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Technologies as Director of R&D. NovaWave focused on developing laser-based
sensors for environmental monitoring. In 2010, NovaWave was acquired by
Thermo Fisher Scientific. Dr. Holler remained with Thermo Fisher before joining
the faculty at Fordham University in the Department of Physics and Engineering
Physics in 2011. His work in the Laboratory on micro-optics and biophotonics
employs optical microcavities to perform sensitive label-free detection of
bionanoparticles, Raman spectroscopy of tissue samples for cancer diagnostics,
and light scattering for aerosol particle studies. In addition, Dr. Holler oversees
the Fordham Seismic Station and is involved in expanding 3D printing and
robotics capabilities at Fordham.
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Introduction to the Special Issue on
Label-Free Sensing

Stephen Holler

The implementation of label-free sensing of biological and chemical agents allows
one to investigate the underlying physical and chemical characteristics and
interactions of target analytes while reducing both sample complexity and
preparation time. Sensor platforms incorporating label-free detection schemes
avoid the potentially confounding effects of molecular labels by monitoring the
target species directly, relying solely on the intrinsic physicochemical properties of
the target analyte. Because of the relatively minimal sample preparation, such
approaches are well suited for field applications and remote diagnostics where
either sample preparation facilities and/or trained personnel may be limited or
unavailable. This special issue highlights some diverse approaches to the
challenge of detecting target analytes without the need for labels. These
approaches principally focus on optical and electrochemical techniques, and offer
the promise of a rapid diagnostics tool that could be used in a clinical setting that
would minimize the time between identification and treatment.

Reprinted from Sensors. Cite as: Holler, S. Introduction to the Special Issue onLabel-
Free Sensing. Sensors 2015, 4, 623—-636.

“The single biggest threat to man’s continued dominance on the planet is the
virus.” These ominous words belong to Nobel Laureate Joshua Lederberg, and
while he believed that virus poses an existential threat to humanity, mankind
faces a litany of attacks from no less deadly threats, both naturally occurring and
man-made. In order to effectively combat this onslaught it is vital that one be able
to effectively identify the threat, as identification is the first step in the treatment.
Treatment is crucial because without it maintenance of health, and protection from
chemical and biological threats would be impossible. Sensitive instrumentation is
needed to initially identify a threat in order to diagnosis a disease or negative
impact of exposure, but sensors also play an important role in providing some
quantifiable metric by which post-treatment efficacy can be gauged.

A host of methodologies exist for identifying and characterizing threats, both
known and unknown. Technologically derived methods permit an enhanced
sensor response by incorporating labels, probes that bind to the target analyte to
improve detection capability. Often these are fluorophores that provide an
indirect means for sensing the presence of some species. The use of such probes is
widespread and can facilitate ultrasensitive detection by boosting the signal-to-
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noise ratio of a measurement. However, there are disadvantages to the use of
probes. For example, affixing probes to malignant tissue will cause cancerous cells
to shine brightly, but this can obscure tumor margins. Furthermore, in these
situations the probes only provide surface coverage and yield no information
about the depth of the malignancy. In vivo studies using probes can be delicate
since many highly effective probes have inherent toxicity to humans. Quantum
dots are a prime example; they offer great promise for labeling in ex vivo analysis
but are unsuitable for injection into patients, and have fallen by the wayside in
this regard. Since disease detection and treatment will be the greatest threat that
we face it is crucial that any sensing technology for in vivo applications employ
low-toxicity biocompatible materials. In this sense, the ideal sensing modality
would be based on the inherent properties of the target species. The ideal sensor
would be label-free.

The implementation of label-free techniques for sensing biological and
chemical agents has grown considerably in recent years. New approaches are
being developed that allow one to investigate the underlying physical and
chemical characteristics and interactions of target analytes while reducing both
sample complexity and preparation time. In addition, these sensor platforms
avoid the potentially confounding effects and potentially hazardous effects of
molecular labels by monitoring the target species directly, relying solely on the
target's intrinsic physicochemical properties. Because of the relatively minimal
sample preparation, such approaches are well suited for field applications and
remote diagnostics where either sample preparation facilities and/or trained
personnel may be limited or unavailable.

This special issue is devoted to label-free sensing techniques that may be
used in a wide variety of applications from biodefense to cancer screening to mass
spectrometry. This compilation is by no means complete, but it does provide a
good survey of techniques that researchers are using to perform label-free sensing.
There are both original contributions and review articles that summarize the
state-of-the-art. This issue is loosely divided into two sections that broadly
categorize these contributions to the label-free sensing literature: optical and
electrochemical. Since both of these categories are broad there is some overlap in
the work they encompass, however they generally cover a number of different
techniques that have been demonstrated to effectively perform the task at hand.

Immediately what comes to mind for optical approaches are spectroscopic
techniques. The use of spectroscopy for characterizing samples is venerable, in
part because the molecular constituents of matter interact with electromagnetic
radiation and elicit a response. These interactions are, after all, the basis for vision,
the most universal label-free sensing mechanism. However, enhancements in
detection capability may be made by incorporating new sensor morphologies or
new optical materials. Consequently, improvements to signal-to-noise may be
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achieved, and ever decreasing detection limits may be observed, with the ultimate
goal being single molecule detection.

Electrochemical sensing modalities are another natural progression in the
development of label-free sensing devices. Again, our basic operation is governed
by electrochemical interactions; the heart would not beat and the brain would
cease to function if their intrinsic electrical properties were eliminated. Despite the
heart and brain both having underlying electrochemical properties, their
composition is dramatically different. It is the unique response of the cellular
components that allow electrochemical interactions to provide sensing
discrimination. Furthermore, electrical and chemical measurements also have a
long history, and the continued improvement of materials and high precision/high
sensitivity instrumentation is allowing researchers to gain better understanding of
the physical and chemical responses of target analytes.

Fundamental to optical spectroscopy is the manner in which molecules move.
Whether it is through rotations, vibrations, or some combination thereof,
molecules leave their fingerprints on electromagnetic radiation. This present
compilation begins with a review of Raman spectroscopy on isolated bioaerosols
from researchers at the Army Research Lab and Yale University [1]. The ability to
isolate and suspend a particle frees it from interfering effects associated with
containment vessels, leaving only the signal from the aerosol. These signals are
species specific and may be used for discrimination and classification. Complete
characterization of bioaerosols remains a challenge, but is crucial to maintaining a
healthy environment and addressing the threat of bioterrorism.

Microscopy is a venerable technique for studying microscopic entities.
However, spatial discrimination, particularly for small molecules can be
challenging. Fluorescence microscopy can be used to improve detection
capabilities. Researchers at University of Illinois at Urbana-Champaign review the
state of photonic crystal enhanced microscopy [2]. Photonic crystals are used to
manipulate the optical characteristics of a material through nanostructured
surfaces. Optical enhancements provide a sensitive means for detecting broad
classes of materials such as dielectric nanoparticles, plasmonic nanoparticles,
biomolecular layers, and cells. These broad capabilities allow researchers to
examine a host of processes, with the ultimate goal of achieving single molecule
detection resolution.

Surface plasmon resonance (SPR) offers a sensitive means for detecting trace
species of a target analyte. The plasmon resonance boosts electric field strength
locally leading to improved detection capabilities. Often detection capabilities are
hindered by the ability to appropriately fit changes in the measured signal,
especially when fits to nonlinear curves are based on simple polynomial
regressions. Researchers at Korea University and Sungkrunkwan University have
tackled this problem by developing a new sigmoid-asymmetric fitting routine [3].
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The results are in excellent agreement over the full SPR curve, which leads to
improved resolution and detection sensitivity. While a collaborative effort among
Henan Agricultural University, McGill University, and University of Gélve has
sought to improve SPR with high performance A/D and custom signal amplifiers
[4]. The goal of this work, like many sensor projects, is the development of a
compact, low-cost, fieldable instrument. Presently in the laboratory stage, the
compact sensor has demonstrated good detection capabilities and is being
prepared for field work.

Enzyme-linked immunosorbent Assay (ELISA) offers a high standard for
detection, but it requires the use of labels. The development of a competitive
approach that is label-free would be a boon to researchers and clinical
diagnosticians. Work out of Universidad Politécnica de Madrid has demonstrated
just this [5]. Using Fourier Transform Visible-Infrared Spectrometry coupled with
a Fabry-Pérot inteferometer they were able to develop an immunoassay approach
with response comparable to ELISA, but label-free. Specifically they targeted
biomarkers associated with dry eye dysfunction.

Whispering gallery mode biosensors have emerged in the last fifteen years as
powerful tools in ultrasensitive detection. They have been used to demonstrate
detection of DNA hybridization, bacteria, virus, and even single protein molecules.
However, in mixed media these, like many other sensor platforms, are subject to
non-specific adsorption. Research out of the Department of Bioengineering at the
University of Missouri seeks to minimize the confounding effects of nonspecific
adsorption using poly(ethylene glycol) to form a nonfouling surface layer in
conjunction with specific biorecognition elements [6]. This is especially important
to minimize scavenging and non-efficient binding to regions outside the sensing
mode volume.

Carbon nanotubes and graphene have emerged as key components in an
array of mechanical and electrochemical sensing applications. However, less well-
known alternatives such as diamond nanowires offer a fertile platform for
researchers. Due to their inherently advantageous properties such as
biocompatibility, chemical inertness, high conductivity (electrical and thermal),
and high mechanical strength. Researchers at the Institute of Electronics at the
Université Lille 1 are leveraging the properties of diamond nanowires, specifically
boron-doped diamond nanowires, to develop novel platforms for electrochemistry
and mass spectrometry [7]. The ultimate goal being to combine the electrochemical
sensing approach with the mass spectrometry to create a platform for
electrochemically enhanced mass spectrometry which would benefit researchers in
a number of different fields.

Impedance sensors offer a platform to detect a wide range of substances.
These sensors work on a number of vapor phase targets to detect a host of
environmental hazards. A collaborative effort between the Université Grenoble-
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Alpes and Hanoi University of Science and Technology has taken these platforms
to the next level. Using nanoporous SnO: they have developed a label-free
impedimetric sensing platform [8]. Their device demonstrates detection
capabilities in both the liquid and vapor phases while offering discrimination
capabilities down to a single base mismatch in DNA studies. The high sensitivity
and selectivity with a label-free platform enables a host of DNA hybridization
experiments to be performed.

The final two papers of this compilation tackle real diseases that affect
millions of people globally: Dengue Virus [9] and Colon Cancer [10]. The work on
the detection of the Dengue virus comes from the Universidade Federal de
Pernambuco-UFPE, Universidade Federal Alagoas, and Centro de Pesquisas
Aggeu Magalhaes. This collaborative effort utilizes pencil graphite electrodes to
perform differential pulse voltammetry to characterize the response of sequences
of Dengue Serotype 3. They achieved high sensitivity and selectivity in a platform
that has the potential to be both a fast and inexpensive method for serotype
identification. The colon cancer work was performed jointly by researchers at the
University of Tehran and York University, and employed aptamer functionalized
electrodes for a battery of tests including flow cytometry, fluorescence microscopy,
and electrochemical cyclic voltammetry. Their approach has demonstrated limits
of detection of less than 10 cancer cells, which offers the promise for rapid point-
of-care diagnostics.

The work presented in this special issue is a subset of the continually
growing field of label-free sensing. The diversity offered by these papers exhibits
just a fraction of the range of detection methodologies being pursued. These
papers provide insight into the field and demonstrate that ultrasensitive detection
is possible and may one day soon find its way into clinical facilities for rapid
diagnostics thus reducing the time between identification and treatment. The best
defense may be a good offense, and early detection enables implementation of the
best offense one could hope for.
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Raman Spectroscopy of Optically Trapped
Single Biological Micro-Particles

Brandon Redding, Mark J. Schwab and Yong-le Pan

Abstract: The combination of optical trapping with Raman spectroscopy provides
a powerful method for the study, characterization, and identification of biological
micro-particles. In essence, optical trapping helps to overcome the limitation imposed
by the relative inefficiency of the Raman scattering process. This allows Raman
spectroscopy to be applied to individual biological particles in air and in liquid,
providing the potential for particle identification with high specificity, longitudinal
studies of changes in particle composition, and characterization of the heterogeneity
of individual particles in a population. In this review, we introduce the techniques
used to integrate Raman spectroscopy with optical trapping in order to study
individual biological particles in liquid and air. We then provide an overview of
some of the most promising applications of this technique, highlighting the unique
types of measurements enabled by the combination of Raman spectroscopy with
optical trapping. Finally, we present a brief discussion of future research directions
in the field.

Reprinted from Sensors. Cite as: Redding, B.; Schwab, M.J.; Pan, Y. Raman
Spectroscopy of Optically Trapped Single Biological Micro-Particles. Sensors 2015, 15,
19021-19046.

1. Introduction

Raman spectroscopy relies on measuring the frequency and relative intensity of
inelastically scattered light due to the vibrational, rotational, and other low-frequency
modes of a sample. As such, the Raman spectrum provides a fingerprint of the
molecules present in a sample [1,2]. Raman spectroscopy has been broadly used
as one of the main diagnostic techniques in analytical chemistry and is developing
into an important method in biology and medicine as a real-time clinical diagnostic
tool for the identification of disease, and evaluation of living cells and tissue [1].
In addition, Raman spectroscopy is a promising method for the identification of
aerosolized biological and chemical threat agents.

The primary challenge associated with performing Raman spectroscopy is the
inefficiency of the Raman scattering process, which results in a signal ~100 dB weaker
than typical fluorescence [2]. Hence, spontaneous Raman measurements require
a long signal integration time and can be difficult to perform on individual cells
or particles in a solution or in the air which do not remain in the same position
long enough to acquire a Raman spectrum. One solution to this challenge is to




deposit the particle or cell of interest on a substrate before the measurement [3].
However, this has clear limitations since the substrate can alter the Raman spectrum
of the particle, limit the ability to perform longitudinal studies of a particle in its
natural environment, or introduce a background Raman signal, making it difficult to
isolate the Raman spectrum from the particle of interest [4]. Moreover, dense particle
deposition introduces challenges when trying to obtain the Raman spectrum from a
single particle.

The combination of laser trapping with Raman spectroscopy (LTRS) circumvents
these issues by holding a particle or cell in place long enough for data acquisition.
Since optical trapping is possible in both solution and air, the potential influence
of inelastic scattering from the substrate is avoided [4]. Since the Raman spectrum
of a trapped particle can be measured in situ, studies on the temporal response of
a particle to environmental changes are possible [5]. In addition, particle trapping
using laser tweezers holds the particle near the high intensity portion of the beam,
simplifying the alignment by maximizing the Raman signal. Such a combined
method also enables the study of individual particles, providing information about
the heterogeneity of a population which can be difficult to extract from a Raman
measurement of a bulk sample [6]. Performing LTRS on relatively large biological
particles can even enable the measurement of the molecular content of different
regions of a cell [7].

While LTRS has been performed on a wide range of particle types, in this
review we will focus on its application to the characterization of biological particles.
Biological aerosol particles, or bioaerosols, have important implications for human
health, acting as airborne disease transmitters that contain microorganisms such
as bacteria, viruses, pollen, and fungi. Monitoring bioaerosols in locations such as
hospitals for the presence of airborne diseases, or public spaces for the detection of
aerosolized biological warfare agents are increasingly important problems. Aerosol
particles also have significant implications for climate change due to their role in the
scattering and absorption of solar radiation as well as in cloud condensation and the
formation of ice nuclei. Thorough characterization of the composition and density
of aerosol particles is therefore essential to the accuracy of climate change models.
Raman spectroscopy, particularly when combined with optical trapping, is uniquely
suited to the characterization of bioaerosols due to its combination of high specificity
with a modest cost and non-invasive nature.

LTRS is also emerging as a powerful tool in molecular biology due to its ability
to perform longitudinal studies on individual cells, spores, bacteria, and viruses in
their natural environments. Bioaerosols are a complex mixture containing numerous
biomolecules in various concentrations and forms. Previous single-particle optical
characterizations using fluorescence were only able to probe a limited range of
biological compounds, including proteins, amino acids (tyrosine, tryptophan etc.),



nucleic acids (DNA, RNA efc.), coenzymes (nicotinamide adenine dinucleotides,
flavins, and vitamins B¢ and K and variants of these), polysaccharides, dipicolinates,
and lipids. Raman spectroscopy, especially when long acquisition times are enabled
through LTRS, can characterize a much broader range of biomolecules and with
higher specificity compared to techniques that probe only fluorescent compounds.
Some cells or spores can grow, change, and reproduce in buffer liquid or in air, and
LTRS enables the study of these cells as they undergo these processes. For example,
as a cell grows, some biomolecules can decrease or vanish, while others increase or
can even be generated. Therefore, using Raman spectroscopy to detect and monitor
specific biomolecules within a cell as it responds to changes in its environment can
provide new insights into our fundamental understanding of cell growth. LTRS is
also emerging as an important tool in drug discovery due to its ability to monitor a
cells response, for example, to varying forms of chemotherapy [8].

In this paper, we provide a brief review of techniques that perform Raman
spectroscopy on individual optically trapped biological particles. We discuss many
of the promising applications of LTRS and attempt to highlight the unique features
of LTRS which make it such a powerful technique. This paper is organized as
follows: in Section 2, we present a discussion of the most common optical trapping
techniques used in LTRS; in Section 3 we discuss the development of LTRS as well
as several exemplary applications. In Section 4, we provide a brief overview and
discussion of future applications and research directions. We hope this review will
provide researchers entering the field with an introduction to the wide array of LTRS
applications as well as its key features.

2. Optical Trapping Techniques

Optical tweezers rely on the radiative pressure force which results from the
transfer of momentum from photons to a particle. In Figure 1a, we illustrate the
influence of the radiative pressure force on a particle in a collimated beam and in a
focused beam. The radiative pressure force is often divided into a scattering force and
a gradient force, although both result from the same transfer of momentum from the
incident photons [9,10]. The scattering force tends to push particles in the direction
of light propagation whereas the gradient force tends to pull the particle towards
the high intensity region. Ashkin’s original demonstration relied on the radiative
pressure acting on “relatively transparent particles in a relatively transparent media”
to avoid thermal effects which “are usually orders of magnitude larger than radiation
pressure” for strongly absorbing particles [11]. Absorbing particles are subject to
a photophoretic force which results when an absorbing particle is non-uniformly
heated and/or non-uniformly heat-emitting. As illustrated in Figure 1b, a strongly
absorbing particle is non-uniformly heated if it is illuminated from one side. When
the heat is transferred to the surrounding gas molecules, gas molecules on the



warmer side of the particle will acquire more energy and subsequently collide with
the particle at higher velocity, imposing a net force pushing the particle toward its
cold side. This photophoretic force can be 4-5 orders of magnitude stronger than the
radiative pressure force [12] and is therefore the dominant force acting on strongly
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tends to destabilize the trap [9,17]. Using two counter-propagating beams to cancel out the scattering
force enables optical trapping of airborne particles with much lower NA (Figure 2); however the
alignment in such systems can be very critical [9].

Radiative pressure traps have been demonstrated with both continuous wave (CW) and pulsed lasers.
Although the average power was found to be the primary factor dictating the efficacy of the optical trap [18],
trapping using a pulsed laser may have advantages in potential non-linear optical applications.



Radiative pressure based optical trapping techniques can be divided into single
or multiple beam configurations. Single beam traps are more easily aligned; however,
a high NA is typically required to enable optical trapping. This constraint is
particularly pronounced when trapping particles in air, since the high refractive
index contrast between the particle and air results in a strong scattering force which
tends to destabilize the trap [9,17]. Using two counter-propagating beams to cancel
out the scattering force enables optical trapping of airborne particles with much
lower NA (Figure 2); however the alignment in such systems can be very critical [9].

Radiative pressure traps have been demonstrated with both continuous wave
(CW) and pulsed lasers. Although the average power was found to be the primary
factor dictating the efficacy of the optical trap [18], trapping using a pulsed laser may
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region where the particle is surrounded by light in 3-dimensions, as in the example shown in Figure 3
where a particle is trapped between two counter-propagating vortex beams [20-22]. Additional methods
to generate such a low-light intensity region include Rollow cones formed by a ring illuminating the back
aperture of a lens [23,24], a low-light region formed between two counter-propagating hollow beam [24],
tapered rings [25], optical lattices [26], bottle beams [27], and even speckle fields [28]. Although absorbing
particles were trapped in the low-light region in each of these demonstrations, there have also been a few



is trapped between two counter-propagating vortex beams [20-22]. Additional
methods to generate such a low-light intensity region include hollow cones formed
by a ring illuminating the back aperture of a lens [23,24], a low-light region formed
between two counter-propagating hollow beam [24], tapered rings [25], optical
lattices [26], bottle beams [27], and even speckle fields [28]. Although absorbing
particles were trapped in the low-light region in each of these demonstrations, there
have also been a few recent demonstrations of optical trapping in the high-intensity
portion of a single focused beam [29,30]. To explain the origin of this phenomena,
researchers have cited the role of the accommodation coefficient, which describes
the ability of a particle to transfer heat to the surrounding gas molecules [31-33].
The accommodation coefficient depends on the material and morphology of a
particle. If the accommodation coefficient varies along the surface of a particle,
a body-centric force can result even in a uniformly heated particle. Moreover,
the accommodation force can at times be orders of magnitude stronger than the
“longitudinal” photophoretic force (i.e., the force shown in Figure 1b) [32], and
could explain anomalous observations such as a “negative” photophoretic force
Sensors 20kpkdienced by strongly absorbing particles [34,35]. 19026
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2.3. Alternate Trapping Modalities
2.3. Alternate Terpmg Modalities

olographic optical tweezers enables many particles to be trapped and
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which enablelintestaachens diffraptidiy apftaletbment{3813¢hpphirapatternhwitisausdlappbed to fabricate a
new diffractio® aptrssll Aesniste (38139]. This approach was also apphed to trap aerosol droplets [40].

Recently, op%{ Cafnfﬂlgélpsp Bg%eflg G Deen also been propose TieRahiSin %masc iR Cope’hcal trapping.
ptical trapp ,cir For example, ess e a 41? showed that a particle could be trapped

For example J ess et al [41] showed that a partlcle could be trapped in the diverging beams between two
multimode fibers directed toward each other, as shown in Figure 4. This method enabled the
manipulation of larger cells (up to 100 pm in diameter) than can be trapped in most optical tweezers
systems [41]. A separate microscope objective was then used to collect the Raman spectra of the trapped
particles, providing a means to collect Raman spectra from different positions within a trapped cell.

Analvaic of the anatially varvinoe Ratman anectra vwithin the call were 11ced o allaw for the identification of
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ew diffractive optical element [38,39]. This approach was also applied to trap aerosol droplets [40].

Recently, optical fibers have also been proposed as a mechanism to achieve optical trappin
or example, Jess et al. [41] showed that a particle could be trapped in the diverging beams between tw
wltimode fibers directed toward each other, as shown in Figure 4. This method enabled tt
\anipulation of larger cells (up to 100 um in diameter) than can be trapped in most optical tweeze
ystems [41]. A separate microscope objective was then used to collect the Raman spectra of the trappe
articles, providing a means to collect Raman spectra from different positions within a trapped cel
nalysis of the spatially varying Raman spectra within the cell were used to allow for the identification «
ie nucleus, cytoplasm, and membrane regions of the cell using a principal component analysis (PCA) [41
he dual fiber trap was also extended to trap and record the Raman spectra from particles in microflud
ow channels, as shown in Figure 4. This illustrates the potential for LTRS to be used for the on-lir
haracterization of particles in a microfluidic system.
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coupled into the fiber to form a focal spot (or several focal spots) at the distal end of
the fiber to enable optical trapping. In this way, the system resembled holographic

optical tweezers extended through a multimode fiber [42,43].

2.4. Trapping both Transparent and Absorbing Particles in Air Using a Single Shaped
Laser Beam

Due to the distinct nature of the radiative pressure and photophoretic forces,
most optical traps formed by a single laser beam are designed for either trapping
absorbing or transparent particles. However, many applications require the ability to
trap particles regardless of their morphology and absorptivity. Recently, a technique
was shown to enable the trapping of both absorbing and transparent particles using
a fixed optical geometry [44]. In this approach, a single shaped laser beam forms a
hollow optical cone in which absorbing particles are trapped in the low-light-intensity



splications require the ability to trap particles regardless of their morphology and absorptivity. Recently,
chnique was shown to enable the trapping of both absorbing and transparent particles using a fixed optic
cometry [44]. In this approach, a single shaped laser beam forms a hollow optical cone in which absorbir
articles are trapped in the low-light-intensity region above the focal spot via the photophoretic force whi
on-absorbing particles are trapped at the high-intensity focal spot via the radiative pressure force. Tt
xperimental trapping apparatus used to realize this optical trap is shown in Figure 5a along with tl
lculated intensity profile near the focal spot (shown on a log-scale), an image of the conical focal regio
1d an image of a Johnson smut grass spore trapped in air [44]. This approach also reduces the scatterir
rce near the focal spot, thereby enabling radiative pressure based trapping of transparent particles wi
wer NA (e.g., N ~ 0.55 for a particle with refractive index of 1.5) compared with traditional laser tweeze
hich require NA ~ 0.9 [17,44,45]. This approach was first used to trap droplets in air [45] and later show
) trap solid, transparent particles such as glass beads and albumin in air, as well as absorptive particles suc
s fungal spores [44]. Moreover, since particles of each type are trapped along the optical axis, this methc
buld be combined with a particle interrogation technique such as Raman spectroscopy by imaging tt
ptical axis to the entrance slit of a spectrometer. The ability to trap airborne particles in a fixed optic

cometry regardless of the particle morphology or absorptivity could enable extensive on-lirt
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In addition to the optical techniques discussed above, bioaerosols particles can
also be trapped using magnetic [46], electrodynamic [47], and acoustic forces [48].
However, in this article, we will limit our discussion to optical trapping techniques
and their integration with Raman spectroscopy.

3. Laser Trapping Raman Spectroscopy (LTRS)

3.1. Development of LTRS

Raman spectroscopy was first combined with optical trapping in a 1984
work in which the Raman spectra were measured from levitated glass spheres
and quartz microcystals in air [4]. Soon after, optical trapping was used to
obtain information about the molecular structure from single microdroplets [49,50].
Later, a near-infrared (NIR) laser source was shown to reduce the fluorescence
background and photo-damage effects on live cells, although it increased the
alignment complexity and the instrument cost [51,52]. The first study performed
on biological particles was not conducted until 2002 when LTRS was demonstrated
on single cellular organelles [53] as well as on living blood cells and yeast cells [54].
Soon afterwards, it was applied to obtain surface-enhanced Raman scattering (SERS)
from single optically trapped bacterial spores [55]. As an example, Figure 6 shows
the Raman spectra recorded from optically trapped yeast cells, illustrating the ability
of Raman spectroscopy to differentiate between live and dead yeast cells which are
essentially indistinguishable from the microscope image.

A 2003 study demonstrated the ability of LTRS to study the behavior of a
single cell over time as it responded to environmental changes [5]. In particular,
the response of single cells of Escerichia coli and Enterobacter aerogenes bacteria to
changes in temperature was studied. The study observed significant changes in the
phenylalanine band which was attributed to heat denaturation of proteins [5]. The
temporal dynamics of yeast cells exposed to changing temperatures were studied via
LTRS a year later [56]. Raman spectra of the trapped yeast cells showed irreversible
changes in two of the Raman lines (1004 and 1604 cm™ 1) as temperature increased
from 25 °C to 80 °C [56].

Although there are various optical arrangements used for LTRS, most of them
are composed of a few key components, as exemplified in one of the earliest LTRS
systems shown in Figure 7 [52]. The LTRS system consists of a laser source for
trapping and potentially a second laser source for Raman excitation; a microscope
to focus the trapping laser beam, image the trapped particle, and collect the Raman
signal; a spectrograph/spectrometer or monochromator; and a photoelectronic
detector (charge-coupled device (CCD), Image-intensified CCD (ICCD), electron
multiplying CCD (EMCCD), photomultiplier tube (PMT), or avalanche photodiode
(APD)) to record the Raman spectra. In order to minimize the elastic scattering
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whether the yeast cells are alive or dead [54] (Fair Use according to OSA).
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scattering 1rom tnc trappmg and ¢Xciling 1ascr whnice maximizimng tne Raman signal, a notch Iiter,
long-pass filter, or dichromatic filter is usually required. Since laser tweezers traps particles near the
focal point of the objective lens, the particles are necessarily aligned in the high intensity part of the
beam, enabling efficient Raman excitation. As a result, most LTRS systems use the trapping laser to also
act as the Raman excitation light source [51,52,57] although a second laser can provide additional
flexibility [49,53]. Although photophoretic trapping tends to confine the particle in a low intensity
region, Raman spectra have nonetheless been measured with a few second integration time using a single
beam to provide both the photophoretic trap and Raman excitation [58].
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whereas a cell trapped with ~20 mW showed a dramatic change in the Raman
spectrum after ~15 min, indicating the onset of photodamage [54].
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pectrometer by using a third galvo to direct the Raman signal from different particles to differe
ositions along the entrance slit of the spectrometer [57].
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also has }Dotentlal as a diagnostic tool, and has been shown to differentiate between
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normalland malaria infected red blood cells [67]. 9031
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Figure 10. (a) Raman spectra from 10 normal cells and 10 cells exposed to oxidative stress.
The variations between each spectra illustrate the cell-to-cell variation. Nonetheless, despite
broadly similar Raman spectra; a PCA shown in (b) clearly differentiates between the

stressed and unstressed cells [68] (With permission from Elsevier).

051 (a) Control m Control v 0.44 (b)
g - Ag 1ul AgNP ® 14 AgNP
N\ & N Ag 5 ul Ag NP A 5, AgNP 0.34

o 24 Ag 10 ul Ag NP v 104 Ag NP ¥ s
"5 ~N w 1 - [ ]
e = v v ]
£ 03 2 014 = o
£ © A g
3 e . . AN ]
2 044 Q& 02 J1 oo om 02 03
g 021 o 014 o
5 s 4 >
z ) -0.2

0.14

-0
00‘ T T T T 1 .04
1190 1200 1210 1220 1230 1240 Scores of Factor 1

Raman Shift (cm™)

revealed a change in the relative intensit

Figure 11. [BeTs GhAlRis0da B1650 et Ce‘?;lfﬁé‘é’c‘isfg Kdgliﬁa%aé‘ﬁ’ﬁriiéféess revealed a

224 cin

he 1%1l an ines,

change in thg felatiyg éﬂ&ﬁg@ithﬁ’Jﬁl%ﬁ\:lgelé-ﬁ%fil?r%ﬁtism;g s ddigatig pehange in the
methane C-plodéfed fiuatheninsighoimoftitheeoglbralley AuR@ Af pieriddth dyrthed tmdight into the
temporal VISR SbER RN dPsEd e S BY HanOPARA A BYY RPN under the

Creative Compans Attrbptign bigense)

LTRS has also ¥58sh serbatiedla? Paen dnvestisabrsl e ReVw/ith B AHE TikiRs 84RP sinseAouse ear [6].

his enabled TIEATHHE SR HHETRRRRIAVE Eamamanesira.ed 1y Srisad Lames e
ce 53[54 . Later, a detailed study showed the response of a trappe ‘%feast celI} ichi
enules. They also compared the Raman spectra of cells measured in vivo wi

t .
arterioles and
a

h cells measured in vitro 1n

hysiological saline, identifying key differences ang, highlighting the importance of in vivo studies. In

ddition LTRS enabled a non-destructive measurement without requiring blood extraction [6].

.3. LTRS Studies of Yeast Cells



pastoris) to oxidative stress over time [70]. This result indicated that Raman lines (e.g.,
1651 cm~! and 1266 cm™!) associated with C=C stretching and =CH deformation
Sensaxe204di1¢dd under exposure to oxidative stress, whereas lines associated with thg¢9033
twisting and bending modes of CH; remained relatively unaffected. The temporal
lines to oxidative stress are shown in Figure 12. The ability of ascorbic acid to mitigate the effects of
oxidative stress was also investigated, illustrating the potential of LTRS to evaluate potential

therapeutics [70].
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elastic scattering of a spore with internal chemical phanges monitored via the Raman spectra.



combined LTRS with measurements of the elastic scattering properties of a Bacillus
spore during germination to provide additional information about changes in the
morphology and refractive index of the spore [61]. As shown in Figure 13, they were
able to correlate changes in the elastic scattering of a spore with internal chemical
changes monitored via the Raman spectra.

A later study combined LTRS with phase contrast microscopy, providing the first
clear demonstration of the correlation between the release of calcium dipicolinate and
a change in refractility from bright to dark in the phase contrast images. They found
that 70% of the decrease in the intensity of the phase contrast image coincided with
the decrease in the calcium dipicolinate Raman line [62]. Additional studies have
been performed on the development of Geobacillus stearothermophilus spores exposed
to varying germinants [72]. LTRS has also been combined with measurements of
changes in the speckle pattern formed by light scattered off a trapped cell [59] in a
study which compared the dynamics of E. coli cells lysed from outside by an egg
white lysozyme and from within by a temperature induced bacteriophage. The
time varying Raman spectra revealed that the cell underwent significantly different
responses in the cases considered. In addition, since the speckle pattern depends
sensitively on the morphology of the cell, this provided additional information
regarding the release of intracellular materials (e.g., proteins and ribosomes) which
disrupted the cell wall.

LTRS has also been used for the identification of bacterial spores in an aqueous
environment with a mixture of additional particles [73]. Specifically, the LTRS system
was able to identify Bacillus cereus spores in a mixed solution of similarly sized
polystyrene and silica particles, despite indistinguishable microscope images, as
shown in Figure 14. The LTRS-based identification system was validated by sampling
100 particles and found to correctly identify the fraction of each particle type in the
mixture. This demonstrated the potential for such an LTRS system as a particle
analyzer, possibly in a flow cytometry environment [73]. The LTRS system has the
potential for much higher speed particle identification than methods based on cell
cultures, and far superior specificity compared with fluorescence based particle
identification schemes.
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group for the duration of the study, indicating that some cells either have a very slow
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olorectal tissue revealing consistent differences in the Raman spectra of cancerous and non-cancerot
ells through PCA.
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Figure 16. A 2012 study first presented this technique by measuring the Raman
spectra of individual trapped carbon nanotube particles [58]. The Raman spectra of
individual airborne carbon nanoclusters have also been measured in a single beam
photophoretic trap [87]. A later study reported measurements of Raman spectra
from individual bioaerosol particles (pollen particles and fungal spores) held in a

ensors 2015 llétophoretlc trap [23]. In these studies the trapping laser also provided the Raman 190
excitation and the distinct Raman spectra could be used for particle discrimination

article discrimination and identification. The photophoretic trap was integrated with an aerosol delive
ozzle to enable efficient particle trapping for potential applications as an on-line aeros
haracterization instrument [23,24]. Moreover, such photophoretic traps have been shown to work for
ride range of aerosol types, including biological molecules, proteins, fungal spores, and allergens [34
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3.7. LTRS in Microfluidics and in Air for Continuously Sampling Bioaerosol Particles

The LTRS techniques we discussed above were primarily applied to study
the physical, chemical, or biological properties from one, or a few representative
bioaerosol particles, spores, or cells. These single particle studies relied on capturing
and trapping individual particles from thousands of potential particles, either by
passively waiting for a particle to enter the optical trap, or by actively selecting
the particle. However, the ability to continuously trap, characterize, and release
individual particles for on-line Raman-based particle identification or for longitudinal
studies on a series of successively arriving particles with different properties could
further increase the application space for LTRS, particularly if such a system could
continuously sample individual particles from a particle stream (e.g., airborne
particles from the atmosphere or particles in a liquid reservoir from a patient) over
long periods of time [24].

There are two key requirements for such a system: (1) focusing and concentrating
the particle stream into a small interrogation volume (e.g., 20 x 20 x 20 um?) through
which particles pass sufficiently slowly to be trapped and sampled one at a time;
(2) the optical trap needs to be strong enough to capture and hold individual particles
from the stream with different optical properties and morphologies. Toward these
goals, a method was recently developed to deliver individual particles into the
trapping volume based on counter-directional air flow which aerodynamically
focused particles into the trapping position with minimal particle loss [24]. A
second study showed that a single optical trapping technique could be used for
both transparent and absorbing particles regardless of their morphologies [44].
Nevertheless, there has been significantly more success applying LTRS to particles
in liquid, particularly in a microfluidic environment. These LTRS systems benefit
from the confinement of the microchannel, which efficiently delivers particles to the
trapping volume [41,90-96]. In addition to optical trapping, microfluidic systems
have also been combined with electrostatic trapping [97-99]. Moreover, combining
microfluidics with surface-enhanced Raman scattering (SERS) enables much faster
Raman measurements, and it is possible to identify cells and characterize cellular
chemical dynamics in flow, without needing to trap the particles [100-105].
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globin present in the nerve cord of the annelid Aphrodite aculeata (A. aculeata),
and wild-type (wt) human neuroglobin (NGB) overexpressed in Escherichia coli
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(E. coli) bacteria [95]. Calcium (Ca) ion-Dipicolinic acid (DPA) levels in individual
trapped Bacillus spores were measured to provide insight into the spore germination
process [96,106]. Ca-DPA is important in spore resistance to environmental stresses
and in spore stability, and Ca-DPA levels in spore populations can vary with spore
species/strains, as well as with sporulation conditions. Figure 17 shows some
representative Raman spectra of single dormant and germinated Bacillus spores, as
well as the spectra of Ca-DPA, and DPA [96].

4. Conclusions

The combination of optical trapping with Raman spectroscopy has proven itself
to be a versatile and powerful tool in the study of biological particles. LTRS enables
the measurement of Raman spectra from individual particles for applications ranging
from particle detection and identification to longitudinal studies of the response of a
biological particle such as a cell to environmental changes. Optical tweezers enable
the localized measurement of Raman spectra from varying positions within a cell,
as well as providing multi-modality cell characterization by using, for example, the
optical tweezers to measure the mechanical properties of a particle while the Raman
spectrum provides information about the chemical makeup of the particle. The ability
to study individual particles, as opposed to collecting the combined Raman spectrum
from a population of cells, provides additional information about the heterogeneity of
the cells and the variation in the cell-to-cell response to environmental changes. This
unique functionality has enabled researchers to identify the fast release of calcium
dipicolinate in yeast cells, as well as to identify the fraction of cancer cells which
respond to chemotherapy.

Although optical trapping holds particles in place long enough to make
Raman measurements possible, the long exposure time still imposes a limitation
on the throughput of LTRS systems. This limited throughput could be particularly
challenging in on-line particle characterization techniques which use LTRS to identify
airborne biological particles or cells in a microfluidic environment. As a result, a
promising new area of research combines advances in stimulated Raman scattering
or coherent anti-stokes Raman measurements with optical trapping.
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Label-Free Biosensor Imaging on Photonic
Crystal Surfaces

Yue Zhuo and Brian T. Cunningham

Abstract: We review the development and application of nanostructured photonic
crystal surfaces and a hyperspectral reflectance imaging detection instrument which,
when used together, represent a new form of optical microscopy that enables
label-free, quantitative, and kinetic monitoring of biomaterial interaction with
substrate surfaces. Photonic Crystal Enhanced Microscopy (PCEM) has been used
to detect broad classes of materials which include dielectric nanoparticles, metal
plasmonic nanoparticles, biomolecular layers, and live cells. Because PCEM does not
require cytotoxic stains or photobleachable fluorescent dyes, it is especially useful
for monitoring the long-term interactions of cells with extracellular matrix surfaces.
PCEM is only sensitive to the attachment of cell components within ~200 nm of the
photonic crystal surface, which may correspond to the region of most interest for
adhesion processes that involve stem cell differentiation, chemotaxis, and metastasis.
PCEM has also demonstrated sufficient sensitivity for sensing nanoparticle contrast
agents that are roughly the same size as protein molecules, which may enable
applications in “digital” diagnostics with single molecule sensing resolution. We
will review PCEM’s development history, operating principles, nanostructure design,
and imaging modalities that enable tracking of optical scatterers, emitters, absorbers,
and centers of dielectric permittivity.

Reprinted from Sensors. Cite as: Zhuo, Y.; Cunningham, B.T. Label-Free Biosensor
Imaging on Photonic Crystal Surfaces. Sensors 2015, 15, 21613-21635.

1. Introduction

A photonic crystal (PC) surface is a periodic-modulated dielectric nano-structure
material (one example can be seen in Figure 1A) [1-5]. PC surfaces can be designed to
provide photonic bandgaps (Figure 1B), within which light propagation is prohibited
for specific wavelengths [6-8]. Therefore, the local optical modes provided by
the PC surface can be utilized as a highly sensitive and label-free platform for
biosensing and bioimaging in life science research. PC surface biosensors [9-30] have
been widely used to detect refractive index changes induced by surface-attached
biomaterials (Figure 1C,D), and for analytes spanning a wide range of dimensions,
including small molecules [31-35], virus particles [36], DNA microarrays [37], and
live cells [38—45]. Generally, biosensing is realized with a transducer surface (e.g.,
PC surface, waveguide or microcavity) and an instrument for collecting the average
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response from the entire sensing area. When spatially resolved information is
required, such as the behavior within individual cells, it is necessary to measure
localized responses that can be differentiated from neighboring locations. Thus,
spatial resolution becomes a critical factor for biosensor imaging. Among the earliest
developed label-free imaging modalities based on PC biosensors [12,16,38,46,47],
Photonic Crystal Enhanced Microscopy (PCEM) [12,38,44-51] represents a new form
of optical microscopy that uses a PC surface to dynamically detect and visualize
biomaterial-surface interactions (Figures 2—4). Because the detection is label-free,
it is not limited by the transient activity of fluorescent contrast agents that may be
limited by photobleaching effects. Hence, PCEM can be performed for extended
time periods to enable study of cell functions (including cell adhesion, migration,
apoptosis, and differentiation) that take place over the course of several hours or
multiple days.

Based on the number of directions with a periodic repetition of refractive
index (RI) contrast, PC nano-structures can be categorized as one-dimensional (1D),
two-dimensional (2D), or three-dimensional (3D). A PC surface typically consists
of an area of continuous 1D or 2D PC structure on the substrate surface. Here we
describe the case of a 1D PC structure as an example to explain label-free biosensor
imaging on PC surfaces. Traditionally, a 1D PC is characterized as a multilayer stack
of materials with alternating dielectric constants, which are also referred to as Bragg
mirrors (or dielectric mirrors) [52-59]. In such a 1D PC stack, the periodicity is normal
to the substrate plane and a photonic bandgap is formed for light with the evanescent
part of the wavevector (which is highly sensitive to surface RI modifications) normal
to the substrate surface. When used in biosensing and bioimaging, this PC structure
utilizes the surface electromagnetic waves bound to the multilayer (named Bloch
surface waves or surface electromagnetic waves) to measure the dielectric changes
at the substrate surface. However, this type of PC structure has not been used for
realizing high spatial resolution biosensor imaging since its Bloch surface modes are
not confined laterally (rather they propagate along the plane of the substrate surface).
Another type of important PC structure is the PC slab, which consists of a periodicity
of RI contrast in the plane of the substrate surface introduced by alternating a high-RI
guiding layer (e.g., TiO,, GaAs) with low-RI materials (e.g., air, water, Si) [7,27,60-74].
The PC slabs are typically comprised of 1D (e.g., linear) or 2D (e.g., quadratic and
triangular) structures [7,46,51,63,75], and here we focus on the 1D PC slab since
it is the simplest to use for PCEM. A PC slab not only supports in-plane guided
modes that are confined by the slab completely (which cannot couple to external
radiation), but also supports guided-mode resonances (referred to as quasi guided
modes or leaky modes) which can couple to the external environment. Therefore,
the maximum intensity of the electromagnetic field can be observed both in the
high RI layer and in the evanescent part outside of the PC slab. When used in

32



uasi guided modes or leaky modes) which can couple to the external environment. Therefore, tl
1aximum intensity of the electromagnetic field can be observed both in the high RI layer and in tl
vanescent part outside of the PC slab. When used in biosensing and bioimaging, the binding events «

iomaterials BibReatHILaMd thidheaguanaseasih dield catons of thenPterstabined:the asseeigied RI chang
an be obtaisgdnbsced¢teeidridorhe! PeaRCplabeledgiie shifciiPdWB) chingeided-heodfatesdnances in tl
:ﬂectlon/trakgfnﬁ%fsﬁsff‘%p@&ﬁf&# SihEength SJH%&FVY?) @f&%ﬂ%d lﬁ%%e Igion %‘rgf)agatlon of tl

ection/transmission s nce the perio dicity is in thi e plane, the lateral
10des is progﬁgﬁaggtigntkﬁtﬁ%@g glgﬁ&%%&%&ﬁélﬁ@ﬁ%ﬂsbﬁg%hsgpgﬂa deselyliopgan be realiz

1 bioimagingpatial resolution can be realized in bioimaging.

5 PWV
A C $1

o

o

c

©

°

2

®

(14

o

]

N

©

£ ° o
zo Wavelength (nm)

Ao M
Wavelength (nm)

B D

550 - PWS (AL=1; - 1)
= 08 =
£ < 1
- (] [}
%600 0.6 % | Background ,',\ Attached Biomaterial
g T Nii
@ 650 /\ 0.4 % o
3 4 !
= 02 I | :

700 N i ;

0 5 0 5 10 Eo
3

Launch Angle, 6 (°)

Figure 1. Photonic Cr @Xstal PC) Surface Biosensor. (A) Schematic of the PC surface

Figure 1. Phoionic. Cvsiah B FacsBigsepsend Alisehgmatic.f dhsP) surface on a
substrate withfstriiotund paitinvélers:Rigrtitigs periedh (), Qratiigsicptivpdyyeetragtive index (RI)
of low-RI ffitigesmatdiat Blimyhd bR e’ aﬁgatomﬁ&ﬁégbbm}%?m layer (t);

calculated by FDT s1mulat10n ) Normalized reflection spectrum from th

(B) Band %@H&@@I@@lﬂpésanmwma&gﬁg% Jhigsenser saleylsted.ady. KIALR simulation;
(C) Normalskgd@adeotivnespedtdifwnirbenthedPeedsspdace witith radgnomtdpeadl wavelength

value (waﬁj‘é{m,kwbmawé%@rfgfff%%fﬁafm@mﬂﬂaém&@& ot the normalized

biosensor.

spectra with a background pixel (PWYV of Ao) and a pixel with surface-attached biomaterial
(PWV of A1) on the PC biosensor.

33



Sensors 2015, 15 21616

Imaged
A Sensor surface line B

X-Y scanning PWYV image of protein A
\ stage written by Piezoarray™ Spotter

L Imaging
Beam spectrometer
splitter €
R
White light /\ S
I
. Entrance slit CCD intensity
Mirror £2
:jc Bx -
sa
2 Bright pixel = high 2.
; g Dark pixel = low
L positon T APWV (hm)
(512 pixels)
C

(a) Untreated Control (b) Apoptosis (c) Proliferation

APWV (nm)

Before Treatment

After Treatment

Figupig Zre [pstiimeaimlsnk abel-fisel Biampisadae litteragtiora diriaciienetBENIBIS¢mner
utiligzgaeP @ tliviage bivSensofade\DiSsbesnati¢ O Sotaitaoir/ détestinntioptr dexesativhere
an imspmmepectiteneten gadginghpebtedmefereflatters Spactived noitefleotedyspratraone
line siorolsnkeudystosucfaedingBic Ve Shinsegeo roduPlaste; (BAPWIS dinages ofi P reprissent
regiénfboizhieteei MW pgaskatadgivasehgredianZWo) gatherfhoP( brovensbiamdtith is
imagedion approkikiosdyson whichisimegsthAbaPpreximalehy 2heeRixe! REbtiQRano
Senddter WIS thedetiersNrSardyanp s rideroppe itk Rrdticrairapispesting ™)
(Reﬁﬂ%kéﬁfa#%ﬂ%% NG rhisaeATRm PRSI é PRart BieTrrssien) s flkges
witl SAIRGERE AR fm%hr@cmz %\@%@gg% ithahife é&gv%i%% AHARYHY b daﬁ%%ers
Plxetlh wmﬁ%ng%lereP%gN 1‘5751%} r1g Phier ¢l (gjrlsmieﬁ lfcs:ate oca 1<¥1V1§th I}{lelgéhf’ra cell
attachaRiaY an RHghter eplers | ’f? écactglu‘r’ﬁ%ts“’“fs Yhere s%?c'rel%‘?éls%%ttadﬂm‘?“howmg
occurred. The three columns og image set: redpresent the following: (a) untreated
(9 ETEE 6 I ] HEECol b Pl PRI P o
i ) S ik MRS IRRAID s bl Rt e e
top 9% t%f P38 Y A4 ISR rgn%‘é}%s%rgx%%‘%&hee a??&t%‘% B%‘E‘Eo‘%rfl HORES? 1}‘{1%5 E%ke“
after the ?aﬁmwepfmde%m@w%&%m 4 Qe Bslr Rede 10 (i bﬁ?m%QPe um
(Repyinted Anrpput soih perRissiontiem [9dd: ©i20 PR Bieed Gmah£d49-2010 BioMed

Central Ltd.).

34



Sensors 2015, 15 21617

A > B
16-bit
EM-CCD
<
| 35 mW HeNe
Fluorescence
e Filter E
Objective .
| 1/2-Wave Plati 400007 __ oy 15
N PC 5 o0 e Dacigroumd A“’ A, M’““M\ Aai
& Sample & s Vi
\’_______—‘- Rotating 5 3
Diffuser S %0 @12
c [
£ 10000 <! v |
m . - 10 ¥
S L % o4 68 1z 16 320 o 04 08 12 18 20
() Angle (deg) (d) Distance (mm)
<> W
Angle-Tunable  Aperture 10x Beam Expander Variable
Mirror ND Filter
D
26 r r .
; : Profil 2 A h I
5 3 251k | vl \
e e v ® o0 .o - \ f [ ,
¥ ) i
LI . e, e 0 g, H‘j A p
52 4
e o 00 () Ed ‘ { '4‘
e 0 ssgoe e z |l
LN [ ] e ¢ 0 e e g:!- 1 ‘ {
) . o« e 0 PR 28 A [“‘\fJ\ ‘II)H\ ;
A ﬂ A4 | \ | [ |
e 0 v ¢ % 0 L o ::?;.,' i l "ﬂ” ‘hﬁ L‘ u .JJ ] ’]"J\ J
. N * 00 P |7 [ \ |
v
500 pm 15 n Ll Vi
- 0 500 1000 1500 2000 2500 3000 3500 4000

Distance (um)

Figulrig e [Bstrunsénurderifransrhissiomissiquisittouisitida ofopleoteizhotestid dipstalsor
integrinednswitintegratgstintith anagpnighticregbagenigndscappandaysingdaséplas lightce.
(A) Susnat) Sehesmmbinad captined lahal-Eramanedenhancediibeorassente magingnt;
(B) ExttaHeaenG: (Bhbrhaesed dlsopiranteanhibiiabesiesdmas s smgd@bn a
PC S0sERR PRI Gt HaliniRORAT ToMer e PRNIGIHON RSFA ARG S HSRRORAE f%Ride
the g&%;e%%%ew %jtsa%%ﬂeﬁo@ésgéf?oﬁpza%%éCiasef’ﬁsesﬁﬁsge%r%{l%B éaJ%e’sf&eeys

spots i f) %r than RiSas PR Wg)the ol- H‘éaenmrglggaﬁlurlsn tem, measﬁres the
labe Tee im I%m§ I?/stem me thg angle of m1n1m m F&nsmlssmn AM
ang% minimu ansmission ?SAK/TI 1na t sensor  at g
1

uml ting the PC ensor at ed wave 11e scannm
wave th w al ann lsie an oaf ]1 atlont %EA com uter- tro gedgrotatlon
u matlon t rou ]ﬁ%omput T-contro lﬂncfl rotation o or re rmte

of ihe AR (1% srfél}\e%‘r APRb L M%n&%g%%%%tllai@s%%ﬁ ’}"E’E‘S’ia%qpf%g‘élusx?%%ty)
(©) LabehnRe a9 mRNMMisT A BsaHied i BB, Jl i
dashaq, box,lsnles dbeotostion foRai®ifikad Jueninal Piank SRQtSnd HiBE T afile
runnigg, thyoughir BacRUBBING b Rk sPisrdBl e RYhAVRRPEDINREpiintaWn
in (D) Repuintedgerprigtohirsmssion 7om [RileGe2A OndmrtisspGhgmical Society).

35



Sensors 2015, 15 21618

n

h312g, 60,,," po\\l‘“e‘

c\es®

Normalized Intensity (A.U.)

Reflection

620
Xem 9”600

Objective Wavelength (nm) E
B Cylindrical 1] Lens G s
Lens A=05nm )

LED . 205 é
u N | / ccp i bk §

- BG
L ——BG it
‘A\ /.\ i tDPN Dots fit
//!\‘
TR

620
Wavelength (nm)

oy

Figure Eigtﬁfstiluméﬁ%trymivéf}%cti%ﬁﬂegéqﬁﬁs%ﬁmsmemeflep%ﬂaméoréfygféastﬂlosensor
1ntf:gratel()iloseﬁisor mtegra% “nqtgr%rslégvgr%r? dcrﬁscipﬁﬁ “ﬁé’t%%%% %seh%g)s%mh%matlc of
Schematic of the structure 0 a photonic crystal ( C) surface biosensor witl
the Stmstga%fagé PraBRQIMISo ST EQ) pHRGs ah;ess% st Acatuifage;attached
nanopartigigs sna%t,-(pjﬂﬁtgraﬁlanl’gé}b&aa@ﬂawfrtﬁ@bﬂ@a&@d Phb @orgtassyshid EntBhdustrument
schematidliofodtopmdBEHIVDh (E) 1B Tivist @l krhanvéd dgiapbsed e (ROEMY; oSt canning
electron $HI&eRiApHt mqﬂi&m@ﬁ%&mﬁgﬁw theset: bisssneariAinMeelithd edge of
the PC b% Ctro&rr gﬁ)(ﬁlrface 03) srf)lgg’?u?fiap sur z{acl\él g{o??tmgz%{zllr\gc? %%H@C%?\/I Inset:
ectrum 1mages O rm e array Of nano- OtS

PCEM- a(: %ulllr 1ﬂ31]a1n’pen510n 0#151483 §< 4)0 nm N{ ]ilflllsa .e%o%m%citDPRIFR)flnte ge OF 3 array of
nano-dotgpferchriwith dimensionoiA40: of AR PN ﬁaﬁ%clzeem@éré@MMﬂm@gﬁ of one
tDPN-printéatadotot) F)RMWNA20fmage fefdthevibP Meetine P Wotsn{adspl@y ddoimalizdd surface
plot) witHRECH20F ArePfriN Bt ivee ) BhsprinEy pARt\aithAeba@y B ehiibigbdidgictra of a

represen%a‘}?v e%ﬁ“ﬁﬁ%&dﬂ&ofpﬁg%‘%g‘ o 1?&8“8%311 fiffing RsBrREdNRATe of the
%Eermls ion from [ ! © 2014 RSC b lish 1n§
spectra with 2D po ynomial fitting Reprlnte in part with permission from [48], © 2014

RSC Publl

Normalized Intensity (A.U.)
3
@

&
£

Spectrometer

1’1%1 laléﬁf)'a'ntages of PCEM are inherent from the optical properties of slab-based

The adP “rfeas,c%%ﬁ ‘i’\éi N I AT i ﬁe}%%%l% soBsial féo?l?rtféces since
ze

unctlona i1 as a sensmve op tlcal rans ucer or mstance, spatial
they can f e 1gne Ve e%%t SRisS ectl tlca resona atn ncti na zgcl 8.9 sensitive
o Gt 1r1—plane can be achie PiGima o the restricted late

optical tragﬁ%l&gaﬁ%% Weféﬁr&agagap@ﬁ@lm&t@ﬂ anreleacy pambertehisysd lrﬁhm%ng due to
the restrigtedtdgtgrinpirpagadoniwiiedertromagnaticyaarssenn ffoldycsesf tthe MC seltacdnhanced
electromagreatidriititds dapte d6ra2Qf amgvanbscidhtrfinld)ensar fthee Bdssutfadekipenateatis, depth of

~200 nm) only illuminate surface-adsorbed biomaterials, such as the extracellular matrix (ECM),
membrane components of surface-adsorbed cells,3gr cellular surface-attached nanoparticle tags. This
near-field high-intensity illumination regime promises a high axial resolution (out-of-plane) of
~200 nm, which is beyond the diffraction limit in the spectrum-range of the visible light (400—700 nm)
during bioimaging. Compared to the broadband resonances and lossy modes (due to absorption) on

motal crirfFarce rarravs l1rne vxv1d4h (o o a foaver i) recnnant crnecrtra arnd hioh raflactinan officioanceys (A o



such as the extracellular matrix (ECM), membrane components of surface-adsorbed
cells, or cellular surface-attached nanoparticle tags. This near-field high-intensity
illumination regime promises a high axial resolution (out-of-plane) of ~200 nm,
which is beyond the diffraction limit in the spectrum-range of the visible light
(400-700 nm) during bioimaging. Compared to the broadband resonances and
lossy modes (due to absorption) on metal surfaces, narrow line width (e.g., a few
nm) resonant spectra and high reflection efficiency (e.g., nearly 100%) on dielectric
surfaces of PC biosensors enable measurement of resonant wavelength shifts with
high spectral resolution. The PC resonant mode can be measured in a noncontact
detection instrument configuration, in which normal incident-angle illumination
results in simple integration with a standard microscope. The resonant wavelength
can be selected on a PC surface by tuning its geometry (e.g., grating period) or the
incident angle of illumination. Thus, the sensing and imaging can be realized in
many spectral ranges, including ultraviolet, visible, and infrared (IR). Although
PC surfaces have been fabricated by expensive and time-consuming approaches
(such as electron-beam (e-beam) or nano-imprint lithography), recent developments
in high-throughput and large-area polymer-based techniques (such as nanoreplica
molding at room temperature) have led to the commercial introduction of single-use
disposable PC sensors that can be manufactured in a roll-to-roll fashion. These PC
sensors can be subsequently integrated with standard format microplates, microscope
slides, and microfluidic devices for high-throughput drug or cytotoxicity screening
of biomolecule or cell assays. The goal of this review is to summarize the genesis,
development, and recent advances of PCEM.

2. Principles of Modern PCEM

2.1. Photonic Crystal Surface Biosensor

A dielectric PC surface (linear PC slab) is utilized as the optical transducer
for RI sensing in the label-free PCEM imaging system, as shown in Figure 4A.
The PC surface is a resonant grating structure with periodic modulation of the
dielectric permittivity of a low-RI material in one dimension (1D) (which provides
the nano-pattern) and is then coated with a thin layer of high-RI material (which
supports the guided-mode resonances) [49,51]. When illuminated with broadband
polarized light, the incident light is coupled into the resonant modes of the PC if the
Bragg condition is satisfied. As mentioned earlier, such guided-mode resonances are
referred to as “quasi guided modes” or “leaky modes” since they are not allowed
to propagate laterally (due to fact that these modes are rapidly re-radiated out
from the grating structure) and, thus, have a finite lifetime in the PC structure.
Therefore, the resulting electromagnetic standing waves that occur at the resonant
wavelength inhibit lateral propagation and open the potential for the PC surface
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to be utilized for label-free bioimaging. At the combination of incident angle and
incident wavelength that satisfies the resonant coupling condition, nearly no light is
transmitted through the PC and a high reflection coefficient (~100%) can be achieved
during bioimaging [1-3]. The input light can be coupled into the PC resonant mode
via wavelength or angle control, which does not require high precision position
control and, thus, reduces the complexity of the overall imaging instrument.

Fabrication of the PC surface can be performed upon large-area plastic
sheets using a roll-to-roll replica-molding procedure that is performed at room
temperature [46,77-79]. The molding template, which can be used repeatedly (up
to thousands of times), can be made on silicon wafers or quartz substrates by
deep-UV lithography, nano-imprint lithography, or e-beam lithography. During the
replica-molding procedure, a thin layer of liquid ultraviolet-curable polymer (UVCDP)
(low-RI) is deposited on the molding template and then compressed against the
device substrate to create a negative volume image of the grating structure from the
mold. After exposure to high-intensity UV light, the UVCP is cured to a solid-phase
grating structure (e.g., grating period of A = 400 nm, grating depth of 4 = 120 nm,
duty cycle of f = 50%). A thin layer of high-RI material (e.g., titanium dioxide (TiO,))
is subsequently deposited on top of the low-RI grating structure (UVCP), with its
thickness (e.g., thickness of ¢ = 80 nm) selected to generate a resonant reflection at a
specific wavelength (e.g., resonant wavelength of Ag = 620 nm). A scanning electron
microscope (SEM) image of a fabricated 1D PC surface is shown in Figure 4C. This
replica-molding method provides a rapid, reliable, and inexpensive manufacturing
process for PC surface fabrication.

The main criteria for measuring the performance of a PC surface biosensor
include sensitivity and spatial-resolution. The sensitivity of a PC biosensor is
determined by the material (e.g., the dielectric property of the high-RI layer) or
the geometry of the nano-structure (e.g., the thickness of the high-RI layer) [80]. The
sensitivity can be estimated with Finite-difference time-domain (FDTD) computer
simulations and experimentally characterized with an optical transmission/reflection
setup. As mentioned earlier, the spatial resolution of the PC biosensor can be
decomposed into in-plane and axial resolution [81]. The in-plane resolution is
characterized by the propagation length of resonant modes along the surface plane
of the nano-structure and the axial resolution is determined by the penetration depth
of the evanescent field atop of the PC surface. In addition, since the PC surface is
an optical biosensor, the selectivity is realized by coating the surface-immobilized
antibody or ECM molecules on the top of the biosensor. The absence of selectivity
constraints on the biosensor avoids the specific design for each application and, thus,
enables a broad range of bio-applications for the PC biosensor.

38



2.2. PCEM Imaging Modality and Operating Principle

As shown in the schematic diagram (Figure 4B), the PCEM detection instrument
uses a linear scanning approach and is built upon the body of an inverted microscope
(Carl Zeiss Axio Observer Z1). In addition to ordinary brightfield imaging, a second
illumination path is provided from a fiber-coupled broadband LED, which is incident
on the PC from below. The unpolarized LED output light passes a polarized beam
splitter (PBS) to illuminate the PC with light polarized with its axis perpendicular to
the grating lines (e.g., y direction), representing the transverse magnetic (TM) mode.
Since the resonant wavelength of a 1D PC surface is only sensitive to the incident
angle in one angular dimension (perpendicular to the grating) (y direction), the light
can be focused in the orthogonal angular dimension (parallel to the grating) (e.g., x
direction) to strengthen the incident intensity. Therefore, the light passing through
the PBS is focused in one axis (x direction) by a cylindrical lens, while the light
remains collimated in the other angular dimension (y direction). The linear beam
(collimated direction) is focused on the back focal plane of the objective lens of the
microscope. The light emerging from the objective lens (upwards) is thus incident
on the PC, so it is collimated in the direction perpendicular to the PC grating lines
(y direction) and, thus, all the light reaching the PC with the TM polarization has
the same angle of incidence. The reflected light beam passes through the objective
lens in the opposite direction (downwards), after which it is projected onto an
imaging spectrometer through a narrow entrance slit. The imaging spectrometer
contains a diffraction grating that disperses the wavelength components of the
PC-reflected light. Once the spectrometer is determined, the dimension of one
imaged pixel of the PC in the direction parallel to the grating lines (x direction) is
determined by the magnification of the objective lens and the dimension of pixels
within the charge-coupled device (CCD) camera (Photometrics Cascade, 5122 pixels).
A motorized stage (Applied Scientific Instruments, MS2000) linearly translates the
PC in the perpendicular direction to the grating (y direction). The step-size of the
stage (together with the magnifications of the objective lens) determines the pixel
size of the PCEM imaging system in the y direction. Therefore, a large area can be
scanned in a line-by-line fashion by translating the PC sensor in steps perpendicular
to the linear grating direction (y direction). For example, with a 10 x objective lens of
the microscope, a 16 um? pixel size of the CCD camera, and a 0.6 um step size of the
motorized stage, a final acquired image with 0.6 um? pixel size can be measured in
PCEM (with an acquisition speed of ~10 s per frame for a scanning area of 300> um?).

For PCEM data acquisition, the linear light beam reflected from the PC that
contains the resonant biosensing signal produces a spatially resolved spectrum for
each point along the line with a narrow bandwidth (e.g., AA ~ 4 nm) and forms
a 2D spectrograph (e.g., 5122 pixels) across the line (Figure 4D). After line-by-line
scanning, a 3D spectrum data (e.g., 5123 cube) can be acquired (Figure 4D inset)
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and the signal/image processing can be performed with computational software
(Matlab, MathWorks). Specifically, the spectrum signal can be mathematically fit
with a second-order polynomial or Lorentz function for each pixel to extract the peak
wavelength and intensity values. With a background image acquired beforehand,
shifts in the peak wavelength value (PWYV) or shifts in the local peak intensity value
(PIV) can be calculated at each pixel location to measure the redistribution of the
attached biomaterials.

3. History of PCEM Development

The development of PCEM instrumentation can be described chronologically
in three main phases that have led to increasingly finer spatial-resolution and
illumination/detection optics, which have been designed for scanning biomolecular
layers on dry PCs or cell attachment on PC surfaces exposed to liquid media.

3.1. Instrument 1—Biomolecular Interaction Detection (BIND) Scanner

In 2002, the first PC biosensor introduced by SRU company (SRU Biosystems)
was designed for high-throughput microplate-based detection of protein-protein
and protein-small molecule interactions, using a PC with resonant reflection in
the near-infrared (NIR) spectral range [49,51]. Shortly afterwards, a PC biosensor
microplate reader was introduced that incorporated a linear array of optical fibers
with illumination/detection heads that could read all the wells in one row (e.g.,
y direction) of a 96-well microplate at one time [46]. The illumination/detection
heads were installed beneath the microtiter plate, which sits upon a motion stage
that could translate the plate in an orthogonal dimension (e.g., x direction) to scan
the entire microplate in ~15 s. This mode enabled serial re-scanning of the microplate
to generate kinetic data for the biomolecular interaction taking place in all the wells.
The PC biosensor resonant PWV was determined at each location with this linear
scan mode. Subsequently, the first-generation label-free PC biosensor imaging system
was introduced and named the “Biomolecular Interaction Detection” (BIND) Scanner
(Instrument 1, Figure 2A) [12,47,50]. The optical fiber-based illumination/detection
approach was replaced by free space illumination of the bottom surface of the PC
biosensor with a broadband light source, and the collection of reflected light into
an imaging spectrometer, which was able to rapidly acquire a spatial PWV map by
scanning a large sensor surface area. Following the light path of the system, the
incoming light beam was divided by a beam splitter, directed to the PC biosensor
surface, magnified by an optional objective lens, and, finally, projected into the
imaging spectrometer via a narrow entrance slit. The illumination source in this
instrument was a white light lamp or a broadband light-emitting diode (LED) in
the NIR spectral range, and the detector was a CCD camera. In a single CCD
image (Figure 2A, bottom-right inset), the reflectance spectra of several hundred
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independent locations in one line that spans the PC were gathered at one time. To
construct a 2D PWV image, a scanning stage translated the PC across the illumination
line in small spatial increments.

The first generation of scanning PC imaging instruments (BIND Scanner) was
developed into a commercially available product and utilized in many life science
research applications [38-41,43,50,80,82,83]. For example, it has been reported
in [83] that assessing combined enhanced fluorescence and label-free biomolecular
detection on the same PC surface. The sensitivity of the PC biosensor has been
examined in detail in [80]. The PWS image shown in Figure 2B illustrates the
detection of a microarray of Protein A printed on the biosensor surface to form the
letters ‘NSG’ (Nano Sensors Group, University of Illinois at Urbana-Champaign) [50].
Cytotoxicity screening of Bangladeshi medicinal plant extracts has been performed
with pancreatic cancer cells (Panc-1) using the BIND Scanner. As shown in Figure 2C,
the untreated control group and two representative plant extracts, Petunia punctata
Paxton (P. punctate) and Anisoptera glabra Kurz (A. glabra), demonstrate different
cellular activities (apoptosis and proliferation) on the biosensor surfaces [41]. The
imaging instrument was sufficient for observing large populations of cells with
~9 um spatial resolution, so that cells with large surface attachment footprints could
be observed, although the system lacked sufficient resolution for observing intra-cell
attachment dynamics.

3.2. Instrument 2—Transmission Acquisition Mode with Upright Microscopy and
Laser Source

To improve spatial resolution, an upright microscope (Olympus BX-51WI) was
integrated into the PC imaging system in 2009 [76] and the resulting system was
named the “Photonic Crystal Enhanced Microscope” [44]. Instead of measuring
reflection efficiency as a function of wavelength from the bottom of the PC surface,
the second generation PCEM measured transmission efficiency as a function of
incident angle, using a fixed illumination wavelength from a beam-expanded laser
(Instrument 2, Figure 3A). This instrument was designed as a wide-field imaging
system with collimated angle-tunable laser illumination, which allowed imaging
of a PC surface using the same illumination source and imaging optics for both
enhanced fluorescence (EF) and label-free (LF) modalities. As shown in Figure 3A,
the light beam generated from a HeNe laser passes through a half-wave plate (for
polarization control), a variable neutral density filter, a rotating diffuser (to reduce
speckle and fringes), a beam expander, an aperture, and a motorized angle-tunable
mirror before passing through the PC (which is positioned beneath the microscope
objective lens). The gimbal-mounted motorized mirror sits on top of a motorized
linear stage in order to maintain a constant illumination area on the PC device
(as the mirror rotates) and provide selective light coupling to the PC. Using this
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approach, high spatial-resolution and high sensitivity LF and EF images (Figure 3B)
can be accurately registered with each other since a common beam-path is shared
for both imaging modes [76]. An electron-multiplying (EM) CCD camera was used
to acquire high resolution and large-area images, and thus enable high-throughput
analysis. Moreover, images can be simultaneously acquired with other imaging
techniques available on the EF/LF microscope, including reflected brightfield (BF)
and differential interference contrast (DIC) images that can be overlaid with EF
and LF images.

This transmission-based PC imaging modality that was capable of simultaneous
label-free and enhanced fluorescence imaging (EF/LF) was further developed and
utilized in several follow-up publications [20,41,42,44,76,81,84]. One of the main
applications envisioned for the instrument was for performing DNA and protein
microarray analysis, in which the label-free image of immobilized capture spots
could be used to verify correct microarray printing and uniform spot density, while
the enhanced fluorescence imaging modality would be used after hybridization of
the target molecules from a test sample that carries fluorescent tags. Optimization
of the imaging spatial resolution was reported in [81]. Microplate, microfluidic
channel, and spot-based affinity capture assays were also demonstrated with this
detection platform [84]. Figure 3C shows an example of a label-free image acquired
with a tunable resonant angle for a DNA microarray immobilized on the biosensor
surface [37]. Figure 3D shows a line profile through a row (red line in Figure 3C)
containing 4 blank spots followed by 12 probe spots. It can be clearly observed that
areas where the probe DNA has been immobilized produce a measurable increase in
the resonant angle.

3.3. Instrument 3—Reflection Acquisition Mode with Inverted Microscopy and LED Source

Recently, the PCEM instrumentation transitioned to its third generation, in
which an inverted microscope (Carl Zeiss Axio Observer Z1) body was chosen as the
base of the system (Instrument 3, Figure 4A,B) [45,48]. While the second generation
PCEM was developed specifically for scanning PC surfaces in a dry state for the
detection of surface-adsorbed biomolecule patterns (such as DNA microarrays), the
third generation PCEM was designed for label-free detection of cells and real-time
detection of binding events in which the PC surface is exposed to liquid. In order
to avoid scattering and absorption or interference from cell bodies, microfluidic
components, semi-opaque liquid media, or liquid-air meniscus, bottom illumination
of the PC was adopted in a reflection mode. In this system, detection of resonant
reflected wavelength shifts was adopted again as the sensing approach rather than
sensing changes in the resonant angle for a fixed illumination wavelength. An LED
was chosen as the light source to avoid the speckles in the acquired images that may
be caused by a laser illumination source. To obtain higher illumination intensity
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from the LED light source, a cylindrical lens was added into the illumination light
path to convert the incident light from a circular spot to a more concentrated linear
beam [45].

Label-free imaging of surface-absorbed live cells (including cell attachment,
chemotaxis, and apoptosis) [45] and nanoparticles [48] has been performed using the
third generation PCEM. Fluorescence-labeled imaging is also enabled in this system,
in which the PC can be excited by a laser illumination source that can couple with the
resonant PC mode to obtain an electric field enhancement effect. This enhancement
is capable of increasing fluorescence detection sensitivity (which has been validated
previously [20,76,83,85-95]) and enabling estimation of the distance of fluorescence
emitters from the PC surface [96]. The most recently adopted PC surface design and
PCEM detection instrument configurations have already been described in detail in
section 2.

4. Applications of PCEM

The PCEM imaging system can be applied to monitor kinetic changes in the
spatial distribution of dielectric permittivity for surface-adsorbed materials. This
section describes PCEM applications with several examples, such as label-free live
cell imaging, nanoparticle and protein-protein binding detection, and intensity
enhancement of fluorescent tags embedded within live cells.

4.1. PCEM for Label-Free Live Cell Imaging

Label-free live cell imaging involves a sensing transducer surface, which
typically generates an electrical or optical signal when cells interact with it.
Biosensors that measure intrinsic cellular properties (such as dielectric permittivity)
can be used to determine the number of cells in contact with the transducer, or
the distribution/redistribution of focal adhesion areas. Such transducers (e.g., PC
biosensors) may be prepared with different surface chemistry coatings that either
mimic the in vivo microenvironment within tissues or selectively capture specific
cell populations through interaction with proteins expressed on their outer cellular
membranes. Therefore, the PCEM-based label-free images of cell attachment can
assist the study of cell-substrate interactions, including identifying, capturing, and
quantifying cells expressing specific surface molecules (Figure 2C) [38—45,50].

Recently, PCEM has been successfully demonstrated as a label-free live
cell imaging approach to provide visualizations of each individual cell with
subcellular details [45]. As shown in Figure 5A—C, Panc-1 cells were seeded onto a
fibronectin-coated PC biosensor and allowed to incubate for 2 h before imaging. The
non-uniform distribution of the PWS and the subcellular activity can be visualized
clearly for each single cell. Figure 5B shows that the middle cell (No. 2) demonstrates
higher PWS in regions near the boundary of lamellipodia formation (consistent with
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the creation of actin bundles). These darker shadings in the cell indicate regions of
higher protein concentration, which may be attributed to higher modulation in the
strength of cellular material attachment.

In addition, the kinetics of dynamic interaction between cellular materials and
surface coating materials can be measured quantitatively using PCEM. As shown
in Figure 5D, a sequence of movie frames demonstrates murine dental stem cells
(mHAT9a) gradually attaching on the PC surface. Cells were seeded at 20,000 cells
per mL on a fibronectin-coated PC biosensor surface. After three minutes, initial
cell attachment appears as small, round regions, which is consistent with spheroid,
trypsinized cells coming out of suspension and attaching to a surface. As time
progresses, both the size of the cells and intensity of the PWS induced by them
increases, indicating a higher localization of cellular material at the biosensor surface,
which can be expected during cell spreading. Finally, once cells are sufficiently
attached, cellular processes can be observed sensing the cells’ microenvironment in
all directions. The outer irregular boundaries of the cells have a relatively low PWS
(consistent with thin, exploratory filopodia) accompanied by a more heavily attached
region slightly immediately adjacent in the cell interior (likely a result of actin bundle
formation). Figure 5D illustrates distinct modulation distributions of the attachment
strength for both individual cells and the whole cell group during different periods
of the adhesion procedure.

4.2. PCEM for Imaging of Nanoparticle and Protein-Protein Binding

Because the PC surface structure restricts lateral propagation of light at the
resonant wavelength, it is possible to create spatial maps of the resonant wavelength
and the resonant damping that allow high spatial resolution imaging of small-size
biomaterials distributed across the surface. Particles smaller than the pixel size
(e.g., 600? nm? for our current PCEM) are very challenging to visualize and identify.
However, it is possible to detect the presence of individual particles when the PWS
induced by each particle is higher than the detection sensitivity limit of PCEM at each
pixel location (the noise-induced PWS need to be considered as well). It is noteworthy
that the PWV image for a particle is always within a diffraction-limited distance of
up to five (or more) adjacent pixels and, hence, it is not expected to observe a PWS
of only one pixel when a sub-micron nanoparticle attaches to the PC. As shown in
Figure 4F, a PWV image is acquired for a 3 x 3 polystyrene particle array that is
printed by thermal Dip-Pen Nanolithography (tDPN) [97,98] with heated atomic
force microscopy (AFM) tips. Each particle has the dimension of ~540% x 40 nm?® and
~5 um gaps in between (Figure 4E). Figure 4G demonstrates two acquired spectra
(one from a pixel at particle location, and one from background location) and each
printed particle can cause ~0.5 nm PWS, which can be easily detected and visualized
using the PCEM system. Not only dielectric nanoparticles (as optical scatters) but
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also metal nanoparticles (as optical absorbers) as small as ~100 nm can be detected
ensors 2015yia PIV-shift images using PCEM [48]. 2162
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4.3. Combination of PCEM and PCEF for Label-Free/Fluorescence-Labeled
Imaging Simultaneously

The PCEM is not limited to detection of optical scatters or absorbers, but
is also capable of enhancing the emission and extraction from optical emitters
(such as fluorescent dyes) in the evanescent field of the PC biosensor. Based on
this principle, the label-free PCEM system can be slightly modified to include an
additional illumination path from a laser that can excite fluorescent emitters. The
ability to tune the illumination angle of the laser to match the resonant coupling
condition of the PC substantially enhances the electric field intensity that is used to
excite fluorophores, resulting in higher intensity fluorescence microscope images.
Photonic Crystal Enhanced Fluorescence (PCEF) represents an additional imaging
modality within the PCEM that enables rapid switching between label-free and
fluorescence-labeled imaging modes (Figure 3A) [76,83]. Figure 3B demonstrates
the enhanced fluorescence image and the label-free image of the same microarray
spots printed with cyanine-5-tagged streptavidin (Cy5-SA) proteins. Figure 7A
depicts the current optical setup for the PCEF portion of a combined imaging system.
lumination from a fiber-coupled semiconductor laser diode is collimated and
passed through a half waveplate to produce a polarization perpendicular to the
PC grating lines. Figure 7A inset (top left) plots an angle reflection spectrum of
the PC surface when illuminated with a collimated semiconductor laser at 637 nm
over a range of illumination angles. Maximum reflection intensity occurs at the
on-resonance condition at an incident angle of +1.14° from normal direction. The
off-resonance condition refers to the laser illumination at an incidence angle of 5°.
Figure 7B illustrates the corresponding enhanced fluorescence images for membrane
dye-stained 3T3 fibroblast cells [96]. The combination of both modalities extends
the PC-enhanced imaging system to be multi-functional and capable of imaging in
numerous bio-applications.
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molecular and cellular activity /function. Detection and imaging tools utilizing
nanophotonic surfaces (such as PCEM) with high sensitivity, high detection
throughput, and inexpensively manufactured sensors are demanding requirements
for life science research and drug discovery applications. This paper reviewed
the principles and applications along with the development history of PCEM,
which utilizes a photonic crystal surface as an optical transducer to detect and
visualize surface-absorbed biomaterials. PCEM achieves high sensitivity and high
spatial-resolution due to the narrow spectra line width, restricted lateral propagation
and evanescent field enhancement on the PC surface. The PC-enhanced imaging
system can be applied to the quantitative and dynamic measurement of cell-substrate
interactions, nanoparticle attachment, and protein-protein binding on the biosensor
surface. PCEM can also be combined with PCEF to construct a versatile imaging
system for tracking and visualizing different optical phenomena that occur within
an individual sample. This novel imaging system opens new routes for the detection
and visualization of surface-attached biomaterials and holds great potential to help
uncover numerous underlying biological mechanisms.
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Analysis of Surface Plasmon Resonance
Curves with a Novel Sigmoid-Asymmetric
Fitting Algorithm

Daeho Jang, Geunhyoung Chae and Sehyun Shin

Abstract: The present study introduces a novel curve-fitting algorithm for surface
plasmon resonance (SPR) curves using a self-constructed, wedge-shaped beam type
angular interrogation SPR spectroscopy technique. Previous fitting approaches such
as asymmetric and polynomial equations are still unsatisfactory for analyzing full
SPR curves and their use is limited to determining the resonance angle. In the
present study, we developed a sigmoid-asymmetric equation that provides excellent
curve-fitting for the whole SPR curve over a range of incident angles, including
regions of the critical angle and resonance angle. Regardless of the bulk fluid type
(i.e., water and air), the present sigmoid-asymmetric fitting exhibited nearly perfect
matching with a full SPR curve, whereas the asymmetric and polynomial curve
fitting methods did not. Because the present curve-fitting sigmoid-asymmetric
equation can determine the critical angle as well as the resonance angle, the undesired
effect caused by the bulk fluid refractive index was excluded by subtracting the
critical angle from the resonance angle in real time. In conclusion, the proposed
sigmoid-asymmetric curve-fitting algorithm for SPR curves is widely applicable
to various SPR measurements, while excluding the effect of bulk fluids on the
sensing layer.

Reprinted from Sensors. Cite as: Jang, D.; Chae, G.; Shin, S. Analysis of Surface
Plasmon Resonance Curves with a Novel Sigmoid-Asymmetric Fitting Algorithm.
Sensors 2015, 15, 25385-25398.

1. Introduction

Since the first observation using surface plasmon resonance (SPR) sensors
by Wood in 1902 [1,2], SPR sensors have emerged as popular analysis tools for
bio-molecules, used label-free to detect changes in the refractive index or thickness
of an adsorbed layer on or near the sensing film of the SPR sensor with a high
sensitivity in real time [3-9]. However, the performance of the SPR measurement
still requires improvement for reliable and high-speed data analysis. In fact, the
curve-fitting of the SPR curve is an important and unique process to determine the
performance of the SPR sensing, distinguishing the SPR measurement from other
direct measurements using cantilever, fluorescence, and electrochemical sensors.
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For a typical angular interrogating SPR system, a SPR curve indicating the
reflectance intensity versus the incident light angle provides a fundamental concept
to analyze the binding kinetics of analytes on a sensor film according to changes in
the refractive index [10]. SPR sensors generally monitor the changes of reflectance
intensity over a range of incident angles when target-molecules interact on the
sensing surface. The angle yielding the minimum light intensity on an SPR curve
is denoted as the resonance angle, which is carefully determined with curve fitting
for an SPR curve in a small range of incident angles. For the accurate measurement
of the resonance angle from an SPR curve, several fitting methods have been
proposed, such as the polynomial fits [11,12], centroid method [6] and parabolic
fit [13,14]. Additionally, optimal linear method [15], asymmetric method [10]
and signal processing methods of the SPR signals [16] were proposed. Also to
determine the SPR line in the SPR image, researches utilizing Radon transform
were introduced [17-21]. In particular, the asymmetric fitting method determines
the resonance angle very accurately using a simple equation derived from the
complicated multi-layer Fresnel equation.

However, conventional curve-fitting methods have been used for determining
the change in the resonance angle in short ranges of the incident angle with
wedge-shaped beam type angular interrogation SPR spectroscopy, which is the
most popular and appropriate SPR system for real-time monitoring, as shown in
Figure 1a. When the targeted molecular interaction is measured by SPR spectroscopy,
the real-time results obtained by the change of the resonance angle are also affected
by the bulk fluid, which causes a bulk sensor refractive index. In fact, the existence
of bulk fluid molecules around a sensing range cannot be avoided and should be
excluded in the measured results. Without considering the undesired the effect of
bulk fluid molecules, it is difficult to accurately evaluate the net binding kinetics of
target molecules by analyzing only the resonance angle.

Conventional SPR devices have adopted a reference channel to remove noise
signals caused by the bulky effect of the flowing medium. In order to add a reference
channel in a SPR sensor design, it is necessary to give up a main sensing channel
on a limited sensor area. Furthermore, noise signals vary greatly with referencing
approach [22]. However, these noise signals can be effectively removed by obtaining
the critical angle and resonance angle simultaneously without a reference channel
when non-specific binding is absent. It is known that the critical angle is related
to the refractive index of the surrounding medium [23]. Thus, if the medium is
changed, the critical angle would be shifted and the resonance angle also would be
shifted, correspondingly. Therefore, the capability to determine both the resonance
and critical angles from a SPR curve over an entire range of incident angles is highly
required. A successful curve-fitting method for a whole SPR curve can provide both
critical and resonance angles. Then, the change of angle on specific adsorption of
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2. Experimental

2.1. Instrumentation

We fabricated a lab-made wedge-shaped type angular interrogation-based SPR
spectroscopy for signal detection. The equipment includes a light source, prism,
detector and signal analysis software, liquid handling system with a peristaltic pump
and a degasser and the flow cell. A schematic of our angular-interrogation-based
Kretchmman-configuration SPR system is presented in Figure 2. A slide glass
with a sputtered gold layer (50 nm of Au on 2 nm of Cr) on one side together
with the flow cell is pressed against the prism coated with an index matching
fluid in order to ensure continuous proceeding of the light. We used a 770 nm
light-emitting diode (Opnext Inc., Tokyo, Japan) as a light beam in our system. The
p-polarized wedge-type incidence beam with a range of the incident angle of 7.296°
(1 pixel = 0.0057°) passes through a band-pass interference filter (770 + 10 nm) and is
entered to the SPR sensor chip through a half-cylindrical prism. Then, the intensity
of the reflected light beam is monitored using a two-dimensional complementary
metal oxide semiconductor (2D-CMOS) image sensor (IDS Co., Obersulm, Germany),
which has a 1.41 cm sensing area (1280 x 1024 pixels). The image sensor is located
immediately in front of the prism, and it allows the SPR system to be fabricated
without any other lenses. Our system also has a rotation stage, which can control
the incident angle from 35° to 85° as need for the various samples, including gas
and liquid solutions. The flow cell is composed of independent three channels with
dimensions of 5 mm (I) x 1 mm (w) x 0.2 mm (h) and fabricated from polyether
ether ketone (PEEK) plastic. PEEK is used because it has excellent mechanical and
chemical resistance properties. The sample solution is driven by peristaltic pump into
flow cell and passes through a degasser in order to remove bubbles in the solution
before entering the flow cell.

2.2. Image Processing

A final image for the curve fitting is acquired from three images—a dark image,
TE-mode image, and TM-mode image—using a self-made MATLAB-based program.
The dark image is obtained when the incident light is turned off, while the TE-mode
and TM-mode images are obtained from the light-on mode when the polarizer is in
the TE-mode and TM-mode, after the running buffer is injected on a gold sensor chip.
We processed these three images using the following methods. Firstly, the intensity
of the dark image is subtracted from the TE-mode and TM-mode images in order to
remove the noise signal in the dark condition. Then, the final image is derived by
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2.3. Fitting Algorithm Based Sigmoid-Asymmetric Equation

Figure 4 shows the proposed concept of the sigmoid-asymmetric curve-fitting
algorithm. A full SPR curve denoted by the black dotted line in Figure 4 is acquired
by plotting the average intensity values of 100 rows for each column in the final
image, which is processed using the method described in Section 2.2. Then, the full
SPR curve is fitted by the proposed sigmoid-asymmetric equation of Equation (1):

[Ax[1—{B+Cx(X-D)} F )
R<X)_< (XD} 1 E? >+(1+eGX<XH>>+(I X W

This equation is a formula combining the asymmetric function Equation (2) [10]
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In Equation (1), the parameters A, B, C, D, and E are real and constant values
needed to fit the right side of the full SPR curve to the asymmetric function, and
the parameter X represents the incident angle [11]. The parameters F, G, and H
are real and constant values needed to fit the left side of the full SPR curve to
the modified sigmoid function, and the parameter I is a real and constant value
representing the tilt of the modified sigmoid function. The red solid line of Figure 4
is the fitting curve obtained using the proposed sigmoid-asymmetric equation. The
proposed method determines a resonance angle, which is a response angle position
to the minimum reflectance on the fitting curve obtained by the sigmoid-asymmetric
equation. Moreover, it simultaneously determines the critical angle that is a response
angle position to the maximum value of the 1st derivative curve in the region of the
critical angle, as indicated by the blue solid line of Figure 4.

2.4. Sample Preparation and Measurements

Chemicals: Glycerol, bovine serum albumin (BSA), phosphate-buffered saline
(PBS) were purchased from Sigma, Inc. (St. Louis, MO, USA).

Gold sensor chip: The glass slide (20 mm x 10 mm x 0.55 mm) was from Asahi
Glass, Inc. (Tokyo, Japan). The chrome and gold sputtered on the slide with 2 nm
and 48 nm of thickness.

Glycerol solutions: Distilled ionized water (DIW) and glycerin solutions of 1%,
2%, 3%, 4% and 5% in DIW were prepared and measured with our SPR instrument
to know the relationship between critical angle and resonance angle. First, the DIW
was injected into a microchannel on the gold sensor chip for a baseline with flow
rate of 40 uL/min. Subsequently, the glycerol-water mixture solutions were loaded
at 500 s intervals.

BSA adsorption: BSA of 5 ug/mL in a1 x PBS with 1.5% glycerin was prepared
for protein adsorption in real time to confirm the feasibility of removing the bulk
fluid effect. Here, the diluted BSA and glycerin were used as a model protein for
adsorption on the gold sensor chip and for artificially changing the bulky refractive
index around the sensor film. First, the 1 x PBS was injected into a micro channel
on the gold sensor chip for a baseline with flow rate of 40 uL/min. Then, the BSA
solution was loaded and then rinsed by 1 x PBS with same flow rate.

3. Results and Discussion

Using a MATLAB-based program developed in-house, we compared the curve
fitting results for a SPR curve using three different methods: the asymmetric,
24th-order polynomial regression and sigmoid-asymmetric equations. We excluded
the centroid and 2nd order polynomial method, which are also popular methods
used in SPR spectroscopy, from our comparison experiments because those are local
curve fitting methods with threshold values on SPR curves. In Figures 5 and 6 a

62



Using a MATLAB-based program developed in-house, we compared the curve fitting results for a
SPR curve using three different methods: the asymmetric, 24th-order polynomial regression and
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Herein, air and water were used to confirm the feasibility in both gas and
liquid phases, and with dry and wet samples. Also both fluids are good readily
available examples to compare the fit quality according to the curve shapes because
the shape of each SPR curve in both bulk fluids is very different. The performance of
curve-fitting results with both bulk fluids was compared in the critical angle region
and resonance angle region, respectively. The two regions that depict each angle were
divided at a criterion angle, which was carefully determined. The criterion angles
for water and air were 600 and 550 pixel of the total incident angle, respectively.
Available fit quality parameters, including the coefficient of determination (CD),
error variance (EV), and angle positions determined by each fitting method, are
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summarized in Table 1. The coefficient of determination, R, indicates how well the
experimental data fit the equation models. The EV is used to be defined as follows:

1

2
N 2 (E - B) @

M=z

1

where E; = X; — Y; and E is average of E; at each incident angle position. Here, the X;
is the intensity of the fitting curve and Y; is that of an experimentally obtained SPR
curve at each incident angle position i. The resonance angle position was determined
at the position where the minimum intensity yields a resonance angle region, whereas
the critical angle position was determined at the position yielding the maximum of
the 1st derivative SPR curve in the critical angle region.

In Figures 5a and 6a, the red solid lines represent the fitting curves obtained
using the asymmetric equation. In the region of the resonance angle (pixel number
> 600), the SPR curve was well fitted with the fitting curve. The CDs for water
and air was 0.999 and 0.981, respectively and these values are fairly good results
compared with sigmoid-asymmetric results (0.999 and 0.997, respectively), as listed
in Table 1. However, the region of the critical angle on the left side was not fitted
well, as shown Figures 5a and 6a. Consequently, the asymmetric curve-fitting
method could not determine the critical angle position except for resonance angle.
Thus, the resonance angles determined using asymmetric curve-fitting method were
66.6303° and 42.5929° for water and air, respectively, which agreed well with the
sigmoid-asymmetric results (66.6189° and 42.6210°, respectively).

In Figures 5b and 6b, the fitting curves obtained using the 24th-order polynomial
regression equation exhibited a very different appearance depending on both bulk
fluids. First, the fitting curve for the water condition on the gold sensor chip agreed
well with the full SPR curve, but that for air was fitted poorly. The statistical
results in Table 1 also clearly indicate the poor curve-fitting for air compared with
water. Secondly, even for water, close inspection of the resonance angle region
reveals that the fitted SPR curve is not smooth due to the characteristics of the
polynomial equation. This unsmooth fitted curve makes determining the minimum
resonance angle difficult and subsequently degrades the reproducibility regarding
the determination of the resonance angle.

In contrast, the fitting curves obtained using the proposed sigmoid-asymmetric
equation almost perfectly matched the whole SPR curve over a range of incident
angle, as indicated by Figures 5c and 6¢c. Immediately after curve-fitting with
a sigmoid-asymmetric equation, both the critical and resonance angles could be
determined. The determined resonance and critical angles were 66.6189°, 61.8309°
and 42.6100°, 41.3208° with water and air, respectively. The determined critical
angles almost coincide with theoretical critical angles (61.6265° and 41.3049° with
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water and air). The quality of the determined angle positions can be verified by the
statistical results of curve-fitting in Table 1. The CDs were nearly 1 and the EVs were
Sensals@odktively small compared with others, regardless of the bulk fluid types. 25392
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EV for both water and air. Also, the pglynomial method was not able to determine
the critical angle even though the vatis &fith%gi) and EV are fairly good for water
as a bulk fluid. It is worthy to notdVtkmt the sigmoid-asymmetric method yielded

where E; = X; — Y; and E is average of E; at each incident angle position. Here, the X; is the intensity of
the fitting curve and Y; is that of an experimentally6gbtained SPR curve at each incident angle position i.
The resonance angle position was determined at the position where the minimum intensity yields a
resonance angle region, whereas the critical angle position was determined at the position yielding the
maximum of the 1st derivative SPR curve in the critical angle region.



fairly good fitting results for both water and air. Therefore, the sigmoid-asymmetric
method was the only one to fit a whole SPR curve with high quality and thus
determine both the resonance and critical angles with precision.

Table 1. Calculated statistical results including error variance and coefficient of
determination and both angle positions obtained by fitting methods based on
asymmetric, 24th-order polynomial and sigmoid-asymmetric equation for a full
SPR curve. The SPR curve was experimentally obtained with water and air as bulk
fluids on the sensing film, where N.A.: not available.

Coefficient of Error Variance

. . - o
Bulk Fluid Region Fitting Method Determination (x10-4) Angle (°)
R Asymmetric 0.999 0.268 66.6303
esonance 24th order
angle 1 al 0.999 0.020 66.6303
Water polynomia
Sigmoid-asymmetric 0.999 0.037 66.6189
Asymmetric 0.536 1.189 N.A
Critical angle 24th ordgr 0.998 0.004 NA
polynomial
Sigmoid-asymmetric 0.995 0.014 61.8309
R Asymmetric 0.981 3.177 42.5929
esonance 24th order
angle - 0.947 8.881 42.6955
Air polynomial
Sigmoid-asymmetric 0.997 0.499 42.6100
Asymmetric 0.773 0.960 N.A
Critical angle 24th ordf:r 0412 2488 NA
polynomial
Sigmoid-asymmetric 0.985 0.065 41.3208

In order to monitor specific adsorption of target molecules, one should exclude
undesired changes caused by the bulk fluid, which would induce changes in
refractive index around the sensor. For this reason, it is necessary to know the
relationship between critical angle and resonance angle. The present study monitored
the changes in the critical angle and resonance angle on full SPR curve using a DIW
and a glycerol-water solution with a concentration in the range of 1% to 5% as a
refractive-index solution. In a Figure 7a, the black dotted lines are SPR full curves
measured for samples with each concentration of glycerol-water solution and the
red solid lines represent fitting curves obtained by sigmoid-asymmetric method. A
critical angle and a resonance angle on each curve were determined by the presented
algorithm. Figure 7b presents a correlation between the critical angle and resonance
angle caused by the change in the fluid refractive index due to the glycerol-water
solutions. Fortunately, the correlation represents a simple linear equation in the
range of 0.5613°, which is sufficient to measure biomolecular interactions among
two or three macromolecular layers in real time as discussed in a previous work [26].
The slope of the trend line in the plots was 0.97, and the coefficient of determination

66



was 0.999. Thus, we determined the normalization constant as 0.97, and the final
equation for the specific adsorption angle in our system is described as follows:

0544 = Ora — 0.970cx 5)

where 0544, Ora, and Ocy4 indicate the specific adsorption angle, resonance angle,
and critical angle, respectively.

We conducted additional experiments for protein adsorption in real time
to confirm the feasibility of removing the bulk fluid effect using the novel
sigmoid-asymmetric equation-based algorithm. The black solid line of Figure 8
represents a sensorgram for measuring the corresponding change in the resonance
angle on the BSA adsorption as a measurement method of the conventional SPR
system. First, the PBS buffer solution was injected into a micro channel on the gold
sensor chip for a baseline. Then, the BSA solution was loaded at the 80 s point. The
change in the resonance angle dramatically increased until 200 s. This change reflects
a mass increase by the adsorption of the BSA on the surface and the change in the
bulky refractive index due to the glycerin concentration. The change in the resonance
angle then increased sluggishly until the 700 s point. This change includes only the
mass change due to the adsorption of the BSA on the gold surface via hydrophobic
interaction. Finally, the change in the resonance angle was dramatically reduced from
the 700 s by washing with a PBS buffer solution. The signal was stable at a higher
position than the baseline: ~0.0285°. This value indicates the specific adsorption
level of the BSA on the gold sensor chip. If we do not know the composition of the
sample solution, we cannot understand the meaning of step-by-step changes in the
resonance angle.

The sensorgram can be interpreted in many ways. For example, we can attribute
the increased signal to the binding of abundant BSA, including strong and weak
binding on the gold sensor surface. We can also predict a dramatic decrease in the
signal due to the desorption of the weak-binding BSA on the surface. The gray solid
line of Figure 8 represents a sensorgram for measuring the change in the critical angle.

We observed that the baseline before loading the BSA-glycerin solution was
the same as the last position after the washing with the PBS buffer solution. This
sensorgram indicates only the change in the bulky refractive index around the sensor.
Finally, we observed a sensorgram to evaluate only the change of specific adsorption
angle, i.e., the change in the critical angle caused by the bulky refractive index
subtracted from the change in the resonance angle obtained using Equation (5),
indicated by the pink solid line in Figure 8. Its value is slowly increased by the
adsorption of the BSA before the washing with the PBS buffer, and it is maintained
after the washing, not decreasing due to the desorption. We confirmed that the
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buffer solution on bare gold sensor chip.
We successfully implemented a sensorgram for measuring the specific
adsorption angle by conducting a protein adsorption experiment using only the
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novel fitting method with a self-constructed wedge-shaped beam type angular
interrogation SPR spectroscopy, without any referencing approach or time consuming
multi-layer Fresnel equation. We also consider that the sigmoid-asymmetric equation
based full SPR curve fitting method is practically useful for the simultaneous and
automatic determination of the critical angle and resonance angle in real time.

4. Conclusions

In this study, we introduced a novel full-SPR-curve-fitting algorithm based
on a sigmoid-asymmetric equation that can rapidly determine the critical angle
and resonance angle in real time. The fitting curves obtained by the proposed
sigmoid-asymmetric based approach almost perfectly matched the full SPR curves
with water and air as bulk fluids on the sensing film. This was also proven with the
available fit quality parameters, which were better than those obtained using fitting
methods that are conventionally used to determine the optimal resonance angle,
including the error variance and coefficient of determination. The novel algorithm
effectively eliminated the undesired change caused by the bulk fluid refractive
index change on the sensorgram for measuring the molecular interaction. As a
result, we realized a sensorgram for measuring the specific adsorption angle without
changes caused by the bulk refractive index, by subtracting the critical angle from
the resonance angle in real time using a sigmoid-asymmetric fitting algorithm. We
consider that the sigmoid-asymmetric-equation-based full-SPR-curve-fitting method
is practically useful for the simultaneous and automatic determination of the critical
angle and resonance angle in real time in various applications including gas sensing
and solutions based sensing. We believe that the sigmoid-asymmetric fitting equation
can be applicable to commercially available SPR systems.
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Considerations on Circuit Design and Data
Acquisition of a Portable Surface Plasmon
Resonance Biosensing System

Keke Chang, Ruipeng Chen, Shun Wang, Jianwei Li, Xinran Hu, Hao Liang,
Baiqiong Cao, Xiaohui Sun, Liuzheng Ma, Juanhua Zhu, Min Jiang and
Jiandong Hu

Abstract: The aim of this study was to develop a circuit for an inexpensive portable
biosensing system based on surface plasmon resonance spectroscopy. This portable
biosensing system designed for field use is characterized by a special structure which
consists of a microfluidic cell incorporating a right angle prism functionalized with a
biomolecular identification membrane, a laser line generator and a data acquisition
circuit board. The data structure, data memory capacity and a line charge-coupled
device (CCD) array with a driving circuit for collecting the photoelectric signals are
intensively focused on and the high performance analog-to-digital (A/D) converter
is comprehensively evaluated. The interface circuit and the photoelectric signal
amplifier circuit are first studied to obtain the weak signals from the line CCD
array in this experiment. Quantitative measurements for validating the sensitivity
of the biosensing system were implemented using ethanol solutions of various
concentrations indicated by volume fractions of 5%, 8%, 15%, 20%, 25%, and 30%,
respectively, without a biomembrane immobilized on the surface of the SPR sensor.
The experiments demonstrated that it is possible to detect a change in the refractive
index of an ethanol solution with a sensitivity of 4.99838 x 10> ARU/RI in terms of
the changes in delta response unit with refractive index using this SPR biosensing
system, whereby the theoretical limit of detection of 3.3537 x 10~° refractive index
unit (RIU) and a high linearity at the correlation coefficient of 0.98065. The results
obtained from a series of tests confirmed the practicality of this cost-effective portable
SPR biosensing system.

Reprinted from Sensors. Cite as: Chang, K.; Chen, R.; Wang, S.; Li, J.; Hu, X,; Liang, H.;
Cao, B,; Sun, X,; Ma, L.; Zhu, J.; Jiang, M.; Hu, J. Considerations on Circuit Design
and Data Acquisition of a Portable Surface Plasmon Resonance Biosensing System.
Sensors 2015, 15, 20511-20523.

1. Introduction

In the last two decades there has been a great effort towards the development
of portable surface plasmon resonance (SPR) bioanalyzers to meet the need for fast
and non-destructive detection in numerous important areas including food safety,
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environmental monitoring and agriculture [1-3]. Optical SPR bioanalyzers designed
to measure refractive index changes and quantify biomolecular interactions caused
by the binding of interacting molecules are typically based on surface plasmons
propagating along the metal-dielectric interface where the interaction between an
evanescent wave and dielectric occurs [4-6]. However, the price of these bioanalyzers
when designed by using a common surface plasmon resonance biosensor is extremely
high due to the complicated configurations of the optics and electronics. In recent
years, much effort has been dedicated to the development of portable SPR biosensors
capable of detecting molecular analytes in real time [7-9]. In practice, portable
and cost-effective surface plasmon resonance instruments are urgently needed and
have potential in many practical applications, including medical diagnostics, drug
screening and basic scientific research. A TiSPR1K23-based biosensor, an integrated
SPR biosensor made by Texas Instruments (Dallas, TX, USA), has been used to
design a portable bioanalyzer for applications in kinetic analysis of chemical and
biological reactions [10-12]. There are a few references on data acquisition circuits
for SPR biosensing systems, although the circuit design plays a vital role in the
fabrication of bioanalyzers. In this paper we describe a data acquisition circuit for
collecting the response signals from a line charge-coupled device (CCD) array and
the data transmission from the SPR biosnesing system to the upper computer, mainly
composed of a high performance microcontroller, a driving circuit for adjusting
the current for the laser generator, a watchdog circuit for monitoring the power
supply, and an extension data memory for storing the initialized parameters [13].
A high speed, 12-bit built-in A/D converter is used to collect the signals from the
line CCD array. The data acquisition circuit and the corresponding data algorithm
to collect the photoelectric signals from the line CCD array were successfully built.
The collected photoelectric signals are used to calculate the locations of the surface
plasmon resonance dip on the line CCD array in order to perform the association and
disassociation processes of biomolecules dynamically [14,15]. The data algorithms
are considered extensively to establish the response curve of this SPR biosensing
system. Quantitative measurements for validating the sensitivity were implemented
in this paper. The outline of the paper is as follows: in Section 2, we briefly review the
structure and fundamental principles of SPR biosensing system. Section 3 provides
a detailed account of the data acquisition circuit developed for the portable SPR
biosensing system, while our experimental results are presented in Section 4. The
paper ends with a summary in Section 5.
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2. Experimental Section

2.1. Materials

The laser line generator (dimension ¢ 16 mm x 45 mm, wavelength 780 nm,
beam divergent angle 65°) was purchased from SFOLT Co., Ltd. (Shanghai, China).
The line CCD array (UPD3575 module) was purchased from Tianjin Brilliance
Photoelectric Technology Co., Ltd. (Tianjin, China). A BK7 prism with 50 nm Au film
was customized by Changchun Dingxin Photoelectric Co., Ltd. (Changchun, China)
The optical adjustment clamp which is designed to hold the right angle prism was
fabricated in Henan Nongda Xunjie Measurement and Testing Technology Co., Ltd.
(Zhengzhou, China). Ethanol solutions with concentrations of 5%, 8%, 15%, 20%, 25%
and 30% volume fraction were purchased from Shanghai General Chemical Reagent
Factory (Shanghai, China). Double distilled water was used throughout the whole
experiment. 0.01 M PBS (pH 7.4) buffer was prepared by dissolving 0.24 g KH, POy,
8.0 g NaCl, 1.44 g K,HPOy and 0.2 g KCl in 1000 mL of double distilled water.

2.2. Design of the SPR Biosensing System

The prototype of the SPR biosensing system is shown in Figure 1. From the
figure, this SPR biosensing system consists of a laser line generator, a microfluidic
cell, a line CCD module with driving circuit and an adjustable clamp and a power
supply module. In principle, this SPR biosensing system uses a prism, on which
surface a 50 nm thick, 1 mm long and 3 mm wide Au thin film was deposited. The
dimensions of the microfluidic cell are 3.5 mm (L) x 0.5 mm (W) x 0.25 mm (H).
The laser line generator with a P-polarizer is utilized to excite the free electrons
which originally are oscillating inside the metal film (Au film). The surface plasmon
was produced by the P-polarized laser beam along with the interface between the
surface of Au film and biological medium. It is well-known that the evanescent wave
produced from the total internal reflection acts on the prism to excite a standing
charge density wave on the Au surface [16]. Therefore, a surface plasmon wave will
be produced by the standing charge density at the interface between the metal film
and the biological medium.

For the biosensor constructed by a prism with the coupling method of the
attenuated total reflection, the propagation constants of the incident light wave and
the surface plasmon wave along the x axis will be obtained in Equations (1) and (2)
(see Figure 1A):

w .
K =, /ep,?sm@” (1)
fm €5 W
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T\ Entes @
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where the propagation constants for incident light wave and the surface plasmon
wave are indicated with Kfjr, Kfcp , respectively. €, ¢pr are the complex refractive
index of the metal film and the refractive index of the prism, respectively. 0, is the
angle formed between the incident light and the normal line of the prism. ¢; is the
refractive index of the biological sample flows through the metal film surface. Cis
the speed of light and w is the frequency of the surface plasmon wave.

Both propagation constants will be equal, K" = K3/ when the surface plasmon
resonance phenomenon occurs. At the resonance point, the intensity of the incident
light is absorbed greatly. The intensity of reflective light is approximately zero [17,18].
By using this relationship, the refractive index of the biological sample bound on the
surface of Au film will be calculated. This is seen as a minimum intensity value in
the reflection spectra. The position of the minima is indicative of the chemistry on
the surface of the SPR sensor. The shift in the minimum value is a measure of the
dielectric constant or refractive index changes on the Au surface [19].

In Figure 1, the overall structure of this biosensing platform, which is composed
of the laser liner generator, the linear CCD module, the microfluidic cell and the
power supply, is shown in Figure 1B. The side view of Figure 1B indicated with
Figure 1C shows the position relationship between the laser line generator and the
linear CCD array clearly. In this SPR biosensing system (see Figure 1), the laser line
generator does not need to be moved to change the angle of the incident beam, so
that the laser line generator is exactly fixed by the adjustable clamp. The low cost of
the instrument can be developed using this platform.

3. Considerations on Data Acquisition

3.1. Optimization of Interface Circuits

The interfacing system of this SPR biosensing system is a combination of
biological sensing membranes and a photoelectrical signals processing circuit.
There are four layers in the architecture which were considered to construct this
interfacing system. The bottom layer of this interfacing system is dedicated to
transducing the refractive indexes changed on the Au film surface of the SPR
biosensor into voltage signals (biosensor) in real time, including the linear CCD
array and on/off control module of the SPR biosensors. The signal conditioning
components including amplifiers for amplifying the photoelectric signals formed the
second layer. A microcontroller was used to execute the filtering algorithm to form
the third layer. The upper layer, mainly referring to the computer for collecting data
from microcontroller with RS232C communication protocol, is used to obtain the
response curves and analyze the response unit signals (RUs) [20]. The light intensity
of the laser line generator can be controlled with currents through the I/O port of
the microcontroller (see Figure 2). For this biosensing system described in Figure 2,
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netics analysis and to transmit the data to the upper PC. This advanced biological sensing systet
cists to monitor and process the changes of refractive index efficiently [21]. Obviously, th
icrocontroller plays an important role in data acquisition and decision implementation.

Upper computer
RS232C

<= { Communication ]

Microcontroller

PIC24F)128GA008

|

|

|

|

|

|

|

|

|

|

|

| Data acquisition
| < Linear CCD, Amplifiers, A/D
. |
|

|

|

|

|

|

|

|

|

|

|

converter

SPR biosensor

Laser line generator, Prism, Microfludic
cell, Biomembrane, 50nm Au film

{ Surface pI:::'::::gresonanoe ]

Biological sensing membrane

Figure 2. S AR dASFAasEr He s SRt Rt TS P RS S PR BI85 s ing system
. . involving the SPR’biosensor, the microcontrollef and upper computer.
involving the SPR biosensor, the microcontroller and upper computer.

3.2. Data Structure for Organizing and Storing Response Unit Signals (RUs)

A data structure is considered to organize all the data from the CCD circuit
embedded in the SPR biosensing system and from the memory associated with
the microcontroller efficiently. The 1024 photoelectric signals from the 16-bit A/D
converter are quantified as 16-bit binary codes if thel6-bit A/D converter in the CCD
circuit was chosen. The response unit signals (RUs) were computed based on the
following formula RU = (1.334 — RIx) x 30,000, where 1.334 is the refractive index
of deionized water. RIx is the refractive index of an unknown sample, which can
be measured by the SPR biosensing system and 30,000 is a pre-determined factor
for increasing the sensitivity of the calculated responses [22]. The normalization of
RU values is obtained from the 16-bit A/D converted value from the line CCD array
when the biological sample flowed through the Au film surface, which is divided by
the 16-bit A/D converted value from the CCD array when air is occurred over the Au
film surface [23-25]. Therefore, the RU value is in 16-bit binary code. It is known that
the lowest and the highest RU values correspond to 1 and 65,536, respectively. The
data structure was intensively considered by taking the least required storage space
into account. Certainly, the minimum amount of the required storage space is not
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only considered in this biosensing system, but also the efficiency for data retrieval
should be linked. In this experiment, the RU values only need to be stored as integer
type data, such as —32,768 and 32,767. Therefore, the short integer type data structure
was chosen due to the fact it only occupies 2 bytes for one measurement value.

3.3. Memory Management

There are no EEPROM units in the PIC24F]128GA008 microcontroller, therefore,
a 24L.C256 extension memory was used, which is a 32 K x 8 (256 K bits) serial
electrically erasable PROM. This device also has a page write capability of up
to 64 bytes of data to greatly prolong this device’s lifetime. A record index and
corresponding measurement results are included in each data set. The record index is
used to mark the location of the measurement results stored in the extension memory,
which is a type of nonvolatile memory. In this experiment, the data for calculating
the RU values, for finding the internal data record, and for the communication with
the upper computer are stored in this extension memory due to the limitations of the
internal memory in the microcontroller [26,27].

The memory capacity of this extension memory is suggested to be 32 KB
(32,768 Bytes). If the RU value is expressed in a long integer form it can be used
to store a maximum of up to 32,768/4 (8192) measurement results. Three different
areas need to be defined in the extension memory device, which are involved to the
memory space of record indexes, measurement results and parameters for performing
the biosensor actions [28]. The parameters for running the SPR biosensing system
are stored in the parameter areas which use a reserved space of 16 or 32 bytes
in the extension memory. The sequence numbers (serial number), data status
(valid/invalid), channel numbers, the first address of this extension memory, total
data capacity and the corresponding measurement information are stored in the
record index area. The measurement results are stored in the corresponding format
of the data set in the data area [29]. Generally, the block 0 area is used to store the
parameters and record indexes, while the other remaining spaces in the extension
memory are allocated to store measurement results. In this experiment, block 0 was
used to store the parameters and the indexes of the record index area. The record
indexes are stored in the area of block 1 and the measurement results are stored in
the following blocks in order to upgrade the memory capacity easily. In the block 0
area, the first 128 bytes in this memory are used to store the parameters, while the
following 128 bytes are used to store the indexes of the record index area. In the last
half part of the block 0, the first 16 bytes of this space were used to store the indexes
of the sequence number’s index and the first address of the measurement results,
while the next 32 bytes of this space are reserved to store the index of the sequence
number of the measurement results” index. In the following record index section of
the last half part of block 0, there are 8 bytes occupied by each record index. These
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are the serial number (1 byte) produced by the record indexes, valid status (1 byte),
the number of channels (1 byte), the starting address (2 bytes), the total spaces used
(2 bytes), and 1 byte is reserved. In the record index of block 1, the record indexes
include the measurement results record number, valid status, number of channels,
starting address and total of the data, efc. In the data area, one data section can store
64 measurement result records if the measurement results are expressed in a long
integer form [30]. The memory allocations of the 25LC256 memory chip are shown
in Table 1.

Table 1. Memory allocations in the 25LC256 memory chip.

Block 0 Parameters area and the index of the record index area
Measurement result record Index area, which indicates the

Block 1 measurement result record number, valid status, number of
channels, starting address, total of the data, efc.

Block 2 Measurement results area

Block 127 Measurement results area

3.4. The Parameter Settings of the Circuit Module of UPD3575D

The photoelectric sensor, linear CCD containing grids of pixels, characterized
by photoelectric conversion, charge storage and charge transfer. The output voltage
is proportional to the charge packets which are collected in potential wells created by
applying a positive voltage to the gate electrodes [31]. Applying a positive voltage
to the gate electrode in the correct sequence transfers the charge packets. In this
experiment, the photoelectric signals from the line CCD array in the UPD3575 module
are obtained under the timing diagrams. The output voltage (V) of the pixel signals
starts to change when the arrival of the falling edge of the pixel synchronizing pulse
(PSP) is coming [32].

From Figure 3, the relationship between the V,,; and the pixel synchronizing
pulse is illustrated by the fact that the V,y; is kept changing when the level of the
pixel synchronizing pulse drops to a low value until the coming of the rising edge of
the pixel synchronizing pulse, and a stable V,,; will be achieved when the level of
the pixel synchronizing pulse becomes high in the first half cycle. Then the V,; will
become zero at the high level in the last half cycle of pixel synchronizing pulse [33,34].
The cycle settings of the pixel synchronous pulse are determined manually. The pixel
synchronizing pulse’s cycle can be set in 2 ps, 4 ps, and 8 s, electronically.
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the sampling frequency is 472 KSPS. Due to the sampling cycle being over 2 ps,
pixel synchronizing pulse cycles of 4, 8 us are chosen, respectively. Compared with
the PIC24F]J128GGA008 microcontroller, the PIC24H]32GP302 microcontroller can
fit well the actual requirements of this SPR biosensing system because the built-in
A/D converter can work at a high conversion rate of 0.5 MSPS@12bit with the
Sensors 20130 {3 um ADC clock period (TAD) of 117.6 ns or work at a high conversion rate of 20519
1.1 MSPS@10bit with the minimum ADC clock period (TAD) of 76 ns.
4. Results and Analysis
4. Results and Analysis
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The calibration curves represent the process of SPR response signals without a
ligand in the dynamic response range of 5% to 30%, which is useful for quantifying
purposes. In this experiment, the ethanol molecules started to be adsorbed on the
Au film after 1800 s for the reaction in solution. Then the response signals increased
rapidly up to a plateau [35,36]. From Figure 4, it is indicated that the association
curve gradually but obviously dwindled with increasing ethanol concentration. The
plateau of the curve corresponds to the saturation of the sensor active points. A linear
range between 5% and 30% can be used for determination of ethanol concentrations.

4.2. Sensitivity Evaluation

The samples with concentrations of 5%, 8%, 15%, 20%, 25% and 30% in
volumetric fractions, which can also be converted to refractive indexes of 1.32159,
1.32304, 1.32644, 1.32886, 1.33128 and 1.33370, respectively, were measured five times,
repeatedly. The mean response values of these known concentration samples were
calculated to be 529, 1607, 2944, 4720, 5541, and 6065 in delta response units, which
refers to the sensor response induced by biomolecular binding, changing the local
reflective index (RI) at the sensor interface [37]. Importantly, a response (background
response) will also be generated if there is a difference in the refractive indices of the
running and sample buffers. This background response must be subtracted from the
sensorgram to obtain the actual binding response (delta response units, delta RU).
Hence, the refractive index of the medium is directly related to the delta RU. The
coefficient of variation of the repeated measurement was also calculated to be 5.89%.
The fitting equation ARU = 499837.79883RI-659968.315329 can be obtained with the
R-Square of 0.98065, the theoretical limit of detection of 3.3537 x 10~ RIU (refractive
index unit) and the sensitivity of this SPR biosensing system was calculated to be
4.99838 x 10° ARU/RI (see the inset in Figure 4).

5. Conclusions

The circuit and signal conditioning approaches designed for an inexpensive
portable SPR biosensing system constructed using a laser line generator and a linear
UPD3575D CCD module have been thoroughly considered. The system is capable
of detecting chemical and biological substances and performing kinetic analysis of
high affinity biomolecular interactions. The circuit for collecting the signals from the
linear CCD array and transferring the measurement results to the computer is mainly
composed of a PIC24F]J128GGA008 microcontroller, a driver circuit for running the
laser line generator, and an extension memory for storing the initialized parameters
and measurement results. A UPD3575D CCD module with a 1024 bit linear image
sensor capable of converting light into voltage has been chosen and the integration
time and the pixel synchronizing pulse’s cycle have been discussed in this paper.
In this experiment, a high speed, 12 bit built-in A/D converter has been chosen to
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collect the signals from the linear CCD array. Ethanol solutions with concentrations
of 5%, 8%, 15%, 20%, 25% and 30% in volume fraction, respectively, have been used
to evaluate the performance of the SPR biosensing system. The ethanol solutions
with different concentration factors were flowed over the surface of the sensor chip
and the SPR curve and kinetics response curve are established. The measured
results for the responses to ethanol showed that the selectivity, detection range, and
measuring time of this SPR biosensor supported the utility of the bioassay platform,
especially, for low concentration measurements. The experiments demonstrated
that it is able to detect a change in the refractive index of an ethanol solution with a
sensitivity of 4.99,838 x 10° ARU/RI in terms of the changes in delta response unit
with refractive index, and a high linearity with a correlation coefficient of 0.98065.
The theoretical limit of detection of this SPR biosensing system was calculated to be
3.3537 x 1072 RIU (refractive index unit). Future work will involve the continuation
of laboratory tests as well as field trials to obtain more abundant data illustrating the
high sensitivity and reliability of this inexpensive portable SPR biosensing system to
optimize the algorithm for obtaining the precise position of the resonant dip and the
optimization of the circuit design with microcontrollers.
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Abstract: The specificity and affinity of antibody-antigen interactions is a
fundamental way to achieve reliable biosensing responses. Different proteins
involved with dry eye dysfunction: ANXA1, ANXA11, CST4, PRDX5, PLAA and
S100A6; were validated as biomarkers. In this work several antibodies were tested for
ANXA1, ANXA11 and PRDXS5 to select the best candidates for each biomarker. The
results were obtained by using Biophotonic Sensing Cells (BICELLSs) as an efficient
methodology for label-free biosensing and compared with the Enzyme-Linked
Immuno Sorbent Assay (ELISA) technique.

Reprinted from Sensors. Cite as: Laguna, M.; Holgado, M.; Hernandez, A.L;
Santamaria, B.; Lavin, A.; Soria, J.; Suarez, T.; Bardina, C.; Jara, M.; Sanza, EJ.;
Casquel, R. Antigen-Antibody Affinity for Dry Eye Biomarkers by Label Free
Biosensing. Comparison with the ELISA Technique. Sensors 2015, 15, 19819-19829.

1. Introduction

As reported by Lemp et al. [1], dry eye disease is a multifactorial chronic disorder
of the ocular surface that affects up to 100 million people worldwide. Diagnosis
and management of dry eye has been a source of frustration to clinicians for a lack
of correlation between signs and symptoms. Dry eye (DE) and meibomian gland
dysfunction (MGD) are common inflammatory ocular surface diseases affecting tear
film stability and ocular surface integrity. The pathophysiology of both conditions is
complex and thought to represent the interaction of multiple mechanisms including
tear film hyperosmolarity, instability, and subsequent activation of an inflammatory
cascade, with release of inflammatory mediators into the tears, which in turn can
damage the ocular surface epithelium.

Label-free optical biosensors have been demonstrated to be a good technology
for In-Vitro Diagnostics (IVD) due to advantages versus labeled techniques [2,3]. The
short turnaround and cost-effectiveness advantages are very important factors for
final users and health professionals as a whole. Mainly, three important factors are
connected with the Limit of Detection (LoD) of optical label-free biosensing: the
transducer sensitivity, resolution of the optical reader and the performance of the
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immunoassay. The latter one, the antigen-antibody interaction, plays an important
role to achieve a competitive LoD. In this sense, the study of specificity and affinity
of antibody-antigen interactions is fundamental for understanding the biological
activity of these proteins, as well as to develop suitable biosensors.

As it is well explained [4,5], a highly specific bimolecular association is achieved
by the interaction between an antibody with its corresponding antigen, which
involves various non-covalent interactions between the antigen epitope and the
variable region of the antibody molecule. These interactions (ionic bonds, hydrogen
bonds, hydrophobic interactions and van der Walls interactions) are needed for
a strong antigen-antibody binding requiring a high degree of complementarity
between antigen (Ag) and antibody (Ab).

Affinity is the strength of binding of a single molecule to its corresponding
ligand. Typically it is determined by the equilibrium dissociation constant (Kp),
which is used to evaluate biomolecular interactions. The measurement of the reaction
rate constants can be used to define an equilibrium or affinity constant (1/Kp).Thus,
the smaller the Kp value, the greater the affinity of an antibody with its target.
Antibodies with high affinity have an association constant K, > 10" M~ [6,7].

Biomarkers are frequently used in clinical trials of therapeutics for the
assessment of disease states and also for evaluating diagnostic devices. In previous
works, several biomarkers where validated for dry eye disease: S100A6, CST4, MMP9,
PRDX5, ANXA1, ANXA11, PLAA [8].

In previous articles, our research group has also proven an efficient methodology
for label-free biosensing by using Biophotonic Sensing Cells (BICELLs) [9,10], and
particularly for dry eye diseases [11]. According to this, in this article we study
the affinity of several antibodies for biomarkers: ANXA1, ANXA11, PRDX5 and
S100A6 using BICELLs based on SUS8 resist Fabry-Perot interferometers with an
optical read-out of the biosensor based on the interferometry.

The label-free optical technique based on BICELLs is a well-reported optical
technique where basically changes in the refractive index are produced by the
recognition or accumulation events of biomolecules onto the sensing surface [9]. This
BICELLs method is a label-free, which means that it is not necessary label-molecules
for the detection. However, in the classical Enzyme-Linked Immuno Sorbent Assay
(ELISA) protocols a labeled-molecule for subsequent detection is needed.

2. Experimental Section

2.1. Production of Mouse mAbs

The mAbs were obtained from female Balb/c mice immunized by
intraperitoneal injections with the recombinant proteins ANXA1, ANXA11l and
PRDXS5, separately. The fusion was performed using a Clona Cell-HY kit following
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the manufacturer’s instructions (Stemcell Technologies, Vancouvert, BC, Canada).
Briefly, micesplenocytes were fused with immortal NSO-1 cells (kindly donated by
Margaret Goodall, University of Birmingham, Birmingham, UK) with the addition of
polyethylene glycol (Clona Cell-HY kit). The resulting mix was grown in selective
agar (ClonaCell-HY kit) on 96-well plates.

Screening of positive hybridoma cell culture supernatant was tested by indirect
ELISA. Desired clones were expanded, cultured on a large scale and cryopreserved.
The three best hybridomas of each fusion were selected (Table 1) based on its
productivity, ELISA signal and growth rate for further studies.

mAbisotypes were determined with the mouse mAbisotyping kit
(Sigma-Aldrich, Madrid, Spain), and were purified by Protein G (GE Healthcare,
Buckinghamshire, UK) affinity column chromatography. Their purity was
confirmed by SDS/PAGE. All mAbs were produced and purified by AntibodyBcn
(Barcelona, Spain).

Table 1. Antibodies selected from each fusion.

Protein Antibody Selected

P4D1
ANXA'1 P6D7
P10B12

P1B11
ANXA11 P3F9
P4D9

P3G1
PRDX5 P5H6
P9F4

2.2. Affinity ELISA Assay

In order to establish which mAb shown a greater affinity to its own
antigen, calibrating curves were carried out by indirect ELISA assays as follows.
Ninety-six-well ELISA plates (Santa Cruz Biotech, Dallas, TX, USA) were coated for 4 h
at 37 °C with 100 pL per well of each protein in serial dilutions (1:2) from 200 ng/mL
to 3.125 ng/mL in 0.2 M carbonate buffer (pH 9.6). Washing was done using 0.05%
Phosphate Buffer Saline (PBS)-Tween 20 (PBS-T). Wells were blocked with 2.5% non-fat
milk-PBST overnight at 4 °C. Afterwards plates are incubated with 100 pL purified
mADbs at 5 ug/mL for 1 h at 37 °C. Ab binding was detected with HRP-conjugated
anti-mouse IgG (HRP stands for Horseradish Peroxidase; 1:500 in PBS-T; Santa Cruz
Biotech), followed by color development with tetramethylbenzidine ELISA substrate
(TMB; Thermo Fisher Scientific, Uppsala, Sweden). The reaction was stopped
with 1 M HCI and read at 450 nm by a Multiscan FC microplate reader (Thermo
Fisher Scientific).
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2.3. Biosensor

For this experimental work we used, as photonic transducer, a Biophotonic
Sensing Cell (BICELL) based on Fabry-Perot interferometers of SU8 polymeric resist
that exhibits a sensitive optical label-free biosensing capability. The Fabry-Perot
interferometer is the biotransducer of the biosensor itself. Bicells are based on
different type of interferometers and are normally square sensing areas where the
recognition events take place. For this particular case, the interferometer employed
is a single SU8 layer Fabry-Perot interferometer where part of the light is transmitted
through the SU8 reaching the substrate. As a result the interference is produced by
the mixed beams coming from the SU8 (and its biomolecules) and the substrate. The
large number of interfering beams produces an interferometry profile with a high
resolution suitable for biosensing.

We employed SUS8 2000.5 (Microchem Corp., Newton, MA, USA) diluted in
cyclopentanone [12] for the fabrication of BICELLs. The SUS resist was deposited by
spinning at 3000 rpm for 3 min, then the film was soft-baked at 70 °C for 1 min. An
exposure to UV light process was then carried out, followed by a post-bake step at
70 °C for 5 min in order to give a stable thin film. The SU8 surface of the BICELLs
was treated with sulfuric acid (95% for 10 s) in order to have a hydrophilic sensing
surface. As a result of this treatment, the SU8 epoxy groups are opened and suitable
to immobilize covalently the protein [13].

By monitoring the changes in the interferometric profile of theoptical mode
response, the immobilization of protein and the recognition of several antibodiescan
be properly monitored. Therefore, it is possible to detect the response of the antibody
for each biomarker.

2.4. Optical Characterization of the Biosensor and Sensing Principle

The optical readout of the biosensor was accomplished by a Fourier transform
visible-infrared (FT-VIS-IR) spectrometer (Vertex 70 adapted to the visible range,
Bruker, Madrid, Spain) after each incubation/washing step. We followed the
well-described procedure very recently reported in the literature [9] (see in
Figure la—c).
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2.5. Immunoassay Procedure

The indirect immunoassay Protein (ANXA1, ANXA11 and PRDX5)/antibody
was carried out by a covalent binding of the protein onto the BICELLs SUS8
sensing surface until saturation for testing the best clone obtained for AntibodyBcn
(Barcelona, Spain). The covalent bond occurs between epoxy ring of SU8 and amine
groups of proposed proteins. The incubation of proteins was made until saturation
with a volume of 60 pL, with a concentration of 50 pg- mL~! in phosphate buffered
saline (pH 7.4,), and at temperature of 37 °C during 20 min. Then, the surfaces were
rinsed with deionize water (DI-H,O) and blown with dry and clean dust-less air
under clean environment.

Avoid nonspecific adsorption is a very important step. In fact, the blocking
step avoids the unspecific bounding, especially important for direct immunoassay,
where the antibody is firstly immobilized onto the sensing surface. However, for
this article, we did not consider using a blocking step because we immobilized
the biomarker(indirect immunoassay) until saturation, supposing that the sensing
surface is completely filled with the protein (there are a biofilm of protein according
with our previous simulations).

Then, we proceeded to recognize the corresponding antibody. The recognition
curve of antibody with concentrations 0.2, 0.5, 1.5, 2.5, 5, 10, 25, 5, 10, 25, 50 and
100 pg- mL~! in PBS-pH 7.4 was observed at 37 °C for 20 min for each incubation
step. Thus, for each antibody concentration the corresponding BICELLs were washed
with PBS-T and water and blown with dry and clean dust-less air.
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3. Results and Discussion

3.1. Results Obtained by ELISA Technique: Affinity Analysis by ELISA

Selected monoclonal antibodies were individually characterized to determine
which of them showed the highest affinities which meant strong binding ability to
their antigen and would lead to its strong applied value in areas such as detection
and diagnosis. Thus, for ANXA 1 (Figure 2a), the antibody P10B12 did not show
a significant signal even at high ligand concentrations. The other two antibodies
shown a slightly improvement, being antibody P6D?7 a little better than the antibody
P4D1, with dissociation constants Kp of 2.40 uM, and 27.01 pM, respectively. Both
antibodies give signals too far from the saturation range, however both antibodies
could be used for ANXA1 detection.

In the case of monoclonal antibodies against protein ANXAI11 (Figure 2b) all
of them showed apparently good signals; both P3F9 and P1B11 are close to the
saturating point at the highest ligand concentration employed in the assay. Although
P3F9 demonstrated the best ability to bind to antigen ANXA11, P1B11 and P4D9
could be also used for an effective detection of the protein. The dissociation constant
(Kp) of P3F9, P4D9 and P1B11 were 19 nM, 4.87 uM and 1.56 uM, respectively.

Finally in the case of antibodies the intensity shown by the three selected
antibodies against PRDX5 (Figure 2c) reveals a high affinity of all of them.
Antibody P9F4 has the higher affinity to PRDX5 with a Kp of 17.66 nM. Both
P3G1 and P5H6 antibodies have a similar affinity rate with a Kp of 22.05 nM and
27.01 nM, respectively.

3.2. Results Obtained by Optical Label-Free Technique

In order to analyze the response of the antibody for each biomarker, we
evaluated the spectral response for different concentrations of antibody. Figure 3
shows the measured interference dip wavenumber displacement of Fabry-Perot
interferometer for increasing concentrations of the different antibodies. In the
analyte-receptor recognition reaction, the dissociation constant is expressed as
Kp = [A]- [R]/[AR], where [A] is the free analyte concentration, [R] is the free
receptor concentration and [AR] is the analyte-receptor complex concentration. At the
equilibrium, Kp = kq/ka, kq and k, are the kinetic constants for the dissociation and
association process, respectively. Thus, Kp can be considered as the reciprocal of the
analyte affinity towards the receptor. In our experiment the receptor concentration is
assumed to be [R] = [R]iota1 — [AR] and when 50% of the binding sites are occupied
([AR] = 0.5 [R]iota1), the dissociation constant is the free analyte concentration
Kp = [A]. Therefore, the Kp value is the antibody concentration causing a response
in the transduction equal to 50% of the total transduction change after saturation. In
Figure 3a (for ANXAL1) two clones were studied (P4D1 and P6D7). The signal for
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P4D1 clone is much lower than P6D7 clone. Both clones gave an affinity constant
values very low (P6D7-Kp = 1.6 x 10~* M and P4D1 = 8.86 x 107> M), resulting in a
poor affinity for the protein ANXA1 because antibodies with high affinity must have
Kp < 10~7 M. For these reasons, both antibodies are not considered very good for
recognizing the ANXA1 biomarker.

For Anxall (Figure 3b) he three antibodies offered a good dynamic range
with dissociation constant values lower than 10~7 M. The values obtained for
P3F9, P4D9 and P1B11 are 20 nM, 15 nM and 33.3 nM, respectively. Figure 3b
shows that all antibodies reach the point of saturation below 10 pig- mL~! and the
dissociation constants values obtained show the high affinity of the antibodies to its
corresponding antigen.

Finally for PRDX5 (Figure 3c), three selected antibodies were studied, showing
a high affinity towards PRDX5. The dissociation constants values obtained for P9F4,

§H6 and P3Gl are 7.3 nM, 23.3 nM and 26.6 nM, respectively. These values are in

> ‘agreement with values obtained by the ELISA technique.
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significant implications and influence the antigen-antibody interaction. For this reason, the quantitative
estimation of the affinity constant with our optical interferometric technique is an essential piece of
information when setting up a heterogeneous biosensing assay.
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As a main conclusion, the comparative analysis of Kb indicates a reasonable correlation between both
techniques in some antigen-antibody pairs. Howevey, in other pairs there are significant differences. We
consider that the main different values of Kp between both IVD techniques are more related with the
different immunoassays protocols when using ELISA in solution in comparison with the BICELLs based



As a main conclusion, the comparative analysis of Kp indicates a reasonable
correlation between both techniques in some antigen-antibody pairs. However, in
other pairs there are significant differences. We consider that the main different
values of Kp between both IVD techniques are more related with the different
immunoassays protocols when using ELISA in solution in comparison with the
BICELLs based optical interferometric technique in heterogeneous medium. As
explained above, parameters such as buffer, sample volume, incubation time,
blocking steps and washing can impact the determination of the Kp. Finally, even
with the different Kp values observed, the proposed interferometric optical label-free
technique seems to be suitable to study antigen-antibody affinity.
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PEG Functionalization of Whispering Gallery
Mode Optical Microresonator Biosensors to
Minimize Non-Specific Adsorption during
Targeted, Label-Free Sensing

Fanyongjing Wang, Mark Anderson, Matthew T. Bernards and Heather K. Hunt

Abstract: Whispering Gallery Mode (WGM) optical microresonator biosensors are
a powerful tool for targeted detection of analytes at extremely low concentrations.
However, in complex environments, non-specific adsorption can significantly reduce
their signal to noise ratio, limiting their accuracy. To overcome this, poly(ethylene
glycol) (PEG) can be employed in conjunction with appropriate recognition elements
to create a nonfouling surface capable of detecting targeted analytes. This paper
investigates a general route for the addition of nonfouling elements to WGM optical
biosensors to reduce non-specific adsorption, while also retaining high sensitivity. We
use the avidin-biotin analyte-recognition element system, in conjunction with PEG
nonfouling elements, as a proof-of-concept, and explore the extent of non-specific
adsorption of lysozyme and fibrinogen at multiple concentrations, as well as the
ability to detect avidin in a concentration-dependent fashion. Ellipsometry, contact
angle measurement, fluorescence microscopy, and optical resonator characterization
methods were used to study non-specific adsorption, the quality of the functionalized
surface, and the biosensor’s performance. Using a recognition element ratio to
nonfouling element ratio of 1:1, we showed that non-specific adsorption could be
significantly reduced over the controls, and that high sensitivity could be maintained.
Due to the frequent use of biotin-avidin-biotin sandwich complexes in functionalizing
sensor surfaces with biotin-labeled recognition elements, this chemistry could
provide a common basis for creating a non-fouling surface capable of targeted
detection. This should improve the ability of WGM optical biosensors to operate in
complex environments, extending their application towards real-world detection.

Reprinted from Sensors. Cite as: Wang, F; Anderson, M.; Bernards, M.T,;
Hunt, HK. PEG Functionalization of Whispering Gallery Mode Optical
Microresonator Biosensors to Minimize Non-Specific Adsorption during Targeted,
Label-Free Sensing. Sensors 2015, 15, 18040-18060.

1. Introduction

Biosensors combine biological components with traditional physicochemical
detection systems that operate via optical, electrical, or mechanical signal
transduction mechanisms, offering advantages in the specific and timely detection of
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biomolecular species. Optical biosensors can be classified into two types of sensors:
labeled optical biosensors, such as the fluorescence-based family of biosensors, and
label-free optical biosensors, such as the refractometric family of biosensors. Labeled
biosensors rely on the detection of the label, rather than the biomolecular species
of interest, while label-free biosensors theoretically have a high enough signal to
noise ratio (SNR) that they are capable of directly detecting the biomolecular species
of interest [1]. Of these, labeled biosensors, like fluorescence-based biosensors, are
the most widely-used [2], but they have a number of disadvantages including the
requirements of labeling, the cost of the peripheral equipment needed to perform the
detection, and the possible difficulties in conjugation and quantification due to the
presence of the fluorescent label [3,4]. Label-free optical biosensors, on the other hand,
may not only overcome these limitations but may also have the potential to deliver
higher quality and resolution detection, with more information content and fewer
false negatives, as compared to labeled biosensors [5]. Typically, these platforms
use a high-sensitivity signal transducer to convert a stimulus-induced response
into a quantifiable signal, without relying on dyes, enzymes, or radiolabels [5,6].
The most attractive feature of this type of biosensor is that the detection could
be performed on-site and in real-time, without the need for additional peripheral
equipment [5]. Due to these advantages, label-free optical biosensors have been
used widely in many fields, such as medical diagnostics, drug screenings, food
safety, environmental protection, biotechnology assays, and biohazard security
screenings [7,8]. Moreover, they are playing an essential role in ultra-low detection
studies, as well as studies designed to understand the interactions between and
among biomolecular species [9,10].

One example of a refractometric optical device that is capable of
performing label-free biosensing is the Whispering Gallery Mode (WGM) optical
microresonator [11-13]. The Whispering Gallery Mode is a morphology-dependent
resonance that has unique properties including low cavity loss [1]. To create
a label-free biosensor from this device, the WGM optical microresonator must
be excited via light from an external source. A necessary precondition of the
occurrence of the WGM is that the dielectric optical microresonator must have
a higher refractive index than the surrounding media, so that light can be spatially
confined in the resonator by total internal reflection (TIR) and propagate along the
microresonator’s periphery at specific resonant frequencies. The repeated reflection
around the boundary of the microresonator results in the creation of an evanescent
field in the surrounding environment that decreases exponentially with the distance
away from the interface [14]. This field allows the microresonator to interact with
biomolecules in the surrounding environment. Molecules adsorbing or binding onto
the microresonator will cause a slight deviation in the effective refractive index of
the circulating optical field, resulting in a detectable shift in the resonant frequency

101



0T the microresonator results 1 tne creation o1 an evanescent 11€id 1 the surrounding environment that
decreases exponentially with the distance away from the interface [14]. This field allows the
microresonator to interact with biomolecules in the surrounding environment. Molecules adsorbing or
binding onto the microresonator will cause a slight deviation in the effective refractive index of the
circulating fogiécep fieltl fisdduitngained dstatiablevibel(Hipthe 13savané fhequarGhigiddieiopsical field
containedasy veeydsenset{Feguranty) Miwdifitri N GMhposifrantivedvdex sdrsiifies theargsomadofication of
the refrac@vdhgdexrsrandigioecdiondd ok the isutesadnigractions Ithabpiveihecdeviterifstions that
give the ARSI RS abilities.

9
\o/

Round-trip wavelength

increasing 2mAl

2 Frequency shift
E | Ao

o —

g

<

|

Resonance frequency ®

. igure 1. Illustrati GM resonatopr, based o 1 (adapted with permission). .
Figure 1 FliS Ganiol ST AN Sesonaiar Bhsed Spe T Gaafied SR BRARI oD - Ligh
(orange) S Tsn g%ﬁﬂ}étagsg{la&%e%bﬁmﬁﬁwmﬁwéﬁﬂ% inteiod) flsetion(JTR) and
generateshanuekarescent Melthspihen innhanadytthduitlstior adsarbseantiexthe therface of
the microgphlaténgdtophaalkisldhreseffderiandafrpolly parddxhefetheeshent] fdlsbtoprical field
resonatoﬁ%ﬂéeit)ﬁat&ﬂﬁ?a?e@f fhlve forsbidingded (1Pt PRI Thlue for

bindf theroﬁtfé‘l ﬁeod{?t?i%%ida?’ R S R T R t§ MR causes
pre a%%’qt A .LI"Re fncrease?r% he lig t.v\gvefength results iR a é‘lequency s i?t 11}1 t%g ]
the roundfrip ;wavelength, ff Heht, 180616284 3Dt PEAL fdilCJRGTERE 1dInthe light
wavelengthiasultmmen figsiueney shiftivethelaansipistnnapectisnihd b eyeaesecant field is
an opticafrfivlthextsndier teititerfaceounding environment and decreasing exponentially with

S

the distance away from the resonator’s interface.
WGM optical microresonators can be fabricated in different geometries, such
WGM asptidatormgyresimraidisks;amibeo tiatnidsserhiarosipfierest rpeéommeytiesd esaclorasvemcrorings,
microdiskasynienetsioidptiedtreapliiess| ididddey lidaereyer, eneshdyimanadesopeisad canitibe [18-21].
However,'Yi¥ SRiicakanicracatities havevessn dpbrisntatciBcthey HasRhBE S ERRRUNd in the
microsphe@g rgeaiﬁé%%lﬁ%crlne’sfsﬁlgifg%gg? lsiiill():gr()[gi[iegiafll]ﬁ’eﬁe }1111%’{icr:}lgl}i/r}easrﬁlﬁ‘ﬁgﬁggndé%rer}%%er diameter
of 200 um [22]. The most attractive property of the WGM optical microresonator is that both intrinsic
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of 200 um [22]. The most attractive property of the WGM optical microresonator
is that both intrinsic and coupling loss can be extremely low. The total loss in
the device is the primary factor in determining the maximum sensitivity of the
resulting biosensor: lower intrinsic loss results in a longer photon lifetime in the
microresonator. It, in turn, enhances the resulting interaction between the circulating
photons and biomolecules on the microresonator’s surface [14,23]. Due to their high
sensitivity, compact structure, and simple fabrication, WGM optical microresonators
have been employed as an efficient platform for molecular detection, single-atom
detection, and temperature measurement [24].

However, one of the primary challenges of utilizing label-free biosensors, like
WGM optical microresonator-based biosensors, is the lack of a recognition element
to provide specific or selective detection, in addition to sensitive detection. In order
to perform either selective or specific detection, these biosensors must be combined
with some kind of recognition element that allows them to selectively or specifically
target a biomolecular species of interest. This recognition element could be an
antibody, a protein, an enzyme, or even a functional organic group [25]. Once this
task has been accomplished, the biosensor must then be capable of specific and
sensitive detection in complex environments, where non-specific adsorption may
occur, reducing the SNR and the overall platform performance. One of the primary
challenges for label-free biosensors, and indeed, for biosensors in general, is the
non-specific adsorption of unwanted biomolecules when the biosensors are used in
complex environments, such as water samples, blood, and serum [1].

Although there are many techniques that may be used to reduce non-specific
adsorption on biosensors, the most popular is the use of “blocker elements,” or
“nonfouling elements”, as a component of the surface chemistry applied to the
device to make it selective or specific. This can be done via physical adsorption,
self-assembled monolayers, or covalent binding. The use of different deposition or
functionalization techniques depends on the outcome desired; in many cases, the
stability of a covalently-bound nonfouling element, particularly in terms of time and
temperature, makes them more attractive candidates than physically adsorbed layers,
despite their potential additional difficulty. Fortunately, there is also a wide variety of
nonfouling elements available, allowing researchers to find a nonfouling chemistry
that works best for a specific application. These include nonfouling elements, such
as bovine serum albumin (BSA), lipids, non-ionic detergents like Tween 20, and of
course, polymeric materials, like polyethylene glycol (PEG), as well as combinations
of these elements [26-29]. PEG is one of the most-studied and general polymeric
materials for nonfouling coatings, especially in the pharmaceutical, cosmetic, and
biomedical fields [30]. The interest in this polymer is driven by its unique physical,
chemical, and biological properties in conjunction with its behavior towards proteins
and other biologically-active molecules. This includes its excellent solubility in both
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aqueous and organic media, and non- immunogenicity, antigenicity, or low toxicity
towards living cells [31,32]. One of the most widespread applications for PEG is to
resist non-specific adsorption via its strong hydration layer and steric stabilization
effect [31-33]. This concept has been used, for instance, in biomaterials to create
nonfouling surfaces, as the attachment alters the electric nature of the surface exposed
to the surrounding fluids [33]. When used in conjunction with biosensor platforms,
the modification by PEG is used to obtain a significant reduction in the non-specific
interaction of biological molecules with the biosensor’s surface, because PEG is
highly hydrophilic and has appreciable chain flexibility [34]. Non-specific adsorption
decreases the SNR by increasing the background noise, and thus degenerates the
sensing ability, even in high sensitivity biosensors. As mentioned above, a biosensor
typically consists of a high-specificity recognition element and a high-sensitivity
transducer. The PEG coatings should prevent non-specific biomolecules from binding
to the surface, while allowing the recognition elements to bind with the targeted
analytes, thus improving the overall performance of the biosensor.

In our previous work, we explored the use of PEG coatings in combination
with WGM optical microresonator biosensors to minimize non-specific adsorption
of fibrinogen and lysozyme during non-targeted detection [35]. In that work, PEG
coatings of varying molecular weight were attached to the biosensor surface and
were proven to have the capability to reduce non-specific adsorption. It was found
that the short-chain PEG surfaces performed better in minimizing non-specific
adsorption compared with long-chain PEG surfaces [35]. Here, we extend this
work to targeted sensing using the biotin-avidin recognition element-target system
as a proof of concept. The reasoning for the use of this system is that the
biotin-avidin-biotin complex is frequently used as an intermediate sandwich complex
when functionalizing surfaces of sensors; by first grafting biotin to the surface,
then associating it with avidin, numerous biotin-labeled recognition elements can
then be bound to the surface using the high affinity of avidin for biotin. The
chemistry presented here, then, could be used as a general approach to reducing
non-specific adsorption for targeted sensing using many different recognition
elements. We evaluate the capability of different PEG-biotin:PEG ratios (1:1,
1:2, 1:3) in preventing non-specific adsorption, hypothesizing that the amount of
exposed (PEG only) nonfouling elements would significantly impact the amount of
non-specific adsorption. For each ratio chosen, the amount of the biotin recognition
element (PEG-biotin) in solution was held constant while the amount of PEG
nonfouling elements was increased. Fibrinogen and lysozyme were used to test for
non-specific absorption to the PEG-biotin:PEG coated microresonators. The results
show that these two proteins interacted minimally with the coated microresonator.
Avidin was then used to test for a specific interaction. The results demonstrate
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that the PEG-biotin:PEG coated microresonator can effectively recognize avidin in a
concentration dependent manner.

2. Experimental Section

PEG plays an important role in resisting non-specific protein binding by creating
a nonfouling surface on the microsphere. In addition, the use of biotin as the
recognition element allows the creation of sandwich complexes with avidin and
recognition elements, such as antibodies, proteins, receptors, etc., labeled with biotin.
Therefore, the combination of PEG and PEG-biotin as a coating on the microspheres
should improve their specificity to the target molecules by rejecting detrimental
protein molecules, and thus reducing the occurrence of false positives (Figure 2). The
different ratios of PEG-biotin to PEG indicate the different densities of the nonfouling
elements on the surface. We investigated if the presence of differing densities of
nonfouling elements could make a significant impact on the capability of resisting
non-specific adsorption.

2.1. Synthesis and Characterization of Functionalized (100) Silica on Silicon Wafers

To investigate the resistance of the functionalized surfaces towards non-specific
adsorption, we used both (100) Si wafers with a 2 pm thermal oxide layer of 5iO,
(University Wafers) as a control surface, as many typical surface characterization
techniques have difficulty evaluating 3D curved surfaces accurately, as well as
the silica microsphere optical microresonators (Section 2.2). Here, the thickness
of the coating on the wafers was measured both before and after adsorption using
ellipsometry. Additionally, optical profilometry and contact angle measurement were
also used to investigate the surface quality and hydrophobicity characteristics. By
comparing the thickness change due to the adsorption, the ratio of PEG-Biotin to
PEG that demonstrated the best nonfouling characteristics could be selected and
then applied to the three-dimensional optical microresonators.

To do this, silica-on-silicon (100) wafers (University Wafer) with a 2 pm silica
(thermal oxide) grown on the surface were cut into rectangular pieces of 2cm x 0.8 cm.
Five different sets of chemistries were applied to these wafers: PEG and PEG-biotin
were deposited on the wafer pieces with each of the three ratios (1:1, 1:2, and 1:3,
PEG-biotin:PEG, Figure 3), and additionally, hydroxylated and biotin-only surfaces
were also prepared.

The PEG-biotin:PEG functionalization process was based on Soteropulos et al. [35].
In the first step, the silica surface was treated with piranha solution or oxygen
plasma to populate the surface with terminal hydroxyl groups. Then, PEG is
attached to the hydroxylated surface using a mixture of silane-PEG (2-[methoxy
(polyethyleneoxy)s9propyl] trimethoxysilane, MPEOPS, MW = 460-590, purity
>90%, Gelest) and silane-PEG-biotin (600 Da, Nanocs) (Figure 4). The applied
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The PEG-biotin:PEG functionalization process was based on Soteropulos et al. [35]. In the first step,



density in solution as the Soteropulos study using MPEOPS. Afterwards, toluene (Certified ACS,
>99.5%, Fisher Scientific, f.w. 92.14), ethanol (Fisher Scientific, 95%) and deionized, destilled (DDI)
water (Fisher Scientific, f.w. 18.02) were successively used to rinse the microspheres to remove
physically adsorbed material.

o}
HaC— 0 Il

OH 30 0 A o]

OH OE\S-/\/\ /H\NH 0;S|/\/\NH NH’[\/ CH,

OH HeC ™ T NH CH3 — 0 clx n

OH o. o

OH -0 oZsi” VN NH/[\/ }CH
HsC 3

OH 3 o n

Hydroxylated Silane-PEG Final functionalized surface
silica surface

Fighitigurenkostiinative pescpsoofssi e silidarovishesybaig fasuiface twoasipwemlent
pro&Ryalcaimedcasth peartedon it REFBFPEUp{ioEn i 20 ISP ARSI ORI Mime SeRtiety .
The SieenicalBreiahns Thes i setnes itian fiftixprridaisd syt bydepatleSiRvRS to
piraRNaCXBRRBA. ﬂnaéewzﬁ&szﬁaeahmpiwl%J&%Mﬁ*ﬁ@%ﬁ%ﬁéﬁ%@d@ﬁéﬂsrotm
termm&ef%agt%ﬁa&d SRpTRIg LIS INRLCH RS PR AOHRING 28N SN E S ed,

coval ntEgraIRﬁ%gct%%: sn\{ra solvent- based, covalent grafting technlques

The hy&*ox (%fgxrlatebd %%dolafom S, QU BB HAPITRY Sl B R r&gtggézea in
Hun?%%%?s ree 2 gk coLJuTht‘foﬁ ISR iR R %tr%"%{lsrr ey b ehéa R was
rst Eﬂ dc face % ﬁl %ﬁrmrnated with ]Pa% TOX %r%up e use
ternnna ed w1 rox groups w1 e use gen plakma or pi solu 1oln eén, 1t was
func?onglxéle% wnﬁ’l.?irr%ﬁlogfo y rlme 085% -Siiane (95Jh1glsher s‘e’Yec%velll}I/1 E:l’tllgl)r%/%cll%l?m des1tccator
for fi ff3 f%%grlll?n? Pegyrk%: glrlv%r S, S ¥ne! surFa(ge was%rotlnglgﬁagcfl}]hd 714 K@&%ﬂﬁ&[ a( herlj for
thirt lrrcl?r?u gsl 1ar111 trenslse wej’Eh BBIIS\Gva ter S%s?cbele%%% lqbt T \?vtaes cr/e’all%edEtZo ﬁlle Nlﬁl_elsters%mdlng
ish er for thi utes and rrnsed with DDI water. A stable amide bond was
w1tht e r1 ary amln gg bi h
l%h S S Rl ARV W RERRERARATINE il angle spectroscopic
elllpsometer ?\%&E e?ﬁ%%%r%eteref %n?} anzle acc&rg{g tvc\)l gr{eracte(r)ln% gsr}lrlrrl as tllle 1n1t1§'1r %ﬁrcﬁmess
of Pgagmot g%{??ﬁnp W rse%% eré Aﬁt es1 t%vorrre Vasle‘gﬁ ‘{M?rce)e randoarrcl }}1 gealecte% dpots
%Ct].Ol’l of as t e 1n1t1a ness ? 10t1r}, E Ifbl&'} anc[i) wege an
on eac %:e 0 e Were measure 1n a wav en range o 400— nm by regnents
1t};Il € sQ tw re ya,;ga "JS" ree ran 1y se ected spots an ea ?Opjﬁlce 0
with angles varying from 65 1ncrements a da gnamrc vera ng of emeasure ents
elr meg ure cillrn a wavel e dr (f 00 nm nm,lm% {rd;ent
were tal fn un 1er1 nlg 1aocrcrlllr6ac¥ mo éEan emee[;{) arlzaa %ar%{c: aV 0 build 2 odelL 1tting
the esé, é, g’a er w1ﬂ§ a cahb ted t ness o%f(% nm w. (f({ toga g} film

1nef\'1 1§rents were tge tﬂebbnp 511 accurta %g?%aeoangllrcsc)o wa ef ol a{gl)s t%.o alchy
ra

te

layers %vm gdélcp to mgg (‘It dprrllger ayer. §f}a aur(r:l egnYtVIt ers we elt en
thic ness o ;rln so% nm wa oa, mm sc? (?mSlr]?%vn to mode

imm rse 1n un(l)fnir sozyme (I'hrc ene w 1te %rna ch) o nogen (bovine
1ca er Q t 1ca on-silicon wa sécqQ er was a e
plasma E emlc ate buftfered. sali e (PBS, EMD C mcal for an (irln’ and
nt er a er er the easuremen the wafers were t

subse uentl se w1t B an own w1t nitro as, High. Purity de
mersed in 1 m mi solu trons 0 é;h yme 1c¢er% %hwrﬁlte ggr A? ric a) )
5

The § o fibiRogen (bovine plasma, VT Ehermicats) ulfp eéiﬁ’éate Butferi G (it
EMD Chemicals) for an hour, and subsequently rinsed with PBS and blown dry
with nitrogen (Airgas, Ultra High Purity 5.0 Grade). The thickness measurement
was taken again as the final thickness of the PEG-biotin:PEG film with non-specific
adsorption, using the same settings as the initial measurement. The thickness change
provides an indication of how much protein adsorption occurred on each surface.
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To examine if the PEG-biotin and PEG indeecllo%eposited to the surface from the specific solution
ratios, the fluorescence intensity of each sample was measured. Texas Red-Avidin was used as the
fluorescent dye. Texas Red-Avidin (TR-Avidin) (Invitrogen, 2.5 mg/mL) was first diluted to 2 mg/mL



tensions with the contact angle of a liquid drop [37]. The surface is considered
hydrophilic when the contact angle is greater than 90°.

To examine if the PEG-biotin and PEG indeed deposited to the surface from
the specific solution ratios, the fluorescence intensity of each sample was measured.
Texas Red-Avidin was used as the fluorescent dye. Texas Red-Avidin (TR-Avidin)
(Invitrogen, 2.5 mg/mL) was first diluted to 2 mg/mL with PBS and centrifuged to
obtain the supernatant. The supernatant was then diluted to 10 ng/mL with PBS to
incubate the functionalized wafers for 30 min in the dark, after which the wafers were
rinsed with PBS and put on a cold hot plate, then warming to 40 °C for 2 min. The
dye was attached to the surface due to the high affinity between biotin and avidin.
Fluorescence microscopy was accomplished via an Olympus IX 70 system, using
20X magnification and the red filter. To find the best exposure time, a pseudo-color
LUT (look-up table) was used to evaluate the brightness of the objects in the image
during acquisition. In this LUT, the brightness of the image pixels was shown on an
arbitrary scale from dark blue (black pixels with zero brightness) to white (saturated
pixels with maximal brightness value 4096), as the exposure time was varied from
short to long. In order to avoid saturated pixels, the exposure time was reduced
until all “white” pixels were gone. This exposure time was then used for all samples.
Three images, of randomly selected views, were acquired for each surface and the
fluorescence intensity of four randomly selected regions of 300 nm x 300 nm in each
of those images were measured with Metamorph software. Thus, twelve values of
the intensity for each group (set of functionalization parameters) were obtained and
then averaged during data analysis.

2.2. Device Fabrication, Functionalization, and Surface Characterization

Upon selecting the best ratio, the same functionalization process was applied to
the silica microsphere optical microresonators. Silica microspheres with diameters
of 200 um were fabricated by melting the tip of a stripped, single-mode optical
fiber (Single-mode, Newport F-5V) with CO, (Synrad) laser radiation at ~8% output
power [38]. The microspheres were functionalized with PEG and PEG-biotin in
a 1:1 ratio via the two-step covalent attachment process shown in Figure 2. To
characterize the successful deposition of the functional groups to the microresonators,
both optical microscopy and fluorescence microscopy were used, with the same
procedures and parameters described above.

2.3. Device Characterization

To fabricate the tapered optical fiber that will be used as the waveguide, a
hydrogen torch was used to heat the fiber while it was stretched across a two-axis
stage controller, until it reached an average waist diameter of <700 nm [1]. The
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microsphere and the tapered fiber were coupled to each other, monitored by optical
microscopy top-view and side-view cameras.

The Quality (Q) factor is a measure of the optical performance of the
microresonator. It describes the deviation from the ideal resonator and is proportional
to the confinement time, or the photon lifetime, of the circulating optical field
confined by the microresonator [39]. A high value of the Q factor indicates longer
photon lifetime, and more interactions of the optical field with the surrounding
environment. The Q factor is a direct measure of the device sensitivity. For instance,
microresonators with Q factors above 10° can be used for sensing single viruses [40].
In this study, the Q factor profile is recorded before and after each functionalization
step, to ensure the optical microspheres’ performance does not degrade due to the
synthetic modifications.

To do this, light from a continuous wave (CW), tunable, diode laser with a center
wavelength of 980 nm (New Focus, 6320H) is introduced to a single-mode optical fiber
(Newport, F-SC). The optical field is then evanescently coupled, in the undercoupled
regime, to the microresonator under investigation. The under-coupled regime is
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Once light was coupled into the resonator, the resonant frequency of the device could be detected via
the switchable gain Si detector photodiode (Thorlabs, PDA36A). The resonance linewidth data was
recorded using a digitizer/oscilloscope card direéti}gintegrated into the computer for automated data
recording (NI, PCI-5153). The scan speed and direction of the laser was optimized to ensure that
the resonance lineshape was not distorted. Since microspheres have multiple resonant frequencies,
the frequency associated with the highest quality factor was used for the performance metrics.
The resonant wavelength was recorded as A; the peak data fitted with a Lorentzian function could give



Once light was coupled into the resonator, the resonant frequency of the device
could be detected via the switchable gain Si detector photodiode (Thorlabs, PDA36A).
The resonance linewidth data was recorded using a digitizer/oscilloscope card
directly integrated into the computer for automated data recording (NI, PCI-5153).
The scan speed and direction of the laser was optimized to ensure that the
resonance lineshape was not distorted. Since microspheres have multiple resonant
frequencies, the frequency associated with the highest quality factor was used for
the performance metrics. The resonant wavelength was recorded as A; the peak
data fitted with a Lorentzian function could give a full width at half maximum
bandwidth (FWHM), denoted as AA. The mathematical expression for the Q factor
can be summarized as: [42]

Q= s @

2.4. Sensing

Non-specific adsorption sensing experiments, as well as avidin sensing
experiments, were carried out through the use of an open-flow flow cell. The flow
cell was constructed from glass slides and was fitted with metal tubing for injecting
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experiments completed using only PBS as the analyte [35]. A syringe pump was used to add various
concentrations of the test molecule (avidin, lysozyme, or fibrinogen) into the flow cell. The PBS buffer
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in a coupled state. PBS buffer, which was used for the entirety of the study, was
pumped up through the bottom of the flow cell using a syringe pump. The buffered
microresonator-taper system was then allowed to reach equilibrium before any
protein solution was added, thus allowing for the stable resonant wavelength of the
system to be established. Previous literature has shown no significant resonant peak
shift for control experiments completed using only PBS as the analyte [35]. A syringe
pump was used to add various concentrations of the test molecule (avidin, lysozyme,
or fibrinogen) into the flow cell. The PBS buffer was injected into the flow cell at a rate
of 0.05 mL/min, while 0.04 mL of each test molecule solution was pumped into the
flow cell at a rate of 0.03 mL/min. Solutions of lysozyme and fibrinogen, typical tests
for non-specific adsorption, were created and tested at concentrations of 10, 100, 500,
and 1000 pg/mL in PBS. Solutions containing avidin (Sigma Aldrich, from egg white,
lyophilized powder) biotin also at concentrations of 10, 100, 500, and 1000 pg/mL,
were then tested to analyze the effectiveness of the biotin recognition element and
nonfouling surface that was fabricated on the microresonators.

To maintain consistency amongst the wavelength shifts and so that they were
not confounded by using different microresonators, each sensing experiment was
performed using the same coated microresonator. The sensing experiment consisted
of evaluating fibrinogen, lysozyme, and avidin at each concentration, in that order,
from the highest concentration to the lowest concentration, with a PBS rinse in
between each concentration. The PBS rinse consisted of dipping the sphere in a
solution of fresh PBS and placed on a rocker tray for 2 min. Then, the sphere
was removed, dried, and re-rinsed using the same procedures. The entire sensing
experiment was repeated two times, each time with a new, coated microresonator.
Note also that the same size microresonators were used for all repeats to minimize
the impact of a change in the microresonator size on the wavelength shift.

3. Results and Discussion

Characterization of Functionalized Wafers

As previously introduced, the (100) silica-on-silicon wafers were functionalized
with three ratios of PEG-biotin to PEG: 1:1, 1:2, 1:3, with hydroxylated and
biotin-modified surfaces serving as controls. To characterize the resistance of the
coated surfaces to non-specific adsorption, the thickness change due to non-specific
adsorption was calculated by subtracting the thickness of the film pre-adsorption
from the thickness of the film post-adsorption. A smaller thickness increase indicated
a thinner protein layer attached to the surface, which in turn suggested improvement
in the coating’s nonfouling characteristics.

The coatings of the as-functionalized wafers were measured with ellipsometry
to be 9.7 + 0.2 nm among the three ratios. The small standard deviation suggested
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that the thickness of the functionalized coatings on all the wafers, resulting from
different PEG-biotin:PEG ratios, showed consistency. This measurement provided
a uniform base measurement for each experiment group. After the adsorption, the
thickness was recorded again. Figure 8 shows the thickness change for all three
ratios and controls. It was observed that the non-specific adsorption layers on the
PEG functionalized surfaces were thinner than those on the hydroxylated controls
(lysozyme adsorption: 26.6 + 0.7 nm; fibrinogen adsorption: 6.7 + 0.1 nm), and
similar to the biotin-only control (lysozyme adsorption: 2.3 + 3 nm; fibrinogen-only
adsorption: 1.4 + 2 nm). The data further confirmed that our functionalization
process indeed reduced non-specific adsorption relative to the hydroxylated control.
Of greater interest is the biotin-only control (surfaces functionalized according to
Figure 4), which suggests that the presence of the silane-biotin linker significantly
reduces non-specific adsorption, without the need for additional nonfouling elements.
However, the data from this control had a high standard deviation in comparison
to the PEG-biotin:PEG surfaces, possibly due to the controls’ lower uniformity.
Interestingly, all three ratios of PEG-biotin:PEG reduced non-specific adsorption in
approximately equivalent amounts, although we had hypothesized that the increased
density of the PEG nonfouling agents would result in a significant decrease in
non-specific adsorption. This means that the lowest PEG density of the 1:1 ratio
is enough to reduce the non-specific adsorption, and more PEG is not needed
to reduce it further. Therefore, the ratio 1:1 was selected for application to the
three-dimensional optical microresonator, which minimizes the amount of PEG
needed for the functionalization. This ratio should also have the highest relative
amount of PEG-biotin immobilized on the surface, leading to an increased detection
capacity. It is possible that a lower PEG density would work as well as 1:1; however,
our previous work functionalizing with only PEG showed that this grafting density
performed best at preventing non-specific adsorption [35].

The wafers that were exposed to adsorption were also examined by optical
profilometry in order to determine their surface roughness parameters. Optical
profilometry was performed in PSI mode to examine the surface quality of the wafers
after non-specific protein (lyzosome) adsorption. The roughness parameters were
presented as the arithmetic average of the absolute values of the roughness profile
ordinates. The roughness of pre-functionalization surfaces were around 1.33 nm,
while that of all the post-functionalization surfaces were around 1.5 nm (Figure 9).
This indicates that the post-adsorption surfaces were still very smooth.

To study the physiochemical property change of the wafers after adsorption,
contact angle was measured using the sessile drop method. As Table 1 shows, both
functionalized and control surfaces became less hydrophilic after the adsorption.
Before non-specific adsorption, PEG-biotin:PEG coating and the molecular weight of
PEG, which is around 500, both make the surface exhibit a hydrophilic character. In

113



Sensors 2015, 15

became less hydrophilic after the adsorption. Before non-specific adsorption, PEG-biotin:PEG coating
and the molecular weight of PEG, which is around 500, both make the surface exhibit a hydrophilic
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Table 1. Contact Angle Measurement before and after non-specific protein
(Lysozyme and Fibrinogen) adsorption; the hydroxylated control experiences the
largest increase in contact angle after adsorption, similar to the ellipsometry data,
indicating that it experiences high adsorption, as expected.

Contact Angle Measurement

Pre-Adsorption  Post-Adsorption (L)  Post-Adsorption (F)

Hydroxylated 65.8 £ 5.0 129.2 +£ 5.7 90.3 £35
Biotin-only 77.0 +5.7 731+ 4.6 892+ 4.6
Ratio 1:1 622 +22 740+ 2.7 813+ 4.1
Ratio 1:2 63.2+0.8 78.5+55 80.5+ 3.3
Ratio 1:3 65.8 2.9 903 +9.3 86.5 + 0.5

In addition, another group of wafers were functionalized with the same
procedure and then were incubated in a solution of the fluorescent dye, Texas
Red-Avidin, as previously described. We would expect to see a decrease in the
level of fluorescence as the PEG-biotin:PEG ratio is decreased (increasing PEG)
because the competitive binding levels should be relative to the solution levels
as both the PEG-biotin and PEG molecules bind with identical mechanisms to
the surface. Therefore, performing fluorescent intensity measurements provides
information regarding the actual amount of biotin within the nonfouling surfaces.
Figure 10 shows the fluorescence intensity measured with the Olympus IX 70. The
data has been calibrated with a fluorescence-blank wafer subtracted from each
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group’s intensity. The result shows that the hydroxylated surfaces (control) gave
the lowest fluorescence intensity, while all of the other surfaces showed similar
levels of fluorescence. Hydroxylated surfaces showed some intensity due to a small
amount of avidin chemically and/or physically adsorbed to the surface (although
similar amounts of washing to remove this were used with all reactions). When
biotin probe molecules were attached to the surface (Biotin-only control and all
ratios), the surfaces could successfully bind more avidin than the hydroxylated
surfaces, and in turn showed more fluorescence. As the PEG-biotin:PEG ratio was
changed from 1:1 to 1:3, we expect a reduction in fluorescence intensity, with slight
variations present due to possible effects of competitive binding. However, we note
that the nonfouling surfaces resulted in nearly identical levels of, or even slightly
more, Texas Red—Avidin molecules immobilized compared with biotin-only control
and no noticeable differences between the ratios tested. The potential for biotin
to bind multiple avidin sites should not impact non-specific adsorption, however,
Sendyst fhigrescence. The fluorescence results suggest that there are sufficient biotifygsy
sites pre’sent across all 3 ratios to promote a pseudo-monolayer of avidin binding.
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process was successful in coating microspheres with PEG-biotin:PEG solution.



Figure 10. Mean fluorescence intensity (£standard deviation) of functionalized wafers.
Five regions of 256 by 256 pixels were measured on each fluorescence image with
an Olympus IX 70, and three images were taken for each group of wafers.
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Figure 12. Quality factors of each microresonator used in the sensing study before (solid
squares) and after (hollow squares) coating. Inset: a representative resonance (black
line—data, red line—Lorentzian fit), showing a high quality factor device.
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for all analytes tested at all concentrations, and F1gure 14 highlights the specificity
the coated microresonators have for avidin. We note that, for targeted sensing, a
low limit of detection is necessary; however, for non-specific adsorption, a different
metric should be evaluated to determine if the device performed well. In the case of
non-specific adsorption, we typically want the surface to repel proteins, for example,
at not just low concentrations but also high concentrations. Therefore, demonstrating
that across a 100-fold increase in concentration, maintaining a statistically low level
of background, non-specific adsorption, is important. Here, we show that not only
can the surface “repel” or “block” non-specific adsorption at 10 pg/mL but also at
the much more biologically relevant concentration of 1000 pg/mL.
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Here, microresonators coated with PEG show an average shift in response
to fibrinogen/lysozyme in the range of 0-5 pm. The sensing results with respect
to avidin demonstrate that the coated microresonators can also recognize avidin
in a concentration dependent manner. At avidin’s highest concentration tested
(1000 ng/mL), wavelength shifts in the range of 20-30 pm were seen. However, at
avidin’s lowest concentration tested (10 ug/mL), no significant wavelength shift
was seen. Figure 15 illustrates the concentration dependent response of biotin for
a given microresonator. The results in this study indicate that PEG-biotin:PEG
coated microresonators may be able to effectively recognize avidin in a complex
environment where non-specific proteins are present.

4. Conclusions/Outlook

In this study, we have demonstrated the nonfouling characteristics of PEG when
coated on the surface of a Whispering Gallery Mode optical microresonator that is
also functionalized with recognition elements (PEG-biotin). The reasoning for the
use of this system, and, in particular, the use of biotin as a “recognition element”, is
that the biotin-avidin-biotin complex is frequently used as an intermediate sandwich
complex when functionalizing surfaces of sensors. By first grafting biotin to
the surface, then associating it with avidin, numerous biotin-labeled recognition
elements can then be bound to the surface using the high affinity of avidin for
biotin. The chemistry presented here, then, could be used as a general approach
to reducing non-specific adsorption for targeted sensing using many different
recognition elements. We evaluated the capability of different PEG-biotin:PEG
ratios (1:1, 1:2, 1:3) in preventing non-specific adsorption, hypothesizing that the
amount of exposed (PEG only) nonfouling elements would significantly impact the
amount of non-specific adsorption. For each ratio chosen, the amount of the biotin
recognition element (PEG-biotin) in solution was held constant while the amount
of PEG nonfouling elements were increased. Fibrinogen and lysozyme were used
to test for non-specific absorption to the PEG-biotin:PEG coated microresonators.
The results showed that fibrinogen and lysozyme had minimal interactions with
the coated wafers and microresonators, in comparison to the hydroxylated controls,
and that increasing the PEG density on the surface did not significantly reduce
non-specific adsorption beyond the 1:1 ratio. More interestingly, we found via
the biotin-only control, which was functionalized with a simple silane coupling
agent instead of PEG, yielded potentially comparable results to the PEG-biotin:PEG
surfaces. This is surprising, as the silane coupling agent and the silane coupling
agent used (aminopropyltrimethoxysilane, APTMS) are not known for their
nonfouling properties in this sense. Avidin was then used to test for a specific
interaction, and showed that the coated resonators were still capable of performing
concentration-dependent detection. The combination of recognition and nonfouling
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elements should provide a means to increase the specificity of optical sensing
by reducing the noise caused by non-specific adsorption. The covalently-bound
nonfouling and recognition elements provide a means to increase the specificity
of optical sensing by reducing the noise from non-specific adsorption. Due to the
frequent use of biotin-avidin-biotin sandwich complexes in functionalizing sensor
surfaces with biotin-labeled recognition elements, this chemistry could provide
a common basis for creating a non-fouling surface capable of targeted detection.
This should improve the ability of WGM optical biosensors to operate in complex
environments, extending their application towards real-world detection.
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Diamond Nanowires: A Novel Platform for
Electrochemistry and Matrix-Free
Mass Spectrometry

Sabine Szunerits, Yannick Coffinier and Rabah Boukherroub

Abstract: Over the last decades, carbon-based nanostructures have generated a
huge interest from both fundamental and technological viewpoints owing to their
physicochemical characteristics, markedly different from their corresponding bulk
states. Among these nanostructured materials, carbon nanotubes (CNTs), and
more recently graphene and its derivatives, hold a central position. The large
amount of work devoted to these materials is driven not only by their unique
mechanical and electrical properties, but also by the advances made in synthetic
methods to produce these materials in large quantities with reasonably controllable
morphologies. While much less studied than CNTs and graphene, diamond
nanowires, the diamond analogue of CNTs, hold promise for several important
applications. Diamond nanowires display several advantages such as chemical
inertness, high mechanical strength, high thermal and electrical conductivity, together
with proven biocompatibility and existence of various strategies to functionalize
their surface. The unique physicochemical properties of diamond nanowires have
generated wide interest for their use as fillers in nanocomposites, as light detectors
and emitters, as substrates for nanoelectronic devices, as tips for scanning probe
microscopy as well as for sensing applications. In the past few years, studies
on boron-doped diamond nanowires (BDD NWs) focused on increasing their
electrochemical active surface area to achieve higher sensitivity and selectivity
compared to planar diamond interfaces. The first part of the present review article
will cover the promising applications of BDD NWS for label-free sensing. Then,
the potential use of diamond nanowires as inorganic substrates for matrix-free
laser desorption/ionization mass spectrometry, a powerful label-free approach for
quantification and identification of small compounds, will be discussed.

Reprinted from Sensors. Cite as: Szunerits, S.; Coffinier, Y.; Boukherroub, R.
Diamond Nanowires: A Novel Platform for Electrochemistry and Matrix-Free
Mass Spectrometry. Sensors 2015, 15, 12573-12593.

1. Introduction

Diamond, a natural as well as a synthetic material, has captured researchers’
attention since decades. From any list summarizing the specific material properties,
diamond is often at the extreme [1]: crystalline diamond shows the highest atomic
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1. Introduction

Diamond, a natural as well as a synthetic material, has captured researchers’ attention since decades.
From any list summarizing the specific material properties, diamond is often at the extreme [1]:
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The attractiveness of diamond is that different morphologies and forms can be
obtained from this sp hybridized material (Figure 2). Indeed, modulation of the
growth parameters results in microcrystalline to ultrananocrystalline CVD diamond
films. Ultrananocrystalline films have the advantage of smooth surfaces, lower strain
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hybridized material (Figure 2). Indeed, modulation of the growth parameters results in microcrystalline
to ultrananocrystalline CVD diamond films. Ultrananocrystalline films have the advantage of smooth
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Figure 2. Different morphologies and forms of diamond.
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2. Synthetic Routes of Diamond Nanowires

Reports on the fabrication of diamond structured surfaces with diameters as
small as 25 um and hundreds of microns in length date back to the 1960s [13].
However, it was only around the beginning of the 21st century that further attempts
for the synthesis of diamond nanostructures were undertaken. The main approaches
for the successful fabrication of diamond nanostructures are generally based on
“top-down” and “bottom-up” processes.

2.1. Top-Down Approach

One of the initial attempts for a top-down synthesis of diamond nanostructures
was reported by Shiomi [14]. Reactive ion etching (RIE) with oxygen plasma of
CVD diamond film coated with a 400 nm thick aluminum layer resulted in columnar
structures of approximately 300 nm in length and 10 nm in diameter (Figure 3A) [14].
The plasma-assisted RIE technology has since then been widely investigated for the
top-down fabrication of diamond nanowires and pillars. Masuda et al. proposed,
for example, the use of porous anodic aluminum oxide masks for the formation
of diamond honeycomb films via oxygen plasma etching of CVD diamond films
through the holes of porous alumina films (Figure 3B) [15]. They showed that the
etching rate of alumina, compared to that of the diamond film, is negligible, resulting
in the formation of honeycomb structures with high aspect ratios. Uniform holes
with an average diameter of 70 nm and spacing of 100 nm with uniform depth of
~0.6 um have been etched perpendicular to the diamond film surface, yielding an
aspect ratio of ~9. An important fact is that this lithographic process was carried out
in non-contact mode: the mask is merely placed on the substrate and therefore does
not adhere to the substrate surface, unlike the situation with the resist-type masks
commonly used in lithography. This makes the approach fast and easy to perform
on different diamond interfaces.

Beside such masks, arrays of nanoparticles, seeded onto CVD grown
diamond films, have been investigated by several groups as attractive alternatives.
Aluminum [17], SiO, [18], gold [19], as well as diamond nanoparticles [11,20] proved
to be useful etching masks (Figure 4A). Okuyama et al. used RIE with oxygen
plasma through a two-dimensionally ordered SiO; particle array to form diamond
cylinders [18]. The diameter and the length of the cylinders depend on the etching
time and vary between 0.6-1 um in diameter and 3—4 um in length (Figure 4B) [18].
High-density and uniform diamond nanopillar arrays were obtained by Zou et al. by
employing bias-assisted RIE in a hydrogen/argon plasma using gold nanoislands of
150 nm in diameter as etching masks [19]. The gold islands protect the underlying
diamond from etching and sputtering; nanopillars with gold clusters at the tip are
produced. Gold nanoparticles were indeed found to be one of the most suitable
seeding masks as they are easy to disperse, resulting in single nanoparticles on the
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films via oxygen plasma etching of CVD diamond films through the holes of porous alumina films
(Figure 3B) [15]. They showed that the etching rate of alumina, compared to that of the diamond film, is
negligible, resulting in the formation of honeycomb structures with high aspect ratios. Uniform holes
with an average diameter of 70 nm and spacing of 100 nm with uniform depth of ~0.6 um have been
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The use of nanodiamond (ND) particles as a hard mask for RIE of diamond was
examined by research groups at the AIST (Japan) and IAF (Germany) [11,20,22,23].
Vertically aligned diamond nanowires were obtained using RIE in an O, /CF4 (97/3%)
gas mixture for etching times of 10 s (Figure 4C). The length of the wires was limited
by simultaneous etching of the ND particles mask with an etching rate of 10 A-s~!

Mask-less top-down approaches have been recently proposed as
alternatives [16,24-27] (Figure 5A). Such methods have the intrinsic advantage of
being simple and straightforward, not requiring complicated processing steps such
as mask deposition or template removal. Our group demonstrated that diamond
nanowires can be easily prepared from highly boron-doped microcrystalline
diamond thin films by RIE in an oxygen plasma (Figure 5A) [12,25-27]. The resulting
nanowires are 1.4 £ 0.1 um long with a tip and base radius of 7y, =10 £+ 5 nm and
"base = 40 = 5 nm, respectively. The nanowires are about 140 times longer than
aligned diamond nanowires prepared using diamond nanoparticles as a hard mask.
X-ray photoelectron spectroscopy (XPS) analysis of the chemical composition of the
diamond nanowires revealed that next to Cq4 at 285 eV and Oq; at 532 eV, additional
peaks at 402, 104 and 169 eV due respectively to Ny, Sipp and Sy are present in the
spectrum (Figure 5B). The latter elements are believed to originate from surface
contamination during the RIE process. Indeed, the presence of SiOy shell around the
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The etch rate of the gold nanoparticles mask is 25 nm/min [21]. This yields good etch selectivity and
diamond wires of 900 nm in height, and diameters from 275 nm at bottom to 310 nm at the top can be
produced [21].

The use of nanodiamond (ND) particles as a hard mask for RIE of diamond was examined by research
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grown along the (110) direction upon applying a prolonged hydrogen plasma to
multi-walled carbon nanotubes (MWCNTs) (Figure 6B) [29]. The authors suggested
that initial diamond nuclei can be formed at defect sites of the MWCNTs due to the
presence of hydrogen. At high temperature (1000 K) in the presence of hydrogen,

MWCNTs transform to amorphous material, where the nucleation of diamond phase
is facilitated. The addition of N into the growth mixture of ultrananocrystalline
diamond was reported by Vlasov and co-workers to change the surface morphology

130



MWCNTs due to the presence of hydrogen. At high temperature (1000 K) in the presence of hydro,
MWCNTs transform to amorphous material, where the nucleation of diamond phase is facilitated.
addition of N2 into the growth mixture of ultrananocrystalline diamond was reported by Vlasov
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Post-coating of preformed silicon nanowires by diamond thin films has
attracted considerable interest in the past five years for the preparation of core-shell
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3.1. Diamond Nanowires for Electrochemical Sensing

Diamond nanowires are among the fairly new but promising materials for
chemical and biochemical sensing. The common theme of diamond sensors
is that they convert biological or chemical information into an electrical signal,
which can be measured accurately using a panel of electrochemical methods (e.g.,
cyclic voltammetry, differential pulse voltammetry, electrochemical impedance
spectroscopy, efc.). As the technology required to create electrochemical biosensors
is much cheaper than that required for fluorescence-based sensors, electrochemical
sensors are dominating the analytical field. Their label-free character adds to their
general value. While the conversion of a biological interaction to an electrical
signal is attractive for sensors that are in continuous use or need to withstand
harsh environments, so far, electrochemical sensors are in general several orders of
magnitude less sensitive than the best fluorescence-based detection sensors.

Yang et al. were the first to demonstrate that the detection limit of
electrochemical biosensors can be markedly improved if vertically aligned diamond
nanowires are used [11]. DNA sensors were prepared through immobilization
of single strand DNA probes onto diamond nanowires pre-functionalized with
amine-terminated phenyl groups in an electrochemical functionalization step
(Figure 8) [23,44]. The enhanced electrical field at the very end of the diamond
tips resulted in a preferential DNA alignment at the tip rather than at the walls of the
wires, increasing the probes’ accessibility for interaction. This gave rise to optimized
hybridization kinetics of complementary DNA (cDNA) and high sensitivity with a
detection limit of 2 pM for cDNA as well as single-base mismatch discrimination.

Diamond nanowires electrodes allow also the direct electrochemical detection
of glucose under strong basic conditions [10,12,45]. While almost no visible anodic
peak for glucose oxidation was observed during the positive potential scan on a
planar BDD electrode, a well-defined current response for glucose was obtained,
for example, on BDD NWs electrodes of ~3 pm in length with a diameter ranging
from 10-50 nm [12]. The detection limit of this sensor was 60 pM (Figure 9). Such
an improvement in glucose oxidation suggests that the Faradaic current of glucose
oxidation depends strongly on the surface structure and porosity of the electrode, and
the accessible surface area. The results reported by Nebel and co-workers showed
that decoration of diamond nanopillar electrodes with Ni-nanoparticles improves
the sensitivity of the sensor for glucose detection with a detection limit of 10 uM [45].
Diamond coated Si nanowires were investigated by Luo et al. for glucose sensing with
an estimated detection limit of 0.2 uM and a sensitivity of 8.1 pA-mM~!-cm~2 [10].
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amine-terminated phenyl groups in an electrochemical functionalization step (Figure 8) [23,44]. The
enhanced electrical field at the very end of the diamond tips resulted in a preferential DNA alignment at
the tip rather than at the walls of the wires, increasing the probes’ accessibility for interaction. This gave
rise to optimized hybridization kinetics of complementary DNA (cDNA) and high sensitivity with a
detection limit of 2 pM for cDNA as well as single-base mismatch discrimination.
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was recorded for tryptophan on BDD NWs electrodes [25], being significantly lower
than on planar microcrystalline BDD (1 x 107> M) [46]. The simultaneous detection
of tryptophan and tyrosine by differential pulse voltammetry is also possible on
BDD NWs electrodes, when the amount of tryptophan present in the mixture is not
exceeding tryptophan/tyrosine < 0.5 [41]. The oxidation of other small molecules
such as dopamine, uric acid and ascorbic acid was reported by Shalini et al. using
nitrogen-doped diamond nanowire electrodes [47].

Electrochemical immunosensors based on chemically modified BDD NWs
electrodes have been lately developed by our group [38—40]. Diamond nanowires
immunosensors were constructed by coating diamond nanowires with functional
conducting polymer films (e.g., carboxylic acid-terminated poly(pyrrole), copper ion
(Cu?*) chelation followed by linkage of histidine-tagged peptides [39]) (Figure 10A)
or by electrochemical deposition of nickel nanoparticles (Ni-NPs) onto diamond
nanowires followed by immobilization of biotin-tagged anti-IgG (Figure 10B) [38,40].
Post-coating of diamond nanowires with polymer films can be achieved by
amperometrically biasing diamond nanowire electrodes at 1.2 V vs. Ag/AgCl in
3-(pyrrole) carboxylic acid solution [39]. Fine-tuning the charge allowed coating
the wires rather than the formation of polymer films (PPA) in solution. Figure 10A
shows SEM images of BDD NWs coated with carboxylic acid-terminated polypyrrole
(PPA-BDD NWs) by varying the deposition time. At very low deposition charge
(2 mC-cm™2), the polymer started to form preferentially at the defect sites of
the interface i.e., in-between the BDD NWs. Increasing the deposition charge
to 11 mC-cm ™2 resulted in polymer coated BDD NWs, while large deposition
charges (23 mC-cm~2 and higher) led to a loss of the wire structure in favor of
continuous film formation. The available carboxylic groups of the poly(pyrrole)
coated wire electrode allows their coordination with copper ion (Cu?*), known to
be specific binding sites for His-tagged analytes. Indeed, the affinity constant (Ka)
of His-Tag-des-Arg®-Bradykinine peptide to Cu?* coordinated carboxyl-terminated
diamond wires was determined as K5 = (1.15 + 0.5) x 10° M1, higher than that
determined in the absence of Cu?* (K = (0.31 + 0.5) x 10 M~1). Concentrations as
low as 10 nM resulted in Rct shift of 50 + 22 () on these interfaces, while on a planar
BDD interface modified with carboxylic groups and chelated with Cu?*, His-tagged
peptide concentrations had to exceed 100 nM to cause a comparable shift.

The other approach consists of the deposition of nickel nanoparticles.
Figure 10B(b) shows a representative SEM image of Ni NPs modified diamond
nanowires (BDD NWs/Ni NPs) revealing particles of 20 + 5 nm in diameter and a
particle density of 150 Ni NPs/um?. The oxidation state of the deposited nickel was
confirmed by the presence of a quasi-reversible redox peak at ~0.47 V/Ag/AgCl in
the cyclic voltammogram of the BDD NWs/Ni NPs electrodes in PBS (Figure 10B(c)
assigned to Ni(OH), /NiOOH. The hydrated nickel hydroxide can be present in two
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crystalline forms: the hydrated «-Ni(OH), and the anhydrous 3-Ni(OH),, the latter
being the more stable and preferentially formed by cycling in NaOH (0.1 M) [48].
Biotinylated anti-IgG was specifically linked to the Ni?* particles and the change in
t§1ee’31 1nte£gﬁglail5propertles upon binding of different concentrations of IgG was deegéed
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3.2. Diamond Nanowires for Matrix-Free Mass Spectrometry

Mass spectrometry (MS) is widely accepted as a ‘gold-standard” method for
the identification of chemicals or biological products. It is, nowadays, applied
in highly diversified domains like those directly or indirectly tied to healthcare
or regulation-driven demand such as drug development, diagnostics, food and
environmental safety testing. Among the different methodologies, matrix-assisted
laser desorption/ionization mass spectrometry (MALDI-MS), first introduced in
1988 by Hillenkampf and Karas [49], constitutes one of the soft ionization techniques
that provides the nondestructive vaporization and ionization of analytes using
UV-absorbing organic matrices. The utility of MALDI-MS for protein and peptide
analysis lies in its ability to provide high accurate molecular-weight information on
intact molecules. Acquiring optimum MALDI data depends, however, not only on
the functional and structural properties of the analyte itself but also largely on the
choice of suitable matrices. As the matrix is the medium by which the analyte is
transported to the gaseous phase and provides the conditions that makes ionization
possible, the matrix and the sample-matrix preparation procedure greatly influence
the quality of MALDI mass spectra. Organic matrices such as 2,5-dihydroxylbenzoic
acid (DHB), «-cyano-4-hydroxycinnamic acid (HCCA) or sinapic acid (SA) are
commonly used. However, the choice of the matrix remains an empirical issue.
While MALDI-MS has been successfully used to analyze large molecules [50-52], it
has rarely been applied to low-molecular weight compounds (<500 Da) as a large
number of matrix ions appear in the low-mass range.

Tanaka and co-workers proposed the use of a suspension of cobalt nanoparticles
of 30 nm in size mixed with glycerol as inorganic matrix for the laser
desorption/ionization of analytes [53]. Since then, several alternative inorganic
matrices have been proposed as assisting material [54] in a process that was named
surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) by
Sunner et al. [55]. The basic principle of SALDI-MS analysis is schematically outlined
in Figure 11A. Using inorganic species as the assisting material in MALDI is an
alternative approach to avoid the problems arising in conventional MALDI analysis
using organic compounds as matrix systems [56]. Nanostructured diamond-like
carbon (DLC) coated targets were proposed by Bonn and co-workers as versatile
platform for the analysis of amino acids, carbohydrates, lipids, peptides and
other metabolites using laser desorption/ionization mass spectrometry [57]. A
nanodiamond MALDI-MS support was demonstrated by Wei et al. to improve the
ionization efficiency of samples [58]. The use of boron-doped diamond nanowires
as an inorganic matrix for the D/I of peptides and small molecules, and their
analysis by mass spectrometry with a very high sensitivity has been demonstrated
by us [27]. To minimize droplet spreading on the matrix surface, the nanowires
were chemically functionalized with octadecyltrichlorosilane (OTS) to reach a final
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water contact angle of 120 °C (Figure 11B). The sub-bandgap absorption under UV
laser irradiation and the heat confinement inside the nanowires allowed LDI-MS
of various compounds, most likely via a thermal mechanism (Figure 11B). One of
the most used compounds to assess the LDI-MS performances of SALDI surfaces is
verapamil, a calcium channel blocker. Detection of verapamil on silicon nanowires,
prepared by the Metal-Assisted Chemical Etching (MACE) method, has shown a
detection limit value of 5 fmol [59]. Walker et al. explored silicon nanopost arrays
(NAPA) in combination with LDI-MS. The high ionization efficiencies enabled
detection of ultratrace amounts of analytes (800 zmol of verapamil) within a
dynamic range spanning up to four orders of magnitude [60]. For comparison,
the detection limit value of verapamil on diamond nanowires was 200 zeptomoles,
which is slightly better. Impressive results were obtained by Northen et al. by
nanostructure-initiator mass spectrometry (NIMS). They demonstrated a detection
limit value for verapamil of 700 ymol [61]. Although this technique is not a
“matrix” sensu stricto (as MALDI), NIMS takes advantage of an “initiator” compound
(e.g., bis(tridecafluoro-1,1,2,2-tetrahydrooctyl)tetramethyldisiloxane), which assists
desorption and/or ionization of analyte molecules. Even though the limit of
detection (LoD) that is needed depends on the targeted application, most of the
time, the sensitivity race is not scientifically or even technically relevant. Other
parameters should be taken into account for performant SALDI surfaces such as laser
fluence, dynamic range, versatility, peptide discrimination and post-translational
modification (PTMs) detection (proteomics field), cost, reproducibility.

The investigated diamond nanowires, undoped (UDD NWs) or boron-doped
(BDD NWs), display antireflective properties permitting photons absorption at
A =337 nm. However, on the mass spectrum of a peptide mixture obtained on
BDD NWs interface, all peptides have been detected with relatively high signal
intensity (Figure 11D). On the contrary, the same experiment performed on a planar
nanocrystalline BDD, i.e., the same interface without any RIE step process etching,
no peaks were observed. Thus, the absence of peaks in the MS spectrum (Figure 11D)
clearly indicates that the presence of nanostructures on the BDD substrate is
mandatory for achieving the laser desorption/ionization (LDI) of biomolecules [27].
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of biomolecyles i2ilte of interest. In addition, tandem MS analysis can be used for structural
determination based on ion dissociation. Electrochemical conversion, on the other
hand, can improve analyte ionization and provides desired modification to the
analyte prior to MS analysis. Attracted by the complementary nature of these
two techniques, the coupling of EC and MS appears perfect and appealing. For
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more than four decades, researchers have been engaged in coupling these two
techniques [64-67].

A key challenge of the coupling is how to interface an electrochemical cell
online with a mass spectrometer for efficiently ionizing the electrolyzed samples.
Therefore, selecting an appropriate ionization method is critical. In this regard, the
evolution of the coupled EC/MS technique followed the advances of ionization
methods in the field of mass spectrometry. In 1971, the first EC/MS device was
introduced by Bruckenstein and Gadde for in situ mass spectrometric determination
of volatile electrode reaction products [64]. In the experiment, a Teflon membrane
was placed between the porous electrode and the mass spectrometer ionization
chamber so that volatile reaction products could penetrate through the membrane
and be ionized by electron impact (EI) without the interference of the solvent. In 1984,
differential electrochemical mass spectrometry (DEMS) was established for the online
MS detection of volatile electrochemical products in real time. The total response
time was less than 1 s [68]. Furthermore in DEMS, the product MS signal intensity
was proportional to the Faradaic current as only the volatile compounds produced
were transferred to the ionization chamber, from which quantitation could be
achieved. Then, several methods of ionization have been used including thermospray
(TS), fast atom bombardment (FAB), inductively coupled plasma (ICP), chemical
ionization (CI), atmospheric pressure chemical ionization (APCI), atmospheric
pressure photoionization (APPI) and electrospray ionization (ESI). This former
combination (EC/ESI-MS) was the most widely used for many applications [62].
Desorption electrospray ionization (DESI) or nanoDESI and direct analysis in real
time (DART) are other recent methods to perform ambient soft ionization with
little or no sample preparation [69]. Applications of EC/MS are various and
numerous and among them we can cite mechanistic elucidation of electrochemical
reactions [70-73], mimicking of metabolic pathways [65], tagging of protein/peptide
thiol groups using various electrochemical generated species to electrochemically
enhance MS signals [74,75], pre-concentrate target via electrochemical deposition [66],
and following protein/peptide cleavage and online MS analysis that is very notably
useful in the proteomics field [76,77].

4. Conclusions

From the above discussion, it becomes clear that a large amount of effort has
been devoted to the synthesis of diamond nanostructures to a point where they
can be considered for device-oriented applications. The discoveries and research
undertaken in the last years hope to trigger the development of diamond nanowire
sensors for clinical diagnostic, environmental sensing and other applications at
the interface between biology, physics and chemistry. However, the full spectrum
of such nanostructures for other technological applications cannot be overseen.
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Diamond coated silicon nanowires have been lately investigated for supercapacitor
applications [34], bringing diamond nanostructures to the field of energy. A full and
detailed understanding of the electrical and electrochemical properties of a single
diamond nanowire might be of ultimate importance in the near future to foster
further such developments.

The use of diamond nanowires is believed to have great potential for EC/MS.
Indeed, coupling EC/MS using diamond nanowires will permit performing both
electrochemistry and MS detection of ionized compounds achieved by either DESI
(or nanoDESI) or the LDI ionization process.

Surface functionalization is required for almost any kind of sensing applications.
Currently, the reported surface functionalization schemes of diamond wires are
limited to some examples. Widening this area is thus one aspect that should
be undertaken by research groups working in this field. The formation of
superhydrophobic and oleophobic interfaces has, for example, been demonstrated
to have impact on cell and bacteria adhesion [26]. An important aspect will be the
determination of the influence of diamond doping levels and even wire length on
SALDI results. A better understanding will help to optimize the technique and
achieve highly reproducible and accurate results. This will make the approach of
high interest for any laboratory.
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A Label-Free Impedimetric DNA Sensor
Based on a Nanoporous SnO; Film:
Fabrication and Detection Performance

Minh Hai Le, Carmen Jimenez, Eric Chainet and Valerie Stambouli

Abstract: Nanoporous SnO; thin films were elaborated to serve as sensing electrodes
for label-free DNA detection using electrochemical impedance spectroscopy
(EIS). Films were deposited by an electrodeposition process (EDP). Then the
non-Faradic EIS behaviour was thoroughly investigated during some different steps
of functionalization up to DNA hybridization. The results have shown a systematic
decrease of the impedance upon DNA hybridization. The impedance decrease
is attributed to an enhanced penetration of ionic species within the film volume.
Besides, the comparison of impedance variations upon DNA hybridization between
the liquid and vapour phase processes for organosilane (APTES) grafting on the
nanoporous SnO; films showed that vapour-phase method is more efficient. This
is due to the fact that the vapour is more effective than the solution in penetrating
the nanopores of the films. As a result, the DNA sensors built from vapour-treated
silane layer exhibit a higher sensitivity than those produced from liquid-treated
silane, in the range of tested target DNA concentration going to 10 nM. Finally, the
impedance and fluorescence response signals strongly depend on the types of target
DNA molecules, demonstrating a high selectivity of the process on nanoporous
SnO, films.

Reprinted from Sensors. Cite as: Le, M.H.; Jimenez, C.; Chainet, E.; Stambouli, V. A
Label-Free Impedimetric DNA Sensor Based on a Nanoporous SnO, Film: Fabrication
and Detection Performance. Sensors 2015, 15, 10686—-10704.

1. Introduction

Over the last decades, development of genosensors has increased significantly,
as demonstrated by the large number of scientific publications on this topic [1].
Traditionally, DNA hybridization detection research has relied upon attachment
of various labels to the molecules being studied. The common labels used
in molecular biology studies to analyse DNA hybridization involve fluorescent
dyes [2,3], redox active enzymes [4,5], magnetic particles [6] or different kinds
of nanoparticles [7,8]. For example, the DNA target sequence is labelled with a
suitable fluorescent tag. With the aid of a fluorescence microscope, fluorescence is
observed at the place where complementary hybridization takes place [9]. Although
these techniques are highly sensitive, label processes require extra time, expense,
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sample handling [10]. Additionally, labels might, in some cases, interfere with the
detection, the base-pairing interaction. The challenge is to develop simple, reliable
and economical methods. Label-free strategies have emerged as potential methods
for detecting DNA hybridization with lower cost and high sensitivity. Label-free
techniques can provide direct information on target molecules in the form of changes
in a physical bulk property of a sample. Basically, label-free DNA sensors rely on the
modification of a given physical parameter of the supporting material (transducer),
which is induced by DNA hybridization.

Electrochemical impedance spectroscopy (EIS) has received much attention
recently for the DNA hybridization detection due to its ability to perform
label-free detection. EIS can sensitively detect the change of the impedance of
the electrode/electrolyte interface when the DNA target is captured by the probe.
EIS measurements could be performed according either faradic or non-faradic
process [10]. In the case of faradic impedance spectroscopy, the addition of a
redox-active species, such as [Fe(CN)e]P~/4~ [11,12] or [Ru(NH;3)e]*/3* [13,14], to
the bulk solution is required. Faradic EIS detection of DNA hybridization is generally
based on the variation of the charge transfer resistance between the solution and
the electrode surface [15]. On the other hand, no additional reagent is needed in
the case of non-Faradic detection. Bio-modification of the electrode leads to the
variation of either the capacitance of the double layer formed between the solution
and the metal electrode surface or the capacitance located in the space charge layer
at the sub-surface of semiconductive electrodes [16]. In this case, a sufficiently
sensitive electrode material is strongly needed. Different kinds of sensitive materials
for non-Faradic EIS DNA detection have been reported, including metals [17,18],
conductive polymers [19-21] and semiconductors [22-29]. The latter can be divided
into two categories including CMOS heterostructures [22-24] and single working
electrodes [25-29].

Within this last category, our group pioneered to study the non-Faradic
label-free detection of DNA hybridization based on semiconductive metal oxides
as working electrodes. Dense and polycrystalline thin film electrodes constituted
of CdInyOy4 [30,31] or pure/doped SnO; [32,33] were elaborated by the aerosol
pyrolysis technique. The detection results first showed a systematic increase of the
impedance upon DNA hybridization in agreement with the field effect. In particular,
we evidenced the importance of the use of non-doped films to benefit from higher
field effects. Elsewhere, the high chemical stability of SnO, films when dipped in
saline solutions is an important criterion which led us to pursue further investigations
with this metal oxide. In the following step, using an electrodeposition method, we
elaborated working electrodes constituted of 1D monocrystalline nanopillars [34].
The dimensionality reduction of the SnO, electrode material from 2D thin film to 1D
nanopillars allowed the surface/volume ratio of the electrode to increase and thus
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to benefit from an enhanced field effect. As a result, the increase of the impedance
signal upon DNA hybridization was more important than in the case of 2D SnO,
thin films. Our results showed that SnO,-nanopillars-electrode provides a higher
sensitivity over 2D-dense SnO; film electrode (97% =+ 7% vs. 50% =+ 10%) for a DNA
target concentration of 2.0 uM [34]. The limit of DNA detection was found in the
nanomolar range, which we expect to improve in a future study by elaborating SnO,
nanowires exhibiting a higher shape ratio. Presently, the idea is to reduce more the
dimensionality of the electrode material down to 0D by elaborating nanoporous
SnO; films constituted of SnO, nanoparticles and to investigate the resulting effect
on the impedance signal upon DNA hybridization.

To this aim and for the first time to the best of our knowledge, in the present
work, we investigated the possibility to fabricate impedimetric DNA biosensors
based on nanoporous SnO, electrodes. As for SnO, nanopillar electrodes, the
nanoporous SnO; film electrodes were prepared using an electrodeposition method
which provides a simpler and less expensive route to synthesize the ceramic coatings
over other methods [35]. The characteristics of the obtained films, including
microstructure, morphology and electrochemical properties have been thoroughly
investigated using SEM, TEM and EIS. Then, a functionalization process has been
carried out in order to covalently graft single strand (ss) DNA probes onto the
electrode film surface. This process is based on a silanization step that we have
carried out either in liquid phase or in vapour phase. EIS was used to investigate
the impedance behaviour after the main steps of the functionalization process, as
well as after DNA hybridization. In parallel, the DNA hybridization detection
on the SnO; nanoporous films was systematically checked using epifluorescence
microscopy. Some performances of the sensors were also analysed, namely:
sensitivity and selectivity.

The paper is organized as follows: we first present the results obtained for
DNA hybridization when using the liquid phase silanization in the case of SnO,
films with increasing thicknesses. Then we present the results obtained when using
the vapour phase silanization. The comparison between these two steps will be
conducted in term of impedance variation upon DNA hybridization. Finally, the
obtained results help us to have a more complete view and understanding on the
effect of the SnO; sensing electrode morphology and dimensionality on the response
signals to non-faradic DNA detection.

2. Experimental Section

2.1. Nanoporous SnO, Film Deposition

The electrodeposition of SnO, thin films was carried out in a standard
three-electrode electrochemical system using a computer-controlled potentiostat
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EG&G 322. The electrolyte consisted of 20 mM SnCl,- 2H,O (>99.99%, Sigma
Aldrich, MO, USA), 100 mM NaNOj; (>99%, Sigma Aldrich) and 75 mM HNO3
(>65%, Sigma Aldrich) in Nanopure water. Commercial indium tin-oxide (ITO)
coated glass substrates, purchased from Advanced Film Services Company (San Jose,
CA, USA) were used as the working electrodes. The thickness of the ITO layer is
300 nm, with a sheet resistance of 10 ()/square. These substrates were sonicated
in the following sequence: 15 min in ethanol, 15 min in acetone and 15 min in
isopropanol in order to remove all the impurities on the surface. Then, the ITO/glass
substrate was installed into the cell vertically using a specific Teflon holder which
controls the area of the working electrode exposed to the electrolyte 1 cm?. A Pt
wire and a commercial Ag/AgCl (KCI 3M) electrode were used as counter and
reference electrodes, respectively. SnO; films were deposited on ITO substrates at
potentiostatically a fixed potential of —1.0 V (vs. ref.).

Cathodic electrodeposition of SnO; film in nitrate solution comprises several
steps [36]. First, in a strong oxidizing environment of nitric acid solution, the SnZt
ions dissolved from tin dichloride are oxidized to Sn**. When the negative voltage is
applied, nitrate ions are electrochemically reduced at the electrode surface leading to
the generation of OH™ by Reaction (1). These formed OH™ ions then reacted with
the Sn** ions coming from the bulk solution to deposit SnO, on the electrode surface
according to Reaction (2).

NO3™ + 2H" + 2¢"—NO,” + 20H" 1
Sn** + 40H" — Sn(OH)4 — SnO, + 2H,0 )

Because the total charge density (Q) is proportional to the amount of NO3™
electrochemically reduced to generate OH™ group at the electrode surface, Q relates
to the amount of deposited SnO,. As the result, the film thickness could be controlled
by changing the value of Q. By increasing the Q values from 0.2 to 0.8 C- cm~2, SnO,
films with increasing thickness were obtained.

2.2. Functionalization Process

The functionalization process of SnO; films leads to a covalent attachment
of DNA. It is similar to the one we previously used for SnO, films and SnO,
nanopillars [32,34]. Briefly, it consists of the following steps: the oxide film surface
was first hydroxylated using an air/O, mixture plasma to create OH™ groups at the
surface. These groups allowed covalent binding of a functional organosilane. Then a
silanization step was accomplished by grafting of the 3-aminopropyltriethoxysilane
(APTES). Both liquid-phase and vapour-phase procedures have been tested for
APTES deposition on SnO, surface:
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2.2.1. Liquid Phase Deposition

The samples were located into a solution containing 0.5 M of APTES
(Sigma-Aldrich) in 95% absolute ethanol and 5% deionized water under agitation
for a night. To remove the unbound silane, the samples were carefully rinsed with
ethanol and then, with deionized water. This process was followed by curing the
samples in an oven at 110 °C for 3 h.

2.2.2. Vapour Phase Deposition

The samples first were placed in a Teflon holder, which then was put into a
glove bag. The next step was to draw out the air from the bag using a rotary pump
and fill the bag with an argon gas. This step was repeated three times to make sure
that the humidity in the bag is as low as about 5%. After 200 uL of APTES was
delivered, the lid of the sample holder was closed tightly. This holder was kept at
82 °C for 1 h to cause the evaporation of APTES. To finish, the samples were rinsed
carefully with absolute ethanol and deionized water to remove unreacted silane and
cured in an oven at 110 °C for 1 h.

To facilitate strong covalent binding between the NH, termination of APTES
and the 5-NH, termination of the oligonucleotide, a cross linker molecule (10%
glutaraldehyde solution in HyO) was applied. 20-base pre-synthesized DNA probes
were used (purchased from Biomers, Ulm, Germany). A standard-type probe
sequence was chosen: 5'-NH,-TTTTT GAT AAA CCC ACT CTA-3'. These DNA
probes were diluted in a sodium phosphate solution 0.3 M/H;O to a concentration
of 10 pM. Two pL drops of this solution were manually applied on the sample
surface and incubated for 2 h at room temperature. The probes were then reduced
and stabilized using a NaBHy solution (0.1 M) which modifies the CH=N imine
into a CH-NH amine bond and also deactivates the non-bonded CHO termination
of the glutaraldehyde transforming them into CH,-OH. The hybridization was
carried out using DNA targets labeled with a Cy3 fluorescent dye. The DNA target
solution was diluted in a hybridization buffer solution (NaCl: 0.5 M, PBS: 0.01 M)
and spread throughout the sample surface. To minimize the experimental dilution
errors, the DNA target solution was prepared once at 2 uM and was then diluted
to the desired lower concentrations down to 10 nM. The samples were then placed
into a hybridization chamber at 42 °C for 45 min. Finally, the samples are rinsed
with saline-sodium citrate (SSC) buffer to remove all the unbound DNA targets
from the surface and dried with nitrogen. In order to study the selectivity of the
process, different types of DNA target have been used including complementary,
non-complementary, 1- and 2-base mismatch as reported in Table 1.
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Table 1. Sequences of the different types of DNA target.

Complementary 3'ACCTA TTT GGG TGA GAT AC-Cy3 5'
Non-complementary 3' ACTGG CGC AAT CAC TCT AC-Cy3 5'

1-base mismatch 3' AC CTA TTT GCG TGA GAT AC-Cy3 5'

2-base mismatch 3'AC CTA TTT GCA TGA GAT AC-Cy3 5'

2.3. Characterization Technigues

The SnO; film morphology was studied using scanning electron microscopy
(XL30, Philips, Eindhoven, Netherlands) and transmission electron microscopy (JEOL
2010, Tokyo, Japan). TEM and electron diffraction were carried out at 200 kV with a
0.19-nm point-to point resolution. Cross-section samples were obtained by the tripod
method. Samples were polished on both sides using diamond impregnated films.
Low-angle ion Ar* beam milling was used for final perforation of the samples and to
minimize contamination.

Impedance measurements were carried out: (I) on the bare electrodes; (II) after
silanization step; (III) on the DNA probe grafted electrodes before and (IV) after DNA
hybridization. The electrolyte used systematically was the pure hybridization buffer
solution, containing no DNA target. A laboratory-made microfluidics cell involving
a plexiglas three electrode set-up was used. In this cell, the liquid volume is 500 pL.
The circular and functional surface of the film which acts as the working electrode
is 0.19 cm?. The reference electrode is Ag/AgCl (ref.), and the counter-electrode
is platinum. The electrodes are connected to a Versatile Simple Potentiostat (VSP,)
impedance-analyzer (Bio-Logic, Claix, France). For EIS measurements, this apparatus
is used between 10 mHz to 200 kHz with a modulation of 10 mV and an applied
voltage of —0.5 V (vs. ref.). The impedance spectra were analyzed with Z-fit
within the EC-lab software (Bio-Logic, Claix, France) using Non-linear Least Squares
Fit principles.

Although this study is ultimately aimed at the development of DNA
hybridization techniques which avoid the use of any label, the use of the Cy3
labelled DNA target for the impedance measurements allows the DNA hybridization
validation and the systematic comparison of electrical results with the complementary
optical results (fluorescence). Epifluorescence measurements were achieved using an
BX41M microscope (Olympus, Tokyo, Japan), fitted with a 100 W mercury lamp, a
cyanide Cy3 dichroic cube filter (excitation 550 nm, emission 580 nm) and a cooled
Spot RT monochrome camera (Diagnostic, Sterling Heights, MI, USA). The Image Pro
plus software (Olympus, Tokyo, Japan) was used for image analysis. The fluorescence
intensity is measured at two distinct regions of the sample: the spot where DNA
probes were grafted and the background outside the spot where no DNA probe was
immobilized. This background intensity was then subtracted from the intensity of
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each spot. The fluorescence intensity value for each condition represents the average
over nine different acquisitions from two independent samples.

3. Results and Discussion

3.1. Bare Electrodeposited SnO; Film Characteristics

The morphology of films electrodeposited with different charge densities, i.e.,
0.2, 0.4 and 0.8 C-cm~2 is revealed through typical SEM images shown in Figure la—c.
The film thickness, determined from cross-sectional SEM images, increases linearly
with the charge density. The thicknesses are 220 + 20, 380 + 20 and 940 + 50 nm,
corresponding to charge densities of 0.2, 0.4, and 0.8 C-cm ™2, respectively. The
top view images (inset) present a porous surface composed of numerous circular
nanoparticles. The particle size does not change significantly going from 5 to
20 nm, when increasing the charge density from 0.2 to 0.8 C-cm~2. Due to the
difficulty of observing and measuring efficiently the pore size from SEM images, the
morphology of the films is further characterized by TEM observation. As expected,
the cross-section bright field HRTEM micrograph reveals much better the local
porous structure of the film with highly dispersed SnO, nanoparticles (Figure 1d). It
shows many nanocrystallites with clear lattice fringes corresponding to tetragonal
SnO,. The average pore size is approximately 10 nm. Besides, the corresponding
selected area electron diffraction (SAED) pattern (inset Figure 1d) exhibits two hollow
diffraction rings corresponding to the (110) and (101) of tetragonal SnO;. The hollow
rings reveal a quasi-amorphous microstructure of the nanoporous film which was
also confirmed by grazing incidence angle XRD.
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these observations are similar to the ones obtained on SnO2 nanopillars [34], they differ from the ones
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at the centre of the DNA drop spot, the fluorescence intensity distribution is

discontinuous and discrete. Second, the border of the drop is not sharp and a

fluorescence intensity gradient is observed. If these observations are similar to

the ones obtained on SnO; nanopillars [34], they differ from the ones obtained
Sensorsatﬂ%n§ 2D SnO; thin film electrode which provided a homogeneous intensity 10693
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To validate that the impedance variations actually originates from DNA hybridization, impedance analyses
were performed in the case of both complementaryl&igd non-complementary hybridization.

Whatever the film thickness, the Nyquist plots of bare nanoporous SnO:2 films (Figure 3) display a
semi-circular shape. Besides, the semicircle diameter decreases when increasing the film thickness. The
impedance of nanoporous SnO: film electrode can be analysed by a simple equivalent circuit Re (R1, Q1).
The resistance R- 15 the sum of ohmic resistances of both the electrolvte bulk and the electrode (1ITO



after probe grafting (ss-DNA) and (IV) after DNA hybridization (ds-DNA). To
validate that the impedance variations actually originates from DNA hybridization,
impedance analyses were performed in the case of both complementary and
non-complementary hybridization.
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Extracted electrical parameters from the modelling (Table 2) showed that the
TableZ: Blcclrical RATBMSICHYHVES Q3754 Epmilliing O RN IRl Lot nareRgroys
SnOxgjectygdgsonith werasitg diHe AHCKBER; is mainly due to the increase of the SnO,
Q (C/em?)  Film Thickness (nm) R.(Q) C; (uF) o Ri ()

0.2 220+20 15764.61 2337  0.779 84,782
0.4 380+20 70.40 2629  0.772 66,496
0.8 920+50 73.90 38.15 0.810 21,276

The overall electrochemical behaviour of bio-modified films does not change upon the functionalization



film bulk resistance with the film thickness. However, R; decreases sharply when
the film thickness increases. The drop of R; can be explained in term of a higher real
surface area in the case of the thicker films. It is believed that the increment of real
surface area improves the ionic interaction at electrolyte-electrode interface resulting
in low R;.

Table 2. Electrical parameter values obtained from fitting of Nyquist plot of bare
nanoporous SnO; electrodes with increasing film thickness.

Q (C/em?) Film Thickness (nm) Re () Cy (uF) o R; ()

0.2 220420 64.61 23.37 0.779 84,782
0.4 380+20 70.40 26.29 0.772 66,496
0.8 920450 73.90 38.15 0.810 21,276

The overall electrochemical behaviour of bio-modified films does not change
upon the functionalization step since the corresponding Nyquist plots still exhibit
one large semicircle. However, their corresponding diameters undergo significantly
change upon the modification step as it is shown in the case of complementary
DNA hybridization for a 220 nm thick SnO, film (Figure 4a) as well as in the
case of non-complementary hybridization (Figure 4b). The changes are induced
by the different molecular layers immobilized on the film surface. The silanization
induces a large increase of the semicircle diameter, while the DNA probe grafting
results in a decrease of the semicircle diameter, which is amplified upon the
complementary DNA hybridization (Figure 4a). However, this last impedance
change is weak in the case of non-complementary hybridization (Figure 4b). These
electrochemical behaviours were systematically found for all studied films whatever
the film thickness.

As for bare SnO;, films, all impedance curves are best fitted with an equivalent
circuit Re(R1, Qq). In this study, we focused on the evolution of the real part of the
impedance, namely the resistance R;. Its value could be obtained by extrapolating the
fit up to the real axis. By monitoring the changes of R; we can get information about
the different modification steps of the SnO; nanoporous based DNA sensors. We
have calculated the variation of these resistances expressed as AR1/R;. AR;/R; =[R;
(after hybridization) — R; (before hybridization)]/R; (before hybridization) x 100%.
As expected, R; significantly varied upon modification step.
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complementary DNA hybridization (Figure 4a). However, this last impedance change is weak in the case
of non-complementary hybridization (Figure 4b). These electrochemical behaviours were systematically
found for all studied films whatever the film thickness.
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target DNA molecules results in an additional decrease of Ry. The decrease of R;
upon DNA hybridization could be explained by the observed hydrophilic character
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and the change of conformation linked to double-stranded ds-DNA. On the one hand,
the hydrophilic ds-DNA could partially facilitate some ionic molecules of electrolyte
to reach the electrode surface following their infiltration into the nanoporous
structure [19]. On the other hand, the conformation of DNA changes from random
coil for ss-DNA to a rigid helicoidal chain after hybridization [37,38]. Therefore, it is
believed that the electrode surface could be more liberated after hybridization.

The decrease of the polarization resistance R; is about —33% =+ 4% for the
thickest film (940 + 50 nm) and about —54% =+ 5% for the thinnest film (220 + 20 nm).
We note that whatever the film thickness, in the case of non-complementary
hybridization, a weak decrease of R; is obtained, i.e., about 6% + 2%. In the case of
complementary hybridization, we observe that if the change of impedance is rather
similar for the thin films (220 and 380 nm), it drops for the thickest film (940 nm).
We attempt to explain this drop by making a relation with the percentage of surface
area which is influenced by DNA hybridization. We hypothesize that due to much
larger specific surface area, the amount of DNA probe and target molecules absorbed
within the thicker film should be much higher than in the thin one, leading to higher
fluorescence signal as mentioned above. However, because of very high specific area
for the thickest film, the percentage of the surface area on which DNA probe was
grafted is lower than for the thinner ones. Consequently, the DNA free surface is
higher and the impedance signal becomes less important when increasing the film
thickness. From this result, we deduce that the thinnest films are more relevant for
observing impedance changes upon hybridization. For this reason, we follow further
experimentations using the 220 nm thick films.

Besides, interesting comparisons can be made with our previous results obtained
for 2D SnO, dense film electrodes [32] and 1D SnO; nanopillar electrodes [34]. It is
to be reminded that our research work focuses on the improvement of the sensitivity
performances of 2D SnO, material by taking the advantage of higher developed
surface of SnO, nanostructured electrodes. From the results, it is clear that the
sensitivity of the 0D-nanoporous film-based DNA sensors compared to that of 2D
dense SnO; film (—59% + 5% vs. 50% %+ 10%) does not improve as much as that
of 1D SnO,-nanopillar electrode (97% + 7%) for a DNA target concentration of
2.0 uM. However these results emphasize the importance of both the dimensional
and morphological organizations of the sensing material on the impedimetric signal
upon DNA hybridization. In both cases, two similar behaviours are found. First,
the effect of silanization results in a large increase of the impedance, due to the
non-charged APTES molecules which block the electrode surface. Second, the DNA
probe grafting results in a decrease of the impedance which confirms the presence of
charged molecules on both surfaces. However, we observe an opposite behaviour of
the impedance upon DNA hybridization. Here it showed a decrease while it showed
an increase in the case of 2D and 1D SnO, electrodes. To explain this different
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tendency, it is to be considered that the interfacial charge distribution is different
according to the electrode morphology. Regarding the 0D nanoporous films, the DNA
strands and the ionic species infiltrated and are trapped within the film thickness,
while they are located above the 1D nanopillars and 2D dense film surface. Generally,
in the case of non-Faradic detection, DNA hybridization can induce a change of the
impedance in several manners in relation with either intrinsic or external causes.

On the one hand, in the case of 1D nanopillars and 2D dense films, the increase
of the impedance upon DNA hybridization can be explained by a cause which is
intrinsic to the SnO, material, namely, the field effect. The addition of negatively
charged DNA molecules upon hybridization leads to an increase of the space charge
thickness which is located below the film surface (in the case of 2D dense film) and
below the nanopillar surface. On the other hand, in the case of 0D nanoporous films,
the decrease of the impedance upon DNA hybridization can be explained by some
external phenomena as discussed above. The penetration of hydrophilic and charged
double-stranded DNA molecules within the nanoporous film volume enhances the
transport of ionic species inside the electrode volume. As a result, the impedance of
this complex interface is reduced. In this case, the field effect is hindered and does
not play any predominant role.

3.2.2. APTES Vapour Phase Deposition vs. Liquid Phase Deposition

In order to obtain higher performance DNA sensor, the immobilization of the
DNA probes on the film electrode needs to be well controlled. In our work, the DNA
probes are covalently grafted to the aminosilane (APTES) through a cross-linker
(glutaraldehyde). Functionalized surfaces were created by chemical treatment using
silanization process which was first carried out in our laboratory by liquid phase
deposition of a solution of silane diluted in 95% pure ethanol and 5% deionized
water. However, the main issue of liquid treatment is the eventual ability of the
precursor to copolymerize in the presence of water forming an inhomogeneous
organosilane monolayer on the surface [39]. To overcome this problem, the vapour
phase deposition has been performed in a next step. The low density of the agent
in vapour phase could reduce the aggregation formation. Importantly, because
the vapour is more effective than the solution in penetrating into the nanoporous
structure of the films, it is expected that a superior organosilane monolayer is
achieved and consequently, a better DNA surface coverage. As a result, the DNA
detection performance should be enhanced.

The Nyquist plots obtained on 220 4+ 20 nm thick SnO; films in the case of
vapour phase silanization (Figure 5a) clearly show the importance of the silanization
conditions when comparing with liquid phase (Figure 5b). In this case, the semicircle
(red curve) presents a much larger diameter than that of liquid phase deposition. As
previously, we perform the Nyquist plot modeling by using the equivalent circuit
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Re(R1, Q1) to determine the polarization resistance Ry variation upon the stepwise
modification. The resistance R; obtained from the impedance curve after vapour
phase silanization revealed an approximately three times higher value than the
one of the liquid phase silanization (432,768 () vs. 146,577 () in the case of liquid
phase deposition). It indicates that the deposited organosilane monolayer from
vapour phase was more efficient on the nanoporous film than in the case of liquid
phase. DNA hybridization is then performed on both film surfaces with the same
DNA target concentration of 2 uM. The change of resistance AR;/R; upon DNA
hybridization increases from —54% + 5% in the case of liquid phase deposition
(Table 3) to —63% + 5% of vapour phase deposition (Table 4).

Table 4. Vapour phase and liquid phase silanization: resistance value R;
obtained from fitting experimental data to the equivalent circuit for 220-nm-thick-
nanoporous-SnO; electrodes after silanization, after DNA probe immobilization
and after complementary DNA hybridization with different target concentrations.

Vapour Phase Silanization

CpNa target (uM) Ri () AR1/R1 (%)
SnO; Film Silanized ss_DNA ds_DNA
2.0 96,782 43,2768 167,202 61,836 —63+5
1.0 86,453 370,742 147,929 76,689 —48 £ 5
0.5 85,310 377,590 143,687 97,006 —33+3
0.1 81,101 416,567 121,467 99,531 —18+3
0.01 79,987 393,879 126,847 111,929 —-11+3

Liquid Phase Silanization

Ry (D)

CpNa target (uM) AR1/R1 (%)
SnO; Film Silanized ss_DNA ds_DNA
1.0 97,419 144,626 47,492 34,015 —28+5
0.5 97,926 151,935 45,305 37,707 —17 + 3
0.1 95,509 135,238 43,923 40,441 —-7+2
0.01 95,264 141,849 48,337 47,538 —2+1

This nearly 10% increase of the EIS signal confirms that the sensitivity of the
DNA detection could be improved significantly by using vapour phase silanization
process. The EIS result was confirmed by fluorescence measurements carried out
on the corresponding samples. It showed almost three times higher fluorescence
intensity in the case of vapour phase deposition over the liquid method (insets of
Figure 5).
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fluorescence measurements carried out on the corresponding samples. It showed almost three times
higher fluorescence intensity in the case of vapour phase deposition over the liquid method (insets of

Figure 5).
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The sensitivity of the biomodified 220 nm thick SnO, films was studied by
detecting complementary DNA target at lower concentrations. The evolution of the
polarization resistance ratio AR; /R; has been plotted as a function of DNA target
concentration (Figure 6) for both silanization processes: vapour and liquid phase
deposition. The lower DNA target concentration, the less important is the decrease of
resistance R;. In the case of vapour phase silanization, the decrease of the polarization
resistance AR; /R; is systematically wider, from 10% to 20%, than in the case of liquid
phase silanization. Indeed, in the first case it ranges from —48% + 5% to —11% + 3%
when decreasing DNA target concentration from 1 um down to 10 nM (Table 4),
whereas, it decreases only from —28% =+ 5% to —2% =+ 1% in the case of liquid phase
silanization (Table 4). As expected, even for low DNA target concentrations, the
infiltration of organosilane molecules into the nanopores is facilitated in the case of
gas phase, which plays a role in the sensitivity enhancement of the DNA sensor.

Finally the selectivity of the sensor on the 220 nm thick nanoporous SnO, based
DNA sensor has further been tested by performing hybridization procedure with
1- and 2-base-mismatch DNA target molecules as well as with blank hybridization
(buffer with no DNA target molecule). The concentration of all DNA targets was
fixed at 2 uM. The silanization was carried out only in vapour phase deposition
technique. Impedance curves exhibit one semicircles for all kinds of target molecule.
The impedance curves were analysed in terms of R; variations. As expected,
AR /Ry varies differently following the types of DNA target as can be seen from
Table 5 and in Figure 7. AR;/R; was equal to —34% + 5% and —21% + 4% in
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>en studied optically by epifluorescence optical microscopy. The evolutions of both fluorescence intensit
1d variation of resistance AR1/R1 respectively of the bio-modified 220 nm thick nanoporous-SnO: electroc
 a function of different types of DNA target are shown in Figure 7. The complementary hybridizatio
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nyoridization providaes a negligible signal, z.e., 1U = 5 0T nON-SPECIIIC adSorption o1 DINA target. In the
case of blank hybridization, the area where the DNA probes are immobilized could not be found. The
fluorescence results matched rather well with those of impedance, which demonstrates the high selectivity
of the process on nanoporous SnO2 sensing matrix.
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4. Conclusions

We have studied the label free DNA detection using EIS on 0D nanoporous
SnO; films that have been deposited by an electrodeposition process. The films
thickness has been varied from 220 + 20 to 940 + 50 nm. The results have shown a
systematic decrease of the impedance upon DNA hybridization, the decrease being
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more pronounced for the thinnest films. The decrease of the impedance upon DNA
hybridization has been attributed to the enhanced penetration of ionic species within
the film volume.

The comparison of impedance variations upon DNA hybridization between
the liquid and vapour phase processes for APTES grafting on the nanoporous SnO,
films showed that vapour-phase method is more efficient. This is due to the fact
that the vapour is more effective than the solution in penetrating into the films
nanopores. As a result, the DNA sensors made with a vapour-treated silane layer
exhibit a higher sensitivity than those produced from liquid-treated silane, in the
range of tested target DNA concentrations, going to 10 nM. Finally, the impedance
and fluorescence response signals strongly depend on the types of target DNA
molecules, demonstrating a high selectivity of the process on nanoporous SnO, films.
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Abstract: Dengue fever is the most prevalent vector-borne disease in the world, with
nearly 100 million people infected every year. Early diagnosis and identification of
the pathogen are crucial steps for the treatment and for prevention of the disease,
mainly in areas where the co-circulation of different serotypes is common, increasing
the outcome of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS).
Due to the lack of fast and inexpensive methods available for the identification of
dengue serotypes, herein we report the development of an electrochemical DNA
biosensor for the detection of sequences of dengue virus serotype 3 (DENV-3).
DENV-3 probe was designed using bioinformatics software and differential pulse
voltammetry (DPV) was used for electrochemical analysis. The results showed that
a 22-m sequence was the best DNA probe for the identification of DENV-3. The
optimum concentration of the DNA probe immobilized onto the electrode surface
is 500 nM and a low detection limit of the system (3.09 nM). Moreover, this system
allows selective detection of DENV-3 sequences in buffer and human serum solutions.
Therefore, the application of DNA biosensors for diagnostics at the molecular level
may contribute to future advances in the implementation of specific, effective and
rapid detection methods for the diagnosis dengue viruses.
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Sensors 2015, 15, 15562-15577.

1. Introduction

Dengue fever is the most prevalent vector-borne disease in the world. The World
Health Organization (WHO) estimates that some 100 million people are infected
every year; however, some studies have predicted that this number could be greatly
underestimated, and is actually closer to 390 million [1-3]. The distribution of the
disease is mainly in tropical and subtropical regions and recently, it is has been
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increasingly seen in urban and semi-urban areas. All these factors have contributed
to reveal dengue fever as a major international public health problem [1,2,4,5].

The infection is caused by a single stranded RN A-virus (DENV) of about 10.7 kb,
which belongs to the Flaviviridae family, with approximately four antigenically
distinct serotypes (DENV-1-DENV-4) [6,7]. The disease exhibits a wide range of
symptoms, such as fever, headache and myalgia, which are the most common
in classic dengue. Nevertheless, it can also shows more severe manifestations,
like in dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), which
present life-threatening symptoms, such as bleeding, thrombocytopenia and vascular
leakage [8-10].

Early diagnosis and identification of the pathogen are necessary for the prevention
and treatment of patients, as well as for the avoidance of new outbreaks and emergence
of severe cases of dengue, since it is known that the co-circulation of different serotypes
in an area increases the possibility of DHF and DSS outcomes [11,12].

Methods to confirm dengue virus infection may involve detection of the virion,
viral RNA, antigens or antibodies [13]. Virus detection by cell culture, viral nucleic
acid or antigen detection (nonstructural protein 1 or NS1 antigen) can be used to
confirm dengue infection in the acute phase of the illness (0-7 days following the
onset of the symptoms) [14,15]. In the later phase of the disease, serologic tests are
more applied and preferred for diagnosis, as the sensitivity of virus isolation and
antigen reactivity decreases [16]. Viral antigen (NS1) detection assays are rapid,
reliable and easy to perform, however, they cannot allow to distinguish between
different viral serotypes [17,18].

Viral isolation, although considered the gold standard diagnostic method, is
time-consuming and highly complex compared with other direct virus detection
techniques [1,19]. On the other hand, the RT-PCR assay is widely used, it allows the
detection of low copies of viral genes in less than 48 h [20]. However, both techniques
are costly and labor-intensive, but they are more specific than serologic methods used
for antibody detection and allow one to differentiate between the various dengue
virus serotypes [21].

Application of DNA biosensors has emerged as an alternative method to
the current molecular biology techniques [22,23]. These devices consist of a
single-stranded DNA molecule (ssDNA) attached to a transducing surface that
is able to detect a specific nucleic acid sequence, based on DNA hybridization
events. Currently, there is a growing interest in developing label-free methods for
DNA detection, considering their rapidness, easiness, low cost and minimal sample
preparation requirements, compared to labeling methods, where the properties of the
modified macromolecules often change, which may result in total loss of bioactivity
or stability [24,25]. Label-free approaches rely on the direct detection of intrinsic
electrochemical properties of DNA (e.g., oxidation of purine bases, particularly
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guanine) or on changes in some of the interfacial properties after hybridization. In
addition, interference with the biological recognition between DNA molecules is
minimized. Nevertheless, in labeling methods, these undesirable effects are more
likely to occur due to steric hindrance and blocking of the binding sites [26-28].

Consequently, since biosensors allow to detect and identify DNA sequences
in a fast and simple way, herein we report the first step to develop a cost-effective,
sensitive and label-free electrochemical DNA biosensor for the detection of DENV-3
sequences in biological samples, as a part of an ongoing research previously
published [29].

2. Experimental Section

2.1. Design of a Specific DENV-3 DNA Probe

The complete genomes of dengue virus serotype 3, corresponding to GenBank
accession numbers AY099336, AY099337, AY(09933851,AY09933852, AY(099339S1,
AY099339S2, AY099340S1, AY099340S2, AY0993451, AY09934251 were obtained from
the National Center for Biotechnology Information (NCBI) database. These sequences
correspond to strains that were introduced in the American continent, and caused
the disease outbreaks in 2002 [30,31]. CLC Main Workbench v.6.0 software was used
to analyze common sequences among those dengue genomes, by using an alignment
tool. Then, a specific DNA probe for DENV-3 was selected by comparison of the
homologous sequences with other organisms, using Basic Local Alignment Search
Tool (BLAST). DENV-3 complementary (target) and non-complementary sequences
were also designed using the same method.

2.2. Reagents and Materials

All chemicals were of reagent grade quality and were used directly as received
without further purification. Tris base was obtained from Promega (Fitchburg, WI,
USA) and sodium acetate was obtained from Sigma-Aldrich (St. Louis, MO, USA)
DENV-3 probes were purchased as lyophilized powder from IDT Technologies
(Coraville, IA, USA). The stock and diluted solutions (25 nM) were prepared in
0.5 M acetate buffer (pH 5.0) and kept frozen. Ultrapure RNAse/DNAse-free water
was used in all buffer solutions. After bioinformatics analysis, the following DNA
sequences were used in this study:

DENV-3 probe: 5'-TAA CAT CAT CAT GAG ACA GAG C-3
DENV-3 target: 5'-GCT CTG TCT CAT GAT GAT GTT A-3’
Non-complementary sequence: 5'-TCT CTT GTT TAA GAC AAC AGA G-3

Human serum used in this study was obtained from blood samples provided by
the pathogenic virus collection of Centro de Pesquisas Aggeu Magalhdes (CPqAM).
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Serum solutions were prepared by centrifugation at 3500 rpm for 5 min at 20 °C
(3500 rpm for 5 min), in which the obtained supernatant was collected from each
sample, and stored at 23 °C until further used for experiments testing.

2.3. Apparatus

Experiments were carried out using a PGSTAT302 potentiostat (METROHM
Autolab, Utrecht, The Netherlands) with the GPES 4.9.007 software as a graphic
interface. The electrochemical device was composed by a two-electrode system:
A pencil graphite electrode (PGE) as a working electrode and silver/chloride
silver electrode as a reference electrode. Each measurement consisted of a cycle
of activation/immobilization/hybridization/detection by using a fresh PGE surface.
All the experiments were performed in triplicate, at room temperature (23 °C).

2.4. Procedure

2.4.1. Preparation of Electrodes and Pre-Treatment of PGE

PGEs were obtained from Mercur (Santa Cruz do Sul, Brazil), as a pencil
graphite lead type 4 B. Briefly, PGEs were produced by cutting graphite lead in
pieces of 3 cm and polishing them with an emery polishing disc (Dremel, Mount
Prospect, IL,USA). The PGEs were then washed with ultrapure water to remove any
contaminant present on the surface of the working electrode. The reference electrode
was made by immersing a golden pin into an Ag/AgCl ink (Henkel Acheson, Hemel
Hempstead, UK) and dried at 40 °C overnight. The polished surface of PGEs was
pre-treated by applying a potential of +1.80 V for 5 min in 0.5 M acetate buffer solution
(pH 5.0) [32-34].

2.4.2. DNA Probe Immobilization onto PGE Surface

Immobilization of DENV-3 probe onto the PGE surface was performed by
immersing the activated PGE in acetate buffer solution, with different concentrations
of DENV-3 probes (250-1000 nM), by applying a fixed potential of +0.5 V for 300 s
onto the electrode surface.

2.4.3. DNA Hybridization with Complementary and
Non-Complementary Sequences

The hybridization of the immobilized DNA probe on the electrode
(PGE/DENV-3 probe) was performed by immersing the electrode in an Eppendorf
tube containing 70 uL of DENV-3 target sequences diluted in acetate buffer.
The hybridization reaction was then carried out in a thermomixer, stirring at
300 rpm, under a specific annealing temperature of 52 °C, for 10 min. This same
procedure was adopted to evaluate the hybridization of the PGE/DENV-3 probe
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with non-complementary sequences, as well as buffer solutions containing a mix of
both 75 nM of DENV-3 complementary and non-complementary sequences (mixed
DNA solution).

2.4.4. Detection of Complementary and Non-Complementary Sequences in
Human Serum

As a way to evaluate the efficiency of the system to detect DENV-3
sequences in biological samples on the electrode surface, the complementary
and non-complementary DNA sequences were diluted in human serum (75 nM
concentration) and the hybridization assay was conducted using the same conditions
described previously. This procedure was also adopted for tests human serum
solutions mixed with both target and non-complementary sequences.

2.5. Electrochemical Analysis

Differential pulse voltammetry (DPV) was used for electrochemical analysis in
this study. Current peaks were recorded after applying a potential range of +0.5 up
to +1.2 V at a scan rate of 0.05 V /s onto the electrode surface, which was immersed
in 20 mM Tris-HCl buffer (pH 7.0). The raw data obtained with DPV technique was
treated using the Savitzky and Golay filter (level 2) of the GPES software, followed
by moving the average baseline correction using a peak width of 0.01 V [35].

2.6. Statistical Data Analysis

Experimental data were analyzed with Statistica 8.0 software (StatSoft,
Tulsa, OK, USA) using parametric tests; Tukey’s test was used to compare
multi-independent group data, and a level of p < 0.05 was considered significant.
The reproducibility of the system was expressed as the coefficient of variation
inter-assay (CV), which was calculated over three independent assays on the
probe-modified PGEs.

3. Results and Discussion

3.1. Bioinformatics Analysis of DENV-3 DNA Probes

The design of DNA probes is one of the crucial steps in the development
of a biosensor, because it determines the specificity of the device [36]. For
genosensors, this can be achieved using bioinformatics analysis based on whole
genome sequencing, in a way to predict the most specific region that is able to produce
a steady double-strand DNA with the pathogen [37,38]. In this work, DNA probes
specific for DENV-3 were designed mainly by using CLC Main Workbench software,
based on a sequence alignment tool to identify regions of similarity between the
dengue strains. After that, DNA sequences from the strains that showed specificity
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only for DENV-3 were compared with other organism genomes using BLAST tool, in
order to exclude any correlations. Finally, the Oligonucleotide Properties Calculator
(Oligo Calc) software (Northwestern University, IL, USA) was used to provide
physical properties information of the selected DENV-3 sequences, in a way to
establish the best match of DNA probe for biosensors. Figure 1 shows a flowchart
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| DENV-3 genome ‘

¥

[ Criteria: Specific sequences only for DENV-3 ]

¥

| 180 sequences ‘

¥

[ Criteria: number of base pairsbelow 30pb ]

Number of guanine bases in the sequence
Absence of mismatches and hairpins

¥

Criteria: Smaller size
Specificity
Considerable differences in number of guanines between probe and target

¥

‘ 22-mer: 5' - TAA CAT CAT CAT GAG ACA GAG C -3’ |

Figurlél%l.ulsl%)vsl a(i*}tla& ?f]ghge ection Srrlltteerll‘?auﬁ%% to a@g} thet]RElf) ERRY % probe.

First, it was sﬁsw&mﬂ%ww}&aéé&&e%@ %&@eéegassmsfsﬁm&c&&@u@fﬂmg&o&fﬁe 3. Among

monﬁt ese, 81 were S lecte as D robes, based on the number of

these 81 W%re ng%%eo %ﬁe sequ rC% %% er OP uamne ses ancpﬁ‘?ea%aslgrslc% O I%IISS?lqutelil’lce number of

guanine basgﬁ&agﬁb%bmsﬁ;egwa RieRins sEldally +3 4ttt Dligonuslgatidpavas selected
to detect DENVwAngvathibacto BoTArg SATUEATRCATINWG AAR CAT CATTHA teqierhemAts C-3'. This
sequence waslseledtdualineito su tobimbseteaniha distdeeiiddir bt e Ratxachersidad biedrsivsensors, such
as shorter bﬁlslélf)ﬁf’rgfé?lré?ﬁ %P 3365%%}3&5 ﬁp(%flfé‘f&grﬁﬂije adf%?é%ﬁ?@mf tﬂ]éfﬁ{ﬁﬂﬁee%@guamne base

er Oor guanine

e S P RSB o
onto the PGE surface [33,39,40].

In addition, this probe was targeted to detect sequences from the envelope (E) gene, which is
responsible for binding and fusion to host cell membranes [4,41]. This particular gene was chosen
because of it is highly conserved sequence, which sgffers less mutation process rather than other parts
of dengue genome. Viral gene regions that interact with specific host cells are evolutionarily constrained,
mainly in viruses that infect multiple organisms, like dengue virus. This is important to be considered in

the development of DNA biosensors to detect dengue virus, once that it determines the selectivity and
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In addition, this probe was targeted to detect sequences from the envelope (E)
gene, which is responsible for binding and fusion to host cell membranes [4,41].
This particular gene was chosen because of it is highly conserved sequence, which
suffers less mutation process rather than other parts of dengue genome. Viral gene
regions that interact with specific host cells are evolutionarily constrained, mainly
in viruses that infect multiple organisms, like dengue virus. This is important to be
considered in the development of DNA biosensors to detect dengue virus, once that
it determines the selectivity and specificity of the method, avoiding cross-reactivity
with non-related organisms [42—44].

3.2. Effect of DENV-3 Probes Concentration on Immobilization on the PGE

The immobilization of a biological element on the electrode is the first step to
be considered in the development of a biosensor [45]. Determination of the optimal
probe concentration is crucial to ensure a high performance of DNA biosensors, and
reduce any interference in the electrochemical response of the system [46,47]. Thus,
the effect of DENV-3 probes concentration was also investigated in this study.

Figure 2 shows current peaks of different DENV-3 probe concentrations on
the PGE surface. As the electrochemical analysis in this study relies on label-free
oxidation of guanine bases, the acquisition of higher current signals for DNA probes
is well-suited for this system [29,48-50]. The results show that the current gradually
rises with the increase of the probe concentration from 250 nM up to 500 nM, reaching
the highest electrochemical signal of 777 + 8.6 nA at 500 nM. The result obtained at
500 nM was also statistically different from that obtained at 750 nM (p = 0.000178).
However, the decrease in the current peaks at higher concentrations of DNA probes
after 500 nM could be due to the steric hindrance between the nitrogenous bases
and the transducer. This prevents the electrons produced by the oxidation process
to access the electrode surface [51-55]. Therefore, a concentration of 500 nM was
selected as the optimal probe concentration for DNA immobilization on the PGE.

3.3. Electrochemical Analysis of Hybridization Assays

In this study, the biosensor performance was analyzed through the hybridization
reaction between the DENV-3 probe and the complementary DENV-3 oligonucleotide.
Hybridization was carried out with different amounts of the target sequence and
this reaction was performed in an electrochemical cell containing 20 mM Tris-HCl
buffer (pH 7.0). The electrochemical signals based on guanine oxidation are displayed
in Figure 3. The results showed that the current peaks increase with the increasing
concentration of the target sequence (10 nM to 500 nM); the highest concentration
exhibited the highest current peak of the system (135 + 2.15 nA). However, at
concentrations higher than 500 nM, there is a decrease in the electrochemical
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statistically different from that obtained at 750 nM (p = 0.000178). However, the decrease in the current
peaks at higher concentrations of DNA probes after 500 nM could be due to the steric hindrance between
the nitrogenous bases and the transducer. This prevents the electrons produced by the oxidation process
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Furthermore, as is seen in Table 1, the present sensor has a lower detection limit
(3.09 nM) compared to other electrochemical DNA biosensors.

Table 1. Comparison of the analytical performance of different electrochemical
DNA biosensors.

Electrochemical  Linear Range of Detection

Nucleic Acid Biosensor Electrode Method Hybridization Limit

Reference

Single-walled carbon
nanotubes-polymer modified
graphite electrodes for DNA

hybridization

PGE? DPV ¢ 50-200p1g/mL 5.14 M [61]

Hybridization biosensor for

b —
detection of hepatitis B virus GCE brv 0.36-1.32 uM 19.4nM [62]

Brilliant cresyl blue as
electroactive indicator in
electrochemical DNA
oligonucleotide sensors

CPE© DPV 10 nM=5pM 9nM [63]

Label-free DNA detection based

. PGE Lsv ¢ 10 nM-1uM 6.9 nM [64]
on zero current potentiometry

DNA biosensor detection of
DENV-3 sequences onto PGE DPV 10-100 nM 3.09 nM This work
PGE surfaces

2 Pencil graphite electrode; P Glassy carbon electrode; ¢ Carbon paste electrode; 4
Differential pulse voltammetry; ¢ Linear sweep voltammetry.

3.4. Selectivity Study

In a way to evaluate the selectivity of the DENV-3 biosensor, hybridization tests
were performed with a non-complementary sequence. DPV voltammograms for
bare PGE, probe-modified PGE before and after hybridization with DENV-3 target
and non-complementary sequence are displayed in Figure 5. It was verified that no
electrochemical signal was recorded with bare PGE, which is in agreement with the
absence of DNA on the electrode surface. Probe-modified PGE presented the highest
current peak of the system, whereas the probe-modified PGE after hybridization with
target sequence showed a decrease in the current signal, as discussed previously.

As shown in Figure 5, a significant difference in the voltammetric signal
was observed after hybridization of DENV-3 probe with the non-complementary
sequence (600 nA) when compared with the complementary DNA (135 nA); however,
the signal was slightly lower compared to the probe-modified electrode (777 nA).
This may be attributed to some unspecific hybridization of non-complementary
sequences with the probe. Nevertheless, the target sequence is clearly able to form a
steady dsDNA on the electrode surface. Moreover, a decrease in the current peak was
also noticed when the probe-modified PGE was added to the mixed DNA solution
(~230 nA) when compared with the probe-modified electrode. Therefore, these
results can confirm the ability of the PGE-modified biosensor to detect selectively
dengue virus serotype 3 [34,61,62].
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Figure 6. Current peaks related to guanine oxidation of the probe-modified-PGE after
(a) and before hybridization with DENV-3 (b); in the presence of non-complementary
sequences (c¢) and in a solution mixed with DENV-3 and non-complementary sequences (d),
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4. Conclusions

A sensitive DNA biosensor based on electrochemistry for the detection of
dengue virus serotype 3 was proposed in the present study. A pencil graphite
electrode, modified with a probe designed specifically for DENV-3, was able to
identify selectively target sequences of the virus, with a low detection limit of 3.09 nM.
Moreover, the probe-modified PGE allowed to detect specifically complementary
sequences of the target DNA spiked with human serum.

The sensitivity of this assay can be further improved by testing other
electrode materials, such as gold, platinum and grapheme electrodes. In addition,
screen-printed electrodes could be also used for the implementation of a portable
system. Therefore, the application of biosensors for the diagnosis of dengue virus at
the molecular level may contribute to the future development and advancement of
effective and rapid detection methods.
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An Apta-Biosensor for Colon
Cancer Diagnostics

Mojgan Ahmadzadeh Raji, Ghasem Amoabediny, Parviz Tajik,
Morteza Hosseini and Ebrahim Ghafar-Zadeh

Abstract: This paper reports the design and implementation of an aptasensor
using a modified KCHA10a aptamer. This aptasensor consists of a functionalized
electrodes using various materials including 11-mercaptoandecanoic acid (11-MUA)
and modified KCHA10a aptamer. The HCT 116, HT 29 and HEp-2 cell lines are
used in this study to demonstrate the functionality of aptasensor for colon cancer
detection purposes. Flow cytometry, fluorescence microscopy and electrochemical
cyclic voltammetry are used to verify the binding between the target cells and
aptamer. The limit of detection (LOD) of this aptasensor is equal to seven cancer
cells. Based on the experimental results, the proposed sensor can be employed for
point-of-care cancer disease diagnostics.

Reprinted from Sensors. Cite as: Raji, M.A.; Amoabediny, G.; Tajik, P.; Hosseini, M.;
Ghafar-Zadeh, E. An Apta-Biosensor for Colon Cancer Diagnostics. Sensors 2015, 15,
22291-22303.

1. Introduction

Colorectal cancer is the second and third most common cause of cancer deaths
in Canada and Iran, respectively [1,2]. Rapid diagnosis of this disease increases
the chance of survival and decreases the medical management cost. Aptasensors
have attracted attention for potential point-of-care diagnostic applications of a
variety of deadly diseases such as prostate and colorectal cancers [3-5]. In these
sensors, aptamers immobilized on the surface of electrodes play a key role as a
recognition element for the detection of biomarkers associated with the various
diseases. The interactions between aptamers and target cells/molecules are measured
using various techniques, including optical and electrochemical ones [6-8]. The focus
of this paper is on the design and implementation of an electrochemical aptasensor
for colon cancer detection, as shown in Figure 1.
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nanoparticles [20,21] using various methods is an important step to develop a

biosensor. A low complexity method for this purpose relies on the simple physical

adsorption of DNA aptamers on the gold electrodes [22]. This method does not

offer stable binding due to the relatively weak and unreliable van der Waals forces

between the surfaces of electrodes and aptamers. On other hand, covalent chemical

bonding techniques can be employed to develop stable and strong linkers. As

described in the next section, self-assembled monolayers of substances such as
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2.2. Recognition Element

A chemical procedure is performed to create a recognition element consisting of
linkers connected to aptamers. In this paper, the following four-step procedure was
employed to create the linker:

e  Creation of thiol group by coating 11-MUA on electrode.

e Activation of COOH group in 11-MUA with
ethyl(dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS).

e Binding with the NH, at the 3’ end of the aptamer.

e  Coating with bovine serum albumin (BSA) to prevent non-specific binding.
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3. Materials and Methods

3.1. Apta-Sensor Development

Gold electrode (Type: Au El., Code: 303013, Model: IRI.200-E, Azar Electrode
Inc. (Orumieh, Iran) was cleaned prior to create the recognition element through
four steps. In the first step, in order to coat thiol groups on the electrode surface, the
electrode was soaked in ethanol/H,O solution 3:1 (v/v) containing 20 mM 11-MUA
(95%, Sigma Aldrich, London, UK) for 18 h. Then the electrode was washed with
ethanol and H,O, and dried with nitrogen gas. In the second step of this process,
N-hydroxysuccinimide (NHS) and N-ethyl-N-(3-diethylaminopropyl)carbodiimide
(EDCQ), also provided by Sigma-Aldrich, were used. EDC was used as a cross-linker
to form an amide bond (Figure 4) and NHS was used to activate the carboxyl group
associated with EDC. For this, the gold electrode was immersed in phosphate buffer
saline (PBS) from Gibco® (London, UK) for 1 h. This buffer, with an adjusted pH
at 7.4, contained 2 mM EDC and 5 mM NHS. Thereafter the electrode was soaked
in Tris-HCI buffer for 2 h. This buffer with an adjusted pH at 7.6 and adjusted
ionic strength I at 0.14 contained 0.4 uM aptamer. In the last step, in order to avoid
non-specific binding, electrodes were dipped in distilled water containing 1% BSA
for half an hour. They were also soaked in Tris-HCI buffer [20,26] for 10 min to
remove the unbonded BSA.

3.2. Cell Culture

In this project, three different cells were employed to verify the functionality of
the apta-sensor. The device was tested using two cells associated with human colon
cancer namely epithelial cancer cell lines (Pasteur Institute of Iran, Tehran, Iran);
HCT116 (NCBI code: C570) and epithelial-like cancer cell line HT 29 (NCBI code:
C466). Epithelial cell HEp-2 was also used as a control cell line. Also, McCoy’s 5A
modified medium (Pasteur Institute of Iran, Catalogue number: 30-2007 from Gibco)
was used to culture the colon cancer cells. This medium contained L-glutamine,
penicillin, streptomycin, amphotericin B at concentrations of 300 mg/L, 100 ug/mL,
100 IU/mL, and 2.5 nug/mL, respectively. Also it contained fetal bovine serum,
epidermal growth and adhesion factors (Nano Zist Arrayeh Inc., Tehran, Iran) along
with antitrypsin activity factor to promote cell proliferation and cell attachment in
the adherent flasks provided from JET BIOFII. For the control cells, RPMI (Bioeideh
Inc., Tehran, Iran) was used as cell culture medium. To culture all types of cells,
the incubation was performed in a SANYO device (model MCO-17Al, LabX, Tokyo,
Japan) at 37 °C and carbon dioxide concentration was set to 5%. When control HEp-2
cells are confluent (25 cm? flasks, JET BIOFIL, Guangzhou, China) the passage of
cells was performed by discarding the culture medium and trypsinizing the cells
using Ethylenediaminetetraacetic acid (EDTA) solution containing 0.25% w /v trypsin
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plus 0.53 mM EDTA [27]. However, for other cell lines, a non-enzymatic solution
or cell scraper should be used instead of trypsin when the aptamer is attached to
cells, because CEA is expressed on the cell surface and trypsin damages the cells.
Detached cells were washed with washing buffer, centrifuged at 1200 RPM for 5 min,
re-suspended in binding buffer and kept in room temperature for 20 min. An inverted
microscope (IX70, Olympus, Tokyo, Japan) was used for the assessment and control
of cell culture.

Two binding and washing buffers were also used to enable the conjugation of
aptamers to cells with high affinity and sensitivity. Washing buffer containing 5 mM
MgCl, and 4.5 g/L glucose were used for rinsing the cells after exposing the cells on
the aptasensor. The binding buffer contained 1 mg/mL BSA in washing buffer [28].

3.3. Flow Cytometry & Fluorescent Microscopy

A flow cytometer (Partec, Nuremberg, Germany) and fluorescence microscope
(BX50, Olympus) were employed for the assessment of binding between the aptamer
and cells. For this purpose, FITC was applied as a fluorescein molecule functionalized
with an isothiocyanate reactive group (-N=C=S), with excitation and emission
spectrum peak wavelengths ranging from 495 to 519 nm. This spectrum range
was detectable in the FL1 channel of the flow cytometer after gating and determining
the desired range of negative control cells. Furthermore, as the positive and negative
control of these experiments, aptamers with 400 nanomolar and zero concentrations
were used, respectively.

3.4. Electrochemical Experiments

All electrochemical measurements were performed at 25 °C temperature in
PBS buffer containing K3[Fe(CN)g] with 1 mM concentration [20]. PBS adjusted
at a pH equal to 7.4 was used as an electrolyte in this measurement procedure.
Cyclic voltammetry (CV) was used as an electrochemical technique to detect the
materials coated on the gold electrode layer by layer. These materials include
11-MUA, EDC/NHS and aptamer.

4. Results

4.1. Fluorescence Microscopy

The binding of colon cancer cells to the aptamer were studied by fluorescence
microscopy using the HCT 116 and HEp-2 cell lines. Figure 5a—d shows the
microscopic images of these cells prior (Figure 5a,c) and after UV light exposure
(Figure 5b,d). Based on these results, the binding between the aptamer and HCT
116 cells was confirmed (Figure 5b), while no binding between the HEp-2 cells and
aptamer were indicated (Figure 5d). These experiments were repeated for three times.
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(Figure 5a,c) and after UV light exposure (Figure 5b,d). Based on these results, the binding between the
aptamer and HCT 116 cells was confirmed (Figure 5b), while no binding between the HEp-2 cells and
aptamer were indicated (Figure 5d). These experiments were repeated for three times.
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4.2. Flow Cytometry

Flow cytometry is the best technique to verify the binding between the target
cells and aptamer. In this experiment, the binding between HCT 116 and HT 29 cells
and aptamers was studied. As already mentioned, HEp-2 cells are used as negative
control. Figure 6a—f shows the side scatter cytometry (SSC) or granularity of different
types of cells in the presence and absence of aptamers as a function of the cell numbers
measured by the first channel of flow cytometer (FL1). For instance, Figure 6a,b
indicates that there was no difference between the surface’s complexity of HEp-2 cells,
before and after binding with aptamers. The significant difference between the two
graphs (Figure 6c,d) reveals the interaction between the HCT 116 and aptamers. Less
interaction between the HT 29 cells and aptamer is expected, as seen in Figure 6e,f.
Flow cytometry histograms confirmed 60.19% and 29.62% aptamer connection to
HCT 116 and HT 29 respectively. The percentage of attached cells analysed with
the Flomax software is also shown in Table 1. Based on these results, the R1 region
indicates the interaction with cells before and after introducing aptamers.
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4.3. Electrochemical Experiments

4.3.1. Functionalization of Electrodes

Electrochemical techniques such as cyclic voltammetry offer a great tool to
study the self-assembled monolayer of different materials involved in creating
linker. In Figure 7, the voltammograms of bare Au electrode, the electrode
coated with 11 MUA /EDC/NHS, and the functionalized electrode in the presence
of aptamer after BSA treatment, as shown with various colors—green, red and
purple—respectively. In these experiments, Ag/AgCl is used as reference electrode.
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5. Discussion

5.1. Self-Assembly of Monolayers on Electrodes

These experiments performed on the electrodes coated with 11MUA /EDC/NHS
and 11IMUA /EDC/NHS/APT/BSA. In other words, as the negative charge density
on the surface of electrode was increased, the current of Fe (CN)y>~ was decreased
accordingly. Therefore, the results shown in Figure 6 demonstrate assembly of
monolayers on the surface of Au electrodes.

5.2. Colon Cancer Cell Detection

As shown in Figure 8, the current peak in the presence of cancer and control
cells is lower and higher than 1 pA, respectively. This current change may be caused
by the higher affinity of cancer cells to conjugate with aptamer, while there is no
affinity between the control cells and aptamer. As shown in Figure 8, with the
higher concentration of target cells, the higher conjunction between the cells and
functionalized electrodes occurs. Consequently, the peak current in each step is
decreased. Let us assume the surface of the bare electrode is Ag. It is expected that
reduction and oxidation of Fe(CN)4 ions occurs during the CV experiment. When
11-MUA is deposited on the electrode, the surface is equal to A;. The surface is
changed to A; after covalent binding of aptamer and linker. Depending on the
concentration of cells, the adherent of cells to the surface of electrode changes the
surface to Az. As the results of the change of surface area (Ag > A > Ay > A3), the
current peak at analyte oxidation (Ipa) and reduction (Ipc) changes as well. In the
other words, Ipas < Ipay <Ipa; < Ipag and Ipcy < Ipc; < Ipco< Ipcs. The decrease
in current oxidation peak (Ipa) and reduction (Ipc), exhibited lower oxidation and
reduction of ions because of the changing charge density on the surface of each
electrode. The CV results associated with colon cancer models and control cells
with different concentrations can be extracted from Figure 8 and shown in Figure 9.
This figure shows the difference between the voltammograms of the electrochemical
sensor in the presence of HEp2, HT29 and HCT 116 cells.

5.3. Sensitivity of the Aptasensor

The current peaks as a function of voltage for different cell types and cell
concentrations are depicted in Figure 10. Based on the results, the saturation
threshold of this sensor is 100 cells. When the number of cells exceeds this amount,
the sensor loses its sensitivity. Based on the exploration shown in Figure 10, the
sensor demonstrates a linear relation between the output current in the range of
1 to 100 cells. Theoretically, at the level of a single cell, the output current of the
sensor results in a 0.03 pA change. Also, based on this discussion, the noise level can
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6. Conclusions

This paper reports the design and implementation of an apta-sensor for
colon cancer detection. We have demonstrated and discussed the functionality
and applicability of the synthesized KCHA10a aptamer using flow cytometry,
fluorescence microscopy and electrochemical experiments. The HCT 116, HT 29 and
HEp-2 cell lines were used as colon cancer model and control cells, respectively. The
surface of an Au electrode was coated—with SH groups using 11-MUA, EDC/NHS
and aptamer. Furthermore, we put forward an apta-sensor demonstrating a linear
relation between the numbers of cells (<100) with seven cell resolution. Based on the
experimental results and discussions in this paper, the proposed apta-sensor offers
high sensitivity and can be a good candidate for colon cancer diagnostics.
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