these results with the ones given above, the reader will easily state that the structure
cannot be safe for the first node at the top of the wind tower, in particular ξ1 = 0.2989m and
3σ(ξ1) = 0.4208. The 2-MW configuration has obtained lower values of safety expressed by the
3σ(ξ) approach results and together with the pile check analysis completes the global stability of the
2-MW retrofitted configuration.

6. Conclusions

Due to the long service lifetime of offshore systems, the analysis of the performance of the
substructure is a complex task that involves many steps including load analysis, dynamic analysis,
evaluation of the fatigue life, as well as long-term deformations.

This work presents a simplified methodology for the analysis of the ultimate and dynamic loads
with a check on the most stressed pile of the different offshore retrofitted systems. The analysis was
carried out such that the data required about the oil and gas platform, wind turbines, and the site
are available in the early design phases. Thus, the methodology appears to obtain a conservative
estimation. It is obvious that the present study is not free from limitations, but it can be improved in
further investigations.

The first limitation is due to the simplified modeling made of discrete masses, one for each jacket
level. Nevertheless, high correlations have been shown with the example proposed by the references.

The present work proposes five retrofitted solutions: four related to the substructure operations
and one regarding the wind turbine. They are respectively the crown pile configuration, long pile,
mooring line, stirrups, and the 2-MW wind turbine configuration. The safety concept of the retrofitted
models is expressed in terms of pile check analysis and the 3σ approach.
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Nevertheless, the final values obtained by the different configuration typologies are slightly
higher or lower than the threshold limit, and the check is slightly fulfilled or not; here, the goal is just
to show a simple method to investigate an offshore structure. The present research can be considered
as the starting point for a reliability analysis regarding decommissioned jacket platforms for wind
energy generations in an offshore environment.
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Abstract: When constructed on tall building rooftops, the vertical axis wind turbine (VAWT) has the
potential of power generation in highly urbanized areas. In this paper, the ambient dynamic responses
of a rooftop VAWT were investigated. The dynamic analysis was based on ambient measurements
of the structural vibration of the VAWT (including the supporting structure), which resides on the
top of a 24-story building. To help process the ambient vibration data, an automated algorithm
based on stochastic subspace identification (SSI) with a fast clustering procedure was developed.
The algorithm was applied to the vibration data for mode identification, and the results indicate
interesting modal responses that may be affected by the building vibration, which have significant
implications for the condition monitoring strategy for the VAWT. The environmental effects on the
ambient vibration data were also investigated. It was found that the blade rotation speed contributes
the most to the vibration responses.

Keywords: vertical axis wind turbine; structural health monitoring; operational modal analysis;
stochastic subspace identification; vibration test

1. Introduction

In commercial wind-power generation, most attention is placed on the deployment of horizontal
axis wind turbines (HAWTs) as they are thought to be more efficient than the vertical axis wind turbines
(VAWTs) [1]. However, recent studies on VAWTs found that they can be driven by gentler winds and
have no need of yaw. These advantages make VAWTs ideal for urban power generation [1,2].

VAWTs can be generally divided into two types: drag-type and lift-type. Lift-type VAWTs have
a bigger tip-speed ratio; thus, they can convert the highest amount of energy. Lift-type VAWTs,
such as the Darrieus rotor with egg-beater blades (Φ-type) and the Darrieus rotor with straight
blades (H-type), are the most widely used VAWTs [3,4]. Furthermore, their designs were improved
with computer fluid dynamics (CFD) and finite element analysis (FEA), making them more efficient
in energy conversion [5–7]. However, studies on VAWTs are limited when compared to those on
horizontal wind turbines. Although several laboratory vibration tests were performed to study the
dynamic behavior of VAWTs [8–11], only a limited number of field vibration measurements were
conducted. Some studies showed that the vibration of the VAWT support structure may be influenced
by the wind turbine’s operation [9]. Although there are some research reports about the development
of rooftop VAWTs which can make better use of high-altitude winds [12,13], very few instances of
on-site monitoring are published.
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Energies 2018, 11, 3135

The implementation of structural health monitoring (SHM) systems in a structure can help ensure
optimal performances of the structure. This is achieved via real-time vibration measurements and a
better understanding of the dynamic loads [14–16]. The SHM of wind turbine towers was proposed for
system monitoring and was integrated into the Supervisory Control and Data Acquisition (SCADA)
systems [17–20]. The SHM of HAWT towers concerns problems including resonance responses caused
by operation frequency or blade passing frequency [21–23], foundation scouring [24], blade flange
conditions [25], and structural performances under extreme events [26,27].

Understanding the dynamics of VAWTs can be helpful for improving the design of VAWTs and
the implementation of SHM in the VAWT systems. In this paper, along with the installation of an
H-type VAWT on the roof of a 24-story dormitory building, a structural health monitoring system was
implemented, and the dynamic responses of the VAWT were studied and reported. The objective of
this study was to understand how the VAWT behaves dynamically under normal operation conditions.
Ambient vibration measurements were obtained for both the building and the VAWT, including the
support tower. The data were analyzed to find the interactions between the building and the VAWT
structure, as well as the environmental effects on the vibration responses. To facilitate modal parameter
identification, an automated algorithm based on stochastic subspace identification (SSI) and a fast
clustering algorithm was developed. The results are presented herein along with discussions on the
interactions between the building and the tower and their significance for condition monitoring.

The paper is organized as follows: in Section 2, the VAWT is firstly introduced and the vibration
measurement campaign is described. Data analyses and a discussion of the results are provided in
Sections 3 and 4, respectively. The findings are summarized in Section 5.

2. The VAWT Wind Turbine and Vibration Measurements

An H-type VAWT was installed on the roof of a 24-story dormitory building belonging to the
Tongji University, Shanghai, China (referred to as the #6 building at the Zhangwu campus).

Vibration measurements of the #6 building were conducted prior to the VAWT installation.
Several electromagnetic accelerometers were placed on the building’s rooftop, and the lateral
movements of the building along both the X-direction (longer axis) and the Y-direction (shorter axis)
were measured. These electromagnetic accelerometers, with a moving coil as the sensing unit,
have good performances in the low-frequency range. Details of the electromagnetic accelerometers
can be found in Table 1. Figure 1 shows the #6 building, the relative location of the VAWT, and the
deployment of the vibration sensors. Accelerations of the roof of the #6 building were measured with
a sampling frequency of 128 Hz, and the duration of the building acceleration data was around 9 min.

Table 1. Details of accelerometers used for building and tower testing.

Item Piezoelectric Sensors (Tower) Electromagnetic Sensors (Building)

Sensitivity 9.83 mV/(ms2) 329 mV/(ms2)
Resolution 0.001 ms2 3 × 10−6 ms2

Frequency range 1.0 to 5000 Hz (±5%) 0.25 to 100 Hz (+1 dB to −3 dB)
0.5 to 7000 Hz (±10%)

Acceleration range 500 ms2 200 ms2

Weight 4.4 g 800 g
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Figure 1. Sensor deployment on the #6 building’s roof.

Both the vibration-time histories and the power spectrum density (PSD) of the roof were obtained
along the X- and Y-directions. The building vibrations obtained are shown in Figure 2. Based on
the PSD diagram, the first few modes of natural frequencies of the #6 building are shown to be less
than 12 Hz (Table 2). The peaks of higher vibration modes are not as obvious as the lower modes;
thus, high-frequency modes are more difficult to determine (Figure 2b,d). The frequencies shown
in Table 2 were the measured natural frequencies of the #6 building. The roof vibrations, shown in
Figure 3, include (1) translational motion along the X-direction, (2) translational motion along the
Y-direction, and (3) torsional motion. Since the long axis of the building is along the X-direction,
the torsional motion (corresponding to 1.3 Hz) can be observed for the Y-direction measurements of
Station 1 and Station 2, indicating possibly more torsional vibration for a substructure (e.g., a VAWT) if
it is installed on the edge of a building than for one installed at the center of the building.

Table 2. Natural frequencies of the #6 building.

Direction
Frequency (Hz)

1st 2nd 3rd 4th

X 0.94 3.60 6.90 10.60
Y 0.71 1.30 4.10 9.60
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Figure 2. Ambient responses of the #6 building’s roof: (a) time histories along the X-direction; (b) power
spectrum density (PSD) along the X-direction; (c) time histories along the Y-direction; (d) PSD along
the Y-direction.

Figure 3. Building mode shape sketch.
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The VAWT consists of a power generation component that includes five turbine blades, a deflector,
a generator, and a hollow shaft. Figure 4 shows the wind turbine, which is attached via metal-strip
hoops to the exterior of an extension structure for the elevator shaft on the rooftop. The design details
of the VAWT are listed in Table 3. The metal-strip hoops were designed to laterally constrain the wind
turbine tower and were embedded into the wall of the #6 building with expansion bolts. To reduce
vibration of the tower, rubber gaskets were placed between the hoops and the tower. There were three
hoops attached to the structure with the last hoop very close to the base block. Details of the hoops can
be seen in Figure 4. The heavy concrete base block, laid on the roof, was used to weigh down the tower.
Bolts were embedded into the concrete base block (foundation) and were connected to the bottom
flange of the tower. The bolt size and anchor depth are shown in Table 4.

Figure 4. The H-type vertical axis wind turbine (VAWT): (a) modeling of the vibration system;
(b) the VAWT and the details of its supports (including schematics; unit: mm).

Table 3. Details of the wind turbine.

Parameter Value

Rated power 2 kW
Rated spin speed 250 rpm
Rated wind speed 25 m/s

Maximum design wind speed 32 m/s
Blade height 2 m
Blade span 2.2 m

Weight (generator + blades) 240 kg
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Table 4. Details of the supports of the wind turbine.

Hoop

Thickness 6 mm
Material Q235 steel

Bolts M10
Expansion bolts M12

Anchorage depth ≥75 mm
Rubber gasket thickness 5 mm

Tower

Thickness 4 mm
Material Q235 steel

External diameter 250 mm

Base

Bolts M18

The theoretical frequencies of the VAWT structure were also calculated before the installation
to avoid the resonance issue, considering building vibrations. The vibration responses of interest for
the wind turbine are the lateral movements of the power generation component as described in the
simplified model shown in Figure 4a [28]. Other than the rigid foundation at the base, the bending
behaviors of the tower are critically limited by the stiffness of the three hoop supports on the tower
shaft. As shown in Figure 4, the hoops consist of half-rings connected to the hoop base using the
bolt connectors and rubber gaskets. Hence, the constraining actions of the hoops can be described
as shear in the perpendicular direction to the bolts (X-direction) and tension in the bolt connection
direction (Y-direction). Also shown in Figure 4 is the simplified dynamic model of the monitoring
system, which includes the wind generation component (rigid mass) and the connection to the top
hoop support (rod). Different stiffness models can be constructed for the hoop support. The tensile
stiffness of a single hoop, kt, can be described as

kt =
1

1
2kM10

+ 1
4kM12

+ 1
2kR

, (1)

where kM10, kM12, and kR are the tensile stiffness of M10 bolts and M12 bolts, and the compression
stiffness of the rubber gaskets, respectively. The shear stiffness of a single hoop ks can be described as

ks =
4kM12,skR

4kM12,s + kR
, (2)

where kM12,s is the shear stiffness of the M12 bolts. In the following discussion, the vibration responses
of the wind turbine are separated into the shear (X) direction and the tension (Y) direction. Using this
very simplistic dynamic model, the fundamental frequencies of the tower were derived as 7.2 Hz in
the shear direction (X-direction of the tower shaft and X-direction of the building) and 6.0 Hz in the
tension direction (Y-direction of the tower shaft and Y-direction of the building).

A monitoring system was designed for the data collection, storage, and processing.
Parameters associated with environment, power generation, and structural performances were
collected continuously. Measurements were stored in a computer installed on the roof. The system
was also designed to allow remote monitoring of data. Figure 5 shows the monitoring setup of the
VAWT tower. In this case, a third-generation (3G) network was used for the wireless data transmission.
This paper focuses on vibration data collected from this condition monitoring system.
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Figure 5. Monitoring setup of the VAWT tower.

To measure the vibration modes of the wind turbine, along with the installation of the VAWT,
three pairs of piezoelectric accelerometers were mounted along the tower at three sections with
different heights; each pair had two sensors, deployed in two directions perpendicular to each other at
each section: (a) the X-direction which runs perpendicular to the hoop bolts (shear direction), and (b)
the Y-direction which parallels the tensioning of the hoop bolts. Figure 6 shows the sensor locations,
which were designated as cross Sections 1–3. Sensors in cross Section 1 (the generator) were installed
inside the tower shaft; thus, the set-up was not influenced by the rotating blades. The other section
sensors were installed on the outside surface of the tower. Different from electromagnetic sensors,
a piezoelectric sensor adopts a piezoelectric crystal as the sensing unit, and it can be made into a
smaller size compared to that of the electromagnetic ones. Details of the piezoelectric accelerometers
deployed for tower testing can be found in Table 1.

Figure 6. Deployment of sensors: (a) schematics of the VAWT wind turbine; (b) the sensor attachments.
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To monitor the environmental conditions, a tachometer, a thermometer, and a voltmeter were also
installed. The tachometer was used to measure the rotation speed of the wind turbine. The thermometer
kept track of the daily environmental temperature changes near the structure. The power generation
of the wind turbine in Watts could be translated from the measurements obtained by the voltmeter.
The sampling frequencies of all the measured data were set at 1024 Hz. Typical acceleration time
histories for a time window of 10 min are shown in Figure 7. Accelerations labeled x1, x2, and x3,
and y1, y2, and y3 correspond to cross Sections 1–3 along the X-direction and the Y-direction of the
tower, respectively. Typical time histories in a day (24 h) of rotation speed, temperature, and voltage
(power generation) recorded on 28 August 2016 are presented in Figure 8.

A cup anemometer with a wind-direction indicator was installed near the VAWT, which measured
the speed and direction of the incoming wind. The anemometer was the F220S model manufactured by
the Nanhua Electronics Company, Shanghai, China. Measurements of wind speed and wind direction
were recorded about every 10 s. The definition of wind direction was as follows: 0◦ corresponded to
the north direction, and 90◦ corresponded to the east direction. Since the wind field in urban areas can
be quite complex, both the wind speed and direction measurements fluctuated constantly. Only the
moving averages with a step length of 10 min were used in current study. Figure 9 shows a typical
recorded wind scenario throughout a day (28 August 2016) and its moving average. It can be seen from
Figures 8 and 9 that both the maximum wind speed and the maximum temperature occurred at noon,
and the temperature and the wind speed were strongly correlated. The rotation speed, which should
be linear to the quadratic of the wind speed, only had a medium correlation (the correlation coefficient
was 0.581) with the raw wind speed, and was strongly correlated (the correlation coefficient was 0.888)
with the average wind speed. This happened since the rotation of the VAWT calls for a continuous
wind force rather than a gust. The correlation coefficients between the rotation speed, wind speed,
and temperature calculated with both raw wind-speed data and averaged wind-speed data are shown
in Table 5. The relationship between the power and the wind speed is also provided in Figure 10.

Figure 7. VAWT accelerations at 12 a.m. on 28 August 2016.
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Figure 8. Typical monitoring data, recorded on on 28 August 2016: (a) wind turbine rotational speed;
(b) temperature; (c) power generation distribution.

Figure 9. Wind speed and wind direction on 28 August 2016.
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Table 5. Correlation coefficients between rotation speed, wind speed, and temperature.

Correlation Coefficients Rotation Speed1/2 Wind Speed (Raw Data) Temperature

Rotation speed 1 0.581 0.757
Wind speed 0.581 1 0.516
Temperature 0.757 0.516 1

Correlation Coefficients Rotation Speed1/2 Wind Speed (Moving Average) Temperature

Rotation speed 1 0.888 0.757
Wind speed 0.888 1 0.677
Temperature 0.757 0.677 1

Figure 10. Power curve of the rooftop VAWT on 28 August 2016.

3. Data Analysis

3.1. Frequency Domain Analyses

The frequency domain analyses were conducted using the power spectrum density (PSD). The PSD
of the ambient response of a structure can be written as

PXX( f ) ∝ [T( f )]I[T( f )]T, (3)

where PXX( f ) is the PSD of the response of a structure, T( f ) is the transfer function, which contains
the information of a structure, and I is a unit matrix since the ambient excitation can be regarded
as white noise. PXX( f ) represents the system characteristics of a structure, and the period gram
method was used to calculate the PSDs. The period gram method uses windows to divide data into
sections, and averages the PSDs of each section; hence, it can help accentuate the modal amplitudes
and suppress the noise base in the frequency domain [29,30].

3.2. SSI Method

The classical SSI method is based on the state-space model of a system. A discrete-time state-space
model of the system under ambient excitation without feedback signals can be described as

{
xk+1 = Axk + wk

yk = Cxk + vk
, (4)
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where the subscript k is the time, xk is the state vector, yk is a measurement vector, wk is an excitation
vector that is considered as white noise, vk is a measurement noise vector, A is a state transition matrix,
and C is an output location matrix.

The key to obtaining the modal parameters of the system is to solve for the state transition
matrix A, and to calculate its eigenvalues and eigenvectors. The procedure of the classical SSI method
to obtain the modal parameters of a system is explained below [31,32].

Suppose the number of measurement is m. A Hankel matrix with 2i row blocks and j columns
can be constructed as

H0|2i−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 y1 y2 . . . yj−1
y1 y2 y3 . . . yj
. . . . . . . . . . . . . . .

yi−1 yi yi+1 . . . yi+j−2

yi yi+1 yi+2 . . . yi+j−1
yi+1 yi+2 yi+3 . . . yi+j
. . . . . . . . . . . . . . .

y2i−1 y2i y2i−1 . . . y2i+2j−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2mi×j

=

[
H0|i−1

Hi|2i−1

]
=

[
Hp

Hf

]
, (5)

where H0|i−1 and Hi|2i−1 are matrices representing the first mi rows and the second mi rows of H0|2i−1,
respectively; and Hp and Hf are equal to H0|i−1 and Hi|2i−1, respectively, with subscripts p and f
standing for past and future times.

With the orthogonal projection of Hf to Hp, the projection matrix Oi is obtained as

Oi = Hf/Hp = HfHp
T
(

HpHp
T
)+

Hp, (6)

where (∗)+ denotes the pseudo-inverse of a matrix.
The projection matrix Oi can be decomposed further using the singular-value decomposition,

which gives

Oi = UiΣiVi
T =

(
Ui1 Ui2

)( Σi1
Σi2 = 0

)(
VT

i1
VT

i2

)
= Ui1Σi1Vi1

T, (7)

where Σi is a diagonal matrix of dimension mi × j; Ui and Vi are orthogonal matrices of dimensions
mi × mi and mi × j, respectively; Σi1 and Σi2 are submatrices of Σi that have dimensions 2n × 2n and
(mi − 2n)× (j − 2n), respectively, in which n is the degree of freedom of the system; Ui1 and Ui2 are
submatrices of Ui; and Vi1 and Vi2 are the submatrices of Vi. Finally, the observability matrix Γi and
the Kalman filter state sequence X̂i can be obtained as

Γi = Ui1Σ1/2
i1 ; (8)

X̂i = Σi1
1/2VT

i1. (9)

The state transition matrix A can then be obtained as

A = Γ1
+Γ2, (10)

where Γ1 and Γ2 are formed as the first m × (i − 1) and last m × (i − 1) rows of Γi, respectively.
Eigenvalues and eigenvectors of A can be obtained using eigenvalue decomposition:

A = ΨΛΨ−1, (11)
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where Λ = diag(λ1 λ2 . . . λr . . . λ2n), in which λr is the r-th eigenvalue of A and
Ψ =

(
ψ1 ψ2 . . . ψr . . . ψ2n

)
. The r-th natural frequency of the system in Hz can be

calculated as

fr =
abs(ln(λr)× fs)

2π
, (12)

where fs is the sampling frequency in Hz, and the r-th damping-ratio of the system can be calculated as

ξr =
−real(ln(λr)× fs)

abs(ln(λr)× fs)
. (13)

The associated mode shape can be calculated as

ϕr = Cψr, (14)

where the measurement matrix C is formed as the first m row of Γi.
In this study, the stability diagrams were used to assist the identification of the “stable” modes.

In a stability diagram, there are user-defined stability criteria for natural frequencies and for damping
ratios. When an identified modal parameter corresponding to the calculation order of 2n is different
from that corresponding to the order 2n − 2, which is lower than the threshold of a criterion for
the identified parameter, then the criterion is considered to meet at the order 2n. When the two
criteria (pertaining to natural frequency and damping ratios) are simultaneously met at the order 2n,
the identified modal parameters are considered “stable”, and a marker is drawn at the point in the
stability diagram, whose horizontal and vertical positions correspond to 2n and the identified natural
frequency, respectively. In this work, the criteria for frequencies and damping ratios were set as 1%
and 5%, respectively, and was set as 50. Figure 11 shows a typical stability diagram for the current
study using the Y-direction results. Figure 11a shows the calculation order as a function of frequency,
which shows three vibration modes. Figure 11b shows the damping ratio as a function of the vibration
frequencies indicating less obvious vibration modes. This observation has important implications for
the automation of the mode identification process, which is discussed below.

Figure 11. Stabilization diagram using the stochastic subspace identification (SSI) method and
identified vibration parameters: (a) calculation order as a function of frequency; (b) damping ratio as a
function of frequency (raw results—prior to pole-picking algorithm; clean results—after application of
pole-picking algorithm).

3.3. Automatic Pole-Picking Procedure

Since long term monitoring produces a significant amount of data, to facilitate data analysis,
the vibration parameters need to be identified using automated procedures. Automated modal
analysis procedures based on the stochastic subspace identification (SSI) method were used [33–35].
Methods based on clustering adopt a stability diagram; therefore, they can be used concurrently with
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commercial modal analysis software [33,35]. In this study, a new cluster method was adopted for the
automated process. The cluster method does not require iteration and costs less calculation time.

With the SSI method, poles corresponding to different calculation orders can be obtained.
Each pole contains the information on frequency, damping ratio, and mode shape. The similarity
between different orders of calculated mode shapes is evaluated by a parameter called the modal
assurance criterion (MAC). In this work, the number of poles clustered within a certain frequency and
MAC range was called a local density ρ, and a value was assigned to the cluster. The pole-picking
procedure uses the local density and its distance to the other poles to define the cluster. It can be
presented as follows [36]:

(1) Calculate frequency distances dij and MACij between each pole set, i and j:

dij =

∣∣∣∣∣ fi − f j

f j

∣∣∣∣∣; (15)

MACij =

(
ϕT

i ϕj
)2

(
ϕT

i ϕi
)(

ϕT
j ϕj

) (16)

(2) If dij and MACij satisfy the following criteria, then add one to the local density value ρi of pole i:

• dij × 100% < 1%;

• (
1 − MACij

)× 100% < 1%.

(3) Pick the poles with relatively high local densities.

In this work, only poles with a local density ρi higher than five were used. Averages of clean
poles corresponding to different modes were then identified as final results.

Figure 12 summarizes the pole-picking algorithm for mode identification. The values defined in
the two selection processes should be determined based on a proper understanding of the behaviors
of the particular structure and the serviceability (limits on vibration amplitudes) requirements.
The selection of the criteria range will not critically impact the number of “stable” modes that can
be identified.

Figure 12. Flow chart of the proposed pole-picking approach.
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4. Results and Discussion

4.1. Vibration Composition Analysis

The VAWT vibration is fundamentally caused by wind force, but the vibration amplitudes did
not show a strong correlation with wind speed, since the measured excitations and responses were
not of the same phase. To determine how the wind turbine vibration signature changed, the PSD
diagrams of the turbine vibration accelerations along both the X- and Y-directions of cross Section 1
were presented along with the turbine rotation speed (transferred into blade passing frequencies to
indicate whether there were excitations caused by blade rotation) in contour plots, and are shown
in Figure 13. Measurements on 28 August 2016 were used for the analysis. It was first noted that
there were little changes in the frequency values associated with the rotation speeds; thus, it was
concluded that the rotation of blades did not cause significant disturbances on the global structural
mode identification, which is unlike the HAWTs [16,18]. However, it was also noted that the PSD
amplitude of this VAWT vibration increased with an increase in rotation speed.

Figure 13. Vibration amplitude versus turbine blade passing frequency.

PSDs from the acceleration time histories were obtained from the #6 building roof (Station 2,
which was close to the VAWT) and the wind turbine tower. Figure 14 shows the vibration PSDs of the
building and the tower superimposed. Measurements of cross Section 1 along both the X-direction
and the Y-direction were taken as references since their vibration amplitudes were the biggest and led
to higher signal-to-noise ratios. Because the sensors deployed on the tower were less sensitive toward
low-frequency responses, the relationships of the dynamic responses between the building and the
tower under 2 Hz was ignored. Three peaks at 3.6, 5.6, and 11.7 Hz can be observed in Figure 14 along
the X-direction. For the Y-direction, peaks at 3.8, 6.0, and 11.7 Hz can be seen in Figure 14.

142



Energies 2018, 11, 3135

Figure 14. Comparison of acceleration PSDs measured from the roof of the #6 building and the VAWT:
(a) X-direction; (b) Y-direction.

A closer observation of Figure 14 shows that some modes are closely associated with the building
vibration frequencies; hence, they can be identified as building-associated modes. Specifically, the 3.6
and 3.8 Hz modes of the tower along both the X- and Y-directions have corresponding peaks that
match the vibration mode of the #6 building (see also Table 2). On the other hand, the peaks at 5.8 Hz
and 6.0 Hz along the X- and Y-directions, respectively, are the fundamental frequencies of the wind
turbine tower, and they are unique as the corresponding PSD values of the #6 building do not exist.
This indicates that the building contributed to the vibration of the tower.

Table 6 summarizes the vibration frequencies identified along both the X- and Y-directions. Due to
the rotation of the deflector and the H-shape blades, frequencies of some modes can fluctuate within a
narrow range.

Table 6. Vibration frequencies of the tower.

Direction
Frequency (Hz)

1st 2nd 3rd 4th

x 3.6 5.8 10.7
y 3.8 6.0 9.7 11.7

According to Figures 13 and 14, 5.6 Hz and 6.0 Hz were the domain frequencies of the VAWT
vibration along the X-direction and Y-direction, respectively. The predominant building-associated
VAWT vibration modes were 3.6 Hz along the X-direction and 3.8 Hz along the Y-direction since peaks
with the same frequencies can be found in the PSD curves of the building vibrations. The third mode
frequency of the building along the X-direction was 6.9 Hz, and it influenced the VAWT vibration,
since the contour plot was sparser above 5.6 Hz than below 5.6 Hz, as shown in in Figure 13 (x1 plot).

Although the influence cannot be seen clearly in Figure 14, a 9.6-Hz mode, which is the fourth
peak along the Y-direction building PSD curve, shows an obvious contour in Figure 14 (y1 plot).
Furthermore, a 10.9 Hz mode along the X-direction and 11.7 Hz along the Y-direction are actual VAWT
vibration modes. This 10.9-Hz (along the X-direction) VAWT vibration is very close to the fourth
building vibration mode along the X-direction with a frequency of 10.6 Hz.
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4.2. Mode Identification

Data from 26 August to 4 September 2016 were used to generate the scatter plots for mode
identification with the automated algorithm introduced in Section 3, which are shown in Figure 15.
Because most of the modes are shown as scattered data points, a line fit was used to help determine the
specific frequencies (colored scatters) of interest. It can be found that, generally, the concerned
frequencies decreased as the temperature or blade passing speed increased. Usually, the high
temperature and severe vibration of the structure may reduce the rigidness of the system due to
steel material characteristics and the boundary feature of the VAWT. Wind direction has little influence
on the vibration frequencies as the VAWT is insensitive to the incoming flow. The influence of the
blade passing speed on the vibration frequency is not as strong as that of the wind speed. The reason
can be that the change of rotation speed lags behind the airflow velocity change.

The identified mode shapes along both the X-direction (hoop bolt shear) and the Y-direction
(hoop bolt tension) of the tower are shown in Figure 16. Superimposed in the amplitude plots
(Figure 16) are the idealized mode shapes. According to Reference [8], the mode shapes of the Φ-type
VAWT shaft are combinations of a simply supported beam and a cantilever. However, this Φ-type
VAWT was attached with cables, which is different from the H-type VAWT we studied. A laboratory
experimental study was conducted with an H-type VAWT in Reference [9]. However, it does provide
mode shapes of the VAWT. A stereo vision technique was used to measure a Φ-type VAWT vibration
in Reference [11], and the mode shapes of the Φ-type VAWT shaft were also cantilevers. However,
the mode shapes of the H-type VAWT shaft in our study are not completely cantilever shapes since the
shaft was connected with two bearings, which cannot be simplified as totally rigid boundary conditions.

It is important to point out that the mode shape corresponding to 9.7 Hz along the Y-direction
was different from the others, with the vibration amplitude of the topmost section (cross Section 1)
smaller than that of the bottom section (cross Section 3). This mode is a building-associated mode,
but the vibration of the shaft is at an opposite phase with the building; thus, the vibration on the top is
counteracted. Also shown in Figure 16 are the views from the top of the vibration modes.

The differentiation between building-associated and non-building-associated modes implies
that, for future condition monitoring, these two types of modes can be separately studied to identify
the influence of building vibration to the tower vibration and to study the tower-alone vibration.
The building-associated modes may indicate the PSD or amplitude effects on the VAWT vibration,
and the non-building-associated modes would indicate the connections and overall integrity of
the VAWT.

Finally, the fundamental frequency along the Y-direction (tension direction of the hoop bolts) was
consistent with the calculated values, which was 6.0 Hz. However, the frequency corresponding to the
X-direction (shear direction of the hoop bolts) was lower than the calculated value, which was 7.2 Hz.
This may be because of an overestimation of the connection stiffness in the theoretical model.
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Figure 15. Ambient parameter effects on tower vibrations (26 August to 4 September).
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Figure 16. Identified mode shapes and the associated schematics of the four dominant modes along
(a) the X-direction, and (b) the Y-direction (26 August to 4 September).

5. Conclusions

This paper presents a field vibration study of an H-type VAWT on a rooftop. To understand the
vibration performances of the VAWT installed on the rooftop of the #6 building at Tongji University,
a health monitoring system was implemented, and the dynamic behaviors of the VAWT were studied
using vibration measurements under ambient conditions. To process the vibration data, an automated
algorithm based on stochastic subspace identification (SSI) and a fast clustering approach was
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developed and presented to show how modes could be determined. The modified method helps
accommodate the frequency and mode shape requirements for mode identification, and the results
successfully identified several modes of the VAWT tower vibration along the tension direction and
shear direction of the hoop connection.

The results showed that some of the vibration responses of the VAWT tower (e.g., 3.6 Hz along
the X-direction and 3.8 Hz along the Y-direction) may be affected by the vibrations of the #6 building.
Hence, the modal behaviors can be differentiated into building-associated and non-building-associated
modes. Among the vibration frequencies identified from both the building and tower measurements,
the first mode vibration of the building (0.94 Hz along the X-direction, 0.71 Hz along the Y-direction,
and 1.3 Hz in torsion) has little influence on tower vibration. The second bending modes of the
building along both directions (3.6 Hz along the X-direction and 4.1 along the Y-direction), however,
can affect tower vibration, since the frequencies of the second mode of the building are relatively close
to those fundamental frequencies of the tower. This observation is important for the structural health
monitoring and life-cycle condition maintenance strategy of the VAWT. The understanding of the
effect of building-associated and non-building-associated modes on the VAWT tower responses may
also help improve the design of the VAWT tower.

The environmental effects on the ambient vibration data were also investigated, and it was found
that the blade rotation speed had a significant effect on the VAWT vibration PSD amplitudes, as shown
in Figure 13, indicating that higher blade rotation speeds can result in higher vibration amplitudes of
the wind turbine. On the other hand, temperature and wind direction, in general, had little effect on
the PSD amplitudes.
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Abbreviations

HAWT horizontal axis wind turbine;
VAWT vertical axis wind turbine;
SHM structural health monitoring;
SSI stochastic subspace identification;
PSD power spectrum density;
MAC modal assurance criterion.

Symbols

kt tensile stiffness of a single hoop;
ks shear stiffness of a single hoop;
kM10, kM12 tensile stiffness of M10 bolt and M12 bolt, respectively;
kR compression stiffness of the rubber gasket;
kM12,s shear stiffness of the M12 bolt;
PXX( f ) PSD of the response of a structure;
T( f ) transfer function;
I unit matrix;
xk state vector;
yk measurement vector;
wk excitation vector;
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vk measurement noise vector;
A state transition matrix;
C output location matrix;
kt number of measurement;
H Hankel matrix;
O projection matrix;
Γ observability matrix;
X̂ Kalman filter state sequence;
λ eigenvalue of A;
Ψ eigenvector of A;
fs sampling frequency;
2n maximum calculation order;
f natural frequency;
ξ damping ratio;
ϕ mode shape;
ρ local density of a result point;
d frequency distance between two result points;
MAC mode shape similarity (modal assurance criterion) between two result points.

References

1. Riegler, H. HAWT versus VAWT: Small VAWTs find a clear niche. Refocus 2003, 4, 44–46.
2. Han, D.; Heo, Y.G.; Choi, N.J.; Nam, S.H.; Choi, K.H.; Kim, K.C. Design, Fabrication, and Performance

Test of a 100-W Helical-Blade Vertical-Axis Wind Turbine at Low Tip-Speed Ratio. Energies 2018, 11, 1517.
[CrossRef]

3. Marie, D.G.J. Turbine Having its Rotating Shaft Transverse to the Flow of the Current. U.S. Patent
No. 1,835,018, 8 December 1931.

4. Bhutta, M.M.A.; Hayat, N.; Farooq, A.U.; Ali, Z.; Jamil, S.R.; Hussain, Z. Vertical axis wind turbine—A
review of various configurations and design techniques. Renew. Sustain. Energy Rev. 2012, 16, 1926–1939.
[CrossRef]

5. Jin, X.; Zhao, G.; Gao, K.J.; Ju, W. Darrieus vertical axis wind turbine: Basic research methods. Renew. Sustain.
Energy Rev. 2015, 42, 212–225. [CrossRef]

6. Yang, Y.; Guo, Z.; Zhang, Y.; Jinyama, H.; Li, Q. Numerical Investigation of the Tip Vortex of a Straight-Bladed
Vertical Axis Wind Turbine with Double-Blades. Energies 2017, 10, 1721. [CrossRef]

7. Mabrouk, I.B.; Hami, A.E.; Walha, L.; Zghal, B.; Haddar, M. Dynamic vibrations in wind energy systems:
Application to vertical axis wind turbine. Mech. Syst. Signal Process. 2017, 85, 396–414. [CrossRef]

8. James, G.H.I.; Carne, T.G.; Lauffer, J.P. The Natural Excitation Technique (NExT) for Modal Parameter
Extraction from Operating Wind Turbines; Nasa STI/Recon Technical Report N; 1993; Volume 93, pp. 260–277.
Available online: https://prod.sandia.gov/techlib-noauth/access-control.cgi/1992/921666.pdf (accessed on
7 June 2018).

9. Mclaren, K.; Tullis, S.; Ziada, S. Measurement of high solidity vertical axis wind turbine aerodynamic loads
under high vibration response conditions. J. Fluids Struct. 2012, 32, 12–26. [CrossRef]

10. Malge, A.; Pawar, P. Wind tunnel and numerical performance analysis of multi-storey vertical axis wind
turbines. J. Renew. Sustain. Energy 2015, 7, 053121. [CrossRef]

11. Najafi, N.; Paulsen, U.S. Operational modal analysis on a VAWT in a large wind tunnel using stereo vision
technique. Energy 2017, 125, 405–416. [CrossRef]

12. Rankine, R.K.; Chick, J.P.; Harrison, G.P. Energy and carbon audit of a rooftop wind turbine. Proc. Inst. Mech.
Eng. A J. Power Energy 2006, 220, 643–654. [CrossRef]

13. Balduzzi, F.; Bianchini, A.; Carnevale, E.A.; Ferrari, L.; Magnani, S. Feasibility analysis of a Darrieus
vertical-axis wind turbine installation in the rooftop of a building. Appl. Energy 2012, 97, 921–929. [CrossRef]

14. Brownjohn, J.M. Structural health monitoring of civil infrastructure. Philos. Trans. R. Soc. Lond. A Math. Phys.
Eng. Sci. 2007, 365, 589–622. [CrossRef] [PubMed]

148



Energies 2018, 11, 3135

15. Ou, J.; Li, H. Structural health monitoring in mainland china: Review and future trends. Struct. Health Monit.
2010, 9, 219–231.

16. Lan, C.; Li, H.; Ou, J. Traffic load modelling based on structural health monitoring data.
Struct. Infrastruct. Eng. 2011, 7, 379–386. [CrossRef]

17. Rohrmann, R.G.; Thöns, S.; Rücker, W. Integrated monitoring of offshore wind turbines—Requirements,
concepts and experiences. Struct. Infrastruct. Eng. 2010, 6, 575–591. [CrossRef]

18. Smarsly, K.; Hartmann, D.; Law, K.H. A computational framework for life-cycle management of wind
turbines incorporating structural health monitoring. Struct. Health Monit. 2013, 12, 359–376. [CrossRef]

19. Shirzadeh, R.; Devriendt, C.; Bidakhvidi, M.A.; Guillaume, P. Experimental and computational damping
estimation of an offshore wind turbine on a monopile foundation. J. Wind Eng. Ind. Aerodyn. 2013, 120,
96–106. [CrossRef]

20. Devriendt, C.; Weijtjens, W.; El-Kafafy, M.; De Sitter, G. Monitoring resonant frequencies and damping values
of an offshore wind turbine in parked conditions. IET Renew. Power Gener. 2014, 8, 433–441. [CrossRef]

21. Hu, W.H.; Thöns, S.; Rohrmann, R.G.; Said, S.; Rücker, W. Vibration-based structural health monitoring of a
wind turbine system. Part I: Resonance phenomenon. Eng. Struct. 2015, 89, 260–272. [CrossRef]

22. Hu, W.H.; Thöns, S.; Rohrmann, R.G.; Said, S.; Rücker, W. Vibration-based structural health monitoring of a
wind turbine system Part II: Environmental/operational effects on dynamic properties. Eng. Struct. 2015, 89,
273–290. [CrossRef]

23. Dai, K.; Wang, Y.; Huang, Y.; Zhu, W.; Xu, Y. Development of a modified stochastic subspace identification
method for rapid structural assessment of in-service utility-scale wind turbine towers. Wind Energy 2017, 20,
1687–1710. [CrossRef]

24. Weijtjens, W.; Verbelen, T.; Sitter, G.D.; Devriendt, C. Foundation structural health monitoring of an offshore
wind turbine—A full-scale case study. Struct. Health Monit. 2016, 15, 389–402. [CrossRef]

25. Loh, C.H.; Loh, K.J.; Yang, Y.S.; Hsiung, W.Y.; Huang, Y.T. Vibration based system identification of wind
turbine system. Struct. Control Health Monit. 2017, 24, e1876. [CrossRef]

26. Dai, K.; Huang, Y.; Gong, C.; Huang, Z.; Ren, X. Rapid seismic analysis methodology for in-service wind
turbine towers. Earthq. Eng. Eng. Vib. 2015, 14, 539–548. [CrossRef]

27. Dai, K.; Sheng, C.; Zhao, Z.; Yi, Z.; Camara, A.; Bitsuamlak, G. Nonlinear response history analysis and
collapse mode study of a wind turbine tower subjected to cyclonic winds. Wind Struct. 2017, 25, 79–100.

28. Qu, L. Analysis on Structural Interaction between Highrise Building and Roof-Mounted Wind Turbine
Generator. Master’s Thesis, Tongji University, Shanghai, China, 2015. (In Chinese)

29. Bingham, C.; Godfrey, M.; Tukey, J.W. Modern techniques of power spectrum estimation. IEEE Trans.
Audio Electroacoust. 1967, 15, 56–66. [CrossRef]

30. Bendat, J.S.; Piersol, A.G. Random Data: Analysis and Measurement Procedures; Willey and Sons, Inc.: Hoboken,
NJ, USA, 1971.

31. Van Overschee, P.; De Moor, B. Subspace algorithms for the stochastic identification problem. Automatica
1993, 29, 649–660. [CrossRef]

32. Peeters, B.; Roeck, G.D. Reference-based stochastic subspace identification for output-only modal analysis.
Mech. Syst. Signal Process. 1999, 13, 855–878. [CrossRef]

33. El-Kafafy, M.; Devriendt, C.; Guillaume, P.; Helsen, J. Automatic tracking of the Modal parameters of an
offshore wind turbine drivetrain system. Energies 2017, 10, 574. [CrossRef]

34. Zhang, Y.; Kurata, M.; Lynch, J.P. Long-term modal analysis of wireless structural monitoring data from a
suspension bridge under varying environmental and operational conditions: System design and automated
modal analysis. J. Eng. Mech. ASCE 2016, 143, 04016124. [CrossRef]

35. Cabboi, A.; Magalhães, F.; Gentile, C.; Álvaro, C. Automated modal identification and tracking:
Application to an iron arch bridge. Struct. Control Health Monit. 2017, 24, e1854. [CrossRef]

36. Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496.
[CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

149



energies

Article

Study on Vibration Transmission among Units in
Underground Powerhouse of a Hydropower Station

Jijian Lian 1,2,*, Hongzhen Wang 1,2 and Haijun Wang 1,2

1 State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University,
Tianjin 300072, China; wanghongzhen@tju.edu.cn (H.W.); bookwhj@tju.edu.cn (H.W.)

2 School of Civil Engineering, Tianjin University, Tianjin 300072, China
* Correspondence: jjlian@tju.edu.cn; Tel.: +86-22-2740-1127

Received: 16 October 2018; Accepted: 29 October 2018; Published: 2 November 2018

Abstract: Research on the safety of powerhouse in a hydropower station is mostly concentrated on
the vibration of machinery structure and concrete structure within a single unit. However, few studies
have been focused on the vibration transmission among units. Due to the integrity of the powerhouse
and the interaction, it is necessary to study the vibration transmission mechanism of powerhouse
structure among units. In this paper, field structural vibration tests are conducted in an underground
powerhouse of a hydropower station on Yalong River. Additionally, the simplified mechanical models
are established to explain the transmission mechanism theoretically. Moreover, a complementary
finite element (FE) model is built to replicate the testing conditions for comprehensive analysis.
The field tests results show that: (1) the transmission of lateral-river vibration is greater than those
of longitude-river vibration and vertical vibration; (2) the vibration transmission of the vibrations
that is caused by the low frequency tail fluctuation is basically equal to that of the vibrations caused
by rotation of hydraulic generator. The transmission mechanism is demonstrated by the simplified
mechanical models and is verified by the FE results. This study can provide guidance for further
research on the vibration of underground powerhouse structure.

Keywords: vibration transmission mechanism; underground powerhouse; lateral-river vibration;
low frequency tail fluctuation; rotation of hydraulic generator

1. Introduction

Vibration is a common phenomenon in energy infrastructure structures. Severe vibration can lead
to safety problems in rotating machineries and support structures [1–3], such as electrical machines,
towers of the wind turbine generators, and parabolic reflective surfaces in the concentrated solar power
systems. As a combination of rotating mechanical structures and concrete structures, the powerhouses
in hydropower stations usually work under complex hydraulic, electromagnetic, and mechanical loads.
Therefore, the safety problems are prone to occur. In recent years, hydropower industry has developed
rapidly in China. According to the National Energy Administer (NEA), the installed capacity of
hydropower has reached 341 million kW in 2017, accounting for 19.2% of the total installed capacity
of electricity in China. The annual hydropower generation has reached 1.19 × 1012 kWh, accounting
for 18.5% of the total electricity generation in China. Hydropower has made great contributions to
economic development and reduction of carbon emissions. With the development of hydropower,
a group of high-head, large-capacity hydroelectric generators has been commonly used in large-scale
hydropower stations. Various powerhouse safety problems that are caused by vibration of units happened
in hydropower stations correspondingly. For example, hydropower stations, such as XiaoLangDi, ErTan,
and YanTan in China have experienced powerhouse safety problems some extent [4,5]. The most serious
safety problem of powerhouse occurred in Russia, the unit #2 of the Sayano-Shushenskaya hydropower
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station in Yenisei River experienced severe vibration after overload operation, leading to fatigue
damage to the cap fixed bolts, and resulting in great casualties and property loss [6,7].

At present, the research on vibration safety of the powerhouse is mostly focused on the vibration
of machinery structure [8,9]. For the coupling vibration of unit shaft system, Ma, Song and Zhi, et al.
built the FE models of bearing support to analyze the coupling relationship of the foundation and the
shafting system [10–13]. Zhou et al. investigate the vibration of the stator frame under the action of
electromagnetic forces based on field tests and FE models [14]. Zhang and Wang et al. built the FE
models of powerhouse and pumping station to study the vibration under pressure pulsations [15,16].
On the other hand, Lian and He et al. studied the influence of unit on the vibration of the powerhouse
structure. The complicated linear and nonlinear coupling vibration rules between the unit and
powerhouse structure have been summarized, based on field tests of unit and powerhouse structure of
multiple hydropower stations and the FE method [17–21]. Zhang and Mao analyzed the correlation
between the vibration response of unit and powerhouse structure [22,23]. The coupling relationship
between the unit and the powerhouse structure were discussed based on relevant theories and field
tests data.

For the influence and transmission of vibration of powerhouse, Wang and Bai et al. investigated
the transmission rules of adjacent units by field tests of a hydropower station [24]. Wei et al. studied the
vibration transmission ways between main powerhouse and auxiliary powerhouse by FE method [25].
Ameen et al. studied the effect on dams caused by vibration of powerhouse by ANSYS-CFX model [26].
As for the vibration in underground structure, Gupta et al. investigated the influence of tunnel
and soil parameters on vibrations from underground railways [27]. Chen and Xia et al. studied the
vibration transmissions that are caused by blasting in underground powerhouse and excavation [28,29].
Kuo et al. studied the effect of a twin tunnel on the propagation of ground-borne vibration from an
underground railway theoretically [30]. However, due to the difficulty of field test and complexity of
structure, it is hard to explain the mechanism of vibration transmission in underground powerhouse,
so the theoretical research is rare.

According to the complexity of powerhouse structure and vibration source mechanism, this paper
focuses on two basic problems for vibration transmission among units. The first one is the effect of
vibration directions on the vibration transmission ratios, and the second one is the effect of frequency
of the vibration source on the vibration transmission ratios. To solve these problems intuitively and
accurately, field test, theoretical research, and numerical simulation are employed with appropriate
and reasonable simplification.

In this paper, field structural vibration tests of an underground powerhouse in a hydropower
station on Yalong River were conducted to investigate the vibration rules. Then, the simplified
mechanical vibration models are established to explain the mechanism of the vibration theoretically.
Finally, the testing powerhouse structure is simulated and calculated by FE method, the corresponding
vibration transmission ratios among units are extracted and compared with the field test results to
verify the theoretical analysis. The technology route of this paper is shown in Figure 1. This paper
studied the mechanism of the vibration transmission among units systematically. It can provide
guidance for further research on the safety of underground powerhouse structure.

Figure 1. Schematic diagram of technology route.
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2. Field Structural Vibration Test

In order to investigate the vibration transmission among units, a series of field structure vibration
tests were conducted based on an underground powerhouse in a large hydropower station on
Yalong River.

2.1. Field Tests Overview

The hydropower station is located in the main stream of Yalong River at the junction of Yanyuan
County and Muli County in Sichuan Province of China. It is the first stage of the five-order hydropower
development project in the middle and lower reaches of Yalong River, where the hydropower resources
are most concentrated. The hydropower station mainly aims at power generation, and it also has
functions of flood control and sand interception. The normal water storage level of the reservoir is
1880 m, the total storage capacity is 7.76 billion m3, and the adjusted storage capacity is 4.91 billion m3.
The installed capacity of the power station is 3600 MW, the annual utilization hour is 4616 h, and the
annual power generation is 166.20 billion kWh. All the units are lined up in the main powerhouse
from #1 to #6, and the rated capacity of single unit is 600 MW. Total length of the main powerhouse
is 204.52 m, the excavation height is 68.80 m, and the width of the main powerhouse along river is
25.90 m. The main powerhouse is shown as Figure 2.

 
Figure 2. Main powerhouse of the hydropower station in Yalong River.

To study the vibration transmission rules of powerhouse structure among units, vibration
displacement sensors were installed in unit #1 of powerhouse, considering the actual condition.
Ds-Net acquisition system and DP type seismic low frequency vibration displacement sensor were
used in the field tests.

Ds-Net acquisition system was used as data acquisition instrument. This system includes
multi-channel signal acquisition module and instrument fault signal identification module. Data can
be acquired and stored in this system simultaneously. The system can eliminate structural background
noise and Characteristic parameters of signals, such as maximum, minimum, variance, deviation
coefficient, and kurtosis coefficient can be calculated immediately. It also has an intelligent
multi-channel display interface during test. This system performs well in low frequency signal,
and it is suitable for large-scale structural vibration tests, such as the powerhouse, in this paper.
The sampling frequency of field tests is 400 Hz, and each data length is 1 min. In order to minimize
the influence of end effect in the data processing, the middle 50 s data was intercepted in the analysis.
The data acquisition instrument is shown as Figure 3.
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(a) (b) 

Figure 3. Data acquisition instrument: (a) Schematic; and, (b) Field tests photo.

DP type seismic low frequency vibration displacement sensor was used in the field tests. A set of
low frequency expansion circuits is employed to the seismic detector, in order to reduce the natural
frequency of the output characteristics to 1/20–1/100 of the original detector. The sensor has properties
of shock resistance, high stability, and good characteristics of low frequency output. The sensitivity of
the sensor is high to measure micrometer vibration displacements. Therefore, the sensor is suitable
for vibration measurement of large structures, such as powerhouse structure. Frequency response of
the sensor that was used in this paper is in the range of 0.35–200 Hz with a sensitivity of 8 mV/μm.
The vibration displacement sensors are shown as Figure 4.

  
(a) (b) 

Figure 4. Vibration displacement sensors used in field tests: (a) Close-up; and (b) Field installation
photo.

The vibration displacement sensors were installed in the middle of the main beam on the left side
of hydraulic turbine floor of unit #1, as shown in Figure 5. Three sensors were fixed by bolts after
drilling to test vibrations in the lateral-river direction, the longitude-river direction and the vertical
direction. For the convenience of the following description, the lateral-river direction, as well as the
direction of axis of main powerhouse is defined as the X direction. The longitude-river direction is
defined as the Y direction, and the vertical direction is defined as the Z direction. As shown in Figure 6.

The investigations were concentrated on unit #2 and unit #3, since they were closed to the sensors
in unit #1. In order to study the effects of unit#2 and unit #3 on the vibration of sensors in unit #1, it is
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necessary to adopt the variables control method. Therefore, when testing the effect of unit #2 on the
sensors, unit #2 was in operation, both unit #1 and unit #3 should be in shutdown; the same settings
were applied when testing the effects of unit #2 and unit #3. Because the units were connected to the
power grid during tests, their operating conditions must meet the needs of power grid, and cannot be
controlled as the tests required. Therefore, in the actual tests, a large number of data was acquired.
Then, the data in the time period when the unit #4, unit #5, and unit #6 were in shutdown was selected
after the tests, as shown in Figure 6. Test results for unit #1, unit #2, and unit #3 in various operating
conditions were obtained to investigate the vibration transmission.

Figure 5. Powerhouse structure and location of sensors.

Figure 6. Distribution of units in the main powerhouse and definition of vibration directions.

2.2. Preliminary Tests Results

With the change of operating conditions of unit #1, unit #2, and unit #3, the root mean square
(RMS) of vibration displacement of the sensors in unit #1 varies, as shown in Figure 7.

It can be seen from the Figure 7 that the vibration in Z direction is most severe. When the vibration
source (unit #1, unit #2, or unit #3) is at 100 MW operating condition, vibrations of structure in X, Y,
and Z direction achieve the maximum simultaneously. Therefore, the 100 MW operating condition is
the most unfavorable condition in the field tests of powerhouse. This is consistent with the previous
tests and research results [17,21]. When the Francis Type Water Turbine-Generator Unit is fewer
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than 40% of rated load conditions, the tail water vortex belt would be decomposed and split. A large
number of irregular small vortexes will replace the spiral vortex belt, and the signal exhibits a noise-like
broadband characteristic, which can be seen in the spectrum analysis of tested signal in the following
section [31]. Samanta and Vinuesa et al. also studied the characterizations of the flow field through
numerical simulations and experiments [32–34]. In the other hand, the preliminary tests results also
prove the consistency of each unit as vibration source. Next, all the following data analysis is based on
100 MW operating conditions.

 
(a) 

 
(b) 

(c) 

Figure 7. Variation of root mean square (RMS) of displacement with unit #1, unit #2 and unit #3 in
operation respectively: (a) Unit #1 in operation; (b) Unit #2 in operation; and, (c) Unit #3 in operation.
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2.3. Vibration Transmission Rules of Tests

According to the two problems raised in the introduction, the variation of vibration intensity in
three directions was calculated to study the effect of vibration directions; the signal component was
analyzed to study the effect of vibration frequency.

2.3.1. Vibration Intensity

In order to study the rules of vibrations in X, Y, and Z direction with different units, typical time
histories of vibration displacements in three directions are shown in Figure 8, when the unit #1, unit #2,
or unit #3 is operated as vibration source, respectively.

 
(a) 

 
(b) 

 
(c) 

Figure 8. Time histories of vibration displacements in three directions: (a) X direction; (b) Y direction;
and, (c) Z direction.

Due to the uncertainty in field vibration tests, it is necessary to minimize the influence of
random factors. Therefore, multiple groups of samples were selected in 100 MW operating conditions.
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Ten groups of typical data were extracted for analysis, and the RMS values of vibration displacement
were calculated. A scatter plot of the RMS of vibrations in X, Y, and Z directions is shown in Figure 9.

 
(a) 

(b) 

 
(c) 

Figure 9. RMS of vibration displacements with different units in three directions: (a) X direction;
(b) Y direction; (c) Z direction.

Figure 9 show that the vibrations in three directions of X, Y and Z all present a tendency of
decrease with the increase of the distance from the vibration source. The mean values of the ten
samples in three directions of X, Y, and Z are calculated respectively. Taking the RMS of vibration
displacement caused by unit #1 as reference, the ratios of RMS of vibration displacement caused by
different units are attained respectively, as shown in Equation (1).

⎧⎪⎨
⎪⎩

x1 : x2 : x3 = 1 : 0.1769 : 0.1069
y1 : y2 : y3 = 1 : 0.0953 : 0.0331
z1 : z2 : z3 = 1 : 0.1074 : 0.0320

(1)
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The ratios are defined as vibration effect ratios by each unit, as shown in Figure 10. For vibration
in X direction, the effect ratio of unit #2 is approximately 17.69%, while the ratio of unit #3 is about
10.69%, compared with the vibrations caused by unit #1 as 100%. For vibration in Y direction, the effect
ratio of unit #2 is approximately 9.53%, while the ratio of unit #3 is only 3.31%. For vibration in Z
direction, the effect ratio of unit #2 is approximately 10.74%, while the ratio of unit #3 is about 3.2%.
When considering of the consistency of each unit as vibration source, the vibration effect ratios can
also be regarded as vibration transmission ratio.

It can be conducted that the vibrations in X direction caused by adjacent units are greater, and the
vibration transmission ratios are bigger, as compared with the vibration in Y and Z directions.

Figure 10. Vibration effect ratios by each unit.

2.3.2. Signal Component

In order to study the variation of signal components in the process of vibration transmission,
spectral analysis is performed based on the vibration signals in Figure 8. Power spectral density (PSD)
is obtained and shown in Figure 11.

According to the PSD shown in Figure 11, all the signals can be divided into three components:
(1) Component A, with frequency between 0.2 and 1.5 Hz; (2) Component B, with frequency of 2.4 Hz;
and, (3) Component C, with frequency higher than 5 Hz. For vibration in X direction, the Component
A is the main part. Meanwhile, the energy of Component B is less than Component A. For vibration in
Y direction, Component A and Component B are two main parts. Energies of the two are basically
equal, while the Component A is wider and the peak value of the Component B is larger. For vibration
in Z direction, the Component A is the only main part. The Component B is unobvious. For vibrations
in all three directions, the Component C is not obvious. The proportions of the three components do
not show apparent difference among vibrations caused by unit #1, unit #2 and unit #3.

The components of signals are related to the corresponding vibration sources. Combining previous
studies [13,14,16,35], vibration sources of powerhouse structure mainly consist of the following parts:
(1) Rotation of hydraulic generator, according to the unit parameters, the rotational frequency of
hydraulic generator is 2.4 Hz; (2) Low frequency tail fluctuation, when the unit is in the medium and
low load state, severe low frequency tail fluctuation occurs in the draft tube. It is often the main source
of vibration for units and powerhouse structure. Its frequency is less than 0.6 times that of rotation
frequency; (3) The other medium and high frequency vibration sources, such as volute uneven flow.
Combining above, the Component A can be considered to be caused by low frequency tail fluctuation;
the Component B can be considered to be caused by the rotation of hydraulic generator; the Component
C can be considered to be caused by the other medium and high frequency vibration sources.
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(a) 

(b) 

 
(c) 

Figure 11. Spectrums of vibration displacements in three directions: (a) X direction; (b) Y direction;
and, (c) Z direction.

In order to further quantify the components, the wavelet analysis method was used to component
analysis of vibration signals. Wavelet analysis is a local transformation method based on time, space
and frequency. It uses horizontal movement and expansion to perform function multi-scale operation,
which can realize frequency domain decomposition of data signals. Multi-Resolution Analysis (MRA)
was applied in this article. The db3 wavelet was used as the mother wavelet. Firstly, the vibration
signals were decomposed by seven-level wavelet transform. Then signals corresponding to different
vibration sources were reconstructed from different frequency bands. Finally energies of vibration
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signals corresponding to different vibration sources were calculated. The frequency range of each
frequency band after wavelet decomposition of vibration signals are shown in Table 1.

Table 1. Wavelet decomposition of vibration signals.

Signal Decomposed a7 d7 d6 d5 d4 d3 d2 d1

Frequency Range (Hz) 0–1.56 1.56–3.13 3.13–6.25 6.25–12.5 12.5–25 25–50 50–100 100–200

Signal corresponding to a7 was reconstructed as the Component A. Signal corresponding to d7
was reconstructed as the Component B. Signals corresponding to d6, d5, d4, d3, d2, and d1 were
constructed as the Component C. Variances of the reconstructed signals are calculated to obtain the
energy proportions of different vibration components, as shown in Figure 12. It can be shown that
energy proportions of Component A and Component B barely change in the progress of vibration
transmission among units.

According to the above, it can be concluded: (1) Low frequency tail fluctuation and rotation of
hydraulic generator are the two main vibration sources of the vibration of the powerhouse structure;
and, (2) They have almost the same transmission ratios among units.

 
(a) 

 
(b) 

(c) 

Figure 12. Energy proportions of vibrations in three directions: (a) X direction; (b) Y direction;
and (c) Z direction.
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3. Study of Vibration Transmission Mechanism

The simplified mechanical vibration models are established to investigate the vibration
transmission mechanism of powerhouse structure among units.

3.1. Simplication of Powerhouse Structure

The vibration transmission of underground powerhouse structure among units is essentially a
kind of mechanical wave. Its transmission direction is the direction of axis of the main powerhouse
(from unit #1 to unit #n), that is the X direction according to the previous definition. When the vibration
is in X direction, its direction is consistent with the transmission direction. So, this transmission can
be regarded as compression vibration. When the vibration is in Y or Z direction (perpendicular to
the direction of transmission), the transmission can be regarded as the shear vibration, as shown
in Figure 13. These two different vibration transmissions in powerhouse will be studied in the
following section.

Figure 13. Transmission of vibration in different directions.

According to the structural characteristics of underground powerhouse of the hydropower
station, it is known that the main structure of powerhouse is mainly the mass concrete. Therefore
the powerhouse structure of each power unit can be regarded as a homogeneous block and fixed
on the bedrock. Units are separated by the split seam. Assuming that the effect of split seams on
vibration transmission among units is negligible. Only the vibration transmission through the bedrock
is considered. When considering the condition of two adjacent units, the main powerhouse structure
can be simplified, as shown in Figure 14.

m2 m3 

m4 m1 

Figure 14. Simplified model of vibration transmission.

As shown in the Figure 14, two units and the bedrocks are plotted in the two-dimensional (2-D)
plane. Two adjacent units are represented by two lumped masses m1 and m4. The bedrocks below
m1 and m4 are represented by two homogeneous elastic blocks m2 and m3, respectively. The bottom
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and the lateral sides of bedrocks m2 and m3 are restrained by normal constraints. It is easy to know
m1 = m4, let m1 = m4 = m; similarly, m2 = m3 = M.

3.2. Establishment of Vibration Models

According to different modes of transmission, two vibration models are established.
Firstly, a horizontal vibration model has been established to study the compression vibration,

as shown in Figure 15.

F(t) 

m2 

m4 K23 
m3 

m1 

K2x K3x 

Figure 15. Horizontal vibration model.

By the concentrated mass method, the masses of bedrocks are concentrated at their centroids,
and regarded as two lumped mass, m2 and m3. They are connected to the left and right boundary
by springs; Deformation of the bedrock between m2 and m3 is represented by the stretching and
compression of a spring to simulate the interaction of axial force. Load F(t) is applied on the lumped
mass m1. x1, x2, x3 and x4 denote displacements of m1, m2, m3, and m4, respectively. Considering
dynamic load only, equations of motion for the four lumped masses are listed in Equation (2).

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F(t)− Q12 = m1
..

x1

Q12 − K2xx2 − K23(x2 − x3) = m2
..

x2

K23(x2 − x3)− Q34 − K3xx3 = m3
..

x3

Q34 = m4
..

x4

(2)

Q12 refers to the shear force between m1 and m2; Q34 refers to the shear force between m3 and m4.
K2x refers to the compression stiffness between m2 and left boundary; K3x refers to the compression
stiffness between m3 and right boundary; K23 refers to the compression stiffness between m2 and
m3. For homogeneous elastic structure, the compression stiffness can be calculated according to
K = EA/l, then the compression stiffness of horizontal vibration model is obtained as K2x = K3x = 2Eh/l,
K23 = Eh/l. l refers to the length of a single unit, h refers to the depth of bedrock considered, and E
refers to the elastic modulus of bedrock. Let Kx = Eh/l, then K2x = K3x = 2Kx, K23 = Kx. According to
the kinematic relationship between units and surrounding rocks, x1 = x2 and x3 = x4 can be drawn.
After simplification of Equation (2) according to the above formula, Equation (3) is derived.

{
F(t)− 2Kxx1 − Kx(x1 − x4) = (m + M)

..
x1

Kx(x1 − x4)− 2Kxx4 = (m + M)
..

x4
(3)

Assuming a simple harmonic load F(t) = Asin(ωt), then the expressions of x1 and x4 should also
be in the simple harmonics form. Let x4 = Psin(ωt), substitute it into the Equation (3). Equation (4) can
be derived.

x4

x1
=

Kx

3Kx − (m + M)ω2 (4)
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The ratio is defined as the vibration transmission ratio of horizontal vibration from x1 to x4,
to describe the influence on m4 caused by vibration of m1 in X direction.

Next, the vertical vibration model is established to study the shear vibration, as shown in Figure 16.

F(t) 

m2 

m4 

Q23 m3 

m1 

K12 

K2z 

K34 

K3z 

Figure 16. Vertical vibration model.

Similar simplified method is used for the vertical vibration model. The masses of bedrocks are
concentrated at their centroids, and regarded as lumped masses m2 and m3. They are connected to the
bottom boundary and above masses m1 and m4 by springs. Interaction between bedrocks and units are
represented by shear force Q23. Load F(t) is applied on m1. Considering dynamic loads only, equations
of motion for the four lumped masses are listed in Equation (5).

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F(t)− K12(z1 − z2) = m1
..
z1

K12(z1 − z2)− K2zz2 − Q23 = m2
..
z2

Q23 − K34(z3 − z4)− K3zz3 = m3
..
z3

K34(z3 − z4) = m4
..
z4

(5)

K12 refers to the compression stiffness between m1 and m2; K2z refers to the compression stiffness
between m2 and the bottom boundary; K34 refers to the compression stiffness between m3 and m4;
K3z refers to the compression stiffness between m3 and the bottom boundary. According to K = EA/l,
then the compression stiffness of vertical vibration model is obtained as K12 = K2z = K34 = K3z = 2El/h.
Let Kz = El/h, then K12 = K2z = K34 = K3z = 2Kz. In addition, shear force should be calculated as Q
= K′GA(∂z/∂x) based on mechanics of materials. For this model, Q23 = K′Gh(z2 − z3)/l = Gz(z2 − z3).
Let Gz = K′Gh/l, then Q23 = Gz(z2 − z3). K′ refers to the section shape coefficient and G refers to the shear
modulus of bedrock. According to actual condition, the units and the bedrocks are always in contact.
The relationship between z1 and z2 can be derived as z1 = 2z2, as well as z4 = 2z3. After simplification
of Equation (5), Equation (6) is derived.

{
F(t)− Kzz1 − Gz

2 (z1 − z4) = (m + 1
2 M)

..
z1

Gz
2 (z1 − z4)− Kzz4 = (m + 1

2 M)
..
z2

(6)

Then, the ratio is obtained as Equation (7).

z4

z1
=

Gz

(2Kz + Gz)− (2m + M)ω2 (7)

The ratio is defined as the vibration transmission ratio of vertical vibration from z1 to z4, to describe
the influence on m4 that is caused by the vibration of m1 in Z direction.
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3.3. Rules of Vibration Transmission Ratios

Based on the vibration transmission models above, the transmission ratios of two units in
horizontal vibration and vertical vibration are obtained, respectively, as shown in Equation (3)
and Equation (6). In the equations, parameters included unit mass m, bedrock mass M, horizontal
compression stiffness of bedrock Kx, vertical compression stiffness of bedrock Kz, shear stiffness Gz,
and frequency of vibration source load ω. Vibration transmission ratios among units are determined
by these parameters in the simplified model.

In order to quantitatively analyze the vibration transmission of horizontal and vertical vibration
and study the influence of the vibration frequency on transmission ratio, the parameters are further
simplified and calculated. According to previous research experience [25], the depth of the bedrock
h is taken as unit length l, then Kx = Kz = E is derived. For the rectangular section, the section shape
coefficient K′ is 1.2, then Gz = 1.2G = 1.2E/[2(1 + μ)]. After the simplification, Equation (4) and
Equation (7) are simplified as two expressions of elastic modulus E, Poisson ratio μ, mass m, and M,
and frequency ω. As shown in Equations (8) and (9).

x4

x1
=

E
3E − (m + M)ω2 (8)

z4

z1
=

3E
5(1 + μ)[(2E + 3E

5(1+μ)
)− (2m + M)ω2]

(9)

For material of bedrock, the Poisson ratio μ is mostly between 0.23–0.27; and, the elastic modulus
changes in the range of 20–30 GPa. The masses of unit and bedrock depend on the size of the
powerhouse unit and are calculated to be on the order of 106 to 107 kg for large hydroelectric unit.
According to the previous research and load characteristics of the powerhouse, low frequency tail
fluctuation and rotation of hydraulic generator are the main vibration sources of powerhouse structural
vibration. Their frequencies are within 0–5 Hz, especially in the case of severe vibration. Substituting
above data into Equations (8) and (9), it can be found that both (m + M)ω2 and (2m + M)ω2 are 1
to 2 orders of magnitude smaller than 3Kx and (2Kz + Gz) for low frequency loads. Consequently,
the transmission ratio of horizontal vibration in Equation (8) can be approximated, as Equation (10).

x4

x1
≈ E

3E
= 0.33 (10)

The transmission ratio of vertical vibration in Equation (9) can be approximated as Equation (11)
(μ = 0.25).

z4

z1
=

3E
5(1 + μ)[(2E + 3E

5(1+μ)
)]

= 0.19 (11)

When compared with field tests, vibration energy of all six units comes from unit #1, as shown
in Figure 17. Assuming the same vibration transmission ratio between adjacent units, all the ratios
between adjacent units are q. It is calculated that qx = 0.25 for horizontal vibration, and qz = 0.16 for
vertical vibration. It can be conclude that, for the vibration transmission among units, the vibration
transmission ratio of lateral-river vibration is significantly larger than that of longitude-river vibration
and vertical vibration. This is in coincidence with the results obtained from the field tests in Figure 10.

In the theoretical analysis, it is found that the influence of frequency of vibration source ω is
negligible as compared with other parameters. This explains why the vibration transmission ratios of
the vibration caused by low frequency tail fluctuation and rotation of hydraulic generator in the field
tests are basically equal.
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(a) (b) 

Figure 17. Diagram of simplified models of six units: (a) Horizontal vibration; and, (b) Vertical vibration.

4. Numerical Simulation

4.1. Establishment of Finite Element Model

The field structure vibration tests are limited by the number and location of sensors, the tests
data is rare. In order to further demonstrate the vibration transmission among units, finite element
simulations are conducted by commercial software ABAQUS.

A model of single unit is established based on the specific dimensions of the powerhouse structure,
as shown in Figure 18. Structures in powerhouse, such as generator pier, floors, beams, and pillars
are simulated exactly. The mechanical part is simulated as lumped masses. The bedrock is simulated
based on previous research experience and trial calculation. The depth of bedrock is equal to unit
length [25]. Material properties are assigned actual values. The units are arranged in an array on the
bedrock, and the adjacent units are separated by split seams of 0.2 m width. Normal constraints are
applied to the bedrock as boundary conditions to simulate the interactions of rocks.

According to the previous study, the numerical studies are focused on the two parts:
(1) The transmission rules among units of vibration in three directions; and, (2) The transmission rules
among units caused by low frequency tail fluctuation and rotation of hydraulic generator, respectively.

(a) (b) 

Figure 18. Finite element model: (a) Model of whole powerhouse; (b) Model of single unit.

4.2. Results of Numerical Simulation

4.2.1. Transmission Rules among Units of Vibration in Three Directions

A harmonic body force is applied to unit #1 of the model as vibration source. According to the
characteristics of the vibration signal of field tests, the expression of body force is constructed as
Equation (12).

F = A · (a · sin ω1t + b · sin ω2t) (12)
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A refers to amplitude of load. ω1 refers to the frequency of low frequency tail fluctuation with a
value between 0.167 and 0.6 times rotational frequency, according to the previous research results and
experience [9,31]; it is set as 1 Hz based on the frequency spectrum analysis of field tests in this paper.
ω2 refers to the rotational frequency, set as 2.4 Hz. a and b represent the proportion of two vibration
sources, and set as 0.8 and 0.2, respectively, according to the analysis of field tests. Time history of load
is shown in Figure 19.

 

Figure 19. Time history of load.

Load shown as Figure 19 is applied to unit #1 in three directions, respectively. Vibration
displacements of the nodes corresponding to the location of sensors are extracted after analysis,
RMS values are calculated. For intuitive expression, the RMS of vibration displacements of unit #1 is
taken as a reference value to normalize the vibration displacements of different units. These ratios are
considered as the vibration transmission ratios, as shown in the Table 2.

It can be seen in Table 2 that the transmission ratios of vibration in X direction are the most
significant. The RMS of adjacent unit #2 in X direction reaches 22.55% of that of unit #1. While the
RMS of unit #2 in Y and Z directions are only 12.63% and 10.11% of that of unit #1. The comparison is
depicted in Figure 20.

Figure 20. Transmission ratios of vibration in three directions.

Table 2. Ratios of vibration displacements of different units in three directions (%).

Direction #1 #2 #3 #4 #5 #6

X 100 22.55 12.69 8.89 5.33 1.62
Y 100 12.63 3.02 1.93 1.31 1.08
Z 100 10.11 2.89 1.32 1.13 0.99

# is used for describing the unit number.
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4.2.2. Transmission Rules under Different Vibration Sources

According to the results of field test, two harmonic body forces in the X direction with different
frequencies are applied to unit #1 in the model as vibration sources, respectively. The force frequencies
ω1 and ω2 are set as 1 Hz and 2.4 Hz, which are the typical frequency of low frequency tail fluctuation
and rotation of hydraulic generator. After calculation, the vibration displacements of the nodes
corresponding to the location of sensors are extracted. The RMS of vibration displacements of unit #1
are taken as reference values. Results of normalized displacements are shown in Table 3.

It can be obtained obviously that the vibration transmission ratios under loads with two low
frequencies among units are basically identical. Therefore, the vibration transmission ratios of the
vibration caused by low frequency tail fluctuation and rotation of hydraulic generator, respectively,
are basically equal. The mechanism that is obtained from simplified model is verified.

Table 3. Ratios of vibration displacements under different frequencies loads (%).

Frequency (Hz) #1 #2 #3 #4 #5 #6

1 100 22.55 12.69 8.89 5.33 1.62
2.4 100 22.57 12.69 8.90 5.33 1.61

# is used for describing the unit number.

5. Discussion

As is well known, the vibration of the unit will influence other adjacent units in the powerhouse.
Some researchers have studied the degree of influence, and draw some conclusions [24,25]. But,
there are very few studies that are more in-depth. Two influencing factors were raised in this paper:
(1) Vibration direction; and, (2) Vibration frequency. The related studies were conducted, which have
never been published.

Based on the first factor, all the transmission ratios between two adjacent units derived from
simplified model, field test and numerical simulation are shown and compared in Table 4. The results
from the numerical simulation basically match with the field test results, indicating that the numerical
simulation is capable of simulating this problem.

Table 4. Vibration transmission ratios between two adjacent units derived from three methods (%).

Direction Simplified Model Field Test Numerical Simulation

X 25 17.69 22.55
Y 16 10.69 12.63
Z 16 10.74 10.11

It is obvious that the transmission ratio of vibration in X direction is larger than that of vibration
in Y and Z directions. All of the results derived from three methods proved this conclusion.
The transmission ratios obtained from simplified model are slightly larger than those by field test and
numerical simulation. This is mainly due to that the features such as damping and rock integrity are
not taken into consideration in the simplified model.

As for the second factor, the formula of vibration transmission ratio derived from the simplified
model directly explains that the effect of frequency is very small, especially for the load with low
frequency. In the other hand, according to previous studies [17,18,24], the first order of the modal
frequency of most powerhouse is 20–25 Hz. So, both the frequencies of low frequency tail fluctuation
and rotation of hydraulic generator are far from the dangerous frequency. Formula for the power
amplification factor is shown, as Equation (13).

167



Energies 2018, 11, 3015

β =
1

1 − ω2

θ2

(13)

The power amplification factors β are 1.002 and 1.009, respectively, which are basically equivalent.
Therefore, the vibrations transmission ratios of the two main loads with low frequencies are basically
equal, the difference can be ignored.

6. Conclusions

This paper studies the vibration transmission among units in underground powerhouse of a
hydropower station through field tests, theoretical analysis, and finite element simulation.

Firstly, the field structural vibration tests in the underground powerhouse of a large-scale
hydropower station were designed and conducted, and two preliminary conclusions were raised.

Secondly, based on structural dynamics, the simplified mechanical vibration models were
established for the vibration transmission problem among units. The vibration transmission
mechanism is elaborated to explain and prove the preliminary conclusions from the theoretical
perspective. The previous conclusions can be derived and explained in the model, indicating that the
model and assumptions are reasonable.

At last, a complementary FE model for the tested underground powerhouse is established
to replicate the tested underground powerhouse. The numerical simulation results verify the
previous results.

Through the above work, the following two conclusions of the vibration transmission among
units are obtained.

(a) Vibration transmission ratio of lateral-river vibration is significantly larger than those of
longitude-river vibration and vertical vibration. The transmission ratio between adjacent units
of lateral-river vibration is about 15–25%, while those of longitude-river vibration and vertical
vibration are about 10–15%.

(b) Low frequency tail fluctuation and the rotation of hydraulic generator are the main vibration
sources of powerhouse structural vibration. Vibration transmission ratios of the vibration caused
by the two sources are basically equal.

In general, the vibration transmission among units is widespread exists in underground
powerhouse of the hydropower station. It is difficult to completely limit the transmission. However,
the research results put forward higher requirements for the monitoring of the structural safety
of powerhouse. More attention should be paid to the mutual influence of vibration between
units while vibration monitoring. This study has guiding significance for the safe operation of
underground powerhouse.
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Abbreviations

A Amplitude of load
E Elastic modulus of bedrock
F(t) Load applied on the unit
G Shear modulus of bedrock
h Depth of bedrock considered
K′ Section shape coefficient
K2x Compression stiffness between m2 and left boundary
K3x Compression stiffness between m3 and right boundary
K23 Compression stiffness between m2 and m3

K12 Compression stiffness between m1 and m2

K2z Compression stiffness between m2 and the bottom boundary
K34 Compression stiffness between m3 and m4

K3z Compression stiffness between m3 and the bottom boundary
l Length of a single unit
m Mass of the unit
m1 Lumped Mass of the unit #1
m2 Lumped Mass of the bedrock under the unit #1
m3 Lumped Mass of the bedrock under the unit #2
m4 Lumped Mass of the unit #2
M Mass of the bedrock
Q12 Shear force between m1 and m2

Q34 Shear force between m3 and m4

x1, x2, x3, x4 Vibration displacement of m1, m2, m3, m4 in X direction
..

x1,
..

x2,
..

x3,
..

x4 Vibration acceleration of m1, m2, m3, m4 in X direction
z1, z2, z3, z4 Vibration displacement of m1, m2, m3, m4 in Z direction
..
z1,

..
z2,

..
z3,

..
z4 Vibration acceleration of m1, m2, m3, m4 in Z direction

β Power amplification factor
θ Frequency of the modal frequency
μ Poisson ratio
ω Frequency of vibration source load
FE Finite element
MRA Multi-Resolution Analysis
PSD Power spectral density
RMS Root mean square
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Abstract: Techno-economic assessments (TEA) of biodiesel production may comply with various
economic and technical uncertainties during the lifespan of the project, resulting in the variation
of many parameters associated with biodiesel production, including price of biodiesel, feedstock
price, and rate of interest. Engineers may only collect very limited information on these uncertain
parameters such as their variation intervals with lower and upper bound. This paper proposes
a novel non-probabilistic strategy for uncertainty analysis (UA) in the TEA of biodiesel production
with interval parameters, and non-probabilistic reliability index (NPRI) is employed to measure
the economically feasible extent of biodiesel production. A sensitivity analysis (SA) indicator is
proposed to assess the sensitivity of NPRI with regard to an individual uncertain interval parameter.
The optimization method is utilized to solve NPRI and SA. Results show that NPRI in the focused
biodiesel production of interest is 0.1211, and price of biodiesel, price of feedstock, and cost of
operating can considerably affect TEA of biodiesel production.

Keywords: reliability; non-probabilistic reliability index; sensitivity analysis; techno-economic assessments;
life cycle cost

1. Introduction

The global climate, ecological environment, and air quality have been considerably affected
by various deleterious emissions and harmful substances including NOx, SOx, CO2, hydrocarbons,
carbon monoxide, and particulate matter, resulting in various environmental pollution problems
and danger on human health [1–9]. A great number of scientists are investigating other harmless,
economic, and clean energy sources for the sake of the reduction of these adverse and negative
effects. Being a valuable renewable energy resource, biodiesel is friendly to the natural environment
and human health, compared to the traditional fossil fuels [10–15]. Various feedstocks-derived
biodiesel production have been reported, for example, palm oil [16], waste cooking oil [17–19],
vegetable oils [20,21], soybean oil [22–25], Jatropha curcas L. [26], algae [27,28], microalgae [28–30],
Oleaginous yeast [31,32], lignocellulosic biomass [33], used frying oil [34], waste cottonseed oil
with heterogeneous catalyst [35,36], Annona squamosa L. seed oil with heterogeneous catalyst [36,37],
Butanol and pentanol [38], etc., and recent advances in biofeedstocks and biofuels have also been
reviewed in [39].

Various uncertain factors existing in the biodiesel industry, such as fluctuation in interest
rate, may cause instability in biodiesel production, and then may decrease the economical
feasibility relevant to biodiesel production [40]. Numerous research works have investigated the
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techno-economic assessments (TEA) of biodiesel production to ensure the economical feasibility of
biodiesel production [41–51], such as TEA for vegetable oil biodiesel production [41], TEA for palm
biodiesel production [42], TEA for algal biofuel production [27,43–45], TEA for microalgae biofuel
production [46,47], TEA for waste-to-biofuel production [48], TEA for sugarcane biorefineries [49],
TEA for lignocellulosic biomass production [51], etc., and recent advances in TEA for biofuel production
have also been summarized in [27,39,51]. These works have extensively improved the development
in the TEA of biodiesel production on condition that all of the parameters relevant to the TEA are
regarded as constant during the project’s lifespan. However, real engineering inevitably confronts
various uncertain parameters resulting from numerous economic and technical uncertainties when
performing TEA of biodiesel production [40], such as variation in the feedstock price [52], fluctuation
of biodiesel price [52], and change in the rate of interest [53], and thus it may be more rational to
treat these parameters as uncertain parameters. Recently, several works have studied the TEA of
biodiesel production subject to many economic and technical uncertainties defined by random variables
with probability density functions (PDFs) [54–65], including TEA for algae-derived biodiesel with
uncertainties [55,56], TEA for biodiesel production with uncertainties using structural reliability
principles [57], TEA for palm biodiesel production with uncertainties [58,59], TEA for inedible
Jatropha oil biodiesel production with uncertainties [60], TEA for waste oil biodiesel production
with uncertainties [61], probabilistic TEA for microalgae biofuel production [62], TEA for bioethanol
production with uncertainties [63], stochastic TEA for alcohol-to-jet fuel production [64], TEA for
high-value propylene glycol production with uncertainties [65], etc. These research works have
discovered that the uncertainties related to the random parameters have distinct effects on the TEA.
The authors also studied the TEA for palm biodiesel production with uncertainties, which were
assumed as random variables with uniform distributions, indicating that uncertain parameters are
uniformly distributed within variation intervals [58,59].

The previous studies [54–65] consider the effect of the uncertainties, and they consider the
uncertainties as random variables following PDFs. Treating uncertainties as random variables may not
be reasonable due to the fact that determining the precise PDFs requires a large number of data, but the
data in practical engineering is usually limited due to lack of sufficient samples for TEA. This paper
will propose a more rational solution for the TEA of palm biodiesel production based on the previous
research works of the authors of [58,59]. In previous studies [58,59], the authors only collected very
limited data on these uncertain parameters, and only the variation ranges or the lower bounds and
upper bounds for uncertain parameters were determined. All of these uncertain parameters were
assumed as random variables defined by uniform distributions, distributed uniformly within their
variation ranges, and the TEA was done based on this assumption. The estimated results of the
TEA may depend on the selected distributions for these uncertain parameters within their variation
intervals, and different selection of distributions may lead to completely different estimated results.
In order to overcome this difficulty, we will propose a more rational strategy for the TEA of a palm
biodiesel production with interval parameters, in which only the lower limit and the upper limit of the
parameters are available, being free from the selection of the distributions for uncertain parameters.

The rest of this paper is organized as follows. In Section 2, we propose a novel strategy for the
evaluation of the TEA and sensitivity analysis (SA) for palm biodiesel production subject to interval
uncertainties, specifically, non-probabilistic reliability index (NPRI) that measures the economically
feasible extent of the biodiesel production and the effect of an interval parameter on NPRI. In Section 3,
we evaluate the NPRI and SA associated with the TEA of the palm biodiesel production. In Section 4,
we summarize our results and make some conclusions.

2. Materials and Methods

In this section, we first introduce several important indicators in the TEA of palm biodiesel
production including net present value (NPV), payback period (PP), and total profit for this project,
and then some important interval parameters related to the TEA are provided, which are determined
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by some collected data from some available references. Secondly, we introduce a novel indicator
named as non-probabilistic reliability index to rationally measure the economically feasible degree of
biodiesel production with interval uncertainties. Then, nonlinear optimization algorithm is employed
to solve the NPRI in the TEA of palm biodiesel production. Finally, we develop a new sensitivity
analysis (SA) indicator of NPRI with regard to an uncertain parameter, which can measure the effect of
a parameter on NPRI and identify important parameters on the TEA.

2.1. Several Important Concepts in the TEA for a Biodiesel Production

We focus on the TEA for palm biodiesel production originally proposed in [42], in which
economic and technical uncertainties are not considered. The mathematical formulations of total
profit, payback period, and net present value for this problem are defined as [42,58,59]:

TotalProfit = −LCC + (TBS − TAX)× n = −LCC + (TBS − TAX)× 20
= (TBSi − TAXi)× 20 − LCC

(1)

PP =
CC

(TotalProfit/n)
=

n × CC
TotalProfit

(2)

NPV =
n
∑

i=1

(TBSi−TAXi)

(1+r)i − LCC

= −LCC +
n
∑

i=1

(TBS−TAX)
(1+r)i = −LCC +

n
∑

i=1

TotalProfit+LCC
n(1+r)i

= −LCC + TotalProfit+LCC
n

n
∑

i=1

1
(1+r)i .

(3)

with
LCC = CC + MC + FC + OC − BPC − SV

= CC +
n
∑

i=1

FCi+OCi+MCi
(1+r)i − SV

(1+r)n − n
∑

i=1

BPCi
(1+r)i

(4)

where TotalProfit is total profit of the project, PP is payback period, and NPV represents net present
value; MC, CC, FC, LCC, OC, BPC, and SV represent maintenance cost, capital cost, feedstock cost,
life cycle cost, operating cost, byproduct credit, and salvage value indicating the remaining value of the
components and the assets of the plant at the end of the project’s lifetime, respectively; TBS is annual
total biodiesel sale, TAX is annual total taxation, n = 22 years is project’s lifetime, and r represents rate
of interest which takes values from 4.44% to 13.53% [66], i.e., r ∈ [4.44%, 13.53%]; MCi, FCi, OCi, BPCi,
TAXi and TBSi are maintenance cost, feedstock cost, operating cost, byproduct credit, total taxation,
and total biodiesel sale for the ith year, respectively.

The annual production capacity for this plant is 50 kt, that is, PC = 50 kt, and its capital cost
should take values between $9 million and $15 million, that is, CC ∈ [$9 million, $15 million] [42].
The corresponding FC, OC, MC, SV, BPC, TBS, and TAX are defined by:

FC =
n

∑
i=1

FCi =
n

∑
i=1

FP × FU

(1 + r)i =
n

∑
i=1

FP × PC×1000
CE

(1 + r)i (5)

OC =
n

∑
i=1

OCi =
n

∑
i=1

OR × PC × 1000

(1 + r)i (6)

MC =
n

∑
i=1

MCi =
n

∑
i=1

MR × CC

(1 + r)i (7)

SV = RC × (1 − d)n−1 × PWFn =
RC × (1 − d)n−1

(1 + r)n (8)
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BPC =
n

∑
i=1

BPCi =
n

∑
i=1

GP × GCF × PC × 106

(1 + r)i (9)

TBS = PC × 106/ρ × BP (10)

TAX = TBS × TR (11)

where FC commonly makes up about 80–90% of life cycle cost [67], and OC generally accounts for
not more than 15% of life cycle cost [68]; FP is feedstock price or crude palm oil price, which takes
values between $200/t and $1200/t in the past years [42], that is, FP ∈ [$200/t, $1200/t]; FU is
annual total feedstock consumption; CE is conversion efficiency from palm oil to biodiesel which
commonly takes values between 96% and 99% [69], that is, CE ∈ [96%, 99%]; OR is the operating
rate, indicating operating cost of per-ton biodiesel production, which varies from $37.5/t to $225/t
evaluated by feedstock price FP ∈ [$200/t, $1200/t] [42] when FC makes up 80% of life cycle cost [67]
and OC accounts for 15% of life cycle cost [68], that is, OR ∈ [$37.5/t, $225/t]; MR is maintenance
rate, varying from 1% to 2%, i.e., MR ∈ [1%, 2%] [41,42]; d and RC represent depreciation rate and
replacement cost respectively, that is, RC = $10 million and d = 5% [42]; GP and GCF represent glycerol
price and glycerol conversion factor, that is, GP ∈ [$0.08/kg, $0.2/kg] [70] and GCF = 0.0985 [42];
BP is biodiesel price, that is, BP ∈ [$0.66/L, $1.58/L] [71]; ρ is biodiesel density, i.e., ρ = 0.95 kg/L;
and TR = 15% is tax rate for biodiesel sale.

The important quantities involved in the TEA, such as life cycle cost, net present value, payback
period, and total profit, unavoidably meet with various economic and technical uncertainties within
the project lifespan. Table 1 gives the variation intervals for these uncertain parameters, which are
obtained by the collected data from many available research works.

Table 1. Variation intervals of uncertain parameters for biodiesel production.

Uncertain Parameters Variation Intervals [xi, xi]

Capital cost (CC: x1) [42] [$9 million, $15 million]
Interest rate (r: x2) [66] [4.44%, 13.53%]

Operating rate (OR: x3) [42,67,68] [$37.5/t, $225/t]
Feedstock price (FP: x4) [42] [$200/t, $1200/t]
Glycerol price (GP: x5) [70] [$0.08/kg, $0.2/kg]

Maintenance rate (MR: x6) [41,42] [1%, 2%]
Biodiesel conversion efficiency (CE: x7) [69] [96%, 99%]

Biodiesel price (BP: x8) [71] [$0.66/L, $1.58/L]

2.2. NPRI for Measuring Economically Feasible Extent of Biodiesel Production

In this section, we will first introduce a NPRI, which is commonly employed to measure the
reliable level of practical engineering problems subject to interval uncertainties. Then, NPRI is further
extended to measure the economically feasible degree in the TEA of biodiesel production.

2.2.1. NPRI for Problems with Interval Parameters

For a system with interval input parameters x = (x1, x2, . . . , xn), the corresponding output y is
defined by:

y = g(x) (12)

where x represents the input parameters with interval uncertainties, and y commonly is the continuous
function of the inputs x = (x1, x2, . . . , xn). Obviously, y varies within an interval with a lower bound
y and an upper bound y. In general, Ωs = {x|y = g(x) ≥ 0; x = (x1, x2, . . . , xn)} indicates the safe
region, and Ω f = {x|y = g(x) < 0; x = (x1, x2, . . . , xn)} represents the failure region. In addition,
y = g(x) = 0 is named as limit state function (LSF) or limit state curve (LSC), separating the whole
space into two regions, that is, the safe region and failure region. Non-probabilistic reliability index
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has been employed for measuring the reliable level related to the system with interval parameters
as [72–75]:

η = yc/yr (13)

with
yc =

(
y + y

)
/2

and
yr =

(
y − y

)
/2

where η is NPRI; y and y are lower limit and upper limit of the output y. When η ≥ 1 holds, one can
have y ≥ 0 holds, indicating that the output is always larger than or equals to zero and thus the system
is absolutely safe. Condition η ≤ −1 will lead to y ≤ 0, implying that the system is completely a failure.
Accordingly, −1 < η < 1 corresponds to y < 0 < y, which indicates that a part of the output will lie
in the failure space and the system is not reliable. Thus, η can be employed to measure the reliable
degree associated with a system with interval uncertainties, and a larger value of η corresponds to
a more reliable system and vice versa [72–75]. In general, engineers focus on the situation with η ≥ 0.
The following will further discuss the physical significance in the NPRI.

For xi, we first do the following standard transformation [72–75]:

xi = xc
i + xr

i qi =
(xi − xi)

2
qi +

(xi + xi)

2
(14)

where qi ∈ [−1, 1] is the normalized interval for xi. Substituting Equation (14) into Equation (12) can
lead to normalized formulation for y as

y = g(q) = g(q1, q2, . . . , qn) (15)

Obviously, the normalized intervals q of Equation (15) vary in the domain
Ωq = {q||qi| ≤ 1; i = 1, 2, . . . , n}, which is a hyperbox. Figure 1 illustrates the representative
figure of Ωq in a two-dimension situation, in which Ωq is a square centered at coordinate origin and
its side-length is 2, representing the set consisting of all the possible values of the two normalized
intervals. When the square box enlarges proportionally in two directions, all the possible values
of the two interval variables will locate in the reliable domain until the square box is tangential to
normalized LSC y = g(q) = 0. The maximum allowable variability can be defined by the shortest
distance between LSC y = g(q) = 0 and the coordinate origin in the normalized space in the
form of infinite norm [72–75], which can be employed to measure the reliable extent of the system,
i.e., non-probabilistic reliability index. More discussions on non-probabilistic reliability can be found
in [76–81].

According to the discussion in Figure 1, another mathematical definition of NPRI η can be
provided by [72–75]:

η = min(‖q‖∞)

S.t. g(q) = g(q1, q2, . . . , qn) = 0
(16)

with
‖q‖∞ = max(|q1|, |q2|, . . . , |qn|)

where min(•) is the operation of taking the minimum of the set, ‖•‖∞ represents the operation of
infinite norm, max(•) is the operation of taking the maximum of the set, and |•| denotes the operation
of taking the absolute value. If a system has m outputs yj = gj(x)(j = 1, 2, . . . , m) which corresponds
to m failure modes, then failure associated with anyone of them will lead to the failure of the whole
system. Thus, NPRI ηs for system is provided as:

ηs = min{η1, η2, . . . , ηm} (17)
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where ηj(j = 1, 2, . . . , m) is NPRI associated with yj = gj(x)(j = 1, 2, . . . , m).

 

Figure 1. Diagrammatic presentation for non-probabilistic reliability index (NPRI) of a system with
two intervals, (a) normalized limit state function (LSF) intersects with enlarged square box at one
side; (b) normalized limit state curve (LSC) intersects with enlarged square box at another side;
and (c) normalized limit state curve intersects with enlarged square box at cater-corner point.

2.2.2. NPRI for Economically Feasible Degree in the TEA of Biodiesel Production

Total profit defined in Equation (1) is expected to be larger than zero, specifically,

TotalProfit ≥ 0. (18)

Meanwhile, payback period given in Equation (2) is expected to be less than the allowable upper
bound, that is,

PP =
CC

(TotalProfit/n)
=

n × CC
TotalProfit

≤ PPu. (19)

where PPu is the permitted upper limit, and here PPu is one third of project’s lifespan, that is,
PPu = n/3 = 20/3 years. Then, Equation (19) is transformed into Equation (20):

n × CC
TotalProfit

≤ PPu ⇒ TotalProfit ≥ n × CC
PPu . (20)

Finally, NPV given by Equation (3) must be larger than zero, specifically,

NPV = −LCC +
TotalProfit + LCC

n

n

∑
i=1

1

(1 + r)i ≥ 0. (21)

Then, Equation (21) can be transformed into Equation (22):

TotalProfit ≥

⎛
⎜⎜⎝ n

n
∑

i=1

1
(1+r)i

− 1

⎞
⎟⎟⎠× LCC. (22)
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Thus, Equations (18), (20), and (22) should simultaneously hold to ensure that biodiesel production
is economically feasible. For the sake of convenience, Equations (18), (20) and (22) can be written into
the following forms:

y1 = g1(x) = TotalProfit (23)

y2 = g2(x) = TotalProfit − n × CC
PPu (24)

y3 = g3(x) = TotalProfit −

⎛
⎜⎜⎝ n

n
∑

i=1

1
(1+r)i

− 1

⎞
⎟⎟⎠× LCC (25)

where y1 = g1(x), y2 = g2(x), and y3 = g3(x) are LSFs, and x represents the vector consisting of
interval parameters, as shown in Table 1.

Uncertainties involved in the interval parameters in Table 1 will lead to the variability of the
TotalProfit, payback period, and NPV defined in Equations (1)–(3), and then one, two, or all of
Equations (23)–(25) may not hold. Any one of the three LSFs in Equations (23)–(25) not being feasible
will lead to the result that biodiesel production will not be economically feasible. In other words,
biodiesel production is economically feasible if and only if the three LSFs in Equations (23)–(25)
simultaneously apply. Thus, according to Equation (17), the following indicator can be employed to
measure the economically feasible degree of biodiesel production with interval parameters:

ηs = min{η1, η2, η3} (26)

where ηs represents NPRI for measuring economical feasibility of biodiesel production; ηj(j = 1, 2, 3)
is NPRI for yj = gj(x) given in Equations (23)–(25). The significance relevant to ηs will be discussed in
the following.

When ηs ≥ 1 holds, the minimum of η1, η2, and η3 will be larger than or equal to one,
then y

1
≥ 0, y

2
≥ 0, and y

3
≥ 0 in Equations (23)–(25) hold, indicating biodiesel production with

interval uncertainties is absolutely feasible in terms of economical feasibility. When 0 < ηs < 1 holds,
the minimum of η1, η2, and η3 will be less than one, then y1 ≥ 0, y2 ≥ 0, and y3 ≥ 0 hold, while at least
one of y

1
< 0, y

2
< 0, and y

3
< 0 holds, implying that biodiesel production with interval uncertainties

is partially feasible. When ηs < 0 holds, the minimum of η1, η2, and η3 will be less than 0, and at least
one of y1 < 0, y2 < 0, and y3 < 0 holds, indicating that biodiesel production with interval uncertainties
is completely infeasible. Thus, ηs can be employed to measure the economical feasibility relevant
to biodiesel production with interval uncertainties, and a larger value of ηs corresponds to a better
economical feasibility of biodiesel production with interval uncertainties and vice versa.

2.3. Evaluation Procedure of the NPRI

According to the definition of NPRI in Equation (13), we need to first evaluate y
j

and yj for the

evaluation of ηj(j = 1, 2, 3) for Equations (23)–(25). The following two equations can be utilized to
calculate y

j
and yj as:

y
j

= min
x

gj(x)

S.t. xi ≤ xi ≤ xi
x = (x1, x2, . . . , x8)

j = 1, 2, 3
i = 1, 2, . . . , 8

(27)
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and
yj = max

x
gj(x)

S.t. xi ≤ xi ≤ xi
x = (x1, x2, . . . , x8)

j = 1, 2, 3
i = 1, 2, . . . , 8

(28)

In this paper, an available optimization function of Matlab, i.e., fmincon, is employed to evaluate
y

j
and yj defined in Equations (27) and (28), then NPRI ηj(j = 1, 2, 3) for Equations (23)–(25) can be

estimated, and NPRI ηs for measuring economical feasibility of biodiesel production with interval
uncertainties can be calculated by Equation (26).

2.4. SA of NPRI for Economical Feasibility of Biodiesel Production with Regards to Uncertain Interval Parameter

When an interval parameter xi(i = 1, 2, . . . , 8) is fixed at xij ∈ [xi, xi](j = 1, 2, . . . , p), i.e., xi = xij,
indicating that xi takes a value within the lower bound xi and the upper bound xi, the uncertainty
associated with xi is eliminated, and original NPRI ηs will become ηs|xi=xij

. The absolute difference
Δηs|xi=xij

between original NPRI ηs and ηs|xi=xij
can reflect the effect of the elimination of uncertainty

related to xi, which can be defined by:

Δηs|xi=xij
=
∣∣∣ηs − ηs|xi=xij

∣∣∣(j = 1, 2, . . . , p), (29)

where ηs|xi=xij
can be evaluated by the method given in Section 2.3, similar to the evaluation

procedure for ηs. When xi(i = 1, 2, . . . , 8) takes different values, i.e., xi1, xi2, . . . , xip, the original
NPRI ηs will become ηs|xi=xi1

, ηs|xi=xi2
, . . . , ηs|xi=xip

, and then p absolute differences can be obtained
by Equation (29), i.e., Δηs|xi=xi1

, Δηs|xi=xi2
, . . . , Δηs|xi=xip

. The average of the p absolute differences,
i.e., Δηs|xi=xi1

, Δηs|xi=xi2
, . . . , Δηs|xi=xip

, can be employed to define the sensitivity of NPRI with regards
to xi, which can measure the effect of xi on NPRI:

IMi =
1
p

p

∑
j=1

Δηs|xi=xij
(j = 1, 2, . . . , p) (30)

where IMi represents the average shift in the NPRI due to the elimination of uncertainty in xi.
Similar to IMi, the average difference rate in the NPRI because of eliminating uncertainty

associated with xi can be defined as:

IMRi =
1
p

p

∑
j=1

ΔηRs|xi=xij
(j = 1, 2, . . . , p) (31)

with

ΔηRs|xi=xij
=

∣∣∣ηs − ηs|xi=xij

∣∣∣
ηs

(j = 1, 2, . . . , p) (32)

where ΔηRs|xi=xij
measures the absolute difference rate between ηs and ηs|xi=xij

with regard to ηs when
xi = xij (xij ∈ [xi, xi]).

The important interval parameters and non-important ones can be identified by the values of
IMi and IMRi. An interval parameter with large values of IMi and IMRi belongs to the important
interval parameters, while one with small values of IMi and IMRi is considered as the non-important
parameters. If xi has small values for IMi and IMRi, xi can be fixed to any value within its variation
interval, which will not considerably affect NPRI ηs.
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3. Results and Discussion

In this section, we first evaluate NPRI ηs for biodiesel production with the eight interval
parameters shown in Table 1. Then, the corresponding sensitivity analysis of NPRI ηs with regard to
interval parameter xi, i.e., IMi and IMRi, is estimated. Finally, the interval parameters are classified
into the important ones and non-important ones by the size of the values of IMi and IMRi.

3.1. Evaluation of NPRI for Biodiesel Production

Biodiesel production has eight interval parameters because of economic and technical
uncertainties when performing techno-economic assessments, and all interval parameters have
been summarized in Table 1. The uncertainty in these interval parameters will result in the
variation of the total profit, net present value, and payback period of biodiesel production.
Figure 2 has shown the variation intervals for total profit (USD) expressed in Equation (1),
net present value (USD) formulated in Equation (3), and yj = gj(x) given in Equations (23)–(25).
Two important observations have been revealed in Figure 2. The first observation is that total profit,
net present value, and yj = gj(x)(j = 1, 2, 3) have exhibited variability owing to the effect of the
uncertainties related to the interval parameters, i.e., TotalProfit ∈ [−3.8935 × 108, 1.3296 × 109],
NPV ∈ [−9.2579 × 108, 1.1808 × 109], y1 = g1(x) ∈ [−3.8935 × 108, 1.3296 × 109], y2 = g2(x) ∈[−4.3435 × 108, 1.3026 × 109], and y3 = g3(x) ∈

[−9.2579 × 108, 1.1808 × 109]. Secondly, we can find
that a part of total profit, net present value, and yj = gj(x) have been less than zero because of the
effect of the uncertainty in these interval parameters, implying that biodiesel production is partially
economically feasible, and has the possibility of being infeasible in the presence of the economic and
technical uncertainties.

Figure 2. Variation ranges of total profit (TotalProfit: USD), net present value (NPV: USD),
and yj = gj(x) due to economic and technical uncertainties.

Figure 2 depicts the variation intervals of yj = gj(x)(j = 1, 2, 3), including lower limit y
j

and

upper limit yj for three LSFs defined in Equations (23)–(25). Substituting y
j

and yj into Equation

(15) leads to NPRI ηj(j = 1, 2, 3) of Equations (23)–(25). Finally, the estimated value of NPRI can be
obtained as 1.2104 × 10−1 by using Equation (26). A value of 1.2104 × 10−1 for ηs implies that the
project will not be profitable to a great extent, in other words, a considerable part of the outcomes may
be economically infeasible under the uncertain interval parameters shown in Table 1.

In our previous work [59], all the uncertain parameters are assumed as random variables following
uniform distributions within their ranges, and we propose economical infeasibility probability (EIP) to
measure economical feasibility for biodiesel production. For the same problem, the estimated value for
EIP is 0.3676, implying that the project is partially economically feasible and the plant may be profitable

180



Energies 2018, 11, 588

with the probability of 0.6324, and in other words, 63.24 out of 100 outcomes will be economically
feasible under the assumed probabilistic distribution [59]. Here, we perform the TEA in terms of
the non-probabilistic perspective being free from the probabilistic distribution assumption, and the
estimated result for NPRI is 1.2104 × 10−1, also indicating that the project is partially economically
feasible, according to the discussion in Section 2.2. Thus, the two methods have the same decisions.
It is noted that the introduced method in this work is more rational than that in the previous work [59],
which is subjected to the assumption on probabilistic distribution and different assumptions can lead
to different results for EIP.

The previous results reveal that interval parameters resulting from uncertainties can remarkably
affect the TEA of biodiesel production. We will further quantify the effect of an interval uncertain
parameter on the economical feasibility by the sensitivity analysis proposed in Section 2.4.

3.2. Evaluation of Sensitivity Analysis for Biodiesel Production with Respect to Interval Parameter

In Table 2, we have provided the results of IMi and IMRi relevant to xi(i = 1, . . . , 8). The results
show that x3 (operating rate), x4 (price of feedstock), x8 (price of biodiesel), and x7 (biodiesel conversion
efficiency) can produce remarkable influences on the economic feasibility of biodiesel production,
while the rest of the parameters may generate very lower effects. The importance ranking of the interval
parameters can be further gained by the results in Table 2 as: x4 > x8 > x3 > x7 > x2 > x1 > x5 > x6.
Compared with the previous results, in which all of the uncertain parameters have been assumed
as random variables uniformly distributed within their variation ranges [59], the same importance
ranking of sensitivity parameters has been obtained.

Table 2. Results of the proposed sensitivity analysis IMi(i = 1, 2, . . . , 8) and IMRi(i = 1, 2, . . . , 8).

Parameters IMi(i = 1,2,. . . ,8) IMRi(i = 1,2,. . . ,8)

Capital cost (CC: x1) 4.454 × 10−3 3.680 × 10−2

Interest rate (r: x2) 5.231 × 10−3 4.322 × 10−2

Operating rate (OR: x3) 4.961 × 10−2 4.099 × 10−1

Feedstock price (FP: x4) 4.858 × 10−1 4.013 × 100

Glycerol price (GP: x5) 2.865 × 10−3 2.367 × 10−2

Maintenance rate (MR: x6) 6.643 × 10−4 5.488 × 10−3

Biodiesel conversion
efficiency (CE: x7) 9.302 × 10−3 7.685 × 10−2

Biodiesel price (BP: x8) 3.257 × 10−1 2.691 × 100

The important interval parameters and the non-important ones have been identified by the
results in Table 2, specifically: x4, x8, x3, and x7 belong to the important group while x2, x1,
x5 and x6 belong to the non-important group. Figure 3 shows the comparison between original
NPRI ηs and conditional NPRI ηs|xi=xij

with xi = xij, in which xi is fixed to a value xij within its
variation interval [xi, xi]. Figure 4 shows the change rate between ηs|xi=xij

and ηs with respect to ηs,

i.e.,
(

ηs|xi=xij
− ηs

)
/ηs(j = 1, 2, . . . , 10), in which xi is fixed to a value xij ∈ [xi, xi], i.e., xi = xij.

Here, xij takes the following values, i.e., xij = xi + (xi − xi)/(10 − 1)× (j − 1)(j = 1, 2, . . . , 10).
Figures 3 and 4 show that removing the uncertainty related to a non-important parameter
xi(i = 1, 2, 5, 6) and fixing it to any value xij(i = 1, 2, 5, 6) within its interval [xi, xi] will not exert distinct
influence on NPRI ηs, while eliminating the uncertainty associated with an important parameter
xi(i = 3, 4, 7, 8) can cause considerable variation of NPRI ηs.
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Figure 3. Original NPRI ηs and conditional NPRI ηs|xi=xij
(j = 1, 2, . . . , 10), in which xi is fixed to

a value xij ∈ [xi, xi], i.e., xi = xij(j = 1, 2, . . . , 10).

Figure 4. Change rate between ηs|xi=xij
and ηs with respect to ηs, i.e.,

(
ηs|xi=xij

− ηs

)
/ηs(j = 1, 2, . . . , 10),

in which xi is fixed to a value xij ∈ [xi, xi], i.e., xi = xij.

Figures 5 and 6 have further shown the point figures of ηs|xi=xij
and

(
ηs|xi=xij

− ηs

)
/ηs with

xij = xi + (xi − xi)/(10 − 1)× (j − 1)(j = 1, 2, . . . , 10) for all interval parameters xi(i = 1, 2, . . . , 8).
The results shown in Figures 5 and 6 have drawn the same conclusions as Figures 3 and 4.
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Figure 5. Point figure for conditional NPRI ηs|xi=xij
with xi = xij(i = 1, 2, . . . , 8; j = 1, 2, . . . , 10).

Figure 6. Point figure for change rate between ηs|xi=xij
and ηs with respect to ηs,

(
ηs|xi=xij

− η0

)
/η0

with xi = xij(i = 1, 2, . . . , 8; j = 1, 2, . . . , 10).

The previous results show that engineers should focus more concern on these important interval
parameters within the project’s lifespan to ensure that biodiesel production is economically feasible.
For these non-important interval parameters, taking any value within their ranges will not create
remarkable effect on the TEA.

4. Conclusions

This paper employs NPRI to measure the economically feasible extent in the TEA of biodiesel
production with uncertainties. Sensitivity analysis of NPRI with regard to uncertain parameters is
developed. The final results show that NPRI for biodiesel production is 1.2104 × 10−1 with the interval
parameters summarized in Table 1. Price of biodiesel, price of feedstock, and operating cost can
cause distinct influence on the economical feasibility of biodiesel production. Compared with our
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previous study [59], this work has the same decision on TEA and the same importance ranking for
uncertain parameters. This method is free of the assumption on distribution, but the previous method
is subjected to this assumption in which different assumptions on distribution can result in different
results for EIP.
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Nomenclature

BP biodiesel price
BPC byproduct credit
BPCi byproduct credit of the ith year
CC capital cost
CE conversion efficiency from feedstock to biodiesel
d depreciation rate
FC feedstock cost
FCi feedstock cost of the ith year
FP feedstock price
FU annual total feedstock consumption
GCF glycerol conversion factor
GP glycerol price
LCC life cycle cost
MC maintenance cost
MCi maintenance cost of the ith year
MR maintenance rate
NPRI non-probabilistic reliability index
OC operating cost
OCi operating cost of the ith year

OR
operating rate or operating cost of per-ton
crude-palm-oil-derived biodiesel production

PC production capacity
PP payback period of the biodiesel production
PPu allowable upper limit of payback period
PWFn worth factor in the year n
RC replacement cost
r interest rate
SA sensitivity analysis
SV salvage value
TAX annual total taxation
TBS annual total biodiesel sales
TEA techno-economic assessments
TotalProfit total profit
TR tax rate
UA uncertainty analysis
ρ density of the biodiesel
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Abstract: As the main power source for aircrafts, the reliability of an aero engine is critical for
ensuring the safety of aircrafts. Prognostics and health management (PHM) on an aero engine can
not only improve its safety, maintenance strategy and availability, but also reduce its operation
and maintenance costs. Residual useful life (RUL) estimation is a key technology in the research
of PHM. According to monitored performance data from the engine’s different positions, how to
estimate RUL of an aircraft engine by utilizing these data is a challenge for ensuring the engine
integrity and safety. In this paper, a framework for RUL estimation of an aircraft engine is proposed
by using the whole lifecycle data and performance-deteriorated parameter data without failures
based on the theory of similarity and supporting vector machine (SVM). Moreover, a new state of
health indicator is introduced for the aircraft engine based on the preprocessing of raw data. Finally,
the proposed method is validated by using 2008 PHM data challenge competition data, which shows
its effectiveness and practicality.

Keywords: prognostics; residual useful life; similarity-based approach; supporting vector
machine (SVM)

1. Introduction

Recent developments of complex systems, such as aircraft engines, engineering machines,
high-speed vehicles and computer numerical control (CNC) systems have been emphasized by the
increasing requirements of on-line health monitoring for the purpose of maximizing its operational
reliability and safety [1–3]. As the core part and power source of aircrafts, the reliable operation of
an aero engine is critical for ensuring the reliability and safety of the aircraft, and to maintain its
availability, and reduce its maintenance costs [4–6]. Among them, prognostics and health management
(PHM) is an effective approach and one of the most commonly-used [7,8]. In particular, residual
useful life (RUL) estimation is a key technology for PHM. In general, RUL estimation is to indicate the
system/component lifetime before it can no longer perform its function, which is also an important
way to reduce production loss, save maintenance costs and avoid fatal machine breakdowns of the
equipment before its failure [9–12].

Since the aircraft engine is a complex system, there are various monitored performance data from
different positions during its operation. How to estimate RUL of an aircraft engine by utilizing these
data has become the focus of most engine industries. Until now, approaches to predict system lifetime
can be broadly categorized into three types: physics-based models, data-driven approaches and
hybrid approaches [12–14]. Generally, a physics-based model utilizes the failure physical model of the
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system/component to estimate its RUL, which is usually based on the system/component’s physics of
failure or physics of dynamics deeply [15–19]. It can usually obtain reasonable and accurate predictions
of RUL based on physical models with limited historical data [20]. However, it is usually different
or too expensive to apply a physics-based model to a complex system. Besides, this approach has
shown significant limitations due to the assumptions and simplifications of the adopted models [21].
The data-driven approach utilizes the monitored operational data relating to system health for RUL
estimation [22,23], which is preferred when the system’s failure physics is complicated or unavailable
but systems’ degradation procedure and degradation data are available. Note from [3] that the
data-driven approach provides accurate RUL predictions for a complex system, which can be applied
quickly and cheaply compared to the physics-based model. Furthermore, recent development of
sensor technology and simulation capabilities enables us to continuously monitor the healthy situation
of a complex system and obtain the related large amount of performance index data. In addition,
data-driven approaches can be divided into three categories: statistical techniques and artificial
intelligence (AI) techniques. The former includes regression methods such as the auto-regressive
and moving average (ARMA) models, and the later includes neural networks and supporting vector
machine (SVM), fuzzy logic, etc. The third approach, the so-called hybrid approach proposed by
Hansen et al. [24], is the combination of physics-based and data-driven models, in which prognostics
results are claimed to be more reliable and accurate, but few studies have been reported [20].

Data-driven RUL prediction models, which are most widely applied in the field of prognostics
or PHM, mainly include extrapolation models and statistical models. The extrapolation model is
usually used to fit a curve of a system degradation evolution by regression, extrapolate the curve
to the failure threshold and obtain the RUL between the current moment and the predicted failure
time [25]. The statistical model establishes the relationship between a system’s failure likelihood and its
degradation indicator from collected CM (condition maintenance) and failure data [26]. The statistical
model approach is classified into the models based on the direct CM data and indirect CM data.
The models based on the direct CM data include the proportional hazards model [27,28], proportional
covariate model (PCM) [29], Wiener processes, Gamma processes and Markovian-based models.
The models based on the indirect CM data include stochastic filtering-based models, covariate-based
hazard models and hidden Markov model (HMM) [30], hidden semi-Markov models (HSMM), etc.
Statistical models are the most effective ones for RUL estimation when system failure procedure
is invisible. Most research has been conducted in RUL estimation based on data-driven models.
Stetter and Witczak [31] explored various degradation modeling techniques and how to select the
degradation indicator to estimate the RUL. Lee et al. [32] reviewed various methodologies and
techniques in PHM research and proposed the systematic PHM design methodology, namely 5S
methodology. Moreover, current methodologies of RUL estimation can be summarized as three classes
as shown in Figure 1.

Referring to the previous literature and existing methods, a structured form of methodology for
RUL prediction is expressed as shown in Figure 1.

When utilizing the data-driven approach for RUL estimation, the whole run-to-failure data of
systems are normally needed, but it is difficult to obtain enough run-to-failure data for the long-life
systems with high reliability. Thus, it might lead to a large error if the available system history data are
lacking. The same problem will arise when the ARMA model is employed. However, if there are some
similar systems to the researched system, the failure and performance-deteriorated information of
these similar systems are useful for RUL estimation of the researched system. In general, the principle
of similarity-based RUL prediction approach is given as follows: if an operating system has similar
performance to the reference system during a time range, then assume that they have a similar RUL.
Because this reference system is an identical system with the operating system physically, moreover,
they operate under the same working conditions and reference systems that have already failed.
In addition, if there are more reference systems similar to the researched one, the similarity-based
approach can be introduced through a weighted average of the reference systems’ RUL as the
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researched one’s RUL [33], while the weight is proportional to the similarity between the researched
and reference systems. According to this, the similarity-based RUL prediction model gives more
reasonable results without modeling the deteriorated process of the researched system. Besides,
with the development of PHM, there are abundant historical deteriorated data before failure that could
be utilized to perform PHM.

Figure 1. Methodologies for RUL estimation. RUL: residual useful life; SVM: supporting vector
machine; CM: condition maintenance; PHM: prognostics and health management; PCM: proportional
covariate model; HMM: hidden Markov model.

Zio et al. [21] developed a similarity-based approach to predict the RUL by comparing its evolution
data to the trajectory patterns of reference samples through fuzzy similarity analysis, and aggregating
their time to failure in a weighted sum, which accounts for their similarity to the developing pattern [21].
Gebraeel et al. [22] presents a stochastic process by combining with a data analysis method and
deterioration modeling of the components for RUL prediction.

For the traditional similarity-based RUL prediction method, current and past degradation
parameters of reference systems have an equal weight when calculating the similarity measure.
However, as we all know, a system’s most recent performance to its current health/state is more relative
than its earlier performance, and provides more information for its RUL than its earlier performance.
Therefore, it is reasonable to assign more weight to a system’s most recent sampling point than its
earlier sampling point of performance parameters when measuring its similarity with other systems.
However, the traditional similarity-based method ignored this situation. Accordingly, this paper
adopts a modified similar-based methodology which introduces a weight-adjusted coefficient α to
embody the different effect on the calculation of similarity degree from different time ranges while
calculating the similarity measure. The more recent sampling point of performance, the bigger weight
of the parameter is given. In addition, the earlier value of performance, the parameter is given smaller
weight and this paper provides an approach to optimize the weight α.

Until now, most research on the similarity-based model for RUL prediction are based on
run-to-failure data, but sometimes there are only deteriorated performance data without run-to-failure
data. How to utilize these deteriorated performance data, which do not work to failure, to estimate
RUL of equipment by similarity-based method, is lacking and expected. Suspension history condition
monitoring data usually contain useful information revealing the degradation situation of the system,
including environmental factors and loading variations in actual situations, such as degradations and
variations of stress amplitudes [10–12,34,35]. If these data are properly used, it is helpful to estimate
RUL more accurately, particularly when the failure data are insufficient and unavailable in some
cases [36,37]. Li et al. [38] used the suspension data to promote the prediction precision of a neural
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network. However, how to utilize these suspension data to predict RUL of the equipment has not been
deeply studied.

This paper attempts to develop a modified similarity and SVM-based method to predict the
RUL of an aircraft engine, including two schemes with different reference samples. The first scheme
adopts a modified similarity-based method for estimating the RUL of the engine with abundant
run-to-failure data of referenced samples, which is named as the modified similarity methodology
based on run-to-failure data. The second scheme utilizes deteriorated data of samples without running
to failure to estimate the RUL of the operating sample based on SVM and similarity methodology,
named as the modified similarity and SVM methodology based on deteriorated data. The structure
of this paper is as follows. Section 2 provides a detailed description of two approaches aimed for
RUL estimation under two situations. Section 3 introduces how to utilize the proposed approaches to
estimate the RUL of an aircraft engine. Section 4 concludes the current research.

2. Proposed Methodology for RUL Estimation

This section is devoted to introducing a similarity-based methodology including two schemes
for RUL estimation. The first scheme is to estimate the RUL with abundant run-to-failure data of
referenced samples. The other scheme is to estimate the RUL of aircraft engines with some deteriorated
data of referenced samples which have no run-to-failure data.

2.1. The Scheme of the Modified Similarity Methodology Based on Run-to-Failure Data

The RUL of an operating sample is the weighted average of RUL of referenced samples.
The weights are determined by the similarity degree between referenced samples and the operating
one. In particular, the similarity degree is calculated by the weighted average of similarity degrees of
sampling points between the reference and operating equipment. This subsection tends to introduce
the framework of the modified similarity methodology based on run-to-failure data as shown in
Figure 2.

 

Figure 2. Framework for the modified similarity methodology based on run-to-failure data.
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2.1.1. Determination of Time Range for Similarity Measurement

In this analysis, the first step is to set up the time range Δt for similarity measurement, namely, to
determine the number of sampling points of the operating system for similarity measurement:

X(k, H) = [x(k·Δt), · · · , x((k − H)·Δt)] (1)

where H is the number of sampling points; Δt represents the time range in which similarity degree
between a referenced sample and the operating one; x(k·Δt) denotes the degradation indicator of the
operating sample at the kth sampling point since its operation.

Generally, most of the recent sampling points of the operating system represent its current state.
In the traditional similarity-based method, any consecutive sampling points of the condition monitor a
reference system before its failure can be used for similarity measurement [15]. In addition, a reasonably
long time range can be determined based on operational experience in the lack of prior knowledge.
The sampling points X(k, H) in sampling time range are equally considered to be fully representative
of the system’s RUL. In this paper, the sampling points of the reference system are confined in the
same time range as the operating system, namely, [k − H, k].

2.1.2. Calculation of the Similarity Measure

The second step is to define and calculate the similarity measure, which indicates the similarity
degree between the operating and reference systems, and then quantify the degradation duration of
the ith reference system that is most similar as the duration of the operating system. The similarity
measure S is the function of degradation indicators of the system, which measures the similarity
between referenced and operating systems. Note that it may be Euclidean distance, probability
function [27] or membership function in fuzzy logic theory [26]. In this paper, the Euclidean distance
of degradation indicators between the reference systems and the operating system is introduced as the
similarity measure function. The traditional Euclidean distance is expressed as:

Sohi(k, H, m) =
H

∑
ν=0

[X0((k − ν)·Δt)− Xhi((m − ν)·Δt)]2/(H + 1) (2)

where Sohi(k, H, m) is the similarity measure between the operating system’s degradation process
in the time range [(k − H)Δt, kΔt] and reference system’s degradation process in the time range
[(m − H)Δt, mΔt]; where MiΔt is the failure time of the ith reference system, and H ≤ m ≤ M.
X0((k − ν)·Δt) denotes the degradation indicator of the operating system at the vth sampling point
from the kth sampling point. Xhi((m − ν)·Δt) denotes the degradation indicator of the ith reference
system at the vth sampling point from the mth sampling point.

The similarity degree between the operating system and the ith reference system at time T = kΔt
is defined as:

Sohi(k) =
1

min
H≤m≤Mi

S(k, H, m)
(3)

In this analysis, more weights are assigned to the recent sampling point of degradation indicator
than its former sampling points, thus, the Euclidean distance as the similarity measure for illustration
is defined as:

Sohi(k, H, α) =
H

∑
ν=0

{
αν[X0((k − ν)·Δt)− Xhi((k − ν)·Δt)]2

}
/(H + 1) (4)

where α is a weight-adjusting coefficient ranging from 0 to 1. A smaller α corresponds to a smaller
weight assigned to the former sampling point than recent sampling points of reference systems. α can
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be obtained by optimization for minimal predicting error of operating system’s RUL. An example to
obtain α is elaborated in Section 3.1.

2.1.3. Definition of the Weight Function

The third step is to define the weight function based on the similarity measure. As aforementioned,
the weight is a function of similarity-degree, which is assigned to the reference systems according
similarity degree to calculate the RUL of the operating system. The weight of the ith reference system
is given by

Wi(k) =
Sohj(k)

∑n
j=1 Sohj(k)

(5)

2.1.4. RUL Estimation of the Operating System

The last step is to estimate the RUL of the operating system. As aforementioned, the RUL of an
operating sample at time t = kΔt is the weighted mean value of reference systems at the kth sampling
point, and can be obtained by

RUL(k) =
n

∑
i=1

Wi(k)RULi(k) (6)

where n is the number of available reference systems.
The real RUL of the reference system at t = k·Δt is RULi(k) = (Mi − k)·Δt, then the operating

system’s RUL can be calculated by

SUL(k) =
n

∑
i=1

Wi(k)(Mi − k)·Δt (7)

2.1.5. Optimization of the Weight-Adjust Coefficient α

In order to embody different effects of sampling points of reference systems at different time on
RUL estimation of the operating system, the weight-adjust coefficient α is introduced in this analysis.
The weight-adjust coefficient α leads the recent sampling points of reference systems with more weights
for the similarity degree calculation, which tends to provide more accurate prediction, specifically,
α can be obtained by optimization under the goal function

MAPEα(k) = min

[
j=k−1

∑
j=k0

MAPEα(j)/(k − 1 − k0)

]
(8)

where k0 denotes the first sampling point to deteriorate; MAPEα(j) is the estimated percentage error
at the value of α.

2.2. The Scheme of the Similarity and SVM Methodology Based on Deteriorated Data

Research shows that the similarity-based method gives effective and accurate estimation
under abundant run-to-failure data of reference samples. However, most equipment operates
with high reliability and long life, especially in aerospace applications; the reference samples with
enough run-to-failure data are seldom. For this limited or no run-to-failure reference samples,
whether the similarity-based method can be used or not needs to be explored. In practices, there
is abundant performance deteriorating data and maintenance data during its operating process.
These suspension data include useful degradation information relating to the operating system.
However, the degradation indicators after halting operating and lifetime of reference samples are
unknown since they did not work until failure. Thus, the trend of the degradation indicators and the
lifetime of reference samples need to be collected and analyzed. This methodology for RUL estimation
consists two essential preprocessing procedures: performance assessment for reference samples and
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RUL estimation based on reference systems, and then the RUL of the operating system can be derived.
In particular, the implementation flowchart is given in Figure 3.

Figure 3. The framework of the similarity and SVM methodology based on deteriorated data.

Particularly, SVM is adopted to perform the degradation trend assessment of reference samples
and estimate their lifetimes. As is well known, SVM has been commonly used for handling the data of
small samples and multiple dimensions. The monitored degradation indicators of reference samples
are used to train SVM and obtain the performance-deteriorated pattern of these samples, and fit
their relation curve of degradation indicator with time. Based on the curve, the relation function is
estimated by using the maximum likelihood estimation method. Once it reaches the failure threshold,
the reference systems are considered as failure, so the lifetime of these reference samples can be
estimated in this way. The estimated precision regarding the lifetime of these reference systems is the
basis for calculating weights of similarity degree. When the estimated precision is higher, the weight
assigned to this reference sample is higher. The rest steps are same as that of the modified similarity
methodology based on run-to-failure data in Section 2.1.

3. Model Applications to an Aero Engine

This section provides two cases to illustrate the proposed two approaches for RUL estimation of
an aero engine.

3.1. The Estimation of RUL for an Airplane Engine with Run-to-Failure Data Though the Modified
Similarity Methodology

In this section, the similarity methodology based on run-to-failure data is applied to estimate
the RUL of the aircraft engine with multidimensional degraded parameters. The 2008 PHM Data
Challenge Competition is introduced for model validation and comparison. The data sets include
21 monitored parameters under 3 different operating modes at a sequence of time, in which three
operating modes are flight height (Alt: 0–42 k feet), Mach number (M: 0–0.84) and throttle resolver
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angle (TRA: 20–100), which reflect the whole operational state of an aero engine. The 21 monitored
parameters are different under different operating modes. The raw data of performance parameters
from different parts of an aircraft engine is multiple and fluctuated largely without evident regular
patterns. It is difficult to estimate the RUL based on these raw data. This paper puts forward a new
indicator to characterize the health of the engine based on these raw data. The following section
introduces the procedure to obtain the new health indicator.

Firstly, the 11 performance parameters that have shown evident changing trend with time are
selected after inspecting 21 performance parameters. For the 11 performance parameters, a principal
component analysis (PCA) is used to extract the main performance parameters that represent healthy
state and degradation trend of the engine system from 11 performance parameters. PCA can reduce the
data dimensions. Under different operating modes, the PCA result for 11 parameters is listed as shown
in Table 1. Through PCA, the main two-dimensional performance parameters, which occupy more
than 98% in all 11 parameters, are derived. Then a new status indicator is established based on the
residual two-dimensional performance parameters referring to [22]. The new status indicator is built
using the Euclidean distance between the projection of two-dimensional performance parameters at a
certain cycle on the failure space and the center of the failure space projection dot in an operating mode.

Table 1. The detailed occupancy of the main two components in different modes.

Mode Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

PC1 0.6082 0.5892 0.7959 0.7185 0.6087 0.5363
PC2 0.3803 0.4005 0.1903 0.2641 0.3034 0.4329

The detailed steps to construct this healthy status index are shown as follows:

(1) Build the failure space (two-dimensional space) and calculate the projection of the failure values
in the failure space, as shown as the hollow dots in Figure 3;

(2) Calculate the center of these projection dots, as shown as star dot in Figure 3;
(3) Calculate the projection dot of the performance parameters on the failure space at a certain cycle;
(4) Calculate the Euclidean distance between the projection dot of the performance parameters in

the failure space at a certain cycle and the center of the projected dots in the failure space in an
operating mode, which is shown in Figure 4.

Figure 4. Definition of the new health index.
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Further Euclidean distance means a healthier status of the engine, so this distance is defined as a
new healthy status indicator, which represents the engine healthy state and degradation level.

Figure 4 plots the curve of the new health status index of the 196th reference sample. Though
this healthy status index shows a certain changing trend, it is still fluctuated intensively. Accordingly,
Karman filtering is utilized to further handle this healthy status index. Figure 5 reflects the compared
curve of the 196th sample after and before Karman filtering. The red and thick curve is the new
degradation indicator of the 196th sample after Karman filtering.

Figure 5. Trend curve of the 196th sample after and before Karman filtering.

This paper predicted the RUL of five samples No. 196–200 at the 50th cycles, 30th cycles and 10th
cycles before failures using the first scheme. An example prediction of the196th samples is given as
Table 2.

Table 2. The five-sample point of the degradation indicator values of the 196th sample.

Run Time 156 Cycles 161 Cycles 166 Cycles 171 Cycles 176 Cycles

RUL 2.5986 2.4292 2.3260 2.4667 2.3691

Firstly, the five sample values from the degradation indicator curve after Karman filtering at every
5 cycles before the 176th cycle are given in Table 2. Then the 10 samples which are most similar with
the operated samples are selected as the reference samples according to the new degradation indicator
in Equation (1). Time range is ΔT = 5, sampling interval is ΔT = 1. The weights of these reference
samples are calculated by using Equation (4). The results and other information on these 10 reference
samples are shown in Table 3.

Table 3. Information of the reference samples.

Ranking Sample Number Sampling Interval Lifetime RUL Weight

1 38 224–228 287 59 0.192924
2 82 193–197 223 26 0.164397
3 115 211–215 260 45 0.162683
4 12 120–124 242 118 0.093304
5 29 164–168 228 60 0.082048
6 103 219–223 243 20 0.080489
7 64 122–126 154 28 0.060018
8 53 205–209 259 50 0.058619
9 78 176–180 228 48 0.055197

10 34 244–248 286 38 0.050321
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The predicted RUL of the 196th sample with its actual lifetime 226 cycles are based on these
10 reference samples is given in Table 4. Meanwhile, the estimated RUL of the 196th sample by
the traditional similarity method and modified similarity method are compared in Table 4. The
weight-adjusted coefficient α is preliminarily set as 0.4 in this analysis.

Table 4. RUL estimation of the 196th sample.

Operating Time
Traditional Similarity Method Modified Similarity Method

Predicted RUL Error (%) Predicted RUL Error (%)

176 225.69 0.1358 214.50 5.0871
177 238.11 5.3600 219.63 2.8201
178 213.58 5.4953 221.18 2.1310
179 209.86 7.1432 219.50 2.8742
180 203.53 9.9426 221.56 1.9642
. . . . . . . . . . . . . . .
196 197.23 12.7305 221.62 1.9388
197 200.43 11.3132 219.35 2.9427
198 205.42 9.1069 220.53 2.4208
199 200.55 11.2619 225.75 0.1121
200 194.23 14.0578 226.77 0.3401
. . . . . . . . . . . . . . .
216 188.03 16.8012 226.80 0.3558
217 184.37 18.4209 226.17 0.0741
218 182.68 19.1695 225.31 0.3036
219 183.04 19.0067 224.09 0.8448
220 181.41 19.7290 224.15 0.8169

As can be seen from Table 4, the modified method provides better predictions than the traditional
one. Moreover, the error by the traditional method increases with time. The prediction precision
by the modified method tends to be better when the time is closer to failure. Since the traditional
method chooses reference samples that are most similar with the operating sample during a certain
time interval in their whole life, the operating sample and this similar reference sample maybe are in
different degradation epochs. The modified method constrains the same time range to seek the most
similar reference samples. In addition, the modified method assigns larger weight to the more recent
sampling point.

Finally, the weight-adjusting coefficient of sampling points is optimized. Through assigning
different values to get different predicted precision, the optimized weight-adjusting coefficient value
can be obtained at α = 0.6, as shown in Figure 6.

Figure 6. The MAPE corresponding to weight-adjusting coefficient.
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3.2. The Estimation of RUL for an Aero Engine with Deteriorated Data Though the Similarity and
SVM Methodology

This methodology for RUL estimation includes two essential procedures: assessment for
performance of reference samples and RUL estimation of reference samples. The assessment for
performance of reference samples is implemented using SVM in this paper. The data are extracted
from the same data sets as the previous case, but these whole life data of the original samples are cut
off the rear part and only the front part data are applied in this scheme. The degradation indicator
pattern of the No. 1 aircraft engine trained by SVM is shown in Figure 7.

Figure 7. The SVM trained result of the No. 1 sample.

The predicted lifetime of all the 20 reference samples by SVM are shown in Table 5. Chi-square
test is used to measure the prediction precision, which are used for calculating the weights of reference
samples. The No. 11, 13, 18, 17 and No. 3 samples with higher prediction precision are selected
to calculate the operating sample’s lifetime as the reference samples. The calculated weights of the
reference samples are given in Table 6. The lifetime of No. 196 sample is predicted as shown in Table 7.

Table 5. The predicted lifetime of 20 trained samples.

Sample Number Lifetime

Ft1 ∼ Ft5 231.12598 289.93651 214.7592 299.89567 372.86392
Ft6 ∼ Ft10 232.23493 174.22486 290.63039 183.51086 239.97266
Ft11 ∼ Ft15 214.47475 262.17492 215.14943 238.10682 297.89302
Ft15 ∼ Ft20 301.69223 236.68347 201.39653 243.82267 255.27005

Table 6. The weights of the reference samples.

Reference Samples W11 W13 W18 W17 W3

Weights 0.2526 0.2258 0.1957 0.1678 0.1581

It is worth noting from Table 7 that, the proposed methodology has shown better predictions than
the traditional one. In particular, the prediction precision is higher when the operational time is closer
to the failure point.
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Table 7. Model predicted lifetime and error of the 196th sample.

Work Time Predicted Failure Time Error (%)

121–125 201.4377 10.86
126–130 189.9478 15.95
131–135 188.2144 16.71
136–140 187.5556 17.01
141–145 188.0059 16.81
146–150 192.7102 14.73
151–155 203.6575 9.88
156–160 227.415 0.62
161–165 227.8171 0.80
166–170 230.5832 2.02
171–175 219.4822 2.88
176–180 217.1443 3.91
181–185 220.0715 2.62
186–190 224.6852 0.58
191–195 219.9376 2.68
196–200 232.6292 2.93
201–205 231.4903 2.42
206–210 234.244 3.64
211–215 233.7521 3.43
216–220 230.2518 1.88
221–225 228.2501 0.99

4. Conclusions

The RUL prediction of an aircraft engine can not only improve its safety, maintenance, and
availability, but also reduce its operation and maintenance costs. This paper presents two schemes to
estimate the RUL of an aircraft engine under different situations. The first scheme adopts a modified
similarity-based method for estimating the RUL of the aero engine with abundant run-to-failure data
of referenced samples. The second scheme utilizes deteriorated data of samples without up-to-failure
data to estimate the RUL of the operating sample with less deteriorated performance data than the
reference systems. The two schemes are utilized for RUL estimation of an aircraft engine. The model
prediction precision shows these two schemes are effective and suitable for RUL estimation of aero
engines. More specifically, it is suitable to adopt the modified similarity-based methodology when
failed historical samples are abundant and the similarity and SVM methodology is suitable under
limited historical samples conditions.
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