
Compact Stars 
in the QCD Phase 
Diagram 

Printed Edition of the Special Issue Published in Universe

www.mdpi.com/journal/universe

David Blaschke, Alexander Ayriyan, Alexandra Friesen 
and Hovik Grigorian

Edited by
 Com

pact Stars in the Q
CD Phase Diagram

   •   David Blaschke, Alexander Ayriyan, Alexandra Friesen and H
ovik Grigorian



Compact Stars in the QCD 
Phase Diagram

db
Typewritten Text
 





Compact Stars in the QCD 
Phase Diagram

Special Issue Editors

David Blaschke 
Alexander Ayriyan 
Alexandra Friesen 
Hovik Grigorian

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade





The cover depicts a poem by Prof. Qun Wang (USTC Hefei, China) 
with its calligraphy by Prof. Dong-pei Zhu (USTC Hefei, China), 
October 2019. 

中子星辰密
夸克物態豐
宇宙初創時
刹那藏永恆

Its English translation reads:
The neutron star is dense,
the state of quark matter is abundant,
at the birth moment of the universe,
the eternity is held.  



Alexander Ayriyan

Joint Institute for Nuclear Research 
Russia

Special Issue Editors

David Blaschke

University of Wroclaw

Poland

Alexandra Friesen
Bogoliubov Laboratory of Theoretical Physics 
Russia

Hovik Grigorian

Joint Institute for Nuclear Research

Russia

Editorial Office

MDPI
St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Universe

(ISSN 2218-1997) from 2017 to 2018 (available at: https://www.mdpi.com/journal/universe/special

issues/Compact Stars).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03921-958-2 (Pbk)

ISBN 978-3-03921-959-9 (PDF)

c© 2019 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Special Issue Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface to ”Compact Stars in the QCD Phase Diagram” . . . . . . . . . . . . . . . . . . . . . . . ix

Toru Kojo

QCD Equations of State in Hadron–Quark Continuity
Reprinted from: Universe 2018, 4, 42, doi:10.3390/universe4020042 . . . . . . . . . . . . . . . . . . 1

Niels-Uwe F. Bastian, David Blaschke, Tobias Fischer and Gerd Röpke
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Preface to ”Compact Stars in the QCD Phase Diagram”

Back in 2001 at NORDITA Copenhagen, the Conference “Compact Stars in the QCD Phase

Diagram” was organized by Rachid Oyed and Francesco Sannino for the first time, and it was not

obvious before 2009, when Renxin Xu organized a sequel at the recently established Kavli Institute

for Astronomy and Astrophysics at Peking University in Beijing, that this would become the start of a

series of biannual meetings organized by a growing community worldwide. Rodrigo Negreiros and

Jorge Horvath organized the 2012 meeting in Guaruja (Brazil), Tobias Fischer and Jochen Wambach

the 2014 meeting in Prerow (Germany), Ignazio Bombaci and Massimo Mannarelli the 2016 meeting

in Gran Sasso (Italy), and Vivian Incera and Efrain Ferrer the 2018 meeting in New York (USA).

The meeting 2017 in Dubna was an extraordinary one. It was squeezed in to the scheme because

of the great interest and relevance of the topic in view of the first gravitational wave being detected

from merging black holes and the rapid progress in constructing the new accelerator complex, NICA,

at JINR Dubna for discovering signals of a possible first-order phase transition to quark matter in

heavy-ion collisions at not-too-high beam energies.

Therefore, the special aim of the CSQCD-VI conference was to bring together the experts in

fields of compact stars, their mergers, and their involved explosive astrophysical phenomena with

those studying the QCD phase diagram with heavy-ion collision experiments. Consequently, the

conference covered the following main topics:

-QCD phase diagram for HIC vs. astrophysics;

- Quark deconfinement in HIC vs. supernovae, neutron stars, and their mergers;

- Strangeness in HIC and in compact stars;

- Equation of state and QCD phase transitions.

We are grateful to the RSF for supporting this research under grant number 17-12-01427. We also 
want to express our thanks to the MDPI journal Universe which supported a Special Issue under the 
theme of our conference series, with the beneficial conditions of open access publishing in addition to 
being free of article processing charges. We acknowledge the COST Actions MP1304 
“NewCompStar” and CA16214 "PHAROS" for supporting the networking activities of the 
participants. We thank the directorate of the JINR Dubna and the Bogoliubov Laboratory of 
Theoretical Physics for hosting the conference and providing the atmosphere for inspiring and 
fruitful discussions as well as for all their ongoing efforts to construct a major infrastructure with 
NICA, home to the BM@N and MPD heavy-ion collisions experiments for exploring the structure 
of the QCD phase diagram.

We hope that the book edition of this Special Issue of Universe “Compact Stars in the QCD Phase 
Diagram” will serve as a useful guide in the education of young and senior scientists in this emerging 
field that represents an intersection of the communities of strongly interacting matter theory, heavy-

ion collision physics, and compact star astrophysics.
David Blaschke, Alexander Ayriyan, Alexandra Friesen, Hovik Grigorian

Special Issue Editors
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Abstract: The properties of dense matter in quantum chromodynamics (QCD) are delineated through
equations of state constrained by the neutron star observations. The two solar mass constraint,
the radius constraint of �11–13 km, and the causality constraint on the speed of sound, are used to
develop the picture of hadron–quark continuity in which hadronic matter continuously transforms
into quark matter. A unified equation of state at zero temperature and β-equilibrium is constructed
by a phenomenological interpolation between nuclear and quark matter equations of state.

Keywords: hadron–quark continuity; neutron stars; QCD phase diagram

1. Introduction

The study of the phase structure in quantum chromodynamics (QCD) at large baryon density
has been a difficult problem, partly because the lattice Monte Carlo simulations based on the QCD
action are not at work, and partly because many-body problems with strong interactions are very
complex in theoretical treatments. Currently, the best source of information for dense QCD is the
physics of neutron stars from which one can extract useful insights into QCD equations of state [1],
as well as the transport properties in matter. Since the domain relevant for these physics is the baryon
density of nB ∼ 1 − 10n0 (n0 � 0.16 fm−3: nuclear saturation density) or baryon chemical potential of
μB ∼ 1 − 2 GeV, we can use the neutron star constraints to explore the properties of matter beyond the
nuclear regime.

There have been remarkable progress in observations that constrain our understanding on the
nature of dense QCD matter. They include the discoveries of two-solar mass (2M�) neutron stars [2,3],
the constraints for the neutron star radii from X-ray analyses [4,5], and, most remarkably, the detection
of the gravitational waves (GW170817) [6] and the electromagnetic signals [7] from the neutron star
merger found on 17 August. While the GW170817 was announced only after this meeting, we include
this topic in this article because of its significance.

Of particular concern in this article are the constraints on equations of state through the neutron
star mass–radius (M-R) relations. In principle, a precisely determined M-R relation can be used
to directly reconstruct the neutron star equations of state [8], even without any knowledge about
microscopic properties of the matter. Actually, the current precision of M-R relations is not good
enough to pin down the unique equation of state. Nevertheless, the current constraints are already
significant for us to derive qualitative and semi-quantitative understanding about the nature of dense
QCD matter.

Based on equations of state supposed from the M-R and causality constraints, we will develop
the picture of hadron–quark continuity in which hadronic matter continuously transforms into
quark matter without experiencing thermodynamic phase transitions. Such continuity picture was
developed in the context of the crossover from the superfluid hadronic phase to the color-flavor-locked
superconducting phase [9]. This scenario was revisited in [10,11] where the role of UA(1) anomaly is
emphasized. The previous studies are based on theoretical considerations and model calculations,

Universe 2018, 4, 42; doi:10.3390/universe4020042 www.mdpi.com/journal/universe1
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while, in our approach, we reach the continuity picture from the demand to satisfy the neutron
star constraints.

2. The Neutron Star Constraints and the Implications for QCD Equations of State

To begin with, we first define some terminology in this article. “Stiff” equations of state mean
equations of state with large pressure P at given energy density ε. The stiffer equations of state generally
lead to larger maximum masses and larger radii for neutron stars. We will not use the speed of sound
cs = (∂P/∂ε)1/2 as the measure of the stiffness, as even ideal gas equations of state with the relatively
small sound velocity (compared to what we will consider) can generate very large maximum masses.

Secondly, we should specify at which region of density the equations of state are stiff. We will use
the terminology such as “soft-stiff”, by which we mean that equations of state is soft at low density,
nB ≤ 2n0, and stiff at high density, nB ≥ 5n0. For the reasons described below, equations of state
leading to R1.4 ≤ 13 km for 1.4M� stars will be called “soft at low density”, and equations of state
leading to M ≥ 2M� will be called “stiff at high density’. Then, the soft-stiff equations of state generate
the M-R curves with the typical radii of R1.4 ≤ 13 km and the maximum mass ≥2M�.

The classification of equations of state by the baryon density is useful because it has been
known [12] that the shapes of the M-R curves have strong correlations with equations of state at
several fiducial densities (see Figure 1). At very low density, the material is loosely bound by the
gravity, but, as M increases, R rapidly decreases because of the stronger gravity. Around ∼2n0,
the matter starts to observe the repulsive forces in microscopic dynamics; then, the M-R curve starts to
go vertically. Eventually, the curve reaches the maximum in M at nB ≥ 5n0. Using these correlations
between M-R and nB, one can focus on the radius constraint in the studies of low density equations of
state, or one can focus on the maximum mass when studying high density equations of state.

Figure 1. The correlation between the M-R relation and equations of state.

The existence of two-solar mass (2M�) neutron stars [2,3] tells us that high density equations
of state at nB ≥ 5n0 must be stiff. Meanwhile the estimate of R1.4 is relatively uncertain. There have
been many theoretical predictions for R1.4 which range from �10 km to �16 km. The observational
constraints on R1.4, which have been based on spectroscopic analyses of the X-rays from the neutron
star surface, include several systematic uncertainties, but the current trend converges toward the
estimate R = 11–13 km 1. In addition, the analyses of gravitational waves from GW170817 favors

1 The exception can be found in [13], where the authors (Suleimanov et al.) estimate R1.4 > 13.9 km using the X-ray burst
from 4U 1724-307. The paper was published in 2011. Later, further analyses were done by two of the authors and their
collaborators. In a recent paper [14], they discussed that the event used to extract R1.4 > 13.9 km is not suitable for reliable
analyses due to large contaminations in the neutron star atmosphere. The newer analyses include more samples and cleaner
events than the previous ones, and yield the estimate 11 km < R < 13 km for neutron stars with the masses ranging from
1.1–2.1M� [15]. The author appreciates Dr. David Blaschke for mentioning these papers.
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equations of state with the radii smaller than ∼13 km. More precisely, the actual constraint is on the
dimensionless tidal deformability, Λ = 2

3 k2(R/GN M)5 (GN : Newton constant; k2: Love number [16]),
of each star before the coalescence; clearly Λ is very sensitive to the compactness and radius of the star.

Therefore, the QCD equation of state is likely to be the soft-stiff type. For the left over region
nB = 2 − 5n0, there is also a causality constraint on the speed of sound c2

s = ∂P/∂ε, i.e., cs must be less
than the light velocity 2. This constraint becomes significant for soft-stiff equations of state because
P(ε) is small at low density but must be large at high density, meaning that in between there must be
a region where ∂P/∂ε must be large. The difficulty is even more signified if there are the first order
phase transitions, see Figure 2; during such transitions, P(ε) is constant for increasing ε, and, after the
phase transitions, even larger ∂P/∂ε is necessary to get connected to P(ε) at high density.

Figure 2. The pressure vs. energy density for soft-stiff (left) and stiff-stiff (right) equations of state.
The slope is given by ∂P/∂ε = c2

s , the sound speed square, which must be smaller than the light speed,
1. The soft-stiff equations of state have smaller radii than the stiff-stiff ones, and disfavor the strong 1st
order phase transitions.

If we assume the neutron star radii to be large > 13 km, then the equations of state at low density
is so stiff that, even after strong 1st order phase transitions, the low density equations of state have
the causal connection to P(ε) at high density [17]. Thus, the determination of the neutron star radii is
crucial for our understanding of the QCD phase structure. It should be evident that if the strength of
transitions is sufficiently weak, the soft-stiff equations of state is still possible even with the 1st order
transitions. For more quantitative and systematic analyses, we refer to Ref. [18].

These considerations for soft-stiff equations of state motivate us to consider the picture of
hadron–quark continuity in which equations of state at 2n0 and 5n0 are continuously connected.

3. The 3-Window Modeling

Now, we turn to the discussions about the microscopic nature of matter. We consider the matter
by decomposing it into 3-windows [19–22]; the nuclear regime at nB ≤ 2n0; the crossover regime
for 2n0 − 5n0; and the quark matter regime at nB ≥ 5n0. The picture we have is illustrated in
Figure 3. At low density, nB ≤ 2n0, the matter is dilute and baryons remain well-defined objects,
so the equations of state are described by nuclear ones. Beyond ∼2n0, it is unlikely that nucleons
are effective degrees of freedom; many-body forces become increasingly important as seen from
microscopic nuclear calculations, which include nuclear interaction up to 3-body forces [23,24],
and, in addition, typical calculations indicate that baryonic excitations other than nucleons are no
longer negligible. Even though the matter is presumably not dense enough to consider quark matter,

2 Some people postulated that the c2
s should be smaller than the conformal limit c2/3 (c: light velotiy). As argued by Bedaque

and Steiner, this hypothesis is in tension with the neutron star observations.
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the above-mentioned problems demand us to think of matter based on microscopic quark degrees of
freedom. At nB ∼5n0, baryons with the radii of ∼0.5 fm start to touch one another. If we assume a
3-flavor quark matter, the density 5n0 corresponds to the quark Fermi momentum of pF ∼400 MeV
(for 2-flavor matter pF is even larger), reasonably large compared to the QCD non-perturbative scale,
ΛQCD ∼200 MeV.

Figure 3. The 3-window modeling of the QCD matter.

One might think that, since some phenomenological hadronic equations of state have been
made consistent with the 2M� constraint (e.g., [23]), there is no need to introduce the quark matter
descriptions for neutron star matter. However, to pass the 2M� constraint is the necessary but not
sufficient condition to validate the hadronic models; the construction of equations of state must be
reasonable from the microscopic point of view, but, at this point, we have problems in extrapolating
purely hadronic descriptions beyond 5n0, for the reasons already discussed above. This motivates us
to start with quark matter picture at high density side and approach the hadronic side by including
hadronic correlations. This approach, even when ∼5n0 happens to not be high for the quark matter
formation, at least will shed light on the nature of hadronic matter in terms of quark descriptions.

We will construct equations of state based on this 3-window picture. For the nuclear regime,
we use the Akmar–Phandheripande–Ravenhall (APR) equation of state as a representative 3 [23].
For the quark matter regime, we use a schematic quark model that concisely expresses microscopic
interactions relevant in hadron and nuclear physics. In between, neither purely hadronic nor quark
matter descriptions are appropriate, so here we use the hadron–quark continuity picture to smoothly
interpolate the APR and quark model equations of state. Specifically, our interpolation is done with
polynomials [21]

P(μB) =
5

∑
n=0

cnμn
B . (1)

To determine the coefficients cns, we first compute nB = ∂P/∂μB, and then demand, at nB = 2n0

and 5n0, the interpolating function to match with the APR and quark equations of state up to the
second order derivatives of P(μB).

4. A Model for Quark Matter

In our phenomenological modeling, we need to choose a quark model for nB ≥ 5n0. Guided by
the continuity picture, the form of effective models is exported from those for hadron physics.
Here, semi-long range interactions, relevant for the energy scale of 0.2–1 GeV or distance scale
∼0.2–1 fm−1 [25], should remain important from low to high densities because the quark matter regime

3 Actually, we also need to use some crust equations of state for nB < 0.2 − 0.5n0. We use the Togashi equation of state [24],
which is based on the microscopic calculations with techniques similar to the APR, and is consistent with the regime of
laboratory nuclei below the neutron drip regime.
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observes the contents inside of hadrons. Meanwhile, due to the overlap of baryon wavefunctions,
the confining forces that try to neutralize the color are expected to be less important at higher densities,
except for any excitations that break the local color neutrality. The confining force is a long range
interaction relevant for the energy scale ΛQCD ∼0.2 GeV∼1 fm−1.

Our effective Hamiltonian is (μq = μB/3) [1]

H = q̄(iγ0�γ ·�∂ + m − μqγ0)q − Gs ∑8
i=0
[
(qτiq)2 + (q̄iγ5τiq)2]+ 8K(detfq̄RqL + h.c.)

+H3q→B
conf − H∑A,A′=2,5,7

(
q̄iγ5τAλA′Cq̄T) (qTCiγ5τAλA′q

)
+ gV(qγμq)2 .

(2)

The first line is the standard Nambu-Jona-Lasinio (NJL) model with u, d, s-quarks and responsible
for the chiral symmetry breaking. We use the Hatsuda–Kunihiro parameter set [26] with which
the constitutent quark masses are Mu,d � 336 MeV and Ms � 528 MeV. The first term in the
second line includes the confining interactions which trap 3-quarks into a baryon. The second
term is the color-magnetic interaction for color-flavor-antisymmetric S-wave channel; they play very
important roles in the level splitting in the hadron spectra, e.g., N-Δ splitting. The last term is the
phenomenological vector repulsive interactions, which are inspired from the ω-meson exchange in
nuclear physics. In actual calculations, the confining term is not explicitly included as we do not know
a good modeling for it. Therefore, we restrict the use of this model to nB ≥ 5n0 where we expect that
confining effects are not significant.

While the form of the Hamiltonian is obtained by extrapolating the description of hadron and
nuclear physics, in principle the range of parameters (Gs, K, gV , H) at nB ≥ 5n0 can be considerably
different from those used in hadron physics due to, e.g., medium screening effects. In a strongly
correlated region, the estimate of medium modifications is difficult; for instance, screening masses
in 2-color QCD, measured in lattice QCD [27], are qualitatively different from the perturbative
behaviors [28]. For 3-color QCD, no reliable estimates on medium modifications are available, so
here we use the neutron star constraints to examine the range of these parameters, and then use them
to delineate the properties of QCD matter at nB ≥ 5n0. Below, we vary (gV , H), while assuming
that (Gs, K) do not change from the vacuum values appreciably; this assumption will be checked
posteriori. More elaborated treatment is to explicitly determine the medium running coupling gV(μB),
as demonstrated in Ref. [29].

Our Hamiltonian for quarks, together with the contributions from leptons, is solved within the
mean field (MF) approximation. We impose the neutrality conditions for electric and color charges
as well as the β-equilibrium condition. In the MF treatments, we find that the chiral and diquark
condensates coexist at nB ≥ 5n0. For the range of parameters that we have explored, the diquark
pairing always appears to be the color-flavor-locked (CFL) type at nB ≥ 5n0; other less symmetric
pairings such as the 2SC type appear only at lower density, thus we will not take their appearance at
face value.

Now, we examine the roles of effective interactions by subsequently adding gV and then H to
the standard NJL model [21]. First of all, in order to make equations of state stiff, (Gs, K)@5n0 should
remain comparable to the size of its vacuum values; the large reduction of these parameters accelerates
the chiral restoration that yields contributions similar to the bag constant, i.e., the positive (negative)
contributions to energy (pressure). As a result, the significant softening takes place in equations of
state. Actually, even if we fix (Gs, K)@5n0 to the vacuum values, the strong 1st order chiral transition
takes place at nB ∼2–3 n0 in the standard NJL model, so the equations of state at nB ≥ 5n0 is too soft to
pass the 2M� constraint.

This situation is changed by adding gV . It stiffens the equations of state in two-fold ways. Firstly,
the repulsive interactions obviously contribute to the stiffening. Secondly, it delays the chiral restoration
by tempering the growth of baryon density as a function of μB, so that there is no radical softening
associated with the chiral restoration. In fact, the 1st order transition turns into a crossover in the
range of gV we explored. The value of gV large enough to pass the 2M� constraint, however, causes
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another kind of problem in connecting the APR and quark model pressure; see the left panel of
Figure 4; with larger gV quark pressure, P(μB) tends to appear at higher μB with less slope, and,
as a consequence, the pressure curve in the interpolation region tends to contain an inflection point at
which ∂2P/(∂μB)

2 is negative. Such region is thermodynamically unstable and so must be excluded.
Therefore, while a larger value of gV is favored to pass the 2M� constraint, it generates more mismatch
between the APR and quark pressure in the μB direction.

Figure 4. The impacts of the vector and color-magnetic interactions.

Here, the color-magnetic interactions improve the situation; see the right panel of Figure 4.
We note that the onset chemical potential of the APR pressure is the nucleon mass μB � 939 MeV,
while, for the NJL pressure, it is μB � 3Mu,d � 1018 MeV. In a conventional picture of quark models,
the nucleon and Δ masses are split by the color-magnetic interaction, and the nucleon mass is reduced
from 3Mu,d. From this viewpoint, the color-magnetic interactions naturally induce the overall shift of
the NJL pressure toward the lower chemical potential, thus making the matching between the APR
and quark pressure curves much better.

The M-R relations are shown in Figure 5 for the parameter sets (gV , H)/Gs = (0.5, 1.4), (0.8, 1.5),
and (1.0, 1.6). For all these sets, the radius of a neutron star at the canonical mass 1.4M� is 11.3–11.5 km,
mainly determined by our APR equations of state. In these sets, only the set (0.8, 1.5) fulfills all of
the constraints; the set (0.5, 1.4) is slightly below the 2M� constraint, while (1.0, 1.6) slightly violates
the causality bound. More exhaustive parameter surveys [1] show that gV should be >∼0.7 Gs,
and H >∼1.4 Gs which are comparable to the vacuum scalar coupling. For given gV , the value of H is
fixed to ∼10%; in fact, we do not have much liberty in our choice when we connect the APR and quark
matter pressures.

Figure 5. The mass–radius relations from the 3-window equations of state for sets of parameters,
(gV , H)/Gs = (0.5, 1.4), (0.8, 1.5), (1.0, 1.6). Only the set (0.8, 1.5) satisfies the 2M� and causality constraints.

We note that the couplings (Gs, gV , H) as large as the vacuum coupling of Gs are necessary to fulfill
the constraints from neutron star observations and causality. With such strong effective couplings, we
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expect that gluons in the non-perturbative regime still survive in spite of the presence of quark matter.
In addition, substantial amounts of chiral and diquark condensates coexist [21]. It is also important to
emphasize that the quark matter contains the strange-quarks as much as up- and down-quarks.

5. Discussion and Conclusion

We first mention the difference between the finite temperature crossover and low temperature
crossover (see Figure 6). The relevant thermodynamic relations are P = Ts − ε (s: entropy) and
P = μBnB − ε, respectively. In the finite temperature crossover, which has been established by the
lattice Monte Carlo calculations [30,31], the QCD matter changes from a hadron resonance gas to a
quark gluon plasma as the temperature increases. The transition is smooth, but radical changes take
place in the thermodynamic quantities. In particular, there is radical growth in the entropy and energy
densities as a consequence of liberation of quarks and gluons, which in turn lead to a dip in the speed
of sound cs. In contrast, this feature is not present in the low temperature crossover; the sound velocity
should have a peak, rather than a dip, in the crossover region [1]. Neither the baryon density nor
energy density radically change; instead, as the matter approaches the crossover region, the strong
interactions among baryons temper the growth of the baryon density at increasing μB. In this respect,
the distinction between strongly interacting hadronic and quark matter is more difficult than that
between a hadron resonance gas and a quark gluon plasma. It may be appropriate to characterize
the hadron–quark crossover in terms of the quark–hadron duality, or in the context of quarkyonic
matter [32–35] that has the quark Fermi sea but baryonic Fermi surface; hence, it naturally interpolates
the hadronic and quark matter. To get qualitative insights for the quarkyonic matter, we refer to the
studies of QCD in (1+1) dimensions [36] where analytic insights are available.

Figure 6. The speed of sound square c2
s around the finite temperature crossover from hadron resonance

gas to quark gluon plasma, on the possible first order chiral restoration line, and around the possible
low temperature crossover from hadron to quark matter. While the finite temperature crossover has
a dip in c2

s , the low temperature crossover has a peak.

Finally, we present a conjecture concerning the crossover in the gauge dynamics, namely from a
confining phase to a Higgs phase with colored diquark condensates ∼φ = |φ|eiθ . This question must
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be addressed when we consider the crossover from hadronic to quark matter with diquark condensates.
In the presence of matter fields in the fundamental representations, there are no strict order parameters
based on symmetries, and in fact the two phases can be smoothly connected [37]. On the other hand,
the symmetry concepts are not necessary conditions for phase transitions, as can be seen in liquid–gas
phase transition. Thus, we need to discuss the dynamical aspects. As for the confining vs. Higgs
phases, there are two important elements to distinguish them in qualitative terms. The first is the
strength of the gauge coupling, gs, and the other is the size of Higgs field (diquark) amplitudes, |φ|.
Two extreme limits are relatively easy to imagine: in the strong coupling limit gs 
 1 and small
Higgs amplitudes, the strong color fluctuations disfavor the colored objects and the confinement takes
place [38]. Meanwhile, in the weak coupling limit gs � 1 and large Higgs amplitudes, the matter
should look like a Higgs phase as in textbook examples. The important question is how they can be
connected depending on the trajectories of the gs and |φ| as functions of μB.

This question is hard to answer for dense QCD, but some insights can be obtained from the gauge
Higgs models with the fixed Higgs amplitude |φ| [37]. There are two characteristic paths from the
confining to the Higgs phase (see Figure 7). In the first path, we move along the small |φ| region in
the confining phase; move from (gs 
 1 , |φ| ∼ 0) to (gs � 1 , |φ| ∼ 0) domain, and then go to the
domain of (gs � 1 , |φ| 
 1). In this path, we hit the phase transition increasing the value of |φ| at the
weak coupling region. Indeed, it is difficult to imagine that the Higgs phase at weak coupling, which
apparently looks very different from the confining phase, continuously transforms into the confining
phase. The other path, however, allows the crossover transition: starting again from gs 
 1, |φ| ∼ 0,
one can move along the gs 
 1 region with increasing |φ|, and reaches the confining phase at large
Higgs fields, or Higgs phase at strong coupling. This regime was not studied as much as the weak
coupling regime in quark matter.

Figure 7. The phase diagram for gauged-Higgs model with the fixed Higgs amplitudes, in the 1/gs−|φ|
plane. At large coupling, the confining and Higgs phases are smoothly connected.

From this example and neutron star constraints, we conjecture that the matter remains strongly
coupled from hadronic to quark matter regimes, so that the Higgs fields develop within the confining
regime and then the system gradually relaxes to the Higgs phase at weak coupling. Gluons remain
non-perturbative until the weak coupling regime is reached at sufficiently high density.

More observational constraints will come in the next 10 years through the timing analyses of
X-rays in the NICER program [39] and the GW detection by currently operating aLIGO, Virgo, GEO [40],
and also KAGRA [41] under construction, which will be ready soon. The electromagnetic counterparts
associated with the GWs give the information about the ejecta, from which one can learn the dynamics
at the coalescence regime. It is desirable to utilize all this information to improve our understanding of
dense QCD matter.
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9. Schäfer, T.; Wilczek, F. Continuity of quark and hadron matter. Phys. Rev. Lett. 1999, 82, 3956–3959.
10. Hatsuda, T.; Tachibana, M.; Yamamoto, N.; Baym, G. New critical point induced by the axial anomaly in

dense QCD. Phys. Rev. Lett. 2006, 97, 122001.
11. Zhang, Z.; Fukushima, K.; Kunihiro, T. Number of the QCD critical points with neutral color superconductivity.

Phys. Rev. D 2009, 79, 014004.
12. Lattimer, J.M.; Prakash, M. Neutron Star Observations: Prognosis for Equation of State Constraints. Phys. Rep.

2007, 442, 109–265.
13. Suleimanov, V.; Poutanen, J.; Revnivtsev, M.; Werner, K. Neutron star stiff equation of state derived from cooling

phases of the X-ray burster 4U 1724-307. Astrophys. J. 2011, 742, 122.
14. Nättilä, J.; Steiner, A.W.; Kajava, J.J.E.; Suleimanov, V.F.; Poutanen, J. Equation of state constraints for the

cold dense matter inside neutron stars using the cooling tail method. Astron. Astrophys. 2016, 591, A25.
15. Nättilä, J.; Miller, M.C.; Steiner, A.W.; Kajava, J.J.E.; Suleimanov, V.F.; Poutanen, J. Neutron star mass and

radius measurements from atmospheric model fits to X-ray burst cooling tail spectra. Astron. Astrophys. 2017,
608, A31.

16. Hinderer, T.; Lackey, B.D.; Lang, R.N.; Read, J.S. Tidal deformability of neutron stars with realistic equations
of state and their gravitational wave signatures in binary inspiral. Phys. Rev. D 2010, 81, 123016.

17. Benic, S.; Blaschke, D.; Alvarez-Castillo, D.E.; Fischer, T.; Typel, S. A new quark-hadron hybrid equation of
state for astrophysics—I. High-mass twin compact stars. Astron. Astrophys. 2015, 577, A40.

18. Alford, M.G.; Han, S.; Prakash, M. Generic conditions for stable hybrid stars. Phys. Rev. D 2013, 88, 083013.
19. Masuda, K.; Hatsuda, T.; Takatsuka, T. Hadron-Quark Crossover and Massive Hybrid Stars with Strangeness.

Astrophys. J. 2013, 764, 12.
20. Masuda, K.; Hatsuda, T.; Takatsuka, T. Hadron-quark crossover and massive hybrid stars. Prog. Theor.

Exp. Phys. 2013, 2013, 073D01.
21. Kojo, T.; Powell, P.D.; Song, Y.; Baym, G. Phenomenological QCD equation of state for massive neutron stars.

Phys. Rev. D 2015, 91, 045003.
22. Kojo, T. Phenomenological neutron star equations of state: 3-Window modeling of QCD matter.

Eur. Phys. J. A 2016, 52, 51.

9



Universe 2018, 4, 42

23. Akmal, A.; Pandharipande, V.R.; Ravenhall, D.G. The Equation of state of nucleon matter and neutron star
structure. Phys. Rev. C 1998, 58, 1804.

24. Togashi, H.; Nakazato, K.; Takehara, Y.; Yamamuro, S.; Suzuki, H.; Takano, M. Nuclear equation of state for
core-collapse supernova simulations with realistic nuclear forces. Nucl. Phys. A 2017, 961, 78–105.

25. Manohar, A.; Georgi, H. Chiral Quarks and the Nonrelativistic Quark Model. Nucl. Phys. B 1984, 234,
189–212.

26. Hatsuda, T.; Kunihiro, T. QCD phenomenology based on a chiral effective Lagrangian. Phys. Rep. 1994,
247, 221–367.

27. Hajizadeh, O.; Boz, T.; Maas, A.; Skullerud, J.I. Gluon and ghost correlation functions of 2-color QCD at
finite density. arXiv 2017, arXiv:1710.06013.

28. Kojo, T.; Baym, G. Color screening in cold quark matter. Phys. Rev. D 2014, 89, 125008.
29. Fukushima, K.; Kojo, T. The Quarkyonic Star. Astrophys. J. 2016, 817, 180.
30. Aoki, Y.; Endrodi, G.; Fodor, Z.; Katz, S.D.; Szabo, K.K. The Order of the quantum chromodynamics transition

predicted by the standard model of particle physics. Nature 2006, 443, 675–678.
31. Ding, H.T.; Karsch, F.; Mukherjee, S. Thermodynamics of strong-interaction matter from Lattice QCD.

Int. J. Mod. Phys. E 2015, 24, 1530007.
32. McLerran, L.; Pisarski, R.D. Phases of cold, dense quarks at large N(c). Nucl. Phys. A 2007, 796, 83.
33. Kojo, T.; Hidaka, Y.; McLerran, L.; Pisarski, R.D. Quarkyonic Chiral Spirals. Nucl. Phys. A 2010, 843, 37–58.
34. Kojo, T.; Pisarski, R.D.; Tsvelik, A.M. Covering the Fermi Surface with Patches of Quarkyonic Chiral Spirals.

Phys. Rev. D 2010, 82, 074015.
35. Kojo, T.; Hidaka, Y.; Fukushima, K.; McLerran, L.D.; Pisarski, R.D. Interweaving Chiral Spirals. Nucl. Phys. A

2012, 875, 94–138.
36. Kojo, T. A (1+1) dimensional example of Quarkyonic matter. Nucl. Phys. A 2012, 877, 70.
37. Fradkin, E.H.; Shenker, S.H. Phase Diagrams of Lattice Gauge Theories with Higgs Fields. Phys. Rev. D 1979,

19, 3682–3697.
38. Wilson, K.G. Confinement of Quarks. Phys. Rev. D 1974, 10, 2445–2459.
39. Gendreau, K.C.; Arzoumanian, Z.; Adkins, P.W.; Albert, C.L.; Anders, J.F.; Aylward, A.T.; Baker, C.L.;

Balsamo, E.R.; Bamford, W.A.; Benegalrao, S.S.; et al. The Neutron star Interior Composition Explorer
(NICER): Design and development. Proc. SPIE 2016, 9905, 99051H.

40. Hough, J.; Meers, B.J.; Newton, G.P.; Robertson, N.A.; Ward, H.; Leuchs, G.; Niebauer, T.M.; Rüdiger, A.;
Schilling, R.; Schinupp, L.; et al. Proposal for a Joint German-British Interferometric Gravitational Wave
Detector. Available online: eprints.gla.ac.uk/114852/7/114852.pdf (accessed on 3 September 2017).

41. Aso, Y.; Michimura, Y.; Somiya, K.; Ando, M.; Miyakawa, O.; Sekiguchi, T.; Tatsumi, D.; Yamamoto, H.
Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D 2013, 88, 043007.

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

10



universe

Article

Towards a Unified Quark-Hadron-Matter Equation
of State for Applications in Astrophysics and
Heavy-Ion Collisions

Niels-Uwe F. Bastian 1,*, David Blaschke 1,2,3, Tobias Fischer 1 and Gerd Röpke 3,4

1 Institute of Theoretical Physics, University of Wroclaw, 50-137 Wroclaw, Poland;
david.blaschke@gmail.com (D.B.); tobias.fischer@ift.uni.wroc.pl (T.F.)

2 Bogoliubov Laboratory for Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
3 National Research Nuclear University (MEPhI), 115409 Moscow, Russia; gerd.roepke@uni-rostock.de
4 Institute of Physics, University of Rostock, 18051 Rostock, Germany
* Correspondence: niels-uwe@bastian.science

Received: 26 April 2018; Accepted: 16 May 2018; Published: 25 May 2018

Abstract: We outline an approach to a unified equation of state for quark-hadron matter on the
basis of a Φ−derivable approach to the generalized Beth-Uhlenbeck equation of state for a cluster
decomposition of thermodynamic quantities like the density. To this end we summarize the cluster
virial expansion for nuclear matter and demonstrate the equivalence of the Green’s function approach
and the Φ−derivable formulation. As an example, the formation and dissociation of deuterons in
nuclear matter is discussed. We formulate the cluster Φ−derivable approach to quark-hadron matter
which allows to take into account the specifics of chiral symmetry restoration and deconfinement
in triggering the Mott-dissociation of hadrons. This approach unifies the description of a strongly
coupled quark-gluon plasma with that of a medium-modified hadron resonance gas description
which are contained as limiting cases. The developed formalism shall replace the common two-phase
approach to the description of the deconfinement and chiral phase transition that requires a phase
transition construction between separately developed equations of state for hadronic and quark matter
phases. Applications to the phenomenology of heavy-ion collisions and astrophysics are outlined.

Keywords: cluster virial expansion; quark-hadron matter; Mott dissociation; Beth-Uhlenbeck
equation of state; heavy-ion collisions; supernova explosions; mass-twin stars

1. Introduction

The development of a unified equation of state (EoS) for quark-hadron matter, where the hadrons
are not elementary degrees of freedom but rather appear as composites of their quark constituents
(bound and scattering states of effective quark interactions) is a formidable task because it requires
the implementation of dynamical mechanisms of quark confinement as well as chiral symmetry
breaking which characterise the hadronic phase of matter and mechanisms for deconfinement and
chiral symmetry restoration which determine the transition to the quark(-gluon) phase of strongly
interacting matter.

The aspect of bound state formation and dissociation has been well studied in warm dense nuclear
matter, where a cluster virial expansion has been developed as a most effective means of description of
a system that contains clusters of different sizes with internal quantum numbers like in the nuclear
statistical equilibrium picture, but generalizes it by including residual binary interactions among them
(second cluster virial coefficient) and their dissociation due to compression and heating within the Mott
effect. The consistent description of bound and scattering states on the same footing is provided by the
generalized Beth-Uhlenbeck equation of state that uses phase shifts in order to describe correlations
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and their modifications in a hot, dense environment. It turns out that for the short-ranged strong
interactions it is not the screening of the interaction which drives the dissociation of the bound states
but rather the Pauli blocking effect that inhibits cluster formation when the phase space is densely
populated. Being based on pure symmetry arguments, this effect is sufficiently general to apply to any
fermionic many-particle system where—as a function of the density—the formation of bound state
gets first favored (principle of Le Chatelier and Brown) until the Pauli principle inhibits scattering
processes that would lead to cluster formation and a homogeneous phase of fermionic quasiparticles
emerges: The dense nuclear matter.

Since nucleons themselves can be considered as clusters of quarks, the more fundamental degrees
of freedom of quantum chromodynamics (QCD) as the underlying gauge field theory of strong
interactions, we want to develop in this work the basics of a corresponding approach that will describe
the transition from hadronic to quark matter as a Mott transition driven by the Pauli blocking effect.
Despite this striking analogy there are also specifics for the quark degrees of freedom which need to be
taken into account. These are mainly the internal quantum numbers (color, flavor, spin) that cause the
confinement of colored states (quarks, gluons, diquarks etc.), the dynamical chiral symmetry breaking
and combined symmetry requirements as well as relativistic kinematics.

In Figure 1 we show the phase diagram of QCD according to the present state of knowledge.
In particular it addresses the aspect of cluster formation and dissociation in dense quark-hadron matter,
which is the main goal of the approach to be outlined in this work.

To this end in Section 2 we first review the cluster virial approach for nuclear matter in the form
of a generalized Beth-Uhlenbeck EoS. Then in Section 3 we suggest that it might be obtained from
the Φ−derivable approach in its field theoretic formulation when for the Φ functional the class of all
two-loop Feynman diagramns is chosen that can be constructed from cluster Green’s functions and
cluster T-matrices and consequently take the form of generalized “sunset” type diagrams.

In Section 4 we develop the approach for quark matter with mesons and baryons as clusters
dominating the hadronic phase of matter since quarks and diquarks are suppressed by confining
interactions that give rise to diverging selfenergies for those states in the low-density (confinement)
phase. This mechanism is realized here within the so-called string-flip model that is generalized
in relativistic form. As a first step, a selfconsistent mean-field approximation is performed which
results in a new quark matter equation of state with confining features, thus superior to previous NJL
model approaches and their Polyakov-loop generalized versions. We demonstrate how the quark
Pauli-blocking effect for hadrons is already inherent in the Φ−derivable approach and can be made
apparent by a perturbation expansion with respect to cluster selfenergies on top of the quasiparticle
approximation. The Pauli-blocking effect can be mimicked by a hadronic excluded volume which
should therefore be taken into account when a hadronic EoS is extrapolated from a low-density limit
(hadron resonance gas, nuclear statistical equilibrium) to the vicinity of the deconfinement transition.
In the quark matter phase, we implement higher order repulsive interactions which may be justified
by multi-pomeron exchange interactions, thus non-perturbative effects of the gluon sector which we
are not treating dynamically at this stage. These effects cause a stiffening of the high-density quark
matter EoS that are essential for hybrid compact star applications.

In Section 5 we discuss the role of nuclear clusters for the astrophysics of supernovae and the
deconfinement transition in compact stars while in Section 6 we consider the potential of a unified
approach to quark-hadron matter for applications in heavy-ion collisions. We point out that nuclear
cluster formation may occur directly at the hadronisation transition and thus result in their (sudden)
chemical freeze-out together with other hadronic species as indicated by the ALICE experiment at the
CERN LHC.

In Section 7 we draw conclusions for the further development of the approach towards a unified
description of quark-hadron matter and its phenomenology in heavy-ion collisions and astrophysics.
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Figure 1. Schematic phase diagram of strongly interacting matter with the solid lines indicating first
order liquid-gas and hadronic-quark matter phase transitions ending in dots symbolizing the critical
endpoints. While for the nuclear liquid-gas phase transition the critical point is at a temperature of
TLG

c = 16.6 ± 0.9 MeV [1], the position of the critical endpoint of the deconfinement transition is not
known. The dashed line indicates the pseudocritical temperature Tc(μB) of the crossover transition
from hadronic to quark matter which has been determined at vanishing baryochemical potential
μB = 0 in lattice QCD simulations to Tc(0) = 154 ± 9 MeV [2]. The red and white colored circles
stand for neutrons and protons which at low densities can form nuclear clusters that get dissociated
in the liquid phase. Similar to that case, nucleons themselves can be viewed as clusters of quarks
symbolized by colored dots that get dissociated in the quark matter phase. The green shaded area is
the domain of the phase diagram accessible by supernova explosions. The red shaded area is the region
accessible by ab-initio simulations of QCD at finite temperatures and chemical potentials on space-time
lattices. The green arrowed lines symbolize trajectories of heavy-ion collisions at different center of
mass energies ranging form LHC over RHIC to the planned NICA/FAIR experiments. The green line
on the chemical potential axis depicts the range of values accessible in compact star interiors. In this
case, the third dimension of the charge (or isospin) chemical potential relevant for isospin asymmetric
systems in supernovae, compact stars and their mergers is suppressed.

2. Quantum Statistical Approach and the Cluster Virial Expansion

A systematic approach to the cluster expansion of thermodynamic properties is obtained from
quantum statistics. We consider a system consisting of species i with the (conserved) particle number
Ni and the corresponding chemical potential μi, described by the hamiltonian H at equilibrium with
temperature T. The index i will be dropped in the following. The grand canonical thermodynamic
potential is given by

Ω = −PV = −T ln Tr e−(H−μN)/T , (1)

where P is the pressure and V the volume. It can be represented by diagrams within a perturbation
expansion [3,4], see also [5]. We have

P =
1
V

Tr ln[−G(0)
1 ]− 1

2V

∫ 1

0

dλ

λ
TrΣλGλ, (2)

or
(3)
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where λ is a scaling factor substituting the two-particle interaction V2 by λ V2. G(0)
1 is the free

single-particle propagator that gives the ideal part of the pressure P0. The full single-particle Green
function Gλ and the self-energy Σλ are taken with the coupling constant λ. Depending on the selected
diagrams, different approximations can be found. In particular, the second virial coefficient for charged
particle systems has been investigated, see Ref. [5].1

An alternative way to derive the equation of state is to start from the expression for the total
nucleon density

nτ1(T, μp, μn) =
2
V ∑

p1

∫ ∞

−∞

dω

2π
f1(ω)S1(1, ω) , (4)

where V is the system volume, the variable 1 = {p1, σ1, τ1} denotes the single particle states (here
nucleons in momentum representation), τ1 = n, p, and summation over spin direction is collected in
the factor 2. Both the Fermi distribution function and the spectral function depend on the temperature
and the chemical potentials μp, μn, which are not given explicitly. The spectral function S1(1, ω) of the
single-particle Green function G1(1, izν) is related to the single-particle self-energy Σ(1, z) according to

S1(1, ω) =
2Im Σ1(1, ω − i0)

(ω − E(0)(1)− Re Σ1(1, ω))2 + (Im Σ1(1, ω − i0))2
, (5)

where the imaginary part has to be taken for a small negative imaginary part in the frequency;
E(0)(1) = p2

1/(2m1).
Both approaches are equivalent. The perturbation expansion can be represented by Feynman

diagrams, see Equation (3). However, a finite order perturbation theory will not produce bound states,
and partial summations of an infinite number of e.g., ladder diagrams must be performed to get bound
states. As shown by Baym and Kadanoff [3,4], self-consistent approximations to the one-particle Green
function can be given based on a functional Φ so that

Σ1(1, 1′) = δΦ
δG1(1, 1′) . (6)

Different approximations for the generating functional Φ are discussed in the following Sections 3
and 4. The self-consistent Φ−derivable approximations not only lead to a fully-conserving transport
theory. In the equilibrium case they also have the property that different methods to obtain the grand
partition function such as integrating the expectation value of the potential energy with respect to the
coupling constant λ, Equation (3), or integrating the density n with respect to the chemical potential μ,
lead to the same result [6,7]. In particular, with

Ω = −Tr ln(−G1)− TrΣ1G1 + Φ (7)

also
n = −∂Ω

∂μ
(8)

holds in the considered approximation.
The latter approach (using Equation (4)) has been extensively used in many-particle systems [8–12],

in particular in connection with the chemical picture. The main idea of the chemical picture is to treat
bound states on the same footing as “elementary” single particles. This way one describes correctly

1 Note that the interaction in nuclear systems is strong. However, the perturbation expansion is performed with respect to
the imaginary part of the self-energy that is assumed to be small. Most of the interaction is already taken into account in
the self-consistent determination of the quasiparticle energies. With increasing density, the Fermi energy will dominate
the potential energy so that the correlations are suppressed. A quasiparticle description can be used to calculate the
nuclear structure.
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the low-temperature, low-density region of many-body systems where bound states dominate. Within
a quantum statistical approach, the chemical picture is realized considering the A-particle propagator.
In ladder approximation, see Figure 2, the Bethe-Salpeter equation (BSE)

Gladder
A (1 . . . A; 1′ . . . A′; zA) = G0

A(1 . . . A; zA)δex(1 . . . A; 1′ . . . A′)
+∑1”...A” G0

A(1 . . . A; ; zA)VA(1 . . . A; 1” . . . A”)Gladder
A (1” . . . A”; 1′ . . . A′; zA) ,

(9)

is obtained, where zA is the A-particle Matsubara frequency, G0
A is the product of single-particle

propagators, VA(1 . . . A; 1” . . . A”) = 1
2 ∑i,j V2(ij, i”j”)∏k �=i,j δ(k, k”) is the A-particle interaction.

δex(1 . . . A; 1′ . . . A′) describes the antisymmetrization of the A-particle state.
The BSE is equivalent to the A-particle wave equation. Neglecting all medium effects we have

[E(0)(1) + · · ·+ E(0)(A)]ψAνP(1 . . . A) + ∑1′ ...A′ VA(1 . . . A; 1′ . . . A′)ΨAνP(1′ . . . A′)
= E(0)

A,ν(P)ΨAνP(1 . . . A) ,
(10)

where ν indicates the internal quantum number of the A-particle eigen states, including the channel
c describing spin and isospin state. Different excitations are possible in each channel c, in particular
bound states and scattering states.

= − +Gladd
2 Gladd

2

Figure 2. Ladder approximation Gladder
A for A = 2. Iteration gives the infinite sum of ladder diagrams.

The chemical picture uses the eigen-representation of the A-particle propagator. In ladder
approximation, neglecting medium effects,

Gladder,0
A (1 . . . A; 1′ . . . A′; zA) = ∑

ν

〈1 . . . A|ψAνP〉 1

zA − E(0)
A,ν(P)

〈ψAνP|1′ . . . A′〉 . (11)

In particular, it contains the contribution of A-particle bound states (nuclei) similar to the
“elementary” single particle propagator

G(0)
1 (1, z) =

1

z − E(0)
1 (p1)

. (12)

Within the representation of the perturbative expansion by Feynman diagrams, the chemical
picture implies that diagrams containing single-particle propagators should be completed by adding
A-particle propagators, at least for the bound states ν. However, also the scattering parts ν have to be
considered for a full description.

Coming back to Equation (5), different approximations for the self-energy Σ1(1, z) can be
considered. The main issues are the implementation of bound state formation which is of relevance
in the low-density region, and the account for density effect if considering higher densities, such as
mean-field approximations. To give some systematics with respect to the different approximations
calculating the self-energy and the corresponding approximation for the EoS, in Ref. [13] the following
overview was presented.

As seen in Table 1, to consider density effects, the ideal gas approximation is improved
by the mean-field approximation. Quasiparticle shifts are introduced in a semi-empirical way
within the relativistic mean-field (RMF) approximation2 or considering Skyrme parametrizations.

2 A Padé approximation of the nucleon quasiparticle shifts, applicable in a wide temperature range, can be found in Ref. [14].
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This approximation is assumed to give an adequate description of dense matter near and above the
saturation density but fails to describe correlations, in particular bound state formation, in the low
density region.

Table 1. Aspects of the quantum statistical description of a many-particle system with bound and
scattering states in the low-density limit (left column) and its modification due to medium effects at
high densities (right column).

Low Density Limit High Density Modification (Medium Effects)

(1) elementary particles

Ideal Fermi gas: Quasiparticle quantum liquid:
neutrons, protons mean-field approximation
(electrons, neutrinos,. . . ) Skyrme, Gogny, RMF

(2) bound state formation

Nuclear statistical equilibrium: Chemical equilibrium of quasiparticle clusters:
ideal mixture of all bound states medium modified bound state energies
chemical equilibrium, mass action law self-energy and Pauli blocking

(3) continuum contributions

Second virial coefficient: Generalized Beth-Uhlenbeck formula:
account of continuum correlations (A = 2) medium modified binding energies,
scattering phase shifts, Beth-Uhlenbeck Eq. medium modified scattering phase shifts

(4) chemical & physical picture

Cluster virial approach: Correlated medium:
all bound states (clusters) phase space occupation by all bound states
scattering phase shifts of all pairs in-medium correlations, quantum condensates

For this, the chemical picture is necessary, which is realized by a cluster decomposition of
the self-energy, see [10]. In particular, considering only the bound state part of the free A-particle
propagator, the nuclear statistical equilibrium (NSE) is obtained. However, also the scattering part of
the free A-particle propagator must be considered to obtain the correct second virial coefficient in the
case A = 2, as given by the Beth-Uhlenbeck formula [15]. A cluster Beth-Uhlenbeck formula has been
worked out [16] which considers the chemical picture, where scattering states between two arbitrary
clusters A and B are taken into account.

The inclusion of density effects for these approximations, as collected in Table 1, is not simple.
A generalized Beth-Uhlenbeck formula has been worked out in Ref. [12]. In this approach, the Pauli
blocking and the dissolution of bound states with increasing density is shown.

A more detailed approach should also take into account that the medium is not considered as
uncorrelated, but correlations in the medium have to be taken into account. The cluster-mean-field
(CMF) approximation has been worked out [11] where also clustering of the medium is treated. This is
of relevance in the region where correlations and bound state formation dominate.

These effects have been considered recently [17] in warm dense matter. Improving the NSE,
medium modifications of the bound states are discussed. For a consistent description, in particular of
the correct second virial coefficient, scattering phase shifts have been implemented. If clustering is
relevant, the medium cannot be approximated by an uncorrelated, ideal Fermion gas of quasiparticles,
but correlations must be taken into account.

Here we focus on the cluster virial expansion [16]. We consider density effects such as
single-particle quasiparticle shifts and Pauli blocking, which are responsible for the dissolution of
bound states and the appearance of a new state of matter. In the present section we treat nuclear clusters
which are dissolved to form a nuclear Fermi liquid when density increases. Later on we go a step
forward to investigate the dissolution of hadrons by medium effects to form the quark-gluon plasma.
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As shown in [17], using the cluster decomposition of the self-energy which takes into account,
in particular, cluster formation, we obtain

ntot
n (T, μn, μp) =

1
V ∑

A,ν,P
N fA,Z[EA,ν(P; T, μn, μp)],

ntot
p (T, μn, μp) =

1
V ∑

A,ν,P
Z fA,Z[EA,ν(P; T, μn, μp)] , (13)

where P denotes the center of mass (c.o.m.) momentum of the cluster (or, for A = 1, the momentum
of the nucleon). The internal quantum state ν contains the proton number Z and neutron number
N = A − Z of the cluster,

fA,Z(ω; T, μn, μp) =
1

exp[(ω − Nμn − Zμp)/T]− (−1)A (14)

is the Bose or Fermi distribution function for even or odd A, respectively, that is depending on
{T, μn, μp}. The integral over ω is performed within the quasiparticle approach, the quasiparticle
energies EA,ν(P; T, μn, μp) are depending on the medium characterized by {T, μn, μp}. Expressions for
the in-medium modifications are given in [17].

In Equation (13) the sum is to be taken over the mass number A of the cluster, the center-of-mass
momentum P, and the intrinsic quantum number ν. The summation over ν concerns the bound states
as far as they exist, as well as the continuum of scattering states. Solving the few-body problem what is
behind the calculation of the A-nucleon T matrices in the Green function approach, we can introduce
different channels (c) characterized, e.g., by spin and isospin quantum numbers. We assume that these
channels decouple. In contrast to the angular momentum which is not conserved, e.g., for tensor forces,
the contribution of different channels to Equation (13) is additive. The remaining intrinsic quantum
numbers will be denoted by νc, it concerns the bound states as far as they exist (ground states and
excited states), as well as the continuum of scattering states.

We analyze the contributions of the clusters (A ≥ 2), suppressing the thermodynamic variables
{T, μn, μp}. We have to perform the integral over the c.o.m. momentum P what, in general, must be
done numerically since the dependence of the in-medium quasiparticle energies EA,ν(P; T, μn, μp) on
P is complicated. We have in the non-degenerate case

[
∑P → V/(2π)3

∫
d3P

]
1
V ∑

ν,P
fA,Z[EA,ν(P)] = ∑

c
e(Nμn+Zμp)/T

∫ d3P
(2π)3 ∑

νc

gA,νc e−EA,νc (P)/T = ∑
c

∫ d3P
(2π)3 zA,c(P) (15)

with gA,c = 2sA,c + 1 the degeneration factor in the channel c. The partial density of the channel c at P

contains the intrinsic partition function

zA,c(P; T, μn, μp) = e(Nμn+Zμp)/T

{
bound

∑
νc

gA,νc e−EA,νc (P)/TΘ
[−EA,νc(P) + Econt

A,c (P)
]}

+ zcont
A,c (P). (16)

It can be decomposed in the bound state contribution and the contribution of scattering states
zcont

A,c (P; T, μn, μp). We emphasize that the subdivision of the intrinsic partition function into a bound
and a scattering contribution is artificial and not of physical relevance.

The summations over A, c and P of (16) remain to be done for the EOS (13), and Z may be included
in c. The region in the parameter space, in particular P, where bound states exist, may be restricted
what is expressed by the step function Θ(x) = 1, x ≥ 0; = 0 else. The continuum edge of scattering
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states is denoted by Econt
A,c (P; T, μn, μp). The intrinsic partition function zcont

A,c (P) contains the scattering
state contribution (non degenerate case)

zcont
A,c (P) =

∫ ∞

0

dE
2π

e(−E−P2/(2MA)+Nμn+Zμp)/T2 sin2 δc(E)
dδc(E)

dE
. (17)

Going beyond the ordinary Beth-Uhlenbeck formula [15], for nuclear matter the generalized
Beth-Uhlenbeck formula has been worked out in Ref. [12]. Here, the single-particle contribution is
described by quasiparticles, and to avoid double counting, the corresponding mean-field term must
be subtracted from the contribution of scattering states what leads to the appearance of the term
sin2 δc(E).

The NSE follows as a simple approximation where the sum is performed only over the bound
states, and medium effects are neglected. We obtain the model of a mixture of non-interacting bound
clusters, which can react so that chemical equilibrium is established. This approximation may be
applicable for the low-density, low-temperature region where the components are nearly freely moving,
and intrinsic excitations are not of relevance. However, the continuum of scattering states (the intrinsic
quantum number νc may contain the relative momentum) are of relevance at increasing temperature,
which is clearly seen in the exact Beth-Uhlenbeck expression [15] for the second virial coefficient.
Another argument to take the continuum of scattering states into account is the dissolution of bound
states at increasing density. Here, the thermodynamic properties behave smoothly because the
contribution of the bound state to the intrinsic partition function is replaced by the corresponding
contribution of the scattering states.

It turns out advantageous for analyses of the thermodynamics of the Mott transition, to avoid
the separation into a bound and a scattering state part of the spectrum and to include the discrete
part of the spectrum into the definition of the phase shifts, so that these are merely parameters of a
polar representation of the complex A−particle cluster propagator. The partition function then takes
the form

zA,c(P; T, μn, μp) =
∫ ∞

−∞

dE
2π

e(−E−P2/(2MA)+Nμn+Zμp)/T2 sin2 δc(E)
dδc(E)

dE
. (18)

As an example let us consider the case A = 2. A consistent description of the medium effects
should contain not only the mean-field shift of the quasiparticle energies but also the Pauli blocking,
as shown in this work for conserving approximations. Within the generalized Beth-Uhlenbeck
approach [12], Pauli blocking modifies the binding energy of the bound state (deuteron) in the
isospin-singlet channel as well as the scattering phase shifts. The integrand of the intrinsic partition
function is shown in Figure 3.

The intrinsic partition function zcont
A,c (P) cannot be divided unambiguously into a bound state

contribution and a contribution of scattering states. As seen from Figure 3, the sum of both contributions
behaves smoothly when with increasing density the bound state is dissolved. Therefore, we emphasize
that one should consider only the total intrinsic partition function including both, bound and scattering
contribution, as expressed by the generalized phase shifts as shown in Figure 3.

Whereas the two-body problem can be solved, e.g., using separable interaction potentials, and the
account of medium effects has been investigated [12], the evaluation of the contribution of clusters
with mass numbers A > 2 to the EoS is challenging. The medium modification of the cluster binding
energies has been calculated, e.g., using a variational approach [17]. Problematic is the inclusion of
scattering states, in particular the treatment of different channels describing the decomposition of the
A-particle cluster.
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Figure 3. Integrand of the intrinsic partition function as function of the intrinsic energy in the deuteron
channel. Different densities of the medium are considered, the temperature is T = 5 MeV. From [18].

In this work, we discuss the concept of a cluster-virial expansion and corresponding generalized
cluster-Beth Uhlenbeck approaches. This concept is based on the chemical picture where bound states
are considered as new components and can be treated in the same way as “elementary” particles. It is
generally accepted that a second virial coefficient can be introduced for systems consisting of atoms,
but also with molecules as components. The problem is the introduction of an effective interaction
between the components (including the quantum symmetry postulates for fermions or bosons), and
intrinsic excitations of the bound components are described in some approximations. Within the
NSE, we describe a nuclear system as a mixture of “free” nucleons in single-particle states as well as
of clusters (nuclei with A > 1). Taking into account the interaction between these components of a
nuclear system, from measured scattering phase shifts (for instance α − α scattering) a virial EoS can
be derived. Results have been presented in Ref. [19].

On a more microscopic level, we consider here interacting quarks which can form bound states
(hadrons), and the general approach should include both cases, the region of the quark-gluon plasma
and, after the confinement transition, the region of well established hadrons. A main difficulty is
the introduction of an effective interaction which can be made by fitting empirical data. However,
a systematic quantum statistical approach is needed to derive such effective interaction from a
fundamental Lagrangian, and to introduce the cluster states performing consistent approximations
and avoiding double counting of the contributions to the EoS and other physical properties.

The Green function technique as well as the path-integral approach are such systematic quantum
statistical approaches. Different contributions to the EoS are represented by Feynman diagrams, and
double counting is clearly excluded. A selection of diagram classes can be performed to recover the
chemical picture. As seen from Equation (11), after separation of the center-of-mass momentum �P,
the propagator for the A-particle bound states is

Gbound
A,ν (1 . . . A; 1′ . . . A′; zA) = 〈1 . . . A|ψAνP〉 1

zA − E(0)
A,ν(P)

〈ψAνP|1′ . . . A′〉 (19)

where ν covers only the bound state part of the internal quantum state of the A-particle cluster. As a
new element, the bound state propagator is introduced as indicated in Figure 4. This bound state
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propagator has the same analytical form like the single particle propagator (12), besides the appearance
of the internal wave function that determines the vertex function.

G GA
A A, sc= +

Figure 4. Splitting of the A-particle cluster propagator into a bound and scattering contribution.
Note that the internal quantum number has been dropped.

As discussed above, different approximations are obtained such as the nuclear statistical
equilibrium (NSE) and the cluster mean-field (CMF) approximation using the chemical picture.
These approximations are based on the bound state part of the A-particle propagator. They give
leading contributions in the low-density, low temperature range where bound states dominate the
composition of the many-particle system.

To improve the approximation, the remaining part of continuum correlations has also been taken
into account. From the point of view of the physical picture, these contributions arise in higher orders
of the virial expansion of the equation of state. As example, the formation of the A-particle bound
state is seen in the A-th virial coefficient, the mean-field shift due to a cluster B in the (A + B)-th virial
coefficient. The chemical picture indicates which high-order virial coefficients of the virial expansion
are essential, if the many-particle system is strongly correlated so that bound states are formed.

In an improved approximation, the scattering part of the A-particle propagator has to be
considered. It contributes also to the A-th virial coefficient. The scattering processes within the
A-particle system can have different channels. As an example we discuss here binary elastic scattering
processes between sub-clusters A1 and A2 of the system of A particles, A = A1 + A2. Binary phase
shifts δA1,A2(E) are introduced that describe the corresponding scattering experiments. They can also
be calculated within few-body theory. Besides the effective interaction between the sub-clusters that
are depending on the internal wave function of the sub-clusters, also virtual transitions to excited
states may be taken into account. In general, the effective interaction is non-local in space and time,
i.e., momentum and frequency dependent.

A generalized cluster Beth-Uhlenbeck formula, see Equation (16), is obtained when in particle
loops not the free propagator, but quasiparticle Green’s functions are used. If the quasiparticle shift
is calculated in Hartree-Fock approximation, the first order term of the interaction must be excluded
from the ladder Tladder

2 matrix to avoid double counting. The bound state part is not affected, it is
determined by an infinite number of diagrams. The scattering part is reduced subtracting the Born
contribution as shown in Equation (18) by the 2 [sin(δc)]

2 term; for the derivation see Ref. [12].
The continuum correlations that are not considered in the NSE give a contribution to the second

virial coefficient in the chemical picture. We can extract from the continuum part two contributions [17]:
resonances that can be treated like new particles in the law of mass action, and the quasiparticle shift
of the different components contributing to the law of mass action. Both processes are expected to
represent significant contributions of the continuum. After projecting out these effects, the residual
contribution of the two-nucleon continuum is assumed to be reduced. One can try to parametrize the
residual part, using the ambiguity in defining the bound state contribution. Eventually the residual
part of the continuum correlations can be neglected.

The correct formulation of the cluster-virial expansion [16] is considered to be a main ingredient
towards a unified EoS describing quark matter as well as nuclear matter. One has to introduce the
interaction between the constituents in a systematic way. The account of correlations in the continuum is
essential near the confinement phase transition where the hadronic bound states disappear. Conserving
approximations may lead to acceptable results for the EoS. An important issue is the account of
correlation in the medium, in particular when considering the Pauli blocking in the phase space of the
elementary constituents.
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3. Φ—Derivable Approach to the Cluster Virial Expansion for Nuclear Matter

Recently, it has been suggested [20] that the cluster virial expansion for many-particle systems [16]
can be formulated within the Φ–derivable approach [3,4]. This approach is straightforwardly
generalized to A–particle correlations in a many-fermion system

Ω =
A

∑
l=1

Ωl =
A

∑
l=1

⎧⎪⎪⎨
⎪⎪⎩cl

[
Tr ln

(
−G−1

l

)
+ Tr (Σl Gl)

]
+ ∑

i,j
i+j=l

Φ[Gi, Gj, Gi+j]

⎫⎪⎪⎬
⎪⎪⎭ , (20)

where the full A−particle Green’s function obeys the Dyson equation

G−1
A = G(0)−1

A − ΣA , (21)

where G(0)
A is the free A−particle Green’s function and the selfenergy is defined as a functional

derivative of the two-cluster irreducible Φ functional

ΣA(1 . . . A, 1′ . . . A′, zA) =
δΦ

δGA(1 . . . A, 1′ . . . A′, zA)
. (22)

This generalization of the Φ−derivable approach fulfills by its construction the conditions of
stationarity of the thermodynamical potential with respect to variations of the cluster Green’s functions

δΩ
δGA(1 . . . A, 1′ . . . A′, zA)

= 0 . (23)

The Φ functional for our purpose of defining a cluster decomposition of the system with inclusion
of residual interactions among the clusters captured by a second virial coefficient is given by a sum
of all two-loop diagrams that can be drawn with cluster Green’s functions Gi+j and their subcluster
Green’s functions Gi and Gj for a given bipartition with the appropriate vertex functions Γi+j;ij.
This generalization of the so-called “sunset” diagram case is depicted diagrammatically in Figure 5.

Figure 5. Left panel: The Φ functional for the general case of A−particle correlations in a many-fermion
system, whereby all bipartitions A = i + j into lower order clusters of sizes i and j shall be considered;
Right panel: Equivalent representation of the diagram in the left panel with the highest order cluster
Green’s function and the vertex functions replaced by the cluster T matrix, see Figure 6.

Herewith we have generalized the notion of the Φ−derivable approach to that of a system
where the hierarchy of higher order Green functions is built successively from the tower of all Greens
functions starting with the fundamental one G1. The open question is how to define the vertex
functions joining the cluster Greens functions. As a heuristic first step one may always introduce
local coupling constants, like in the Lee model discussed in the context of a Φ−derivable approach
by Weinhold et al. [6]. Introducing nonlocal formfactors at the vertices will correspond to a separable
representation of the interaction. The definition of the interaction can be absorbed in the introduction of
the cluster T-matrix in the corresponding channel which, in the ladder approximation, will reproduce
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the analytical properties encoded in the full cluster Green’s function concerning bound state poles and
scattering state continuum. This equivalence is depicted in Figure 6.

Figure 6. Diagrammatic representation for the replacement of the higher order Green’s function Gi+j

and the corresponding vertex functions in the Φ functional for the cluster virial expansion by the Ti+j

matrix for binary collisions in the channel with the partition i, j.

The TA matrix fulfills the Bethe-Salpeter equation in ladder approximation

Ti+j(1, 2, . . . , A; 1′, 2′, . . . A′; z) = Vi+j + Vi+jG
(0)
i+jTi+j , (24)

which in the separable approximation for the interaction potential,

Vi+j = Γi+j(1, 2, . . . , i; i + 1, i + 2, . . . , i + j)Γi+j(1′, 2′, . . . , i′; (i + 1)′, (i + 2)′, . . . , (i + j)′) , (25)

leads to the closed expression for the TA matrix

Ti+j(1, 2, . . . , i + j; 1′, 2′, . . . (i + j)′; z) = Vi+j
{

1 − Πi+j
}−1 , (26)

where the generalized polarization function

Πi+j = Tr
{

Γi+jG
(0)
i Γi+jG

(0)
j

}
(27)

has been introduced and the one-frequency free i−particle Green’s function is defined by the
(i − 1)-fold Matsubara sum

G(0)
i (1, 2, . . . , i; Ωi) = ∑ω1...ωi−1

1
ω1−E(1)

1
ω2−E(2) . . . 1

Ωi−(ω1+...ωi−1)−E(i)

= (1− f1)(1− f2)...(1− fi)−(−)i f1 f2... fi
Ωi−E(1)−E(2)−...E(i) .

(28)

Note that for these Green’s functions holds the relationship (Ωi+j = Ωi + Ωj)

G(0)
i+j = G(0)

i+j(1, 2, . . . , i + j; Ωi+j) = ∑
Ωi

G(0)
i (1, 2, . . . , i; Ωi)G

(0)
j (i + 1, i + 2, . . . , i + j; Ωj) . (29)

Another set of useful relationships follows from the fact that in the ladder approximation both,
the full two-cluster (i + j particle) T matrix (26) and the corresponding Greens’ function

Gi+j = G(0)
i+j
{

1 − Πi+j
}−1 (30)

have similar analytic properties determined by the i + j cluster polarization loop integral (27) and are
related by the identity

Ti+jG
(0)
i+j = Vi+jGi+j , (31)

which is straightforwardly proven by multiplying Equation (26) with G(0)
i+j and using Equation (30).

Since these two equivalent expressions in Equation (31) are at the same time equivalent to
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the two-cluster irreducible Φ functional introduced above in Equations (20) and Figure 5,
the functional relations

Ti+j = δΦ/δG(0)
i+j , (32)

Vi+j = δΦ/δGi+j (33)

follow and may become useful in proving cancellations that are essential for the relationship to the
Generalized Beth-Uhlenbeck approach as discussed below.

3.1. Generalized Beth-Uhlenbeck EoS from the Φ−Derivable Approach

Now we return to the question how the relation between the cluster Φ−derivable approach to the
partition Function (20) and the generalized Beth-Uhlenbeck equation for the cluster density may be
established. To this end we consider the partial density of the A−particle state defined as

nA(T, μ) = −∂ΩA
∂μ

. (34)

Taking into account that any analytic complex function F(ω) has the spectral representation

F(izn) =
∫ ∞

−∞

dω

2π

ImF(ω)

ω − izn
, (35)

we perform the Matsubara summation3 in Equation (20)

∑
zn

cA
ω − izn

= fA(ω) =
1

exp[(ω − μ)/T]− (−1)A . (36)

Using the relation ∂ fA(ω)/∂μ = −∂ fA(ω)/∂ω we get for Equation (34) now

nA(T, μ) = −dA
∫ d3q

(2π)3

∫ dω
2π fA(ω) ∂

∂ω

[
Im ln

(
−G−1

A

)
+ Im (ΣA GA)

]
+ ∑ i,j

i+j=A

∂Φ[Gi ,Gj ,GA ]

∂μ , (37)

where a partial integration over ω has been performed and the degeneracy factor dA for cluster state
has been introduced, stemming from the trace operation in the internal spaces.

Now we use the fact that for two-loop diagrams of the sunset type a cancellation holds [21,22]
which we generalize here for cluster states

dA

∫ d3q
(2π)3

∫ dω

2π
fA(ω)

∂

∂ω
(ReΣA ImGA)− ∑

i,j
i+j=A

∂Φ[Gi, Gj, GA]

∂μ
= 0 . (38)

Using generalized optical theorems [8,12] we can show that

∂

∂ω

[
Im ln

(
−G−1

A

)
+ ImΣA ReGA

]
= 2Im

[
GA ImΣA

∂

∂ω
G∗

A ImΣA

]
= −2 sin2 δA

∂δA
∂ω

, (39)

where the phase shifts δA have been introduced via the polar representation of the complex A−particle
propagator GA = |GA| exp(iδA). With these ingredients follows from the cluster Φ−derivable approach
the cluster virial expansion for the density in the form of a generalized Beth-Uhlenbeck EoS

3 For odd A, zn = (2n + 1)πT + μ are the fermionic Matsubara frequencies and for even A, zn = 2nπT + μ the bosonic ones.

23



Universe 2018, 4, 67

n(T, μ) =
A

∑
i=1

ni(T, μ) =
A

∑
i=1

di

∫ d3q
(2π)3

∫ dω

2π
fi(ω)2 sin2 δi

∂δi
∂ω

. (40)

In this way we have drawn the connection between the cluster virial expansion of Ref. [16]
reviewed in the previous section with the Φ−derivable approach [3,4]. In the following subsection
we consider the example of deuterons in nuclear matter in order to elucidate the application of
the approach.

3.2. Deuterons in Nuclear Matter

Within the Φ−derivable approach [3,4] the grand canonical thermodynamic potential for a dense
fermion system with two-particle correlations is given as

Ω = −Tr {ln(−G1)} − Tr{Σ1G1}+ Tr {ln(−G2)}+ Tr{Σ2G2}+ Φ[G1, G2] , (41)

where the full propagators obey the Dyson-Schwinger equations

G−1
1 (1, z) = z − E1(p1)− Σ1(1, z); G−1

2 (12, 1′2′, z) = z − E1(p1)− E2(p2)− Σ2(12, 1′2′, z), (42)

with selfenergies

Σ1(1, 1′) =
δΦ

δG1(1, 1′) ; Σ2(12, 1′2′, z) =
δΦ

δG2(12, 1′2′, z)
, (43)

which are defined by the choice for the Φ functional, a two-particle irreducible set of diagrams such
the ones in Figure 7.

Figure 7. (Left) panel: Two-particle irreducible Φ functional describing two-particle correlations
(double line with arrow) of elementary fermions (single arrowed lines); (Right) panel: Cluster Hartree
approximation, following from replacing the two-cluster T matrix in the Φ functional of Figure 5 with
the two-cluster potential Vi+j.

The functional for the thermodynamic potential (41) is constructed such that the requirement of
its stationarity,

∂Ω
∂G1

=
∂Ω
∂G2

= 0 , (44)

in thermodynamic equilibrium is equivalent to Equation (4)

n = − 1
V

∂Ω
∂μ

=
1
V ∑

1

∫ ∞

−∞

dω

π
f1(ω)S1(1, ω) , (45)

where S1(1, ω) = 2�G1(1, ω + iη) is the fermion spectral function and Equation (45) expresses particle
number conservation in a system with volume V.
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Having introduced the notion of a cluster expansion of the Φ functional we want to suggest
a definition which eliminates the unknown vertex functions in favour of the TA+B matrix which
describes the nonperturbative binary collisions of A− and B− particle correlations in the channel
A + B, see Figure 6. The application of this scheme to the simplest case of two-particle correlations in
the deuteron channel in nuclear matter results in the selfenergy [12]

Σ(1, z) = ∑
2

∫ dω

2π
S(2, ω)

{
f (ω)V(12, 12)−

∫ dE
π

�T(12, 12; E + iη)
f (ω) + g(E)
E − z − ω

}
, (46)

where f (ω) = [exp(ω/T) + 1]−1 is the Fermi function and g(ω) = [exp(ω/T) − 1]−1 the Bose
function. The decomposition (46) corresponds to a cluster decomposition of the nucleon density

n(μ, T) = nqu(μ, T) + 2ncorr(μ, T) , (47)

where the correlation density

ncorr =
∫ dE

2π
g(E)2 sin2 δ(E)

dδ(E)
dE

, (48)

contains besides the bound state a scattering state contribution as can be seen from examining
the derivative of the phase shift shown in Figure 3. The one-particle density of free quasiparticle
nucleons nqu is reduced in order to fulfil the baryon number conservation in the presence of deuteron
correlations and contains a selfenergy contribution due to the deuteron correlations in the medium.
This improvement of the quasiparticle picture due to the correlated medium accounted for by
the consistent definition of the selfenergy as a derivative of the Φ Functional (20) is the reason
the continuum correlations (48) are reduced by the factor 2 sin2 δ as compared to the traditional
Beth-Uhlenbeck formula [15,23]. For details, see [8,12]. With the definition of the Φ functional
via the T matrix in Figure 6 we were able to show the correspondence between the generalized
Beth-Uhlenbeck approach and the Φ−derivable approach for the nonrelativistic potential model
approach to two-particle correlations in a warm, dense Fermion system [12,16]. Now we would like
to discuss its application to a relativistic model for correlations in quark matter: mesons, diquarks
and baryons.

4. Cluster Virial Expansion for Quark-Hadron Matter within the Φ Derivable Approach

Finally, we would like to sketch how the Φ derivable approach can be employed to define a
cluster virial expansion for quark-hadron matter consisting of quarks (Q), mesons (M), diquarks (D)
and baryons (B) that can represent a unified quark-hadron matter EoS. The thermodynamical potential
for this system obtains the form very similar to the case of clustered nuclear matter, i.e.,

Ω = ∑
i=Q,M,D,B

ci

[
Tr ln

(
−G−1

i

)
+ Tr (Σi Gi)

]
+ Φ

[
GQ, GM, GD, GB

]
, (49)

= ∑
i=Q,M,D,B

di

∫ d3q
(2π)3

∫ dω

2π

{
ω + 2T ln

[
1 − e−ω/T

]}
2 sin2 δi

∂δi
∂ω

. (50)

where ci = 1/2 (ci = −1/2) for bosonic (fermionic) states and di are the degeneracy factors that
stem from the trace operation in the internal spaces of the quark, meson, diquark and baryon states.
We suggest that in going from Equations (49) to (50) the same cancellations apply that were used above
for the density formula and that are known to apply also for the entropy [21,22] would allow to derive
this generalized Beth-Uhlenbeck equation of state for the thermodynamic potential, i.e., the negative
pressure, once we restrict ourselves to the minimal set of two-particle irreducible diagrams in defining
the Φ functional by the class of sunset type diagrams only, as given in Figure 8.
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Figure 8. The contributions to the Φ functional for the quark-meson-diquark-baryon system.

From this Φ functional follow the selfenergies defining the full Greens functions of the system by
functional derivation

Σi =
δ Φ

[
GQ, GM, GD, GB

]
δ Gi

. (51)

The resulting Feynman diagrams for the selfenergy contributions are given in Figure 9.
Note that it is immediately plain from this formulation that in the situation of confinement,

when the propagators belonging to colored excitations (quarks and diquarks) and thus to states that
could not be populated would be cancelled, the system simplifies considerably. When all closed loop
diagrams containing quarks and diquarks are neglected, this system reduces to a meson-baryon system.
Out of the five closed-loop diagrams of Figure 8 remains then only the rightmost one from which the
two selfenergy diagrams in Figure 9 emerge that contain only meson and baryon lines.

Figure 9. The selfenergy contributions for the Greens functions of the quark-meson-diquark-baryon
system, defined by the Φ functional contributions shown in Figure 4. From top to down the four
rows of diagrams show the selfenergies for the full propagators of mesons, quarks, diquarks and
baryons, respectively.
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4.1. Relativistic Density Functional Approach to Nuclear Matter

In the limit of quark (and gluon) confinement, the meson-baryon system can be further
reduced when the mesonic degrees of freedom are not considered as dynamic ones but just as their
meanfield values coupled to the baryon degrees of freedom with effective, possibly density- and
temperature-dependent couplings, as sketched in Figure 10.

U =

Figure 10. Effective density-functional for the interaction of species i and j given by a density-dependent
coupling Gi+j as the local limit of a Φ functional.

In this case, the Φ−derivable approach reduces to a selfconsistent relativistic meanfield theory of
nuclear matter,

Ω = T ∑
i=n,p,Λ,...

ci

[
Tr ln S−1

i,qu + ∑
j=S,V

ni,jΣi,j

]
+ U [{ni,S, ni,V}] , (52)

where the functional U
[{

ni,j
}]

stands for the interaction in the system and is expressed in terms of
the couplings of bilinears of the baryon spinors that define their scalar and vector densities ni,S and
ni,V , resp. The thermodynamic potential (52), where the role of the Φ functional is now played by the
U functional that depends not on the propagators but on the densities and is therefore called a density
functional. The thermodynamic potential (52) shares with the Φ−derivable approach the fulfillment of
the conditions of stationarity

∂Ω
∂ni,S

=
∂Ω

∂ni,V
= 0 , i = n, p, Λ, . . . , (53)

and selfconsistency, which is provided by the fact that the (now real) selfenergies in the Dyson
equations are obtained as derivatives of the U functional

∂U
∂ni,S

= Σi,S ,
∂U

∂ni,V
= Σi,V . (54)

The baryon quasiparticle propagators Si,qu fulfill the Dyson equations S−1
i,qu = S−1

i,0 − Σi,S − Σi,V ,
diagrammatically given as

= + . (55)
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To this class of relativistic density functional models for baryonic matter belong the
density-dependent relativistic meanfield models known as, e.g., DD2, NL3, KVOR, TM1. Their
nonrelativistic relatives are the density functional models of the Skyrme type.

Recently, these models have been augmented with the inclusion of hadronic excluded volume
effects. For an elaborate version of such corrections, see [24]. The origin of the excluded volume effects
is the quark substructure of the baryons which entails the quark exchange effects between baryons
that are a consequence of the Pauli principle on the quark level of description.

4.2. Quark Pauli Blocking in Hadronic Matter

The step to cancel all diagrams that contain propagators of colored excitations with the argument
of confinement may be a too drastic step when we want to describe matter with a high density so that
phase space occupation effects shall become important and the hadronic bound states “remember”
their quark substructure. Formally these effects are included into the selfconsistent description of
quark-hadron matter within the Φ−derivable approach outlined above in Equation (50) with the Φ
functional given by the diagrams in Figure 8. In the limit of the confined phase, however, it is important
to restore these quark substructure effects as they will drive the system towards deconfinement for
sufficiently large densities. This can be accomplished by including selfenergy diagrams containing
quark and diquark lines in Figure 9 in a perturbative manner by considering their propagators not
fully selfconsistently, but in first order with respect to their selfenergies.

= + +O(Σ(2)) (56)

= + +O(Σ(2)) (57)

Here the quark and diquark quasiparticle propagator lines in Equations (56) and (57) are defined
by a Dyson-Schwinger equation as given generically in Equation (55), but with a density functional for
the effective interaction that is appropriate for the decription os quark matter and will be discussed in
detail in Section 4.4.

In such a way two quark-diquark substructure contributions to the baryon selfenergy appear
due to the corrections (56) and (57) beyond the quasiparticle approximation for quark and diquark
propagators

= Ω(Σ(0)) + + +O(Σ(2)) . (58)

They contain one closed baryon line and are therefore of first order in the baryon density.
By functional derivative w.r.t. the baryon propagator line (cutting) an effective quark and diquark
exchange interaction can be obtained from those contributions to the baryon selfenergy shown in
Equation (58). The diagram for the quark exchange interaction between baryons resulting from cutting
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the baryon line in the first of the two diagrams in Equation (58) is shown in (59) in two forms which
are topologically equivalent,

⇔ . (59)

Analogously, the diquark exchange interaction is obtained by cutting the baryon line in the second
of the two diagrams in Equation (58).

The quark Pauli blocking effects in nuclear matter have been evaluated in a nonrelativistic
approximation with a confining potential model in Refs. [25,26] where it was found that the result
for the repulsive density-dependent nucleon-nucleon interaction corresponds well to the repulsive
part of the effective Skyrme interaction functional in Ref. [27]. Note that the resulting EoS has been
successfully applied in predicting massive hybrid stars with quark matter cores [28]. A flaw of the
nonrelativistic calculations of the quark Pauli blocking effect is that the quark mass is a fixed parameter
so that partial chiral symmetry restoration in dense hadronic matter as a selfenergy effect on the quark
propagator (consistent with the quark exchange) is not accounted for. This question has recently been
taken up by Blaschke, Grigorian and Röpke who demonstrated that a chirally improved calculation of
the quark Pauli blocking effect results in an EoS for nuclear matter that is similar to the DD2 model
with excluded volume [24].

Strange quarks as well as strange hadrons belong to the system of our model, as it is formulated
for any flavour. Interesting new aspects, which are expected from this approach concern, for instance,
the Pauli blocking between baryons, including hyperons, in dense matter. This shall be of relevance
for the discussion of the hyperon puzzle in compact stars [29,30].

The quark Pauli blocking effect applies also to mesons and corresponding expressions for
selfenergy effects can be extracted from the Φ−derivable approach in a similar manner as for the
baryons. This has been outlined in Ref. [31]. In a nonrelativistic potential model calculation, an effective
quark exchange potential for the π-π interaction has been derived [32] which reproduces the scattering
length of the pion interaction in the isospin = 2 channel, see also [33].

Let us now turn to the other limit of the Φ−derivable approach to a unified EoS for quark-hadron
matter, the case of deconfined quarks. In this case, also chiral symmetry is restored, and due to the
resulting lowering of the mass threshold the meson and baryon states become unbound (Mott effect).
Their contribution to the thermodynamics as captured in the corresponding phase shift functions
is gradually vanishing at high temperatures and chemical potentials with just chiral quark matter
remaining asymptotically. As a paradigmatic example for the treatment of Mott dissociation of hadrons
in hot, dense matter let us consider the case of pion dissociation in hot quark matter.

4.3. Mott Dissociation of Pions in Quark Matter

In order to describe the problem of mesons in quark matter within the Φ−derivable approach we
define the Φ functional and the corresponding selfenergy in Figure 11.

29



Universe 2018, 4, 67

Figure 11. The Φ functional (left panel) for the case of mesons in quark matter, where the bosonic
meson propagator is defined by the dashed line and the fermionic quark propagators are shown by the
solid lines with arrows. The corresponding meson and quark selfenergies are shown in the middle and
right panels, respectively.

The meson polarization loop ΠM(q, z) in the middle panel of Figure 11 enters the definition of the
meson T matrix (often called propagator)

T−1
M (q, ω + iη) = G−1

S − ΠM(q, ω + iη) = |TM(q, ω)|−1e−iδM(q,ω) , (60)

which in the polar representation introduces a phase shift δM(q, ω) = arctan(�TM/�TM), that results
in a generalized Beth-Uhlenbeck equation of state for the thermodynamics of the consistently coupled
quark-meson system [34].

Ω = ΩMF + ΩM , (61)

where the selfconsistent quark meanfield contribution is

ΩMF =
σ2

MF
4GS

− 2NcNf

∫ d3 p
(2π)3

[
Ep + T ln

(
1 + e−(Ep−Σ+−μ)/T

)
+ T ln

(
1 + e−(Ep+Σ−+μ)/T

)]
, (62)

with the quasiparticle energy shift for quarks (antiquarks) due to mesonic correlations given
by Σ± = ∑M=π,σ trD [ΣMΛ±γ0] /2 and the positive (negative) energy projection operators
Λ± = (1 ± γ0)/2. The mesonic contribution to the thermodynamics is

ΩM = dM

∫ d3k
(2π)3

∫ dω

2π

{
ω + 2T ln

[
1 − e−ω/T

]}
2 sin2 δM(k, ω)

δM(k, ω)

dω
, (63)

where similar to the case of deuterons in nuclear matter the factor 2 sin2 δM accounts for the fact
that mesonic correlations in the continuum are partly already accounted for by the selfenergies ΣM
defining the improved selfconsistent quasiparticle picture. In the previous works of Refs. [34–38] on
this topic, however, the effect of the backreaction from mesonic correlations on the quark meanfield
thermodynamics had been disregarded. In Figure 12 we show the phase shift of the pion as a
quark-antiquark state for different temperatures, below and above the Mott dissociation temperature.
The shape of these functions and their evolution with increasing temperature over the Mott dissociation
resembles the similar behaviour of the deuteron phase shift in nuclear matter at increasing density,
see Figure 3.
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Figure 12. Phase shift of the pion as a quark-antiquark state for different temperatures, below and
above the Mott dissociation temperature, from Ref. [34,39].

Here we note from the Φ−derivable approach that for consistency the quark propagator in the
quark meanfield thermodynamic potential shall contain effects from the selfenergy ΣM due to the
coupling to the mesonic correlations as in the right panel of Figure 11. This total quark selfenergy is
the given by Σ(p, p0) = σMF + ΣM(p, p0), where for a local NJL model with scalar coupling constant
GS the meanfield contribution is

σMF = 2Nf NcGS

∫ d3 p
(2π)3

m
Ep

[1 − f (Ep − μ)− f (Ep + μ)] , (64)

and the contribution due to scalar/pseudoscalar mesons (corresponding to the diagram shown in the
rightmost panel of Figure 11) is given by [40]

ΣM(0, p0) = dM

∫ d4q
(2π)4 π�M(q, q0)

{
(γ0 + m/Eq)[1 + g(q0)− f (Eq − μ)]

q0 − p0 + Eq − μ − iη

+
(γ0 − m/Eq)[g(q0) + f (Eq + μ)]

q0 − p0 − Eq − μ − iη

}
,

(65)

where �M = (−1/π)�TM(q, ω + iη) is the meson spectral density and Eq =
√

q2 + m2 is the quark
dispersion law with the quark mass m = m0 + σMF. One can observe the similarity of this result (65)
with that for a Dirac fermion coupled to a pointlike scalar meson, as given in [41].

Finally, let us consider the aspect of quark deconfinement in dense matter within a relativistic
density functional approach which can be considered as a local limit of the Φ−derivable approach
to quark-hadron matter (50) that obtains a form similar to the relativistic density functional theory
for hadronic matter. The important difference lies in the density functional that in the case of quark
matter shall account for confining effects, see [25,42]. In the final part of this section, we outline the
recently developed relativistic version of the so-called string-flip model that proved rather successful
for phenomenological applications to compact stars, supernovae and neutron star mergers.
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4.4. Relativistic Density Functional Approach to Quark Matter

Hence, one obtains a contribution to the energy density functional of quark matter
correspondingly [43]. In analogy to the Walecka model of nuclear matter [44], the relativistic
density-functional approach to interacting quark matter can be obtained from the path integral
approach based on the partition function [42],

Z =
∫

Dq̄Dq exp
{∫ β

0
dτ
∫

V
d3x [Leff + q̄γ0μ̂q]

}
, (66)

with q = (qu, qd)
T, μ̂ = diag(μu, μd) and effective Lagrangian density Leff = Lfree − U(q̄q, q̄γ0q).

The interaction is given by the potential U(q̄q, q̄γ0q), which is a nonlinear functional of the scalar and
vector quark field-currents. In the mean-field approximation, this potential can be expanded around
the expectation values of the field currents, ns = 〈q̄q〉 and nv = 〈q̄γ0q〉 respectively,

U(q̄q, q̄γ0q) = U(ns, nv) + (q̄q − ns)Σs + (q̄γ0q − nv)Σv + . . . , (67)

with scalar and vector self-energies, Σs and Σv. By appropriate rearranging of the quantities and
performing the path integrals of Equation (66) one gets the thermodynamic potential

Ω = −T lnZ = Ωquasi + U(ns, nv)− nsΣs − nvΣv . (68)

The quasi-particle term (for the case of isospin symmetry and degenerate flavors)

Ωquasi = −2NcNf T
∫ d3 p

(2π)3

{
ln
[
1 + e−β(E∗−μ∗)

]
+ ln

[
1 + e−β(E∗+μ∗)

]}
(69)

can be calculated by using the ideal Fermi gas distribution for quarks with the quasiparticle energy
E∗ =

√
p2 + M2, the effective mass M = m + Σs and effective chemical potential μ∗ = μ − Σv. The self

energies are determined by the density derivations

Σs =
∂U(ns, nv)

∂ns
, and (70)

Σv =
∂U(ns, nv)

∂nv
. (71)

In this approach the stationarity of the thermodynamical potential

0 =
∂Ω
∂ns

=
∂Ω
∂nv

(72)

is always fulfilled. For the case of isospin asymmetry, see Ref. [42].
In the mean-field approximation, the correlation energy can be obtained by folding the

string-length distribution function for a given density with some interaction potential [25,45,46].
Moreover, the average string length between quarks in uniform matter is related to the scalar density,
ns, being proportional to n−1/3

s . To capture this phenomenology, the following density functional of
the interaction is adopted,

U(ns, nv) = D(nv)n2/3
s + an2

v +
bn4

v
1 + cn2

v
. (73)

The first term captures aspects of (quark) confinement through the density dependent scalar
self-energy,

Σs =
2
3

D(nv)n−1/3
s , (74)
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defining the effective quark mass M = m + Σs. We also employ higher-order quark interactions [47],
by inclusion of the third term in Equation (73), for the description of hybrid stars (neutron stars with a
quark matter core) in order to obey the observational constraint of 2 M�. To this end, the denominator
in the last term of Equation (73) guarantees that for the appropriate choice of the parameters b and
c, causality is not violated (i.e., the speed of sound cs =

√
∂P/∂ε does not exceed the speed of light).

All terms in Equation (73) that contain the vector density contribute to the shift defining the effective
chemical potentials μ∗ = μ − ΣV, where

Σv = 2anv +
4bn3

v
1 + cn2

v
− 2bcn5

v
(1 + cn2

v)
2 +

∂D(nv)

∂nv
n2/3

s . (75)

The SFM modification takes into account the effective reduction of the in-medium string tension,
D(nv) = D0φ(nv; α). It is understood as a consequence of the modification of the pressure on the color
field lines by the dual Meissner effect, since the reduction of the available volume corresponds to the
reduction of the non-perturbative dual superconductor QCD vacuum that determines the strength
of the confining potential between the quarks. The reduction of the string tension is modeled via a
Gaussian function of the baryon density nv,

φ(nv; α) = exp
[
−α(nv · fm3)2

]
, (76)

similar the available volume fraction in dense nuclear matter (see [24] and Section 5.3 below), as it
shall be related to the available volume of nonperturbative QCD vacuum that according to the dual
superconductor model is responsible for the formation of stringy color field configurations because of
the dual Meissner effect. A detailed discussion of the role of the parameters a, b, c and α is given in
Ref. [42].

5. Applications in Core-Collapse Supernovae and Neutron Stars

In the recent years the equation of state (EoS) has been significantly constraint, in particular
at densities around and in excess of nuclear saturation density (ρ0). At densities ρ ≤ ρ0,
chiral effective field theory is the ab-initio approach to the nuclear many-body problem of dilute
neutron matter [48–54]. Moreover, the high-precision observation of massive neutron stars of about
2 M� [55–57] constraints the supersaturation-density EoS, i.e., sufficient stiffness is required. The latter
aspect challenges the appearance of additional particle degrees of freedom, e.g., hyperons and quarks,
which tend to soften the EoS at ρ > ρ0.

While neutron stars feature matter in β-equilibrium at zero temperature, the challenge lays
in the development of EoS for core-collapse supernova applications, which cover a large domain
of temperature, density and isospin asymmetry (cf. Figure 1a of Ref. [58]). At T ≤ 0.5 MeV,
time-dependent processes determine the nuclear composition, where heavy nuclei dominate. With
increasing temperature, towards T � 0.5 MeV, complete chemical and thermal equilibrium known
as NSE (nuclear statistical equilibrium) is achieved, where, the nuclear composition is determined
from the three independent variables: T, ρ (or nB), yC (baryonic charge fraction). Note that there is
a strong density dependence, i.e., these heavy nuclei, originally belonging to the iron group with
A � 56, become increasingly heavier with increasing density. This phenomenon is well known also
from the neutron star crust, where due to the low temperatures only a single nucleus exists for at given
density, instead of a (broad) distribution as in the supernova case. At ρ = ρ0 and at temperatures
above T = 5 − 10 MeV, nuclei dissolve at the liquid-gas phase transition into homogeneous nuclear
matter composed of (quasi-free) nucleons [16,59,60].

It becomes evident that first-principle calculations covering the entire domain are presently
inexistent. Instead, model EOS are being developed for astrophysical applications. These combine
several domains with different degrees of freedom, i.e., heavy nuclei at low temperatures,
inhomogeneous nuclear matter with light and heavy nuclei together with the free nucleons (mean
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field), and homogeneous matter at high temperatures and densities. The latter has long been subject to
investigations of a possible phase transition to the quark-gluon plasma.

The role of the EOS in simulations of core-collapse supernovae was explored within the failed
scenario and consequently the formation of black holes, with focus on the dynamics and the neutrino
signal [61–64]. In the multi-dimensional framework, neutrino-driven supernova explosions were the
subjects of investigation [65–67], where it was found that such explosions are favored for soft EOS [68]
with an earlier onset of shock revival and generally higher explosion energies, in comparison to stiff
EOS [69]. Moreover, the role of the nuclear symmetry energy has been reviewed [70]. This an important
nuclear matter parameter has a strong density dependence and becomes more tightly constrained by
experiments, nuclear theory and observations [71,72].

5.1. Heavy Nuclear Clusters with A � 56

At low temperatures (T < 0.5 MeV) time-dependent nuclear processes determine the evolution,
which corresponds to the outer core of the stellar progenitor, with the nuclear composition of
dominantly silicon, sulfur as well as carbon and oxygen. In some cases, even parts of the hydrogen-rich
helium envelope are taken into account, e.g., in simulations of supernova explosions following the
shock evolution for tens of seconds through parts of the stellar envelope. Therefore, small nuclear
reaction networks are commonly employed in supernova studies [73,74]. They are sufficient for the
nuclear energy generation.

At T � 0.5 MeV, NSE is fulfilled and the relation μ(A,Z) = Zμp + (A − Z)μn between the
chemical potential of nuclei μ(A,Z), with atomic mass A and charge Z, and the chemical potentials
of neutron μn and proton μp holds. The NSE conditions found in the collapsing stellar core feature
a broad distribution of nuclei with a pronounced peak around the iron-group, at low densities (see
Figure 2 of Ref. [58]). In simulations of supernovae, this nuclear distribution is classified by the
NSE average, including nuclear shell effects as discussed [75], which extends beyond the commonly
used single-nucleus approximation. This is important for the consideration of weak processes with
heavy nuclei. In particular, rates for electron captures on protons bound in these heavy nuclei [76]
are averaged over the NSE composition and provided to the community as a table. In addition,
coherent neutrino-nucleus scattering is considered [77], where even inelastic contributions are take
into account [78], as well as nuclear (de)excitations [79,80]. The profound understanding of weak
processes associated with nuclear transitions is also important for the understanding of the physics of
the neutron star crust (cf. Ref. [81] and references therein), in particular for accreting neutron stars
leading to the phenomenon of deep-crustal heating [82–84].

5.2. Light Nuclear Clusters with A ≤ 4

In the domain corresponding to NSE, there is a rather narrow density domain where light nuclear
clusters such as 2H, 3H, 3He and 4He can exist, at finite temperatures on the order of few MeV [59].
There are two aspects related to the presence of these light nuclear clusters, modification of the nuclear
EOS due to these degrees of freedom, and the neutrino response due to the inclusion of a large variety of
weak processes (cf. Table 1 in Ref. [85]). Common model supernova EOS with (light) clusters are based
on the modified NSE [75]. However, the dissolving of the clusters towards high density is mimicked by
the geometric excluded volume approach, as well as by hand with increasing temperature. This applies
equally for light and heavy nuclear clusters. In comparison with the state-of-the-art quantum statistical
approach [86,87] the deficits of NSE are revealed [58], while the cluster-virial EOS can provide the
constraint at low densities [16]. It relates to the overestimation of the abundance of light clusters and
in particular the too late dissolving of clusters into homogeneous matter.

Besides the NSE approach with ’all’ (light) clusters included, in simulations of core-collapse
supernovae the simplified nuclear composition (n, p, α, 〈A, Z〉), with only 4He as representative light
cluster, has long been employed [68,69]. It leads to an overestimate of the abundances of the unbound
baryons and 4He. This has important consequences for the supernova results, since such simplistic
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approach overestimates the neutrino response with the neutrons and protons, which in turn changes
the supernova neutrino fluxes and spectra, however, with only a mild impact on the overall supernova
dynamics [58].

In supernova simulations the temperatures are generally too high for any significant abundance of
any light cluster. Only when the supernova explosion onset has been launched and the remnant central
proto-neutron star deleptonizes and cools via the emission of neutrinos, light clusters can start to play
a role. However, it has been demonstrated that neutral-current reactions are dominated by scattering
on free neutrons, which is the most abundant nuclear species due to the generally large neutron excess
(>95%) of supernova matter. Scattering reactions with light clusters play a negligible role. On the other
hand, the neutrino response for light clusters is dominated by charged-current (break-up) reactions
involving deuteron, triton and helium-3. However, the νe charged-current opacity is dominated by
absorption on free neutrons. The situation is different for ν̄e, since it was shown that protons and
light clusters have similar abundances [58,85]. Taking properly into medium modifications for the
cross sections and the proper phase-space of the contributing particles, the final rates are generally
small. They never reach values as for the standard rates with protons, and hence the impact from
charged-current weak processes with light clusters was found to be negligible [58,85]. Note that this
study was based on the NSE approach which generally overestimates the abundance of light clusters.
Hence, any improved treatment of the nuclear composition will most likely even reduce the impact of
light clusters and the associated weak processes.

5.3. Homogeneous Matter at Supersaturation Density and Phase Transition to Quark Matter

With increasing densities, around ρ0 (depending on the temperature), the transition to
homogeneous nuclear matter proceeds where the EOS becomes less and less constrained by
nuclear physics. As discussed above, the quark substructure of baryons shall become apparent at
supersaturation densities and manifest itself by a nucleonic hard core repulsion due to quark Pauli
blocking. This effect is likely to be enhanced by chiral symmetry restoration at high densities. To explore
its role for the nuclear EOS at supersaturation densities the geometric excluded volume mechanism
can be employed [24], where the available volume of the nucleons, VN = V φ(ρ; v), is proportional to
the total volume V of the system where as proportionality factor occurs the available volume fraction

φ(ρ; v) = exp
[
−|v|v (ρ − ρ0)

2
]

. (77)

This is a density functional taken here according to [24] in a Gaussian form similar to (76).
Depending on the sign of the excluded volume parameter, v, it allows to model both, stiffening and
softening of the supersaturation-density EOS based on some reference model. This approach has been
applied to confirm the independence of supernova simulations, e.g., the supernova shock dynamics as
well as the evolution of neutrino luminosities and average energies, on the supersaturation-density
EOS [88]. In studies of neutron stars, this approach results in significantly altered neutron star
properties, e.g., maximum masses and radii [42,47]. The latter property is currently constraint only
poorly, from the analysis of observations of low-mass x-ray binary systems [89–91].

Another uncertain aspect of the supersaturation-density EoS is the possibility of a phase transition
from nuclear matter, with hadrons as degrees of freedom, to the deconfined quark gluon plasma with
quarks and gluons as the new degrees of freedom. This has long been explored in the context of cold
neutron stars. Unfortunately, the evaluation of the partition function of Quantum Chromodynamics
(QCD)—the theory of strongly interacting matter—is possible only at vanishing baryon density
by means of large-scale numerical simulations of this gauge field theory in a representation on
space-time lattices [92,93]. These numerical ab-initio solutions predict a smooth cross-over transition
at a temperature of T = 154 ± 9 MeV at μB � 0, see Refs. [94–96]. Consequently, to study the role
of quark degrees of freedom at high baryon densities, effective models for low-energy QCD have to
be employed. Generally, the nuclear and quark matter phases are modeled separately and a phase
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transition construction is employed. This so-called two-phase approach results in a first-order phase
transition by design. Note further that perturbative QCD, which is valid in the limit of asymptotic
freedom, where the smallness of the coupling between quarks allows the usage of perturbative
methods and corrections to the behaviour of an ideal gas of ultra-relativistic particles [97] are small,
become applicable only at extremely high temperatures and densities exceeding by far the values
attainable in compact stars or ultrarelativistic heavy-ion collisions. Instead, for studies of neutron
stars and supernovae, effective quark matter models have been commonly employed, such as the
thermodynamic bag model [98], models based on the Nambu-Jona-Lasinio (NJL) type [99–101], the
recently developed vector-interaction enhanced chiral bag model [102,103] and in particular the
density-functional-based DD2-SFM hybrid EoS approach [42] that has been outlined above. With the
finite-temperature extension of the DD2F-SFM EoS it was possible to show that the deconfinement
phase transition may serve as an explosion mechanism for massive (∼50 M�) blue-supergiant
stars [104] long sought-for. At the same time, it explains the occurrence of a population of neutron
stars born with high masses.

It has been realized that repulsive interactions are the necessary ingredient to provide a sufficient
stiffness for the EOS at high densities in order to yield massive neutron stars with quark-matter core
(known as hybrid stars) in agreement with the current constraint of 2 M�. Moreover, higher-order
vector repulsion terms [42,47] can lead to the ’twin’ phenomenon (cf. [105–108] and references therein).
It relates to the existence of compact stellar objects with similar-to-equal masses but different radii, to a
strong phase transition with a large latent heat. As a consequence, the hybrid stars for such an EoS
appear in the mass-radius diagram on a disconnected “third family” branch, separated from the branch
of neutron stars (second family) by a sequence of unstable configurations. As has been demonstrated
impressively for the DD2-SFM hybrid EoS [42], by varying only the available volume parameter
α describing the screening of the confining interaction in dense matter, the twin phenomenon can
be obtained at high masses of ∼2 M� as well as for typical pulsar masses of 1.3–1.4 M� or even
below. This feature allows to discuss such hybrid stars in the context of the first multi-messenger
observation of the binary compact star merger GW170817 [109], where such a scenario appears as an
alternative to the conservative one of a binary neutron star merger with a relatively soft EoS [110–112].
In this interesting situation the NICER (Neutron Star Interior Composition Explorer)4 NASA mission
has the potential to rule out the soft EoS scenario, when it would measure for its primary target,
the nearest millisecond pulsar PSR J0437-4715 with a mass of 1.44 ± 0.07 M� a large radius of, say,
14 km with the expected high precision of 0.5 km. Such a measurement would contradict the constraint
on compactness of neutron stars extracted from GW170817 in the double neutron star merger scenario
that constrains the radius in the mass range of 1.4 M� to R < 13.4 km, see [113]. Such a measurement
would imply the discovery of the third family of compact stars [112] with an onset mass in the mass
range 1.16–1.60 M� extracted from the gravitational wave signal of binary inspiral [109].

6. Cluster Formation and Quark Deconfinement Transition in Heavy-Ion Collisions

6.1. Light Cluster Formation and Symmetry Energy in Low-Energy Heavy-Ion Collisions

The only possibility to probe the properties of hot and dense nuclear matter in the laboratory
are heavy ion collisions (HIC). The fragment distributions, their energy spectra and correlations
measured in the detectors are used to infer the properties of the initial state (“fireball”) produced in
HIC. To reconstruct the initial state, one has to model the time evolution of the expanding hot and
dense matter, including the formation of correlations and clusters.

A strict quantum statistical approach to this nonequilibrium process is not available at present.
A possible method is the Zubarev nonequilibrium statistical operator which is able to describe the

4 https://www.nasa.gov/nicer
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formation of correlations in the expanding hot and dense matter [13,114]. First steps to describe cluster
formation (A < 4) in expanding matter have been performed [115], but have to be worked out further,
in particular to include larger clusters (A ≥ 4). Kinetic codes based on a single-particle description, but
also QMD and AMD codes which simulate cluster formation using the coalescence model and simpler
concepts, have to be improved to obtain a microscopic description of cluster formation. Work in this
direction is in progress [14,116,117]. Alternatively, the freeze-out concept has been used to model
the expansion process of the “fireball”. Within the chemical freeze-out approach, it is assumed that
at a certain instant of the expanding and down-cooling fireball, the composition is frozen because
the “chemical” reactions become slow so that the composition remains unchanged. This concept of
a sudden freeze-out has been applied to HIC not only at moderate energies, but also at very high
energies [14]. We give a short summary of some results obtained from HIC experiments at moderate
energies (≈35 MeV/A), where the production of light clusters was measured and interpreted within
a freeze-out model. The main issue of these investigation was to show the relevance of clustering in
nuclear systems and the necessity to describe medium effects. In particular, the equation of state of
nuclear matter is of interest, at moderate temperatures (T ≤ 20 MeV) and at subsaturation densities.

A first series of experiments was related to the symmetry energy [118–122].
In contrast to the standard treatment of symmetry energy within mean-field approaches, see, for

instance, [123], it does not vanish in the zero density limit, but is significantly determined by cluster
formation in the low-density region. This is a very obvious result, and more or less trivial in the
density region where medium effects can be neglected. However, going to higher densities, medium
effects, in particular the dissolution of bound states, must be included so that a smooth transition to
the near-saturation density region is expected, where mean-field approaches can be applied. It has
been shown in [118–122] that general expressions for the symmetry energy can be obtained which
reproduce the results of experiments at low densities, determined by cluster formation, but agree with
mean-field approaches at high densities. A cluster-virial approach may improve the description in the
intermediate region.

The direct observation of medium effects in the nuclear matter EoS from HIC experiments is
more involved. The composition, in particular the yield of light clusters (A ≤ 4), is obtained in the
low-density limit from a mass-action law using the binding energies of free nuclei. We discussed
this approach above, Section 2, as nuclear statistical equilibrium (NSE). A special ratio of cluster
yields Yi, the so-called chemical constant KA = YA/(YZ

p YN
n ), can be considered which in this

low-density limit is solely a function of the temperature and the volume, but not the chemical potentials.
Because in chemical equilibrium the chemical potentials of the cluster A, consisting of Z protons and
N = A − Z neutrons, are related as μA = Zμp + Nμn, the chemical potentials cancel in the low-density
limit. This simple approach, neglecting any density effects, has been disproved by experiments
with HIC [124]. The reason is the modification of the binding energies if the density is increasing.
In particular, self-energy shifts and Pauli blocking lead to the reduction of the binding energy and
the dissolution at the so called Mott density. The measured chemical constants can be used for
the experimental determination of in-medium cluster binding energies and Mott points in nuclear
matter [125].

We can discus these experimental results as clear indication for the need to consider medium
effects. Within a QS approach including quasiparticle shifts and correlations in the continuum [17],
it was possible to reproduce the data for the chemical constants of the light elements d, t, h, α obtained
from the cluster yields. More simple models for medium corrections such as the semiempirical
excluded volume concept [75] can be adapted to reproduce the data [126].

Also for these experiments, a nuclear matter EoS is needed which describes cluster formation
and the medium modification, as well as the treatment of continuum correlations. A cluster-virial
approach may improve the calculation of the EoS in a wide region of the phase diagram.

In conclusion, medium effects, in particular self-energy shifts and Pauli blocking for light
clusters, are verified by recent HIC experiments. An improved cluster viral approach should be
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worked out to describe adequately the contributions of correlations in the continuum, expressed
by in-medium scattering phase shifts between the different constituents. The freeze-out model to
describe the expanding fireball may be considered as an approximation to treat the nonequilibrium
process. Kinetic approaches, for instance transport codes allowing for cluster production (such as
QMD or AMD), may be developed further to include in-medium correlation effects. This would allow
for a systematic and consistent treatment of HIC experiments. Nevertheless, the correct description
of the thermodynamic equilibrium, in particular the cluster viral approach, is a benchmark for all
nonequilibrium approaches, and should be advanced in the future.

6.2. Deconfinement Transition in Relativistic Heavy-Ion Collisions

The main goal of the theoretical developments towards a unified EoS for quark-hadron matter
is to achieve a most reliable prediction for the behavior of warm, dense strongly interacting matter
including the deconfinement transition, which is described here as a Mott dissociation of baryonic
and mesonic bound states, triggered by the restoration of the dynamically broken chiral restoration.
Dynamical chiral symmetry breaking is a rather robust phenomenon that can be described in a broad
variety of chiral quark models of the Nambu-Jona-Lasinio type, i.e., with a four-fermion interaction of
the current-current form with a sufficiently strong coupling to allow for a nontrivial solution of the
gap equation for the quark mass. This is a nonperturbative effect that cannot be obtained in any finite
order of perturbation theory and is nowadays an obligatory element of modern descriptions of quark
matter. At finite temperatures, however, such models often fail to provide a sensible description of
the EoS of QCD matter since the quark matter pressure dominates over the hadronic one already at
unphysically low temperatures, due to the lack of a quark confinement mechanism in those models.
A simple way out is provided by adopting a bag pressure for mimicking confinement. This is a too
simple concept and spoils the beauty of a dynamical description. While the details of the confinement
mechanism in QCD are still debated, a viable compromise is provided by the concept of a confining
density functional that is based on string-type interactions between color charges and, together with
the concept of saturation of color interactions within nearest neighbors (string-flip model) allows
for the treatment of such confining interactions in quark matter within a relativistic, selfconsistent
quasiparticle model.

The success of the DD2(DD2F)-SFM hybrid EoS for astrophysical applications has been
summarized in the previous section. The applications for heavy-ion collisions, in the isospin-symmetric
case, are still under way. A necessary requirement for a sensible description of the complex system
of an ultrarelativistic heavy-ion collision calls for a numerical simulation code like THESEUS,
the three-fluid hydrodynamics-based event simulator extended by UrQMD simulations of final-state
interactions [127]. Such a description is most appropriate for the investigation of possible effects of a
phase transition in the baryon stopping regime, i.e., when the projectile and target fluids collide and
form a highly compressed baryonic matter system, i.e., in the collision energy range

√
sNN = 2 − 20

which is covered by the THESEUS program and by the high-statistics collison experiments like NA61,
RHIC BES or RHIC FXT and the upcoming NICA and FAIR experiments. Therefore, we have chosen
THESEUS as the tool for identifying the QCD phase transition and for investigating the effects of a
first-order phase transition on heavy-ion collision observables. Previous studies of this question have
been performed with THESEUS [128] and with the three-fluid hydrodynamics code in it [129–131]
using model EoS of three kinds: purely hadronic, crossover and with a strong first-order transition 5.
The upgrade of the EoS with the DD2(DD2F)-SFM hybrid EoS as described in this work is under way.

5 Recently, a thermodynamically consistent generalization of the excluded-volume improved RDF approach to the hadronic
EoS has been suggested which employs a density- and temperature-dependent excluded volume parameter. Within this
setting, a second first-order phase transition with a critical endpoint in the QCD phase diagram has been obtained [132].
Such a formulation may be most convenient, e.g., for Bayesian studies of the structure of the QCD phase diagram to be
extracted from data of heavy-ion collision experiments.
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In particular, one expects modifications from the lower density region of the phase transition and its
temperature dependence (for a direct comparison, see the right panel of Figure 2 in [133]) and a better
description of flow observables due to the increased stiffening of the high-density part of the new
hybrid EoS when compared to the one in Ref. [127].

A main goal of the unified approach to the quark-hadron EoS as outlined in this work is the
possibility to obtain an EoS with a second critical endpoint in the QCD phase diagram associated with
the chiral/deconfinement transition. The first one, corresponding to the liquid-gas phase transition
in nuclear matter is already an integral part of the RDF description of nuclear matter within the
DD2(DD2F) part of the present approach. We want to point out that with this approach one may have
achieved a systematic formulation of a theory for quark-hadron matter that allows to address also the
presently puzzling questions of chemical freezeout of hadrons and nuclei like:

1. Can the success of the thermal statistical model in describing the production of nuclear clusters as
measured by the ALICE experiment at LHC [134] be interpreted so that they freeze out directly
when hadronizing the QGP so that they may be viewed as preformed multiquark systems already
in the QGP?

2. What are the necessary ingredients to understand chemical freezeout of hadrons and clusters
kinetically [135]?

With these prospects for the development of a unified quark-hadron matter EoS we want to
conclude the present work.

7. Conclusions

We have outlined an approach to a unified equation of state for quark-hadron matter on the
basis of a Φ−derivable approach to the generalized Beth-Uhlenbeck equation of state for a cluster
decomposition of thermodynamic quantities like the density. To this end we have summarized
the cluster virial expansion for nuclear matter and demonstrated the equivalence of the Green’s
function approach to the Φ−derivable formulation. As an example, the formation and dissociation of
deuterons in nuclear matter was discussed. We have formulated the cluster Φ−derivable approach to
quark-hadron matter which allows to take into account the specifics of chiral symmetry restoration
and deconfinement in triggering the Mott-dissociation of hadrons. Applications to the phenomenology
of nuclear clusters and quark deconfinement in the astrophysics of supernovae and compact stars as
well as in heavy-ion collisions are outlined.

This approach unifies the description of a strongly coupled quark-gluon plasma with that of
a medium-modified hadron resonance gas description which are shown to be its limiting cases.
The developed formalism shall replace the common two-phase approach to the description of the
deconfinement and chiral phase transition, where separately developed equations of state for hadronic
and quark matter are matched with Gibbs conditions of phase equilibrium. Roughly speaking, one
would develop a Ginzburg-Landau-type density functional which allows first, second and higher-order
transitions, including crossovers. Examples are the van-der-Waals EoS which has a first-order transition
with critical endpoint or the RMF models of nuclear matter for the liquid-gas transition. The cluster
virial expansion shall allow a formulation of the quark-hadron transition in a similar way.
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Abstract: High-density nuclear symmetry energy is of crucial importance in astrophysics. Information
on such energy has been obtained from mass–radius determinations of neutron stars (NSs), and
in the future NS mergers will increasingly contribute. In the laboratory, the symmetry energy can be
studied in heavy-ion collisions (HICs) at different incident energies over a large range, from very
low to several times higher saturation density. Transport theory is necessary to extract the symmetry
energy from the typically non-equilibrated nuclear collisions. In this contribution, we first review
the transport approaches, their differences, and recent studies of their reliability. We then discuss
several prominent observables, which have been used to determine the symmetry energy at high
density: collective flow, light cluster emission, and particle production. It is finally argued that
the results of the symmetry energy from microscopic many-body calculations, nuclear structure,
nuclear reactions, and astrophysics begin to converge but still need considerable improvements in
terms of accuracy.

Keywords: nuclear symmetry energy; heavy-ion collisions; transport theory; collective flow; light
cluster emission; meson production

1. Introduction

The nuclear equation of state (EoS) specifies the energy density of nuclear matter without Coulomb
energy as a function of density, temperature, and asymmetry. For zero temperature, it is usually written
in the lowest order in asymmetry as E(ρ, δ) = E0(ρ) + Esym(ρ)δ2, where δ = (ρn − ρp)/ρ and ρn, ρp,
and ρ are the neutron, proton, and total densities, respectively. The energy density of symmetric
nuclear matter E0 has been extensively investigated in heavy-ion collisions (HICs) in the past, and
a consensus has been reached: that it is rather soft, that is, rises less than linearly with density, and
is also momentum dependent [1,2]. The nuclear symmetry energy Esym(ρ) is less well understood.
Studies with HICs at energies below about 400 MeV have constrained it fairly well around and below
saturation density ρ0 ≈ 0.16 fm/c [3]. However, the high-density behavior is still a matter of debate.
Microscopic many-body calculations still diverge considerably at higher densities. The reasons are seen
in the uncertainty of three-body forces and of short-range isovector correlations and in the question of
the strangeness content. The symmetry energy is often represented as an expansion around saturation
density as Esym(ρ) = S0 +

L
3

ρ−ρ0
ρ0

+
Ksym

18 ( ρ−ρ0
ρ0

)2, where S0 is the value and L and Ksym proportional to
the slope and curvature, respectively, of the symmetry energy at saturation. L has been determined to
be in the range of 50 to 100 MeV [3] and is a measure of the stiffness of the symmetry energy.

On the other hand, the nuclear symmetry energy is a crucial input for the understanding of
astrophysical objects. The structure of neutron stars (NSs) and the explodability of core-collapse
supernovae (CCSNe) depend critically on the properties of neutron-rich nuclear matter and thus on
the symmetry energy. Astrophysical observations have yielded important constraints on the nuclear
symmetry energy. The Tolman–Openheimer–Volkov equation relates the symmetry energy directly to
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the mass–radius relation of NSs. The observation of NSs with masses of around 2 solar masses already
excludes symmetry energies that are too soft [4]. Radii are difficult to measure, as they depend on
the interpretation of γ- or X-ray emission and are even more difficult to obtain simultaneously with
masses. However, Bayesian analysis methods already also set limits here [5,6]. The satellite experiment
Neutron star Interior Composition Explorer (NICER) should provide more and better data.

The very recent discovery of the gravitational wave event GW170817 from a NS merger [7],
together with the observation of a short gamma-ray burst (GRB) [8,9] and the optical afterglow,
promises further important insights into high-density symmetry energy. In addition to determining
the masses of the merging NSs, it was possible to obtain limits on their tidal deformabilities,
which are also directly given by the EoS, similarly to the mass–radius relation of NSs [10]. Figure 1
shows an example of the results of interpretations of the NS merger [11,12]. The mass–radius
relation for a number of models for the EoS is shown together with the constraints originating
from the observation of 2 solar mass NSs, as well as from the limits of the tidal deformabilities of
the GW170817 event [13]. It is seen that these constraints together already exclude several models for
the EoS. If the possibility of a quark phase in the interior of NSs is considered, the constraints become
more complex [14]. Further observations of NS mergers will provide more information in the future.
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Figure 1. (Color on-line) Mass–radius relation of neutron stars (NSs) predicted for different relativistic
mean-field (RMF) models identified in the legend. Shown also are the masses of two heavy NSs and
the constraints following from the tidal deformability of the GW event. Figure taken from [11] with
permission.

The EoS can also be investigated in terrestrial laboratories in HICs. In energetic collisions, densities
of up to several times the saturation density can be reached, similar to those that are thought to exist
in NSs. In HICs, one has the possibility to scan the density in certain ranges via the incident energy
and colliding masses and the asymmetry by the choice of the collision system. The latter is limited by
the asymmetries of available projectiles and targets but is being extended by the use of exotic beams.
However, the high-density phase only exists for the short time span of the collision in the order of 1 to
100 fm/c, depending on the energy. In order to draw conclusions from the final asymptotic observables
to the properties of the dense medium, the evolution of the collision has to be described in detail.
This is achieved by various transport descriptions. As the system in these collisions is out of equilibrium
for most of the time, transport also takes into account the non-equilibrium nature. Hydrodynamical
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treatments, which assume a local equilibrium, and statistical treatments, which assume a global
equilibrium, are often not adequate, at least not for the whole process. On the other hand, transport
descriptions are complex, and the necessary approximations, the implementations, and the accuracy
are issues that also have to be discussed.

This contribution aims to review the issues, the problems, and some of the results of the study
of high-density symmetry energy with emphasis on HICs. Thus we first discuss the transport theories
and then give some examples of observables that have been used to constrain the symmetry energies.
It is beyond the scope here to discuss in more detail than the above the constraints on the symmetry
energy from NS observations. A good collection of articles regarding this can be found in the recent
special volume on symmetry energy, published by B.A. Li et al. in [2]. Finally, we summarize the present
status of these studies on symmetry energy.

2. Theoretical Considerations

2.1. Overview of Transport Theories

Transport theory is necessary to draw conclusions on the EoS from HIC experiments to account
for the non-equilibrium nature of the process. Practical transport approaches are derived from
non-equilibrium many-body physics by a chain of approximations [15,16]. One usually starts
from the Martin–Schwinger real-time Green function formalism, which by a folded time path with
forward and backward branches takes into account the time-reversal asymmetry. The hierarchy of
many-body densities is truncated by the factorization of the two-body density and by introducing
single-particle self-energies. One arrives at the Kadanoff–Baym theory for the non-local densities and
self-energies. With a Wigner transform, this is cast into an equation in phase space {�r,�p}. A gradient
approximation in the first order in h̄ leads to a semiclassical description, where a quantity f (�r,�p; t)
can be interpreted as the phase-space probability. At this stage, there are still two independent
Green functions, which can be transformed into the above phase-space probability and a spectral
function for the off-shell particles. In the quasi-particle approximation, the spectral function is taken
to be on-shell in terms of effective momenta and masses. With these approximations, one arrives at
an equation of the Boltzmann–Vlasov type for the evolution of the phase-space probability f (�r,�p; t)
under the influence of a self-consistent mean field U[ f ] and of two-body collisions as the dissipative
mechanism, which non-relativistically reads

∂ f1

∂t
+

�p
m
∇�r f1 −∇�rU∇�p f1 = (1)

(
2π

m
)3
∫

d�p2d�p3d�p4|�v1 −�v2|σNN(Ω12)δ(�p1 + �p2 − �p3 − �p3)( f3 f4 f̄1 f̄2 − f1 f2 f̄3 f̄4).

Here fi ≡ f (�r, �pi; t) and f̄i = (1 − fi) are the blocking factors, which assure the Pauli principle
for the final state of a collision, and which are the essential quantum ingredient in this equation
apart from the initialization. The vi are velocities, and σNN(Ω) is the in-medium nucleon–nucleon
(NN) cross-section. The potential U[ f ] and the cross-section are either derived from a nuclear
energy density functional E[ f ] or are parametrized. The Coulomb interaction is included separately.
If the energy functional explicitly depends on f , then the potential can be momentum dependent,
which adds another term to the left-hand side of the transport equation. The physical components
of the equation, namely, the potential and in-medium cross-sections, are not independent, but are
connected by an approximation scheme for the self-energies. An obvious choice is the Brückner
scheme for the effective in-medium interaction, used in a local-density approximation. This has
either been used directly [17] or in parametrized Yukawa-like form with meson–nucleon couplings,
which depend on the density and may in addition depend on the energy [18,19]. If particle production,
for example, of pions and Δ resonances, is to be considered, additional physics input is needed: inelastic
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cross-sections, potentials of the new particles, their cross-sections, and, possibly, mass distributions of
unstable particles, simulating the off-shell effects.

The temperature T does not enter explicitly into the transport equation but rather into
the distribution function, which may or may not be well represented by an equilibrium distribution,
which could be characterized by a temperature. If the interaction is specified by an energy density
functional, then these effects are implicitly included. The same functional is then evaluated for
a ground-state distribution function to obtain the EoS and the symmetry energy at zero temperature.

Equation (1) is often referred to as the Boltzmann–Uehling–Uhlenbeck (BUU) equation but is
also known by other names. It is a complex non-linear integro-differential equation, which is usually
solved by the test particle (TP) method, where the distribution function is represented in terms of finite
elements, TPs, as

f (�r,�p; t) =
1

NTP

ANTP

∑
i=1

g(�r −�ri(t)) g̃(�p − �pi(t)). (2)

Here NTP is the number of TPs per nucleon,�ri and �pi are the time-dependent coordinates and
momenta of the TPs, and g and g̃ are the shape functions in coordinate and momentum space
(e.g., δ-functions or Gaussians), respectively. Upon inserting this ansatz into the left-hand side
of Equation (2), Hamiltonian equations of motion for the TPs are obtained, d�ri

dt = �pi and d�pi
dt = −�∇ri U.

The collision term is simulated stochastically, by performing TP collisions with a probability depending
on the cross-section and obeying the Pauli principle for the final state according to blocking factors
f̄i = (1 − fi).

A second family of transport approaches is the quantum molecular dynamics (QMD) model,
in which the evolution of the collision is formulated in terms of the evolution of the coordinates Ri(t)
and momenta Pi(t) of the individual nucleons, similarly to as in classical molecular dynamics, but with
particles of finite width representing minimum nucleon wave packets, with the width usually assumed
to be constant. These move under the influence of NN forces. The method can also be viewed as
being derived from the time-dependent Hartree (TDH) method with a product trial wave-function of
single-particle states in Gaussian form. One obtains equations of motion of the same form as in BUU
in this case for the coordinates of the wave packets. There is also a version of anti-symmetrized
molecular dynamics (AMD) [20], which takes into account the anti-symmetrization of the wave
packets. The equations of motion become non-local but are of similar type. Additionally, in QMD and
AMD, a stochastic two-body collision term is introduced and treated in very much the same way as
in BUU, but now for nucleons and the full NN cross-section. There are also relativistic formulations for
both approaches using relativistic density functionals. A review of the BUU method is given in [21],
while the QMD method is reviewed in [22].

2.2. Fluctuations

The main difference between the two approaches lies in the number of fluctuations and
correlations in the representation of the phase-space distribution. In the BUU approach, the phase-space
distribution function is seen as a smooth function of coordinates and momenta and can be
increasingly better approximated by increasing the number of TPs. In the limit of NTP → ∞, the TP
method provides an exact solution of the BUU equation, which is strictly deterministic and has no
fluctuations. However, fluctuations are a necessary companion of dissipative dynamics, as expressed
by the dissipation–fluctuation theorem. In practice, they are important in the expansion phase of
a HIC, which often proceeds through mechanically unstable conditions and may lead to fragmentation
of the residual nuclei. If such phenomena are to be described, one has to add a fluctuation term
to the equation, which leads to the Boltzmann–Langevin equation. Approximate treatments of
fluctuations in HICs have been implemented in [23–26]. In practice, NTP is finite, in the order of
50 to 100 depending on the assumed shape of the TP, which leads to numerical fluctuations. In early
treatments, these have been gauged to reproduce the unstable properties of the medium. In QMD,
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fluctuations are present because of the intrinsically finite number of wave packets in the representation
of the phase space. The fluctuations are smoothed and regulated by the choice of the width parameter
of the wave packets. In addition, classical correlations are present if explicit two-body interactions
are used. QMD can be seen as an event generator solving the time evolution of different events
independently. Event-by-event fluctuations are not suppressed by increasing the number of events.

The results of simulations with the two methods are thus expected to be similar, although not
necessarily identical, as far as one-body observables are concerned. Larger differences are expected
for observables depending on fluctuations and correlations, such as the production of clusters and
intermediate-mass fragments. Generally, the description of observables going beyond the mean-field
level is a question under active discussion in transport theory. In the experiment, copious numbers of
light clusters and fragments were observed in HICs, particularly at lower energies.

2.3. Code Comparison

In addition to these more fundamental differences between transport approaches, there are also
differences that are caused by different implementations of the highly complex transport theories.
Analyses of experimental data with seemingly similar physics input have led to rather different
conclusions. The analyses of the FOPI π−/π+ ratios, as discussed below, represent an example.
In order to reach a better understanding of possible reasons, a code-comparison project was undertaken.
In a first comparison, results for standard Au+Au collisions at 100 and 400 AMeV incident energies with
identical physics input were compared [27]. Eighteen commonly used transport codes, of both BUU and
QMD type, participated. Comparisons of the stability of the initialized configuration; of the collision
rates and the effectiveness of Pauli blocking; and of observables, such as the longitudinal and transverse
flow, were discussed. The results for the flow parameter, that is, for the slope of the transverse flow at
midrapidity, are shown in Figure 2 for the different codes. We are more interested here in the qualitative
behavior of the different codes. It would go beyond the scope to identify the different codes and their
properties in detail; one should refer rather to [27]. While there is a general agreement, quantitatively
the differences were found to depend on the incident energy and amounted to approximately 30% at
100 MeV/nucleon and 15% at 400 MeV/nucleon, respectively.

Figure 2. (Color on-line) Comparison of flow parameters (transverse momentum at midrapidity)
in Au+Au collisions at 100 AMeV (square (black) symbols) and 400 AMeV (triangular (red) symbols)
for codes of Boltzmann–Uehling–Uhlenbeck (BUU) type (left) and quantum molecular dynamics (QMD)
type (right). For the identification of the different codes, see [27], from where this figure is taken.

In order to better understand these still appreciable differences, this was followed up by
a comparison of calculations in a box with periodic boundary conditions, which approximates
a calculation in infinite nuclear matter. The advantages of box calculations are that common initial
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conditions of a given density and temperature are easier to achieve, that the different ingredients of
the transport codes can be tested separately, and that the results can be compared in many cases to exact
limits. A first comparison of this kind investigated the treatment of the collision integral by switching
off the mean field, without and with including the Pauli blocking, that is, by comparing Cascade
calculations [28]. Without the Pauli blocking, the codes agreed to within a few percent among each
other and with the exact limits, and the remaining small differences could be understood in most cases.
Including the Pauli blocking, there were considerable differences. The collision rates for initializations
of normal density and temperature T = 5 MeV for the different codes are shown in Figure 3 and
compared to the exact limit, represented there by the line labeled CBOP2T5. Again, we do not discuss
the different codes in detai; this is done in [28]. The results are shown for the first time step, for which
the momentum distributions were still identical, and were time-averaged over the evolution, during
which the momentum distribution changed in different ways for the different codes. These differences
are seen not to be very important relative to the considerable differences seen regarding the exact limit.
There are systematic differences between BUU and QMD and also between codes of the same kind.
The main reason for the differences was found to be from fluctuations when calculating the occupation
probability in the final phase-space cell of the collision partners, which led to differences in the Pauli
blocking. These fluctuations, and their differences in BUU and QMD approaches, are discussed above.
The consequence of the larger fluctuations in QMD codes was seen in systematically higher collision
rates. On the other hand, the proper treatment of fluctuations in transport codes is still debated.
The box comparisons are presently continued for the mean-field propagation and for pion production.
It is anticipated that these comparisons can provide benchmark calculations against which existing
and new transport codes can be compared.

Figure 3. (Color on-line) Comparison of collision rates in box calculations at normal density
and temperature T = 5 MeV (denoted as CBOP1T5) for different Boltzmann–Uehling–Uhlenbeck
(BUU)-type (left) and quantum molecular dynamics (QMD)-type (right) codes. Star symbols give
the result for the first time step; square symbols give time-averaged rates. They are compared to
a numerical, essentially exact, result for this case (solid line, denoted as CBOP2T5). For the identification
of different codes, see [28], from where this figure is taken.

3. Symmetry Energy in Heavy-Ion Collisions

3.1. Overview

In intermediate-energy HICs, dense and hot matter is formed for very short time periods
in the order of 10−22 fm/c. The connection of these conditions to the asymptotic observables
is provided by transport approaches as discussed above. Nuclear matter in HICs is only moderately
asymmetric with asymmetries δ < 0.2. Thus in HICs, both the EoS of symmetric nuclear matter
E0 and the symmetry energy Esym are involved, with the symmetric matter giving the greatest
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contribution. In the past, the emphasis for HICs was put on the investigation of the symmetric
EoS. It is thought that this has been fairly well determined by a variety of probes, mainly connected
to collective phenomena [1] and to K-meson ratios [29]. The sensitivity to the symmetry energy part
of the EoS can be increased by focusing on ratios or differences of observables for isospin partners,
such as, for example, protons and neutrons or positively and negatively charged pions, hoping that
the still-existent uncertainties in the isoscalar part of the EoS cancel out to a large extent.

The densities reached in HICs depend on the incident energy, on the system masses, and on
the impact parameter of the collision. For peripheral collisions, the spectator–participant model
has been useful, as it separates the warmly heated spectators of initially normal density from
the strongly excited fireball, which on the other hand is observed in central collisions of similar-size
ions. For energies of up to a few hundred MeV per nucleon in central collisions, densities about 20–30%
in excess of saturation density are reached. In this regime, the interest is particularly on the decay and
subsequent fragmentation, which contain rich information on the symmetry energy at densities below
saturation in the isospin sharing of the fragments. Particularly, the value and the slope of the symmetry
energy at saturation energy are extracted in these studies [3,30].

In relativistic collisions, up to several GeV per nucleon densities of up to 2–3 ρ0 are reached.
The collective motion of the final particles represents direct evidence of the symmetry energy, because
the neutron–proton differences are directly driven by the isospin-dependent part of the mean field and
thus by the symmetry energy. Additionally, nucleons and light clusters are emitted early in the collision,
and the ratios of this pre-equilibrium emission gives complementary information on the symmetry
energy at high density. Finally, in energetic collisions, mesons are produced in increasing multiplicities.
The production of isospin partners depends on the asymmetry of the matter in which they are produced,
and thus they are indirect probes of the effects on the symmetry energy. In the following, we discuss
examples of such observables to demonstrate the possibilities and challenges to determine the density
dependence of the symmetry energy in HICs.

3.2. Collective Flow

The flow of nuclear matter out of the interaction region indicates compression. The flow can be
characterized by a kinetic momentum tensor. Non-sphericity indicates dynamic effects originating
from the EoS, whose orientation with respect to the beam direction represents the collective sideward or
directed flow. A difference in the two minor axes indicates the existence of elliptic flow. It has become
customary to express both directed and elliptic flows, as well as possible higher-flow components,
by means of a Fourier decomposition of the azimuthal distributions measured with respect to
the orientation of the reaction plane φR [31]:

dN
d(φ − φR)

=
N0

2π

(
1 + 2 ∑

n≥1
vn cos n(φ − φR)

)
, (3)

where N0 is the azimuthally integrated yield. The coefficients vn ≡ 〈cos n(φ − φR)〉 are functions of
particle type, impact parameter, rapidity y, and the transverse momentum pt; v1 and v2 are the directed
and elliptic flows, respectively.

Directed flow indicates the repulsion or attraction of the colliding nuclei and thus the deflection
in the reaction plane. It originates from the compressional properties of the EoS, but also from
the momentum dependence of the potential, particularly at higher incident energies. Thus it may also
reverse its sign at higher energies, such as is shown, for example, by Ivanov [32]. The elliptic flow
describes the squeeze-out of the participant matter perpendicular to the reaction plane and is thus
very directly connected to compression. It is a promising probe of the stiffness of the EoS and has been
investigated in detail in symmetric and asymmetric nuclear matter.

An excitation function of the elliptic flow of Z = 1 particles in 197Au+197Au collisions compiled
from various experiments [33] is shown in Figure 4. At lower energies, the collective angular
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momentum in the mean-field-dominated dynamics causes the observed in-plane enhancement of
emitted reaction products; that is, v2 > 0. Squeeze-out perpendicular to the reaction plane, that is,
v2 < 0, as a result of shadowing by the spectator remnants is observed at incident energies between
about 150 and 4 GeV/nucleon with a maximum near 400 MeV/nucleon. Thus elliptic flow at these
energies is particularly sensitive to the compression energy and thus to the EoS. The figure also shows
that elliptic flow can be measured quite precisely, as demonstrated by the good agreement of data sets
from different experiments in the overlap regions of the studied intervals in collision energy [33–35].

To determine the high-density symmetry energy, the neutron–proton differential measurement of
elliptic flow is particularly promising [36]. It involves the more difficult measurement of neutron flow.
Such measurements have been performed recently by the ASY-EOS collaboration at the Gesellschaft
für Schwerionenforschung (GSI) in Darmstadt, Germany [37], and a result of this experiment and
the analysis using a QMD code is shown in Figure 5. Here the flow ratio of neutrons over all
charged particles is shown as a function of the transverse momentum per nucleon. The data are
compared to two predictions using the same momentum-dependent isoscalar field and two versions of
the symmetry energy, characterized by an exponent γ of a polynomial parametrization of the symmetry
energy Epot

sym = C(ρ/ρ0)
γ, C ≈ 12 MeV. A best fit yielded a γ value of around 0.75, which represents

a somewhat soft symmetry energy. It was also shown that the sensitivity of the experiment to density
was in the range of 1–2 ρ0; that is, it tests densities higher than saturation density. This, together with
a previous experiment [38] with lower sensitivity, was a first direct determination of the symmetry
energy above saturation density. Experiments at the facility NICA at the Joint Institute for Nuclear
Reactions at Dubna, Russia or the Facility for Anti-proton and Ion Research (FAIR) at Darmstadt,
Germany, should be able to probe even higher densities and explore the region of the deconfinement
phase transition.
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Figure 4. Elliptic flow parameter v2 at midrapidity for 197Au+197Au collisions at intermediate impact
parameters (≈5.5–7.5 fm) as a function of incident energy. The filled and open circles represent
the INDRA and FOPI data for Z = 1 particles, the triangles represent the equation-of-state (EoS) and
E895 data for protons, and the squares represent the E877 data for all charged particles. Figure taken
from [33] with permission, where the references to the data are also given.
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Figure 5. Elliptic flow ratio of neutrons over all charged particles for central (b < 7.5 fm) collisions
of 197Au+197Au at 400 MeV/nucleon as a function of the transverse momentum per nucleon pt/A.
The black squares represent the experimental data; the green triangles and purple circles represent
the QMD predictions for stiff (γ = 1.5) and soft (γ = 0.5) power-law exponents of the potential term,
respectively. The solid line is the result of a linear interpolation between the predictions, weighted
according to the experimental errors of the included four bins in pt/A and leading to the indicated
γ = 0.75 ± 0.10. Figure taken from [37].

3.3. Light Cluster Emission

Pre-equilibrium nucleons and light clusters are emitted early in energetic collisions and
are distinguished from equilibrium evaporation particles by their higher energies. Ratios of
isospin partners should be sensitive to the symmetry potential, to both the value of the potential at
the relevant density and to the momentum dependence. The latter can be characterized by an effective
mass as m∗/m = (1 + (m/h̄2k)∂U/∂k)−1. The momentum dependence of the isospin-dependent
potential Uτ , τ = {n, p}, then leads to an isospin splitting of the effective masses for neutrons
and protons. The effect of these properties of the isospin potential can be seen in Figure 6,
where for a collision 136Xe +124 Sn at 150 AMeV, the (single) yield ratio of neutrons over protons,
R(n/p; 136Xe +124 Sn), is shown as a function of the transverse energy [39]. The calculations are
shown for four combinations of the density dependence (soft vs. stiff) and the effective masses
(m∗

n > m∗
p vs. m∗

n < m∗
p). For lower transverse energies of the emitted particles, the density

dependence of the symmetry energy is dominant, and the soft case has the larger repulsion for neutrons
below ρ0, while for higher transverse energies, the momentum dependence dominates and the lighter
effective masses are emitted more readily. This behavior opens the possibility to separate the density
and momentum dependence of the symmetry energy. At higher incident energies, the momentum
dependence dominates increasingly more [40]. Similar behavior is seen for isospin partners of light
clusters, such as t/3He in the right panel of Figure 6.
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Figure 6. (Left) The neutron–proton ratio in 136Xe +124 Sn collisions at 150 AMeV for different choices
of the symmetry energy and ordering of the effective masses, as indicated in the legend and discussed
in the text: solid and dashed lines for stiff and soft symmetry energies, respectively, and red and blue
lines for m∗

n > m∗
p and m∗

n < m∗
p, respectively. Thus the labels son and sop indicate soft symmetry

energy with m∗
n > m∗

p and m∗
n < m∗

p, respectively, and the labels stn and stp are analogous for stiff
symmetry energy. (Right) The corresponding tritium over 3He ratio. Figure taken from [41].

In Figure 7, the n/p emission is compared to data from Michigan State University (MSU) for
Sn+Sn collisions [42]. Here, not the single ratio of neutrons over protons is compared, as in Figure 6,
but the ratios of the ratios for two reactions, the double ratios (DRs):

DR(n/p;124 Sn;112 Sn) =
R(n/p;124 Sn +124 Sn)
R(n/p;112 Sn +112 Sn)

, (4)

where experimental differences in the efficiency of neutron and proton detection are expected to cancel
out. Shown are the “coalescence-invariant” DRs, for which neutrons and protons of all experimentally
measured clusters with A ≤ 4 are included into the coalescence-invariant cross-sections. On the other
hand, the DRs for only the free protons and neutrons show little similarity to the DRs in BUU
calculations [42]. This is caused by the difficulty to describe light cluster formation in transport
calculations, which depends sensitively on dynamical few-body correlations that are not accounted
for in the usual BUU and only classically accounted for in QMD calculations. The experimental
coalescence-invariant DRs are compared to calculations in Figure 7 with two Skyrme-type density
functionals, which have a very similar stiffness of the symmetry energy of L ≈ 60 MeV but different
orderings of the effective masses. The SLy4 EoS with m∗

n < m∗
p seems to fit the data somewhat better,

but better data are needed for the higher-energy part of the spectrum.
Light cluster emission is of interest at both lower energies and densities in the Fermi energy

regime and at higher energies and densities in the range of the NICa experiments. In the first case,
it was used to investigate the symmetry energy of nuclear matter at very low densities, which exists
in the expansion phase of a central low-energy reaction [43]. The ratio of cluster yields between
two reactions of different isospin gave information about the change in the chemical potentials and
thus about the symmetry energy via isoscaling [44,45]. At the same time, the cluster ratios gave
information on the density of about 0.1–0.001 ρ0 and temperatures of a few MeV [46]. The formation
of light clusters in low-density warm matter was also confirmed by quantum statistical calculations,
which take into account the medium dependence of the clusters and their eventual dissolution with
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increasing density [47]. Because the formation of clusters is favored by their binding energy relative
to a homogeneous medium of free nucleons, the symmetry energy remains finite as the density
approaches zero. The range of densities and temperatures in such investigations is also in the range of
conditions in the neutrino-sphere of core-collapse supernovae and thus gives a connection between
HICs and astrophysics.

Figure 7. (Color on-line) Double ratios (DRs) of neutron over proton yields in reactions of 124Sn+124 Sn
over 112Sn +112 Sn at energies of 50 and 120 AMeV as a function of the center-of-mass energy of
the emitted particles. The experimental data represent coalescence-invariant cross-sections, for which
neutrons and protons of all experimentally measured clusters with A ≤ 4 are included. The calculations
are Boltzmann–Uehling–Uhlenbeck (BUU) calculations with the two Skyrme-like functionals SKM and
SLy4, which have a different ordering of the neutron and proton effective masses but are otherwise
very similar; see text. The figure is taken from [42] with permission.

Cluster emission could also be an interesting probe for the EoS at the high densities reached
in ultrarelativistic HICs, such as in NICa experiments. As discussed in [48,49], clusters may exist and
survive in HICs near the deconfinement phase transition, and their flow can be used as a probe of
the phase transition. Thus cluster formation in HICs is both an important probe and at the same time
a challenge to transport descriptions.

3.4. Particle Production

The n/p asymmetry of the compressed system also determines the ratio of newly produced
particles, which thus can serve as indicators of the symmetry energy in the high-density phase.
Pions are produced predominantly via the Δ resonances NN → NΔ and the subsequent decay
Δ → Nπ. The ratio of the isospin partners π−/π+ can thus serve as a probe of the high-density
symmetry energy. As analyzed in [50], there are competing effects on the Δ and pion production from
the isospin-dependent mean fields and the Δ production threshold conditions.

The results from recent theoretical analyses of the π−/π+ ratio using different models of
symmetry energies and different program codes are collected in the right panel of Figure 8,
while the corresponding symmetry energy density dependencies are shown in the left panel [51–54].
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These are compared to the data of the Four-PI collaboration (FOPI) [55]. For each model, the results for
two parameter sets of different stiffness are shown (stiffer: blue; softer: red). As is seen, the results
of the different models are very different not only quantitatively; even the trend with the stiffness of
the symmetry energy is not consistent. A reason may lie in different modeling of the Δ − π dynamics,
as well as in the competing mean-field and threshold effects, for which slightly different treatments
might lead to large differences [50]. The code comparison of pion production, mentioned above, should
further serve to aid the understanding of these discrepancies. This issue needs clarification in view
of the sensitivity of the pion observables and the data situation. More information should be gained
by discussing not the energy-integrated yield ratios but the spectral behavior of the ratio, as different
energy pions are expected to probe different stages of the evolution of the reaction [56].

Figure 8. (Right) The π−/π+ ratio in Au + Au collisions as a function of incident energy as measured
by the FOPI collaboration and calculated by different groups, as indicated in the legend of the left
panel and discussed in the text. The blue and red lines refer to the softer and stiffer symmetry energies,
respectively, used in the different models, which are identified by the signature of the line. (Left) This
panel shows the density dependence of the symmetry energy used in the models. Figure taken
from [41].

It has also been suggested that the ratio of the anti-strange kaon isospin partners, K0/K+, could be
a useful observable for the symmetry energy [57]. Indeed, kaon production has been one of the most
useful observables to determine the EoS of symmetric nuclear matter [29]. The anti-strange kaons
weakly interact with nuclear matter and are thus a direct probe of the dense matter in which they
are produced. Theoretical analyses show a similar, if not greater, sensitivity to the symmetry energy
compared to pion ratios.

4. Discussion and Summary

Constraints for the density dependence of the nuclear symmetry energy determined from HICs
are shown in the left panel of Figure 9 for the range of densities presently explored, which also
includes some results from nuclear-structure studies. We briefly discuss the various constraints
shown in the figure. At very low densities, the symmetry energy was determined from the light
cluster yields of the decay of the participant in low-energy HICs (solid triangles) [46], as discussed
in Section 3.3. The very precise description of masses of nuclei by energy density functionals
constrained the symmetry energy around saturation density—in fact about 40% below—because
of the surface contribution, as is shown in the figure (solid circle and square) [3]. The analysis of
the shift of the isobaric analog resonances (IAS) yielded rather stringent constraints on the asymmetry
density in nuclei (dotted contour) [58]. Transport analysis of HICs, mainly of Sn+Sn but also other
systems, at energies from 50 to about 200 AMeV probed the symmetry energy below saturation
density from observations of isospin transport between the residual fragments (gray contour) [30].
The constraints from n/p flow ratios at the relativistic energies discussed in Section 3.2 [37] are shown
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by the red area (as well as the yellow area from an earlier measurement with smaller precision [38])
in the density region of 1.5–2 ρ0, where they were the most sensitive. One result of the analysis of
the π−/π+ ratio is shown by the blue line [51], which is also shown in Figure 8. As discussed there,
this result is controversial and in any case was in conflict with the result of the flow measurements.

Figure 9. (Left panel) Constraints deduced for the density dependence of the zero-temperature
symmetry energy from the ASY-EOS data (red area, [37]) in comparison with the FOPI-LAND
result (yellow area, [38]) as a function of the reduced density ρ/ρ0. The low-density results
of [30,58–60] as reported in [3] are given by the symbols, the gray area (heavy-ion collision—HIC),
and the dashed contour (isobaric analog resonances—IAS); see also text. Figure taken from [37].
(Right panel) Synopsis of constraints on the equation of state (EoS) of neutron star (NS) β-stable matter
from microscopic calculations (quantum Monte Carlo and effective field theory (EFT)), heavy-ion
collisions, and NS observations in a pressure–density diagram. Figure taken from A. Steiner et al. [6]
with permission.

The results of the density dependence on the symmetry energy from the nuclear structure and
reactions were seen to converge reasonably well; the disagreements from the pion ratio observations
will hopefully be clarified via the code comparison investigations discussed in Section 2.3. In the right
panel of Figure 9, these results are contrasted with results from microscopic calculations; constraints
from HICs, in this case from [1]; and constraints from NS observations. The microscopic calculations
were performed with chiral effective field theory (EFT) using various many-body techniques [61,62].
The NS constraints originate from mass–radius studies and from the maximum mass of observed
NSs [5,6], but constraints from NS mergers are not yet given. It is seen that overall, the results tended
to converge, but a reduction in the uncertainties from all sources, many-body calculations, structure,
reactions, and astrophysics is expected in the future.

Acknowledgments: Hermann Wolter acknowledges support by the Universe Cluster of Excellence and by
the Heisenberg-Landau program, both of the German Research Foundation (DFG). The author wishes to thank
his collaborators and colleagues, whose work has been used in this overview.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Danielewicz, P.; Lacey, R.; Lynch, W.G. Determination of the equation of state of dense matter. Science 2002,
298, 1592.

2. Li, B.A.; Ramos, À.; Verde, G.; Vidaña, I. Topical Issue on the Nuclear Symmetry Energy. Eur. Phys. J. A
2014, 50, 1–3.

3. Horowitz, C.J.; Brown, E.F.; Kim, Y.; Lynch, W.G.; Michaels, R.; Ono, A.; Piekarewicz, J.; Tsang, M.B.;
Wolter, H.H. A way forward in the study of the symmetry energy: experiment, theory, and observation.
J. Phys. G 2014, 41, 093001.

58



Universe 2018, 4, 72

4. Demorest, P.D.; Pennucci, T.; Ransom, S.M.; Roberts, M.S.E.; Hessels, J.W.T. A two-solar-mass neutron star
measured using Shapiro delay. Nature 2010, 467, 1081–1083 .

5. Steiner, A.W.; Lattimer, J.M.; Brown, E.F. The equation of etate from observed masses and radii of neutron
stars. Astrophys. J. 2010, 722, 33.

6. Steiner, A.W.; Lattimer, J.M.; Brown, E.F. The neutron star mass-radius relation and the equation of state of
dense matter. Astrophys. J. Lett. 2013, 765, L5.

7. Abott, P.B.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
Adhikari, R.X.; Adya, B.; et al. GW170817: Implications for the stochastic gravitational-wave background
from compact binary coalescences. Phys. Rev. Lett. 2017, 119, 161101.

8. Goldstein, A.; Veres, P.; Burns, E.; Briggs, M.S.; Hamburg, R.; Kocevski, D.K.; Wilson-Hodge, C.A.;
Preece, R.D.; Poolakkil, S.; Roberts, O.J.; et al. An ordinary short gamma-ray burst with extraordinary
implications: Fermi-GBM detection of GRB 170817A. Astrophys. J. Lett. 2017, 848, L14.

9. Savchenko, V.; Ferrigno, C.; Kuulkers, E. INTEGRAL detection of the first prompt gamma-ray signal
coincident with the gravitational-wave event GW170817. Astrophys. J. Lett. 2017, 848, L15.

10. Hinderer, T. Tidal LOVE numbers of neutron stars. Astrophys. J. 2008, 677, 1216.
11. Fattoyev, F.J.; Piekarewicz, J.; Horowitz, C.J. Neutron skins and neutron stars in the multimessenger era.

Phys. Rev. Lett. 2018, 120, 172702.
12. Krastev, P.G.; Li, B.A. Imprints of the nuclear symmetry energy on the tidal deformability of neutron stars.

arXiv 2018, arXiv:1801.04620.
13. Bauswein, A.; Just, O.; Janka, H.-T.; Stergioulas, N. Neutron-star radius constraints from GW170817 and

future detections. Astrophys. J. Lett. 2017, 850, L34.
14. Paschalides, V.; Yagi, K.; Alvarez-Castillo, D.; Blaschke, D.; Sedrakian, A. Implications from GW170817 and

I-Love-Q relations for relativistic hybrid stars. Phys. Rev. D 2018, 97, 084038.
15. Danielewicz, P . Quantum theory of nonequilibrium processes I. Ann. of Phys. 1984, 152, 239–304.
16. Botermans, W.; Malfliet, R. Quantum transport theory of nuclear matter. Phys. Rep. 1990, 198, 115–194.
17. Hofmann, F.; Keil, C.M.; Lenske, H. Density dependent hadron field theory for asymmetric nuclear matter

and exotic nuclei. Phys. Rev. C 2001, 64, 034314.
18. Fuchs, C.; Lenske, H. Rearrangement in the density-dependent field theory of relativistic nuclei. Phys. Lett. B

1995, 345, 355.
19. Fuchs, C.; Lenske, H.; Wolter, H.H. Density dependent hadron field theory. Phys. Rev. C. 1995, 52, 3043.
20. Ono, A.; Horiuchi, H.; Maruyama, T.; Ohnishi, A. Antisymmetrized version of molecular dynamics with

two-nucleon collisions and its application to heavy ion reactions. Prog. Theor. Phys. 1992, 87, 1185.
21. Bertsch, G.F.; Gupta, S.D. A guide to microscopic models for intermediate energy heavy ion collisions.

Phys. Rep. 1988, 160, 189.
22. Aichelin, J. Quantum molecular dynamics: A dynamical microscopic n-body approach to investigate

fragment formation and the nuclear equation of state in heavy ion collisions. Phys. Rep. 1991, 202, 233–360.
23. Napolitani, P.; Colonna, M. Bifurcations in Boltzmann—Langevin one body dynamics for fermionic systems.

Phys. Lett. B 2013, 726, 382–386.
24. Napolitani, P.; Colonna, M. Frustrated fragmentation and re-aggregation in nuclei: A non-equilibrium

description in spallation. Phys. Rev. C 2015, 92, 034607.
25. Colonna, M.; di Toro, M.; Guarnera, A.; Maccarone, S.; Zielinska-Pfabé, M.; Wolter, H.H. Fluctuations and

dynamical instabilities in heavy-ion reactions. Nucl. Phys. A 1998, 642, 449–460.
26. Colonna, M. Fluctuations and Symmetry Energy in Nuclear Fragmentation Dynamics. Phys. Rev. Lett. 2013,

110, 042701.
27. Xu, J.; Chen, L.-W.; Tsang, M.B.; Wolter, H.H.; Zhang, Y.-X.; Aichelin, J.; Colonna, M.; Cozma, D.;

Danielewicz, P.; Feng, Z.-Q.; et al. Understanding transport simulations of heavy-ion collisions at 100
A and 400 A MeV: Comparison of heavy-ion transport codes under controlled conditions. Phys. Rev. C 2016,
93, 044609.

28. Zhang, Y.-X.; Wang, Y.-J.; Colonna, M.; Danielewicz, P.; Ono, A.; Tsang, M.B.; Wolter, H.H.; Xu, J.; Chen, L.-W.;
Cozma, D.; et al. Comparison of heavy-ion transport simulations: Collision integral in a box. Phys. Rev. C.
2018, 97, 034625.

29. Fuchs, C.; Faessler, A.; Zabrodin, E.; Zheng, Y.-M. Probing the nuclear equation of state by K+ production in
heavy-ion collisions. Phys. Rev. Lett. 2001, 86, 1974.

59



Universe 2018, 4, 72

30. Tsang, M.B.; Stone, J.R.; Camera, F.; Danielewicz, P.; Gandolfi, S.; Hebeler, K.; Horowitz, C.J.; Lee, J.;
Lynch, W.G.; Kohley, Z. et al. Constraints on the symmetry energy and neutron skins from experiments and
theory. Phys. Rev. C 2012, 86, 015803.

31. Poskanzer, A.M.; Voloshin, S.A. Methods for analyzing anisotropic flow in relativistic nuclear collisions.
Phys. Rev. C 1998, 58, 1671.

32. Ivanov, Y.B. Directed flow in heavy-ion collisions and its implications for astrophysics. Universe 2017, 3, 79.
33. Andronic, A.; Łukasik, J.; Reisdorf, W.; Trautmann, W. Systematics of stopping and flow in Au + Au collisions.

Eur. Phys. J. A 2006, 30, 31–46.
34. Reisdorf, W.; Leifels, Y.; Andronic, A.; Averbeck, R. Barret, V. Systematics of azimuthal asymmetries in heavy

ion collisions in the 1A GeV regime. Nucl. Phys. A 2012, 876, 1–60.
35. Łukasik, J.; Auger, G.; Bellaize, M.L.; Be, N.; Bittiger, R.; Bocage, F.; Borderie, B.; Bougault, R.; Bouriquet,

F.; Charvet, J.L.; Chbihi, A.; et al. Directed and elliptic flow in 197Au+197Au at intermediate energies.
Phys. Lett. B 2005, 608, 223–230.

36. Trautmann, W.; Wolter, H.H. Elliptic flow and the symmetry energy at supra-saturation density. Int. J. Mod.
Phys. E 2012, 21, 1230003.

37. Russotto, P.; Gannon, S.; Kupny, S.; Lasko, P.; Acosta, L.; Adamczyk, M.; Al-Ajlan, A.; Amorini, F. Results of
the ASY-EOS experiment at GSI: The symmetry energy at suprasaturation density. Phys. Rev. C 2016, 94,
034608.

38. Russotto, P.; Wu, P.Z.; Zoric, M.; Chartier, M.; Leifels, Y.; Lemmon, R.C.; Li, Q.; Łukasik, J.; Pagano, A.;
Pawłowski, P.; et al. Symmetry energy from elliptic flow in 197Au + 197Au. Phys. Lett. B 2011, 697, 471–476.

39. Wolter, H.H.; Zielinska-Pfabe, M.; Decowski, P.; Colonna, M.; Bougault, R.; Chbihi, A. Symmetry energy
dependence of light fragment production in heavy ion collisions. EPJ Web Conf. 2014, 66, 03097.

40. Giordano, V.; Colonna, M.; di Toro, M.; Greco, V.; Rizzo, J. Isospin emission and flow at high baryon density:
A test of the symmetry potential. Phys. Rev. C 2010, 81, 064611.

41. Wolter, H.H. The nuclear symmetry energy in heavy ion collisions. Phys. Part. Nucl. 2015, 46, 781.
42. Coupland, D.D.S.; Youngs, M.; Chajecki, Z.; Lynch, W.G.; Tsang, M.B.; Zhang, Y.X.; Famiano, A.; Ghosh, T.K.;

Giacherio, B.; Kilburn, M.A.; et al. Probing effective nucleon masses with heavy-ion collisions. Phys. Rev. C
2016, 94, 011601.

43. Kowalski, S.; Natowitz, J.B.; Shlomo, S.; Wada, R.; Hagel, K.; Wang, J.; Materna, T.; Chen, Z.; Ma, Y.G.;
Qin, L.; et al. Experimental determination of the symmetry energy of a-low density nuclear gas. Phys. Rev. C
2007, 75, 014601.

44. Tsang, M.B.; Friedman, W.A.; Gelbke, C.K.; Lynch, W.G.; Verde, G.; Xu, H.S. Isotopic scaling in nuclear
reactions. Phys. Rev. Lett. 2001, 86, 5023.

45. Tsang, M.B.; Friedman, W.A.; Gelbke, C.K.; Lynch, W.G.; Verde, G.; Xu, H.S. Conditions for isoscaling in
nuclear reactions. Phys. Rev. C 2001, 64, 041603.

46. Natowitz, J.B.; Röpke, G.; Typel, S.; Blaschke, D.; Bonasera, A.; Hagel, K.; Klähn, T.; Kowalski, S.; Qin, L.;
Shlomo, S.; Wada, R.; Wolter, H.H. Symmetry energy of dilute warm nuclear matter. Phys. Rev. Lett. 2010,
104, 202501.

47. Typel, S.; Röpke, G.; Klähn, T.; Blaschke, D.; Wolter, H.H. Composition and thermodynamics of nuclear
matter with light clusters. Phys. Rev. C 2010, 81, 015803.

48. Bastian, N.-U.; Batyuk, P.; Blaschke, D.; Danielewicz, P.; Yu, B. Light cluster production at NICA.
Eur. Phys. J. A 2016, 52, 244.

49. Röpke, G.; Blaschke, D.; Ivanov, Y.B.; Karpenko, I.; Rogachevsky, O.V.; Wolter, H.H. Medium effects on
freeze-out of light clusters at NICA energies. Phys. Part. Nucl. Lett. 2018, 15, 225.

50. Ferini, G.; Colonna, M.; Gaitanos, T.; di Toro, M. Aspects of particle production in isospin-asymmetric matter.
Nucl. Phys. A 2005, 762, 147–166.

51. Xiao, Z.; Li, B.A.; Chen, L.W.; Yong, G.C.; Zhang, M. Circumstantial evidence for a soft nuclear symmetry
energy at suprasaturation densities. Phys. Rev. Lett. 2009, 102, 062502.

52. Prassa, V.; Ferini, G.; Gaitanos, T.; Wolter, H.H.; Lalazissis, G.; di Toro, M. In-medium effects on particle
production in heavy ion collisions. Nucl. Phys. A 2007, 789, 311–333.

53. Feng, Z.Q.; Jin, G.M. Probing high-density behavior of symmetry energy from pion emission in heavy-ion
collisions. Phys. Lett. B 2010, 683, 140–144.

60



Universe 2018, 4, 72

54. Hong, J.; Danielewicz, P. Subthreshold pion production within a transport description of central Au + Au
collisions. Phys. Rev. C 2014, 90, 024605.

55. Reisdorf, W. The FOPI Collaboration. Systematics of pion emission in heavy ion collisions in the 1 A GeV
regime. Nucl. Phys. A 2007, 781, 459–508.

56. Tsang, M.B. Pion Production in Rare-Isotope Collisions; Nuclear Symmetry Energy 2017 (NuSYM2017);
Grand Accélérateur National D’Ions Lourds: Caen, France, 2017.

57. Ferini, G.; Gaitanos, T.; Colonna, M.; di Toro, M.; Wolter, H.H. Isospin effects on subthreshold kaon
production at intermediate energies. Phys. Rev. Lett. 2006, 97, 202301.

58. Danielewicz, P.; Lee, J. Symmetry energy II: Isobaric analog states. Nucl. Phys. A 2014, 922, 1–70.
59. Brown, B.A. Constraints on the Skyrme Equations of State from Properties of Doubly Magic Nuclei.

Phys. Rev. Lett. 2013, 111, 232502.
60. Zhang, Z.; Chen, L.-W. Constraining the symmetry energy at subsaturation densities using isotope binding

energy difference and neutron skin thickness. Phys. Lett. B 2013, 726, 234–238.
61. Zhang, Z.; Chen, L.-W.; Pethick, C.J.; Schwenk, A. Constraints on neutron star radii based on chiral effective

field theory interactions. Phys. Rev. Lett. 2010, 105, 161102.
62. Gandolfi, S.; Carlson, J.; Reddy, S. Maximum mass and radius of neutron stars, and the nuclear symmetry

energy. Phys. Rev. C 2012, 85, 032801.

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

61



Conference Report

Equation of State for Dense Matter with a QCD
Phase Transition

Sanjin Benić †
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Abstract: We construct a dense matter equation of state (EoS) starting from a hadronic density
dependent relativistic mean-field model with a DD2 parametrization including the excluded volume
corrections at low densities. The high density part is given by a Nambu–Jona–Lasinio (NJL) model with
multi-quark interactions. This EoS is characterized by increasing speed of sound below and above the
phase transition region. The first order transition region has a large latent heat leaving a distinctive
signature in the mass-radii relations in terms of twin stars.
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1. Introduction

We know from finite temperature lattice Quantum Chromodynamics (QCD) that the transition
from hadrons to quarks and gluons is a crossover [1]. At finite chemical potential and especially at small
temperatures and large chemical potentials, appropriate for neutron stars, the situation is completely
different—first principle lattice calculations have a sign problem and so it is an open question whether
the transition remains a crossover or if it becomes a first order with the corresponding critical point
somewhere in the temperature-chemical potential plane.

This question could hopefully be resolved by colliding heavy ions, but one should be aware of
various uncertainties related to the system size and lifetime as well as the possibility that it just may
not be possible to reach sufficiently high densities where we would find deconfined quark matter.
By contrast, in the case of compact stars, we have a huge system which is long lived and potentially
very dense.

As on the theoretical side we still cannot get a first principle information on finite density QCD,
in this work, we will assume some model equation of state (EoS). Additionally, we assume the EoS
has a first order transition from hadron to quarks at finite density. Our purpose is then to provide
a systematic model study of the EoS and the mass-radii (M–R) relations of compact stars which can be
used to verify this scenario with simultaneous observations of masses and radii.

2. Twin Stars

Compact stars can be divided into families, such as white dwarfs, neutron stars and sometimes
hybrid stars with a quark core and a nuclear mantle as a third family is considered. Purely quark
stars is another example of a third family, but we do not consider such possibility as it involves more
assumptions. In the case of third families, it is possible to get the so-called twin stars phenomena ([2,3]),
where the neutron and the hybrid stars would have same mass but different radii. The main interest
here is that, to get twin stars, we need strong first order transition and so measuring twins would
provide evidence for first order transitions in QCD.

Recently, astrophysical observations pointed out the existence of several compact stars with
masses at 2M� [4–6], pressing a clear understanding of the interior structure in terms of its equation of
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state (EoS) at very high density. The purpose of our work in [7] was to revisit the twin stars scenario
with the goal of understanding qualitatively and quantitatively (within a model) systematics of twin stars
at 2M�. Some more recent works include Bayesian analysis [8,9], relation to the CEP [10], impact of
rotation [11], twins in protoneutron stars [12] and a triplet of stars with same mass and different
radii [13] (see Alford et al. [14] and Zacchi et al. [15] for classification studies).

3. Equation of state

How should a strong first order transition be engineered? We first calculate the hadron and the
quark EoS separately and we use Maxwell construction—this is always first order by construction.
To get strong first order, the two EoS must have different slopes on the p − μB plot.

For hadrons, we use the density dependent relativistic mean field model with the DD2
parameterization [16]. We can use this EoS (or any kind of hadron EoS, for that matter) until some
density where the quarks from different baryons start to overlap. Increasing the number of baryons
further is disfavored because of Pauli blocking effects between quarks. We mimic this effect by
taking into account the finite size of hadrons via the excluded volume approach (see, e.g., [17,18] and
references therein). We introduce a quantity Φ

Φ =
Vav

V
= 1 − v ∑

i=n,p
ni , (1)

which is the ratio of the available volume Vav for hadrons and the total volume of the system. This can
also be written in terms of the excluded volume parameter denoted by small v and the number
densities, as in the second line of Equation (1). By looking at single particle energies,

Ei = μi − Vi − v
Φ ∑

j=p,n
pj , (2)

where μi is the chemical potential and Vi the vector mean field, we see that v acts in a similar way
as the vector mean field and so an EoS should become more stiff with excluded volume. In this
work, we consider two flavor case so that the hyperon problem is avoided by a phase transition to
quark matter.

For quarks, we use the Nambu–Jona–Lasinio (NJL) model with scalar and vector interactions and
we add the higher order interactions in the scalar

Lscal =
g20

Λ2 (q̄q)2 +
g40

Λ8 (q̄q)4 , (3)

and in the vector channel
Lvec =

g02

Λ2 (q̄γμq)2 +
g04

Λ8 (q̄γμq)4 . (4)

Refer to Benić [7] and Benić et al. [19] for more details. It turns out that higher order scalar interactions
do not change the chiral transition much. However, the higher order vector interactions should be
more and more important as we increase the density in terms of stiffness of the EoS [7,19].

4. Impact of the Choice of the Equation of State on the Mass-Radii Relations

Now, we discuss some EoS systematics where we control the repulsion in the hadron and the
quark EoS. Characteristic EoS are shown on Figure 1. If there is no repulsion (Figure 1a) in both phases,
then this particular model cannot pass the 2M� constraint. Typically, one introduces some quark
repulsions as in Figure 1b. This delays the onset of quarks and at the same time reduces the latent
heat. Because quark EoS becomes stiffer we can get to 2M� and typically at first we have hybrid stars.
Increasing the quark repulsions more and more it becomes hard to get the hadron and the quark EoS
to cross. This is the familiar problem of vector interactions in the quark phase [20].
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Figure 1. Generic systematics of the different possibilities of the hybrid Equation of State (EoS) within
the density dependent relativistic mean field hadronic model with the DD2 parametrization and
Nambu-Jona-Lasinio model with 8-quark interactions (DD2-NJL8) hybrid EoS model in terms of the
absence (soft EoS) or presence (stiff EoS) of the repulsive interactions: (a) soft-to-soft; (b) soft-to-stiff;
(c) stiff-to-soft; and (d) stiff-to-stiff EoS.

On the other hand, if we have some repulsions in hadron phase and no repulsion in quark phase
(see Figure 1c), then we get an interesting situation that the onset of quarks is lowered and the latent
heat becomes increased. Because we put more repulsions, we can pass the 2M� limit and typically we
get neutron stars. In other words, with the simultaneous combination of the increase of the repulsions
in the hadron phase, large latent heat and a soft quark phase, hybrid stars quickly become unstable.

The most interesting situation is when we turn on repulsions in the hadron and the quark phase,
as shown in Figure 1d. Then, we can explore also hybrid stars with very stiff quark matter EoS which
was not possible previously. Because both the quark and the hadron phase are now stiff, we can easily
pass the 2M� constraint. In particular, in this window of parameters, we can get twin stars because
there is also considerable latent heat.

Figure 2 summarizes the previous discussion. Without repulsions in either of the phases. we can
only have the conventional hybrid stars within this particular model. Adding repulsions in either
phase hybrid stars turn to neutron stars. If there are some finite quark and hadron repulsions, we can
get twin stars.

NEUTRON STARS
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TWIN STARS

QUARK REPULSIONS

H
A
D

R
O

N
 R

EP
U

LS
IO

N
S

Figure 2. Summary of impact of repulsions in the hadron and in the quark phase on the M–R characteristics.
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5. Results

Now, we show some selected results of model calculations performed in [7]. For a density
functional approach to such class of EoS, see [21]. Further astrophysical implications are discussed
in [22–24]. In the left panel of Figure 3, we show the pressure and the speed of sound as a function of
the energy density. First, let us appreciate that the DD2 EoS with the excluded volume is significantly
stiffer than the standard DD2 EoS. After the phase transition, we change the stiffness of quark matter by
the 8-quark vector coupling. We see that its effect on the stiffness becomes more and more significant
by increasing the density. It is essentially the reason why the transition can achieve considerable latent
heat. In other words, changing the higher order vector coupling controls the high density part of the
EoS while it does not influence the phase transition much. The latter is completely controlled by the
excluded volume of the hadron EoS.

In the right panel, we show the M–R relations using this hybrid EoS model. First, because
of the very stiff hadron EoS, we get stars with large radii: of the order of 14.5 km or even 15 km.
Second, because the latent heat is also quite large, we can get the twin stars: the radii difference is
around a 0.5 km or 1 km depending on the model details.

Figure 3. (Left) Equation of state (EoS) and speed of sound as a function of the energy density; and
(Right) M–R relation for the corresponding EoS. Different curves correspond to a variation of the high
density quark EoS in terms of a NJL 8-vector coupling parameter η4. Figure from [7].

6. Conclusions

To conclude, we showed that, to get twin stars at 2M�, we need strong repulsions in nuclear and in
quark matter. Measurements of twin stars has strong potential, as it could exclude the approaches with
stiffening EoS in the transition regions [25–27]. On the other hand, the two EoS scenario (quark stars
and neutron stars) cannot be excluded by radii measurements provided that the quark star has a large
radii as well. In our case, twin stars at 2M� require very stiff EoS already in the hadron phase, that is,
below the hadron–quark transition. The EoS at these densities controls the radius of the star, and so in
our calculation we get big, dilute stars. Measurements of very small radii may disfavor our scenario.

Finally, we make a couple of remarks on the possible caveats. Provided we measure twin stars
we can say transition in beta equilibrium is strong first order but this does not mean transition in
symmetric matter is also first order. Some effective models suggest chiral transition should become
more strong in symmetric matter [28] but in QCD this question does not have a definite answer yet.
Additionally, to get twins, we need strong first order but this is not completely correct. It is in fact
sufficient for the EoS to just be very soft in a wide region of densities [29,30].
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Abstract: Knowledge of the equation of state (EoS) of cold and dense baryonic matter is essential
for the description of properties of neutron stars (NSs). With an increase of the density, new baryon
species can appear in NS matter, as well as various meson condensates. In previous works,
we developed relativistic mean-field (RMF) models with hyperons and Δ-isobars, which passed
the majority of known experimental constraints, including the existence of a 2 M� neutron star.
In this contribution, we present results of the inclusion of ρ−-meson condensation into these models.
We have shown that, in one class of the models (so-called KVOR-based models, in which the
additional stiffening procedure is introduced in the isoscalar sector), the condensation gives only a
small contribution to the EoS. In another class of the models (MKVOR-based models with additional
stiffening in isovector sector), the condensation can lead to a first-order phase transition and a
substantial decrease of the NS mass. Nevertheless, in all resulting models, the condensation does not
spoil the description of the experimental constraints.

Keywords: neutron stars; equation of state; ρ meson condensation; maximum mass; Δ resonances

1. Introduction

The equation of state (EoS) of strongly interacting hadronic matter is an essential input for
describing the properties of neutron stars (NSs). A viable EoS has to fulfill various constraints
following from both astrophysical observations and nuclear experimental data [1]. The discovery of
the most massive pulsar with the mass M = 2.01 ± 0.04 M� [2] put a severe constraint, ruling out
many soft EsoS. Currently, one of the most challenging tasks for phenomenological models of the
EoS is to pass simultaneously the maximum NS mass constraint, requiring the EoS to be stiff, and the
so-called flow constraint [3] coming from the analysis of flows in heavy ion collisions, which requires
a soft EoS. This is hard to achieve within traditional models.

Relativistic mean-field (RMF) framework is a convenient and successful tool for constructing the
nuclear equation of state. With an increase of the density hyperons and Δ isobars can appear in the NS
matter [4]. In most of known model, this leads to a decrease of the maximum NS mass to unrealistic
values. Another reason of the EoS softening is the possible appearance of the charged ρ-meson
condensate in NS matter [5]. An RMF EoS can be made more flexible by introducing the dependence
on the scalar field of the effective couplings and masses of all hadrons. In [6], we constructed new
models within this approach, which fulfill the maximum NS mass constraint and the flow constraint
simultaneously together with many other constraints, even with hyperons and Δ isobars included.
In the current contribution, we demonstrate results of the inclusion of the charged ρ-meson condensate
into our models. More details on the calculations can be found in [7].
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2. Description of the Model

Our model was initially formulated in [8] and extended in [6,7,9]. Without the ρ− meson
condensation, the energy density of the model reads:

E[{nb}, {nl}, f ] = ∑
b

Ekin
(

pF,b, mb Φb( f ), sb
)
+ ∑

l=e,μ
Ekin(pF,l , ml , sl) +

m4
N f 2

2C2
σ

ησ( f )

+
1

2m2
N

[C2
ωn2

V
ηω( f )

+
C2

ρn2
I

ηρ( f )
+

C2
φn2

S

ηφ( f )

]
, (1)

Ekin(pF, m, s) = (2s + 1)
∫ pF

0

p2dp
2π2

√
p2 + m2,

nV = ∑
b

xωbnb , nI = ∑
b

xρbt3bnb , nS = ∑
H

xφHnH .

Here, we introduced the dimensionless scalar field f = gσNχσN(σ)σ/mN . The isospin projection
of baryon b is t3b, and pF,j = (6π2nj/(2sj + 1))1/3 denotes the Fermi momentum of a fermion j, with sj
and nj being the spin and density of a species j, respectively, j = (b, l), l labels leptons. In the infinite
hadronic matter without meson condensates, the energy density depends only on the ratios of the
meson coupling constants, masses and their corresponding scaling functions, namely

CM =
gMNmN

mM
, M = σ, ω, ρ, Cφ =

gωN mN
mφ

,

ηω( f ) =
Φ2

ω( f )
χ2

ωN( f )
, ηρ( f ) =

Φ2
ρ( f )

χ2
ρN( f )

, ηφ( f ) =
Φ2

φ( f )

χ2
φH( f )

, ησ( f ) =
Φ2

σ[σ( f )]
χ2

σN [σ( f )]
+

2 C2
σ

m4
N f 2

U[σ( f )] .

Here, the the self-interaction potential U(σ) entering the Lagrangian of the model is hidden
into the scaling function ησ( f ). The coupling constant ratios for various baryons are defined as
xMb = gMb/gMN , xφH = gφH/gωN . We refer the reader to [6,9] for explicit expressions for the scaling
functions ηm( f ) and values of the parameters for all our models. Below, we use χMb = χMN , χφH = 1.

The baryon coupling ratios with vector mesons xωB and xρB are determined by the quark SU(6)
symmetry. The baryon coupling ratios with the scalar field xσB follow from the potentials

UB(n0) = C2
ωm−2

N xωBn0/ηω( f (n0))− xσB(mN + m∗
N(n0))

in the isospin-symmetric matter (ISM) at the saturation density n = n0. The Δ potential UΔ(n0) ≡ UΔ
is a subject of large uncertainties. Here we assume UΔ = −50 MeV, following from the most realistic
estimate [10]. The values of the parameters for all included baryon species are given in [6].

3. Charged ρ Condensate

The ρ meson field is described by the following Lagrangian [5,8]

Lρ = −1
4
�Rμν�Rμν +

1
2

m2
ρΦ2

ρ�ρμ�ρ
μ − ∑

b
gρbχρb�ρμ�j

μ
I,b , �jμI,b = ψ̄bγμ�tbψb , (2)

�Rμν = ∂μ�ρν − ∂ν�ρμ + g′ρχ′
ρ( f )[�ρμ ×�ρν] + μch,ρδν0[�n3 ×�ρμ]− μch,ρδμ0[�n3 ×�ρν] ,

where the chemical potential μch,ρ is introduced for charged mesons and (�n3)
a = δa3 is the unit vector

in the isospin space. We treat ρ meson as a gauge boson of a hidden local symmetry and introduce
the non-Abelian coupling constant g′ρ and its scaling function χ′

ρ( f ). Hidden local symmetry requires
that g′ρ = gρN , which we use here, and for simplicity we consider χ′

ρ( f ) = 1. In the standard ansatz

for the ρ-meson mean fields only the ρ
(3)
0 component is non-zero. This ansatz was used in obtaining
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Equation (3). The charged ρ− meson condensation can be introduced by using the new ansatz for the ρ

meson field:

ρ
(3)
0 �= 0, ρ±i = (ρ

(1)
i + ρ

(2)
i )/

√
2 �= 0, i = 1, 2, 3. (3)

It can be shown that within this ansatz the minimum of energy is realized if the condition

ρ
(+)
i ρ

(−)
j − ρ

(−)
i ρ

(+)
j = 0

is fulfilled. This is equivalent to the ratio ρ
(+)
i /ρ

(−)
i being constant and independent of the spatial index

i. Thus we can assume that ρ
(−)
i = ai ρc and ρ

(+)
i = ai ρ†

c , where we defined the complex amplitude of
the charged ρ meson field ρc, and�a = {ai} is the spatial unit vector. In such terms the thermodynamic
potential can be minimized by two distinct solutions for the ρ

(3)
0 and ρc fields. The first one is the

traditional solution with only ρ
(3)
0 being non-zero. The second solution is

ρ
(3)
0 =

μch,ρ − mρΦρ

gρχ′
ρ

, |ρc|2 =
(−nI − nρ)θ(−nI − nρ)

2 mρ η1/2
ρ χ′

ρ

, (4)

nρ =
m2

Nη1/2
ρ Φρ

C2
ρχ′

ρ
(mρ Φρ − μch,ρ) . (5)

The electric charge density of ρ− is nch,ρ = −2mρΦρ( f )|ρc|2 < 0. The ρ− meson condensate gives
the following contribution to the energy density:

ΔEch,ρ[{nb}; f ] = − C2
ρ

2 m2
N ηρ

(
nI + nρ

)2
θ(−nI − nρ)− μch,ρnch,ρ , (6)

where θ(−nI − nρ) = 1 for nI + nρ < 0 and zero otherwise. In the presence of the condensate,
the charge neutrality condition is modified to be ∑b Qbnb − ne − nμ + nch,ρ = 0. In the beta-equilibrium
matter (BEM) of a NS the chemical potentials are related through conditions μe = μμ = μch,ρ,
μb = μn − Qbμl . All equations are solved self-consistently with the equation of motion for the scalar
field ∂(E + μch,ρnch,ρ)/∂ f = 0. Once the equilibrium concentrations are obtained, the pressure can be
evaluated as P = ∑j=b,l,{ch,ρ} μjnj − E.

4. Numerical Results

In [7], we considered the MKVOR* and KVORcut03 model. We have shown that, in the
KVORcut03 model, the ρ− condensate does not appear in the most realistic case with the hyperons
and/or Δs taken into account. Thus, in this contribution, we focus on results for the MKVOR* model.
Below, we present the results of the inclusion of the ρ− condensate into the MKVOR* model with
the universal mass scaling and check the sensitivity of the results to varying the scaling functions
Φρ( f ) and ηρ( f ). In the following, we denote the MKVOR* model with hyperons and Δs included as
MKVOR*HΔφ, and the inclusion of ρ− condensate is denoted by the ρ suffix.

4.1. Inclusion of the Condensate

In this section, we present the results for the MKVOR* model with the universal meson mass
scaling Φm( f ) = 1 − f , m = {σ, ω, ρ, φ}, in accordance with [11–13]. In the left panel of Figure 1,
we show the particle concentrations and the scalar field f as functions of the total baryon densities.
There exists a region of densities where several solutions for the particle fractions and the scalar field
exist. This means that the system must prefer the branch of solutions with a lower energy. The density,
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for which such a transition from one branch of solutions to another happens, in our model, equals
n(I)

c = 2.81 n0. It is shown in Figure 1 by dotted vertical lines in the left and middle panels.
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Figure 1. Left panel: Particle fractions together with the scalar field f as functions of the total baryon
density n in the BEM for the MKVOR*HΔφρ model. Only the energetically favorable regions of
the solutions’ branches are shown. Middle panel: The pressure as a function of the density for
MKVOR*HΔφ and MKVOR*HΔφρ models. The short vertical dash shows the critical density for
the 2nd order phase transition (PT). The vertical line in the left and middle panels denotes the
density, at which the ρ-condensed phase becomes energetically more favorable than the normal
one. Right panel: NS mass as a function of the central density for the same models as in the middle
panel. Vertical dashes denote boundaries of the Maxwell construction region (shown by the dotted line),
where no stable NS configurations exist. The horizontal stripe denotes the observational constraint
Mmax ≥ (2.01 ± 0.04) M� [2] and large dots denote the maximum masses for the models.

The 1st order PT results in a van der Waals-like shape of the pressure, which, neglecting the
possible pasta formation, should be replaced by a Maxwell construction, spanning over the densities
2.37 n0 � n � 3.37 n0. The resulting pressure as a function of the density is shown in the middle panel
of Figure 1, where we compare the pressure with and without condensate for the MKVOR*HΔφ model.
The condensate appears not only on the new branch of solutions, but also at the old one with the
critical density n(II)

c � 2.74 n0, which is marked by a horizontal dash.
In the right panel of Figure 1, we show the NS mass as a function of the central density

for MKVOR*HΔφ with and without the inclusion of the condensate. We see that the ρ−

condensation in this model results in a substantial decrease of the maximum NS mass from 2.21 M�
to 2.03 M�. Nevertheless, even after such a reduction, the NS maximum mass still passes the
observational constraint.

4.2. Variation of the ρ-Meson Effective Mass

A strong phase transition to the ρ−-condensed state relies on the strong decrease of its effective
mass. In this subsection, we study the effect of limiting the decrease of the ρ-meson effective mass
using the following mass scaling function:

Φρ( f ) =

{
1 − f , f ≤ fs

(1 − fs)
[
1 + ξ

1+bρξ

( ξ
2+bρ

− 1
)]

, f > fs
, ξ =

f − fs

1 − fs
. (7)

This expression defines a one-parametric family of scaling functions, with a minimum value of
the function Φρ,min as the parameter. For a given Φρ,min, the value of fs is

fs = 1 − Φρ,min − δΦρ,
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where we introduce a constant offset δΦρ = 0.1 allowing for a smooth transition at f = fs.

The parameter bρ =
Φρ,min

δΦρ
− 1 assures that Φ′

ρ( f = 1) = 0. Under the choice Φρ,min = 0, we will
understand also δΦ = 0, which leads to Φρ( f ) = 1− f . In the left panel of Figure 2, we show the scaling
function Φρ( f ) given by Equation (7) as a function of the scalar field f for Φρ,min = 0, 0.3, 0.5, 0.7, which
we examine below. We see that for Φρ,min > 0 this function monotonously decreases, but asymptotically
reaches Φρ(1) = Φρ,min. Thus this function Φρ( f ) is suitable for studying the effect of varying the
decrease rate of the effective mass.

Figure 2. Left panel: the scaling function Φρ( f ) as a function of the scalar field f defined by Equation (7)
for Φρ,min = 0, 0.3, 0.5, 0.7. Middle panel: the pressure as a function of the baryon density for the same
values of Φρ,min. Right panel: mass-radius curves for the same values of the parameters. For comparison,
we show the emprical constraints: (a) [14]; (b) [15]; (c) [16]; (d) [17]; (e) [18]; and (f) [19–21]. The horizontal
band shows the maximum NS mass constraint within the uncertainty range [2].

The resulting pressure as a function of the density is shown in the middle panel of Figure 2. The 1st
order PT proves to be present for Φρ,min < 0.7. However, the corresponding critical density grows
and the pressure loss decreases as we increase Φρ,min. For Φρ,min = 0.7 no condensate appears in the
model. The mass-radius curves for this models are shown in the right panel of Figure 2. The limiting
of the decrease of Φρ( f ) leads to an increase of the maximum NS mass. The maximum NS mass
Φρ,min = 0.3, 0.5, 0.7 are 2.06, 2.16, and 2.21 M�, respectively, proven to be larger than 2.03 M� in the
case of Φρ( f ) = 1 − f . Thus taming the ρ-meson effective mass decrease is an efficient way to control
the effect of the ρ− condensate.

4.3. Variation of the ηρ( f )

Another reason for the large ρ− condensate fraction is the particular shape of the ηρ( f ) function
in the MKVOR* model. The sharp decrease in the ηρ( f ) for f � 0.5 is needed to quench the scalar
field growth in the isospin-asymmetric matter, implementing the cut-mechanism of stiffening of the
EoS [22]. However, as we shall see in this section, this choice of ηρ( f ) corresponds to the maximum ρ−

condensate in the NS matter. To show this, we investigate a set of scaling functions ηρ( f ), smoothly
changing their behavior from a sharp decrease at f � 0.5 to a monotonous growth for all f .

The family of ηρ( f ) we use here consists of functions η
(i)
ρ ( f ), i = 1 . . . 17 within three different

analytic parameterizations labeled by an integer number. The details on the parameterizations can
be found in [7]. The choice of η

(1)
ρ corresponds to the original ηρ( f ) of the MKVOR* model (tail 2).

Dependence of η
(i)
ρ ( f ), i = 1 . . . 17 on the scalar field f is shown in the left panel of Figure 3. We see

that with an increase of the model number gradually changes the η
(i)
ρ behavior from sharply decreasing

for f � 0.5 to a monotonously growing function, thus switching off the cut-mechanism [22], which
limits the growth of the scalar field.

In the right panel of Figure 3, we show the maximum NS mass as a function of the model index,
while varying number of degrees of freedom included. Namely, we study the MKVOR*{Hφ, HΔφ,
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Hφρ, HΔφρ} models with Φρ( f ) = 1 − f . For estimating the effect of limiting the decrease of the
ρ-meson effective mass on these curves we consider also the MKVOR*HΔφρ model with Φρ given
by Equation (7) with Φρ,min = 0.5. For the models without ρ− condensate we see, that the choice

ηρ = η
(1)
ρ ≡ ηMKVOR∗

ρ maximizes the maximum NS mass, thus proving the efficiency of our “cut”
mechanism of the EoS stiffening. In addition, one should notice that the difference between Hφ and
HΔφ curves is as well minimized by the η

(1)
ρ . It means that this choice of ηρ plays an important role in

resolution of the “Δ puzzle” [23]. With an increase of the model number the impact of Δs on the EoS
grows, and for i = 17 the maximum NS mass becomes 2.03 M�, marginally satisfying the maximum
NS mass constraint.

The inclusion of the ρ− condensate changes this tendency. The Hφρ curve monotonously increases
with an increase of the model index and the choice ηρ = η

(1)
ρ minimized the maximum mass and

maximizes the ρ− condensate phase transition strength. A peculiar situation occurs if both Δs and
ρ− are included into the model. As one sees from the HΔφρ curve in the right panel of Figure 3,
the maximum NS mass is close to 2.03 , M� and almost independent on the model index. This happens
because for low i → 1 the softening comes from both the ρ− condensate together with Δs, and for large
i → 17 the ρ− condensate disappears and the softening effect of Δs is increased, as was mentioned
above. However, this independence of a maximum NS mass on the model number is accidental
and holds only for Φρ = 1 − f . If we limit the decrease of the ρ-meson effective mass (see HΔφρ,
Φρ,min = 0.5 curve in the right panel of Figure 3), such a degeneracy is removed.

Figure 3. Left panel: Scaling functions η
(i)
ρ for i = 1 . . . 17 as functions of the scalar field f . Right panel:

Maximum NS mass as a function of the model number for MKVOR*{Hφ, HΔφ, Hφρ, HΔφρ} models
with Φρ( f ) = 1 − f and for MKVOR*HΔφρ with Φρ given by Equation (7) with Φρ,min = 0.5.

5. Conclusions

We studied a possibility of charged ρ-meson condensation in a realistic relativistic mean-field
model MKVOR* with scaled hadron masses and couplings. The condensation proves to happen by
a first-order phase transition and leads to a dramatic reduction of a predicted maximum NS mass,
if one uses the universal scaling for masses of all mesons. Nevertheless, the NS maximum mass still
passes the observational constraint. We have shown that limiting the decrease of the ρ-meson effective
mass allow to reduce the effect of the phase transition on the EoS and increase the maximum neutron
star mass. In addition, we demonstrated that our choice of the ηρ( f ) scaling function maximizes the
neutron star maximum mass in the case without ρ− condensation. With the condensate included
with the universal mass scaling, the maximum mass is almost independent of the choice of ηρ( f ).
This happens because if the scaling function is chosen to minimize the effect of the ρ− condensate,
the Δ abundance is increased, and vice versa. However, this effect proves to be accidental and does
not manifest itself for a different ρ meson mass scaling.
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Abstract: A commonly applied quark matter model in astrophysics is the thermodynamic bag
model (tdBAG). The original MIT bag model approximates the effect of quark confinement, but does
not explicitly account for the breaking of chiral symmetry, an important property of Quantum
Chromodynamics (QCD). It further ignores vector repulsion. The vector-interaction-enhanced bag
model (vBag) improves the tdBAG approach by accounting for both dynamical chiral symmetry
breaking and repulsive vector interactions. The latter is of particular importance to studies of dense
matter in beta-equilibriumto explain the two solar mass maximum mass constraint for neutron stars.
The model is motivated by analyses of QCD based Dyson-Schwinger equations (DSE), assuming a
simple quark-quark contact interaction. Here, we focus on the study of hybrid neutron star properties
resulting from the application of vBag and will discuss possible extensions.

Keywords: Quantum Chromodynamics; dense matter; vector interaction; neutron stars

PACS: 12.39.Ba; 26.60.Kp

1. Introduction

The theory of strong interactions, Quantum Chromodynamics (QCD), describes hadrons as
bound states of quarks and gluons. These basic degrees of freedom carry the chromodynamic charge,
color. Given the QCD feature of a running coupling, i.e., rapidly growing quark–gluon interaction
strength with increasing distance (cf. [1] and references therein), and the fact that the net color
charge of any observable particle is 0, it is believed that color charged particles in fact cannot be
separated. This feature is known as confinement. Besides the running coupling, QCD also exhibits the
phenomenon of dynamical chiral symmetry breaking (DχSB) and its restoration at large densities and
high temperatures, believed to be the source of most of the visible mass in the universe.

To date, the only way to address QCD directly is the ab initio lattice QCD approach (cf. [2,3] and
references therein). The results of this approach are accurate in the vicinity of vanishing chemical
potentials (or equivalently at low densities). They predict a smooth cross-over phase transition at
154 ± 9 MeV (cf. [4–7] and references therein). This is in qualitative agreement with heavy-ion collision
experiments [8]. However, at moderate and low collision energies, one encounters finite chemical
potentials above this range. In astrophysical systems, e.g., neutron stars and core collapse supernovae,
we encounter even larger chemical potentials with densities above normal nuclear density and high
isospin asymmetries, far beyond the reach of current generation heavy-ion collision experiments.
In both cases, these conditions are inaccessible to lattice QCD.

In fact, currently, no consistent approach exists to simultaneously describe hadron matter and
deconfined quark matter at the level of quarks and gluons at high density. Hence, the deconfinement
phase transition (i.e., the transition from confined hadron matter to free quarks and gluons) is usually
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constructed from a given hadronic equation of state (EoS) with baryons and mesons as the basic
degrees of freedom and an independently computed quark matter EoS, although there are studies
focused on improving this situation (cf.) [9,10]. A general review of recent developments concerning
the EoS in astrophysical applications can be found in [11,12].

The two most commonly used effective quark matter models in astrophysics are the thermodynamic
bag model (tdBag) of [13] and models of the Nambu–Jona-Lasino type (NJL), cf. [14–17]. The former
mimics quark confinement via a phenomenological shift to the EoS, but keeps the quark masses
constant. On the other hand, the NJL model exhibits DχSB, but without modifications does not take
confinement into account. Both models do not include repulsive vector interactions, and provide a
momentum-independent description of quark properties.

The novel vBag was introduced recently [18] as an effective model for astrophysical studies.
It explicitly accounts for DχSB and repulsive vector interactions. The latter is of particular importance
for studies of neutron star phenomenology, as it allows a hybrid quark-hadron neutron star to reach the
limit of 2 solar masses (2 M�) in agreement with the recent observations of PSR J1614−2230 and PSR
J0348+0432 with masses of 1.928 ± 0.017 M� [19,20] and 2.01 ± 0.04 [21] PSR J0348−0432 with masses
of 1.97 ± 0.04 M� [19] and 1.928 ± 0.017 [20,21] respectively. Moreover, vBag mimics deconfinement
via a correction to the quark EoS based on the hadron EoS chosen for the construction of the phase
transition. This leads to a built-in simultaneous restoration of chiral symmetry and deconfinement.
Different Dyson–Schwinger studies suggest that this might be the case in the cross-over domain; the
situation is less clear at densities beyond the triple point (cf. [22,23]). vBag has been extended to finite
temperatures and arbitrary isospin asymmetry to study the resulting phase diagram [24–26].

The manuscript is organized as follows. In Section 2, we introduce vBag and its derivation from
the DSE formalism and present the derived EoS and neutron star mass-radius relations in Section 3.
In Section 4, we will discuss the introduction and possible impact of momentum dependence of the
single flavor quark properties via the DSE formalism. We will end with a brief summary in Section 5.

2. vBag, an Extended Bag Model

The general in-medium single flavor quark propagator has the form [27,28]

S−1(p2, p̃4) = i�γ�pA(p2, p̃4) + iγ4 p̃4C(p2, p̃4) + B(p2, p̃4), (1)

with p̃4 = p4 + iμ, where μ denotes the chemical potential. Evidently, the gap functions A, B and
C account for non–ideal behaviour due to interactions. They follow as solutions of the quark
Dyson–Schwinger equation (DSE),

S−1(p2, p̃4) = i�γ�p + iγ4 p̃4 + m + Σ(p2, p̃4), (2)

where the self-energy takes the shape

Σ(p2, p̃4) =
∫ d4q

(2π)4 g2(μ)Dρσ(p − q, μ)
λα

2
γρS(q2, q̃4)Γσ

α(q, p, μ). (3)

In this notation, m is the bare mass, Dρσ(p − q, μ) is the dressed–gluon propagator and Γσ
α(q, p, μ)

is the dressed quark–gluon vertex. By imposing a specific set of approximations [18] to the self energy
term Σ(p2, p̃4), one can reproduce the standard NJL model. We start from the rainbow truncation [29],
the leading order in a systematic, symmetry-preserving DSE truncation scheme [30,31],

Γσ
α(q, p, μ) =

λα

2
γσ. (4)
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Next, we impose an effective gluon propagator which is constant in momentum space up to a
hard cut-off Λ,

g2Dρσ(p − q, μ) =
1

m2
G

Θ(Λ2 − �p2)δρσ, (5)

equivalent to a quark-quark contact-interaction in configuration space. The Heaviside function Θ
provides a three-momentum cutoff for all momenta �p2 > Λ2. Λ represents a regularization mass scale
which, in a realistic treatment, would be removed from the model by taking the limit Λ → ∞. For the
NJL model this procedure fails and Λ is typically used as a simple UV cutoff. Different regularization
procedures are available; in fact the regularization scheme does not have to affect UV divergences only,
e.g., infra-red (IR) cutoff schemes can remove unphysical implications [32].

The term mG in the gluon propagator refers to the gluon mass scale and defines the coupling
strength. These approximations allow us to derive the gap equations. The A gap function has a trivial
A = 1 solution, the rest takes the form

B(p2, p̃4) = m +
16Nc

9m2
G

∫
Λ

d4q
(2π)4

B(q2, q̃4)

�q2 A2(q2, q̃4) + q̃2
4C2(q2, q̃4) + B2(q2, q̃4)

, (6)

p̃2
4C(p2, p̃4) = p̃2

4 +
8Nc

9m2
G

∫
Λ

d4q
(2π)4

p̃4q̃4C(q2, q̃4)

�q2 A2(q2, q̃4) + q̃2
4C2(q2, q̃4) + B2(q2, q̃4)

, (7)

where
∫

Λ =
∫

Θ(�p2 − Λ2). Both equations can be recast in terms of scalar and vector densities of an
ideal spin–degenerate fermi gas,

B = m +
4Nc

9m2
G

ns(μ
∗, B) (8)

μ = μ∗ + 2Nc

9m2
G

nv(μ
∗, B) (9)

where

ns(μ
∗, B) = 2 ∑

±

∫
Λ

d3q
(2π)3

B
E

(
1
2
− 1

1 + exp(E±/T)

)
(10)

nv(μ
∗, B) = 2 ∑

±

∫
Λ

d3q
(2π)3

∓1
1 + exp(E±/T)

(11)

with E2 = �p2 + B2 and E± = E ± μ∗. The integrals have no explicit external momentum
dependence (p), therefore the gap solutions are constant for a given μ. Typically, for DSE calculations,
the pressure is determined in the steepest descent approximation. It consists of an ideal fermi gas and
interaction contributions.

PFG = TrLnS−1 = 2Nc

∫
Λ

d4q
(2π)4 Ln

(
�p2 + p̃2

4 + B2
)

, (12)

PI = −1
2

TrΣS =
3
4

m2
G (μ − μ∗)2 − 3

8
m2

G (B − m)2 . (13)

The merit of the NJL model is the ability to describe chiral symmetry breaking as the formation of
a scalar condensate and the restoration of chiral symmetry as melting of the same. The chosen hard
cutoff scheme reproduces standard NJL model results and allows to describe quarks as a quasi ideal
gas of fermions. Note that after the critical chemical potential μχ quark matter can be approximated by
an ideal gas of fermions (assuming constant mass equal to the quarks bare mass) shifted by a constant
factor (denoted as Bχ, f ), as seen in Figure 1. This is similar to the standard tdBag model approach
(cf.) [13].
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Figure 1. (color online) Single flavor dynamical masses (black) and corresponding pressure (red)
computed within the NJL model. The latter is well fitted by the pressure of an ideal Fermi gas
(with bare quark mass m f ) shifted by a chiral bag constant Bχ (blue). Figure from [18].

Therefore, we express the single-flavor pressure as

Pf (μ f ) = PFG, f (μ
∗
f ) +

Kv

2
n2

FG, f (μ
∗
f )− Bχ, f . (14)

The second term corresponds to the vector condensate, where Kv relates to the vector current–
current interaction coupling constant. In our approach, it is defined in terms of the gluon mass
scalewith Kv being related to the vector current–current interaction coupling constant, which in
combination with the modification of the effective chemical potential μ∗ causes stiffening of the EoS
with increasing density, as shown in Figure 2.

Kv =
2

9m2
G

. (15)

Figure 2. Impact of vector interactions on the stiffness of the EoS. B1/4
χ = 150 MeV.

From Equation (8), it is evident that a corresponding scalar current-current interaction coupling
constant is defined as Ks = 2Kv. The relation of the coupling constants is consistent with the result
obtained after Fierz transformation of the one-gluon exchange interaction [17]. However, we absorbed
the effect of scalar interactions in Bχ and vary Kv as an independent model parameter. This procedure
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is common for NJL-type model studies. Taking the vector interaction into account then results in a
modification of the effective chemical potential μ∗ and pressure as evident from Equations (9) and (14).
This causes stiffening of the EoS with increasing density seen in Figure 2. This term is not included in
the standard tdBag model. Chiral symmetry is restored when Pf (μ f ) > 0, and therefore the critical
chemical potential can be defined as

Pf (μχ, f ) = 0. (16)

For two-flavor quark matter, this condition is redefined as

∑
f

Pf (μχ, f ) = 0 (17)

to avoid sequential chiral symmetry restoration. This is done so that we can impose simultaneous
chiral symmetry restoration and deconfinement at μB,χ. This can be achieved by exploiting the fact
that the total pressure is fixed only up to a constant factor and therefore we can impose

PQ = ∑
f

Pf + Bdc. (18)

By defining Bdc as the hadron pressure at μB,χ, we ensure that PQ and PH are equal at the point
of chiral transition,and therefore it coincides with deconfinement. We can now write the full set of
equations that define vBag

μ f = μ∗
f + KvnFG, f (μ

∗
f ), (19)

n f (μ f ) = nFG, f (μ
∗), (20)

Pf (μ f ) = PFG, f (μ
∗
f ) +

Kv

2
n2

FG, f (μ
∗
f )− Bχ, f , (21)

ε f (μ f ) = εFG, f (μ
∗
f ) +

Kv

2
n2

FG, f (μ
∗
f ) + Bχ, f , (22)

PQ = ∑
f

Pf + Bdc, (23)

εQ = ∑
f

ε f − Bdc, (24)

where ε denotes energy density and n is the particle number density.

3. Neutron Star Mass–Radius Relation

In the left panel of Figure 3, we illustrate the phase transition in β-equilibrated neutron star matter
for the chiral bag constants, B1/4

χ,u,d = 155 MeV and B1/4
χ,s = 170 MeV. Bdc has been adjusted so that

μχ = μdc. Due to the large vacuum mass of the s-quark, the phase transition from hadron to two-flavor
quark matter takes place at lower density, followed by the transition to 3f matter at high density. This is
the behavior one expects from NJL-type models without flavor coupling channels. It is not accounted
for by tdBag which ignores DχSB and consequently predicts a transition from nuclear to three-flavor
matter. In contrast, vBag describes a sequential transition from nuclear to two-flavor, and then to
three-flavor quark matter. Note that vector interactions are necessary to fulfill the 2 M� constraint.
Larger values of Bu,d

χ associated with larger quark masses result in higher critical densities for the
phase transition but qualitatively reproduce the above discussed features as long as the transition
density does not reach values where already the purely nuclear NS configurations render unstable.
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Figure 3. vBag EoS pressure vs. energy density for neutron star matter (left); and corresponding
mass-radius relations (right). The grey band represents the possible masses of the PSR J0348+0432
pulsar [21].

4. Momentum Dependence

As shown in the previous sections, the NJL model can be understood as a particular set of
truncations in the quark DSE. The price for the convenient description of chiral symmetry breaking
is paid for with the absence of any momentum dependence of the DS gap functions which reflects
the well known fact that the NJL model does not exhibit confinement. It does exhibit behavior
similar to the tdBag model, which mimics confinement, but none of these two effective models have
mass gap solutions with a nontrivial momentum dependence. Consequently, within these models,
a confinement criterion that implies the absence of quark mass poles is impossible to account for and
the deconfinement transition has to be modeled by imposing additional assumptions. Using a different
approximation of the gluon propagator in the quark DSE can however yield a momentum dependent
mass-gap, as was shown in the chiral quark model of [33] (the Munczek–Nemirovsky model (MN))
with the gluon propagator

g2Dρσ(k) = 3π4η2δρσδ(4)(k). (25)

The momentum delta function of the gluon propagator in a crude way mimics the QCD running
coupling, a feature absent in the standard NJL model. The model was extended to finite chemical
potentials [34] yielding in-medium momentum-dependent solutions

A(p2, p̃4) = C(p2, p̃4) =

⎧⎪⎨
⎪⎩

2, if Re( p̃2) < η2

4

1
2

(
1 +

√
1 + 2η2

p̃2

)
, otherwise

(26)

B(p2, p̃4) =

{√
η2 − 4p̃2 if Re( p̃2) < η2

4

0 otherwise
(27)

and to non-chiral quarks [35] resulting in a polynomial mass-gap equation

B4 + mB3 + B2
(

4p̃2 − m2 − η2
)
− mB

(
4p̃2 + m2 + 2η2

)
− η2m2 = 0. (28)

Mass-gap solutions can be seen in Figure 4. Note that there is a qualitative change in the behavior
of the mass gap of chiral and massive quarks. However, this change is quantitatively small for light
quarks. This illustrates the impact of dynamic chiral symmetry breaking on the effective mass of
massive quarks and justifies the approximation of light quarks as massless, at the same time showing
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that such an approximation is increasingly questionable for quarks with masses of the order of 0.1 GeV
and above. The key property of this model, however, is the rich momentum-dependent structure of
the mass solutions, which shows the impact of IR interactions on quark properties.

Figure 4. The solution of MN gap equations as a function of momentum. Blue color represents
real solutions and red complex for η = 1 GeV: (top left) chiral quark (m = 0); (top right) up
quark (m = 3 MeV); (bottom left) down quark (m = 5 MeV); and (bottom right) strange quark
(m = 100 MeV). All quantities are displayed in units of η. Figure from [35].

5. Conclusions

The vBag model is a novel and easy to implement approach to modeling dense quark matter
via a phenomenological Bag approach. It extends the widely used tdBag by taking DχSB and
repulsive vector interactions into account, and is able to reproduce two solar mass neutron star
masses. By connecting Bdc to the underlying hadron EoS, it ensures coinciding chiral symmetry
restoration and deconfinement. The transition from hadron to quark matter is subsequently introduced
via a Maxwell construction, which imposes a 1st order phase transition. This treatment ensures that
the effects of DχSB are reflected by the EoS, as the hadron EoS is independent of the underlying quark
NJL model and therefore a region in which μχ < μ < μdc might produce unreliable results due to a
lack of DχSB realization on the hadron side. vBAG is a practical tool for modelers who wish to account
for QCD degrees of freedom in complex dense systems—in particular for applications in astrophysics.
Furthermore, this model illustrates the power of the DSE approach, explaining standard quark matter
models as the NJL and tdBag model in terms of approximations of the quark DSE. At the same time,
the DSE approach promises extensions to the widely used effective models, as it accounts naturally for
momentum dependent quark properties which might impact the properties of dense stellar objects.
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Abbreviations

The following abbreviations are used in this manuscript:

QCD Quantum Chromodynamics
DχSB Dynamic Chiral Symmetry Breaking
EoS Equation of State
MeV Megaelectronovolt
GeV Gigaelectronovolt
M� Solar mass
DSE Dyson–Schwinger equation
NJL Nambu–Jona-Lasinio
MN Munczek–Nemirovsky
tdBag thermodynamic bag
UV ultra-violet
IR infra-red
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Abstract: First-order phase transitions, such as the liquid-gas transition, proceed via formation of
structures, such as bubbles and droplets. In strongly interacting compact star matter, at the crust-core
transition but also the hadron-quark transition in the core, these structures form different shapes
dubbed “pasta phases”. We describe two methods to obtain one-parameter families of hybrid equations
of state (EoS) substituting the Maxwell construction that mimic the thermodynamic behaviour of pasta
phase in between a low-density hadron and a high-density quark matter phase without explicitly
computing geometrical structures. Both methods reproduce the Maxwell construction as a limiting
case. The first method replaces the behaviour of pressure against chemical potential in a finite region
around the critical pressure of the Maxwell construction by a polynomial interpolation. The second
method uses extrapolations of the hadronic and quark matter EoS beyond the Maxwell point to define
a mixing of both with weight functions bounded by finite limits around the Maxwell point. We apply
both methods to the case of a hybrid EoS with a strong first order transition that entails the formation
of a third family of compact stars and the corresponding mass twin phenomenon. For both models, we
investigate the robustness of this phenomenon against variation of the single parameter: the pressure
increment at the critical chemical potential that quantifies the deviation from the Maxwell construction.
We also show sets of results for compact star observables other than mass and radius, namely the
moment of inertia and the baryon mass.

Keywords: quark-hadron phase transition; pasta phases; speed of sound; hybrid compact stars;
mass-radius relation; GW170817

1. Introduction

The understanding of the properties of dense matter in compact star interiors is a subject of
current research. Recently, great progress in this direction has been achieved by the detection of the
gravitational radiation that emerged from the inspiral phase of two coalescing compact stars, an event
named GW170817 [1]. Since it was observed in all other bands of the electromagnetic spectrum, it
marked the birth of multi-messenger astronomy. Among the various obtained results, GW170817
has shed light on the properties of the equation of state (EoS) of compact star matter, namely on its
stiffness, since through the constraints on the tidal deformability parameter λ [2] from the LIGO-Virgo
Collaboration (LVC) results one could estimate the maximum radius of a 1.4 M� compact star to
R1.4,max = 13.6 km [3] and maximum mass of nonrotating compacts stars MTOV,max = 2.16 M� [4].

Universe 2018, 4, 94; doi:10.3390/universe4090094 www.mdpi.com/journal/universe85
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Of great scientific interest is the phenomenon of a phase transition from hadronic matter to a deconfined
quark phase in hybrid compact stars. Those stars are comprised of a deconfined quark matter core
surrounded by a hadronic mantle. The nature of the deconfinement transition is a matter of debate [5,6].
Whether it exhibits a jump in the thermodynamic variables or represents a crossover (1 is a question
that is addressed to both, laboratory experiments as well as compact star observations. The possibility
of a mixed phase in neutron stars arises. Standard approaches to describe such a domain of coexistence
of competing phases are: (i) the Maxwell construction (for just one chemical potential) which leads
to sharp phase boundaries due to constant pressure throughout the mixed phase; (ii) the Gibbs
construction (for several chemical potentials corresponding to different conserved quantities) [7],
where the pressure changes in the mixed phase which is quasi homogeneous due to the neglect
of surface tension effects; and (iii) the constructions with finite size structures of different shapes
(“pasta phases” [8]) due to surface tension and Coulomb effects that are mainly modeled with the
approximation of sharp surfaces and the surface tension as a free parameter. The adequate description
of the letter is a complicated problem where the geometrical properties of the structures, as well as
transitions between them, must be taken into account (different methodologies can be found in [9–15]).
In the case of the hadron-quark interface, the procedure is well explained in [16] (see also [15] for a
recent work); one models several geometrical structures and finds the energetically most favorable
ones in different density regions inside compact stars. The occurrence of structures introduces surfaces
separating the phases coexisting in the mixed phase. The value of the surface tension determines the
size of the structures and thus the amount of surface per volume that can optimally be afforded. While
for a vanishing surface tension the mixed phase becomes quasi homogeneous and ΔP is largest, a high
value of surface tension results in a single surface as for the Maxwell construction that corresponds
to ΔP = 0, see Figure 1. The quantitative relation between ΔP and the surface tension is under
investigation [17].

Baryonic chemical potential
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Figure 1. Schematic representation of the interpolation function PM(μ) obtained from the mixed phase
constructions discussed in this work. For both interpolation methods discussed in the text it has to go
though three points: PH(μH), Pc + ΔP and PQ(μQ).

In this work we take a different route and introduce two types of phenomenological interpolations
which aim at mimicking the thermodynamic behaviour of those geometrical structures while

1 The word “crossover” is used generically for a transition that does not proceed like in a Maxwell construction at a strictly
constant pressure with a jump in (energy) density, but rather by a varying pressure in the transition region. It can thus be a
generic crossover transition like in ferromagnetic systens under external magnetic field, but also a first order transition for
several globally conserved charges which proceeds via formation of structures of different shapes (pasta phases).
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simultaneously exploring the whole corresponding density range in a unified way. A first realization
of the idea to describe the transition from the hadronic to the quark matter phase of matter in neutron
stars by an interpolation in order to model a crossover-like behaviour was carried out in [18] and
followed up in Refs. [19,20], where the jump of the EoS ε(P) was replaced by a smooth behaviour
using as an ansatz a tangens hyperbolicus function.

The mixed phase constructions in this work are developed exclusively for stellar matter where
the conditions of charge neutrality and beta equilibrium apply. These constraints allow to express the
other chemical potentials in terms of the baryon one. Therefore, only the baryon chemical potential μ

remains as the single independent thermodynamic variable. The pressure as a function of μ as shown
in Figure 1 can be viewed as a projection from a higher dimensional space spanned by the pressure
and several other chemical potentials onto the P − μ plane where the resulting function P(μ) is subject
to modeling within our simplified approach to mimic the effect of pasta structures in the mixed phase.

A systematic and thermodynamically consistent formulation was recently given in [21,22], where
a parabolic interpolation function was introduced to replace the behaviour of the hybrid EoS for a
Maxwell transition. We shall denote this procedure as the replacement interpolation method (RIM).
The resulting hybrid EoS was then used to study the effect of the mixed phase on the properties of
compact stars. A second realization of this concept has been worked out recently in [23], where instead
of replacing the hadronic and quark matter branches of the hybrid EoS in the limits μH < μ < μQ
(see Figure 1) a mixing of these branches is defined using switch functions and a bell-shaped function
for the pressure increment with an amplitude ΔP = ΔP Pc, where Pc = P(μc) is the critical pressure
of the Maxwell construction. This procedure is denoted as the mixing interpolation method (MIM)
in [23]. The free parameter ΔP occurs in both methods with an equivalent influence on the behaviour
of the EoS in the mixed phase region, in particular on its extension, see Figure 1. We would like to
note that in both methods a negative value of ΔP would signal that a Maxwell construction using both
input EoS PH(μ) for hadronic matter and PQ(μ) for quark matter would not make sense because it
would describe a transition from quark matter at low densities (where PQ(μ) is not trustworthy) to
hadronic matter at high densities (where PH(μ) is not trustworthy). For a discussion of this situation,
see Ref. [24].

In this work we present a comparative study of the RIM and MIM approaches to construct mixed
phases of the quark-hadron phase transition that mimic the thermodynamic behaviour of pasta phases.
We discuss the similarities and differences of these two approaches and apply them to obtain a hybrid
EoS under neutron star constraints for which we discuss the resulting hybrid star sequences and their
properties. While the first approach (RIM) is rather intuitive and simple to realise as its properties just
depend on the order of interpolating polynomial, the second approach (MIM) is based on a procedure
of “mixing” the EoS of the two phases in the coexistence region and reminds in its properties on the
physics of substitutional compounds as in the crust of compact stars, resulting in an intermediate
stiffening effect.

The paper is structured as follows. In Section 2 we start with the reference EOS for the present
study, for which a four-polytrope ansatz is employed which features a hadronic phase (first polytrope),
a constant pressure polytrope resembling a strong first order phase transition as described by a Maxwell
construction (second polytrope) and two polytropes for quark matter phases at high densities. Next,
in Section 3, we introduce the RIM and MIM approaches to construct mixed phases when two reference
EoS for the low-density (hadronic) and high-density (quark matter) phases are given. We discuss the
speed of sound cs as the key characterizing property of the family of obtained hybrid EoS. Subsequently,
in Section 4, we discuss the similarities and differences between the hybrid star EoS of both approaches
and show results for the macroscopic properties of compact stars. We motivate these results by the
feasibility of detection by multi-messenger astronomy. Consequently, future detections of gravitational
wave radiation emitted by of NS–NS or NS–BH mergers shall provide new constraints on both the
star mass and radius. Moreover, the determination of the fate of the merger, whether it evolves via a
prompt or delayed collapse into a black hole, can be used as an independent estimate on the mass and
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radius, as proposed in [25]. Up to now, tests for the current compact star models with the at present
still single compact star merger event have been performed, e.g., in [22,23,26].

2. Hybrid Star EoS with a Third Family and High-Mass Twins

Compact stars are traditionally divided into white dwarf (first family) and neutron star (second
family) branches. Hybrid stars whose equation of state undergoes a sufficiently strong first order phase
transition (large jump in energy density Δε) can populate a third family branch in the mass-radius
diagram, separated from the second one by a sequence of unstable configurations. As a consequence,
there appear so called mass twin configurations: the second and third family solutions overlap
within a certain range of masses while the radii of any two stars with the same mass (mass twins)
are very different. If the mass-twin phenomenon occurs at high masses ∼2 M� then one speaks of
high-mass twin (HMT) stars [27]. Depending on the critical pressure of the phase transition, the
mass-twin phenomenon can occur also at lower masses such as the typical binary radio pulsar mass of
∼1.35 M�, see [22,23,26], so that the corresponding twin star configuration become of relevance for
the interpretation of GW170817. In the latter case, a mass ratio q = m1/m2 = 1 of the merger would
not entail that the merging stars have the same radii and internal structure! Would the mass-twin
phenomenon (at whatever mass) be observed, this would entail that the QCD phase diagram has to
possess at least one critical endpoint since for the study of the cold region of the QCD phase diagram
the existence of a first order phase transition between hadron to quark matter had to be concluded.
Since the high temperature region of the QCD diagram is known to feature a crossover transition,
compact stars can serve as a probe of the existence of a critical end point [28] and provide insight into
the properties of matter in heavy ion collision conditions [29].

In order to study the effects of pasta phases at the hadron-quark matter interface in hybrid
star interiors, we consider a piecewise polytropic EoS as previously used in various works [3,30–33].
The polytropic representation used in the present work consists of four segments of matter at densities
higher than saturation density n0 = 0.15 fm−3 (n0 � n1 < n < n5).

P(n) = κi(n/n0)
Γi , ni < n < ni+1, i = 1 . . . 4, (1)

Each density region is labelled by i = 1 . . . 4 with prefactor κi and polytropic index Γi. HMT stars
require a rather stiff nucleonic EoS which here is represented by the first polytrope. The hadron-quark
matter first-order phase transition is described by the second polytrope with constant pressure Ptr = κ2

and vanishing polytropic index (Γ2 = 0). At higher densities the polytropes 3 and 4 represent a rather
stiff quark matter EoS. The parameters for this HMT realisation are given in Table 1.

Table 1. Parameters for the four-polytrope EoS of Ref. [33], called “ACB4” in Ref. [26]. The corresponding
description is presented in Equation (1) of the main text. The last column displays the maximum masses
Mmax on the hadronic (hybrid) branch corresponding to region i = 1 (i = 4). In addition, the minimal
mass Mmin in region i = 3 of the hybrid branch is displayed in that column.

ACB i Γi
κi ni m0,i Mmax/min

[MeV/fm3] [1/fm3] [MeV] [M�]

4 1 4.921 2.1680 0.1650 939.56 2.01
2 0.0 63.178 0.3174 939.56 –
3 4.000 0.5075 0.5344 1031.2 1.96
4 2.800 3.2401 0.7500 958.55 2.11

For the present applications to thermodynamically consistent interpolating constructions we need
to convert the EoS (1) to the form [33]

P(μ) = κi

[
(μ − m0,i)

Γi − 1
κiΓi

]Γi/(Γi−1)
, (2)
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valid for the respective regions (phases) i = 1 . . . 4, where for the constant pressure region i = 2 this
formula collapses to P(μ = μc) = Pc = κ2 because of Γ2 = 0. The masses m0,i represent the effective
masses of the constituent degrees of freedom in the phase i. For example, in the hadronic region,
m0,1 = m0, where m0 is the nucleon mass. At higher densities, this corresponds to effective quark
masses. For applying the MIM below, it will be important that the pressure of the hadronic phase
(i = 1) valid for μ < μc can be extrapolated to the neighbouring quark matter phase (i = 3) where
μ > μc and vice-versa.

HMT star EoS fulfil the Seidov conditions over quantity values at the phase transition [34]

Δε

εc
≥ 1

2
+

3
2

Pc

εc
(3)

for the third family of compact stars to exist. These conditions determine the existence of a gap on
the mass-radius relation, therefore separating the third family of compact stars from the second one.
Once a small region of different matter appears in the centre of the star, the effect can be studied by
perturbation theory [34] or by linear response theory [35,36]. The result is that if the Seidov conditions
are satisfied, any increase in the central pressure will lead to an instability against oscillations precisely
of the same type that happens when the maximum mass is exceeded in the mass-radius relation.
The choice of parameters for this EoS corresponds to a sufficiently stiff high-density region in order
to prevent gravitational collapse while at the same time not violating the causality condition for the
speed of sound cs < c. See [33] for details.

3. Mixed Phase Constructions

In this section we present the details of the interpolation descriptions for the mixed phase between
the hadronic and quark matter phases. For this purpose we consider the chemical potential dependent
pressures of both the hadronic (i = 1) and the neighbouring quark matter (i = 3) phases: PH(μ), PQ(μ),
respectively. As mentioned above, our polytropic HMTs EoS features a first order phase transition
implemented in the form of a Maxwell construction at a critical chemical potential value μc where
pressures for both phases are equal:

PQ (μc) = PH (μc) = Pc, (4)

thus both phases are in thermodynamic equilibrium.

3.1. The Replacement Interpolation Method (RIM)

In this mixed phase approach the relevant regions of both, the hadronic and quark matter EoS
around the Maxwell critical point (μc, Pc) are replaced by a polynomial function defined as

PM (μ) =
N

∑
q=1

αq (μ − μc)
q + (1 + ΔP) Pc (5)

where ΔP is a free parameter representing additional pressure of the mixed phase at μc. Generally,
the ansatz (5) for the mixed phase pressure is an even order (N = 2k, k = 1,2, ...) polynomial and it
smoothly matches the EoS at μH and μQ up to the k-th derivative of the pressure,

PH (μH) = PM (μH) , PQ
(
μQ
)
= PM

(
μQ
)

(6)

∂q

∂μq PH (μH) =
∂q

∂μq PM (μH) ,
∂q

∂μq PQ
(
μQ
)
=

∂q

∂μq PM
(
μQ
)

, q = 1, 2, . . . , k , (7)

where N + 2 parameter values (μH , μQ and αq, for q = 1, . . . , N) can be found by solving the above
system of equations, leaving one parameter (ΔP) as a free parameter of this method.
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The simplest case of the RIM is the parabolic model for N = 2 which has been first introduced
in [21,22],

PM (μ) = α2 (μ − μc)
2 + α1 (μ − μc) + (1 + ΔP) Pc (8)

As usual, the parameters α1, α2, μH and μQ are found from the following system of equations
involving quantities at the borders of the mixed phase,

PH (μH) = PM (μH) , PQ
(
μQ
)
= PM

(
μQ
)

(9)

nH (μH) = nM (μH) , nQ
(
μQ
)
= nM

(
μQ
)

. (10)

It is evident that the order of the interpolating function (5) will determine whether or not there
are discontinuities for the derivatives of the function PM(μ).

For instance, the square of the speed of sound,

c2
s =

∂P
∂ε

=
∂ ln μ

∂ ln n
, (11)

involves the second derivative of the pressure with respect to μ since n = ∂P/∂μ, see Figure 2.
The result is that for k = 1 the function (5) exhibits a clear discontinuity in the speed of sound at εc and
εc + Δε, whereas in between these borders, the speed of sound slightly increases relative to the case
of the Maxwell construction for which c2

s = 0 in the mixed phase region. For k = 2, the mixed phase
pressure (5) allows for a continuous speed of sound. However, it is connected at εc and εc + Δε to the
speed of sound outside these borders with a jump in its derivative. At the order k = 3 and higher the
speed of sound behaves smoothly without a jump in its derivative. However, the sharp change in the
speed of sound remains as a feature of matter around the transition points μH and μQ distinctive of a first
order phase transition. Moreover, the effect of taking into account the contribution of the higher order
polynomials is a softening at the transition that can be associated with crossover–type phase transitions.

Figure 2. The squared speed of sound as a function of the chemical potential for the RIM construction
with k = 2 (left panel) and k = 3 (right panel).

3.2. The Mixing Interpolation Method (MIM)

This approach has recently been defined in Ref. [23], where the interpolation ansatz was based
on trigonometric functions. Here we will use instead a polynomial ansatz for the interpolation that
consists of a pair of functions foff and fon that will switch off and on the hadronic and quark parts
of the equation of state, as well as an additional compensating function Δ in order to eliminate
thermodynamic instabilities, see Figure 3. This interpolation is applied in the p − μ plane within the
range μH ≤ μ ≤ μQ.
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Figure 3. Polynomial switch functions foff/on(μ) as well as the function Δ(μ).

The pressure that interpolates between the hadron and quark phase at the phase transition reads

P(μ) = PH(μ) foff(μ) + PQ(μ) fon(μ) + Δ(μ)ΔP. (12)

Even though foff and fon might be any switching functions, our choice of definition consists of
the following pair of left and right side polynomials:

f>,L = αL

(
μ − μH

μQ − μH

)2
+ βL

(
μ − μH

μQ − μH

)3
(13)

f<,R = αR

(
μQ − μ

μQ − μH

)2
+ βR

(
μQ − μ

μQ − μH

)3
(14)

that together with the complementary functions f>,R(μ) = 1 − f<,R(μ) and f<,L(μ) = 1 − f>,L(μ) will
complete the switch functions. The above coefficients αL , αR, βL and βR can be determined by the
following conditions

f≶,L(μ)
∣∣∣
μ=μc

= f≶,R(μ)
∣∣∣
μ=μc

= 1/2

∂ f≶,L(μ)

∂μ

∣∣∣
μ=μc

=
∂ f≶,R(μ)

∂μ

∣∣∣
μ=μc

∂2 f≶,L(μ)

∂μ2

∣∣∣
μ=μc

=
∂2 f≶,R(μ)

∂μ2

∣∣∣
μ=μc

(15)

where the value of 1/2 is chosen for symmetric convenience. Consequently, the switching functions
are defined as

fon(μ) =

{
0, μ < μH
f>,L, μH ≤ μ ≤ μc

(16)

foff(μ) =

{
f<,R, μc ≤ μ ≤ μQ
0, μ > μQ

(17)

and furthermore obey foff/on(μ) = 1 − fon/off(μ).
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In order to construct a proper dimensionless function Δ(μ) we introduce

Δ(μ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 μ < μH

gL(μ) μH ≤ μ ≤ μC

gR(μ) μC ≤ μ ≤ μQ

0 μ > μQ

(18)

consisting of the functions

gL = δL

(
μ − μH

μC − μH

)2
+ γL

(
μ − μH

μC − μH

)3
(19)

gR = δR

(
μQ − μ

μQ − μC

)2
+ γR

(
μQ − μ

μQ − μC

)3
(20)

whose coefficients are determined by the conditions

gL(μ)
∣∣∣
μ=μC

= gR(μ)
∣∣∣
μ=μC

= 1

∂gL(μ)

∂μ

∣∣∣
μ=μC

=
∂gR(μ)

∂μ

∣∣∣
μ=μC

= 0 .
(21)

Regarding ΔP as the only free external parameter, up to this moment we have 10 unknowns and
eight independent equations which leave us with the possibility to fix the second order derivative of P
at μH and μQ in the following way:

∂2P
∂μ2

∣∣∣
μ=μH

=
∂2PH

∂μ2

∣∣∣
μ=μH

∂2P
∂μ2

∣∣∣
μ=μQ

=
∂2PQ

∂μ2

∣∣∣
μ=μQ .

(22)

4. Results

4.1. Hybrid Star EoS with Mixed Phases

The two interpolation methods presented above result in a thermodynamically consistent EoS.
Knowing that n = ∂P/∂μ, the thermodynamic identity used to derived all the needed variables at zero
temperature reads

ε = −p + μ n. (23)

Figure 4 shows the resulting mixed phase interpolations for both approaches characterised by the
dimensionless pressure increment ΔP = ΔP/Pc that ranges from 1 to 8%, where ΔP = 0% reproduces
the Maxwell construction. Figure 5 shows pressure values depending on energy density. The first
order phase transition via a Maxwell construction corresponds to the ΔP = 0% case with the pressure
being constant in the mixed phase region. Furthermore, Figure 6 shows the squared speed of sound for
both approaches where the difference between them becomes obvious: while the MIM shows a peak
in the mixed phase region the RIM shows a rather structureless behaviour in this region. This feature
is a direct consequence of the functional form of the interpolation implemented by the two methods.
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Figure 4. The EoS for pressure P vs. chemical potential μ for both MIM (left panel) and RIM for a sixth
order polynomial ansatz (right panel, k = 3) approaches to the mixed phase construction. Different
curves labelled by percentages correspond to values of ΔP = ΔP/Pc, where ΔP = 0 corresponds to the
Maxwell construction.

Figure 5. The EoS for pressure P vs. energy density ε for both MIM (left panel) and RIM for a sixth
order polynomial ansatz (right panel, k = 3) approaches to the mixed phase construction. Different
curves labelled by percentages correspond to values of ΔP = ΔP/Pc, where ΔP = 0 corresponds to the
Maxwell construction. See [23] for an extended discussion on the MIM approach.

Figure 6. The squared speed of sound c2
s against energy density ε for both MIM (left panel) and

RIM (right panel, k = 3) approaches to the mixed phase construction. Different curves labelled
by percentages correspond to values of ΔP = ΔP/Pc, where ΔP = 0 corresponds to the Maxwell
construction. A clear feature of the MIM that distinguishes it from the RIM is the intermediate
stiffening of the EoS, apparent by the peaked structure inside the mixed phase region. See [23] for an
extended discussion on the MIM approach.
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4.2. Compact Star Sequences

In order to compute the compact star internal pressure (energy density) profiles leading to
mass-radius relations, we solve the Tolman–Oppenheimer–Volkoff (TOV) equations [37,38] derived in
the framework of General Relativity for a static, spherically-symmetric compact star

⎧⎪⎪⎨
⎪⎪⎩

dP(r)
dr

= −G (ε(r) + P(r))
(

M(r) + 4πr3P(r)
)

r (r − 2GM(r))
,

dM(r)
dr = 4πr2ε(r)

(24)

with the boundary conditions P(r = R) = 0, M(0) = 0 and M(R) = M that serve to determine the
total stellar mass M and total stellar radius R once a central pressure P(0) = P(r = 0) (and with it
the central energy density because P(ε) is known) is given as input. By increasing the central energy
density values, a whole sequence of star configurations up to the one with the maximal mass can be
obtained, thus populating the mass-radius diagram. Figure 7 shows compact star sequences for all
models characterised by the ΔP value for both, the MIM and RIM approaches together with up-to-date
constraints from astrophysical measurements. We can notice that for the lower values of ΔP < 6% the
HMT phenomenon persists regardless which mixed phase interpolation method has been applied.
In Figure 8 we show the mass versus central energy density and the radius versus central pressure for
both interpolation methods. For the MIM one observes a trace of the intermediate stiffening effect in
the mass versus central energy density which is absent for the RIM.

Figure 7. Mass-radius relations for both mixed phase approaches, MIM (left panel) and RIM for a sixth
order polynomial ansatz (right panel). Each curve corresponds to an EoS with a chosen ΔP value given
as a percentage of the critical Maxwell pressure Pc represented by alternating line-styles. The shaded
areas correspond to compact star measurements: The blue and red horizontal bands correspond to
mass measurements of PSR J1614-2230 [39] and PSR J0348+432 [40], respectively. The gray and orange
bands denoted by M1 and M2 are the compact star mass windows for the binary merger GW170817.
The green band corresponds to the 1.44 ± 0.07 M� mass of PSR J0437-4715 whose radius is expected
to be measured by NICER [41]. The hatched regions are excluded by GW170817: the star radius at
1.6 M� cannot be smaller than 10.68 km [25] and for a 1.4 M� the star has to have a radius smaller than
13.6km [3]. The maximum mass of compact stars is estimated to be lower than 2.16 M� [4].
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Figure 8. Upper panel: Mass as a function of central energy density for both mixed phase approaches,
MIM (left panel) and RIM (right panel). Lower panel: Radius as a function of central pressure for all
MIM (left panel) and RIM (right panel, k = 3) sequences. Each curve corresponds to an EoS with a
chosen ΔP value given as a percentage of the critical Maxwell pressure Pc represented by alternating
line-styles. The case ΔP = 0 corresponds to the Maxwell construction which produces a sharp edge in
the curves.

In addition, two other quantities of astrophysical interest are the total baryonic mass of the star
that results from integrating the following equation

dNB(r)
dr

= 4πr2(1 − 2GM(r)
r

)−1/2n(r), (25)

and similarly, its moment of intertia [42]

I � J
1 + 2GJ/R3c2 , J =

8π

3

∫ R

0
r4
(

ρ +
p
c2

)
Λdr, Λ =

1
1 − 2Gm/rc2 , (26)

which are related to observational phenomena as well, like energetic emissions that might conserve
baryon mass or moment of inertia dependent pulsar glitches. For a detailed discussion of the moment of
inertia in the slow-rotation approximation, and for the hybrid star case see, e.g., [43–45], and references
therein. In Figure 9 we show the baryon mass versus radius and and the moment of inertia versus
gravitational mass for the compact star sequences obtained in this work with both interpolation
methods. When increasing the pressure increment from ΔP = 0 to 8%, the sharp edges which are
obtained for the Maxwell construction case get washed out. One observes no qualitative difference
between the MIM and the RIM in the patterns of these families of sequences. For ΔP > 5%, the second
and third family branches in the MB versus R diagrams get joined so that neutron star and hybrid star
configurations form a connected sequence and the HMT phenomenon get lost. This effect is reflected
in the I vs. M diagrams by the loss of multiple values (the lowest branch up to the maximum mass
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of 2.11 M� shall be ignored because it is unstable). From the MB versus R diagrams one can read off
which configuration on the hybrid star branch would be reached when the maximum mass neutron
star configuration would collapse under conservation of baryon number. Comparing the gravitational
masses of these two star configurations one can estimate the release of binding energy in this process,
see Ref. [45].

Figure 9. Upper panel: Baryonic Mass versus radius for both mixed phase approaches, MIM (left panel)
and RIM (right panel, k = 3). Lower panel: Moment of inertia as a function of total mass for MIM
(left panel) and RIM (right panel, k = 3) approaches. Each curve corresponds to an EoS with a chosen
ΔP value given as a percentage of the critical Maxwell pressure Pc represented by alternating line-style
values. The case ΔP = 0 corresponds to the Maxwell construction which produces a sharp edge in the
curves.

5. Conclusions

In this work we have introduced two interpolation approaches to a mixed phase at the
hadron-quark phase transition. An advantage of these two interpolation methods presented here over
the construction employing hyperbolic tangent functions [19,20] is the finite extension in chemical
potentials of the mixed phase between the hadronic and the quark EoS, whereas the latter strictly
converges only at infinity.

While each approach uses a different functional form, both fulfil the same conditions at the border
of the mixed phase. We have found that both methods can be distinguished by the behaviour of the
speed of sound that they predict. The MIM approach motivated by the analogy with sequential phase
transitions occurring for substitutional compounds in the neutron star crust finds an intermediate
stiffening of the mixed phase EoS. The RIM approach does not exhibit this feature. In the case of the
RIM approach, we have studied both a fourth and sixth order polynomial interpolation. We found
that the latter connects the hadron and quark EoS smoothly up to second derivatives, which is visible
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in the smooth behaviour of the speed of sound. However, the differences in the neutron star properties
for both polynomial orders are safely negligible.

The macroscopic properties of compact stars show, for both mixed phase constructions, a very
similar systematic behaviour as the pressure increment ΔP is increased: the mass-radius relation smooths
out, eliminating the gap between second and third branches, however, we have only considered the
highest values. Up to ΔP ∼ 5% the HMT phenomenon is robust against the mixed phase construction,
regardless whether the MIM or RIM approach is used. For the mass versus central energy density,
one observes a trace of the intermediate stiffening effect for the MIM which is absent for the RIM.
For the other compact star quantities evaluated here, the baryonic mass and the moment of inertia,
both interpolation methods display a similar type of behaviour when the pressure increment is varied.

The methods presented here can potentially be applied to the compact star crust-core transition
as well. Just like at the hadron-quark boundary, the transition at the bottom of the crust may proceed
via pasta phases dominated by Coulomb forces and surface tension effects [8]. Further astrophysical
aspects of mixed phases inside neutron stars include potentially observable effects such as the rotational
evolution, pulsar glitches, gravitational wave emission and cooling. They could be sufficiently sensible
to the nature of the phase transition, proceeding via pasta phases or not, and thus provide potential
signatures of the presence and extension of a mixed phase in compact stars.
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Abstract: An extension of the relativistic density functional approach to the equation of state for strongly
interacting matter is suggested that generalizes a recently developed modified excluded-volume mechanism
to the case of temperature- and density-dependent available-volume fractions. A parametrization of this
dependence is presented for which, at low temperatures and suprasaturation densities, a first-order phase
transition is obtained. It changes for increasing temperatures to a crossover transition via a critical endpoint.
This provides a benchmark case for studies of the role of such a point in hydrodynamic simulations of
ultrarelativistic heavy-ion collisions. The approach is thermodynamically consistent and extendable to finite
isospin asymmetries that are relevant for simulations of neutron stars, their mergers, and core-collapse
supernova explosions.
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1. Introduction

The simulation of astrophysical phenomena, such as core-collapse supernovae (CCSN) or neutron-star
(NS) mergers, requires a careful modeling of strongly interacting matter in a wide range of densities
and temperatures. The same applies to the theoretical description of heavy-ion collisions (HIC) that
study compressed baryonic matter in the laboratory from low to high beam energies. The properties
of such matter are represented by the equation of state (EoS) that provides information on pressure,
entropy, energies, and other thermodynamic variables of interest.

A particular feature of QCD matter is the supposed phase transition (PT) from hadronic matter to
quark matter when density or temperature increase to sufficiently high values. A strong first-order PT
could allow for the existence of a third branch of compact stars and the occurrence of the twin-star
phenomenon [1–3]. Signals of the PT might also have direct consequences in dynamical processes
when matter in the quark phase expands and cools down, e.g., the release of a second neutrino burst
in CCSN [4–6]. For a recent review on the role of the EoS in CCSN simulations, see [7].

The theoretical description of the hadron–quark PT in strongly interacting matter often relies on
a construction employing different models for the two phases. With such an approach, the coexistence
line of the first-order PT will usually connect a point on the zero-temperature axis at finite baryon
chemical potential μB with a point at finite temperature T on the zero baryon chemical potential axis.
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By this construction, the QCD hadron–quark PT is of first order in the whole temperature–density
plane, see for instance [8]. However, from lattice QCD studies, it is known that there is a smooth
crossover at μB = 0 with increasing T [9,10], so at least one critical point at finite μB and T is expected
to exist. Other possibilities are that the character of the transition is crossover all over the QCD phase
diagram [11] or, as is advocated in studies of the BEC-BCS crossover transition in low-temperature
QCD, that a second critical endpoint exists [12–14]. Since lattice QCD studies are presently incapable
of exploring the EoS close to the presumed critical point with much confidence, unified models
are needed that can account for the existence of these features, see, e.g., [15]. There are dedicated
microscopic models available that incorporate the major expected features in the QCD phase diagram,
e.g., chiral mean-field models [16] or parity-doublet quark–hadron models [17]. Simulations of CCSN
or HIC that are based on a hydrodynamic description of matter during dynamical evolution use the
thermodynamic properties of matter encoded in the EoS as an input. Such data can be provided by
phenomenological models that do not need to incorporate all of the details of the underlying physics.

In this work, a novel approach is introduced to provide a phenomenological EoS of baryonic
matter that exhibits a first-order PT and a critical point at densities and temperatures expected in QCD
matter. The parameters of the model can be adjusted to place the coexistence line at arbitrary positions
in the phase diagram. The description uses an extension of a relativistic energy density functional
for hadronic matter assuming a medium-dependent change in the number of degrees of freedom.
This approach employs a recently developed version of a modified excluded-volume (EV) mechanism
that gives a thermodynamically consistent EoS with nuclear matter properties that are consistent with
present constraints. Here, we concentrate on the hadron–quark transition but not on the liquid–gas
PT, which is also contained in our model. The model allows us to study the PT for arbitrary isospin
asymmetries; however, only isospin-symmetric matter is considered in this first exploratory study for
simplicity. In the present work, no attempt was made to reproduce the EoS of QCD matter at vanishing
baryon chemical potential obtained in lattice QCD studies. With appropriately chosen EV parameters,
the crossover transition with increasing temperature can be well modeled, even for imaginary chemical
potentials, e.g., in a hadron resonance gas model [18]. With improved parametrizations, the structure
of the phase diagram in the full space of variables, i.e., temperature, baryon density/chemical potential,
and isospin asymmetry, can be investigated in the future.

The theoretical formalism of the model is presented in Section 2, which includes the main
equations that define the relevant thermodynamic quantities in Section 2.1. In Section 2.2, details of the
parametrization of the interaction and of the effective degeneracy factors are given. They account for
the change in the number of degrees of freedom with density and temperature. The phase transitions
are explored in Section 3 for isospin-symmetric matter. Conclusions follow in Section 4.

2. Theoretical Model

The theoretical description of strongly interacting matter in the present work is adapted from
the model introduced in [19]. It combines a relativistic mean-field (RMF) approach for hadronic
matter with density-dependent nucleon–meson couplings and a modified EV mechanism. Here, it is
sufficient to provide only the main equations without a detailed derivation. The essential quantities
that determine the position of the PT and the critical point in the phase diagram are the effective
degeneracy factors that depend on the number densities of the particles and the temperature.

2.1. Relativistic Energy Density Functional with Modified Excluded-Volume Mechanism

The present model assumes neutrons and protons as well as their antiparticles as the basic degrees
of freedom. These particles interact by the exchange of mesons, and the model effectively describes
the short-range repulsion (ω meson), the intermediate-range attraction (σ meson), and the isospin
dependence of the nuclear interaction (ρ and δ mesons), as is common of RMF models. The contribution
of leptons or other degrees of freedom like nuclei, hyperons or photons, as required for multi-purpose
EoS for astrophysical applications [20], is not considered here.
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The nucleons i = n, p, n̄, p̄ with rest masses mi are treated as quasi-particles of energy,

Ei(k) =
√

k2 + (mi − Si)
2 + Vi (1)

which depends on the particle momentum k and the scalar (Si) and vector (Vi) potentials. Denoting
the particle chemical potentials with μi, the contribution of the quasi-particles to the total pressure

p = ∑
i

pi + pmeson − p(r) (2)

of the system can be written as

pi = Tg(eff)
i

∫ d3k
(2π)3 ln

[
1 + exp

(
−Ei(k)− μi

T

)]
(3)

where the medium-dependent effective degeneracy factors

g(eff)
i = giΦi (4)

are a product of the usual degeneracy factor gi = 2 for nucleons and the available-volume fraction Φi,
which is defined in Section 2.2.

The meson contribution

pmeson =
1
2

(
Cωn2

ω + Cρn2
ρ − Cσn2

σ − Cδn2
δ

)
(5)

to the total pressure in Equation (2) contains the coupling factors of the mesons

Cj =
Γ2

j

m2
j

(6)

given as a ratio of the density-dependent coupling functions Γj and the meson masses mj.
The source densities

nj = ∑
i

gijn
(v)
i (7)

for vector mesons (j = ω, ρ) and
nj = ∑

i
gijn

(s)
i (8)

for scalar mesons (j = σ, δ) in Equation (5) are obtained from the quasi-particle vector densities

n(v)
i = g(eff)

i

∫ d3k
(2π)3 fi(k) (9)

and scalar densities

n(s)
i = g(eff)

i

∫ d3k
(2π)3 fi(k)

mi − Si√
k2 + (mi − Si)

2
(10)

with the Fermi-Dirac distribution function

fi(k) =
[

exp
(

Ei(k)− μi
T

)
+ 1
]−1

. (11)
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The scaling factors

gnω = gpω = −gn̄ω = −gp̄ω = 1 (12)

gnρ = −gpρ = −gn̄ρ = gp̄ρ = 1 (13)

gnσ = gpσ = gn̄σ = gp̄σ = 1 (14)

gnδ = −gpδ = gn̄δ = −gp̄δ = 1 (15)

in Equations (7) and (8) determine the coupling between mesons and nucleons. They also appear in
the vector potential

Vi = Cωgiωnω + Cρgiρnρ + BiV
(r)
meson + V(r)

i (16)

and the scalar potential
Si = Cσgiσnσ + Cδgiδnδ + S(r)

i (17)

in the quasi-particle energy (Equation (1)). The rearrangement potential

V(r)
meson =

1
2

(
C′

ωn2
ω + C′

ρn2
ρ − C′

σn2
σ − C′

δn2
δ

)
(18)

contributes to the vector potential (Equation (16)) because the couplings Γj in Equation (6) are assumed

to depend on the baryon density nB = ∑i Bin
(v)
i , where Bi = giω is the baryon number of particle i,

and the quantities C′
j = dCj/dnB are the derivatives of the coupling factors.

The dependence of the available-volume fractions Φi in the effective degeneracy factor (Equation (4))
on the vector or scalar quasi-particle densities (9) and (10) also generates rearrangement contributions

V(r)
i = −∑

j
pj

∂ ln Φj

∂n(v)
i

(19)

and

S(r)
i = ∑

j
pj

∂ ln Φj

∂n(s)
i

(20)

in the potentials (Equations (16) and (17)), respectively. Furthermore, there is a rearrangement term

p(r) = p(r)meson + p(r)Φ (21)

in the total pressure (Equation (2)) with two contributions from the density dependence of the couplings

p(r)meson = −V(r)
mesonnB (22)

and
p(r)Φ = ∑

i

(
n(s)

i S(r)
i − n(v)

i V(r)
i

)
(23)

from the EV effects.
The free energy density of the system

f = ∑
i

μin
(v)
i − p (24)

is obtained with the total pressure (Equation (2)) and the chemical potentials of the particles μi. They are
not independent since, for nucleons with baryon number Bi and charge number Qi, they are given by

μi = BiμB + QiμQ (25)
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with the baryon chemical potential μB and the charge chemical potential μQ. Only the latter two are
independent quantities. For the internal energy density

ε = f + Ts (26)

the entropy density

s = −∑
i

g(eff)
i

∫ d3k
(2π)3 [ fi ln fi + (1 − fi) ln (1 − fi)] + ∑

i
pi

∂ ln Φi
∂T

(27)

is needed. Besides the standard contribution depending on the distribution functions fi, there is a term
from the possible temperature dependence of the available-volume fractions Φi. In order to guarantee
the third law of thermodynamics, i.e., limT→0 s = 0, the temperature derivative of the available-volume
fractions has to vanish for T → 0. After solving the equations above for a given T, μB, and μQ, a fully
consistent thermodynamic EoS is obtained. For practical purposes, however, the baryon density nB
and the hadronic charge fraction

Yq =
∑i Qin

(v)
i

nB
(28)

are used as independent variables instead of μB and μQ.
A possible shortcoming of models that consider EV effects is the potential appearance of

a superluminal speed of sound in certain regions of the space of thermodynamic variables, see,
e.g., [21,22]. This causality constraint has to be checked case by case depending on the specific
implementation of the EV mechanism.

2.2. Available-Volume Fractions and Model Parameters

For a quantitative evaluation of the EoS in the present approach, the functional forms of the
meson–nucleon couplings Γj and the available-volume fractions Φi have to be specified as well as
all parameters. Here, we use the masses of nucleons and mesons and the coupling functions of
the DD2 parametrization presented in [23]. It only considers ω, ρ, and σ mesons for the effective
description of the nuclear interaction but not the δ mesons. The parameters were obtained by
fitting observables (binding energies, radii, etc.) of selected nuclei. With this set, the EoS of nuclear
matter at zero temperature exhibits characteristic nuclear matter parameters, e.g., the saturation
density (nsat = 0.149065 fm−3), binding energy at saturation (B = 16.02 MeV), incompressibility
(K = 242.7 MeV), symmetry energy (J = 32.73 MeV), and slope (L = 57.94 MeV), that are consistent
with modern constraints from experiment and theory.

EV effects are frequently employed to describe an effective repulsive interaction between particles,
in particular in calculations of the EoS in the framework of hadron resonance gas models, see, e.g., [24].
For zero baryon density, a comparison of the resulting EoS with results from lattice QCD calculations
can be used to fix the volume parameters. If a finite volume vi is attributed to each particle i,
the available volume for the motion of the particle is reduced from the total system volume V to
VΦ(cl) with the classical available-volume fraction

Φ(cl) = 1 − ∑
i

vin
(v)
i . (29)

Clearly, there is a limiting density above which a compression of the system becomes impossible.
In general, the volumes and available-volume fractions can depend on the particle species, and the
EV mechanism can be used to suppress particles, e.g., nuclei, in a mixture, causing them to disappear
above a certain density, see, e.g., [25] for applications to the low-temperature and low-density EoS in
astrophysical simulations.
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In [19], the interpretation of the EV mechanism was changed by moving the factor Φi from the
system volume V to the degeneracy factor gi as in Equation (4) and allowing the available-volume
fractions to be arbitrary functions of the particle densities and temperature. The medium dependence
of the effective degeneracy factors is interpreted as a change in the effective number of degrees of
freedom. A decrease in g(eff)

i has the effect of a repulsive interaction between the particles, whereas
an increase can be seen as the action of an attractive interaction, c.f., the softening of the nuclear EoS
when hyperons are included, see, e.g., [26,27]. This freedom leaves the room to modify the properties
of an EoS in a favored way.

In the present application of the modified EV mechanism, the available-volume fraction is defined
to be identical for all particles i as

Φi = 1 + sg1(T)θ(x) exp
(
− 1

2x2

)
(30)

depending on the temperature T and an auxiliary quantity

x = v

(
∑

j
Bjn

(v)
j − g8(T)ncut

)
(31)

depending on T and the quasi-particle vector densities n(v)
i with parameters s, v, and a cutoff density

of ncut. The θ function in Equation (30) guarantees that Φi = 1 for x ≤ 0 and the EV mechanism has no
effect on the EoS. The functions g1 in Equation (30) and g8 in Equation (31) are defined as

gt(T) = θ (T0 − T) exp

[
− t

2

(
T

T0 − T

)2
]

(32)

with parameters t and T0. In the limit T → 0, the function gt approaches one and it decreases with
increasing temperature. Furthermore, the derivatives ∂Φi/∂T approach zero for T → 0, as required
for the thermodynamic consistency, because of the choice of the function gt(T). For T → T0,
the function gt vanishes very smoothly and there are no effects at higher temperatures because
Φi = 1. In order to reproduce the correct high-temperature limit, given by a Stefan–Boltzmann-type
behavior, a modification of the available-volume fractions for temperatures well above T0 is required.
This is left to future extensions of the model. According to Equation (31), the quantity x is only positive
for baryon densities larger than g8ncut, a quantity that decreases with increasing temperature. There are
no artificial singularities due to the presence of the θ functions in Equations (30) and (32) because
all derivatives of the exponential functions are zero when the arguments of the θ functions vanish.
The actual values of the parameters for the modified EV mechanism used in the present study are
s = 3, v = 2 fm3, T0 = 270 MeV, and ncut = nsat of the DD2 parametrization.

3. Results

In order to illustrate the characteristic effects of the modified EV mechanism on the EoS, we limit
the presentation to the case of symmetric matter, i.e., Yq = 0.5. The pressure p and baryon chemical
potential μB are calculated as a function of the baryon density nB. Due to the increase in the
available-volume fractions Φi or the effective degeneracy factors g(eff)

i , a considerable softening of the
EoS is observed in a certain range of densities. Below the critical temperature Tcrit, the pressure is not
a monotonous function of the baryon chemical potential for an isotherm. A Maxwell construction is
used to determine the two densities of the coexisting phases where p and μB are identical. The pressure
p as a function of the baryon density nB is depicted in Figure 1 for selected temperatures. Note that an
integral part of the underlying RMF model is a detailed description of the liquid–gas PT in nuclear
matter and the formation and dissociation of nuclear clusters in compact-star matter. For details,
see, e.g., [28].
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Figure 1. Isotherms in isospin-symmetric strongly interacting matter in the pressure–baryon density
diagram at temperatures from 0 to 160 MeV in steps of 20 MeV (dashed colored lines) and at the critical
temperature Tcrit of the pseudo hadron–quark phase transition (black dot-dashed line). The binodals
and critical points are denoted by full black lines and a full (open) circle of the pseudo hadron–quark
(liquid-gas) phase transition, respectively.

In the coexistence region of the pseudo hadron–quark PT between the low and high density
phases, the pressure is constant as typical for a first-order PT. The area of coexistence is enclosed by the
binodal, and, above the critical temperature Tcrit ≈ 155.5 MeV, there is no PT anymore. The peculiar
shape of the binodal is a result of the specific form (30) of the available-volume fractions. It can be
adjusted with appropriate changes in the functional form and parameters.

The binodals of the liquid–gas and pseudo hadron–quark PT in the temperature–baryon density
plane are shown in panel (a) of Figure 2. At vanishing temperatures, the coexistence region of the
pseudo hadron–quark PT covers a density range from 0.270 to 0.408 fm−3, well above the nuclear
saturation density nsat. At higher temperatures, it moves to lower densities with an almost constant
extension in baryon density except for temperatures close to Tcrit. Here, the critical density is found as
0.201 fm−3, still above nsat. The dashed line in panel (a) marks the boundary between regions without
(lower left) and with (upper right) effects of the modified EV mechanism in the present parametrization.
It corresponds to the condition x = 0. There is another region in the phase diagram without modified
EV effects at temperatures above T0, outside the figure.

Panel (b) of Figure 2 depicts the lines of the first-order PT in the temperature–baryon chemical
potential diagram ending in critical points. With increasing temperature, the baryon chemical potential
at the pseudo hadron–quark PT reduces from 979.1 to 591.8 MeV at the critical point. By crossing the
transition line, an abrupt change in the density occurs that becomes continuous at the critical point.
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Figure 2. Binodals (full lines) and critical points (full and open circles) of isospin-symmetric strongly
interacting matter in (a) the temperature–baryon density diagram and (b) the temperature–baryon
chemical potential diagram. The dashed line in panel (a) separates the region without effects of the
modified excluded-volume mechanism (lower left) from the region with effects (upper right). Results
for the liquid–gas phase transition are shown at subsaturation densities.

4. Conclusions

The extension of the modified EV approach to a density- and temperature-dependent
parametrization of the available-volume fractions as introduced in this work was successful in
achieving the main goal of this study: As a generic structure of the QCD phase diagram, a first-order
pseudo hadron–quark phase transition at low temperatures and a crossover for low baryon densities
could be modeled that also includes a critical endpoint at Tcrit = 155.5 MeV and μB,crit = 591.8 MeV.
Other patterns of the QCD phase diagram that have been theoretically motivated could also be modeled
within the present approach. Further extensions of the model are straightforward. They include the
extension to a larger number of components of the hadron resonance gas in the underlying RMF model
and an isospin dependence of the EV model. It would be worthwhile to study further thermodynamic
quantities such as the speed of sound, heat capacities, or the susceptibilities in such an enlarged model.
It would also be interesting to elaborate on a parametrization that would result in a second endpoint
at low temperatures, as suggested by Hatsuda et al. [14]. The so-generalized parametrization of the
QCD EoS can be used in Bayesian analysis studies for astrophysical applications pertaining to compact
stars [29,30], their mergers, and core-collapse supernova explosions, as well as heavy-ion collisions
analogous to those studied in [31].
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Abstract: Analysis of directed flow (v1) of protons, antiprotons and pions in heavy-ion collisions
is performed in the range of collision energies

√
sNN = 2.7–39 GeV. Simulations have been done

within a three-fluid model employing a purely hadronic equation of state (EoS) and two versions
of the EoS with deconfinement transitions: a first-order phase transition and a smooth crossover
transition. The crossover EoS is unambiguously preferable for the description of experimental data
at lower collision energies

√
sNN ∼< 20 GeV. However, at higher collision energies

√
sNN ∼> 20 GeV,

the purely hadronic EoS again becomes advantageous. This indicates that the deconfinement EoS in
the quark-gluon sector should be stiffer at high baryon densities than those used in the calculation.
The latter finding is in agreement with that discussed in astrophysics in connection with existence of
hybrid stars with masses up to about two solar masses.

Keywords: heavy-ion collisions; directed flow; hydrodynamics; deconfinement; hybrid stars

PACS: 25.75.-q; 25.75.Nq; 24.10.Nz

1. Introduction

The directed flow [1] is one of the key observables in heavy ion collisions. Nowadays, it is defined
as the first coefficient, v1, in the Fourier expansion of a particle distribution, d2N/dy dφ, in azimuthal
angle φ with respect to the reaction plane [2,3]

d2N
dy dφ

=
dN
dy

(
1 +

∞

∑
n=1

2 vn(y) cos(nφ)

)
, (1)

where y is the longitudinal rapidity of a particle. The directed flow is mainly formed at an early
(compression) stage of the collisions and hence is sensitive to early pressure gradients in the evolving
nuclear matter [4,5]. As the EoS is harder, stronger pressure is developed. Thus, the directed flow
probes the stiffness of the nuclear EoS at the early stage of nuclear collisions [6], which is of prime
interest for heavy-ion research and astrophysics.

In Refs. [7–9], a significant reduction of the directed flow in the first-order phase transition to
the quark-gluon phase (QGP) (the so-called “softest-point” effect) was predicted, which results from
decreasing the pressure gradients in the mixed phase as compared to those in pure hadronic and
quark-gluon phases. It was further predicted [10–12] that the directed flow as a function of rapidity
exhibits a wiggle near the midrapidity with a negative slope near the midrapidity, when the incident
energy is in the range corresponding to onset of the first-order phase transition. Thus, the wiggle near
the midrapidity and the wiggle-like behavior of the excitation function of the midrapidity v1 slope
were put forward as a signature of the QGP phase transition. In Ref. [13], it was found that the QGP
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EoS is not a necessarily prerequisite for occurrence of the midrapidity v1 wiggle: A certain combination
of space–momentum correlations may result in a negative slope in the rapidity dependence of the
directed flow in high-energy nucleus-nucleus collisions. However, this mechanism can be realized
only when colliding nuclei become quite transparent so that they pass through each other at the early
stage of the collision.

The directed flow of identified hadrons—protons, antiprotons, positive and negative pions—in
Au+Au collisions was recently measured in the energy range

√
sNN = (7.7–39) GeV by the STAR

collaboration within the framework of the beam energy scan (BES) program at the BNL Relativistic
Heavy Ion Collider (RHIC) [14]. These data have been already discussed in Refs. [15–22]. The Frankfurt
group [15] did not succeed to describe the data and to obtain conclusive results. Within a hybrid
approach [23], the authors found that there is no sensitivity of the directed flow on the EoS and,
in particular, on the occurrence of a first-order phase transition. One of the possible reasons of this
result can be that the initial stage of the collision in all scenarios is described within the Ultrarelativistic
Quantum Molecular Dynamics (UrQMD) [24] in the hybrid approach. However, this initial stage does
not solely determine the final directed flow because the UrQMD results still differ from those obtained
within the hybrid approach [23].

In Refs. [16–18], the new STAR data were analyzed within two complementary approaches:
kinetic transport approaches of the parton-hadron string dynamics (PHSD) [25] and its purely hadronic
version (HSD) [26]), and a hydrodynamic approach of the relativistic three-fluid dynamics (3FD) [27,28].
In contrast to other observables, the directed flow was found to be very sensitive to the accuracy settings
of the numerical scheme. Accurate calculations require a very high memory and computation time.

In the present contribution, we refine conclusions on the relevance of used EoSs, in particular,
on the stiffness of the EoS at high baryon densities in the QGP sector based on the analysis performed
in Refs. [16–18].

2. The 3FD Model

The 3FD approximation is a minimal way to simulate the early-stage nonequilibrium in the
colliding nuclei at high incident energies. The 3FD model [27] describes a nuclear collision from the
stage of the incident cold nuclei approaching each other, to the final freeze-out stage. Contrary to
the conventional one-fluid dynamics, where a local instantaneous stopping of matter of the colliding
nuclei is assumed, the 3FD considers inter-penetrating counter-streaming flows of leading baryon-rich
matter, which gradually decelerate each other due to mutual friction. The basic idea of a 3FD
approximation to heavy-ion collisions is that a generally nonequilibrium distribution of baryon-rich
matter at each space–time point can be represented as a sum of two distinct contributions initially
associated with constituent nucleons of the projectile and target nuclei. In addition, newly produced
particles, populating predominantly the midrapidity region, are attributed to a third, so-called fireball
fluid that is governed by the net-baryon-free sector of the EoS.

At the final stage of the collision, the p- and t-fluids are either spatially separated or mutually
stopped and unified, while the f-fluid, predominantly located in the midrapidity region, keeps its
identity and still overlaps with the baryon-rich fluids to a lesser (at high energies) or greater (at lower
energies) extent. The freeze-out is performed accordingly to the procedure described in Ref. [27] and
in more detail in Refs. [29,30].

Different EoSs can be implemented in the 3FD model. A key point is that the 3FD model is able to
treat a deconfinement transition at the early nonequilibrium stage of the collision, when the directed
flow is mainly formed. In this work, we apply a purely hadronic EoS [31], an EoS with a crossover
transition as constructed in Ref. [32] and an EoS with a first-order phase transition into the QGP [32].
These are illustrated in Figure 1. Note that an onset of deconfinement in the two-phase EoS takes
place at rather high baryon densities, above n ∼ 8 n0. In EoSs compatible with constraints on the
occurrence of the quark matter phase in massive neutron stars, the phase coexistence starts at about
4 n0 [33]. An example of such an EoS, the DD2 EoS [34], is also displayed in Figure 1. The DD2 EoS
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will be discussed below. As it will be argued below, this excessive softness of the deconfinement EoSs
of Ref. [32] is an obstacle for proper reproduction of the directed flow at high collision energies.

Figure 1. Pressure scaled by the product of normal nuclear density (n0 = 0.15 fm−3) and nucleon mass
(mN) versus baryon density (scaled by n0) for three EoSs used in the simulations and also for the DD2
EoS [34] that is compatible with astrophysical constraints. Results are presented for three different
temperatures T = 10, 100 and 200 MeV (bottom-up for corresponding curves).

In recent papers [28,35–40] a large variety of bulk observables has been analyzed with these three
EoSs: the baryon stopping [28,37], yields of different hadrons, their rapidity and transverse momentum
distributions [35,36,38], the elliptic flow of various species [39,40]. This analysis has been done in the
same range of incident energies as that in the present paper. Comparison with available data indicated
a definite advantage of the deconfinement scenarios over the purely hadronic one especially at high
collision energies. The physical input of the present 3FD calculations is described in detail in Ref. [28].

3. Results

The 3FD simulations were performed for mid-central Au+Au collisions, i.e., at impact parameter
b = 6 fm. Following the experimental conditions, the acceptance pT < 2 GeV/c for transverse
momentum (pT) of the produced particles is applied to all considered hadrons. This choice is
commented in Ref. [18]. In the 3FD model, particles are not isotopically distinguished; i.e., the model
deals with nucleons, pions, etc. rather than with protons, neutrons, π+, π− and π0. Therefore, the v1

values of protons, antiprotons and pions presented below, in fact, are v1 of nucleons, antinucleons
and all (i.e., π+, π− and π0) pions. The directed flow v1(y) as a function of rapidity y at BES-RHIC
bombarding energies is presented in Figure 2 for pions, protons and antiprotons.

As seen, the first-order-transition scenario gives results for the proton v1, which strongly differ
from those in the crossover scenario at

√
sNN = 7.7 and 19.6 GeV. This is in contrast to other bulk

observables analyzed so far [28,35–40]. At
√

sNN = 39 GeV, the directed flow of all considered
species practically coincides within the first-order-transition and crossover scenarios. It means that the
crossover transition to the QGP has been practically completed at

√
sNN = 39 GeV. It also suggests

that the region 7.7 ≤ √
sNN ≤ 30 GeV is the region of the crossover transition.

The crossover EoS is definitely the best in reproduction of the proton v1(y) at
√

sNN ≤ 20 GeV.
However, surprisingly, the hadronic scenario becomes preferable for the proton v1(y) at√

sNN > 20 GeV. A similar situation takes place in the PHSD/HSD transport approach. Indeed,
predictions of the HSD model (i.e., without the deconfinement transition) for the proton v1(y) become
preferable at

√
sNN > 30 GeV [16], i.e., at somewhat higher energies than in the 3FD model. Moreover,

the proton v1 predicted by the UrQMD model, as cited in the experimental paper [14], and, in the
recent theoretical work [15], better reproduces the proton v1(y) data at high collision energies than
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the PHSD and 3FD-deconfinement models do. Note that the UrQMD model is based on the hadronic
dynamics. All these observations could be considered as evidence of a problem in the QGP sector of a
EoS. At the same time, the antiproton directed flow at

√
sNN > 10 GeV definitely indicates a preference

of the crossover scenario within both the PHSD/HSD and 3FD approaches.
This puzzle has a natural resolution within the 3FD model. The QGP sector of the EoSs with

deconfinement [32] was fitted to the lattice QCD data at zero net-baryon density and just extrapolated
to nonzero baryon densities. The protons mainly originate from baryon-rich fluids that are governed
by the EoS at finite baryon densities. The too strong proton antiflow within the crossover scenario at√

sNN > 20 GeV is a sign of too soft QGP EoS at high baryon densities. In general, the antiflow or a
weak flow indicates softness of an EoS [6–13]. Predictions of the first-order-transition EoS, the QGP
sector of which is constructed in the same way as that of the crossover one, fail even at lower collision
energies, when the QGP starts to dominate in the collision dynamics, i.e., at

√
sNN ∼> 15 GeV. This fact

also supports the conjecture on a too soft QGP sector at high baryon densities in the used EoSs.
At the same time, the net-baryon-free (fireball) fluid is governed by the EoS at zero net-baryon

density. This fluid is a main source of antiprotons (more than 80% near midrapidity at
√

sNN > 20 GeV
and b = 6 fm), v1(y) of which is in good agreement with the data at

√
sNN > 20 GeV within

the crossover scenario and even in perfect agreement—within the first-order-transition scenario
at

√
sNN = 39 GeV. It is encouraging because at zero net-baryon density the QGP sector of the EoSs

is fitted to the lattice QCD data and therefore can be trusted. The crossover scenario, as well as
all other scenarios, definitely fails to reproduce the antiproton v1(y) data at 7.7 GeV. The reason is
low multiplicity of produced antiprotons. The antiproton multiplicity in the mid-central (b = 6 fm)
Au + Au collision at 7.7 Gev is 1 within the deconfinement scenarios and 3 within the hadronic
scenario. Therefore, the hydrodynamical approach based on the grand canonical ensemble is certainly
inapplicable to the antiprotons in this case. The grand canonical ensemble, with respect to conservation
laws, gives a satisfactory description of abundant particle production in heavy ion collisions. However,
when applying the statistical treatment to rare probes, one needs to treat the conservation laws exactly,
which is the canonical approach. The exact conservation of quantum numbers is known to reduce
the phase space available for particle production due to additional constraints appearing through
requirements of local quantum number conservation. An example of applying the canonical approach
to the strangeness production can be found in [41] and references therein.

The pions are produced from all fluids: near midrapidity ∼60% from the baryon-rich fluids
and ∼40% from the net-baryon-free one at

√
sNN > 20 GeV. Hence, the disagreement of the pion v1

with data, resulting from redundant softness of the QGP EoS at high baryon densities, is moderate
at

√
sNN > 20 GeV. In general, the pion v1 is less sensitive to the EoS as compared to the proton

and antiproton ones. As seen from Figure 2, the deconfinement scenarios are definitely preferable
for the pion v1(y) at

√
sNN < 20 GeV. Though, the hadronic-scenario results are not too far from the

experimental data. At
√

sNN = 39 GeV, the hadronic scenario gives even the best description of the
pion data because of a higher stiffness of the hadronic EoS at high baryon densities, as compared with
that in the considered versions of the QGP EoS.

Thus, all of the analyzed data testify in favor of a harder QGP EoS at high baryon densities than
those used in the simulations, i.e., the desired QGP EoS should be closer to the used hadronic EoS at
the same baryon densities (see Figure 1). At the same time, a moderate softening of the QGP EoS at
moderately high baryon densities is agreement with data at 7.7 ∼<

√
sNN ∼< 20 GeV.

Here, it is appropriate to mention a discussion on the QGP EoS in astrophysics. In Ref. [42],
it was demonstrated that the QGP EoS can be almost indistinguishable from the hadronic EoS at high
baryon densities relevant to neutron stars. In particular, this gives a possibility to explain hybrid
stars with masses up to about 2 solar masses (M�), in such a way that “hybrid stars masquerade
as neutron stars” [42]. The discussion of such a possibility has been revived after measurements on
two binary pulsars PSR J1614−2230 [43] and PSR J0348l+0432 [44] resulted in the pulsar masses of
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(1.97 ± 0.04)M� and (2.01 ± 0.04)M�, respectively. The obtained results on the directed flow give us
another indication of a required hardening of the QGP EoS at high baryon densities.

In this respect, it is instructive to compare the DD2 EoS [34], which is compatible with the existence
of hybrid stars with masses up to about 2 solar masses, with those used in the present simulations
(see Figure 1). As seen, the DD2 EoS is much closer to the hadronic EoS at high baryon densities as
compared to the deconfinement EoSs used in the calculation. This gives hope to the better reproduction
of the directed flow at high collision energies

√
sNN ∼> 20 GeV with the DD2 EoS.

Figure 2. The directed flow v1(y) for protons, antiprotons and pions from mid-central (b = 6 fm)
Au+Au collisions at

√
sNN = 7.7–39 GeV calculated with different EoSs. Experimental data are from

the STAR collaboration [14].

The slope of the directed flow at the midrapidity is often used to quantify variation of the directed
flow with collision energy. The excitation functions for the slopes of the v1 distributions at midrapidity
are summarized in Figure 3, where earlier experimental results from the AGS [45] and SPS [46] are also
presented. As noted above, the best reproduction of the data at

√
sNN < 20 GeV is achieved with the

crossover EoS. The proton dv1/dy within the first-order-transition scenario exhibits a wiggle earlier
predicted in Refs. [8,9,11,12]. The first-order-transition results demonstrate the worst agreement with
the proton and antiproton data on dv1/dy. The first-order-transition dv1/dy does not coincide with
that for the crossover scenario even at high collision energies (i.e., at 10 GeV ∼<

√
sNN ∼< 30 GeV)

because the corresponding EoSs are not identical in the region of high baryon densities where the
smooth crossover transition is not completed yet, cf. Figure 1, and because of different friction terms,
which were separately fitted for each EoS in order to reproduce other bulk observables.

The discrepancies between experiment and the 3FD predictions are smaller for the purely hadronic
EoS, however, the agreement for the crossover EoS is definitely better, though it is far from being
perfect. However, the poor reproduction of the proton v1 slope at low energies (

√
sNN < 5 GeV),

it is still questionable because the same data, but in terms of the transverse in-plane momentum,
〈Px〉, are almost perfectly reproduced by the crossover scenario [17,47]. It is difficult to indicate the
beginning of the crossover transition because the crossover results become preferable beginning with
relatively low collision energies (

√
sNN > 3 GeV). However, the beginning of the crossover transition

can be approximately pointed out as
√

sNN � 4 GeV.
The above discussed problems of the crossover scenario reveal themselves also in the dv1/dy

plot. At high energies (
√

sNN > 20 GeV), the slopes also indicate that the used deconfinement EoSs
in the quark-gluon sector at zero baryon chemical potential are quite suitable for reproduction of the
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antiproton dv1/dy while those at high baryon densities (proton slope) should be stiffer in order to
achieve better description of proton dv1/dy. A combined effect of this excessive softness of the QGP
EoS and the reducing baryon stopping results in more and more negative proton slopes at high collision
energies. This is in line with the mechanism discussed in Ref. [13]. The pion flow partially follows
the proton pattern, as discussed above. Therefore, the pion v1 slope also becomes more negative with
energy rise.

Of course, the 3FD model does not include all factors determining the directed flow. Initial-state
fluctuations, which in particular make the directed flow to be nonzero even at midrapidity, are out
of the scope of the 3FD approach. Apparently, these fluctuations can essentially affect the directed
flow at high collision energies, when the experimental flow itself is very weak. Another point is
so-called afterburner, i.e., the kinetic evolution after the the hydrodynamical freeze-out. This stage is
absent in the conventional version of the 3FD. Recently, an event generator THESEUS based on the
output of the 3FD model was constructed [48]. Thus, constructed output of the 3FD model can be
further evolved within the UrQMD model. Results of Ref. [48] show that such kind of the afterburner
mainly affects the pion v1 at peripheral rapidities and makes it more close to the STAR data [14].
At

√
sNN < 5 GeV, the midrapidity region of the pion v1 is also affected; however, the pion data are

absent at these energies. An additional source of uncertainty is the freeze-out. In Ref. [15], it was
demonstrated that the freeze-out procedure and, in particular, its criterion also strongly affect the
directed flow. Different freeze-out procedures were not tested within the 3FD model because such
a test would amount to the analysis of all other bulk observables that can also be affected by the
freeze-out change [29]. Such an extensive test would imply a huge amount of computations. However,
this source of uncertainty should be mentioned.

√√√

Figure 3. The beam energy dependence of the directed flow slope at midrapidity for protons,
antiprotons and pions from mid-central (b = 6 fm) Au+Au collisions calculated with different EoSs.
The experimental data are from Refs. [14,45,46].

4. Conclusions

In conclusion, the crossover EoS is unambiguously preferable for the most part of experimental
data in the considered energy range, though this description is not perfect. Based on the crossover
EoS of Ref. [32], the directed flow in semi-central Au+Au collisions indicates that the crossover
deconfinement transition takes place in the wide range incident energies 4 ∼<

√
sNN ∼< 30 GeV. In part,

this wide range could be a consequence of that the crossover transition constructed in Ref. [32] is very
smooth. In this respect, this version of the crossover EoS certainly contradicts results of the lattice QCD
calculations, where a fast crossover, at least at zero chemical potential, was found [49].

At highest computed energies of
√

sNN > 20 GeV, the obtained results indicate that the
deconfinement EoSs in the QGP sector should be stiffer at high baryon densities than those used
in the calculation, i.e., more similar to the purely hadronic EoS. This observation is in agreement
with that discussed in astrophysics, in particular, in connection with a possibility to explain hybrid
stars with masses up to about two solar masses. The constraint of existence of such hybrid stars
results in the requirement of quite stiff QGP EoS at high baryon densities that is very similar to the
hadronic EoS. The obtained results on the directed flow give us another indication of a required
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hardening of the QGP EoS at high baryon densities. However, this is only an indirect similarity
with the astrophysical conjecture because directed-flow simulations are sensitive to the EoS at high
temperatures (T > 100 MeV) while the hybrid-star calculations are based on zero-temperature EoS.
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Abstract: In this article, we start by presenting state-of-the-art methods allowing us to compute
moments related to the globally conserved baryon number, by means of first principle resummed
perturbative frameworks. We focus on such quantities for they convey important properties of the
finite temperature and density equation of state, being particularly sensitive to changes in the degrees
of freedom across the quark-hadron phase transition. We thus present various number susceptibilities
along with the corresponding results as obtained by lattice quantum chromodynamics collaborations,
and comment on their comparison. Next, omitting the importance of coupling corrections and
considering a zero-density toy model for the sake of argument, we focus on corrections due to the
small size of heavy-ion collision systems, by means of spatial compactifications. Briefly motivating
the relevance of finite size effects in heavy-ion physics, in opposition to the compact star physics,
we present a few preliminary thermodynamic results together with the speed of sound for certain
finite size relativistic quantum systems at very high temperature.

Keywords: finite temperature; finite density; quark-gluon plasma; finite size; speed of sound

1. Introduction

The weak coupling expansion of the Quantum Chromodynamics (QCD) grand potential density
(which we further call “free energy density”, since both are equivalent in the limit of zero density in
infinite volume systems), is known to be a central quantity for the thermodynamics of a deconfined
system such as those created in Heavy-Ion Collisions (HIC). If computed naively, there are however
certain details that need to be improved, and we are going to discuss them in the following.

First of all, such a weak coupling expansion appears not to converge at phenomenologically
moderate temperatures [1], relevant to the quark-hadron phase transition which takes place around the
pseudo-critical temperature Tc = 154 ± 9 MeV for vanishing quark chemical potentials μ f [2,3]. Lattice
Monte Carlo simulations cannot be used when the chemical potentials, and more specifically the baryon
chemical potential, are non-zero due to the so-called sign problem of QCD [4,5]. Consequently, a lot of
effort has been put in developing frameworks allowing access to reliable results, from first principles,
by continuing the known perturbative outcome toward the non weakly coupled phase transition
region, including at non-zero density [6–9]. In the light of the current [10,11] and forthcoming [12,13]
experiments, the non perturbative lattice simulations together with these resummation frameworks
allow for further insights in the study of the QCD phase diagram [8,14].

Then, a different issue which unfortunately lacks more thorough investigations, is related to
the fact that the deconfined systems which are briefly created in collider experiments have finite,
and in fact comparatively rather small volumes. For instance, their characteristic sizes are at best
of the order of R ∼ 4–8 Fermis for lead–lead collisions at

√
s = 2.76 TeV [15], and R ∼ 1–2 Fermis

for proton–lead collisions at
√

s = 5.02 TeV [16]. It is then trivial to compare these lengths to a
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temperature T which is typical, say T ∼ 2Tc to be conservative. Moreover, by doing so, one can see
that the relevant dimensionless parameter, namely Δ = T×R, falls into neither of the extreme regimes:
It indeed ranges in between a few units to roughly ten (it becomes, however, nearly an order of
magnitude smaller if considering an hydrodynamic cell in local equilibrium). For comparison, systems
relevant to the description of a compact star are in a complete different regime, with Δ = ∞ being
an excellent approximation (accounting for a small, yet non-zero, temperature [17], or evaluating the
dimensionless parameter μ×R instead). Thus, it appears that in the context of a quark–gluon plasma
relevant to the heavy-ion physics, an important question is: Which physical quantities happen to be
sensitive to the finite size of the system, and which are not? In this article, we will first briefly recall
certain aspects of the QCD thermodynamics for infinite size systems, together with the corresponding
fluctuations of globally conserved charges. Next, still relevant to infinite size systems, we will
present two state-of-the-art frameworks for resumming the weak coupling expansion of QCD at
finite temperature and density. Then, we shall move on to briefly introduce the proposed framework
for finite size corrections. After which we will start reviewing results corresponding to the fluctuations
and correlations of conserved charges, comparing the resummed perturbative framework results to
those of lattice QCD collaborations. Finally, we will present a few preliminary results concerning finite
size corrections, using a single non interacting massless scalar field at zero chemical potential as a
toy model. A certain number of points will not be emphasized, and we refer the readers to [7,8,18]
and references therein for further details on the frameworks as well as all the results for finite density
investigations, and to [19] for more details on the finite size preliminary results.

2. Charge Fluctuations in Infinite Size Systems

We start by briefly recalling the link between the Hamiltonian of Quantum Chromodynamics
HQCD and its partition function ZQCD, which in infinite size systems reads:

ZQCD

(
T, μ f ; V

)
≡ Tr exp

[
− 1

T

(
HQCD − ∑

f
μ f Q f

)]
= Tr

(
ρQCD

)
, (1)

where Q f and μ f respectively denote the conserved charges and the corresponding chemical potentials.
Furthermore, in the following, 〈ϑ〉 ≡ Tr (ϑ · ρQCD) /ZQCD will denote thermal averages. While we
mainly consider the up, down, and strange quarks with respective chemical potentials μu, μd, and μs,
one can also express the partition function in terms of the baryon charge, the electric charge, and the
strangeness conserved number, with (μB, μQ, μS) instead. From Equation (1), one can see that the
mean and (co)variance of two conserved charges can be expressed in terms of derivatives with respect
to the chemical potentials, following:

〈
Q f

〉
= T

∂

∂μ f
log ZQCD, (2)

〈(
Q f −

〈
Q f

〉)
· (Qg −

〈
Qg
〉)〉

= T2 ∂2

∂μ f ∂μg
log ZQCD, (3)

which is straightforwardly related to the first and second order cumulants, respectively. These above
quantities, referred to as susceptibilities, are defined for the quark numbers by:

χui dj sk ...

(
T,
{

μ f

})
≡

∂n pQCD

(
T,
{

μ f

})
∂μi

u ∂μ
j
d ∂μk

s ...
, (4)

with n = i + j + k + ..., and where we recall that equilibrium thermodynamic quantities such as the
pressure follow simple relations in infinite size systems like:
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pQCD =
∂ (T log ZQCD)

∂V
−−−→
V→∞

T
V

log ZQCD. (5)

It should be noted that one may also consider any other conserved charge, instead of the
quark numbers. Furthermore, the number susceptibilities are, in general, important as they give
information on the correlations and fluctuations of the globally conserved quantum numbers.
Therefore, they turn out to be very practical probes for the changes of degrees of freedom across
the transition region, specifically when the conserved charge is the baryon number. They are also
directly related to the corresponding cumulants, and thus provide some crucial information about the
probability distribution of the baryonic degree of freedom, together with insights on the existence and
location of a possible critical point on the QCD phase diagram. For more detail on the use of conserved
charge cumulants in HIC, we refer the readers to [20,21].

3. Resummed Perturbative Quantum Chromodynamics in Infinite Size Systems

3.1. Resummation Inspired from Dimensional Reduction

The Dimensional Reduction (DR) phenomenon at asymptotically high temperature, which can
generally be understood as the appearance of certain effective degrees of freedom in a lower dimension,
is well known to account properly for the dynamics of energy scales up to the order gT in QCD [22,23].
Such a procedure is carried out using an effective field theory which is called Electrostatic QCD
(EQCD), by integrating out the hard degrees of freedom followed by a careful matching of the effective
theory with the original one. EQCD is a three-dimensional SU(Nc) Yang-Mills theory coupled to an
adjoint Higgs field [24,25], which accounts for all the infrared divergences encountered in the weak
coupling expansions [26]. And as such, EQCD provides a rigorous framework for carrying out higher
order loop computations in high temperature perturbative QCD.

Using this knowledge, one can rewrite the QCD pressure as:

pQCD = phard(g) + T pEQCD(mE, gE, λE, ζ), (6)

where the parameters mE(g), gE(g), λE(g) and ζ(g) are also functions of the temperature and the
quark chemical potentials, and admit expansions in powers of the four-dimensional gauge coupling g.
The contribution phard is relevant to the hard scale (∼T), and can be computed through a direct loop
expansion in QCD. The contribution pEQCD is, on the other hand, relevant to the soft (∼gT) and ultrasoft
(∼g2T) scales. This contribution is accessible from the partition function of EQCD, and through a
partial four-loop order even accessible by means of loop expansion only.

In principle, when computing the EQCD pressure in order to be able to access the full QCD
pressure, the entire result (with the EQCD parameters) must be Taylor expanded in powers of g around
small values. However, it was suggested in [1] and then first applied at zero chemical potential in [27],
that one can simply consider both phard and pEQCD as functions of the EQCD parameters. Doing so,
and not re-expanding them in powers of g resums certain higher order contributions while keeping all
correct contributions up to and including the order g6 log(g) [28,29]. As a byproduct, the theoretical
uncertainties through the renormalization scale dependence of the result is substantially reduced,
and the convergence properties are thereby improved.

3.2. Hard-Thermal-Loop Perturbation Theory

The use of a variationally improved perturbation theory framework has been known for
decades to allow important higher order resummations as well [30,31]. The introduction of a certain
relevant term to be added and subtracted from the Lagrangian density, allows for the treatment of
the added/subtracted piece with the non-interacting/interacting part. By doing so, one actually
interpolates between the original theory and a theory having appropriately dressed propagators and
vertices, while recovering the original theory in the end by setting (see below) δ = 1. For QCD,

121



Universe 2018, 4, 14

the procedure is of course more complicated given gauge invariance, and the relevant term is the
non-local hard-thermal-loop effective action [32,33]. This procedure is called Hard-Thermal-Loop
perturbation theory (HTLpt) [34,35], and the subsequent Lagrangian reorganization reads:

LHTLpt =
[
LQCD + (1 − δ) LHTL

]∣∣∣
g→√

δg
+ ΔLHTL, (7)

where LHTL is the gauge invariant HTL improvement term, and δ a formal expansion parameter set to
one after the expansion. We notice, in the above, that ΔLHTL is a counter term necessary to cancel all
the ultraviolet divergences introduced by the reorganization of the perturbative series, from the ground
state of an ideal gas of massless particles to the ground state of an ideal gas of massive quasiparticles.

4. On the Finite Size Corrections

First of all, we would like to refer the readers to the forthcoming article [19], where all the details
from the conceptual to computational aspects will be exposed to a greater extent.

We wish now to drastically simplify the approach to the quark–gluon plasma created in high
energy collisions, in order to make a first step in accounting for its finite size. To this end, we will
disregard the importance of accounting for the interaction, and consider a zero-density toy model for a
start: We chose a single non-interacting massless scalar field at zero chemical potential. And indeed, it is
worth noticing that such a massless scalar field is, in fact, quite insightful, for it contains information
relevant to a gas of non-interacting gluons—albeit a group theory prefactor (to the free energy), which
is not present in any of the displayed quantities here, since we conveniently show only the appropriate
ratios. We will then solely focus on the corrections due to the small size of our system. Furthermore,
we are not discussing here a real finite volume system, leaving it for [19] and referring to works such
as [36] for other types of finite volume investigations (this time, relevant to hadronic systems).

Instead, we will simply discuss a quantum relativistic system whose dynamics are governed by
the aforementioned field theory, coupled to a heat bath at temperature T and geometrically confined in
between two infinite parallel planes separated by a distance L. More precisely, motivated by physical
arguments [19], we undertake a spatial compactification by assuming Dirichlet boundary conditions
on both infinite planes, and finally arrive, explicitly, to the free-energy density of a neutral, massless,
and non-interacting scalar field, which reads:

f (T, L) ≡ F(T, L, A)/V

= −π2T4

90
+

ζ(3)T3

4πL
− ζ(3)T

16πL3

− T2

8L2 ×
+∞

∑
s=1

[
csch2 (2πTL × s)

s2

]
− T

16πL3 ×
+∞

∑
s=1

[
coth (2πTL × s)− 1

s3

]
, (8)

and where F(T, L, A) is the free energy, A ≡ V/L being the area of each of the infinite parallel planes.
A few comments are now in order, concerning the Equation (8). The above expression is an exact
analytic representation of the free energy density of our system coupled to the heat bath and in between
the parallel planes. Moreover, it is resummed to be exponentially fast in terms of convergence for
practical numerical evaluations (when the sums are then truncated; see [19] for more detail). Finally,
let us notice that the first term in the first line of (8) is the usual (fully) thermal non-compactified result.
Next to it, the two simple terms are part of the thermal corrections to the Casimir (geometric) effect
due to the presence of boundaries inside the heat bath. The last two terms, each containing an infinite
summation, account for both the rest of the thermal corrections to the geometric effect and for the
so-called zero-temperature Casimir result. Indeed, it can be checked that applying the (well defined)
limit T → 0 to the above will give us:

f (T = 0, L) = − π2

1440 L4 , (9)
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which is responsible for the well-known zero-temperature Casimir pressure pCas ≡ −π2/(480 L4).
Thus, our expression is not only a very compact one which converges exponentially fast when the
sums are truncated for nearly any values of T and L, but it rightfully reproduces the two appropriate
limits, namely L = ∞ and T = 0 respectively.

Let us now present all the results, some concerning the (QCD) infinite volume case at finite density
and some being relevant to the (toy model) finite size case at zero density.

5. Results and Discussion

In the present section, we refer the readers to [8] for more detail on the setting of the parameters
in the case of the finite density results, the bands corresponding to conservative variations of all the
resummed perturbative parameters. We also refer to [19] for a forthcoming thorough investigation
concerning the finite size preliminary results which we are presenting. Concerning the finite density
results, the blue band corresponds to the DR result while the red and orange bands are the exact
one-loop and truncated three-loop HTLpt results. The dashed curves inside the bands correspond to
the central values of the renormalization and QCD scales. As for the finite size preliminary results,
all quantities which are presented here are relevant to a system in between two infinite parallel planes
separated by a distance L, and in contact with a heat bath at temperature T.

5.1. Quantum Chromodynamics Infinite Volume Case at Finite Density

5.1.1. Low Order Susceptibilities

First, we display low order quark and baryon number susceptibilities in Figures 1 and 2 (left),
and in Figure 2 (right), respectively. The second- and fourth-order diagonal number susceptibilities are
normalized to their non-interacting limits.

From the width of the bands, we clearly see that the DR scale dependence is extremely small for
perturbatively relevant temperatures. Moreover, both DR and HTLpt are in accordance with each
other, while agreeing quite well with the non perturbative lattice results down to T ∼ 200–400 MeV.

Figure 1. Second-order diagonal quark number susceptibility, normalized to its non-interacting limit.
The truncated three-loop HTLpt result is from [37] and the lattice data from the BNL–Bielefeld [38]
(BNL–B) as well as from the Wuppertal–Budapest [39] (WB) collaborations.
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Figure 2. Fourth-order diagonal quark (left) and baryon (right) number susceptibilities, normalized to
the non-interacting limits. The truncated three-loop HTLpt result is from [37] and the lattice data from
the BNL–Bielefeld [40–42] (BNL–B) as well as the Wuppertal-Budapest [43] (WB) collaborations.

5.1.2. Kurtoses

Next, we are presenting the kurtosis, a certain ratio of the fourth and second order quark or
baryon susceptibilities. It is a measure of how strongly peaked a quantity is, most often used to
measure how a critical point is approached during a phase transition [44].

In Figure 3 (left), we plot the DR and HTLpt results together with lattice data which seem to
agree with the one-loop HTLpt band at temperatures of T ∼ 300–400 MeV, however approaching
the DR prediction at higher temperatures. The latter reproduces the overall trend of the lattice data
better. On the right hand figure, both the three-loop HTLpt and DR predictions seem to agree with the
lattice data at around T ∼ 350 MeV, albeit the DR prediction is much more predictive. Both resummed
perturbative results converge to the Stefan Boltzmann limit faster than for the result relevant to quark
numbers. This tends to comfort the expectation that the medium should be less sensitive to the
hadronic degrees of freedom in this range of temperatures.

Figure 3. Ratios of low order susceptibilities for the quark (left) and baryon (right) numbers. The lattice
data is from [40,41] (BNL–B) and [43,45] (WB). The three-loop HTLpt result is obtained from the
corresponding cumulants of [37]. The black dashed (straight) lines denote the Stefan Boltzmann limits.

5.2. Toy Model Finite Size Case at Zero Density

5.2.1. Finite Size Corrections to the Thermodynamics

We start by plotting the ratio of the free energy with its non-compactified limit (i.e., for which
L → ∞). Even though the intrinsic asymmetry of such a finite size system implies that the actual
pressure along the planes may not be the same as the pressure across them, we recall [19] that in the
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non-compactified limit, both pressures reduce to minus the free energy density. Such a quantity is then
quite convenient for understanding the effect of finite size corrections.

Figure 4. Correction to the free energy of a system at temperature T due to the compactification along
one direction with length L. The result is normalized to its non-compactified, non-interacting limit,
and plotted as a function of T in unit of 1/L.

In Figure 4, we notice a sharp increase at low temperature which is simply a consequence of the
fact that the function is normalized to the fourth power of temperature. Indeed, the zero temperature
limit of the free energy is finite at fixed L: It is the so-called Casimir value (9).

5.2.2. Non Additivity of the Equation of State “Entropy Versus Temperature” in Finite Size Systems

We now wish to bring to the attention of the readers that a finite size system may not only be
asymmetric, as mentioned previously, but will also lose some of the property of additivity.

Figure 5. Non additivity of the entropy as a function of the temperature, due to the spatial
compactification. The quantity is plotted as a function of T in unit of 1/L, but goes to zero in the limit
L → ∞, and is normalized to appropriate powers of the temperature and volume. One subsystem (V2)
is twice as large as the other.

In Figure 5, we notice that in the large L limit the system becomes fully additive, with for example
the equation of state S(T) being additive, as it is expected. However, this happens in the asymptotically
small T limit too. But this is merely a consequence of the fact that at zero temperature, the total entropy
function vanishes (in the thermodynamic limit, i.e., at present since the volume is infinite, this is called
the third law of thermodynamics). We further notice that both subsystems with volumes V1 and V2

have the same temperature, in agreement with the zeroth law of thermodynamics.

5.2.3. Finite Size Corrections to the Speed of Sound

Finally, we wish to present the squares of the two possible isochoric speeds of sound in between
infinite parallel planes: the one that is transverse to the planes (c2

s1
), and the one that is longitudinal
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(c2
s2/3

). We also refer to [19] for much more detail on the derivation of such a quantity. This sound,
propagating in an asymmetric manner, can be understood as due to variations in the pressures
(both longitudinal and transverse) and the energy density as a consequence of a certain heat transfer
from/toward the system.

Both Figure 6 (left and right) have a number of interesting features, and we also refer to [19] for a
more complete interpretation of the result. However, it is already noteworthy that the average of the
isochoric speeds of sound in the three directions (cs1 , cs2 , and cs3 ; the black line on the left Figure 6)
is identically equal to the well known non-compactified limit of cs = 1/

√
3. For both velocities,

the correction seems not to be negligible anymore, starting at about 6–10 % for system sizes relevant to
lead–lead collisions at a few hundred MeV. On Figure 6 (right), we display the total energy of such a
system, as a function of both isochoric speeds of sound. The negative region for the total energy is
simply the consequence of a certain Casimir effect, notifying the fact that the thermal contribution to
the energy is not dominant anymore.

Figure 6. Left figure, we display the two isochoric speeds of sound in between infinite parallel planes,
as a function of T in unit of 1/L. Right figure, we display the total energy of the system as a function
of each of the isochoric speeds of sound: The transverse one (cs1 ), and the longitudinal ones (cs2/3 ).

6. Conclusions

Despite tremendous advances, with various analytic and numerical methods, in the understanding
of the thermodynamics of quark–gluon plasmas as created in HIC, we have presented a few preliminary
results that suggest the need for a further refinement in the overall picture. This need of improvement
seems to be valid, as far as can be understood at present, for quantities related to the thermodynamics
of the systems. They seem nevertheless to play an important role in understanding the degrees of
freedom at work across the quark–hadron phase transition better. However, the question remains
whether or not more dynamical quantities could be less sensitive to the finite size of the system.
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Abstract: The fixed-target NA61/SHINE experiment at the CERN Super Proton Synchrotron (SPS)
seeks to find the critical point (CR) of strongly interacting matter as well as the properties of
the onset of deconfinement. The experiment provides a scan of measurements of particle spectra
and fluctuations in proton–proton, proton–nucleus, and nucleus–nucleus interactions as functions
of collision energy and system size, corresponding to a two-dimensional phase diagram (T-μB).
New NA61/SHINE results are shown here, including transverse momentum and multiplicity
fluctuations in Ar+Sc collisions as compared to NA61 p+p and Be+Be data, as well earlier NA49
A+A results. Recently, a preliminary effect of change in the system size dependence, labelled as the
“percolation threshold” or the “onset of fireball”, was observed in NA61/SHINE data. This effect is
closely related to the vicinity of the hadronic phase space transition region and will be discussed in
the text.

Keywords: QCD matter; phase transition; critical point

1. Introduction

The NA61/SHINE, understood as the Super Proton Synchrotron (SPS) Heavy Ion and Neutrino
Experiment, is a continuation and extension of the NA49 experiment [1,2]. It uses a similar experimental
fixed-target setup to NA49 (Figure 1) but with an extended research programme. Beyond an enhanced
strong interactions programme, measurements of hadron production for neutrino and cosmic ray
experiments are realized. The collaboration involves about 150 physicists from 15 countries and
30 institutions. It is the second largest non-LHC (the Large Hadron Collider) experiment at the CERN.

The strong interaction programme of the NA61/SHINE is dedicated to the study of the onset
of deconfinement and the search for the critical point (CR) of hadronic matter, related to the phase
transition between hadron gas (HG) and quark–gluon plasma (QGP). The NA49 experiment studied
hadron production in Pb+Pb interactions, while the NA61/SHINE collects data varying beam energy
within the range of 13A–158A GeV and varying sizes of the colliding systems. This is equivalent to
the two-dimensional scan of the hadronic phase diagram in the (T, μB) plane, as depicted in Figure 2.
The ion collisions research programme was initiated in 2009 with the p+p collisions used later on as
reference measurements for heavy ion collisions.

Hadron production measurements for neutrino experiments are just reference measurements of
p+C interactions for the T2K experiment, since they are necessary for computing initial neutrino fluxes
at J-PARC. It has been extended to measure the production of charged pions and kaons produced
in interactions out of thin carbon targets and replicas of the T2K targets what is necessary to test
accelerator neutrino beams [3]. Data collection began in 2007.
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Figure 1. The NA61/SHINE detector consists of a large acceptance hadron spectrometer followed
by a set of six Time Projection Chambers (TPCs) as well as Time-of-Flight detectors (ToFs). The high
resolution forward calorimeter, the Projectile Spectator Detector (PSD), measures energy flow around
the beam direction. For hadron-nucleus interactions, the collision volume is determined by counting
low momentum particles emitted from the nuclear target with the Low Momentum Particle Detector
(a small TPC) surrounding the target. An array of beam detectors identifies beam particles, secondary
hadrons and nuclei as well as primary nuclei, and measures their trajectories precisely.

Figure 2. For the programme on strong interactions, NA61/SHINE scans in the system size and beam
momentum. In the plot, the recorded data are indicated in green, the approved future data in red,
and the proposed extension for the period �2018 is in grey.

Collected p+C data also allow for better understanding of nuclear cascades in the cosmic air
showers—necessary in the Pierre Auger and KASCADE experiments [4,5]. These are reference
measurements of p+C, p+p, π+C, and K+C interactions for cosmic ray physics. The cosmic ray
collisions with the Earth’s atmosphere produce secondary air shower radiation. Some of particles
produced in such collisions subsequently decay into muons, which are able to reach the surface of
the Earth. Cosmic ray-induced muon production can allow the reproduction of primary cosmic ray
composition if related hadronic interactions are known [6].

As seen in Figure 3, the phase structure of hadronic matter is involved. Progress in the theoretical
understanding of the subject and the collection of more experimental data will allow us to delve
further into the subject. While the highest energies achieved at the LHC and RHIC colliders provide
data related to the crossover HG/QGP regions, the SPS fixed-target NA61/SHINE experiment is
particularly suited to exploring the phase transition line of HG/QGP with the CR included.

130



Universe 2018, 4, 52

Figure 3. Phase diagram of strongly interacting matter in the temperature and baryonic chemical
potential (T, μB) plane. Picture taken from this (CSQCD 2017) conference poster.

Heavy ion collision (HIC) experiments reproduce the conditions of the first 10 μs after the Big
Bang, when a phase transition from the QGP to a hadron gas would have taken place [7]. It appears,
however, that the QGP can be present in the core of massive neutron stars—particularly those with
masses exceeding two solar masses [8,9]. That would correspond to the far lower right part of the
phase plot, beyond the (T, μB) range covered by Figure 3. The CR has been long predicted for thermal
quantum chromodynamics (QCDs) at finite μB/T [10–12] although this was not unanimously accepted
previously [13]. However, lattice QCD calculations are becoming more and more accurate, leading
to the present conclusions that the cross-over region occurs at Tc(μB = 0) = 154 ± 9 MeV [14] and
the location of a CR is not expected for μB/T � 2 and T/Tc(μB = 0) > 0.9 [15]. A more detailed
exploration of QCD phase diagram would need both new experimental data with extended detection
capabilities and improved theoretical models [16].

Another intriguing and far reaching possibility is the Big Bang phase transition scenario, referred
to by Edward Witten as the “cosmic separation of phases” [17]. In the standard approach, the Big Bang
QGP is almost matter—antimatter symmetric and evolves to lower temperatures through the crossover
region almost vertically to the temperature axis [18]. Edward Witten, using almost “back of envelope”
arguments, pointed out the possibility of using the path of universe starting in the QGP phase from the
high baryonic chemical potential region reaching almost zeroth temperature, with supercooled QGP.
Hadronization then becomes quite an explosive phenomena with a necessary subsequent reheating
(see e.g., [19,20]). Corresponding plots, taken from [19], are shown in Figure 4.

(a) (b)

Figure 4. (a) Sketch of a possible quantum chromodynamic (QCD)-phase diagram with the commonly
accepted standard evolution path of the universe as calculated e.g., in [18]. (b) Sketch of a possible
QCD phase diagram with the evolution path in the scenario of the cosmic separation of phases.
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Beyond cosmological effects (little/tepid inflation) such a possibility would change also our
understanding of the hadronization effect in HIC processes.

2. New NA61/SHINE Results

2.1. Irregularities—The Horn

It was expected [21] that ratio K+/π+ produced at HIC energies of about
√

sNN ≈ 10 GeV should
reach a rapid maximum when QGP formation begins. In 1998 there was not enough experimental
data to fully check this hypothesis. Present collected results fully confirm the appearance of the horn,
although there are still discussions about its relevance to the HG/QGP phase transition.

Recent data from NA61/SHINE [22] show also a strong dependence of the effect on the size of
the colliding objects, as seen in Figure 5.

Figure 5. Horn: a strong maximum of the ratio of K+/π+ multiplicities. A reduced shadow of the
horn structure is visible in p+p reactions.

2.2. Irregularities—The Step

Plateau: A step-in the inverse slope parameter T of the transverse mass spectra mT at mid-rapidity
(0 < y < 0.2) plotted against the collision energy per nucleon (Figure 6) is expected for the onset of
deconfinement [21]. The effect increases with the size of colliding objects. Qualitatively, a similar
structure is visible in p+p collisions, with Be+Be slightly above, consistent with the step structure.
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(a) (b) (c)

Figure 6. Inverse slope parameters T of negative (a) and positive (b) kaons exhibit rapid changes in the
SPS energy range—also seen in p+p collision. Data collected from all available energy ranges (c).

2.3. Fluctuations

The experimental facilities of NA61 allow us to measure fluctuations of various physical quantities
which are sensitive to the vicinity of the CR. Indeed, these fluctuations can create a signature of the CR.
The analysis of fluctuations of various observables is the main goal of the NA61/SHINE experiment,
particularly in a range of energies around 8 GeV per colliding nucleon pair at the center of mass in
interactions of light nuclei (corresponding to the beam energy of 30 GeV in the frame of a stationary
target). This is just the kinematical region where NA49 data indicate the onset of deconfinement
in central Pb+Pb collisions, observing structures in the energy dependence of hadron production in
central Pb+Pb collisions which are not observed in hadron interactions [23,24].

Preliminary data presented in Figure 7 do not show any signs of critical behaviour [25].

(a) (b)

Figure 7. Critical fluctuations in pT of negative (a) and positive (b) charged hadrons in 40Ar +45Sc,
7Be + 9Be and p+p collisions.

3. System Size Dependence

In the recent months, some unexpected results were observed by the NA61/SHINE
experiment [22,26,27], concerning qualitative differences in system size dependence behaviour.
It appears that in particular Be+Be results are very close to p+p at different collision energies.
An example of such behaviour is presented in Figure 8.
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It looks as if with the increasing size of colliding systems, light clusters are produced more and
more copiously, and at some density they start to overlap to reach percolation threshold. This effect
would not depend on energy only, but also on the size of the system.

Intensive work now is ongoing to achieve more conclusive results, analyzing recently collected
data from Xe+La and Pb+Pb.

(a) (b)

Figure 8. (a) multiplicity fluctuation increases with collision energy in Be+Be but remains constant in
Ar+Sc. (b) multiplicity fluctuation in Ar + Sc, 7Be + 9Be and p+p collisions. Be+Be almost identical to
p+p fluctuation within statistical errors given by plot’s points sizes.

4. Conclusions

The Holy Grail of HIC—Quark Gluon Plasma—still remains an elusive object. Although there
are no at present discussions concerning the very existence of this state of matter, there are still open
problems connected with experimental signatures of many theoretical ideas and predictions in this
field. The NA61/SHINE experiment acts in the energy region particularly suited for the appearance
of phase transition effects. Beyond this, the fixed-target technology makes possible to perform 4π

geometry measurements which are not accessible in collider-type experiments.
To date, collected and analysed NA61/SHINE data related to theoretical predictions of fluctuations

in the presence of CR have not shown any anomalies that could be attributed to this. These data relate
to N − pT fluctuations in p+p, Be+Be, and Ar+Sc central events.

There is clear system size dependence of mT spectra that differs significantly between p+p and
A+A events. This is the effect associated with the transverse collective flow.

The appearance of horn (Figure 5) and step (Figure 6) effects is in accordance with theoretical
predictions for the onset of deconfinement in HIC due to mixed phase of HG and QGP [21].

The recent preliminary results of the NA61/SHINE concerning system size dependence may be
also a signature for the new physical phenomena. There is a clearly visible jump between light and
heavy systems. Be+Be results are very close to the p+p results, independently on the collision energy.
In addition, multiplicity fluctuations, close to p+p value in Be+Be collisions, are strongly suppressed
in Ar+Sc collisions.

For the CERN long shutdown in 2019–2020, an NA61/SHINE detector upgrade system is foreseen.
This would make the precise measurements of open charm and multi-strange hyperon production
possible, which are also of great importance both for the neutrino physics programme as well as for
the precise measurements of cosmic rays.
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The following abbreviations are used in this manuscript:

AGS Argonne National Laboratory
CERN Conseil Europén pour la Recherche Nucléaire
CR critical point
HG hadron gas
J-PARC Japan Proton Accelerator Research Complex
LHC Large Hadron Collider
HIC heavy ion collision
QCD quantum chromodynamics
QGP quark-gluon plasma
RHIC Relativistic Heavy Ion Collider
SPS Super Proton Synchrotron
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Abstract: The hadron–quark combustion front is a system that couples various processes, such as
chemical reactions, hydrodynamics, diffusion, and neutrino transport. Previous numerical work
has shown that this system is very nonlinear, and can be very sensitive to some of these processes.
In these proceedings, we contextualize the hadron–quark combustion as a nonlinear system, subject
to dramatic feedback triggered by leptonic weak decays and neutrino transport.

Keywords: quarks; combustion; neutron star

1. Introduction

The hypothesis of absolutely stable quark matter [1–3] has very important phenomenological
consequences in high energy astrophysics (e.g., [4,5]). For example, it quickly became evident that the
conversion of a whole neutron star into a quark star could release thermal and mechanical energy that
would be in the same order of magnitude than the energy released by a core collapse supernova [6,7].
An important reason behind the relevance of alternative hypothesis such as the one of absolutely stable
quark matter is the fact that computational simulations and modelling cannot recreate the energetic
events of many explosive astrophysics phenomena. For example, computational models for core
collapse supernovae are still unable to provide robust explosions [8]. Furthermore, the engines of even
more energetic phenomena, such as super-luminous supernova [9] and gamma ray bursts [10] remain
elusive. The conversion of hadronic to absolutely stable quark matter could give the extra “push”
necessary to realize some of these energetic events. Given the potential of this hypothesis of explaining
at least in part some of the more mysterious explosive phenomena in astrophysics, the inclusion of this
conjecture in models of explosive astrophysics should remain an active research program (e.g., [11]).

Although simple energetics reveal the potential of the hypothesis of absolutely stable quark matter,
more sophisticated studies are necessary to prove whether this conversion would be dynamically
significant in, for example, powering a supernova-like explosion [6] or a gamma ray burst [12]. Given
the high densities and the temperatures of the conversion process, the most apt framework to study
the dynamics of this conversion is hydrodynamics, where a fluid of neutrons is “burnt” into a fluid
of quarks [13,14]. In the late 1980s, a couple of papers [6,15] appeared that pioneered a semi-analytic
method of describing the conversion of neutrons into quarks as a hydrodynamic, combustion process.
However, the exact equations that govern this process, the reaction–diffusion–advection equations,
are quite complicated. These equations couple various processes, such as radiative transfer, chemical
reactions, fluid dynamics, and diffusion, forcing these early papers to simplify considerably the
equations in order to find a tractable solution. Nevertheless, due to the nonlinear nature of these
equations, simplifications that may appear to be minor could actually have dramatic consequences in
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the equations’ solutions. Nonlinear coupling of various processes could create dramatic outcomes that
could lead to orders of magnitude of difference, in, for example, the speed of the conversion.

Later on, a numerical way of solving directly these reaction–diffusion–advection equations was
pioneered by Niebergal et al. [16] (hereby Paper I). Their numerical results lead to large differences
to much of the previous semi-analytic work. For example, the calculated burning speed of about
0.002c–0.04c, where c is the speed of light, was orders of magnitude faster than what was calculated
previously by some semi-analytic models. Their results also hinted at important feedback effects
that might arise from coupling neutrino transport into the combustion front. In fact, they found,
by solving the semi-analytic, hydrodynamic jump conditions, that, for a given neutrino cooling
rate, thermal pressure gradients could slow down the combustion front by orders of magnitude.
Ouyed et al. [17] (hereby Paper II) later confirmed this initial intuition numerically, by incorporating
neutrino transport and electron pressure into the reaction–diffusion–advection equations. The authors
of Paper II discovered that feedback effects triggered by various leptonic processes could affect the
burning timescale by orders of magnitude. These two papers showed then that lepton micro-physics
are at the very least as important as other parts of the combustion process that have already been
deemed important for decades, such as the high density equation of state. The importance of leptons
follows from the nonlinear nature of the combustion process—parts of the system that may appear at
first glance insignificant may give rise to extreme feedback effects. In the case of neutrinos, we have
shown that their omission in simulations would lead to very inadequate results, given that they can
dramatically affect the conversion speed.

These proceedings will therefore focus on the importance of lepton micro-physics as a source
of nonlinear, feedback effects, by summarizing and contextualizing previously published work, and
detailing possible future avenues of research. By micro-physics, we mean the processes that are
important at a length-scale of a centimeter, rather than macroscopic processes that appear at the length
scale of a compact star (about ten kilometers). Given that, at least to the extent of our knowledge,
previous work has never contextualized the issues of hadron–quark combustion using the framework
of nonlinear dynamics, we feel that these proceedings could act as a brief introduction to a new way of
thinking about the hadron–quark combustion. In particular, we find the concept of feedback loops to
be very relevant and illuminating the micro-physics of the flame. In nonlinear dynamics, a feedback
loop implies that the output of a system is fed back into input, creating a circuit of cause and effect
that can lead to dramatic consequences. The processes coupled in the combustion front can lead to
feedback loops, where processes that slow down the burning front could in turn trigger other processes
(e.g., the magnifying of pressure gradients) that would slow down the burning front further.

We structure these proceedings in the following way. In Section 2, we describe the intricate
structure of the flame and the processes that are coupled in it, and how these processes may lead
to feedback. In Section 3, we focus on the effect of neutrinos and electrons, which are the source of
the main feedback effects described in Paper I and II. In Section 4, we finish with some concluding
remarks.

2. Feedback Effects and the Reaction Zone

The reactions that drive the burning front are:

u + e− ↔ s + νe, (1)

u + e− ↔ d + νe, (2)

u + d ↔ u + s. (3)

These reactions are coupled to the reaction–diffusion–advection equations that govern the
burning [16,17]:

∂ni
∂t

= −∇ · (niv − Di∇ni) + Ri, (4)
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∂(hv)
∂t

= −∇(hv · v)−∇P, (5)

∂s
∂t

= −∇ · (sv)− 1
T ∑

i
μi

dni
dt

+
1
T

dενe

dt
, (6)

where the index i runs through the different particle species (u, d, s, νe). The definition of the variables
are: ni is number density, v is the fluid velocity, ενe is electron neutrino energy density, h is enthalpy
density, s is entropy density, T is temperature, Ri is the reaction source term, Di is the diffusion
coefficient, and P is pressure.

We enforce charge neutrality by equating the electron number density with ne = nu − nB. This is
a good assumption given that electrons are degenerate and relativistic, so they move with speeds close
to the speed of light in order wash out any charge imbalances.

These equations lead to a reaction zone that acts as an interface between the two flavoured
quark “fuel” and the three flavoured quark “ash”. The reaction zone is very complex, given that
various particles and processes participate in it. Figure 1, which is a snapshot of numerical simulations
performed in Paper II, is included to illustrate the complexity of the reaction zone. Figure 1a shows the
Fermi momenta of various particles and the temperature gradient along the flame, with the various
force gradients caused by the processes. Figure 1b shows the various pressure gradients caused by the
different particles. Ultimately, the reactions will be constrained by the transport of s-quarks into the
fuel, given that the s-quark acts as an “oxidant” that triggers the conversion. These transport processes
shape the width of the reaction zone, which is a function of the nonlinear, hydrodynamic effects related
to the distance that fluid velocities carry the u- and d-quarks before they decay into s-quarks. Therefore,
much of the processes manifest as force vectors that either slow down the transport of s-quarks into
the fuel or accelerate it. These processes may accelerate the burning front or slow it down. We divide
the processes along enhancing and quenching, although this division is a simplification because the
various processes may be coupled to each other. Enhancing processes accelerate the burning front
while quenching processes slow it down. We define the burning speed as the derivative of the interface
position versus time.

The enhancing processes are (with more detailed explanations in Paper II):

1. Flavor equilibration: The conversion of two flavoured quark matter to three flavoured quark
matter through the reactions (1)–(3) releases binding energy in the form of heat, increasing the
temperature behind the front. The increase of temperature stiffens the quark EoS, increasing the
pressure behind the front and therefore accelerating the burning speed.

2. Electron capture: The transformation of electrons into neutrinos through reactions (1) and (2)
releases binding energy in the form of heat. Higher temperature enhances the pressure behind
the interface, which increases the burning speed.

3. Neutrino pressure: Neutrinos deposit momentum into the reaction zone, accelerating the
interface into faster speeds.

4. Loss of lepton number: Neutrinos, as they diffuse from higher to lower chemical potentials,
deposit the chemical potential difference in the form of heat. This heat increases the temperature
and therefore enhances the pressure behind the interface. This phenomenon is very similar to
what is referred as Joule heating in papers concerning proto–neutron star evolution (e.g., [18]).

The quenching factors are:

1. Electron pressure: Electron capture “eats up” the electrons behind the interface, generating
a large electron gradient (see the electron Fermi momentum distribution in Figure 1a).
These electron gradients generate a degeneracy pressure that pushes the interface backwards,
decelerating the burning front. See Figure 1b for a graphical representation of the electron
pressure gradient.
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2. Neutrino cooling: Neutrinos that escape from the burning front carry energy away from the
reaction zone, which reduces the temperature and therefore the pressure behind the interface.
This quenching effect was first detailed in Paper I.

(a) (b)

Figure 1. (a): Simulation snapshot of the burning interface. pF,i are the Fermi momenta for particles
i, and T is the temperature. In both panels, the interface lies at position zero depicted by the vertical
line. The arrows represent the directions of the force vectors and their labels depict the processes that
caused them. Upstream is the side behind (left side of the vertical line) the interface, and downstream
is the side in front of it (right side of the vertical line). (b): The pressure gradients for the leptons and
quarks shown in Figure 1a. Figure and caption were taken from Paper II [17].

All these enhancing and quenching processes generate feedback effects. In the case of the
hadron–quark combustion front, positive feedback could be how some processes that slow down the
burning front in turn lead to other processes (e.g., amplification of certain pressure gradients) that
would lead to even more deceleration, generating a nonlinear, exponential effect. Although there are
probably many types of feedback loops in the reaction zone given its rich couplings of particles and
processes, Papers I and II focused on the positive feedback generated by leptonic weak interactions,
which we will explore in the next section.

3. Leptons and Positive Feedback

Electrons and neutrinos are crucial components in the combustion system because they can
generate dramatic, positive feedback effects. The authors of Paper I were the first to discover a
connection between leptons and positive feedback. They solved the hydrodynamic jump-conditions
for the conversion of two flavoured quark matter to three flavoured quark matter, and parameterized
neutrino cooling as a small temperature reduction in the three flavoured quark ash. They found that,
for a very small amount of cooling—for example, a reduction of 0.1 MeV in the temperature—the
thermal pressure would reduce dramatically to the point of almost halting the burning interface.

Paper II discovered more positive feedback effects associated with leptons, and was the first
attempt in the literature to incorporate neutrino transport across the reaction zone numerically. Paper
II showed, through a combination of semi-analytic studies and numerical simulations, that the leptons
themselves can generate huge pressure gradients that can affect dramatically the burning speed
(Figure 1b). A key finding is that the quenching process of electron capture could generate positive
feedback that could slow down the burning front dramatically if the neutrinos are free streaming, to
the point that the burning front halts within the timescales of the simulation (Figure 2).

Much of the source of the dramatic lepton feedback lies in Equation (5) given that the nonlinear
momentum is coupled to a lepton degeneracy pressure component in the ∇P term. This lepton pressure
term in turn is coupled to reaction source terms, entropy evolution and the transport equation of
neutrinos. Given that velocity varies by various orders of magnitude through the simulation timescale,
this equation cannot be linearized ( e.g., the ∇(hv · v) term in Equation (5) is strongly nonlinear), as the
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time-dependent fluid velocity is not merely a perturbation oscillating around an equilibrium point,
but instead changes dramatically through time by a forcing due to the ∇P term. In other words, the
burning interface is genuinely a nonlinear system out of equilibrium, and linearizing the system would
eliminate the dramatic feedback loops, generating an inaccurate solution.

Figure 2. Distance travelled by the combustion front as a function of time from a numerical simulation.
The line labeled as “free streaming” represents the burning front with neutrinos free streaming,
while the line labeled as “trapped” plots the burning front with trapped neutrinos. Notice how
the front halts for the remainder of the simulation for the free streaming case. The thermodynamic
parameters for the simulation were an initial temperature of T = 20 MeV, an initial lepton fraction of
YL = 0.2, and an initial baryonic density of nB = 0.35 fm−3.

One of the positive pieces of feedback caused by leptons can be described in the following way:
processes that slow down the burning front will magnify the electron pressure gradients (see Figure 1b)
that oppose the front, given that it gives reactions (1) and (2) more time to “eat up” the electrons
behind the front, generating a sharper electron dip. As the electron dip (see Figure 1a for a graphical
representation of the electron dip) becomes more dramatic and sharper, this in turn will lead to a
slower burning front that would induce an even sharper dip, generating a positive feedback effect.
In contrast, a faster burning front might move too quickly for flavour equilibration to catch up with
the interface, weakening the electron pressure gradient that opposes the front.

Similarly, another positive piece of feedback caused by quenching effects and associated with
leptons is that slower burning leads to slower reaction rates and therefore less neutrinos being created,
which reduces neutrino enhancing processes such as Joule heating and neutrino pressure. As the rate
of production of neutrinos decreases, so does the burning speed.

A key finding is that quenching processes of electron capture could generate positive feedback
that could slow down the burning front dramatically if neutrinos are free streaming, to the point that
the burning front halts within the timescales of the simulation (Figure 2). This is because neutrino
pressure and Joule heating counteracts the quenching effects of the electron pressure gradient, and
therefore once the neutrinos free stream and therefore do not deposit heat or momentum in the reaction
zone, the electron pressure gradient stands unopposed, slowing down the burning front by various
orders of magnitude. Only when neutrinos are trapped, such as is the case of Figure 3 in Paper
II, will the burning front revive, given that neutrinos deposit momentum and heat that pushes the
interface; otherwise, if the neutrinos free stream, the front will remain halted. In Paper II, we showed,
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both through self-consistent simulations and confirmed it with semi-analytic results, that, if neutrinos
free stream, the front will effectively halt due to electron pressure gradients.

Therefore, a key message of Paper I and II is the realization that the reaction zone of hadron–quark
combustion is a nonlinear system that is quite sensitive to its different parts. As an example of this
sensitivity, Paper I and II uncovered the fact that leptonic weak interactions generate nonlinearities
that could slow down the burning front’s speed by various orders of magnitude.

Instabilities in multidimensions: Paper I and II discovered that the behavior of the burning front is
very sensitive to the distribution of neutrinos and electrons. It would be interesting to entertain how
these lepton sensitivities manifest in more than one dimension. Given that a realistic, multidimensional
compact star model would have spatial anisotropies in its lepton distribution, the burning front would
probably halt unevenly across its surface, which would lead to wrinkling. This would be a novel
and alternative channel of turbulence, which would exist alongside other more classical instabilities,
such as Rayleigh–Taylor or Kelvin–Helmholtz. Therefore, a multidimensional simulation would be
ultimately the decisive factor for unearthing the final fate of a neutron star converting into a quark
star. It could be that the instabilities slow down the burning dramatically, or lead to cataclysmic
outcomes such as quark core-collapse or supersonic burning speeds that would lead to an explosion.
Analogous cases that demonstrate the significance of multidimensional studies are core-collapse
supernova simulations, where multi-dimensional, hydrodynamic instabilities have turned out to be
important for the understanding of the explosion mechanism [8].

The important thing to point out is that the nonlinearities unearthed in one dimension simulations
hint that the burning speeds extracted from micro-physical, one-dimensional laminar studies are
not the end of it all. Therefore, the astrophysical implications can only be fully understood with a
multidimensional code.

4. Conclusions

We reviewed the recent literature on the micro-physical simulations of hadron–quark combustion
in order to sketch an outline of the reaction zone as a nonlinear system that experiences feedback.
Thus, the main objective of these proceedings was to point out that the combustion front, because of
its nonlinear nature, can experience significant feedback and coupling between various parts of the
system (e.g., quarks, neutrinos, entropy generations), therefore linearizing the problem, and, ignoring
certain parts of the system, can generate an inaccurate picture of its behavior. A key finding is that
leptonic weak decays are a key part of this nonlinear system, where the coupling of electrons and
neutrinos to entropy generation and hydrodynamics can lead to positive feedback loops that can
quench the burning speed almost completely.

Given the nonlinear, dynamical nature of the hadron–quark combustion front, we describe the
following common pitfalls in the literature that we attempt to remedy by numerical simulation:

1. Assuming the system is steady-state, in other words, equating all temporal derivatives to zero.
2. Assuming that the front is in pressure equilibrium, that is, fixing ∇P = 0.
3. The above two points lead to the cancellation of the important nonlinearities. Pressure equilibrium

and a steady-state momentum make the fluid velocity a constant in space and time.
4. Another related pitfall is collapsing the rich structure of the reaction zone into a discontinuity by

solving the jump conditions instead of the continuous hydrodynamic equations. This also leads
to a steady-state solution, which eliminates the dynamism of the system.

We must reiterate that the micro-physical simulations reviewed are only in one dimension,
and therefore they only offer hints to how these nonlinearities might manifest multidimensionally.
Nonetheless, the nonlinear effects hint that fluid-dynamical instabilities could be induced by the
coupling of leptons to the fluid, which was termed as a deleptonization instability. This potential
deleptonization instabilites, which can only be truly probed with multidimensional simulations,
leaves the real timescale of the burning of the whole compact star into a quark star an open question.
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The deleptonization instability could slow down the burning of the whole compact star to a matter of
hours, or accelerate it towards supersonic detonation that would last less than a millisecond. Therefore,
the next pressing step is to hopefully extend these microphysical simulations into the multidimentional
regime, which may unearth new and very interesting nonlinearities.

Another important question that arises is what more sophisticated and accurate numerical
modeling has to offer for the one-dimensional case. For example, in this study, the exact neutrino
Boltzmann transport equations are simplified into isotropic, energy averaged flux-limited diffusion
equations. However, since the diffusion approximation assumes that the neutrinos are thermalized
and therefore strongly interacting with matter, a more accurate approximation will make matter more
transparent to neutrinos, and therefore exacerbate the positive feedback described in this paper because
less neutrino momentum and heat will be deposited in the reaction zone. Another approach that could
increase the accuracy of the simulation is higher resolution. The most recent simulations we ran used a
grid of 600 cm with 48,000 zones (size of zone is dx = 0.0125 cm). However, a higher resolution would
probably exacerbate the positive feedback given that the pressure gradients may become sharper due
to the reduction of numerical viscosity. Higher order spatial, finite difference schemes (in this work,
we used a third order scheme for advection and second order scheme for diffusion) would reduce
numerical viscosity as well. Our work therefore acts as a lower bound to the effect of leptons on the
interface, with more sophisticated numerical approaches probably magnifying their effect.
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Abstract: We discuss the different signals, in gravitational and electromagnetic waves, emitted during
the merger of two compact stars. We will focus in particular on the possible contraints that those
signals can provide on the equation of state of dense matter. Indeed, the stiffness of the equation of
state and the particle composition of the merging compact stars strongly affect, e.g., the life time of the
post-merger remnant and its gravitational wave signal, the emission of the short gamma-ray-burst,
the amount of ejected mass and the related kilonova. The first detection of gravitational waves
from the merger of two compact stars in August 2017, GW170817, and the subsequent detections
of its electromagnetic counterparts, GRB170817A and AT2017gfo, is the first example of the era of
“multi-messenger astronomy”: we discuss what we have learned from this detection on the equation
of state of compact stars and we provide a tentative interpretation of this event, within the two
families scenario, as being due to the merger of a hadronic star with a quark star.

Keywords: Gravitational waves; Gamma-ray bursts; nuclear matter; neutron stars

1. Introduction

The observation, on 17 August 2017, of the coalescence of two compact objects characterized
by masses in the typical neutron star (NS) range has marked the beginning of the so-called
“multi-messenger astronomy” [1] (SN1987a, detected both by optical telescopes and by neutrino
observatories, constitutes probably the first example of a multi-messenger astronomical event). Indeed,
the merger event has provided a signal in gravitational waves (GW170817) detected by Advanced
LIGO and Advanced VIRGO, that has allowed us to localize the binary constraining a sky region of
31 deg2 and a distance of a 40+8

−8 Mpc. Moreover, Fermi Gamma-ray Burst Monitor has detected a short
Gamma- Ray-Burst event (GRB170817A) delayed by 1.7 s with respect to the merger time [2]. These two
detections have been followed by multiple observations revealing the existence of electromagnetic (EM)
counterpart of the gravitational wave (GW) event covering the entire EM bands, with signals in the X,
UV, optical, IR and radio parts of the spectrum. The separated and joined analysis of these different
signals can provide physical insights about open problems in theoretical physics and astrophysics
which have, for years, been the subject of speculations and simulations. In particular, the study of
the optical counterpart of GW170817, called kilonova (AT2017gfo) because of its peak luminosity,
has finally confirmed that NS mergers host r-processes responsible of the synthesis of the most heavy
nuclei. Moreover, it has provided information about the amount and features of the ejecta and these
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could finally give constraints about the importance of the different ejection mechanisms and of the
features of the progenitors [3,4].

2. State of the Art before 17 August 2017

2.1. Expectations from the GW Signal

The merger of two compact stars represents one of the most powerful sources of GWs [5].
The process of a merger can be divided into three main stages: the inspiral phase, the coalescence
phase and the post merger phase; each of these phases has its own specific waveform which in turn is
determined by different physical quantities such as the total mass of the binary, the mass asymmetry,
the spin of the two stars, the orbital parameters and, finally, the internal structure of the two stars.

During the inspiral phase, the GW’s signal is characterized by the chirp mass M = (m1m2)
3/5

(m1+m2)1/5 where m1

and m2 are the masses of the two stars (it is customary to label with m2 the smaller of the two masses).
The detection of this part of the signal allows therefore to measure M and to determine, with good
accuracy, the total mass of the system M = m1 + m2. This is due to the fact that from astrophysical
observations and from supernovae numerical simulations one can infer that m2 ≥ 1.1 M�. Similarly,
the asymmetry parameter q = m2/m1 is likely to be larger than about 0.6. During most of the inspiral
phase one can assume the two stars to be point like sources but when they are at a distance comparable
to their radius their finite size can significantly modify the GW signal. Indeed, part of the potential
energy of the binary is spent in perturbing the structure of the stars. In turn this leads to an acceleration
of the inspiral dynamics with respect to the case of point-like sources (or with respect to the case of
the merger of two black holes (BHs)) The physical quantity which parametrizes this effect is the tidal
deformability Λ of the two stars [6]. In general, at fixed mass, the larger the radius of the star the
larger the value of Λ, the larger is the deviation of the GW signal from the case of point-like sources.
Potentially, a precise measurement of the final part of the inspiral phase could lead to very interesting
constraints on the radii of the merging compact stars.

Finally, let us discuss the outcome of the merger and the corresponding GW signal. A first
possibility is that, when the two compact objects merge, a BH is promptly formed, within a time scale
of the order of 1 ms. Correspondingly, the GW signal rapidly switches off. There have been many
numerical studies on the conditions for obtaining a prompt collapse [7–10]. A remarkable result is
that the value of M above which the remnant collapses rapidly to a BH, Mthreshold, depends strongly
on the equation of state of dense matter. In particular in References [9,10], it has been shown that the
ratio between Mthreshold and the maximum mass of the cold and non-rotating configuration MTOV to
good accuracy scales linearly with the compactness of the maximum mass configuration. This implies
that once GW will be detected from mergers, this will allow us to measure Mthreshold, and to obtain
precious information on the structure of cold neutron stars and thus on the equation of state of dense
nuclear matter.

If the remnant does not collapse immediately there are three possible outcomes of the merger:
a hypermassive star (i.e., a configuration which is stable only as long as differential rotation is not
completely dissipated), a supramassive star (i.e., a configuration which is stable only as long as rigid
rotation is present) and finally an initially differentially rotating star which is stable even without
rotation. In all these cases, the remnant, during the so called phase of the ring-down, will also emit
a powerful GW signal although with a spectrum qualitatively very different from the inspiral phase
signal. In References [11–14], such a spectrum has been studied as obtained from different numerical
simulations and the dominant frequencies have been singled out. Again, these frequencies depend
strongly on the equation of state: potentially, if at least one of those modes could be detected one could
constrain the radius of the 1.6 M� configuration within a few hundreds meters [15]. One should notice,
however, that, in general, the ring-down signal lies in a frequency range above the kHz for which the
sensitivity of LIGO and VIRGO is reduced.
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2.2. Mechanisms Describing the Prompt Emission of Short GRB and the Extended Emission

The problem of finding the inner engine of short GRBs is linked to the need to overcome two
difficulties: first, the generation of a jet with a large Lorentz factor implies a clean environment and
therefore a mechanism able to reduce the baryonic pollution is needed; second, some but not all of
the short GRBs display an Extended Emission (EE), similar to the quasi-plateau emission observed in
the case of long GRBs and lasting up to 104 s (or even more in a few cases), suggesting that the inner
engine does not switch-off completely after a fraction of a second.

Concerning the way to reduce the baryonic pollution, two mechanisms have been suggested:
one is based on the formation of a Black-Hole, so that baryonic material stops being ablated from the
surface of the stellar object formed immediately after the merger [16]; the other suggested mechanism
is based on the formation of a Quark Star (QS) and, in this case also, baryonic material cannot be
ablated once the process of quark deconfinement has reached the surface of the star [17].

Concerning the origin of the EE, again two mechanisms have been proposed. One is based on the
formation of a proto-magnetar and describes the EE in a way similar to the emission of a pulsar [18–20].
One needs to assume that after the merger a supramassive star (or even a totally stable star) is formed,
since the collapse to a BH needs to be delayed at least by the time associated with the duration of the
EE. This mechanism is able to reproduce in a very accurate way the light-curves of the EE, just by using
two parameters, the strength of the magnetic field (which needs to be of the order of about 1015–1016 G,
and the rotation period (which needs to be of the order of a few milliseconds, or shorter). The second
mechanism is based on the formation of an accretion disk around the BH [21]: although this possibility
cannot be ruled out, no attempt at modeling the EE within this scheme has been made up to now.

Since most of the sGRBs do not display any EE, it is quite natural to assume that most of
them are associated with the formation of a BH in less than a second and that in those cases no
EE, due to an accretion disk, is produced. Assuming that the EE is explained via a protomagnetar
model, two possibilities exist for describing the sGRBs with EE. The first possibility assumes that the
prompt emission is due to the formation of a BH. Since the EE is observed after the prompt emission,
this scenario needs a “time-reversal” mechanism, so that the EE produced before the collapse to a BH is
observed after the prompt emission which is produced when the BH forms [22,23]. The time-reversal
is associated to the time needed for the soft EE to leak out of the thick cocoon surrounding the
protomagnetar. Instead, the strong prompt emission is emitted soon after the BH is formed and the
cocoon exists along the rotation axis. The second possibility is that a QS forms instead of a BH. In this
case, the prompt emission takes place when the process of quark deconfinement has reached the
surface of the star reducing the baryonic pollution and the EE is due to the proto-magnetar that in
this case is a QS [17]. Notice that these two possibilities can be easily distinguished by observations.
The “time-reversal” mechanism implies that the prompt emission takes place after the protomagnetar
collapses to a BH and therefore the time-separation between the moment of the merger (observed
in GWs) and the prompt emission (observed in x- and γ-rays) is of the order of the duration of a
supramassive star, i.e., it is easily larger than 103–104 s. Instead the mechanism based on the formation
of a QS requests a time separation between merger and prompt emission of the order of about 10 s,
needed for the deconfinement front to reach the surface of the star. This a relevant example of
multimessenger analysis at the base of proposals such as the THESEUS mission [24].

2.3. Ejected Mass from NS Mergers, R-Processes and EM Signal

The question about the correct astrophysical mechanism that could be at the base of the r-process
nucleosynthesis represents one of the subjects on which physicists have been focusing in the last decade.
The first attempt to explain the mystery was to indicate the process of core collapse supernovae
(CCSN) as the ideal environment in which r-processes could take place [25]. However, recently,
detailed calculations have shown that CCSN does not appear to host the right conditions to create
the most neutron-rich nuclei [26–29]. In particular, it seems to be especially difficult for core-collapse
supernovae to produce what is known as the “third-peak”. These results have pushed the researchers
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to try to find other possible astrophysical sources which can be responsible for a sufficient emission of
matter in the right conditions for r-processes to happen. In the following we discuss the possibility
that r-processes take place during the merger.

2.3.1. Ejection Mechanism and Features of the Outgoing Fluid

Binary neutron star (BNS) mergers can result in the ejection of neutron-rich matter, by means of
several different possible processes. A classification of the different components of the ejecta has already
been made in 2015 by Hotoketzaka and Piran [30]: the main sources are a dynamical ejection and a later
ejection of part of the disk formed around the remnant because of neutrino or viscous heating.

The dynamical ejection is due to two different physical mechanisms: the first one is the tidal
deformation of the NS, a consequence of the gravitational field that is not axisymmetric; the matter
gains sufficient angular momentum and the ejection, mostly in the equatorial plane, starts before the
collision and ends about 10 ms after the merger [31]. This material is characterized by a very low
electron fraction, Ye < 0.1 [32,33] which can eventually be increased by means of weak reactions in
few ms after the merger [34]. The second is the shock that is formed at NSs interface, which spreads
the crust material. Also, in the envelope of the remnant, a shock is produced by radial oscillations
giving to some fraction of matter the sufficient energy to be ejected. The shock component could
be dominant in the case of equal-mass binaries and can also be ejected in the polar direction.
The electron fraction is predicted to be higher with respect to the tidal component with values in the
range 0.2 < Ye < 0.4 [32–34]. This difference is caused principally by the higher neutrino flux which
characterizes the polar direction with respect to the equatorial one: indeed electron (anti)neutrino,
electron and positron captures can have a deep influence on the evolution of the electron fraction of
the ejecta [35]. The dynamically ejected fluid is characterized by a velocity that can reach values of
β ∼ 0.2–0.3.

After the merger, some of the ashes of the NSs surround the central part forming a disk of mass in
the range 10−3M� < Mdisk < 0.3 M� [8,36,37]. Part of this disk can generate an outflow caused by
viscous or neutrino heating, whose features are characteristic of the type of remnant. If the remnant is
a NS the outflow depends also on its lifetime. The strong magnetic fields present at this stage can also
play a role. The amount of ejecta is estimated to vary from 5 to 20% of the mass of the disk. This ejecta
is usually characterized by lower velocities with respect to the dynamical one reaching a maximum
value of about 0.1 c [38]. The electron fraction of this type of ejecta, initially quite low (∼0.1), can be
significantly modified by neutrinos, finally spanning in a range 0.05–0.5 with a distribution which
depends on the equation of state employed [32].

Many general relativistic (GR) hydrodynamical simulations of the merger have been performed in
order to describe the features of these different kind of ejecta, to evaluate the total amount of material
expelled during the phases of the merger and to study the dependence of the results on the features of
the binary and on the equation of state describing the NSs.

Concerning the dynamically ejected mass, its tidal component depends on the tidal deformability
Λ: the stiffer the equation of state (EoS), the larger the value of Λ and the larger the amount of tidally
ejected mass. On the other hand, the compactness of the stars can influence the shock produced at the
merger, and also the quantity of material that can be spread out at the moment of the merger. Soft EoSs
determine a larger impact velocity and so it is plausible that the correspondent shock and ejected mass
will be higher [39]. Concerning the amount of mass ejected from the disk, it is limited by the mass of
the disk which in turn depends on the life time of the hypermassive star. Therefore, this component
is larger for stiffer equations of state [40]. Future detections of kilonovae will allow to disentagle the
various components providing crucial information for nuclear physics [24].

Finally, the amount of ejected matter is deeply influenced by the degree of asymmetry of the
binary q. For more asymmetric binaries, the unbound material is larger than in the symmetric case.
This result can be explained in terms of the bigger effect of the tidal force that cause the lighter star to
be deformed to a drop-like object and, after the merger, to be stretched leading to the formation of a
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pronounced tidal tail. Also the average electron fraction is influenced by the degree of asymmetry:
the effect is particularly strong for soft EOS and it manifests itself as a decrease of the electron fraction
of the ejecta with the increase of the mass asymmetry [41].

2.3.2. R-Processes

The ejected mass is reprocessed and through r-processes can in principle generate the distribution
of heavy nuclei. It is an open question whether NSs mergers eject an amount of matter sufficient
to explain the observed abundances. For these reasons, plenty of simulations have been performed
in order to reproduce the path of r process nucleosyntesis: the reaction network included nuclear
species between the stability valley and the neutron drip line and considered neutron captures,
photodisintegration reactions together with fission and β-decay reactions [39,42–46]. The comparison
between the solar abundances as a function of mass number A and the results of these simulated
nucleosyntesis (in which the quantity of ejected mass is of the order of 10−3–10−2 M� and the merger
rate for galaxy is set in a range 10−5–10−4 yr−1) shows a good agreement in the regime A > 120–140,
i.e., a region corresponding to the second and the third peak.

The ability of the simulations to reproduce the abundances of the elements lying between the first
and the second peak depends on the obtained distribution of the electron fraction of the ejecta and
on the inclusion of the entire network of possible weak interactions. Indeed in References [39,42,43]
only the dynamically ejecta are considered while in [46], the outflow of material from the disk is
also studied, but all the simulations fail to reproduce the abundances for A < 120 because of the
low electron fraction attributed to ejecta as a result of neglecting the neutrino absorption processes.
In [35], the authors include also the weak interaction of free neutrons obtaining a significant fraction of
material with Ye = 0.3 − 0.4 responsible for the production of nuclei in the range A = 90–140.

2.3.3. EM Counterpart

A probe of the amount of ejected mass and of the realization of the r-process chains in NS
mergers can be the analysis of the EM signal predicted to be associate with this phenomenon [47,48].
The maximum of the luminosity takes place just after the photons can escape the expanding
ejecta whose density is reducing. A typical timescale is of the order of 1 day while the luminosity
∼1042 erg s−1, three orders of magnitude larger than the Eddington luminosity for a solar mass star:
for this reason this EM events are called kilonovae. The spectral peak can vary in the IR/optical/
nearUV wavelengths. The timescale tpeak, the luminosity Lpeak and the effective temperature Tpeak of
the signal depend on the amount Mej, the velocity v and the opacity k of the ejecta [48]:

tpeak ∝
( kMej

v

) 1
2

, Lpeak ∝
(vMej

k

) 1
2

, Tpeak ∝
(

vMej

)− 1
8

k−
3
8

These dependences on the features of the ejecta could translate into an influence of the EoS of
NS: an EoS which produces more ejecta will lead to a brighter optical counterpart, peaked on longer
timescales and with longer peak wavelengths [39].

3. GW170817-GRB170817A-AT2017gfo

3.1. Analysis of the GW Signal

The signal detected by the LIGO-VIRGO collaborations [49] corresponds to the emission of
GWs from an inspiral binary with a chirp mass M = 1.188+0.004

−0.002 M� which implies a total mass
M = 2.74+0.04

−0.02 M� (under the hypothesis that the spins of the two stars are compatible with the ones
observed in binary neutron stars, “low spin case”). In turn, the masses of the components are in the
range 1.17–1.6 M�, strongly suggesting that the merger was between two NSs. Although the source
is quite close, 40 Mpc, it has not been possible to follow the GW signal up to the merger and during
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the ring-down phase [50]. However, a very useful upper limit on the value of the tidal parameter Λ̃
(which depends on the tidal deformabilities and the masses of the two stars) has been set: Λ̃ < 800
at the 90% level in the low spin case. This constraint is basically model-independent and it allows
ua to already rule out a few very stiff equations of state such as MS1 and MS1b which are based on
relativistic mean field calculations [51].

What happened during the first few milliseconds after the merger is unclear. Even if not completely
excluded, the possibility that the merger has led to a prompt collapse seems to be very unlikely because
in that case it would be difficult to explain the observation of the electromagnetic counterparts of
GW170817. Actually, one can infer that the post-merger remnant is most probably a hypermassive star:
a supramassive star or a stable star would inject part of its huge kinetic rotational energy into the GRB
or into the kilonova on a long time scale and there is no evidence, in the observed signals, of such an
energy injection [52]. This implies that the total energy of the binary, which can be estimated to be of
the order of 95% M (assuming the gravitational binding energy of the binary to be ∼5% M) is larger
than the maximum mass of the supramassive configuration Msupra. Several numerical calculations
on rotating compact stars have shown that Msupra is to good accuracy ∼1.2 MTOV [53]. Combining
these results one therefore obtains that MTOV < 2.2 M�. This simple estimate is in agreement with
the results of References [52,54,55] and it again disfavors very stiff equations of state which predict
maximum masses above 2.2 M� such as e.g., DD2 [56].

If the remnant is a hypermassive star, another constraint can be obtained by imposing that the total
energy of the binary is lower than the maximum mass of the hypermassive configuration. This study
has been performed in [57] and it allows us to rule out extremely soft equations of state: it has been
found that the radius of the 1.6 M� configuration must be larger than about 10.7 km.

To summarize, the first detection of GWs from binary neutron stars has already allowed us to
exclude a few examples of dense matter equations of state. In particular, very stiff equations of state
based only on nucleonic degrees of freedom seem to be unfavored. We will discuss in the last section
how this result actually suggests that strange matter must appear in some form in compact stars.

3.2. The Weak Gamma Emission of GRB170817A: Was it a Standard Short GRB?

As already discussed above, short GRBs are assumed to originate from the merger of two NSs.
In the case of the event of August 2017 the GW signal clearly indicates that a merger did take place,
but, on the other hand, the gamma-ray emission was delayed by approximately two seconds with
respect to the moment of the merger and the observed signal was much weaker than the one of a
typical short GRB. It is also relevant to stress that no extended emission was observed, likely indicating
that a supramassive star did not form after the merger.

There are two main possible interpretations of the event. The first one assumes that the emission
was intrinsically sub-luminous and quasi-isotropic [58,59]. The second one assumes instead a standard
short GRB emission, that was observed off-axis [60]. While at the moment, about a hundred days
after the event, both possibilities can explain the data, the analysis of the future time-evolution of
the synchrotron emission will ultimately be able to distinguish between these two scenarios, telling
therefore if GRB170817A was a standard short GRB seen off-axis or if it belongs to a new class of
phenomena [61].

Even though at the moment the mechanism which launched GRB170817A is still unclear, some
strongly energetic emission in γ and in x-rays was produced and this indicates that the merger did
not collapse instantaneously to a BH. There are explicit simulations indicating that if a jet needs
to be formed, the object produced in the post-merger needs to survive for at least a few tens of
milliseconds [62]. As discussed in the following, the analysis of the kilonova emission also indicates
that the result of the merger did not collapse immediately to a BH: a relevant amount of matter was
likely emitted from the disk on a time-scale incompatible with an almost instantaneous collapse. This is
a very important point to take into account when discussing the possible models for the merger, as we
will do in the last section.
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3.3. Electromagnetic Signal and Mass Ejection

3.3.1. Analysis of the Optical Transient

On 17 August 2017, the observation took place of the first electromagnetic counterpart to a
gravitational wave event attributed to a merger of two NSs. The data in UV, optical and NIR bands
extend for a time interval from 0.47 to 18.5 days after the merger and are consistent with a kilonova
signal predicted to be associated with a NS merger.

The early spectrum is dominated by a blue component. Over the first few days, the spectra
shows a rapid evolution to redder wavelengths: at 1.5 days after merger the optical peak is located
around 5000 A and already at 2.5 days it shows a shift to 7000 A, evolving to ∼7800 A at 4.5 days
and going finally out of the optical regime in the interval between 4.5 and 7.5 days after the merger.
By 10 days the wavelength is >15,000 A. [63]. Moreover, the rate of the decline is observed to change
for the different bands belonging to the observed kilonova spectrum: while the decline appears to
be quick in the ug band (blue) with a rate of ∼2 mag day, the rizY (red) and the HKs (NIR) bands
show a smoother decay causing the spectrum to be dominated by red at late time [64]. The initial
luminosities, ∼5 × 1041 erg s−1 at 0.6 days and ∼2 × 1041 erg s−1 at 1.5 days, and the short timescale
(∼1 day) are consistent with the model called Blue KN: this kind of emission was first proposed by
Metzger et al. [48] and subsequently developed as the signal associated to different kinds of matter
likely to be ejected during or post merger [65,66]: in [65] the authors analyzed the tidal tails formed
during the merger while in [66] is presented a study of the outflow from the remnant in the case of a
delayed (>100 ms) BH formation. All this analysis have in common the very low opacity attributed to
the ejected mass with values in a range from k = 0.1 to k = 1 cm2s−1, typical of material containing
Fe-group or light r-process nuclei characterized by A < 140. Therefore, the Blue KN signal is likely to
be associated with r-processes responsible of the formation of nuclei lying between the first and the
second peak.

Conversely, the late EM emission, which dominates at longer timescales ∼a week and shows
a lower luminosity ∼1040–1041erg s−1 fits well with the so called Red KN model [64]: in [67–70] it
was first presented the study of the effect of higher opacity of the ejecta on the resulting KN emission.
This high opacity (k up to 10 cm2s−1) is attributed to the presence of Lanthanide elements, heavy nuclei
with A > 140, so the Red KN represents an indication of nucleosyntesis reactions filling the third peak
of r-processes.

These observational evidences suggest the presence of material characterized by a not unique
value of the opacity and therefore a different content of Lanthanides. Despite the fact that a single
component ejecta with a power-law velocity distribution and a time-dependent opacity (studied with
an analytical model in [71]) cannot be excluded, the most accredited hypothesis is the existence of at
least two components of the ejecta, a Lanthanide poor (for the Blue KN) and a Lanthanide rich (for the
Red KN) component [66,72]. This conclusion is also suggested by the fact that the blue component
is not obscured by the red one, a clue of the need of distinct regions and angles of emission for the
material with different opacity values. This also means that these two components can be attributed to
distinct sources [64].

The duration and effective temperature of the KN emission have been studied with models
outlined in [68,73] allowing to indicate the mass, velocity and opacity of the ejecta as fitting parameters.
The result is that the signal is consistent with a two component model. It consists of: a Blue component
with MB

ej ∼ 0.01−few 0.01 M�, velocity vB
ej = 0.27–0.3 c and opacity kB = 0.5 cm2s−1 requiring

a Lanthanide fraction of ∼10−4 to 10−5 in the outermost ejecta [63,64]; a Red component with
MR

ej ∼ 0.04 M�, velocity vR
ej = 0.12 c and opacity kR = 3.3 cm2s−1 requiring a Lanthanide fraction of

∼10−2 [64,74].
Another model able to fit the data is characterized by three components: a Blue one with MB

ej ∼
0.01 M�, velocity vB

ej = 0.27 c and opacity kB = 0.5 cm2s−1; a Purple one with MP
ej ∼ 0.03 M�, velocity
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vP
ej = 0.11c and opacity kP = 3 cm2s−1 and a Red one with MR

ej ∼ 0.01 M�, velocity vR
ej = 0.16 c and

opacity kR = 10 cm2s−1 [64].

3.3.2. Role of Different Ejection Mechanisms

The different opacities of the Red and Blue (and eventually Purple) KN, attributed to a different
Lanthanide fraction can be directly connected to the electron fraction of the ejected matter, Ye: a lower
electron fraction corresponds to the ability to synthesize heavier nuclei, so to a bigger concentration of
Lanthanides and, as a consequence to a greater opacity. The Ye of the ejecta depends in turn on the
direction and of the mechanism at the base of the ejection [72].

The Blue component KN, characterized by a very low opacity, has to find its origin in a
Lanthanide-poor material with an electron fraction >0.25–0.3: this kind of matter can be ejected
dynamically by means of the shock generated at the contact surfaces of the two stars at the moment
of the merger [32,34,35,39]; the ejecta is expected to be be found within an angle between 30◦ and
45◦ [33,41], with respect to the polar axis where the neutrino flux is more intense and so neutrino
absorption plays a central role in raising the electron fraction above a value of Ye > 0.25 [40,68].
Moreover, if the remnant of the merger survives as an hypermassive NS , a disk is formed around
it which reaches a stable configuration in a few tens of milliseconds while a neutrino-driven wind
is formed at a time of ∼10 ms [75]. This wind is responsible for the ejection of about the 5% of the
mass of the disk, mostly in the polar direction. Simulations reveal that in this direction the large
neutrino flux raises the electron fraction up to a distribution which peaks at Ye = 0.3–0.4, so wind
also gives rise to a low-opacity ejecta [75,76]. The features which mostly distinguish the two different
mechanism is the resulting velocities, 0.2–0.3 c for the dynamical ejecta while lower for the wind ejecta,
v < 0.1 c [38,75,76].

The velocity attributed to the Blue component, 0.27–0.3 c, represents an important proof of its
dynamical origin, but while some authors suggest that the shock represents the exclusive mechanism
for this low opacity signal [63,64], others view this component as a possible result of a union of the
dynamical and wind ejecta [40]. In the first case, the required amount of ejected matter, ∼10−2 M�
implies the need for a soft EoS in order to reach a high velocity at the impact of the two compact
objects: this suggest an upper limit on the NS radius of about 12 km or less [63].

The second hypothesis, instead, does not require such a tight limit on the radius.
Regarding the higher opacity of the Lanthanide richer Red component, the largely accepted

interpretation indicates the dynamical mechanism of tidal ejection in the equatorial plane (within an
angle of 45◦–60◦). The squeezed out material is indeed characterized by a very low electron fraction
<0.1 [31–33] giving rise to a Red-NIR spectrum with a longer timescale [67,68]. The large amount of
mass inferred from the data can be an indication of a high degree of asymmetry of the binary [64].
However, to explain the component characterized by an opacity of ∼3 cm2g−1 and a very large ejected
mlies, we need a soft EoS in order to reach a high velocity at the impact of the two compact objects: this
suggests an upper limit on the NS radius of about 12 km or less [63]. The second hypothesis, instead,
does not require such a tight limit on the radius.

Regarding the higher opacity of the Lanthanide richer Red component, the largely accepted
interpretation indicates the dynamical mechanism of tidal ejection in the equatorial plane (within an
angle of 45◦–60◦). The squeezed out material is indeed characterized by a very low electron fraction
<0.1 [31–33] giving rise to a Red-NIR spectrum with a longer timescale [67,68]. The large amount of
mass inferred from the data can be an indication of an high degree of asymmetry of the binary [64].
However, to explain the component characterized by an opacity of ∼3 cm2g−1 and a very large ejected
mass, which can be considered as part of the Red KN or a distinct Purple KN, it is also necessary to
take into account the disk outflow.

First of all, the wind ejecta for angles >30◦ are less affected by the neutrino flux maintaining
an electron fraction Ye ∼ 0.25–0.3 and fitting the required opacity [70,75,77]. At the same time,
a contribution can also come from the secular ejecta which affects all the solid angles, but which is
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equatorial dominated: this viscous-driven ejection can result in the expulsion of up to 30% of the mass
of the disk and the Ye of the material depends on the lifetime of the HMNS with respect to that of the
disk (∼ten of ms). In the case of a long-lived HMNS the electron fraction can reach values between
0.2–0.5 with peaks at ∼0.3–0.4 while if the collapse to a black hole happens earlier Ye < 0.3–0.4 [78].

In [40] ( three component model), and in [64], the authors suggest that the intermediate opacity
component of the KN signal can be, indeed, explained by means of the early viscosity driven secular
ejection: this will imply a short-lived remnant (∼30 ms) and a massive disk ∼0.08 M�. These two
statements point to different directions concerning the features of the EoS: on one side a soft EoS will
prevent the remnant to form a long-lived massive neutron star, but on the other side, the greater value
of tidal deformability associated to a stiffer EoS will determine the formation of more pronounced tidal
tales and thus a more massive disk around the remnant. On the other hand, the upper limit imposed
on the tidal deformability by the gravitational waves measurement (see Section 3.1 for details) and
the absence of a prompt collapse to BH exclude extremely stiff or extremely soft EoS, respectively.
This seems to suggest an EoS is characterized by an intermediate softness.

To summarize, the situation concerning the mechanisms at the base of the kilonova (and of the
GRB) is still not settled. In the following we will shortly discuss the global interpretation of the event
of August 2017 at the light of the two-families scenario.

4. A Different Hypothesis: A Hadronic Star–Quark Star Merger

The event GW170817 and its electromagnetic counterparts have been generated from the
coalescence of two compact stars. In the standard scenario, only one family of compact stars exists,
namely the family of stars composed entirely by hadronic degrees of freedom. However, there are
some phenomenological indications of the possible existence of a second family of compact stars which
are entirely composed by deconfined quarks, namely QSs, see References [79–81]. In this scenario,
the first family is populated by hadronic stars (HSs) which could be very compact and “light” due
to the softness of the hadronic EoS (with hyperons and delta resonances included) while the second
family is populated by QSs which, on the other hand, can support large masses due to the stiffness of
the quark matter EoS.

In this scheme, a binary system could be composed of two HSs, two QSs or finally an HS and a
QS. Let us discuss these three possibilities in connection with the phenomenology of GW170817.

The threshold mass Mthreshold for an HS–HS, i.e., the limit mass above which a prompt collapse
is obtained, has been estimated to be ∼2.7 M� [82], on the base of the the study performed in [15].
This value is smaller than the total binary mass M inferred from GW170817 [49] and therefore the
hypothesis that the binary sytems were an HS–HS system is disfavored within the two families scenario.
Also, the possibility that the system was a double QS binary system is excluded because in that case it
would be difficult to explain the kilonova which is powered by nuclear radioactive decays: even if
some material is ejected from the QSs it is not made of ordinary nuclei and therefore cannot be used
inside an r-process chain to produce heavy nuclei. Conversely, the case of a HS–QS merger, in which
the prompt collapse is avoided by the formation of a hypermassive hybrid configuration, becomes the
most plausible suggestion in the context of the two families scenario [82].

Let us briefly discuss which the possible evolutionary paths are that can lead to the formation of
such a mixed system.

The formation of a double compact object like the source of GW170817 is more probable in
isolated binary evolution than through dynamical interactions in dense stellar systems [83]. In such
a case, a common envelope phase [84] is typically necessary to shorten the orbital period and to
allow for the merger to occur within the Hubble time. This phase, in a typical double NS formation
route, occurs after the formation of the first compact object [85]. Additionally, the companion may
fill its Roche lobe again due to an expansion on the Helium main-sequence and commences a mass
transfer phase. Therefore, it is natural to expect that the compact object which formed first may
obtain a significantly higher mass than its counterpart. If the total mass of a double compact object
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is about 2.7 M� or higher, the heavier compact object may reach the mass of ∼ 1.5–1.6M�., which
in the two-families scenario marks the threshold for deconfinement and the formation of a QS [79].
The secondary cannot accrete mass from the primary, which is already a compact star. Moreover, it has
lost a large fraction of mass in the interaction. Therefore, its pre-SN mass will be relatively low and,
consequently, its post-SN mass will not be significantly different from the lower limit of a newborn NS
∼ 1.1 M�; see e.g., [86]. This implies that in the two-families scenario, the binary evolution may favor
the situation in which GW170817 is a HS–QS binary rather than a HS–HS. This issue will be further
investigated in a forthcoming paper.

Under the hypothesis that the event seen in August 2017 is due to the merger of a HS–QS system,
we need now to discuss the possible explanations of the different features seen in the gravitational and
electromagnetic signals. First, the gravitational wave signal has clearly indicated that extremely stiff
EoSs are ruled out: the limit put on Λ̃ is fulfilled only if the radii of the two stars are smaller than about
13.4 km (see the analysis of Ref. [87]). Both HSs and QSs satisfy this limit [79,88], see also Ref. [89]
where the tidal deformabilities of HSs and QSs have been computed.

Second, the emission of GRB170817A is probably connected with the formation of a relativistic
jet which is launched by a BH-accretion torus system. The scenario discussed in [17] concerns short
GRB featuring and extended emission which has not been observed in this case. In our scenario,
the compact star which forms immediately after the merger is a hypermassive hybrid star in which
the burning of hadronic matter is still active. We expect such a system to collapse to a BH once the
differential rotation is dissipated. The sGRB would be produced by the same mechanism studied in
References [16,90].

Let us finally discuss the properties of the observed kilonova within our scenario. Perego et al. [40]
suggest an effective two components model in which the opacity of the secular ejecta is predicted to
be very low (∼1 cm2s−1), comparable to that of the wind component. This hypothesis has two major
consequences: the lifetime of the remnant must be sufficiently long in order to allow weak reactions to
raise the electron fraction to >0.3 and the tidal ejecta must give a very relevant contribution.

Both these requirements can be fulfilled in the context of the HS–QS merger; indeed the hybrid
star configuration predicted by this model can survive as a hypermassive configuration for a time
of the order of hundreds of ms. Moreover, for an asymmetric binary, characterized by q = 0.75–0.8,
the predicted tidal deformability of the lightest star (the hadronic one) can reach value of ∼500. This
quite high value of λ together with the supposed high asymmetry of the binary can result in a relevant
contribution of the tidal effect on the total ejected mass. This allows to explain the third peak of
r-processes and the Red KN without the need of a high opacity secular ejecta (notice also that the value
λ ∼ 500 is largely above the lower limit derived from the analysis of the EM counterpart performed
in [91]).

It is worth noticing that another possibility has been proposed which is able to explain the data
from GW170817 and which also makes use of the formation of quark matter in compact stars: it is
based on the so-called “twin stars scenario” and is discussed in Reference [92]. In that case, the
binary system is composed of a purely hadronic star and of a hybrid star, because two hadronic stars
would be excluded by the tidal deformability constraint. Notice that these two scenarios provide
different predictions on a variety of phenomena. First, in Reference [17] it has been shown the
two-families scenario can describe the prompt emission of short GRBs displaying also an extended
emission (see Section 2.2). The mechanism described in that paper cannot be adapted to the twin stars
scenario. Second, a prediction of the two-families scenario is the possibility of a prompt collapse also
for small-mass binaries, if they are both hadronic stars [82]. Again, this possibility does not exist within
the twin-stars scenario.

In conclusion, despite the need of hydrodynamical simulations in order to make more quantitative
predictions, the HS–QS merger can represent a viable way to explain the features of the GW170817,
GRB170817A and AT2017gfo.
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Abstract: The Lense-Thirring effect from spinning neutron stars in double neutron star binaries
contributes to the periastron advance of the orbit. This extra term involves the moment of inertia
of the neutron stars. The moment of inertia, on the other hand, depends on the mass and spin of
the neutron star, as well as the equation of state of the matter. If at least one member of the double
neutron star binary (better the faster one) is a radio pulsar, then accurate timing analysis might lead
to the estimation of the contribution of the Lense-Thirring effect to the periastron advance, which will
lead to the measurement of the moment of inertia of the pulsar. The combination of the knowledge
on the values of the moment of inertia, the mass and the spin of the pulsar will give a new constraint
on the equation of state. Pulsars in double neutron star binaries are the best for this purpose as
short orbits and moderately high eccentricities make the Lense-Thirring effect substantial, whereas
tidal effects are negligible (unlike pulsars with main sequence or white-dwarf binaries). The most
promising pulsars are PSR J0737−3039A and PSR J1757−1854. The spin-precession of pulsars due to
the misalignment between the spin and the orbital angular momentum vectors affect the contribution
of the Lense-Thirring effect to the periastron advance. This effect has been explored for both PSR
J0737−3039A and PSR J1757−1854, and as the misalignment angles for both of these pulsars are
small, the variation in the Lense-Thirring term is not much. However, to extract the Lense-Thirring
effect from the observed rate of the periastron advance, more accurate timing solutions including
precise proper motion and distance measurements are essential.

Keywords: dense matter; equation of state; stars: neutron; pulsars: general, pulsars: PSR J0737−3039A;
pulsars: PSR J1757−1854

1. Introduction

Timing analysis of binary pulsars leads to the measurement of pulsar’s spin, Keplerian orbital
parameters (the orbital period Pb, the orbital eccentricity e, the longitude of periastron ω, the projected
semi-major axis of the orbit xp = ap sin i, where ap is the semi-major axis of the pulsar orbit and i
is the angle between the orbit and the sky-plane, and the epoch of the periastron passage1), as well
as post-Keplerian (PK) parameters like the Einstein parameter (γ), Shapiro range (r) and shape
(s) parameters, the rate of the periastron advance ω̇, the rate of change of the orbital period Ṗb,
the relativistic deformation of the orbit δθ , etc. [4]. Sometimes, the Shapiro delay is parametrized

1 The remaining Keplerian parameter, the longitude of the ascending node ϕ, does not come in the standard pulsar timing
algorithm. It can be measured via proper motion only in very special cases; see [1–3] for details.
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differently, with parameters h3 and ς [5], or with r and zs [6], and these parameters can easily be
expressed in terms of conventional parameters s and r.

Measurement of PK parameters leads to estimation of masses of the pulsars and their companions,
as well as tests of various theories of gravity [7,8]. Note that, in principle, measurements of only
two PK parameters are enough to extract two unknowns, i.e., the masses of the pulsar and the
companion, while measurements of more than two PK parameters lead to tests of gravity theory
through consistency. However, the uncertainty in measurement is not equal for every PK parameter,
and usually the two most accurate parameters are used to obtain the best mass estimates (e.g., Figure 1
of [9]). Additionally, relativistic binary pulsars have the potential to constrain the Equation of State
(EoS) of matter at extreme densities. Measurements of masses of two pulsars being around 2 M� have
already ruled out many soft EsoS [10,11]. On the other hand, the recent analysis of the gravitational
wave event GW170817 from the merger of two neutron stars ruled out some extremely stiff EsoS [12,13].
Still, a large number of EsoS is allowed, including several hybrid [14] and strange quark matter [15]
EsoS in addition to standard hadronic ones. Therefore, further progress on this issue is essential,
and that is expected in the near future as, on the one hand more, neutron star-neutron star mergers
are expected to be detected in future runs of the advanced LIGO, and on the other hand, many binary
pulsars are being timed regularly and accurately. Besides, upcoming radio telescopes like MeerKAT
and the Square Kilometre Array (SKA) will lead to significant improvement in pulsar timing.

Among all of the PK parameters, in the present article, I concentrate mainly on the periastron
advance, which has the potential to constrain the dense matter equation of state due to the
Lense-Thirring effect. Neutron star-neutron star binaries or ‘Double Neutron Star’ (DNS) systems are
the best for this purpose as these systems are compact enough to display effects of strong field gravity,
yet wide enough to have negligible tidal effects. Moreover, due to the high compactness of neutron
stars, spin-induced quadrupole moments are also negligible. On the other hand, as these neutron
stars are rapidly spinning (spin periods of most of the pulsars in DNSs are less than 100 milliseconds),
the Lense-Thirring effect is significant. That is why I concentrate on DNSs in this article, although the
mathematical formulations are valid for any kind of general relativistic binaries with the possibility of
additional effects depending on the nature of the objects in the binaries. There are about seventeen
DNSs known at the present time, including the first discovered binary pulsar: the Hulse–Taylor binary,
PSR B1913+16. For one DNS, PSR J0737−3039A/B, both members are radio pulsars, and the system is
known as a double pulsar 2.

For a long period of time, the double pulsar was the most relativistic binary. However, the recently-
discovered DNS, PSR J1757−1854 shows even stronger effects of general relativity in some aspects, i.e.,
Ṗ and γ [17], due to its high eccentricity combined with a small orbital period. In fact, its eccentricity
is 6.9-times and orbital period 1.8-times larger than those of PSR J0737−3039A/B. It is noteworthy that
ω̇ is larger for PSR J0737−3039A/B than PSR J1757−1854 where the contribution of eccentricity is less
dominant; see Lorimer and Kramer [4] for expressions for PK parameters.

PSR J1906+0746 is another DNS having the second smallest value of Pb, just after PSR
J0737−3039A/B. However, its Pb is slightly (1.1-times) and e is significantly (7.1-times) smaller than
those of PSR J1757−1854. That is why although PSR J1906+0746 has the third largest value of ω̇,
other PK parameters are small, even smaller than most of the other DNSs. Finally, the latest discovered
DNS, PSR J1946+2052, has broken all the records by having the smallest value of Pb and the largest
value of ω̇ [18].

2 Although for the last few years, the slow pulsar of the system is not visible and is believed to be beaming away from the
Earth due to its spin-precession [16].
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2. Precession in Double Neutron Star Binaries

Precessions (of both the spin and the orbit) of neutron stars in DNSs are very important. Following
Barker and O’Connell [19], the rate of the change of the unit spin vector (sa) of a spinning neutron star
(a) in a binary can be written as:

ṡa =
−→
Ω sa × sa , (1)

where the angular spin-precession frequency
−→
Ω sa can be written as:

−→
Ω sa =

−→
Ω sPNa +

−→
Ω sLTa . (2)

−→
Ω sPNa is the angular spin-precession frequency of the neutron star due to the space-time curvature
around its companion and can be calculated within the ‘Post-Newtonian’ (PN) formalism.

−→
Ω sLTa is the

angular spin-precession frequency of that neutron star due to the Lense-Thirring effect of its spinning
companion. We can further write: −→

Ω sPNa = APNa k , (3)

where k =
−→
L /|−→L | is the unit vector along the orbital angular momentum,

−→
L is the orbital angular

momentum, and: −→
Ω sLTa = ALTa [sa+1 − 3(k.sa+1)k] . (4)

Here, if a is the neutron star under consideration, a + 1 is its companion. The amplitudes in
Equations (3) and (4) are given by:

APNa =

(
G
c3

)2/3 n5/3

(1 − e2)

Ma+1(4Ma + 3Ma+1)

2(Ma + Ma+1)4/3 , (5)

ALTa =
G
c3 βs a+1

n2

(1 − e2)3/2

M2
a+1

2(Ma + Ma+1)
, (6)

where G is the gravitational constant, c is the speed of light in a vacuum and n = 2π/Pb is the angular
orbital frequency. Ma is the mass; Ia is the moment of inertia; Psa is the spin period of the a-th neutron
star; and

βs a+1 =
cIa+1

GM2
a+1

· 2π

Ps a+1
, βsa =

cIa

GM2
a
· 2π

Psa
. (7)

For pulsars in DNSs, the Lense-Thirring term (
−→
Ω sLTa ) can be ignored. Even for the case of the

slow pulsar (B) of the double pulsar, where the Lense-Thirring effect due to the spin of the fast pulsar
(A) contributes to

−→
Ω sB , I find APNB = 5.07481 deg y−1 and ALTB = 3.48865 × 10−5 deg y−1 (using the

values of the parameters given in Table 1). This leads to ΩsLTB ∼ −6.97731 × 10−5 deg y−1 using the
fact that sA is almost parallel to k [20,21], and hence, ΩsB = 5.07474 deg y−1, which is close to the
observed median value of ΩsB = 4.77 deg y−1 [22]. It is unlikely that companions of other pulsars
would be much faster than PSR A, and hence,

−→
Ω sLTa can be neglected. Therefore, Equation (1) becomes:

ṡa = APNa k × sa = APNa sin χa u , (8)

where χa is the angle between k and sa and u is a unit vector perpendicular to the plane containing
k and sa in the direction given by the right-hand rule. Therefore, the measurement of the
spin-precession of a pulsar helps estimate χa when other parameters involved in Equation (5) are
already known.

Similarly, neglecting the tidal and the spin-quadrupole effects, as well as the spin-spin interaction,
the orbital angular precession frequency can be written as:

−→
Ω b =

−→
Ω bPN +

−→
Ω bLT , (9)
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where
−→
Ω bPN and �ΩbLT are contributions from the space-time curvature and the Lense-Thirring

effect, respectively. Note that both members of the binary contribute to each term.
−→
Ω b leads

to the precession of both the Laplace–Runge–Lenz vector �A, as well as �L, but none is directly
observable. Damour and Schafer [23] first studied the manifestation of

−→
Ω b in terms of observable

parameters by decomposing
−→
Ω b as:

�Ωb =
dϕa

dt
ha +

dωa

dt
k +

di
dt

Υa , (10)

where ha is the unit vector along the line-of-sight, i.e., from the Earth to the a-th neutron star (the pulsar),
Υa = ha×k

|ha×k| is the unit vector along the line of the ascending node, ϕa is the longitude of the
ascending node of the a-th neutron star and i is the angle between the orbit and the sky-plane.
Damour and Schafer [23] has also given:

ϕ̇a =
1

sin2 i
[�Ωb · ha − cos i(�Ωb · k)] , (11)

ω̇a =
1

sin2 i
[�Ωb · k − cos i(�Ωb · ha)] , (12)

di
dt

= �Ωb · Υa . (13)

As already mentioned, ω̇a is the parameter of interest as it has the potential to put constraints on
the dense matter EoS. Therefore, I explore properties of ω̇a in the next and subsequent sections.

2.1. Periastron Advance

The observed rate of the periastron advance (ω̇a,obs) of the a-th member of a relativistic binary can
be written as:

ω̇a,obs = ω̇a + ω̇Kopa
= ω̇PNa + ω̇LTa + ω̇LTa+1 + ω̇Kopa

, (14)

where ω̇PNa is due to the space-time curvature caused by both members of the binary, ω̇LTa is due to
the Lense-Thirring effect of the star a and ω̇LTa+1 is due to the Lense-Thirring effect of the star a + 1.
These three terms together come into the expressions of ω̇a (Equation (12)) caused by the precession
of the orbit. ω̇Kopa

is a secular variation due to the gradual change of the apparent orientation of the
orbit with respect to the line-of-sight due to the proper motion of the barycenter of the binary [24].
The expressions for different terms are:

ω̇PNa =
3β2

0 n
1 − e2 [1 + β2

0 f0a] , (15)

ω̇LTa + ω̇LTa+1 = − 3β3
0 n

1 − e2 (gsaβsa + gs a+1βs a+1) , (16)

ω̇Kopa
= K cosec i (μα cos ϕa + μδ sin ϕa) , K = 502.65661 , (17)

where only the first and the second order terms are retained in the expression of ω̇PNa . μα and μδ are the
proper motion of the barycenter of the binary (which is measured as the proper motion of the visible
object) in the right ascension and the declination respectively, both expressed in units of milliarcseconds
per year. All other parameters are in SI units. The parameters introduced in Equations (15)–(17) are
as follow:

β0 =
(GMn)1/3

c
, (18)

f0a =
1

1 − e2

(
39
4

X2
a +

27
4

X2
a+1 + 15XaXa+1

)
−
(

13
4

X2
a +

1
4

X2
a+1 +

13
3

XaXa+1

)
, (19)

163



Universe 2018, 4, 36

where Xa = Ma/M, M = Ma + Ma+1 is the total mass of the system. βsa is defined in Equation (7), and

gsa = Xa(4Xa+3Xa+1)
6(1−e2)1/2sin2i ×

[
(3 sin2i − 1) k · sa + cos i ha · sa

]
= Xa(4Xa+3Xa+1)

6(1−e2)1/2sin2i ×
[
(3 sin2i − 1) cos χa + cos i cos λa

] (20)

where λa is the angle between ha and sa (see Figure 1). It is obvious from Equation (20) that the
maximum value of gsa occurs when sa is parallel to the vector (3 sin2i − 1) k + cos i ha, giving:

gsa, max =

[
3 +

1
sin2 i

]1/2 Xa (4Xa + 3Xa+1)

6(1 − e2)1/2 . (21)

If sa ‖ k, i.e., χa = 0 and λa = i:

gsa, ‖ =
Xa (4Xa + 3Xa+1)

3(1 − e2)1/2 . (22)

Using the expression of gsa, ‖ in Equation (16), I get ω̇LTa ,‖, and using the expression of gsa, max,
I get ω̇LTa , max. The negative sign in the Lense-Thirring term (Equation (16)) implies the fact that actually
ω̇LTa , max is the minimum value. However, depending on the values of i, χp, and λp, gsa (Equation (20))
can be negative making ω̇LTa (Equation (16)) positive. Note that the Lense-Thirring effects from both
the pulsar and the companion come in the total periastron advance rate (Equations (14) and (16)).
However, if the companion is much slower than the pulsar, as in the case of the double pulsar, then the
contribution from the companion can be neglected. Due to the non-detection of any pulsation, we do
not know the values of the spin periods of the companions for other DNSs and cannot rule out the
possibility of significant Lense-Thirring effect from those companions. However, most of the pulsars in
DNSs are recycled (at least mildly), suggesting the fact that pulsars were born as neutron stars earlier
than their companions. The companions, i.e., the second born neutron stars in DNSs, are expected
to be slow; because even if neutron stars are born with spin periods in the range of a few tens of
milliseconds up to a few hundred milliseconds, they quickly spin down to periods of a few seconds
unless they gain angular momentum via mass accretion from their Roche lobe filling giant companions
and become fast rotators. Such spin-up is possible only for the first born neutron star in a DNS. That is
why in the present article, I ignore the Lense-Thirring effect from the companions of pulsars in DNSs.

In such a case, i.e., when ω̇LTa+1 is negligible, ω̇LTa can be extracted by subtracting ω̇PNa + ω̇Kopa
from ω̇a,obs (Equation (14)). One can estimate the value of Ia from ω̇LTa if all other relevant parameters
like Pb, e, Ma, Ma+1, sin i, χa, λa are known (Equations (7), (18)–(20)). Then, from the knowledge of
Ia, Ma and Psa, a new constraint on the EoS can be placed, as it is a well-known fact that the moment
of inertia of a neutron star depends on its mass, spin-period and the EoS (see [25] and the references
therein). For this purpose, DNSs with large values of ω̇LTa (larger than the measurement uncertainty
in ω̇a,obs) are preferable. Large values of the orbital eccentricity e and small values of Pb and Ps make
ω̇LTa larger.

The procedure is actually a bit trickier than it seems at first. Usually, timing analysis of a binary
pulsar reports the most accurate measurement of ω̇a,obs out of all PK parameters, and the masses of
the pulsar and the companion are estimated by equating ω̇a,obs with ω̇PNa and using the second most
accurately-measured PK parameter. If ω̇LTa is large, then this procedure would become erroneous.
One should instead estimate masses using two PK parameters other than ω̇a,obs, and these mass
values should also be accurate enough to give a precise estimate of ω̇PNa . Accurate measurements of
proper motion are also needed to evaluate ω̇Kopa

. Only then, ω̇PNa + ω̇Kopa
can be subtracted from

the observed ω̇a,obs to get the value of ω̇LTa . In short, one needs very precise measurements of at least
three PK parameters, ω̇a,obs and two more, as well as the distance and the proper motion of the pulsar
(the a-th neutron star).
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Because of its small values of Pb and Ps, PSR J0737−3039A is expected to have a large value of
ω̇LTa in spite of its low eccentricity. Similarly, as PSR J1757−1854 has a slightly larger Pb, slightly
smaller Ps and much larger e, it is also expected to have a large value of ω̇LTa . For this reason, in the
next section, I explore ω̇LTa for these two DNSs in detail. Note that, although, PSR J1946+2052 might
be a useful system for this purpose, it is not possible to extend my study for this system due to lack of
knowledge of masses of the pulsar and the companion.

One should also remember the dependence of ω̇LTa (via gsa) on the orientation of sa with respect
to k and ha (Equation (20)). If I assume that the a-th neutron star is the pulsar, then all ‘a’s in the
subscripts of the above equations will be replaced by ‘p’s, e.g., sp, hp, etc. Most of the time, the value of
gsp, ‖ is estimated in the literature. However, at least for some pulsars, χp �= 0. In such cases, the values
of χp and λp can be measured by analyzing the change of the pulse profile shape and the polarization.
Conventionally, χp is denoted by δ, and λp is denoted by ζ. Note that, even if χp is a constant over
time, λp would vary due to the spin precession and can be written as [26]:

cos λp = − cos χp cos i + sin χp sin i cos[Ωsp(t − Tp0)] . (23)

where Ωsp is the angular spin precession frequency (amplitude of
−→
Ω sp in Equation (2)), t is the epoch

of the observation and Tp0 is the epoch of the precession phase being zero. Note that i itself might
change with time as given in Equation (13).

In Table 1, with other relevant parameters, I compile values of χp wherever available. I do
not compile values of λp, although available in some cases, as it is a time-dependent parameter.
From Figure 1, it is clear that the spin would precess in such a way that it would lie on the
surface of a fiducial cone with the vertex at the pulsar and having the half-opening angle as χp.
The constraint on λp is: (i) if χp < i, then λp,max = i + χp and λp,min = i − χp (Figure 1a), (ii) if χp > i,
then λp,max = χp + i and λp,min = χp − i (Figure 1b).
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t ‘a
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(b) χa > i

Figure 1. Orientation of different vectors relevant for the estimation of ω̇LTa where the subscript a
refers to the object being observed, i.e., the pulsar (so the companion would be represented by the
subscript a + 1). The vectors are as follow: k is the unit vector along the orbital angular momentum,
ha is the unit vector along the line-of-sight and sa is the unit spin vector. The angles in the figures
are: i is the inclination angle between the orbit of the pulsar and the sky-plane, as well as the angle
between k and ha, χa is the angle between k and sa and λa is the angle between ha and sa. The left
and right panels are for χa < i and χa > i, respectively. In both panels, two positions of sa are shown
corresponding to maximum and minimum values of λa (see the text). The pulsar, i.e., the object a,
is located at the vertex of the fiducial cone (gray in color) made by the precessing sa around k.
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3. Results

For the purpose of demonstration, I compute the value of the moment of inertia (Ip) for the two
most interesting pulsars, PSR J0737−3039A and PSR J1757−1854 using the Akmal-Pandharipande-
Ravenhall (APR) equation of state [27] and the RNS code3[28]. I find that, both of these pulsars have
Ip = 1.26 × 1045 gm cm2. I use this value in my calculations, remembering the fact that the true values
of Ip would be different depending on the true EoS, and we are actually seeking an answer whether it
would be possible to know the value of Ip by singling out ω̇LTp from the total observed ω̇p,obs.

I tabulate values of ω̇PNp , ω̇LTp ,‖ and ω̇LTp , max for all pulsars in DNSs in Table 2. I exclude
candidate DNSs, i.e., PSR B1820−11 and PSR J1753−2240 from this calculation due to poor mass
constraints. For other cases, I use the limiting mass values where actual values are unavailable.
Only ω̇LTp ,‖ can be calculated for the systems with undetermined/unpublished values of sin i.
As expected, PSR J0737−3039A shows the largest Lense-Thirring effect, followed by PSR J1757−1854.
In fact, |ω̇LTp , max|/|ω̇PNp | is slightly larger for PSR J1757−1854 (2.92 × 10−5) than that for PSR
J0737−3039A (2.81 × 10−5). This fact makes it a very interesting system, and I investigate this system
in detail. The discovery paper [17] also mentioned the large Lense-Thirring effect causing significant
amount of di/dt (Equation (13)).

I find that, for PSR J1757−1854, |ω̇LTp , max| = 3.03170 × 10−4 deg y−1 is achieved for χp = 3◦,
λp = 99◦. However, as the value of χp for this system is not yet known (although Cameron et al. [17]
obtained a constraint χp ∼ 25◦ based on their simulation of the kick velocity), I vary χp in the range
of 0◦–60◦. It is obvious that ω̇LTp depends more on χp than on λp as the absolute value of the factor
(see Equation (20)) with cos χp, i.e., 3 sin2 i − 1, is larger than that of the factor with cos λp, i.e., cos i.
Furthermore, the measured value of sin i gives two values of i (as sin θ = sin(π − θ)), and I use
the larger one to get a bigger range of λp. The minimum value of |ω̇LTp | = 1.37597 × 10−4 deg y−1

is achieved for χp = 60◦, λp = 36◦. If I fix χp strictly as 25◦, then the maximum and minimum
values of |ω̇LTp | are 2.81108 × 10−4 deg y−1 and 2.67663 × 10−4 deg y−1, for λp = 121◦ and λp = 71◦,
respectively. In Figure 2, I show the variation of ω̇LTp for χp in the range of 0◦–60◦, and for each
value of χp, λp varies in the range of i − χp, i + χp. On the other hand, as PSR J0737−3039A has
χp < 6◦ [20], ω̇LTp always remains close to ω̇LTp ,‖. The maximum and minimum values of |ω̇LTp |
are 4.74488 × 10−4 deg y−1 at χp = 0.65, λp = 91.95◦; and 4.712931 × 10−4 deg y−1 at χp = 6.0◦,
λp = 85.31◦. To check the validity of my assumption that the Lense-Thirring effect from the companion
could be ignored, I find that ω̇LTc , ‖ = −3.792899× 10−6 deg y−1 using Ic = 1.16× 1045 gm cm2, where
the subscript ‘c’ stands for the companion, i.e., the slow PSR J0737−3039B. Varying χc in the range
of 130◦–150◦ [20], I find that the minimum value of |ω̇LTc | is 2.60052 × 10−6 deg y−1. These results
support my argument that the Lense-Thirring effect from the companion of a pulsar in a DNS would
have a negligible contribution to the rate of the periastron advance of the binary.

As Table 2 shows, |ω̇LTp , max| for PSR J0737−3039A is around 1.4-times smaller than the presently
published accuracy, ω̇p,obs = 16.89947 ± 0.00068 deg y−1 where the uncertainty is twice the formal
1σ value obtained in the timing solution [9]. The uncertainties in other PK parameters are even
poorer (Table 1 of [9]), so if we exclude ω̇p,obs, the mass estimates would be less accurate and should
not be used to calculate ω̇PNp . Therefore, to achieve the goal of estimating ω̇LTp , lowering only
the uncertainty in ω̇p,obs would not be enough; one needs to improve the accuracy of at least two
other parameters that can be used to get masses at least as precise as the ones already published.
It is impossible to improve the accuracy of the Keplerian parameter R used by Kramer et al. [9] in
combination with ω̇p,obs to report the values of the masses, because R = Mp/Mc = xc/xp involves
xc, the projected semi-major axis of the companion (PSR B), which is not visible presently and even
when it was visible, it was not a good timer like PSR A. Solving the expressions for PK parameters,

3 RNS stands for ‘Rapidly Rotating Neutron Star’, a package to calculate different properties of rotating neutron stars,
freely available at http://www.gravity.phys.uwm.edu/rns/.
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I find that the combination of s and Ṗb is the best choice left when ω̇p,obs and R are excluded, i.e.,
gives the narrowest ranges of masses Mp = 1.34 ± 0.02 M�, Mc = 1.251 ± 0.007 M� using the
published values of the uncertainties. I also find the fact that, to get masses as accurate as the ones
reported by Kramer et al. [9], the uncertainty in Ṗb should be reduced at least to 8.0 × 10−16 assuming
that s and relevant Keplerian parameters (Pb, e, xp) would also be improved by at least an order of
magnitude. The published uncertainty in Ṗb is 1.7 × 10−14. However, the question arises whether for
such an improved measurement of Ṗb, the dynamical contribution coming from the proper motion of
the pulsar (Shklovskii effect) and the relative acceleration between the pulsar and the solar system
barycenter could be ignored. Using the proper motion reported by Kramer et al. [9] and the distance
(1.1 kpc) estimated by Deller et al. [29] using the Very-long-baseline interferometry (VLBI) parallax
measurement, I find that Ṗb, dyn = 4.91 × 10−17, where I have used a realistic model of the galactic
potential [30]. The improvement required in the timing solution of PSR J0737−3039A is expected by
2030 [31,32] accompanied by an improvement in ω̇p,obs. Fortunately, ω̇Kopp

is smaller than |ω̇LTp , ‖|;
using the proper motion reported in Kramer et al. [9], I find that it can be at most 1.18 × 10−6 deg y−1

(I could not calculate the actual value, as ϕp is unknown). However, one will still need better estimates
of χp and λp to be able to extract the value of the moment of inertia of the pulsar from the ω̇LTp .

On the other hand, for PSR J1757−1854, both |ω̇LTp , max| and |ω̇LTp , ‖| are about 1.5-times larger
than the presently-published accuracy, ω̇p,obs = 10.3651 ± 0.0002 deg y−1. However, even this system
cannot be used at present to estimate ω̇LTp , not only because of the unknown values of χp and
λp, but also because of the less accurate values of other PK parameters. If one uses γ and Ṗb,
then the uncertainties in these parameters should be improved by one and two orders of magnitudes
respectively to get the uncertainty in masses of about 0.0008 M�. This seems plausible, as the present
accuracy in Ṗb is only 0.2 × 10−12 [17]. However, due to the lack of measurements of the proper motion
and the parallax distance, I could not calculate Ṗb, dyn for this pulsar and only can give rough estimates
based on the distance guessed from the dispersion measure using two different models of the galactic
electron density, e.g., the NE2001 model [33,34] and the YMW16 model [35]. The contribution due to
the relative acceleration is −2.11 × 10−15 for the NE2001 distance (7.4 kpc) and −1.65 × 10−14 for the
YMW16 distance (19.6 kpc). Both of the values seem to be too large to be canceled out by the Shklovskii
term. Measurements of the proper motion and the distance (using parallax) are essential to estimate
Ṗb, dyn. The measurement of the proper motion will also help estimate ω̇Kopp

.
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Figure 2. Variation of ω̇LTp with χp (in degrees) along the horizontal axis and λp (in degrees) along the
vertical axis for PSR J1757−1854. The color code represents values of ω̇LTp in deg y−1.
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Table 2. Values of ω̇PNp , ω̇LTp, ‖ and ω̇LTp, max for known pulsars in DNSs using Ip = 1.26 × 1045 gm cm2

and neglecting the Lense-Thirring effect of the companion. To show the difference between ω̇LTp,‖ and
ω̇LTp, max, I keep values up to five decimal places even for the cases where sin i is known with less accuracy.

DNS
ω̇PNp ω̇LTp , ‖ ω̇LTp , max

(deg y−1) (deg y−1) (deg y−1)

J0453+1559 0.03794 −1.30190 × 10−7 −1.31310 × 10−7

J0737−3039A 16.90312 −4.74458 × 10−4 −4.74489 × 10−4

J1411+2551 0.07681 −2.32510 × 10−7 −
J1518+4904 0.01138 −4.48005 × 10−8 −
B1534+12 1.75533 −1.84880 × 10−5 −1.86078 × 10−5

J1753−2240 − − −
J1756−2251 2.58363 −4.01930 × 10−5 −4.09703 × 10−5

J1757−1854 10.36772 −3.02752 × 10−4 −3.03170 × 10−4

J1807−2500B 0.01834 −8.98082 × 10−7 −8.99076 × 10−7

J1811−1736 0.00895 −1.45038 × 10−8 −
B1820−11 − − −
J1829+2456 0.29284 −1.96704 × 10−6 −
J1906+0746 7.58528 −2.91884 × 10−5 −3.29423 × 10−5

B1913+16 4.22760 −3.43984 × 10−5 −3.90790 × 10−5

J1930−1852 0.00079 −3.86975 × 10−10 −
J1946+2052 − − −
B2127+11C 4.46458 −8.11241 × 10−5 −

4. Summary and Conclusions

Measurement of the moment of inertia of a pulsar will provide yet another constraint on the
dense matter equation of state. This issue has been discussed in the literature in the past (see [32,51,52]
and the references therein), but unfortunately, the effect of the misalignment between the spin and the
orbital angular momentum vectors has not been explored in detail mainly because these two vectors
are almost parallel for PSR J0737−3039, the only suitable system existing until recently.

However, even a small misalignment angle would have significant consequences, because for
a particular neutron star; the theoretical values of the moment of inertia using different EsoS are
sometimes very close (depending on the stiffness of the EoS). One can see Figure 1 of Bejger et al. [53]
for predicted values of the moment of inertia for PSR J0737−3039A using a sample of EsoS. The present
article extensively studied the effects of such misalignment.

I have demonstrated the fact that the recently-discovered DNS, PSR J1757−1854, is almost as
good as PSR J0737−3039A regarding the prospect of determining the moment of inertia of the pulsar
from ω̇LTp . For PSR J0737−3039A, ω̇LTp lies in the range of −4.757 × 10−4–−4.713 × 10−4 deg y−1,
whereas for PSR J1757−1854 , ω̇LTp lies in the range of −1.376 × 10−4–−3.032 × 10−4 deg y−1. Future
measurement of χp for PSR J1757−1854 will narrow down the range of ω̇LTp .

For both of the systems, significant improvements in the timing solution are needed. Moreover,
the proper motion and the parallax measurements for PSR J1757−1854 are crucial. Additionally, it is
essential to measure χp and λp for PSR J1757−1854; hence, long-term studies of polarization properties
and profile variation would be very useful.

Note that, although all of the calculations presented in this article are within the framework
devised by Barker & O’Connell [19] and Damour & Schäfer [23], alternative formalisms to
incorporate the Lense-Thirring effect in ω̇p,obs exist. One example is Iorio [54], but for systems
with i ∼ 90◦, χp ∼ 0◦, these two formalisms take similar forms. Precisely, Iorio [54] reports
ω̇LTp , ‖ = −3.7 × 10−4 deg y−1 for PSR J0737−3039A using Ip = 1.00 × 1045 gm cm2, which is
close to what I get, i.e., ω̇LTp , ‖ = −3.766 × 10−4 deg y−1 if I use the same value of Ip instead of
1.26 × 1045 gm cm2 used in this article. A fundamentally different idea, i.e., to incorporate the
Lense-Thirring effect into the delays in the pulse arrival times, has been proposed recently [55].
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If this can be implemented in future algorithms for pulsar timing, the effect of the Lense-Thirring effect
could be measured directly.

Finally, if the measurement accuracy of ω̇p,obs improves by a few orders of magnitudes, one will
need to subtract the Kopeikin term (the secular variation due to the proper motion). The measurement
of the proper motion of PSR J1757−1854 will help us calculate this term. Moreover, in order to use Ṗb
to estimate masses accurately, one needs to subtract the contributions from the proper motion and the
relative acceleration between the pulsar and the solar system barycenter. A package to perform these
tasks based on the realistic potential of the Milky Way has been recently developed [30], and gradual
improvement in the model of the galactic potential is expected with the help of Gaia data.
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Abstract: Exploiting a stiff equation of state of the relativistic mean-field model MKVORHφ with
σ-scaled hadron effective masses and couplings, including hyperons, we demonstrate that the
existing neutron-star cooling data can be appropriately described within “the nuclear medium
cooling scenario” under the assumption that different sources have different masses.
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1. Introduction

The equation of state (EoS) of the neutron-star matter should be stiff, cf. [1,2], in order to describe
measured masses of the heaviest known pulsars PSR J1614-2230 (of mass M = 1.928 ± 0.017M�) [3]
and PSR J0348+0432 (of mass M = 2.01 ± 0.04M�) [4]. The presence of hyperons in neutron stars leads
to a softening of the EoS which results in a decrease of the maximum neutron-star mass below the
measured values of masses for PSR J1614-2230 and PSR J0348+0432 pulsars, if one exploits ordinary
relativistic mean-field (RMF) models (hyperon puzzle [5,6]). However, within RMF, EoSs with σ-scaled
hadron effective masses and coupling constants, the maximum neutron-star mass remains above 2M�
even when hyperons are included [7,8]. Additionally, other important constraints on the equation of
state, e.g., the flow constraint from heavy-ion collisions [9,10] are fulfilled. We demonstrate how a
satisfactory explanation of all existing observational data for the temperature–age relation is reached
within the “nuclear medium cooling” scenario [11], now with the RMF EoS MKVORHφ with σ-scaled
hadron effective masses and coupling constants, including hyperons [7,8].

2. Equation of State and Pairing Gaps

The EoS of the cold hadronic matter should:

• satisfy experimental information on properties of dilute nuclear matter;
• fulfil empirical constraints on global characteristics of atomic nuclei;
• satisfy constraints on the pressure of the nuclear matter from the description of particle transverse

and elliptic flows and the K+ production in heavy-ion collisions, cf. [9,10];
• allow for the heaviest known pulsars, i.e., PSR J1614-2230 (of mass M = 1.928 ± 0.017M�) [3] and

PSR J0348+0432 (of mass M = 2.01 ± 0.04M�) [4];
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• allow for an adequate description of the compact star cooling [11], most probably without direct
Urca (DU) neutrino processes in the majority of the known pulsars detected in soft X rays [12];

• yield a mass–radius relation comparable with the empirical constraints including recent gravitation
wave LIGO-Virgo detection [13];

• when extended to non-zero temperature T (for T < Tc where Tc is the critical temperature of the
deconfinement), appropriately describe supernova explosions, proto-neutron stars, and heavy-ion
collision data, etc.

The most difficult task is to simultaneously satisfy the flow of heavy-ion collision and the
maximum neutron-star mass constraints. To fulfil the flow constraints [9,10], a rather soft EoS of
isospin-symmetric matter (ISM) is required, whereas the EoS of the beta-equilibrium matter (BEM)
should be stiff in order to predict the maximum mass of a neutron star to be higher than the measured
mass M = 2.01 ± 0.04M� [4] of the pulsar PSR J0348+0432, this mass being the heaviest among the
known pulsars.

In standard RMF models, hyperons may already appear in neutron-star cores for n >∼ (2 − 3)n0,
which results in a decrease of the maximum neutron-star mass below the observed limit. Within the
RMF models with the σ field-dependent hadron effective masses and coupling constants, the hyperon
puzzle is resolved, see [7,8]. Here, we use the MKVOR-based models from these works. Most other
constraints on the EoS, including the flow constraints, are also appropriately satisfied. In Figure 1,
we demonstrate the neutron-star mass as a function of the central density for the MKVOR model
without hyperons and for the MKVORHφ model which includes hyperons, cf. Figures 20 and 25
in [8]. For the MKVOR model, the maximum neutron-star mass reaches 2.33M� and the DU reaction
is allowed for M > 2.14M�. For the MKVORHφ model, the maximum neutron-star mass is 2.22M�.
The DU reactions on Λ hyperons Λ → p + e + ν̄, p + e → Λ + ν, become allowed for M > 1.43M�.
The DU reactions with participation of Ξ−, Ξ− → Λ + e + ν̄ and Λ + e → Ξ− + ν̄ become allowed for
M > 1.65M�. The neutrino emissivity in these processes is typically smaller than that in the standard
DU processes on nucleons due to a smaller coupling constant for the hyperons (cf. 0.0394 factor for
the DU process Λ → p + e + ν̄ and 0.0175 for Ξ− → Λ + e + ν̄ compared to 1 for the DU process on
nucleons). Besides, we should bear in mind that the pairing suppression R-factors for the DU processes
on nucleons and hyperons are different and in our model, for the EoS in the region in which there are
hyperons, the R-factor for DU processes on nucleons is larger than that on hyperons.

Figure 1. Neutron-star masses versus the central density for the MKVOR model without the inclusion
of hyperons and for the MKVORHφ model with hyperons included.

We adopt here all cooling inputs such as the neutrino emissivities, specific heat, crust properties,
etc., from our earlier works performed on the basis of the HHJ equation of state (EoS) [11,14,15], a stiffer
HDD EoS [16] and even stiffer DD2 and DD2vex EoSs [17] for the hadronic matter. These works exploit
the nuclear medium cooling scenario, where the most efficient processes are the medium-modified
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Urca (MMU) processes, nn → npeν̄ and np → ppeν̄, medium-modified nucleon bremstrahlung (MNB)
processes nn → nnνν̄, np → npνν̄, pp → ppνν̄, and the pair-breaking-formation (PBF) processes
n → nνν̄ and p → pνν̄. The latter processes are allowed only in supefluid matter.

The results are rather insensitive to the value of the nn pairing gap since the 1S0 neutron pairing
does not spread in the interior region of the neutron star. We use the same values as we have used in
our previous works, e.g., see Figure 5 in [11] for details. Within our scenario, we continue to exploit
the assumption that the value of the 3P2 nn pairing gap is tiny and its actual value does not affect the
calculations of the neutrino emissivity [14]. For calculation of the proton pairing gaps, we use the
same models as in [17] but now we exploit EoSs of the MKVORHφ model. The corresponding gaps
are shown on the left panel in Figure 2.

Figure 2. Pairing gaps for protons (left panel) and Λ hyperons (right panel) as functions of baryon
density for the MKVORHφ EoS including hyperons. Proton gaps are evaluated using the same models
as in [17] and the Λ hyperon gaps are from [18,19].

With the increase of the density in the MKVORHφ model, the Λ hyperons are the first to appear

at the density n(Λ)
c = 2.63n0, and then the Ξ− hyperons appear at n(Ξ−)

c = 2.93n0. We take the values
of the Λ gaps from the calculations [18,19]. The model TT1 uses the ND-soft model by the Nijmegen
group for bare ΛΛ interaction and model TTGm uses the results of G-matrix calculations by Lanskoy
and Yamamoto [20] at density 2.5n0. The other three models include three nucleon forces and TNI6u
forces for several ΛΛ pairing potentials: ND-Soft, Ehime and FG-A. In the right panel, we show the Λ
hyperon pairing gaps, which we exploit in this work. Ξ− are considered unpaired.

The quantity

−GR−1
π (μπ , k, n) = ω∗2(k) = k2 + m2

π − μ2
π + ReΣπ(μπ , k, n) (1)

in dense neutron-star matter (for n >∼ n0) has a minimum for k = km � pF, where pF is the neutron
Fermi momentum. For π0, the minimum occurs for μπ = 0. The value ω∗2(km) has the meaning of the
squared effective pion gap. It enters the NN interaction amplitude and the emissivity of the MMU
and MNB processes, instead of the quantity m2

π + p2
F entering the calculation of the NN interaction

amplitude and the emissivity of the modified Urca (MU) and nucleon bremstrahlung (NB) processes
in the minimal cooling scheme. The inequality ω∗2(km) < m2

π + p2
F demonstrates the effect of the pion

softening. Of key importance is the fact that here we use the very same density dependence of the
effective pion gap ω∗(n) as in our previous works, e.g., see Figure 2 of [17]. To be specific, we assume
a saturation of the pion softening and absence of the pion condensation for n > nc. We plot this pion
gap in Figure 3.
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Figure 3. Density dependence of the squared effective pion gap used in the given work. We assume that
the pion softening effect saturates above a critical density, the value of which we vary from 1.5 to 3n0.

3. Results

In the left panel in Figure 4, we show the cooling history of neutron stars calculated using the
EoS of the MKVOR model without inclusion of hyperons. The demonstrated calculations employ the
proton gap following the EEHOr model shown in Figure 2, and the dotted curve in Figure 3 was used
for the effective pion gap.

∞ ∞

Figure 4. Redshifted surface temperature as a function of the neutron-star age for various neutron-star
masses and choice of the EoS. Left panel: MKVOR model without the inclusion of hyperons. Right panel:
MKVORHφ model with hyperons included with the gaps following from the TN-FGA parameter choice.
Proton gaps for both calculations, without and with hyperons, are taken following the EEHOr model.

In the right panel in Figure 4, we show the cooling history of neutron stars calculated using the
EoS of the MKVORHφ model with the inclusion of hyperons. As shown in the left panel, the proton
gap is given by the EEHOr model and the effective pion gap is given by the dotted curve in Figure 3.
Hyperons are taken following the TN-FGA parameter choice. We see a rather appropriate description
of the data. With the given model, the DU reactions on hyperons are responsible for the cooling of the
intermediate and rapid coolers (objects Cas A, B, 3, C, D, E).

With the pion gaps given by the solid and dashed curves and with proton gaps following the
EEHO, EEHOr, CCDK, CCYms, and T curves, we may also rather appropriately describe the cooling
history of neutron stars within our scenario. Finally, we should mention that the effect of hyperons on
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the cooling of neutron stars could be diminished, if for some reasons the hyperon pairing gaps had
larger values compared to those shown in Figure 2 and would spread to a higher density. These results
will be shown in our subsequent publication.

4. Conclusions

In this study, we have demonstrated that the presently known cooling data can be appropriately
described within our nuclear medium cooling scenario under the assumption that different sources
have different masses, provided we use the EoS of the MKVORHφ model (with hyperons included) at
appropriately selected proton and hyperon pairing gaps.
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Abstract: Strange stars are one of the possible compact stellar objects formed in the core collapse of
supernovae. These hypothetical stars are made by deconfined quark matter and are selfbound. In our
study, we focus on the torsional oscillations of a non bare strange star, i.e., a strange star with a thin
crust made of standard nuclear matter. We construct a theoretical model assuming that the inner parts
of the star are in two different phases, namely the color flavour locked phase and the crystalline colour
superconducting phase. Since the latter phase is rigid, with a large shear modulus, it corresponds to a
first stellar crust. Above this crust a second small crust made by standard nuclear matter is suspended
thanks to a strong electromagnetic dipolar moment. We focus on the electromagnetically coupled
oscillations of the two stellar crusts. Notably, we find that if a small fraction of the energy of a glitch
event like a typical Vela glitch is conveyed in torsional oscillations, the small nuclear crust will likely
break. This is due to the fact that in this model the maximum stress, due to torsional oscillations,
is likely located near the star surface.

Keywords: neutron stars; star oscillations

1. Introduction

The properties of hadronic matter at densities higher than the nuclear saturation density are
under intense theoretical and experimental inspection [1,2]. The high temperature regime is studied
in relativistic heavy ion experiments [1], leading to the production and identification of the quark
gluon plasma. The low temperature regime (T � 1 MeV) is relevant in the physics of compact stellar
objects (CSOs), originating from the collapse of a supernova. The CSOs can be divided into three
classes: neutron stars, hybrid stars and strange stars. Neutron stars are the widely studied class of
CSOs and are mainly made of nucleons, electrons and muons (to ensure the charge neutrality of the
star). If deconfined quarks are present in the core, we are in the presence of the second class of CSOs,
the hybrid stars. Strange stars are instead almost completely made of deconfined quark matter [3,4].
The astronomical observations indicate that the mass of CSOs is between 1.2 M� and 2 M�, where
M� is the solar mass. The estimated radius is of the order of ten kilometers. Unfortunately using these
observed values it is not possible to determine the nature of the CSOs because strange stars and hybrid
stars can masquerade as standard neutron stars [5].

The existence of strange stars is based on the hypothesis of Bodmer [6] and Witten [7] that standard
nuclei are in a metastable state. According to this hypothesis, the real ground state of hadronic matter
is a configuration that corresponds to an hypothetical short range free-energy minimum of the strong
interaction. This is a collapsed state of matter and we can imagine a strange star as a huge collapsed
state of hadrons. The interaction that binds the star is the strong interaction, i.e., the star is self bound,
with gravity playing a role only for very massive stars. So strange stars have no lower limit on mass
and can be arbitrarily small.
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Unfortunately, assuming that strange matter is the ground state of hadronic matter does not
unambiguously define the properties of the system, even at the densities reachable in the CSOs.
The essential point is that Quantum Chromodynamics (QCD) is not in the perturbative regime, so it is
not under quantitative control. Therefore, we have to use some approximate scheme. Analysis with
various methods indicates that strange matter should be in a superconducting phase [8], i.e., a phase
in which quarks form Cooper pairs and break the SU(3) color gauge symmetry. In the inner part of the
star, at high density, the color flavour locked (CFL) phase should be favored [9]. In the CFL phase u, d,
s quarks of all colors pair coherently in a BCS-like state, maximizing the free-energy gain. However, it is
conceivable that CFL is not the unique color superconducting phase realized in strange stars. In fact,
at lower densities, the chemical potential of the strange quark becomes comparable with its mass,
so coherent pairing cannot happen. For that reason a different superconducting phase can be favored;
one possibility is the crystalline color superconducting (CCSC) phase [10,11]. One important feature is
that the CCSC phase is characterized by a periodic modulation of the diquark pairing. The periodic
modulation of the pairing implies that the CCSC phase is mechanically rigid and it turns out that it has
an extremely large shear modulus [11,12], which is a key ingredient for torsional oscillations [13,14].
Indeed, the existence of a phase with a large shear modulus suggests that torsional oscillations of
large amplitude can be sustained by this structure. Torsional oscillations of strange stars with a CCSC
crust have been first analyzed in [15], while in [16] the coupled oscillations of the CCSC crust and of
the ionic crust have been studied. In the present contribution to the proceedings of the CSQCD VI
conference we report on the latter study.

2. The Model

2.1. Background Configuration

The star composition we have hypothesized in [16] is shown in Figure 1.

Figure 1. Schematic picture (not in scale) of the stellar model we propose. The mass of the structure is
around 1.4 M�, and the total radius is R � 9.2 km. The electrosphere has a thickness of few hundred
fm, while the ionic crust has a thickness of about 200 m [16].

The inner part of the strange star, called the quarksphere, is populated by deconfined quarks
(u, d and s). In the core, at the highest density, the CFL phase is realized and above it, at a radius RCFL,
there is a transition to the CCSC phase. The actual radius RCFL is unknown, so we will consider it as a
parameter of the model. In the CCSC phase, due to the lack of strange quarks, electrons are present to
guarantee the charge neutrality. Above the quarksphere, there is a very small layer (about a hundred
fermi thick) populated only by electrons, forming the so-called Electrosphere. This is possible because
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quarks are confined within the quarksphere of radius Rq by the strong interaction, but electrons do not
feel the strong interaction and can therefore get outside the quarksphere. They are only bound by the
electrostatic interaction on a range of hundreds of fm. On the top of this structure there is a small
standard ionic crust, which is electromagnetically suspended due to the positive charge present at the
surface of the quarksphere [3].

To determine the mass and the radius of our structure, we solve the Tolman Oppenheimer Volkov
(TOV) equations that are a generalization of the hydrostatic equilibrium in non rotating spherical metric.
For that reason we have to choose an Equation of State (EoS) that can describe our system. Since QCD
is not perturbative, it is not possible to determine the actual EoS. The strange star temperature is
much lower than the typical scale of QCD, thus it could be considered equal to zero. This means that
we can consider our system as a Fermi liquid at zero temperature. To take into account the strong
interaction we use a Taylor expansion of the grand potential as a function of the average baryonic
chemical potential, μ, as proposed in [5]:

ΩQM = − 3
4π2 a4μ4 +

3
4π2 a2μ2 + Beff (1)

where a4, a2 and Beff are independent of μ. We use the set of parameters a4 = 0.7, a2 = (200 MeV)2

and Beff = (165 MeV)4 discussed in [15].
We assume that the previous EoS describes the whole quarksphere and is matched with an EoS

valid for the standard ionic crust at Rq, corresponding to a pressure of the quarksphere equal to the
pressure corresponding to the neutron drip in the standard ionic crusts. In fact if the density exceeds
the neutron drip density, neutrons in the ionic crust are ripped off from the nuclei and fall down into
the quarksphere, where they are eventually converted in deconfined light quarks. For the ionic crust
we assume that it consists of a Coulomb crystal embedded in a degenerate electron gas, and we use
the data reported in [17].

Setting the central density to ρc = 1.5 × 1015 (g/cm3) we obtain a star of 1.4 M� with a radius of
R � 9.2 km. The ionic crust is about 200 m thick, and so the radius at which we have the transition
between quark matter and standard nuclear matter is Rq � 9 km.

2.2. Torsional Oscillation

The two considered crusts have a nonvanishing shear modulus and so non radial modes can
be excited. We briefly review the equations governing the non radial modes. Defining as �u the
displacement vector, the non radial modes obey to ∇ · �u = 0, with a vanishing radial component,
that is ur = 0. Furthermore, assuming that u = eiσtξ(r), in the newtonian limit and considering
the fluid description, according to [13] we can write the Euler’s equation in spherical coordinates
as follows

σ2Wi(r) = ν2
i

[
−dlogνi

dr

(
dWi
dr

− Wi
r

)
− 1

r
d
dr

(
r2 dWi

dr

)
+

l(l + 1)
r

Wi

]
, (2)

where i = 1, 2 characterizes the two crusts, νi are the corresponding shear moduli and W is a function
of r defined as

ξϑ = W
1

sinϑ

∂Ylm
∂φ

, ξφ = −W
∂Ylm
∂ϑ

. (3)

To solve this equation in both the two crusts we have to know the shear modulus of the CCSC
crust, of the ionic crust and set the appropriate boundary conditions.

The rigidity of the CCSC crust has been studied in [12]. The shear modulus calculated for the
CCSC matter is:

ν � ν0

(
Δ

10MeV

)2( μq

400MeV

)2

, (4)
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where Δ is the pairing energy of the condensate, μq is the quark chemical potential and the reference
value is:

ν0 = 2.47
MeV
fm3 . (5)

This is the value that we will use in our study, because we expect that Δ ∼ 10 MeV and the quark
chemical potential is roughly constant within the CCSC phase, see [15] for a discussion. The actual
value of the CCSC shear modulus can be different from the reference value also because the procedure
for its evaluation relies on a number of approximations, see [11]. However, the most important aspect
for our discussion is that the shear modulus of the CCSC matter is much larger than the shear modulus
of standard nuclear matter. Note also that the effect of the pairing gap in the EoS is effectively included
in the a2 coefficient of Equation (1), see [5] and the discussion in [15].

The shear modulus of the ionic crust strongly depends on the particular crystalline structure of
the crust and on the plane of application. Actually, we do not know the crystalline structure of the
ionic crust, but we can calculate an effective shear modulus [18] as:

νeff = c
nN(r)(Z(r)e)2

aN(r)
, (6)

where nN(r) is the density of nucleons as a function of the radial coordinate r, Z(r) is the number of
protons in the nuclei, and aN(r) = (3/(4πnN))

(1/3) is the average inter-ion spacing. The constant c
has been evaluated in [18,19] and it is c � 0.1.

The boundary conditions that we impose are the followings

(
dW1

dr
− W1

r

)∣∣∣∣
R=RCFL

= 0 (7)

ν1

(
dW1

dr
− W1

r

)∣∣∣∣
R=Rq

= ν2

(
dW2

dr
− W2

r

)∣∣∣∣
R=Rq

(8)

W1(Rq) = W2(Rq) (9)(
dW2

dr
− W2

r

)∣∣∣∣
R=Rocean

= 0 , (10)

where Rocean � 9.15 km and the ocean is the region in which the density is less than 107 g/cm3.
The first, the second and the last equations are no-traction conditions, while the third one is a no-slip
condition. The no-traction condition means that there is no force acting between two adjacent layers.
The no-slip condition means that the displacement at the interface of two layers is the same. See [16]
for more details on these boundary conditions.

3. Results

In our study we focus on the l = 1 modes that we call 1tn, where n indicates the number of nodes,
corresponding to a twist of the two crusts . We numerically solve the equation for the non radial
modes, considering the density inside the CCSC crust as a constant (the estimated error made with this
approximation is less than 10%) and a realistic radial density dependence in the ionic crust. Since the
transition between the CFL and CCSC phase depends on the unknown pressure difference between
the two phases, we define RCFL = aRq with a a parameter that varies between 0 and 1, and we study
the problem varying a.

In Figure 2 we show the obtained frequencies of the 1t1, 1t2,1t3 modes as a function of a. As we
can easily see, the typical frequencies are of the order of 10 kHz and we can identify two different
behaviors. There is one kind of oscillations, dependent on the parameter a, associated to a non radial
coupled crusts oscillation (CCSO), in which both crusts are sensibly displaced. A second kind of
oscillations is almost independent of a and is associated to a sensible displacement of only the ionic

183



Universe 2018, 4, 41

crust (ICO). To show the amplitude of the oscillation we assume that the energy of the order of the one
released in a Vela-like glitch (E ∼ 5 × 1042 erg) is conveyed to the 1tn modes.

Figure 2. Frequencies of the modes 1t1 (solid blue), 1t2 (dashed red) and 1t3 (dotted green) as a function
of a = Rq/RCFL. As it is possible to see, we have two kind of features. There are oscillations whose
frequencies depends on a and oscillations with frequencies independent of a [16].

In Figure 3 we show the amplitude of 1t1 oscillations in two different cases. In the left panel we
choose a = 0.4 while for the right panel we choose a = 0.8. For a = 0.4 the energy is divided by the
CCSC crust and the ionic crust, corresponding to a CCSO-type mode. The maximum amplitude of the
oscillation is of the order of 20 cm. In the right panel we consider the a = 0.8 case. In this case all the
energy is conveyed on the ionic crust, corresponding to a ICO-type mode, and the amplitude of the
oscillation is of the order of the km.

Figure 3. Radial dependence of the amplitude of the 1t1 mode oscillation inside our strange star
model. Left: Oscillation of the coupled crusts oscillation (CCSO)-type (see text) obtained choosing
a = 0.8. The amplitude of the oscillation is of the order of 20 cm. Right: Oscillation of the ISO-type
(see text) obtained choosing a = 0.4. In the nuclear crust the amplitude can reach values of the order of
few km [16].

To better understand our results we study the deformation of the solid crusts due to the torsional
oscillation. A measure of the deformation is the shear strain. For our study, due to symmetry of the
problem, we restrict our analysis to the radial component of the strain, that is defined as:

|s| =
∣∣∣∣dW

dr
− W

r

∣∣∣∣. (11)
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For the shear strain in the case a = 0.8 we obtain a maximum near the surface of the star. This is a
particularly relevant result because in previous analysis, such as [13], the maximum strain is far inside
the inner crust and it is impossible to break the crust. For the ionic crust, despite the high uncertainties,
the maximum strain should be between 10−4 and 10−2 [20] but in perfect crystals values of the order
of 10−1 could be appropriate [21]. Since in our model we obtain maximum strains larger than these
values, of the order of unity, this probably means that in our model it is possible to break the ionic
crust during a glitch or in any other event releasing a comparable amount of energy.

4. Conclusions

We have considered a model of a nonbare strange star comprising a quarksphere of
superconducting quark matter surmounted by a standard nuclear matter crust [16]. The quarksphere is
in two different phases: the CFL phase and the rigid CCSC phase. The CCSC crust and the ionic crust
are separated by an electron layer a few hundred fm thick. We have solved the TOV equations using
a simple parameterization of the EoS of quark matter in function of the baryon chemical potential
matched with a realistic EoS for the description of the ionic crust.

Both the CCSC and the ionic crusts are rigid, so electromagnetically coupled torsional oscillations
are possible. We have found two types of oscillations, the first involves the two crusts with comparable
amplitude (CCS0-type), and the second confined in the ionic crust (ICO-type). If the CCSC is thinner
than around 2 km, ICOs are the only relevant oscillations.

We have studied in detail the l = 1 torsional modes, obtaining frequencies of the order of 10 kHz.
These modes correspond to oscillatory twists of the crust and do not conserve angular momentum.
For that reason we have assumed that they are triggered by a pulsar glitch and following this idea we
have assumed that the energy of a Vela-like glitch is conveyed to the strange star crust. If the CCSC
crust is sufficiently thin, then ISOs are triggered and it is possible to break the ionic crust. Indeed,
computing the strain as a function of the radial coordinate, we find that its maximum is located a few
tens of meters below the stellar surface and is of the order of unity. This probably means that within
our model it is possible to break the ionic crust during a glitch or any other stellar event conveying a
comparable amount of energy to the torsional oscillations.

Possible observables related to torsional oscillations are giant Gamma Ray Burst (see [22]) and
Quasi Periodic Oscillations (see [23–27]).
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Abstract: In this work, we explore different aspects in which strong magnetic fields play a role in
the composition, structure and evolution of neutron stars. More specifically, we discuss (i) how
strong magnetic fields change the equation of state of dense matter, alter its composition, and create
anisotropies, (ii) how they change the structure of neutron stars (such mass and radius) and the
formalism necessary to calculate those changes, and (iii) how they can affect neutron stars’ evolution.
In particular, we focus on how a time-dependent magnetic field modifies the cooling of a special
group known as X-ray dim neutron stars.

Keywords: neutron stars; stellar magnetic field; stellar structure; stellar evolution

1. Introduction

Since the detection of a soft gamma repeater in 1979 and an anomalous X-ray pulsar in 1981,
people became interested in neutrons stars that could be powered by their strong magnetic field. In 1992
and 1993, Duncan and Thompson proposed the magnetar model [1,2] and, since then, approximately
30 Soft-Gamma Ray Repeaters (SGRs) and Anomalous X-Ray Pulsars (AXP’s) have been observed [3]
with thousands of them being expected to exist in our galaxy. Today, these two kinds of objects are
understood as being one class of objects, magnetars [4–6]. In recent years, several measurements
have shed new light on the strength of magnetic fields on the surface and in the interior of neutron
stars. While measurements using anharmonic precession of star spin down have estimated surface
magnetic fields to be on the magnitude of 1015 G for the sources 1E 1048.1−5937 and 1E 2259+586 [7],
data for slow phase modulations in star hard X-ray pulsations (interpreted as free precession) suggest
internal magnetic fields to be on the magnitude of 1016 G for the source 4U 0142+61 [8]. Together, these
estimates have motivated a large amount of research on the issue of how magnetic fields modify the
physics of neutron stars.

In addition to the objects discussed above, magnetic fields are a key aspect in the evolution of
neutron stars. Particularly interesting are the objects known as X-ray dim neutron stars (XDINS).
These objects show bright soft X-ray emission, exhibit blackbody-like spectra, and have high
temperatures with respect to their spin-down age. In fact, one of the most puzzling aspects of
the XDINS is that their spin-down properties (period and period derivative) indicate old ages (the
so-called spin-down age), which is unexpected, considering their high observed temperatures.

Motivated by the scenarios discussed above, in this work we will discuss the most prominent
aspects of magnetic field for the composition, structure and evolution of neutron stars. Initially we will
focus on the microscopic aspects and, in particular, how magnetic fields may change the equation of
state of dense matter through Landau quantization, which generates pressure anisotropies, and affect
the particle composition. After that, we will concentrate on the macroscopic aspects, in particular on
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the question of how strong magnetic fields change the structure of neutron stars (such mass and radius),
we will also briefly discuss the formalism which is necessary to take care of the anisotropies generated
by the magnetic field. Finally, we are going to discuss how magnetic fields may affect neutron stars’
temporal evolution, particularly, we expand on the idea that the spin-down age may mask the true age
of the neutron star if its magnetic field experiences a non-canonical behavior, namely if it is evolving
with time. We note here that in this work we will address these three fronts (microscopic, macroscopic
and evolutionary) in a up to some extent independent manner, given the significant challenge that
is to treat all of them on the same footing. Our ultimate goal is to build a framework in which such
treatment may be viable, thus in here we lay the ground work for such investigation and present our
perspective to performing such self-consistent overarching study.

2. Microscopic Aspects

The inclusion of an external magnetic field in one direction generates the quantization of energy
levels in the directions perpendicular to the magnetic field, what is referred to as Landau levels.
These levels are related to the particles’ angular momentum quantum number, but also charge and
spin. The levels are degenerated, except for the zeroth level. This formalism was originally derived for
the non-relativistic case by Landau [9]. In the case of finite temperature, Landau levels are summed
from zero to infinity but, in the special case of zero temperature, there is a maximum Landau level
beyond which the particles’ Fermi momenta in the direction of the field become negative. As a
consequence, the 3-dimensional integrals for the thermodynamical quantities become 1-dimensional
but summed over all the possible levels. On one hand, very strong magnetic fields restrict the
summations to the lower Landau levels, whereas very week fields require summations over many
levels, becoming at some point continuous. In this case, the integrals become once more 3-dimensional.
This formalism, when applied to neutron-star matter with homogeneous magnetic fields [10–14]
generates softer equations of state, as the enhancement of charged particles also turns the system more
isospin symmetric. Of course, a possible suppression of hyperons by the magnetic field has exactly
the opposite effect on the equation of state (as hyperons turn the equation of state softer) and phase
transitions to quark matter can have different effects [15].

In addition, the energy momentum tensor becomes anisotropic, as the pressure in the
directions parallel and perpendicular to the magnetic field become distinct. This issue first raised
by Canuto [16,17] happens due to an extra contribution from the fermions, which move in their
quantized orbits perpendicular to the external magnetic field. This issue was recently revisited in
recent publications [18–20]. Another effect created by the magnetic field concerns its interaction with
the fermions’ spin, the anomalous magnetic moment [18,21]. In this case, the magnetic field turns
the equation of state of hadronic matter stiffer, due to a modification of the amount of particles with
different spins (polarization) [22,23]. For quarks, the efficiency of anomalous magnetic moment has
been estimated to be very small [24,25].

As it is going to be shown in the next section, the effects discussed above concerning stiffness
and anisotropy of the equation of state and particle population do not have a substantial effect on
macroscopic properties of neutrons stars, such as stellar masses [26,27]. On the other hand strong
magnetic fields decrease substantially the central density of neutron star. In this case, the particle
population inside a neutron star can be substantially modified, as shown in Figure 1. As explained
in detail in Ref. [27], very strong magnetic fields (but still realistic) can suppress not only a phase
transition to quark matter, but also the appearance of hyperons (bottom panels of Figure 1). But,
interestingly, as the magnetic field strength throughout the star decays over time (more details
about magnetic field temporal evolution in Section 4), an increase in central density or chemical
potential allows the appearance of hyperons and then quarks, as shown in the top panels of Figure 1.
These calculations were performed by solving numerically the Einstein-Maxwell equations at fixed
baryon mass MB = 2.2 M� using the chiral mean field (CMF) model [28].
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Figure 1. Particle population as a function of the baryon chemical potential calculated using the CMF
model shown for different dipole magnetic moments μ. All figures represent equilibrium sequences
obtained from the numerical solution of he Einstein-Maxwell equations at fixed baryon mass. For the
non-magnetized case, the vertical red curve represents the chemical potential reached at the center of
the star, namely, 1320 MeV.

Another relevant question is how much does the magnetic field vary inside neutron stars.
As already pointed out by Menezes et al. in Ref. [29], ad hoc formulas for magnetic field profiles
in neutron stars do not fulfill Maxwell’s equations (more specifically, Gauss’ law) and, therefore,
are incorrect. The Ref. [30] showed that strong magnetic fields inside magnetic neutron stars increase
quadratically with baryon chemical potential in the polar direction and not by more than one order of
magnitude when solving the Einstein-Maxwell’s equations. This study was performed independently
for several different equations of state but did not provide profiles for the magnetic field strength in
the stellar equatorial direction, as those are much more complicated.

3. Macroscopic Aspects

Following the microscopic discussion we now address how the magnetic field may alter the
macroscopic properties of a neutron star. For that we must fully describe magnetic field in a general
relativistic environment as well as the deviation from spherical symmetry that are associated with
it. Since the seminal paper by Oppenheimer and Snyder [31], most of the work dedicated to the
problem of general relativistic sources, deal with spherically symmetric fluid distribution. In reality,
the study of self gravitating compact objects one usually assumes that small deviations from spherical
symmetry are likely to take place. Such small deviations are not appropriate for stars with strong
magnetic fields where a full axially symmetric treatment is necessary to properly describe the system.
The population statistics of SGRs suggest that more than 10% of neutron stars are born as magnetars,
with their magnetic field decaying as they age [32–34]. Hence it seems likely that some mechanism is
capable of generating large magnetic fields in nascent neutron stars.

In this section we will describe such highly magnetized neutron stars as a perfect fluid coupled
with a dipolar magnetic field. First, we will discuss the theoretical aspects relevant to the magnetic field
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role on the structure of neutron stars, more specifically, we will discuss conservation equations, which
will be written in terms of three quantities - whose physical interpretation will be given. Furthermore,
we will also discuss calculations of highly magnetized neutron stars, whose structure have been
calculated numerically. We will discuss how the presence of a strong (albeit realistic) magnetic field
affects global, and potentially observational properties of neutron stars such as gravitational mass
and radius.

3.1. Formal Aspects of the Magnetic Field on the Structure of Neutron Stars

Now we briefly discuss the formal aspects of the magnetic field in the stellar structure and
gravitational equations in the context of Einstein’s general relativity. We begin by considering a bound,
static and axially symmetric source. The line element may be written in cylindrical coordinates as

ds2 = −A2(dx0)2 + B2[(dx1)2 + (dx2)2] + D2(dx3)2, (1)

where we identify x0 = t, x1 = ρ, x2 = z, x3 = φ and A, B, D are positive functions of the coordinates ρ

and z. In the Weyl spherical coordinates, the line element (1) is

ds2 = −A2(dt)2 + B2[(dr)2 + r2(dθ)2] + D2(dφ)2, (2)

where ρ = rsinθ and z = rcosθ. We denote the coordinates as xμ = (t, r, θ, φ), and
A(r, θ), B(r, θ), D(r, θ) are three independent functions.

The sources of curvature in Einstein’s general relativity is represented by the energy-momentum
tensor. For a magnetized neutron star, we describe the system as a perfect fluid coupled to a poloidal
magnetic field. The perfect fluid assumption simplifies the mathematical treatment dramatically,
however, there has also been research considering spherically symmetric dissipative and anisotropic
fluid distribution and some of them with analytical solutions (see for instance [35,36]. As mentioned at
the beginning of this section, highly magnetized neutron stars should be modeled using an axially
symmetric metric tensor which increases the complexity of the problem considerably.

The motivation behind the assumption of a poloidal magnetic field is that such assumption is
compatible with the circularity of the space-time [37]. It is important to note, however, that non-
negligible toroidal magnetic fields are likely to exist in neutron stars, making the study considerably
more complicated. The study of toroidal magnetic fields, in addition to poloidal ones is beyond the
scope of this work.

Following the scenario discussed above, the energy-momentum tensor for the system is written
as that of a perfect-fluid in addition to the energy-momentum tensor of the electromagnetic field,

Tμν = TPF
μν + TEM

μν . (3)

The perfect fluid (PF) contribution is

TPF
μν = (ρ + P)uμuν + Pgμν, (4)

where ρ and P are, respectively, the rest-frame energy density and pressure, uμ is the fluid 4-velocity
with uμuμ = −1. The electromagnetic part (EM) in (3) is

TEM
μν =

1
4π

(
F α

μ Fνα − 1
4

gμνFαβFαβ

)
, (5)

where the Maxwell tensor Fμν is defined in terms of the electromagnetic 4-potential Aμ as

Fμν = Aν,μ − Aμ,ν. (6)
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We are interested in describing a distribution without free-charge and with only poloidal magnetic
field, thus the electromagnetic 4-potential is written as

Aμ = (0, 0, 0, Aφ(r, θ)). (7)

The matrix form of Fμν is written as

Fμν =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 ∂Aφ

∂r

0 0 0 ∂Aφ

∂θ

0 − ∂Aφ

∂r − ∂Aφ

∂θ 0

⎞
⎟⎟⎟⎟⎠ , (8)

and the electromagnetic energy-momentum tensor is

TEMμ
ν =

⎛
⎜⎜⎜⎝

TEM0
0 0 0 0

0 TEM1
1 TEM1

2 0
0 1

r2 TEM1
2 −TEM1

1 0
0 0 0 −TEM0

0

⎞
⎟⎟⎟⎠ , (9)

where the non-vanishin components, in terms of the electromagnetic 4-potential, are given by

TEM0
0 = − 1

8π
gφφ

[
grr
(

∂Aφ

∂r

)2

+ gθθ

(
∂Aφ

∂θ

)2
]

, (10)

TEM1
1 =

1
8π

gφφ

[
grr
(

∂Aφ

∂r

)2

− gθθ

(
∂Aφ

∂θ

)2
]

, (11)

TEM1
2 =

1
4π

grrgφφ

(
∂Aφ

∂r

)(
∂Aφ

∂θ

)
. (12)

Now, inspired by Equation (10) we define the following electromagnetic quantities

Bθ =
√

grr
(

∂Aφ

∂r

)
, (13)

Br =
√

gθθ

(
∂Aφ

∂θ

)
, (14)

It is important to realize that these components are not exactly the components measured by the
Eulerian observer, but rather convenient definitions of electromagnetic functions that allow us to write
the components of TEM in a more intuitive manner, as

TEM0
0 = − 1

8π
gφφ

(
B2

r + B2
θ

)
, (15)

TEM1
1 = − 1

8π
gφφ

(
B2

r − B2
θ

)
, (16)

TEM1
2 =

1
8π

2gφφ

√
grr

gθθ
BrBθ . (17)
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Here, if we want to fully comprehend the physical meaning of the components of the
electromagnetic energy-momentum tensor, we must draw a parallel with its flat-space counter-part,
given (in S.I. units) as [38]

TEMμν =

⎛
⎜⎜⎜⎝

1
2 (ε0E2 + 1

μ0
B2) Sx/c Sy/c Sz/c

Sx/c −σxx −σyy −σzz

Sy/c −σyx −σyy −σyz

Sz/c −σzx −σzy −σzz

⎞
⎟⎟⎟⎠ , (18)

where �S = 1
μ0
�Ex�B is the Poynting vector and the components σij are given by

σij = ε0EiEj +
1

μ0
BiBj − 1

2

(
ε0E2 +

1
μ0

B2
)

δij. (19)

The first term in Equation (18) is easily identified as the electromagnetic energy density, the other
terms in the diagonal, i.e., σxx, σyy, σzz can be read as the electromagnetic pressure and the terms σij for
i �= j represents shear stress.

Inspired in the electromagnetic energy-momentum tensor for flat space-time, we define the
following quantities

W ≡ 1
8π

gφφ
(

B2
r + B2

θ

)
, (20)

Π ≡ 1
8π

gφφ
(

B2
r − B2

θ

)
, (21)

σ ≡ 1
8π

2gφφBrBθ . (22)

With these definitions, the matrix form of the electromagnetic energy-momentum tensor looks like

TEMμ
ν =

⎛
⎜⎜⎜⎝

−W 0 0 0
0 −Π rσ 0
0 1

r σ Π 0
0 0 0 W

⎞
⎟⎟⎟⎠ . (23)

From Equation (23) we can extract the following properties for TEM: it is symmetric, traceless
and the component TEM00 is positive definite, which are the expected properties of an electromagnetic
energy-momentum tensor. One must note that Equation (23) correspond to the mixed components of
the electromagnetic energy-momentum tensor, whereas the properties just defined are related to the
contra-variant components.

Combining Equations (4) and (23), the matrix form of the energy-momentum tensor describing a
perfect fluid coupled with a poloidal magnetic field for the line element (2) is

Tμν =

⎛
⎜⎜⎜⎝

1
A2 (ρ + W) 0 0 0

0 1
B2 (P − Π) 1

rB2 σ 0
0 1

rB2 σ 1
(Br)2 (P + Π) 0

0 0 0 1
D2 (P + W)

⎞
⎟⎟⎟⎠ . (24)

The first term, i.e., T00 in Equation (24) represents the total energy density of the system which
comes from the perfect fluid distribution and the electromagnetic field, through the quantity W;
the others diagonal terms correspond to the pressure and as we can see the quantities Π and W, which
depend on the electromagnetic four potential, and compose the total pressure of the system. Finally,
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the off-diagonal terms depend only on the electromagnetic four potential and represents the shear
stress of the system σ.

With the goal of providing a physical interpretation to the quantities W, Π and σ we now derive
the conservation equations for a perfect fluid coupled with a poloidal magnetic field and compare
these equations with those obtained in [39] where no electromagnetic contribution was considered.

The non-vanishing components of the conservation equations Tμν
;ν = 0 for the energy-momentum

tensor (24) are
For μ = 0

ρ̇ + Ẇ = 0 (25)

where the dot denotes derivative with respect to t. Equation (25) is a consequence of the staticity.
The other non-vanishing components are
μ = 1

(P − Π)
′
+

A
′

A
(ρ + W + P − Π) − B

′

B
2Π − D

′

D
(W + Π) + (26)

+
1
r

[
σ,θ +

(
A,θ

A
+ 2

B,θ

B
+

D,θ

D

)
σ − 2Π

]
= 0,

μ = 2

(P + Π),θ +
A,θ

A
(ρ + W + P + Π) +

B,θ

B
2Π − D,θ

D
(W − Π) + (27)

+ r

[
σ
′
+

(
A

′

A
+ 2

B
′

B
+

D
′

D

)
σ

]
+ 2σ = 0,

where f ′ and f,θ means derivative with respect the coordinates r and θ, respectively. Equations (26) and (27)
are the hydrostatic equilibrium equations. In the special case of vanishing magnetic field and istropic fluid,
these equations correspond to the Tolman–Oppenheimer–Volkoff Equations [40–42].

Herrera et al. [39], studied axially symmetric, static bound sources. The matter content considered
for the authors in a local Minkowski coordinates (τ, x, y, z) is given by

T̂αβ =

⎛
⎜⎜⎜⎝

μ 0 0 0
0 Pxx Pxy 0
0 Pyx Pyy 0
0 0 0 Pzz

⎞
⎟⎟⎟⎠ , (28)

where μ, Pxx, Pyy, Pzz, Pxy = Pyx denote the energy density and different stresses, respectively,
measured by a local Minkowski observer. In a spacetime described by (2), the canonical form of
the energy-momentum tensor is

Tαβ = (μ + P)VαVβ + Pgαβ + Παβ, (29)

with

Παβ = (Pxx − Pzz)

(
KαKβ −

hαβ

3

)

+ (Pyy − Pzz)

(
LαLβ −

hαβ

3

)
+ 2PxyK(αLβ), (30)

P =
Pxx + Pyy + Pzz

3
, hαβ = gαβ + VαVβ, (31)
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where
Vα = (−A, 0, 0, 0), Kα = (0, B, 0, 0), Lα = (0, 0, Br, 0) (32)

The conservation equations calculated by [39] are

P
′
xx +

A
′

A (μ + Pxx) +
B
′

B (Pxx − Pyy) + D
′

D (Pxx − Pzz)+
1
r

[
Pxy,θ +

(
A,θ
A + 2 B,θ

B +
D,θ
D

)
Pxy + Pxx − Pyy

]
= 0,

(33)

Pyy,θ +
A,θ
A (μ + Pyy) +

B,θ
B (Pyy − Pxx) +

D,θ
D (Pyy − Pzz)+

r
[

P
′
xy +

(
A
′

A + 2 B
′

B + D
′

D

)
Pxy

]
+ 2Pxy = 0.

(34)

Comparing Equations (26) and (27), which describe a perfect fluid coupled with a poloidal
magnetic field, with the hydrostatic Equations (33) and (34), calculated in [39], which describe an
anisotropic fluid (without electromagnetic contribution), we can read the quantities ρ + W as the total
energy density of our distribution. In fact, the definition of W given by Equation (20) remind us of the
typical definition of the electromagnetic energy density. The quantity 2Π can be read as the anisotropy
of the distribution, and it is a direct consequence of the poloidal magnetic field. The quantity σ given
by (22) can be identified as the shear stress experienced by the fluid. The quantities W + Π and W − Π
can be read as an anisotropy defined with respect to z-axis. In conclusion, if we apply the Bondi
approach [43] then a locally Minkowskian observer measures, for the perfect fluid coupled with a
poloidal magnetic field, ρ + W as the total energy density, 2Π as the anisotropy caused by the different
components of the magnetic field and σ as the shear stress experienced by the fluid.

3.2. Global Structural Properties

In the previous section we have addressed the formal aspects of the magnetic field in a general
relativistic, axis-symmetric environment. Such studies are useful in aiding us in understanding how
the presence of a poloidal magnetic field alters the geometry of star and to properly identify relevant
quantities such as anisotropy, shear stress and energy density. One must, however, resort to numerical
calculations if one wants to quantitatively describe such alterations in the structure of neutron stars.
With that in mind we now move forward to discuss numerical results of the effects of magnetic fields
on macroscopic stellar properties, obtained from using the LORENE (Langage Objet pour la RElativité
NumériquE) code [37,44]. In this axisymmetric formalism, a global poloidal magnetic field is generated
though a global current and the field strength generated depends on the stellar radius, angle θ (with
respect to symmetry axis), and dipole magnetic moment μ, being different for each equation of state.
Note that different approaches agree that the maximum central magnetic field inside neutron stars
cannot be larger than a couple of times 1018 G [37,44–47].

As numerical calculations show, there are substantial changes in masses and radii for neutron
stars that possess strong magnetic fields, but the change comes mainly form the pure magnetic field
contribution to the energy momentum tensor, which is highly anisotropic, as discussed in the previous
section. Figure 2 shows the gravitational stellar mass and central enthalpy for families calculated
with a fixed dipole magnetic moment. The different lines for each color show (1) effects only from
the pure magnetic field contribution, (2) effects from pressure anisotropy and pure the magnetic field
contribution, and (3) the effects from Landau levels, pressure anisotropy, and the pure magnetic field
contribution . Note that fixed baryon masses (in the case of isolated stars) would imply moving up
but at the same time left in the figure, in a way that central enthalpy decreases with magnetic field
strength. For more details on the value for the mass increase in magnetic stars (which is of the order
of percents in the case of fixed baryonic mass), see for example [27,48]. Note that it has been shown
that such decrease in central enthalpy/chemical potential/density is equation of state and stiffness
dependent [48].
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Figure 2. Equilibrium sequence obtained from the numerical solution of he Einstein-Maxwell equations
for the CMF model equation of state shown for different dipole magnetic moments including different
magnetic field effects.

In this formalism, the stellar radii are largely modified, as poloidal magnetic fields generate oblate
stars, with increased/decreased values of about tens or percent in the equatorial/polar direction,
respectively. For extreme magnetic fields, for instance, the ratio rpolar/requatorial can reach values near
to 0.5 in the more extreme configurations (near the critical magnetic field after which the star starts to
attain a torus geometry). One must note that such extreme configuration and the critical values of the
magnetic field depend on the equation of state properties.

Note however that different stellar shapes are generated when toroidal magnetic fields are
considered [49]. Although it is understood that the long-term stability of magnetic stars requires
poloidal and toroidal components, those configurations are much more expansive to model
numerically; see Ref. [30].

4. Evolution Aspects

Finally, we now investigate evolutionary aspects of the magnetic field. One must notice that
in previous sections the aspects of the magnetic fields on neutron stars were studied under the
assumption that such fields are static (or quasi-static). This does not need to be the case, and, in fact,
observations show that the magnetic field in neutron stars is evolving. In this section we propose a
phenomenological model for the evolution of magnetic fields that may affect indirectly (by masking the
true age of the star) and directly (by generating heat) the thermal evolution of magnetized neutron star.
We note, however, that we perform such studies independently, that is, ignoring micro and macroscopic
effects. We stress that a complete, self-consistent study must take all of this into account, which is our
ultimate goal for future investigations. For now, we focus in the objects known as XDINS. These are a
few objects first detected by the ROSAT All-Sky Survey that are radio quiet but exhibit bright emission
in the soft X-Ray band [50]. These objects do not exhibit non-thermal hard emission and their spectra
are blackbody-like [51]. Furthermore, there is no known association with any supernova remnant,
which could indicate that these objects cannot be too young [51]. Considerable information regarding
the spin properties of XDINS has been collected along the years; see Table 1 for a summary of them.
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Table 1. Observational data for Isolated X-ray Neutron Stars (XDINS).

XDIN Period (s) Period Derivative Blackbody Temperature
References

Spin-Down Age (Years)

Name P (s) Ṗ (s s−1) Tbb (K) t (yr)

RX J0720.4-3125 8.39 6.98 × 10−14 9.7 × 105 [52,53] 1.9 × 106

RX J0806.4-4123 11.37 5.5 × 10−14 1.17 × 106 [53,54] 3.3 × 106

RX J1308.6+2127 10.31 1.12 × 10−13 1.09 × 106 [53,55] 1.5 × 106

RX J1856.5-3754 7.055 2.97 × 10−14 7.30 × 105 [56,57] 3.8 × 106

RX J2143.0+0654 9.437 4.14 × 10−14 1.24 × 106 [58,59] 3.6 × 106

RX J0420.0-5022 3.45 2.8 × 10−14 6.0 × 105 [58,59] 2.0 × 106

RX J1605.3+3249 3.39 1.6 × 10−12 1.15 × 106 [60,61] 3.4 × 104

As shown in Table 1, the temperature obtained from their blackbody-like spectra (in the range of
0.6–1.4 × 106 K) is normally associated with young neutron stars, however their long periods and
absence of radio emission (both of which are normally observed in young neutron star) may indicate
that these objects are not too young. Furthermore age estimations based on their spin-down properties,
namely the spin-down age τSD ≡ P/(2Ṗ), indicate very old ages. Evidently, the spin-down properties
may not be a good indicator for the true age of the neutron stars [53], since it makes a series of strong
assumptions, in particular with respect to the magnetic field that is assumed to be constant throughout
the evolution. On the other hand, if the temperature of these objects is to be explained solely due
to their young age, they would have to been born with very high magnetic fields or unusually long
periods, as to explain how they can attain such long periods during their thermal evolution life [51].
This presents a challenge: how to explain such objects that show temperature of young neutron stars
and rotation properties of old ones, when evidence indicates that they can be neither? We attempt to
answer this question by computing the neutron star thermal evolution combined with a magnetic field
evolution model. We show that the combination of their age, masked by the magnetic field evolution,
plus the thermal emission, and in some cases possibly with some moderate internal heating source,
could indicate the true age of these pulsars to lie in the intermediary range, i.e. between young and
old ages. This result is in agreement with recent measurements of the proper motion of three XDINS,
that indicate the age of at least of these stars approximate to be 4 × 105 years.

For that purpose we consider the thermal evolution of these objects, by making use of state of the
art cooling calculations [62–64]. We employ the most recent thermal emission and cooling mechanisms
available, that have also been used to explain the thermal properties of the cooling neutron star in
Cassiopeia A [62,65–67]. In addition, we also consider a phenomenological model for the magnetic
field evolution, first considering the magnetic field decay that could be used to explain the heat
deposit in the neutron star crust [51], and also the magnetic field emergence (growth) after an initial
hyper-critical accretion, followed by a final magnetic field decay (see Refs. [68–71], and references
therein). We show how the thermal/spin properties of the XDINS may be explained in such scenario
with and without the need of a heating mechanism.

4.1. Magnetic-Thermal Evolution

Here we aim to reconcile the observed properties of XDINS (in particular their thermal behavior)
with the current trends on the theory of neutron star cooling. As mentioned before, if one uses the
current models for neutron star thermal evolution and the observed properties of XDINS, namely Tbb
and the spin-down age P/(2Ṗ), one obtains a clear disagreement, as shown in Figure 3.

For the cooling calculation of Figure 3 we used a neutron star whose microscopic composition
and equation of state (EoS) is given by the APR model [72]. The neutron star mass for this particular
calculation is 1.55 M�. Furthermore neutron and proton pairing are assumed to take place in the
star such that agreement with Cassiopeia A is possible [65–67]. Figure 3 shows that the XDINS seem
to be much warmer than what is predicted for their ages. This would indicate that, either there is a
powerful heating mechanism (unbeknownst to us) that is keeping these objects warm at old ages, or,
these objects are much younger than their apparent age. There is, of course, the possibility of both.
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Figure 3. Temperature evolution of a 1.5 M� neutron star. The squares represent the observed
temperature of the XDINS at their respective spin-down age.

As discussed above, the spin-down age is a far cry from a reliable measurement of the true age of
a neutron star. In the few cases in which both the spin-down age and the kinematic age have been
estimated, they were usually off by thousands of years [73]. Even for XDINS, the few cases in which it
was possible to estimate the kinematic age, it has been found that the neutron star must be younger
than what their spin-down age indicates (see [53,74], and references therein). A possible way in which
the spin-down age of an object would be different than the actual age of the object is if the magnetic
field of the star evolves over time. Several mechanisms have been proposed to explain the variation of
the magnetic field, e.g., ohmic dissipation and ambipolar diffusion (both responsible for the decrease
of the magnetic field) [53]. There has also been proposed that the magnetic field may be initially buried
in the neutron star crust, due to a stage of hyper-critical accretion [71,75,76], followed by an increase
over time [70].

Here, rather than assuming a particular model for the magnetic field evolution, we choose a
phenomenological approach, that gives us the freedom to investigate different relaxation and evolution
times for the magnetic field, as to investigate under which conditions the magnetic field evolution may
lead to an agreement with the observed spin-down age and thermal properties of XDINS. This study
does not exclude the possibility of heating also taking place; actually, the agreement with observed
data can only be improved if heating is present.

We start considering the possibility of the object being born with a magnetic field that undergoes
a decay over time. We adopt a function for the magnetic field decay in the form of a smoothed top-hat
with the parameter τD indicating the relaxation time. We study different relaxation times for the
magnetic field decay, as indicated in Figure 4.

Applying the magnetic breaking model for such magnetic field evolution, one can find the relevant
rotation quantities, such as the rotation period and period time derivatives, which allow us to calculate
the estimated spin-down age, τc = P/(2Ṗ), and contrast it to the real age of the object. This is shown in
Figure 5. We must stress that the spin-down age τc = P/(2Ṗ) is only valid for the canonical case where
the magnetic field is constant, which, evidently is not the case here. We have, however, chosen to use
the quantity τc = P/(2Ṗ) as a parameter, even though we are not considering a constant magnetic
field, since this is how the spin-down age is estimated based on observational data (such as that in
Table 1). Therefore, by doing that, we make sure we are comparing the same quantities. This is, in fact,
an important point of this work, that we must look at the quantity τc = P/(2Ṗ) as an observational
parameter, rather than a true reflection of the age of the star.
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Figure 4. Different magnetic field evolution functions used to represent a neutron star undergoing
magnetic field decay. τD represents the magnetic field relaxation time.
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Figure 5. Estimated spin-down age P/(2Ṗ) over the true age of the pulsar as estimated for the magnetic
field evolutions of Figure 4.

As one can see in Figure 5, in the initial stages of evolution, the spin-down age differs very
little from the true age. At later stages of evolution, we have a deviation from the canonical case,
with the spin-down age indicating an age much older than the actual age of the star. This result shows,
as discussed before, that comparing the observed temperature of neutron stars with their observed
spin-down age may erroneously indicate than an object retains high temperature at later ages. We show
this by calculating the temperature evolution of the same neutron star used in Figure 3, undergoing
the magnetic field evolution depicted in Figure 4. These results are shown in Figure 6.
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Figure 6. Thermal evolution of a 1.55 M� neutron star undergoing magnetic field decay. The solid
washed gray line represents the temperature as a function of the real age of the object. For the other
curves the x-axis represent the spin-down age observed. We also plot a few arrows depicting the
discrepancy between the true and spin-down age.

As indicated by Figure 6, by using the spin-down age as a measurement of the age of the object,
one may believe that a neutron star is much older than reality. One also sees that for stronger magnetic
field decay (those that take place more quickly, with lower relaxation times), the deviation from the
real age of the object becomes more pronounced. For instance, as can be seen from Figure 6, a star
with surface temperature of 106 K may appear to be 106 years old as measured by the spin-down age
while, if we assume that the magnetic field is decaying with τD = 103−4 years, the star has a real age of
approximately 5 × 104 years (see red arrow in Figure 6). The interesting fact of this result is that, if the
magnetic field is indeed undergoing a decay process, we may use the observed temperature to estimate
the age of the star, or, conversely, if we know the age of the star from other measurements, for instance
kinematic estimates, we can then determine how the magnetic field of the object is evolving.

Based on the results just discussed, we can conclude that if the only reason of these objects
appearing to be warm at old ages is due to magnetic field decay, the warmer the temperature of the
object the stronger the magnetic field decay needs to be. This is due to the fact that high temperatures
are associated with younger stars (if no heating is assumed, as is the case for now), thus only with a
strong magnetic field decay one can explain the high deviation from the real age of the object. For lower
observed temperatures, a moderate magnetic field decay is enough, since a lower temperature does
not require very young ages. Our conclusion is that for objects with the highest temperatures it is
unlikely that only the magnetic field decay and the consequent deviation from real age are enough to
explain their observed properties. For those cases, a heating source may be necessary. For the high
temperature objects in Table 1, if no heating is present, the real age of the star would be ∼103 years,
and the magnetic field would have to strongly decay in a matter of 103 years as well. This seems to be
an unlikely scenario. As for the objects with lower temperatures, one may not need to resort to heating,
since a moderate magnetic field decay with relaxation times τD = 103−5 years would be enough to
explain their temperatures, and the real age would be around 104−5 years. It is important to notice that
measurements of the proper motion of three of the magnificent seven have yielded to kinematic ages
lower than the spin-down ones [53]; Furthermore, as mentioned before, the new distance calculated for
RXJ1856.5–3754 [74], implies a kinematic age of 5 × 104 years, in agreement with the age we estimate
for the moderately warm XDINS.
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4.2. Complex Magnetic Field Evolution

In addition to the above study of the magnetic field decay scenario, we proceed now to consider
as well a somewhat more complex situation. As it has been proposed in Refs. [68,71,77], after a
hyper-accretion phase at the early stages of evolution, the magnetic field of a neutron star may be
buried into the crust of the object. In the stellar core-collapse scenario (including catastrophic collapse
of an iron core, generating a shock wave, and the dramatic ejection of the star envelope), the residual
compact remnant could be a neutron star immersed in a dense environment. Such just born neutron
star may be exposed to an hyper-accretion phase from fallback material a few seconds after the
supernova event [78]. When the ejected matter collides with denser external layers, it is bifurcated and
a reverse shock is formed. In that case, some part of ejected material continues on its way to the outside
where the hydrodynamics effects are not very important, while another part of the material fallback
onto the surface of the proto-neutron star. This reverse shock allows to deposit large amount of matter
onto the proto-neutron star surface forming a new crust and hiding there any initial configuration
of the magnetic field of the star, as it was shown in Ref. [71]. In that case, the magnetic field may be
buried. After the hyper-accretion phase ends and the residual envelope of the newborn neutron star
vanishes, the magnetic field can suffer a growth phase, emerging from the crust and appearing as a
delayed-off pulsar, as it was pointed out in [68,70]. When the magnetic field is buried on the stellar
surface, it can be amplified by compression due to the strong accretion and by a turbulent dynamo.
In this scenario, the magnetic field could grow to higher values than those estimated for XDINS and
then suffer the familiar decay stage as we studied above.

We now investigate such scenario by considering, as before, a phenomenological evolution for the
magnetic field that takes into account the emergence and decay phase. We consider a two smoothed
top-hat analytic function that take into account the early growth and the later decay. We consider all
growth to have the same relaxation time, as indicated in Figure 7, and only vary the relaxation time of
the magnetic field decay (τD). Such magnetic field evolution is represented in Figure 7.
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Figure 7. Magnetic field evolution representing the emerging after a hyper-accretion phase followed
by the decay of the field. τD represents the relaxation time of the decay phase.

We show in Figure 8 the spin-down age over the true age of the star of a neutron star whose
magnetic field undergoes such an evolution. This result shows us that initially the spin-down age
is slightly higher than the true age (reflecting the growth of the magnetic field), followed by the a
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behavior equal to the canonical case, since once again the magnetic field is constant. Later, at the
onset of the magnetic field decay, we see the same deviation from the canonical case as the previously
studied case, with the spin-down age indicating objects older than their real age. As expected, since
at this epoch the behavior is the same as in the decay-only scenario, we see that for stronger (faster)
magnetic decays we obtain stronger deviations from the canonical case.
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Figure 8. Spin-down age (P/2Ṗ) over the true age of the star as a function of the real age for a neutron
star whose magnetic field emerges, after the burial due to a hyper-accretion phase, and then it is
followed by a decay.

We now calculate the thermal evolution of the same neutron stars that we have followed in this
investigation, except now considering such magnetic field evolution. This, as it was the case before,
allows us to keep track of their real and spin-down age and, by using the observed temperature and
spin-down parameters (particularly P and Ṗ), we can probe which magnetic field evolution would
be appropriate to explain such observed quantities without resorting to any heating mechanisms.
The thermal evolution calculations are shown in Figure 9.

As the case we studied before, we see that the magnetic field decay may lead one to believe that a
neutron star is much older than reality (see black arrow in Figure 9). The emergence of the magnetic
field has little impact on the spin-down age at later stages, thus we cannot use the thermal evolution
to determine whether or not such emergence occurs. The same conclusions for the decay-only case
hold here: the best scenario to describe the observed properties of the XDINS (without resorting
to any heating mechanism) would be a magnetic field decay with relaxation time of the order of
τD = 103−5 years. This is true to the objects that are moderately warm, those that are hotter would
need a more violent magnetic field decay, which would also indicate that they are actually much
younger. As mentioned before, we believe that this is an unlikely scenario, due to the lack of evidence
that such objects are much younger than 104 years.
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Figure 9. Thermal evolution of neutron stars whose magnetic field evolve according to Figure 7.
With the exception of the washed gray curve, which shows the real age, the curves represent the
temperature as observed by an observer at infinity as a function of the spin-down age (P/2Ṗ). We also
indicate by the arrow an example of the discrepancy between the true and spin-age (to avoid cluttering
the image we only show one arrow).

Finally, we briefly consider the presence of heating, as to demonstrate that our model does not
invalidate such scenario and that, in fact, it benefits from it. As mentioned before, we believe that the
warmer objects of Table 1 would be better explained by a combination of heating and magnetic field
decay. We have seen that the latter alone would indicate that these objects are undergoing a rather fast
magnetic field decay (of the order of ∼100–1000 years) and that they would need to be very young
(as to explain their high temperature). On the other hand, if their temperature is to be explained solely
by heating, a considerable amount of continuous heating would be needed to keep such objects so
warm at such old ages. We thus consider a heating source that is uniformly distributed along the
crust of the neutron star, with an intensity of H ≈ 1016 erg s−1 cm−3, that is active for ∼104 years.
The magnetic field evolution is the same as we have used in the previous calculations.

As it is shown in Figure 10, the presence of a heating increases the temperature of the neutron star
while the heating source is active. With this, one can now explain the high temperature observed in a
few XDINS as a result of a magnetic field decay with τD ∼ 104 years combined with a heating acting
with a relaxation time also of ∼104 years. In this scenario, as indicated in Figure 10, the true age of
the object would be ∼105 years, rather than ∼103−4 years, as it would be in the absence of heating.
Evidently, one could argue that a hypothetical source of heat could be active for 106−7 years, thus
solely explaining the high temperature of these stars. We cannot rule out this possibility; however,
we believe that the combination of moderate heating plus a magnetic field evolution that masks the
true age of the star is a more realistic scenario, since the explanation based only on the existence of
a heating source would need a very large internal energy-power (ĖH ∼ 1034 erg s−1) active for very
long times of the order of 106−7 years.
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Figure 10. Same as Figure 9 but with a heating source of H ≈ 1016 erg s−1 cm−3 uniformly applied to
the crust for the first 104 years. Curves accompanied by the indicated τD represent the temperature as a
function of the spin-down age (P/2Ṗ). The shaded area represents where the curves for magnetic field
evolutions with τD = 103−5 years lie. We also indicate, for the sake of example, the difference between
the spin-down age and real age (in the presence of heating) for the XDINNS RXJ130862127.

Our results indicate that the magnetic field decay works well to explain the moderately warm
XDINS (with T < 106 K). For the higher temperature XDINS, such scenario seems far fetched since it
would require a rather fast magnetic field decay (τD ∼ 102−3 years) and a stellar true age of 103−4 years.
We believe that for such objects a moderate source of heating might be necessary. To illustrate that,
we considered a heating source of H ≈ 1016 erg s−1 cm−3 acting in approximately the same timescale
of the magnetic field decay, i.e., 104 years. We find that with such heating, the magnetic field decay
shows a more palatable situation for the warmer XDINS, that may, under this scenario, be explained
with a magnetic field decay with τD = 104 years, leading to a true age of 104−5 years. We stress,
once again, that we cannot rule out the presence of intense heating that acts on the neutron star for
106−7 years, making the magnetic field decay unnecessary. We believe, however, that the combination
of magnetic field decay with a moderate heating source is a more realistic scenario, specially in view of
the recent results regarding the kinematic age of a few XDINS [53,74] that indicate that such objects
may be younger than the spin-down age indicates, with a true age ∼4 × 105 years.

One must note that other authors have investigated the evolution of magnetic fields taking a less
phenomenological approach, based on numerical simulations; see, for instance, [79,80]. Such approach
is certainly interesting, although different of our purpose in the research we present here, where rather
than investigate a particular evolution model we chose to investigate a whole set of them, which,
when compared to observed data, allow us to best choose the most likely behavior of the magnetic
field evolution. Evidently we have no microscopic information, and we must eventually look for a
microscopic model that agrees with the conclusions reached by our investigation, and for that one
must resort to simulations as those found in [79,80]. Although beyond of the scope of this work,
we have briefly compared our results with those of [79,80], and found that they are, for the most
part compatible. In these studies, the authors presented numerical results of the magneto-thermal
evolution of isolated neutron stars, including the most relevant physical parameters. They found that
certain thermodynamic mechanisms in the inner crust of the neutron star are responsible for the high
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dissipation of the magnetic field on time-scales 100 kyr, which is compatible with our phenomenological
approach that allow us to explore interesting characteristics of such evolution without the need for
intensive numerical work. We also note that the authors in [81] have shown that including Hall effect
in their numerical simulations leads to a saturation of the magnetic field evolution within 100 kyr,
allowing a slow and sustained decay. The conclusion is that the most energetic behavior occurs while
the star is young (high magnetic fields involved). This issue support our results that a phase of growth
of the magnetic field was subsequent to the hypercritical regime of the newborn neutron star.

Finally we stress that most data suggests an unified model for neutron stars whose key parameter
is the magnetic field [82,83]. However, the magneto-thermal model does not explain how neutron stars
may be born with such high magnetic fields. If the hidden magnetic field scenario is correct, there exists
the possibility that the magnetic field can be amplified (by two or three orders of magnitude) due a
turbulent dynamo effects inside the neutron star crust in a timescale of months, and then subsequently
undergo a phase of growth appearing as a delayed switch-on pulsar, several years after the supernova
event, which may explain the highest magnetic fields associated with magnetars. Following that,
the neutron star continues its canonical evolution until the thermo-magnetic effects can be relevant
and cause the magnetic field to decay at the aforementioned time-scales. This phase of amplification of
the magnetic field in the crust requires an intensive numerical treatment that is outside the scope of
this work. But we aim to explore this possibility in a future work, as well as coupling such evolution
to microscopic and macroscopic studies.

5. Conclusions

In this work we studied many ways in which a magnetic field may affect neutron stars,
starting with the microscopic composition, going through the stellar structure, and culminating
with evolutionary aspects. As we have shown, the proper account of the magnetic field in these
different realms is no ordinary task. It is, however, imperative to do so. As we have seen, the magnetic
field plays an important role in all regimes of the neutron star, altering its composition, affecting its
structure and geometry, and being a key factor for the neutron star evolution.

For the composition, our study shows that the magnetic field may suppress the appearance
of hyperons and the quark-matter phase transition, leading to a substantially different particle
composition when compared to a neutron stars with small or vanishing magnetic fields.

In the macroscopic realm, we have discussed the formal aspects under which a dipolar magnetic
field needs to be considered under the light of general relativity. We have shown that the presence of a
dipolar magnetic field causes the fluid to become anisotropic and we identified the shear stress caused
by it. We have also numerically calculated the structure of highly magnetized neutron stars and have
shown that high magnetic fields can lead to more massive objects.

Finally we have shown that a better comprehension of the magnetic field evolution in neutron
stars is fundamental for being able to accurately estimate the ages of XDINS. We propose to use
XDINS as a way of probing the magnetic field evolution, by making use of the observed spin-down
properties (particularly the spin-down age) and thermal properties. By making use of kinematic
observations capable of making better estimates of the star’s true age, we can use the temperature
to determine the most likely scenario for the magnetic field evolution and/or presence of heating.
We have found that for moderately warm XDINS there is no need of heating, and a magnetic field
evolution with relaxation times of τD ∼ 104−5 years is enough to explain their thermal properties,
making their true age ∼105 years. As for the warmer XDINS, we have found that a moderate heating
is necessary, in addition to magnetic field decay with τD ∼ 104 years, leading to a true age for these
objects ∼104−5 years.

As thoroughly discussed above we recall that as much as we strived to describe the different ways
in which a magnetic field may affect neutron stars, we have certainly not covered all the possibilities.
Furthermore, all of the studies we presented were done independently of each other, whereas a more
appropriate (and challenging) treatment would consider all aspects on the same framework. That is our
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goal for future investigations. Considering that now we have a more comprehensive understanding of
how the magnetic field affects these three realms (microscopic, macroscopic and evolutionary) we hope
to perform self-consistent studies of all of them. That means that the equation of state (microscopic)
would be affected by the macroscopic distribution of the magnetic field in the star, as well as the
evolution of such fields. Evidently the macroscopic structure as well as the evolution of the object also
depend on the microscopic equation of state, making such treatment highly non-linear and challenging,
although still warranted if one aims to obtain a more complete description of neutron stars.
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Abstract: We have built quasi-equilibrium models for uniformly rotating quark stars in general
relativity. The conformal flatness approximation is employed and the Compact Object CALculator
(COCAL) code is extended to treat rotating stars with surface density discontinuity. In addition to the
widely used MIT bag model, we have considered a strangeon star equation of state (EoS), suggested
by Lai and Xu, that is based on quark clustering and results in a stiff EoS. We have investigated the
maximum mass of uniformly rotating axisymmetric quark stars. We have also built triaxially deformed
solutions for extremely fast rotating quark stars and studied the possible gravitational wave emission from
such configurations.

Keywords: pulsars; quark stars; general relativity

1. Introduction

The gravitational-wave (GW) event GW170817 and the associated electromagnetic emission
observations [1,2] from a binary neutron star (BNS) merger has announced the birth of a multi-
messenger observation era. Apart from enriching our knowledge on origins of short gamma-ray
bursts [3] and heavy elements in the universe [4,5], it provides an effective way for us to constrain the
equation of state ( EoS) of neutron stars (NSs). In addition to BNS systems , rapidly rotating compact
stars are also important candidates of GW sources [6], which could be detected by ground-based GW
observatories [7–11]. Further, the properties of both uniformly and differentially rotating stars is
tightly related to the evolution of the post-merger product during a BNS merger, for example, whether
or not there will be a prompt collapse to a black hole. Hence, studying the properties of rotating
compact stars has long been important and of great interest.

Following the first study on the equilibrium models of uniformly rotating, incompressible fluid
stars in a Newtonian gravity scheme [12], various works have been done with more realistic EoSs
and general relativity [13,14]. Among those studies, quasi-universal relationship has been found for
both uniformly rotating and differentially rotating NSs [15–20]. Quasi-equilibrium figures of triaxially
rotating NSs have also been created and studied in full general relativity [21,22].

However, it is worth noting that the EoS of compact stars is still a matter of lively debate as
it originates from complicated problems in non-perturbative quantum choromodynamics (QCD).
In addition to the conventional NS model, strange quark stars (QSs) are also suggested [23,24], after
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it was conjectured that strange quark matter (SQM) consists of up, down, and strange quarks that
could be absolutely stable [25,26]. Additionally, the small tidal deformability of QSs passes the test
of GW170817 [27], which requires that a dimensionless tidal deformability of a 1.4 solar mass star
is smaller than 800. A more detailed analysis based on the probability distribution of each star in
the binary system also indicates that the strangeon star model is consistent with the observation
GW170817 together with other EoSs such as APR4. Possible models are also suggested to explain the
electromagnetic counterparts (c.f. [27,28]).

Following this possibility, we here use the Compact Object CALculator code, COCAL, to build
general-relativistic rotating QS solution sequences using different EoS models. COCAL is a code to
calculate general-relativistic equilibrium and quasi-equilibrium solutions for binary compact stars
(black hole and NSs) as well as rotating NSs [21,22,29–32]. The EoS part of COCAL is modified to
treat quark stars that have a surface density discontinuity. With the modified code, we have built a
uniformly rotating axisymmetric and triaxial sequence for quark stars.

2. Results

2.1. Maximum Mass of Axisymmetric Rotating Quark Stars

The maximum mass of a static spherical compact star and an axisymmetric rotating compact star
depends on the EoS and is also closely related to the post-merger phase of a BNS merger. The total
mass of the binary system could be obtained according to the GW observation. By comparing the
total mass of the system with the maximum mass of a rotating star, it can be interpreted whether the
post-merger product is a long-lived supramassive NS or short-lived hypermassive NS.

Various nuclear EoS models have been applied to build both uniform and differentially rotating
NSs. It has been found that the maximum mass of uniformly rotating NSs, compared with the
TOV maximum mass, depends very weakly on EoSs [15]. More specifically, regardless of the EoS
model, the star could support approximately 20% more mass by uniform rotation. Another universal
relationship is also discussed by [16] for differentially rotating NSs. Such relations have been invoked
to interpret the observation of GW170817, and constraints on the maximum mass of NSs have been set
accordingly [33]. In order to see whether this relationship still holds for rotating QSs, we have built
axisymmetric rotating QS sequences for both the MIT bag model and the strangeon star model [34].
We first build a TOV solution sequence for both EoSs with 24 successive central densities. From each
of those TOV solutions, we construct a rotating QS solution sequence by fixing the central density
and decrease the axis ratio Rz/Rx. The axis ratio parameter determines the rotation of the star and
preserves axisymmetry at the same time. Those rotating QS solutions terminate at the mass shedding
limit. In this way, we manage to explore the parameter space for rotating QSs for various central
densities and angular velocities.

Once we have all the solutions ready, we can obtain the TOV maximum mass (MTOV) and angular
momentum at the mass shedding limit (Jkep) as well as the maximum mass for a certain angular
momentum (Mcrit). The relationship between normalized mass (Mcrit/MTOV) and angular momentum
(J/Jkep) can therefore be re-investigated for rotating QSs. The result is shown in Figure 1. As can be
seen, the universal relationship for NSs no longer holds for QSs. Moreover, even for rotating QSs with
different EoSs, the relation is quite different.

Although we couldn’t extend the universal relationship or find a new one for rotating QSs, it does
provide a potential to distinguish between NS and QS models from a BNS merger event. In particular,
quark stars could be more massive when supported by uniform rotation compared with neutron stars
(40% compared with 20%). Consequently, a post-merger phase might be longer before collapsing to a
black hole if a QS is formed during the merger.
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Figure 1. Relationship between normalized critical mass and the normalized angular momentum for
rotating eutron stars (NSs) and quark stars (QSs). Bottom black line is the quasi-universal relationship
found by [15]. Blue curve in the middle is the relationship for rotating QSs with strangeon star model and
the top red line represents the relationship for the MIT bag model. The universal relationship cannot be
extended for QSs easily.

2.2. Triaxial Rotating Quark Stars

Rotating QSs in a triaxial Jacobian sequence are another interesting type of QS and occur when
the kinetic energy to potential ratio (T/|W|) is sufficient large. On the one hand, the post merger
product in a BNS merger or a newly born compact star from a core collapse supernova possesses quite
a large angular momentum, which might lead to a sufficiently large T/|W| ratio for the bifurcation for
a triaxial Jacobian sequence to occur [35–39]. On the other hand, triaxially rotating compact stars is an
effective GW radiator itself [40].

Unlike NSs, which are bound by gravity, QSs are self-bound by strong interaction. Consequently,
rotating QSs can reach a much larger T/|W| ratio compared with NSs due to the finite surface density.
Therefore, the triaxial instability can play a more important role [41–43] for QSs. The triaxial bar
mode (Jacobi-like) instability for the MIT bag-model EoS has been investigated in a general relativistic
framework [44].

Here, we build quasi-equilibrium constant rest mass sequences (axisymmetric and triaxial) for
both the MIT bag-model EoS and the strangeon star model EoS. The surface fit coordinates used in
COCAL allows us to treat the surface density discontinuity properly. We begin with the axisymmetric
sequence in which we calculate solution sequences with varying parameters, i.e., the central rest-mass
density (ρc) and the axis ratio (Rz/Rx). We first impose axisymmetry as a separate condition and
manage to reach the mass shedding limit for all the sequences. In order to access the triaxial solutions,
we recompute the above sequence of solutions but this time without imposing axisymmetry. As the
rotation rate increases (Rz/Rx decreases), the triaxial deformation (Ry/Rx < 1) is spontaneously
triggered, since at a large rotation rate the triaxial configuration possesses a lower total energy and is
therefore favored over the axisymmetric solution.

Overall, three main properties of triaxially rotating QSs are found according to our calculations.
Firstly, QSs generally have triaxial sequences of solutions that are longer than those of NSs. In another
words, QSs can see larger triaxial deformations before the sequence is terminated at the mass-shedding
limit (c.f. Figures 2 and 3 for an example for the comparison with the n = 0.3 NS model), due to
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the much higher T/|W| ratio attained by rotating QSs. Secondly, when considering similar triaxial
configurations, QSs are (slightly) more efficient GW sources because of the finite surface rest-mass
density and hence larger mass quadrupole for QSs (c.f. Figure 4). Thirdly, triaxial supramassive
solutions can be found for QSs.
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Figure 2. Upper panel: T/|W| versus eccentricity e :=
√

1 − (z/x)2 (in proper length) for the MIT
bag-model Equation of State (EoS) sequences as well as for NSs with n = 0.3 EoS reported in [21]
(labeled with gray curves). Solid curves are axisymmetric solution sequences, and dashed curves are
triaxial solution sequences, which correspond to C = M/R = 0.2 (green curves), 0.15 (red curves), and
0.1 (blue curves), respectively. Note that M is the spherical ADM mass. Lower panel: Magnification of
the region near the onset of the triaxial solutions marked with empty symbols. Filled symbols mark the
models at the mass-shedding limit. Solutions labeled with “ML” are axisymmetric solutions (Maclaurin
spheroids), while those labeled “JB” are triaxial solutions (Jacobi ellipsoids).
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Figure 3. The same as Figure 2 but for the LX EoS sequences.

213



Universe 2018, 4, 48

0.85 0.86 0.87 0.88 0.89

e

0.010

0.015

0.020

0.025

0.030

0.035

0.040
D
h
/M

A
D
M

MIT

LaiXu09

Figure 4. Estimates of the GW strain amplitude according to the quadrupole formula for the C = 0.2
triaxial sequence for both the MIT bag-model EoS (blue solid curve) and the LX EoS (red dashed curve).
Shown is the GW strain for the � = m = 2 mode normalized by the distance and the ADM mass of the
source. Triangle markers in blue and red stand for the triaxially rotating NS cases G4C010 and G4C025
models in [40], which indicates that triaxially deformed QSs are more effective graviational-wave (GW)
sources compared with NSs.

3. Discussion

We have built both axisymmetric and triaxial solutions for uniformly rotating QSs. For axisymmetric
rotating QSs, we have investigated the critical mass-angular momentum relation and find that it
deviates from the universal relationship for rotating NSs. Especially, uniformly rotating QSs can
be more massive compared with MTOV, indicating a quite different post-merger phase in binary
merger events. For triaxially rotating QSs, we have identified the bifurcation point from axisymmetric
solutions. Triaxial solutions have been constructed from the bifurcation point to the mass shedding
limit. The GW emission from such a triaxial rotating QS is estimated with a quadrupole formula and is
found to be more effective than that of an NS, which can also be tested with future GW observations.

Additionally, since the spin period of a triaxially rotating star increases as the angular momentum
increases, the spin frequency at the bifurcation point somehow represents a maximum spin frequency
that can be attained by a pulsar when spun-up by accretion. Particularly, a solid QS model is suggested
for the strangeon star model [45], which means that r-mode instability could be totally suppressed for
such a star and a strangeon star might be spun up to the bifurcation frequency. With the construction
of more power radio telescopes such as SKA and FAST, this limit could be tested by searching for
faster spinning pulsars and might provide an important clue on the properties of the dense matter in
compact stars.
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21. Huang, X.; Markakis, C.; Sugiyama, N.; Uryū, K. Quasi-equilibrium models for triaxially deformed rotating
compact stars. Phys. Rev. D 2008, 78, 124023.
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Abstract: We compute the principal non-radial oscillation mode frequencies of Neutron Stars
described with a Skyrme-like Equation of State (EoS), taking into account the possibility of neutron
and proton superfluidity. Using the CompOSE database and interpolation routines to obtain the
needed thermodynamic quantities, we solve the fluid oscillation equations numerically in the
background of a fully relativistic star, and identify imprints of the superfluid state. Though these
modes cannot be observed with current technology, increased sensitivity of future Gravitational-Wave
Observatories could allow us to observe these oscillations and potentially constrain or refine models
of dense matter relevant to the interior of neutron stars.

Keywords: neutron stars; gravitational waves; equation of state

1. Introduction

The Laser Interferometer Gravitational-Wave Observatory (LIGO) recently detected gravitational
waves emitted from the merger of two neutron stars, heralding a new era of compact star physics [1].
As the sensitivity of gravitational wave detectors increases, we may expect to directly observe the
gravitational waves even from isolated neutron stars. Neutron star oscillations allow us to probe the
nature of ultra-dense nuclear matter, since the equation of state (EoS) plays a central role in determining
the spectrum of oscillation modes. Thus, in the event that actual oscillation modes can be observed,
comparison to theoretical templates based on models of dense matter can help to refine or constrain
the EoS. For calculating the spectrum of oscillation modes theoretically, we require tabulated EoS from
realistic microscopic models of dense matter. The CompOSE database [2] provides an array of such
models with thermodynamically consistent interpolation. In these proceedings, we report results from
a calculation of the spectrum of non-radial oscillation modes of neutron stars based on Skyrme-like
EoS in the CompOSE database, and compare the results to the polytropic equation of state. We also
consider the effects of superfluidity in neutron stars on the oscillation modes, using the same family
of EoS. After establishing the background structure of the neutron star in Section 2, we present the
main equations and numerical results from solving the oscillation equations in Section 3, including
the extension to superfluidity. In Section 4, we summarize our findings and comment on further
extensions of this work in Section 5.

2. EoS Models and Superfluid Neutron Star Structure

One of the simplest models of a neutron star assumes a polytropic equation of state P = Kρ(n+1)/n

with polytropic index n and a proportionality constant K. In this work, we choose n = 1 and
K = 63.66 km2 in G = c = 1 units, which simplifies the numerics of the Tolman-Oppenheimer-Volkov
(TOV) equations for the mass and radius of the neutron star. There is a limitation of the n = 1 polytrope:
the structure of such a star in General Relativity can only provide a maximum mass of about 1.2 M�.

Universe 2018, 4, 53; doi:10.3390/universe4030053 www.mdpi.com/journal/universe217
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We therefore employ Newtonian structure equations for the polytrope, in which case, for n = 1,
the mass is independent of the radius [3]. This allows us to study the model for stars as heavy as 2 M�
while keeping the radius fixed at a canonical value (e.g., 10 km). We emphasize that the polytropic
equation of state is only used here as a simple model for a rough estimate of the non-radial oscillation
spectra of neutron stars, and the Skyrme-like model [4,5] is used for more realistic calculations. For the
latter case, the CompOSE database provides appropriate tables of thermodynamic quantities based
on the baryon number density within the star. While the structure of the star can be solved from the
standard TOV equations using the energy and pressure alone, finding the oscillation modes for the
normal and superfluid cases requires knowing the chemical potentials and densities of the neutrons,
protons, and electrons in the star from center to surface. The CompOSE database provides these
for various EoS along with consistent interpolation routines. From this database, we choose three
Skyrme models with interaction parameters provided by the KDE0, KDE0v1 and the SK255 dataset,
as calculated by Agrawal [4,6]. We refer to these three sets of parameters as Skyrme Model A, B and C
respectively. These interaction parameters can be thought of as specifying a nucleon energy density [7]

UN = nbmc2 +
h̄2

2m
τb + B1n2

b + B2(n2
n + n2

p) + B3nbτb+

B4(nnτn + npτp) + B5n2+α
b + B6nα

b(n
2
n + n2

p)

(1)

where nn, np, and nb refer to neutron, proton, and baryon number densities respectively; the τ are
based on these densities; and the Bi and α are specific to the interaction.

A neutron star may be considered to have three major regions: the outer crust, the inner crust,
and the core. In the outer crust, the density ranges from 104 to 1011 g/cm3. This part of the star consists
mostly of nuclei and electrons. The inner crust ranges from 1011 to 1014 g/cm3. Here, the temperature
is below the critical temperature for neutron pairing, and a neutron superfluid can form. The core
of the neutron star has densities greater than 1014 g/cm3, and consists of both neutrons and protons
in a superfluid state, with electrons present to satisfy charge neutrality. For this work, we adopt a
simplified two-layer model of core and inner crust, applying a Skyrme effective force model to describe
the nucleon-nucleon interactions. This is similar to previous works such as [8], where the fluid below
a certain critical density is treated as normal (i.e, the inner crust), and above the critical density is
treated as a superfluid (i.e, the core). In a more complete treatment, the location of fluid and superfluid
regions would be determined by a profile of the density-dependent critical temperature Tc(ρ); however,
we limit ourselves to a T = 0 calculation. It is important to state the possible consequences of this
assumption on our results. It is known that non-zero temperatures can shift the frequency of the
superfluid mode by approximately (5–10)%, without affecting the non-superfluid modes [9]. This is
because the entrainment matrix depends on the critical temperature profile of the superfluids through
its density dependence. We choose a simpler form of entrainment that applies only at T = 0. Studying
the temperature effects requires models of the critical temperature which are currently not available
within the EoS models we use, but this would certainly be interesting to explore with a self-consistent
finite temperature model of the neutron star. Although entropy entrainment does not arise in the case
of zero temperature [10], entrainment in the cores of superfluid neutron stars between neutrons and
protons can still arise at T = 0 due to the Andreev-Bashkin effect [11], which is encoded in the ρ12

terms in the set of equations in Section 3.2 below.
The plots in Figures 1 and 2 show the run of interior variables such as pressure and density in

the star for one of the Skyrme EoS (Model A), as well as the mass-radius curves for all three of the
Skymre models.
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(a) (b)

Figure 1. (a): Pressure vs. radial distance and (b): enclosed mass vs. radial distance for the Skyrme
(Model A) equation of state. These curves both correspond to the same star with a central density of
1.102 ×1015 g/cm3, which yields a mass of 1.69 M� and radius of 11.68 km.

Figure 2. (a): Density profile vs. radius of the Skyrme (Model A) equation of state, with a central
density of 1.102 ×1015 g/cm3, corresponding to a mass of 1.69 M� and radius of 11.68 km. The density
decrease is not smooth near the surface of the star. This feature requires special care in the solution of
the oscillation equations. (b): Mass-radius curves for the Skyrme A, B, and C models. All three models
can support a maximum mass of more than 2 M�.

3. Fluid Oscillation Equations

3.1. Normal Fluid

We assume the neutron and proton fluids to be ideal in nature, neglecting dissipative effects
due to viscous drag, which is negligible for a superfluid at T � Tc. This is the case for cold
neutron stars with T ∼ 107 K. However, there can still be dissipation and damping of various
oscillation modes due to mutual friction and other microscopic processes such as electron-electron
scattering that dominate the shear viscosity when both neutrons and protons are superfluid [12].
Previous works [13] lead us to believe that these effects are not expected to change the real part of the
frequency, which is the quantity calculated in this work. For the case of the polytropic EoS, we use
a coupled system of differential equations for the radial displacement and pressure perturbation of
the fluid [14] to find the oscillation modes of the star. For the polytrope, the stellar structure and
the fluid perturbation equations are being described in Newtonian gravity, for the reason explained
in Section 2. The structure of the star for the Skyrme models will be treated in General Relativity,
although we still employ Newtonian hydrodynamics for the oscillation equations. It is convenient to
use the Dziembowski parameterization [14], with non-dimensional variables to efficiently solve for the
oscillation eigenfrequencies. The relevant equations in the Cowling approximation, which neglects the
back-reaction of the fluid perturbations on the gravitational potential, are:
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r
dy1

dr
=

(
V
Γ1

− 3
)

y1 +

[
l(l + 1)

c1σ̄2 − V
Γ1

]
y2 (2)

r
dy2

dr
= (c1σ̄2 + rA)y1 + (1 − U − rA)y2 (3)

where y1, y2 are related respectively to the perturbations in the radial component of the fluid motion
and the fluid pressure; V, U, and A are derived from logarithmic derivatives of the pressure, mass,
and density; l is an angular momentum parameter, c1 is a combination of the mass and radius of
the star, and σ̄ is the normalized frequency of oscillation. For the Skyrme models with superfluidity,
we employ a more complicated system of equations given in Section 3.2 that can be applied to the
entrained neutron and proton superfluids.

In Figure 3 below, we compare the f - and p-modes for the polytropic EoS and the Skyrme
(Model A) EoS. While we have only taken one fixed configuration (n = 1, K = 63.66 km2) for the
polytrope, the f - and p-mode frequencies for larger n values are even higher [15]. A larger value of
K for the same n would make the star less compact and lower the mode frequencies. In any case,
the Newtonian polytrope is meant to provide a rough estimate only. The f -modes scale with the mean
density

√
M/R3 in both cases. The p-modes scale with the compactness M/R rather than the mean

density, though a general increase with mean density is still evident since increased compactness
leads to increased mean density. It follows that the oscillation frequencies of the realistic models is
lower than the n = 1 polytrope with our chosen value of K, since these stars are less compact and less
dense on average than the polytrope. The modes for the polytrope would be lower if the structure
was computed in General Relativity, but as previously mentioned, this cannot meet the observational
constraint of at least 2 M� maximum mass. The X-axis range is different for the two figures, since we
spanned the same mass range for the two EoS, which leads to different ranges for the mean density.
The data in the right panel of Figure 3 is for Skyrme Model A.

(a) (b)

Figure 3. The trend of f- and p-modes with the square root of the mean density of the neutron star,
given a polytropic equation of state (a) and a Skyrme (Model A) equation of state (b).

3.2. Oscillation Equations: Extension to Superfluidity

Since both neutron and proton fluids can undergo pairing, the extension to superfluidity leads to
the following equations for determining the oscillation modes, as given in [16]

r
dyn

1
dr

=

(
−3 − d ln ρn

ln r

)
yn

1 +

[
1
Δ

l(l + 1)
c1σ̄2

(
ρ22

ρp
+

me

mp

)
− gr

ρn
Q11

]
yn

2−[
1
Δ

l(l + 1)
c1σ̄2

ρ12

ρn
+

gr
ρn

Q12

]
yp

2 +
gr
ρn

(Q11 + Q12)y3

(4)
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where the ρ matrix components (ρ11, ρ12 = ρ21, ρ22) and the parameter Δ are based on the
particle densities ρp and ρn and the nucleon effective masses m∗

n and m∗
p; the Q matrix components

(Q11, Q12 = Q21, Q22) are derivatives of the particle chemical potentials with respect to the particle
densities; and g is the gravitational field. As mentioned before, entrainment is included through ρ12.
All other parameters take the same definitions as in the normal fluid.

We determine the effective masses self-consistently from the Skyrme EoS model, following
Chamel’s theoretical treatment of superfluidity [7]. The effective masses and all other required
thermodynamic quantities are consistently determined at each grid point in the star using inbuilt
interpolation routines in CompOSE. It is important to note that the effective masses are included
self-consistently in the calculation of the oscillation spectrum. Though the extension to superfluidity
is ultimately straightforward, we find that a minimal fraction of normal fluid is needed to tame the
discontinuities in the density profile near the surface of the star, which otherwise cause numerical
problems. This is particularly the case for Model A (KDE0 interaction), suggesting that either the
model or the interpolation routine needs to be further investigated at low densities. For this work,
we confine our calculations to the case of a superfluid core surrounded by a normal envelope with a
transition density at nearly half the radius of the star.

4. Results

In this section, we present our numerical results and summarize the main findings from our work.
In Table 1, we show the oscillation mode frequencies for neutron stars of mass {1.4, 1.8, 2.2} M� with
normal fluid and superfluid components.

Table 1. Mode Frequency in kHz (l = 2).

Mode Polytrope Model A Model B Model C

1.4 M�
f 4.77 2.74 (2.73) 2.69 (2.69) 2.41 (2.41)
p 8.34 4.42 (4.40) 4.29 (4.27) 3.98 (3.97)
s – 3.66 3.59 3.34

1.8 M�
f 5.67 2.91 (2.88) 2.87 (2.85) 2.55 (2.54)
p 9.52 5.05 (5.02) 4.96 (4.94) 4.76 (4.74)
s – 4.21 4.18 3.87

2.2 M�
f 6.26 3.52 (3.50) 3.37 (3.34) 3.05 (3.03)
p 10.55 6.28 (6.24) 6.18 (6.15) 5.66 (5.65)
s – 5.13 5.07 4.75
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The polytropic model has only a normal component, while the Skyrme EoS admits both normal
and superfluid components. For the latter case, the numbers in brackets are the mode frequencies if
only the normal component exists in the star, showing that these modes ( f and p) remain approximately
unchanged even in the presence of superfluidity. The last row is the frequency of the superfluid mode.
Similar to previous works with other EoS [8,16], we find that the modes of the two-fluid star support f -
and p-modes that are very close to the corresponding normal fluid star, with the addition of one or two
superfluid modes, the lower one of which is intermediate between the f and p modes and is denoted
by “s" in Table 1. The superfluid mode frequency also decreases with decreasing compactness, though
no simple scaling with global stellar properties as for normal fluid modes could be determined. It is
likely that the superfluid mode is quite sensitive to the details of the EoS such as the effective masses,
and the superfluid fraction, which must ideally be determined by the critical temperature profile in
the star. The systematic thoeretical study of the superfluid modes with variable superfluid fraction,
EoS models and including non-zero temperature certainly deserves more study. Nevertheless, even in
our simple framework, the appearance of these distinct modes in the spectrum indicating superfluidity
in the cores of neutron stars is an exciting observational possibility for gravitational wave detectors of
increased sensitivity. At this stage, it is useful to summarize the main new developments in this work:

• The appearance of a new superfluid mode, while leaving the frequencies of the normal modes
almost unchanged, was already noted in [8], but they used a much older EoS [17] based on the
Walecka model. We have used the Skyrme EoS which obeys modern constraints from isospin
diffusion data and the slope of the symmetry energy. In addition, we employ neutron and proton
effective masses that are obtained consistently within the model [7]. This was not the case, for e.g.,
in all other previous computations of the superfluid oscillation modes [8,16]. This is an important
point since the entrainment matrix depends on the effective masses, and different models for
the density dependent effective mass yield different numerical values for the modes [8]. In this
way, our results are based on an EoS that is built from a unified treatment of terrestrial nuclear
experiments and the astrophysics of compact stars, and our results are more consistent from a
quantitative standpoint.

• We have reported the mode frequencies for a 1.8 M� and 2 M� configuration, which is a new
result since earlier works [8,16] that considered configurations of 1.4 M� predate the discovery of
the presently observed heaviest neutron star.

• We demonstrate the utility of the CompOSE database in using modern EoS for studies of neutron
star oscillations and gravitational waves. The EoS models taken from CompOSE calculate
the nucleon effective masses consistently, which is important in superfluid mode calculations.
This database also provides easy-to-use interpolation routines that are necessary since the
computational grid for the oscillation equations requires more points than are typically provided
in tabulated EoS. Readers interested in using the CompOSE repository for compact star and
supernova studies may consult the manual [18] or write to the authors of this manuscript.

5. Future Work

The results presented here are part of an ongoing, more systematic study of the effects of
superfluidity in dense matter on the oscillation modes of compact stars. We made some approximations
for the structure of the neutron star that can, and should be improved upon. For example, the EoS
models adopted here assume that the interior consists primarily of nucleons, with the addition of
electrons to satisfy charge neutrality. If hyperons are included, the entrainment matrix must be
modified [19] and this will affect the superfluid modes. The normal fluid modes will also change,
since the addition of hyperons softens the EoS at high density, making the star more compact.
We expect, as shown in previous studies with polytropic models [20], that with increasing compactness
(i.e., decreasing R/M), the f and p-mode frequencies will also increase. We are currently working
on extensions to include quark matter, which has a relativistic dispersion and additional neutrality
conditions. In such a case, the superfluid equations become more complicated: instead of dealing with
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the two species of nucleon, one would likely have to account for the entrainment between up, down
and possibly strange quarks. Thus, not only does the equation of state have to be modified, but the
fluid equations must be altered as well. The non-radial oscillations of a superconducting quark fluid
have been recently discussed in [21], although its superfluid modes have not been calculated. Further
improvements such as extending the analysis to finite temperature and including viscous dissipation
that damps the oscillation modes are needed to provide a more complete picture of the spectrum and
damping times of oscillations in a neutron star. As shown in this work, the CompOSE database can
serve as a useful repository for studies in this direction.
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Abstract: We study the anomalous electromagnetic transport properties of a quark-matter phase that
can be realized in the presence of a magnetic field in the low-temperature/moderate-high-density
region of the Quantum Chromodynamics (QCD) phase map. In this so-called Magnetic Dual Chiral
Density Wave phase, an inhomogeneous condensate is dynamically induced producing a nontrivial
topology, a consequence of the asymmetry of the lowest Landau level modes of the quasiparticles
in this phase. The nontrivial topology manifests in the electromagnetic effective action via a chiral
anomaly term θFμν F̃μν, with an axion field θ given by the phase of the Dual Chiral Density Wave
condensate. The coupling of the axion with the electromagnetic field leads to several macroscopic
effects that include, among others, an anomalous, nondissipative Hall current, an anomalous electric
charge, magnetoelectricity, and the formation of a hybridized propagating mode known as an axion
polariton. The possible existence of this phase in the inner core of neutron stars opens a window to
search for signals of its anomalous transport properties.

Keywords: chiral symmetry; axion QED; quark-hole pairing; cold-dense QCD; magnetic DCDW

1. Introduction

Neutron stars, the remnants of supernova collapse, are very dense objects produced by the
gravitational colapse of very massive stars (stars with masses between 10 and 30 solar masses). They
can reach densities several times larger than the nuclear density of 4 × 1017 kg/m3. An interesting
question that still remains unsettled is about the state of matter that supports such a dense medium.
In this regard, very precise mass measurements for two compact objects, PSR J1614 − 2230 and PSR
J0348 + 0432 with M = 1.97 ± 0.04M� [1] and M = 2.01 ± 0.04M� [2], respectively, where M� is the
solar mass, have provided an important clue on the possible candidates for their interior composition:
the phase of matter there should have an equation of state (EoS) rather stiff at high densities

The possibility of an interior composition based on a nucleon medium phase, formed mainly
by neutrons, faces the difficulty of reproducing the required EoS stiffness. The reason is that, while
under terrestrial conditions, hyperons are unstable and decay into nucleons through weak interactions,
in neutron stars, the equilibrium conditions at core densities of order 2 − 3ρ0 (with ρ0 � 0.16 fm−3

the nuclear saturation density) can make the inverse process possible [3–12]. Thus, at large enough
baryon chemical potential, the conversion of nucleons into hyperons becomes energetically favorable.
This conversion releases the Fermi pressure exerted by the nucleons and makes the EoS soft enough
to lead to a significant reduction of the star mass [4,13–20]. Different attempts to overcome this
problem exist in the literature, as the inclusion of a repulsive hyperon-hyperon interaction through the
exchange of vector mesons [21–25], or the inclusion of repulsive hyperonic three-body forces [26–31].
However, the possibility to reach the 2M� with a nucleon inner phase still remains an open question
under discussion.
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On the other hand, in the highly dense cores of the compact objects, the neutron-rich matter can
give rise to new degrees of freedom, by forming quark matter (see e.g., [32,33]). Even more, cold strange
quark matter has been argued to be absolutely stable [34]. Thus, a phase transition can take place in the
core favoring quark matter in the entire star interior, therefore giving rise to a strange star. Nevertheless,
since the existence of 2M� stars [35,36] was reported, there were also claims [37,38] that quark matter
has too soft an EoS to reach such a high-mass value. Nonetheless, it was later realized that to study
quark matter in compact objects, one has to rely on effective models like the Nambu-Jona-Lasinio
(NJL) models with parameters matched to nuclear data. The one-gluon exchange interaction of QCD
contains a dominant attractive diquark channel that is incorporated as a four-fermion interaction
term in NJL models. This attractive interaction gives rise to color superconductivity (CS) [39–42].
NJL models have predicted that the most favored phase of CS at asymptotically high densities is the
three-flavor color-flavor-locked (CFL) phase with a significantly large gap. The existence of a large
superconducting gap together with a repulsive vector interaction, which is always present in a dense
medium [43], can help to make the EoS stiffer. Yet, it was also found more recently that gluons in the
color superconducting medium can soften the EoS [44]. Then, it is not clear at present what will be the
more significant factor among all these competing effects, since they depend on parameter values that
cannot be fixed with total precision.

Moreover, even assuming that neutron stars can realize a quark phase, this does not take place
at asymptotically large densities. Their location in the QCD phase map will better correspond to
the low-temperature, intermediate-density region. This is a particularly challenging region with the
possibility of spatially inhomogeneous phases. To visualize that, we should take into account that
coming from the low density region, the energy separation between quarks and antiquarks grows
with increasing density up to a point where to excite antiquarks all the way from the Dirac sea in
order to pair them with the quarks at the Fermi surface is not energetically favorable anymore. In
this case, instead of undergoing a transition to a chirally restored phase, the system prefers to pair
quarks and holes with parallel momenta close to the Fermi surface, giving rise to inhomogeneous
chiral condensates. Spatially inhomogeneous phases with quark-hole condensates have been found in
the large-N limit of QCD [45–47], in quarkyonic matter [48–51], and in NJL models [52–57]. Hence,
although most NJL models had predicted a first-order chiral transition with increasing density [58], it
turned out that the transition is more likely to occur via some intermediate state(s) characterized by
inhomogeneous chiral condensates.

Inhomogeneous phases become favored also in CS [59], when the intermediate density region is
approached from the region of low temperatures and asymptotically high density values. As already
pointed out, at asymptotic densities, the most favored CS phase is the CFL, a homogeneous phase
in which all flavors pair with each other via the strong attractive quark-quark channel. This phase
is based on BCS quark-pairing and relies on the assumption that the quarks that pair with equal
and opposite momenta can each be arbitrarily close to their common Fermi surface. However, with
decreasing density, the combined effect of the strange quark mass, neutrality constraint and beta
equilibrium, tends to pull apart the Fermi momenta of different flavors, imposing an extra energy
cost on the formation of Cooper pairs. Thus, we conclude that BCS-pairing dominates as long as the
energy cost of forcing all species to have the same Fermi momentum is compensated by the pairing
energy that is released by the formation of Cooper pairs.Then, with decreasing density, the CFL phase
eventually becomes gapless and, most importantly, becomes unstable [60,61]. The instability, known as
chromomagnetic instability, manifests itself in the form of imaginary Meissner masses for some of the
gluons and indicates an instability towards spontaneous breaking of translational invariance [62–65].
In other words, it indicates the formation of a spatially inhomogeneous phase. Most inhomogeneous
CS phases are based on the idea of Larkin and Ovchinnikov (LO) [66] and Fulde and Ferrell (FF) [67],
originally applied to condensed matter. In the CS LOFF phases [68–70], quarks of different flavors
pair even though they have different Fermi momenta, because they form Cooper pairs with nonzero
momentum. CS inhomogeneous phases with gluon condensates that break rotational symmetry [71]
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have also been considered to remove the chromomagnetic instability. However, to the best of our
knowledge, the question of which CS phase is the most favorable in the region of intermediate densities
still remains unanswered.

In addition to their high densities, neutron stars typically have strong magnetic fields, which
become extremely large in the case of magnetars, with inner values that have been estimated to range
from 1018 G for nuclear matter [72] to 1020 G for quark matter [73]. The fact that strong magnetic
fields populate the vast majority of the astrophysical compact objects and that they can significantly
affect several properties of the star have served as motivation for many works focused on the study of
the EoS of magnetized neutron stars, without considering [73–98], or considering the magnetic-field
interaction with the particle anomalous-magnetic-moment [88,99–113]. An important characteristic is
that the EoS in a uniform magnetic field becomes anisotropic, with different pressures along the field
and transverse to it [73,94,98]. The transverse and longitudinal pressures can be found performing
a quantum-statistical average of the energy-momentum tensor, as done in [73] using a path-integral
approach based on the partition function of the grand canonical emsemble, or in [94] using the
many-particle density matrix.

It has been found that as a consequence of the anisotropy in the EoS, the effects of the two
pressures produce opposite contributions to the TOV equations. When the anisotropy becomes
significant, the TOV approach is inadequate, since it is based on a medium with spherical symmetry,
while the influence of a strong uniform magnetic field makes the geometry cylindrical. Lacking a
suitable approach that is compatible with the symmetry of the problem, any conclusion about the
effect of the magnetic field on the neutron star mass is in principle unreliable.

In summary, up to now it has been impossible to reliably determine if neutron stars (magnetars
included) are formed by neutrons or quarks, or by a hybrid combination of them, and if quark matter
is present, what its phase will be. That is why it is so important to look for new signals that can be
attributed uniquely to a certain phase of the interior matter with the hope of using observations to
pinpoint the inner composition of the star. Transport properties could be a way to reach this goal.
This paper aims to advance such a strategy. We present the electromagnetic transport properties [114]
of one of the quark phases: the Magnetic Dual Chiral Density Wave (MDCDW) phase, that can take
place in the low-temperature/intermediate-density region of quark matter. An important attribute
of this phase is its similarities with condensed matter topological materials like Weyl semimetals
(WSM) [115,116]. This opens the possibility to take advantage of new understandings within these
materials to infer potentially measurable effects in the MDCDW phase of quark matter, and then use
that insight to design clever ways to probe the presence of this quark phase in neutron stars.

2. The MCDCW Phase

To study the electromagnetic properties of the MCDCW phase, we should start by modeling
QCD + QED with the help of the following Lagrangian density that combines electromagnetism with
a two-flavor NJL model of strongly interacting quarks,

L = − 1
4

FμνFμν + ψ̄[iγμ(∂μ + iQAμ) + γ0μ]ψ

+ G[(ψ̄ψ)2 + (ψ̄iτγ5ψ)2], (1)

Here Q = diag(eu, ed) = diag( 2
3 e,− 1

3 e), ψT = (u, d); μ is the baryon chemical potential; and
G is the four-fermion coupling. The electromagnetic potential Aμ is formed by the background
Āμ = (0, 0, Bx, 0), which corresponds to a constant and uniform magnetic field B pointing in the
z-direction, with xμ = (t, x, y, z), plus the fluctuation field Ã. In the presence of electromagnetic
interactions the flavor symmetry SU(2)L × SU(2)R of the original NJL model is reduced to the
subgroup U(1)L × U(1)R.
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In the presence of a magnetic field, the formation of a dual chiral density wave (DCDW)
condensate with magnitude Δ and modulation qμ = (0, 0, 0, q) along the field direction [117,118]
is favored

〈ψ̄ψ〉 = Δ cos qμxμ, 〈ψ̄iτ3γ5ψ〉 = Δ sin qμxμ, (2)

The mean-field Lagrangian of the MDCDW phase is then,

LMF = ψ̄[iγμ(∂μ + iQAμ) + γ0μ]ψ − mψ̄eiτ3γ5qμxμ
ψ

− m2

4G
− 1

4
FμνFμν, (3)

where m = −2GΔ.
To remove the spatial modulation of the mass, we use a local chiral transformation

ψ → eiτ3γ5θψ, ψ̄ → ψ̄eiτ3γ5θ , (4)

with θ(x) = qz/2.
After the chiral transformation (4), the mean-field Lagrangian density (3) becomes

LMF = ψ̄[iγμ(∂μ + iQAμ + iτ3γ5∂μθ) + γ0μ − m]ψ

− m2

4G
− 1

4
FμνFμν (5)

The corresponding modified Dirac Hamiltonian of flavor f is

Hf = −iγ0γi(∂i + ie f Ai + i
e f

|e f |γ5∂iθ) + γ0m, (6)

Here e f is the flavor electric charge. The single-particle energy spectrum is given by the
eigenvalues of Hf . It separates into two sets of energy modes [117], the LLL (l = 0) modes

E0 = ε
√

m2 + k2
3 + q/2, ε = ±, (7)

and the higher Landau level (l �= 0) modes

El = ε

√
(ξ
√

m2 + k2
3 + q/2)2 + 2|e f B|l, ε = ±, ξ = ±, l = 1, 2, 3, ... (8)

In (8) ξ = ± indicates spin projection and ε = ± particle/antiparticle energies. In contrast, only
one spin projection (+ for positively charged and − for negatively charged quarks) contributes to
the LLL spectrum. An important feature of this spectrum is that the LLL energies are not symmetric
about the zero-energy level. As a consequence, the ± sign in front of the square root should not be
interpreted as particle/antiparticle in the LLL case.

A peculiarity of the local chiral transformation (4) is that it does not leave invariant the fermion
measure in the path-integral. To take this into consideration, we need to calculate the contribution of
the Jacobian J(θ(x)) = (DetUA)

−2 with UA = eiτ3γ5θ

Dψ̄(x)Dψ(x) → (DetUA)
−2Dψ̄(x)Dψ(x), (9)
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to the effective action [114]. As a consequence, the fermion effective action entering in the partition
function after the local chiral transformation is implemented reads

Se f f =
∫

d4x{ψ̄[iγμ(∂μ + iQAμ + iτ3γ5∂μθ) + γ0μ − m]ψ − m2

4G

+
κ

4
θ(x)Fμν F̃μν}, (10)

on which κ
4 =

3(e2
u−e2

d)

8π2 = e2

8π2 = α
2π reflects the contribution of all the flavors and colors. The axion

term κ
4 θ(x)Fμν F̃μν denotes the contribution of the Jacobian of the fermionic measure [114].

3. Axion Electrodynamics in the MDCDW Phase

To find the Maxwell equations of the MDCDW phase, we need to find the zero temperature
electromagnetic effective action Γ(A) corresponding to the effective classical action (10),

Γ = −i log Z, (11)

with Z the partition function given by

Z = eiΓmatter =
∫

Dψ̄(x)Dψ(x)eiSe f f (12)

with Se f f given in (10).
After integrating in the fermion fields and carrying out the finite-temperature Matsubara sum to

take the zero-temperature limit, we can expand Γ in powers of the fluctuation field Ã to obtain

Γ(A) = −VΩ +
∫

d4x
[
−1

4
FμνFμν +

κ

4
θ(x)Fμν F̃μν

]
(13)

+
∞

∑
i=1

∫
dx1...dxiΠμ1,μ2,...μi (x1, x2, ...xi)Ãμ1(x1)...Ãμi (xi),

with V the four-volume, Ω the mean-field thermodynamic potential obtained for this phase in Ref. [117],
and Πμ1,μ2,...μi the i-vertex tensors corresponding to the one-loop polarization operators with internal
lines of fermion Green functions in the MDCDW phase and i external lines of photons. In (13) we
added the pure electromagnetic field contribution − 1

4 FμνFμν.
We are interested in the linear response of the MCDCW phase to a small electromagnetic probe Ã.

Furthermore, for consistency of the approximation, we can neglect all the radiative corrections of order
higher than α, as α is the order of the axion term in (13). These two conditions imply that we shall
cut the series in (13) at i = 1, which can be shown to provide the medium corrections to the Maxwell
equations that are linear in the electromagnetic field and of the desired order in α.

Then, Γ(A) becomes

Γ(A) = −VΩ +
∫

d4x
[
−1

4
FμνFμν − κ

∫
d4xεμανβ Aα∂ν Aβ∂μθ

]

−
∫

d4xÃμ(x)Jμ(x), (14)

where we integrated by parts the third term in the r.h.s. of (13). Jμ(x) = (J0, J) represents the contribution
of the ordinary (non-anomalous) electric four-current, determined by the one-loop tadpole diagrams.
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The Euler-Lagrange equations derived from the action (14) give rise to the modified Maxwell equations

∇ · E = J0 + e2

4π2 qB, (15)

∇× B − ∂E/∂t = J − e2

4π2 q × E, (16)

∇ · B = 0, ∇× E + ∂B/∂t = 0, (17)

on which we already used that θ = qz
2 . These are the equations of axion electrodynamics for the

MDCDW phase, which are a particular case of those proposed by Wilczek [119] many years ago for a
general axion field θ.

From Equations (15) and (16) we have that the axion term leads to an anomalous electric charge density,

J0
anom =

e2

4π2 qB, (18)

as well as to an anomalous Hall current density,

Janom = − e2

4π2 q × E (19)

The anomalous Hall current is perpendicular to both the magnetic and the electric field, since q is
aligned with B. Besides, Janom is dissipationless and as such, it can significantly influence the transport
properties of the system.

In (15) and (16), J0 and J are the ordinary charge and current densities respectively, which are
calculated from the tadpole diagrams of the theory. Of special interest is to check if the ordinary
charge so obtained can annihilate the anomalous contribution J0

anom. As discussed in [114] , since J0
anom

only gets contributions from the LLL, we should compare it with the corresponding tadpole result
calculated in the LLL approximation. Then, calculating the tadpole diagrams we obtain

J1,2,3
LLL = 0 (20)

and

J0
LLL = ∑

f
J0
LLL(sgn

(
e f

)
) (21)

=
e2B
2π2

√
(μ − q/2)2 − m2[Θ(μ − q/2 − m)− Θ(q/2 − μ − m)]

Thus, there is no LLL current density, but only a charge density. Comparing Equations (18) and (21)
we can see that they do not cancel out. Only if m = 0 in (21), meaning setting the condensate
amplitude to zero, the anomalous electric charge density will be cancelled out by the ordinary charge
in Equation (15). In such a situation, the resulting LLL contribution to the net electric charge density
reduces to e2B

2π2 μ, a non-anomalous term which, as expected, is independent of q since no physical
quantity should depend on q when there is no MDCDW condensate (i.e., when m = 0).

Finally, since the Maxwell Equation (16) contains an anomalous Hall current, it is important to
investigate if it can be cancelled out by an ordinary Hall current. The Hall conductivity can be easily
found from the charge density in the case that it is linearly dependent on the magnetic field [114],

σxy =
∂J0

∂B
(22)
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Applying this formula to the ordinary electric charge density (21), the corresponding LLL
contribution to the Hall conductivity is

σord
xy =

∂J0
LLL

∂B
=

e2

2π2

√
(μ − q/2)2 − m2[Θ(μ − q/2 − m)− Θ(q/2 − μ − m)] (23)

which leads to the LLL ordinary Hall current Jord
LLL = (σord

xy Ey,−σord
xy Ex, 0). Clearly, Jord

LLL does not cancel
out the anomalous current (19).

Likewise, the anomalous Hall conductivity can be found either from the anomalous charge (18),

σanom
xy =

∂J0
anom
∂B

=
e2

4π2 q, (24)

or directly from the anomalous Hall current Janom given in (19). As J0
anom is due to the LLL, so is σanom

xy ,
thereby underlining once again the LLL origin of Janom.

4. Anomalous Transport in the MDCDW Phase

The MDCDW phase exhibits some interesting electromagnetic features, such as for example,
linear magnetoelectricity [114]. To see this, we should define the D and H fields as

D = E − κθB, H = B + κθE (25)

Then, rewriting the Maxwell Equations (15) and (16) in terms of these fields we obtain,

∇ · D = J0, ∇× H − ∂D

∂t
= J (26)

Equations (25) imply that a magnetic field induces an electric polarization P = −κθB and an
electric field induces a magnetization M = −κθE. Both parameters, P and M, depend on the theta
angle, which evidences the anomalous character of this result. It is important to point out that the
appearance of a linear magnetoelectricity in this medium is possible because, as seen from (25) and
(26), the MDCDW ground state breaks parity and time-reversal symmetries. We call attention to the
fact that the magnetoelectricity here is different from the one found in the magnetic-CFL phase of
color superconductivity [120–122], where P was not broken and the effect was a consequence of an
anisotropic electric susceptibility [123], so it was not linear.

In this formulation, it follows from (26) that the anomalous Hall current is given by a
medium-induced, magnetic current density ∇ × M, due to the space-dependent anomalous
magnetization coming from the axion term.

An interesting property of the anomalous Hall current is its dissipationless character. This is a
consequence of the fact that this current (19) is perpendicular to E and to the modulation vector q,
which in turn is parallel to B. We already proved that the anomalous Hall conductivity is given by

σanom
xy = e2q/4π2 (27)

Its anomalous character is reflected in the fact that it does not depend on the fermion mass m,
which is consistent with the nondissipative character of the anomalous Hall current.

The same expression of the anomalous Hall conductivity has been found in WSM [115], where
the role of the modulation parameter q is played by the separation in momentum of the Weyl nodes.
A similar Hall conductivity can appear also at the boundary between a topological and a normal
insulator [124] when there is an electric field in the plane of the boundary. However, in the topological
insulator case, the anomalous Hall conductivity is discrete because the axion field θ jumps from 0 to π

in the surface of the two insulators. Our results are also connected to optical lattices, as 3D topological
insulators have been proposed to exist in 3D optical lattices [125].
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It is worth pointing out the relevance of these results for neutron stars. The values of chemical
potential and magnetic field needed for the realization of the MDCDW phase are all within the possible
ranges of these parameters at the core of hybrid stars or in quark stars. As shown in [117], for baryon
chemical potentials between 300 and 600 MeV, and magnetic field strengths

√
eB ∼ 150 − 500 MeV

(∼1018–1019 G) the MDCDW is very robust, with b and m in the range between 300–500 MeV.
The inhomogeneity parameter b actually sets at arbitrarily small values of magnetic field and chemical
potential because the anomalous term in the thermodynamic potential drives b �= 0 from the beginning,
but b becomes of the order of the dynamical mass when the matter density becomes nonzero,
which typically occurs when the chemical potential is comparable to the vacuum dynamical mass.
Furthermore, the application to neutron stars requires introducing electrical neutrality (either locally or
globally, as the neutrality does not need to be satisfied locally for compact hybrid stars [126]) and beta
equilibrium conditions, as well as vector interactions to be able to accommodate the 2M� observations.
None of these conditions however impede the realization of the MDCDW phase, as shown in detail
in [93], where their main consequence was that each flavor acquires its own modulation and dynamical
mass, and the MDCDW remains robust at fields of the order of 1018G and chemical potentials between
300 and 600 MeV. A significant result in [93] was the fact that the MDCDW phase is compatible with
the 2M� observations. It is easy to see that the effect on the anomalous terms will simply be that each
flavor still contributes to the anomalous electric charge and Hall current, only now each depends on
the flavor’s particular modulation parameter. The anomalous currents could serve to resolve the issue
with the stability of the magnetic field strength in magnetars [127,128]. It will be worthy to understand
if the magneto-transport properties of the MDCDW phase can significantly affect the thermal and
electrical conductivity producing a tangible separation between the transport properties of compact
stars formed by neutrons or by quarks in this inhomogeneous phase. These and other questions
highlight the importance of exploring which observable signatures could be identified and then used
as telltales of the presence of the MDCDW phase in the star core.

Another interesting effect can be connected to the fluctuations δθ of the axion field. If one goes
beyond the mean-field approximation, there will be mass and kinetic terms of the axion field fluctuation.
Besides, due to the background magnetic field, the axion fluctuation couples linearly to the electric
field via the term κδθE · B, so the field equations of the axion fluctuation and the electromagnetic field
will be mixed, giving rise to a quasiparticle mode known as the axion polariton mode [129]. The axion
polariton mode is gapped with a gap proportional to the background magnetic field. This implies that
electromagnetic waves of certain frequencies will be attenuated by the MDCDW matter, since in this
medium they propagate as polaritons. The axion polariton could be useful to probe the presence of the
MDCDW phase in different media.

5. Conclusions

In this paper we present the electromagnetic anomalous transport properties of the so called
MDCDW phase of quark matter at low temperatures and moderate densities in the presence of a
magnetic field. This is a phase that in principle can be realized in neutron hybrid stars with a quark
core or in strange stars.

The system under study has a non-trivial topology, which is due to the combined effect of a
ground state having an inhomogeneous particle-hole condensate and the dimensional reduction
affecting the quasiparticles occupying the LLL. As a consequence, the system exhibits an anomalous
charge that depends on the applied magnetic field and the modulation of the particle-hole condensate.
The topological nature of the electric charge can be traced back to the spectral asymmetry of the LLL
modes. The spectral asymmetry is also responsible for an anomalous non-dissipative Hall current that
depends on the modulation parameter.

We should mention that the reported results can also have importance for Heavy Ion Collision
(HIC) physics. Future HIC experiments, that will take place at lower temperatures and higher densities,
will certainly generate strong magnetic and electric fields in their off-central collisions and will open
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a much more sensitive window to look into a very challenging region of QCD [130]. For example,
the second phase of the RHIC energy scan (BES-II) [131], the planned experiments at the Facility for
Antiproton and Ion Research (FAIR) [132] at the GSI site in Germany, and the Nuclotron-based Ion
Collider Facility (NICA) [133,134] at JINR laboratory in Dubna, Russia, are all designed to run at
unprecedented interaction rates to provide high-precision measures of observables in the high baryon
density region. That is why it is so timely and relevant to carry out detailed theoretical investigations
of all potential observables of the MDCDW phase. Therefore, we hope that our findings will serve
to stimulate quantitative studies to identify signatures of the anomalous effects here discussed in the
future HIC experiments.

In addition, we should notice that the anomalous effects of the MDCDW phase share many
properties with similar phenomena in condensed matter systems with non-trivial topologies as
topological insulators [124], where θ depends on the band structure of the insulator; Dirac semimetals
[135–138], a 3D bulk analogue of graphene with non-trivial topological structures; and WSM [115],
where the derivative of the angle θ is related to the momentum separation between the Weyl nodes.
Countertop experiments with these materials can therefore help us to gain useful insight into the
physics governing the challenging region of strongly coupled QCD, thereby inspiring new strategies
to probe the presence of the MDCDW phase in neutron stars and HIC.
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Abstract: In this work we investigate the effect a crystalline quark–hadron mixed phase can
have on the neutrino emissivity from the cores of neutron stars. To this end we use relativistic
mean-field equations of state to model hadronic matter and a nonlocal extension of the three-flavor
Nambu–Jona–Lasinio model for quark matter. Next we determine the extent of the quark–hadron
mixed phase and its crystalline structure using the Glendenning construction, allowing for the
formation of spherical blob, rod, and slab rare phase geometries. Finally, we calculate the neutrino
emissivity due to electron–lattice interactions utilizing the formalism developed for the analogous
process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the
presence of a crystalline quark–hadron mixed phase is substantial compared to other mechanisms at
fairly low temperatures (<∼109 K) and quark fractions (<∼30%), and that contributions due to lattice
vibrations are insignificant compared to static-lattice contributions. There are a number of open issues
that need to be addressed in a future study on the neutrino emission rates caused by electron–quark
blob bremsstrahlung. Chiefly among them are the role of collective oscillations of matter, electron
band structures, and of gaps at the boundaries of the Brillouin zones on bremsstrahlung, as discussed
in the summary section of this paper. We hope this paper will stimulate studies addressing
these issues.

Keywords: quark matter; hadronic matter; quark deconfinement; neutron star matter; nuclear
equation of state; phase transition; crystalline structure; neutrino emissivities

1. Introduction

It was shown by Glendenning [1,2] that if electric charge neutrality in a neutron star [3–5] is
treated globally rather than locally, the possible first order phase transition from hadronic matter to
quark matter in the neutron star core will result in a mixed phase in which both phases of matter
coexist. To minimize the total isospin asymmetry energy the two phases will segregate themselves,
which results in positively charged regions of hadronic matter and negatively charged regions of
quark matter, with the rare phase occupying sites on a Coulomb lattice. The situation is schematically
illustrated in Figure 1. Further, the competition between the Coulomb and surface energy densities
will cause the matter to arrange itself into energy minimizing geometric configurations [1,2].

Universe 2018, 4, 64; doi:10.3390/universe4050064 www.mdpi.com/journal/universe239
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Figure 1. Schematic illustrating the rare phase structures that may form in the quark–hadron mixed
phase [6,7]). An increase in the volume fraction of quark matter, described by χ, is accompanied by an
increase in baryon number density and depth within a neutron star.

The presence of the Coulomb lattice and the nature of the geometric configurations of matter in
the quark–hadron mixed phase may have a significant effect on the neutrino emissivity from the core.
More specifically, neutrino-antineutrino pairs will be created by the scattering of electrons from these
charged lattice structures,

e− + (Z, A) → e− + (Z, A) + ν + ν̄ , (1)

and this will increase the emissivity in the mixed phase. This process is analogous to neutrino-pair
bremsstrahlung of electrons in the neutron star crust, where ions exist on a lattice immersed in an
electron gas, and for which there exists a large body of work (see, for example [8–14]). The situation is
more complicated in the quark–hadron mixed phase, but the operative interaction is still the Coulomb
interaction. Thus, to estimate the neutrino-pair Bremsstrahlung of electrons from rare phase structures
in the quark–hadron mixed phase we rely heavily on this body of work (particularly [8]). We will refer
to this additional mechanism as mixed phase Bremsstrahlung (MPB).

Neutrino emissivity due to the interaction of electrons with a crystalline quark–hadron mixed
phase has been previously studied in this manner in [6,15]. In the present work we use a set of
nuclear equations of state which are in better agreement with the latest nuclear matter constraints at
saturation density than those utilized in [6], and are consistent with the 2.01 M� mass constraint set
by PSR J0348 + 0432 [16]. To describe quark matter we use the nonlocal SU(3) Nambu–Jona–Lasinio
(n3NJL) model discussed in [6,17–21]. The n3NJL parametrization used is given as “Set I” in [22],
and is in better agreement with the empirical quark masses than the parametrization utilized in [6].
We consider three geometries for the range of possible structures in the mixed phase including spherical
blobs, rods, and slabs, and calculate the associated static lattice contributions to the neutrino emissivity.
Phonon contributions to the emissivity for rod and slab geometries are not considered, though a
comparison of the phonon and static lattice contributions for spherical blobs is given and indicates
that phonon contributions may not be significant. Finally, the extent of the conversion to quark matter
in the core was determined in [7], and this allows for a comparison between emissivity contributions
from standard and enhanced neutrino emission mechanisms including the direct Urca (DU), modified
Urca (MU), and baryon–baryon and quark–quark Bremsstrahlung (NPB) processes, and contributions
from electron–lattice interactions. For a detailed summary including the equations and coefficients
used for the calculation of the standard and enhanced neutrino emission mechanisms, see [7].

The results for different parametrizations are numerous and qualitatively similar, so the DD2
parametrization will be presented exclusively in this paper. The results of the other parametrizations
can be found in [7].

2. Improved Set of Models for the Nuclear Equation of State

Hadronic matter is modeled in the framework of the relativistic nonlinear mean-field (RMF)
approach [23,24], which describes baryons interacting through the exchange of scalar, vector,
and isovector mesons (for details, see [6,7,25]). The RMF approach is parametrized to reproduce
the following properties of symmetric nuclear matter at saturation density n0 (see Table 1): the binding
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energy per nucleon (E0), the nuclear incompressibility (K0), the isospin asymmetry energy (J),
and the effective mass (m∗/mN). In addition, the RMF parametrizations used in this work employ
a density-dependent isovector–meson–baryon coupling constant that can be fit to the slope of
the asymmetry energy (L0) at n0. The scalar- and vector-meson–baryon coupling constants of
the density-dependent relativistic mean-field models DD2 and ME2 are fit to properties of finite
nuclei [7,26,27]. These models are an extension of the standard RMF approach that account for medium
effects by making the meson–baryon coupling constants dependent on the local baryon number
density [28]. The density-dependence of the meson–baryon coupling constants is given by

giB(n) = giB(n0) fi(x), (2)

where i ∈ {σ, ω, ρ}, x = n/n0, and fi(x) provides the functional form for the density dependence.
The most commonly utilized ansatz for fi(x) are given by [29]

fi(x) = ai
1 + bi(x + di)

2

1 + ci(x + di)2 , (3)

for i ∈ {σ, ω}, and
fρ(x) = exp

[−aρ (x − 1)
]

. (4)

The nine parameters of the density dependence (aσ, bσ, cσ, dσ, aω, bω, cω, dω, aρ), the values of the
meson–nucleon couplings at n0 (gσN(n0), gωN(n0), gρB(n0)), and the mass of the scalar meson (mσ) are
all fit to properties of symmetric nuclear matter at n0 and to the properties of finite nuclei including
but not limited to binding energies, charge and diffraction radii, spin–orbit splittings, and neutron
skin thickness (see [27,30]).

In addition to the nucleons, hyperons and delta isobars (Δs) are also considered in the composition
of hadronic matter. The scalar-meson–hyperon coupling constants are fit to the following hypernuclear
potentials at saturation (see [7] and references therein),

U(N)
Λ = −28 MeV, U(N)

Σ = +30 MeV, U(N)
Ξ = −18 MeV . (5)

The vector-meson–hyperon coupling constants are taken to be those given by the ESC08 model in
SU(3) symmetry [7,31,32],

gωΛ = gωΣ ≈ 0.79 gωN , gωΞ ≈ 0.59 gωN . (6)

The scalar- and vector-meson–Δ coupling constants are given as follows,

xσΔ = xωΔ = 1.1, xρΔ = 1.0 . (7)

Finally, the isovector-meson–hyperon and isovector-meson–Δ coupling constants are taken to
be universal, with the differences in the baryon isospin accounted for by the isospin operator in
the lagrangian.
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Table 1. Properties of symmetric nuclear matter at saturation density for the hadronic parametrizations
of this work.

Saturation Property SWL [7] GM1L [1,7] DD2 [26] ME2 [27]

n0 (fm−3) 0.150 0.153 0.149 0.152
E0 (MeV) −16.00 −16.30 −16.02 −16.14
K0 (MeV) 260.0 300.0 242.7 250.9
m∗/mN 0.70 0.70 0.56 0.57
J (MeV) 31.0 32.5 32.8 32.3

L0 (MeV) 55.0 55.0 55.3 51.3

3. Crystalline Structure of the Quark–Hadron Mixed Phase

A mixed phase of hadronic and quark matter will arrange itself so as to minimize the total energy
of the phase. Under the condition of global charge neutrality, this is the same as minimizing the
contributions to the total energy due to phase segregation, which includes the surface and Coulomb
energy contributions. Expressions for the Coulomb (εC) and surface (εS) energy densities can be
written as [1,2]

EC = 2πe2 [qH(χ)− qQ(χ)
]2 r2x fD(x) , (8)

ES = Dxα(χ)/r , (9)

where qH (qQ) is the hadronic (quark) phase charge density, r is the radius of the rare phase structure,
and α(χ) is the surface tension between the two phases. The parameter χ, which varies between 0 and
1, represents the volume fraction of quark matter at a given density. The quantities x and fD(x) in (8)
are defined as

x = min(χ, 1 − χ) (10)

and

fD(x) =
1

D + 2

[
1

D − 2
(2 − D x1−2/D) + x

]
, (11)

where D is the dimensionality of the lattice. The phase rearrangement process will result in the
formation of geometrical structures of the rare phase distributed in a crystalline lattice that is immersed
in the dominant phase (see Figure 1). The rare phase structures are approximated for convenience as
spherical blobs, rods, and slabs [1,2]. The spherical blobs occupy sites in a three dimensional (D = 3)
body centered cubic (BCC) lattice, the rods in a two dimensional (D = 2) triangular lattice, and the
slabs in a simple one dimensional (D = 1) lattice [8]. At χ = 0.5 both hadronic and quark matter exist
as slabs in the same proportion, and at χ > 0.5 the hadronic phase becomes the rare phase with its
geometry evolving in reverse order (from slabs to rods to blobs).

Direct determination of the surface tension of the quark–hadron interface is problematic because
of difficulties in constructing a single theory that can accurately describe both hadronic matter and
quark matter. Therefore, we employ an approximation proposed by Gibbs where the surface tension is
taken to be proportional to the difference in the energy densities of the interacting phases [1,2],

α(χ) = ηL
[EQ(χ)− EH(χ)

]
, (12)

where L is proportional to the surface thickness which should be on the order of the range of the strong
interaction (1 fm), and η is a proportionality constant. In this work we maintain the energy density
proportionality but set the parameter η = 0.08 so that the surface tension falls below 70 MeV fm−2 for
all parametrizations, a reasonable upper limit for the existence of a quark–hadron mixed phase [33].
The surface tension as a function of χ is given in Figure 2 for the nuclear DD2 parametrization,
introduced in Section 2.
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Figure 2. Surface tension α in the quark–hadron mixed phase for the DD2 parametrization [7]. The red
shading indicates the range for the maximum quark fraction χmax for the two values of the quark
vector coupling constant GV . (Left panel) Only nucleons and leptons are included in the hadronic
phase. (Center panel) Hyperons are included in the hadronic phase. (Right panel) Delta isobars are
included in addition to hyperons in the hadronic phase. Similar figures for the SWL, GM1L, and ME2
parametrizations can be found in Reference [7].

We note that, in this work, we restricted ourselves to considering GV values that are in the range
of 0 < GV < 0.05GS, as this choice leads to gravitational masses of neutron stars with quark-hybrid
compositions that satisfy the 2 M� constraint. Exploring the possibility of larger GV values would
certainly be worthwhile, but this is beyond the scope of this work.

The size of the rare phase structures is given by the radius (r) and is determined by minimizing
the sum of the Coulomb and surface energies, ∂(EC + ES)/∂r, and solving for r [1,2],

r(χ) =

(
Dα(χ)

4πe2 fD(χ)
[
qH(χ)− qQ(χ)

]2
) 1

3

. (13)

Rare phase structures are centered in the primitive cell of the lattice, taken to be a Wigner–Seitz
cell of the same geometry as the rare phase structure. The Wigner–Seitz cell radius R is set so that the
primitive cell is charge neutral,

R(χ) = rx−1/D . (14)

Figure 3 shows r and R as a function of the quark fraction in the mixed phase. Both r and R
increase with an increase in the baryonic degrees of freedom, particularly when χ <∼ 0.5 and the vector
interaction is included. Note that the blob radius should vanish for χ ∈ {0, 1}, but does not due to the
approximate nature of the geometry function fD(χ) [15]. The number density of rare phase blobs will
be important for calculating the phonon contribution to the emissivity. Since there is one rare phase
blob per Wigner–Seitz cell, the number density of rare phase blobs (nb) is simply the reciprocal of the
Wigner–Seitz cell volume,

nb = (4πR3/3)−1 . (15)

The density of electrons in the mixed phase is taken to be uniform throughout. Charge densities
in both the rare and dominant phases are also taken to be uniform, an approximation supported by
a recent study by Yasutake et al. [33]. The uniformity of charge in the rare phase also justifies the
use of the nuclear form factor (F(q)) presented in Section 4. The total charge number per unit volume
(|Z| /VRare) of the rare phase structures is given in Figure 4.
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Figure 3. Radius of the rare phase structure r and Wigner–Seitz cell R in the quark–hadron mixed
phase for the DD2 parametrization [7]. See Figure 2 for additional details. Similar figures for the SWL,
GM1L, and ME2 parametrizations can be found in Reference [7].

Figure 4. Charge number per unit volume of the rare phase structures for the DD2 parametrization [7].
See Figure 2 for additional details. Similar figures for the SWL, GM1L, and ME2 parametrizations can
be found in Reference [7].

4. Neutrino Emissivity Due to a Crystalline Quark–Hadron Lattice

We begin this section with a brief discussion of the neutrino emissivity due to a crystalline
quark–hadron lattice [6]. Modeling the complex interactions of electrons with a background of neutrons,
protons, hyperons, muons, and quarks is an exceptionally complicated problem. However, to make a
determination of the neutrino emissivity that is due to electron–lattice interactions in the quark–hadron
mixed phase we need only consider the Coulomb interaction between them. This simplifies the problem
greatly, as a significant body of work exists for the analogous process of electron–ion scattering that
takes place in the crusts of neutron stars.

To determine the state of the lattice in the quark–hadron mixed phase we use the dimensionless
ion coupling parameter given by

Γ =
Z2e2

RkBT
. (16)

Below Γmelt = 175 the lattice behaves as a Coulomb liquid, and above as a Coulomb crystal [34,35].
It was shown in Reference [15] that the emissivity due to electron-blob interactions in the mixed phase
was insignificant compared to other contributions at temperatures above T >∼ 1010 K. Therefore, in this
work we consider temperatures in the range 107 K ≤ T ≤ 1010 K. At these temperatures the value of
the ion coupling parameter is well above Γmelt, and so the lattice in the quark–hadron mixed phase is
taken to be a Coulomb crystal.
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To account for the fact that the elasticity of scattering events is temperature dependent we need to
compute the Debye–Waller factor, which is known for spherical blobs only and requires the plasma
frequency and temperature given by

ωp =

√
4πZ2e2nb

mb
, (17)

Tp =
h̄ωp

kB
, (18)

where mb is the mass of a spherical blob [8]. The Debye–Waller factor is then given by

W(q) =

⎧⎨
⎩

aq2

8k2
e

(
1.399 e−9.1tp + 12.972 tp

)
spherical blobs ,

0 rods and slabs ,
(19)

where q = |q| is a phonon or scattering wave vector, a = 4h̄2k2
e /(kBTpmb), and tp = T/Tp [8,36].

In order to smooth out the charge distribution over the radial extent of the rare phase structure we
adopt the nuclear form factor given in [8],

F(q) =
3

(qR3)
[sin(qR)− qR cos(qR)] . (20)

Screening of the Coulomb potential by electrons is taken into account by the static dielectric factor
ε(q, 0) = ε(q), given in [10]. However, the charge number of the rare phase structures is high and the
electron number density is low, so setting this factor to unity has no noticeable effect on the calculated
neutrino emissivity. Finally, the effective interaction is given by [8]

V(q) =
4πeρZF(q)

q2ε(q, 0)
e−W(q) . (21)

General expressions for the neutrino emissivity due to the MPB electron–lattice interactions were
derived by Haensel et al. [37] for spherical blobs and by Pethick et al. [14] for rods and slabs,

εblobs
MPB ≈ 5.37 × 1020 nT6

9 Z2L erg s−1 cm−3 , (22)

εrods,slabs
MPB ≈ 4.81 × 1017 keT8

9 J erg s−1 cm−3 , (23)

where L and J are dimensionless quantities that scale the emissivities. Both L and J contain a
contribution due to the static lattice (Bragg scattering), but we consider the additional contribution
from lattice vibrations (phonons) for spherical blobs, so L = Lsl + Lph. We note that the T8 temperature
dependence in Equation (23) is somewhat deceiving since the J factor also depends on temperature
and, for a wide range of parameters, is proportional to 1/T2. In effect, the neutrino emissivity εrods,slabs

MPB
is therefore proportional to T6.

4.1. Phonon Contribution to Neutrino Emissivity

The expressions for determining the neutrino emissivity due to interactions between electrons and
lattice vibrations (phonons) in a Coulomb crystal, with proper treatment of multi-phonon processes,
were obtained by Baiko et al. [38] and simplified by Kaminker et al. [8]. The phonon contribution to
the emissivity is primarily due to Umklapp processes in which a phonon is created (or absorbed) by
an electron that is simultaneously Bragg reflected, resulting in a scattering vector q that lies outside the
first Brillouin zone, q0

>∼ (6π2nb)
1/3 [39,40], where nb is given by Equation (15).
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The contribution to MPB due to phonons is contained in Lph and given by Equation (21) in [8],

Lph =
∫ 1

y0

dy
Seff(q)|F(q)|2

y|ε(q, 0)|2
(

1 +
2y2

1 − y2 ln y
)

, (24)

where y = q/(2ke), and the lower integration limit y0 excludes momentum transfers inside the first
Brillouin zone. The structure factor Seff is given by (24) and (25) in [8]),

Seff(q) = 189
(

2
π

)5
e−2W

∫ ∞

0
dξ

1 − 40ξ2 + 80ξ4

(1 + 4ξ2)
5 cosh2 (πξ)

×
(

eΦ(ξ) − 1
)

, (25)

Φ(ξ) =
h̄q2

2mb

〈
cos (ωst)

ωssinh (h̄ωs/2kBT)

〉
, (26)

where ξ = tkBT/h̄ and 〈. . .〉 denotes averaging over phonon frequencies and modes,

〈 fs(k)〉 = 1
3VB

∑
s

∫
VB

dk fs(k) . (27)

It is assumed that there are three phonon modes s, two linear transverse and one longitudinal.
The frequencies of the transverse modes are given by ωti = aik, where i = 1, 2, a1 = 0.58273,
and a2 = 0.32296. The frequency of the longitudinal mode ωl is determined by Kohn’s sum rule,
ω2

l = ω2
p − ω2

t1
− ω2

t2
[41].

Umklapp processes proceed as long as the temperature TUmklapp
>∼ TpZ1/3e2/(h̄c), below which

electrons can no longer be treated in the free electron approximation [39]. This limits the phonon
contribution to the neutrino emissivity to only a very small range in temperature for a crystalline
quark–hadron mixed phase (see Figure 5), and renders it negligible compared to the static lattice
contribution as will be shown in the next section.

Figure 5. Temperature below which Umklapp processes are frozen out (TUmklapp), and contributions
to the neutrino emissivity due to electron–phonon interactions become negligible for the DD2
parametrization [7]. See Figure 2 for additional details. Similar figures for the SWL, GM1L, and ME2
parametrizations can be found in [7].

4.2. Static Lattice Contribution to Neutrino Emissivity

Pethick and Thorsson [14] found that with proper handling of electron band-structure effects the
static lattice contribution to the neutrino emissivity in a Coulomb crystal was significantly reduced
compared to calculations performed in the free electron approximation. Kaminker et al. [8] presented
simplified expressions for calculating the static lattice contribution (Lsl) using the formalism developed
in [14]. The dimensionless quantities Lsl and J that scale the neutrino emissivities for spherical blobs
and rods/slabs, respectively, are given by

Lsl =
1

12Z ∑
K �=0

(1 − y2
K)

y2
K

|F(K)|2
|ε(K)|2 I(yK, tV) e−2W(K) (28)
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and

J = ∑
K �=0

y2
K

t2
V

I(yK, tV) , (29)

where K = |K| is a scattering vector and restricted to linear combinations of reciprocal lattice vectors,
yK = K/(2ke), tV = kBT/

[|V(K)|(1 − y2
K)
]
, and I(yK, tV) is given by Equation (39) in [8]. The sum

over K in (28) and (29) terminates when K > 2ke, prohibiting scattering vectors that lie outside the
electron Fermi surface.

5. Neutrino Emissivity Results

The neutrino emissivities due to MPB and the additional emissivity mechanisms are given in
Figures 6 and 7 for GV = 0 and GV = 0.05 GS respectively at temperatures between 107 K and 1010 K.
The MPB emissivity is for most of the mixed phase the weakest of the emissivity mechanisms,
peaking at low χ (at χ <∼ 0.05 the MPB emissivity may be overestimated due to the limitations
of the dimensionality function), and appears to be slightly larger when hyperons and Δs are included
in the composition. Including the vector interaction (GV = 0.05 GS) also results in a slight increase
in the MPB emissivity. Both additional baryonic degrees of freedom and inclusion of the vector
interaction delay the onset of the quark–hadron phase transition, and therefore it may be concluded
that the greater the density in the mixed phase, the greater the contribution to the emissivity from MPB.
The MPB emissivity is most comparable to the modified Urca emissivity, particularly at 108–109 K.

Figure 6. Neutrino emissivity in the quark–hadron mixed phase for the DD2 parametrization
with GV = 0 [7]. Contributions due to mixed phase Bremsstrahlung (MPB), nucleon–nucleon and
quark–quark neutrino pair Bremsstrahlung (NPB), the nucleon and quark modified Urca processes
(MU), and the hyperon and quark direct Urca (DU) processes are included. See Figure 2 for additional
details. Similar figures for the SWL, GM1L, and ME2 parametrizations can be found in [7].
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Figure 7. Neutrino emissivity in the quark–hadron mixed phase for the DD2 parametrization with
GV = 0.05 GS [7]. Contributions due to mixed phase Bremsstrahlung (MPB), nucleon–nucleon and
quark–quark neutrino pair Bremsstrahlung (NPB), the nucleon and quark modified Urca processes
(MU), and the hyperon and quark direct Urca (DU) processes are included. See Figure 2 for additional
details. Similar figures for the SWL, GM1L, and ME2 parametrizations can be found in [7].

Electron–phonon interactions contribute to the MPB emissivity when the mixed phase consists
of spherical blobs (χ <∼ 0.21 and χ >∼ 0.79) and only when T > TUmklapp (Figure 5), which for the
given choices of temperature implies T = 1010 K. Figure 8 shows that the static-lattice contribution to
the MPB emissivity dominates the phonon contribution rendering it negligible, particularly at quark
fractions relevant to the neutron stars of this work (χ < 0.5). Therefore, the MPB emissivity is almost
entirely due to the static-lattice contribution (Bragg scattering).

Equations (28) and (29) indicate that the static-lattice contribution to the MPB emissivity is
calculated as a sum over scattering vectors K that satisfy K < 2ke. At the onset of the mixed phase ke

and NK are at a maximum, but as the quark–hadron phase transition proceeds the negatively charged
down and strange quarks take over the process of charge neutralization. Thus, the electron number
density and consequently ke continue to decrease at about the same rate as before the start of the
mixed phase. This leads to the steep decline in NK with increasing χ for χ < 0.5 shown in Figure 9.
Further, the rod and slab dimensionality drastically reduces the number of available scattering vectors
which contributes to the decrease of the MPB emissivity in those phases, particularly in the slab
phase. However, (29) shows that the MPB emissivity from rod and slab phases is dependent on T8,
rather than T6 for the blob phase, and this explains the dramatic decrease in the MPB emissivity with
decreasing temperature.

Direct Urca processes dominate the mixed phase neutrino emissivity at all temperatures,
with contributions from the Λ hyperon DU process (Λ → peν̄) operating beyond χmax. Nucleonic DU
processes do not operate for any of the parametrizations considered in this work [7]. The hyperon
DU process emissivities can be identified as any contribution with an emissivity above that for the
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quark DU process in the npeμ composition, and are shown to step down in the mixed phase, vanishing
prior to the onset of a pure quark phase. In the absence of the hyperonic DU process, the quark DU
process would still dominate the Bremsstrahlung and modified Urca processes unless curtailed by the
presence of color superconductivity.

Figure 8. Comparison of the static lattice and phonon contributions to the neutrino emissivity at
T = 1010 K for the spherical blob geometry only and the DD2 parametrization [7].

Figure 9. The number of scattering vectors that satisfy the condition K < 2ke as a function of the
quark fraction [7] (see Figure 2 for additional details). Similar figures for the SWL, GM1L, and ME2
parametrizations can be found in [7].

6. Discussion and Summary

In this work we determined that quark blob, rod, and slab structures may exist in a crystalline
quark–hadron mixed phase. The study is based on relativistic mean-field equations of state which
are used to model hadronic matter and a nonlocal extension of the three-flavor Nambu–Jona–Lasinio
model for quark matter. We determined the neutrino emissivities that may result from the elastic
scattering of electrons off these quark structures (mixed phase Bremsstrahlung (MBP)), and compared
them to standard neutrino emissivity processes that may operate in the mixed phase as well.

We found that the emissivity from the MPB process is comparable to that of the modified Urca
process at low volume fractions of quark matter, χ, and in the temperature range of 108 K <∼ T <∼ 109 K.
The MPB emissivity was found to increase with the inclusion of the vector interaction among quarks
and with additional baryonic degrees of freedom in the form of hyperons and Δ baryons [7], both of
which lead to an increase in the quark–hadron phase transition density and a higher density core.
Further, contributions to the MPB emissivity from phonons were shown to be negligible compared to
those from Bragg scattering. Finally, baryonic and quark DU processes were shown to operate in the
mixed phase and dominate all other neutrino emissivity mechanisms.
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Since it is believed that the hypothetical quark–hadron lattice structures in the core regions
of neutron stars are qualitatively reminiscent to the hypothesized structures in the crustal regions
of neutron stars [1,2,42–44], we have adopted the Bremsstrahlung formalism developed in the
literature for the crustal regions of neutron stars to assess the neutrino emission rates resulting from
electron–quark blob (rod, slab) scattering in the cores of neutron stars with quark–hybrid compositions.
Because of the complexity of the problem, however, there are several issues that need to be studied
further in order to develop refined estimates of the neutrino emission rates presented in this paper.
The remaining part of this section is devoted to this topic.

Properties of the sub-nuclear crustal region: Thehypothetical structures in the crustal regions
of neutron stars range in shape from spheres to rods to slabs at mass densities 1014 g cm−3 <∼ ρ <∼
1.5 × 1014 g cm−3, which is just below the nuclear saturation density of 2.5 × 1014 g cm−3. At densities
where the nuclei are still spherical in such matter, the chemical potential of the electrons is μe ∼ 80 MeV
and the atomic number of the nuclei is Z ∼ 50 [45]. The corresponding Wigner–Seitz cell has a radius
of R ∼ 18 fm, and the radius of the nucleus inside the cell is r ∼ 9 fm [45]. The electrons moving
in the crystalline lattice formed by the ions are highly relativistic and strongly degenerate. The ion
coupling parameter, defined in Equation (16), is Γ ∼ 2.3 × 1012/T, and the melting temperature
Tmelt ∼ (Ze)2/(RkBΓmelt) has a value of Tmelt ∼ 1.3 × 1010 K.

Properties of the quark–hadron lattice: The size of the Wigner–Seitz cells associated with spherical
quark blobs in the crystalline quark–hadron phase is similar to the size of the Wigner–Seitz cells
in the crust. (Here, we do not consider the crystalline phases made of quark rods and quark
slabs since they contribute much less to Bremsstrahlung because of the much smaller number of
electrons in those phases.) For spherical quark blobs at the onset of quark deconfinement, which
occurs in our models at densities of around three times nuclear saturation, 3n0, the electron
chemical potential is μe = ke ∼ 140 MeV. Hence, like at sub-nuclear densities, the electrons are
ultra-relativistic (h̄ke/mc2 = 275) and strongly degenerate. The electron degeneracy temperature is
around TF ∼ 1.6 × 1012 K, which is much higher than the temperature range (<∼1010 K) considered
in this paper. From the results shown in Figure 3, one sees that the radii of the Wigner–Seitz cells
containing spherical quark-blobs are around R ∼ 12 fm and that the quark blobs inside the cells have
radii of r ∼ 8 fm. The density of the Wigner–Seitz cells is (4πR3/3)−1 ∼ 1.4 × 10−4 fm−3 and the
atomic number of the quark blobs inside the Wigner–Seitz cell is around Z ∼ 200.

Plasma temperature and melting temperature: The ion (quark blob) coupling parameter
Γ = (Ze)2/(RkBT) is given by Γ = 6.7 × 1013/T and the melting temperature of the ion crystal
is Tmelt = (Ze)2/(RkB172) ∼ 4 × 1011 K. Here we have used Γmelt = 174 for which a solid is expected
to form [34,35]. Since the melting temperature of the quark crystal exceeds 1011 K the quark blobs
are expected to be in the crystalline phase at all temperatures (<∼1010 K) considered in our study.
The plasma temperature of the system follows from TP = 7.83 × 109

√
ZYeρ12/Ai, where Ye = ne/nb

is the number of electrons per baryon, ne the number density of electrons, nb the number density of
baryons, and ρ12 the mass density in units of 1012 g/cm3. For quark blobs with mass numbers of
A ∼ 2000, atomic number Z ∼ 200, and Ye ∼ 0.06 one obtains a plasma temperature of TP ∼ 2× 1010 K.

Electron–phonon scattering and Umklapp processes: In an Umklapp process, the electron
momentum transfer in a scattering event, h̄�q, lies outside the first Brillouin zone, that is, h̄q >∼ h̄q0.
This is in contrast to the normal processes where h̄�q remains in the first Brillouin zone and
h̄q <∼ h̄q0, where q0 ≈ (6π2nBlob)

1/3. For the quark–blob phase we find h̄q0 ∼ 30 MeV so that
q0/(2ke) ∼ 0.13 for the quark–blob lattice, which is of the same order of magnitude as for the crust
where q0/(2ke) = (4Z)−1/3 ∼ 0.01 [8]. The temperature below which the Umklapp processes are
frozen out is TUmklapp ∼ TPZ1/3e2 ∼ 8 × 108 K, with the plasma temperature TP given just above. We
find that the temperatures obtained for TUmklapp, TP, and Tmelt in the quark–blob phase are rather
similar to their counterparts in the nuclear lattice just below nuclear saturation density, namely
TUmklapp ∼ 108 K, TP ∼ 109 K, and Tmelt ∼ 1010 K. In our study, both the Umklapp process and
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the normal process are taken into account since temperatures in the range of 106 K < T < 1010 K
are considered.

Debye–Waller factor: The effective interaction between electrons and quark blobs depends on the
thermal quark–blob lattice vibrations which effectively smear-out the quark blob charges. This feature
is taken into account via the Debye-Waller factor given in Equation (19). Since estimates for the
Debye–Waller factor are only known for spherical blob structures, the Debye–Waller may be the largest
source of uncertainty in our study.

Role of electron band structure effects: It has been shown in [46] that gaps in the electron
dispersion relation at the boundaries of Brillouin zones can noticeably reduce the static lattice
contribution. For point-like quark blobs with atomic number Z and for the smallest reciprocal lattice
vector in a bcc lattice, we estimate the electron band splitting from 0.018(Z/60)2/3ke [46]. This leads to
a splitting of ∼6 MeV for the quark-blob phase, which is around 1 MeV or more for the nuclear lattice
case [46].
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Abstract: Simulating Many Accelerated Strongly-interacting Hadrons (SMASH) is a new hadronic
transport approach designed to describe the non-equilibrium evolution of heavy-ion collisions.
The production of strange particles in such systems is enhanced compared to elementary reactions
(Blume and Markert 2011), providing an interesting signal to study. Two different strangeness
production mechanisms are discussed: one based on resonances and another using forced canonical
thermalization. Comparisons to experimental data from elementary collisions are shown.
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1. Introduction

Relativistic heavy-ion collisions provide a unique opportunity to study matter under extreme
conditions. These experiments allow the creation of high temperatures similar to the universe during
the first few microseconds after the Big Bang, yielding insights into the equation of state of nuclear
matter, which is crucial for understanding the high-density physics of neutron stars.

Nuclear matter exclusively consists of up and down quarks, therefore, the newly produced strange
quarks during heavy-ion collisions are a particularly interesting probe for studying the evolution of
the reaction, see [1] for a recent overview. Strangeness enhancement in heavy-ion reactions compared
to elementary proton-proton collisions has been observed some time ago [2]. The High-Acceptance
Di-Electron Spectrometer (HADES) collaboration measured surprisingly high multiplicities of φ and
Ξ hadrons in heavy-ion collisions below the production threshold [3,4]. In the intermediate energy
range between the threshold and

√
s = 10A GeV, the multiplicities of multi-strange particles are still

unknown and of high interest to understand this effect.
Overall, there are still a lot of open questions about how strangeness is produced: what role do

kaon-nucleon potentials play; how strongly are cross sections affected by the medium; and what are
the production mechanisms in and out of equilibrium?

In the following, we focus on heavy-ion reactions at Schwerionen-Synchrotron (SIS) energies
(Ekin = 0.5 − 3.5 GeV) and explore how the hadronic transport approach, Simulating Many Accelerated
Strongly-interacting Hadrons (SMASH) [5], models strangeness production out of equilibrium via
resonances and in equilibrium via forced thermalization. The aim is to provide a baseline founded
on vacuum properties and low-energy physics that can be extended to higher energies and larger
systems. Comparisons to elementary cross sections and dilepton measured in experiments are shown,
verifying that the resonance approach successfully describes such vacuum properties and providing the
foundations for studying the questions raised above within this approach.

Universe 2018, 4, 37; doi:10.3390/universe4020037 www.mdpi.com/journal/universe254
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2. Model Description

The results presented here are obtained from simulations using SMASH, a microscopic transport
approach that solves the relativistic Boltzmann equation

pμ∂μ fi(x, p) = Ccoll( fi) (1)

using the test particle ansatz and the geometric collision criterion

dtrans < dint =

√
σtot

π
, (2)

where dtrans is the distance of closest approach between two particles and dint is the interaction
distance given by the total cross section σtot. SMASH has been tested against exact solutions of the
Boltzmann equation within an Friedmann-Lemaître-Robertson-Walker expanding metric to verify the
numerical implementation of the collision criterion [6]. The 2 ↔ 2 and 2 ↔ 1 reactions are included,
implementing all 106 hadrons species made of up, down and strange quarks that are considered
experimentally established by the Particle Data Group (PDG) [7]. This results in tens of thousands
of possible reaction pairs, for most of which the cross sections are not measured. In SMASH, these
interactions are mostly modeled via resonances. This approach has the advantage that the cross
sections can be calculated from the resonance properties, for which the available experimental data
has been compiled by the PDG . It can be extended to m → n reactions by approximating them with
a cascade of 1 ↔ 2 reactions, maintaining a detailed balance. However, this approach is limited in
energy (by the highest mass of the known resonances) and some cross sections are not resonant and
have to be parametrized. Furthermore, many resonance properties are only sparsely constrained by
experimental data.

SMASH can be used to simulate nuclear collisions (as in this work) or infinite matter and as an
afterburner for hydrodynamic simulations of the quark-gluon plasma. It is also able to generate
dileptons [8,9] and photons in heavy-ion collisions. The current goal is to test physics at SIS
energies, establishing a baseline that can be extended for predictions at Nuclotron-based Ion Collider
Facility (NICA) and Facility for Antiproton and Ion Research (FAIR) energies. See [5] for a detailed
description of the model and results on pion and proton production in heavy-ion collisions compared
to experimental data.

The implemented strange particle species are kaons, 11 kaonic resonances, Λ, Σ, Ξ, Ω baryons
and 28 baryonic resonances, plus antiparticles. In nucleus-nucleus collisions, hyperons (Y ∈ {Λ, Σ})
and kaons are primarily produced by nucleon resonances

NN → NN∗/Δ∗ → NYK , (3)

while antikaons are produced from strangeness exchange and φ decays:

NN → NN∗/Δ∗ → NYK πY → Y∗ → K̄N N∗ → φN (4)

The non-resonant contribution to the strangeness exchange πY ↔ K̄N is parametrized similar
to ref. [10].

3. Results

Let us first concentrate on strangeness production out of equilibrium by resonance excitation.
The production of hyperons and φ mesons are discussed separately because they are constrained very
differently by the available experimental data. Finally, strangeness production via a different approach
forcing local thermal equilibrium in hadronic transport is briefly presented and compared to a more
traditional hybrid approach of modeling heavy-ion collisions.
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3.1. Hyperon Production via Resonances

While the masses and decay widths of the resonances are well-established, their branching ratios
are only sparsely known. This can be alleviated by studying elementary cross sections. For example,
the reaction pπ− → ΛK0 is dominated by the N∗ → ΛK branching ratios. Taking the middle of the
range given by the PDG results in a cross section as shown in Figure 1a: The cross section reconstructed
from SMASH output (lines) overestimates the experimental data (circles) at the threshold and at√

s > 1.8 GeV. Looking at the contributions of the individual resonances reveals that N(1650), N(2080),
N(2190), N(2220) and N(2250) overshoot the data and that their branching ratios should be decreased,
while the N(1710) and N(1720) branching ratios can be increased to compensate. Adapting the
branching ratios in the range given by the PDG data results in Figure 1b: now the cross section is
reproduced rather well, especially at the threshold and at high energies. There might be a slight
underestimation at

√
s = 1.7 GeV and

√
s = 1.8 GeV, but it is hard to tell, due to large uncertainties in

the experimental data.
Another constraint on the N∗ → ΛK branching ratio is given by the pp → ΛpK+ cross section.

Potential conflicts with the constraints posed by the pπ− → ΛK0 cross section can usually be resolved
by adapting the N∗ → πN branching ratios. This has to be done under careful consideration of
the effect on pion production. Similarly, the N∗, Δ∗ → ΣK, πN branching ratios are constrained by
the Nπ → ΣK and NN → ΣNK cross sections. Due to the different possible charge combinations,
there are more constraints given by the measured cross sections than for the Λ.

Having constrained the branching ratios using only elementary data, it is now possible to compare
strangeness production in SMASH to heavy-ion experiments in the future. Discrepancies in large
systems might hint at in-medium effects.

(a) (b)

Figure 1. pπ− → ΛK0 cross section reconstructed from SMASH output (lines) compared to
experimental data [11] (circles). (a) Using N∗ branching ratios by choosing the middle of the range
given by the PDG [7]. (b) After tuning the branching ratios to fit the experimental cross section.

3.2. φ Production via Resonances

The HADES collaboration concluded that at low energies a significant fraction of the K− are
produced by φ decays [3]. However, none of the baryonic resonances given by the PDG decay
into any φ [7]. To be still able to produce φ in a resonance approach, it was proposed to use the
experimental uncertainty of the N∗ beyond 2 GeV to introduce a small φN branching ratio [12].
Independent experimental data constraining this arbitrary branching ratio is required.

A potential candidate is the pp → ppφ cross section shown in Figure 2a. Unfortunately, it has
only been measured close to the threshold, so it does not constrain the φ production very well. In our

256



Universe 2018, 4, 37

resonance approach, the largest contribution stems from higher energies where no data is available.
Other observables are the invariant mass spectra of dileptons measured by the HADES collaboration
at Ekin = 3.5 GeV in pNb collisions. As shown in Figure 2b, the experimental data resolves the φ peak
well enough, constraining the N∗ → φN branching ratios. By choosing a branching ratio of 0.5%,
SMASH is able to reproduce the dilepton spectra and the cross section shown in Figure 2. It remains
to be seen how this approach compares to experimental data from larger systems, where so the far
neglected in-medium effects on the φ may be important.

(a) (b)
Figure 2. (a) pp → ppφ cross section reconstructed from SMASH output (lines) compared to
experimental data [13,14] (circles). (b) Dielectron mass spectrum in proton-niobium collisions at
Ekin = 3.5 GeV in SMASH (lines) compared to HADES data (circles). Unlike the elementary cross
section, the pNb dilepton spectrum constrains the φ production.

3.3. Strangeness Production via Thermalization

Traditionally, hybrid models have been successfully used to simulate high-energy heavy-ion
collisions: a hydrodynamical model for the partonic phase and a microscopic model (like SMASH) for
the hadronic phase. However, it is not clear how to extend them to intermediate energies relevant for
the beam energy scan program at the Relativistic Heavy-Ion Collider (RHIC) and future measurements
at NICA and FAIR. In [15] it was proposed to use a different approach based on hadronic transport:
if there is a region beyond some critical energy density εth, force thermalization in that region by
resampling all particles according to a canonical thermal distribution while conserving all relevant
quantum numbers. This has similarities to a thermal model but it assumes local instead of global
equilibrium. Effectively, it mimics many-particle scattering and interpolates dynamically between two
limits of kinetic theory: the dilute gas and the ideal fluid.

As shown in Figure 3, the forced thermalization does barely affect the pion multiplicity but
enhances strangeness similar to a hybrid approach. Note that no mean-field potentials were applied
because the collision energy is high enough that they are not so important (

√
s = 3A GeV). The amount

of produced strangeness in the forced thermalization approach is regulated by the parameter εth
(the threshold energy density above which thermalization is performed). For low εth, as for instance
twice the nuclear ground-state energy density as in Figure 3, strangeness is strongly enhanced and
might be too high compared to experiment. High εth leads to a transport simulation without forced
thermalization where strangeness is usually underestimated. It remains for future studies to fix εth
versus collision energy and test if different strange particles can be described simultaneously.
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Figure 3. SMASH with and without forced canonical thermalization compared to a UrQMD hybrid
model [15]. The energy density threshold for thermalization in SMASH (εth) and particlization in
the hybrid approach was set to twice the nuclear ground-state energy density. The strangeness
enhancement due to the forced thermalization is comparable to the hybrid approach.

4. Conclusions and Outlook

In this work, it was shown how elementary K, K̄, Λ, Σ and φ production at low energies
can be modeled by via resonances. The PDG data on branching ratios was complemented with
constraints from elementary, exclusive cross sections. The φ production was modeled by introducing
small φN branching ratios to heavy N∗ resonances, which were successfully constrained by dilepton
spectra in pNb collisions. This non-equilibrium strangeness production at low energies via resonances
provides a baseline that can be extended to higher energies by including production from strings.
Future comparisons to experimental results for larger systems might hint at in-medium effects
required to describe the data, such as kaon-nucleon potentials, in-medium cross sections and kaon
self-energies [16]. As a mechanism for strangeness production in equilibrium, effective many-particle
interactions by forced thermalization were discussed. Promising results of how such an approach
enhances strangeness production in heavy-ion collisions similar to a more traditional hybrid approach
were shown. It remains to be seen how well this approach can describe the experimental data.
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