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Figure 15. Ambient parameter effects on tower vibrations (26 August to 4 September).
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Figure 16. Identified mode shapes and the associated schematics of the four dominant modes along
(a) the X-direction, and (b) the Y-direction (26 August to 4 September).

5. Conclusions

This paper presents a field vibration study of an H-type VAWT on a rooftop. To understand the
vibration performances of the VAWT installed on the rooftop of the #6 building at Tongji University,
a health monitoring system was implemented, and the dynamic behaviors of the VAWT were studied
using vibration measurements under ambient conditions. To process the vibration data, an automated
algorithm based on stochastic subspace identification (SSI) and a fast clustering approach was
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developed and presented to show how modes could be determined. The modified method helps
accommodate the frequency and mode shape requirements for mode identification, and the results
successfully identified several modes of the VAWT tower vibration along the tension direction and
shear direction of the hoop connection.

The results showed that some of the vibration responses of the VAWT tower (e.g., 3.6 Hz along
the X-direction and 3.8 Hz along the Y-direction) may be affected by the vibrations of the #6 building.
Hence, the modal behaviors can be differentiated into building-associated and non-building-associated
modes. Among the vibration frequencies identified from both the building and tower measurements,
the first mode vibration of the building (0.94 Hz along the X-direction, 0.71 Hz along the Y-direction,
and 1.3 Hz in torsion) has little influence on tower vibration. The second bending modes of the
building along both directions (3.6 Hz along the X-direction and 4.1 along the Y-direction), however,
can affect tower vibration, since the frequencies of the second mode of the building are relatively close
to those fundamental frequencies of the tower. This observation is important for the structural health
monitoring and life-cycle condition maintenance strategy of the VAWT. The understanding of the
effect of building-associated and non-building-associated modes on the VAWT tower responses may
also help improve the design of the VAWT tower.

The environmental effects on the ambient vibration data were also investigated, and it was found
that the blade rotation speed had a significant effect on the VAWT vibration PSD amplitudes, as shown
in Figure 13, indicating that higher blade rotation speeds can result in higher vibration amplitudes of
the wind turbine. On the other hand, temperature and wind direction, in general, had little effect on
the PSD amplitudes.
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Abbreviations

HAWT horizontal axis wind turbine;
VAWT vertical axis wind turbine;
SHM structural health monitoring;
SSI stochastic subspace identification;
PSD power spectrum density;
MAC modal assurance criterion.

Symbols

kt tensile stiffness of a single hoop;
ks shear stiffness of a single hoop;
kM10, kM12 tensile stiffness of M10 bolt and M12 bolt, respectively;
kR compression stiffness of the rubber gasket;
kM12,s shear stiffness of the M12 bolt;
PXX( f ) PSD of the response of a structure;
T( f ) transfer function;
I unit matrix;
xk state vector;
yk measurement vector;
wk excitation vector;
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vk measurement noise vector;
A state transition matrix;
C output location matrix;
kt number of measurement;
H Hankel matrix;
O projection matrix;
Γ observability matrix;
X̂ Kalman filter state sequence;
λ eigenvalue of A;
Ψ eigenvector of A;
fs sampling frequency;
2n maximum calculation order;
f natural frequency;
ξ damping ratio;
ϕ mode shape;
ρ local density of a result point;
d frequency distance between two result points;
MAC mode shape similarity (modal assurance criterion) between two result points.
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Abstract: Research on the safety of powerhouse in a hydropower station is mostly concentrated on
the vibration of machinery structure and concrete structure within a single unit. However, few studies
have been focused on the vibration transmission among units. Due to the integrity of the powerhouse
and the interaction, it is necessary to study the vibration transmission mechanism of powerhouse
structure among units. In this paper, field structural vibration tests are conducted in an underground
powerhouse of a hydropower station on Yalong River. Additionally, the simplified mechanical models
are established to explain the transmission mechanism theoretically. Moreover, a complementary
finite element (FE) model is built to replicate the testing conditions for comprehensive analysis.
The field tests results show that: (1) the transmission of lateral-river vibration is greater than those
of longitude-river vibration and vertical vibration; (2) the vibration transmission of the vibrations
that is caused by the low frequency tail fluctuation is basically equal to that of the vibrations caused
by rotation of hydraulic generator. The transmission mechanism is demonstrated by the simplified
mechanical models and is verified by the FE results. This study can provide guidance for further
research on the vibration of underground powerhouse structure.

Keywords: vibration transmission mechanism; underground powerhouse; lateral-river vibration;
low frequency tail fluctuation; rotation of hydraulic generator

1. Introduction

Vibration is a common phenomenon in energy infrastructure structures. Severe vibration can lead
to safety problems in rotating machineries and support structures [1–3], such as electrical machines,
towers of the wind turbine generators, and parabolic reflective surfaces in the concentrated solar power
systems. As a combination of rotating mechanical structures and concrete structures, the powerhouses
in hydropower stations usually work under complex hydraulic, electromagnetic, and mechanical loads.
Therefore, the safety problems are prone to occur. In recent years, hydropower industry has developed
rapidly in China. According to the National Energy Administer (NEA), the installed capacity of
hydropower has reached 341 million kW in 2017, accounting for 19.2% of the total installed capacity
of electricity in China. The annual hydropower generation has reached 1.19 × 1012 kWh, accounting
for 18.5% of the total electricity generation in China. Hydropower has made great contributions to
economic development and reduction of carbon emissions. With the development of hydropower,
a group of high-head, large-capacity hydroelectric generators has been commonly used in large-scale
hydropower stations. Various powerhouse safety problems that are caused by vibration of units happened
in hydropower stations correspondingly. For example, hydropower stations, such as XiaoLangDi, ErTan,
and YanTan in China have experienced powerhouse safety problems some extent [4,5]. The most serious
safety problem of powerhouse occurred in Russia, the unit #2 of the Sayano-Shushenskaya hydropower
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station in Yenisei River experienced severe vibration after overload operation, leading to fatigue
damage to the cap fixed bolts, and resulting in great casualties and property loss [6,7].

At present, the research on vibration safety of the powerhouse is mostly focused on the vibration
of machinery structure [8,9]. For the coupling vibration of unit shaft system, Ma, Song and Zhi, et al.
built the FE models of bearing support to analyze the coupling relationship of the foundation and the
shafting system [10–13]. Zhou et al. investigate the vibration of the stator frame under the action of
electromagnetic forces based on field tests and FE models [14]. Zhang and Wang et al. built the FE
models of powerhouse and pumping station to study the vibration under pressure pulsations [15,16].
On the other hand, Lian and He et al. studied the influence of unit on the vibration of the powerhouse
structure. The complicated linear and nonlinear coupling vibration rules between the unit and
powerhouse structure have been summarized, based on field tests of unit and powerhouse structure of
multiple hydropower stations and the FE method [17–21]. Zhang and Mao analyzed the correlation
between the vibration response of unit and powerhouse structure [22,23]. The coupling relationship
between the unit and the powerhouse structure were discussed based on relevant theories and field
tests data.

For the influence and transmission of vibration of powerhouse, Wang and Bai et al. investigated
the transmission rules of adjacent units by field tests of a hydropower station [24]. Wei et al. studied the
vibration transmission ways between main powerhouse and auxiliary powerhouse by FE method [25].
Ameen et al. studied the effect on dams caused by vibration of powerhouse by ANSYS-CFX model [26].
As for the vibration in underground structure, Gupta et al. investigated the influence of tunnel
and soil parameters on vibrations from underground railways [27]. Chen and Xia et al. studied the
vibration transmissions that are caused by blasting in underground powerhouse and excavation [28,29].
Kuo et al. studied the effect of a twin tunnel on the propagation of ground-borne vibration from an
underground railway theoretically [30]. However, due to the difficulty of field test and complexity of
structure, it is hard to explain the mechanism of vibration transmission in underground powerhouse,
so the theoretical research is rare.

According to the complexity of powerhouse structure and vibration source mechanism, this paper
focuses on two basic problems for vibration transmission among units. The first one is the effect of
vibration directions on the vibration transmission ratios, and the second one is the effect of frequency
of the vibration source on the vibration transmission ratios. To solve these problems intuitively and
accurately, field test, theoretical research, and numerical simulation are employed with appropriate
and reasonable simplification.

In this paper, field structural vibration tests of an underground powerhouse in a hydropower
station on Yalong River were conducted to investigate the vibration rules. Then, the simplified
mechanical vibration models are established to explain the mechanism of the vibration theoretically.
Finally, the testing powerhouse structure is simulated and calculated by FE method, the corresponding
vibration transmission ratios among units are extracted and compared with the field test results to
verify the theoretical analysis. The technology route of this paper is shown in Figure 1. This paper
studied the mechanism of the vibration transmission among units systematically. It can provide
guidance for further research on the safety of underground powerhouse structure.

Figure 1. Schematic diagram of technology route.
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2. Field Structural Vibration Test

In order to investigate the vibration transmission among units, a series of field structure vibration
tests were conducted based on an underground powerhouse in a large hydropower station on
Yalong River.

2.1. Field Tests Overview

The hydropower station is located in the main stream of Yalong River at the junction of Yanyuan
County and Muli County in Sichuan Province of China. It is the first stage of the five-order hydropower
development project in the middle and lower reaches of Yalong River, where the hydropower resources
are most concentrated. The hydropower station mainly aims at power generation, and it also has
functions of flood control and sand interception. The normal water storage level of the reservoir is
1880 m, the total storage capacity is 7.76 billion m3, and the adjusted storage capacity is 4.91 billion m3.
The installed capacity of the power station is 3600 MW, the annual utilization hour is 4616 h, and the
annual power generation is 166.20 billion kWh. All the units are lined up in the main powerhouse
from #1 to #6, and the rated capacity of single unit is 600 MW. Total length of the main powerhouse
is 204.52 m, the excavation height is 68.80 m, and the width of the main powerhouse along river is
25.90 m. The main powerhouse is shown as Figure 2.

 
Figure 2. Main powerhouse of the hydropower station in Yalong River.

To study the vibration transmission rules of powerhouse structure among units, vibration
displacement sensors were installed in unit #1 of powerhouse, considering the actual condition.
Ds-Net acquisition system and DP type seismic low frequency vibration displacement sensor were
used in the field tests.

Ds-Net acquisition system was used as data acquisition instrument. This system includes
multi-channel signal acquisition module and instrument fault signal identification module. Data can
be acquired and stored in this system simultaneously. The system can eliminate structural background
noise and Characteristic parameters of signals, such as maximum, minimum, variance, deviation
coefficient, and kurtosis coefficient can be calculated immediately. It also has an intelligent
multi-channel display interface during test. This system performs well in low frequency signal,
and it is suitable for large-scale structural vibration tests, such as the powerhouse, in this paper.
The sampling frequency of field tests is 400 Hz, and each data length is 1 min. In order to minimize
the influence of end effect in the data processing, the middle 50 s data was intercepted in the analysis.
The data acquisition instrument is shown as Figure 3.
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(a) (b) 

Figure 3. Data acquisition instrument: (a) Schematic; and, (b) Field tests photo.

DP type seismic low frequency vibration displacement sensor was used in the field tests. A set of
low frequency expansion circuits is employed to the seismic detector, in order to reduce the natural
frequency of the output characteristics to 1/20–1/100 of the original detector. The sensor has properties
of shock resistance, high stability, and good characteristics of low frequency output. The sensitivity of
the sensor is high to measure micrometer vibration displacements. Therefore, the sensor is suitable
for vibration measurement of large structures, such as powerhouse structure. Frequency response of
the sensor that was used in this paper is in the range of 0.35–200 Hz with a sensitivity of 8 mV/μm.
The vibration displacement sensors are shown as Figure 4.

  
(a) (b) 

Figure 4. Vibration displacement sensors used in field tests: (a) Close-up; and (b) Field installation
photo.

The vibration displacement sensors were installed in the middle of the main beam on the left side
of hydraulic turbine floor of unit #1, as shown in Figure 5. Three sensors were fixed by bolts after
drilling to test vibrations in the lateral-river direction, the longitude-river direction and the vertical
direction. For the convenience of the following description, the lateral-river direction, as well as the
direction of axis of main powerhouse is defined as the X direction. The longitude-river direction is
defined as the Y direction, and the vertical direction is defined as the Z direction. As shown in Figure 6.

The investigations were concentrated on unit #2 and unit #3, since they were closed to the sensors
in unit #1. In order to study the effects of unit#2 and unit #3 on the vibration of sensors in unit #1, it is
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necessary to adopt the variables control method. Therefore, when testing the effect of unit #2 on the
sensors, unit #2 was in operation, both unit #1 and unit #3 should be in shutdown; the same settings
were applied when testing the effects of unit #2 and unit #3. Because the units were connected to the
power grid during tests, their operating conditions must meet the needs of power grid, and cannot be
controlled as the tests required. Therefore, in the actual tests, a large number of data was acquired.
Then, the data in the time period when the unit #4, unit #5, and unit #6 were in shutdown was selected
after the tests, as shown in Figure 6. Test results for unit #1, unit #2, and unit #3 in various operating
conditions were obtained to investigate the vibration transmission.

Figure 5. Powerhouse structure and location of sensors.

Figure 6. Distribution of units in the main powerhouse and definition of vibration directions.

2.2. Preliminary Tests Results

With the change of operating conditions of unit #1, unit #2, and unit #3, the root mean square
(RMS) of vibration displacement of the sensors in unit #1 varies, as shown in Figure 7.

It can be seen from the Figure 7 that the vibration in Z direction is most severe. When the vibration
source (unit #1, unit #2, or unit #3) is at 100 MW operating condition, vibrations of structure in X, Y,
and Z direction achieve the maximum simultaneously. Therefore, the 100 MW operating condition is
the most unfavorable condition in the field tests of powerhouse. This is consistent with the previous
tests and research results [17,21]. When the Francis Type Water Turbine-Generator Unit is fewer
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than 40% of rated load conditions, the tail water vortex belt would be decomposed and split. A large
number of irregular small vortexes will replace the spiral vortex belt, and the signal exhibits a noise-like
broadband characteristic, which can be seen in the spectrum analysis of tested signal in the following
section [31]. Samanta and Vinuesa et al. also studied the characterizations of the flow field through
numerical simulations and experiments [32–34]. In the other hand, the preliminary tests results also
prove the consistency of each unit as vibration source. Next, all the following data analysis is based on
100 MW operating conditions.

 
(a) 

 
(b) 

(c) 

Figure 7. Variation of root mean square (RMS) of displacement with unit #1, unit #2 and unit #3 in
operation respectively: (a) Unit #1 in operation; (b) Unit #2 in operation; and, (c) Unit #3 in operation.
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2.3. Vibration Transmission Rules of Tests

According to the two problems raised in the introduction, the variation of vibration intensity in
three directions was calculated to study the effect of vibration directions; the signal component was
analyzed to study the effect of vibration frequency.

2.3.1. Vibration Intensity

In order to study the rules of vibrations in X, Y, and Z direction with different units, typical time
histories of vibration displacements in three directions are shown in Figure 8, when the unit #1, unit #2,
or unit #3 is operated as vibration source, respectively.

 
(a) 

 
(b) 

 
(c) 

Figure 8. Time histories of vibration displacements in three directions: (a) X direction; (b) Y direction;
and, (c) Z direction.

Due to the uncertainty in field vibration tests, it is necessary to minimize the influence of
random factors. Therefore, multiple groups of samples were selected in 100 MW operating conditions.
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Ten groups of typical data were extracted for analysis, and the RMS values of vibration displacement
were calculated. A scatter plot of the RMS of vibrations in X, Y, and Z directions is shown in Figure 9.

 
(a) 

(b) 

 
(c) 

Figure 9. RMS of vibration displacements with different units in three directions: (a) X direction;
(b) Y direction; (c) Z direction.

Figure 9 show that the vibrations in three directions of X, Y and Z all present a tendency of
decrease with the increase of the distance from the vibration source. The mean values of the ten
samples in three directions of X, Y, and Z are calculated respectively. Taking the RMS of vibration
displacement caused by unit #1 as reference, the ratios of RMS of vibration displacement caused by
different units are attained respectively, as shown in Equation (1).

⎧⎪⎨
⎪⎩

x1 : x2 : x3 = 1 : 0.1769 : 0.1069
y1 : y2 : y3 = 1 : 0.0953 : 0.0331
z1 : z2 : z3 = 1 : 0.1074 : 0.0320

(1)
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The ratios are defined as vibration effect ratios by each unit, as shown in Figure 10. For vibration
in X direction, the effect ratio of unit #2 is approximately 17.69%, while the ratio of unit #3 is about
10.69%, compared with the vibrations caused by unit #1 as 100%. For vibration in Y direction, the effect
ratio of unit #2 is approximately 9.53%, while the ratio of unit #3 is only 3.31%. For vibration in Z
direction, the effect ratio of unit #2 is approximately 10.74%, while the ratio of unit #3 is about 3.2%.
When considering of the consistency of each unit as vibration source, the vibration effect ratios can
also be regarded as vibration transmission ratio.

It can be conducted that the vibrations in X direction caused by adjacent units are greater, and the
vibration transmission ratios are bigger, as compared with the vibration in Y and Z directions.

Figure 10. Vibration effect ratios by each unit.

2.3.2. Signal Component

In order to study the variation of signal components in the process of vibration transmission,
spectral analysis is performed based on the vibration signals in Figure 8. Power spectral density (PSD)
is obtained and shown in Figure 11.

According to the PSD shown in Figure 11, all the signals can be divided into three components:
(1) Component A, with frequency between 0.2 and 1.5 Hz; (2) Component B, with frequency of 2.4 Hz;
and, (3) Component C, with frequency higher than 5 Hz. For vibration in X direction, the Component
A is the main part. Meanwhile, the energy of Component B is less than Component A. For vibration in
Y direction, Component A and Component B are two main parts. Energies of the two are basically
equal, while the Component A is wider and the peak value of the Component B is larger. For vibration
in Z direction, the Component A is the only main part. The Component B is unobvious. For vibrations
in all three directions, the Component C is not obvious. The proportions of the three components do
not show apparent difference among vibrations caused by unit #1, unit #2 and unit #3.

The components of signals are related to the corresponding vibration sources. Combining previous
studies [13,14,16,35], vibration sources of powerhouse structure mainly consist of the following parts:
(1) Rotation of hydraulic generator, according to the unit parameters, the rotational frequency of
hydraulic generator is 2.4 Hz; (2) Low frequency tail fluctuation, when the unit is in the medium and
low load state, severe low frequency tail fluctuation occurs in the draft tube. It is often the main source
of vibration for units and powerhouse structure. Its frequency is less than 0.6 times that of rotation
frequency; (3) The other medium and high frequency vibration sources, such as volute uneven flow.
Combining above, the Component A can be considered to be caused by low frequency tail fluctuation;
the Component B can be considered to be caused by the rotation of hydraulic generator; the Component
C can be considered to be caused by the other medium and high frequency vibration sources.
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(a) 

(b) 

 
(c) 

Figure 11. Spectrums of vibration displacements in three directions: (a) X direction; (b) Y direction;
and, (c) Z direction.

In order to further quantify the components, the wavelet analysis method was used to component
analysis of vibration signals. Wavelet analysis is a local transformation method based on time, space
and frequency. It uses horizontal movement and expansion to perform function multi-scale operation,
which can realize frequency domain decomposition of data signals. Multi-Resolution Analysis (MRA)
was applied in this article. The db3 wavelet was used as the mother wavelet. Firstly, the vibration
signals were decomposed by seven-level wavelet transform. Then signals corresponding to different
vibration sources were reconstructed from different frequency bands. Finally energies of vibration
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signals corresponding to different vibration sources were calculated. The frequency range of each
frequency band after wavelet decomposition of vibration signals are shown in Table 1.

Table 1. Wavelet decomposition of vibration signals.

Signal Decomposed a7 d7 d6 d5 d4 d3 d2 d1

Frequency Range (Hz) 0–1.56 1.56–3.13 3.13–6.25 6.25–12.5 12.5–25 25–50 50–100 100–200

Signal corresponding to a7 was reconstructed as the Component A. Signal corresponding to d7
was reconstructed as the Component B. Signals corresponding to d6, d5, d4, d3, d2, and d1 were
constructed as the Component C. Variances of the reconstructed signals are calculated to obtain the
energy proportions of different vibration components, as shown in Figure 12. It can be shown that
energy proportions of Component A and Component B barely change in the progress of vibration
transmission among units.

According to the above, it can be concluded: (1) Low frequency tail fluctuation and rotation of
hydraulic generator are the two main vibration sources of the vibration of the powerhouse structure;
and, (2) They have almost the same transmission ratios among units.

 
(a) 

 
(b) 

(c) 

Figure 12. Energy proportions of vibrations in three directions: (a) X direction; (b) Y direction;
and (c) Z direction.
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3. Study of Vibration Transmission Mechanism

The simplified mechanical vibration models are established to investigate the vibration
transmission mechanism of powerhouse structure among units.

3.1. Simplication of Powerhouse Structure

The vibration transmission of underground powerhouse structure among units is essentially a
kind of mechanical wave. Its transmission direction is the direction of axis of the main powerhouse
(from unit #1 to unit #n), that is the X direction according to the previous definition. When the vibration
is in X direction, its direction is consistent with the transmission direction. So, this transmission can
be regarded as compression vibration. When the vibration is in Y or Z direction (perpendicular to
the direction of transmission), the transmission can be regarded as the shear vibration, as shown
in Figure 13. These two different vibration transmissions in powerhouse will be studied in the
following section.

Figure 13. Transmission of vibration in different directions.

According to the structural characteristics of underground powerhouse of the hydropower
station, it is known that the main structure of powerhouse is mainly the mass concrete. Therefore
the powerhouse structure of each power unit can be regarded as a homogeneous block and fixed
on the bedrock. Units are separated by the split seam. Assuming that the effect of split seams on
vibration transmission among units is negligible. Only the vibration transmission through the bedrock
is considered. When considering the condition of two adjacent units, the main powerhouse structure
can be simplified, as shown in Figure 14.

m2 m3 

m4 m1 

Figure 14. Simplified model of vibration transmission.

As shown in the Figure 14, two units and the bedrocks are plotted in the two-dimensional (2-D)
plane. Two adjacent units are represented by two lumped masses m1 and m4. The bedrocks below
m1 and m4 are represented by two homogeneous elastic blocks m2 and m3, respectively. The bottom
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and the lateral sides of bedrocks m2 and m3 are restrained by normal constraints. It is easy to know
m1 = m4, let m1 = m4 = m; similarly, m2 = m3 = M.

3.2. Establishment of Vibration Models

According to different modes of transmission, two vibration models are established.
Firstly, a horizontal vibration model has been established to study the compression vibration,

as shown in Figure 15.

F(t) 

m2 

m4 K23 
m3 

m1 

K2x K3x 

Figure 15. Horizontal vibration model.

By the concentrated mass method, the masses of bedrocks are concentrated at their centroids,
and regarded as two lumped mass, m2 and m3. They are connected to the left and right boundary
by springs; Deformation of the bedrock between m2 and m3 is represented by the stretching and
compression of a spring to simulate the interaction of axial force. Load F(t) is applied on the lumped
mass m1. x1, x2, x3 and x4 denote displacements of m1, m2, m3, and m4, respectively. Considering
dynamic load only, equations of motion for the four lumped masses are listed in Equation (2).

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F(t)− Q12 = m1
..

x1

Q12 − K2xx2 − K23(x2 − x3) = m2
..

x2

K23(x2 − x3)− Q34 − K3xx3 = m3
..

x3

Q34 = m4
..

x4

(2)

Q12 refers to the shear force between m1 and m2; Q34 refers to the shear force between m3 and m4.
K2x refers to the compression stiffness between m2 and left boundary; K3x refers to the compression
stiffness between m3 and right boundary; K23 refers to the compression stiffness between m2 and
m3. For homogeneous elastic structure, the compression stiffness can be calculated according to
K = EA/l, then the compression stiffness of horizontal vibration model is obtained as K2x = K3x = 2Eh/l,
K23 = Eh/l. l refers to the length of a single unit, h refers to the depth of bedrock considered, and E
refers to the elastic modulus of bedrock. Let Kx = Eh/l, then K2x = K3x = 2Kx, K23 = Kx. According to
the kinematic relationship between units and surrounding rocks, x1 = x2 and x3 = x4 can be drawn.
After simplification of Equation (2) according to the above formula, Equation (3) is derived.

{
F(t)− 2Kxx1 − Kx(x1 − x4) = (m + M)

..
x1

Kx(x1 − x4)− 2Kxx4 = (m + M)
..

x4
(3)

Assuming a simple harmonic load F(t) = Asin(ωt), then the expressions of x1 and x4 should also
be in the simple harmonics form. Let x4 = Psin(ωt), substitute it into the Equation (3). Equation (4) can
be derived.

x4

x1
=

Kx

3Kx − (m + M)ω2 (4)
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The ratio is defined as the vibration transmission ratio of horizontal vibration from x1 to x4,
to describe the influence on m4 caused by vibration of m1 in X direction.

Next, the vertical vibration model is established to study the shear vibration, as shown in Figure 16.

F(t) 

m2 

m4 

Q23 m3 

m1 

K12 

K2z 

K34 

K3z 

Figure 16. Vertical vibration model.

Similar simplified method is used for the vertical vibration model. The masses of bedrocks are
concentrated at their centroids, and regarded as lumped masses m2 and m3. They are connected to the
bottom boundary and above masses m1 and m4 by springs. Interaction between bedrocks and units are
represented by shear force Q23. Load F(t) is applied on m1. Considering dynamic loads only, equations
of motion for the four lumped masses are listed in Equation (5).

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F(t)− K12(z1 − z2) = m1
..
z1

K12(z1 − z2)− K2zz2 − Q23 = m2
..
z2

Q23 − K34(z3 − z4)− K3zz3 = m3
..
z3

K34(z3 − z4) = m4
..
z4

(5)

K12 refers to the compression stiffness between m1 and m2; K2z refers to the compression stiffness
between m2 and the bottom boundary; K34 refers to the compression stiffness between m3 and m4;
K3z refers to the compression stiffness between m3 and the bottom boundary. According to K = EA/l,
then the compression stiffness of vertical vibration model is obtained as K12 = K2z = K34 = K3z = 2El/h.
Let Kz = El/h, then K12 = K2z = K34 = K3z = 2Kz. In addition, shear force should be calculated as Q
= K′GA(∂z/∂x) based on mechanics of materials. For this model, Q23 = K′Gh(z2 − z3)/l = Gz(z2 − z3).
Let Gz = K′Gh/l, then Q23 = Gz(z2 − z3). K′ refers to the section shape coefficient and G refers to the shear
modulus of bedrock. According to actual condition, the units and the bedrocks are always in contact.
The relationship between z1 and z2 can be derived as z1 = 2z2, as well as z4 = 2z3. After simplification
of Equation (5), Equation (6) is derived.

{
F(t)− Kzz1 − Gz

2 (z1 − z4) = (m + 1
2 M)

..
z1

Gz
2 (z1 − z4)− Kzz4 = (m + 1

2 M)
..
z2

(6)

Then, the ratio is obtained as Equation (7).

z4

z1
=

Gz

(2Kz + Gz)− (2m + M)ω2 (7)

The ratio is defined as the vibration transmission ratio of vertical vibration from z1 to z4, to describe
the influence on m4 that is caused by the vibration of m1 in Z direction.
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3.3. Rules of Vibration Transmission Ratios

Based on the vibration transmission models above, the transmission ratios of two units in
horizontal vibration and vertical vibration are obtained, respectively, as shown in Equation (3)
and Equation (6). In the equations, parameters included unit mass m, bedrock mass M, horizontal
compression stiffness of bedrock Kx, vertical compression stiffness of bedrock Kz, shear stiffness Gz,
and frequency of vibration source load ω. Vibration transmission ratios among units are determined
by these parameters in the simplified model.

In order to quantitatively analyze the vibration transmission of horizontal and vertical vibration
and study the influence of the vibration frequency on transmission ratio, the parameters are further
simplified and calculated. According to previous research experience [25], the depth of the bedrock
h is taken as unit length l, then Kx = Kz = E is derived. For the rectangular section, the section shape
coefficient K′ is 1.2, then Gz = 1.2G = 1.2E/[2(1 + μ)]. After the simplification, Equation (4) and
Equation (7) are simplified as two expressions of elastic modulus E, Poisson ratio μ, mass m, and M,
and frequency ω. As shown in Equations (8) and (9).

x4

x1
=

E
3E − (m + M)ω2 (8)

z4

z1
=

3E
5(1 + μ)[(2E + 3E

5(1+μ)
)− (2m + M)ω2]

(9)

For material of bedrock, the Poisson ratio μ is mostly between 0.23–0.27; and, the elastic modulus
changes in the range of 20–30 GPa. The masses of unit and bedrock depend on the size of the
powerhouse unit and are calculated to be on the order of 106 to 107 kg for large hydroelectric unit.
According to the previous research and load characteristics of the powerhouse, low frequency tail
fluctuation and rotation of hydraulic generator are the main vibration sources of powerhouse structural
vibration. Their frequencies are within 0–5 Hz, especially in the case of severe vibration. Substituting
above data into Equations (8) and (9), it can be found that both (m + M)ω2 and (2m + M)ω2 are 1
to 2 orders of magnitude smaller than 3Kx and (2Kz + Gz) for low frequency loads. Consequently,
the transmission ratio of horizontal vibration in Equation (8) can be approximated, as Equation (10).

x4

x1
≈ E

3E
= 0.33 (10)

The transmission ratio of vertical vibration in Equation (9) can be approximated as Equation (11)
(μ = 0.25).

z4

z1
=

3E
5(1 + μ)[(2E + 3E

5(1+μ)
)]

= 0.19 (11)

When compared with field tests, vibration energy of all six units comes from unit #1, as shown
in Figure 17. Assuming the same vibration transmission ratio between adjacent units, all the ratios
between adjacent units are q. It is calculated that qx = 0.25 for horizontal vibration, and qz = 0.16 for
vertical vibration. It can be conclude that, for the vibration transmission among units, the vibration
transmission ratio of lateral-river vibration is significantly larger than that of longitude-river vibration
and vertical vibration. This is in coincidence with the results obtained from the field tests in Figure 10.

In the theoretical analysis, it is found that the influence of frequency of vibration source ω is
negligible as compared with other parameters. This explains why the vibration transmission ratios of
the vibration caused by low frequency tail fluctuation and rotation of hydraulic generator in the field
tests are basically equal.
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(a) (b) 

Figure 17. Diagram of simplified models of six units: (a) Horizontal vibration; and, (b) Vertical vibration.

4. Numerical Simulation

4.1. Establishment of Finite Element Model

The field structure vibration tests are limited by the number and location of sensors, the tests
data is rare. In order to further demonstrate the vibration transmission among units, finite element
simulations are conducted by commercial software ABAQUS.

A model of single unit is established based on the specific dimensions of the powerhouse structure,
as shown in Figure 18. Structures in powerhouse, such as generator pier, floors, beams, and pillars
are simulated exactly. The mechanical part is simulated as lumped masses. The bedrock is simulated
based on previous research experience and trial calculation. The depth of bedrock is equal to unit
length [25]. Material properties are assigned actual values. The units are arranged in an array on the
bedrock, and the adjacent units are separated by split seams of 0.2 m width. Normal constraints are
applied to the bedrock as boundary conditions to simulate the interactions of rocks.

According to the previous study, the numerical studies are focused on the two parts:
(1) The transmission rules among units of vibration in three directions; and, (2) The transmission rules
among units caused by low frequency tail fluctuation and rotation of hydraulic generator, respectively.

(a) (b) 

Figure 18. Finite element model: (a) Model of whole powerhouse; (b) Model of single unit.

4.2. Results of Numerical Simulation

4.2.1. Transmission Rules among Units of Vibration in Three Directions

A harmonic body force is applied to unit #1 of the model as vibration source. According to the
characteristics of the vibration signal of field tests, the expression of body force is constructed as
Equation (12).

F = A · (a · sin ω1t + b · sin ω2t) (12)
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A refers to amplitude of load. ω1 refers to the frequency of low frequency tail fluctuation with a
value between 0.167 and 0.6 times rotational frequency, according to the previous research results and
experience [9,31]; it is set as 1 Hz based on the frequency spectrum analysis of field tests in this paper.
ω2 refers to the rotational frequency, set as 2.4 Hz. a and b represent the proportion of two vibration
sources, and set as 0.8 and 0.2, respectively, according to the analysis of field tests. Time history of load
is shown in Figure 19.

 

Figure 19. Time history of load.

Load shown as Figure 19 is applied to unit #1 in three directions, respectively. Vibration
displacements of the nodes corresponding to the location of sensors are extracted after analysis,
RMS values are calculated. For intuitive expression, the RMS of vibration displacements of unit #1 is
taken as a reference value to normalize the vibration displacements of different units. These ratios are
considered as the vibration transmission ratios, as shown in the Table 2.

It can be seen in Table 2 that the transmission ratios of vibration in X direction are the most
significant. The RMS of adjacent unit #2 in X direction reaches 22.55% of that of unit #1. While the
RMS of unit #2 in Y and Z directions are only 12.63% and 10.11% of that of unit #1. The comparison is
depicted in Figure 20.

Figure 20. Transmission ratios of vibration in three directions.

Table 2. Ratios of vibration displacements of different units in three directions (%).

Direction #1 #2 #3 #4 #5 #6

X 100 22.55 12.69 8.89 5.33 1.62
Y 100 12.63 3.02 1.93 1.31 1.08
Z 100 10.11 2.89 1.32 1.13 0.99

# is used for describing the unit number.
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4.2.2. Transmission Rules under Different Vibration Sources

According to the results of field test, two harmonic body forces in the X direction with different
frequencies are applied to unit #1 in the model as vibration sources, respectively. The force frequencies
ω1 and ω2 are set as 1 Hz and 2.4 Hz, which are the typical frequency of low frequency tail fluctuation
and rotation of hydraulic generator. After calculation, the vibration displacements of the nodes
corresponding to the location of sensors are extracted. The RMS of vibration displacements of unit #1
are taken as reference values. Results of normalized displacements are shown in Table 3.

It can be obtained obviously that the vibration transmission ratios under loads with two low
frequencies among units are basically identical. Therefore, the vibration transmission ratios of the
vibration caused by low frequency tail fluctuation and rotation of hydraulic generator, respectively,
are basically equal. The mechanism that is obtained from simplified model is verified.

Table 3. Ratios of vibration displacements under different frequencies loads (%).

Frequency (Hz) #1 #2 #3 #4 #5 #6

1 100 22.55 12.69 8.89 5.33 1.62
2.4 100 22.57 12.69 8.90 5.33 1.61

# is used for describing the unit number.

5. Discussion

As is well known, the vibration of the unit will influence other adjacent units in the powerhouse.
Some researchers have studied the degree of influence, and draw some conclusions [24,25]. But,
there are very few studies that are more in-depth. Two influencing factors were raised in this paper:
(1) Vibration direction; and, (2) Vibration frequency. The related studies were conducted, which have
never been published.

Based on the first factor, all the transmission ratios between two adjacent units derived from
simplified model, field test and numerical simulation are shown and compared in Table 4. The results
from the numerical simulation basically match with the field test results, indicating that the numerical
simulation is capable of simulating this problem.

Table 4. Vibration transmission ratios between two adjacent units derived from three methods (%).

Direction Simplified Model Field Test Numerical Simulation

X 25 17.69 22.55
Y 16 10.69 12.63
Z 16 10.74 10.11

It is obvious that the transmission ratio of vibration in X direction is larger than that of vibration
in Y and Z directions. All of the results derived from three methods proved this conclusion.
The transmission ratios obtained from simplified model are slightly larger than those by field test and
numerical simulation. This is mainly due to that the features such as damping and rock integrity are
not taken into consideration in the simplified model.

As for the second factor, the formula of vibration transmission ratio derived from the simplified
model directly explains that the effect of frequency is very small, especially for the load with low
frequency. In the other hand, according to previous studies [17,18,24], the first order of the modal
frequency of most powerhouse is 20–25 Hz. So, both the frequencies of low frequency tail fluctuation
and rotation of hydraulic generator are far from the dangerous frequency. Formula for the power
amplification factor is shown, as Equation (13).
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β =
1

1 − ω2

θ2

(13)

The power amplification factors β are 1.002 and 1.009, respectively, which are basically equivalent.
Therefore, the vibrations transmission ratios of the two main loads with low frequencies are basically
equal, the difference can be ignored.

6. Conclusions

This paper studies the vibration transmission among units in underground powerhouse of a
hydropower station through field tests, theoretical analysis, and finite element simulation.

Firstly, the field structural vibration tests in the underground powerhouse of a large-scale
hydropower station were designed and conducted, and two preliminary conclusions were raised.

Secondly, based on structural dynamics, the simplified mechanical vibration models were
established for the vibration transmission problem among units. The vibration transmission
mechanism is elaborated to explain and prove the preliminary conclusions from the theoretical
perspective. The previous conclusions can be derived and explained in the model, indicating that the
model and assumptions are reasonable.

At last, a complementary FE model for the tested underground powerhouse is established
to replicate the tested underground powerhouse. The numerical simulation results verify the
previous results.

Through the above work, the following two conclusions of the vibration transmission among
units are obtained.

(a) Vibration transmission ratio of lateral-river vibration is significantly larger than those of
longitude-river vibration and vertical vibration. The transmission ratio between adjacent units
of lateral-river vibration is about 15–25%, while those of longitude-river vibration and vertical
vibration are about 10–15%.

(b) Low frequency tail fluctuation and the rotation of hydraulic generator are the main vibration
sources of powerhouse structural vibration. Vibration transmission ratios of the vibration caused
by the two sources are basically equal.

In general, the vibration transmission among units is widespread exists in underground
powerhouse of the hydropower station. It is difficult to completely limit the transmission. However,
the research results put forward higher requirements for the monitoring of the structural safety
of powerhouse. More attention should be paid to the mutual influence of vibration between
units while vibration monitoring. This study has guiding significance for the safe operation of
underground powerhouse.
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Abbreviations

A Amplitude of load
E Elastic modulus of bedrock
F(t) Load applied on the unit
G Shear modulus of bedrock
h Depth of bedrock considered
K′ Section shape coefficient
K2x Compression stiffness between m2 and left boundary
K3x Compression stiffness between m3 and right boundary
K23 Compression stiffness between m2 and m3

K12 Compression stiffness between m1 and m2

K2z Compression stiffness between m2 and the bottom boundary
K34 Compression stiffness between m3 and m4

K3z Compression stiffness between m3 and the bottom boundary
l Length of a single unit
m Mass of the unit
m1 Lumped Mass of the unit #1
m2 Lumped Mass of the bedrock under the unit #1
m3 Lumped Mass of the bedrock under the unit #2
m4 Lumped Mass of the unit #2
M Mass of the bedrock
Q12 Shear force between m1 and m2

Q34 Shear force between m3 and m4

x1, x2, x3, x4 Vibration displacement of m1, m2, m3, m4 in X direction
..

x1,
..

x2,
..

x3,
..

x4 Vibration acceleration of m1, m2, m3, m4 in X direction
z1, z2, z3, z4 Vibration displacement of m1, m2, m3, m4 in Z direction
..
z1,

..
z2,

..
z3,

..
z4 Vibration acceleration of m1, m2, m3, m4 in Z direction

β Power amplification factor
θ Frequency of the modal frequency
μ Poisson ratio
ω Frequency of vibration source load
FE Finite element
MRA Multi-Resolution Analysis
PSD Power spectral density
RMS Root mean square
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Abstract: Techno-economic assessments (TEA) of biodiesel production may comply with various
economic and technical uncertainties during the lifespan of the project, resulting in the variation
of many parameters associated with biodiesel production, including price of biodiesel, feedstock
price, and rate of interest. Engineers may only collect very limited information on these uncertain
parameters such as their variation intervals with lower and upper bound. This paper proposes
a novel non-probabilistic strategy for uncertainty analysis (UA) in the TEA of biodiesel production
with interval parameters, and non-probabilistic reliability index (NPRI) is employed to measure
the economically feasible extent of biodiesel production. A sensitivity analysis (SA) indicator is
proposed to assess the sensitivity of NPRI with regard to an individual uncertain interval parameter.
The optimization method is utilized to solve NPRI and SA. Results show that NPRI in the focused
biodiesel production of interest is 0.1211, and price of biodiesel, price of feedstock, and cost of
operating can considerably affect TEA of biodiesel production.

Keywords: reliability; non-probabilistic reliability index; sensitivity analysis; techno-economic assessments;
life cycle cost

1. Introduction

The global climate, ecological environment, and air quality have been considerably affected
by various deleterious emissions and harmful substances including NOx, SOx, CO2, hydrocarbons,
carbon monoxide, and particulate matter, resulting in various environmental pollution problems
and danger on human health [1–9]. A great number of scientists are investigating other harmless,
economic, and clean energy sources for the sake of the reduction of these adverse and negative
effects. Being a valuable renewable energy resource, biodiesel is friendly to the natural environment
and human health, compared to the traditional fossil fuels [10–15]. Various feedstocks-derived
biodiesel production have been reported, for example, palm oil [16], waste cooking oil [17–19],
vegetable oils [20,21], soybean oil [22–25], Jatropha curcas L. [26], algae [27,28], microalgae [28–30],
Oleaginous yeast [31,32], lignocellulosic biomass [33], used frying oil [34], waste cottonseed oil
with heterogeneous catalyst [35,36], Annona squamosa L. seed oil with heterogeneous catalyst [36,37],
Butanol and pentanol [38], etc., and recent advances in biofeedstocks and biofuels have also been
reviewed in [39].

Various uncertain factors existing in the biodiesel industry, such as fluctuation in interest
rate, may cause instability in biodiesel production, and then may decrease the economical
feasibility relevant to biodiesel production [40]. Numerous research works have investigated the
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techno-economic assessments (TEA) of biodiesel production to ensure the economical feasibility of
biodiesel production [41–51], such as TEA for vegetable oil biodiesel production [41], TEA for palm
biodiesel production [42], TEA for algal biofuel production [27,43–45], TEA for microalgae biofuel
production [46,47], TEA for waste-to-biofuel production [48], TEA for sugarcane biorefineries [49],
TEA for lignocellulosic biomass production [51], etc., and recent advances in TEA for biofuel production
have also been summarized in [27,39,51]. These works have extensively improved the development
in the TEA of biodiesel production on condition that all of the parameters relevant to the TEA are
regarded as constant during the project’s lifespan. However, real engineering inevitably confronts
various uncertain parameters resulting from numerous economic and technical uncertainties when
performing TEA of biodiesel production [40], such as variation in the feedstock price [52], fluctuation
of biodiesel price [52], and change in the rate of interest [53], and thus it may be more rational to
treat these parameters as uncertain parameters. Recently, several works have studied the TEA of
biodiesel production subject to many economic and technical uncertainties defined by random variables
with probability density functions (PDFs) [54–65], including TEA for algae-derived biodiesel with
uncertainties [55,56], TEA for biodiesel production with uncertainties using structural reliability
principles [57], TEA for palm biodiesel production with uncertainties [58,59], TEA for inedible
Jatropha oil biodiesel production with uncertainties [60], TEA for waste oil biodiesel production
with uncertainties [61], probabilistic TEA for microalgae biofuel production [62], TEA for bioethanol
production with uncertainties [63], stochastic TEA for alcohol-to-jet fuel production [64], TEA for
high-value propylene glycol production with uncertainties [65], etc. These research works have
discovered that the uncertainties related to the random parameters have distinct effects on the TEA.
The authors also studied the TEA for palm biodiesel production with uncertainties, which were
assumed as random variables with uniform distributions, indicating that uncertain parameters are
uniformly distributed within variation intervals [58,59].

The previous studies [54–65] consider the effect of the uncertainties, and they consider the
uncertainties as random variables following PDFs. Treating uncertainties as random variables may not
be reasonable due to the fact that determining the precise PDFs requires a large number of data, but the
data in practical engineering is usually limited due to lack of sufficient samples for TEA. This paper
will propose a more rational solution for the TEA of palm biodiesel production based on the previous
research works of the authors of [58,59]. In previous studies [58,59], the authors only collected very
limited data on these uncertain parameters, and only the variation ranges or the lower bounds and
upper bounds for uncertain parameters were determined. All of these uncertain parameters were
assumed as random variables defined by uniform distributions, distributed uniformly within their
variation ranges, and the TEA was done based on this assumption. The estimated results of the
TEA may depend on the selected distributions for these uncertain parameters within their variation
intervals, and different selection of distributions may lead to completely different estimated results.
In order to overcome this difficulty, we will propose a more rational strategy for the TEA of a palm
biodiesel production with interval parameters, in which only the lower limit and the upper limit of the
parameters are available, being free from the selection of the distributions for uncertain parameters.

The rest of this paper is organized as follows. In Section 2, we propose a novel strategy for the
evaluation of the TEA and sensitivity analysis (SA) for palm biodiesel production subject to interval
uncertainties, specifically, non-probabilistic reliability index (NPRI) that measures the economically
feasible extent of the biodiesel production and the effect of an interval parameter on NPRI. In Section 3,
we evaluate the NPRI and SA associated with the TEA of the palm biodiesel production. In Section 4,
we summarize our results and make some conclusions.

2. Materials and Methods

In this section, we first introduce several important indicators in the TEA of palm biodiesel
production including net present value (NPV), payback period (PP), and total profit for this project,
and then some important interval parameters related to the TEA are provided, which are determined
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by some collected data from some available references. Secondly, we introduce a novel indicator
named as non-probabilistic reliability index to rationally measure the economically feasible degree of
biodiesel production with interval uncertainties. Then, nonlinear optimization algorithm is employed
to solve the NPRI in the TEA of palm biodiesel production. Finally, we develop a new sensitivity
analysis (SA) indicator of NPRI with regard to an uncertain parameter, which can measure the effect of
a parameter on NPRI and identify important parameters on the TEA.

2.1. Several Important Concepts in the TEA for a Biodiesel Production

We focus on the TEA for palm biodiesel production originally proposed in [42], in which
economic and technical uncertainties are not considered. The mathematical formulations of total
profit, payback period, and net present value for this problem are defined as [42,58,59]:

TotalProfit = −LCC + (TBS − TAX)× n = −LCC + (TBS − TAX)× 20
= (TBSi − TAXi)× 20 − LCC

(1)

PP =
CC

(TotalProfit/n)
=

n × CC
TotalProfit

(2)

NPV =
n
∑

i=1

(TBSi−TAXi)

(1+r)i − LCC

= −LCC +
n
∑

i=1

(TBS−TAX)
(1+r)i = −LCC +

n
∑

i=1

TotalProfit+LCC
n(1+r)i

= −LCC + TotalProfit+LCC
n

n
∑

i=1

1
(1+r)i .

(3)

with
LCC = CC + MC + FC + OC − BPC − SV

= CC +
n
∑

i=1

FCi+OCi+MCi
(1+r)i − SV

(1+r)n − n
∑

i=1

BPCi
(1+r)i

(4)

where TotalProfit is total profit of the project, PP is payback period, and NPV represents net present
value; MC, CC, FC, LCC, OC, BPC, and SV represent maintenance cost, capital cost, feedstock cost,
life cycle cost, operating cost, byproduct credit, and salvage value indicating the remaining value of the
components and the assets of the plant at the end of the project’s lifetime, respectively; TBS is annual
total biodiesel sale, TAX is annual total taxation, n = 22 years is project’s lifetime, and r represents rate
of interest which takes values from 4.44% to 13.53% [66], i.e., r ∈ [4.44%, 13.53%]; MCi, FCi, OCi, BPCi,
TAXi and TBSi are maintenance cost, feedstock cost, operating cost, byproduct credit, total taxation,
and total biodiesel sale for the ith year, respectively.

The annual production capacity for this plant is 50 kt, that is, PC = 50 kt, and its capital cost
should take values between $9 million and $15 million, that is, CC ∈ [$9 million, $15 million] [42].
The corresponding FC, OC, MC, SV, BPC, TBS, and TAX are defined by:

FC =
n

∑
i=1

FCi =
n

∑
i=1

FP × FU

(1 + r)i =
n

∑
i=1

FP × PC×1000
CE

(1 + r)i (5)

OC =
n

∑
i=1

OCi =
n

∑
i=1

OR × PC × 1000

(1 + r)i (6)

MC =
n

∑
i=1

MCi =
n

∑
i=1

MR × CC

(1 + r)i (7)

SV = RC × (1 − d)n−1 × PWFn =
RC × (1 − d)n−1

(1 + r)n (8)
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BPC =
n

∑
i=1

BPCi =
n

∑
i=1

GP × GCF × PC × 106

(1 + r)i (9)

TBS = PC × 106/ρ × BP (10)

TAX = TBS × TR (11)

where FC commonly makes up about 80–90% of life cycle cost [67], and OC generally accounts for
not more than 15% of life cycle cost [68]; FP is feedstock price or crude palm oil price, which takes
values between $200/t and $1200/t in the past years [42], that is, FP ∈ [$200/t, $1200/t]; FU is
annual total feedstock consumption; CE is conversion efficiency from palm oil to biodiesel which
commonly takes values between 96% and 99% [69], that is, CE ∈ [96%, 99%]; OR is the operating
rate, indicating operating cost of per-ton biodiesel production, which varies from $37.5/t to $225/t
evaluated by feedstock price FP ∈ [$200/t, $1200/t] [42] when FC makes up 80% of life cycle cost [67]
and OC accounts for 15% of life cycle cost [68], that is, OR ∈ [$37.5/t, $225/t]; MR is maintenance
rate, varying from 1% to 2%, i.e., MR ∈ [1%, 2%] [41,42]; d and RC represent depreciation rate and
replacement cost respectively, that is, RC = $10 million and d = 5% [42]; GP and GCF represent glycerol
price and glycerol conversion factor, that is, GP ∈ [$0.08/kg, $0.2/kg] [70] and GCF = 0.0985 [42];
BP is biodiesel price, that is, BP ∈ [$0.66/L, $1.58/L] [71]; ρ is biodiesel density, i.e., ρ = 0.95 kg/L;
and TR = 15% is tax rate for biodiesel sale.

The important quantities involved in the TEA, such as life cycle cost, net present value, payback
period, and total profit, unavoidably meet with various economic and technical uncertainties within
the project lifespan. Table 1 gives the variation intervals for these uncertain parameters, which are
obtained by the collected data from many available research works.

Table 1. Variation intervals of uncertain parameters for biodiesel production.

Uncertain Parameters Variation Intervals [xi, xi]

Capital cost (CC: x1) [42] [$9 million, $15 million]
Interest rate (r: x2) [66] [4.44%, 13.53%]

Operating rate (OR: x3) [42,67,68] [$37.5/t, $225/t]
Feedstock price (FP: x4) [42] [$200/t, $1200/t]
Glycerol price (GP: x5) [70] [$0.08/kg, $0.2/kg]

Maintenance rate (MR: x6) [41,42] [1%, 2%]
Biodiesel conversion efficiency (CE: x7) [69] [96%, 99%]

Biodiesel price (BP: x8) [71] [$0.66/L, $1.58/L]

2.2. NPRI for Measuring Economically Feasible Extent of Biodiesel Production

In this section, we will first introduce a NPRI, which is commonly employed to measure the
reliable level of practical engineering problems subject to interval uncertainties. Then, NPRI is further
extended to measure the economically feasible degree in the TEA of biodiesel production.

2.2.1. NPRI for Problems with Interval Parameters

For a system with interval input parameters x = (x1, x2, . . . , xn), the corresponding output y is
defined by:

y = g(x) (12)

where x represents the input parameters with interval uncertainties, and y commonly is the continuous
function of the inputs x = (x1, x2, . . . , xn). Obviously, y varies within an interval with a lower bound
y and an upper bound y. In general, Ωs = {x|y = g(x) ≥ 0; x = (x1, x2, . . . , xn)} indicates the safe
region, and Ω f = {x|y = g(x) < 0; x = (x1, x2, . . . , xn)} represents the failure region. In addition,
y = g(x) = 0 is named as limit state function (LSF) or limit state curve (LSC), separating the whole
space into two regions, that is, the safe region and failure region. Non-probabilistic reliability index
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has been employed for measuring the reliable level related to the system with interval parameters
as [72–75]:

η = yc/yr (13)

with
yc =

(
y + y

)
/2

and
yr =

(
y − y

)
/2

where η is NPRI; y and y are lower limit and upper limit of the output y. When η ≥ 1 holds, one can
have y ≥ 0 holds, indicating that the output is always larger than or equals to zero and thus the system
is absolutely safe. Condition η ≤ −1 will lead to y ≤ 0, implying that the system is completely a failure.
Accordingly, −1 < η < 1 corresponds to y < 0 < y, which indicates that a part of the output will lie
in the failure space and the system is not reliable. Thus, η can be employed to measure the reliable
degree associated with a system with interval uncertainties, and a larger value of η corresponds to
a more reliable system and vice versa [72–75]. In general, engineers focus on the situation with η ≥ 0.
The following will further discuss the physical significance in the NPRI.

For xi, we first do the following standard transformation [72–75]:

xi = xc
i + xr

i qi =
(xi − xi)

2
qi +

(xi + xi)

2
(14)

where qi ∈ [−1, 1] is the normalized interval for xi. Substituting Equation (14) into Equation (12) can
lead to normalized formulation for y as

y = g(q) = g(q1, q2, . . . , qn) (15)

Obviously, the normalized intervals q of Equation (15) vary in the domain
Ωq = {q||qi| ≤ 1; i = 1, 2, . . . , n}, which is a hyperbox. Figure 1 illustrates the representative
figure of Ωq in a two-dimension situation, in which Ωq is a square centered at coordinate origin and
its side-length is 2, representing the set consisting of all the possible values of the two normalized
intervals. When the square box enlarges proportionally in two directions, all the possible values
of the two interval variables will locate in the reliable domain until the square box is tangential to
normalized LSC y = g(q) = 0. The maximum allowable variability can be defined by the shortest
distance between LSC y = g(q) = 0 and the coordinate origin in the normalized space in the
form of infinite norm [72–75], which can be employed to measure the reliable extent of the system,
i.e., non-probabilistic reliability index. More discussions on non-probabilistic reliability can be found
in [76–81].

According to the discussion in Figure 1, another mathematical definition of NPRI η can be
provided by [72–75]:

η = min(‖q‖∞)

S.t. g(q) = g(q1, q2, . . . , qn) = 0
(16)

with
‖q‖∞ = max(|q1|, |q2|, . . . , |qn|)

where min(•) is the operation of taking the minimum of the set, ‖•‖∞ represents the operation of
infinite norm, max(•) is the operation of taking the maximum of the set, and |•| denotes the operation
of taking the absolute value. If a system has m outputs yj = gj(x)(j = 1, 2, . . . , m) which corresponds
to m failure modes, then failure associated with anyone of them will lead to the failure of the whole
system. Thus, NPRI ηs for system is provided as:

ηs = min{η1, η2, . . . , ηm} (17)
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where ηj(j = 1, 2, . . . , m) is NPRI associated with yj = gj(x)(j = 1, 2, . . . , m).

 

Figure 1. Diagrammatic presentation for non-probabilistic reliability index (NPRI) of a system with
two intervals, (a) normalized limit state function (LSF) intersects with enlarged square box at one
side; (b) normalized limit state curve (LSC) intersects with enlarged square box at another side;
and (c) normalized limit state curve intersects with enlarged square box at cater-corner point.

2.2.2. NPRI for Economically Feasible Degree in the TEA of Biodiesel Production

Total profit defined in Equation (1) is expected to be larger than zero, specifically,

TotalProfit ≥ 0. (18)

Meanwhile, payback period given in Equation (2) is expected to be less than the allowable upper
bound, that is,

PP =
CC

(TotalProfit/n)
=

n × CC
TotalProfit

≤ PPu. (19)

where PPu is the permitted upper limit, and here PPu is one third of project’s lifespan, that is,
PPu = n/3 = 20/3 years. Then, Equation (19) is transformed into Equation (20):

n × CC
TotalProfit

≤ PPu ⇒ TotalProfit ≥ n × CC
PPu . (20)

Finally, NPV given by Equation (3) must be larger than zero, specifically,

NPV = −LCC +
TotalProfit + LCC

n

n

∑
i=1

1

(1 + r)i ≥ 0. (21)

Then, Equation (21) can be transformed into Equation (22):

TotalProfit ≥

⎛
⎜⎜⎝ n

n
∑

i=1

1
(1+r)i

− 1

⎞
⎟⎟⎠× LCC. (22)
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Thus, Equations (18), (20), and (22) should simultaneously hold to ensure that biodiesel production
is economically feasible. For the sake of convenience, Equations (18), (20) and (22) can be written into
the following forms:

y1 = g1(x) = TotalProfit (23)

y2 = g2(x) = TotalProfit − n × CC
PPu (24)

y3 = g3(x) = TotalProfit −

⎛
⎜⎜⎝ n

n
∑

i=1

1
(1+r)i

− 1

⎞
⎟⎟⎠× LCC (25)

where y1 = g1(x), y2 = g2(x), and y3 = g3(x) are LSFs, and x represents the vector consisting of
interval parameters, as shown in Table 1.

Uncertainties involved in the interval parameters in Table 1 will lead to the variability of the
TotalProfit, payback period, and NPV defined in Equations (1)–(3), and then one, two, or all of
Equations (23)–(25) may not hold. Any one of the three LSFs in Equations (23)–(25) not being feasible
will lead to the result that biodiesel production will not be economically feasible. In other words,
biodiesel production is economically feasible if and only if the three LSFs in Equations (23)–(25)
simultaneously apply. Thus, according to Equation (17), the following indicator can be employed to
measure the economically feasible degree of biodiesel production with interval parameters:

ηs = min{η1, η2, η3} (26)

where ηs represents NPRI for measuring economical feasibility of biodiesel production; ηj(j = 1, 2, 3)
is NPRI for yj = gj(x) given in Equations (23)–(25). The significance relevant to ηs will be discussed in
the following.

When ηs ≥ 1 holds, the minimum of η1, η2, and η3 will be larger than or equal to one,
then y

1
≥ 0, y

2
≥ 0, and y

3
≥ 0 in Equations (23)–(25) hold, indicating biodiesel production with

interval uncertainties is absolutely feasible in terms of economical feasibility. When 0 < ηs < 1 holds,
the minimum of η1, η2, and η3 will be less than one, then y1 ≥ 0, y2 ≥ 0, and y3 ≥ 0 hold, while at least
one of y

1
< 0, y

2
< 0, and y

3
< 0 holds, implying that biodiesel production with interval uncertainties

is partially feasible. When ηs < 0 holds, the minimum of η1, η2, and η3 will be less than 0, and at least
one of y1 < 0, y2 < 0, and y3 < 0 holds, indicating that biodiesel production with interval uncertainties
is completely infeasible. Thus, ηs can be employed to measure the economical feasibility relevant
to biodiesel production with interval uncertainties, and a larger value of ηs corresponds to a better
economical feasibility of biodiesel production with interval uncertainties and vice versa.

2.3. Evaluation Procedure of the NPRI

According to the definition of NPRI in Equation (13), we need to first evaluate y
j

and yj for the

evaluation of ηj(j = 1, 2, 3) for Equations (23)–(25). The following two equations can be utilized to
calculate y

j
and yj as:

y
j

= min
x

gj(x)

S.t. xi ≤ xi ≤ xi
x = (x1, x2, . . . , x8)

j = 1, 2, 3
i = 1, 2, . . . , 8

(27)
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and
yj = max

x
gj(x)

S.t. xi ≤ xi ≤ xi
x = (x1, x2, . . . , x8)

j = 1, 2, 3
i = 1, 2, . . . , 8

(28)

In this paper, an available optimization function of Matlab, i.e., fmincon, is employed to evaluate
y

j
and yj defined in Equations (27) and (28), then NPRI ηj(j = 1, 2, 3) for Equations (23)–(25) can be

estimated, and NPRI ηs for measuring economical feasibility of biodiesel production with interval
uncertainties can be calculated by Equation (26).

2.4. SA of NPRI for Economical Feasibility of Biodiesel Production with Regards to Uncertain Interval Parameter

When an interval parameter xi(i = 1, 2, . . . , 8) is fixed at xij ∈ [xi, xi](j = 1, 2, . . . , p), i.e., xi = xij,
indicating that xi takes a value within the lower bound xi and the upper bound xi, the uncertainty
associated with xi is eliminated, and original NPRI ηs will become ηs|xi=xij

. The absolute difference
Δηs|xi=xij

between original NPRI ηs and ηs|xi=xij
can reflect the effect of the elimination of uncertainty

related to xi, which can be defined by:

Δηs|xi=xij
=
∣∣∣ηs − ηs|xi=xij

∣∣∣(j = 1, 2, . . . , p), (29)

where ηs|xi=xij
can be evaluated by the method given in Section 2.3, similar to the evaluation

procedure for ηs. When xi(i = 1, 2, . . . , 8) takes different values, i.e., xi1, xi2, . . . , xip, the original
NPRI ηs will become ηs|xi=xi1

, ηs|xi=xi2
, . . . , ηs|xi=xip

, and then p absolute differences can be obtained
by Equation (29), i.e., Δηs|xi=xi1

, Δηs|xi=xi2
, . . . , Δηs|xi=xip

. The average of the p absolute differences,
i.e., Δηs|xi=xi1

, Δηs|xi=xi2
, . . . , Δηs|xi=xip

, can be employed to define the sensitivity of NPRI with regards
to xi, which can measure the effect of xi on NPRI:

IMi =
1
p

p

∑
j=1

Δηs|xi=xij
(j = 1, 2, . . . , p) (30)

where IMi represents the average shift in the NPRI due to the elimination of uncertainty in xi.
Similar to IMi, the average difference rate in the NPRI because of eliminating uncertainty

associated with xi can be defined as:

IMRi =
1
p

p

∑
j=1

ΔηRs|xi=xij
(j = 1, 2, . . . , p) (31)

with

ΔηRs|xi=xij
=

∣∣∣ηs − ηs|xi=xij

∣∣∣
ηs

(j = 1, 2, . . . , p) (32)

where ΔηRs|xi=xij
measures the absolute difference rate between ηs and ηs|xi=xij

with regard to ηs when
xi = xij (xij ∈ [xi, xi]).

The important interval parameters and non-important ones can be identified by the values of
IMi and IMRi. An interval parameter with large values of IMi and IMRi belongs to the important
interval parameters, while one with small values of IMi and IMRi is considered as the non-important
parameters. If xi has small values for IMi and IMRi, xi can be fixed to any value within its variation
interval, which will not considerably affect NPRI ηs.
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3. Results and Discussion

In this section, we first evaluate NPRI ηs for biodiesel production with the eight interval
parameters shown in Table 1. Then, the corresponding sensitivity analysis of NPRI ηs with regard to
interval parameter xi, i.e., IMi and IMRi, is estimated. Finally, the interval parameters are classified
into the important ones and non-important ones by the size of the values of IMi and IMRi.

3.1. Evaluation of NPRI for Biodiesel Production

Biodiesel production has eight interval parameters because of economic and technical
uncertainties when performing techno-economic assessments, and all interval parameters have
been summarized in Table 1. The uncertainty in these interval parameters will result in the
variation of the total profit, net present value, and payback period of biodiesel production.
Figure 2 has shown the variation intervals for total profit (USD) expressed in Equation (1),
net present value (USD) formulated in Equation (3), and yj = gj(x) given in Equations (23)–(25).
Two important observations have been revealed in Figure 2. The first observation is that total profit,
net present value, and yj = gj(x)(j = 1, 2, 3) have exhibited variability owing to the effect of the
uncertainties related to the interval parameters, i.e., TotalProfit ∈ [−3.8935 × 108, 1.3296 × 109],
NPV ∈ [−9.2579 × 108, 1.1808 × 109], y1 = g1(x) ∈ [−3.8935 × 108, 1.3296 × 109], y2 = g2(x) ∈[−4.3435 × 108, 1.3026 × 109], and y3 = g3(x) ∈

[−9.2579 × 108, 1.1808 × 109]. Secondly, we can find
that a part of total profit, net present value, and yj = gj(x) have been less than zero because of the
effect of the uncertainty in these interval parameters, implying that biodiesel production is partially
economically feasible, and has the possibility of being infeasible in the presence of the economic and
technical uncertainties.

Figure 2. Variation ranges of total profit (TotalProfit: USD), net present value (NPV: USD),
and yj = gj(x) due to economic and technical uncertainties.

Figure 2 depicts the variation intervals of yj = gj(x)(j = 1, 2, 3), including lower limit y
j

and

upper limit yj for three LSFs defined in Equations (23)–(25). Substituting y
j

and yj into Equation

(15) leads to NPRI ηj(j = 1, 2, 3) of Equations (23)–(25). Finally, the estimated value of NPRI can be
obtained as 1.2104 × 10−1 by using Equation (26). A value of 1.2104 × 10−1 for ηs implies that the
project will not be profitable to a great extent, in other words, a considerable part of the outcomes may
be economically infeasible under the uncertain interval parameters shown in Table 1.

In our previous work [59], all the uncertain parameters are assumed as random variables following
uniform distributions within their ranges, and we propose economical infeasibility probability (EIP) to
measure economical feasibility for biodiesel production. For the same problem, the estimated value for
EIP is 0.3676, implying that the project is partially economically feasible and the plant may be profitable
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with the probability of 0.6324, and in other words, 63.24 out of 100 outcomes will be economically
feasible under the assumed probabilistic distribution [59]. Here, we perform the TEA in terms of
the non-probabilistic perspective being free from the probabilistic distribution assumption, and the
estimated result for NPRI is 1.2104 × 10−1, also indicating that the project is partially economically
feasible, according to the discussion in Section 2.2. Thus, the two methods have the same decisions.
It is noted that the introduced method in this work is more rational than that in the previous work [59],
which is subjected to the assumption on probabilistic distribution and different assumptions can lead
to different results for EIP.

The previous results reveal that interval parameters resulting from uncertainties can remarkably
affect the TEA of biodiesel production. We will further quantify the effect of an interval uncertain
parameter on the economical feasibility by the sensitivity analysis proposed in Section 2.4.

3.2. Evaluation of Sensitivity Analysis for Biodiesel Production with Respect to Interval Parameter

In Table 2, we have provided the results of IMi and IMRi relevant to xi(i = 1, . . . , 8). The results
show that x3 (operating rate), x4 (price of feedstock), x8 (price of biodiesel), and x7 (biodiesel conversion
efficiency) can produce remarkable influences on the economic feasibility of biodiesel production,
while the rest of the parameters may generate very lower effects. The importance ranking of the interval
parameters can be further gained by the results in Table 2 as: x4 > x8 > x3 > x7 > x2 > x1 > x5 > x6.
Compared with the previous results, in which all of the uncertain parameters have been assumed
as random variables uniformly distributed within their variation ranges [59], the same importance
ranking of sensitivity parameters has been obtained.

Table 2. Results of the proposed sensitivity analysis IMi(i = 1, 2, . . . , 8) and IMRi(i = 1, 2, . . . , 8).

Parameters IMi(i = 1,2,. . . ,8) IMRi(i = 1,2,. . . ,8)

Capital cost (CC: x1) 4.454 × 10−3 3.680 × 10−2

Interest rate (r: x2) 5.231 × 10−3 4.322 × 10−2

Operating rate (OR: x3) 4.961 × 10−2 4.099 × 10−1

Feedstock price (FP: x4) 4.858 × 10−1 4.013 × 100

Glycerol price (GP: x5) 2.865 × 10−3 2.367 × 10−2

Maintenance rate (MR: x6) 6.643 × 10−4 5.488 × 10−3

Biodiesel conversion
efficiency (CE: x7) 9.302 × 10−3 7.685 × 10−2

Biodiesel price (BP: x8) 3.257 × 10−1 2.691 × 100

The important interval parameters and the non-important ones have been identified by the
results in Table 2, specifically: x4, x8, x3, and x7 belong to the important group while x2, x1,
x5 and x6 belong to the non-important group. Figure 3 shows the comparison between original
NPRI ηs and conditional NPRI ηs|xi=xij

with xi = xij, in which xi is fixed to a value xij within its
variation interval [xi, xi]. Figure 4 shows the change rate between ηs|xi=xij

and ηs with respect to ηs,

i.e.,
(

ηs|xi=xij
− ηs

)
/ηs(j = 1, 2, . . . , 10), in which xi is fixed to a value xij ∈ [xi, xi], i.e., xi = xij.

Here, xij takes the following values, i.e., xij = xi + (xi − xi)/(10 − 1)× (j − 1)(j = 1, 2, . . . , 10).
Figures 3 and 4 show that removing the uncertainty related to a non-important parameter
xi(i = 1, 2, 5, 6) and fixing it to any value xij(i = 1, 2, 5, 6) within its interval [xi, xi] will not exert distinct
influence on NPRI ηs, while eliminating the uncertainty associated with an important parameter
xi(i = 3, 4, 7, 8) can cause considerable variation of NPRI ηs.
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Figure 3. Original NPRI ηs and conditional NPRI ηs|xi=xij
(j = 1, 2, . . . , 10), in which xi is fixed to

a value xij ∈ [xi, xi], i.e., xi = xij(j = 1, 2, . . . , 10).

Figure 4. Change rate between ηs|xi=xij
and ηs with respect to ηs, i.e.,

(
ηs|xi=xij

− ηs

)
/ηs(j = 1, 2, . . . , 10),

in which xi is fixed to a value xij ∈ [xi, xi], i.e., xi = xij.

Figures 5 and 6 have further shown the point figures of ηs|xi=xij
and

(
ηs|xi=xij

− ηs

)
/ηs with

xij = xi + (xi − xi)/(10 − 1)× (j − 1)(j = 1, 2, . . . , 10) for all interval parameters xi(i = 1, 2, . . . , 8).
The results shown in Figures 5 and 6 have drawn the same conclusions as Figures 3 and 4.
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Figure 5. Point figure for conditional NPRI ηs|xi=xij
with xi = xij(i = 1, 2, . . . , 8; j = 1, 2, . . . , 10).

Figure 6. Point figure for change rate between ηs|xi=xij
and ηs with respect to ηs,

(
ηs|xi=xij

− η0

)
/η0

with xi = xij(i = 1, 2, . . . , 8; j = 1, 2, . . . , 10).

The previous results show that engineers should focus more concern on these important interval
parameters within the project’s lifespan to ensure that biodiesel production is economically feasible.
For these non-important interval parameters, taking any value within their ranges will not create
remarkable effect on the TEA.

4. Conclusions

This paper employs NPRI to measure the economically feasible extent in the TEA of biodiesel
production with uncertainties. Sensitivity analysis of NPRI with regard to uncertain parameters is
developed. The final results show that NPRI for biodiesel production is 1.2104 × 10−1 with the interval
parameters summarized in Table 1. Price of biodiesel, price of feedstock, and operating cost can
cause distinct influence on the economical feasibility of biodiesel production. Compared with our
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previous study [59], this work has the same decision on TEA and the same importance ranking for
uncertain parameters. This method is free of the assumption on distribution, but the previous method
is subjected to this assumption in which different assumptions on distribution can result in different
results for EIP.

Acknowledgments: Authors gratefully thank the support of the National Natural Science Foundation of China
under Grant Nos. NSFC 51405064. Comments and suggestions from all reviewers and the Editor are very
much appreciated.

Author Contributions: Zhang-Chun Tang proposed the new method, analyzed the data and wrote the paper;
Yanjun Xia wrote computing programs and plotted the figures, Qi Xue and Jie Liu did literature survey.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

BP biodiesel price
BPC byproduct credit
BPCi byproduct credit of the ith year
CC capital cost
CE conversion efficiency from feedstock to biodiesel
d depreciation rate
FC feedstock cost
FCi feedstock cost of the ith year
FP feedstock price
FU annual total feedstock consumption
GCF glycerol conversion factor
GP glycerol price
LCC life cycle cost
MC maintenance cost
MCi maintenance cost of the ith year
MR maintenance rate
NPRI non-probabilistic reliability index
OC operating cost
OCi operating cost of the ith year

OR
operating rate or operating cost of per-ton
crude-palm-oil-derived biodiesel production

PC production capacity
PP payback period of the biodiesel production
PPu allowable upper limit of payback period
PWFn worth factor in the year n
RC replacement cost
r interest rate
SA sensitivity analysis
SV salvage value
TAX annual total taxation
TBS annual total biodiesel sales
TEA techno-economic assessments
TotalProfit total profit
TR tax rate
UA uncertainty analysis
ρ density of the biodiesel
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Abstract: As the main power source for aircrafts, the reliability of an aero engine is critical for
ensuring the safety of aircrafts. Prognostics and health management (PHM) on an aero engine can
not only improve its safety, maintenance strategy and availability, but also reduce its operation
and maintenance costs. Residual useful life (RUL) estimation is a key technology in the research
of PHM. According to monitored performance data from the engine’s different positions, how to
estimate RUL of an aircraft engine by utilizing these data is a challenge for ensuring the engine
integrity and safety. In this paper, a framework for RUL estimation of an aircraft engine is proposed
by using the whole lifecycle data and performance-deteriorated parameter data without failures
based on the theory of similarity and supporting vector machine (SVM). Moreover, a new state of
health indicator is introduced for the aircraft engine based on the preprocessing of raw data. Finally,
the proposed method is validated by using 2008 PHM data challenge competition data, which shows
its effectiveness and practicality.

Keywords: prognostics; residual useful life; similarity-based approach; supporting vector
machine (SVM)

1. Introduction

Recent developments of complex systems, such as aircraft engines, engineering machines,
high-speed vehicles and computer numerical control (CNC) systems have been emphasized by the
increasing requirements of on-line health monitoring for the purpose of maximizing its operational
reliability and safety [1–3]. As the core part and power source of aircrafts, the reliable operation of
an aero engine is critical for ensuring the reliability and safety of the aircraft, and to maintain its
availability, and reduce its maintenance costs [4–6]. Among them, prognostics and health management
(PHM) is an effective approach and one of the most commonly-used [7,8]. In particular, residual
useful life (RUL) estimation is a key technology for PHM. In general, RUL estimation is to indicate the
system/component lifetime before it can no longer perform its function, which is also an important
way to reduce production loss, save maintenance costs and avoid fatal machine breakdowns of the
equipment before its failure [9–12].

Since the aircraft engine is a complex system, there are various monitored performance data from
different positions during its operation. How to estimate RUL of an aircraft engine by utilizing these
data has become the focus of most engine industries. Until now, approaches to predict system lifetime
can be broadly categorized into three types: physics-based models, data-driven approaches and
hybrid approaches [12–14]. Generally, a physics-based model utilizes the failure physical model of the
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system/component to estimate its RUL, which is usually based on the system/component’s physics of
failure or physics of dynamics deeply [15–19]. It can usually obtain reasonable and accurate predictions
of RUL based on physical models with limited historical data [20]. However, it is usually different
or too expensive to apply a physics-based model to a complex system. Besides, this approach has
shown significant limitations due to the assumptions and simplifications of the adopted models [21].
The data-driven approach utilizes the monitored operational data relating to system health for RUL
estimation [22,23], which is preferred when the system’s failure physics is complicated or unavailable
but systems’ degradation procedure and degradation data are available. Note from [3] that the
data-driven approach provides accurate RUL predictions for a complex system, which can be applied
quickly and cheaply compared to the physics-based model. Furthermore, recent development of
sensor technology and simulation capabilities enables us to continuously monitor the healthy situation
of a complex system and obtain the related large amount of performance index data. In addition,
data-driven approaches can be divided into three categories: statistical techniques and artificial
intelligence (AI) techniques. The former includes regression methods such as the auto-regressive
and moving average (ARMA) models, and the later includes neural networks and supporting vector
machine (SVM), fuzzy logic, etc. The third approach, the so-called hybrid approach proposed by
Hansen et al. [24], is the combination of physics-based and data-driven models, in which prognostics
results are claimed to be more reliable and accurate, but few studies have been reported [20].

Data-driven RUL prediction models, which are most widely applied in the field of prognostics
or PHM, mainly include extrapolation models and statistical models. The extrapolation model is
usually used to fit a curve of a system degradation evolution by regression, extrapolate the curve
to the failure threshold and obtain the RUL between the current moment and the predicted failure
time [25]. The statistical model establishes the relationship between a system’s failure likelihood and its
degradation indicator from collected CM (condition maintenance) and failure data [26]. The statistical
model approach is classified into the models based on the direct CM data and indirect CM data.
The models based on the direct CM data include the proportional hazards model [27,28], proportional
covariate model (PCM) [29], Wiener processes, Gamma processes and Markovian-based models.
The models based on the indirect CM data include stochastic filtering-based models, covariate-based
hazard models and hidden Markov model (HMM) [30], hidden semi-Markov models (HSMM), etc.
Statistical models are the most effective ones for RUL estimation when system failure procedure
is invisible. Most research has been conducted in RUL estimation based on data-driven models.
Stetter and Witczak [31] explored various degradation modeling techniques and how to select the
degradation indicator to estimate the RUL. Lee et al. [32] reviewed various methodologies and
techniques in PHM research and proposed the systematic PHM design methodology, namely 5S
methodology. Moreover, current methodologies of RUL estimation can be summarized as three classes
as shown in Figure 1.

Referring to the previous literature and existing methods, a structured form of methodology for
RUL prediction is expressed as shown in Figure 1.

When utilizing the data-driven approach for RUL estimation, the whole run-to-failure data of
systems are normally needed, but it is difficult to obtain enough run-to-failure data for the long-life
systems with high reliability. Thus, it might lead to a large error if the available system history data are
lacking. The same problem will arise when the ARMA model is employed. However, if there are some
similar systems to the researched system, the failure and performance-deteriorated information of
these similar systems are useful for RUL estimation of the researched system. In general, the principle
of similarity-based RUL prediction approach is given as follows: if an operating system has similar
performance to the reference system during a time range, then assume that they have a similar RUL.
Because this reference system is an identical system with the operating system physically, moreover,
they operate under the same working conditions and reference systems that have already failed.
In addition, if there are more reference systems similar to the researched one, the similarity-based
approach can be introduced through a weighted average of the reference systems’ RUL as the
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researched one’s RUL [33], while the weight is proportional to the similarity between the researched
and reference systems. According to this, the similarity-based RUL prediction model gives more
reasonable results without modeling the deteriorated process of the researched system. Besides,
with the development of PHM, there are abundant historical deteriorated data before failure that could
be utilized to perform PHM.

Figure 1. Methodologies for RUL estimation. RUL: residual useful life; SVM: supporting vector
machine; CM: condition maintenance; PHM: prognostics and health management; PCM: proportional
covariate model; HMM: hidden Markov model.

Zio et al. [21] developed a similarity-based approach to predict the RUL by comparing its evolution
data to the trajectory patterns of reference samples through fuzzy similarity analysis, and aggregating
their time to failure in a weighted sum, which accounts for their similarity to the developing pattern [21].
Gebraeel et al. [22] presents a stochastic process by combining with a data analysis method and
deterioration modeling of the components for RUL prediction.

For the traditional similarity-based RUL prediction method, current and past degradation
parameters of reference systems have an equal weight when calculating the similarity measure.
However, as we all know, a system’s most recent performance to its current health/state is more relative
than its earlier performance, and provides more information for its RUL than its earlier performance.
Therefore, it is reasonable to assign more weight to a system’s most recent sampling point than its
earlier sampling point of performance parameters when measuring its similarity with other systems.
However, the traditional similarity-based method ignored this situation. Accordingly, this paper
adopts a modified similar-based methodology which introduces a weight-adjusted coefficient α to
embody the different effect on the calculation of similarity degree from different time ranges while
calculating the similarity measure. The more recent sampling point of performance, the bigger weight
of the parameter is given. In addition, the earlier value of performance, the parameter is given smaller
weight and this paper provides an approach to optimize the weight α.

Until now, most research on the similarity-based model for RUL prediction are based on
run-to-failure data, but sometimes there are only deteriorated performance data without run-to-failure
data. How to utilize these deteriorated performance data, which do not work to failure, to estimate
RUL of equipment by similarity-based method, is lacking and expected. Suspension history condition
monitoring data usually contain useful information revealing the degradation situation of the system,
including environmental factors and loading variations in actual situations, such as degradations and
variations of stress amplitudes [10–12,34,35]. If these data are properly used, it is helpful to estimate
RUL more accurately, particularly when the failure data are insufficient and unavailable in some
cases [36,37]. Li et al. [38] used the suspension data to promote the prediction precision of a neural
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network. However, how to utilize these suspension data to predict RUL of the equipment has not been
deeply studied.

This paper attempts to develop a modified similarity and SVM-based method to predict the
RUL of an aircraft engine, including two schemes with different reference samples. The first scheme
adopts a modified similarity-based method for estimating the RUL of the engine with abundant
run-to-failure data of referenced samples, which is named as the modified similarity methodology
based on run-to-failure data. The second scheme utilizes deteriorated data of samples without running
to failure to estimate the RUL of the operating sample based on SVM and similarity methodology,
named as the modified similarity and SVM methodology based on deteriorated data. The structure
of this paper is as follows. Section 2 provides a detailed description of two approaches aimed for
RUL estimation under two situations. Section 3 introduces how to utilize the proposed approaches to
estimate the RUL of an aircraft engine. Section 4 concludes the current research.

2. Proposed Methodology for RUL Estimation

This section is devoted to introducing a similarity-based methodology including two schemes
for RUL estimation. The first scheme is to estimate the RUL with abundant run-to-failure data of
referenced samples. The other scheme is to estimate the RUL of aircraft engines with some deteriorated
data of referenced samples which have no run-to-failure data.

2.1. The Scheme of the Modified Similarity Methodology Based on Run-to-Failure Data

The RUL of an operating sample is the weighted average of RUL of referenced samples.
The weights are determined by the similarity degree between referenced samples and the operating
one. In particular, the similarity degree is calculated by the weighted average of similarity degrees of
sampling points between the reference and operating equipment. This subsection tends to introduce
the framework of the modified similarity methodology based on run-to-failure data as shown in
Figure 2.

 

Figure 2. Framework for the modified similarity methodology based on run-to-failure data.
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2.1.1. Determination of Time Range for Similarity Measurement

In this analysis, the first step is to set up the time range Δt for similarity measurement, namely, to
determine the number of sampling points of the operating system for similarity measurement:

X(k, H) = [x(k·Δt), · · · , x((k − H)·Δt)] (1)

where H is the number of sampling points; Δt represents the time range in which similarity degree
between a referenced sample and the operating one; x(k·Δt) denotes the degradation indicator of the
operating sample at the kth sampling point since its operation.

Generally, most of the recent sampling points of the operating system represent its current state.
In the traditional similarity-based method, any consecutive sampling points of the condition monitor a
reference system before its failure can be used for similarity measurement [15]. In addition, a reasonably
long time range can be determined based on operational experience in the lack of prior knowledge.
The sampling points X(k, H) in sampling time range are equally considered to be fully representative
of the system’s RUL. In this paper, the sampling points of the reference system are confined in the
same time range as the operating system, namely, [k − H, k].

2.1.2. Calculation of the Similarity Measure

The second step is to define and calculate the similarity measure, which indicates the similarity
degree between the operating and reference systems, and then quantify the degradation duration of
the ith reference system that is most similar as the duration of the operating system. The similarity
measure S is the function of degradation indicators of the system, which measures the similarity
between referenced and operating systems. Note that it may be Euclidean distance, probability
function [27] or membership function in fuzzy logic theory [26]. In this paper, the Euclidean distance
of degradation indicators between the reference systems and the operating system is introduced as the
similarity measure function. The traditional Euclidean distance is expressed as:

Sohi(k, H, m) =
H

∑
ν=0

[X0((k − ν)·Δt)− Xhi((m − ν)·Δt)]2/(H + 1) (2)

where Sohi(k, H, m) is the similarity measure between the operating system’s degradation process
in the time range [(k − H)Δt, kΔt] and reference system’s degradation process in the time range
[(m − H)Δt, mΔt]; where MiΔt is the failure time of the ith reference system, and H ≤ m ≤ M.
X0((k − ν)·Δt) denotes the degradation indicator of the operating system at the vth sampling point
from the kth sampling point. Xhi((m − ν)·Δt) denotes the degradation indicator of the ith reference
system at the vth sampling point from the mth sampling point.

The similarity degree between the operating system and the ith reference system at time T = kΔt
is defined as:

Sohi(k) =
1

min
H≤m≤Mi

S(k, H, m)
(3)

In this analysis, more weights are assigned to the recent sampling point of degradation indicator
than its former sampling points, thus, the Euclidean distance as the similarity measure for illustration
is defined as:

Sohi(k, H, α) =
H

∑
ν=0

{
αν[X0((k − ν)·Δt)− Xhi((k − ν)·Δt)]2

}
/(H + 1) (4)

where α is a weight-adjusting coefficient ranging from 0 to 1. A smaller α corresponds to a smaller
weight assigned to the former sampling point than recent sampling points of reference systems. α can
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be obtained by optimization for minimal predicting error of operating system’s RUL. An example to
obtain α is elaborated in Section 3.1.

2.1.3. Definition of the Weight Function

The third step is to define the weight function based on the similarity measure. As aforementioned,
the weight is a function of similarity-degree, which is assigned to the reference systems according
similarity degree to calculate the RUL of the operating system. The weight of the ith reference system
is given by

Wi(k) =
Sohj(k)

∑n
j=1 Sohj(k)

(5)

2.1.4. RUL Estimation of the Operating System

The last step is to estimate the RUL of the operating system. As aforementioned, the RUL of an
operating sample at time t = kΔt is the weighted mean value of reference systems at the kth sampling
point, and can be obtained by

RUL(k) =
n

∑
i=1

Wi(k)RULi(k) (6)

where n is the number of available reference systems.
The real RUL of the reference system at t = k·Δt is RULi(k) = (Mi − k)·Δt, then the operating

system’s RUL can be calculated by

SUL(k) =
n

∑
i=1

Wi(k)(Mi − k)·Δt (7)

2.1.5. Optimization of the Weight-Adjust Coefficient α

In order to embody different effects of sampling points of reference systems at different time on
RUL estimation of the operating system, the weight-adjust coefficient α is introduced in this analysis.
The weight-adjust coefficient α leads the recent sampling points of reference systems with more weights
for the similarity degree calculation, which tends to provide more accurate prediction, specifically,
α can be obtained by optimization under the goal function

MAPEα(k) = min

[
j=k−1

∑
j=k0

MAPEα(j)/(k − 1 − k0)

]
(8)

where k0 denotes the first sampling point to deteriorate; MAPEα(j) is the estimated percentage error
at the value of α.

2.2. The Scheme of the Similarity and SVM Methodology Based on Deteriorated Data

Research shows that the similarity-based method gives effective and accurate estimation
under abundant run-to-failure data of reference samples. However, most equipment operates
with high reliability and long life, especially in aerospace applications; the reference samples with
enough run-to-failure data are seldom. For this limited or no run-to-failure reference samples,
whether the similarity-based method can be used or not needs to be explored. In practices, there
is abundant performance deteriorating data and maintenance data during its operating process.
These suspension data include useful degradation information relating to the operating system.
However, the degradation indicators after halting operating and lifetime of reference samples are
unknown since they did not work until failure. Thus, the trend of the degradation indicators and the
lifetime of reference samples need to be collected and analyzed. This methodology for RUL estimation
consists two essential preprocessing procedures: performance assessment for reference samples and
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RUL estimation based on reference systems, and then the RUL of the operating system can be derived.
In particular, the implementation flowchart is given in Figure 3.

Figure 3. The framework of the similarity and SVM methodology based on deteriorated data.

Particularly, SVM is adopted to perform the degradation trend assessment of reference samples
and estimate their lifetimes. As is well known, SVM has been commonly used for handling the data of
small samples and multiple dimensions. The monitored degradation indicators of reference samples
are used to train SVM and obtain the performance-deteriorated pattern of these samples, and fit
their relation curve of degradation indicator with time. Based on the curve, the relation function is
estimated by using the maximum likelihood estimation method. Once it reaches the failure threshold,
the reference systems are considered as failure, so the lifetime of these reference samples can be
estimated in this way. The estimated precision regarding the lifetime of these reference systems is the
basis for calculating weights of similarity degree. When the estimated precision is higher, the weight
assigned to this reference sample is higher. The rest steps are same as that of the modified similarity
methodology based on run-to-failure data in Section 2.1.

3. Model Applications to an Aero Engine

This section provides two cases to illustrate the proposed two approaches for RUL estimation of
an aero engine.

3.1. The Estimation of RUL for an Airplane Engine with Run-to-Failure Data Though the Modified
Similarity Methodology

In this section, the similarity methodology based on run-to-failure data is applied to estimate
the RUL of the aircraft engine with multidimensional degraded parameters. The 2008 PHM Data
Challenge Competition is introduced for model validation and comparison. The data sets include
21 monitored parameters under 3 different operating modes at a sequence of time, in which three
operating modes are flight height (Alt: 0–42 k feet), Mach number (M: 0–0.84) and throttle resolver
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angle (TRA: 20–100), which reflect the whole operational state of an aero engine. The 21 monitored
parameters are different under different operating modes. The raw data of performance parameters
from different parts of an aircraft engine is multiple and fluctuated largely without evident regular
patterns. It is difficult to estimate the RUL based on these raw data. This paper puts forward a new
indicator to characterize the health of the engine based on these raw data. The following section
introduces the procedure to obtain the new health indicator.

Firstly, the 11 performance parameters that have shown evident changing trend with time are
selected after inspecting 21 performance parameters. For the 11 performance parameters, a principal
component analysis (PCA) is used to extract the main performance parameters that represent healthy
state and degradation trend of the engine system from 11 performance parameters. PCA can reduce the
data dimensions. Under different operating modes, the PCA result for 11 parameters is listed as shown
in Table 1. Through PCA, the main two-dimensional performance parameters, which occupy more
than 98% in all 11 parameters, are derived. Then a new status indicator is established based on the
residual two-dimensional performance parameters referring to [22]. The new status indicator is built
using the Euclidean distance between the projection of two-dimensional performance parameters at a
certain cycle on the failure space and the center of the failure space projection dot in an operating mode.

Table 1. The detailed occupancy of the main two components in different modes.

Mode Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

PC1 0.6082 0.5892 0.7959 0.7185 0.6087 0.5363
PC2 0.3803 0.4005 0.1903 0.2641 0.3034 0.4329

The detailed steps to construct this healthy status index are shown as follows:

(1) Build the failure space (two-dimensional space) and calculate the projection of the failure values
in the failure space, as shown as the hollow dots in Figure 3;

(2) Calculate the center of these projection dots, as shown as star dot in Figure 3;
(3) Calculate the projection dot of the performance parameters on the failure space at a certain cycle;
(4) Calculate the Euclidean distance between the projection dot of the performance parameters in

the failure space at a certain cycle and the center of the projected dots in the failure space in an
operating mode, which is shown in Figure 4.

Figure 4. Definition of the new health index.
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Further Euclidean distance means a healthier status of the engine, so this distance is defined as a
new healthy status indicator, which represents the engine healthy state and degradation level.

Figure 4 plots the curve of the new health status index of the 196th reference sample. Though
this healthy status index shows a certain changing trend, it is still fluctuated intensively. Accordingly,
Karman filtering is utilized to further handle this healthy status index. Figure 5 reflects the compared
curve of the 196th sample after and before Karman filtering. The red and thick curve is the new
degradation indicator of the 196th sample after Karman filtering.

Figure 5. Trend curve of the 196th sample after and before Karman filtering.

This paper predicted the RUL of five samples No. 196–200 at the 50th cycles, 30th cycles and 10th
cycles before failures using the first scheme. An example prediction of the196th samples is given as
Table 2.

Table 2. The five-sample point of the degradation indicator values of the 196th sample.

Run Time 156 Cycles 161 Cycles 166 Cycles 171 Cycles 176 Cycles

RUL 2.5986 2.4292 2.3260 2.4667 2.3691

Firstly, the five sample values from the degradation indicator curve after Karman filtering at every
5 cycles before the 176th cycle are given in Table 2. Then the 10 samples which are most similar with
the operated samples are selected as the reference samples according to the new degradation indicator
in Equation (1). Time range is ΔT = 5, sampling interval is ΔT = 1. The weights of these reference
samples are calculated by using Equation (4). The results and other information on these 10 reference
samples are shown in Table 3.

Table 3. Information of the reference samples.

Ranking Sample Number Sampling Interval Lifetime RUL Weight

1 38 224–228 287 59 0.192924
2 82 193–197 223 26 0.164397
3 115 211–215 260 45 0.162683
4 12 120–124 242 118 0.093304
5 29 164–168 228 60 0.082048
6 103 219–223 243 20 0.080489
7 64 122–126 154 28 0.060018
8 53 205–209 259 50 0.058619
9 78 176–180 228 48 0.055197

10 34 244–248 286 38 0.050321
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The predicted RUL of the 196th sample with its actual lifetime 226 cycles are based on these
10 reference samples is given in Table 4. Meanwhile, the estimated RUL of the 196th sample by
the traditional similarity method and modified similarity method are compared in Table 4. The
weight-adjusted coefficient α is preliminarily set as 0.4 in this analysis.

Table 4. RUL estimation of the 196th sample.

Operating Time
Traditional Similarity Method Modified Similarity Method

Predicted RUL Error (%) Predicted RUL Error (%)

176 225.69 0.1358 214.50 5.0871
177 238.11 5.3600 219.63 2.8201
178 213.58 5.4953 221.18 2.1310
179 209.86 7.1432 219.50 2.8742
180 203.53 9.9426 221.56 1.9642
. . . . . . . . . . . . . . .
196 197.23 12.7305 221.62 1.9388
197 200.43 11.3132 219.35 2.9427
198 205.42 9.1069 220.53 2.4208
199 200.55 11.2619 225.75 0.1121
200 194.23 14.0578 226.77 0.3401
. . . . . . . . . . . . . . .
216 188.03 16.8012 226.80 0.3558
217 184.37 18.4209 226.17 0.0741
218 182.68 19.1695 225.31 0.3036
219 183.04 19.0067 224.09 0.8448
220 181.41 19.7290 224.15 0.8169

As can be seen from Table 4, the modified method provides better predictions than the traditional
one. Moreover, the error by the traditional method increases with time. The prediction precision
by the modified method tends to be better when the time is closer to failure. Since the traditional
method chooses reference samples that are most similar with the operating sample during a certain
time interval in their whole life, the operating sample and this similar reference sample maybe are in
different degradation epochs. The modified method constrains the same time range to seek the most
similar reference samples. In addition, the modified method assigns larger weight to the more recent
sampling point.

Finally, the weight-adjusting coefficient of sampling points is optimized. Through assigning
different values to get different predicted precision, the optimized weight-adjusting coefficient value
can be obtained at α = 0.6, as shown in Figure 6.

Figure 6. The MAPE corresponding to weight-adjusting coefficient.
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3.2. The Estimation of RUL for an Aero Engine with Deteriorated Data Though the Similarity and
SVM Methodology

This methodology for RUL estimation includes two essential procedures: assessment for
performance of reference samples and RUL estimation of reference samples. The assessment for
performance of reference samples is implemented using SVM in this paper. The data are extracted
from the same data sets as the previous case, but these whole life data of the original samples are cut
off the rear part and only the front part data are applied in this scheme. The degradation indicator
pattern of the No. 1 aircraft engine trained by SVM is shown in Figure 7.

Figure 7. The SVM trained result of the No. 1 sample.

The predicted lifetime of all the 20 reference samples by SVM are shown in Table 5. Chi-square
test is used to measure the prediction precision, which are used for calculating the weights of reference
samples. The No. 11, 13, 18, 17 and No. 3 samples with higher prediction precision are selected
to calculate the operating sample’s lifetime as the reference samples. The calculated weights of the
reference samples are given in Table 6. The lifetime of No. 196 sample is predicted as shown in Table 7.

Table 5. The predicted lifetime of 20 trained samples.

Sample Number Lifetime

Ft1 ∼ Ft5 231.12598 289.93651 214.7592 299.89567 372.86392
Ft6 ∼ Ft10 232.23493 174.22486 290.63039 183.51086 239.97266
Ft11 ∼ Ft15 214.47475 262.17492 215.14943 238.10682 297.89302
Ft15 ∼ Ft20 301.69223 236.68347 201.39653 243.82267 255.27005

Table 6. The weights of the reference samples.

Reference Samples W11 W13 W18 W17 W3

Weights 0.2526 0.2258 0.1957 0.1678 0.1581

It is worth noting from Table 7 that, the proposed methodology has shown better predictions than
the traditional one. In particular, the prediction precision is higher when the operational time is closer
to the failure point.
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Table 7. Model predicted lifetime and error of the 196th sample.

Work Time Predicted Failure Time Error (%)

121–125 201.4377 10.86
126–130 189.9478 15.95
131–135 188.2144 16.71
136–140 187.5556 17.01
141–145 188.0059 16.81
146–150 192.7102 14.73
151–155 203.6575 9.88
156–160 227.415 0.62
161–165 227.8171 0.80
166–170 230.5832 2.02
171–175 219.4822 2.88
176–180 217.1443 3.91
181–185 220.0715 2.62
186–190 224.6852 0.58
191–195 219.9376 2.68
196–200 232.6292 2.93
201–205 231.4903 2.42
206–210 234.244 3.64
211–215 233.7521 3.43
216–220 230.2518 1.88
221–225 228.2501 0.99

4. Conclusions

The RUL prediction of an aircraft engine can not only improve its safety, maintenance, and
availability, but also reduce its operation and maintenance costs. This paper presents two schemes to
estimate the RUL of an aircraft engine under different situations. The first scheme adopts a modified
similarity-based method for estimating the RUL of the aero engine with abundant run-to-failure data
of referenced samples. The second scheme utilizes deteriorated data of samples without up-to-failure
data to estimate the RUL of the operating sample with less deteriorated performance data than the
reference systems. The two schemes are utilized for RUL estimation of an aircraft engine. The model
prediction precision shows these two schemes are effective and suitable for RUL estimation of aero
engines. More specifically, it is suitable to adopt the modified similarity-based methodology when
failed historical samples are abundant and the similarity and SVM methodology is suitable under
limited historical samples conditions.

Acknowledgments: The authors acknowledge the support of the National Natural Science Foundation of China
(No. 11672070 and 51505067).

Author Contributions: Zhongzhe Chen supervised the projects, and developed the innovative methods and
prepared this manuscript. Shuchen Cao and Zijian Mao contributed to the analysis of data, and reviewed and
read the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, D.; Peter, W.T.; Tsui, K.L. An enhanced Kurtogram method for fault diagnosis of rolling element
bearings. Mech. Syst. Signal Process. 2013, 35, 176–199. [CrossRef]

2. Zhu, S.P.; Huang, H.Z.; Li, Y.; Liu, Y.; Yang, Y. Probabilistic modeling of damage accumulation for
time-dependent fatigue reliability analysis of railway axle steels. Proc. Inst. Mech. Eng. Part F 2015,
229, 23–33. [CrossRef]

3. Wang, D.; Tsui, K.L. Brownian motion with adaptive drift for remaining useful life prediction: Revisited.
Mech. Syst. Signal Process. 2018, 99, 691–701. [CrossRef]

200



Energies 2018, 11, 28

4. Zhu, S.P.; Huang, H.Z.; Peng, W.; Wang, H.; Mahadevan, S. Probabilistic physics of failure-based framework
for fatigue life prediction of aircraft gas turbine discs under uncertainty. Reliab. Eng. Syst. Saf. 2016, 146,
1–12. [CrossRef]

5. Zhu, S.P.; Yang, Y.J.; Huang, H.Z.; Lv, Z.; Wang, H. A unified criterion for fatigue-creep life prediction of
high temperature components. Proc. Inst. Mech. Eng. Part G 2017, 231, 677–688. [CrossRef]

6. Yu, Z.Y.; Zhu, S.P.; Liu, Q.; Liu, Y. A new energy-critical plane damage parameter for multiaxial fatigue life
prediction of turbine blades. Materials 2017, 10, 513. [CrossRef] [PubMed]

7. Wang, D.; Sun, S.; Peter, W.T. A general sequential Monte Carlo method-based optimal wavelet filter:
A Bayesian approach for extracting bearing fault features. Mech. Syst. Signal Process. 2015, 52, 293–308.
[CrossRef]

8. Wang, D.; Tsui, K.L.; Miao, Q. Prognostics and Health Management: A Review of Vibration-based Bearing
and Gear Health Indicators. IEEE Access 2017, in press. [CrossRef]

9. Wang, D.; Peter, W.T.; Guo, W.; Miao, Q. Support vector data description for fusion of multiple health
indicators for enhancing gearbox fault diagnosis and prognosis. Meas. Sci. Technol. 2010, 22, 25102.
[CrossRef]

10. Peng, W.; Li, Y.; Yang, Y.J.; Zhu, S.; Huang, H. Bivariate analysis of incomplete degradation observations
based on inverse Gaussian processes and copulas. IEEE Trans. Reliab. 2016, 65, 624–639. [CrossRef]

11. Peng, W.; Li, Y.F.; Yang, Y.J.; Mi, J.; Huang, H. Bayesian degradation analysis with inverse Gaussian process
models under time-varying degradation rates. IEEE Trans. Reliab. 2017, 66, 84–96. [CrossRef]

12. Peng, W.; Shen, L.; Shen, Y.; Sun, Q. Reliability analysis of repairable systems with recurrent misuse-induced
failures and normal-operation failures. Reliab. Eng. Syst. Saf. 2018, 171, 87–98. [CrossRef]

13. Chiang, L.H.; Russel, E.; Braatz, R. Fault Detection and Diagnosis in Industrial Systems; Springer: London,
UK, 2001.

14. Si, X.S.; Wang, W.B.; Hu, C.H.; Zhou, D.H. Remaining useful life estimation: A review on the statistical data
driven approaches. Eur. J. Oper. Res. 2011, 213, 1–14. [CrossRef]

15. Kacprzynski, G.J.; Sarlashkar, A.; Roemer, M.J.; Hess, A.; Hardman, W. Predicting remaining life by fusing
the physics of failure modeling with diagnostics. J. Miner. 2004, 56, 29–35. [CrossRef]

16. Li, C.J.; Lee, H. Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture
mechanics. Mech. Syst. Signal Process. 2005, 19, 836–846. [CrossRef]

17. Zhu, S.P.; Huang, H.Z.; He, L.; Liu, Y.; Wang, Z. A generalized energy-based fatigue-creep damage parameter
for life prediction of turbine disk alloys. Eng. Fract. Mech. 2012, 90, 89–100. [CrossRef]

18. Wang, R.Z.; Zhang, X.C.; Tu, S.T.; Zhu, S.; Zhang, C. A modified strain energy density exhaustion model for
creep-fatigue life prediction. Int. J. Fatigue 2016, 90, 12–22. [CrossRef]

19. Zhu, S.P.; Foletti, S.; Beretta, S. Probabilistic framework for multiaxial LCF assessment under material
variability. Int. J. Fatigue 2017, 103, 371–385. [CrossRef]

20. Ahmadzade, F.; Lundberg, J. Remaining useful life estimation: Review. Int. J. Syst. Assur. Eng. Manag. 2014,
5, 461–474. [CrossRef]

21. Zio, E.; Maio, F.D. A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure
scenarios of an unclear system. Reliab. Eng. Syst. Saf. 2001, 95, 49–57. [CrossRef]

22. Gebraeel, N.; Lawley, M.; Liu, R.; Parmeshwaran, V. Residual life predictions from vibration-based
degradation signals: A neural network approach. IEEE Trans. Ind. Electron. 2004, 51, 694–700. [CrossRef]

23. Huang, R.; Xi, L.; Li, X.; Liu, C.R.; Qiu, H.; Lee, J. Residual life predictions for ball bearings based on
self-organizing map and back propagation neural network methods. Mech. Syst. Signal Process. 2007, 21,
193–207. [CrossRef]

24. Hansen, R.J.; Hall, D.L.; Kurtz, S.K. New approach to the challenge of machinery prognostics. J. Eng. Gas
Turbines Power 1995, 117, 320–325. [CrossRef]

25. Son, K.; Fouladirad, M.; Barros, A.; Levrat, E.; Iung, B. Remaining useful life estimation based on stochastic
deterioration models: A comparative study. Reliab. Eng. Syst. Saf. 2013, 112, 165–175. [CrossRef]

26. Wang, T.; Yu, J.; Siegel, D.; Lee, J. A similarity-based prognostics approach for remaining useful life
estimation of engineered systems. In Proceedings of the International Conference on Prognostics and
Health Management, Denver, CO, USA, 6–9 October 2008; pp. 1–6.

27. Yan, J.; Koc, M.; Lee, J. A prognostic algorithm for machine performance assessment and its application.
Prod. Plan. Control 2004, 15, 796–801. [CrossRef]

201



Energies 2018, 11, 28

28. Roy, A.; Tangirala, S. Stochastic modeling of fatigue crack dynamics for on-line failure prognostics. IEEE Trans.
Control Syst. Technol. 1996, 4, 443–451. [CrossRef]

29. Sun, Y.; Ma, L.; Mathew, J.; Wang, W.; Zhang, S. Mechanical systems hazard estimation using condition
monitoring. Mech. Syst. Signal Process. 2006, 20, 1189–1201. [CrossRef]

30. Gu, J.; Barker, D.; Pecht, M. Prognostics implementation of electronics under vibration loading.
Microelectron. Reliab. 2007, 47, 1849–1856. [CrossRef]

31. Stetter, R.; Witczak, M. Degradation modelling for health monitoring systems. J. Phys. Conf. Ser. 2014,
570, 62002. [CrossRef]

32. Lee, J.; Wu, F.J.; Zhao, W.Y.; Ghaffari, M.; Liao, L.; Siegel, D. Prognostics and health management design
for rotary machinery systems-Reviews, methodology and applications. Mech. Syst. Signal Process. 2014, 42,
314–334. [CrossRef]

33. You, M.Y.; Meng, G. A generalized similarity measure for similarity-based residual life prediction. Proc. Inst.
Mech. Eng. Part E 2011, 225, 151–160. [CrossRef]

34. Zhu, S.P.; Lei, Q.; Wang, Q.Y. Mean stress and ratcheting corrections in fatigue life prediction of metals.
Fatigue Fract. Eng. Mater. Struct. 2017, 40, 1343–1354. [CrossRef]

35. Zhu, S.P.; Lei, Q.; Huang, H.Z.; Yang, Y.; Peng, W. Mean stress effect correction in strain energy-based fatigue
life prediction of metals. Int. J. Damage Mech. 2017, 26, 1219–1241. [CrossRef]

36. Zhu, S.P.; Liu, Q.; Lei, Q.; Wang, Q.Y. Probabilistic fatigue life prediction and reliability assessment of a high
pressure turbine disc considering load variations. Int. J. Damage Mech. 2017, in press. [CrossRef]

37. Yu, Z.Y.; Zhu, S.P.; Liu, Q.; Liu, Y. Multiaxial fatigue damage parameter and life prediction without any
additional material constants. Materials 2017, 10, 923. [CrossRef] [PubMed]

38. Li, Y.; Billington, S.; Zhang, C.; Kurfess, T.; Danyluk, S.; Liang, S. Adaptive prognostics for rolling element
bearing condition. Mech. Syst. Signal Process. 1999, 13, 103–113. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

202



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Energies Editorial Office
E-mail: energies@mdpi.com

www.mdpi.com/journal/energies





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03921-767-0


	Blank Page



