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Editorial 
This Special Issue is dedicated to publishing articles that describe the novel 

sensors or high-throughput screening technologies that are involved in detecting 
multiple pathogens, spoilage microorganisms, microbial communities, indicator 
microorganisms, microbial or non-microbial toxins, and non-microbial parameters 
(water activity, pH, metabolic by-products) relevant to improving the safety, 
quality, and security of foods. 

The progressive thinking of the editorial team of “Sensors” to publish 
specialized articles highlighting the recent developments in the field of food safety 
and food quality is commendable! In this Special Issue of “Sensors for Food Safety 
and Quality”, a total of twelve high quality articles were published, five of which 
are “review” articles, and seven are “research” articles. All articles were peer-
reviewed to accept only the highest quality papers. Articles were of broad interest 
addressing both food safety and food quality issues. In the area of food safety, 
detection and high throughput screening platforms for pathogens and toxins, 
heavy metals, pesticides, allergens, etc. were reported. For food quality 
assessment, the articles focused primarily on analyzing sensory attributes, 
freshness, ripeness, taste, flavors, water loss, and food adulteration. A variety of 
sensing platforms were also introduced such as nanoparticle-based sensors, 
fluorescence-based sensors, dielectric sensing, infrared spectroscopy, 
hyperspectral imaging, light scattering sensors, microwave cavity sensors, 
electronic tongue, and electronic nose. Studies also emphasized wireless 
monitoring systems to obtain a real-time data. Specific information on each 
published article is summarized below: 

Review Articles: Bulbul et al. provided a comprehensive review on the portable 
nanoparticle (NP)-based sensors for food safety assessment that has been 
developed over the past decade. The authors discussed several approaches that 
include the use of nanoparticles and nanostructures to enhance sensitivity and 
selectivity, design new detection schemes, improve sample preparation and 
increase portability. They used selected examples of NP-based detection schemes 
with colorimetric and electrochemical detection for chemical and biological 
contaminants including pesticides, heavy metals, bacterial pathogens and natural 
toxins.  

Nishi et al. presented an in-depth review on fluorescence-based bioassays for 
detection and evaluation of varieties of food components that may cause allergy, 
food poisoning and toxicity, and foodborne infection. They summarized a list of 
fluorescent dyes that are used in different bioanalytical platforms including 
antibody/protein microarrays, bead suspension arrays, capillary sensor arrays, 
DNA microarrays, polymerase chain reaction (PCR)-based arrays, glycan/lectin 
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arrays, immunoassays, enzyme-linked immunosorbent assay (ELISA)-based 
arrays, microfluidic chips and tissue arrays.    

Three additional review articles in this special edition, focused on the 
development of sensing technologies for assessment of fruits and vegetable 
quality. In one study, El Khaled et al. reviewed the application of dielectric 
spectroscopy to assess fruit and vegetable quality. Dielectric properties of fresh 
fruits or vegetables differ from that of the damaged or spoiled produce.  Rapid 
assessment of dielectric properties using sensing platforms would be an asset for 
evaluating horticulture crops. In the review article by Wang et al., the authors 
summarized application of visible and near infrared (Vis/NIR) spectroscopy, 
multispectral imaging and hyperspectral imaging techniques for food quality 
attributes' measurement. In addition, they also reported the discrimination ability 
of these techniques for various fruit species, i.e., apple, orange, kiwifruit, peach, 
grape, strawberry, grape, banana, mango and others. Baietto and Wilson 
summarized the application of an electronic-nose (e-nose) for fruit identification, 
ripeness and quality grading. Fruits produce a wide range of volatile organic 
compounds that provide characteristically distinct aromas and contribute to 
unique flavor characteristics, which dictate consumer acceptance. These authors 
emphasized potential application of the e-nose in discriminating complex 
mixtures of fruit volatiles to replace more conventional expensive analytical 
methods and as a specialized gas-sensing instrument for fruit identification, 
cultivar discrimination, ripeness assessment and fruit grading for assuring fruit 
quality in commercial markets. 

Research Articles: Among the seven research articles, five articles reported 
sensor development and application in improving food quality while two articles 
addressed foodborne pathogen and toxin detection. Wang et al. reported the 
development of an electronic tongue (e-tongue) to assess peanut meal taste after 
enzymatic hydrolysis. Peanut meal is primarily composed of proteins, which have 
complex tastes after enzymatic hydrolysis. Conventional sensory analysis is used 
to assess taste, which is labor intensive and expensive. Here, the authors show the 
feasibility of using an e-tongue for such tests and show strong correlation with the 
sensory analysis.  

Yatabe et al. took a different approach in analyzing taste, primarily bitterness. 
They developed a taste sensor consisting of a lipid/polymer membrane where the 
change in the surface structure of the membrane was evaluated by measuring the 
contact angle and surface zeta potential, using Fourier transform infrared 
spectroscopy (FTIR), X-ray photon spectroscopy (XPS) and gas cluster ion beam 
time-of-flight secondary ion mass spectrometry.   

Santonico et al. designed a multi-sensor platform to detect adulteration in olive 
oil. Olive oil is prone to adulteration and fraud since authentic extra-virgin olive 
oil can fetch premier price. In this study, the authors used a novel artificial 
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sensorial system, based on gas and liquid analysis coupled with an innovative 
electronic interface to validate authenticity/adulteration in olive oil.  

Zhang et al. reported a wireless system to monitor ullage and temperature in 
wine barrels. This low cost sensor can be imbedded within the bung of the barrel 
and can provide early warning to the wine maker to take corrective actions.   

Mason et al. employed a microwave spectroscopy to measure the drip loss in 
pork loin. Water loss during cutting, hanging, handling and processing of meat is 
critical in determining both product quality and value. Even a 1% water loss may 
cost a large meat company as much as €50,000/day. Current methods takes 1–3 
days, while a novel microwave cavity sensor can estimate drip loss within 
minutes. 

Two research articles on foodborne pathogen and toxin detection were 
published in this issue. Kim et al. developed a novel PCR assay coupled with a 
laser light scattering sensor to detect Listeria species in food. While Gehring et al. 
developed an antibody-based microarray method for detection of E. coli O157:H7 
and Shiga-toxin on a microtiter plate in an array format enabling multiple sample 
testing at a time for the presence of pathogens or other toxins very quickly. 

Finally, it is with great anticipation that I offer this collection of articles, 
addressing specific niche areas in food safety and food quality, as a great resource 
to our readers in advancing the field of sensors.  

Professor Arun K. Bhunia 
Guest Editor 

March 2, 2016 
  

 

 





Electronic-Nose Applications for Fruit
Identification, Ripeness and
Quality Grading
Manuela Baietto and Alphus D. Wilson

Abstract: Fruits produce a wide range of volatile organic compounds that impart
their characteristically distinct aromas and contribute to unique flavor characteristics.
Fruit aroma and flavor characteristics are of key importance in determining consumer
acceptance in commercial fruit markets based on individual preference. Fruit
producers, suppliers and retailers traditionally utilize and rely on human testers or
panels to evaluate fruit quality and aroma characters for assessing fruit salability in
fresh markets. We explore the current and potential utilization of electronic-nose
devices (with specialized sensor arrays), instruments that are very effective in
discriminating complex mixtures of fruit volatiles, as new effective tools for more
efficient fruit aroma analyses to replace conventional expensive methods used in
fruit aroma assessments. We review the chemical nature of fruit volatiles during all
stages of the agro-fruit production process, describe some of the more important
applications that electronic nose (e-nose) technologies have provided for fruit aroma
characterizations, and summarize recent research providing e-nose data on the
effectiveness of these specialized gas-sensing instruments for fruit identifications,
cultivar discriminations, ripeness assessments and fruit grading for assuring fruit
quality in commercial markets.

Reprinted from Sensors. Cite as: Baietto, M.; Wilson, A.D. Electronic-Nose
Applications for Fruit Identification, Ripeness and Quality Grading. Sensors 2015, 15,
899–931.

1. Introduction

Fruit quality is judged by consumers primarily from their perception of the
acceptability of fruits based on characteristics including visual appeal (lack of
blemishes, color, size, and texture), ripeness, aroma and flavor. The quality of
fruits (as measured by aroma, flavor, color, and textural characteristics) constantly
changes during fruit development from pre-harvest through post-harvest stages as
fruits grow and ripen, and during maintenance in storage [1]. Personal consumer
preferences for different types of fruits are reflected in their particular choices of
fruit varieties or cultivars selected for purchase. Fruit varieties vary widely in
aroma characteristics due to differences in the composition of aromatic volatiles
present in fruit aromas which are ultimately determined by plant genetics [2,3].
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Previously, professional human graders and panelists have been used to judge fruit
quality based on visual and aroma characteristics for selecting and evaluating fruits
for ripeness at harvest and salability in commercial fruit markets [4]. The advent
of electronic-nose (e-nose) devices has offered new alternative tools for grading
fruits and other perishable foods using more consistent qualitative and quantitative
measures of aroma characteristics that avoid the highly variable subjective opinions
of human graders [5,6]. These instruments provide new means for characterizing
fruit aromas for numerous applications ranging from the development of new fruit
varieties by geneticists or fruit breeders to the timing of fruit harvests, transportation,
storage operations (handling), and final selection by commercial dealers and retailers
in fresh produce markets.

Fruit aroma is often the most valued characteristic determining fruit quality
and consumer choice because aroma is usually the best indicator of fruit flavor.
Electronic-noses are ideal digital, electronic devices for identifying, characterizing
and grading fruit aromas from different fruits and fruit varieties because these
instruments are capable of rapidly and consistently evaluating complex volatile
gaseous mixtures without having to identify all of the chemical constituents present
in the bouquet of fruit aromas [5,7]. E-noses contain a sensor array that evaluates all
of the chemical constituents present in an aroma mixture (as a whole sample) and
coverts the electronic output signals (via a transducer) from all of the sensors in the
array and collectively assembles them to form a distinct digital pattern, sometimes
referred to as an Electronic Aroma Signature Pattern (EASP) that is highly unique and
specific to the particular gas mixture being analyzed [8,9]. In this way, the instrument
output generates an aroma signature or smell-print that can be used to identify the
particular type and variety of fruit being analyzed.

Fruits produce and release a wide variety of Volatile Organic Compounds
(VOCs) that make up their characteristic aromas with esters, terpenoids, lactones
and derivatives of amino acids, fatty-acids and phenolic compounds being the
dominant classes of organic volatiles represented in fruit aromas [3]. Even though
different fruits share some aromatic characteristics, each fruit has a distinctive
aroma that depends upon the specific combination of VOCs present in the aroma
mixture [10]. Whereas some specific volatiles are common to different fruit types,
other fruit volatiles are specific to only one or only a few related fruits. Production
and emission of volatiles from fruits is markedly influenced by numerous factors
that interact in complex ways to determine fruit volatile composition. Multiple
biochemical pathways are responsible for determining the final composition of
volatile compounds released from different fruit types.

The purpose of this review is to summarize some of main chemical
characteristics of fruit volatile gaseous mixtures which are conducive to
characterization and analysis by electronic-nose technologies, to describe the diverse
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potential applications of e-nose technologies in the agro-fruit production sector of
the agricultural production industry, and to provide examples of research that have
demonstrated many ways in which e-nose devices have been utilized to distinguish
between the fruit volatiles of different plant species and varieties for the purpose of
analyzing and grading fruit quality and aroma characteristics.

2. Chemical Characteristics of Fruit Volatiles

Fruit aromas consist of a complex mixture of VOCs whose composition is
specific to plant species and fruit variety [2,3]. Although different fruits often share
many aromatic characteristics, each fruit has a distinctive aroma that depends upon
the combination of volatiles, the concentration and the perception threshold of
individual volatile compounds [10]. The most important aroma compounds include
amino acid-derived compounds, lipid-derived compounds, phenolic derivatives,
and mono- and sesquiterpenes [3]. Although fruit aromas are generally complex
mixtures of a wide range of compounds, volatile esters often represent the major
components of aroma volatiles present in rosaceous fruits such as apple (Malaus
domestica Borkh.) and peach (Prunus persica L.) [11,12].

Fruit volatiles are mainly composed of VOCs in relatively few chemical
classes, including primarily aliphatic esters, alcohols, aldehydes, ketones, lactones,
terpenoids (monoterpenes, sesquitepenes) and apocarotenoids [13]. However, there
are many thousands of volatile compounds represented by these chemical classes
that make up the complex aroma mixtures of the numerous fruit types cultivated
for agronomic markets of the world. Some of the predominant VOC principal
components, comprising the distinctive aroma mixtures of selective fruit types which
are representatives of the most common chemical classes found in fruit volatiles, are
presented in Table 1. Volatile compounds in the aliphatic ester chemical class are the
most abundant types of organic compounds found in many fruit volatiles; and esters
are most responsible for the sweet smell of flowers and fruits of most angiosperms or
seed plants [14]. In aromatic melon varieties for example, volatile esters predominate
in fruit aromas that also contain aldehydes, short-chain alcohols, sesquiterpenes,
norisoprenes, and aromatic sulfur-containing compounds [15]. Non-aromatic fruit
varieties often have much lower levels of total volatiles and lack volatile esters [16].
Esters are a particularly important component of strawberry fruit aroma, accounting
for 90% of the total number of volatiles in ripe strawberry fruit [17]. Esters also are
the key volatiles responsible for the flavor characteristics of citrus [18].

Fruit volatiles, in addition to chemical class categorizations, may be classified
as primary compounds (present in intact fruit tissue) or secondary compounds
(produced as a result of tissue disruption of fruit tissue) [13]. Consequently, the
condition of the fruit tissue being analyzed, either intact or disrupted, will influence
the characteristics (chemical composition) and output patterns of the resulting aroma
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profiles. Some aroma compounds may be released only from cell disruption due to
physical damage or injury to the fruit. Other fruit volatiles are more bound internally
in the fruit, perhaps due to lower volatility or lack of direct exposure to the air as a
result of fruit tissue compartmentalization.

Table 1. Chemical classes of VOCs that are principal components of distinctive
fruit aromas.

Fruit Type Chemical Class Example Compounds Chemical Structure Reference

Apple Aliphatic esters ethyl butanoate
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Numerous factors affect fruit volatile chemical composition during all phases
of the agronomic production process, including plant genetics, harvest time, fruit
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maturity, and agronomic environmental conditions, as well as postharvest handling,
transportation and storage. Plant genetics, plant hormones, and environmental
factors strongly influence the biosynthesis pathways responsible for the release of
volatile aroma compounds from fruits under various conditions over time. The
availability of primary precursor substrates for biosynthetic pathways producing
aroma compounds is highly regulated both in amount and composition during fruit
development [34]. All of these factors have varying effects on the aroma volatiles
released at different stages of fruit development and after fruit harvest when the
detached fruit is no longer influenced by the biochemical processes of the plant.

Fatty acids are the major primary precursor substrates of many aroma volatiles
in most fruit types [2]. Aliphatic alcohols, aldehydes, ketones, organic acids,
esters and lactones, ranging from C1 to C20, are all derived from fatty acid
precursors through three key biosynthetic processes: α-oxidation, β-oxidation and
the lipoxygenase pathway [35]. Volatiles derived from fatty acid precursors are
important character-impact aroma compounds responsible for fresh fruit flavors at
high concentrations.

The terpenoids comprise the largest class of plant secondary metabolites (about
20,000 identified), derived from the universal C5 precursor isopentenyl diphosphate
(IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP) from two
independent pathways, the mevalonic acid (MVA) and methylerythritol phosphate
(MEP) biochemical pathways, with many volatile products represented [36,37].
Terpenes are classified into monoterpenes, diterpenes and sesquiterpenes, depending
on the number of repeating units of a 5-carbon molecule (isoprene), the structural
unit of all terpenoids, present in the molecule. Hemiterpenes (C5), monoterpenes
(C10), sesquiterpenes (C15), homoterpenes (C11 and C16), and some diterpenes (C20)
are quite volatile VOCs because they have a high vapor pressure, allowing their
rapid release into the atmosphere [13].

The complex gaseous mixtures of VOCs released from various fruit types
(plant species), detectable by e-nose instruments, depend on the extent to which
different metabolic pathways predominate in the generation of fruit volatiles as
determined by genetic and environmental factors. Certain types of VOCs are more
frequently associated with specific fruits as a result of unique combinations of
metabolic pathways that control primary and secondary metabolite production
in fruit tissues. The major chemical classes and representative VOCs found in fruit
volatile mixtures, most associated as principal components derived from specific fruit
types, are presented in Table 2. These associations do not preclude the occurrence of
VOCs from many other chemical classes in volatile mixtures from each fruit type, but
occur in different relative proportions (molar ratios) as lesser components in VOC
mixtures derived from various fruit types.
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Table 2. Principal volatile compounds comprising the distinctive aromas of
different fruit cultivars.

Fruit Type Cultivars/Varieties Principal Volatile Compounds in Aroma † References

Apple

Cox orange Acetaldehyde, ethyl butanoate, ethyl methyl
propanoate, 2-methyl butanol [18]

Elstar Ethyl butanoate, ethyl 2-methyl butanoate [18]

Fuji Ethyl 2-methyl butanoate, 2-methyl butyl
acetate, hexyl acetate [18]

Pink Lady
Butyl acetate, hexyl acetate, 2-methylbutyl
acetate, hexyl butanoate, hexyl 2-methyl
butanoate, hexyl hexanoate

[20]

Banana Cavendish (E)-2-hexenal, acetoin [38]

Frayssinette 2, 3-Butanediol, solerol [39]

Plantain (E)-2-hexenal, hexanal [23,38,40]

Blackberry Black Diamond Furaneol, 2-heptanol, β-ionone, linalool [41,42]

Marion Furaneol, hexanal, β-ionone, linalool [41,42]

Blueberries Primadonna, Jewel Many aliphatic esters, C6-aldehydes [43]

Snowchaser, FL02-40 Primarily terpenoids, less aliphatic esters [43]

Grape Cabernet Sauvignon Benzene derivatives, monoterpenes, and
sesquiterpenes, (also primarily alcohols) [44–46]

Muscat Citral, citronellol, diendiol I, diendiol II,
geraniol, linalool, rose oxide, nerol [44–46]

Riesling Geraniol, α-muurolene, (also primarily esters
and aldehydes) [44–46]

Mango (Columbian) Haden Irwin, Manila δ-3-Carene [47]

Hilacha, Vallenato α-Pinene [47]

Van Dyke α-Phellandrene [47]

Yulima Terpinolene [47]

Pineapple Cayenne

Ethyl 2-methylbutanoate, ethyl hexanoate, 2,
5-dimethyl-4-hydroxy-3(2H)-furanone
(DMHF), decanal, ethyl 3-(methylthio)
propionate, ethyl butanoate,
(E)-3-ethyl hexenoate

[48]

Tainong No. 4
Furaneol, 3-(methylthio) propanoic acid
methyl ester, 3-(methylthio) propanoic acid
ethyl ester, δ-octalactone

[49]

Tainong No. 6

Ethyl-2-methylbutyrate,
methyl-2-methylbutyrate, 3-(methylthio)
propanoic acid ethyl ester, ethyl
hexanoate, decanal

[50]

† Principal chemicals (VOCs) found in complex fruit volatile mixtures are listed in
alphabetical order, not in order of relative abundance by quantity within mixtures
analyzed from individual fruit cultivars or varieties.

The total number of aromatic compounds that contribute to fruit aromas vary
considerably in different fruit types, but the complex mixture of VOCs found in
individual fruit aromas usually is an extensive list of volatiles from different classes
of organic compounds. Fruit aromas from fresh apples (Malus domestica Borkr) have
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been reported to contain at least 300 volatile compounds [51]. The total number and
concentration of VOCs emitted by ripening apples are cultivar specific [52].

The epidermal tissue (peel) of apples produces a greater quantity of volatile
compounds than internal fleshy (pericarp) tissues [53]. This higher capacity for aroma
production by peel tissue is due to either the abundance of fatty acid substrates or
higher metabolic activity in the peel [54,55]. Peach (Prunus persica (L.) Batsch) fruit
aromas consist of about 100 volatile compounds, among them, C6 aldehydes and
alcohols provide the green-note aroma, while lactones and esters are responsible
for fruity aromas [56–58]. Esters, including hexyl acetate and (Z)-3-hexenyl acetate,
are key odorants influencing the flavor characteristics of peach fruit [59]. Changes
in these volatiles occur during fruit development and postharvest ripening [60].
Aldehydes tend to decline, while esters increase in the fruit during development.
Postharvest treatments, low temperature and controlled atmosphere, can influence
changes in peach aroma quality [12,61]. More than 300 VOCs have been identified in
pear fruit (Pyrus pyrifolia Nak.) [62]. Methyl and hexyl esters of decadienoate are the
main character-imparting compounds of European pear [62,63].

Apricot (Prunus armeniaca L.) fruit aromas have more than 200 different volatile
compounds [64]. The most abundant volatile compounds by concentration were
aldehydes, primarily hexanal and (E)-2-hexenal, that decreased in concentration
during ripening [21,22].

Banana (Musa spp.) fruit aroma has about 250 VOCs [40], although the
characteristic banana fruity top notes are from volatile esters, such as isoamyl acetate
and isobutyl acetate that tend to increase in concentration during ripening [23,40].
Volatile compounds in citrus fruits accumulate in oil glands of flavedo and in
the oil bodies of the juice sacs from which 100 VOCs have been identified, but
varietal differences in the volatile profiles are primarily quantitative and only a few
compounds are variety-specific [65–68].

Approximately 42 volatiles has been associated with the fruit aromas of southern
highbush blueberry (Vaccinium species) cultivars [43]. Certain varieties contain a
large amount of esters and C6 aldehydes, whereas others produce more terpenoids
and less esters.

Melon (Cucumis and Citrullus species) fruit aromas have more than 240 VOCs
identified in different varieties [69]. Melon fruits release numerous compounds,
particularly C9 aliphatic compounds that are the major determinants of fruit quality
as perceived by consumers. These compounds are strongly dependent on variety
and particular physiological characteristics of the fruit. For example, climacteric
melons (cantaloupes) have greater aroma intensity and shorter shelf life than less
climacteric melons (honeydew melons) [70]. Volatiles derived from amino acids
are major contributors to the aromas of both aromatic and non-aromatic melon
varieties [71,72].
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Grape (Vitis vinifera L.) fruit aromas contain many VOCs, including
monoterpenes, C13 norisoprenoids, alcohols, esters and carbonyl compounds [73].
Grape varieties may be divided into aromatic and nonaromatic categories.
Terpenoids are major volatiles in both red and white grapes [44]. At veraison, terpene
production (in both Riesling and Cabernet Sauvignon varieties) generally is low, but
Riesling grapes produced some terpenes (geraniol and α-muurolene) post-veraison.

Kiwi (Actinidia species) fruit aromas consist of more than 80 compounds with the
major volatile components being methyl and ethyl butanoate, (Z)- and (E)-2-hexenal,
hexanal, (Z)- and (E)-3-hexenol, and methyl benzoate [27]. Some important variations
in fruit aroma volatiles produced by different kiwifruit varieties have been found to
be due to the presence or absence of diverse sulfur-containing VOCs.

Mango (Mangifera indica L.) fruit aromas contain more than 270 VOCs in different
mango varieties [74]. Monoterpenes are the most important compounds contributing
to mango flavor [75]. Generally, terpenes are the major class of compounds in New
World and Colombian mangoes whereas alcohols, ketones, and esters are mainly
responsible for the characteristic aroma of Old World mangoes [76,77].

At least 280 VOCs have been found in pineapple (Ananas comosus L. Merr.) fruit
aromas [30]. Esters and hydrocarbons were found to be the major constituents of fruit
aromas, whereas octenoic acid, methyl ester, hexanoic acid, octanoic acid and ethyl
ester were minor aromatic components. The relative content of different volatiles in
pineapple aroma varied significantly during fruit development [49].

Raspberry (Rubus idaeus x ursinus) fruit aromas are composed of at least
200 volatile compounds that vary in concentrations for different cultivars. Many
alcohols, aldehydes and ketones (including raspberry ketone, α-ionone, β-ionone,
linalool, (Z)-3-hexenol, geraniol, nerol, α-terpineol, furaneol, hexanal, β-ocimene,
1-octanol, β-pinene, β-damascenone, ethyl 2-methylpropanoate, (E)-2-hexenal,
heptanal, and benzaldehyde have been identified in raspberry aroma [13]. Among
them, α-ionone, β-ionone, geraniol, nerol, linalool, and raspberry ketone probably
contribute most to red raspberry aroma [31].

The complex fruit aroma of strawberry (Fragaria x ananassa Duch.) contains
approximately 350 volatile compounds [3,78]. The furanone compound (furaneol),
2,5-dimethyl-4-hydroxy-3(2H)-furanone, and its methyl derivative (mesifurane) are
considered the dominating compounds that contribute the typical caramel-like, sweet,
floral and fruity aroma [17]. Aldehydes and alcohols (such as hexanal, trans-2-hexenal
and cis-3-hexen-1-ol) contribute the unripe notes to green strawberry aroma in which
the concentrations of these components are cultivar and ripeness dependent [17].

Notice from comparisons of key volatiles (principal components) that
distinguish between different fruit types that certain variations in fruit volatiles
from specific chemical classes often are most useful for fruit aroma discriminations.
For example, apple and pineapple varieties may be distinguished primarily by
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differences in aroma ester composition, i.e., variations in ester volatiles present
in fruit aromas, whereas grapes and mango varieties are discriminated mostly by
terpene volatiles that are detected in the aroma. By contrast, banana varieties are
distinguished mainly by aldehydes and aliphatic alcohol volatiles, but ketones,
furaneols, and alcohols are more important for distinguishing between blackberry
and raspberry varieties. Discriminations between blueberry varieties are determined
predominantly by the presence of esters, aldehydes, and terpenoids in the
fruit aromas.

Despite the fact that a very large number of VOCs have been detected in various
fresh fruit types, only a small fraction of these compounds have been identified
as contributing significantly to the impact components (top and middle notes) of
fruit aroma based on quantitative abundance and human olfactory thresholds [79].
The human olfactory threshold (for a particular aroma) is defined as the lowest
concentration of aromatic compounds present in an aroma in which human subjects
(usually 50 percent of a human panel) can smell the presence of the aroma [80].

Differences in the aroma characteristics of different fruit varieties are attributed
to variations in their chemical profiles, based on the types of VOCs present and
the relative concentrations of individual volatiles found in the aroma mixture. The
principal VOCs, found in the aromas of specific fruit cultivars, may be used to
distinguish between different fruit varieties. These differences in aroma composition
and relative abundance of fruit volatiles in different fruit varieties are the means
by which e-nose devices are capable of recognizing differences in fruit aromas
and discriminating between fruit cultivars based on their distinct aroma signature
patterns resulting from variations in e-nose response (sensor-array outputs) to
different fruit aromas. Thus, e-nose discriminations of fruit aroma are determined
both by the volatiles present and molar ratios of individual components found in
each aroma (gaseous mixture)s.

3. Electronic-Nose Applications for Fruit Aroma Characterizations

Initial interest in the use of electronic noses as a non-destructive method to
study the characteristics of fruits was shown by Benady et al. [81] who developed a
sensing machine with a single semiconductor gas sensor in 1995, located within a
small cup, placed on the surface of fruits of three different muskmelon cultivars. The
instrument could discriminate between ripe and unripe fruits with an accuracy of
90.2%, and sort fruits into three ripeness categories (unripe, half-ripe and fully ripe)
with an accuracy of 83%. The same research group worked on blueberries (the same
year) to determine the variability in e-nose response among blueberry cultivars and
to assess ripening stage and fruit quality (Simon et al.) [82].

Since these pioneering works, researchers have focused on developing and
testing non-destructive sensorial techniques for the evaluation of the many and

9



diverse characteristics and qualities of various fruits, particularly fruit maturity
stages, shelf life and genotypic effects on aroma or bouquet characteristics. A
comprehensive list of e-nose applications for characterizations and chemical
discrimination of fruit volatiles for many fruit types is given in Table 3.

Table 3. Applications of electronic-nose devices for fruit aroma characterizations.

Common Name Scientific Name Family E-Nose Type † Discrimination Type Reference

Apple Malus domestica Borkr Rosaceae FOX 4000 1 Post-harvest treatments [83]
Smart Nose 2 Shelf life [84]

Prototype MOS 3 Maturity stage at harvest [85]
Prototype MOS Shelf life [86]
Prototype MOS Shelf life [87]
Prototype MOS Shelf life [88]

Prototype QMBs 4 Shelf life [89]
Prototype MOS Prediction of storage time [90]

Cyranose 320 5 Aroma profile during deteriorative
shelf life [91]

Unspecified Cultivar effect [92]
Cyranose 320 Maturity stage at harvest [93]

FOX 4000 Cultivar effect [94]
Libra Nose 6 Maturity stage at harvest [95]
Libra Nose Shelf life [96]
Unspecified Quality assessment [97]

FOX 4000 Maturity stage at harvest [98]
Apricot Prunus armeniaca L. Rosaceae EOS835 7 Ripening stage after harvest [99]

PEN2 8 Cultivar effect [100]
FOX 4000 Cultivar effect [101]

Banana Musa x paradisiaca L. Musaceae Prototype MOS Ripening stage after harvest [102]
Bell pepper Capsicum annuum L. Solanaceae Unspecified Quality assessment [103]
Bergamot Citrus bergamia Risso and

Poiteau Rutaceae ISE Nose 2000 9 Cultivar effect; geographic effect;
adulteration [104]

Blackberry Rubus glaucus Benth Rosaceae PEN3 6 Maturity stage at harvest [105]
Unspecified Maturity stage at harvest [106]

Bilberry Vaccinium meridionale Swartz Ericaceae PEN3 Maturity stage at harvest [105]

Blueberry Vaccinium spp. Ericaceae Prototype MOS Ripening stage after harvest; quality
control [82]

Cucumber Cucumis sativus L. Cucurbitaceae FOX 4000 Genotypic effect [107]
Date Phoenix dactylifera L. Arecaceae FOX 4000 Cultivar effect [108]

Durian Durio spp. Malvaceae Unspecified Maturity stage at harvest [109]
Grape Vitis vinifera L. Vitaceae Cyranose 320 Maturity stage at harvest [110]

enQbe 10 Dehydration time [111]
enQbe Dehydration time [112]
enQbe Dehydration time [113]
enQbe Post-harvest treatments [114]

zNose 11
Canopy side effect [115]Cyranose 320

Hazelnut Corylus avellana L. Betulaceae E-Nose 4000 12 Cultivar effect [116]
Moses II 13 Cultivar effect [117]

Loquat Eriobotrya japonica (Thunb.)
Lindl. Rosaceae Unspecified Cultivar effect [118]

Mandarin Citrus reticulate Blanco Rutaceae PEN2 Maturity stage at harvest [119]
PEN2 Post-harvest treatments [120]
PEN2 Maturity stage at harvest [121]

Mango Mangifera indica L. Anacardiaceae Unspecified Maturity stage at harvest [122]

FOX 4000 Cultivar effect, post-harvest
treatments [123]

FOX 4000 Cultivar effect, maturity stage at
harvest, shelf life [124]

Cyranose 320 Maturity stage at harvest [125]
Muskmelon Cucumis melo L. Cucurbitaceae Not specified Maturity stage at harvest [81]

Onion, spring
onion garlic,
shallot, leek

Allium spp. Liliaceae Aromascan CP 14 Species effect [126]

Onion Allium cepa L. Liliaceae Aromascan Fertilization, soil type effect [127]
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Table 3. Cont.

Common Name Scientific Name Family E-Nose Type † Discrimination Type Reference

ISENose 2000 15 Ecotype effect [128]
Orange Citrus x sinensis (L.) Osbeck Rutaceae Libra Nose Shelf life [129]

Pear Pyrus communis L. Rosaceae Prototype MOS Maturity stage at harvest [85]
Prototype MOS Shelf life [87]

Aromascan Maturity stage at harvest [130]
Prototype MOS Maturity stage at harvest; quality

assessment [131]

Prototype MOS Maturity stage at harvest; quality
assessment [132]

Peach Prunus persica (L.) Batsch Rosaceae PEN2 Shelf life and cultivar effect [133]
Prototype MOS Maturity stage at harvest [85]

Libra Nose Sensorial assessment [134]
Libra Nose Cultivar effect, quality assessment [135]

Prototype MOS Shelf life, quality assessment [87]
EOS 835 Cultivar effect, shelf life [136]
EOS 835 Cultivar effect [137]

PEN3 Maturity stage at harvest [138]
FOX 4000 Cultivar effect [139]
FOX 4000 Prediction of harvest time, quality

assessment [140]

Prototype MOS Prediction of harvest time, quality
assessment [141]

Prototype MOS Prediction of harvest time, quality
assessment [142]

FOX 4000 Shelf life [61]
Pepper Piper nigrum L. Piperaceae Alpha Gemini Genotype effect [143]

Persimmon Diospirus Kaki L.f. Ebenaceae Prototype MOS Cultivar effect [144]

Ebenace PEN3 Maturity stage at harvest and shelf
life [145]

Pineapple Ananas comosus (L.) Merr. Bromeliaceae PEN2 Shelf life [146]
Sapodilla Manilkara zapota (L.)P. Royen Sapotaceae Prototype MOS Maturity stage at harvest [147]

Snake fruit Salacca edulis Reinw. Arecaceae FOX 4000 Maturity stage at harvest [148]
Sour citrus Citrus nagato-yuzukichi Tanaka Rutaceae Unspecified Species effect [149]
Soursoup Annona muricata L. Annonaceae PEN3 Maturity stage at harvest [150]

Strawberry Fragaria x ananassa Duch. Rosaceae Unspecified Fertilizations effect [151]
PEN2 Processing approaches effect [152]
PEN2 Processing approaches effect [153]

Tomato Solanum lycopersicon L. Solanaceae Unspecified Cultivar effect, shelf life [154]
Libra Nose Cultivar effect, shelf life [155]
Unspecified Mechanical deterioration effect [156]

PEN2 Maturity stage at harvest [157]
PEN2 Post-harvest treatments effect [158]

Cherry tomato Lycopersicon esculentum var.
cerasiforme Solanaceae PEN2 Shelf life of processed fruits [159]

Tomato Solanum lycopersicon L. Solanaceae e-Nose 4000 12 Harvesting and postharvest
handling treatments effect [160]

e-Nose 4000 Post-harvest treatments [161]
enQbe Cultivation techniques effect [162]

Unspecified Maturity stage at harvest and shelf
life [163]

Ussurian pear Pyrus ussuriensis Maxim. Rosaceae Unspecified Maturity stage at harvest [164]

† Electronic nose (e-nose) names, types and manufacturers: 1 = Alpha MOS, Toulouse,
France; 2 = SmartNose BV, Amersfoort, The Netherlands; 3 = Self-made prototype
equipped with an array of commercial MOS gas sensors; 4 = Quartz microbalances
(QMB) gas sensors; 5 = Cyrano Sciences Inc., Pasadena, CA, USA; 6 = Technobiochip,
Marciana, Italy; 7 = Sacmi Imola s.c.a.r.l., Imola, Italy; 8 = Airsense Analytics GmbH,
Schwerin, Germany; 9 = ISE, Pisa, Italia; 10 = University of Rome ‘Tor Vergata’, Rome, Italy;
11 = Electronic Sensor Technology, Newbury Park, CA, USA; 12 = EEV Inc., Amsford, NJ,
USA; 13 = Lennartz Electronic GmbH, Tübingen, Germany; 14 = Osmetech Inc., Wobum,
MA, USA; 15 = Labservice Analytica, Bologna, Italy. Unspecified e-nose types were not
determinable from descriptions given in the methods section.

3.1. Apples and Pears

The fruit species receiving the most interest among e-nose researchers is
apple (Malus domestica Borkr). Bai et al. [83] examined changes in the aroma
profile on freshly-cut Gala apple slices treated with ethanol vapor, heat and
1-methylcyclopropene to prolong visual shelf-life. The FOX 4000 e-nose system
(Alpha MOS, Toulouse, France) was utilized to assess aroma quality and the results
demonstrated that pretreatments with ethanol and heat are effective in prolonging
visual shelf life, but at the expense of aroma quality.
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One of the main needs of fruits producers is to determine optimal picking date
for different fruit types in order to assure the presence of preferred traits expected by
consumers for maximum salability. Harvesting fruits at the optimal physiological
condition results in fruits with the highest quality characteristics (aroma, firmness,
color, flavor), and an extended shelf life. Fruit picked too early will not ripen
sufficiently after storage and may suffer from physiological disorders, whereas those
picked too late will be mealy and too soft following storage. Traditional techniques
for assessing apple quality are destructive, requiring that only random samples are
tested. For these reasons, electronic noses have been preferred for assessing the
maturity stage of apples (at harvest) since 1999 to determine the optimal picking date.
Hines et al. [88] first tested a prototype e-nose equipped with four commercial tin-
oxide gas sensors on “Golden Delicious” apples to accurately classify fruit ripeness.
The same year, Young et al. [98] worked on Gala apples, discriminating the ripening
stage at harvest in four different classes. Saevels et al. [95] used the Technobiochip
(Elba Island, Italy) Lybra Nose for predicting the optimal harvest date of apples
as well as the cultivar effect on aroma of “Jonagold” and “Braeburn” varieties.
The e-nose used in this study contained a sensor array based on Quartz Crystal
Microbalance (QCM) sensors coated with metalloporphyrins and related compounds.
Data were collected for two years and the results yielded a good predictive model
developed for each cultivar based on one year of data, but a similar model based on
two years of data was less effective at predicting optimal harvest dates.

Another commercial electronic nose (Cyranose 320, Cyrano Sciences Inc.,
Pasadena, CA, USA) was employed by Pathange et al. [93] to assess apple maturity
for the apple cultivar “Gala”. This instrument could positively classify the fruits
into three groups according to their maturity stage (immature, mature and over
mature) with an accuracy of 83%. Brezmes et al. [85–87] published several works
on the assessment of apple ripeness. They initially worked on “Pink Lady” apples
using a prototype e-nose equipped with 21 commercial tin oxide or Metal Oxide
Semiconducting (MOS) sensors. The accuracy of e-nose classification of fruit
maturity stage depended on the statistical classification technique used on e-nose
data. PCA analysis did not show any clustering behavior that could be attributed
to ripening, whereas a neural network classification algorithm provided good
results. Brezmes et al. [85] could not determine the correct maturity stage of some
apple cultivars, but had very good results on peaches and pears. More recently,
Baumgartner et al. [84] showed very good results in discriminating the ripening stage
of “Golden Delicious” apples, using a lesser-known Swiss e-nose (SMart Nose, SMart
Nose SA, Marin-Epanier, Switzerland).

Of all commercial fruit species, apples rank highest with the largest number of
experimental and commercial cultivars (including ancient, traditional and modern
varieties) available in world markets. Apples have the greatest diversity of flesh
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and pericarp colors, flesh firmness, shelf life, and especially flavors and aromas.
The cultivar effect, or variation in aroma characteristics or bouquet of apples, was
studied by Marrazzo et al. [92] using a Cyrano Science prototype e-nose equipped
with an array of 31 chemical sensors (Pasadena, CA, USA) to discriminate between
“McIntosh”, “Delicious” and “Gala” apple varieties. This electronic-nose prototype
discriminated between fruit-aroma classes (varieties) based on data from the first day
after harvest when the cultivar effect on aroma was more intense for freshly-harvested
fruits. A more difficult test was recently performed by Pruteanu et al. [94] who
successfully employed a FOX 4000 e-nose to discriminate between seven different
varieties of Romanian apples.

One of the most important quality features of any fruit species or variety is the
duration or longevity that optimal fruit characteristics can be maintained, referred to
as shelf life, prior to decline to an unsalable state. The ultimate goal is to develop
fruit cultivars with a very low after-harvest perishability coefficient, indicating a
low cull-rate following commercial display to consumers. The merchantability of
fresh products is largely influenced by shelf life. Traditionally, shelf life is measured
and assessed through an evaluation of the chemical and physical properties (factors)
that most determine ripening, maturation and post-harvest deterioration. Some of
the key parameters measured included color, soluble solids content (SSC), percent
of sugar (brix), and titratable acidity (TA). All of these parameters are commonly
used by researchers and industry fruit graders, but none of these parameters are
utilized by or matched with criteria used in fruit selection from the consumer
perspective. Thus, measuring and evaluating post-harvest perishability through one
single parameter, changes in volatile compounds directly associated with aroma, is
market-oriented. Herrmann et al. [89] probably was the first researcher to become
interested in monitoring aroma of apples during shelf life. It was well known at that
time that the ratio of aldehydes within apple headspace volatiles could be used as
indicators of ripeness for many apple varieties. Consequently, a QCM prototype
electronic nose containing sensors coated with aldehyde-sensitive materials was
used to monitor the increase in trans-2-hexenal concentration as an indicator of
post-harvest development over time. Saevels et al. [96] and Baumgartner et al. [84]
monitored the post-harvest shelf life as well, obtaining very interesting good results,
as did Guohua et al. [90] with “Fuji” apples, employing an electronic nose prototype
equipped with an array of eight tin oxide MOS sensors.

Li et al. [91] examined the aroma bouquet of deteriorating apples during the
shelf life period. Physical damage to apples dramatically reduced economic value
due to changes in color, shape, flavor and aroma, as well as increased susceptibility
to attack by various post-harvest pathogens. Results of this work demonstrate
that differences in numbers of physical cuts to the fruits had effects on volatile
compound emissions. Apples subjected to two and three cuts generated aroma
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bouquets significantly different from uncut fruits. A similar study was published
by Di Natale et al. [129] who used the Technobiochip Lybranose QCM e-nose to
successfully discriminate between no cuts, one and two cut fruits. Xiaobo et al. [97]
utilized a more comprehensive approach by combining three different sensors (a
near-infrared spectrophotometer, a machine vision system and an electronic nose) to
classify “Fuji” apples according to several quality parameters.

Other researchers have focused on pears (Pyrus species) to assess the maturity
stage at harvest and shelf-life. Oshita et al. [130] successfully classified “La France”
pears into three groups according to three storage treatments applied after harvest
to prolong the shelf-life by using an Aromascan conducting polymer (CP) e-nose.
Zhang et al. [131,132], published similar papers on the prediction of acidity, soluble
solids content and firmness of “Xuequing” pears by employing a prototype e-nose
equipped with eight different MOS sensors and an artificial neural network to analyze
their response. Finally, Li et al. [164] worked on a Chinese species of Pyrus (Pyrus
ussuriensis Maxim.) to characterize its volatile organic compounds (VOCs) at different
ripening stages by traditional methods compared to an electronic nose.

3.2. Peach and Apricot

Three research groups have worked on apricot (Prunus armeniaca L.), obtaining
good results by the use of three different commercial electronic noses [99–101].
The cultivar effect on aroma bouquet was tested using a PEN2 electronic nose,
a portable (AlphaMos, Schweirin, Germany) and light-weight sensing machine [100].
It consists of a sensor array composed of 10 different doped semi-conductive
MOS sensors positioned in a small chamber. The signal of the electronic nose
was statistically analyzed by a trained artificial neural network (ANN) which
is a data-processing tool that mimics the structure of the biological neural
system, exhibiting brain characteristics of learning. In association with gas
chromatography-mass spectroscopy (GC-MS), a FOX 4000 e-nose was used in
the second study to characterize and discriminate between eight different apricot
cultivars with promising results. Non-destructive cultivar assessment is very
important in particular for apricot fruits to classify unknown samples and to
prevent adulterations.

Defilippi et al. [99] worked on post-harvest quality of apricots, assessed by
changes in VOCs detected with an EOS 835 electronic nose (Sacmi scarl, Imola, Italy).
In order to determine differences in aroma profile, apricots were harvested at two
maturity stages and stored at 0 ˝C and 20 ˝C (shelf-life simulation) for 15 and 30
days, then analyzed by a trained panel test and electronic nose. This e-nose could not
classify maturity level of cold samples, but could only be classified after simulated
shelf-life and panel test.
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Peaches, Prunus persica (L.) Batsch and P. persica var. nucipersica, have been
thoroughly studied by researchers interested in finding new ways of characterizing
fruits in a non-destructive way. The first report come from Brezmes et al. [85]. The
initial approach was aimed at discriminating between cultivars in an attempt to
assess the feasibility of a fast, non-destructive, and cheaper way to classify unknown
samples and decrease food frauds [133,135–137,139,140].

Peaches, nectarines and most varieties of P. persica are climacteric and
particularly perishable at harvest and during storage, requires that these fruits be
maintained at 0 ˝C for only a few days because shelf-life of this species is particularly
short. These are only some of the reasons why producers utilize many alternative
methods to evaluate the maturity stage of the fruit directly on the tree, traditionally
based on personal experience. The same thing is asked by industry and retailers
who need non-destructive, fast and systematic methods to evaluate the shelf life of
fruits and other perishable products. Most of the previously mentioned researchers,
including Brezmes et al. [87] and Zhang et al. [142], have tried to test the feasibility of
using an electronic nose to assess shelf life of fruits. Benedetti et al. [133] employed
a PEN2 e-nose to successfully classify samples of four different cultivars of peach
according to their ripening stage. Performing Principal Components Analysis (PCA)
on sensor data, peaches showed a linear data distribution for PC1 (from right to
left), with increasing days of shelf-life. They concluded that no more than three
sensors had a high influence on the sensor-output pattern for the fruit aroma, but
only one sensor was relevant in the discrimination of peaches on the basis of shelf-life.
They interpreted this single-sensor response to indicate that the sensor signal was
directly linked to ethylene production, responsible for ripeness of peaches. A similar
response was published by Rizzolo et al. [138] by using a similar but more advanced
electronic nose (PEN3) manufactured by the same Company. In this case, only three
sensors seemed to be associated with fruit ripeness and a linear correlation between
PCs and quality indices indicated PC1 was related to ethylene production as well.
More recently, Guohua and colleagues developed a model for the prediction of peach
freshness based on a home-made electronic nose [165].

Monitoring the sensorial qualities of stored (refrigerated) fruits, in particular
the loss of flavor and aroma of peaches throughout the period between harvest and
the arrival at retail stores and during transportation to far-away markets, is one of
the main problems facing fresh-fruit exporting companies and producers. Electronic
noses were successfully employed by Infante et al. [136] and Zhang et al. [143] to
evaluate the development (or loss) of aroma during transportation to markets. In
particular, Infante et al. [137] could discriminate between aroma qualities of four
cultivars, showing that “Tardibelle” peaches have the highest quality attributes even
after 42 days of cold storage following harvest.
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Zhang et al. [141,142,166] attempted to establish a quality index model to
describe the effects of different picking dates of peaches by the use of a self-made
prototype e-nose equipped with eight commercial tin semiconductor sensors and
a commercial acquisition card. Sensor responses were validated by traditional
peach quality parameters such as firmness, sugar content and pH at three different
picking times. With the aim of predicting fruit quality based on these parameters,
Principal Component Regression (PCR) and Partial Least Squares (PLS) regression
where applied. The results showed that the two methods allow the determination
of firmness, sugar content and pH by use of electronic nose. A similar research
was performed by Su et al. [140] who tried to assess harvest season and quality of
39 cultivars of peaches and nectarines. By using a FOX 4000 e-nose and manipulating
data by Discriminant Function Analysis (DFA), they successfully linked sensor
responses to total soluble solids (TSS) concentration and titratable acidity (TA) in
all harvest seasons, but only for those samples with a low or high concentration of
TSS and a low or high TSS/TA ratio. Infante et al. [137] employed the Italian EOS
835 (Sacmi, Imola) e-nose to predict the quality of four peach cultivars by applying a
multiple linear regression (MLR) to sensors-response data. They were able to describe
the quality attributes “acidity”, “sweetness” and the more general “acceptability” by
the use of the e-nose, concluding that the instrument could discriminate between
peach varieties through descriptors that mainly determine acceptability by the peach
consumer. A similar paper was published by Di Natale et al. [134] who applied
both electronic nose and panel sensor analysis to determine through an advanced
data analysis, some proper sensorial indicators for the classification of peach fruits
according to consumer palatability.

3.3. Citrus

Fruits belonging to the complex genus Citrus are commonly called citruses.
These fruits are well known since ancient times for their nutraceutical properties,
providing medical and health benefits,and the unmistakable pungent notes of their
aroma. Hernandez Gomez et al. [119,121] worked on mandarin (C. reticulata Blanco)
by using a PEN2 e-nose to associate sensor responses to harvest date (five different
dates = aroma classes). No more than three sensors were employed in the Linear
Discriminant Analysis (LDA), which gave clearer results than PCA. The later work
by Hernandez Gomez et al. [120] was focused on evaluating the change in aroma
bouquet emitted by mandarins during different storage treatments (plastic bag, paper
box and refrigerator) and time (shelf-life), as well as other quality parameters. In
this case, no significant predictive results were shown, while quality indices such as
firmness were predicted by e-nose sensor responses.

Di Natale et al. [129] conducted research on oranges using a QCM prototype
electronic nose. They distinguished between the different storage days (duration)
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for oranges, whereas Russo et al. [104] recently were able to discriminate between
genuine bergamot (C. bergamia Risso et Poiteau) essential oils from other non-genuine
types in order to defend the uniqueness of this very economically-important Southern
Italian product. Akakabe et al. [149] worked on some Chinese species and varieties
of citruses (including C. nagato-yusukichi Tanaka, C. sudachi Hort. ex Shirai, C. junos
Siebold. ex Tanaka, C. sphaerocarpa Tanaka) to evaluate the capability of an electronic
nose to discriminate between species and varieties by their aroma profiles.

3.4. Grape

One of the most important and widely-studied applications of electronic
gas-sensing machines (electronic noses and tongues) in the food industry concerns
analysis of the aroma characteristics of wine, the alcoholic product of fermented
grapes [167–173]. However, some researchers have assessed the possibility of
employing these gas-sensing machines directly on grapes in the field, or immediately
after harvest, to provide important data on fruit quality and physiochemical
parameters that are vital to the production success of quality wines and to limit
food frauds or adulterations by dilutions with cheaper products. In this regard,
Zoecklein et al. [114] studied the effects of ethanol treatments on volatile aromatic
compounds emitted by two V. vinifera L. varieties (“Cabernet Franc” and “Merlot”) at
the onset of ripening (veraison). Both a conducting polymer (CP) e-nose and a surface
acoustic wave-based (SAW) e-nose were capable of successfully discriminating
between treated and untreated fruits.

A very interesting paper was published by Devarajan et al. [115] who discovered
that the canopy side (north versus south and east versus west) has an effect on the
aroma bouquet emitted by fruits (and wine) of Cabernet franc. Data were processed
by using two different electronic noses (a Cyranose 320 and a zNose 730) on the basis
of two growing seasons. Both sensing systems provided effective discrimination of
canopy sides for grapes VOCs using canonical discriminant analysis.

The maturity level at harvest over two seasons was evaluated by
Athamneh et al. [110] using a portable Cyranose 320 e-nose on “Cabernet Sauvignon”
grape samples picked at three different maturity stages. The instrument proved
capable of discriminating between different stages of maturity and fruits from
different vine canopy sides.

Post-harvest dehydration is one of the most important steps in the wine-making
process. Although the volatile fraction of a wine can be formed by hundreds of
chemically-different compounds, the aroma compounds formed during drying have
significant effects on wine quality. Currently, winemakers judge optimum drying
times in terms of sugar concentration (brix) or water loss rather than based on
more precise continuous monitoring of aroma profiles by e-noses until optimum
drying conditions are met. Thus, some researchers have tried to determine the
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optimum drying times for wines using an electronic nose to assess the quality of
aroma bouquets derived from dehydrated grapes [111–113]. In all cases, very good
results were obtained by the use of a QCM prototype electronic nose developed by
the University of Rome Tor Vergata.

3.5. Strawberry and Other Berries

To our knowledge, only three papers have been published on different
applications of electronic noses for the evaluation of aroma characteristics in
strawberry (Fragaria x ananassa Duch.) fruits. Agulheiro-Santos [151] reported on
the capability of an electronic nose to assess the influence of different nitrogen
fertilizations on the aroma quality of “Camarosa” strawberry. This represents one
of the few examples of scientific research into electronic-nose technologies being
applied directly to evaluate and modify growth protocols and agronomic techniques
for the improvement of fruit aromatic and flavor qualities.

Strawberry fruit maturity was evaluated using a MOS electronic nose containing
18-metal oxide gas sensors [152]. The instrument discriminated between five stages
of fruit maturity (from white to overripe) and three picking dates for two varieties.
A PEN2 e-nose was employed by Qiu et al. [153] to characterize the aroma of five
strawberry varieties, derived from freshly-squeezed juice produced according to a
squeezing-processing technique.

Blackberry (Rubus glaucus Benth), bilberry (Vaccinium meridionale Swartz)
and blueberry (Vaccinium spp.), comprise a group of fruits called “berries” with
peculiarities of shape and size (always round and small fruits), with colors-ranging
from yellow to black-blue-and flavor (sweet or sour). This definition of berry is not
linked to the botanical meaning of the term “berry”. Berries are among the most
perishable fruits before and after harvesting. Thus, they have to be very carefully
harvested and processed at the proper time and in specific ways to maintain quality
and shelf life. Quality control in this field is particularly important. Simon et al. [82]
tested a very early e-nose prototype, equipped with only two commercial sensors,
to assess the maturity level of harvested fruits based on aromatic profile, and to
detect damaged fruits in a closed container. The nutraceutical role of blackberries
and bilberries was assessed by Bernal et al. [105]. In addition, changes in volatile
components during different stages of fruit maturity were evaluated by employing a
PEN3 electronic nose [106].

3.6. Mango and Other Tropical Fruits

Among so-called “tropical fruits”, mango (Mangifera indica L.) is the most
studied species in the field of gas-sensing e-nose machines. The first report by
Lebrun et al. [123] attempted to assess the optimal harvest date. Whole and
homogenated mango fruits were sampled and the aroma from each fruit was
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analyzed using a FOX 4000 e-nose. Although a deep study on the optimal dilution of
the sample was carried out, this e-nose was not effective in determining the harvest
date. Similar mediocre results were obtained by Kitthawee et al. [122], involving a
study of hard green mangoes. The electronic nose could correctly classify only 68% of
fruits according to their ripening stage, too low to be introduced into the retail market
as a non-destructive method to assess ripening stage in mangoes. Afterwards, several
researchers pursued the same goal some years later. Lebrun et al. [124] worked on
three different mango cultivars (‘Cogshall’, ‘Kent’ and ‘Keitt’) harvested at different
fruit maturities. This e-nose could separate fruits from different picking dates as well
as fruits from different varieties. Zakaria et al. [125] published similar good results
employing a Cyranose 320 e-nose.

A pioneering work by Llobet et al. [102], utilizing a self-made electronic prototype
equipped with a tin-oxide MOS commercial sensor array, was able to discriminate
between different stages of fruit maturity in banana (Musa x paradisiaca L.) fruits, and
also predict the maturity stage of unknown samples, applying a neural-net classifier.

The Italian research group of Torri et al. [146] worked on pineapple (Ananas
comosus L. Merr.) fruits. One experiment was aimed at monitoring the freshness
of minimally-processed slices of pineapple during storage by use of a PEN2
electronic nose. Results indicated that this e-nose was successfully employed in
the field to determine that pineapple fruit is particularly perishable and that even
minimally-processed pineapple fruits lose their aroma characteristics very quickly.

Other researchers have evaluated the maturity stage for harvesting tropical
fruits. Supriyadi et al. [148] employed a FOX 4000 e-nose to discriminate between
ripe and unripe snake fruits (Salacca edulis Reinw.). Pokhum et al. [109] identified
the ripeness stage of durian fruits (Durio spp.) by use of a MOS e-nose. Márquez
Cardozo et al. [150] worked on the Columbian exotic and highly perishable soursop
fruit (Annona muricata L.) a member of the custard apple tree family (Anonaceae).
In this case, a PEN3 e-nose easily classified fruit samples as unripe, half ripe, ripe
or overripe. Nugroho et al. [147] recently utilized an array of four commercial
tin-semiconductor sensors, their prototype electronic nose, to discriminate between
different maturity-classes sapodilla (Manilkara zapota (L.) P. Royen) fruits.

3.7. Other Miscellaneous Fruits

A paper by Lebrun et al. [108] hitherto has been the only research study to
report on the application of an electronic nose for the rapid and non-destructive
discrimination of date (Phoenix dactylifera L.) varieties. The research group of
Alasalvar worked successfully on five raw and eighteen roasted Turkish hazelnuts
(Corylus avellana L.) in an attempt at characterizing differences in aroma bouquet
according to variety [116,117].
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Garcia-Breijo et al. [144] and Li et al. [145] investigated persimmon (Diospyros
kaki L.) fruits to discriminate between two different cultivars using a semiconductor
commercial e-nose sensor array to assess fruit ripening stage and storage life,
applying PCA and LDA statistical methods to a PEN3 e-nose sensor output data.
They also attempted to determine the fewest number of sensors that could explain
all the variance. Guarrasi et al. [118,174] worked on loquats [Eriobotrya japonica
(Thunb.) Lindl.], a plant belonging to the Rosaceae family native to Japan and
China and also wide spread in the Mediterranean Regions of Italy. The fruits were
characterized chemically (SSC, TA, pH), morphologically, electronically using an
e-nose, and olfactorily (via a trained human panel test). Although cross-data from
traditional instrumental techniques and e-nose could identify aroma features, neither
the panel test nor the electronic nose could discriminate between the four different
sample cultivars.

Very recently, a paper by Ghouhua et al. [175] reported about a quality
forecasting method using a home-made electronic nose based on an eight MOS
sensors array. Samples of Winter jujube (Ziziphus jujuba Mill.) were analyzed each
day, for 8 days, for physical and chemical indexes as well as via EN. PCA results
indicated that jujubes under different time had an approximate trend, but the samples
could not be qualitative or quantitatively discriminated from each other.

3.8. Vegetable Fruits

From a botanic point of view, tomatoes and other vegetables are actually fruits
because they are derived from the ripened ovary of a flower [176]. Nevertheless, the
general public views these fruits as vegetables especially from a culinary point of
view. Quality attributes like the perfect maturity stage at harvest, long shelf-life and
attractive visual appearance are critical factors that must be taken into account when
evaluating agricultural protocols. Within all vegetable-type fruits, tomato (Solanum
lycopersicon L.) is the species receiving the most attention in scientific research efforts
in the field of electronic sensing since 1997. Maul et al. [160,161] published some
early results on the evaluation of an electronic nose to identify and discriminate
tomatoes, exposed to different harvesting and postharvest handling treatments, in
order to measure quality diversities (in flavor, aroma and other quality parameters)
between physiological (portable) maturity and market maturity, highly influenced by
long-distance handling (during transportation) and even more by marketing systems.

Sinesio et al. [162] employed a prototype electronic nose and a panel test to
discriminate between fruit samples based on different qualities of tomatoes. Fruits
were harvested from two different Italian farms (one of them conducting traditional
agriculture, the other organic farming) and classified as “very good”, “good”, “fair”
and “poor”, according to visual selection for the presence of injuries and physical
damage. A QCM electronic nose was used, containing eight sensors coated with
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different metalloporphyrines. Their data showed that through the use of a neural-net
statistical algorithm, the e-nose could discriminate between classes better than a
trained human panel test.

Electronic noses can actually discriminate between different levels of mechanical
damage in fruits like tomatoes which apparently release different VOCs according to
different degrees of damage [156]. Bruising fruits usually lead to enhanced ripening
at a rate proportion to the amount of damage.

Shelf life of tomatoes was assessed using electronic noses by Berna et al. [154,155]
and by Hernandez Gomez et al. [158] in 2008. In both cases utilizing three different
e-noses (a Technobiochip Lybranose, a University of Rome “Tor Vergata” enQbe,
and a AlphaMos PEN2), a clear separation of different aroma classes was not
achieved, whereas very good results were obtained by Hernandez Gomez et al. [157] in
discriminating between different fruit maturity stages at harvest. Wang and Zhou [163]
also obtained good results by crossing PCA sensor data with firmness data.

Hong and Wang [159] recently found that it was relatively simple to identify
high quality fruits visually at harvest, but it is very difficult to assess the freshness
of squeezed cherry tomatoes (in 100% tomato juices) unless traditional and
time-consuming instruments are employed. Unfortunately, their electronic nose
system did not give very convincing results.

Abbey et al. [126,127] and Russo et al. [128] worked on bulbs of Allium ssp. which
are not named “fruits” either from a botanical or culinary point of view. We report
these studies here because these species are somehow used as “fleshy” vegetables
in kitchens. The initial work on Allium species was aimed at assessing the ability
of an electronic nose to discriminate between different species (A. sativum L., A.
ampeloprasum var. porrum, A. cepa var. aggregatum, and A. cepa L.) on the basis of their
aroma profile. Based on pyruvic acid and thiosulphinates content (which characterize
these species and varieties), the e-nose could successfully discriminate between them.
In a secondary experiment, an electronic nose was employed to evaluate the effects of
some agronomic factors, such as fertilizations with nitrogen (N) and sulfur (S) as well
as the soil effects on plant aroma characteristics in the field and greenhouse. This is an
interesting application of an e-nose instrument devoted to classifying different aroma
bouquets in agricultural products whose final quality is so influenced by aroma
profiles, such as for white pepper (Piper nigrum L.). Mamatha and Prakash [177]
could easily discriminate between three cultivars of pepper, whereas a recent work of
Liu et al. [143] was devoted to examining flavor quality of five new pepper genotypes.
In all cases, the α-Gemini (Alpha MOS SA, Toulouse, France) e-nose, equipped with
an array of 6 MOS sensors that can be chosen and customized by users, was useful
in identifying known and unknown samples. Another example of this application
in which an e-nose was used to identify unknown genotypes of fruit vegetables was
published by Zawirska-Wojtasiak et al. [107]. Theyattempted to use the electronic nose
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to differentiate between transgenic lines of cucumber (Cucumis sativus L.) compared
to controls.

The protection of specific geographical labels (as sources of fruits) from frauds
and adulterations is one of the main concerns of producers, industry and final users
as well as those who want to be extremely sure about the quality and the exact origin
of fruits used in their businesses. Italy has the highest number of European protected
denominations concerning fresh products [103]. An electronic nose was used to
identify the geographical origins of two local varieties of bell pepper (Capsicum
annuum L.) and this e-nose was applied in association with other traditional methods
to characterize the product according to morphometric, qualitative, spectroscopic
and aromatic data.

4. Conclusions

Electronic-nose devices have been utilized in a wide range of diverse
applications in the agriculture and forestry industries to improve the effectiveness,
efficiency and safety of processes involved in the production of quality food and
fiber plant-based products [5]. As summarized in this review, e-nose instruments
also offer many new potential applications for the fruit-production industry to
facilitate many tasks involving fruit aroma evaluations during all stages of the
agro-fruit production process from early cultivation activities, field-applied pest
control applications, and timing of fruit harvests to many post-harvest stages
including fruit transportation, storage, and finally the maintenance of fruit shelf
life during display in commercial markets.

The potential for future developments and new aroma-based applications
of electronic-nose devices in fruit production processes include e-nose detection
of pesticide residues on harvested fruit surfaces to facilitate enforcement of
human health regulations of the Environmental Protection Agency (EPA) [178–180],
post-harvest fruit disease detection and management [5,8], and monitoring gases
released from fruits in storage to control fruit ripening (maintain fruit shelf life) and
fruit quality.
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Assessment of Taste Attributes of Peanut
Meal Enzymatic-Hydrolysis Hydrolysates
Using an Electronic Tongue
Li Wang, Qunfeng Niu, Yanbo Hui, Huali Jin and Shengsheng Chen

Abstract: Peanut meal is the byproduct of high-temperature peanut oil extraction; it is
mainly composed of proteins, which have complex tastes after enzymatic hydrolysis
to free amino acids and small peptides. The enzymatic hydrolysis method was
adopted by using two compound proteases of trypsin and flavorzyme to hydrolyze
peanut meal aiming to provide a flavor base. Hence, it is necessary to assess the
taste attributes and assign definite taste scores of peanut meal double enzymatic
hydrolysis hydrolysates (DEH). Conventionally, sensory analysis is used to assess
taste intensity in DEH. However, it has disadvantages because it is expensive and
laborious. Hence, in this study, both taste attributes and taste scores of peanut
meal DEH were evaluated using an electronic tongue. In this regard, the response
characteristics of the electronic tongue to the DEH samples and standard five taste
samples were researched to qualitatively assess the taste attributes using PCA and
DFA. PLS and RBF neural network (RBFNN) quantitative prediction models were
employed to compare predictive abilities and to correlate results obtained from
the electronic tongue and sensory analysis, respectively. The results showed that
all prediction models had good correlations between the predicted scores from
electronic tongue and those obtained from sensory analysis. The PLS and RBFNN
prediction models constructed using the voltage response values from the sensors
exhibited higher correlation and prediction ability than that of principal components.
As compared with the taste performance by PLS model, that of RBFNN models
was better. This study exhibits potential advantages and a concise objective taste
assessment tool using the electronic tongue in the assessment of DEH taste attributes
in the food industry.

Reprinted from Sensors. Cite as: Wang, L.; Niu, Q.; Hui, Y.; Jin, H.; Chen, S.
Assessment of Taste Attributes of Peanut Meal Enzymatic-Hydrolysis Hydrolysates
Using an Electronic Tongue. Sensors 2015, 15, 11169–11188.

1. Introduction

Peanut meal, a good protein raw material, is the peanut byproduct obtained after
high-temperature oil extraction; it is a plant-derived protein with a high nutritional
value, the content of which can range from 40.1% to 50.9% [1,2]. Nevertheless, after
extraction using high temperatures and organic solvents, this peanut meal protein is
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highly denatured, and its nutritional value and functionality (flavor base) decrease
significantly, thereby limiting its application in the food industry [3,4]. Protein
enzymolysis technology has become one of the effective methods for preparing flavor
bases because it is not time-consuming; it is also harmless when directly employed to
cure indigestion [5]. The peanut meal protein enzymolysis solution contains several
free amino acids and small-molecule peptides, which give the enzymolysis liquid a
complex taste; different free amino acid and peptide compositions render different
tastes. As compared to the single enzymolysis of peanut meal, double enzymolysis
can reduce the bitter taste value of hydrolysates obtained via enzymatic hydrolysis
and improve the utilization rate of protein, thereby providing a new method for
preparing flavor bases using protein hydrolysates.

Conventionally, sensory analysis using trained panelists has been employed
to assess taste attributes in food; it is the only method that directly measures the
perceived food taste intensity. However, there are some disadvantages of using
subjective human sensory organs to evaluate food taste characteristics. For example,
the results of sensory evaluation are influenced by subjective and objective factors and
with a certain degree of ambiguity and uncertainty. Furthermore, it is expensive as
panelists have to be paid for their time and effort. Moreover, it is also time-consuming
to organize the training. For all these reasons, there has been increasing research into
alternative objective evaluation methods, such as the use of an electronic tongue,
which is based on biosensors.

Since the late 1990s, electronic tongues which use an array of multi-channel taste
sensors which measure response signals characteristic of the sample solution, coupled
with a signal processing unit based on pattern recognition and/or multivariate
data analysis algorithms have been studied as objective taste assessment devices
for the qualitative and/or quantitative characterization of compounds [6–8]. In
principle, the electronic tongue system works in a manner similar to that of a
human gustatory system. The arrays of low-selectivity taste sensors mimic the
human tongue to sense the different tastes instead of using special sensors to obtain
single information. To identify different tastes, the signal processing unit mimics
the human nervous system to collect excited sensory signals and process the data
using software. Therefore, as compared to conventional sensory evaluation, the
electronic tongue has the advantages of good repeatability, high resolution, as well
as rapid and facile operation. To collect comprehensive signals characteristic of the
sample solution, various electronic tongue systems use different electrochemical
measurement methods such as potentiometry, cyclic voltammetry, and impedance
spectroscopy. After over ten years of development, the electronic tongue has already
been applied widely in the food and beverage industry in applications ranging from
the distinction of food varieties as well as food freshness to the prediction of food
ingredients and to classification of food quality in water [9–11], beverages [12–18],
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wine [19–21], milk [22,23], or oil [24–26]. Moreover, electronic tongues have been
shown to exhibit the potential to mimic the human tasting process and the response
of a sensory panel to assess samples taste [27–29]. They have also been used to predict
the taste intensity in pharmaceutical formulations [30–37] and hydrolysates, which
are mainly bitter [38,39], and the relationship between the amount of bitter substances
adsorbed onto membranes and taste sensors [40]. For example, Legin [32] has
applied the electronic tongue for pharmaceutical analysis, where it could discriminate
between different taste modalities of substances and its masking efficiency was
found to be consistent with that obtained from a human taste panel. Rachid [33]
has used an Alpha M.O.S. Astree electronic tongue to evaluate the masking efficacy
of sweetening and/or flavoring agents on the bitter taste of epinephrine. First, a
bitterness model was constructed with six standard pharmaceutical ingredients and
then the bitterness score of different E bitartrate (EB) and EB + NMI solutions was
predicted. However, thus far, relatively few studies exist on the taste assessment
of protein-rich samples using electronic tongues. Newman [38,39] has used the
electronic tongue to assess bitter dairy protein hydrolysates and investigated the
correlation between the electronic tongue and sensory panel results (R2 of 0.98).
Prediction models built using sensory, chromatographic, and electronic tongues were
compared; strong correlations between these models were studied, showing an R2

from 0.78 to 0.93. Multivariate data analysis and pattern recognition methods such as
principal component analysis (PCA), linear discriminate analysis (LDA), and partial
least-square regression (PLS) have been increasingly applied in the abovementioned
taste assessment studies. In particular, PLS regression has been widely applied for
the construction of numerical prediction models from using chromatographic data to
electronic tongue data in the taste assessment.

These previous studies indicate that the use of an electronic tongue
may be suitable for assessing taste characteristics of peanut meal double
enzymatic-hydrolysis hydrolysates (DEH). However, until now, qualitative analysis
and judgment of taste characteristics in DEH have predominantly been conducted
by analyzing the composition of the free amino acids and peptide species as well as
by molecular weight distribution. For example, acidic amino acids or a short peptide
containing acidic amino acid residues tastes umami. Glutamic acid, aspartic acid,
and its amide are sour, short peptides with molecular weight less than 1000 Da are
slightly salty; some short peptides are bitter, while amino acids such as Gly, Ser, Thr,
Ala, and Pr are sweet. Sensory analysis is the only method to quantify the perceived
different taste intensity of the hydrolysates obtained via enzymatic hydrolysis. Thus
far, few studies have been conducted to demonstrate the ability of the electronic
tongue to assess the taste characteristics of peanut meal DEH, which has complex
different tastes.
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This study aims to investigate the ability of an electronic tongue to assess the
taste attributes of peanut meal DEH. The response characteristics of the electronic
tongue to the six types of peanut meal DEH samples and five standard taste
samples were investigated by PCA and DFA. PLS and RBF neural network (RBFNN)
quantitative umami and saltiness prediction models were employed to compare the
predictive abilities of the intensity of umami and saltiness and to correlate results
obtained from both the electronic tongue and sensory analysis, respectively.

2. Materials and Methods

2.1. Materials

2.1.1. Peanut Meal

Peanut meal samples (produced between 2013 and 2014) were commercially
purchased at random from five different manufacturers in a local market. The
peanut meal sample’s nutritional ingredients are 44.70% protein, 8.28% water, 5.60%
ash and 1.61% fat. The protein composition of the sample was determined by
the micro-Kjeldahl method (GB 5009.5-2010, F = 5.46). The water and ash content
was determined by the constant weight method (GB5497-85) and by combustion
(GB 5009.3-2010), respectively, and the fat content was determined by Soxhlet
extraction (GB5512-85).

2.1.2. Chemicals

Flavor protease and trypsin used for the enzymolysis of peanut meal
were purchased from Novozymes (Bagsvaerd, Denmark). Acetonitrile
(chromatographically pure) used for gel exclusion chromatography (GEC) was
purchased from TEDIA (Fairfield, OH, America). Monosodium glutamate (MSG),
citric acid, tannic acid, sugar, and salt used as the five standard taste samples
were obtained from commercial suppliers. Standard chemicals such as 1 mol/L
hydrochloric acid, 0.1 MSG, and sodium chloride were supplied by Alpha M.O.S.
(Toulouse, France), which had to be diluted with distilled water prior to use.

2.2. Methods

2.2.1. Sample Preparation

First, a 5% peanut meal solution was preheated for 10 min. Second, when
the temperature of the solution reached 50 ˝C, 2000 µ/g of the composite enzyme
(800 µ/g trypsin and 1200 µ/g flavourzyme) was added to start the enzymolysis;
third, after a certain time, enzyme deactivation was performed by placing the solution
mixture in a boiling water bath for 10 min. Next, after cooling to room temperature,
the solution was centrifuged at 4000 r/min for 20 min; the supernatant obtained was
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frozen, and the solid obtained after drying was stored at ´20 ˝C. Enzymolysis was
conducted for 10 min, 1 h, 3 h, 8 h, 12 h, and 24 h. For sample analysis by the sensory
panel and electronic tongue, 2% peanut meal DEH solutions of the six peanut samples
were used at different enzymolysis times. The solid samples were solubilized in
distilled water before testing, while samples for GEC analysis were not solubilized.
Before the test, MSG, citric acid, tannic acid, sugar, and salt were solubilized in
distilled water and prepared using different concentration gradients (Table 1). These
standard sample solutions were selected for investigating the predominant taste
observed in peanut meal DEH via analysis using the electronic tongue.

2.2.2. Sensory Analysis

The sensory assess panel was organized with 30 panelists who have a
professional food testing background. Their personal attributes were checked
according to sensory standards (no smoking and no beverage drinking) and they
were trained before providing the assessment score results. The training contents
involved a questionnaire screening, taste discrimination of five standards, and a
5-point intensity scale assessment using the five basic tastes (Table 1) to aid scaling.
The 5-point intensity scale is from 0 to 5, where 0 and 5 denote the least intense and
most intense taste perception, respectively. Then, all peanut meal DEH samples under
different enzymolysis times were provided to the panelists for sensory assessment at
a room temperature at approximately 25 ˝C. Water was provided for cleansing the
palate between tasting of different samples. All tests were performed in triplicate.

Table 1. Different concentration gradients of the five standard taste samples.

Standard Concentration Gradient

Umami (MSG) 0.1% 0.2% 0.4% 0.6% 0.8% 1.0%
Saltiness (salt) 0.001% 0.005% 0.01% 0.05% 0.1% 0.2%
Sourness (citric

acid) 0.02% 0.04% 0.08% 0.12% 0.16% 0.2%

Bitterness (tannic
acid) 0.025% 0.05% 0.1% 0.15% 0.2% 0.25%

Sweetness (sugar) 0.25% 0.5% 1% 1.5% 2% 2.5%

2.2.3. Gel Exclusion Chromatography Analysis of DEH Samples

There is a typical relationship between the molecular weight distribution of
protein DEH and its taste attributes. GEC was employed to determine the molecular
weight of DEH using an Agilent protein purification system (sample volume:
20 µL, detection wavelength: 220 nm, mobile phase: 20% acetonitrile, elution rate:
0.5 mL/min); the relationship between molecular weight and retention volume is
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expressed as y = 6.699x ´ 0.393, R2 = 0.99, where y is the standard molecular weight
logarithm of the peptide, and x is sample elution volume.

2.2.4. Electronic Tongue

The Astree Electronic Tongue Analyzer (Alpha M.S.O, Toulouse, France) was
used for measurement. It consists of a 16-position autosampler for automatic
sampling with 120 mL beakers as sample containers, a sensor array of seven different
lipid membrane sensors mounted around a Ag/AgCl reference electrode, and an
electronic unit for data acquisition and autosampler control. The seven sensors
used to detect chemically dissolved compounds and acquire data are ZZ, JE, BB,
CA, GA, HA and JB, respectively. The working principle of the electronic tongue
system is as follows: when certain samples pass through the lipid membrane, they
will cause a change in the membrane potential, and then the ions of samples are
detected. The different sensors are composed of different lipid membranes; hence,
they exhibit different sensor selectivity and potentials. The electronic unit measures
all potentials between each sensor and the reference electrode and investigates the
taste characteristics of the sample by analyzing the difference in potential. Before
sample analysis with the electronic tongue, it is necessary to finish the start-up
procedure, which consists of the three tests using each of the 80 mL standard chemical
samples: conditioning, calibration, and diagnostic.

Two kinds of samples were supplied for electronic tongue analysis: 2% peanut
meal DEH solutions at different enzymolysis time and five standard taste sample
solutions at different concentration gradients. For electronic tongue analysis, 80 mL of
the sample solutions was poured into a 120 mL beaker and placed into the electronic
tongue automatic sampler. Then, the solutions were tested according to numerical
order. Cleaning fluid (distilled water) and samples were placed alternately.

To ensure the accuracy and stability of the response signals by the electronic
tongue sensor, the time to acquire data for each solution was 120 s, and the cleaning
time was 20 s after the measurement of each solution. Data were collected every 1 s,
and measurement data obtained for each solution was taken as the average of the
last 5 s. To reduce the measurement error, each solution was repeatedly measured
10 times, and the last three measured values of each sensor were considered as
reliable data used as input for subsequent analysis. Five duplicates of each peanut
meal DEH sample were prepared from different peanut meal samples. Hence, a
dataset of 90 samples for peanut meal DEH samples was supplied for analysis. Once
the peanut meal DEH samples which were dried and stored at ´20 ˝C were removed
and opened, simultaneous measurement was followed by sensory analysis, GEC,
and electronic tongue to ensure consistency in sample data.
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2.2.5. Data Processing

One-way ANOVA was conducted using SPSS 14.0 statistical analysis software
with a significance difference (p < 0.05) for sensory assessment. PCA, DFA, and
PLS were applied (SPSS Inc., Chicago, IL, USA) using the Alpha M.S.O data
statistical software. RBFNN was conducted in MATLAB 7.1. Concretely, the response
characteristics of the electronic tongue to DEH samples and five standard taste
samples were investigated, while qualitative assessment of the taste attributes of
DEH samples was performed by PCA and DFA. PLS and RBFNN quantitative
prediction models were employed to predict taste intensity scores of peanut meal
DEH and study the correlation between the results obtained by electronic tongue
and sensory analysis, respectively.

As explained in Section 2.2.4, the total data set for the qualitative analysis of
the DEH samples was 7 (sensors) ˆ 90 (samples) matrix. Taking into account the
construction of the prediction models, the reduction of the input data was important
and necessary for reducing complexity, which in turn can avoid data redundancy,
decrease model training time, and obtain a better prediction ability model. PCA can
be used for the effective compression of data with less information loss. Two data
sets were used in the PLS and RBFNN quantitative prediction models. One data set
was a matrix of 7 (sensors) ˆ 90 (samples) as before, while the other was a matrix of
4 (the first four principal component, PC, values) ˆ 90 (samples).

To estimate the predictive ability of the PLS and RBFNN models, 3-fold
cross-validation was performed, where the original 90 samples were randomly
partitioned into three equal-sized subsamples. Of the three subsamples, a single
subsample (30 samples) was retained as the validation data for testing the model,
while the remaining two subsamples were used as training data. Cross-validation
was then repeated three times with each of the three subsamples used exactly
once as the validation data. The root-mean-square errors (RMSEs) from the folds
were averaged.

In the cross-validation of PLS, R2 (Test) and R2 (Prediction) need to be calculated.
R2 (Test) provides a variation ratio from the explanation of the prediction variable in
each response, which determines the goodness-of-fit of each model with sample data.
On the other hand, R2 (Prediction) indicates how fine each predicted response was
from the calculated models; it was only calculated using cross-validation. If the two
R2 values are close, a fine model is built; however, if R2 (Test) is significantly lower
than R2 (Prediction), prediction results are overoptimistic.

RBFNN is a three-layer forward network using the radial basis function as the
activation function. It is based on the k-means clustering algorithm with two main
parameters of overlap and hidden layer number, which affect network performance.
After optimization of overlap and the hidden layer number with training, two types
of structures in the RBF neural network were designed. One was composed of 7-8-1,
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where response voltages of seven sensors obtained by the electronic tongue were
used as the model input neurons, eight neurons in the hidden layer, and one neuron
for the prediction score of taste intensity by the electronic tongue. The other was
composed of 4-6-1, where 4 denotes the first four PC values selected as the model
input neurons, six neurons in the hidden layer, and one neuron as before.

3. Results and Discussion

3.1. Sensory Analysis

The quantitative sensory evaluation of the five taste attributes (umami, saltiness,
sourness, sweetness, bitterness) of six peanut meal DEH samples (denoted as A1–A6)
at different enzymolysis times (10 min, 1 h, 3 h, 8 h, 12 h, 24 h) was performed
(Figure 1 and Table 2). Rather than a single taste, five complex tastes including umami,
saltiness, sourness, sweetness, and bitterness were observed for the DEH samples.
Among these tastes, the intensity of umami was the maximum (score 1.3–4.2),
followed by that of saltiness (score 0.6–3.4); the intensities for both sourness and
sweetness were weak, while the intensity of bitterness was the weakest (score 0.7–1.8).

As shown in Table 2, the trends of umami and saltiness gradually increased
within 24 h with the progression of enzymolysis time. Sensory analysis showed that
the umami score was the highest for samples A1–A6, with umami being predominant.

Sensors 2015, 15 11175 

 

 

using cross-validation. If the two R2 values are close, a fine model is built; however, if R2 (Test) is 

significantly lower than R2 (Prediction), prediction results are overoptimistic. 

RBFNN is a three-layer forward network using the radial basis function as the activation function.  

It is based on the k-means clustering algorithm with two main parameters of overlap and hidden layer 

number, which affect network performance. After optimization of overlap and the hidden layer number 

with training, two types of structures in the RBF neural network were designed. One was composed of 

7-8-1, where response voltages of seven sensors obtained by the electronic tongue were used as the 

model input neurons, eight neurons in the hidden layer, and one neuron for the prediction score of taste 

intensity by the electronic tongue. The other was composed of 4-6-1, where 4 denotes the first four PC 

values selected as the model input neurons, six neurons in the hidden layer, and one neuron  

as before.  

3. Results and Discussion  

3.1. Sensory Analysis 

The quantitative sensory evaluation of the five taste attributes (umami, saltiness, sourness, 

sweetness, bitterness) of six peanut meal DEH samples (denoted as A1–A6) at different enzymolysis 

times (10 min, 1 h, 3 h, 8 h, 12 h, 24 h) was performed (Figure 1 and Table 2). Rather than a single taste, 

five complex tastes including umami, saltiness, sourness, sweetness, and bitterness were observed for the 

DEH samples. Among these tastes, the intensity of umami was the maximum (score 1.3–4.2), followed 

by that of saltiness (score 0.6–3.4); the intensities for both sourness and sweetness were weak, while the 

intensity of bitterness was the weakest (score 0.7–1.8). 

As shown in Table 2, the trends of umami and saltiness gradually increased within 24 h with the 

progression of enzymolysis time. Sensory analysis showed that the umami score was the highest for 

samples A1–A6, with umami being predominant. 

 

Figure 1. Radar distribution results of sensory analysis.  
  

Figure 1. Radar distribution results of sensory analysis.

42



Table 2. Characteristics and taste intensity scores of peanut meal DEH, which were
used to compare the taste attributes obtained by the electronic tongue.

Sample Enzymolysis
Time (min)

Degree of
Hydrolysis
(DH) (%)

Protein
Extraction
Rate (%)

Ratio of Different Relative Molecular Weight
Peptides and the Total Peptides % (Da) Taste Intensity Score

<1 k 1–3 k >20 k Umami Saltiness

A1 10 4.8 61 6.38 11.64 37.72 1.3 0.6
A2 60 8.2 63 13.27 14.22 25.98 1.7 0.7
A3 180 11.0 78 14.6 16.8 21.96 2.2 0.9
A4 480 15.2 72 20.79 16.86 20.73 3.6 1.6
A5 720 17.1 71 24.02 16.77 15.4 3.8 2.8
A6 1440 20.4 68 26.34 20.36 10.23 4.2 3.4

3.2. Analysis of Taste Attributes by Gel Exclusion Chromatography

GEC was conducted to obtain the molecular weight distribution of peanut meal
DEH (Table 2). The peptides with molecular weight greater than 20 kDa rapidly
reduced as enzymolysis time progressed, while smaller-molecular-weight peptides
(<1 kDa) gradually increased. For instance, at an enzymolysis time of 1440 min (24 h),
the content of the peptides with molecular weight greater than 20 KDa decreased
from 46.88% to 10.23%, while the content of peptides with molecular weight less
than 1 KDa gradually increased from the original 0.99% to 26.34%, because trypsin
(endonuclease) rapidly hydrolyzed the protein to macromolecular peptide, and the
compound flavor enzyme (including endonuclease and exonuclease) continuously
hydrolyzed the macromolecular peptide to small-molecule peptides or free amino
acids during enzymolysis. The small peptides with molecular weight less than
1 kDa clearly exhibited umami and saltiness (small peptides with molecular weight
1 k–3 kDa have umami-enhancing effect). Hence, from the analysis of the taste
attributes by GEC, peanut meal DEH predominantly exhibits umami, and with
increasing enzymolysis time, the umami taste increases. These results are consistent
with those reported by Yamada and Nishimura as well as with former sensory analysis.

3.3. Representation of Sensor Response of the Electronic Tongue

Further objective analysis of the DEH samples was performed using the
electronic tongue. Figure 2 shows the response curves of ZZ, JE, BB, CA, GA, HA,
and JB to sample A6 (enzymolysis time 24 h). The X- and Y-axes denote the data
acquisition time (120 s) and response voltage values of the seven sensors, respectively.
The sensors exhibited good stability and repeatability with respect to the measured
signal, except for the variation of the acquired data before 30 s.

Figure 3 shows bar graphs of response intensity of the seven lipid membrane
sensors to samples A1–A6. The X- and Y-axes denote each sensor and the final stable
voltage response values of the sensors, respectively. The different colors represent
different samples. Each sample was measured five times. Sensors ZZ, BB, and
JB exhibited a higher response intensity, while CA exhibited the lowest response
intensity. Moreover, JE, GA, and HA exhibited a similar response intensity.
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The relative standard deviation (RSD) values of the seven sensors in the DEH
samples and the five standard taste samples were less than 6%, which indicates that
the difference in experimental data obtained by the electronic tongue was small and
exhibits good reproducibility.

3.4. Analysis of Five Taste Attributes of DEH Samples

DFA can be a useful tool for differentiating the individual to which each colony is
affiliated; DFA was mapped using the response voltage values of the seven sensors for
each sample as data for calculating a set of new variables called discriminant factors.
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Each sensor response voltage value was decided according to the average of the last
three measurements of the sensor of each sample. From Figure 4, DFA showed a total
contribution of 99.56% with the contribution from the first two discriminant factors
being 57.72% and 41.839%, respectively, with a Discrimination Index (DI) value of 98.
All samples were separated into six distinct clusters. Five standard tastes (umami,
saltiness, sourness, bitterness, and sweetness) were successfully discriminated. The
space within each sample was close, while the distance between the two groups was
large, indicating good data repeatability and a clear distinction between different
samples. All six peanut meal DEH samples as unknown samples were projected
into five tastes in the DFA map. From the cluster formations in the DFA map, the
position of the peanut meal DEH samples cluster (unknown cluster) was relatively
close to the umami and saltiness clusters, with the position being closer to the umami
cluster. The unknown cluster was at a farther distance to the sourness cluster, and
the distance between the sweetness and bitterness clusters was the farthest.
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Figure 4. Analysis of the taste attributes of the five taste samples and peanut meal
DEH samples (unknown samples was peanut meal DEH at enzymolysis times of
10 min, 1 h, 3 h, 8 h, 12 h, 24 h. Umami: 0.1%–1.0% MSG; saltiness: 0.001%–0.2% salt;
sourness: 0.02%–0.2% citric acid; bitterness: 0.025%–0.25% tannic acid; sweetness:
0.25%–2.5% sugar). Data were processed by DFA.

Each point in each cluster represents each replicate sample measurement by
the sensor array, indicating that peanut meal DEH samples exhibited characteristics
similar to umami and saltiness. This result is in agreement with those obtained from
sensory analysis and GEC. Samples A1–A6 mainly exhibited umami and saltiness,
followed by sourness, while the intensities of both sweetness and bitterness were
the weakest. Umami was the most prominent taste of peanut meal DEH samples.
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The DFA map from the electronic tongue showed that it can assist and even replace
human sensory analysis.

In addition, the lack of discrimination among samples of different concentration
gradients in the umami and saltiness clusters as well as from samples of peanut
meal DEH indicated that further research is required for the discrimination of these
three taste samples. The discrimination of the three taste samples with different taste
attributes was also mapped with DFA using the same data extraction method as
shown in Figure 4. DFA (Figure 5) showed a complete 100% contribution with the first
discriminant factor (DF1) with a DI value of 100. It indicated that the DFA map can
represent the response data of all samples using the electronic tongue. All samples
were separated into three distinct clusters. Three taste samples—umami, saltiness
and peanut meal DEH samples—were successfully discriminated. The saltiness
cluster was located at the left edge of the map, the umami cluster was located at the
right edge of the map, and the peanut meal DEH (unknown cluster) was located
between them, albeit closer to the umami cluster. Thus, the relationship between
their relative positions on this map demonstrated a strong correlation with their taste
attributes perceived by human. From the saltiness cluster, the six samples exhibiting
saltiness (0.001%, 0.005%, 0.01%, 0.05%, 0.1%, and 0.2%) were separated from each
other, indicating that the electronic tongue can discriminate different concentrations
with the same taste. DF2 in the map approximately coincided with the direction
of intensity change of saltiness in samples. The arrow on the map represents the
increasing direction of the intensity of saltiness. Similar results were observed for
the umami cluster. Six umami samples (0.1%, 0.2%, 0.4%, 0.6%, 0.8% and 1.0%)
were separated, and the direction of the arrow on the map represents the increasing
intensity of umami. For peanut meal DEH samples as projected into the map as
unknown samples exhibited mainly two taste attributes, it located in a direction
shown with an arrow direction representing the increasing enzymolysis time. The
arrow direction is also called taste intensity increase direction because according to
the previous analysis, the taste intensity increased with enzymolysis time. The first
three samples of peanut meal DEH were not distinguished probably because of the
low concentration of the prepared DEH solution. The lack of discrimination among
these three samples indicated the necessity to search for more supervised methods
for the quantitative analysis of peanut meal DEH samples, such as PLS or ANN.

The results from the above analysis demonstrated that the electric tongue
has the potential to qualitatively assess different taste samples. The location of
the different samples indicates the taste similarity degree. In the same cluster,
the location can reflect different taste intensities and can regularly change with
changing concentration.
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Figure 5. Evaluation of taste attributes of the three samples (Unknown peanut meal
DEH samples under 10 min, 1 h, 3 h, 8 h, 12 h, 24 h; Umami: 0.1%–1.0% MSG;
saltiness: 0.001%–0.2% salt).

3.5. Discrimination of Different DEH Samples by PCA and DFA

Because of the satisfactory taste trend observed in the previous analysis, the
whole set of peanut meal DEH samples was further analyzed using only the electronic
tongue, and data were processed by PCA and DFA to obtain consistent taste
assessment results using different data processing methods (Figure 6). Figure 6a
shows the distribution of the peanut meal DEH samples along the first two new
coordinates (PC1 and PC2): an accumulated contribution of 99.94% was observed
with a DI value of 92. The high contribution value indicated that nearly all the data
from the original sensors are presented only by the two new functions. As can be
seen, except samples A1 and A2, all other samples were successfully discriminated
by analysis with PCA coordinates. The arrow direction on the map represents the
increase in taste intensity. Figure 6b shows similar results by DFA analysis. It shows
the distribution of the peanut meal DEH samples along the first two new coordinates
(DF1 and DF2): an accumulated contribution of 99.96% was observed with a DI
value of 94. As can be seen, except samples A1 and A2, all other samples were
discriminated by analysis of DFA coordinates. The arrow direction on the map
also represents the increase in taste intensity. DFA is significantly better than PCA
because it can leave some samples as unknown, as compared to the expected ones,
for projection into the built model to predict classes rather than use all samples to
perform classification. Hence, the actual performance of the DFA classification model
can be assessed.
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The analysis result showed that the electronic tongue demonstrates potential
for the qualitative assessment of the taste intensity of the different peanut meal DEH
samples. The samples regularly varied according to the PC1/DF1 direction, which
was the direction of increasing enzymolysis time. The two methods of the electronic
tongue showed consistent taste assessment results. It was also in agreement with the
results obtained from sensory analysis and GEC. The intensities of both umami and
saltiness of the peanut meal DEH samples (A1–A6) increased with enzymolysis time,
thereby resulting in the increase of the total taste intensity.
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Figure 6. Taste discrimination of different peanut meal DEH samples (A1–A6) (a)
score map obtained by PCA; (b) score map obtained by DFA.
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3.6. Quantitative Taste Prediction of DEH

The taste attributes of peanut meal DEH were complex because a large amount of
free amino acids and small-molecule peptides was present in the protein enzymolysis
solution. Because of the different composition of free amino acids and peptides, the
enzymolysis solution exhibits different tastes. From the information stated above,
substances that were soluble in water exhibit umami and saltiness, which was easily
detected by sensors; they were the main two taste attributes; also, their intensity
scores for peanut meal DEH were predicted by the electronic tongue and were found
to be comparable to those obtained by sensory analysis.

To assess whether the electronic tongue was suitable for the prediction of umami
and saltiness in peanut meal DEH, it is essential to correlate between prediction scores
obtained by the electronic tongue and actual scores obtained by sensory analysis.
PLS and RBFNN prediction models were employed. Unlike previous studies that
focus on the extraction of qualitative information, herein two quantitative models
were built. In each model, two input datasets were extracted for model construction.
One type of input variable was selected with the response voltage values obtained
from the seven sensors of the electronic tongue, and the other type was the first four
PC values. That is, the scores assigned for peanut meal DEH by sensory analysis
were modeled from the data of sensors voltage response or from the data of the first
four PC values.

3.6.1. PLS Taste Prediction Model

Figure 7a,b show the correlation between the predicted scores by PLS using
the electronic tongue and those obtained by sensory analysis with respect to the
intensity of umami in peanut meal DEH samples. PLS regression was built by
using the response voltage obtained by the seven sensors of the electronic tongue
for the peanut meal DEH samples and the scores obtained by sensory analysis. As
stated before, the average of last three measurements of each sample was used
as the response voltage value of each sensor. Table 3 lists the prediction formula,
and Figure 7a shows the PLS regression results. A good correlation was observed
between the intensity scores of umami predicted by the electronic tongue and the
actual scores obtained by sensory analysis with a high R2 (Test) value of 0.9805 and
R2 (Prediction) value of 0.9654 in the cross-validation test. The two R2 values are
similar, indicating the effectiveness of the taste prediction model: a satisfactory trend
was obtained with the regression line being close to the theoretical line. The RMSE
of prediction was 0.72374. Then, PLS regression was built by using the first four PC
values as independent variables and the scores obtained from sensory analysis. A
better trend was observed between the predicted intensity scores of umami and the
actual scores obtained by sensory analysis with a high R2 (Test) value of 0.9723 and
R2 (Prediction) value of 0.9481, albeit a relatively high RMSE of 1.024. From the above
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analysis, the PLS prediction model using the response voltage from the seven sensors
of the electronic tongue as model data input was better than by using the first four
PC values. This indicated that the model constructed by using the first four PCs is
disadvantageous in that compressed data information obtained by sensor detection.
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Figure 7. PLS model prediction of intensity scores by the electronic tongue against
actual scores as scored by sensory analysis. (a) umami intensity scores using sensors
voltage response values as model input; (b) umami scores using the first four PC
values as the model input; (c) saltiness scores using sensors voltage response values
as the model input; (d) saltiness scores using the first 4 PC values as the model input.

The same experimental procedure was performed to predict the intensity of
saltiness in peanut meal DEH by using the PLS model. Table 3 lists the prediction
formula for saltiness, and Figure 7c,d show the resultant PLS using input data
obtained from the response voltage from the seven sensors of the electronic tongue
or the first four PC values. A strong correlation was observed between the predicted
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scores by the electronic tongue, obtained from the voltage response data, and the
actual scores for saltiness obtained by sensory analysis with R2 (prediction) and R2

(Test) of 0.9812, 0.9872 and a relatively low RMSE of 0.32548 (Figure 7c). The resultant
PLS regression using the first four PCs as model data input exhibited a relatively
worse correlation than the former using the voltage response data with two R2 of
0.9886, 0.9708 and an RMSE of 0.45234 (Figure 7d).

Table 3. PLS models for prediction of taste intensity scores of DEH.

Taste Input Data Prediction Formula

umami
voltage response Y = 76.2667 + 0.0029x1 ´ 0.0412x2 + 0.0303x3 ´ 0.0010x4 ´ 0.0207x5 ´ 0.0121x6 ´ 0.0280x7
first 4 PC values Y = 2.8 + 0.00256PC1 + 0.01402PC2 ´ 0.03365PC3 ´ 0.03814PC4

saltiness
voltage response Y = ´29.9924 ´ 0.0065x1 + 0.0302x2 ´ 0.0051x3 + 0.0009x4 ´ 0.016x5 + 0.0245x6 + 0.0068x7
first 4 PC values Y = 1.5 + 0.00266PC1 ´ 0.0246PC2 + 0.02367PC3 + 0022PC4

x1–x7 represented response voltage values from sensor1–7, respectively (x1: ZZ; x2: JE;
x3: BB; x4: CA; x5: GA; x6: HA; x7: JB).

From the above analysis of taste prediction models, all four PLS models for taste
intensity scores prediction of peanut meal DEH exhibited a good correlation with
actual scores obtained by sensory analysis. The two PLS models used to predict the
intensity scores for saltiness had stronger predictive capabilities with lower RMSE
than those for the intensity scores for umami. In the same prediction of taste intensity
scores, the PLS model for the prediction of taste intensity constructed with data from
the response voltage values of the seven sensors was better than that constructed
using data from the first four PCs with both higher correlation coefficients and
relative lower RMSE as no detected data was lost.

3.6.2. RBFNN Taste Prediction Model

RBPNN was applied to further predict the taste intensity scores by the electronic
tongue as compared to linear methods caused by its high performance. The two
types of input data for RBFNN were selected to be the same as those for PLS. First,
the k-means clustering algorithm was adopted to determine a proper data center
for the radial basis function of the hidden layer nodes and then an appropriate
overlap value and the number of hidden layer nodes were selected using different
combination of the two parameters. The optimization range of overlap was 1–3, while
the number of hidden layer nodes was 4–10. The optimization goal was the minimum
RMSE value of RBFNN. The prediction error results showed that the error of the
models decreases with increasing number of hidden layer nodes. However, after
the hidden layer nodes increased to a certain number, “overfitting” was observed,
leading to an increase in error. Hence, the optimum number of hidden layer nodes
for the two types of constructed RBFNN models was determined according to the
average minimum RMSE value after three times validation. In one construction
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of 7-8-1, the lowest average RMSEs of 0.139 and 0.1209 were predicted for umami
and saltiness, respectively, with an optimized overlap of 2; the optimum number
of the hidden layer nodes was 8. On the other hand, for the other construction of
4-6-1, the lowest average RMSEs of 0.1533 and 0.1793 were predicted for umami and
saltiness, respectively, with an overlap of 2, and the optimum number of hidden
layer nodes was 6.

Table 4 summarizes the prediction results. It lists the RMSE, maximum error,
mean absolute error (MAE), and R2, and rows having different taste attributes and
different input data (using sensor voltage responses and four PCs). It also shows PLS
results for comparison.

The prediction ability of the RBFNN model can be seen directly in Table 4. It
shows a comparison of the prediction error for umami or saltiness assigned by using
the response voltage values from the seven sensors and the first 4 PCs values; an R2

of 0.994 and RMSE, Maximum error and MAE of 0.139, 0.1531 and 0.13, respectively,
was better than that by the first 4 PCs values, for which an R2 of 0.992 and RMSE,
Maximum error and MAE of 0.1533, 0.2738 and 0.14, respectively. Similarly, the model
prediction results for the intensity of saltiness were shown. A strong correlation was
observed between the scores predicted by the electronic tongue using the response
voltage data and the actual saltiness scores obtained from sensory analysis with
an R2 of 0.998 and RMSE, Maximum error and MAE of 0.1209, 0.2162 and 0.115,
respectively. The latter also had an excellent correlation by using the first 4 PCs as
model data input with an R2 of 0.996 but with a relative higher error of 0.1793, 0.2275
and 0.169, respectively.

Table 4. Comparison of the model for the ability to predict different errors and R2

for DEH.

Models Taste Prediction Input Data RMSE Maximum Error MAE R2

PLS
umami

voltage response 0.7237 0.5056 0.222 0.9805/0.96544
the first 4 PCs 1.024 0.7044 0.246 0.9723/0.9481

saltiness
voltage response 0.3255 0.241 0.117 0.9812/0.9872

the first 4 PCs 0.4523 0.4965 0.119 0.9886/0.9708

RBFNN
umami

voltage response 0.139 0.1531 0.13 0.994
the first 4 PCs 0.1533 0.2738 0.14 0.992

saltiness
voltage response 0.1209 0.2162 0.115 0.998

the first 4 PCs 0.1793 0.2275 0.169 0.996

The assessment results using RBPNN model to predict taste showed that the
results obtained from all four RBFNN prediction models well correlated with those
obtained from the actual sensory analysis scores. In the same prediction of taste
intensity, RBFNN with model input data from the response voltage values of seven
sensors exhibited better ability to predict scores than that with model data from the
first 4 PCs, caused by the relatively lower RMSE. In the study, RBFNN exhibited
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the best ability to predict the intensity for saltiness using the input data from the
response voltage value of seven sensors, with the lowest RMSE of 0.1209.

A comparison of the taste assessment by the RBPNN and PLS prediction models
shown in Table 4 indicated that RBPNN exhibited a stronger correlation with higher
correlation coefficients and better taste prediction ability with a relatively lower error
than those of PLS. For the construction of the two taste prediction models, using the
response voltage values of the sensors of the electronic tongue, as compared to the
first four PCs, was better.

However, despite the good prediction results obtained with both PLS and
RBFNN, it is necessary to highlight that prediction results may be overoptimistic if
some of the measurements in similar hydrolyzate solutions prepared from similar
peanut meal samples were used both for calibration and validation.

4. Conclusions

Qualitative and quantitative assessment of taste attributes of peanut meal
DEH samples using an electronic tongue was attempted. Concretely, the electronic
tongue was used for the qualitative assessment of the taste attributes of peanut
meal DEH using PCA and DFA, and the quantitative taste was evaluated by the
scores predicted by employing PLS and RBFNN models. The two taste scores from
the prediction models were compared on aspects of predictive abilities of umami
and saltiness intensity and the correlation between electronic tongue and sensory
analysis. The results showed the electronic tongue could distinguish five tastes with
different concentrations and different peanut meal DEH, which is an easy and visual
indicator of the taste attributes shown in the map. Both prediction models used for
quantitative assessment can evaluate taste scores in peanut meal DEH. As compared
to the PLS prediction model, the RBPNN prediction model showed a stronger
correlation with higher correlation coefficients and better ability to predict taste with
a relatively lower RMSE. Moreover, the results further proved good consistency with
those obtained by sensory analysis and gel exclusion chromatography, indicating
that the electronic tongue is an effective tool for the assessment of complex taste
attributes as it involves a less sample preparation time and short analysis time.
Furthermore, this study demonstrated applications of the electronic tongue in the
assessment of hydrolysates with high bitterness or unpleasant tastes such as single
enzymatic-hydrolysis hydrolysates. The study provides a new taste assessment
tool for the preparation of flavor base with peanut meal DEH in the food industry.
Finally, future efforts may involve further construction of more models, validation
and correlation between the electronic tongue, and sensory analysis or other chemical
methods with increasing various peanut meal DEH samples under different types
of enzymolysis, as well as taste assessment to mimic the human tongue as better
as possible.
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Fruit Quality Evaluation Using Spectroscopy
Technology: A Review
Hailong Wang, Jiyu Peng, Chuanqi Xie, Yidan Bao and Yong He

Abstract: An overview is presented with regard to applications of visible and
near infrared (Vis/NIR) spectroscopy, multispectral imaging and hyperspectral
imaging techniques for quality attributes measurement and variety discrimination
of various fruit species, i.e., apple, orange, kiwifruit, peach, grape, strawberry,
grape, jujube, banana, mango and others. Some commonly utilized chemometrics
including pretreatment methods, variable selection methods, discriminant methods
and calibration methods are briefly introduced. The comprehensive review of
applications, which concentrates primarily on Vis/NIR spectroscopy, are arranged
according to fruit species. Most of the applications are focused on variety
discrimination or the measurement of soluble solids content (SSC), acidity and
firmness, but also some measurements involving dry matter, vitamin C, polyphenols
and pigments have been reported. The feasibility of different spectral modes, i.e.,
reflectance, interactance and transmittance, are discussed. Optimal variable selection
methods and calibration methods for measuring different attributes of different
fruit species are addressed. Special attention is paid to sample preparation and
the influence of the environment. Areas where further investigation is needed and
problems concerning model robustness and model transfer are identified.

Reprinted from Sensors. Cite as: Wang, H.; Peng, J.; Xie, C.; Bao, Y.; He, Y. Fruit
Quality Evaluation Using Spectroscopy Technology: A Review. Sensors 2015, 15,
11889–11927.

1. Introduction

Over the last couple of decades, with the rapid development of the economy
and improvement of living standards, fruit consumption has increased significantly.
Meanwhile, consumers have higher expectations of fruit qualities such as ripeness,
firmness, soluble solids content (SSC) and acidity. However, many fruit quality
attributes affecting consumer acceptance and price are still tested using traditional
approaches which are either subjective or time-consuming, so it should be a surprise
that how to measure fruits’ internal and external attributes nondestructively and
rapidly has become a research hotspot. Researchers all over the world have
investigated the potential of various technologies, including acoustic techniques,
spectroscopic techniques, machine vision and electronic noses, for the assessment of
fruit qualities. Among all these technologies, spectroscopic techniques have drawn
great attention for their prominent advantages: (1) they are nondestructive methods
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which enable the acquisition of fruits’ internal quality parameters without damaging
their surfaces; (2) the measurement processes are simple and rapid, as no complex
pretreatments or chemical reactions on fruit samples are needed; (3) they enable
the detection of several fruit internal attributes simultaneously. As a disadvantage,
however, the small point-source measurements which are commonly used in spectral
assessment cannot provide spatial information, which is important in many fruit
quality evaluation instances.

Imaging and spectroscopy are two important directions of conventional optical
technology. Imaging techniques can obtain the images of fruits and acquire
their spatial information while spectroscopy provides access to information about
the chemical components and physical properties of fruits by obtaining optical
information. Imaging spectral techniques enable the acquisition of fruit images
and spectral information simultaneously, with the advantages of high spectral
resolution and multiple wavebands. According to the spectral resolution, imaging
spectroscopy can be divided into multispectral imaging, hyperspectral imaging and
ultra-spectral imaging. Multispectral imaging and hyperspectral imaging are proved
to be feasible for the measurement of fruit quality parameters. However, few papers
concerning both imaging technique and spectroscopy technique can be found yet,
so in this review, most attention was paid to spectroscopic techniques, rather than
imaging techniques.

Visible and near infrared (Vis/NIR) radiation covers the range from 380–2500
nm in the electromagnetic spectrum. As the signals of almost all major structures
and functional groups of organic compounds can be detected in the Vis/NIR
spectrum with a considerably stable spectrogram, spectra in the Vis/NIR range
are frequently used for analysis [1]. Wavebands which are commonly used in
multispectral and hyperspectral imaging technologies to assess fruit quality are
also in the Vis/NIR region [2–5]. When incident radiation hits a sample, it may
be reflected, transmitted or absorbed. Correspondingly, a spectrum is obtained in
the reflectance, transmittance or absorbance mode, each of which can reflect some
physical attribute and chemical constitution of the sample.

After the spectrum is obtained, chemometric methods are applied to extract
information concerning the quality attributes and to eliminate the interference of
factors irrelevant to sample concentration. In general, chemometrics consist of two
parts, spectral pretreatments and regression methods.

The objective of this review is to offer a comprehensive overview of the use of
Vis/NIR spectroscopy, multispectral imaging and hyperspectral imaging techniques
in the measurement of various fruit quality attributes. We will briefly introduce the
chemometric methods commonly used, and pay extra attention to the identification
of optimal methods for variable selection and quality measurement.
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2. Chemometrics

Applications of spectroscopy as well as multispectral and hyperspectral imaging
technologies to measure fruit quality attributes are usually carried out in the Vis/NIR
region since spectra in this range incorporate abundant information concerning
O-H, C-H and N-H vibration absorptions [6]. However, in this region, the spectrum
is basically dominated by water which highly absorbs near infrared radiation [7].
Besides, the Vis/NIR spectrum has a low signal-to-noise ratio and high overlap
of combination bands and overtones, not to mention the complex constitution of
fruits, wavelength-dependent light scattering and instrumental noise. All these cause
the convolution of the Vis/NIR spectrum. Therefore, chemometrics are applied for
extracting information concerning certain quality attributes from the spectral data.

2.1. Pretreatment Methods

2.1.1. Smoothing

Smoothing is an effective approach for removing high-frequency noise from
a spectrum and improving the signal-to-noise ratio. Its basic idea is to obtain an
optimal estimation value through the “averaging” or “fitting” of several points in
a window. The broader the window is, the lower the spectral resolution would
be. Thus it is crucial to choose the window width properly. Based on different
smoothing fit methods, smoothing could be divided into moving average smoothing,
Gaussian filter smoothing, median filter smoothing and Savitzky-Golay smoothing
(S-G smoothing). Sun et al. [8] proved that moving average smoothing was the most
feasible pretreatment method for SSC prediction of navel oranges, and Roger and
Bellon-Maurel [9] applied NIR spectra processed with moving average smoothing
for the measurement of sugar content in cherry fruit. However, smoothing is usually
used in combination with other pretreatment methods, such as Multiplicative Scatter
Correction (MSC). Liu and Zhou [10] claimed that the combination of 1st derivative,
MSC and smoothing was feasible to process Vis/NIR transmittance spectra for
predicting SSC in apples.

2.1.2. Offset Correction

This is a centralized processing method which is realized by subtracting the
average value of the first few wavelength points (for example five) from each
spectrum. Offset correction only adjusts the baseline drift, leaving the spectrum
shape unchanged. It is mainly used for weakening the influence of instrumental
noise, optical distance and detection environment.
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2.1.3. De-Trending

De-trending is an approach to eliminate the baseline drift in the spectrum.
Firstly a trend line was derived from spectral values and wavelengths through least
squares fitting, and then the trend line was subtracted from the original spectrum.
De-trending is often used in combination with standard normal variate correction
(SNV), which we could find in the studies of Sanchez et al. [11] who predicted
firmness in strawberries and Paz et al. [12], who predicted SSC and firmness in plums.

2.1.4. Multiplicative Scatter Correction (MSC)

First proposed by Ilari et al. [13], MSC was used to compensate the effect of
non-uniform scattering induced by diverse particle sizes, uneven distribution and
other physical effects in the spectral data. MSC is performed by linearizing each
spectrum to an “ideal” spectrum, which corresponds to the average spectrum of
the calibration set. The linear relationship between each spectrum and the average
spectrum is fitted through the method of least squares. This suggests that MSC is
feasible for removing the ‘ideal’ linear scattering and effects well when the linear
relationship between absorbance and sample concentration is good. The feasibility
of MSC was already confirmed by Liu et al. [14] and Shao et al. [15].

2.1.5. Standard Normal Variate (SNV)

Basically the same as MSC, the objective of SNV is to eliminate the deviations
caused by particle size and scattering [16]. The method assumes that the absorbance
of each wavelength point in the spectrum meets some certain distribution such
as a Gaussian distribution. Based on this hypothesis, each spectrum is calibrated.
Firstly the average value of a spectrum is subtracted from the original spectrum,
and then the result is divided by the standard deviation (SD). For SNV effects on
each spectrum alone, the correction capability of SNV is usually stronger than that of
MSC. In the model established by Shi et al. [17] to evaluate the firmness of apples, the
relative standard deviation of prediction (RSDP) was reduced from 16.65% to 14.82%
after SNV processing.

2.1.6. Derivative Correction

As a widely-used pretreatment method, first and second derivatives are applied
to eliminate drifting and scattering, respectively. They can remove background
interference, distinguish superposed peaks and enhance the spectral resolution and
sensitivity. Two commonly-used spectral derivative approaches are direct finite
difference and Savitzky-Golay (S-G) derivatives. Before derivatization, smoothing
should be applied because derivatives may extract differences of adjacent wavelength
points and amplify spectral noise. Pissard et al. [6] proved S-G 1st derivative
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processing was the best pretreatment method, while Liu et al. [18] claimed that
the 2nd derivative was the best.

2.1.7. Wavelet Transformation (WT)

Introduced and applied in the study of Liu et al. [19], WT is an emerging
signal and image processing method. In spectral analysis, WT is often used for
data compression, smoothing and filtering, as well as the extraction of effective
information. By applying a basis function, chemical signals can be decomposed
into various scale compositions according to their different frequencies. Sampling
windows of corresponding width are applied to scale compositions of different sizes,
thus any part of the signal could be focused on. Narrow windows could be used to
observe drastic changes while wide windows could be used to observe the overall
features of the spectrum. Among the various wavelet functions, some were proved to
be quite effective, such as Daubechies and Symlets. Xia et al. [20,21] chose Daubechies
3 while Shao and He [22] applied Daubechies 2.

2.1.8. Orthogonal Signal Correction (OSC)

When there’s little correlation between the spectral matrix and the concentration
matrix of certain quality attributes or the background noise is big, the first several
principal components (PCs) selected by PLS or PCA contain very limited information
about the concentration matrix. Eliminating these irrelevant signals before calibration
through some orthogonal approaches could effectively reduce the number of PCs and
enhance the prediction ability as well as stability of the calibration model. Therefore,
OSC was introduced to calibration transfer by Sjoblom et al. [23]. In addition, OSC
could also be applied to solve problems concerning model transfer and outlier
detection. Its outstanding ability of improving the prediction ability was proved by
Shi et al. [17], who applied direct OSC (DOSC) in his study.

2.1.9. Net Analyte Preprocessing (NAP)

Introduced by Goicoechea et al. [24], NAP is mainly used for extracting spectral
information concerning a certain ingredient in the spectra of the mixture. The
feasibility of NAP was proved by Lv et al. [25].

2.2. Variable Selection Methods

Due to the abundance of information and severe nonlinearity in the full
spectrum, some processing methods have been applied on the original spectral
data in the whole wavelength range to extract characteristic wavelengths (CWs) with
the highest predictive ability. In this way the number of input variables is reduced
and the calibration time is shortened.
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2.2.1. Successive Projections Algorithm (SPA)

Introduced by Araujo et al. [26], SPA is a forward selection method searching for
a group of variables with minimum redundant information and minimal collinearity
through simple operations in a vector space. Starting with one wavelength, SPA
incorporates a new wavelength during each iteration until a certain number is
reached. The CWs extracted by SPA could represent the spectral information of
most samples and avoid information overlap at the highest degree possible. In
the study of Zhang et al. [27], the Least Squares Support Vector Machine (LS-SVM)
model combined with SPA could yield a result better than that of the LS-SVM for
full spectrum.

2.2.2. Regression Coefficient (RC)

RCs could be obtained during the calibration of partial least squares regression
(PLS) [28]. The RC value corresponding to each wavelength point represents its
ability to affect the predictive performance of the model. Thus based on the absolute
value of RCs, CWs could be identified.

2.2.3. Loading Weights (LW)

Loading weights could also be obtained during the calibration of PLS. Under
each latent variable, loading weights corresponding to wavelengths could be
obtained and their absolute values illustrate the wavelengths’ impact on the
prediction model, so a wavelength with the maximum loading weight value is
selected as the CW and the number of CWs is the same of the number of latent
variables. Fernandez-Novales et al. [29] used CWs selected by the loading weights of
latent variables to build a MLR model for sugar content prediction and obtained a
satisfactory result.

2.2.4. Genetic Algorithm (GA)

As an effective global searching method, GA mimics the competitive mechanism
of survival of the fittest in biological world. Based on a fitness function, GA is an
iterative process starting from a population of randomly generated individuals and
achieves optimal solutions through genetic operations including crossover, selection
and mutation. When GA is applied for variable selection, the number of iterations
is set, usually above 100 and root mean square error for cross validation (RMSECV)
is often used as the fitness function. After the iteration, the variables are realigned
based on the frequency they are selected. The variable with the highest frequency
is used for calibration and one more variable is included each time sequentially.
The optimal number of variables used is determined when a minimized RMSECV
is achieved. Through such operation, irrelevant spectral information is eliminated
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and the number of spectral variables is reduced. Cao et al. [30] executed GA for the
selection of CWs for predicting SSC in grapes and yielded a satisfactory result.

2.2.5. Competitive Adaptive Reweighted Sampling (CARS)

CARS is a novel wavelength selection method introduced by Li et al. [31].
Wavelengths with large absolute coefficients are sequentially identified as the CWs
based on the adaptive reweighted sampling technique in a PLS model. A series of
variable subsets are obtained and cross validation is employed to choose the optimal
one with the lowest RMSECV. Sun et al. [8] validated that the CWs selected with
CARS could yield the best result.

2.2.6. Uninformative Variables Elimination (UVE)

UVE was first proposed by Centner et al. [32] and its basic approach is to add
some noise variables into the experimental variables and calibration models are
built with the mixed variables. The importance of each variable is evaluated and
the experimental variables with no more importance than the noise variables are
eliminated. The UVE method was employed by Sun et al. [8].

Readers are referred to the corresponding references for details about many other
effective variable selection methods that we do not introduce in detail here, including
backward interval PLS (BiPLS) [33], synergy interval PLS (siPLS) [34,35], independent
component analysis (ICA) [36], simulated annealing algorithm (SAA) [37] and
stepwise regression analysis (SRA) [27].

2.3. Discriminant Methods

2.3.1. Principal Component Analysis (PCA)

With the application of PCA, a set of principal components (PCs) are obtained.
The first PC contains the largest percentage of data variance and the variance
decreases in the following PCs. These PCs are linear combinations of the original
spectral data but uncorrelated with each other, endowing their ability to handle
multicollinearity. PCA is often utilized in combination with other discriminant
methods [38–41].

2.3.2. Partial Least Squares-Discriminant Analysis (PLS-DA)

Introduced by Liu et al. [42], PLS-DA is a method commonly applied for optimal
classification. Based on PLS regression, PLS-DA uses dummy variables such as 1, 2,
3, i.e., as variables of Y matrix instead of the concentration of some quality attributes.
The optimal number of PLS components are decided by full cross-validation. The
feasibility of PLS-DA was proved by Cen et al. [39] and Hao et al. [43].

63



2.3.3. Soft Independent Modeling of Class Analogy (SIMCA)

When SIMCA is applied, a PCA model is established for each class in a certain
training data set. Then each observation is assigned to a class based on its residual
distance from the model. However, each model is established independently without
consideration of other classes. Due to the overlapping between classes, there’s a
chance of producing a non-optimized discriminant model. SIMCA was employed by
Cao et al. [40], Baranowski et al. [44] and Hao et al. [43].

2.3.4. Linear Discriminant Analysis (LDA)

Introduced and used by Baranowski et al. [44], LDA is commonly used in
machine learning to search for a linear combination of characteristics separating
different classes of objects. It offers a linear transformation of n-dimensional feature
vectors into an m-dimensional space (m < n). This linear combination could be used
as a classifier or for data dimensionality reduction.

2.3.5. Support Vector Machine (SVM)

Like SIMCA and LDA, SVM is a pattern recognition method which is quite
useful for supervised classification. It is feasible to both linear and nonlinear data, by
using kernel function, which maps from the original space to the feature space and
guarantees the ability to handle nonlinear classification. With the use of statistical
learning, a hyperplane for optimal discrimination is determined. The feasibility of
SVM has been proved by Baranowski et al. [44] and Guo et al. [45]. Other commonly
applied discriminant methods include stepwise discriminant analysis (SDA) [46,47],
and BP-ANN [15,48–50].

2.4. Calibration Methods

2.4.1. Multiple Linear Regressions (MLR)

MLR predicts the dependent variables by a linear combination of spectral values
at each wavelength point. The error between predicted and measured values is
minimized in a least squares sense. In spectral analysis, multicollinearity between
the variables degrades the performance of MLR algorithms. MLR was successfully
employed by Peiris et al. [51] and ElMasry et al. [52]. However, Jaiswal et al. [53]
reported a big gap between rc and rp in the MLR model they built, indicating
unstable prediction.

2.4.2. Principal Component Regression (PCR)

In PCR, a small number of principal components (PCs) are selected by a principal
component analysis (PCA). These PCs are applied as predictors instead of the original
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spectral data and used to fit a MLR model. PCR was used for calibration in the
studies of Park et al. [54] and Angra et al. [55], with the advantage of eliminating the
multicollinearity for the PCs are uncorrelated. However, Hadi and Ling [56] pointed
out the potential drawback that the PCs are decided only according to the variables
and they may contain little information about the dependent variables.

2.4.3. Partial Least Squares Regression (PLS)

To overcome the drawback of PCR, PLS regression was introduced by
Wold et al. [57]. It predicts the dependent variables by extracting a smallest possible
set of orthogonal factors with greatest predictive abilities from the variables. These
orthogonal factors, called latent variables (LVs) were arranged according to the
relevance for predicting the dependent variables. Synthesizing the sense of principal
component analysis (PCA) and multiple linear regressions (MLR), PLS regression
is especially feasible in circumstances where multicollinearity exists between the
variables and the number of latent variables is usually smaller than that in the
PCR regression. The advantage toward PCA was confirmed by Liu et al. [58] and
Lu et al. [59]. Lots of researchers have applied PLS in their studies, including
Shan et al. [5] and Bureau et al. [60].

2.4.4. Least Squares Support Vector Machine (LS-SVM)

LS-SVM is an emerging statistic learning algorithm which improves the
generalization ability of the learning machine based on the principle of structural risk
minimization [42]. The computational complexity and quality of the support vector
machine does not directly depend on the dimension of input data. Therefore, LS-SVM
is widely applied in pattern recognition and function regression for the advantage
of limited over-fitting, high predictive reliability and strong generalization ability.
LS-SVM is especially feasible for circumstances of small sample space modeling.
LS-SVM was applied as the best calibration method in the studies of Suykens and
Vanderwalle [61], Zhang et al. [27], Liu and Zhou, Pissard et al. [10] and Liu et al. [62].

2.4.5. Artificial Neural Network (ANN)

ANN has been widely used in NIR calibration. Usually an ANN model consists
of three layers of neurons, which are the input layer, the hidden layer and the output
layer. Each neuron in the previous layer is connected to each neuron in the latter
layer and every connecting line has a weight factor, the value of which is assessed
based on a calibration set using cross validation and keeps changing with the influx
of new information. The value of neurons in the hidden layer is decided by weighted
sum of values of neurons in the input layer using a nonlinear function and the value
of neurons in the output layer is decided by the values of neurons in the hidden
layer similarly. In certain circumstances the predictive performance of the ANN
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model may be excellent, but it also faces drawbacks such as slow training speed,
over-fitting and the visualization difficulty. ANN was proved effective in the studies
of Liu et al. [63], Zhang et al. [64] and He et al. [65].

These mentioned above are the most commonly applied calibration methods.
Other improved approaches such as Spline-PLS [18] and stepwise MLR [66] have
been introduced and utilized by some researchers.

2.5. Model Evaluation

The prediction ability of a calibration model is mainly evaluated by the
correlation coefficient (r) and root mean square error (RMSEP) between the predicted
value and the measured value in validation set. The higher is the correlation
coefficient and the lower is the RMSEP, the better is the prediction performance.
When cross validation is employed, the prediction performance could also be
assessed by the root mean square error for cross validation (RMSECV).

Other commonly used evaluation parameters include the standard error
of prediction (SEP), the standard error of cross validation (SECV), the residual
predictive deviation (RPD) and relative standard deviation (RSD). RPD is the ratio
of standard deviation of the dependent variable to RMSEP or RMSECV. According
to Nicolai et al. [7] and Pissard et al. [6], for a prediction model, when the RPD
value is between 2 and 2.5 coarse prediction is possible, while an RPD value above
2.5 indicates good to excellent prediction. A similar standard was defined by
Davey et al. [67], who proved that total carotenoids and β-carotene in banana could
be measured accurately (RPD = 3.34, 2.74, respectively), α-carotene and c-carotene
could be predicted coarsely (RPD = 1.68 and 1.96 respectively), and lutein could not
be predicted (RPD = 1.16).

3. Quality Evaluation for Different Fruit Varieties

Spectra in the Vis/NIR range contain abundant information concerning O-H,
C-H and N-H vibration absorptions [6], making the measurement of various quality
attributes of fruits possible. Some wavebands contain typical absorption bands for
some chemical groups. A brief overview was presented in Table 1 to give some
guidance for waveband selection.
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Table 1. Overview of wavebands containing typical absorption bands for certain
chemical groups.

Quality Attribute Chemical Group Wavelength/nm Ref.

Sugar O-H 1190, 1400 [68]

SSC

C-H 910 [69]
O-H 960, 1450

[14]C-H and O-H 1210
O-H 975 [70]

O-H 960, 1180, 1450,
2000

[27]C-H 963
Combination bands of C-H and O-H 2000–2500

O-H and C-H 950–1075 [71]

Acidity
C-O from COOH 1607

[72]O-H from carboxyl acids 1127
C=O from saturated and unsaturated carboxyl

acid 1437

pH C-H 768
[73]O-H 986

3.1. Apples

Apples are among the most widely cultivated and eaten fruits all over the world.
Important attributes affecting the taste of apples include firmness, sugar content and
acidity. During the harvest and transport of apples, bruising is inevitable and could
affect the quality attributes including appearance, water loss and enhance the risk of
bacterial and fungal contamination. The discrimination of bruised apples from the
intact ones could ensure the postharvest quality. Other important attributes such as
vitamin and polyphenol content also have drawn some attention. A brief overview
is presented in Table 2.

Table 2. Overview of the applications for measuring quality attributes in apple.

Quality
Attribute Cultivar Method Spectral

Mode
Spectral

Range/nm
Calibration
Method rp SEP Ref.

SSC or
sugar

content

GA Spectroscopy Reflectance
800–1100

PCR
0.97 0.28

[54]RD 800–1100 0.98 0.34

GD Hyperspectral
imaging Reflectance 500–1000 PLS

0.88 0.7
[4]JG 0.78 0.7

RD 0.66 0.9

Various Spectroscopy Reflectance 800–1600 PCR Unknown 0.73–1.78 [55]
FJ Spectroscopy Transmittance 505–1031 LS-SVM 0.98 0.29 [10]

Unknown Spectroscopy Reflectance 482–1009 PLS 0.96 0.23 (RMSEP) [33]
FJ Spectroscopy Reflectance 833–2500 PLS 0.98 0.69–0.72 (RMSEP) [68]

FJ Hyperspectral
imaging Reflectance 480–1016 PLS 0.92 0.67 [5]

Various Spectroscopy Reflectance 400–2500 LS-SVM 0.97 0.37 [6]
Various Spectroscopy Reflectance 5882–9900 PLS ě0.98 1.9%–3.4% (RMSEP) [60]

Titratable
acidity

Various Spectroscopy Reflectance 5882–9900 PLS
0.98 6.0% (RMSEP)

[60]Malic acid 0.98 4.7% (RMSEP)
Citric acid 0.34 100% (RMSEP)
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Table 2. Cont.

Quality
Attribute Cultivar Method Spectral

Mode
Spectral

Range/nm
Calibration
Method rp SEP Ref.

Firmness

GA Spectroscopy Reflectance
800–1100

PCR
0.47 4.9 [54]RD 400–1800 0.89 7.0

GD Hyperspectral
imaging Reflectance 500–1000 PLS

0.87 5.9
[4]JG 0.95 7.1

RD 0.84 8.7

FJ Spectroscopy Reflectance 1000–2339 PLS 0.82 14.1 (RSD) [17]

Total
polyphenol

Various Spectroscopy Reflectance 400–2500 LS-SVM 0.97 140 [6]
Various Spectroscopy Reflectance 6378–9900 PLS 0.98 87.1 (RMSEP) [60]

Vitamin C Various Spectroscopy Reflectance 400–2500 LS-SVM 0.90 0.049 [6]

GA: Gala; RD: Red Delicious; GD: Golden Delicious; JG: Jonagold; FJ: Fuji; IA:
Indian apples.

3.1.1. Soluble Solids Content (SSC) or Sugar Content

Park et al. [54] found that by using spectra ranging from 800 to 1100 nm, SSC
in GA and RD could both be predicted with excellent accuracies (rp = 0.97, 0.96;
SEP = 0.28, 0.34, respectively). Angra et al. [55] evaluated Brix values of Indian apple
along with apples from other countries. Reflectance spectra were acquired at ten
wavelengths in the range of 800–1600 nm and the change in spectral reflectance
caused by apple shape was eliminated by normalizing the spectral reflectance
against a non-absorbing wavelength. SSC values of all cultivars could be predicted
with SEPs of 0.73–1.78. Liu and Zhou [10] built models with PLS and LS-SVM,
respectively, using Vis/NIR transmittance spectra, and the LS-SVM model (r = 0.98,
SEP = 0.29) outperformed the PLS one. The superiority of LS-SVM was proved by
Pissard et al. [6], who predicted sugar content in more than 150 apple genotypes
with Vis/NIR reflectance spectroscopy in the wavelength range of 400–2500 nm. S-G
first derivative was proved to be the best data pretreatment and the LS-SVM yielded
excellent result, with rp of 0.97, SEP of 0.37˝Brix and RPD of 4.3. Ouyang et al. [33]
compared the performance of PLS combined with the backward interval partial least
squares method (BiPLS-PLS), genetic algorithm (GA-PLS) and successive projection
algorithm (SPA-PLS), respectively. GA-PLS performed the best, with rp increased
from 0.93 to 0.96 and RMSEP decreased from 0.30˝Brix to 0.23˝Brix compared to the
PLS model built with full spectrum (482–1009 nm).

Wang et al. [74] found the fluctuation of temperature could influence the
prediction accuracy in a nonlinear way. When no precautions were taken, the SEP
of the SSC prediction model could reach as high as 2.55. They offered two methods
to enhance the accuracy: a temperature variable-eliminating calibration model and
a global robust calibration model, both of which performed well, with RMSEP of
0.72 and 0.69, respectively. Bureau et al. [60] monitored the change in sugar content
during sample preparation. Results showed that different conditions of sample
preparation could not affect the sugar concentration. Mid-infrared spectra in the
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range of 5882–9900 nm showed an excellent ability for predicting sugar content
(rp ě 0.98 and RMSEP ď 3.4%).

Mendoza et al. [4] combined spectroscopy with image analysis, reducing the
SEPs by 11.2, 2.8 and 3.0% (rp = 0.88, 0.78, 0.66; SEP = 0.7%, 0.7%, 0.9%) for GD, JG and
RD, respectively. Shan et al. [5] observed a slightly better result with hyperspectral
imaging in the range of 480–1016 nm for ‘Fuji’ apple. The PLS model based on spectra
processed with MSC, 1st derivative and S-G smoothing sequentially yielded an rp of
0.92 (SEP = 0.67˝Brix). Zou et al. [75] combined a near-infrared spectrophotometer, a
machine vision system, and an electronic nose system through ANN to classify ‘Fuji’
apples based on sugar content, making the classification error drop from around 17%
when only NIR spectra were used to around 6%.

According to all these studies above, Spectroscopy combined with other
measurements performs well in prediction of SSC in apples. However, they all have
some drawbacks. NIRS could not obtain the spatial information of samples. The
hyperspectral imaging technique had a relatively poor performance in SSC prediction
compared with spectroscopy, and the presence of bruises seriously influences the
prediction of SSC. MIR shows a good ability to estimate sugar content. However,
MIR needs the crushing to sample preparation, which makes it comparatively time
consuming. In all, SSC or sugar content of apple could be predicted with good
performance though subtle differences existed among cultivars.

3.1.2. Acidity

Bureau et al. [60] employed mid-IR spectroscopy in the 5882–9900 nm range
to measure organic acids. Through monitoring its quantitative changes, the
concentration of organic acids was proved to be unaffected by different conditions
of sample preparation, such as storage temperature, sample grinding and sample
oxidation. Mid-infrared spectra were feasible for predicting organic acid contents
(rp ě 0.98; RMSEP ď 4.7%), except for citric acid (rp = 0.75), probably due to its very
low content in apple fruit.

3.1.3. Firmness

As shown in Table 2, Park et al. [54] predicted the firmness using Vis/NIR diffuse
reflectance spectra. According to the PCR models they built, a pretty good result
could be obtained for RD using the full spectrum (rp = 0.89, SEP = 7.0). However,
for GA, the rp and SEP could only reach 0.47 and 4.9, respectively. In the study
of Shi et al. [17], after DOSC combined with first derivative was employed to filter
out the background and extract useful information, the model was simplified and
an acceptable result was obtained (rp = 0.82; RSDP = 14.08%). Mendoza et al. [4]
employed critical spectral and image features extracted from hyperspectral scattering
images in the wavelength range of 500–1000 nm to predict the firmness. Spectral

69



scattering in combination with image features could significantly improve the
prediction. The standard error of prediction (SEP) for GD, JG and RD apple was
reduced by 6.6%, 16.1% and 13.7%, respectively (rp = 0.87, 0.95, 0.84; SEP = 5.9%,
7.1%, 8.7%). These investigations indicated fluctuations in firmness prediction of
apple fruit with regard to different varieties. By contrast, hyperspectral imaging
shows better performance than spectroscopy in the firmness prediction, though less
performance in the SSC prediction.

3.1.4. Total Polyphenols

Pissard et al. [6] established an LS-SVM model for the prediction of total
polyphenol content in apples using spectra recorded in the 400–2500 nm region.
S-G 1st derivative was proved to be the best pretreatment method. The model
performed well with rp of 0.97 and SEP of 140 mg/g. A similar result was obtained by
Bureau et al. [60], who applied mid-infrared spectroscopy in the 6378-9900 nm range.
The PLS model they established performed excellently, with rp of 0.98 and RMSEP of
9.0%. They also found phenolic compounds, contrary to sugar content and organic
acid, could be affected by sample oxidation, grinding and storage temperature in a
descending order of degree. The two researches proved the feasibility of predicting
total polyphenol levels in apple using spectroscopic technology.

3.1.5. Variety Discrimination

He et al. [48] applied Vis/NIR diffuse reflectance spectra to discriminate apple
cultivars. Spectra of three cultivars including ‘Fuji’, ‘Red Delicious’ and ‘Copefrut
Royal Gala’ in the wavelength range of 400–960 nm were obtained, processed with
moving average and compressed using PCA. Based on the loading plots, wavebands
of 650–690 nm and 550–565 nm were identified as being sensitive to varieties and used
as input of a BP-ANN model. A discriminant accuracy of 100% could be achieved,
with a residual error of 9.94 ˆ 10´5. Moreover, wavelet transformation (WT) based
on Daubechies 5 could reduce the size of variables to 4% [48]. Guo et al. [45] applied
hyperspectral images in the wavelength range of 400–1000 nm for discrimination
according to origins. Three CWs around 576, 678 and 971 nm were selected by
PCA and texture analysis based on gray level co-occurrence matrix (GLCM) and
used to build a SVM model, yielding a discriminant accuracy of 89.86% for the
predicting sets. The excellent discriminant performance of CWs and wavebands
indicated the bright future of online classification and instrument development. In
the variety discrimination, spectroscopic and hyperspectral imaging techniques both
show excellent performance with appropriate multivariate calibration techniques.

70



3.1.6. Bruise Detection

Luo et al. [76] selected characteristic wavelengths (CWs) in the 380–1000 nm
range for bruise detection. Each CW was considered as an independent classifier for
bruise/normal identification and evaluated with receiver operating characteristic
(ROC) analysis. The performance of the model based on CWs was compared with
the PLS-DA model based on the full spectrum. The accuracies of both methods could
exceed 95%. Similar accuracies was obtained by Baranowski et al. [44], who detected
early bruises on six apple cultivars using hyperspectral imaging in the Vis/NIR
region (400–2500 nm) and thermal imaging of emitted radiation in mid-wavelength
infrared range (MWIR, 3500–5000 nm). The whole spectral range (400–5000 nm) was
found useful. Minimum noise fraction (MNF) could yield accuracy rates of 87%–97%,
better than PCA. The performance of linear discriminant analysis LDA, SVM and
SIMCA were compared and the best one to distinguish bruised and intact apples
was LDA, with a total success rate of 95%, while the best result for distinguishing
deep and shallow bruised areas was obtained by SVM, with a total success rate of
77%. Huang et al. [77,78] employed two hyperspectral imaging systems in the
400–1000 nm and 1000–2500 nm range, respectively. PCA was used and CWs
were determined based on the weighting coefficients plot of the best PC images.
An overall classification accuracy of 90% and 97% could be obtained by the two
systems, respectively.

These research works proved the feasibility of bruise discrimination based on
spectra or hyperspectral images in the whole wavelength as well as characteristic
variables selected, indicating the potential of instrument development and online
detection. Although good performances were obtained based on spectroscopic
and hyperspectral imaging techniques for bruise detection in the NIR region,
subtle bruises could not be easily detected. The surface morphology and skin
coloration can significantly affect the performance of bruise detection. Thus a
chemometric-based hyperspectral imaging system is a good choice and is more
appropriate for online applications.

3.1.7. Pigment

Pigment content was proved to link with quality attributes such as SSC and
firmness. Zude et al. [79] found strong correlations between the peak absorbance of
chlorophyll at 680 nm and harvest date (r = 0.59), background color (r = 0.74) and the
starch index SI (r = 0.64). It also had some correlation with firmness (r = 0.48) and
SSC (r = 0.46). Rutkowski et al. [80] found the index of anthocyanin (NAI), calculated
as (I780I570)/(I780 + I570) significantly correlated with fruit firmness (r = 0.86) and
titratable acid (r = 0.81) in ‘Golden Delicious’ apples. They claimed that NAI was the
most suitable index to assess apple maturity, whereas Kuckenberg et al. [81] claimed
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NDVI better. Combined with further investigation, it could be concluded that the
most suitable index representing maturity of apple fruit was variety-specific.

3.1.8. Other Parameters

There are also some other attributes affecting the quality of apple that can be
measured spectroscopically. Pissard et al. [6] found that vitamin C varied greatly
among different cultivars. An overall model could just provide a coarse prediction
(r = 0.89).

Table 3. Overview of applications for measuring quality attributes in oranges.

Quality
Attribute Cultivar Method Spectral

Mode
Spectral

Range/nm
Calibration

Method rp RMSEP Ref.

SSC or
sugar

content

GN Spectroscopy Reflectance 361–2488 PLS 0.93 0.59 [58]
GN Spectroscopy Transmittance 1100–2500 PLS 0.90 0.46 [59]
GN Spectroscopy Reflectance 820–950 LS-SVM 0.92 0.32 [62]

Mixed Spectroscopy Reflectance 350–1800 PCA-BPNN 0.90 0.70 [63]

Mixed Spectroscopy Reflectance
500–2300

PLS
0.91 0.74 [82]1100–2300 0.89 0.68

GN Spectroscopy Reflectance 350–1800 PCA-BPNN 0.90 0.68 [14]
GN Spectroscopy Transmittance 350–1000 CARS-PLS 0.92 0.39% [8]
GN Spectroscopy Transmittance 465–1150 PLS 0.88 0.49% [83]

ST Spectroscopy Reflectance 400–1000 PCA-PLS
0.84 0.29 (SEP) [15]HY 0.87 0.30 (SEP)

GN Spectroscopy Reflectance 450–1750 Spline-PLS 0.87 0.47 [18]
GN Spectroscopy Reflectance 700–934 LS-SVM 0.85 0.41 [84]

Acidity

GN Spectroscopy Transmittance 1100–2500 PLS
0.64 0.70 [59]0.65 (pH) 0.13

Mixed Spectroscopy Reflectance
500–2300

PLS

0.83 0.17

[82]0.88 (pH) 0.15

1100–2300
0.77 0.19

0.81 (pH) 0.16

Vitamin C Mixed Spectroscopy Reflectance 1333–1835 PLS 0.96 0.039 [20,21]

GN: Gannan navel orange; HM: Hamlin orange; ST: Shatangju; HY: Huangyanbendizao.

3.2. Oranges

Rich in Vitamin C and other nutrients, orange is another widespread and
popular fruit. Due to its short maturity period, the supply and demand contradiction
is sharp. To extend the sales period, better storage and preservation methods are
required as the internal quality of oranges declines during storage. If there wasn’t a
rapid and simple approach to monitor their inner attributes, lots of oranges would
decay and lose value. Most of the studies on the quality assessment of oranges have
focused on attributes affecting its taste, including sugar content, acidity and Vitamin
C. A brief overview is presented in Table 3.
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3.2.1. SSC or Sugar Content

Liu et al. [58] applied Vis/NIR diffuse reflectance spectroscopy to predict SSC of
navel oranges. PLS models were built with 2nd derivative spectra in four different
wavebands strongly correlated with SSC, i.e., 361–2488 nm, 530–690 nm, 940–1420 nm
and 1630–2488 nm. The model based on 940–1420 nm spectra provided a good result,
with rp of 0.90 and RMSEP of 0.75, quite close to that obtained by the model based on
the full spectrum. The rp of the PLS and PCR models was 0.93 and 0.61, respectively,
with RMSEP of 0.59 and 0.69. The superiority of PLS to PCR was confirmed by
Lu et al. [59], while Liu et al. [62] found that LS-SVM outperformed PLS. This result
was in accordance with Sun et al. [84]. In the experiment of Liu et al. [18], the best
performance was achieved by Spline-PLS. Cayuela and Weiland [82] compared
500–2300 nm and 1100–2300 nm spectra. The 600–750 nm spectra were excluded as
they were strongly affected by skin chlorophyll, whose absorbance band corresponds
to 680 nm. The rcv yielded was 0.91 and 0.89 respectively, with RMSEP of 0.74
and 0.68. Shao et al. [15] also found the 970–990 nm waveband to be particularly
important while the 750–800 nm waveband made rather small contributions.

Moreover, Liu et al. [63] extracted characteristic wavelengths (CWs) by PCA,
and used them as input of an ANN, yielding an rp of 0.90 and a RMSEP of 0.70.
The result was quite similar with that reported by Liu et al. [14], who utilized
Vis/NIR diffuse reflectance spectra in the 350–1800 nm range. PLS and back
propagation neural network based on PCA (PCA-BPNN) were compared and the
best result was achieved by the PCA-BPNN model combined with MSC, with rp

of 0.90 and RMSEP of 0.68˝Brix. In the study of Sun et al. [8], several variable
selection methods including competitive adaptive reweighted sampling (CARS),
uninformative variables elimination (UVE) and SPA were compared. The best result
was achieved by the CARS-PLS model, with rp of 0.92 and RMSEP of 0.39%.

Xu et al. [83] investigated the influence of placement position. According to the
different angles between incident light and the line composed by orange stem and
pit, spectra were obtained at three different positions: vertical (90˝), parallel (0˝) and
random. The best result was yielded by the model built with vertical spectra, with rp

of 0.88, and RMSEP of 0.49%. Sun et al. [84] investigated the effect of three different
reference points i.e., λcv(max), λcv(min) and λcv(median), which were identified by
the coefficients of variation (CVs) at different wavelengths. The best result was
achieved when λcv(max) was used.

Taken together these results indicate that SSC or sugar content in oranges
could be excellently predicted using spectroscopy. Spectra in the NIR range were
particularly important for the prediction while spectra in the visible region could
enhance the accuracy. Meanwhile, with regard to measurement modes, transmittance
has slightly higher predictive outcomes than reflectance and interactance. Reflectance
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is the easiest mode to obtain measurements due to the relatively high light levels.
LS-SVM was proved slightly better than PLS and PCA.

3.2.2. Acidity

Lu et al. [59] employed Vis/NIR transmittance spectra to predict titratable acidity
and available acidity (pH) in ‘Gannan’ navel oranges. PLS models outperformed
PCR ones, but only coarse prediction results were obtained, with rp of 0.64 and 0.65
and RMSEP of 0.70 and 0.13, respectively. Cayuela and Weiland [82] got slightly
better results with PLS models based on reflectance spectra in the 1100–2300 nm
range. For pH, rcv was 0.81, while RMSEP was 0.16. For titratable acidity, rcv

was 0.77 while RMSEP was 0.19. Better results were obtained using spectra in the
500–2300 nm range, with rcv of 0.88 and 0.83, respectively, indicating the possibility
of acidity measurement using Vis/NIR spectroscopy. More efforts should be made
to enhance the prediction performance, because total acidity prediction by NIRS has
been considered difficult to achieve, due to the relatively low levels of organic acids
found in oranges.

3.2.3. Vitamin C

Xia et al. [20,21] predicted vitamin C content in oranges using spectra in the
833–2500 nm wavelength range. Several preprocessing algorithms were compared,
including constant offset elimination (COE), vector normalization (VN), MSC, first
and second derivative and Daubechies 3 WT with different decomposing levels.
Daubechies 3 WT at level 4 was proved to be the best. The optimal waveband for
prediction was 1333–1835 nm, and a PLS model built with spectra in this waveband
performed excellent, with rp of 0.96 and RMSECV of 0.039 mg/g, indicating the
feasibility of NIR spectroscopy for this application.

3.2.4. Variety Discrimination

Shao et al. [15] employed diffuse reflectance spectra in the 400–1000 nm region
to discriminate four cultivars, including ‘Shatangju’, ‘Huangyanbendizao’, ‘Gongju’
and ‘Huangdigan’. By using the predicted error sum of squares (PRESS) as an
indicator, Daubechies 1WT with a decomposition length of 5 was chosen. Afterward,
a BP-ANN model was established and yielded a discriminant accuracy of 100%,
with a residual error of 8.27 ˆ 10´5. Cen et al. [39] got a result at the same level
using reflectance spectra in the 325–1075 nm wavelength range. The combination of
BP-ANN and PCA yielded an accuracy of 100%, with rp of 0.998 and RMSEP of 0.18.
Hao et al. [43] compared the discrimination performance of SIMCA and PLSDA based
on diffuse reflectance spectra in the 350–1800 nm range. Both methods could reach a
discriminant rate of 100% for all of the four cultivars. These results illustrated that
orange varieties could be precisely classified using Vis/NIR spectroscopy technology.

74



3.2.5. Other Parameters

Deng et al. [85] found that reflectance spectrum at 988 nm significantly correlated
with SSC (r = 0.387**), SSC/acid ratio (r = 0.440**) and vitamin C (r = 0.309*). Both SSC
and vitamin C were positively correlated with second derivative reflectance spectrum
at 943 nm, with r of 0.339* and 0.355*, respectively. Cayuela and Weiland [82]
measured some other quality attributes of orange including maturity index, firmness,
juiciness, and fruit weight. Good results were acquired for most of these parameters,
with rcv of 0.66–0.96 and RPD of 1.31–4.76.

3.3. Kiwifruit

Kiwifruit is a popular fruit with important medicinal and edible value. As
a kind of climacteric variant fruit, the flavor and texture of kiwifruit change over
time, so monitoring its internal quality rapidly and nondestructively is of great
significance. Aside from indicators commonly used for assessing fruit quality, like
sugar content, acidity and dry matter content, the firmness of kiwifruit could greatly
affect its consumer acceptance. A number of investigations have been done. A brief
review is presented in Table 4.

Table 4. Overview of applications for measuring quality attributes in kiwifruit.

Quality
Attribute Cultivar Method Spectral

Mode
Spectral

Range/nm
Calibration

Method rp RMSEP Ref.

SSC or sugar
content

AD Imaging
spectroscopy Reflectance 650–1100 PLS 0.92 1.18 [2]

AD Spectroscopy Interactance 800–1100 PLS 0.95 0.39 [86]
HW Spectroscopy Transmittance 400–1000 PLS 0.93 0.26 [87]

AC Spectroscopy Interactance 520–1100 PLS 0.96 0.80
(SEP) [88]

Various Spectroscopy Interactance 800–1000 PLS 0.97 0.32% [89]

YF Spectroscopy Interactance 300–1140 PLS 0.96 0.31%
(SEP) [90]

HW Spectroscopy Reflectance 800–2500 PLS Unknown 0.68
(SEP) [91]

AD Spectroscopy Reflectance 408–2492 PLS 0.99 0.49 [92]

Acidity HW Spectroscopy Transmittance 400–1000 PLS 0.94 0.076 [87]

AD Spectroscopy Reflectance 408–2492 PLS 0.95 0.28%
(SEP) [92]

Firmness

AD Spectroscopy Interactance 800–1100 PLS 0.87 7.0 [86]
AD Spectroscopy Reflectance 408–2492 PLS 0.94 3.32 [92]
HY Spectroscopy Reflectance 833–2500 PLS 0.85 1.89 [19]
ZH Spectroscopy Reflectance 1000–2500 NAP-PLS 0.88 0.88 [27]

Dry matter

AD Spectroscopy Interactance 800–1100 PLS 0.95 0.42% [86]
Various Spectroscopy Interactance 800–1000 PLS 0.97 0.29% [89]

YF Spectroscopy Interactance 300–1140 PLS 0.98 0.24%
(SEP) [90]

ZH Spectroscopy Reflectance 1000–2500 siPLS 0.90 0.53% [34]

AD: Actinidia deliciosa; HW: Hayward; AC: Actinidia chinensis; YF: yellow-fleshed kiwifruit;
ZH: Zhonghua; HY: Huayou.
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3.3.1. SSC

McGlone and Kawano [86] employed interactance spectra to predict the SSC
of kiwifruit in the 800–1100 nm wavelength range. A PLS model built with 2nd
derivative spectra showed excellent performance, with r of 0.95 and RMSEP of
0.39˝Brix. The result was much better than those reported by Martinsen and
Schaare [2] and Moghimi et al. [87], who used reflectance and transmittance spectra,
respectively. The superiority of interactance spectra was confirmed by Schaare and
Fraser [88]. Lee et al. [92] predicted SSC with a broad spectral range (408–2492 nm),
and an excellent result was observed (rp = 0.99; SEP = 0.49˝Brix). McGlone et al. [89]
found the 800–1000 nm waveband performed well. They also proved the feasibility
of using data obtained from unripe kiwifruit to predict SSC of ripe fruit, with r of 0.96
and RMSEP of 0.39%. A similar investigation was done by McGlone et al. [90],
who proved that the SSC prediction model based on post-storage spectra was
better than that based on harvest-time spectra. A possible explanation was that
Vis/NIR spectroscopy was better at predicting total carbohydrate concentration,
which consists of starch and soluble sugar in about the same amounts at harvest time
but mainly of soluble sugar after storage. This was supported by the observation that
predicting SSC of post-storage kiwifruits by using the model built with harvest-time
spectra could yield more accurate results (SEP = ˘0.38%). Arazuri et al. [91]
investigated the influence of temperature. Reflectance spectra in the 800–2500 nm
range were obtained at three different sample temperatures (0.5, 10 and 20 ˝C)
and the best performance was achieved using spectra obtained under 0.5 ˝C, with
SEP of 0.68.

According to these studies, all three spectral modes provide good accurate
estimates of SSC. However, interactance spectra were better for predicting SSC in
kiwifruits, and transmittance mode was better than reflectance mode. A possible
explanation was that interactance spectra were less susceptible to specular reflections,
which was probably the source of larger errors. Spectra in the 800–1000 nm range
were very important, while a slightly better result could be achieved by using spectra
in the whole Vis/NIR range. The ripening stage of kiwifruit affects greatly the
accuracy of SSC prediction and accurate prediction was based on ripe kiwifruit.

3.3.2. Acidity

Moghimi et al. [87] predicted the acidity in kiwifruits with transmittance spectra
in the 400–1000 nm range. A PLS model based on spectra processed with SNV,
median filter and 1st derivative could yield a result with rp of 0.94 and RMSEP
of 0.076, close to the values obtained by Lee et al. [92], who used spectra in
the 408–2492 nm range and predicted acidity with rp of 0.95 and SEP of 0.28%.
The feasibility of Vis/NIR spectroscopy for predicting acidity in kiwifruit was
thus proved.
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3.3.3. Firmness

McGlone and Kawano [86] employed interactance spectra in the 800–1100 nm
wavelength range to assess the firmness of kiwifruit. The performance of the PLS
model was barely satisfactory, with r of 0.81 and RMSEP of 7.8 N. A better result
could be obtained when the samples were sorted in terms of origins and sizes (r = 0.87;
RMSEP = 7.0 N). However the model performed poorly against independent data
sets, indicating the existence of secondary correlations due to fruit characteristics,
which were not directly related to fruit firmness. Liu et al. [19] used diffuse reflectance
spectra in the 833–2500 nm wavelength range. Both first and second derivative
could improve the prediction accuracy, while SNV and MSC could not. The PLS
model based on first derivative spectra could yield the optimal result, with rp of
0.85 and RMSEP of 1.89. A better result was reported by Lee et al. [92], who used
spectra in the 408–2492 nm range. Flesh firmness was predicted with rp of 0.94 and
SEP of 3.32 N. Lv et al. [25] optimized modeling wavelengths and decreased the
number of principal components (PCs) with net analyte processing (NAP). Through
NAP-PLS, an optimal model was established with five PCs selected in five wavebands
(1862–1927, 2164–2198, 1605–1653, 1293–1429 and 1511–1600 nm) and predicted
firmness with rp of 0.88 and RMSEP of 0.88. In all this research, the firmness of
kiwifruit could only be coarsely predicted, suggesting that perhaps there is too little
pectin in the kiwifruit for NIRS to pick up, so further research should be done to
enhance the prediction accuracy.

3.3.4. Dry Matter (DM)

McGlone and Kawano [86] employed a PLS model based on interactance spectra
in a narrow waveband (800–1100 nm) to predict the DM of ‘Actinidia deliciosa’,
yielding an rp of 0.95 and RMSEP of 0.42%. McGlone et al. [89] applied interactance
spectra processed with S-G smoothing and area normalization sequentially. DM of
unripe and ripe fruits could be accurately predicted based on 800–1000 nm spectra.
The PLS model based on ripe fruits yielded an r of 0.97 and RMSEP of 0.29%. DM
of the ripe kiwifruits could also be predicted with data obtained when the fruit is
unripe, with rp of 0.97 and RMSEP of 0.39%. Lue et al. [34] investigated the potential
of long-term DM prediction. They obtained spectra and dry matter contents of some
unripe and ripe kiwifruits and extracted CWs with synergy interval partial least
square (siPLS). A model based on spectra of unripe kiwifruits and DM of ripe fruits
was built, with rp of 0.90 and RMSEP of 0.53%. McGlone et al. [90] and Feng et al. [93]
also proved that DM in kiwifruit could be accurately predicted. In conclusion, these
studies proved that dry matter in kiwifruits could be excellently predicted with NIR
spectroscopy, and the NIR method gives a good predictive relationship with SCC by
finding spectral information that is independent of the DM for kiwifruit. Interactance
spectra were most commonly employed.
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3.3.5. Other Parameters

Schaare and Fraser [88] applied Vis/NIR spectroscopy in the reflectance,
interactance and transmittance mode to measure density and flesh color of kiwifruit.
Best performances were all achieved by a PLS model built with interactance spectra in
the 520–1100 nm wavelength range. Density and flesh hue angle were predicted with
r of 0.86 and 0.91 and SEP of 3.6kg/m3 and 1.6˝, respectively. Tavakolian et al. [41]
applied reflectance spectra in the 1130–2220 nm range for the classification of kiwifruit
varieties with different post-harvest date. PCA was performed and showed that the
first three PCs could explain 99% of the variance. SIMCA was applied based on three
CWs at 1190, 1450 and 1940 nm. The total classification accuracy was 92.3%.

3.4. Peaches

Peaches are another kind of tasty and nutritious fruit. Like kiwifruit, the
firmness of peaches changes greatly over time, thus firmness, along with sugar
content and acidity, by which the flavor of peaches are mainly determined, attract
the interest of most researchers. A brief review is presented in Table 5.

Table 5. Overview of applications for measuring quality attributes in peach.

Quality
Attribute Cultivar Method Spectral

Mode
Spectral

Range/nm
Calibration

Method rp SEP Ref.

SSC or sugar
content

Various Spectroscopy Transmittance 800–1050 MLR 0.20–0.91 0.49%–1.63% [51]

Unknown Spectroscopy Transmittance 1000–2500 Stepwise
MLR 0.53 Unknown [94]

Mixed Spectroscopy
Reflectance

325–1075 ICA-LS-SVM 0.95 0.42 (RMSEP) [36]

Unknown Multispectral
scattering

632, 650,
670, 900 MLR 0.97 0.69 [3]

SH Spectroscopy Interactance 870, 878,
889, 906 MLR 0.97 0.50 [95]

Mixed Spectroscopy Reflectance 1279–2331 PLS 0.96 0.57 [72]
DB Spectroscopy Reflectance 800–2500 PLS 0.94 (rcv) 0.57 (RMSECV) [96]

Acidity Mixed Spectroscopy Reflectance 928–2331 PLS 0.95 0.13 [96]
Mixed Spectroscopy Reflectance 325–1075 ICA-LS-SVM 0.96 0.047 (RMSEP) [36]

Firmness

Unknown Multispectral
scattering

670, 780,
850, 900 MLR 0.95 1.56 [3]

Mixed Multispectral
scattering

680, 880,
905, 940 MLR 0.82 18.55 [97]

RH Hyperspectral
scattering 500–1000 MLR

0.88 14.2
[98]

CS Hyperspectral
scattering 0.76 19.1

White
peach Spectroscopy Reflectance 800–2500 PLS 0.89 5.42 (RMSEP) [99]

SH: Shimizu Hakuto; DB: Dabaitao; RH: Red Haven; CS: Coral Star.

3.4.1. SSC or Sugar Content

Peiris et al. [51] and Jiang et al. [94] applied transmittance spectroscopy to predict
SSC. Neither of the results was satisfactory. Kawano et al. [95] got better result using
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interactance spectra. In 2nd derivative spectra, clear differences among peaches with
different Brix values had been observed at the wavelength of 906 nm, which was
assigned to sucrose. The best prediction result was yielded by the linear regression
model built with spectra at 870, 878, 889 and 906 nm, with r of 0.97 and SEP of
0.50˝Brix. This result was in the same level as those of Liu et al. [72] and Ma et al. [96],
both of which employed reflectance spectra in the NIR range. The former one
reported the first derivative spectra yielded the best result with rp of 0.96 and SEP
of 0.54, while the latter one found the original spectra more suitable, with rcv of
0.94 and RMSECV of 0.57. Shao et al. [36] applied independent component analysis
(ICA) and latent variables analysis (LVA) to CWs from reflectance spectra in the
wavelength range of 325–1075 nm. PLS and LS-SVM models were built with the
CWs selected. LS-SVM always performed better than PLS. The optimal result was
achieved by the ICA-LS-SVM model, with rp of 0.95 and RMSEP of 0.42. Liu et al. [3]
obtained spectral scattering profiles at wavelengths of 632, 650, 670, 780, 850 and
900 nm and fitted them with Lorentzian distribution with three parameters. MLR
models were established to relate SSC with Lorentzian parameters based on different
number of wavelengths respectively. The optimal performance was achieved by the
combination of spectral images at 632, 650, 670 and 900 nm, with r of 0.97 and SEP
of 0.69˝Brix.

Experiments showed that transmittance spectra contain little effective
information related with SSC in peaches. We assumed that the incident radiation
couldn’t permeate the peach core, which could be verified by the fact that when a
similar system was utilized to assess SSC in apples, a much more accurate result
was obtained [94]. Models built with selected CWs could yield results as good as
those based on reflectance or interactance spectroscopy, indicating the feasibility of
online detection.

3.4.2. Acidity

Liu et al. [72] used FT-NIR reflectance spectroscopy in the 928–2331 nm
waveband to measure the valid acidity (pH) in peach. The PLS model could obtain a
result with rp of 0.95 and SEP of 0.13. Shao et al. [36] got a similar result (rp = 0.96;
RMSEP = 0.047) from a LS-SVM model built with CWs selected by ICA. The feasibility
of spectroscopy was thus verified, but the low acid content in the peaches might
cause relative insensitivity for prediction valid of acidity.

3.4.3. Firmness

Lu and Peng [97] predicted peach firmness using spectral scattering profiles at
wavelengths of 680, 880, 905 and 940 nm. Soft peaches were found to have broader
scattering profiles than firm ones, especially at 680 nm. A Lorentzian distribution
function with three parameters was used to fit the scattering profiles with a mean r2
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of above 0.998. MLR was employed to relate Lorentzian parameters with firmness.
When models were built with peaches from different orchards, respectively, and
the optimal result was acquired with rp of 0.87 and SEP of 14.57 N. When a model
was established with samples from two orchards, a lower rp (0.82) and a higher SEP
(18.55 N) was obtained. Liu et al. [3] got a better result based on the combination of
scattering profiles at 670, 780, 850 and 900 nm (r = 0.95; SEP = 1.56 N). Moreover,
Lu and Peng [98] utilized hyperspectral scattering profiles of 500–1000 nm to assess
the firmness of two cultivars: ‘Red Haven’ and ‘Coral Star’. The profiles were
fitted using a Lorentzian distribution function with two parameters, with a mean r2

above 0.99. Then MLR models were established to relate Lorentzian parameters and
their contributions at different wavelengths with peach fruit firmness. The highest
correlation among all individual wavelengths was found at the wavelength 677 nm,
which corresponds to chlorophyll absorption. When two Lorentzian parameters a
and b (a represented the peak scattering value while b the full scattering width at
one half of the peak value) were used as independent variables, optimal results were
achieved for the two cultivars with r of 0.88 and 0.76 respectively.

Fu et al. [99] investigated the anisotropy of firmness and spectra, regarding
to measuring spots at different latitudes and longitudes. Both spectral absorbance
and firmness of peaches were proved to be affected by longitudes and latitudes.
The collaboration of spectra from different latitude and longitude, and proper
pretreatment methods like scattering correction or derivative could improve the
prediction. The best performance was achieved by the holistic model built with
spectra processed by MSC (r = 0.89; RMSEP = 5.42 N).

These studies above proved that spectral scattering and hyperspectral scattering
were feasible for predicting firmness of peach. NIRS does not provide quantitative
information on light scattering in peach, which leads to its capability for predicting
structurally firmness limited or difficult to justify, and both chlorophyll and water
status have an important effect on firmness. More efforts should be made to enhance
the prediction accuracy, such as by utilizing hyperspectral scattering.

3.4.4. Variety Discrimination

Wu et al. [38] applied reflectance spectra in the 401–1000 nm wavebands for
the variety discrimination of three peach cultivars i.e., ‘Mengyin’, ‘Fenghua’ and
‘Jinhua’. Eight PCs were selected by PCA to build a SDA model, which could yield
a discrimination accuracy of 100%, better than that of the PLS model. A similar
result was obtained by Li et al. [100], who used spectra in the same wavelength
range to classify the cultivars ‘Milu’, ‘Hongxianjiu’ and ‘Dabaitao’. Multiple
discriminant analysis (MDA) based on the first eight PCs yielded a recognition
rate of 100%. Fu et al. [99] compared the discriminant accuracy of discriminant
analysis (DA), SIMCA and discriminant PLS (DPLS) using diffuse reflectance spectra
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in the region of 800–2500 nm. The discriminant accuracy of both DA and SIMCA
were above 92%, while that of DPLS was slightly better, reaching 95%. To conclude,
Vis/NIR spectroscopy was proved feasible for peach variety discrimination. The full
wavelength was useful while spectra in the visible range were essential.

3.4.5. Other Parameters

Zwiggelaar et al. [101] combined spectroscopy and machine vision to detect
bruises on peaches. After the samples were bruised, they were divided into three
groups, one of which was left at room temperature while other two were put in
a cold conditions for one week and two weeks, respectively, to inhibit ripening.
Reflectance spectra at bruised and un-bruised areas and spectral images at 930 and
970 nm were obtained. Results indicate a success rate of only 65%, perhaps indicating
a wrong wavelength choice. More studies should be done to improve the success
rate. Takano et al. [102] evaluated polyphenols in peach using NIR spectroscopy in
the 1100–2500 nm wavelength range. A coarse prediction could be achieved, with r
of 0.80 and SEP of 14.7 mg/100 g. By multiple regression analysis, spectra at 1720 nm
were proved to have the highest correlation with polyphenol content.

To classify peaches according to their maturity, Lleó et al. [103] compared two
multispectral classification methods based on red images (R) and a combination of
R and infrared images (R/IR) respectively. The spectral images were obtained
by three CCD cameras (450, 675 and 800 nm). The R/IR method performed
better as it eliminated the effect of fruit shape on light reflectance. Reflectance
at 680 nm (chlorophyll absorption peak) increased, while firmness decreased during
the ripening process.

3.5. Strawberries

With their attractive appearance, luscious taste and rich nutritional value,
strawberryies have won the affection of people all over the world. Due to their
soft tissues and high moisture content, strawberries are quite perishable, so more
effective monitoring and detection methods are required. Being the sugar content,
acidity and firmness the most important attributes that could affect quality and price,
these draw the attention of most researchers.

3.5.1. SSC

ElMasry et al. [52] used hyperspectral imaging in the Vis/NIR region
(400–1000 nm) to predict the SSC in strawberry. Some samples were kept in room
temperature for several days while others were kept under 5 ˝C conditions to
guarantee wide variations of internal properties. The PLS model built with spectra
processed mean-centering and automatic baseline correction performed well, with
rp of 0.85 and SEP of 0.184. A MLR model established with CWs selected by
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β-coefficients of PLS achieved a close result, with rp of 0.80 and SEP of 0.211. A
similar result was obtained by Sanchez et al. [11], who built a modified PLS model
with reflectance spectra in the 1600–2400 nm wavelength range (r = 0.89; RPD = 2.15).
Nishizawa et al. [104] reported better results using spectra in the 700–925 nm range
(r = 0.93; SEP = 0.9%). Pretreatment methods including 2nd derivative and MSC
were proved useless for improving the accuracy. The best result was reported by
Guo et al. [35], who employed a synergy interval PLS (siPLS) model based on 1st
derivative spectra in the 833–2631 nm wavelength range (rp = 0.97; RMSEP = 0.29).

Shi et al. [37] attempted to simplify the prediction. CWs were selected using
backward interval PLS (BiPLS) combined with simulated annealing algorithm
(SAA). Spectra in the 1000–2500 nm wavelength range were divided into 21 subsets
and characteristic subsets were determined by BiPLS. Then SAA was applied to
select CWs in these informative regions. Finally seven CWs, in the 1135–1322 nm
range were selected to build a MLR model. The predictive performance of this
BiPLS-SAA-MLR model was better than those of the PLS and BiPLS models, with
rp of 0.94 and RMSEP of 0.43. From these research works, the feasibility of the
spectroscopic method for SSC prediction in strawberries were verified. Models built
with CWs could yield very good results, indicating the potential for instrument
development and online detection.

3.5.2. Acidity

Shao et al. [22] applied reflectance spectroscopy in the 400–1000 nm range to
predict the acidity of strawberries. After some defective spectra were eliminated
using PCA, a PLS model was built, with rp of 0.92, SEP of 0.027 and RMSEP of
0.026. After wavelet transform (WT) was applied to compress the spectral data, a
PLS model was established with rp of 0.86, and RMSEP of 0.026. A similar result
was observed by ElMasry et al. [52], who applied hyperspectral imaging in the
400–1000 nm range to assess the pH. The PLS model yielded an rp of 0.87 and SEP of
0.13, while the MLR model achieved better results, with rp of 0.94 and SEP of 0.091.
Sanchez et al. [11] applied reflectance spectra in the 1600–2400 nm wavelength range.
The model was built with modified PLS regression. For the prediction of titratable
acidity, an acceptable result was obtained, with r of 0.73 and RPD of 1.43, but the
predictive performance for pH was not so good (r = 0.48), probably indicating an
unsuitable wavelength choice. Although the feasibility of the spectroscopy method
for predicting acidity in strawberries were confirmed and the ripening stage did
not seriously affect pH prediction, further investigations should be done to figure
this out.
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3.5.3. Firmness

Tallada et al. [66] assessed firmness in strawberries using hyperspectral images in
the 650–1000 nm range. A stepwise MLR model based on three optimal wavelengths
of 685, 865 and 985 nm could give a result with rp of 0.79 and SEP of 0.35 MPa.
The performance of a modified PLS model based on reflectance spectra in the
1600–2400 nm range was not satisfactory either, with r of 0.66 and RPD of 1.35 [11].
As well as SSC and acidity, firmness prediction is feasible, which is confirmed by the
NIRS. Further research should be done to enhance the prediction accuracy.

3.5.4. Variety Discrimination

Niu et al. [50] used spectra ranging from 1100 to 2200 nm for the classification
of varieties ‘Tianbao’, ‘Fengxiang’ and ‘Mingxing’. The performance of BP-ANN,
LS-SVM and discriminant analysis (DA) was compared and the best result was
achieved by the BP-ANN model, with a total discrimination rate of 97.14%.
Yan et al. [105] tried to simplify the discrimination. Spectra of three varieties were
obtained in the 350–2500 nm range. 2nd derivative combined with SNV and moving
average was ascertained as the best data pretreatment method. CWs were determined
as 548–562 nm by the correlation coefficient and threshold value method. The optimal
predictive performance was achieved by the PLS-ANN model, with rp of 0.97 and
RMSEP of 0.46, slightly better than those of the PLS and PCR models. However, the
discriminant accuracy reported by Sanchez et al. [11], who built a PLS-DA model
with reflectance spectra in the 1600–2400 nm wavelength range was only 63%, raising
some uncertainty as to the feasibility of Vis/NIR spectroscopy for discriminating
strawberry varieties.

3.5.5. Other Parameters

Nagata et al. [106] investigated the feasibility of NIR hyperspectral imaging
in the wavelength range of 650–1000 nm for detecting compression bruises on
strawberries. Hyperspectral images of strawberries subjected to different levels
of bruising force were obtained during 0–4 days after bruising. Three discriminant
methods including linear discriminant analysis (LDA), normalized difference
and artificial neural network (ANN) performed equally well. Through stepwise
LDA, two optimal wavelengths i.e., 825 and 980 nm were identified and the
classification efficiency for bruised and non-bruised pixels could reach 86.5% and
99.7%, respectively. Detected bruises were found to significantly decrease along
storage time.

Sanchez et al. [11] studied bulk skin or external color values of strawberries
including L*, a* and b*. Chroma and hue angle could be calculated with these
parameters. The prediction results for L*, a* and chroma were acceptable, with r of
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0.77 and RPD of 1.56 for all the three parameters, while for b* and hue angle, the
result was not good (r ď 0.44), which suggested that NIRS prediction for b* and h*
was not feasible.

3.6. Grapes

Not only a tasty fruit but also an ingredient for brewing wine, grape is an
important economic crop cultivated all over the world. It is the sugar content and
acidity in grapes that determine their flavor and indicate the ripeness, thus attracting
the attention of researchers. It has been proved that grapes contain some precious
nutritional ingredients including anthocyanins and polyphenols, so some work has
also been done for measuring these ingredients.

3.6.1. SSC or Sugar Content

Fernandez-Novales et al. [107] observed excellent results using transmittance
spectra in the 700–1060 nm wavelength range. The PLS model based on spectra
processed with Norris first derivative performed excellently, with rcv of 0.99 and
RMSECV of 0.46. Herrera et al. [108] evaluated the feasibility of diffuse transmittance
and interactance spectra for SSC prediction. Two spectral regions i.e., 750–1100 and
650–1100 nm, were used to establish PLS models to predict SSC in three grape
cultivars: ‘Cabernet Sauvignon’, ‘Chardonnay’ and ‘Carmenere’. The optimal
performance for all cultivars was achieved by models based on 650–1100 nm spectra,
with rp above 0.90 and RMSEP lower than 1.2. Transmittance spectra performed
slightly better compared to interactance ones. Pretreatment methods had no
significant effect, as confirmed by Larrain et al. [109], who applied reflectance spectra
in the 640–1100 nm range to predict sugar content. The prediction performance of
the PLS models they established was excellent, with rp of 0.93–0.96 and RMSEP of
1.01–1.27 for different cultivars.

Wu et al. [110] simplified the prediction with BP-ANN. Vis/NIR diffuse
reflectance spectra in the 400–1000 nm waveband were obtained. Three principal
factors were identified by PLS based on the reliabilities, then the scores of the three
selected principal factors were used as the input of a three-layer BP-ANN model.
Its prediction accuracy outperformed the PLS model, with r of 0.95 and RMSEP of
0.11. Fernandez-Novales et al. [29] selected four CWs including 909, 951, 961 and
975 nm by the loading weights of latent variables and used them to build a MLR
model for sugar content prediction. A satisfactory result could be obtained, with r of
0.96, SEP of 20.0 g/L and RMSEP of 20.5 g/L. The CWs they selected were not the
same as those identified by Cao et al. [30], who applied Vis/NIR reflectance spectra
in the 400–1000 nm wavelength range. A genetic algorithm was executed and five
wavelengths i.e., 418, 525, 556, 633 and 643 nm were identified as CWs. A PLS model
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was built for prediction, with rp of 0.91 and RMSEP of 0.93. Omar [69] built a MLR
model with spectra of 605, 729, 830, 910 and 950 nm (r = 0.97, RMSE = 0.18˝Brix).

Taking all these studies together, the feasibility of Vis/NIR spectroscopy
was verified for SSC prediction. NIRS was sensitive to sugar content changes
during the different ripening stages. Spectra in the 400–1000 nm range could yield
excellent prediction results and transmittance spectra performed slightly better than
interactance spectra.

3.6.2. Acidity

Larrain et al. [109] proved that the pH of different grape cultivars could be
predicted with rp of 0.75–0.89 and RMSEP of 0.088–0.16 using reflectance spectra
ranging from 640 to 1100 nm. Cao et al. [30] obtained spectra of samples of three
cultivars in the 400–1000 nm wavelength range. The performance of the GA-LS-SVM
model was better than that of the PLS model, with rp of 0.98 and RMSEP of 0.13. A
very close result was obtained by Omar [69], who found wavebands of 922–923 and
990–995 nm important. Their best result was achieved by a MLR model based on
spectra of 605, 923 and 990 nm (r = 0.87; RMSE = 0.11).

However, Fernandez-Novales et al. [107] did a similar prediction for pH and
tartaric acid using NIR transmittance spectra in the 700–1060 nm wavelength range
and obtained less accurate results (rcv = 0.52, 0.41; RMSECV = 0.22, 2.02, respectively),
indicating some uncertain difficulties involved in the prediction for this attribute in
grapes, although there is still a high correlation with the reference pH sensor.

3.6.3. Anthocyanin

Larrain et al. [109] evaluated anthocyanin concentration in different grape
cultivars using spectra ranging from 640 to 1100 nm. PLS models yielded acceptable
results (rp = 0.79–0.83) for most cultivars, except for Pinot Noir (rp = 0.63). This
uncertainty was confirmed by Kemps et al. [68], who did similar research with
reflectance spectra in the 320–1660 nm range. Prediction wasn’t feasible except
for ‘Syrah’, in which anthocyanins could be predicted with rp of 0.8, making the
method questionable.

3.6.4. Variety Discrimination

Cao et al. [30] applied Vis/NIR reflectance spectroscopy in the 400–1000 nm
wavelength range for the discrimination of three grape cultivars, namely ‘Manaizi’,
‘Mulage’ and ‘Heiti’. Firstly GA was applied to select CWs and four wavelengths
i.e., 636, 649, 693 and 732 nm were identified. Then a LS-SVM model was built,
which could reach a total discrimination accuracy of 96.6%. For individual cultivars,
the accuracy rate was 93.9% for ‘Manaizi’, 97.6% for ‘Mulage’ and 100% for ‘Heiti’.
In another study [40], the combination of BP-ANN and PCA were applied. PCA
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was first applied for cluster analysis. The spectra of ‘Heiti’ were found significantly
different from the other two cultivars especially in the 520–640 nm wavelength range.
Then a BP-ANN model was established by using the first 10 PCs to discriminate
the other two cultivars. A total discriminant accuracy of 98.3% could be achieved,
slightly better than that yielded by SIMCA, which was 96.6%. A simplified BP-ANN
model built with CWs of 452, 493, 542 and 668 nm could yield a very close accuracy
rate of 97.4%, indicating the feasibility of online detection.

3.6.5. Other Parameters

Fernandez-Novales et al. [107] estimated the maturity of grapes using a maturity
index, calculated by dividing reducing sugar content by titratable acid content. This
index could be predicted with rcv of 0.77 and RMSECV of 10.2. Considering the low
accuracy obtained in the prediction of titratable acid, this result was inspiring and
indicated a possibility of classifying grapes based on this index. Kemps et al. [68]
reported that the concentration of polyphenols could not be predicted in any of the
cultivars they used.

3.7. Jujube

Having been a kind of popular fruit in China for thousands of years, jujube
is increasingly valued worldwide for its rich nutrients. Some studies in which
spectroscopy and hyperspectral imaging technology are employed have been carried
out for quality assessment of jujubes in recent years.

Zhang et al. [64] applied reflectance spectra in the 400–2400 nm range to predict
SSC in three jujube cultivars. PCA was used on the spectra processed with smoothing
and MSC. Six principal components were selected and employed as input of the
BP-ANN model, which could predict SSC with a relative deviation lower than 10%.
Wang et al. [46] compared reflectance, interactance and transmission spectra in the
310–1100 nm wavelength range for predicting SSC. Interactance spectra were proved
to be the best choice, which yielded prediction results with rp of 0.74–0.91 and RMSEP
of 2.0–3.2˝Brix. The optimal performance was achieved by the model based on 2nd
derivative spectra, with rp of 0.91. The fruit stone of jujubes affects the spectral
characteristics of light reflected from or transmitted through the jujube. If each jujube
fruit lacks a hard stone, transmission spectral measurements are effective at revealing
the SSC. Zhang et al. [111] selected CWs for SSC prediction from reflectance spectra
in the 350–2500 nm waveband using SPA and stepwise regression analysis (SRA).
Wavelengths at 1374 nm and 1718 nm were identified by both methods, suggesting
their importance. The best result was acquired by the PLS model based on whole
spectra, with rp of 0.89 and RMSEP of 1.09. The LS-SVM model combined with SPA
could yielded an acceptable result with rp of 0.80 and RMSEP of 1.40, better than
that of the LS-SVM based on whole spectra. He et al. [65] employed hyperspectral

86



images in the 900–1700 nm wavelength range for the prediction of SSC in jujubes.
Five characteristic wavelengths were identified by PCA. The BP-ANN model yielded
an rp of 0.90 and RMSEP of 1.98.

Wang et al. [112] tested the applicability of reflectance, interactance and
transmittance spectroscopy in the 310–2150 nm wavelength range for detecting
internal insect infestations in jujubes. Spectra were divided into three wavebands i.e.,
310–1000 nm (VSWNIR), 1000–2150 nm (LWNIR), and 310–2150 nm (Vis/NIR). The
highest discriminant rates obtained were 90% for reflectance, 97% for transmittance
and 100% for interactance. In the VSWNIR region, transmittance spectra yielded
better performance while in the LWNIR region, interactance spectra were the most
feasible. This was probably because light in the VSNIR range could transmit through
the fruit core more effectively than that in the LWNIR range, leading to increased
reflectance and decreased transmittance. Further, Wang et al. [47] compared the ability
of the three modes of spectra for detecting internal insect infestation with different
damage levels. Discriminant functions based on CWs were derived based on stepwise
discriminant analysis (SDA). Result showed that reflectance and interactance spectra
in the VSWNIR region could discriminate severely infested jujubes from slightly
damaged ones the best. Wang et al. [113] applied hyperspectral imaging in the
400–720 nm wavelength range to detect external insect infestation. Three CWs
i.e., 690, 650 and 500 nm, which corresponded to chlorophyll a, chlorophyll b and
carotenoids respectively, were selected by SDA. Over 98.0% of intact jujubes and
94.0% of insect-damaged jujubes could be correctly discriminated, achieving an
overall discriminant accuracy of 97.0%. Both the internal and external infestations
could be identified with an accuracy of above 97%, indicating the feasibility of
Vis/NIR method.

Zhang et al. [111] applied NIR reflectance spectroscopy for the detection of subtle
bruises on jujubes. Spectra of 350–2500 nm were acquired and processed with MSC.
Nine wavelengths i.e., 1869, 2128, 1430, 827, 359, 2477, 1357, 1643 and 762 nm were
identified as CWs using SPA. Then four principal components (PCs) were identified
from the CWs using PCA and performed as input to establish a LS-SVM model. This
MSC-SPA-PCA-LS-SVM model yielded a discriminant accuracy of 100%.

3.8. Bananas

Tarkosova and Copikova [114] applied NIR spectroscopy in the 1100–2500 nm
wavelength range to assess sugar content in bananas. Modified PLS models were
established for prediction. The total sugar content could be predicted with rp of 0.99
and SEP of 0.80%, for sucrose, glucose and fructose, they could be predicted with rp

of above 0.97 and SEP of 0.16%–0.78%.
Jaiswal et al. [53] predicted DM, pH, SSC and acid-Brix ratio (ABR) in bananas

using transmittance spectra in the 299–1100 nm wavelength range. SSC could be best
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predicted by a PLS model built with original spectra in the 955–982 nm waveband
(rp = 0.81) and pH could be best predicted by PLS model built with spectra processed
with baseline correction in the 1009–1036 nm range (rp = 0.83). Though a higher
rc could be obtained by MLR, there was a big gap between rc and rp, indicating
unstability. For DM, the best result was achieved by the MLR model built with
original spectra in the 1063–1089 nm wavelength range (rp = 0.83). As to ABR, the
PLS model built with spectra processed by MSC combined with baseline in the
955–982 nm wavelength range yielded the best result (rp = 0.78).

Davey et al. [67] applied Vis/NIR reflectance spectroscopy in the 367–2388 nm
wavelength range to measure total carotenoids, α-carotene, β-carotene, c-carotene
and lutein in banana. PLS models were built based on 1st S-G derivative spectra.
Results showed that total carotenoids and β-carotene could be measured accurately
(rp = 0.98, 0.96; RPD = 3.34, 2.74, respectively). For α-carotene and c-carotene, results
were acceptable with rp of 0.91 and 0.90 and RPD of 1.68 and 1.96, respectively.
However, for lutein the result was not satisfactory, with rp of 0.75 and RPD of 1.16.
Considering that 90% of the carotenoids in bananas were α-carotene and β-carotene,
it was feasible to measure carotenoids in banana with Vis/NIR spectroscopy.

Subedi and Walsh [115] measured dry matter DM and SSC in banana mesocarps
with transmittance spectroscopy in the 500–1050 nm wavelength range. The result
obtained for DM was not good, probably due to the thickness of the peel. For SSC,
excellent results were obtained from ripening and ripen banana mesocarps (rcv > 0.93;
RMSECV < 0.80%). However, for green and over-ripe bananas prediction results were
not satisfactory, indicating that mesocarp SSC was highly correlated with peel color.

3.9. Mangos

Jha et al. [116] applied reflectance spectroscopy to measure SSC and pH in seven
mango cultivars. The optimal results were obtained by PLS models based on 2nd
derivative spectra in the 1600–1799 nm range, with rp of 0.76 and 0.70 and SEP of 3.23
and 0.72, respectively. Although MLR models yielded higher rc, the gap between
calibration and prediction indicated instability. Their results were inferior to those
reported by Schmilovitch et al. [117] who applied NIR reflectance spectroscopy to
predict firmness, SSC, acidity and storage period of mangos. Spectra were acquired
in the 1200–2400 nm wavelength range. Best performances for predicting firmness,
SSC, acidity were all achieved by MLR models built with 2nd derivative absorbance
spectra, with rp of 0.91, 0.96, 0.78 and 0.97 and SEP of 17.14, 1.223, 0.161 and 37.03,
respectively. The result for predicting acidity was not satisfactory, probably due to
the low acid content in the samples. Yu et al. [71] applied reflectance spectra in the
400–1075 nm wavelength range to predict sugar content and valid acidity in mango
fruit. Eighteen PCs were extracted by PLS and employed as inputs of the GA-BPNN
to predict sugar content and 17 PCs for valid acidity. The PLS-GA-BP models yielded

88



good predictive results, with r of 0.85 and 0.84 and SEP of 0.61 and 0.11, respectively,
better than those obtained by the PLS-BPNN models.

Saranwong et al. [118] found DM and starch contents increased significantly
during ripening, while no obvious differences in individual sugars and fruit
density were observed. Interactance spectra of unripe mangos in the 700–1100 nm
wavelength range were obtained. For DM, the optimal predictive result was achieved
by the MLR model built with 2nd derivative spectra after MSC-treated. Wavelengths
of 914, 882, 826 and 954 nm were used for calibration. The r was 0.96 and SEP
was 0.41%. For starch content, a PLS model based on 2nd derivative spectra in the
850–1000 nm range yielded the best result, with r of 0.93 and SEP of 1.71%. Further,
DM and starch contents in unripe mangos could be used to predict SSC in ripe ones.
The best prediction result was achieved by MLR, with r of 0.92 and SEP of 0.55%.
The calibration equation was: SSC = 14.755 + 0.812 DM + 0.677 starch.

Jha et al. [119] proposed a maturity index (Im) based on seven mango cultivars:

Im “ η
SSCˆDM

TA

where η represents a constant specific for each cultivar. Im was field tested with less
than 10% variation. Im could be predicted by using a PLS model based on spectra in
the 1600–1800 nm wavelength range, with rp of 0.68 and SEP of 0.34.

3.10. Other Fruits

Roger and Bellon-Maurel [9] predicted sugar content in cherry fruit using spectra
in the 800–1100 nm wavelength range. A The PLS model based on spectra processed
with moving average smoothing yielded a result with r of 0.95 and RMSEP of
3.43˝Brix. A better result could be obtained employing CWs selected by GA, with r of
0.98 and RMSEP of 0.91˝Brix. This result was in the same level with that reported by
Lu [120], who applied reflectance spectra in the 800–1700 nm wavelength range. The
PLS models they built yielded an rp and SEP of 0.95 and 0.71˝Brix for ‘Hedelfinger’,
and 0.89˝ and 0.65˝Brix for ‘Sam’. They also predicted their firmness, with rp of 0.80
and 0.65 and SEP of 0.79 N and 0.44 N respectively.

Paz et al. [12] applied Vis/NIR reflectance spectra to predict SSC and firmness
in plum. SSC could be predicted using a modified PLS model based on spectra in the
515–1400 nm range, with r of 0.88 and SECV of 0.83˝Brix. Firmness could only be
predicted using the PLS model built with 515–1650 nm spectra, with r of 0.72 and
SECV of 2.54 N.

Zhang et al. [121] predicted soluble tannin content in persimmon using diffuse
reflectance spectra in the 570–1848 nm wavelength range. Different pretreatment
methods and calibration methods were compared and the best performance was
achieved by the modified PLS model based on 1st derivative spectra processed with
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de-trending, with rp and RMSEP of 0.82 and 0.18 respectively. More research should
be done to enhance the prediction accuracy.

4. Conclusions and Future Research

For their prominent advantages such as simultaneous, precise and rapid
analyses compared to traditional methods, spectroscopy, multispectral imaging and
hyperspectral imaging have been widely utilized for the measurement of internal
and external quality attributes of fruits. One important evaluation criterion for the
successful implement of a spectroscopy technique is the accuracy and robustness of
the calibration model. According to the overviews above, further studies should be
focused on these aspects rather than doing some superficial research or repeating
previous studies:

(1) The optimal spectral acquisition condition, as well as preprocessing and
calibration method for each kind of fruit needs to be figured out.

(2) A large database is crucial, for stable and accurate models should yield
satisfactory performance even when applied to fruit from different origins,
seasons and climate conditions.

(3) The model transference between different types of spectrometers hasn’t
attracted enough attention yet.

(4) Most of the papers published focused on several major attributes including SSC,
acidity and firmness, other important nutrient compositions such as vitamin
content, mineral substance and pigments haven’t attract enough attention.

(5) The feasibility of using Vis/NIR spectroscopy to predict some quality attributes
has been verified, but the prediction for some other attributes remains uncertain
or is definitely less accurate.

Hyperspectral imaging, combining the advantages of imaging technology
and spectroscopy technology, could provide abundant information related to
fruit quality and thus offers exciting new possibilities. Although hyperspectral
imaging with chemometrics frees researchers from laborious measurements and
burdensome computations during food quality assessment, hyperspectral imaging
has not been applied for online detection, which is restricted by its massive data
volume, different prediction results of spectra mode, external characteristics of
samples and expensive equipment [4,5,77,78]. Qin and others [122] established
a small-scale hyperspectral reflectance imaging for real-time detection of grape
canker, but the system only provides a small number of observations from the
whole fruit. Multispectral imaging based on selected critical wavelengths derived
from hyperspectral imaging has received great attention. Due to their relative little
spectral data, low instrument cost and high analytical speed, multispectral imaging
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systems could be widely used in online detection and practical applications for
fruits [78,98,103]. Huang and others [78] selected three effective wavelengths 750,
820 and 960 nm to realize multispectral imaging tests and obtained good prediction
results. However, in consideration of the limitations of multispectral imaging,
few selected and discrete wavelengths, multispectral imaging has relatively worse
performances on the detection of fruit characteristics, such as firmness [98]. However,
with the improvement of computer resources, broad prospects are expected. With
the help of NIR microscopes and Raman spectroscopy, observation and detection
could be achieved at the histological and cellular level [123–125]. A great many of
technologies and problems require urgent study and solutions.

Although there is a load of existing problems, the emergence of new
technologies and new devices is bringing huge potential to this field. The improved
acquisition speed and simplified operation of newly developed spectrographs,
multispectral imaging systems and hyperspectral imaging systems combined with
the implementation of effective chemometric methods, such as PLS and LS-SVM,
have finally make the idea of online detection possible. However, although some
efforts have been done to build online detection systems [76,84], real mature and
feasible systems are not available in market due to various problems including
expensive price, unstable models and complex operation. There is plenty of research
left for us to do.
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Fruit and Vegetable Quality Assessment via
Dielectric Sensing
Dalia El Khaled, Nuria Novas, Jose A. Gazquez, Rosa M. Garcia and
Francisco Manzano-Agugliaro

Abstract: The demand for improved food quality has been accompanied by a
technological boost. This fact enhances the possibility of improving the quality
of horticultural products, leading towards healthier consumption of fruits and
vegetables. A better electrical characterization of the dielectric properties of fruits
and vegetables is required for this purpose. Moreover, a focused study of dielectric
spectroscopy and advanced dielectric sensing is a highly interesting topic. This
review explains the dielectric property basics and classifies the dielectric spectroscopy
measurement techniques. It comprehensively and chronologically covers the
dielectric experiments explored for fruits and vegetables, along with their appropriate
sensing instrumentation, analytical modelling methods and conclusions. An in-depth
definition of dielectric spectroscopy and its usefulness in the electric characterization
of food materials is presented, along with the various sensor techniques used for
dielectric measurements. The collective data are tabulated in a summary of the
dielectric findings in horticultural field investigations, which will facilitate more
advanced and focused explorations in the future.
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1. Introduction

Quality is defined by the Spanish Royal Academy as “the property or set of
inherent something, you can judge their values” [1]. In 2006, Choi and his co-workers
classified fruit quality into internal and external quality factors [2]. Internal factors
include the taste, the texture, the value, the aroma, the nutrition and the lack of biotic
and abiotic contaminants, whereas the external factors include the presentation, the
appearance, the uniformity, the maturity and the freshness of the fruit. Furthermore,
the authors stated that although the internal aspects are not noticeable for consumers,
they are highly important next to the external aspects that are considered to be the
essential purchase decision.

Due to the large consumption increase in the horticulture field, the fresh
fruit and vegetable post-harvest sector is dynamic, and the need for high quality
produce is rising [3]. Currently, there is a trend to promote the characteristics of
vegetable consumption in the diet. It is suggested that the components of vegetables
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have the capacity to modulate the complex mechanisms involved in maintaining
a healthy physiology and reducing the early onset of age dependant diseases, and
the demand for agricultural products such as vegetables and fruits is rising [4].
Increasing consumer demand for high-quality fruit has led to the development of
optical, acoustic and mechanical sensors that determine its quality. According to
Shewfelt [5], the internal characteristics, which are perceivable by the senses of
taste, smell, and touch (mouthfeel), are the ones that will determine the decision
to repurchase that product. The other characteristics, such as nutritional value,
wholesomeness, and safety, cannot readily be determined by consumers because
they require measurement, but, if this information is given to the consumer, it will
influence acceptability of the product.

In this context, after highlighting the importance of the fruit and vegetable
characterization process from harvest to cold storage, and with all of the rapid
technological development, mathematical methods and multiplicity of investigations
all over the world, there is a huge need for the development of review methods
for electrical characterization in the horticultural field [6]. Improved methods for
rapidly sensing quality factors of fruits and vegetables, such as moisture content,
maturity defects, and blemishes, would be helpful in the harvesting, sorting and
packing operations for these commodities; this rapid technique can save labour costs
and provide improvement in the uniformity and quality of the products [7].

Moreover, Pliquett [8] stated that the electrical measurement is a simple
innocuous tool for material characterization, which should make the determination
of electrical properties a highly effective method to enhance the quality of fruits and
vegetables. This being said, this information quickly becomes outdated, such that
to obtain sustainable and competitive agriculture, it is necessary to use techniques,
systems and tools that provide timely monitoring and measurement with reliable
information [9].

2. Dielectric Characterization of Vegetables and Fruits

2.1. Overview

For the past two decades, many researchers have been interested in the study of
electrical properties, and numerous experiments were conducted for a large variety
of agricultural products (fruits and vegetables). The main factor that affects the
dielectric properties of hygroscopic materials is the moisture content; this factor
is used as a basis for developing commercial instruments to measure moisture
content [10]. As a result of the different mineral substances and organic acids present,
along with other components that are susceptible to dissociation, the high electrolytic
conductivity of fruits and vegetables is distinguished. Many parameters, such
as impedance and permittivity, are quite interesting because dielectric properties
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are considered to be the most important physical properties associated with radio
frequency (RF) and microwave (MW) heating [11].

Due to the interest in the dielectric properties of agricultural materials, which is
focused primarily on predicting heating rates that describe these material products
when subjected to high frequency heating, the dielectric properties of biological
products have become valuable parameters in food engineering and technology [12].
The process of energy absorption through RF or MW energy has been known for a
long time and has been widely explored. With the advance of computer modelling
tools for RF and MW applications, it is very critical to have data available for the
dielectric properties of materials. This issue is noticeable especially in the modern
design of heating systems where experiments to meet products have been conducted,
and data for the moisture content has been reported for several frequency ranges and
temperatures related to the process requirements [13]. Among the factors that are
involved in the dielectric properties values, the nature of the material that implies
the composition and structure is the most common. Some other factors, such as
frequency and temperature, are involved with the maturity stage of the agricultural
product. Because MW heating is greatly affected by the presence of water, which
is a major absorber of MW energy, the higher the moisture content, the better the
heating [14–16]. Moreover, ionic components have significant effects on the dielectric
properties [17]. Another factor is the density because the amount of mass per unit
of volume (density) has a definite effect on the interaction of the electromagnetic
field and the involved mass [18]. Another important factor is the storage time of the
agricultural products under measure because ripening processes taking place may
affect the dielectric properties [19].

The electrical linear properties of tissues and cell suspensions, because of their
variation with frequency, are mostly considered to be unusual. These properties
include the dielectric constant ε1 and the conductivity, which has been proven to be
inversely proportional. To illustrate with an example, a graph is plotted in Figure 1
to show the variations of these parameters with frequency. An interpretation of the
parameters behaviour versus frequency is to be analyzed in the discussion section to
explain the curve patterns. Three distinct major steps accompany the variation of the
frequency at low RF and GHz frequencies that are termed as α, β and γ dispersions.
Moreover, the dielectric constants reach very high values relative to free space at low
frequencies [20]. While the α dispersion remains incomplete for several reasons, the
β dispersion is due to the cellular structure of tissues and occurs in the range of 0.1 to
10 MHz. The γ dispersion was noted above 1 GHz for a variety of tissues and protein
solutions. In addition to the main dispersion that is due to plasma membranes, the β
dispersion possesses additional dispersions on the high frequency side [21].

About the interaction between food and electromagnetic energy at low
frequencies, much less is known [22]. At high frequencies, the electric properties
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of most basic interest are the dielectric properties that affect energy coupling and
distribution within the product, which includes the product attenuation constant
determining voltage and power penetration depths (Dp) within the product and
therefore the temperature at a specific depth [15]. The main advantages of high
frequency methods consist of reducing process time, offering more uniform heating
patterns and improving product quality in selected applications [23]. By definition,
biological materials and their ability to store and dissipate electrical energy are
compared to non-ideal capacitors [24]. Energy charging and loss currents related
to the material electrical capacitance and resistance are behind these properties,
and they are defined as dielectric properties. However, due to the migration
of charge carriers, there is a slight difference in the electrical behaviour of a
simple resistive-capacitive circuit in conduction and biological materials at high
frequency. According to Sarbacher and Edson [25], because the relative magnetic
loss of a material is related to the material reluctance and its ability to dissipate
magnetic energy, the components of complex permeability, when divided by the
permeability of free space, i.e., 1.257 ˆ 10´6 H/m, give the components of the
complex relative permeability. Alternately, it is necessary to consider the magnetic
coupling effects at high frequencies for fruits and vegetables because their relative
magnetic permeability is close to unity (magnetic permeability close to that of free
space and zero relative magnetic loss) [26].
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Figure 1. Example of ε1 and ε” variations with frequency on a logarithmic scale.

A material’s ability to attenuate or absorb electrical energy coupled by the
material from an electromagnetic field is determined by the real component, which
is also the major determinant of energy distribution in homogeneous dielectric
materials. The attenuation factor determines the ability of the electric component of
the field to penetrate the dielectric and is the reciprocal of the material Dp.
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2.2. Dielectric Properties

Development of non-destructive and informative sensing techniques to evaluate
the properties of living tissues has been a subject of increasing importance for
decades [27]. The dielectric properties of food and biological products have become
valuable parameters in food engineering and technology [12]. Dielectric spectroscopy
is an old experimental tool that has developed dramatically in the last two decades.
It currently covers the extraordinary spectral range from 10´6 to 1012 Hz. Dielectric
spectroscopy is a technique used to study the interaction of a material and the
applied electric field. It is widely used as a tool for the detection of material aging
and fault diagnosis for insulation systems, and hence it has become a popular
and powerful research technique [28]. It is based on the phenomena of electrical
polarization and electrical conduction in materials [29]. The dielectric property
known as complex permittivity is the physical property that describes the interaction
between matter and electromagnetic fields, and it is related to the structural and
physio-chemical properties, such as water and soluble solids content or water
activity, of the material [30]. There are a number of different dielectric polarization
mechanisms operating at the molecular or microscopic levels [31]. The analysis of
dielectric spectroscopy data gives valuable parameters that characterize the living
tissues, such as cell size and shape, the state of the cell membranes and the status
of intra- and extracellular media. The dielectric properties of materials that are of
interest in most applications can be defined in terms of their relative permittivity.
Permittivity is a complex quantity generally used to describe the dielectric properties
that influence reflection of electromagnetic waves at interfaces and the attenuation
of the wave energy within materials. Based on Maxwell’s equation, the complex
dielectric function describes the interaction of electromagnetic waves with matter to
reflect the underlying molecular mechanisms [32]. The relative complex permittivity
ε* is represented as in Equation (1):

ε˚ “ ε’´ jε” (1)

where ε1 and ε” are commonly called the dielectric constant and loss factor,
respectively, and j =

‘

´ 1. The real part, ε1, describes the ability of a material
to store energy when it is subjected to an electric field and influences the electric field
distribution and the phase of waves travelling through the material. The imaginary
part, ε”, influences both energy absorption and attenuation and describes the ability
to dissipate energy in response to an applied electric field or various polarization
mechanisms that commonly result in heat generation [33]. The amount of thermal
energy converted in the food is proportional to the value of the loss factor [13].

In the past, dielectric spectroscopy was characterized by its limitations in
frequency, as measurements could usually only be carried out within 4–5 decades of
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frequency; the dielectric constant and the dielectric loss factor data are presented in
sets of points in frequency measured at different temperatures. These measurements
show that time superposition holds, within the limited frequency range of the
measurement, to obtain the following Debye relaxation function, Equation (2):

ε * “ ε8 `
∆ε

p1` piωτqαqγ
(2)

where ∆ε describes the dielectric length, τ is the relaxation time, and α and γ are
the quantifications for the symmetric and asymmetric broadening of the relaxation
distribution function, respectively. In addition to the molecular dynamic in confining
spaces, the scaling of relaxation processes is the major contribution of the broadband
dielectric spectroscopy to modern physics [32].

Mechanisms that contribute to the dielectric loss factor include dipole, electronic,
ionic and Maxwell-Wagner responses [34], as illustrated by Equation (3):

ε” “ ε”d ` ε”σ “ ε”d `
σ

pε0ωq
(3)

where the subscripts d and σ stand for the contributions due to dipole rotation (d)
and ionic conduction (σ), respectively; more specifically, σ is the ionic conductivity in
S/m, ω is the angular frequency, and ε0 is the permittivity of free space or a vacuum
(8.854 ˆ 10´12). For RF (1 to 50 MHz) and MF (915 to 2450 MHz), σ and d are the
predominant loss mechanisms [35]. The power in W/m3 dissipated per unit volume
in the dielectric can be expressed via Equation (4):

P “ E2 σ “ 55.63 ˚ 10-12 f E2ε2 (4)

where E represents the rms electric field in V/m.
In this context, we refer to the Kremer statement that although dielectric

spectroscopy is old, it is a still-developing experimental technique that has had
a strong technological impact and provides variety of novel routes that will open
exiting new horizons, such as revealing information about the binding of water in
food and other agricultural materials. Thus, further studies should be conducted for
the potential applications of dielectric sensing spectroscopy [36].

3. Dielectric Sensing Techniques

In this section, the evolution of dielectric properties sensing techniques is
described. Dielectric Spectra can be easily obtained using an automated frequency
domain spectrometer (FDS) with high precision over a frequency range of 1 Hz to
10 GHz. The measurement techniques appropriate for any particular application
depend on the frequency of interest, the nature, both physical and electrical, of
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the dielectric material to be measured and the degree of accuracy required. In this
context, many different types of instruments can be used, and any measurement
instrument providing reliable determinations of the required electrical parameters
involving the unknown material in the frequency range of interest can be considered.

In the agricultural field, to understand the dielectric behaviour of agricultural
products, it was required to boost the measurements over broad frequency ranges
and to develop new techniques for efficient collection of permittivity information [37].
The different measurement techniques of the dielectric properties are summarized in
Table 1 along with their characteristics.

Table 1. Dielectric techniques.

Brief Description Recommended
Materials

Frequency
Range Advantages Disadvantages

Parallel plate
Material must be placed
between two electrodes

to form a capacitor

Material with the
ability to be

formed as a flat
smooth

sheet <100 MHz

<100 MHz Inexpensive,
high accuracy

Limited frequency
range, sheet

sample very thin
(<10 mm thick)

Lumped
circuit

Sample is a part of the
insulator in

a lumped circuit

All materials with
the exception of

gazes
<100 MHz

Liquid and solid
materials can be

measured

Limited frequency
range, not

suitable for very
low loss materials

Coaxial probe

A coaxial line cut off
forming a flat plane
boundary in contact
with food. A vector

analyser is needed to
measure the reflection

Liquids and
semi-solids

200 MHz–20 GHz,
even >100 GHz

Easy to use,
non-destructive

for some
materials,

sample
preparation is
not required

Limited accuracy
(˘5%). Low loss
resolution, large

samples and
solids must show

a flat surface

Transmission
line

Brick-shaped sample
fills the cross section of

an enclosed
transmission line,

causing an
impedance change

Liquids and solids <100 MHz

More accurate
and sensitive

than the probe
method

Less accuracy
than resonators,

sample
preparation is
difficult and

time-consuming

Cavity
resonator

Sample is introduced in
a cavity (a high Q

resonant structure),
which affects the centre
frequency and quality

factor of the cavity

Solids 1 MHz–100 GHz

Easy sample
preparation,

adaptable for a
wide range of
temperatures

Broadband
frequency data

are not provided
and analysis may

be complex

Free space

Antennas are used to
direct a MW beam at or
through the material. A
vector network analyser
measures the reflection

and transmission
coefficients of solids

Solids MW range

Non-destructive,
high

temperatures can
be used

A large flat, thin,
parallel-faced
sample and

special calibration
are required

Time domain
spectroscopy

Short pulses of THz
radiation within a

generation and
detection scheme that is
sensitive to the effect of
both the amplitude and
phase of the radiation

Homogeneous 10 MHz–10 GHz.

Fast and high
accuracy

measurement,
small sample

Expensive
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3.1. Time-Domain Spectroscopy

For some of the studies conducted, time-domain reflectometry and spectroscopy
techniques were employed [38]. Time-domain systems generate a fast rise time
pulse that is reflected from the sample or transmitted through the sample where the
dielectric property information can be extracted by Fourier transform by analysing
the waveform. Polymer chemists and physicists have been using time-domain
measurements extensively to help in understanding the composition and behaviour
of materials [39].

Various techniques over wide ranges of frequency were developed with the
presence of suitable equipment for time-domain measurements [40] that have been
improved for accuracy [41]. This will enable faster investigations due to the shorter
measurement time needed compared with FDS. For measurements below 10 MHz,
measuring cells consisting of parallel plate capacitor types are used [42]. However,
the residual inductance and capacitance arising from the cell itself and the connecting
leads require correction by the measuring cell [43]. At frequencies above 100 MHz,
open-ended coaxial probes are suited for measurement with network analysers
and time-domain reflectometers. Alternately, for broadband frequency-domain
measurements of some products, it was necessary to employ impedance and network
analysers with appropriate sample holders and techniques.

3.2. Radio-Frequency

For radio frequencies, the material can be modelled electrically at any given
frequency as a series or parallel equivalent lumped element circuit. Therefore, if the
RF circuit parameters were measured appropriately, the dielectric properties can be
determined from proper equations by relating the way in which the permittivity
of the material affects those circuit parameters. However, Nelson stated that the
challenge of making accurate dielectric properties or permittivity measurements
lies in the design of the material sample holder for those measurements and in an
adequate modulation of the circuit for reliable calculation of the permittivity from
the electrical measurements [44].

The use of the RF measurements in the early stages of the dielectric
measurements of agricultural products was very common. Radio frequency
measurements relied basically on instruments such as the Q meter [45], impedance
bridges [46], and admittance meters [47]. Various bridges and resonant circuits
were used as measurement techniques for permittivity or dielectric properties
determination in low-frequency, medium-frequency and high-frequency ranges [48].
However, at very low frequencies, invalid measurement data can occur because of
electrode polarization; therefore, attention must be paid to the frequency below which
polarization affects measurement. This depends on the nature and conductivity of the
material being measured [49]. Among the methods used to eliminate the electrode
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polarization effect are the four-electrode method and the electromagnetic induction
method developed with a pair of toroidal coils [50]. With a Q-meter based on a
series resonant circuit, a large number of experiments were conducted, and data
were obtained in the 1 to 50 MHz range [51]. For higher frequency ranges, coaxial
sample holders modelled as a transmission line section with lumped parameters
were developed. For the frequency ranging from 50 to 250 MHz, RX meters were
used for measurement, whereas admittance meters are used for frequencies ranging
from 200 to 500 MHz. By confining samples in a coaxial sample holder, precision
bridges were used for audio frequencies from 250 Hz to 20 KHz [52].

A shielded open-circuit coaxial sample holder was created simply by assembling
components of the sample holders used in earlier studies with the RX meter and
admittance meter to develop a technique of measurement with a frequency range
of 100 KHz to 1 GHz with two impedance analysers, proper calibrations and the
invariance of the cross ratio technique [53].

The dielectric properties of grains with high frequency bridge measurement
from 1 to 200 MHz were determined using a similar shielded open-circuit coaxial
sample by Bussey [54] and by Jones and co-workers [55]. Another coaxial sample
holder characterized by full two-port scattering parameters was designed and used
to provide dielectric properties of grains over the range from 25 to 350 MHz.

3.3. Microwave

Generally, for frequencies that are higher than the one mentioned earlier
(1 GHz and above), several MW measurement techniques are available [56]. Other
instruments, such as transmission lines, resonant cavities, free space techniques and
waveguide systems, were used [57]. MW dielectric properties measurements can be
classified as reflection or transmission measurements using resonant or non-resonant
systems, with open or closed structures for the sensing of the properties of
material samples [58]. Closed-structure methods include waveguide and coaxial-line
transmission measurements and short-circuited waveguide or coaxial-line reflection
measurements. Nelson described the classification of the MW techniques as
follows; Open structure techniques include free-space transmission measurements
and open-ended coaxial-line or open-ended waveguide measurements. Resonant
structures can include either closed resonant cavities or open resonant structures
operated as two-port devices for transmission measurements or as one-port devices
for reflection measurements [44]. A schematic diagram of methods to measure
dielectric properties is provided in Figure 2.
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Figure 2. Dielectric property measurement techniques.

With the availability of the modern MW network analyser, the efficiency of the
methods used to obtain dielectric properties over a wide range of frequencies has
increased; these methods cover both time-domain techniques and frequency-domain
techniques [59]. To obtain dielectric properties information over wide ranges of
frequencies, several frequency-domain systems have been used for measurements
on the samples of interest [60]. Moreover, each of these instruments and systems was
designed for use over certain ranges of frequency. Table 2 is a graphical presentation
of the different types of instrumentation and their appropriate use according to the
frequency and material under test.

Table 2. Material measurement techniques.

Illustration Material Under Test Frequency Other
Comments

Coaxial Probe
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3.4. Dielectric Sample Holder

An important aspect of the measurement technique is the dielectric sample
holder. A suitable method for many materials was provided by the short-circuited
technique of Roberts and Hippel [61]. Applying this method, the sample holder
is simply a short section of coaxial-line or rectangular or circular termination at
the end of the line against which the sample rests. Because the slotted line or
slotted section to which the sample holder is connected can be mounted in a vertical
orientation, this holder is convenient. In other words, the top surface of the sample
can be maintained perpendicular to the axis of wave propagation, which satisfies the
measurement requirement.

For fruit and vegetable samples, a rectangular waveguide K-band system was
used for measurement [62]. The standing wave ratio (SWR) can be determined by
the Roberts and von Hippel [61] method by using the shift of the standing wave
node and change in node widths related to the SWR’s. This allows for calculating
the sample length and waveguide dimensions ε1 and ε” with suitable computer
programs [63]. However, a network analyser or other instrumentation can provide
similar determinations by measurement of the complex reflection coefficient of the
empty and filled sample holder [44]. With the development of special calibration
methods to eliminate errors caused by unknown reflections in the coaxial line [64],
the automatic measurement of dielectric properties has been facilitated by computer
control of impedance analysers and network analysers [65]. Moreover, the accuracy
and reliability of free space measurements of the MW dielectric properties of
agricultural products has always been a priority for developing researchers.

Recently, the technique that is mostly used for measuring dielectric properties of
fruits and vegetables and is showing success for convenient broadband permittivity
is the open-ended coaxial line. However, some errors might arise with this technique,
such as for significant density variations or in case of the presence of air gaps or
air bubbles between the end of the coaxial probe and the sample [66]. Construction
of a cylindrical cavity might be advantageous for fruit and vegetable applications,
especially a cavity with provision for alternate dielectric properties measurements
and MW heating of the sample for temperature control [67].

To avoid the disturbances resulting from multiple reflections within the sample
and between the sample and antennas, a minimal 10 dB attenuation through the
sample layer should be maintained for free space permittivity. For extensive studies,
it was advised to use the network analysers and impendence analysers, but, for
the common limited cases studies, a suitable sample holder can be constructed in
available MW laboratories. For cases where the data are required at only one MW
frequency or for a limited number of frequencies, a resonant cavity technique is a
logical choice [68]; a resonant cavity can be used to measure other permittivity-related
characteristics, such as moisture content, mass volume and mixture proportions [69].
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Figure 3 is a graphical presentation of the system measurement suite according to
the type of material under test and the frequency range adopted for measurement.

3.5. Novel Perspective of Dielectric Techniques

In his paper, “dielectric spectroscopy today yesterday and tomorrow”, Kremer
developed various novel Perspectives of Dielectric Techniques that are expected
to broaden, in his view, the scope of dielectric spectroscopy considerably. First,
the principle of hole-burning spectroscopy has been extended to dielectrics and
has enabled the answering of questions that cannot be tackled with conventional
dielectric spectroscopy [70]. For instance, non-resonant dielectric hole-burning
spectroscopy has made it possible to determine experimentally if relaxation processes
are homogeneously or heterogeneously broadened. Second, the extraordinary
high sensitivity of dielectric spectroscopy enables (frequency-dependent) thermal
expansion spectroscopy with high precision [71,72]. Third, dielectric spectroscopy
is one of the few spectroscopic techniques that measures directly a molecular
fluctuation and has an increasing sensitivity with decreasing thickness, which is
a good advantage (this requires refined techniques to deposit electrodes). In this
context, a novel approach that allows for avoiding the direct evaporation of metal
electrodes has been published [73]. Kremer [32] described an exciting perspective in
his view, which is the employment of AFM to carry out dielectric measurement on
the very local scale of approximately 50 nm.Sensors 2015, 15 15373 
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4. Dielectric Application Data

4.1. Apple

Guo and his co-workers [19] measured the dielectric properties of “Fuji”, “Pink
Lady” and “Red Rome”, three cultivars of fresh apple Malus domestica Borkh, to
study their sense of quality. The measurements, executed over 10 weeks in storage at
4 ˝C, aim to detect whether the dielectric properties are useful for determination of
quality factors such as SSC, firmness, moisture content and pH. The experiments were
conducted for 51 frequencies on a logarithmic scale from 10 MHz to 1800 MHz for
external surface and internal tissue measurements, initially and at 2-week intervals
during the 10-week storage period.

During the 10 weeks of storage, the dielectric properties did not change much
and instead remained relatively constant. This fact agrees with earlier reported
literature regarding the permittivity differences for apple surface and interior tissue
measurements [74]. Another point to state is that there are some considerable
differences among the three cultivars. The same as for watermelon, the dielectric
relaxation phenomenon is also exhibited on the surface measurements that are
most likely related to the exocarp structure of the fruit. Taking into consideration
the difference in scale, it is noted that the dielectric constant measurements are
similar for both the external and internal measurements, but, for the loss factor, the
internal tissue measurements show a greater variation than those obtained for the
external tissues, especially at lower frequencies. From the obtained results, it is noted
that all of the dielectric properties of the three cultivars have the same behaviour
with respect to frequency. Additionally, the decline in the dielectric constant is a
notable characteristic with increasing frequency. The same phenomena of ionic
conduction and dipolar losses at low and high frequencies, respectively, are detected
for internal apple measurements as well. As for the surface exterior measurements
and considering the frequency range, an overriding dielectric relaxation behaviour
that might be due to bound water relaxation is revealed.

To determine the state of fruit maturity through the potential use of dielectric
spectroscopy, a study was conducted in 2010 to find relations with apple physiological
compounds, such as sugar content and malic acid. A non-destructive control method
was presented for the prediction of climacteric fruits maturity. Measurements were
taken at a frequency ranging from 500 MHz to 20 GHz. A new good correlation
was found between apples’ Thiault Index and a new defined Dielectric Maturity
Index. This Dielectric Maturity Index was related to the loss factor at two punctual
frequencies (0.5 GHz and dipolar relaxation frequencies) [75].

At the frequency range of 500 MHz to 20 GHz, another dielectric measurement
was applied to apples with different sugar contents during ripening. The objective of
the study was to determine the optimal time for eating the fruit. Various good new
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correlations between the newly defined maturity index and the Thiault index were
found. Prospective data of some chemical components of apples were presented in
the study [76].

To distinguish between diseased and normal fruits, a new theoretical basis for
non-destructive inspection and a research method based on electrical properties was
developed. The study investigates the change of the law of dielectric properties on
the Fuji apple superficial scale. For a frequency ranging from 100 Hz to 3.98 MHz,
the dielectric properties of fruits embracing the impedance, reactance, conductance,
capacitance and loss coefficient were measured using the Inductance Capacitance
Resistance analyser (LCR). The results show that fruit impedance and reactance
decrease as frequency increases; the capacitance and dielectric loss coefficient changes
are irregular. Only the conductance increases in spiral form for the same storage
times. A significant positive correlation exists between impedance and reactance.
Moreover, values of capacitance differ between diseased and normal fruits form
100 Hz to 3.98 MHz, which suggests that the quality of apples can be reflected by
capacitance to some extent [77].

Using a network analyser and open-ended coaxial line probe, dielectric
properties measurements were effected on the external surface, internal tissue and
juice of “Fuji” apples during the last two months of tree-ripening. The objective
of the study was to determine the relation of permittivity with apple quality by
measuring the firmness, SSC, pH, moisture content and electrical conductivity. The
observations reveal that the permittivity and electrical conductivity did not show a
specific pattern during the ripening period; the moisture content and SSC remained
constant, but the firmness and pH increased with maturity. Thus, the study did not
find a correlation between permittivity, firmness, moisture content or pH, and the
linear relationship between surface permittivity and SSC was poor (<0.2). Calculating
the linear regression at 4.5 GHz, the best correlation between the loss tangent of the
tissue and SSC and between the dielectric constant of juice and SSC was found to be
0.61 and 0.67, respectively [78].

In the same year, Guo and his co-workers also investigated the dielectric constant
and loss factors of apples with skin (skin on), without skin (skin off) and the flesh
juice of “Fuji” cultivar for a frequency range from 10 to 4.5 GHz. The firmness,
moisture content of the flesh, SSC, pH and direct current conductivity of the juice
were under measurement. The results show that with storage time, the pH increases
and the firmness decreases, but no pattern was detected for the moisture content,
SSC, conductivity or permittivity. With increasing frequency, the depth of penetration
in skin-on and skin-off apples and apple juice decreases. Because the correlation
between apple permittivity, internal quality and limited Dp was weak, it was difficult
to sense the apple internal qualities from the permittivity of skin-on apples, skin-off
apples and apple juice. The study concludes that information provided by dielectric
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properties can be useful in developing thermal treatments for postharvest insect
control based on RF, MW energy and non-destructive methods for detecting internal
fruit quality as well. Additionally, designing the treatment bed thickness in RF and
MW systems and estimating the heating rates of apples samples can be conducted
with dielectric properties data. The limited penetrations at frequencies higher than
3 GHz may suggest some unpractical apple quality sensing under the experimental
conditions. The study points also to some weak correlations between permittivity
and quality indices [79].

Physical information about apples that is closely related to chemical information
has been investigated by monitoring apples during aging via electrical impedance
spectroscopy as a fast and non-invasive method. The study proposes two different
analytical techniques for assessing the apple properties changes. The first method is
based on a single measurement at a low frequency range (approximately 100 Hz),
while the other is based on an Argand plot. The major changes observed in electric
impedance spectra were attributed to changes in the apples’ relative moisture content.
Moreover, an equivalent circuit scheme helped to model the apples’ behaviour and
derive the apoplastic and simplistic resistances and relaxation times [80].

A two-stage study was conducted in 2013 based on the necessity of finding
effective methods to select key features from all other dielectric features to reduce
the cost of dielectric signal application in non-destructive detection of fruits and
crops. For this, a compact discriminative dielectric feature subset was found at first,
and then, based on the first step, a non-destructive apple internal quality estimation
system is evaluated. Measurements are executed with nine frequency points ranging
from 158 Hz to 3.98 MHz using an LCR tester. Apple samples are graded according to
their freshness by weight loss rate (WLR). The apple with WLR equal to 0%, 5%, 10%
and 15% are assigned grade one, two, three and four, respectively, whereas grade five
apples are those with brown stains. The most discriminative apple internal quality
estimation is the compact set of dielectric features. Three classifiers are evaluated at
the internal quality estimation stage, the sparse representation classification (SRC),
artificial neural network (ANN) and support vector machine (SVM). The results
show that fast clustering-based feature subset selection (FAST) selects only four
dielectric features with 80% classification rate, while sparse principal component
analysis (SPCA) accuracy is mediocre and the performance of the greedy selector is
significantly outstanding with classification rates of 91.22% and 95.95%, respectively.
The results show that dielectric features are highly relevant to the apple internal
quality that can be estimated with a compact set of dielectric features [81].

Another experiment studied the effect of high-voltage pulsed electric field
treatment on the dielectric properties of apples using the theory of electromagnetic
fields. The results show that when the pulse voltage and the pulse frequency increase,
both the equivalent capacitance and equivalent impedance of apples decrease. In
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fact, the dielectric properties are affected by the high-voltage pulsed electric field
parameters [82].

The soluble solid content in “Fuji” apples was predicted by applying the BP
network model and support vector regression (SVR) over a frequency range from
10 MHz to 4.5 GHz during 21 weeks of storage. Effects of the full frequency (FF),
principal component analysis (PCA) and successive projection algorithm (SPA)
prediction models were compared and evaluated. The results show that the PCS-SVR
results were better than SPA-BP; the predicted correlation coefficient of PCA-SVR
was 0.883, and the root mean square error (RMSE) was 0.552. Moreover, the effect of
the PCA-BP was worse than that of PCA-SVR. The RMSE of the established model
by SPA was generally smaller than by other methods, and the predicted correlation
coefficient of the models established by PCA was generally higher. Based on the
frequency spectrum of dielectric parameters, some useful technologies in developing
non-destructive sensors for fruits’ soluble acid content were offered as well [83].

Based on the concept that dielectric properties are highly relevant to the internal
quality of many fruits and crops but their application is restricted because of their
changing frequency, a study was conducted by Li and his co-workers. Its objective
was to find an effective dielectric feature selection method to reduce the cost of the
dielectric signal application in non-destructive detection of fruits and crops. For
this, “Fuji” apples were graded into five levels according to their dielectric features
using several methods, such as SPCA, FAST and a ranker method with the attribute
evaluator of information gain. The experimental results show that some key dielectric
features are sufficient for high classification accuracy [84].

Recently, a study investigated the feasibility of using dielectric spectroscopy as
a non-destructive technique to determine the soluble solid contents of fruits. Three
varieties of apples were chosen (“Fuji”, “Red Rome” and “Pink Lady”), and their
dielectric constants and loss factors were obtained at 51 discrete frequencies from
10 to 1800 MHz using an open-ended coaxial line probe and an impedance analyser.
Methods, PCA and the uninformative variables elimination method (UVE-PLS) were
applied for the extraction of the dielectric spectra. To establish models that predict
the SSC of apples, other methods such as the generalized regression neural network
(GRNN), SVM and extreme learning machine (ELM), have served, with calibrated
root mean square error and predicted root mean square error of 0.840 and 0.822,
respectively. The study also reveals that non-destructive determination of SSC of
apples can be done through a combination of dielectric spectra, artificial neural
networks and chemometric methods [85].

It is important to mention the existence of other non-destructive methods that
have been used for the detection of apples firmness and SSC, such as the biospeckle
based on the analysis of laser light variation scattered from the apple sample [86].
Monitoring of quality and ripening of fruits and vegetables, analysis of seeds and
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assessment of mobility parameters are all applications of the biospeckle technique in
the agricultural area [87]. Overall, one can conclude that ionic conduction occurs at
low frequencies and dipole relaxation at higher frequencies. A combination of effects
including Maxwell-Wagner, bound water, ion related phenomena and molecular
cluster are the reason behind the overriding dielectric relaxation of loss factors. For
non-destructive surface measurements, the correlations between permittivity and
quality indices are not high enough for sensing internal quality. On the other hand,
a potential for on-line quality sensing applications may be offered at the tissue and
juice levels. All the studies conducted admit that further analysis through radio
frequency electromagnetic fields is necessary for a satisfactory quality assessing.

4.2. Avocado

In 2003, Nelson [37] conducted measurements of the dielectric properties of the
avocado Persea americana Miller var. Americana obtained over the temperature range
of 5 ˝C to 95 ˝C, in the frequency range from 10 MHz to 1.8 GHz. The results show
that the dielectric constant dependence with the temperature disappears at some
frequency in the range shown; above that frequency, the temperature coefficient
for the dielectric constant is negative, and, below that frequency, the temperature
coefficient for the dielectric constant is positive. As explained by Nelson, dipole
relaxation accounting for most of the energy loss occurs at above that frequency,
while ionic conduction is the dominant loss mechanism below that frequency. This
critical edge frequency is approximately 100 MHz for the avocado. It is also noted
that for lower frequencies, the dielectric constant of the avocado increases in a regular
fashion with the temperature increase. The same pattern is observed for the dielectric
loss factor, which increases with temperatures at lower frequencies regularly.

Another experiment on avocado products was conducted in 2008 to measure the
dielectric properties of food having the potential to be processed using a continuous
flow MW heating system at 915 MHz and in the temperature range of 10 to 90 ˝C.
The results show that with the temperature increase, the dielectric constant decreases
and the dielectric loss factor increases [88].

Although only poor correlations were observed between moisture content,
density and soluble solid content, the research on avocado provided new information
that could be useful in understanding the dielectric behaviour for sensing quality.

4.3. Carrot

In 2003, Nelson [37] measured the frequency and temperature dependence
of the dielectric constant and the dielectric loss factor of the carrot (Daucus carota
subsp.sativus (Hoffm) Arcang) over the temperature range from 5 ˝C to 95 ˝C. The
critical edge frequency obtained is approximately 100 MHz for the carrot. It is also
noted that for lower frequencies, the dielectric constant of the carrot increases in
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a regular fashion with the temperature increase. A remarkable peak at 65 ˝C is
noticeable for the carrot tissues before decreasing slightly with the temperature
increase to 95 ˝C. The same pattern is observed for the dielectric loss factor, which
increases with temperatures at lower frequencies regularly. As for the frequency
increase, both the dielectric constant and loss factor have a decreasing pattern [66].

Recently, an experiment was conducted to find the glass transition temperature
from frozen and fried mixtures of carrot fibre plus fructose using dielectric analysis
in the range of 200 Hz to 1 MHz. The temperature of the peak derivative assumed to
be the transition temperature was found to be frequency-dependent. The moisture
was in the range of 2% to 4% when the fructose carrot fibre mixture was spray dried
and was free flowing. When the fibre content was higher, no significant difference
in stickiness and moisture content was detected. Differential scanning calorimetry
of 40%, 50%, 60% and 70% carrot fibre fructose showed transition temperatures
of 107 ˝C, 114.5 ˝C, 122.9 ˝C and 130 ˝C, respectively. The values imply that wall
build-up might be avoided in a larger scale dryer [89].

Research concludes that there is point in the frequency range between 10 MHz
and 100 MHz where the dielectric constant dependence with the temperature was
minimal. The behaviour of the permittivity with temperature can be interpreted by
the dominance of ionic conduction and dipole relaxation for frequencies below and
above that point respectively.

4.4. Coconut Water

Kundu and Gupta applied the same experiment on coconut water. However,
because the sample is liquid, the permittivity sensor probe needs to be inserted totally
within the liquid to yield accurate measurements. The results show that similarly to
other fruits (brinjal, tomato, guava and apple), the real component of permittivity
decays in an inverse manner with frequency. The energy storage capability of coconut
water was reduced with frequency, and the energy loss appeared to be, at minimum,
in the frequency range of approximately 2 GHz [90].

4.5. Eggplant (Brinjal)

Under the same conditions of the experiment conducted on tomatoes, Kundu
and Gupta measured the permittivity of eggplant (brinjal). The real component of
the permittivity decays almost exponentially similarly to tomatoes (to be discussed
in section 4.13 of this article) with frequency increase. Over the measured frequency,
the dielectric constant is higher at 16 ˝C than at 25 ˝C. The relative permittivity of
brinjal falls from 36 at 200 MHz to 26 at 8.5 GHz, implying that the energy storage
capability decreases with frequency. The value of permittivity is reasonably low due
to the presence of less moisture and more air in the brinjal body. The observations of
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the minimum field energy loss and loss tangent curve indicate that energy storage
capability and energy loss within the vegetable vary with ambient temperature [90].

4.6. Grape

Using a parallel plate electrode system, the dielectric parameters of red globe
grapes were studied as a function of the room temperature and storage time for
a frequency range of 50 Hz to 1 MHz. The results show that with the frequency
increase, both electric conductance and equivalent parallel capacitance increase,
whereas equivalent impedance decreases. At 25 KHz, the loss coefficient reaches its
minimum and the quality factor reaches its maximum. With increasing storage time,
both the equivalent impedance and quality factor decrease for the same frequency,
whereas the equivalent parallel capacitance, the loss coefficient and the electric
conductance increase. The study concludes that there is a strong correlation between
the electrical characteristic parameters and electric field frequency [91].

4.7. Guava

Guava fruit has been measured under the same conditions as tomatoes by
Kundu and Gupta [90]. The fruit shows a similar pattern of dielectric constant
decrease with frequency increase. The first observation of the study shows that
relative permittivity goes up with a temperature increase from 16 ˝C to 25 ˝C in GHz
frequency scale, implying that the energy storage capability of guava is reduced with
frequency. The energy conversion to heat is at its minimum in the frequency band of
approximately 1 GHz. The loss within guava, as noted by the loss tangent curves,
slightly decreases with the temperature increase from 16 to 25, which goes against
Nelson’s reports in 2003 and 2005 [90].

4.8. Mango

Sosa-Morales and his co-workers measured the dielectric properties of mangos
to understand the interaction between the fruit and electromagnetic energy.
Measurements were performed using an open-ended coaxial line probe and an
impedance analyser for a frequency ranging from 1 to 1800 MHz, a temperature from
20 ˝C to 60 ˝C and 16 days of storage. The results show that the dielectric constant
was decreasing with increasing frequency, and the loss factor was decreasing even
more so. With increasing temperature, the dielectric constant decreases while the loss
factor increases. With storage time, both the dielectric constant and loss factor were
decreasing, which is attributed to the reduction in moisture content and increase in
pH. The penetration depth (Dp) at which the power drops to 36.8% of its value at the
surface of the material was calculated. Obtained results guide that Dp decreases with
both temperature and frequency increase, implying that energy penetrates deeper
into mangos than MW [92]. This should be expected from the equation developed
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by Metaxas and Meredith [34] that reflects the relative variation of Dp in function of
temperature and frequency.

In 2013, a study was conducted by Yoiyod and Kaririskh [93] on the ripeness
monitoring of mangos through a cost-effective remote sensing system. The dielectric
properties of the peel and pulp of mango fruit were measured at different maturity
stages. A frequency ranging between 6 and 18 GHz is considered to be the most
suitable operating frequency. The results show that a significant difference in the
reflection coefficient exists between ripe and unripe mangos [93].

4.9. Melon

In 2007, Nelson and his co-workers [94] conducted a measurement of honeydew
melon dielectric properties to study if a useful correlation exists between the
dielectric properties and melon sweetness, as measured by soluble solid content. The
measurements show that the mean values of dielectric properties from six probe
measurements on internal watermelon tissue reveal a linear relationship for the loss
factor between 10 and 500 MHz, which can be interpreted by the dominant influence
of ionic conduction in that range [95]. It is essential to mention that a significant
difference exists between the measurements executed on internal tissue and those on
the surface. Due to the influence of bound water and the complex combination of
Maxwell-Wagner and ion-related phenomena, broad dielectric relaxation occurs at
the surface measurements, explaining this result difference. Despite the success of
relating the dielectric properties of solids in complex plane plots, Nelson [94] stated
that the search for correlations for predicting melon sweetness from the dielectric
properties was not successful so far.

In 2011, Nelson and Trabelsi [96] re-examined the earlier dielectric spectroscopy
measurements of honeydew melons and watermelons from 10 MHz to 20 GHz.
The objective of the study was to find useful correlations with SSC (sweetness)
for non-destructive sensing of melon quality. The study could not reveal any new
information regarding the melon quality through dielectric properties. The internal
edible tissues useful for quality sensing were attenuated by RF signals. However,
better coefficients of variations were obtained at higher frequencies.

4.10. Orange

Nelson [37] measured the dielectric properties for the navel orange (Citrus
aurantium sbsp. Bergamia). The frequency at which the temperature coefficient
reverses its sign, known as the frequency of zero temperature dependence, is noted
to be at approximately 50 MHz [36]. A phenomena occurs at lower frequencies
where large ionic conduction masks the biological cell constituents and the dielectric
relaxation forms of bound water [97]. This explains why the reversal of the sign
of the temperature coefficient is evident only for the dielectric constant and not for
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the case of the dielectric loss factor. However, for high frequencies, a shift in the
relaxation frequency for liquid water to higher frequencies occurs with temperature
increase, resulting in the reversal of the temperature coefficient for the loss factor
at the high end of the frequency range. The relaxation frequency of liquid water
is 10.7 GHz at 50 ˝C; thus, the associated dispersion is evident above 1 GHz. The
polarization at lower frequencies in cellular structures is mainly due to the increased
ionic diffusion and ionic conductivity processes, which cause the high values of
the dielectric constant at low frequencies [98]. As evidenced by the data, when
the temperature increases, this dispersion might also shift to higher frequencies.
Nelson also concluded that the ionic conductivity phenomena which increases with
frequency falls in keeping the convention of the Kramers-Kronig relations. This
critical edge frequency is approximately 40 MHz for the navel orange. It is also noted
that for lower frequencies, the dielectric constant of the orange increases in a regular
fashion with temperature increases. The same pattern is observed for the dielectric
loss factor, which increases with the temperature at lower frequencies regularly.

4.11. Peach

In 1995, Nelson [7] measured the dielectric properties of tree-ripened peaches of
different maturities. Among the three categories of peaches included in the study,
the “Dixired” were the first to mature, followed by “Redheaven” and “Windblo.” An
attempt to narrow the maturity range was taken via non-destructive measurements
that have been associated with maturity in experimental work [99], taking into
account both the blush and the ground sides of the peach fruit to accommodate
any differences that might be noted on the same fruit (5% accuracy as specified by
Helwett-Packard).

The results of their experiments prove that the dielectric constant of the peaches
at different maturities are diverging at the lower end of the frequency range; therefore,
it seems interesting to explore the behaviour of the constants for other fruits and
vegetables at a lower range of frequencies (below that point). Generally, standard
deviations for the 15 permittivity measurements on tissue samples of the five
fruits were less than 2% for the dielectric constant and less than 10% of the loss
factor. It is also noticeable that maturity is accompanied by a slight increase in the
dielectric constant at 200 MHz; however, the dielectric loss factor shows only a
slight dependence on the stage of maturity. At a higher frequency, e.g., 10 GHz, the
dielectric loss factor tends to increase with maturity, whereas the dielectric constant
has no consistent trend across the samples. In sensing the stage of maturity, Nelson
and his co-workers suggested from the data obtained that values of ε1 at lower
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frequencies and values of ε” at higher frequencies should be useful. Therefore, a
permittivity maturity index was developed, as shown in Equation (5):

Mp “
pε´q0.2 ` pε´´q10

100
(5)

A second maturity index based on permittivity, utilizing both real and imaginary
components, was formulated as Equation (6):

Mltr “
ptanδq10
ptanδq0.2

(6)

This new ratio takes into account the fact that ε1 shows more variation with
maturity at 0.2 GHz and ε” shows more maturity dependence at 10 GHz. Thus,
their product should be useful. To cover both real and imaginary components of
the permittivity, the ratios ε1/ε” at 0.2 GHz and ε1/ε” at 10 GHz would be relevant
with the use of the loss tangent tan δ (defined as the ratio of ε1/ε”). Based on the
experiments, the dielectric constant and loss factor, which are the real and imaginary
components of the complex permittivity, respectively, are showing a significant
variation with frequency over the range from 200 MHz to 20 GHz. Because the
values appear to be diverging with respect to maturity indices, more effort should
be required in this area for more reliable maturity indices in the non-destructive
sensing of maturity for peaches. This being said, Nelson’s experiment could reach
two maturity indices development but could not reveal any new information behind
the data variations of ε1 and ε”.

In 2007, an experiment based on electrical properties measurements was
conducted to investigate the electrical and physiological properties of peaches. The
study was seeking a better understanding of the electrical properties of post-harvest
fruits and a deeper exploration of new quality sensing methods. With peach aging,
the loss tangent was observed to decrease and the relative dielectric constant to
vary with the cosine law, roughly. At the peak of respiration, the maximum relative
dielectric constant appeared [100].

Also in 2007, the internal quality of just-harvested early- and mid-season
peaches was studied using MW spectroscopy. Establishing the feasibility of MW
measurements for the firmness and sugar estimation of the peaches was the objective
of the study. Using a contact coaxial probe from 1 to 20 GHz, the return loss (LR), a
MW parameter, was measured simultaneously with reference parameters such as
firmness, acidity, sugar content and optical reflectance. Because the MW response
changes significantly with the treated samples, the results show that the dielectric
response in the peach fruits is affected highly by moisture content and temperature.
In fact, when fruits are submerged in water for 1 h (moist) and the temperature is cold
(1 ˝C), the LR increases 50%–100% compared with fruits at ambient temperatures
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(20 ˝C). Return loss values obtained at different measured frequencies (1, 7, 9.9 and
19 GHz) show high correlations for the same fruit. However, low correlation is
observed with fruit firmness, which is not consistent enough to be applied for fruit
inspection and sorting purposes. The study demonstrates a low repeatability of the
LR and concludes that the most significant independent variable for estimating peach
firmness is the reflectance at 680 nm. Moreover, the variance that is the coefficient of
determination of the firmness models reaches approximately 50% to 60%, with lower
values for sugar estimation models [101].

In 2010, peaches with different maturities were selected to explore their dielectric
properties and determine their internal quality. Experiments were held at 25 ˝C using
coaxial open-ended probe technologies over a frequency range from 10 to 4.5 GHz.
Measurements of the moisture content of peach pulp, soluble solid contents (SSC),
pH value and electrical conductivity show that the dielectric constants of the pulp
and juice decreased with increasing frequency, while the loss factors change with
“V” type. The major loss mechanisms at lower and higher frequencies were the
ionic conduction and the dipolar polarization. Moreover, the relationship between
permittivity and soluble content, pH value and moisture content was non-linear [102].

In order to understand the interaction between the electromagnetic fields and
to design treatment beds in industrial applications, an experiment investing the
peaches dielectric properties was conducted recently. The study was based on the
fact that MW and radio frequency methods hold potential for postharvest thermal
disinfestations to replace chemical fumigation. Using an impedance analyser, the
dielectric properties of the peaches were determined between 10 and 1800 MHz
over a temperature ranging from 20 to 60 ˝C. The results show that the dielectric
constant varies between 60 and 75, accounting for an 8% to 10% change due to the
temperature effect. When temperature increased from 20 to 60 ˝C, the loss factor
decreased linearly with frequency on the log scale by approximately 110%, and the
loss factor ratio was 1.66 at 20 ˝C. The penetrating depth decreased with increasing
frequency [103].

4.12. Potato

Dielectric properties of potatoes were measured with a system consisting
mainly of an impedance analyser, high temperature coaxial cable and a metal
sample holder. When increasing the temperature from ´20 ˝C to 0 ˝C, both the
dielectric constant and loss factor rapidly increase. From 0 ˝C to 100 ˝C, the dielectric
constant decreases linearly, while the loss factor decreases first and then linearly
increases [104]. With a frequency increase, both the dielectric constant and loss
factor have a declining pattern [66]. Results show that the thermal properties found
are critical input parameters for a microwave heat transfer model. Thus, authors
suggested implementing this model to be used by food scientists in developing

122



novel products that minimize non-uniform heating during cooking in domestic
microwave oven.

4.13. Tomato

De los Reyes [30] measured the dielectric properties of tomatoes at three
locations: the centre of the pericarp, the locular cavity and the skin. However,
the measurements at the skin were not considered to be successful because of the
non-permeability of the cereus skin to the mass transfer or the bad connection
between the probe and the tomato skin. The mean values of six replicates of tomato
samples were measured by the authors from 200 MHz to 20 GHz at 21 ˝C. It is
remarkable that large drops in the Dp may damage the fruits due to elevated
power absorption.

Over a frequency ranging from 30 MHz to 3000 MHz, a study was executed
in 2013 to determine the tomatoes dielectric properties. Open-ended coaxial probe
technique was used. The effects of NaCl and CaCl2 were investigated on three tomato
tissues separately: the pericarp (including the skin), the locular tissue (includes the
seeds) and the placental tissue. The results show that with increasing frequency
and salt addition, the loss factors of the three tomato tissues decrease. However,
with increasing temperature, the loss factors decrease initially but then increase at
915 MHz. The ionic conductivity is the main reason behind the differences in the loss
factors of the three tomato tissues [105].

Recently, Kundu and Gupta measured the dielectric properties of tomato fruits
for a frequency range from 0.5 GHz to 5.5 GHz at two different temperatures, 16 ˝C
and 25 ˝C, using the Agilent 85070E Dielectric Probe Kit and Network analyser.
The objective is to note the switch in dielectric constant and dielectric loss factor.
Although the permittivity curve of tomatoes is higher at 16 ˝C than at 25 ˝C, results
show that the dielectric constant decays exponentially with frequency increase at
both temperatures. The relative permittivity of tomatoes falls from 63 at 200 MHz to
40 at 8.5 GHz. This implies that the energy storage capability of tomatoes is reduced
with frequency, but a high permittivity is always expected due to high moisture
content. Moreover, the loss tangent is minimal at approximately 1 GHz to 2 GHz,
and the dielectric loss factor increases. This implies that the energy conversion is also
minimal in the frequency range of 1 GHz to 2 GHz [100].

5. Discussion

Sensing food quality through dielectric spectroscopy reveals some very
impressing results and opens the horizon for better food consumption in a society
where quality is the key for food industries success. Thus, the focus was to build
a solid literature review of the various species of fruits and vegetables that have
been measured for their dielectric properties. The topic might seem straightforward
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but experiments varied much in their hypotheses and circumstances. As the paper
shows, for the same type of fruit “apple”, authors might come out with different
results according to the nature of experiments conducted. For example, apples in
each experiment were tested for different quality indices (firmness, ripening, soluble
solid content, sugar content, moisture content) and the factor under scope was
considered by changing different environmental parameters (temperature, frequency,
storage period). Moreover, the quality index varies from one fruit to another which
multiplies the possibilities of experiments and makes it an unlimited field. This
explains the variation in the experiments that were never unified for only one aim.
For the same type of fruit, quality estimation could be measured from different angles
seeking improvement.

Regarding the frequency range, it is not consistent within the different apple
experiments and for the other fruits as well. Some were conducted at low frequency
range; however recent ones have been applied at higher frequency ranges. Recently,
high-frequency sensing measurement has been approachable with the availability
of advanced technology instruments. It is important to note that a higher frequency
requires higher budget cost which might be the obstacle for many of the researches.
Throughout the paper, it was shown that higher frequency lead to more focused
results. The various frequency ranges executed on the different species of vegetables
and fruits are presented graphically in Figure 4.
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After comparing the results of several experiments conducted on fruits and
vegetables, only the dielectric constant measurements of apple fruit by Kundu and
Gupta were similar and repeated in most of the studies and verified Nelson’s work
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in 2005, 2007 and 2008. In most of the vegetables rich in water, the real component of
the permittivity shows reasonably high results due to the moisture content with the
exception of brinjal, where relative permittivity was lower due to lower moisture.
Thus, the results demonstrate the fact that higher permittivity is expected in fruits
and vegetables with higher moisture content [100]. The loss tangent curves show that
the loss is at a minimum at approximately 1 GHz to 2 GHz for most of the measured
samples, which implies that dielectric loss is minimum at that frequency band and
that the RF field provides an optimum angular velocity for the polar particles in those
samples. In other words, the friction becomes nominal to reduce the heat generation
within vegetables and fruits. For the apple, tomato, eggplant and coconut water, it is
remarked that the relative permittivity decreases and the loss tangent increases with
increases in temperature (from 16 to 25). Only the guava fruit is an exception. Both
observations of Nelson, in 2003 and 2005, are in concordance with Kundu and Gupta.
It may be that maturity levels of guavas were not exactly the same, which resulted in
different temperature dependence for the dielectric loss and loss curve for guava.

For apples [19], the dielectric measurements applied on different parts of the
fruits did not show similar results; the same was true for the surface and internal
measurements that were considerably different. Lower dielectric constants were
observed at the surface of apples, and much lower dielectric loss factors at the
surface than at the internal tissues with increasing frequency, regularly pointing to
the dominance of ionic conduction at lower frequencies and dipolar relaxations at
high frequencies. Additionally, the dielectric properties remained relatively constant
throughout the storage duration of 10 weeks. To sense apples’ quality factors,
wider frequency range analysis must be necessary through RF electromagnetic
fields. Moreover, the fact that extracellular resistance is lower than intracellular
resistance implies a disproportionate relation between resistance and permittivity
constants. This statement is verified by Keller and Licastro, who proved that the
high resistivity was associated with lower water content and that a high dielectric
constant is associated with high water content [106]. In practice, this would mean
that the surfaces of the apples having high resistivity and lower permittivity is poor
in water content, whereas the internal part of the apple showing lower intracellular
resistance and higher permittivity values is rich in water. One can conclude that
permittivity and water content are positively correlated; then, because resistivity
and water content are negatively correlated, resistivity and permittivity are thus
negatively correlated. Table 3 shows a summary of the different dielectric parameter
variations with various experimental factors; a conclusion on the permittivity pattern
is accompanied.
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Table 3. Parameter Variation overview (∆ & ∇ for parameter increases and
decreases, respectively).

Fruit/
Frequency Temperature Storage Time

Conclusions
Vegetable ε1 ε” Others ε1 ε” Others ε1 ε” Others

Apple ∇

Impedance
∇

Reactance
∇

No
pattern

No
pattern

Conductance
∆

Firmness
∆ pH ∆

Linear
decrease

with
frequency

Avocado
At low freq.
∆ At high

freq. ∇

At low
freq. ∆

Inflection
point at
Critical

edge freq.
100 MHz

Carrot ∇ ∇

Inflection
point at
Critical

edge freq.
100 MHz

Coconut ∇

Linear
decrease

with
frequency

Eggplant ∇

Linear
decrease

with
frequency

Grape

Conductance
∆

Capacitance
∆

Impedance
∇

∆

Equ.
Capacitance
∇ Equ.
Parallel

capacitance
∆

conductance
∆

Linear
increase

with
storage

time

Guava ∇

Energy
storage

capability
∇

Relative
permittivity

∆

Relative
permittivity

∆

Linear
decrease

with
frequency

Mango ∇ ∇ Dp ∇ ∇ ∆ Dp ∇ ∇ ∇

Linear
decrease

with
frequency

Melon

Frequency
linear

relationship
between 10

and 500
MHz

Orange At low
freq.∆

At low
freq.∆

Dispersion
shift to
higher
freq.

Temperature
linear

increase
below 50

MHz

Peach ∇ & Std. <
2%

V type
& Std.
< 10%

Dp ∆ High
correlation

of:LR &
freq. and
LR & fruit
firmness

linear ∇

Frequency
and

temperature
linear

decrease

Potato ∇ ∇

From
´20 ˝C to

0 ˝C ∆
From 0 ˝C

to 100 ˝C ∇

From
´20 ˝C to

0 ˝C ∆
From 0 ˝C
to 100 ˝C
∆ then ∇

Frequency
linear

decrease,
varying

temperature
pattern

Tomato Exponential
∇ ∇

∇ then ∆
at 915
MHz

Exponential
relationship

with
frequency
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The experiments shown earlier contribute in framing the permittivity constant
variations and determining its major influencing factors. The composition of the fruit,
especially the water content, has a positive correlation with the dielectric constant
and dielectric loss factor. Indeed, the water is the major absorber of energy in foods;
thus, the higher the moisture content, the better is the heating [107]. Therefore,
dehydrated fruits show a decrease in their permittivity level compared to other fruits
rich in water.

Regarding ionic components, it was observed that salts result in augmenting
the dielectric loss factor in mashed potatoes, while the dielectric constant
was not affected [17]. Because the physical structure considerably affects the
dielectric properties, density is another important factor observed to change with
measurements, e.g., the lower the density, the lower is the permittivity. In fact,
Guo suggested some simple relations to estimate the chickpea flour dielectric
properties from the density and vice versa where it was concluded that the dielectric
properties increased with the increase in density and moisture content (from 1.2698
to 1.321 g/cm3and 1.9 to 20.9%, respectively) [108].

In regard to temperature, this factor has a strong yet complex influence over
the dielectric properties but depends initially on the food composition and moisture
content [13]. It can be stated generally that at low frequencies, due to the ionic
conductance, the loss factor increases with the temperature increase [17]. In contrast,
at high frequencies, due to free water dispersion, the dielectric constant decreases
with increasing temperature [109]. These theories have been verified through the
experiments. As was discussed for the avocado fruit, the temperature coefficient
is positive below 100 MHz, where both the dielectric constant and dielectric loss
factor were increasing with temperature; in contrast, the temperature coefficient was
negative for frequencies higher than 100 MHz. The pattern was also observed for the
navel orange measurements, where the loss factor was increasing with temperature
at lower frequencies in a regular fashion, and a massive explanation of the ionic
diffusion was a subject of interpretation. Similarly, the peak temperature of carrots
reached 65 ˝C.

In regard to frequency, most lossy materials, i.e., materials that absorb and loose
energy from RF or MW heating, have dielectric properties that vary considerably
with the frequency variation. The imposed electric field and its orientation influence
the polarization of molecules, resulting in the dependence of dielectric properties and
frequency [48]. At MW frequencies, both σ and d (of free water) play a major role,
whereas only σ is dominant at lower frequencies (<200 MHz). This phenomenon was
observed for the avocado fruit, for which Nelson attributed the energy loss at high
frequency to the dipole relaxation and the ionic conduction at low frequencies [37].
Figure 5 shows the loss factor and dielectric constant behaviour of carrots [66] and
peaches [110]. The same pattern is concluded after the navel orange measurement
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conduction as well. While the dielectric constant is always decreasing with the
frequency increase, the loss factor patterns prove to have either a declining curve
(carrots) or a V-type curve with a point of inflection (peaches). This critical frequency
point identifies each product and characterizes its behaviour. Thus, fruits and
vegetables cannot be distinguished according to the dielectric constant that has
similar behaviour, but the loss factor can be characterizing because it differs from
one product to another.Sensors 2015, 15 15388 
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Figure 5. (a) Loss factor behaviour versus frequency for carrots and peaches on a
logarithmic scale; (b) Dielectric Constant behaviour versus frequency for carrots
and peaches on a logarithmic scale.

Concerning the peel of the fruit, an experiment tackling the disinfestation of
fruits adopted the radio frequency heating as a fast and volumetric method to
overcome the problems of conventional heating. The results of the measurements
conducted via open-ended coaxial probe methods show that the RF heating
behaviour of the fruits is greatly influenced by dissimilarity in peel and pulp dielectric
properties. For apples, peeled oranges and grapefruits, core heating was prominent,
whereas it was subsurface or peripheral heating for whole oranges, grapefruits and
avocados (fruits with thicker peels). This is expected due to the difference in dielectric
and physical properties of the pulp and peel [110].

Last but not least is the storage time factor, which directly affects a large number
of investigated fruits. Because fruit and vegetable ripening occurs during storage
time, storage time effect studies are one of the main goals of the dielectric properties
experiments conducted so far. Storage time, being considered as a major quality
factor, was significant in the apple study; dielectric constants and loss factors of
the apples remained constant during the 14 weeks of storage, which revealed the
importance of further research at wider frequency ranges. The case of apples is quite
different than that of mangos, whose dielectric properties decrease with storage time.
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The phenomena of decreased permittivity in consideration of storage time can be
attributed to the increase in pH and decrease in moisture content. The effect of the
storage time on the dielectric properties differs from that of the electrical conductivity,
which increases with temperature during the storage time [107].

The dielectric studies reached various good conclusions regarding the
development of maturity indices. However, further investigation at higher ranges
of frequency are always needed for better accuracy, especially in the areas where
dielectric properties data do not show significant variations upon which the
author can build an effective hypothesis. Moreover, dielectric measurements are
distinguished by not being destructive, at least for the experiments shown in this
review. The destructivity of such method could be reached at very high frequencies,
causing damages to the fruit membranes. In addition, for fruits or vegetables where
the membrane is thick, damage is less likely than for fruits with very thin membranes,
or by performing external or internal measurements. The importance of these
measurements is not only for the detection of the typical dielectric properties but
also to provide information on the dependence on variables, such as the alternating
field applied, the moisture content and the temperature of the products [95]. In
many of the cases, measurements for the same type of agricultural product were
duplicated over time with more improved measurements, using several frequency
domain measurement systems [60] starting with the RF measurements, the MW
measurements, time-domain reflectometry and open-ended coaxial line probes.
Investigations of dielectric heating treatments of materials at different frequency
ranges may show a higher level of mortality. Some new measurements have been
taken to establish a database for a few different fruits and vegetables [37], but
comparisons of tissue from fruits or vegetables of different maturities have not
yet been tested.

All these indices contribute positively to the hypothesis of valid dielectric
characterization of fruits and vegetables. Each of the horticultural products has
its appropriate comportment for ε1 and ε”. It was sufficient for some products
to be characterized through one constant behaviour while others need both and
some others are not yet determined. It is a three dimensional system of frequency
temperature and dielectric parameters.

To summarize, measuring permittivity and loss parameters of different
agricultural products can be useful in employing RF dielectric heating. According
to the dielectric materials to be measured, the choice of measurement techniques,
equipment and sample holder design are performed; additionally, the frequency
range of interest is an important factor as well [44]. In addition to dielectric
spectroscopy, other sensors for quality detection are being used, such as E-noses
sensors that use metal oxide conductors. Theses sensors have been applied
to a wide range of food and beverages [111]. Once the measurement systems
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and techniques have been developed and their reliability has been verified, the
recently developed instrumentations and techniques make the assembly of dielectric
properties information or other techniques much more efficient [95].

6. Conclusions

Sensing food quality through dielectric spectroscopy reveals some very
impressing results and opens the horizon for better food consumption in a society
where quality is the key for food industries success. The paper aims to enlighten the
importance of this sensing technique, describing the availability of its instruments,
and presenting a state of art of the topic. So, this review summarizes the potential
of dielectric properties to investigate functional relationships with temperature,
frequency, MW, soluble solid content, moisture content and other processing
parameters with sensing the fruit maturity and firmness, knowing that materials
undergo physiological changes that will affect the electric property measurements.
The application section summarizes from the recent practical research conducted
in 13 fruits or vegetables: apple, avocado, carrot, coconut, eggplant, grape, guava,
mango, melon, orange, peach, potato, and tomato. All of the obtained conclusions
lead to a strong correlation of the dielectric properties with the quality fruit factors
at various levels. They aim for a more reliable fruit characterization through the
development of rigid permittivity-based indices or solid resistance-based indices
in non-destructive environments. The multiple experiences were executed using a
variety of instruments and techniques, which implies that a huge market is available
for such systems. However, the difficulties faced in many MW applications should
be directed towards better designs that are adaptable to the structural changes that
might occur during heating or other physical interactions. This review collects a
variety of experiments that have been tested, but further research experiments should
be conducted for better oriented conclusions and more precise hypotheses.
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Acronyms

Nomenclature Definition
α Quantification of the symmetric broadening of the relaxation distribution
τ Relaxation time
σ Ionic conductivity
γ Quantification of the asymmetric broadening of the relaxation distribution
ω Angular frequency
∆ Increase
∇ Decrease
d Dipole rotation
E Rms electric field
ε* Complex relative permittivity
ε1 Dielectric constant
ε” Loss factor
∆ε Dielectric length

α dispersion Alpha dispersion
β dispersion Beta dispersion
λ dispersion Gamma dispersion

f Frequency
LR Return loss

Mltr Permittivity maturity index
Mp Permittivity maturity index

tan δ Loss tangent
BP BP network model
Dp Penetration depth

ELM Extreme Learning Machine
FAST Fast clustering based feature subset selection
FDS Frequency domain spectrometer
FF Full Frequency

GRNN Generalized Regression Neural Network
LCR Inductance Capacitance Resistance analyser
MW Microwave

P Power dissipated
PCA Principal Component Analysis

PCA-BP Principal Component Analysis using the BP model
PCA-SVR Principal Component Analysis using the SVR model
PCA-SVR Principal Component Analysis using the SVR model

RF Radio Frequency
RMSE Root Mean Square Error
SPA Successive Projection Algorithm

SPA-BP Successive Projection Algorithm using the BP model
SPCA Sparse Principal Component Analysis
SRC Sparse representation classification
SSC Soluble Solid Content
SVM Support Vector Machine
SVR Support Vector Regression
SWR Standing Wave Ratio

UVE-PLS Uninformative Variation Eliminations
WLR Weight Loss Rate
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Distributed Wireless Monitoring System for
Ullage and Temperature in Wine Barrels
Wenqi Zhang, George K. Skouroumounis, Tanya M. Monro and
Dennis K. Taylor

Abstract: This paper presents a multipurpose and low cost sensor for the
simultaneous monitoring of temperature and ullage of wine in barrels in two of
the most important stages of winemaking, that being fermentation and maturation.
The distributed sensor subsystem is imbedded within the bung of the barrel and
runs on battery for a period of at least 12 months and costs around $27 AUD for all
parts. In addition, software was designed which allows for the remote transmission
and easy visual interpretation of the data for the winemaker. Early warning signals
can be sent when the temperature or ullage deviates from a winemakers expectations
so remedial action can be taken, such as when topping is required or the movement
of the barrels to a cooler cellar location. Such knowledge of a wine’s properties or
storage conditions allows for a more precise control of the final wine quality.

Reprinted from Sensors. Cite as: Zhang, W.; Skouroumounis, G.K.; Monro, T.M.;
Taylor, D.K. Distributed Wireless Monitoring System for Ullage and Temperature in
Wine Barrels. Sensors 2015, 15, 19495–19506.

1. Introduction

Over the past decade, the development and integration of wireless sensor
networks (WSN) within the agriculture and food industry, along with a greater
understanding of the theory and potential application of such devices, has seen
considerable growth [1–9]. Indeed, there is now a multitude of devices designed to
provide information on precision agriculture, environmental monitoring, machine
and process control, facility automation, food packaging, food inspection and quality
control [3,7].

Surprisingly, the use of WSN in vineyards and wineries is still quite rare. In
terms of vineyard monitoring, several reports have appeared recently detailing
the use of WSN to monitor not only a vineyard’s microclimate but also the risk of
vine damage due to frost, pests and disease [10–12]. There have also been several
reports utilising WSN to monitor the quality of wine in terms of cellaring [13], and
temperature control at the various stages of vinification [14,15]. Controlling the
temperature during primary fermentations of wine is extremely important in terms
of the development of the “bouquet” or “aroma” of a wine. For example, white
wines are usually fermented at around 15 ˝C with higher temperatures (e.g., 20 ˝C)
potentially resulting in the loss of volatile “aroma” due to the sweeping away of
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these volatiles by the carbon dioxide gas generated during fermentation [16]. In
addition, the control of the temperature of wines undergoing malolactic fermentation
or maturation in barrels is vital to ensure the control of potentially unwanted bacterial
growth or oxidative damage [17]. Currently, the temperature of wines in barrels is
simply measured with a thermometer, which means the barrels need to be opened
and potentially exposed to oxygen, whilst the temperature is controlled by simply
moving the barrels from one cold room to another.

Another key parameter that is monitored for wines in barrels is the extent of
ullage. Ullage is defined as the empty space that lies between the wine and the
closure, i.e., the space between a bung in a barrel and the surface of the wine, or the
space between a cork or screw cap in a bottle and the surface of the wine. Given
that this air contains around 20.95% oxygen, minimising ullage is very important to
avoid chemical oxidative damage or bacterial damage of the wine [18]. For example,
acetobacter (acetic acid bacteria) which converts ethanol to acetic acid is facilitated
by the presence of oxygen thereby increasing the volatile acidity of the wine [19].
To our knowledge ,there is yet to be any report on the development of a WSN to
monitor ullage.

In this paper, we demonstrate a WSN platform that can be embedded inside
wine barrels bung and used to monitor the temperature and ullage of the wine in each
individual barrel during both the fermentation and maturation stages of winemaking.
Similar pioneer works of potential for the deployment of WSN in wineries have been
reported in recent years [20,21]. However, the size, cost and energy consumption
are still not ideal for large scale winery use. Our design is particularly focused on
these aspects. For instance, Di Gennaro reported that the basic components of the
WineDuino node (excluding the actual sensors) cost more than 90 euros each [21].
The aim was to design a device that was of low cost, low-energy consumption
and could be used in large barrel rooms containing thousands of barrels with the
information being sent to remote computer workstations or a winemaker’s iPhone
for consideration. This early warning system thus allows a winemaker to make
immediate modifications to winemaking processes to ensure the highest quality
wines are being produced. The “smart-bung” and WSN platform developed also
allows for the addition of other sensor modules in the future in order to extend its
functionality and allow for even closer monitoring of all important analytes and
parameters of wine during the vinification and maturation stages of winemaking.

2. The Overall Systems Architecture

The distributed wine monitoring platform consisted of a small central node
and a subsystem where sensor modules may be attached, a schematic of which
is depicted in Figure 1. The subsystem was an energy-saving small signal chip
computer with an on-board FM radio system and general purpose IO interface that
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could be used to connect to the sensor modules. The subsystem and the sensor
modules were to be powered by a long-life battery and consume no energy when
in an idle state (most of the time), whilst the subsystem and the sensor modules
attached would only be powered on when in data requisition mode. This ensures
that the subsystem would run on a single battery for an extended period of time
(12 months) without recharging of the battery. The subsystem was small enough
that it could be embedded into a barrel bung. The central node was to be built upon
a single computer board running a custom build standard Linux operation system
which can support running a wide range of programs for gathering and processing
the data received from the subsystems. The central node also had the capability
of receiving and transmitting both FM radio and WIFI signals. It should be noted
that the FM radio modules would consume much less power when compared to
WIFI technology which would be used in the central nodes to communicate with the
remote computer center.

The subsystems acquire data, push it to the central node and power off
immediately at a fixed interval. The central nodes receive the data from the
subsystems, identify the source barrels of the data, conduct preliminary data
processing and upload the data to the server in the computer room. The server
logs and analyses the data, puts them on the web interface and sends out alerts
when necessary.

Specifically, a FriendlyARM Mini210s single computer board computer was
used as the basis of the central node whilst an ATMega328 chip based Arduino-like
single chip microcontroller (Moteino) was used as the basis of the subsystem. An
additional Moteino chip was connected to the Mini210s via a USB port serving as a
FM radio transceiver. Currently, the Moteino software supports 65,280 chips in its
networks, but there is no hardware limitation. The ullage and temperature modules
were built using a SHARP GP2Y0A41SK0F (measures 4–30 cm) infrared distance
sensor and Dallas DS18B20 1-wire temperature sensor (measures from ´55 ˝C to
+125 ˝C with ˘0.5 ˝C from ´10 ˝C to +85 ˝C), respectively. Figure 2 depicts the
distance sensor assembled in a barrel bung (top left) and an unprotected temperature
sensor (bottom left). The temperature sensor was protected with a heat conducing
shell and hanging from the bung into the wine. The entire assembled subsystem is
depicted in the right photo of Figure 2 and had a total cost of $27 AUD retail price,
which could be further scaled down if the system was produced at scale.
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In the work by Sainz et al., bluetooth was used as the wireless network interface
and an analogue temperature sensor TM35DZ for temperature measurement. Such
modules suffer from several drawbacks including that the usual transmission range
for bluetooth devices is only a few meters which makes the monitoring system
unsuitable for practical use in large wineries where the barrels are constantly being
moved around, whilst the accuracy of the analogue temperature sensor would not
be as good if a digital temperature was used [14]. Consequently, it appeared to us
that our system, which employs a Moteino microcontrollor with an integrated low
power FM radio as the sensor platform and main network interface along with a
digital temperature probe, will offer additional advantages over what has thus far
been reported. Such a radio system would have a coverage of 300–400 m radius at
the BAUD rate of 55 kbps (or 1.5 mile range at 1200 bps), more than enough to cover
most winery cellar areas. In addition, whilst Boquete et al. employed high-precision
digital temperature sensors (DS1631 ˘0.5 ˝C from 0 to 70 ˝C) and an XBee wireless
interface with a range of 20–30 m [15], it is now recognised that the price of a XBee
wireless module alone is more than the price of an entire microcontrollor plus wireless
module, thus our WNS would come in at a much lower cost.

The assembly of the subsystem was rather straightforward. As shown in the top
left photo in Figure 2, a slot is cut in the bottom of a bung where the SHARP infrared
distance sensor is to be installed. The edge of the distance sensor is coplanar to the
bottom of the bung to allow easy measurement of the position of the distance sensor.
A small hole is drilled through the bung from bottom to top for any wires including
the temperature sensor. The Moteino chip is installed on the top-side of the bung and
connected to a battery. The distance sensor and the temperature sensor were soldered
onto the Moteino chip according to the schematic shown in Figure 2. A 10 K pull-up
resistor was used together with temperature sensor. The 10 µF capacitor between
pin A1 and GND was used for reducing voltage fluctuation from the distance sensor.
The NPN transistor was used as a switch allowing the program to switch the power
to the distance sensor to save energy. The Moteino chip allows the user to use any
power supply from 3.3 V to 12 V. We used both packs of 4 AA batteries (6 V) and
9 V batteries to power the subsystem in this work. The central node can be installed
anywhere convenient inside the wine cellar next to a power source. Each central
node hosts a unique radio network. Each subsystem was pre-programmed with a
unique ID and can be assigned to any radio network, which allows each wine barrel
to be easily identified by the winemaker. Our design approach greatly reduces the
cost of the entire WSN. Table 1 shows the cost of each of the components used.
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Table 1. The cost of the elements used in this work.

Central Node

FriendlyARM Mini210S with WIFI $225.89
Moteino R4 with RFM69WH $19.95

Total: $245.84 AUD

Subsystem

Moteino R4 with RFM69WH $19.95
SHARP GP2Y0A41SK0F $6.20
Dallas DS18B20 $0.60
Heat Conducing Shell $0.40
10K Resistor $0.01
10 uF Capacitor $0.01
2N2222 NPN Transistor $0.03

Total: $27.20 AUD

Specific software was designed which would run on both the central node and
computer server. It was written in C/C++ utilizing Qt [22] and Wt [23] packages to
ensure portability. The software on the central node collects and processes the sensor
data whilst the software on the central computer node serves as a webpage server as
shown in Figure 3. The web page consists of two important sections. On the left, the
operator can select one of many parameters to be monitored by the “smart bungs”.
For example, temperature, ullage, pH etc. To the right of this menu is a pane, which
displays each individual barrel of wine and graphically or numerically displays what
the current status of that parameter is. This setup allows users to access the sensor
data using any remote web browser with early warning messages being sent out via
emails to the winemakers if pre-set parameters are not being adhered to. For example,
if the winemaker wished the wine to be stored in barrels at 15 ˝C for six months
and the temperature deviated by more than 2 ˝C (pre-set in the software by the
winemaker), then an alert would be sent wirelessly to warn of such an instance so
remedial action could be taken. The ullage readings were not calibrated to physical
units, however, it could be given that the ullage values are inversely proportional to
the voltages read from the IR distance sensors. To calibrate the inversed voltage to
physical units, one may use the relationship: L = a * 1/V + b, where L is the distance,
and V is the voltage, to fit the voltages manually measured for different wine levels to
obtain the calibration coefficients a and b, and input them into the software. The code
on Moteino was developed using the Arduino toolkit. Moteino is fully compatible
with the Arduino Uno platform.
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Figure 3. The temperature sensor page of the web interface shows eight
virtual barrels.

3. Results and Discussion

After building the bungs with associated temperature and ullage sensors
incorporated and designing the software, we then tested the system under several
real world winemaking conditions. The first was to monitor the temperature and
ullage of still wine on the cellar floor over time (maturation in barrels) whilst the
second test was to monitor the same parameters during fermentation. In both test
trials, four barrels of wine were monitored simultaneously. The sampling rate in our
tests was set to once every 8 s for both temperature and ullage.

3.1. Trial I—Temperature and Ullage of Still Wine on the Cellar Floor

The first trial was performed on four barrels of red wine stored on the cellar
floor for a period or nearly three months, where the temperature was not actively
controlled, Figure 4. The temperature sensors were placed 30 cm below the bung
holes using insulated magnet wires. The four test barrels were set next to each
other and were subject to daily variances in temperature in the cellar. It should be
noted that day zero was at the beginning of the Australian autumn when the daily
temperatures are higher than at the end of autumn when the trial was completed.

It can be clearly seen that the readings from the individual temperature sensors
within each bung are remarkably identical except for some minor variations due to

145



small differences in the heat capacity of each barrel. Given that the winemaker wished
the wines to be kept in the range of 10–15 ˝C during maturation, which was observed
by our WSN, it provided confidence to the winemaker that the cellar hands did not
need to manually measure the temperature of each barrel. On occasions, we opened
one of the barrels and manually measured the temperature with a thermometer and
found the same values for the temperature of the wine. Furthermore, the barrels
did not need to be opened which aids in avoiding potential contamination, and
oxidative spoilage. During this first trial, one of the subsystems (bottom left in
Figure 4) went offline for about two weeks due to a power glitch. It was recovered by
manually rebooting it and could be avoided in the future by installing a “watchdog”
timer program, which will automatically reboot the system whenever there is a
problem detected.Sensors 2015, 15 19501 
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Figure 4. Continual monitoring of temperature of four barrels of wine in storage.

At the same time, we also measured the ullage in the four barrels on the cellar
floor. The sensors were turned on at day 12 as we found that after fermentation and
transfer of the wine into barrels, there was a large amount of foaming that required a
number of days to dissipate. The settling down of the wines surface can still be seen
during the day 12 and day 25 time-points in the plots of Figure 5. Importantly, all
barrels showed a decrease in ullage height at around day 26 which corresponded
to the barrels being opened and topped up with additional wine. After this time
point, the ullage again began to increase slowly due to slow evaporational losses, as
expected. Two of the barrels showed some slight fluctuations in daily ullage levels
after topping (right column of Figure 5), which we believe is due to the disturbance of
floating films resulting in fluctuations in the ullage depth readings. We inspected one
of these barrels and found that there was indeed a thin film floating on the surface
of the wine, Figure 6. Thus, given that the sensor we chose for ullage is based on
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light reflection, consistency of the reflective surface would be extremely important.
Any disturbance by floating films would be expected to cause some variation seen
in the ullage measurements as found here, although the overall trends found in
our trials are what a winemaker would expect to observe. If the wines were to be
stored in barrels for extended periods of time (up to two years), as many are, then the
winemaker could simply set a minimum ullage distance required before the barrels
needed to be topped; when reached, the sensors would trigger an alert that this
action needs to be taken.Sensors 2015, 15 19502 
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Figure 6. A thin film formed on top of the wine surface that influenced the ullage
sensor reading.

3.2. Trial II—Temperature and Ullage during Fermentation

Given that our wirelessly distributed system successfully gathered the
temperature and ullage information from wines undergoing maturation in barrels
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on the cellar floor and sent the information to a remote computer server room
which can be accessed by winemakers from a simple webpage, we next examined its
performance at monitoring temperature and ullage during a real wine fermentation.
Again, fours barrels were monitored with the data from the temperature sensors
collated in Figure 7. The winemaker instructed the cellar hands to place the juice in
barrels in a 15 ˝C cold room and perform inoculation. We affixed our remote sensors
and began monitoring the barrels. Pleasingly, our sensors detected that the juice was
around the initial temperature of the cold room, i.e., 15 ˝C. Naturally, each ferment
in each individual barrel will progress through fermentation at slightly different
speeds and consequently subtle temperature differences are expected to be observed,
as seen in Figure 7. As the ferments began over the first few days, the observed
temperature was found to rise several degrees to between 17 ˝C and 18 ˝C. Given
that the winemaker wished the ferments to be conducted near 15 ˝C and wished to
avoid excessive fermentations of 20+ ˝C, they made the decision to move the barrels
to the 10 ˝C cold room on the third night. As can be seen, our remote detectors
picked this up and the temperatures within the barrels began to decrease by several
degrees by day 5. The ferments were then at their full exponential growth phase
and thus the temperature began to rise again up to 18 ˝C as they pushed through
to completion over the following five days or so. All the ferments finished around
day 12 as the winemaker expected and the temperatures began to drop back to the
outside ambient cellar room temperature of 10 ˝C. They were then moved out of the
cold room onto the normal cellar floor for further processing on day 18 which again
resulted in a gradual warming of the wine.

Sensors 2015, 15 19503 

 

 

temperatures within the barrels began to decrease by several degrees by day 5. The ferments were then 

at their full exponential growth phase and thus the temperature began to rise again up to 18 °C as they 

pushed through to completion over the following five days or so. All the ferments finished around day 

12 as the winemaker expected and the temperatures began to drop back to the outside ambient cellar 

room temperature of 10 °C. They were then moved out of the cold room onto the normal cellar floor for 

further processing on day 18 which again resulted in a gradual warming of the wine.  

 

Figure 7. Continual monitoring of temperature of four barrels of wine during fermentation. 

 
(a) 

 
(b) 

Figure 8. (a) Continual monitoring of ullage of two barrels of wine during fermentation;  

(b) the overflowing wine resulting from the excessive bubbling due to carbon dioxide evolution. 
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Figure 8. (a) Continual monitoring of ullage of two barrels of wine during
fermentation; (b) the overflowing wine resulting from the excessive bubbling due
to carbon dioxide evolution.

At the same time, we also measured the ullage in the barrels during fermentation,
the results of which are displayed for two barrels, Figure 8a. Fermentation results
in excessive bubbling due to carbon dioxide evolution and in some cases results in
the wine overflowing the barrels (see picture in Figure 8b). The bungs come with a
hole imbedded in them to allow for such overflows. Given that our ullage sensor
is based on infrared light reflection between the surface of the liquid and the bung
itself, extensive fluctuation in ullage height was expected as the wines level rises and
falls over time. Furthermore, this fluctuation would be exacerbated with changes in
the fermentation temperature. Indeed, extensive fluctuations were observed when
monitoring the ullage height during fermentation, Figure 8a. After days 12–15, when
the fermentations were beginning to be completed and the foams dissipate, the noise
in the ullage curves significantly reduces. Importantly, the time-point of 12–15 days
indicating completion of fermentation by ullage also corresponds to that observed
by our temperature sensors highlighted above. Whilst it was intriguing to measure
ullage under real fermentation conditions, the measurement of ullage is of most
importance during long-term storage and maturation of wine in barrels.
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4. Conclusions

In this work, we have designed a simple low-cost energy saving wireless
distributed sensor network that allows for the simultaneous monitoring of a wine’s
temperature and ullage both in the fermentation and maturation stages of wine
making in barrels. The distributed sensor subsystem runs on battery for a period of
at least 12 months and costs around $27 AUD for all the parts. In addition, software
was designed which allows for the remote transmission and easy visual interpretation
of the data for the winemaker, displaying “virtual barrels” that can be monitored
remotely. Early warning signals can be sent when the temperature or ullage deviates
from a winemaker’s expectations so remedial action can be taken, such as topping
up or the movement of the barrels to a cooler cellar. Such knowledge of a wine’s
properties or storage conditions will allow for a more precise control of a final wine’s
quality. Moreover, the WSN has been designed so that additional modules of analysis
(e.g., pH, sulfur levels, ethanol content etc.) can be simply added in the future to
the “smart bungs” upon development. Finally, we anticipate that in the future these
“smart bungs” could be manufactured via the use of 3D printing which may further
reduce the cost and allow installation in thousands of barrels in each winery.
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Unmasking of Olive Oil Adulteration Via
a Multi-Sensor Platform
Marco Santonico, Simone Grasso, Francesco Genova, Alessandro Zompanti,
Francesca Romana Parente and Giorgio Pennazza

Abstract: Methods for the chemical and sensorial evaluation of olive oil are frequently
changed and tuned to oppose the increasingly sophisticated frauds. Although a
plethora of promising alternatives has been developed, chromatographic techniques
remain the more reliable yet, even at the expense of their related execution time and
costs. In perspective of a continuous increment in the number of the analyses as
a result of the global market, more rapid and effective methods to guarantee the
safety of the olive oil trade are required. In this study, a novel artificial sensorial
system, based on gas and liquid analysis, has been employed to deal with olive oil
genuineness and authenticity issues. Despite these sensors having been widely used
in the field of food science, the innovative electronic interface of the device is able to
provide a higher reproducibility and sensitivity of the analysis. The multi-parametric
platform demonstrated the capability to evaluate the organoleptic properties of
extra-virgin olive oils as well as to highlight the presence of adulterants at blending
concentrations usually not detectable through other methods.

Reprinted from Sensors. Cite as: Santonico, M.; Grasso, S.; Genova, F.;
Zompanti, A.; Parente, F.R.; Pennazza, G. Unmasking of Olive Oil Adulteration
Via a Multi-Sensor Platform. Sensors 2015, 15, 21660–21672.

1. Introduction

Olive oil is the most popular vegetable oil produced and consumed in
Mediterranean countries. According to international standards [1], olive oils have
to be obtained exclusively from the fruit of the olive tree (Olea europaea) using cold
pressing techniques and in conditions that do not alter the organoleptic properties
of the oil at all. Current European Union regulation [2] and the International Olive
Committee (IOC) require olive oils to be graded in function of sensory assessment
and three fundamental chemical parameters: free acidity, peroxide value, and
UV absorbance [2]. By comparing oils scores with threshold values, these are
classified as extra virgin olive oil (EVOO), virgin olive oil, and other low-quality
olive oil typologies. Olive oil is a very complex matrix [3,4]. The main compounds
are triacylglycerols and fatty acids contributing to 94%–96% of their total weight.
However, triacylglycerols and fatty acid contents show a broad variability in olive oils
chemical composition and this is largely dependent on both cultivar and geographical
origin [5]. Recently, the authentication of products labeled as olive oil has become
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a fundamental issue for either commercial or health aspects [6,7]. In fact, the high
price of olive oil and its increased popularity as a potential health food have made
it an ideal target for frauds [8]. Common olive oil adulterations include accidental
contaminations during production stages, deliberate mislabeling of less expensive
oil categories and, more often, the admixtures of expensive olive oils with low
quality oils. Although advances in knowledge and technology have undoubtedly
led to greater success over frauds, even more complex forms of adulteration have
been developed to invalidate the usefulness of official methods, thus leaving
the authenticity verification still an unsolved matter [9]. Actually, no rapid and
universal method exists that is officially recognized for all the authenticity issues [10].
Liquid and gas chromatographic techniques represent the elective methods for
the authentication and characterization of individual olive oil compounds [11–15].
Nevertheless, these analytic verifications require valuable instrumentation and
highly-qualified staff. All of these features together make authentication a time
consuming and expensive process which is not applicable as routine analysis. In this
context the BIONOTE (BIOsensor-based multisensorial system for mimicking Nose,
Tongue and Eyes), a recently developed sensor platform [16], has been employed. The
system, which embeds gas and liquid sensors having a common biologically-derived
sensing interface, allows the simultaneous analysis of the vapor and liquid phase
of the samples. As a consequence, the integrated multi-sensorial platform led
different sensors to catch more comprehensive information which, in turn, requires
a further elaboration through multivariate data analysis techniques. At the end
of the analytical procedure, similarities and differences between the samples are
highlighted. In this multi-parametric study, the correct discrimination of twelve
EVOOs made up of dissimilar olive cultivars and having different geographical
origin has been achieved. Furthermore, the high sensitivity and reproducibility of
the analysis, which were guaranteed by the innovative electronic interface of the
system, permitted the detection of fraudulent admixing of extraneous vegetable oils
(pomace, soybean, sunflower seeds, and peanut oils) up to concentrations lower than
5%. These promising results altogether present BIONOTE as a rapid and economic
tool for high-throughput screening analysis.

2. Materials & Methods

2.1. Oil Samples

Twelve EVOO samples, indicated in the paper as EVOO #1, #2, #3, and so on,
were obtained from twelve different Italian orchards. Several characteristics of the
oils are reported (Table 1). The commercial EVOO as well as the pomace, soybean,
sunflower seeds, and peanut oils were bought at a local market.
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Table 1. General EVOOs specifications.

Oil Sample Geographical Origin Year of Production Oil Variety

EVOO #1 Laterba 2013/2014 Picoline
EVOO #2 Castellaneta 2013/2014 Leccino
EVOO #3 Laterba 2013/2014 Picoline (organic)
EVOO #4 Laterba 2013/2014 Arbequina (organic)

EVOO #5 Grottaglie and Crispiano 2013/2014 Picoline (50%), Nociara
(35%), Leccino (15%)

EVOO #6 Crispiano 2013/2014 Leccino
EVOO #7 Grottaglie 2013/2014 Ogliarola
EVOO #8 Grottaglie 2013/2014 Picoline
EVOO #9 Grottaglie 2012/2013 Cellina di Nardò

EVOO #10 Laterba 2013/2014 Leccino
EVOO #11 Crispiano 2012/2013 Cellina di Nardò
EVOO #12 Crispiano 2012/2013 Cima di Melfi

2.2. Gas Analysis

Quartz Micro Balances (QMBs) with six functionalized piezoelectric sensors
were used as transducers for the gas sensor array as already described [16]. In order
to perform homogeneous gas measurements the following experimental set-up was
used. A volume of 2 mL for each olive oil sample was placed in a 50 mL glass
flask and kept for 10 min at room temperature to obtain an adequate headspace.
Dehumidified reference air was pumped into the sensors chamber at a flow rate of
3 L/min for 10 min to desorb any volatile trace from sensors surface before every
measure. Oil samples were analyzed five times, setting a sampling interval of 90 s.

2.3. Liquid Analysis

Electronic interface and sensors employed in the liquid analyses were the same
described in Santonico et al. Cyclic voltammetry in the range from ´1 to 1 V was
performed using a triangular function at 10 mHz and a sampling interval of 1 second.
Olive oil samples for liquid sensor analysis were prepared following the procedure
reported below. Briefly, a volume of 1 mL of oil was poured into a tube with 3 mL
of methanol 70% (v/v) and mixed vigorously for 1 min. The vial containing the
oil-alcohol emulsion was centrifuged for 5 min at 1000 RCF and 4 ˝C to separate the
two phases efficiently. Finally, the methanol phase was collected and stocked in ice
up until the analysis.
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2.4. Chemical Quality Control Analyses

Polyphenol content, free acidity, peroxide value, ∆K, and refractive index
of olive oil samples have been assessed following the standard chemical testing
methods [15]. Briefly, polyphenol content was evaluated by means of Folin-Ciocalteu
method, according to the procedure reported by Singleton and Rossi [17]. Free
acidity content [18] was evaluated, dissolving the samples in a mixture of equal parts
by volume of ethyl ether (95%) and ethyl alcohol, thus titrating with an ethanolic
solution of potassium hydroxide, using phenolphthalein as indicator. Results were
reported as grams of oleic acid per 100 g of oil. To determine the peroxide value [19],
oil samples were dissolved in chloroform and glacial acetic acid, then a solution
of potassium iodide was added, leaving the mixture incubating for five minutes in
the dark, and finally a titration of the generated iodine with a standard sodium
thiosulphate solution, using starch solution as indicator, was performed. The
peroxide value was expressed in terms of milliequivalents of active oxygen per
kilogram able to oxidize potassium iodide under the operating conditions. The
quality of the olive oils employed in this study was also assessed measuring the
absorption bands between 200 and 300 nm [20]. Samples were dissolved in iso-octane
to obtain 1% (w/v) solutions and the specific absorbance at 232 and 270 nm with
reference to pure solvent was determined. These absorptions were expressed as
specific extinctions, conventionally indicated by K. Finally, a ∆K value was calculated
relating the maximum recorded absorbance at 270 nm against the absorption of
surrounding spectral region (˘4 nm). The refractometric index of olive oils was
determined using the Abbé refractometer, paying attention to correct the recorded
value on a temperature basis. Three independent parameter’s determinations were
carried out for each test sample. All the reagents used in this study were of certified
analytical quality.

2.5. Data Analysis

Multivariate data analysis: Principal Component Analysis (PCA) and Partial
Least Square Discriminant Analysis (PLS-DA), was performed using PLS-Toolbox
(Eigenvector Research Inc., Manson, WA, USA) in the Matlab Environment
(The MathWorks, Natick, MA, USA). PLS-DA models have been calculated in
order to detect EVO adulteration and investigate BIONOTE relevance to the
chemical parameters.
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3. Results

3.1. Olive Oil BIONOTE Characterization

Twelve Italian EVOOs having different geographical origin and olive variety
compositions have been characterized through the BIONOTE system, performing
five measuring cycles each. Gas analysis was performed on EVOOs without
any modification of the samples. Volatile compounds released in the system
headspace at room temperature were characterized through their interaction with
the functionalized sensors, resulting in a reproducible pattern response (Figure 1).
Olive oil as such is not applicable for electrochemical analysis due to the absence of
conductivity and the high viscosity of the media. Therefore, oil samples underwent
liquid extraction with methanol and the deriving alcoholic fractions were analyzed
by the liquid sensor (Figure 1). Cyclic voltammetry in the range from ´1 to 1 V
was performed using a triangular function at 10 mHz and a sampling interval of 1
second. By means of this setup, an array of 100 virtual sensor responses has been
obtained from one physical sensor for each voltammetric measuring cycle. Finally,
a data fusion of the information deriving from the last three measuring cycles of
gas and liquid sensors was accomplished. The obtained data set has been evaluated
by Principal Component Analysis (PCA) and the ability of the system to sharply
discriminate the twelve EVOOs was demonstrated. The score plot of the first two
Principal Components (PCs), accounting for 76.94% of the explained variance, is
reported (Figure 2). Ten of the twelve oil samples clustered in three separate regions
along the Principal Component 2 (PC2). EVOOs #1, #6, and #12 formed a group in the
bottom part of the plane. EVOOs #5, #8, #10, and #11 distributed in a second area at
the interception of the two PCs. EVOOs #2, #4, and #9 clustered in the upper portion
of the plane (Figure 2). Nevertheless, within the groups almost every oil sample can
be discriminated from the others along the Principal Component 1 (PC1). EVOOs #3
and #7 were distinguished from the rest of the analyzed samples by positioning at
the upper end and at the left edge of the plane, respectively (Figure 2). Additionally,
a Partial Least Square Discriminant Analysis (PLS-DA) model using the leave one
out criterion has been calculated showing a correct classification rate of 100% for the
twelve different EVOOs (five independent repetitions each).
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Figure 1. BIONOTE characterization of different EVOO samples. Liquid (left
panels) and gas (right panels) fingerprints.
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Figure 2. Score Plot of the first two principal components deriving from the data
fusion of the BIONOTE liquid and gas sensors responses.

3.2. Olive Oil Chemical Characterization

To assess the quality of the EVOOs, common chemical analyses were also
performed. All the EVOOs got parameters satisfying the imposed normative limits,
even though some slight differences between the samples were found (Table 2), thus
supporting BIONOTE discrimination evidence. Free acidity and ∆K values were
significantly lower than normative standard ones being, however, slightly different
among each other. The refractive index of the twelve oil samples was almost the
same, while the peroxide parameter showed the greatest variability. The obtained
results confirmed the excellent quality of the oil samples, highlighting the absence (in
terms of usual parameters) of significant differences between the EVOOs themselves.
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Table 2. EVOO purity and quality characteristics according to the International
Olive Council [1].

Oil Sample Free Acidity
(mg/100 g Oleic Acid)

Peroxide Value
(mEq O2/Kg) ∆K Refractive Index

EVOO #1 3.4 ˘ 0.1 15.0 ˘ 0.4 0.0020 1.469
EVOO #2 3.4 ˘ 0.1 12.2 ˘ 0.1 0.0045 1.468
EVOO #3 4.9 ˘ 0.2 6.0 ˘ 0.1 0.0065 1.468
EVOO #4 2.0 ˘ 0.1 6.9 ˘ 0.1 0.0015 1.467
EVOO #5 7.3 ˘ 0.1 8.7 ˘ 0.1 0.0015 1.468
EVOO #6 6.0 ˘ 0.1 9.5 ˘ 0.3 0.0005 1.467
EVOO #7 5.3 ˘ 0.1 7.2 ˘ 0.4 0.0030 1.467
EVOO #8 4.3 ˘ 0.2 18.1 ˘ 0.2 0.0045 1.468
EVOO #9 2.8 ˘ 0.1 9.9 ˘ 0.2 0.0035 1.468
EVOO #10 3.9 ˘ 0.1 13.5 ˘ 0.4 0.0015 1.467
EVOO #11 6.1 ˘ 0.2 9.4 ˘ 0.5 0.0030 1.467
EVOO #12 3.1 ˘ 0.2 9.9 ˘ 0.3 0.0160 1.467

3.3. Olive Oil Adulteration

A commercial EVOO was bought at local market and mixed with four vegetable
oils (pomace, soybean, sunflower seeds, and peanut oils) at different blending
concentrations (1.25%, 5%, 10%, and 25% (v/v)). The prepared EVOO’s admixtures
were characterized through the BIONOTE system, performing five measuring cycles
each. Sophisticated EVOO samples were treated as already described (see Materials
& Methods section) before being analyzed through either the liquid or the gas
sensors. A comprehensive array containing the overall sensors’ responses was built
for each EVOO sophistication independently and the collected data were further
analyzed using multivariate data analysis techniques. The calculated PLS-DA models
highlighted the ability of the system to distinguish an authentic EVOO from an
adulterated one in all the tested cases, showing also a rather high degree of efficiency
in the concentration discrimination (Figure 3). BIONOTE was able to predict the
presence of contaminating lower-grade oils up to concentration values lower than
10% (v/v). The Root Mean Square Error in Cross Validation (RMSECV), using the
Leave One Out criterion, was slightly different among the four kinds of sophistication.
System performance was almost the same for the soybean, sunflower seeds, and
peanut oils with RMSECV ranging from 2.1% to 4.4%, while the discrimination of
the pomace oil sophistications resulted less precise accounting for an error of 8.3%
(v/v) (Figure 3).
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Figure 3. Calculated PLS-DA model for the prediction of contaminating oils
concentration. Calibration model has been built using a commercial EVOO
sophisticated with 0%–25% (v/v) of (a) soybean oil; (b) sunflower seeds oil; (c)
peanut oil; and (d) pomace oil. RMSECV associated with the models are reported.

3.4. BIONOTE Relevance to the Chemical Parameters

BIONOTE relevance to the measured chemical parameters have been
investigated by calculating four different models to predict polyphenols content,
free acidity, peroxide value, and TEAC on the gas and liquid sensor array data. The
results obtained are very promising (see Figure 4, panel a: polyphenols; panel b:
free acidity; panel c: peroxide value; and panel d: TEAC).
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Figure 4. Measured versus predicted (PLS-DA model based on BIONOTE data)
values of (a) polyphenols; (b) free acidity; (c) peroxide value; and (d) TEAC.

4. Discussion

Adulteration is a common problem usually related to high-value products. As a
consequence of the fundamental role in the Mediterranean diet and the documented
nutraceutical effect [6], EVOO represents a clear target for sophistication aimed to
trade. According to recent studies, adulteration is becoming an escalating issue
for olive oil in the market with consequences undermining the quality attributes of
the product and sometimes even its safety consumption [21]. Although reliable
and accurate analyses intended to guarantee olive oil quality in the broadest
sense already exist, these are not routinely used. While chemical parameters
as free acidity, peroxide value, ∆K, and refractive index are necessary to define
if an olive oil fulfills the requirements to be labeled and marketed as EVOO,
these constraints are not sufficient for authenticity verification in the most of
cases [1,22]. Fraudulent olive oil admixtures are usually chemically corrected to
meet international standards, thus requiring more complex analyses to be recognized
as adulterations. Nevertheless, even when official analytical methods are applied
to screen olive oil samples, olives’ biological differences, due to geographical
origin and genetic aspects, sometimes generate problems to distinguish between
sophistications and authentic EVOOs [23]. So far, numerous modern techniques

164



have been proposed to support or replace official standard methods in the task of
olive oil authentication [10,24–28]. However, those do not offer clear advantages
yet, because their adulteration detection limits, being usually greater than 10% of
contamination, are worse in comparison with chromatographic techniques’ ones. In
this study, a novel system able to characterize EVOOs in terms of genuineness and
authenticity has been presented. The BIONOTE platform takes advantage of either
liquid and gas analysis to accomplish a multi-parametric characterization, giving
comprehensive information about the sample [17]. The overall sensors’ responses
are elaborated through multivariate data analysis techniques to highlight similarities
and differences, resulting in a correct classification rate of 100%, even when similar
EVOOs have been analyzed. Hence, BIONOTE showed the ability to discriminate
between twelve Italian EVOOs originating from different Apulian neighboring olive
tree orchards. The result highlighted the capability of BIONOTE not only to identify
EVOOs against lower grade olive oils, but also to discriminate between EVOOs
obtained from different olive cultivars. This is a notable outcome because this issue
is usually addressed via more complex genetic approaches. The innovative electronic
interface, providing to the system a higher reproducibility and sensitivity comparable
to similar devices [29–32], allowed BIONOTE to be also successfully employed in
the authenticity verification process, with admixtures percentage thresholds below
the best levels reported by literature. BIONOTE was challenged with different kind
of EVOO sophistications, covering concentrations lower than 10% (v/v), and in all
cases it was able to distinguish authentic oil from an adulterated one. The system
detected the presence of fraudulent admixing of extraneous vegetable oils (soybean,
sunflower seeds and peanut oils) up to concentrations lower than 5%. However, when
the pomace oil was used, system performance decreased. This discrepancy, leading
to an increment of the detection limit to about 8%, could be probably explained
by the shared origin between EVOO and pomace oil. Considering the demand of
EVOO traceability and safety claimed by both producers and consumers, BIONOTE
represents a potential solution. In fact, the BIONOTE system is able to address
the EVOO authenticity issue focusing not only on the labeling control but also
the genuineness of the oil, accounting for geographical origin and olive varieties
composition at the same time.

5. Conclusions

Nowadays, global markets and international regulations have increased
significantly the number of samples that require validation, raising the necessity
of rapid analytical methods. In this context, BIONOTE could represent a real
opportunity thanks to its reduced time of analysis. However, due to the profiling
approach on which the system is based on, BIONOTE has not been intended to
replace the high specificity of the official chromatographic methods. Hence, it
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is proposed as a rapid tool for preliminary high-throughput screening, aimed to
detect samples that require further analytical verifications. This workflow has been
designed to reduce the employment of high-value instrumentation and qualified
personnel only to specific cases, thus decreasing the costs, while maintaining the
elevated number of samples analyzed.
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Analysis of a Lipid/Polymer Membrane for
Bitterness Sensing with a
Preconditioning Process
Rui Yatabe, Junpei Noda, Yusuke Tahara, Yoshinobu Naito, Hidekazu Ikezaki
and Kiyoshi Toko

Abstract: It is possible to evaluate the taste of foods or medicines using a taste
sensor. The taste sensor converts information on taste into an electrical signal
using several lipid/polymer membranes. A lipid/polymer membrane for bitterness
sensing can evaluate aftertaste after immersion in monosodium glutamate (MSG),
which is called “preconditioning”. However, we have not yet analyzed the change
in the surface structure of the membrane as a result of preconditioning. Thus,
we analyzed the change in the surface by performing contact angle and surface
zeta potential measurements, Fourier transform infrared spectroscopy (FTIR), X-ray
photon spectroscopy (XPS) and gas cluster ion beam time-of-flight secondary ion
mass spectrometry (GCIB-TOF-SIMS). After preconditioning, the concentrations of
MSG and tetradodecylammonium bromide (TDAB), contained in the lipid membrane
were found to be higher in the surface region than in the bulk region. The effect of
preconditioning was revealed by the above analysis methods.

Reprinted from Sensors. Cite as: Yatabe, R.; Noda, J.; Tahara, Y.; Naito, Y.; Ikezaki, H.;
Toko, K. Analysis of a Lipid/Polymer Membrane for Bitterness Sensing with a
Preconditioning Process. Sensors 2015, 15, 22439–22450.

1. Introduction

Various types of sensor for mimicking the five human senses have been
realized. These sensors are categorized into physical and chemical sensors. For
example, imaging devices, microphones, and pressure sensors are categorized as
physical sensors corresponding to the visual sense, auditory sense and tactile sense,
respectively. In particular, rapid advances have been achieved in the performance
of imaging devices, which has had an impact on society because imaging devices
with high performance are readily available at a low cost. On the other hand,
there are few commercialized chemical sensors. There are a number of methods
for measuring chemical substances such as gas chromatography mass spectrometry
(GCMS), liquid chromatography mass spectrometry (LCMS), high performance
liquid chromatography (HPLC), FTIR and nuclear magnetic resonance (NMR).
However, these methods should be carried out by specialists with high technical
knowledge because the obtained data are complicated, whereas it is desirable for
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users to be able to easily discriminate and quantify chemical substances using a
sensor device.

A taste sensor, a kind of electronic tongue, has been developed and
commercialized as a chemical sensor to evaluate the taste of substances [1–14].
It is possible to measure the taste of foods or medicines using the taste sensor,
which mimics the taste sense of humans, which is categorized into six types of taste;
saltiness, sourness, umami, bitterness, astringency and sweetness. The taste sensor
has global selectivity, which means that each of its membranes respond to substances
that are categorized in each tastes. Several types of lipid/polymer membrane are used
for the taste sensor, which consist of a polymer, plasticizer and lipid. The polymer
is used to support the membrane and the plasticizer and lipid are used to control
the hydrophobicity and electrical properties of the membrane, respectively. Then,
the lipid/polymer membrane transduces the response to a taste into an electrical
signal [6].

The measurements performed by the taste sensor are carried out using several
types of lipid/polymer membrane designed to detect saltiness, sourness, umami,
bitterness, astringency and sweetness. Two types of value are obtained from the
measurements. First, a relative value is obtained by immersing the sensor electrodes
in a sample solution. Second, a change in the membrane potential caused by
adsorption (CPA) value is obtained by immersing the sensor electrodes in another
standard solution after the measurement of the sample solution. The two values
are used to evaluate the initial taste and aftertaste. The CPA can be obtained using
lipid/polymer membranes for umami, bitterness and astringency. It is known that
the CPA is related to the adsorption of taste substances on the membrane [15–17].
In this study, we focused on the lipid/polymer membrane for sensing bitterness,
which is called “C00”. It was previously reported that the CPA became stable after
the C00 membrane was immersed in monosodium glutamate (MSG) solution for
several days [18]. In this study, we analyzed the change in the surface structure of the
lipid/polymer membrane for bitterness sensing by immersing it in MSG solution.

2. Experimental Section

2.1. Materials

Polyvinyl chloride (n about 1100, PVC) was purchased from Wako Pure
Chemical Industry (Osaka, Japan) as a polymer material. 2-Nitrophenyl octyl
ether (NPOE) was obtained from Dojindo Laboratories (Kumamoto, Japan) as a
plasticizer. Tetradodecylammonium bromide (TDAB) was purchased from Sigma
Aldrich (St. Louis, MO, USA) as a lipid reagent. Tetrahydrofuran (THF) was obtained
from Sigma Aldrich as a solvent. Sodium hydrogen L-glutamate monohydrate
(monosodium glutamate, MSG), potassium chloride (KCl) and L(+)-tartaric acid
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were purchased from Kanto Chemical, Co., Inc. (Tokyo, Japan). Iso-alpha acid was
obtained from Intelligent Sensor Technology Inc. (Kanagawa, Japan). Hydrogen
peroxide (30%, Wako Pure Chemical Industry) and sulfuric acid (Kanto Chemical,
Co., Inc.) were purchased for use as piranha solution. The standard solution in
this study was made from 30 mM KCl and 0.3 mM tartaric acid in water. All
aqueous solutions were prepared from Milli-Q water obtained from a Milli-Q system
(Millipore, Billerica, MA, USA).

2.2. Fabrication of Lipid/Polymer Membrane for Bitterness Sensing

The lipid/polymer membrane for bitterness sensing was fabricated by the
following process: first, TDAB was dissolved in THF. Next, NPOE and the TDAB
solution were mixed. Then, PVC was added to the mixed solution. After that, the
mixed solution was dried on a Petri dish at room temperature for 3 days to obtain
a membrane sample. Next, the membrane sample was immersed in MSG solution
(30 mM MSG in standard solution) at room temperature for about 7 days (the MSG
solution should be remade each day because bacteria breed in the solution). Finally,
the membrane sample was cut and attached to the sensor surface using PVC in
THF solution to form a sensor electrode. This fabrication process was used in our
previous study [6].

2.3. Measurement Procedure of Taste Sensor

The relative value and CPA value were measured using a taste sensor system
(TS-5000Z, Intelligent Sensor Technology, Inc.). Several electrodes were prepared
for the taste sensor system. One of them was a reference electrode, which was a
Ag/AgCl electrode immersed in saturated KCl solution. The others were sensor
electrodes that were made from the lipid/polymer membrane. The potentials of
these electrodes were generated by immersing them in a sample solution. The
output was the electrical potential difference between the sensor electrode and the
reference electrode.

The measurement procedure was carried out by the following steps. First,
the electrodes were immersed in the standard solution and the sensor output was
measured as Vr. Next, the electrodes were immersed in the sample solution and the
output was measured as Vs. Then, the electrodes were immersed in another standard
solution and the output was measured as Vr’. The relative value and CPA value were
calculated from the following equations:

Relative value “ Vs ´ Vr (1)

CPA value “ Vr’ ´ Vr (2)
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Finally, the electrodes were rinsed with a cleaning solution (100 mM KCl, 10 mM
KOH, 30 vol% ethanol) and another standard solution. The measurement procedure
was performed five times for each sample. The averages and standard deviations
were calculated using the results excluding those for the first measurement.

2.4. Evaluation of Surface Conditions from Surface Zeta Potential and Contact Angle

The surface zeta potential and contact angle were measured to evaluate the
change in the surface conditions due to the preconditioning process. First, the zeta
potential of the lipid polymer membrane surface was measured by the streaming
potential method using a SurPASS analyzer (Anton Paar GmbH, Graz, Austria)
with an adjustable gap cell accessory. The solution used for the measurement was
1 mM KCl(aq). A small amount of 100 mM KOH was added to the solution to
control the pH to about 7 because the pH of the fresh KCl solution was about 5.8.
The measurements were carried out while the solution was titrated with a small
amount of 100 mM HCl. The measurements were conducted four times to obtain
each data point. Second, the contact angle of the lipid/polymer membrane surface
was measured by a DM500 contact angle meter (Kyowa Interface Science Co., Ltd.,
Saitama, Japan). The measurement was performed with a 2 µL water droplet. The
measurements were conducted three times to obtain each data point.

2.5. Analysis of Substances on Lipid/Polymer Membrane Surface by FTIR-RAS

FTIR is one of the most convenient methods for the analysis of organic
compounds. However, it is difficult to analyze thin film samples by FTIR, even
if the attenuated total reflection (ATR) method is used, because the penetration depth
of infrared light is about 500 nm using a germanium prism (or about 1000 nm using
a diamond prism, which is commonly used). Therefore, we analyzed the organic
substances on the surface of the lipid/polymer membrane by FTIR with reflection
absorption spectroscopy (RAS) after the organic substances had been transferred to a
gold surface.

The RAS method is used for the analysis of organic thin films on metal substrates.
RAS is normally not able to analyze organic film surfaces (the substrate must be a flat
metal). Therefore, after the substances on the lipid/polymer surface were transferred
to a thin gold film by the following steps, we analyzed the organic layer on the gold
film by FTIR-RAS. First, a thin gold film on a glass substrate was cleaned by piranha
solution (H2SO4:H2O2 (aq) = 4:1, 120 ˝C, 10 min) during which the surface of the
gold film became clean and hydrophilic. Next, the surface of the lipid/polymer
membrane was attached to the gold surface. Then, the lipid/polymer membrane
was pressed from its rear side using a spatula. Next, the lipid/polymer membrane
was lifted off from the gold surface. Finally, we analyzed the substances adsorbed on
the gold surface using an FTIR system (Frontier Gold FTIR, PerkinElmer, Waltham,
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MA, USA) RAS with an Advanced Grazing Angle accessory including a polarizer
(PIKE Technologies, Fitchburg, WI, USA) using an MCT detector.

2.6. Chemical Analyses of Surface of Lipid/Polymer Membrane

We used two methods for the analysis of organic substances on the surface in
addition to FTIR-RAS. One of them was x-ray photoelectron spectroscopy (XPS),
which is often used for surface analysis. For the analysis of organic substances, it is
possible to recognize some chemical substances from the chemical shifts of nitrogen,
oxygen and other elements. The analysis is highly sensitive within the surface
region (within 2 nm). We evaluated the surface of the lipid/polymer membrane
using an ESCA5800 system (ULVAC-PHI, Inc., Kanagawa, Japan) with a neutralizer.
However, there were two problems in our XPS measurements. One of them was the
possibility that some substances disappear by evaporation because the measurements
were performed under ultrahigh vacuum (below 1 ˆ 10´9 torr). Actually, the
measurements were carried out after the lipid/polymer membrane samples had
been stored under high vacuum (about 1 ˆ 10´6 torr) for 2–3 weeks because it
was impossible to measure the fresh membrane samples owing the vacuum. This
suggests that some substances with low boiling points evaporated from the samples
(for example, NPOE is a liquid at room temperature, whose boiling point is about
200 ˝C.). The other problem was contamination. It is difficult to distinguish target
compounds and contaminants because it is difficult to identify a substance from
information on the atomic and chemical shifts if not all the substances on the surface
are known. We carried out gas cluster ion beam (GCIB) time of flight (TOF) secondary
ion mass spectrometry (SIMS) with a cooled sample stage to solve these problems.

GCIB-TOF-SIMS is a method of analysis used to determine the depth profile of
substances in an organic material. The analysis is performed by TOF-SIMS while
etching the surface with an argon GCIB. The merit of etching with a GCIB is less
damage to the substances than etching with an argon ion beam. If the etching
is performed with an argon ion beam, it is difficult to identify the compounds
because fragments of the compounds are generated during the etching. We evaluated
the depth profile of substances in the lipid/polymer membrane starting from the
surface, which was carried out by Toray Research Center (Tokyo, Japan) using a
TOF.SIMS 5 (ION-TOF GmbH, Münster, Germany) instrument. It was possible to
distinguish the target compounds and contaminants because the substances could be
partially identified from the mass spectrum data. In addition, the effect of evaporation
was reduced by cooling the samples to below ´140 ˝C. In fact, it was possible
to measure the fresh membrane samples without storing samples in a vacuum.
However, there were two problems in our GCIB-TOF-SIMS measurement. One of
them was that it was impossible to compare the concentrations of substances because
the normalization of data could not be carried out owing to the lack of a standard
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sample. Such normalization is required to determine the absolute concentrations of
the substances because the sensitivity of the mass detector is considerably different
for each compounds. The other problem is that impurities in the materials affect
the result because the mass detector has high sensitivity. In summary, to reveal the
chemical substances on the lipid/polymer surface, we carried out XPS measurements
with GCIB-TOF-SIMS measurement to support the XPS data.

3. Results and Discussion

3.1. Effect of Preconditioning of Lipid/Polymer Membrane

The CPA value of the fresh lipid/polymer membrane was low. However, it
became high when the membrane was immersed in MSG solution (30 mM in standard
solution) for 4–5 days. The immersion process is called “MSG preconditioning”.
Figure 1 shows the result of preconditioning. The five measurements for a bitterness
sample (0.01 vol% iso-a-acid in standard solution) were carried out in one day. After
the measurements, the lipid/polymer membrane was immersed in the MSG solution
until the next day. The measurements were carried out for 13 days (0–12 days: total
number of measurements = 65).

First, the CPA value (shown in Figure 1a) is low until about 3 days. After that, it
starts to change then becomes stable at about -80 mV. The electrode potential, which
is Vr in Equations (1) and (2), is shown in Figure 1b. The transient behavior of the
electrode potential is similar to that of the CPA value. Several similar experiments
were carried out using other samples. Although the transients of the results were
slightly different from each other, the stable CPA value and electrode potential
were about ´80 and +100 mV, respectively. This CPA value agrees with previously
reported values [6]. In summary, the electrical property of the lipid/polymer
membrane for bitterness sensing was changed by immersion (preconditioning) in
MSG solution.
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Figure 1. The result of measurements for bitterness sample (0.01 vol% iso-α-acid)
depending on the preconditioning time. The five measurements were carried out at
each day. The error bar is standard deviation of the data. (a) CPA value; (b) The
electrode potential (vs. Ag/AgCl at room temperature) when the electrode was
immersed in the standard solution.

3.2. Surface Conditions of Lipid/Polymer Membrane

The electrode potential was affected by the preconditioning process. Figure 2
shows the change in the surface zeta potential with the progress of preconditioning.
The potential became increasingly negative with increasing preconditioning time.
This result suggests that the MSG molecules are adsorbed on the membrane surface
because the molecules are negatively charged at pH higher than 3.22, which is the
isoelectric point of MSG.

The contact angle was measured to confirm the result of the surface zeta
potential measurements during preconditioning process. Figure 3 shows the result.
The contact angle decreased during preconditioning. This means that the surface
became hydrophilic as a result of preconditioning. This result is consistent with
that for the surface zeta potential because the surface becomes hydrophilic if the
MSG molecules are adsorbed on the surface. In conclusion, the surface of the
lipid/polymer membrane was negatively charged by the preconditioning and
became hydrophilic.
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Figure 2. The dependence of the surface zeta potential during preconditioning. For example, 
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Figure 3. The contact angle of a water droplet with the lipid/polymer membrane.  
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Figure 2. The dependence of the surface zeta potential during preconditioning. For
example, the red graph is data of the membrane without the preconditioning. The
dark blue graph is data of the membrane with the preconditioning for 10 days.
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Figure 3. The contact angle of a water droplet with the lipid/polymer membrane.

3.3. FTIR-RAS Analysis of Substances on Lipid/Polymer Membrane Surface

We found that the surface was changed by the preconditioning as reported in
the previous section. Chemical analyses of the surface were carried out to reveal
the reason for the change. First, FTIR-RAS by the transfer method was carried
out in accordance with the procedure in Section 2.4. Figure 4 shows the results
for samples with and without preconditioning for 7 days. Several peaks appear
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for the sample with the preconditioning, and that do not appear for the sample
without the preconditioning. The peaks at 2860 and 2920 cm´1 result from C-H
stretching, the peak at 1610 cm´1 results from C=C stretching in the aromatic ring,
the peak at 1530 cm´1 results from NO2 asymmetric stretching, and the peaks
at 1350 and 1280 cm´1 result from C–O–C asymmetric stretching. The chemical
structure of the substance as below contained in the lipid/polymer membrane
is shown in Figure 5. The above peaks suggest the chemical structure of NPOE.
However, it would be difficult to recognize TDAB by FTIR even if it exists on the
surface because the characteristic peaks of TDAB with high strength do not appear
in IR data except for the peak corresponding to C–H stretching (we obtained IR data
for the TDAB used in this study by FTIR-ATR in another experiment). In summary,
NPOE is exuded onto the surface during the preconditioning.
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Figure 4. FTIR-RAS with transfer method for samples with and without the
preconditioning for 7 days.
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3.4. Chemical Analysis of Surface of Lipid/Polymer Membrane by XPS

The analysis of samples with various NPOE and TDAB concentrations with
and without preconditioning for 7 days was carried out by XPS. Table 1 shows the
conditions of the samples. The samples that were analyzed by FTIR or other methods
were samples 1-1-0 (without preconditioning) and 1-1-7 (with preconditioning).
Sample 1-1-7 is used as a bitterness sensor. Figure 6 shows the result of the
XPS measurements. First, we discuss the samples except for sample 1000-0-0 to
simplify the explanation. As shown in the lower graph, the samples not subjected
to preconditioning have no peak, whereas the samples subjected to preconditioning
have a peak at 402 or 400 eV. This means that TDAB or NPOE was concentrated on the
membrane surface by the preconditioning or that MSG was adsorbed on the surface
by the preconditioning because TDAB, NPOE and MSG have a nitrogen atom. Next,
sample 0-0-7, which has no TDAB or NPOE and was immersed in MSG solution,
has a peak at 400 eV. Thus, the peak at 400 eV originates from the MSG. Next, the
intensity of the peak at 402 eV for samples 0-0-7, 0-1-7, 1-1-7 and 100-1-7 depends
on the amount of TDAB. In addition, sample 1000-0-0, which has only TDAB, has a
peak at 402 eV. Therefore, the peak at 402 eV originates from TDAB. Moreover, the
intensities of the peak at 402 eV for samples 1-1-7 and 100-1-7 are higher than those of
samples 1-1-0 and 100-1-0, which were not subjected to preconditioning. This means
that the TDAB on the surface was concentrated by the preconditioning. In conclusion,
the preconditioning process concentrated the TDAB on the lipid/polymer surface
and caused the adsorption of MSG on the surface.
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Table 1. The samples for XPS measurement. The first and second numbers are the
amount of TDAB and NPOE, respectively. The last number is the preconditioning
time. For example, sample 100-1-7 means that the amount of TDAB is 100 times of
sample 1-1-7, which is used as a bitterness sensor.

Sample Name TDAB (times) NPOE (times) Preconditioning Time [ day ]

0-0-0 0x 0x 0
0-0-7 0x 0x 7
0-1-0 0x 1x 0
0-1-7 0x 1x 7
1-1-0 1x 1x 0
1-1-7 1x 1x 7

100-1-0 100x 1x 0
100-1-7 100x 1x 7
1000-0-0 1000x 0x 0
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which is used as a bitterness sensor. 

Sample Name 
TDAB 

(times) 

NPOE 

 (times) 
Preconditioning Time [ day ] 

0-0-0 0x 0x 0 

0-0-7 0x 0x 7 

0-1-0 0x 1x 0 

0-1-7 0x 1x 7 

1-1-0 1x 1x 0 

1-1-7 1x 1x 7 

100-1-0 100x 1x 0 

100-1-7 100x 1x 7 

1000-0-0 1000x 0x 0 
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3.5. Analysis of Depth Profile of Substances in Lipid/Polymer Membrane

The depth profile of the concentration of substances in the lipid/polymer
membrane was measured by GCIB-TOF-SIMS to confirm the result of XPS. Figure 7
shows the result of GCIB-TOF-SIMS, which was carried out starting from the surface.
The concentrations of TDAB and MSG in the surface region are higher than those
in the deep region after the preconditioning. TDAB was concentrated in the surface
region, enabling it to be trapped at the interface between the MSG aqueous solution
and the membrane via the quaternary amino group of TDAB, which is hydrophilic.
MSG diffused from the solution into the membrane. This result supports the result
of XPS analysis. In addition, we found that the concentrations of TDAB and MSG
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after preconditioning are higher up to a depth of 1000 nm, although we expected
that they would have only been concentrated at the surface. However, we could not
explain the data for NPOE because the results for positive and negative ions were
different. There might be problem in measuring NPOE by GCIB-TOF-SIMS because
the result of FTIR-RAS in Figure 4 suggests that the amount of NPOE increased on
the surface. In conclusion, the concentrations of TDAB and MSG were higher in the
surface region than in the bulk region.
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Figure 7. The result of GCIB-TOF-SIMS measurement. Four lines indicate the data
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ATTENTION: The intensities cannot compare with each other samples because of no
normalization. (a) 69˝C48H100N+ and 81Br´ of TDAB; (b) 23Na+ and 128C5H6NO3
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of MSG; (c) 123C6H5NO2
+ and 138C6H4NO3

´ of NPOE; (d) 252C14H22NO3
+ and

251C14H21NO3
´ of NPOE.

4. Conclusions

We analyzed the surface of a lipid/polymer membrane for bitterness sensing
to determine the effect of the MSG preconditioning process. The purpose of this
study was to explain why it becomes possible to measure bitterness by CPA using
the lipid/polymer membrane after the preconditioning process. We evaluated the
surface conditions using electrical and chemical methods. First, the contact angle
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and the surface zeta potential were measured as electrical methods because those
have a relationship with the response of the taste sensor. The results indicated that
the surface became hydrophilic and was negatively charged by the preconditioning.
Next, FTIR-RAS, XPS and GCIB-TOF-SIMS were carried out as chemical methods
to identify substances on the surface. Their results indicated that the adsorption of
MSG on the surface, and that TDAB was concentrated on the surface. However, the
results did not support that of FTIR-RAS measurement, which showed that NPOE
was exuded on the surface. In this study, we revealed the change in the surface
structure caused by MSG preconditioning. In our future work, we will clarify the
relationship between the mechanism of CPA measurement and the change in the
surface structure.
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Novel PCR Assays Complement Laser
Biosensor-Based Method and Facilitate
Listeria Species Detection from Food
Kwang-Pyo Kim, Atul K. Singh, Xingjian Bai, Lena Leprun and Arun K. Bhunia

Abstract: The goal of this study was to develop the Listeria species-specific PCR
assays based on a house-keeping gene (lmo1634) encoding alcohol acetaldehyde
dehydrogenase (Aad), previously designated as Listeria adhesion protein (LAP),
and compare results with a label-free light scattering sensor, BARDOT (bacterial
rapid detection using optical scattering technology). PCR primer sets targeting
the lap genes from the species of Listeria sensu stricto were designed and tested
with 47 Listeria and 8 non-Listeria strains. The resulting PCR primer sets detected
either all species of Listeria sensu stricto or individual L. innocua, L. ivanovii and
L. seeligeri, L. welshimeri, and L. marthii without producing any amplified products
from other bacteria tested. The PCR assays with Listeria sensu stricto-specific primers
also successfully detected all species of Listeria sensu stricto and/or Listeria innocua
from mixed culture-inoculated food samples, and each bacterium in food was verified
by using the light scattering sensor that generated unique scatter signature for each
species of Listeria tested. The PCR assays based on the house-keeping gene aad
(lap) can be used for detection of either all species of Listeria sensu stricto or certain
individual Listeria species in a mixture from food with a detection limit of about
104 CFU/mL.

Reprinted from Sensors. Cite as: Kim, K.P.; Singh, A.K.; Bai, X.J.; Leprun, L.;
Bhunia, A.K. Novel PCR Assays Complement Laser Biosensor-Based Method and
Facilitate Listeria Species Detection from Food. Sensors 2015, 15, 22672–22691.

1. Introduction

Listeria monocytogenes, a foodborne pathogen, causes fatal systemic infection
in immunocompromised hosts including the elderly, infants, pregnant women
and their fetuses, HIV infected patients, and patients with malignancy receiving
chemotherapy. Alcohol acetaldehyde dehydrogenase (Aad) in L. monocytogenes
is a house-keeping enzyme and is involved in bacterial adhesion and paracellular
translocation through epithelial barrier during intestinal phase of listeriosis [1–4].
Such a housekeeping enzyme with moonlighting function in prokaryotes plays an
important role in pathogenesis [5,6]. The Aad (Lmo1634) is also known as Listeria
adhesion protein (LAP) and its homolog is present in all species of Listeria sensu
stricto (i.e., in the narrow or strict sense) also known as archetypal Listeria species
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(L. monocytogenes, L. ivanovii, L. seeligeri, L. welshimeri, L. innocua, and L. marthii) [1,7,8].
Whereas, L. floridensis, L. aquatic, L. cornellensis, L. riparia, L. grandensis, L. booriae,
L. rocourtiae, L. newyorkensis, L. weihenstephanensis, L. fleischmannii and L. grayi [8,9] are
considered atypical (sensu lato: in the broad sense) and these group are phylogenetically
divergent from the species of Listeria sensu stricto [9–12].

L. monocytogenes is pathogenic to humans and is responsible for fatal outbreaks
involving ready-to-eat meat, dairy, fish, fruits, and vegetables [13]. It was responsible
for 57 cases (22 fatalities) from consumption of tainted meat products in Canada [14],
27 cases (8 fatalities) from Quargel sour milk curd cheese [15], 147 cases (33 fatalities)
from cantaloupe [16], and most recently in 2015, 35 cases (7 deaths) from caramel
apple [17] and 10 cases (3 deaths) from ice cream [18]. The case-fatality rate for
listeriosis is 20%–30% [19]. Under the United States Food and Drug Administration
(FDA) definition of Current Good Manufacturing Practice, cGMP [21 CFR 110.5(a)],
it is mandatory to monitor food for adulterations [21 U.S.C 342(a)] including all
poisonous or deleterious substances, which may render food injurious to health.
The FDA recommends initial rapid screening of frozen or refrigerated ready-to-eat
(RTE) food products for Listeria species rather than the lengthy specific test for
L. monocytogenes [20].

In this study, species of Listeria sensu stricto-specific PCR primer sets targeting
lap (aad), a house-keeping gene were developed that detected all species of Listeria
sensu stricto tested. House-keeping genes are integral and essential for bacterial
metabolic function and survival [21], thus they provide an attractive target for
detection. This molecular assay based on lap could be used as a screening tool to
address the needs of food safety and the regulatory agency. These PCR primer sets
were further used to detect Listeria species from inoculated food samples. In addition,
the light scattering sensor, BARDOT (bacterial rapid detection using optical scattering
technology) [22–24] was also employed to verify the presence of L. monocytogenes and
L. innocua from a mixed culture (Listeria plus Lactobacillus casei and Escherichia coli
O157:H7) inoculated food samples. In BARDOT, a red-diode laser (635 nm; 1 mW;
1 mm diameter) passes through the center of a bacterial colony on an agar plate
and generates a 2-dimensional forward scatter fingerprint of each colony within
3–5 s [23]. Organism-specific features are extracted from scatter patterns and are
used to identify unknown bacteria using the scatter image library [25]. Scatter image
libraries for the thirteen serotypes of L. monocytogenes (1/2a, 1/2b, 1/2c, 3a, 3b, 3a,
4a, 4b, 4ab, 4c, 4d, 4e and 7) were also developed for the BARDOT-based detection in
future studies.
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2. Experimental Section

2.1. Bacterial Cultures, Growth and Ribotyping

All bacterial cultures (Table S1) used in this study are from our collection. All
cultures were stored at ´80 ˝C as 10% frozen glycerol stocks, and fresh cultures
were obtained by propagating in Brain Heart Infusion broth (BHI) or Tryptic soy
broth with 0.6% yeast extract (TSB-YE) at 37 ˝C for 16–18 h, with the exception
of L. rocourtiae, which was grown at 32 ˝C. The bacterial cultures were plated on
Brain Heart Infusion Agar (BHIA), Luria-Bertani Agar (LBA) to capture the colony
scatter patterns. The majority of ribopattern information for cultures was obtained
from a previous study from our lab [26]. Additional cultures were ribotyped using
the automated Riboprinter® (Qualicon, Inc., Wilmington, DE, USA) as described in
our previousstudy [27]. For the food sample study, Fraser Broth (FB) containing 10
mL antimicrobial supplement (25 mg acriflavin, 20 mg nalidixic acid and 500 mg
ammonium ferric citrate per liter) was used. Dehydrated media or media components
were purchased from BD (Sparks, MD, USA) and FB was purchased from Acumedia
(Neogen, Lansing, MI, USA).

2.2. Design of Lap Gene-Specific Primer Sets for Listeria Species

The lap sequences in L. monocytogenes F4244 (Acc. No. AY561824), L. innocua
F4248 (Acc. No. AY561825), L. welshimeri ATCC35897 (Acc. No. AY561828),
L. seeligeri SE31 (Acc. No. AY561827) and L. ivanovii SE98 (Acc. No. AY561826)
were reported previously [1]. In addition, the complete sequences of the lap gene
from L. monocytogenes EGD (Acc. No. NC_003210), L. innocua CLIP11262 (Acc. No.
NC003212) and L. marthii (Acc. No. NZ_CM001047) [28] were obtained from NCBI
GenBank [29]. To identify a species-specific DNA sequence region, the MultAlin [30]
program was used to align and compare the sequences of the lap gene. The scheme for
Listeria genus/species-specific primer binding sites on the lap gene are represented
in Figure 1.

Two conserved sequence regions (1–54 and 1294–1401) were found in different
Listeria species (L. monocytogenes EGD, F4244; L. innocua CLIP11262, F4248;
L. welshimeri; L. ivanovii; L. seeligeri and L. marthii), and these regions were used to
design the species of Listeria sensu stricto-specific primer set, ELAP-F2 and LIS-R1
(Table 1). Other Listeria species-specific primer sets were developed based on the rule
that the 31-end of primer should be unique to the target species. L. innocua-specific
primers are designated as Inn-F1 and Inn-R1, and L. welshimeri-specific primers are
named as Wel-F1 and Wel-R1. A primer set IvaSee-F1 and IvaSee-R1 was specific
for both L. ivanovii and L. seeligeri as they represent close genetic relatedness [31].
In addition, primers Mar-F1 and Mar-R3 were specific for L. marthii. Specific primers
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for either L. monocytogenes, L. ivanovii or L. seeligeri could not be obtained, possibly
due to their highly conserved lap gene sequence motifs [1].Sensors 2015, 15 22675 
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ELAP-F1 5′CGGTCCCCGGGTACCATGGCAA 
1–1301 1301 

Listeria spp. (except 

L. grayi, L. rocourtiae) LIS-R1 5′TTAAAGAAAATGCGGCC3′ 

Inn-F1 5′GGAGTTATTAACGAAGATACT3′ 
286–822 536 L. innocua 
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L. ivanovii,  
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Wel-F1 5′TTCTCGTATTATCGGTTTACCA3′ 
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Mar-F1 5′AGAATATATTTGGAACAGCATC3′ 246–268 
1813 L. marthii 
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Figure 1. Schematic representation of the lap (aad) gene-specific primer binding sites
for PCR-based detection of Listeria. Open block arrow represents genes flanking the
lap. Abbreviations represents (similar proteins to): trpE, anthranilate synthase alpha
subunit; lmo1634, alcohol-acetaldehyde dehydrogenase (LAP); lmo1635, unknown
protein; lmo1636, ABC transporter (ATP-binding protein); lmo1637, membrane
protein. The Listeria lap primers were specific for all species of Listeria sensu stricto
tested, but not the atypical listeriae; L. grayi and L. rocourtiae. Colored boxes
indicate primer binding sites for Listeria species (see Table 1 for PCR product size).

Table 1. Sequences of species-specific primers based on lap sequence used in
this study.

Primer Sequence a Location in
lap Gene

Product
Size (bp) Specificity

ELAP-F1 51CGGTCCCCGGGTACCATGGCAA
1–1301 1301

Listeria spp. (except
L. grayi, L. rocourtiae)LIS-R1 51TTAAAGAAAATGCGGCC31

Inn-F1 51GGAGTTATTAACGAAGATACT31
286–822 536 L. innocuaInn-R1 51TTCTGCTTTTACTTCTTTAGCA31

IvaSee-F1 51AAGCTGCAGTTATTCATTCC31
1137–1743 606 L. ivanovii, L. seeligeri

IvaSee-R1 51ATCTAAGAATTTTTGTTTTAGT31

Wel-F1 51TTCTCGTATTATCGGTTTACCA31
2344–2581 237 L. welshimeriWel-R1 51GCTTCAAGATAGATTTCTTTCAA31

Mar-F1 51AGAATATATTTGGAACAGCATC31 246–268
1813 L. marthiiMar-R1 51GTTCGATTGCACGGATGGAAAG31 2038–2059

a Underlined indicates artificial nucleotide addition sites; translation start codon is
indicated in bold character.
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2.3. PCR Conditions, Primers and DNA Extraction

For PCR, 100 ng of template DNA, 25 pmol of each primer, 0.2 µL of GoTaq
polymerase (5 U/µL stock; Promega), 1ˆ GoTaq flexi colored buffer (5x stock,
Promega), 2 mmol/L MgCl2 (25 mmol/L stock, Promega), and 200 µM of dNTPs
(10 mmol/L stock, Promega) were mixed for a 25 µL final volume. PCR amplification
was done using a thermocycler (GeneAmp PCR System 9700, Applied Biosystems) as
follows: Hot start at 95 ˝C for 5 min; 30 cycles with denaturation at 95 ˝C for 1 min,
annealing at 54 ˝C for 1 min, and extension at 72 ˝C for 1.5 min; final extension at
72 ˝C for 10 min. The amplified DNA was resolved in 1.2% agarose gel and visualized
by ethidium bromide staining with a ChemiDoc XRS gel documentation system
(Bio-Rad). The species of Listeria sensu stricto-specific primer set and individual
Listeria species-specific primer sets (Table 1) were used for identification of each
Listeria species in a pure culture and in the model foods. List of primers and their
binding locations on lap gene is presented in Table 1. To further verify the lap-gene
specific PCR results, two sets of cell wall hydrolase; CWH or p60 (iap) gene-specific
primers, Lis1B/MonoA and Lis1B/Ino2 [32], were applied to verify L. monocytogenes
and L. innocua cultures, respectively. The sequence of Lis1B, MonoA and Ino2 primers
are 51-TTATACGCGACCGAAGCCAAC-31, 51-CAAACTGCTAACACAGCTACT-31

and 51-ACTAGCACTCCAGTTGTTAAAC-31, respectively.
The genomic DNA from reference cultures or enriched food samples were

extracted with DNeasy Tissue Kit (Qiagen) following manufacturer’s protocol. Briefly,
the cultures were pretreated with lysozyme solution (10 mg/mL in TE buffer (pH 7.0)
containing 10 mmol/L Tris-Cl, pH 7.0 and 1 mmol/L EDTA) at 37 ˝C for 30 min prior
to cell lysis. The total DNA was also extracted following the published protocol [33].
The concentration and purity of genomic DNA was determined using NanoDrop
2000C (Thermo Scientific, Franklin, MA, USA).

2.4. Specificity and Sensitivity of Lap Gene Primers for Listeria Detection

A total of 55 Listeria (n = 47) and non-Listeria (n = 8) cultures were tested to
determine the specificity of lap gene primer sets for the species of Listeria sensu stricto
or individual species: L. monocytogenes (n = 13), L. ivanovii (n = 12), L. innocua
(n = 10), L. seeligeri (n = 5), L. welshimeri (n = 3), L. grayi (n = 2), L. marthii (n = 1)
and L. rocourtiae (n = 1). Non-Listeria cultures included Enterobacter aerogenes, Serratia
marcescens, Hafnia alvei, Lactobacillus casei, Lactobacillus acidophilus, Bacillus cereus,
Escherichia coli O157:H7, and Salmonella enterica serovar Typhimurium (Table S1).

To determine the sensitivity (limit of detection) of the lap gene primer sets
for detection of Listeria species, pure cultures of L. monocytogenes F4244 and
L. innocua F4248 cells were plated on modified oxford (MOX) agar for enumeration.
Simultaneously, total DNA was extracted in 200 µL of PBST (20 mM phosphate
buffered saline (PBS), pH 7.2, with 0.05% Tween 20) from 1 mL of pure cultures
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using the boiling method [33]. A relationship between the number of cells and the
corresponding DNA/genomic equivalents was established before performing the lap
gene-based PCR to establish the sensitivity of the reaction. Overnight (16 h) grown
cells of L. monocytogenes F4244 (8.02 ˘ 0.11 log10 CFU/mL) yielded 96.1 ˘ 2.1 ng/µL
DNA, and 1 ng DNA was equivalent to 5.5 log10genomic equivalent (GE), whereas
L. innocua F4248 (8.15 ˘ 0.24 log10 CFU/mL) yielded 98.4 ˘ 0.6 ng/µL DNA, and 1
ng DNA was equivalent to 5.5 log10 GE. PCR was performed with the diluted DNA
and “GE was calculated. The genome size of L. monocytogenes and L. innocua 2.9
and 3.0 Mbp, “respectively, thus yielded 5.5 log10 GE for 1 ng of DNA. The amplified
PCR products obtained from different cell concentrations were quantified using the
NIH ImageJ tool, an image processing and analysis software [34].

2.5. Laser Optical Sensor and Scatter Image Analysis

Laser optical sensor, also designated BARDOT, works on the biophysical
principles (refraction, diffraction, interference) of forward light scattering. An
external design of BARDOT and its internal scheme has been described
previously [23,35]. The detection time (sample-to-result) for the BARDOT-based
detection of Listeria spp. colonies on BHI agar plate (BHIA) is about 22 h except for
L. rocourtiae, which took about 48 h to generate the colony scatter pattern.

To find the optimal incubation time that generates maximal scatter features and
distinguishing scatter patterns, a time-lapse study was performed to capture the
scatter pattern of Listeria species at 17, 22 and 25 h. Scatter patterns were acquired for
Listeria colonies after plating on BHIA, and each colony (~1 mm diameter) contained
about 2.5 ˆ 108 Listeria cells. The scatter patterns were captured when the colony size
reached close to 1 mm in diameter. A total of 1,884 scatter images from pure cultures
of eight Listeria species were captured on BHIA, where 677 scatter patterns were used
to build the scatter image library and the rest of the scatter patterns were generated
to find the optimal incubation time [24]. The scatter image library of eight Listeria
species (L. monocytogenes, L. innocua, L. grayi, L. seeligeri, L. welshimeri, L. marthii,
L. ivanovii, and L. rocourtiae) consisted of an average of 80 scatter patterns per species.
This Listeria species library was used to differentiate L. monocytogenes and L. innocua
inoculated in the food sample. Another scatter image library of L. monocytogenes
and L. innocua (110 scatter images) was also built to specifically differentiate the two
species. The scatter images were further processed and analyzed using a built-in
image analysis software [25]. This analysis generated the cross validation matrix for
the principal component analysis of the scatter images of the Listeria species. Scatter
image libraries for 13 serovars of L. monocytogenes were also generated after growth
on BHIA or LB agar (LBA) plates.
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2.6. Detection and Identification of Listeria in Artificially Inoculated Food Samples

Two types of food samples, ready-to-eat hotdogs (franks) and cantaloupes,
were procured from a local grocery store (West Lafayette, IN, USA). To test the
application of designed primer sets, food samples were artificially inoculated and
tested in three independent experimental replicates. Twenty-five grams of each
hotdog and cantaloupe rinds (each piece was about 2 ˆ 3 cm) were artificially
inoculated with 100 CFU of single culture (L. monocytogenes F4244 or L. innocua
F4248) or 100 CFU of a mixed culture (50 CFU of L. monocytogenes F4244 and 50 CFU
of L. innocua F4248). Since we did not find any background microbial load in hotdogs,
samples were inoculated with Lactobacillus casei (100 CFU/25g) and Escherichia coli
(100 CFU/25g) as background contaminants. Four sets of food samples: (i) food alone;
food inoculated with (ii) L. monocytogenes; (iii) L. innocua; and (iv) L. monocytogenes
and L. innocua, were enriched in FB according to the USDA-FSIS protocol [36]. All
inoculated food samples (25 ˘ 2 g) were enriched in 225 ˘ 2.5 mL of FB at 37 ˝C in
a shaking incubator (140 rpm) for 24 h. One milliliter of enriched broth was used
for the DNA extraction (as described before) and plated on MOX agar plates for
enumeration and BHIA for identification by BARDOT [23,37]. Briefly, for BARDOT
analysis, FB enriched samples were decimally diluted in 20 mmol/L PBS (pH 7.2),
plated on BHIA, and incubated at 37 ˝C for 24 h or until the colony diameter reached
1.1 ˘ 0.2 mm. The scatter patterns of colonies were compared with the scatter pattern
library of Listeria species for identification [23,24].

3. Results

3.1. Specificity and Sensitivity of Lap Gene Primers for Listeria Detection

A total of 55 different Listeria (n = 47) and non-Listeria (n = 8) cultures were
analyzed (Table S1). When the general Listeria primer set, ELAP-F2 and LIS-R1, was
used, all the tested species of Listeria sensu stricto produced a 1301 bp band (Figure 2A,
Table S1). When the L. innocua-specific primer set, Inn-F1 and Inn-R1, was used, a
536 bp band was amplified only in the L. innocua strains (Table S1) Likewise, the
IvaSee-F1 and IvaSee-R1 primer set produced L. ivanovii and L. seeligeri-specific
606 bp band. The primer set, Wel-F1 and Wel-R1, generated 237 bp band only in
the L. welshimeri strains, and a L. marthii-specific primer set, Mar-F1 and Mar-R3,
produced a 1813 bp band without showing any amplified products from the other
Listeria species (Figure 2B, Table S1).

These results demonstrated that the general Listeria primer set (ELAP-F2 and
LIS-R1) could detect all the tested species of Listeria sensu stricto. The IvaSee-F1
and IvaSee-R1 were able to differentiate either L. ivanovii or L. seeligeri from other
Listeria species or non-Listeria organisms without giving any false-positive results.
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L. ivanovii and L. seeligeri contain virulence gene sequences in their genome similar
to L. monocytogenes [31], and exhibited high sequence homology in lap [1].

The L. innocua-specific primers (Inn-F1 and Inn-R1) were highly specific and
did not give any PCR products with other Listeria species, including L. monocytogenes
strains. This primer set could be used to detect L. innocua as a mixed culture with
L. monocytogenes. Since these two species are usually found together in food and
other ecological habitats, the presence of L. innocua could be used as an indicator for
L. monocytogenes [38–41].

Use of the L. welshimeri-specific primer set, Wel-F1 and Wel-R1, successfully
produced a PCR product in all four L. welshimeri strains tested. Since we could not
design L. monocytogenes, L. ivanovii or L. seeligeri-specific primer sets, PCR assays
for detection of these individual species were not possible with the primers sets used
in this study.

Since 2010, eleven new Listeria species (a total of 17 species) were added to
the genus Listeria; L. marthii [42], L. rocourtiae [11], L. weihenstephanensis [12],
L. fleischmannii [10,43], L. floridensis, L. aquatic, L. cornellensis, L. riparia,
L. grandensis [8], L. booriae, and L. newyorkensis [9]. The presence of a lap homologue
in L. marthii [7] has been reported and the resulting primer set (Mar-F1 and Mar-R3)
is specific, but we were unable to obtain any lap gene based primers for L. rocourtiae,
L. weihenstephanensis, L. fleischmannii and L. grayi. These are considered atypical
and are phylogenetically divergent from the species of Listeria sensu stricto within the
genus Listeria [1,11,43]. L. grayi and L. rocourtiae did not give any amplification with
the species of Listeria sensu-stricto-specific primer set indicating the possible sequence
heterogeneity in the lap sequence in these atypical listeriae (Table S1).

The specificity of all primer sets was examined with eight non-Listeria cultures
and none of them yielded any PCR product (Table S1). We were even able to identify
four mislabeled microorganisms: Two with general Listeria primer set, one of each
with L. innocua-specific and L. welshimeri-specific primer set (Table S1). Ribotyping
identified them as L. monocytogenes DUP-1035 and DUP-1039, L. welshimeri DUP-1074
and L. innocua DUP-1009 (Table S1).

The detection limit (sensitivity) of PCR with the species of Listeria sensu
stricto-specific primer (ELAP-R1/LIS-R1) was 4.5 log10 genome equivalents for both
L. monocytogenes and L. innocua (Figure 3). PCR for the DNA sensitivity was
performed with the total DNA extracted from 1 mL culture of L. monocytogenes
F4244 (8.02 ˘ 0.11 log10 CFU/mL) and L. innocua F4248 (8.15 ˘ 0.24 log10 CFU/mL)
that also indirectly depicted the PCR sensitivity for the bacterial cell number. One
milliliter cultures of L. monocytogenes and L. innocua yielded 96.1 ˘ 2.1 ng/µL and
98.4 ˘ 0.6 ng/µL of DNA concentrations, respectively. The genome equivalents were
calculated from the genome size (L. monocytogenes size is 2.9 ˆ 106 bp and L. innocua
is 3.0 ˆ 106 bp), and the molecular weight of nucleotide (1 bp = 650 Da).
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Figure 2. Representative agarose gel showing PCR amplification of selected Listeria
species by using species-specific primers. (A) PCR results based on the species
of Listeria sensu stricto-specific, and L. innocua-, L. ivanovii- and L. seeligeri- and
L. welshimeri-specific primers. (B) PCR result using L. marthii-specific primers.

191



Sensors 2015, 15 22680 

 

 

 

Figure 3. Sensitivity of lap gene-based Listeria species sensu stricto-specific primer  

(ELAP-F1/LIS-R1) tested against L. monocytogenes F4244 and L. innocua F4248. Agarose 

gel showing amplifications with the primers for different concentrations of template DNA 

of L. monocytogenes and L. innocua in reaction volume of 25 µL. PCR products in the gel 

were quantified using the NIH ImageJ image processing and analysis software. 

3.2. Scatter Image Library of Listeria Species and Serovars 

The light scattering sensor (BARDOT) generated distinguishing forward scattering patterns for 

colonies of Listeria species on BHIA. Time-lapse measurement of the scatter patterns indicated that 

Listeria species generated scatter patterns with maximal differential scatter features at 22 h of incubation 

(Figure 4A). Principal component analysis performed on the basis of cross validation matrix revealed 

that L. innocua, L. rocourtiae, L. monocytogenes, L. marthii, and L. seeligeri can be grouped separately 

based on the differences in the scatter patterns (Figure 4B) with 100%, 100%, 97.7%, 95.2% and  

94.9%, positive predictive value (PPV), also known as classification accuracy, respectively (Table S2). 

However, L. grayi, L. ivanovii, and L. welshimeri could not be differentiated based on the scatter patterns 

on BHIA. Application of the L. monocytogenes and L. innocua-specific image libraries, generated even 

higher PPVs of 100% for both of the species, and they grouped separately in the principal component 

analysis (Figure 4C). These image libraries were also used to match scatter images of L. monocytogenes 

and L. innocua that were obtained from artificially inoculated food samples mentioned below in  

the result section. 

Figure 3. Sensitivity of lap gene-based Listeria species sensu stricto-specific primer
(ELAP-F1/LIS-R1) tested against L. monocytogenes F4244 and L. innocua F4248.
Agarose gel showing amplifications with the primers for different concentrations
of template DNA of L. monocytogenes and L. innocua in reaction volume of 25 µL.
PCR products in the gel were quantified using the NIH ImageJ image processing
and analysis software.

3.2. Scatter Image Library of Listeria Species and Serovars

The light scattering sensor (BARDOT) generated distinguishing forward
scattering patterns for colonies of Listeria species on BHIA. Time-lapse measurement
of the scatter patterns indicated that Listeria species generated scatter patterns with
maximal differential scatter features at 22 h of incubation (Figure 4A). Principal
component analysis performed on the basis of cross validation matrix revealed
that L. innocua, L. rocourtiae, L. monocytogenes, L. marthii, and L. seeligeri can be
grouped separately based on the differences in the scatter patterns (Figure 4B) with
100%, 100%, 97.7%, 95.2% and 94.9%, positive predictive value (PPV), also known
as classification accuracy, respectively (Table S2). However, L. grayi, L. ivanovii,
and L. welshimeri could not be differentiated based on the scatter patterns on BHIA.
Application of the L. monocytogenes and L. innocua-specific image libraries, generated
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even higher PPVs of 100% for both of the species, and they grouped separately in the
principal component analysis (Figure 4C). These image libraries were also used to
match scatter images of L. monocytogenes and L. innocua that were obtained from
artificially inoculated food samples mentioned below in the result section.
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serovar level after growth on BHI and LB agar plates (Figure 5). Differences at the serovar level were 

Figure 4. Optical scatter patterns of Listeria species and image analysis. (A) Colony
scatter patterns were captured using BARDOT at different incubation times for eight
Listeria species on BHI agar plates. Rectangular selection with broken line depicts
the optimal incubation time (22 h) that yielded differentiating scatter images when
the colony size was 1.1 ˘ 0.2 mm diameter; (B) Principal component analysis of the
eight Listeria species used to build the scatter image library. Blue oval selections
indicate grouping of the Listeria species; (C) Principal component analysis of
L. monocytogenes and L. innocua colony scatter images that were used to build a
two-species scatter image library. The blue oval selections indicate grouping of
each Listeria species.
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In this study we also tested the capabilities of the laser sensor to differentiate
L. monocytogenes at the serovar level after growth on BHI and LB agar plates
(Figure 5). Differences at the serovar level were observed after analysis using the cross
validation matrix, where a high PPV average was observed on LB agar compared
to the BHI agar media, 90.1% and 82.9%, respectively (Table 2). Scatter pattern
analysis for the thirteen serotypes underscores the feasible application of the laser
optical sensor to generate a scatter image library with differentiating scatter patterns
for L. monocytogenes serotypes that can be used for screening and detection of
L. monocytogenes at the serovar level.
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Figure 5. Representative scatter images of colonies of L. monocytogenes serotypes
grown on BHI and LB agar. Between 50 and 100 colony scatter images for each
serovar were collected from each experiment. Colony profiles were measured under
phase contrast microscope with 10ˆ objective when the colony size was 1.1 ˘ 0.2 mm
diameter on BHI and LB agar after 21–23 h and 25–27 h of incubation, respectively.
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Table 2. Positive predictive value (PPV, precision rate) for the scatter images of
colonies obtained from thirteen L. monocytogenes serotypes grown on BHIA and
LBA media.

Strains Serotype % Average Positive Predictive Value (PPV ˘ SD)

BHI LB

L. monocytogenes V7 1/2a 81.8 ˘ 2.3 96.2 ˘ 1.9
L. monocytogenes F4233 1/2b 89.4 ˘ 1.1 96.8 ˘ 2.1

L. monocytogenes ATCC7644 1/2c 74.5 ˘ 3.2 81.3 ˘ 3.8
L. monocytogenes V47 3a 80.8 ˘ 1.8 77.6 ˘ 5.6

L. monocytogenes ATCC 2540 3b 74.2 ˘ 2.2 97.6 ˘ 1.7
L. monocytogenes ATCC 2479 3c 99.8 ˘ 0.9 85.2 ˘ 2.3
L. monocytogenes ATCC 9114 4a 93.2 ˘ 1.3 98.0 ˘ 1.8

L. monocytogenes F4244 4b 46.2 ˘ 3.5 88.8 ˘ 2.1
L. monocytogenes Murray B 4ab 92.8 ˘ 2.9 85.4 ˘ 3.2

L. monocytogenes ATCC 19116 4c 98.8 ˘ 1.0 93.6 ˘ 2.8
L. monocytogenes ATCC 19117 4d 99.0 ˘ 0.5 88.2 ˘ 3.1
L. monocytogenes ATCC 19118 4e 65.4 ˘ 5.6 92.6 ˘ 1.7
L. monocytogenes SLCC 2482 7 82.4 ˘ 2.4 90.2 ˘ 3.1

Average precision rate 82.9 ˘ 2.2 90.1 ˘ 2.7

3.3. Detection and Verification of Listeria from Food Samples

The ability of lap gene-specific primer sets to detect L. monocytogenes and
L. innocua from inoculated food samples were verified (Figure S1, Table 3). Since a
lap gene-based L. monocytogenes specific primer set could not be designed, we used
the combination of species of Listeria sensu stricto-specific and L. innocua specific
primer sets to detect Listeria from food. The food samples that revealed positive
amplification with ELAP-F1 & LIS-R, but did not show any amplification with the
L. innocua-specific primer sets (Inn-F1 & Inn-R1), were considered to contain any
Listeria spp. other than the L. innocua (Table 3, Figure S1). Samples with positive
amplification for both the primer sets (ELAP-F1 & LIS-R1 and with Inn-F1 & Inn-R1)
corroborated the presence of L. innocua in the food sample (Table 3). Background
microbial colonies obtained from the un-inoculated cantaloupe did not result in any
positive amplification (Figure 6). This highlights the specificity and applicability of
lap gene-specific primers for detection of Listeria species even in food samples with
background microbiota. We further verified these results by analyzing the enriched
food samples by BARDOT.
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Figure 6. Detection and verification of L. monocytogenes (Lm) and L. innocua (Lin) in
mixture from inoculated cantaloupe samples with BARDOT and PCR. (A) Enriched
cantaloupe samples containing L. monocytogenes and L. innocua were plated on
BHI agar and colony scatter patterns were obtained. Scatter patterns were matched
against the BARDOT scatter image library for Listeria identification. The white
arrows indicate background bacterial colonies from the cantaloupe; (B) BARDOT
identified colonies were picked and tested with the primer sets specific for species
of Listeria sensu stricto (ELAP-F1/LIS-R1), L. monocytogenes (Lis1B/MonA), and
L. innocua (InnF1/InnR1, Lis1B/Ino2) for verification of colonies.

In our previous study, BARDOT generated distinct signature scatter patterns
for the colonies of L. monocytogenes or L. innocua in mixed culture [23]. The
distinctive scatter patterns generated with BARDOT facilitated accurate identification
of L. monocytogenes or L. innocua or both in food samples after matching the scatter
patterns with the respective image libraries (Figure 6). Colonies # C42, C41, C43,
C34, and C29 originated from L. monocytogenes and L. innocua-inoculated hotdog
sample on BHIA were identified as L. innocua, while colonies # C28, C25, C23,
and C5 were identified as L. monocytogenes after comparing scatter images with
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the library (Figure 6A). These colonies were initially identified as Listeria spp. by
PCR with the primer set (ELAP-F1/LIS-R1) designed in this study (Figure 6B).
Further, these colonies were also confirmed at the species level (L. monocytogenes
and L. innocua) using the primers for the iap gene [32,44]. The scatter patterns
of L. innocua, when matched with the libraries of Listeria species as well as
L. monocytogenes and L. innocua, generated 100% match with scatter image library.
L. monocytogenes colonies from the artificially inoculated hotdog sample revealed low
PPV (<80%) when matched with the libraries of Listeria species; however, the same
L. monocytogenes colony scatter pattern generated a high PPV (>90%) when matched
with the L. monocytogenes and L. innocua library. The low PPV of L. monocytogenes
with the Listeria species library could be attributed to the overlapping pattern of
L. monocytogenes with the scatter pattern of other Listeria species. BARDOT-based
identification of L. monocytogenes and L. innocua colonies along with PCR analysis
with the lap and iap gene-specific primers resulted in 100% and 100% identification,
respectively, for both the Listeria species.

Table 3. Listeria detection using lap gene-specific primers in food systems.

Treatment a Inoculation
(CFU/25g)

Enrichment Time (h) in
Fraser Broth at 37 ˝C

PCR b

Hotdog Cantaloupe
ELAP-F1/

LIS-R1
Inn-F1/
Inn-R1

ELAP-F1/
LIS-R1

Inn-F1/
Inn-R1

Uninoculated 0 24 ´ ´ ´ ´

L. innocua (Lin) 100 24 + + + +
L. monocytogenes (Lm) 100 24 + ´ + ´

Lin and Lmc 100 24 + + + +
Lb. casei 100 24 ´ ´ ´ ´

E. coli 100 24 ´ ´ ´ ´

a Three independent experiments were performed for each food sample; b DNA extracted
from broth enrichment following the published protocol [33] were amplified with the lap
gene specific primers for species of Listeria sensu stricto (ELAP-F1/LIS-R1) and L. innocua
(Inn-F1/InnR1); c Food samples were inoculated with 50 CFU each of L. monocytogenes
(Lm) and L. innocua (Lin) in 25 g of food sample.

4. Discussion

This study reports the application feasibility of primer sets designed from a gene
encoding the house-keeping alcohol acetaldehyde dehydrogenase (aad), also known
as Listeria adhesion protein (lap), for detection of Listeria at the genus and species
level. This highly conserved house-keeping enzyme is involved in the pathogenesis
of virulent Listeria but not avirulent Listeria species [1,45] thus providing an attractive
target for Listeria detection. The aad (lap) sequence is conserved (97%–98% homology)
in the species of Listeria sensu stricto and yielded a primer set (ELAP-F1 and LIS-R1)
that detected these Listeria sensu stricto (archetypal) species, -but not the atypical
(Listeria sensu lato) listeriae: L. grayi and L. rocourtiae. Even though both L. grayi and
L. rocourtiae possess a lap (aad) homolog, they did not give any amplification with
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the species of Listeria sensu stricto-specific primer set indicating a possible sequence
heterogeneity in the lap gene in these atypical listeriae. Indeed, lap gene sequence
comparison between L. monocytogenes F4244 (AY561824) and L. grayi DSM 20601
(NZ_GL538352.1) or L. rocourtiae FSL F6-920 c6 (NZ_AODK01000006.1) revealed only
80% homology. The other newly isolated Listeria species were not tested in the PCR
assay, but we anticipate negative results for these species since they are genetically
similar to the two atypical listeriae tested in this study [8,9]. Furthermore, a minor
variation in lap sequences (97%–98% similarity) among the different species of Listeria
sensu stricto [1] yielded highly specific primer sets for L. innocua, L. welshimeri,
L. marthii, and L. ivanovii and L. seeligeri together, but none for L. monocytogenes
(Figure 1, Table S1). These could be useful for specific identification at the species
level. Listeria sensu stricto-specific and other species-specific sets of primers also
did not amplify any non-listerial bacteria tested with pure cultures or in a food
matrix (Tables S1 and 3), highlighting the specificity of the lap gene-specific primer
sets for Listeria spp. The detection limit of primer sets with the diluted template
DNA revealed an indirect detection limit of about 4.5 log10 genome equivalents for
this assay. These primer sets could be used to detect and identify Listeria species
during screening of frozen or refrigerated ready-to-eat (RTE) food products as
recommended by the FDA [20]. Application of PCR-based assay targeting gene
encoding house-keeping enzyme (cell wall hydrolase; CWH or p60 encoded by iap)
in Listeria spp. was reported earlier, in which species-specific primer sets successfully
detected each Listeria spp.; L. monocytogenes, L. ivanovii, L. innocua, L. seeligeri,
L. welshimeri within the genus, except L. grayi [32]. Similarly, PCR assay targeting
genes encoding aminopeptidase and fibronectin-binding protein were also used for
rapid detection of L. monocytogenes [46,47].

We developed the light scattering sensor, BARDOT, through collaborative efforts
with engineers at the Center for Food Safety Engineering at Purdue University [48].
We have successfully used BARDOT to differentiate and detect L. monocytogenes,
L. ivanovii, L. innocua, L. seeligeri, L. welshimeri and L. grayi. The BARDOT system
was also successfully applied to differentiate L. monocytogenes from other pathogens
(Salmonella enterica serovar Enteritidis and Typhimurium, E. coli O157:H7) based
on the scatter patterns from artificially inoculated ready-to-eat hotdog, shredded
beef, raw ground beef and chicken, frozen and fresh spinach, and fresh tomato [37].
Recently, we have also optimized the BARDOT-based method for detection and
screening of several additional foodborne pathogens including Bacillus spp. [49],
Campylobacter spp. [50], Salmonella enterica serovars [24], Shiga-toxigenic E. coli [35],
and Vibrio spp. [51]. In this study, we used BARDOT to differentiate the species
of Listeria when grown on BHIA. On BHIA, BARDOT successfully differentiated
L. monocytogenes, L. innocua, L. rocourtiae, L. marthii, and L. seeligeri; however, it did
not yield satisfactory differential patterns of L. grayi, L. ivanovii, and L. welshimeri
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(Figure 4B). In our previous report we have shown that the BHIA and modified
Oxford agar prepared without ferric ammonium citrate were able to successfully
differentiate the colonies of L. monocytogenes, L. ivanovii, L. innocua, L. seeligeri,
L. welshimeri and L. grayi, and colonies of L. monocytogenes from L. innocua,
respectively, based on scatter signature patterns [23,44]. These findings reaffirm
the media-dependent generation of scatter signatures for bacterial identification.

L. monocytogenes is the primary human pathogen in the genus Listeria and
among the 13 serotypes, serotype 1/2a and 4b are responsible for ~75% of all
L. monocytogenes related outbreaks. Here we have shown that BARDOT can
differentiate L. monocytogenes serovars 1/2a and 4b with high accuracy on LBA
with 96.2% ˘ 1.9% and 88.8% ˘ 2.1% PPV, respectively. Observed differences in the
scatter pattern of different serovars could be attributed to the O (somatic) antigens
expressed on the surface of L. monocytogenes [52]. Furthermore, metabolic activity
and genomic differences between different species or serotypes of Listeria can also
contribute to the differential scatter patterns [37]. The genome size for serotype
1/2a (L. monocytogenes F6854) is 2.97 ˆ 106 bp, with a total of 3028 genes, of which
2963 are protein coding genes. Serotype 4b (L. monocytogenes F2365) has a genome
size of 2.91 ˆ 106 bp, with a total of 2933 genes, of which 2848 are protein coding
genes. Thus, a difference of 115 protein coding genes in serotype 1/2a to that of 4b
could be crucial in generating differential scatter patterns for these two serotypes.
In a comparative whole genome sequencing study, it was found that 83 genes were
restricted to 1/2a serotype and 51 genes were restricted to 4b serotype [53].

5. Conclusions

In summary, lap gene based Listeria sensu stricto and individual species-specific
primers successfully detected all tested species of Listeria sensu stricto (archetypal)
while some limitations for individual species level detection. The PCR based assays
with the species of Listeria sensu stricto-specific primer sets based on lap and iap
genes also successfully detected L. monocytogenes and L. innocua from mixed
culture-inoculated food samples, and each bacterium in food was verified by the
light scattering sensor that generated unique scatter signature for each species of
Listeria. These data emphasize that the BARDOT system could be used to identify
Listeria spp. on agar plates from a mixed cultures and may serve as a complimentary
tool when testing samples with nucleic acid-based molecular methods.
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Fluorescence-Based Bioassays for the
Detection and Evaluation of Food Materials
Kentaro Nishi, Shin-Ichiro Isobe, Yun Zhu and Ryoiti Kiyama

Abstract: We summarize here the recent progress in fluorescence-based
bioassays for the detection and evaluation of food materials by focusing on
fluorescent dyes used in bioassays and applications of these assays for food
safety, quality and efficacy. Fluorescent dyes have been used in various
bioassays, such as biosensing, cell assay, energy transfer-based assay, probing,
protein/immunological assay and microarray/biochip assay. Among the arrays
used in microarray/biochip assay, fluorescence-based microarrays/biochips, such
as antibody/protein microarrays, bead/suspension arrays, capillary/sensor arrays,
DNA microarrays/polymerase chain reaction (PCR)-based arrays, glycan/lectin
arrays, immunoassay/enzyme-linked immunosorbent assay (ELISA)-based arrays,
microfluidic chips and tissue arrays, have been developed and used for the
assessment of allergy/poisoning/toxicity, contamination and efficacy/mechanism,
and quality control/safety. DNA microarray assays have been used widely for food
safety and quality as well as searches for active components. DNA microarray-based
gene expression profiling may be useful for such purposes due to its advantages in
the evaluation of pathway-based intracellular signaling in response to food materials.

Reprinted from Sensors. Cite as: Nishi, K.; Isobe, S.-I.; Zhu, Y.; Kiyama, R.
Fluorescence-Based Bioassays for the Detection and Evaluation of Food Materials.
Sensors 2015, 15, 25831–25867.

1. Introduction

Fluorescent dyes or fluorophores have been widely used as probes (for
physical and structural parameters), indicators (e.g., for molecular concentrations)
or labels/tracers (e.g., for visualization and localization of biomolecules) in various
bioassays [1]. While the development of fluorescent dyes has a history many
centuries long, their importance has increased due to the recent advancement of new
fluorescent dyes [2], which have been developed along with the development of new
biotechnological tools and devices. For example, Laurdan, a naphthalene-based
amphiphilic fluorescent dye having as characteristics the ability to penetrate
membranes and a large Stokes shift, was developed to study membrane fluidity and
dynamics, and its usage was made quite effective by the development of two-photon
fluorescent microscopy, a microscope system with two-photon excitation, which
enables the detection of signals with less background, less photodamage and more
depth discrimination [3–5].
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Therefore, the development of fluorescent dyes has had quite an impact when
accompanied by the development of suitable devices and their applications. One
of the most important currently emerging research fields is the development and
application of technologies for new functional foods and quality control and safety
of its production. Along with technological innovations, the effective usage of
gene/genome information in the pathway-based evaluation of materials is crucial.
We summarize here recent progress in fluorescence-based bioassays, including
genomic and transcriptomic assays, by focusing on their applications in the study of
food safety, quality and efficacy.

1.1. Overview of Fluorescent Dyes

Fluorescent dyes are generally polyaromatic or heterocyclic hydrocarbons,
which undergo a three-stage process of fluorescence: excitation, excited-state lifetime
and fluorescence emission [6]. Fluorescent dyes are characterized by key properties,
such as those revealed by the absorption maximum (λmax), the emission maximum
(λem), the extinction coefficient (ε) and the fluorescence quantum yield (Φ) [2]. For
example, the “Stokes shift”, defined by the difference between λmax and λem, is an
important property of a fluorescent dye, and a large Stokes shift helps to avoid the
reabsorption of emitted photons, giving higher contrast in fluorescent imaging [7].

New technologies, materials and devices have been developed for the efficient
detection and utilization of the fluorescence signals in a biological specimen. For
example, fluorescence-activated cell sorting (FACS) is an example of the successful
application of fluorescence technologies for flow cytometry, and is now used in basic
as well as industrial fields of life science [8,9]. Flow cytometry is a technique used for
cell counting, cell sorting and biomarker detection, by passing a cell suspension in
a stream of fluid through an electronic detection apparatus, allowing simultaneous
multiparametric analyses of many thousands of micrometer-sized particles per
second. Its applications include food study, such as water testing, milk analysis,
brewing/wine production and food microbiology [10]. Meanwhile, fluorescence in
situ hybridization (FISH) is a cytogenetic technique in which fluorescently labeled
probes are hybridized with parts of DNA on chromosomes or specific RNA targets
(e.g., mRNA and miRNA), and signals are detected by fluorescence microscopy.
After a 30-year history, the original FISH protocol has been diversified into a number
of new protocols with improved sensitivity, specificity and resolution [11]. For
example, chromosome orientation-FISH, or CO-FISH, can detect strand-specific target
DNA, and thus is useful to detect chromosomal abnormalities, such as Robertsonian
translocations, chromosomal inversion and telomeric alterations [12].

A number of fluorescent techniques utilize Förster resonance energy transfer
(FRET), a mechanism of energy transfer from a donor dye to a different acceptor dye,
which is used to analyze conformations, interactions and concentrations of proteins
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and nucleic acids [6]. Protein-protein interactions can be detected by other fluorescent
techniques, such as bioluminescence resonance energy transfer (BRET) assay, a
modification of FRET, and biomolecular fluorescence complementation (BiFC) assay.
BiFC assay is based on structural complementation between two non-fluorescent
N- and C-terminal fragments of a fluorescent protein, and has contrasting advantages
and disadvantages compared with FRET [13,14].

Other than aromatic hydrocarbons, several unique materials have also been
utilized for fluorescence applications. Quantum dots are fluorescent semiconductor
nanoparticles that have potential in biology, such as specific labeling of cells and
tissues, long-term imaging, lack of cytotoxicity, in vivo multicolor imaging and
FRET-based sensing [15]. A variety of fluorescent colors are available, depending
on the size and shape of the particles. Additionally, some lanthanide ions are useful
for bioassays due to their superior characteristics, such as long fluorescent lifetimes,
large Stokes shifts and sharp emission profiles [16]. These materials have been used
to study food safety, quality and efficacy (see Section 2).

1.2. Fluorescent Dyes for Bioassays

Fluorescent probes are required to match certain conditions for experiments,
such as wavelength range, Stokes shift and spectral bandwidth, which are partly
imposed by the instrumentation and the requirements of multicolor labeling
experiments [6]. To design fluorescent experiments, the fluorescent output of a
dye judged by the extinction coefficient and the fluorescence quantum yield needs
to be considered. Additionally, under high-intensity illumination conditions, the
irreversible destruction or photobleaching of fluorescent dyes is an important factor.
Polyaromatic fluorescent dyes with extended π-conjugated systems could thus be
ideal for designing dyes with longer Stokes shifts [7], which may improve the
performance of fluorescent dyes. Here, we summarize the fluorescent dyes frequently
used for bioassays.

Since its first synthesis in 1871, fluorescein, along with its derivatives, has
been used as a powerful tool in various fields of life science [17]. Fluorescein
is composed of two parts of xanthene, the chromophore part, and benzene, and
exhibits excitation at 490 nm and emission at 514 nm (λmax/λem = 490/514 nm), with
fluorescent properties of ε = 9.3 ˆ 104 M´1¨ cm´1 and Φ = 0.95 [2]. A variety of
fluorescein derivatives have been synthesized to improve its chemical, fluorescent
and biological properties, and its stability, such as Oregon Green, fluorescein
isothiocyanate (FITC), fluorescein diacetate and carboxyfluorescein (FAM). These
dyes and fluorescein have been used in various bioassays/biomaterials, such as cell
assays (flow cytometry, suspension arrays, fluorescent microscopy, fluorescent cell
assay and fluorescent cytomics), FRET-based assays, probing (CO-FISH, fluorescent
caspase assay, fluorescent hybridization, fluorescent nanoparticle assay, fluorescent
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nucleic acid assay and small-molecule fluorochrome assay) and microarray/biochip
assays (see Section 2.1).

Rhodamines are isologs of fluorescein, having two amino groups, one
of which is positively charged, and have properties similar to fluorescein,
such as λmax/λem = 496/517 nm, ε = 7.4 ˆ 104 M´1¨ cm´1 and Φ = 0.92 for
rhodamine 110 [2]. Rhodamine derivatives were developed for imaging, such
as carboxytetramethylrhodamine (TAMRA), tetramethylrhodamine (TMR) and
its derivative (tetramethylrhodamine isothiocyanate or TRITC), or to improve
photostability and increase brightness, such as Alexa Fluor and DyLight
Fluor dyes. Rhodamines (rhodamine, rhodamine B, lissamine rhodamine B,
sulforhodamine B, Texas Red, TMR and TRITC) were extensively used in
various bioassays/biomaterials, such as cell assays (fluorescent cytomics), probing
(fluorescent hybridization, fluorescent nanoparticle assay, fluorescent nucleic acid
assay and small-molecule fluorochrome assay) and microarray/biochip assays
(see Section 2.1).

Cyanines are composed of two quaternized heteroaromatic bases joined by a
polymethine chain, and their colors depend on the number of carbons (3 for Cy3 and
5 for Cy5) in the polymethine chain. Among cyanines, Cy3 and Cy5 have been most
utilized, and while Cy3 shows fluorescent properties of λmax/λem = 554/568 nm,
ε = 1.3 ˆ 105 M´1¨ cm´1 and Φ = 0.14, Cy5 shows those of λmax/λem = 652/672 nm,
ε = 2.0 ˆ 105 M´1¨ cm´1 and Φ = 0.18 [2]. Cy3 and Cy5 have been used cooperatively
and/or complementarily in multi-parameter fluorescence imaging [18], or as
test/reference microarray probes [19] or photoconvertible fluorescent probes [20].
Cyanines have been used in various bioassays/biomaterials, such as probing
(CO-FISH, fluorescent nanoparticle assay, fluorescent nucleic acid assay, fluorescent
spectroscopy and FRET-based assays), protein/immunological assays (sandwich
fluoroimmunoassay) and microarray/biochip assays (see Section 2.1).

Alexa Fluor dyes are synthesized through the sulfonation of coumarin,
rhodamine, xanthene and cyanine dyes, and have characteristics of greater
photostability and brightness as well as lower pH sensitivity than common dyes
with comparable excitation/emission [21]. Among Alexa Fluor dyes, Alexa Fluor 488
(green; λmax/λem = 495/519 nm, ε = 7.3 ˆ 104 M´1¨ cm´1 and Φ = 0.92), Alexa Fluor
546 (orange; λmax/λem = 556/573 nm, ε = 1.1 ˆ 105 M´1¨ cm´1 and Φ = 0.79), Alexa
Fluor 555 (red-orange; λmax/λem = 555/565 nm, ε = 1.6 ˆ 105 M´1¨ cm´1 and Φ = 0.10)
and Alexa Fluor 647 (far-red; λmax/λem = 650/668 nm, ε = 2.7 ˆ 105 M´1¨ cm´1

and Φ = 0.33) were frequently used in bioassays [6]. Alexa Fluor dyes have been
used in various bioassays/biomaterials, such as biosensing (magnetic modulation
biosensing), probing (small-molecule fluorochrome assay) and microarray/biochip
assays (see Section 2.1).
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Green fluorescent protein (GFP) of the jellyfish Aequorea victoria is a protein
composed of 238 amino acid residues, which has an eleven-stranded β barrel
with an α helix covalently bonded with a chromophore running through the
center [22]. GFP has two excitation peaks, at 395 (major) and 475 (minor) nm,
an emission peak at 508 nm and fluorescent quantum yield of 0.77 [23]. To
improve brightness, longer wavelengths and FRET, several mutant GFPs were
developed, which include blue fluorescent protein (BFP), cyan fluorescent protein
(CFP) and yellow fluorescent protein (YFP) [23,24]. Fluorescent proteins have been
used in various bioassays/biomaterials, such as biosensing (fluorescent molecular
biosensing), cell assays (flow cytometry, suspension arrays, fluorescent microscopy,
fluorescent cell assay, fluorescent reporter-gene assay and single live-cell imaging),
FRET-based assays, probing (fluorescent caspase assay and fluorescent reporter
assay), protein/immunological assays (BiFC) and microarray/biochip assays (see
Section 2.1).

Fluolid dyes are organic electroluminescence dyes, which were developed
to overcome the inconvenience of currently available fluorescent reagents, and
thus have larger Stokes shifts (more than 120 nm), greater photostability (stable
for more than 10 years at room temperature) and more fluorescence in a
solid state [25]. Their fluorescent properties are as follows: Fluolid-Green
(λmax/λem = 395/522 nm), Fluolid-Yellow (λmax/λem = 410/541 nm), Fluolid-Orange
(λmax/λem = 440/602 nm) and Fluolid-Red (λmax/λem = 525/660 nm). Owing to their
extraordinary stability, Fluolid dyes have been used with a fluorescence scanning
electron microscope (FL-SEM) [25] as well as in DNA microarray assay [26] and
immunohistochemistry [27].

Fluorescent dyes and proteins other than those described above have
also been used in bioassays, which include DAPI (λmax/λem = 350/450 nm,
ε = 1.2 ˆ 105 M´1¨ cm´1 and Φ = 0.83) [28], SYBR Green I (λmax/λem = 497/520 nm
and Φ = 0.8) [6] and RiboGreen (λmax/λem = 500/525 nm, ε = 6.7 ˆ 104 M´1¨ cm´1

and Φ = 0.65) [29] for staining DNA or RNA; R-phycoerythrin (PE:
λmax/λem = 546/578 nm, ε = 2.0 ˆ 106 M´1¨ cm´1 and Φ = 0.98) [28] for
immunofluorescence assays; Texas Red (TxR: λmax/λem = 596/620 nm,
ε = 8.5 ˆ 104 M´1¨ cm´1 and Φ = 0.51) [28,30] for immunohistochemistry; and
NanoOrange (λmax/λem = 582/605 nm and Φ = 0.36 in the protein complex) [31] for
protein quantification. These dyes have been used in various bioassays/biomaterials
for food study, such as cell assays (flow cytometry and suspension arrays),
FRET-based assays, probing (CO-FISH), protein/immunological assays (fluorescent
protein assay, fluorescent amplification catalyzed by T7 polymerase technique or
FACTT, and real-time immune-PCR) and microarray/biochip assays (see Section 2.1).
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1.3. Fluorescent Dyes Used in DNA Microarray Assay

Fluorescent dyes play important roles in DNA microarray assays due to their
detectivity, speed and increased safety [28]. Fluorescent dyes frequently used in DNA
microarray assays are phycoerythrin, Alexa Fluor dyes and cyanines. They have been
used either as a single dye, such as phycoerythrin, or as two-color fluorescent probes,
such as Cy3/Cy5 and Alexa Fluor 555/647. Owing to their superior reliability, Cy3
and Cy5 have been frequently used in gene expression profiling by means of DNA
microarray assays since the early days [19]. Cyanines are, however, suggested to
have low photostability and to be destabilized by their negative charges [32], as
well as being affected by atmospheric ozone in the laboratory [33] and fluorescence
quenching [34]. Alexa Fluor dyes, on the other hand, show greater brightness and
photostability than cyanines [6]. Phycoerythrin is used in Affymetrix GeneChip assay
as a streptavidin-conjugated form to detect biotinylated target cRNA hybridized with
the probes on the platform. However, a significant decrease in fluorescent intensity
was observed for phycoerythrin [35]. Mitsubishi Rayon developed a hollow fiber
array, Genopal, in which fibers are filled with hydrogels attached to oligonucleotide
probes and Cy5-labeled target cDNA is hybridized with the probes [36]. Although
cyanines were generally used to label probes in the DNA microarray assay developed
by GE Healthcare, a fluorescent dye, Amersham HyPer5, was developed and
used to label target DNA [37]. Fluorescence-based microarray/biochip assays are
summarized below (see Sections 2.3 and 3.1).

2. Application of Fluorescence-Based Bioassays

Fluorescence-based bioassays have been applied in biotechnology and various
fields in life science. For example, various fluorescently labeled antibodies have
been used to detect specific organelles, cellular activities (e.g., cell morphology,
viability and functions) and cellular processes (e.g., transportation, endocytosis and
receptor function) [38]. Clinical and pharmacological applications of fluorescent
probes have been explored to diagnose leukemia and other cancers [39]. These
applications are supported by basic characteristics of fluorophores, such as structural
and environmental effects on fluorescence emission, fluorescence polarization
and FRET, which are applied for spectrofluorometry, fluorescent microscopy and
fluorescence-based chemical sensing to trace and image biological objects [1]. In this
section, we summarize first fluorescence-based bioassays and then their applications
by discussing representative literature.

2.1. Fluorescence-Based Bioassays

Fluorescence-based bioassays, classified into biosensing, cell assays,
energy transfer-based assays, probing, protein/immunological assays and
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microarray/biochip assays, are summarized in Table 1. Biosensing, such
as fluorescent molecular biosensor, fluorometric high-performance liquid
chromatography (HPLC) and magnetic modulation biosensing, has been used
to detect intermolecular interactions and targets at low concentrations, or to
analyze nitrite/nitrate, where fluorescent dyes, such as Alexa Fluor 488, GFP
and 2,3-naphthotriazole, have been used. Cell assays, such as flow cytometry
(fluorescence-activated cell sorting: FACS), fluorescent cytomics, fluorescence
microscopy, fluorescent reporter-gene assay and live-cell imaging, have been used
in particle-based flow cytometric assay, drug delivery research and applications
of RNA/DNA aptamers to measure cell fluorescence, to screen hormonally active
compounds and to examine gene expression/protein interaction, where fluorescent
dyes, such as fluoresceins (including FAM and FITC), GFP/GFP-family proteins,
lanthanides, phycoerythrin and rhodamines (TMR-C5), have been used. Meanwhile,
energy transfer-based assays have been used in live-cell imaging and to analyze
protein structure, where fluorescent dyes, such as BFP/GFP, FITC and phycoerythrin,
have been used.

A number of technologies have been developed for various types of probe,
such as fluorescent calcium indicators, fluorescent caspase substrates, fluorescent
nanoparticles, fluorescent nucleic acids, quantum dots and small-molecule
fluorochromes, which have been used in fluorescent hybridization (e.g., FISH),
reporter-gene assay and fluorescent spectroscopy, often used in combination with
FRET, to examine chromosome aberrations/segregations, gene-gene/DNA-protein
interactions, calcium signaling and ion channeling; to evaluate fluorescence bioassays,
imaging/labeling/sensing, immunoassays/microarray assays, quantitative
structure-activity relationship (QSAR), antimycobacterial susceptibility, biological
enzymatic reactions, G-protein-coupled receptor (GPCR) ligands and reactive oxygen
species; and to screen bladder and other tumor markers, antagonists of GPCRs and
anticancer drugs, by using fluorescent dyes, such as Alexa Fluor 546, Cy3/Cy5,
FDA, FITC, Fluo-4, fluorescein, FuraRed, GFP/RFP, hydroethidine/hydrocyanines,
quantum dots, rhodamine, SpectrumGold/SpectrumOrange, TRITC and Texas Red.
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Protein/immunological assays, such as BiFC, chemifluorescent enzyme-linked
immunosorbent assay (ELISA), fluorescent dye-based protein assay,
immuno-detection (FACTT; see Table 1), lanthanide-doped fluorescent assay,
lanthanide fluorescent immunoassay, real-time immuno-PCR and sandwich
fluoroimmunoassay, have been used to examine bioassay/therapy, kinase activity,
protein interaction/modification and time-resolved fluorescence bioassay, to
screen/identify rare blood biomarkers and some toxins, to study prion diseases
and to identify viral antigens/pathogens, for which fluorescent dyes, such as BEBO
(a cyanine dye), Cy5, GFP/YFP, lanthanides (e.g., Eu3+, Sm3+, Tb3+ and Dy3+),
NanoOrange, RiboGreen and SYBR Green I, have been used. Microarray/biochip
assays are discussed below (see Section 2.3). GFP has been used quite often as
reporter conjugates in cell assay. For example, estrogen activity was detected
by a reporter construct of the human ERα gene fused to yeast enhanced GFP
(yEGFP), which was used as a rapid yeast bioassay to screen estrogen activity in calf
urine [83]. This construct was validated as a bioassay for hormonal substances in
feed [84], and concomitantly improved by the combination with mass-spectrometry
techniques [85,86] and by the use of various test samples [87,88], and combined
with androgen assay [89], to attain to a level of a standardized multi-hormonal
bioassay system.

2.2. Fluorescence-Based Microarrays/Biochips

2.2.1. Antibody/Protein Microarray

Protein microarray assay is a high-throughput method used to study
biochemical activities of proteins, by measuring their binding affinities, specificities
and quantities [90]. The array has a support surface, such as a slide glass, a
nitrocellulose membrane, a bead and a microtiter plate, to which the captured
protein is bound as an array, and probe molecules, typically labeled with a
fluorescent dye or conjugated with enzymes for chemiluminescent or colorimetric
assays, are added to the array. In a fluorescent assay, the reaction between the
fluorescence-labeled probe and the immobilized protein causes the emission of
a fluorescent signal at a specific position, which is detected by a laser scanner.
There are three types of protein microarray used to study the biochemical
activities of proteins: analytical microarrays, functional protein microarrays and
reverse-phase protein microarrays [90]. Antibody microarrays belong to the category
of analytical microarrays, and sometimes use a sandwich format consisting of
capture antibodies (e.g., biotinylated antibodies), analytes (e.g., toxins) and reporter
molecules (e.g., avidin-conjugated nanoparticles and fluorophore-conjugated
secondary antibodies). They have been used to screen foodborne pathogens such as
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Escherichia coli O157:H7 and Salmonella spp. [91], and to detect multiplex toxins, such
as toxins contaminating milk, apple cider and blood samples [92].

2.2.2. Bead/Suspension Array

The detection of bacterial/plant toxins [93], mycotoxins [94] and pesticides [95]
in food has been carried out by using bead/suspension array technology, in which
fluorescent dye-labeled microspheres/beads are often used. Appropriate molecules
or receptors, such as DNA (oligonucleotides), and antibodies and other proteins, are
attached to the microspheres differently labeled with fluorescent dyes, for example.
Beads are readily suspendable in solution and are used for hybridization between
receptors and corresponding reactive biomolecules. Bead arrays have advantages
over flat arrays in the array preparation (containing millions of particles per milliliter)
and density (containing hundreds of thousands of array elements per microliter),
enabling multiparameter detection and high-throughput processing [96]. Since the
optical property of each bead is known, target biomolecules hybridized/bound to the
beads can be easily differentiated, and quantification can be achieved by comparing
the relative intensity of targets in a set of beads with that of markers in another set of
beads using fluorescence detection apparatuses, such as a flow cytometer.

2.2.3. Capillary/Sensor Array

A sensor array typically consists of a recognition component, a transducer
component and an electronic detection system. The recognition component uses
biomolecules to interact with the analyte of interest. This interaction is measured
by biotransducers, such as an optical transducer, which outputs a measurable
signal proportional to the presence of the target analyte in the sample. Meanwhile,
biomolecules are separated first by capillary electrophoresis in an array and then
detected by appropriate sensors in capillary arrays. There have been cases of the
application of capillary/sensor arrays for food analysis, such as detecting pathogens
and toxins, and fluorescent substances are commonly used in their detection systems.
Recently, researchers have performed successful analyses of food using improved
sensor arrays, such as those with dendritic fluorophores [97] and a fluorescent
indicator-displacement sensor array using titania as a host material [98].

2.2.4. DNA Microarray/PCR-Based Array

Using DNA microarray technology, multiple genes can be characterized
simultaneously in a single assay. It has been used widely for the analysis of
gene expression, but it can also be used for the analysis of microbial pathogens
for food safety and environmental applications. A DNA microarray involves the
immobilization of numerous probes, such as cDNA and oligonucleotide probes,
at a high density on a solid matrix, such as glass, to which fluorescence-labeled
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PCR-amplified target DNA fragments can be hybridized. The signal generated by the
bound labeled targets on the microarray allows identification based on the known
locations of the probes on the array. Applications of DNA microarray technology
for the detection of pathogens contaminating food have been reported (detailed
in Section 3).

2.2.5. Glycan/Lectin Array

The use of glycan microarrays, comprising multiple different glycans on
a single platform, is a technique for the analysis of glycosylation patterns and
the screening of a number of glycan-binding proteins for investigation of their
roles in biological systems. Recently, a shotgun glycan microarray prepared
from isolated human milk glycans was reported, where viruses, antibodies and
glycan-binding proteins including lectins were detected in order to examine the
diverse recognition functions of human milk glycans [99]. In addition, a lectin
microarray, based on the specific affinity of a lectin to a specific glycan, is another
useful platform for glycan analysis. Recently, a bead-based multiplex lectin array
was developed, where respective lectins were coupled to differentially fluorescent
dye-coated microbeads [100]. These beads were incubated with biotin-labeled
glycoproteins in suspension, with visualization using the interaction between biotin
and streptavidin-R-phycoerythrin. This microarray was applied for glycosylation
profiling of hepatocellular carcinoma-associated immunoglobulin G in a rapid,
sensitive and reproducible manner.

2.2.6. Immunoassay/ELISA-Based Array

An immunoassay is a test that relies on the inherent ability of an antibody to
recognize and bind to a specific antigen, which might exist in a complex mixture, to
measure the presence and/or concentration of the antigen. In life science research,
immunoassays are often used in studies of the biological functions of proteins,
while, in industry, immunoassays are used in various applications, such as to detect
contaminants in food and water and to monitor and assess specific molecules during
food processing. In immunoassays, antibodies or antigens are conjugated or coupled
with fluorescent dyes, or labeled with other materials, such as biotin and horseradish
peroxidase, to produce measurable fluorescent, chemiluminescent or chromogenic
signals for detection. One of the most popular immunoassays is ELISA, in which
antigens in a sample are first attached to the surface of the platform (e.g., a 96-well
microtiter plate), which are then detected with a specific antibody linked to an
enzyme (for enzymatic reactions) or a fluorescently labeled secondary antibody. In
recent years, fluorogenic labels, such as cyanines and phycoerythrin, have been used
in immunoassays to detect mycotoxins for food safety [101,102].
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2.2.7. Microfluidic Chip

Microfluidic chips have been used in many biological fields, such as drug
screening and the monitoring of food processing. A microfluidic chip is a set
of microchannels molded into a material like glass, silicon or polymer. The
microchannels are connected together forming a network, which is connected to the
outside by transporting inputs and outputs through the chip platform. The surface
patterning of bonded or sealed microchannels in a microfluidic chip can be achieved
by technologies such as laminar flow and capillarity, photolithography, microplasmas
and electrochemical biolithography [103]. Microfluidic chips have advantages over
conventional devices, such as that the assay can be performed on a small scale and
thus requires less time and smaller amounts of samples and reagents, and can be
performed automatically with high reproducibility [104]. Thus, microfluidic chips
have been combined with other systems, such as capillary electrophoresis, PCR and
flow cytometry. For example, a simple microfluidic chip system combined with a
probe-immobilized fluorescent bead assay was developed for the rapid detection of
bacteria associated with food poisoning [105]. Meanwhile, a microfluidic chip system
combined with a BRET-based biosensor was developed for real-time, continuous
detection with superior sensitivity of maltose in water or beer [106].

2.2.8. Tissue Array

The assay using a tissue array is a high-throughput analysis that utilizes
hundreds or up to a thousand separate tissue samples on a single platform. Using
this method, tissue samples can be rapidly analyzed by histological analyses, such
as immunohistochemistry and FISH, in order to screen genetic or protein markers,
or to detect tissues infected with pathogenic/toxigenic factors. Since most dyes
currently used for microbial fluorescent staining are toxic or carcinogenic, a tissue
array system using brilliant blue FCF, which is a food dye and thus has no toxic
effects, was developed and applied for microbial cell fluorescence staining of
pathogenic/toxigenic and beneficial fungi and bacteria [107].

2.3. Application of Fluorescence-Based Microarrays/Biochips for Food Study

Fluorescence-based microarrays/biochips for food study are summarized
in Table 2. Antibody/protein microarrays have been applied to detect/screen
foodborne pathogens and toxins, where fluorescent dyes, such as Cy3, fluorescein
and RuBpy, have been used. Bead/suspension arrays, such as cytometric bead
arrays, liquid/magnetic bead arrays and suspension arrays, have been used to
detect/quantify mycotoxins, pathogens, genetically modified maize, pesticides
and bacterial/plant toxins, where fluorescent dyes, such as Alexa Fluor 532,
Cy3, FITC and phycoerythrin, have been used. Capillary/sensor arrays, such
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as capillary arrays, chemical sensor arrays and fluorescent sensor arrays, have
been used to analyze carbohydrates, fresh fruit juices and various food materials,
where fluorescent dyes, such as sulforhodamine B, lissamine rhodamine B and
synthetic dendritic fluorophores, have been used. DNA microarrays/PCR-based
arrays, such as direct RNA hybridization/microarrays, DNA/PNA microarrays,
laser microdissection/microarrays, oligonucleotide microarrays, PCR/bead arrays,
PCR/microarrays (mutant analysis by PCR and restriction enzyme cleavage or
MAPREC assay, and nucleic acid sequence-based amplification implemented
microarray analysis or NAIMA; see Table 2) and PCR/single-base extension-tag
arrays, have been used to detect mycoplasmas, pathogenic bacteria, grapevine
viruses, genetically modified cotton, pathogenic Vibrio spp., genetically modified
soybean and seafood-borne pathogens, to screen hypoxia-inducible genes and
recombinant flavivirus vaccine strains, to examine genotypes of beef/chicken
and gene expression profiles of fungi, and to evaluate the authenticity of
ginseng drugs, along with fluorescent dyes, such as Alexa Fluor 546/647,
Cy3/Cy5, phycoerythrin, PolyAn-Green/PolyAn-Red, AmCyan1, NIR Dye 700/800,
Oyster-550 and quantum dots.

Glycan/lectin arrays have been used for functional glycomic analysis or
glycosylation profiling, where Alexa Fluor 488, Cy5 and phycoerythrin have
been used as fluorescent dyes. Immunoassay/ELISA-based arrays, such as
ELISA chips and immunoassay microarrays, or those used in competitive
immunoassay, fluoroimmunoassay and sandwich fluoroimmunoassay, have been
used to detect/quantify food allergens, mycotoxins, ochratoxin A, pathogens/toxins,
staphylococcal enterotoxin B or to assess food safety, where fluorescent dyes, such as
Alexa Fluor 647, Cy3/Cy5, fluorescein, FluoSpheres, phycoerythrin and RuBpy, have
been used. Microfluidic chips have been used to detect food poisoning bacteria or
single-base mismatches, or to monitor food processing, along with fluorescent dyes,
such as Alexa Fluor 647, FAM and GFP. Tissue arrays have also been used to stain
microbial cells using brilliant blue FCF.

Fluorescence-based microarrays/biochips can be categorized by the number of
target chemicals; either the characterization of a single chemical, or the screening
of multiple chemicals from a number of samples or mixtures of chemicals. Among
the assays shown in Table 2, antibody/protein microarrays, DNA microarrays,
glycan/lectin arrays and tissue arrays are advantageous for profiling and analyzing a
single chemical due to the ability of multiple probing, while bead/suspension arrays,
capillary/sensor arrays and immunoassay/ELISA-based arrays, microfluidic chips
and PCR-based arrays are useful for screening because of their high-throughput
processing ability.
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3. DNA Microarray-Based Assay for Food Study

DNA microarray-based assay for food study has been compared with other
technologies. For example, foodborne diseases are a major issue among global
public health problems and the development of rapid detection methods is
crucial for their prevention and treatment. Law et al. summarized rapid
methods for the detection of foodborne bacterial pathogens, such as PCR-based
methods, PCR-independent methods, DNA microarray assay, biosensor-based
assays and immunological methods, and discussed their principles, applications,
advantages and limitations [135]. Nucleic acid-based methods generally
give high sensitivity, although they require trained personnel and specialized
instruments. Biosensor-based assays, on the other hand, can be used without
sample pre-enrichment, although they need improvements for on-site detection.
Immunological methods, such as ELISA and flow immunoassay, are currently widely
used, but have difficulties when interfering molecules are included in the samples.
Josefsen et al. compared assays for the rapid monitoring of Campylobacter bacteria
in poultry production, and real-time PCR is currently closest to a realistic monitoring
system, although other methods, such as microarray PCR, miniaturized biosensors,
chromatographic techniques and DNA sequencing, could be considered in the
future when cost-effective on-site/at-line monitoring capability is achieved [136].
Gui and Patel discussed the merits of DNA testing, such as DNA microarray
assay and next-generation sequencing, to detect Yersinia and other foodborne
pathogens [137]. DNA testing is generally a high-sensitivity and high-throughput
assay, allowing the detection of a single molecule in multiple reactions to be
performed at once, thus allowing a range of characteristics to be rapidly and
simultaneously determined. However, improvements in sample preparation, data
analysis and molecular detection techniques are still needed. Lauri and Mariani
compared potentials and limitations among four molecular diagnostic methods:
PCR, nucleic acid sequence-based amplification (NASBA), oligonucleotide DNA
microarray and ligation detection reaction (LDR), in food safety assessment [138].
While DNA microarrays can be used to detect quite a number of DNA species
simultaneously, they are expensive and need more time for processing. DNA-based
technologies have been used to assess the safety and quality of food, animal feed and
environmental samples, by providing traceability to prevent foodborne diseases and
markers to monitor genetically modified organisms [139].

3.1. DNA Microarray Assay Protocols

Among microarrays and biochips, DNA microarrays have been developed
most extensively and some have already been used to diagnose cancer and other
diseases or symptoms [140]. While the traditional solid-phase microarrays contain
specific DNA probes attached to the surface of glass, plastic or silicon chips, other

223



types have been developed, which include bead, fiber and electric arrays, where
DNA is attached on the surface of latex or polystyrene beads (bead arrays) or
attached to gels within plastic hollow fibers (fiber arrays), or an electrical current
is generated by redox recycling upon target/probe hybridization (electric arrays).
While a variety of DNA microarray assays have been developed, they can be
classified into two major types: those for genotyping (e.g., for comparative genomic
hybridization, identifying mutations and single-nucleotide polymorphisms and
chromatin-immunoprecipitation on a chip) or gene expression analyses (e.g., for
gene expression profiling, screening expression marker genes and identifying splice
variants). Genotyping is used to detect the contamination of microbes in food, to
identify pathogenic/toxic microbial strains/subtypes and to examine the authenticity
of plants or the presence of genetically modified organisms by using 16S rRNA genes
and/or genomic DNA markers specific to the microbes or the plants. Gene expression
profiling, on the other hand, has been used to identify contaminated pathogenic/toxic
bacterial strains, to detect specific stress responses and to examine the efficacy of food
materials or components by examining the expression of pathogenic/toxic genes,
stress-responsive genes and disease/metabolism-associated genes.

Fluorescent dyes, such as cyanines (Cy3 and Cy5), fluoresceins (including
FITC and FAM) and Alexa Fluor dyes, have been used in DNA microarray
assays. New fluorescent dyes, Fluolid dyes, which have characteristics of higher
light/temperature resistance and longer Stokes shifts, have been developed and
applied for DNA microarray assays [26]. These fluorescent dyes are used to label
target DNA either by direct labeling, where fluorescent dyes directly attached to
nucleotides (e.g., deoxyuridine 51-triphosphate or dUTP) are used to label DNA by
nick translation or primer extension, or by indirect labeling, where small nucleotides,
such as aminoallyl nucleotides, are used to label DNA first, and the primary amino
group attached to DNA is subjected to a reaction with the N-hydroxysuccinimide
ester group attached to a fluorescent dye. Alternatively, small nucleotides, such
as biotinylated or digoxigenin-labeled ones, are used to label DNA first, and
the labeled DNA is then detected by secondary molecules, such as fluorescently
labeled streptavidin or anti-digoxigenin antibodies, respectively. Biotinylated or
digoxigenin-labeled DNA can alternatively be detected by non-fluorescent assays,
such as colorimetric and chemiluminescent ones by using chromogens, such as
Seramun Green, Silverquant and True Blue, or chemiluminescent substrates, such
as chloro-5-substituted adamantyl-1,2-dioxetane phosphate (CSPD) and luminol
(see below).

3.2. Application of DNA Microarray Assay for Food Study

DNA microarrays used for food study are summarized in Table 3. DNA
microarrays have been used to examine the following subjects: allergies such
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as latex and/or vegetable food allergy; poisoning by microbes, such as Bacillus
cereus, Clostridium botulinum, Campylobacter spp., Clostridium perfringens, Escherichia
coli, Salmonella enterica and Staphylococcus aureus; toxic effects of cadmium,
mycotoxins, silver-nanoparticles and tetrodotoxin; contamination of microbes, such
as Alicyclobacillus spp., Arcobacter butzleri, Bacillus anthracis, Lactobacillus spp., Listeria
monocytogenes, Yersinia enterocolitica and Yersinia pestis; the efficacy of food and food
materials, such as that in the absorption of phenolic acids, suppressing cancer, the
plasma triglyceride-lowering effect, the lipid consumption in skeletal muscle and
the improvement of diabetic symptoms and osteoporosis; mechanisms such as those
involved in the response to drought stress, immune stress, inflammation, mucosal
IgA antibodies and oxidative stress/DNA damage; and quality control and safety of
food, such as the authenticity of food, food safety assessment and the identification
of genetically modified organisms.

The food/food materials analyzed by DNA microarray assays include the
following: bovine milk, cheese, fish, horseradish, meat (pork and chicken),
pancake with chicken, pufferfish, rice and vegetables for the study of allergy,
poisoning or toxicity; alfalfa, bread (whole-grain and fiber-rich), cantaloupe, cilantro,
egg, fish, juice, maize, meat (beef, pork and poultry meat), milk, mung bean,
potato, rice, sausage (Thai Nham) and water for the study of food contamination;
beverage, cassava, chitooligosaccharide, dairy, herbs (e.g., licorice and those used in
Hochuekkito), high-cholesterol/fat diet, imbibed soybean, phenolic preservatives,
pineapple, polyunsaturated fatty acids, psyllium, quercetin, skim milk, sweet corn,
tea and xanthan gum for study of their efficacy and mechanisms; and canola, cereal
(e.g., barley, oat, rice and wheat), citrinin, cotton, crop, food additives, ginseng,
Kothala himbutu (a medicinal plant), maize, olive, potato, royal jelly and soybean
for the study of food quality control and safety. Other materials besides food are
composts, digestates and waste for the study of food contamination.

The types of DNA microarray used can be classified into those for genotyping
and gene expression analyses (Table 3). The sources of microarrays are either custom
arrays or microarrays supplied by companies, such as Affymetrix (USA), Agilent
Technologies (USA), Alere Technologies (Clondiag Chip Technologies, Germany),
Amersham/GE Healthcare (USA), GeneSystems (France), Mitsubishi Rayon (Japan)
and Pathogen Functional Genomic Research Center (USA).

The types of dye or substrate used to detect the signal are: fluorophors, such
as Alexa Fluor 555/647, Cy3/Cy5, fluorescein/6-FAM, phycoerythrin, TAMRA
and 3,31,5,51,-tetramethylbenzidine (TMB), or chromogens/chemiluminescent or
colorimetric substrates for non-fluorescent assays, such as CSPD, luminol, Seramun
Green, Silverquant and True Blue.

225



T a
bl

e
3.

A
pp

lic
at

io
n

of
D

N
A

m
ic

ro
ar

ra
y

as
sa

y
fo

r
de

te
ct

io
n

an
d

ev
al

ua
ti

on
of

fo
od

m
at

er
ia

ls
.

Fo
od

So
ur

ce
or

M
at

er
ia

l
M

at
er

ia
lD

et
ec

te
d

or
Su

bj
ec

tE
xa

m
in

ed
Ty

pe
of

M
ic

ro
ar

ra
y

U
se

d
(S

ou
rc

e
a /D

ye
)

R
ef

er
en

ce

A
ll

er
gy

/P
oi

so
ni

ng
/T

ox
ic

it
y

Bo
vi

ne
m

ilk
/P

or
k

St
ap

hy
lo

co
cc

al
fo

od
po

is
on

in
g

G
en

ot
yp

in
g

(C
lo

nd
ia

g/
TM

B)
Jo

hl
er

et
al

.,
20

11
[1

41
]

C
he

es
e

St
ap

hy
lo

co
cc

us
au

re
us

po
is

on
in

g
G

en
ot

yp
in

g
(A

le
re

/T
M

B)
Jo

hl
er

et
al

.,
20

15
[1

42
]

C
he

es
e/

Fi
sh

/M
ea

t,
et

c.
St

ap
hy

lo
co

cc
us

au
re

us
po

is
on

in
g

G
en

ot
yp

in
g

(C
lo

nd
ia

g/
TM

B)
Ba

um
ga

rt
ne

r
et

al
.,

20
14

[1
43

]
C

it
ri

ni
n

M
yc

ot
ox

in
to

xi
ci

ty
G

en
e

ex
pr

es
si

on
(C

us
to

m
/C

y3
,C

y5
)

Iw
ah

as
hi

et
al

.,
20

07
[1

44
]

Fo
od

Ba
ci

llu
s

ce
re

us
po

is
on

in
g

G
en

ot
yp

in
g

(C
us

to
m

,E
)

Li
u

et
al

.,
20

07
[1

45
]

Fo
od

C
oa

gu
la

se
-n

eg
at

iv
e

st
ap

hy
lo

co
cc

i
G

en
ot

yp
in

g
(C

us
to

m
/C

y5
)

Se
it

te
r

et
al

.,
20

11
[1

46
]

Fo
od

69
Sa

lm
on

el
la

vi
ru

le
nc

e
ge

ne
s

G
en

ot
yp

in
g

(C
us

to
m

/C
y3

)
Z

ou
et

al
.,

20
11

[1
47

]
Fo

od
Sa

lm
on

el
la

se
ro

gr
ou

ps
G

en
ot

yp
in

g
(C

us
to

m
,C

/S
G

)
Br

au
n

et
al

.,
20

12
[1

48
]

Fo
od

C
lo

st
ri

di
um

pe
rf

ri
ng

en
s

po
is

on
in

g
G

en
ot

yp
in

g
(C

us
to

m
/C

y3
,C

y5
)

La
ht

ie
ta

l.,
20

12
[1

49
]

Fo
od

A
lle

rg
en

-s
pe

ci
fic

re
sp

on
se

G
en

e
ex

pr
es

si
on

(A
ff

ym
et

ri
x/

PE
)

M
ar

ti
no

et
al

.,
20

12
[1

50
]

Fo
od

St
ap

hy
lo

co
cc

al
fo

od
po

is
on

in
g

G
en

ot
yp

in
g

(C
lo

nd
ia

g/
TM

B)
W

at
ti

ng
er

et
al

.,
20

12
[1

51
]

Fo
od

Si
lv

er
-n

an
op

ar
ti

cl
e-

in
du

ce
d

ge
no

to
xi

ci
ty

G
en

e
ex

pr
es

si
on

(A
gi

le
nt

/C
y3

,C
y5

)
X

u
et

al
.,

20
12

[1
52

]
Fo

od
46

Sa
lm

on
el

la
O

se
ro

gr
ou

ps
G

en
ot

yp
in

g
(C

us
to

m
/C

y3
)

G
uo

et
al

.,
20

13
[1

53
]

Fo
od

C
am

py
lo

ba
ct

er
pa

th
ot

yp
es

G
en

ot
yp

in
g

(C
us

to
m

/C
y3

)
M

ar
ot

ta
et

al
.,

20
13

[1
54

]
Fo

od
Bo

tu
lin

um
ne

ur
ot

ox
in

po
is

on
in

g
G

en
ot

yp
in

g
(C

us
to

m
/P

E)
V

an
ho

m
w

eg
en

et
al

.,
20

13
[1

55
]

Fo
od

11
7

an
ti

bi
ot

ic
re

si
st

an
ce

ge
ne

s
G

en
ot

yp
in

g
(C

us
to

m
,C

/T
ru

e
Bl

ue
)

St
ra

us
s

et
al

.,
20

15
[1

56
]

Fo
od

ad
di

ti
ve

To
xi

ci
ty

in
liv

er
G

en
e

ex
pr

es
si

on
(C

us
to

m
/C

y3
,C

y5
)

St
ie

ru
m

et
al

.,
20

08
[1

57
]

H
or

se
ra

di
sh

Q
uo

ru
m

se
ns

in
g

in
hi

bi
to

rs
G

en
e

ex
pr

es
si

on
(C

us
to

m
/P

E)
Ja

ko
bs

en
et

al
.,

20
12

[1
58

]
M

ea
t

Sh
ig

a
to

xi
n-

pr
od

uc
in

g
Es

ch
er

ic
hi

a
co

li
G

en
ot

yp
in

g
(G

en
eS

ys
te

m
s/

6-
FA

M
)

M
ik

o
et

al
.,

20
14

[1
59

]
M

ea
t

C
ep

ha
lo

sp
or

in
-r

es
is

ta
nt

Es
ch

er
ic

hi
a

co
li

G
en

ot
yp

in
g

(A
le

re
/T

M
B)

Vo
gt

et
al

.,
20

14
[1

60
]

M
ea

t/
M

ilk
C

oa
gu

la
se

-n
eg

at
iv

e
st

ap
hy

lo
co

cc
i

G
en

ot
yp

in
g

(C
us

to
m

/C
y3

,C
y5

)
Ev

en
et

al
.,

20
10

[1
61

]
Pa

nc
ak

e
w

it
h

ch
ic

ke
n

St
ap

hy
lo

co
cc

us
au

re
us

po
is

on
in

g
G

en
ot

yp
in

g
(C

lo
nd

ia
g/

TM
B)

Jo
hl

er
et

al
.,

20
13

[1
62

]
Po

rk
Sa

lm
on

el
la

en
te

ri
ca

pa
th

og
en

ic
it

y
ge

ne
s

G
en

ot
yp

in
g

(C
us

to
m

/A
le

xa
Fl

uo
r

55
5/

64
7)

H
au

se
r

et
al

.,
20

11
[1

63
]

Pu
ff

er
fis

h
Te

tr
od

ot
ox

in
ac

cu
m

ul
at

io
n

G
en

e
ex

pr
es

si
on

(C
us

to
m

/C
y3

)
Fe

ro
ud

je
ta

l.,
20

14
[1

64
]

R
ic

e
C

ad
m

iu
m

to
xi

ci
ty

G
en

e
ex

pr
es

si
on

(C
us

to
m

,C
/C

SP
D

)
Z

ha
ng

et
al

.,
20

12
[1

65
]

Ve
ge

ta
bl

e
La

te
x

an
d/

or
ve

ge
ta

bl
e

fo
od

al
le

rg
y

G
en

e
ex

pr
es

si
on

(A
ff

ym
et

ri
x/

PE
)

Sa
ul

ni
er

et
al

.,
20

14
[1

66
]

C
on

ta
m

in
at

io
n

A
lf

al
fa

/C
ila

nt
ro

/M
un

g
be

an
,e

tc
.

D
et

ec
ti

on
of

Ye
rs

in
ia

en
te

ro
co

lit
ic

a
G

en
ot

yp
in

g
(C

us
to

m
/C

y3
,C

y5
)

Si
dd

iq
ue

et
al

.,
20

09
[1

67
]

Be
ef

Pa
th

og
en

ic
Es

ch
er

ic
hi

a
co

li
O

15
7

G
en

e
ex

pr
es

si
on

(C
us

to
m

/C
y3

,C
y5

)
Fr

at
am

ic
o

et
al

.,
20

11
[1

68
]

Be
er

Be
er

sp
oi

la
ge

ba
ct

er
ia

lc
on

ta
m

in
at

io
n

Be
er

sp
oi

la
ge

ba
ct

er
ia

lc
on

ta
m

in
at

io
n

W
eb

er
et

al
.,

20
08

[1
69

]
Be

ef
/E

gg
/F

is
h/

M
ilk

26
pr

ob
es

fo
r

pa
th

og
en

ic
ba

ct
er

ia
G

en
ot

yp
in

g
(C

us
to

m
/C

y3
)

W
an

g
et

al
.,

20
07

[1
70

]
Br

ea
d

(W
ho

le
-g

ra
in

/F
ib

er
-r

ic
h)

In
te

st
in

al
m

ic
ro

bi
ot

a
co

m
po

si
ti

on
G

en
ot

yp
in

g
(A

gi
le

nt
/C

y3
,C

y5
)

La
pp

ie
ta

l.,
20

13
[1

71
]

C
an

ta
lo

up
e

24
pr

ob
es

fo
r

Li
st

er
ia

m
on

oc
yt

og
en

es
G

en
ot

yp
in

g
(A

ff
ym

et
ri

x/
PE

)
La

ks
an

al
am

ai
et

al
.,

20
12

[1
72

]

226



Ta
bl

e
3.

C
on

t.

Fo
od

So
ur

ce
or

M
at

er
ia

l
M

at
er

ia
lD

et
ec

te
d

or
Su

bj
ec

tE
xa

m
in

ed
Ty

pe
of

M
ic

ro
ar

ra
y

U
se

d
(S

ou
rc

e
a /D

ye
)

R
ef

er
en

ce

C
hi

ck
en

R
ap

id
an

al
ys

is
of

pa
th

og
en

ic
ba

ct
er

ia
G

en
ot

yp
in

g
(C

us
to

m
/C

y3
,C

y5
)

Q
ui

ño
ne

s
et

al
.,

20
07

[1
73

]
C

hi
ck

en
/P

or
k

Sa
lm

on
el

la
en

te
ri

ca
pr

ob
es

G
en

ot
yp

in
g

(C
us

to
m

/A
le

xa
Fl

uo
r

55
5/

64
7)

H
au

se
r

et
al

.,
20

12
[1

74
]

C
om

po
st

/D
ig

es
ta

te
/W

as
te

M
ic

ro
bi

al
co

m
m

un
it

y
G

en
ot

yp
in

g
(C

us
to

m
/C

y3
,C

y5
)

Fr
an

ke
-W

hi
tt

le
et

al
.,

20
14

[1
75

]
Eg

g/
M

ea
t/

M
ilk

,e
tc

.
Li

st
er

ia
sp

p.
co

nt
am

in
at

io
n

G
en

ot
yp

in
g

(C
us

to
m

/C
y5

)
H

m
aï

ed
et

al
.,

20
14

[1
76

]
Eg

g/
M

ea
t/

M
ilk

/R
ic

e,
et

c.
16

S
rR

N
A

pr
ob

es
fo

r
pa

th
og

en
s

G
en

ot
yp

in
g

(C
us

to
m

/A
le

xa
Fl

uo
r

64
7)

H
w

an
g

et
al

.,
20

12
[1

77
]

Fo
od

25
0

pr
ob

es
fo

r
pa

th
og

en
ic

ba
ct

er
ia

G
en

ot
yp

in
g

(C
us

to
m

/C
y3

)
K

im
et

al
.,

20
08

[1
78

]
Fo

od
R

ap
id

an
al

ys
is

of
pa

th
og

en
ic

ba
ct

er
ia

G
en

ot
yp

in
g

(C
us

to
m

/C
y3

)
K

im
et

al
.,

20
10

[1
79

]
Fo

od
R

ap
id

an
al

ys
is

of
pa

th
og

en
ic

ba
ct

er
ia

G
en

ot
yp

in
g

(C
us

to
m

,C
/L

um
in

ol
)

D
on

ha
us

er
et

al
.,

20
11

[1
80

]
Fo

od
Ye

rs
in

ia
pe

st
is

/B
ac

ill
us

an
th

ra
ci

s
G

en
ot

yp
in

g
(C

us
to

m
/A

le
xa

Fl
uo

r
55

5/
64

7)
G

oj
ie

ta
l.,

20
12

[1
81

]
Fo

od
50

pr
ob

es
fo

r
pa

th
og

en
ic

ba
ct

er
ia

G
en

ot
yp

in
g

(C
us

to
m

/C
y3

)
Le

e
et

al
.,

20
11

[1
82

]
Fo

od
D

iv
er

si
ty

of
A

rc
ob

ac
te

r
bu

tz
le

ri
G

en
ot

yp
in

g
(C

us
to

m
/C

y3
,C

y5
)

M
er

ga
et

al
.,

20
13

[1
83

]
Fo

od
Pa

th
og

en
ic

Es
ch

er
ic

hi
a

co
li/

Sa
lm

on
el

la
G

en
ot

yp
in

g
(A

le
re

/T
M

B)
Fi

sc
he

r
et

al
.,

20
14

[1
84

]
Fo

od
/W

at
er

63
pr

ob
es

fo
r

pa
th

og
en

ic
ba

ct
er

ia
G

en
ot

yp
in

g
(C

us
to

m
/T

A
M

R
A

)
K

os
ti

ć
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3.3. Merits of DNA Microarray Assay

Applications and potentials of DNA microarray technologies (e.g., DNA, cDNA
and oligonucleotide microarray assays) for the detection and identification of
microbial pathogens, such as antibiotic resistance genes, virulence factors and strain
subtypes, have been discussed by comparison with other DNA-based methods,
including PCR [224–228]. While PCR-based methods are normally limited to
the analysis of a single or a small number of pathogens, microarray technology
can analyze a significant number of pathogens simultaneously, and thus it has
potential for use in basic research and industrial applications, such as food safety
assessment. Gene expression profiling by DNA microarray assay has an advantage
of examining the expression of large numbers of genes in a single experiment,
and thus has been widely used to analyze food samples and materials. DNA
microarray technologies have also been applied to monitor genetically modified
food [225,229] and traditional Chinese medicine [230,231], and to evaluate drug
safety [232]. Degenkolbe et al. discussed how quality control was examined for the
procedures in DNA microarray assay, such as mRNA preparation, cDNA synthesis,
fluorescent dye-labeling, hybridization/imaging and data analysis, using plant leaf
tissue as a source of mRNA [233].

While DNA microarray assay has been considered to be effective and sensitive
for assaying microbial spoilage of food, it is expensive and requires technical
expertise. Therefore, several alternative methods were developed to explore
cost-effective but still high-throughput assay systems. Böhme et al. developed an
efficient method for bacterial identification based on detection of the 16S rRNA gene
by flow-through hybridization on membranes, coupled to ligation detection reaction,
which may provide an alternative to a DNA microarray assay for the rapid, accurate
and cost-effective identification of bacterial species in order to assess food quality
and safety [234]. Atanasova and Druzhinina discussed the Phenotype MicroArray,
which tests cell respiration as a reporter system to characterize the metabolism of
food spoilage pathogens, including conidial fungi [235]. However, the number of
probes in these alternative assays is generally up to 100, and DNA microarray assays
would be more useful when the number is over 100.

One of the merits of a DNA microarray assay is that it provides information
about pathway-based intracellular signaling, which is important to evaluate
the efficacy and mechanism of action of food materials. For example, a
variety of signaling pathways have been identified by DNA microarray assay
for traditional herbal medicine, such as traditional Chinese medicine (TCM)
and traditional Japanese medicine (Kampo), which are associated with effects
on cell functions and diseases, such as anti-adipogenesis, anti-atherosclerosis,
anti-carcinogenesis, anti-inflammation, apoptosis, chemoprevention, circulation
disorder and neuroprotection [231]. For example, the mitogen-activated protein
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kinase (MAPK) signaling pathway was shown to be associated with the apoptotic
effect of Inchin-ko-to (Kampo) [236] and the anti-carcinogenic effect of Juzen-taiho-to
(Kampo) [237], while TGF-β1/Smad and IGF-1 signaling pathways were associated
with the inhibitory effect of Kangxianling (TCM) on renal fibrosis [238] and
the immune response against viral infection induced by VI-28 (TCM) [239],
respectively. The pathways associated with environmental estrogens, such as
phytoestrogens, which are also important food materials, include a variety of
signaling pathways related to apoptosis, carcinogenesis, cell growth/proliferation,
differentiation/development and inflammation [240]. Therefore, the information
about pathway-based intracellular signaling provided by DNA microarray assays
will add variability and sensitivity to the assay system.

4. Conclusions

We have here summarized recent progress in fluorescence-based bioassays
developed and applied for the detection and evaluation of food materials. A
comprehensive list of fluorescent dyes used in recent bioassays includes those in
biosensing, cell assay, energy transfer-based assay, probing, protein/immunological
assay and microarray/biochip assay. Among these technologies, fluorescence-based
microarrays/biochips, such as antibody/protein microarrays, bead/suspension
arrays, capillary/sensor arrays, DNA microarrays/PCR-based arrays, glycan/lectin
arrays, immunoassay/ELISA-based arrays, microfluidic chips and tissue arrays,
have been developed and used widely for food safety and quality as well as the
search for effective components. Applications of DNA microarray assay were
discussed for important issues, such as allergy/poisoning/toxicity, contamination,
efficacy/mechanism and quality control/safety, based on a comprehensive list of
references showing these cases. The merits of DNA microarray assays were discussed
by pointing to their advantages over other technologies in terms of features such
as the sensitivity and efficiency, the number of probes to be analyzed rapidly and
simultaneously, and the quality and quantity of information about pathway-based
intracellular signaling in response to food materials.
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Antibody Microarray for E. coli O157:H7 and
Shiga Toxin in Microtiter Plates
Andrew G. Gehring , Jeffrey D. Brewster, Yiping He, Peter L. Irwin,
George C. Paoli, Tawana Simons, Shu-I Tu and Joseph Uknalis

Abstract: Antibody microarray is a powerful analytical technique because of its
inherent ability to simultaneously discriminate and measure numerous analytes,
therefore making the technique conducive to both the multiplexed detection and
identification of bacterial analytes (i.e., whole cells, as well as associated metabolites
and/or toxins). We developed a sandwich fluorescent immunoassay combined
with a high-throughput, multiwell plate microarray detection format. Inexpensive
polystyrene plates were employed containing passively adsorbed, array-printed
capture antibodies. During sample reaction, centrifugation was the only strategy
found to significantly improve capture, and hence detection, of bacteria (pathogenic
Escherichia coli O157:H7) to planar capture surfaces containing printed antibodies.
Whereas several other sample incubation techniques (e.g., static vs. agitation) had
minimal effect. Immobilized bacteria were labeled with a red-orange-fluorescent
dye (Alexa Fluor 555) conjugated antibody to allow for quantitative detection of the
captured bacteria with a laser scanner. Shiga toxin 1 (Stx1) could be simultaneously
detected along with the cells, but none of the agitation techniques employed during
incubation improved detection of the relatively small biomolecule. Under optimal
conditions, the assay had demonstrated limits of detection of ~5.8 ˆ 105 cells/mL
and 110 ng/mL for E. coli O157:H7 and Stx1, respectively, in a ~75 min total
assay time.

Reprinted from Sensors. Cite as: Gehring, A.G.; Brewster, J.D.; He, Y.; Irwin, P.L.;
Paoli, G.C.; Simons, T.; Tu, S.-I.; Uknalis, J. Antibody Microarray for E. coli O157:H7
and Shiga Toxin in Microtiter Plates. Sensors 2015, 15, 30429–30442.

1. Introduction

According to the U.S. Centers for Disease Control and Prevention,
approximately 48 million illnesses; 128,000 hospitalizations; and 3000 deaths per
year in the United States alone are attributed to ingestion of contaminated foods [1].
Traditional microbial culture methods can detect and identify a single, specific
bacterium contaminant in foods, but the approach may require days or weeks to
complete and typically, quantitative data is not generated. Such specific detection
of very small numbers (e.g., 1 cell/mL) of pathogenic bacteria in complex food
matrices necessitates methods with extremely high sensitivity. The quest for faster
assay times (of minutes to hours) combined with quantitative, low level detection
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results has stimulated the development of rapid microbial methods, many of which
are biosensor based [2–4].

A notorious bacterial pathogen, Escherichia coli O157:H7, can cause severe
sickness (e.g., hemorrhagic colitis and hemolytic uremic syndrome) and death
for some infected by the microorganism [5]. Sickness associated with foodborne
E. coli O157:H7 is an important problem in the United States where past multistate
outbreaks have been associated with meat [6] and produce [7]. E. coli O157:H7
is classified as a “zero tolerance” adulterant and is therefore perceived as a major
concern due to the threat of incidental contamination of foods with the pathogen.
Therefore, considerable effort has been undertaken to develop specific, rapid
methods for the detection of pathogens associated with foodborne outbreaks [2,8,9].

Rapid methods with the capacity to screen for analytes of differing size
(e.g., ranging from biomolecular toxins to whole bacterial cells) can be useful for
multivariate analysis [10]. In addition, the desire to screen large numbers of
samples for reliable food safety monitoring necessitates high-throughput analytical
processing. Nucleic acid microarrays have exhibited enormous potential for
pathogen screening [11,12]. Similarly, protein microarrays comprised of antibodies
as biorecognition elements orthogonally arrayed in spots or parallel printed
stripes have also been generated for the detection and typing of pathogens.
Several examples of antibody arrays that show promise for the multiplex
detection of bacterial cells and/or toxins in complex sample matrices (e.g., foods)
have been developed [13–17], as well as commercialized [18]. The evolution,
application, and merits of antibody, or protein, microarrays have been reviewed
elsewhere [19–24].

Past research in this group has demonstrated the high-throughput and
multiplex capability of antibody microarray in multiwell format [15]. This study
presents a streamlined and improved version of that system with an optimized
assay that considerably reduces the overall assay time with a concomitantly better
limit of detection (LOD) for bacterial cells. A “bottleneck” in improvement of
LOD has been that bacteria suspended in aqueous medium are relatively immobile
in part due to their density being essentially that of water. Hence, under
static incubation conditions, non-flagellated and/or dead bacteria (essentially large
“particles”) that may exhibit Brownian motion travel an insignificant distance
when suspended in aqueous medium. Even the metabolic-dependent motion of
flagellated bacteria is quite slow [25]. Therefore, under their own accord, most
bacteria suspended in bulk solvent do not come in close contact with planar binding
surfaces, which, in this study, was passively adsorbed with capture antibodies to
relatively inexpensive polystyrene plate well bottoms that served as microarray
substrates. At low concentrations (ď106/mL), the cells are relatively dispersed
so that binding events are rare. Increased assay sensitivity necessitates improved
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antibody-based immobilization of bacteria to solid supports. Dielectrophoresis [26]
and direct radiation force combined with ultrasound acoustic streaming [27] have
been employed as means to improve immobilization via active partitioning of
bacteria from liquid phase to static, antibody-coated, solid substrates. Other
groups, such as Ball et al. [28], have employed centrifugation to mechanically force
bacteria to a capture surface. Our efforts focused on the latter technique given its
simplicity, rapidity, and particularly its availability for immediate application with
our transparent, polystyrene array substrates. A major part of this investigation
compared the efficacy (i.e., increased fluorescence responses associated with
bacterial capture) of binding for bacteria (E. coli O157:H7) versus the biomolecule,
Shiga toxin 1 (Stx1; a protein synthesis inhibitor that is produced by Shigatoxigenic
strains of E. coli), at the capture surface of a microarray substrate as influenced by
various incubation conditions (static, mixing, and centrifugation).

2. Experimental Section

2.1. Materials

Reagents used in this research were: glycerol, tablets of phosphate-buffered
saline (PBS; 10 mM phosphate, 2.7 mM KCl, 137 mM NaCl, pH 7.4), fraction
V bovine serum albumin (BSA) from Sigma (St. Louis, MO, USA) and
NeutrAvidin from Thermo Scientific (Waltham, MA, USA). Plates used were
MicroAmpr 384-well reaction/microarray source plates (polypropylene, conical
wells) from PE Biosystems (Carlsbad, CA, USA) and antibodies were printed
on black-walled, clear/transparent and flat-bottomed, polystyrene 96-multiwell
microtiter/microarray destination plates (well dimensions—6.6 mm diameter,
~11 mm height) with (FLUOTRAC 600) surfaces from Greiner Bio-One North
America Inc. (Monroe, NC, USA). Anti-E. coli O157:H7 antibody (unmodified or
biotinylated; polyclonal IgG affinity purified for target, exclusivity purified against
non-target E. coli strains) raised in goats was obtained from Kirkegaard and Perry
Laboratories, Inc. (Gaithersburg, MD, USA). Alexa Fluor 555 (AF555) dye labeling
kit (from Invitrogen, Carlsbad, CA USA) was used to prepare fluorescent BSA and
antibody conjugates. Stx1 and anti-Stx1 antibody solution comprised of equal parts
of 9C9 (IgG1; A, A1, B neutralizing), 10D11 (IgG2b; A, A1, B neutralizing), and
13C4 (IgG1κ; B neutralizing) murine monoclonal antibodies initially constituted in
50% glycerol in nH2O (employed for analyte capture) and 3C10 (IgG1; A, A1, B
neutralizing) monoclonal antibody, also reconstituted in 50% glycerol (employed
for analyte labeling after conjugation with AF555 fluorescent dye) were from
Toxin Technology (Sarasota, FL, USA). Strain B1409 of E. coli O157:H7 became
available to our research center via a route of multiple destinations that last
passed through the Centers for Disease Control and Prevention (Atlanta, GA, USA).
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Modified Brain Heart Infusion broth was from Becton Dickinson (Sparks, MD,
USA). Any chemicals not mentioned were at least of reagent grade.

2.2. Apparatus

Solutions of biorecognition elements (antibodies in this manuscript) were
orthogonally array printed into 96-well microtiter plate wells using an Omnigrid
Accent Pro from Bucher (Basel, Switzerland) outfitted with a single, Stealth
printing pin (model SMP3; TeleChem International, Inc., Sunnyvale, CA, USA).
(Laser-induced fluorescence images were obtained with an LS400 scanner from
Tecan Group Ltd. (Männedorf, Switzerland). Shaking of mictrotiter plates were
conducted on a Titer Plate Shaker (Lab-Line Instruments, Inc.; Melrose Park, IL,
USA) at slow-moderate speed setting. Microtiter plates were centrifuged in an
Eppendorf refrigerated centrifuge (model 5810R) using an A-4-62 rotor (Eppendorf
AG, Hamburg, Germany). Ultraviolet-Visible spectrophotometric readings were
taken with a Cary 50 UV-Vis spectrophotometer (Varian, Inc., Palo Alto, CA, USA).
Enumeration of intact bacterial cells was achieved with the aid of a Petroff-Hausser
counting chamber obtained from Thomas Scientific (Swedesboro, NJ, USA).

2.3. Growth and Enumeration of Bacteria

Immediately prior to use, a frozen culture of stationary phase E. coli O157:H7
was thawed and added to modified Brain Heart Infusion broth (10 mL). This
was incubated at 37 ˝C for 18 h with shaking at 160 rpm. Serial dilutions of
cultures were enumerated using a Petroff-Hausser counting chamber as described
by Gehring, et al. [29].

2.4. Conjugation of Antibodies with Fluorescent Dye

An AF555 dye labeling kit was used to prepare fluorescent BSA and antibody
conjugates following the manufacturer’s instructions, briefly: BSA or antibody
was diluted to ~1 mg/mL in 0.1 M carbonate buffer (pH 8.3), dye was added
to ~0.5 mL of protein solution and incubated for 1 h at room temperature (RT)
with stirring, the mix was eluted (using 10 mM PBS, pH 7.2 containing azide)
through a gel filtration column to separate labeled protein from unbound dye and
fractions of the first of two resolved colored bands were collected and pooled.
The absorbance of pooled fractions was measured at 280 and 555 nm using a
UV-Vis spectrophotometer in order to determine dye incorporation stoichiometry
and antibody conjugate concentration.

2.5. Antibody Preparation and Microarray Printing

Biotinylated and non-biotinylated anti-E. coli O157:H7 capture antibodies (that
were obtained as lyophilized reagents) were rehydrated in 50% glycerol to a
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concentration of 1 mg/mL that was further diluted to 1:30 in PBS containing
5% glycerol working solutions for microarray printing. (Glycerol was employed
to prevent evaporation of the printed spots as well as to maintain hydration of
the capture antibodies [30]). Anti-Stx antibodies were similarly reconstituted to
0.25 mg/mL in nH2O as directed by the supplier and further diluted 1:4 with PBS
(containing 5% glycerol) for array printing.

Approximately 25 µL of capture antibody solution was pipetted into separate
wells of a MicroAmp source plate on the microarray printer (positioned atop a 4 ˝C
cooled thermal block during printing). Immediately prior to printing, source plates
were centrifuged at 200ˆ g for 2 min to remove any air bubbles. Array contact
printing was performed with the following parameters—preprints/blots = 20;
contact time = 0; dip and print acceleration = 10 cm/s2, and print velocity = 2 cm/s
using an SMP3 (spot diameter of ~100 µm) pin that delivered ~0.7 nL per
contact stroke. In each well, 2 columns of 8 spots per antibody were printed
with a horizontal and vertical separation of 150 µm. After printing, all wells
were visually examined, often with the assistance of a stereo light microscope
(~10–20 ˆ magnification) to ensure that spots were uniformly printed. Following
array printing, spotted destination plates sat for 1 h at RT before use.

2.6. Antibody Microarray Detection of Bacteria and Shiga Toxin 1 in Multiwell Plates

A schematic for the fluorescence, sandwich immunoassay as applied to the
multiwell antibody microarray-based detection E. coli O157 bacteria and Stx1 is
depicted in Figure 1. The assay generally followed the one previously described
for microarray slides [31] with several modifications. All immunoassay procedures
and reagents were at RT. Wells of the destination plate, preprinted with capture
antibody, were washed with 200 µL PBST (PBS containing 0.05% Tween 20),
immediately emptied via rapid inversion of the plate, and any remaining liquid
was removed by striking the plate (upside down) onto an absorbent towel laid flat
on a laboratory bench. This wash procedure was repeated once with PBST. The plate
wells were blocked with 50 µL of 1% BSA in PBS for 30 min. The plates were washed
(as above) following removal of this BSA solution. Analyte (100 µL, or as indicated
otherwise, of samples containing bacterial stock or Stx serially diluted in PBS) was
then added, and each array was subjected to incubation (static, unless otherwise
indicated) for 1 h (or time as otherwise indicated) to allow analyte capture. During
the incubation for capture, the reporter antibody solutions were prepared (1:50
for AF555-labeled antibody conjugates) with PBST. The reporter antibodies were
shielded from light during all experiments. The wells were washed twice with PBST
and excess liquid was removed as above. Next, 50 µL reporter antibody solution
was added to each well, which was subjected to static incubation for 1 h (unless
otherwise indicated) at RT.
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Figure 1. Fluorescence sandwich immunoassay schematic. Represented are analyte  
(e.g., bacterial cell or proteinaceous toxin) bound at a microarrayed spot of capture 
antibodies printing on the bottom of a well of a multiwell, black-walled, clear-bottomed, 
polystyrene microtiter plate. The bare polystyrene was further blocked with BSA and 
following analyte capture, reporter antibodies, conjugated with fluorescent molecules, were 
used to sandwich and label the analyte prior to detection with laser-induced  
fluorescence scanning. 

Figure 1. Fluorescence sandwich immunoassay schematic. Represented are
analyte (e.g., bacterial cell or proteinaceous toxin) bound at a microarrayed spot of
capture antibodies printing on the bottom of a well of a multiwell, black-walled,
clear-bottomed, polystyrene microtiter plate. The bare polystyrene was further
blocked with BSA and following analyte capture, reporter antibodies, conjugated
with fluorescent molecules, were used to sandwich and label the analyte prior to
detection with laser-induced fluorescence scanning.

2.7. Scanning Electron Microscopy

After centrifugation concentration (3220ˆ g for 5 min) of live E. coli O157:H7
cells in capture antibody (non-biotinylated) microarray-printed polystyrene
microtiter plates, the cells fixed with 200 µL of 2.5% glutaraldehyde (Electron
Microscopy Sciences, Hatfield, PA USA) for 30 min. The plates were then
rinsed twice for 30 min each with ~200 µL per well of 0.1 M imidazole, (Electron
Microscopy Sciences). The cell-associated bottoms (samples) of the wells were
removed with a cork borer. The samples were then sequentially washed for
30 min intervals each with 2 mL of 50%, 80%, 90%, and finally 95% ethanol
(The Warner-Graham Company, Cockeysville, MD, USA). The samples were
momentarily held in and then washed with ~2 mL of 100% ethanol three times
before being critically point dried. The samples were then stacked in a wire
basket, separated by cloth, and placed in a Critical Point Drying Apparatus,
(Denton Vacuum, Inc., Cherry Hill, NJ, USA), using liquid carbon dioxide (Welco
Co, Allentown, PA, USA) for approximately 20 min. The samples were then
removed and mounted on stubs and sputter gold coated for 30 s (EMS 150R ES,
Electron Microscopy Sciences). They were then observed with Scanning Electron
Microscope, FEI Quanta 200 F, (Hillsboro, OR, USA) with an accelerating voltage
of 5–10 KV in high vacuum mode. It was observed that the critical point drying
process shrunk the polystyrene discs to about 1/3 their original size.

2.8. Microarray Scanning and Data Analysis

Wells were washed twice with PBST and then were scanned at the appropriate
fluorescence setting (AF555-excitation: 543 nm, emission filter: 590 nm) on the
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LS400 scanner using single channel scanning mode. During conjugate incubation,
543 and 643 nm lasers were turned on to warm up and stabilize for at least 30 min.
Typical LS400 instrument scanning parameters, set and controlled via Array-Pro
Analyzer software (ver. 4.5.1.73; Tecan Group Ltd., Männedorf, Switzerland)
interface included: autofocusing in well mode, PMT gain that ranged from 100
to 150, 20 µm resolution, small pinhole setting, and optimization of integration
time = 1. The multiwell plates had to be inverted during scanning.

Each well, which contained 8 printed spots per antibody, was considered
an experimental unit. Fluorescence intensities (in fluorescence units or (arbitrary
fluorescence units) AFUs) of sample spots and local/proximal (adjacent to sample
spots in the same well) background pixels were obtained using the ArrayPro
Software. Net spot intensities (sample responses minus individual, corresponding
concentric and median background responses) were compared, and the 2 highest
and 2 lowest values from each set of 8 were discarded. At least 3 technical replicates
(single columns of 8 printed antibody spots in 3 individual microtiter plate wells)
were generated for each concentration level of analyte tested. Some, but not all
experiments were replicated over multiple days of experimentation. (No significant
discrepancies between day-to-day replication were observed, data not shown.)
Net intensities were then averaged and standard deviations, presented as error
bars in plots, were computed for the means.

3. Results and Discussion

Maximizing binding of target is a critical factor in microarray detection.
NeutrAvidin (NAv) is a deglycosylated form of avidin with a higher biotin binding
specificity and lower non-specific binding. In a simple biotinylated globular
protein (employing fluorescently labeled and biotinylated BSA that simulated
biotinylated antibody) binding study, NAv, streptavidin (SAv), or biotinylated BSA
(subsequently reacted with SAv) in different buffers were compared for capture
efficacy of the dye-labeled protein following passive adsorption to polystyrene.
Cursory results indicated that highest capture was with the NAv system, but
the improvement was only marginal (~2ˆ). Remarkably, direct adsorption of
dye-labeled BSA elicited the same level of fluorescence as the SAv systems (data
not shown). Direct adsorption of capture antibody to the well bottoms presented
itself as an attractive and reasonably effective (with respect to fluorescence
response) alternative, especially if the SAv/biotin binding system could be avoided
altogether. Such passive adsorption of capture antibody serving as a foundation
for fluorescence sandwich immunoassays was used throughout this study in
conjunction with microarray detection (Figure 1).

The magnitude of microarray response was a function of the amount of time
the analyte (bacteria or proteinaceous toxin) was in contact with the antibody
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arrayed plate well bottoms and that of the dwell time of the fluorescent antibody
conjugate with captured analyte. The combination of 60 min analyte incubation
with 60 min conjugate incubation, respectively, (or 601, 601) had the greatest
response over all cell dilutions (Figure 2A). The next lowest plot is the 601, 51

(60 min sample incubation/capture, 5 min labeling antibody conjugate incubation;
statistical difference P = 0.147, between these two curves was not significant)
where the similar number of targets do not have the time to be detected by
fluorescent antibody and the response curve saturates (particularly evident in the
inset log-log plot in Figure 2A). For these and all subsequent results reported
herein, a Student’s t-based statistical analysis was employed to test the homogeneity
between regression coefficients of selected data sets [32]. Mass transport of reporter
conjugate to the well surface tethered analyte appears to be a diffusion controlled,
rate-limiting step in the assay. An even more interesting observation is between
the 51, 601 and 601, 51 response curves (P = 0.00229). With the 51, 601 incubation,
there were presumably fewer captured targets (bacterial analyte) for the fluorescent
antibody to interact with as compared to 601, 51 where a concentration dependent
curve became more evident. Since the 601, 51 curve exhibited greater sensitivity; this
result indicated that the greater “bottleneck” was the analyte incubation time. The
51, 51 incubation conditions yielded the lowest response (P = 0.0408 versus 601, 601

and P = 0.000691 vs. 601, 51). Time of bacterial analyte contact was the determining
factor for such static incubations. Using the same reaction conditions, similar, but
much less profound trends were observed when the analyte was a proteinaceous
toxin (Figure 2B). There was only a slight difference between the 601, 601 vs. 51,
51 curve (P = 0.0693) whereas there were no statistically significance differences
between 601, 601 vs. 601, 51 (P = 0.433), 601, 601 vs. 51, 601 (P = 0.261), 601, 51 vs. 51,
601 (P = 0.623), 601, 51 vs. 51, 51 (P = 0.107), and 51, 601 vs. 51, 51 (P = 0.0753).

Since bacterial analyte incubation time appeared to be the primary rate-limiting
step during the immunoassay portion of plate-based microarray detection, various
incubation treatments during analyte capture were tested to determine if detection
could be improved relative to static incubation conditions (Figure 3). Three
additional conditions were compared and they included: (1) shaking-moderate
mixing speed on a platform shaker; (2) aspirating/dispensing-analyte mixtures
were repeatedly (~3ˆ) mixed manually via aspirating and dispensing with a
multi-channel pipettor once every 5 min during the total analyte capture reaction
time; and (3) centrifugation-analyte mixtures were added to the microtiter plate
that was subsequently placed into a centrifuge outfitted with a swinging bucket
rotor, the plate was spun for 5 min, and the mixture was aspirated/dispensed with
a pipettor prior to additional incubation or a washing step.

It was not too surprising that centrifugation by far elicited the highest
microarray response and best limit of detection for the live cells (Figure 3A,B)
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since bacterial cells are slightly denser than water. All of the curves for
Figure 3A were statistically different except for “static” vs. “aspirated/dispensed.”
(P = 0.0396 for 4ˆ centrifuged vs. shaken; P = 0.0329 for 4ˆ centrifuged vs.
aspirated/dispensed; P = 0.0333 for 4ˆ centrifuged vs. static; P = 0.00533 for
shaken vs. aspirated/dispensed; P = 0.00704 for shaken vs. static; P = 0.317 for
aspirated/dispensed vs. static.) Response levels were marginally (~2ˆ) higher
when non-biotinylated antibodies were used (Figure 3B). For Figure 3B, all of
the curves were significantly different except again for “aspirated/dispensed” vs.
“static.” (P = 0.000862, 4ˆ centrifuged vs. aspirated/dispensed; P = 0.000942,
4ˆ centrifuged vs. static; P = 0.174, aspirated/dispensed vs. static.) This
result was reproducible and suggested that, as otherwise might be anticipated, a
sub-population of the employed polyclonal antibodies had their antigen-binding
sites deactivated (via steric hindrance and/or disruption of potential electrostatic
interaction by amino acid functional groups) as a result of biotinylation. In
other words, random, undirected biotinylation of antibodies may lower antibody
specificity if epitope-binding site amines are blocked with biotin moieties.

Centrifugation had significantly less effect on heat-killed cells (Figure 3C;
none of the curves in Figure 3C were significantly different with P ranging from
0.499 to 0.850) and, as would be expected with a relatively small biomolecular
analyte, no considerable influence on the capture of the proteinaceous toxin Stx1
(Figure 3D) with P ranging from 0.130 to 0.587 expect for an unexpected difference
between “aspirated/dispensed” vs. “static” (P = 0.0460). Upon visualization
with light microscopy (data not shown), heat-killed E. coli O157:H7 cells have the
appearance of disrupted cells fragmented into multiple pieces of various shapes,
sizes, and density that has considerably more surface area available for binding by
the polyclonal antibodies employed. Such fragments apparently do not share the
same fluidic transport behavior observed with live (intact) cells.

Response after shaking was unexpectedly low for bacterial cells and even more
surprisingly low with the multiple aspirating/dispensing technique (Figure 3A,B).
It was hypothesized that continuous aspirating/dispensing would be analogous to
improved capture typically observed in flow systems. However, it is possible that
such action, and to a lesser extent, shaking, caused sheering of the bacteria from
the surfaced of the antibody-coated well bottom/substrate. In addition, shaking
possibly caused cells to be forced to the sides of the wells and therefore they did not
interact with the printed antibodies on the bottom of the wells.

Repeated centrifugation of live cells did not appear to significantly improve
binding to (non-biotinylated) capture antibody as observed by the marginal increase
in microarray response (Figure 3E). Yet, upon statistical analysis, significant
improvements were observed with 4ˆ vs. 2ˆ (P = 0.0477), 4ˆ vs. 1ˆ (P = 0.00339),
3ˆ vs. 2ˆ (P = 0.00673), 3ˆ vs. 1ˆ (P = 0.000453), and 2ˆ vs. 1ˆ (P = 0.0197), but not
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with 4ˆ vs. 3ˆ (P = 0.399). Together with the results observed for Stx1 dose-response
(Figure 3D), this was evidence that the 60 min analyte incubation time could be
considerably reduced upon substitution with a 5 min centrifugation step. Only
slight improvement in microarray response for intact cells would be expected with
additional centrifugation steps. Unfortunately, additional centrifugation would
detrimentally add to the total assay time.
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Figure 2. Effects of varying analyte and conjugation reaction times on microarray 
detection of bacterial cells or toxin. Serially diluted analyte, live E. coli O157:H7 (A) or 
Stx1 (B) were statically incubated in microtiter plates microarray printed with passively 
adsorbed biotinylated capture antibodies for the first time (5 or 60 min) indicated and then 
further reacted with fluorescent dye labeled antibody conjugates for the second time (5 or 
60 min) also indicated. As with all subsequent plots in this report, the above curves show 
the microarray response in arbitrary fluorescence units (AFU) versus bacterial or toxin 
concentration. Each data point represented the mean ± standard deviation for 4 of 8 daily 
technical replicates (with 2 highest and 2 lowest values dropped) from serial dilution series 
combined with other similarly treated replicates from experiments repeated no less than  
2 days and no more than 4 days. 
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Figure 2. Effects of varying analyte and conjugation reaction times on microarray
detection of bacterial cells or toxin. Serially diluted analyte, live E. coli O157:H7
(A) or Stx1 (B) were statically incubated in microtiter plates microarray printed
with passively adsorbed biotinylated capture antibodies for the first time (5 or
60 min) indicated and then further reacted with fluorescent dye labeled antibody
conjugates for the second time (5 or 60 min) also indicated. As with all subsequent
plots in this report, the above curves show the microarray response in arbitrary
fluorescence units (AFU) versus bacterial or toxin concentration. Each data point
represented the mean ˘ standard deviation for 4 of 8 daily technical replicates
(with 2 highest and 2 lowest values dropped) from serial dilution series combined
with other similarly treated replicates from experiments repeated no less than
2 days and no more than 4 days.

257



The assay conditions used for the generation of the 1x curve in Figure 3E
were considered optimized and the final assay conditions for this investigation. A
limit of detection of ~5.8 ˆ 105 cells/mL for live cells could be inferred from the
1x data set being a prospective lower detectable limit response value, minus its
standard deviation, that was distinguishable from the baseline value at the lowest
concentration plus 3ˆ the standard deviation for that value.
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Figure 3. Comparison of incubation conditions in microarray detection of bacteria. Serially 
diluted analyte, live E. coli O157:H7, captured by passively adsorbed biotinylated (A) or 
non-biotinylated anti-E. coli O157:H7 antibody (B), heat-killed E. coli O157:H7 captured 
by biotinylated anti-O157:H7 antibody (C), or Stx1 captured with biotinylated anti-Stx1 
antibody (D) were subjected to different incubation conditions during analyte incubation. 
Response vs. concentration curves are displayed above for static, aspirating/dispensing, 
shaking, and centrifugation incubation for 60 min at RT. The effect of multiple (1–4×),  
5 min centrifugations (with resuspension of analyte mixture following each centrifugation) 
followed by static incubation for the remainder of 1 h total incubation time was also 
assessed for live E. coli O157:H7 that were reacted with non-biotinylated capture  
antibody (E). Each data point represented the mean ± standard deviation for 4 of 8 daily 
technical replicates (with 2 highest and 2 lowest values dropped) from serial dilution series 
combined with other similarly treated replicates from experiments repeated no less than 2 
days and no more than 4 days. 
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significantly different except again for “aspirated/dispensed” vs. “static.” (P = 0.000862, 4× 
centrifuged vs. aspirated/dispensed; P = 0.000942, 4× centrifuged vs. static; P = 0.174, aspirated/dispensed 
vs. static.) This result was reproducible and suggested that, as otherwise might be anticipated, a  
sub-population of the employed polyclonal antibodies had their antigen-binding sites deactivated (via 
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Figure 3. Comparison of incubation conditions in microarray detection of bacteria.
Serially diluted analyte, live E. coli O157:H7, captured by passively adsorbed
biotinylated (A) or non-biotinylated anti-E. coli O157:H7 antibody (B), heat-killed
E. coli O157:H7 captured by biotinylated anti-O157:H7 antibody (C), or Stx1
captured with biotinylated anti-Stx1 antibody (D) were subjected to different
incubation conditions during analyte incubation. Response vs. concentration
curves are displayed above for static, aspirating/dispensing, shaking, and
centrifugation incubation for 60 min at RT. The effect of multiple (1–4ˆ),
5 min centrifugations (with resuspension of analyte mixture following each
centrifugation) followed by static incubation for the remainder of 1 h total
incubation time was also assessed for live E. coli O157:H7 that were reacted
with non-biotinylated capture antibody (E). Each data point represented the
mean ˘ standard deviation for 4 of 8 daily technical replicates (with 2 highest
and 2 lowest values dropped) from serial dilution series combined with other
similarly treated replicates from experiments repeated no less than 2 days and
no more than 4 days.
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washes were very rapid (<1 min) it thus provides evidence that adsorption of functionally active 
antibody onto “virgin” polystyrene was almost instantaneous. 

  

Figure 4. Scanning electron micrograph of bacteria associated with a single microarrayed 
spot of capture antibody. Live E. coli O157:H7, at two initial concentrations of  
105 CFU/mL (A) and 108 CFU/mL (B) captured by array-printed antibodies  
(non-biotinylated anti-E. coli O157:H7 antibody) passively adsorbed to polystyrene well 
bottoms of a microtiter plate. Prior to SEM analysis, the BSA blocked plates were 
centrifuged (3220 × g for 5 min) to promote capture of bacteria (The scale bar is 20.0 µm 
in length). 

The established conditions (5 min centrifugation of analyte with array-printed antibodies and  
60 min fluorescent antibody conjugate reaction) were considered an optimal compromise between 
immunoassay response and total assay time. The combination of these conditions was applied to the 
co-detection of E. coli O157:H7 bacterial cells and Stx1 toxin (Figure 5). Heat-killed cells were 
specifically selected for testing not only because the effect of centrifugation on bacterial analyte had 
already been assessed, but more so since it was of concern to task the assay (i.e., test for potential 
antibody cross-reactivity) with disrupted cells to insure that internal cell components would not affect 
the assay response when both analytes were combined for detection. Note, the selected Shigatoxigenic 
strain, B1409, of E. coli O157:H7 employed in this study produces only Stx2, and not Stx1. Figure 5A 
clearly shows that detection of the bacteria was essentially no different (P = 0.104) in the presence or 
absence of the toxin. The limit of detection, based on the criteria employed with Figure 3E (above), for 
the heat-killed cells (Figure 5A) was the same for the live cells being ~5.8 × 105 cells/mL. Conversely, 
detection of Stx1, in the presence of the bacteria, exhibited essentially the same dose-response curve as 
observed for detection of toxin alone under the same conditions (refer to Figure 3D). The detection 
limit, also determined as above, for Stx1 was ~110 ng/mL as derived from the data presented in Figure 5B. 

Figure 4. Scanning electron micrograph of bacteria associated with a single
microarrayed spot of capture antibody. Live E. coli O157:H7, at two
initial concentrations of 105 CFU/mL (A) and 108 CFU/mL (B) captured
by array-printed antibodies (non-biotinylated anti-E. coli O157:H7 antibody)
passively adsorbed to polystyrene well bottoms of a microtiter plate. Prior to SEM
analysis, the BSA blocked plates were centrifuged (3220 ˆ g for 5 min) to promote
capture of bacteria (The scale bar is 20.0 µm in length).

Figure 4 displays scanning electron micrographs of fixed and dried E. coli
O157:H7 cells captured by antibodies passively adsorbed to the well bottoms of
polystyrene microtiter plates. Centrifugation was employed to enhance capture
of the cells. Such an investigation may be used to correlate the fluorescence
response versus the actual total number of cells associated with the microarrayed
capture antibody spot. However, a very interesting observation was made that
was particularly evident in Figure 4B. Whether array printing nucleic acids or
antibodies, any excess unbound biorecognition element may bind outside of the
intended printing area. Further binding of target (and subsequent label to the
target) in these regions results in a smear often referred to as a “comet tailing”. Such
comet tailing has been observed throughout years of our array-based research using
various antibody systems at different concentration levels and washing techniques
(data not shown). In Figure 4B, the comet tailing appears to represent excess capture
antibody not thoroughly removed via washing and since washes were very rapid
(<1 min) it thus provides evidence that adsorption of functionally active antibody
onto “virgin” polystyrene was almost instantaneous.

260



The established conditions (5 min centrifugation of analyte with array-printed
antibodies and 60 min fluorescent antibody conjugate reaction) were considered an
optimal compromise between immunoassay response and total assay time. The
combination of these conditions was applied to the co-detection of E. coli O157:H7
bacterial cells and Stx1 toxin (Figure 5). Heat-killed cells were specifically selected
for testing not only because the effect of centrifugation on bacterial analyte had
already been assessed, but more so since it was of concern to task the assay (i.e., test
for potential antibody cross-reactivity) with disrupted cells to insure that internal
cell components would not affect the assay response when both analytes were
combined for detection. Note, the selected Shigatoxigenic strain, B1409, of E. coli
O157:H7 employed in this study produces only Stx2, and not Stx1. Figure 5A
clearly shows that detection of the bacteria was essentially no different (P = 0.104)
in the presence or absence of the toxin. The limit of detection, based on the criteria
employed with Figure 3E (above), for the heat-killed cells (Figure 5A) was the
same for the live cells being ~5.8 ˆ 105 cells/mL. Conversely, detection of Stx1, in
the presence of the bacteria, exhibited essentially the same dose-response curve as
observed for detection of toxin alone under the same conditions (refer to Figure 3D).
The detection limit, also determined as above, for Stx1 was ~110 ng/mL as derived
from the data presented in Figure 5B.
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Figure 5. Microarray detection of bacteria and/or toxin under optimized immunoassay 
conditions. Heat-killed E. coli O157:H7 and Stx1 toxin were combined and 3-fold serially 
diluted in PBS to yield concentration ranges of 1.4 × 108 to 6.4 × 104 cells mL−1 and  
9 × 103 to 4.1 ng mL−1 for the bacteria and toxin, respectively. The samples were subjected 
to microarray detection using immunoassay conditions (sample centrifuged for 5 min with 
capture antibody (non-biotinylated for E. coli and biotinylated for toxin, microarray printed 
to the bottoms of microtiter plate wells) and then reacted with fluorescent antibody 
conjugate for 60 min before laser-induced fluorescence scanning) optimized in this 
investigation. The dose-response curves in (A) exhibit the microarray response versus 
concentration for E. coli O157:H7 in the presence or absence of Stx1 whereas (B) displays 
the dose-response curve for Stx1 in the presence of serially diluted E. coli O157:H7. Each 
data point represented the mean ± standard deviation for 4 of 8 daily technical replicates 
(with 2 highest and 2 lowest values dropped) from serial dilution series combined with 
other similarly treated replicates from experiments repeated once. 

  

Figure 5. Microarray detection of bacteria and/or toxin under optimized
immunoassay conditions. Heat-killed E. coli O157:H7 and Stx1 toxin were
combined and 3-fold serially diluted in PBS to yield concentration ranges of
1.4 ˆ 108 to 6.4 ˆ 104 cells¨mL´1 and 9 ˆ 103 to 4.1 ng¨mL´1 for the bacteria
and toxin, respectively. The samples were subjected to microarray detection using
immunoassay conditions (sample centrifuged for 5 min with capture antibody
(non-biotinylated for E. coli and biotinylated for toxin, microarray printed to the
bottoms of microtiter plate wells) and then reacted with fluorescent antibody
conjugate for 60 min before laser-induced fluorescence scanning) optimized in this
investigation. The dose-response curves in (A) exhibit the microarray response
versus concentration for E. coli O157:H7 in the presence or absence of Stx1 whereas
(B) displays the dose-response curve for Stx1 in the presence of serially diluted
E. coli O157:H7. Each data point represented the mean ˘ standard deviation for
4 of 8 daily technical replicates (with 2 highest and 2 lowest values dropped)
from serial dilution series combined with other similarly treated replicates from
experiments repeated once.
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4. Conclusions

This investigation demonstrated that elimination of the costly
streptavidin/biotin binding system with passive adsorption of microarray
printed antibodies in 96-well, relatively inexpensive polystyrene microtiter plates
can be a useful and cost-reduced method for high-throughput, multiplexed
detection of analytes. This work further revealed that a 60 min static incubation
may be replaced with a much shorter (5 min) centrifugation step that significantly
increased detection response for intact bacteria (E. coli O157:H7) but not for a
considerably smaller proteinaceous toxin (Stx1, a biomolecule of approx. molecular
weight of 68 kD). Agitation of aqueous mixtures of analyte by shaking or manual
aspiration/dispensing only marginally enhanced detection of live bacteria but
had no impact on the detection of Stx1 indicating that intact cells, and not
fragments or relatively small biomolecules, were solely influenced by the applied
centrifugal force. A prospective alternative to centrifugation may be employing
multiwell plates that incorporate biorecognition element arrayed filter membranes,
a combination recently exhibited by [33]. Any process that forces analyte and
antibody probe and/or subsequent reporter probe into close association will be
advantageous to detection as exhibited by the method herein.

With the introduction of centrifugation during exposure of sample to capture
antibody, a significant reduction in total assay time was afforded thus representing a
major milestone towards the future development of an array-based assay that may
be employed for typing mixed cultures within an 8 h workshift. This timeframe
will allow for sample preparation (e.g., pre-filtration of extraneous matrix) and
a brief growth enrichment culture that may be conducted in an MPN fashion
if quantitation is desired. Therefore, intent was to limit the total immunoassay
time to ~2.5 h, hence conditions that enhanced assay performance were primarily
judged from signal amplitude, and secondarily for absolute error associated with
individual data points. Though, as is often observed with immunoassay response
curves, absolute error levels increased with analyte concentration, however, relative
error generally remained constant. As described above, LOD determination only
involved using background response and error as compared to near LOD response
and error. Overall, this optimized assay yields conservatively determined limits of
detection of 5.8 ˆ 105 cells/mL for both live and heat-killed E. coli O157:H7 and 110
ng/mL for Stx1in a total assay time of ~75 min. These results represent an ~40%
improvement in bacterial detection limit for E. coli O157:H7 with a corresponding
50% reduction in total assay time as compared with an analogous assay previously
developed by this group [15]. Though the results were promising, there is always
room for improvement for this as well as other rapid methods since detection of
“zero tolerance” pathogens ultimately requiring the need to detect a single cell in
approx. 100 g or more of food.
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In the future, these assays may incorporate automated plate handling,
washing, and pipetting systems, as well as automated sample preparation
for enhancement of sensitivity via target concentration achieved with
cross-flow microfiltration [34] or antibody-coated paramagnetic particle-based
immunomagnetic separation. This multiplex protein microarray format, performed
in individual wells of 96-multiwell plates, may be used for high-throughput
screening in clinical diagnostics and food testing as well as the characterization of
biorecognition elements.

Acknowledgments: Acknowledgments: We gratefully thank Alan Lightfield from the
Eastern Regional Research Center, Agricultural Research Service, U.S. Department of
Agriculture for mass spectral analysis of select reagents. Mention of brand or firm names does
not constitute an endorsement by the USDA over others of a similar nature not mentioned.
The USDA is an equal opportunity employer.

Author Contributions: Author Contributions: Andrew G. Gehring, Jeffrey D. Brewster;
Shu-I Tu, and Joseph Uknalis conceived and designed the experiments; Andrew G. Gehring,
Tawana Simons, and Joseph Uknalis performed the experiments; Andrew G. Gehring, Jeffrey
D. Brewster, Yiping He, Peter L. Irwin, George C. Paoli, and Joseph Uknalis analyzed
the data: Andrew G. Gehring, George C. Paoli, Yiping He, and Joseph Uknalis provided
background information; Andrew G. Gehring, Tawana Simons, and Joseph Uknalis compiled
figures/tables and wrote the manuscript; Andrew G. Gehring, Jeffrey D. Brewster, Yiping
He, Peter Irwin, George C. Paoli, Tawana Simons, Shu-I Tu, and Joseph Uknalis edited
the manuscript.

Conflicts of Interest: Conflicts of Interest: The authors declare no conflict of interest.

References

1. Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.;
Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major
pathogens. Emerg. Infect. Dis. 2011, 17, 7–15.

2. Fratamico, P.; Gehring, A.; Karns, J.; van Kessel, J. Chapter 2: Detecting Pathogens
in Cattle and Meat. In Improving the Safety of Fresh Meat; Sofos, J., Ed.; Woodhead
Publishing, Ltd.: Cambridge, UK, 2005; pp. 24–55.

3. Lazcka, O.; Campo, F.J.D.; Muñoz, F.X. Pathogen detection: A perspective of traditional
methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217.

4. Bhunia, A.K. Biosensors and Bio-Based Methods for the Separation and Detection of
Foodborne Pathogens. In Advances in Food and Nutrition Research; Taylor, S.L., Ed.;
Academic Press: Waltham, MA, USA, 2008; pp. 1–44.

5. Rangel, J.M.; Sparling, P.H.; Crowe, C.; Griffin, P.M.; Swerdlow, D.L. Epidemiology of
Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg. Infect. Dis. 2005,
11, 603–609.

6. Anonymous. Surveillance for Foodborne Disease Outbreaks—United States, 2007.
Morb. Mortal. Wkly. Rep. 2010, 59, 973–979.

264



7. Anonymous. Ongoing multistate outbreak of Escherichia coli serotype O157:H7
infections associated with consumption of fresh spinach—United States, September
2006. MMWR Morb. Mortal. Wkly. Rep. 2006, 55, 1045–1046.

8. Velusamy, V.; Arshak, K.; Korostynska, O.; Oliwa, K.; Adley, C. An overview of
foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 2010,
28, 232–254.

9. Jasson, V.; Jacxsens, L.; Luning, P.; Rajkovic, A.; Uyttendaele, M. Alternative microbial
methods: An overview and selection criteria. Food Microbiol. 2010, 27, 710–730.

10. Sapsford, K.E.; Ngundi, M.M.; Moore, M.H.; Lassman, M.E.; Shriver-Lake, L.C.;
Taitt, C.R.; Ligler, F.S. Rapid Detection of Foodborne Contaminants Using an Array
Biosensor. Sens. Actuators B Chem. 2006, 113, 599–607.

11. Liu, Y.; Fratamico, P. Escherichia coli O antigen typing using DNA microarrays. Mol. Cell.
Probes 2006, 20, 239–244.

12. Suo, B.; He, Y.; Paoli, G.; Gehring, A.; Tu, S.I.; Shi, X. Development of
an oligonucleotide-based microarray to detect multiple foodborne pathogens.
Mol. Cell. Probes 2010, 24, 77–86.

13. Shriver-Lake, L.C.; Turner, S.; Taitt, C.R. Rapid detection of Escherichia coli O157:H7
spiked into food matrices. Anal. Chim. Acta 2007, 584, 66–71.

14. Chen, C.-S.; Durst, R.A. Simultaneous detection of Escherichia coli O157:H7, Salmonella
spp. and Listeria monocytogenes with an array-based immunosorbent assay using
universal protein G-liposomal nanovesicles. Talanta 2006, 69, 232–238.

15. Gehring, A.G.; Albin, D.M.; Reed, S.A.; Tu, S.-I.; Brewster, J.D. An antibody microarray,
in multiwell plate format, for multiplex screening of foodborne pathogenic bacteria and
biomolecules. Anal. Bioanal. Chem. 2008, 391, 497–506.

16. Anjum, M.F.; Tucker, J.D.; Sprigings, K.A.; Woodward, M.J.; Ehricht, R. Use of
Miniaturized Protein Arrays for Escherichia coli O Serotyping. Clin. Vaccine Immunol.
2006, 13, 561–567.

17. Desmet, C.; Blum, L.J.; Marquette, C.A. Multiplex microarray ELISA versus classical
ELISA, a comparison study of pollutant sensing for environmental analysis. Environ.
Sci. Processes Impacts 2013, 15, 1876–1882.

18. Ligler, F.S.; Sapsford, K.E.; Golden, J.P.; Shriver-Lake, L.C.; Taitt, C.R.; Dyer, M.A.;
Barone, S.; Myatt, C.J. The array biosensor: Portable, automated systems. Anal. Sci.
2007, 23, 5–10.

19. Kingsmore, S.F. Multiplexed protein measurement: Technologies and applications of
protein and antibody arrays. Nat. Rev. Drug Discov. 2006, 5, 310–320.

20. Seidel, M.; Niessner, R. Automated analytical microarrays: A critical review. Anal.
Bioanal. Chem. 2008, 391, 1521–1544.

21. Zhang, Z.; Li, P.; Hu, X.; Zhang, Q.; Ding, X.; Zhang, W. Microarray technology for major
chemical contaminants analysis in food: Current status and prospects. Sensors 2012, 12,
9234–9252.

22. Gehring, A.G.; Tu, S.-I. High-Throughput Biosensors for Multiplexed Food-Borne
Pathogen Detection. Annl. Rev. Anal. Chem. 2011, 4, 151–172.

265



23. Borrebaeck, C.A.K.; Wingren, C. Design of high-density antibody microarrays for
disease proteomics: Key technological issues. J. Proteom. 2009, 72, 928–935.

24. Haab, B.B. Applications of antibody array platforms. Curr. Opin. Biotechnol. 2006, 17,
415–421.

25. Schaefer, D.W.; Berne, B.J. Number fluctuation spectroscopy of motile microorganisms.
Biophys. J. 1975, 15, 785–794.

26. Bao, Q.; Tian, Y.; Li, W.; Xu, Z.; Xuan, Z.; Hu, S.; Dong, W.; Yang, J.; Chen, Y.; Xue, Y.; et al.
A Complete Sequence of the T. tengcongensis Genome. Genome Res. 2002, 12, 689–700.

27. Kuznetsova, L.A.; Coakley, W.T. Applications of ultrasound streaming and radiation
force in biosensors. Biosens. Bioelectron. 2007, 22, 1567–1577.

28. Ball, H.J.; Mackie, D.P.; Finlay, D.; McNair, J.; Pollock, D.A. An antigen capture ELISA
test using monoclonal antibodies for the detection of Mycoplasma californicum in milk.
Vet. Immunol. Immunopathol. 1990, 25, 269–278.

29. Gehring, A.G.; Patterson, D.L.; Tu, S.I. Use of a light-addressable potentiometric sensor
for the detection of Escherichia coli O157:H7. Anal. Biochem. 1998, 258, 293–298.

30. MacBeath, G.; Schreiber, S.L. Printing proteins as microarrays for high-throughput
function determination. Science 2000, 289, 1760–1763.

31. Gehring, A.G.; Albin, D.M.; Bhunia, A.K.; Reed, S.A.; Tu, S.-I.; Uknalis, J. Antibody
Microarray Detection of Escherichia coli O157:H7: Quantification, Assay Limitations, and
Capture Efficiency. Anal. Chem. 2006, 78, 6601–6607.

32. Steele, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics, with Special Reference to
the Biological Sciences; McGraw-Hill Book Company: New York, NY, USA, 1960.

33. Le Goff, G.C.; Desmet, C.; Brès, J.-C.; Rigal, D.; Blum, L.J.; Marquette, C.A. Multipurpose
high-throughput filtering microarrays (HiFi) for DNA and protein assays. Biosens.
Bioelectron. 2010, 26, 1142–1151.

34. Li, X.; Ximenes, E.; Amalaradjou, M.A.R.; Vibbert, H.B.; Foster, K.; Jones, J.; Liu, X.;
Bhunia, A.K.; Ladisch, M.R. Rapid sample processing for detection of food-borne
pathogens via cross-flow microfiltration. Appl. Environ. Microbiol. 2013, 79, 7048–7054.

266



Portable Nanoparticle-Based Sensors for
Food Safety Assessment
Gonca Bülbül and Silvana Andreescu

Abstract: The use of nanotechnology-derived products in the development of sensors
and analytical measurement methodologies has increased significantly over the past
decade. Nano-based sensing approaches include the use of nanoparticles (NPs) and
nanostructures to enhance sensitivity and selectivity, design new detection schemes,
improve sample preparation and increase portability. This review summarizes recent
advancements in the design and development of NP-based sensors for assessing
food safety. The most common types of NPs used to fabricate sensors for detection of
food contaminants are discussed. Selected examples of NP-based detection schemes
with colorimetric and electrochemical detection are provided with focus on sensors
for the detection of chemical and biological contaminants including pesticides, heavy
metals, bacterial pathogens and natural toxins. Current trends in the development of
low-cost portable NP-based technology for rapid assessment of food safety as well as
challenges for practical implementation and future research directions are discussed.

Reprinted from Sensors. Cite as: Bülbül, G.; Hayat, A.; Andreescu, S.
Portable Nanoparticle-Based Sensors for Food Safety Assessment. Sensors 2015,
15, 30736–30758.

1. Introduction

Food safety remains a major concern worldwide. The presence of unsafe levels
of chemical and biological toxins in food represents a serious threat to the safety of
the food supply and public health. According to the World Health Organization
(WHO), foodborne illnesses predominantly affect the economy of underdeveloped
nations. Food safety issues in developing countries are widely recognized; estimates
indicate around 1500 annually diarrheal episodes occurring globally, 75% of which
are attributed to biological contamination of food, resulting in ~3 million deaths [1].
The WHO has placed food safety among its top 11 priorities. The U.S. Centers
for Disease Control and Prevention have estimated that 48 million Americans get
sick because of contaminated food, 128,000 are hospitalized and 3000 die due to
foodborne diseases [2].

In order to manage and overcome the problems related to foodborne illnesses,
it is important to develop easy-to-use tests that can rapidly measure the presence
of toxic contaminants in food so that remedial actions can be taken. Most analysis
of chemical and biological contaminants is performed in centralized laboratories
and only a limited number of samples can be tested. More effective methods are
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needed to facilitate the screening of potentially contaminated samples remotely at
food production and handling locations where resources or specialized equipment
are not available. Several types of enzyme-based and bioaffinity assays have been
reported as alternatives to conventional analytical instrumentation [3–7], albeit
with few examples of food safety applications [8–11]. While progress has been
made, these assays are still complex and costly, involve multiple analysis steps,
addition of sensitive reagents and expensive instrumentation; and are not portable.
Easy-to-use inexpensive methods that could be deployed remotely to site locations
would significantly improve management and control of food quality and safety.

Nanotechnology-derived products have provided a wide range of material
candidates that can be used to increase portability and enhance stability, selectivity
and sensitivity of sensors and analytical measurement technologies. Nanotechnology
is most widely used in electronics, sensing, biomaterials and catalysis [12–14] and
more recently has made its way into the food industry [15]. Current applications
comprise: nanomaterial-based encapsulation and delivery systems, antibacterial
nanoparticles, NP additives for increasing the flavour and shelf-life of food products
and for, tracking, tracing and brand protection [15,16]. Developments in the control
of size, surface properties and assembly of NP systems provide opportunities
for the development of advanced sensing systems and portable instrumentation
that incorporate nanotechnology enabled solutions. Colorimetric [17] and
electrochemical [18] detection systems have already been integrated with low-cost
platforms such as patterned paper enabling on-site analysis. These portable, low
cost and user-friendly sensors have been developed as alternative to conventional
analytical methods for point of care medical diagnosis [19], environmental
monitoring and food quality control [20]. Application of screen printed carbon
electrodes (SPCE) as a portable platform in electrochemical sensors for environmental
monitoring and food quality control have been extensively reported [21]. This
review summarizes recent advancements in the design and development of NP-based
sensors for assessing food safety. Selected examples the from literature on NP-based
detection schemes, operational parameters and applications for measurement of food
contaminants, as well as challenges for practical implementation and future research
directions are discussed.

2. Common Types of Nanostructures in Nanotechnology-Based
Sensing Approaches

2.1. Gold NPs

Most common nanotechnology-based sensing approaches utilize noble metal
NPs such as gold [22] and silver [23–26]. Such applications are enabled by the
useful optical properties of these NPs which can be tuned by changing the size,
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shape, local environment, and the synthesis method [27,28]. AuNPs have been
used as carriers [29] for the biorecognition element such as antibodies or aptamers
and as labels for signal transduction and amplification [30]. The basis for the
absorption-based colorimetric sensing involves aggregation-induced interparticle
surface plasmon coupling of AuNPs which results in a visible color change from red
to blue. This concept has provided a practical platform for detection of any target
analyte that triggers the AuNPs aggregation or re-dispersion [31]. AuNPs have been
widely used to increase surface area and conductivity in electrochemical sensors.
A variety of colorimetric and electrochemical assays based on AuNPs have been
reported for the detection of chemical contaminants such as alkali and alkaline earth
metal ions [32–34], heavy metal ions [35–38] and for assessment of microbiological
food contamination like bacteria [39,40]. An example of colorimetric AuNP-based
sensing for detection of pathogenic bacteria is shown in Figure 1. A detailed review
on AuNP-based sensing has been published [31].Sensors 2015, 15, 30736-30758 
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Figure 1. (A) Schematic of a colorimetric AuNPs based approach to selectively target and destroy 
pathogenic bacteria with antibody-conjugated oval-shaped AuNPs; (B-a) Absorption-profile of 
anti-salmonella-antibody-conjugated oval-shaped AuNPs in the absence of bacteria (red) due to the 
addition of 106 CFU/mL E. coli bacteria (green) or different concentrations of Salmonella bacteria (10 
(black), 50 (dark blue), 103 (light blue), 104 (pink), and 105 bacteria (yellow)). The new band at 
around 680 nm following the addition of Salmonella, indicates the aggregation of the AuNPs (B-b) 
Photograph shows colorimetric change upon the addition of (A1) 10, (A2) 50, (A3) 100, (A4) 500, (A5) 
1000, (A6) 5000, (A7) 10,000, (A8) 50,000, (A9) 100,000, and (A10) 500,000 Salmonella (reprinted with 
permission from [41]). 

2.2. Silver NPs 

Several sensing systems based on the optical properties of silver NPs (AgNPs) have been 
reported [24,42]. The color change between dispersed and aggregated AgNPs from yellow to brown 
can be associated with the concentration change of a target molecule [43]. Based on this principle, 
various AgNP-based assays have been developed for detection of metal ions [44], proteins [45], 
melamine [46] and pesticides [47]. 

 
Figure 2. Schematic illustration of colorimetric method with AgNPs/dopamine system for the detection 
of melamine (reproduced from [48] with permission of The Royal Society of Chemistry). 
 

Figure 1. (A) Schematic of a colorimetric AuNPs based approach to selectively
target and destroy pathogenic bacteria with antibody-conjugated oval-shaped
AuNPs; (B-a) Absorption-profile of anti-salmonella- antibody-conjugated
oval-shaped AuNPs in the absence of bacteria (red) due to the addition of 106

CFU/mL E. coli bacteria (green) or different concentrations of Salmonella bacteria
(10 (black), 50 (dark blue), 103 (light blue), 104 (pink), and 105 bacteria (yellow)).
The new band at around 680 nm following the addition of Salmonella, indicates the
aggregation of the AuNPs (B-b) Photograph shows colorimetric change upon the
addition of (A1) 10, (A2) 50, (A3) 100, (A4) 500, (A5) 1000, (A6) 5000, (A7) 10,000,
(A8) 50,000, (A9) 100,000, and (A10) 500,000 Salmonella (reprinted with permission
from [41]).
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2.2. Silver NPs

Several sensing systems based on the optical properties of silver NPs (AgNPs)
have been reported [24,42]. The color change between dispersed and aggregated
AgNPs from yellow to brown can be associated with the concentration change of
a target molecule [43]. Based on this principle, various AgNP-based assays have
been developed for detection of metal ions [44], proteins [45], melamine [46] and
pesticides [47].
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Figure 2. Schematic illustration of colorimetric method with AgNPs/dopamine
system for the detection of melamine (reproduced from [48] with permission of The
Royal Society of Chemistry).

Figure 2 shows an example of sensing of melamine based on the optical
properties of AgNPs [48]. As compared to AuNPs, AgNPs retain higher extinction
coefficients and have lower cost [49]. However, less focus has been placed on AgNPs
based sensing due to the following limitations: (1) the functionalization of AgNPs
can cause chemical degradation of NPs to silver ions and (2) the surface of AgNPs
can be easily oxidized [26].

2.3. Cerium Oxide NPs

The use of cerium oxide NPs, or nanoceria as an active sensing component in
portable assays is rapidly emerging [50–53]. Nanoceria has the ability to change redox
states and surface properties due to the presence of dual reversible oxidation state of
cerium Ce(III)/Ce(IV) on the NP surface. Nanoceria particles have been found to
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possess peroxidase-, superoxide- and oxidase-like activity [54] suggesting that they
could potentially replace these enzymes in the development of analytical assays [51].
Nanoceria is optically active and can develop unique color patterns depending
upon specific interactions at their surface. These changes can be associated with
a target analyte which make these particles an attractive choice from colorimetric
sensing [55]. We have used the optical changes of nanoceria upon interaction with
phenolics and H2O2 to fabricate portable colorimetric sensors for the detection of
food antioxidants and glucose in which nanoceria acts as a colorimetric probe [51,
55,56]. When used in conjunction with other metal oxides it is possible to establish
a multi-array sensory panel in which each sensor provides a unique signature that
could be used for cross-validation and increased accuracy [55,57]. Recently, we
have utilized the enzyme mimetic properties of nanoceria to develop a portable
enzyme-less electrochemical aptasensor for detection of food contaminants such as
mycotoxins [50]. The general sensing design is shown in Figure 3.
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Figure 3. Non-enzymatic electrochemical aptasensor based on the use of a nanoceria tag and 
graphene oxide (GO) on a screen-printed electrode (SPCE) for the detection of ochratoxin A (OTA) 
(reproduced from [50] with permission of The Royal Society of Chemistry). 

2.4. Carbon Nanotubes and Graphene 

Graphene is an isolated single atomic layer of graphite which is currently utilized in 
electrochemical analysis due to its exceptional conductivity. Since the investigation of exfoliation 
and characterization of graphene by Geim and Novoselov in 2004 [58], the remarkable electronic 
transport properties of individual graphene sheets have been demonstrated in many studies [59,60]. 
The large surface area, high conductivity and ease of modification with biomolecules have been 

Figure 3. Non-enzymatic electrochemical aptasensor based on the use of a
nanoceria tag and graphene oxide (GO) on a screen-printed electrode (SPCE) for
the detection of ochratoxin A (OTA) (reproduced from [50] with permission of The
Royal Society of Chemistry).

2.4. Carbon Nanotubes and Graphene

Graphene is an isolated single atomic layer of graphite which is currently
utilized in electrochemical analysis due to its exceptional conductivity. Since the
investigation of exfoliation and characterization of graphene by Geim and Novoselov
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in 2004 [58], the remarkable electronic transport properties of individual graphene
sheets have been demonstrated in many studies [59,60]. The large surface area,
high conductivity and ease of modification with biomolecules have been applied to
a variety of biosensing systems [61–63], particularly those with electrochemical
detection [64,65]. Graphene-based composite materials have been fabricated
for electrochemical detection of food contaminants such as bisphenol A [66,67],
hydrazine and nitrite [68], organophosphorus pesticides [69] and bacteria [70]. In
addition, colorimetric detection of melamine [71], ochratoxin A [72], and mercury
(II) (Hg2+) and silver (I) (Ag+) [73] ions using graphene-based composite materials
has also been reported. Applications of graphene-based nanomaterials have been
reviewed [74].

2.5. Magnetic Nanoparticles

Magnetic nanoparticles (MNPs) have been mostly utilized as immobilization
supports in sensing assays and in the development of immunomagnetic separations
and magnetically loaded and controlled sensoring platforms [75]. Functionalized
MNPs with a variety of surface groups are readily available, permitting development
of different strategies for detection of a variety of analytes [76]. Their large surface
area and the increased possibilities for enhancing the assay kinetics, control the
loading and improve the immobilization efficiency are some of the advantages of
MNPs, which make them one of the most widely used NPs for detection and removal
of food contaminants [77]. A multiplexed magnetic microsphere immunoassay for
detection of food pathogens developed by Kim et al. showed good operational
performance in spiked foodstuff such as apple juice, green pepper, tomato, ground
beef, alfalfa sprouts, milk, lettuce, spinach, and chicken washes [78]. Magnetic beads
conjugated with bacteriophage were utilized for the detection of E. coli in drinking
water with a detection limit of 10 cfu/mL after pre-enrichment [79]. A sensor design
by integrating magnetic nanobeads for detection of organophosphate insecticides
using acetylcholinesterase was demonstrated on screen printed carbon electrode
surface [80].

2.6. Low-Cost Platforms for Portable NP-Based Detection

Two types of transducer platforms are preferred for the development of
inexpensive portable NP-based sensors: (1) screen printed electrodes and (2) paper.
The screen printing technology is a low cost process that has been extensively used in
artistic applications and for design electronic circuits. In the 80s, the screen printing
technology was extended to the fabrication of portable electrochemical sensors,
making them more suitable for commercialization [81]. Biosensors based on screen
printed electrodes offer the advantages of reduced cost, ease in automation and good
reproducibility and sensitivity characteristics. Various nanomaterials including but
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not limited to carbon nanomaterials, CeO2, Au, Ag and ZnO NPs have been added
as active sensing components to working electrodes to increase surface area, add
catalytic properties and amplify electrochemical signals. Some approaches involve
the addition of NPs or nanotubes in the composition of screen-printed inks [82]. In
other procedures, nanomaterials are drop-casted in DMF/water or electrodeposited
on the working electrode surface [83]. The use of nanomaterials in the design of
SPCE electrodes provides the following benefits [76]: (a) immobilization support for
biomolecules increasing stability and bioactivity; (b) mediator to promote electron
transfer reactions, lower the working potential and prevent interferences problems,
improving sensitivity and selectivity; (c) electroactive label for electrochemical
striping techniques to generate an electrochemical signal; (d) catalyst to amplify
the electrochemical signal, enhancing sensitivity. Several examples of disposable
nanomaterials-based SPCE electrochemical biosensors have been reported for the
detection of food contaminants including pesticides, bacterial toxins and mycotoxins
as well as for the detection of food antioxidants [84]. Specific examples will be
discussed in the following section.

Another type of material that has received significant attention as a sensing
platform in the last few years is paper. Starting with Whitesides’ report in 2007,
there has been a tremendous effort to develop paper-based low-cost sensors
as alternatives to conventional methods for field analysis [17,85]. Paper is the
simplest, most affordable and abundant material. Examples of paper bioassays
include patterned paper fabricated by photolithography for detection of glucose
and bovine serum albumin [17], inkjet-printed paperfluidic immuno-chemical
sensing device [86], aptamer—NP-based lateral flow devices for detection of DNA
sequences [87], inkjet-printed enzyme sensors for the detection of bisphenol A in
field samples [88,89]. Paper based sensors are miniaturized, disposable and can
be used for on-site analysis. Conductive materials can be added to modify the
paper surface and enable electrochemical detection. These platforms have been
integrated with colorimetric [90] and electrochemical [85,91] detection methods. The
use of paper-based electrochemical sensors has been demonstrated for detection
of analytes of interest in environmental monitoring, health care and food quality
control [92]. Baxter et al. have proposed a simple and economical process to fabricate
gold electrodes on paper using a camera flach sintering step [93]. Nie et al. [94] have
integrated an electrochemical paper sensor with a commercial glucometer and have
demonstrated applicability for on-site analysis of ethanol in food. The detection
involved the enzymatic conversion of ethanol with alcohol dehydrogenase in the
presence of β-NAD+. Ferricyanide was used as a mediator to enhance electron
transfer [94]. Most paper based biosensors are still in their early developmental stage,
especially in the field of food quality control. We have recently developed a portable
and reagentless NP-based paper platform to detect oxidase enzyme substrates (e.g.,
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glucose) [51] and polyphenols in food samples (e.g., wild mushrooms, wine, juice
and green tea) [55] using the redox and surface chelating properties of nanoceria.
Detection of the analyte was performed by quantifying the color change of the
particles after reaction with the product of the enzymatic reaction (H2O2) or the
polyphenol. All reagents needed for detection were immobilized onto paper. There
was no need for addition of external reagents or the use of a power supply to perform
analysis; the only step needed for analysis was the addition of the analyte. The
enzyme sensor was very robust and stable over several months. The nanoceria-based
antioxidant assay operates similar to a small sensor patch that changes color after
contact with antioxidants (Figure 4). The sensor provided an optical signature
of the antioxidant power of the sample [57]. When used in conjunction with
other metal oxides it is possible to establish a multisensor panel in which each
sensor provides a unique signature that could be used for cross-validation and
increased accuracy [55,57]. This sensor has demonstrated applicability and excellent
performances of field analysis of the brewing conditions for a large number of green
tea samples [95].

Sensors 2015, 15, 30736-30758 

30741 

and can be used for on-site analysis. Conductive materials can be added to modify the paper surface 
and enable electrochemical detection. These platforms have been integrated with colorimetric [90] 
and electrochemical [85,91] detection methods. The use of paper-based electrochemical sensors has 
been demonstrated for detection of analytes of interest in environmental monitoring, health care and 
food quality control [92]. Baxter et al. have proposed a simple and economical process to fabricate 
gold electrodes on paper using a camera flach sintering step [93]. Nie et al. [94] have integrated an 
electrochemical paper sensor with a commercial glucometer and have demonstrated applicability 
for on-site analysis of ethanol in food. The detection involved the enzymatic conversion of ethanol 
with alcohol dehydrogenase in the presence of β-NAD+. Ferricyanide was used as a mediator to 
enhance electron transfer [94]. Most paper based biosensors are still in their early developmental 
stage, especially in the field of food quality control. We have recently developed a portable and 
reagentless NP-based paper platform to detect oxidase enzyme substrates (e.g., glucose) [51] and 
polyphenols in food samples (e.g., wild mushrooms, wine, juice and green tea) [55] using the redox 
and surface chelating properties of nanoceria. Detection of the analyte was performed by 
quantifying the color change of the particles after reaction with the product of the enzymatic 
reaction (H2O2) or the polyphenol. All reagents needed for detection were immobilized onto paper. 
There was no need for addition of external reagents or the use of a power supply to perform 
analysis; the only step needed for analysis was the addition of the analyte. The enzyme sensor was 
very robust and stable over several months. The nanoceria-based antioxidant assay operates similar 
to a small sensor patch that changes color after contact with antioxidants (Figure 4). The sensor 
provided an optical signature of the antioxidant power of the sample [57]. When used in conjunction 
with other metal oxides it is possible to establish a multisensor panel in which each sensor provides 
a unique signature that could be used for cross-validation and increased accuracy [55,57]. This 
sensor has demonstrated applicability and excellent performances of field analysis of the brewing 
conditions for a large number of green tea samples [95]. 

 
Figure 4. Operational concept of the NanoCerac assay based on surface-immobilized nanoceria 
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3. NP-Based Technologies for the Detection of Biological and
Chemical Contaminants

3.1. Current Status of Foodborne-Related Illnesses

The food industry is the largest manufacturing sector in the world [96].
Unwashed foods, inadequate processing or cooking, poor quality of water can be a
direct source of foodborne diseases. Excessive use of agrochemicals (pesticides, plant
growth regulators, veterinary drugs) and presence of environmental contaminants
and harmful microorganisms such as pathogenic bacteria, viruses, or parasites are
the common causes of food contamination. According to the U.S. Food and Drug
Administration (US-FDA) the primary contaminants leading to foodborne illness
are pathogenic microorganisms including: Bacillus cereus, Clostridium botulinum,
Escherichia coli (E. coli), hepatitis A, Listeria monocytogenes, Noroviruses, Salmonella
and Staphylococus aureus, among others. Other contaminants, such as the toxic
fungal metabolites known as mycotoxins are rapidly emerging. Currently, there
are limited methods for field detection of toxins and foodborne pathogens, making
early identification of a possible contamination difficult. To prevent and manage
contamination, there is a need to develop portable and inexpensive detection tools
that can provide effective screening and facilitate the analysis at food production
and handling locations where specialized equipment is not available. Being able to
assess the safety of food from the production process until it reaches the consumer
is important for assessing food related health risks. The integration of NPs in the
analysis methods for detection of food contaminants has improved the detection
sensitivity and increased portability. However, the implementation of these methods
for the analysis of real samples still remains as a challenge due to the uncontrollable
properties of NPs in complex environments such as aggregation, non-specific
signals due to interferences and chemical reactions with food constituents. In the
following sections we discuss recently reported NP-based portable assays for the
detection of chemical and biological contamination with their analytical performance
characteristics for the analysis of food.

3.2. Detection of Microbial Contamination

The presence of pathogens in food or water can cause foodborne infections.
They comprise bacteria, viruses, fungi and parasites [97]. The most common
foodborne infections are caused by Campylobacter spp., Salmonella spp. and E. coli
O157:H7 [98,99]. The conventional method for food pathogen detection is colony
counting (CFU) on an agar plate which takes 2–3 days for initial results, and up to
1 week for confirming pathogen specificity [98]. This method is time consuming
and laborious. Polymerase chain reaction (PCR) and enzyme-linked immunosorbent
assay-based (ELISA) can be used as alternative to traditional CFU methods [100].

275



While these methods have high sensitivity and selectivity, both PCR and ELISA
are still slow, labour-intensive and costly to implement in resource-limited settings.
Current research activities target development of methods that can be adapted on
portable platforms to enable rapid testing of a range of pathogens with potential
for on-site analysis [101]. This section provides examples of recently developed
NP-based assays for the detection of pathogens, with specific examples for E. coli
and Salmonella spp.

E. coli O157:H7 [102], which can contaminate ground beef, raw milk, poultry
products, cold sandwiches, vegetables, and drinking water supplies [103–105], is
recognized as one of the most dangerous pathogens. Most methods designed
for on-site detection of E. coli involve competitive displacement assays [39] or
immuno-chromatographic test strips [106]. Miranda et al. developed a hybrid
colorimetric enzymatic nanocomposite biosensor for the detection of E. coli in
aqueous solutions based on enzyme amplification. The efficiency of the method was
demonstrated in both solution and test strip format [40]. In this design, cationic
AuNPs featuring quaternary amine head groups are electrostatically bound to an
anionic enzyme, β-galactosidase, leading to inhibition of the enzyme activity. Upon
binding of bacteria to the AuNPs, β-galactosidase is released restoring its activity.
The binding event was quantified by colorimetric means. Using this strategy, bacteria
at concentrations of 1 ˆ 102 bacteria/mL in solution and 1 ˆ 104 bacteria/mL in a
field-friendly test strip format have been quantified (Figure 5) [40].

An immuno-chromatographic (IC) test strip against E. coli 0157 in enriched
samples (raw beef, pork, bovine feces and swine feces) was developed by
Jung et al. [107]. The test, fabricated in a sandwich format, utilizes a murine
monoclonal antibody against E. coli O157:H7 conjugated to colloidal AuNPs.
Sensitivity of the IC strip was assessed with a10 fold diluted E. coli O157:H7 sample
with a range of 1.8 ˆ 107 to 1.8 colony-forming units (CFU)/mL in enriched raw beef.
The detection limit was 1.8 ˆ 105 CFU/mL without enrichment and 1.8 CFU/mL
after enrichment. 48 of pure bacteria cultures (32 E. coli strains and 16 non-E. coli
strains) were tested to determine the specificity.
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Figure 5. The schematic representation of the sensing mechanism of the colorimetric enzymatic 
nanocomposite biosensor for the detection of E. coli (reprinted with permission from [40]; copyright 
2015 American Chemical Society). 

Three strains showed positive signal to E. coli O157:H7 by the IC strip while the other 29 E. coli 
serotypes were negative. Among the non-E. coli strains, only Citrobacter amalonaticus yielded a 
positive signal. The specificity of the strip was higher with pork samples (98.8%) than with bovine 
(87.9%) and swine (93.4%) feces samples. The assay results were in agreement with the traditional 
culture procedure for the analysis of samples enriched with E. coli O157:H7. In another work, Hossain 
et al. reported a paper test strip for detection of E. coli [101]. The strip was based on the measurement of 
intracellular enzymes (β-galactosidase or β-glucuronidase) activity. The test was fabricated on paper 
strips (0.5 × 8 cm), onto which either 5-bromo-4-chloro-3-indolyl-β-D-glucuronide sodium salt (XG), 
chlorophenol red β-galactopyranoside (CPRG) or both and FeCl3 were entrapped using  
sol– gel-derived silica inks in different zones via an ink-jet printing technique. The XG is broken down 
by β-glucuronidase into D-glucuronic acid and ClBrindoxyl followed by oxidation of the latter into 
ClBr-indigo dye, a blue product. On the other hand, CPRG (yellow colour) is broken down by 
β-galactosidase into chlorophenol red, a red-magenta product. The enzyme β-galactosidase has been 
widely used for counting total coliforms because the coliforms are generally β-galactosidase positive 
[108]. In this design [105] formation of red magenta on paper indicated the presence of coliforms. 
Most E. coli strains possess β-glucuronidase activity [109] but the pathogenic E. coli O157:H7 doesn’t 
[110]. Therefore, the formation of blue color on the paper strips indicated the presence of 
non-pathogenic E. coli, while absence of blue color (and presence of red-magenta) was used as an 
indicator for pathogenic E. coli. Using immunomagnetic NPs for selective pre-concentration, the 
limit of detection was 5 CFU/mL for E. coli O157:H7 and 20 CFU/mL for E. coli BL21, within 30 min 
without cell culturing. Jokerst et al. developed a paper-based sensor for colorimetric detection of 
foodborne pathogens by measuring the color change when an enzyme associated with the pathogen 
of interest reacts with a chromogenic substrate (Figure 6) [99]. When combined with an enrichment 
procedure step of 12 h or less, the paper-based device was capable of detecting bacteria at a 
concentration of 101 CFU/cm2. 

Figure 5. The schematic representation of the sensing mechanism of the colorimetric
enzymatic nanocomposite biosensor for the detection of E. coli (reprinted with
permission from [40]; copyright 2015 American Chemical Society).

Three strains showed positive signal to E. coli O157:H7 by the IC strip while
the other 29 E. coli serotypes were negative. Among the non-E. coli strains, only
Citrobacter amalonaticus yielded a positive signal. The specificity of the strip was
higher with pork samples (98.8%) than with bovine (87.9%) and swine (93.4%)
feces samples. The assay results were in agreement with the traditional culture
procedure for the analysis of samples enriched with E. coli O157:H7. In another
work, Hossain et al. reported a paper test strip for detection of E. coli [101]. The
strip was based on the measurement of intracellular enzymes (β-galactosidase or
β-glucuronidase) activity. The test was fabricated on paper strips (0.5 ˆ 8 cm),
onto which either 5-bromo-4-chloro-3-indolyl-β-D-glucuronide sodium salt (XG),
chlorophenol red β-galactopyranoside (CPRG) or both and FeCl3 were entrapped
using sol– gel-derived silica inks in different zones via an ink-jet printing technique.
The XG is broken down by β-glucuronidase into D-glucuronic acid and ClBrindoxyl
followed by oxidation of the latter into ClBr-indigo dye, a blue product. On the other
hand, CPRG (yellow colour) is broken down by β-galactosidase into chlorophenol
red, a red-magenta product. The enzyme β-galactosidase has been widely used
for counting total coliforms because the coliforms are generally β-galactosidase
positive [108]. In this design [105] formation of red magenta on paper indicated the
presence of coliforms. Most E. coli strains possess β-glucuronidase activity [109]
but the pathogenic E. coli O157:H7 doesn’t [110]. Therefore, the formation of blue
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color on the paper strips indicated the presence of non-pathogenic E. coli, while
absence of blue color (and presence of red-magenta) was used as an indicator for
pathogenic E. coli. Using immunomagnetic NPs for selective pre-concentration, the
limit of detection was 5 CFU/mL for E. coli O157:H7 and 20 CFU/mL for E. coli BL21,
within 30 min without cell culturing. Jokerst et al. developed a paper-based sensor
for colorimetric detection of foodborne pathogens by measuring the color change
when an enzyme associated with the pathogen of interest reacts with a chromogenic
substrate (Figure 6) [99]. When combined with an enrichment procedure step of 12 h
or less, the paper-based device was capable of detecting bacteria at a concentration
of 101 CFU/cm2.Sensors 2015, 15, 30736-30758 
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Figure 6. (A) Schematic shows the enzymatic reaction between galactosidase and chlorophenyl red 
galactopyranoside; (B) Calibration curve for detection of E. coli has been drawn for determination of 
the limit of detection for live bacterial assay (reprinted with permission from [99]; copyright 2015 
American Chemical Society). 

Several lateral flow strip test kits which enable low-cost detection of E. coli O157 in food are 
commercially available: MaxSignal®, RapidChek®, Gen-Probe®, IQuum®, Watersafe®, and others. The 
limit of detection of bacteria using such strips ranges from 104 to 107 CFU/mL without an enrichment 
step. The detection limit for E. coli O157:H7 is ~105 CFU/mL. Yet, culturing steps of at least 8 h are 
mostly required in order to reach a detection limit of 1 CFU/mL [101]. 

Another foodborne pathogen, Salmonella spp. causes one of the most common and widely 
distributed bacterial diseases, salmonellosis [111] with thousands of cases reported annually [111–113]. 
Most reported NP-based assays for Salmonella involve the use of immunomagnetic separation with 
immuno-modified magnetic NPs (MNPs). Joo et al detected Salmonella in milk by using MNPs and 
TiO2 nanocrystals [114]. In this design, Salmonella was selectively captured, concentrated and 
separated from solution by antibody-immobilized magnetic NPs (Figure 7). Subsequent binding of 
antibody-conjugated nanocrystals to the MNP–Salmonella complexes was monitored by absorbance 
measurement. The method enabled detection of 100 CFU/mL for Salmonella in milk. 

 
Figure 7. A schematic representation of the pathogenic bacteria detection method by using magnetic 
nanoparticles and optical nanoprobes (reproduced from [114] with permission of The Royal Society 
of Chemistry). 

Huang et al. demonstrated the use of amine-functionalized (AF) MNPs for rapid capture and 
removal of bacterial pathogens from water, food matrixes and urine samples [115]. The positive 

Figure 6. (A) Schematic shows the enzymatic reaction between galactosidase and
chlorophenyl red galactopyranoside; (B) Calibration curve for detection of E. coli
has been drawn for determination of the limit of detection for live bacterial assay
(reprinted with permission from [99]; copyright 2015 American Chemical Society).

Several lateral flow strip test kits which enable low-cost detection of E. coli O157
in food are commercially available: MaxSignal®, RapidChek®, Gen-Probe®, IQuum®,
Watersafe®, and others. The limit of detection of bacteria using such strips ranges
from 104 to 107 CFU/mL without an enrichment step. The detection limit for E. coli
O157:H7 is ~105 CFU/mL. Yet, culturing steps of at least 8 h are mostly required in
order to reach a detection limit of 1 CFU/mL [101].

Another foodborne pathogen, Salmonella spp. causes one of the most common
and widely distributed bacterial diseases, salmonellosis [111] with thousands of
cases reported annually [111–113]. Most reported NP-based assays for Salmonella
involve the use of immunomagnetic separation with immuno-modified magnetic
NPs (MNPs). Joo et al detected Salmonella in milk by using MNPs and TiO2

nanocrystals [114]. In this design, Salmonella was selectively captured, concentrated
and separated from solution by antibody-immobilized magnetic NPs (Figure 7).
Subsequent binding of antibody-conjugated nanocrystals to the MNP–Salmonella
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complexes was monitored by absorbance measurement. The method enabled
detection of 100 CFU/mL for Salmonella in milk.
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Figure 7. A schematic representation of the pathogenic bacteria detection method
by using magnetic nanoparticles and optical nanoprobes (reproduced from [114]
with permission of The Royal Society of Chemistry).

Huang et al. demonstrated the use of amine-functionalized (AF) MNPs for
rapid capture and removal of bacterial pathogens from water, food matrixes and
urine samples [115]. The positive charges on the surface of AF-MNPs induce strong
electrostatic interactions with the negatively charged sites on the surface of bacterial
pathogens resulting in efficient adsorption of bacteria on the particle surface.

3.3. Detection of Pesticides

The increased use of pesticides in agriculture raises public concern regarding
the safety of food products. Among pesticides, organophosphorus (OP) and
carbamates (C) are the most widely employed, representing ~40% of the
world market of this class of compounds [116,117]. Their mode of action
involves inhibition of acetylcholinesterase (AChE) enzyme which catalyzes the
hydrolysis of neurotransmitter acetylcholine [118,119]. Reference methods for these
compounds include chromatographic techniques (GC and HPLC) and coupled
chromatographic-spectrometric procedures such as GC-MS and HPLC-MS. These
techniques are expensive, time-consuming, and are not easily adaptable for in
situ monitoring. Screening of multiple samples for pesticide contamination at
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site locations requires sensitive, selective and robust methods that can be used
on site [120]. To increase portability and improve detection capabilities several
examples of NP-based assays have been developed as alternative to chromatographic
techniques [121]. Despite many reports on sensors for pesticides, the application of
these devices for the analysis of real food sample has been scarcely demonstrated.

The most popular sensing configurations involve measurement of AChE
inhibition with detection of the enzyme activity before and after exposure to
pesticides. AChE activity is typically measured by the colorimetric Ellman assay [122].
Hossain et al. developed a paper-based solid phase sensor fabricated by inkjet
printing the AChE enzyme within sol-gel derived silica layers onto paper [123].
Pesticides were detected by measuring the residual AChE activity on paper, by using
the Ellman’s colorimetric assay. The detection was demonstrated on lateral flow
and dipstick formats with detection limits of ~100 nM for paraoxon and 30 nM for
aflatoxin B1, and a rapid response time (<5 min). In follow up work, Hossain et
al. improved the design by depositing all the required reagents together with the
enzyme onto paper [124]. Figure 8 shows an example of colorimetric “dipstick”
bioassay based on AChE-catalyzed enlargement of AuNPs (3 nm) co-entrapped with
the enzyme on paper [125]. Both the acetylthiocholine substrate and Au(III) salt were
spotted on paper. Hydrolysis of the enzyme substrate generated thiocholine, which
further reduced the Au(III) to AuNPs, inducing particle growth and resulting in an
increase in color intensity. The color produced was correlated with enzyme inhibition
by pesticides. A linear range from 500 nM to 1 mM was reported for paraoxon.
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Figure 8. (a) Principle of a AChE colorimetric dipstick based on catalytic enlargement of AuNPs and 
(b) calibration curve for the detection of paraoxon (reproduced from [125] with permission of The 
Royal Society of Chemistry). 

Figure 8. (a) Principle of a AChE colorimetric dipstick based on catalytic
enlargement of AuNPs and (b) calibration curve for the detection of paraoxon
(reproduced from [125] with permission of The Royal Society of Chemistry).
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Liang et al. reported a colorimetric method using a bi-enzyme system, AChE
and choline oxidase (ChO), and Fe3O4 MNPs with peroxidase mimetic activity to
detect of OPs and nerve agents [126]. ChO catalyzed the conversion of the product of
the AChE reaction, choline to hydrogen peroxide (H2O2). The produced H2O2 was
then detected colorimetrically by a color change generated by the catalytic action of
the MNPs on the oxidation of 3,5,31,51-tetramethylbenzidine (TMB). In the presence
of pesticides, the enzymatic activity of AChE was inhibited and less H2O2 was
produced. The decrease in the color intensity was used to quality AChE inhibition
by pesticides (Figure 9).
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can also be used to develop assays with chemiluminescent (CL) detection. A recent report 
demonstrates the use of luminol-functionalized AgNPs (Lum-AgNPs) as functional nanomaterials 
(Figure 11) for the detection of OP and C pesticides, including dimethoate, dipterex, carbaryl, 
chlorpyrifos, and carbofuran, at a concentration of 24 μg/mL [128]. The Lum-AgNPs were used in 
conjunction with a H2O2 based CL detection to generate a CL “fingerpring” related to each specific 
pesticide. 

Figure 9. Sensing principle of the assay based on Fe3O4 magnetic nanoparticle for
OPs detection (reprinted with permission from [126]; copyright 2015 American
Chemical Society).

Detection of pesticides has also been realized with NP-based electrochemical
immunosensing on low cost SPCE [127]. Figure 10 shows an example of a SPCE
electrode functionalized with ZrO2 NPs for the detection of phosphorylated AChE.
ZrO2NPs were used as sorbents for enzyme capture while quantum dots (QDs) were
used as tags to label anti-AChE antibody and form a sandwich-like immunoreaction.
The immunocaptured QD were determined by electrochemical stripping analysis
of Cd ions after an acid-dissolution step of the QDs. The assay was used to detect
AChE activity and paraoxon as an example of OP target and could be potentially
extended to analysis in food.
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Figure 10. Electrochemical immunosensing of phosphorylated AChE using a ZrO2

NP-modified SPE (A) with selective capturing of phosphorylated AChE adducts
(B) and detection via (C) Immunoreaction between bound phosphorylated AChE
adducts and QD-labeled anti-AChE antibody (D) Representative voltammogram
(reprinted with permission from [127]).

In addition to systems based on optical and electrochemical transduction,
functionalized NPs can also be used to develop assays with chemiluminescent (CL)
detection. A recent report demonstrates the use of luminol-functionalized AgNPs
(Lum-AgNPs) as functional nanomaterials (Figure 11) for the detection of OP and C
pesticides, including dimethoate, dipterex, carbaryl, chlorpyrifos, and carbofuran,
at a concentration of 24 µg/mL [128]. The Lum-AgNPs were used in conjunction
with a H2O2 based CL detection to generate a CL “fingerpring” related to each
specific pesticide.
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Figure 11. Chemiluminescence-based detection of pesticides using Lum-functionalized AgNPs 
(reprinted with permission from [128]; copyright 2015 American Chemical Society). 

3.4. Detection of Metal Contaminants 

Several metal ions such as arsenic, cadmium, lead and mercury are present into the 
environment and can be found as residues in food. Excess exposure to toxic metal ions can cause 
neurological, reproductive, cardiovascular, and developmental disorders [129]. Several NP-based 
sensors have been developed for detection of metal ions [129]. Most of these assays are based on Au 
and Ag NPs aggregation [34,42]. A portable lab-on-chip system for colorimetric detection of metal 
ions in water based on AuNP aggregation was developed by Zhao et al. [130]. The system provided 
detection limits of 30 ppb for Pb2+ and 89 ppb for Al3+. AuNPs based colorimetric detection was also 
demonstrated for Hg2+ [131–135], Cu2+ and Ag+ [136], Mn2+ [137], Cd2+ [138], Fe3+, Pb2+, Al3+, Cu2+, and 
Cr3+ [135]. Baxter et al. proposed a simple and economical process for fabricating gold electrodes by 
applying sintered AuNPs stabilised with 4-(dimethylamino)pyridine to filter paper and used this 
platform to detect Cu ions [93]. 

3.5. Detection of Mycotoxins 

Toxin fungal metabolites known as mycotoxins can contaminate a wide range of agricultural 
commodities and are high priority targets for the development of new bioassays. It is estimated that 
at least 25% of the grain produced worldwide is contaminated with mycotoxins. Even small 
concentrations of mycotoxins can induce significant health problems including vomiting, kidney 
disease, liver disease, cancer and death [139]. Aflatoxins, ochratoxins, trichothecenes, zearalenone, 
fumonisins, tremorgenic toxins, and ergot alkaloids are examples of toxic mycotoxins. Mycotoxins 
have been implicated in development of cancer by the WHO-International Agency for Research on 
Cancer in 1993. Naturally occurring aflatoxins are classified as carcinogenic to humans (Group 1) 
whereas ochratoxins and fumonisins are classified as possible carcinogens (Group 2B) [140]. 
Aflatoxins are the most studied group of mycotoxins [140]. Another important toxin, ochratoxin A 
(OTA) is a type of mycotoxin which is produced by several species of Aspergillus and Penicillium 
fungi and can be found in a wide variety of food matrices such as cereals, dried fruits, coffee, cocoa, 
spices, beer, wine and grape juice [141]. Hosseini et al. developed a AuNP-based aptasensor for 
detection of aflatoxin B1. The sensor measured AuNP aggregation due to desorption of the aflatoxin 
B1 aptamer from the surface of AuNPs after the aptamer-target interaction resulting in the color 
change of AuNPs from red to purple. A detection limit of 7 nM with a linear range from 80 to 270 nM 
was reported [142]. A similar approach was described by Luan et al. for the detection of aflatoxin B2 
[143]. In the absence of aflatoxin B2, the random coil structure of the aptamer stabilizes the surface of 
AuNPs, which shows a red color under high NaCl conditions. In presence of aflatoxin B2, formation 
of aflatoxin B2-aptamer conjugate destabilizes the AuNPs from NaCl-induced aggregation, 
changing the color of the dispersion. The method was characterized by a linear dynamic range from 
0.025 to 10 ng·mL−1, and a detection limit of 25 pg·mL−1. Xiao et al. demonstrated a colorimetric 
detection method based on disassembly of AuNP dimers for the detection of OTA (Figure 12). This 
system was characterized by a low detection of 0.05 nM, with a dynamic range from 0.2 to 250 nM 
[144]. The proposed sensor was applied for detection of OTA in red wine. The OTA concentration 
determined by this method was consistent with the result obtained with a commercially available 
ELISA kit. Soh et al. described a colorimetric method for detection of OTA by using aptamer 

Figure 11. Chemiluminescence-based detection of pesticides using
Lum-functionalized AgNPs (reprinted with permission from [128]; copyright 2015
American Chemical Society).
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3.4. Detection of Metal Contaminants

Several metal ions such as arsenic, cadmium, lead and mercury are present into
the environment and can be found as residues in food. Excess exposure to toxic
metal ions can cause neurological, reproductive, cardiovascular, and developmental
disorders [129]. Several NP-based sensors have been developed for detection of metal
ions [129]. Most of these assays are based on Au and Ag NPs aggregation [34,42].
A portable lab-on-chip system for colorimetric detection of metal ions in water based
on AuNP aggregation was developed by Zhao et al. [130]. The system provided
detection limits of 30 ppb for Pb2+ and 89 ppb for Al3+. AuNPs based colorimetric
detection was also demonstrated for Hg2+ [131–135], Cu2+ and Ag+ [136], Mn2+ [137],
Cd2+ [138], Fe3+, Pb2+, Al3+, Cu2+, and Cr3+ [135]. Baxter et al. proposed a simple
and economical process for fabricating gold electrodes by applying sintered AuNPs
stabilised with 4-(dimethylamino)pyridine to filter paper and used this platform to
detect Cu ions [93].

3.5. Detection of Mycotoxins

Toxin fungal metabolites known as mycotoxins can contaminate a wide range
of agricultural commodities and are high priority targets for the development of
new bioassays. It is estimated that at least 25% of the grain produced worldwide is
contaminated with mycotoxins. Even small concentrations of mycotoxins can induce
significant health problems including vomiting, kidney disease, liver disease, cancer
and death [139]. Aflatoxins, ochratoxins, trichothecenes, zearalenone, fumonisins,
tremorgenic toxins, and ergot alkaloids are examples of toxic mycotoxins. Mycotoxins
have been implicated in development of cancer by the WHO-International Agency
for Research on Cancer in 1993. Naturally occurring aflatoxins are classified as
carcinogenic to humans (Group 1) whereas ochratoxins and fumonisins are classified
as possible carcinogens (Group 2B) [140]. Aflatoxins are the most studied group
of mycotoxins [140]. Another important toxin, ochratoxin A (OTA) is a type of
mycotoxin which is produced by several species of Aspergillus and Penicillium fungi
and can be found in a wide variety of food matrices such as cereals, dried fruits,
coffee, cocoa, spices, beer, wine and grape juice [141]. Hosseini et al. developed a
AuNP-based aptasensor for detection of aflatoxin B1. The sensor measured AuNP
aggregation due to desorption of the aflatoxin B1 aptamer from the surface of AuNPs
after the aptamer-target interaction resulting in the color change of AuNPs from
red to purple. A detection limit of 7 nM with a linear range from 80 to 270 nM was
reported [142]. A similar approach was described by Luan et al. for the detection of
aflatoxin B2 [143]. In the absence of aflatoxin B2, the random coil structure of the
aptamer stabilizes the surface of AuNPs, which shows a red color under high NaCl
conditions. In presence of aflatoxin B2, formation of aflatoxin B2-aptamer conjugate
destabilizes the AuNPs from NaCl-induced aggregation, changing the color of the

283



dispersion. The method was characterized by a linear dynamic range from 0.025
to 10 ng¨ mL´1, and a detection limit of 25 pg¨ mL´1. Xiao et al. demonstrated
a colorimetric detection method based on disassembly of AuNP dimers for the
detection of OTA (Figure 12). This system was characterized by a low detection of
0.05 nM, with a dynamic range from 0.2 to 250 nM [144]. The proposed sensor was
applied for detection of OTA in red wine. The OTA concentration determined by this
method was consistent with the result obtained with a commercially available ELISA
kit. Soh et al. described a colorimetric method for detection of OTA by using aptamer
controlled growth of AuNPs [145]. In this system the aptamer-target interactions
control the amount of aptamer strands adsorbed on the surface of AuNPs. Depending
on the surface coverage, AuNPs grow into morphologically varied nanostructures
resulting in different colored solutions. AuNPs with low aptamer coverage produced
red-colored solutions, whereas AuNPs with high aptamer coverage produced blue
colored solutions. The detection limit for OTA using this method was 1 nM.
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NPs as immobilization support have been designed for the detection of mycotoxins such as OTA 
and aflatoxin [75,148]. Figure 13 shows an example of aptasensor platform for detection of OTA. A 
generic fluorescent aptasensing platform was designed by employing carboxy-modified fluorescent 
particles as a signal generating probe and magnetic particles as a solid separation support [149]. 
Table 1 provides the summary of analytical characteristics of portable NP-based sensors reported in 
literature for the detection of food contaminants. 

 
Figure 13. Schematic represents the principle of the assay for the fluorescence detection 
methodologies. (A) displacement assay; (B) competition assay. (With permission from Springer 
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Figure 12. Sensing mechanism of the AuNP dimer-based colorimetric aptasensor
for the detection of OTA (reproduced from [144] with permission of The Royal
Society of Chemistry).

Other assays are using MNPs [146,147] to design immunomagnetic separation
and detection platforms for mycotoxins. Electrochemical immunosensors and
aptasensors employing magnetic NPs as immobilization support have been designed
for the detection of mycotoxins such as OTA and aflatoxin [75,148]. Figure 13 shows
an example of aptasensor platform for detection of OTA. A generic fluorescent
aptasensing platform was designed by employing carboxy-modified fluorescent
particles as a signal generating probe and magnetic particles as a solid separation
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support [149]. Table 1 provides the summary of analytical characteristics of portable
NP-based sensors reported in literature for the detection of food contaminants.
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Figure 13. Schematic represents the principle of the assay for the fluorescence
detection methodologies. (A) displacement assay; (B) competition assay. (With
permission from Springer Science and Business Media: Analytical and Bioanalytical
Chemistry. Development of an aptasensor based on a fluorescent particles-modified
aptamer for ochratoxin A detection. 407, 2015, 7815–7822 Hayat, A.; Mishra, R.K.;
Catanante, G.; Marty, J.L. Scheme 1.).
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4. Conclusions and Future Directions

NPs and nanostructures have demonstrated ability to significantly enhance
detection capabilities of analytical devices. A variety of platforms based on these
materials have been reported, and many have shown high sensitivity and low
detection limits. The design features indicate that these can be potentially used as
portable instrumentation. However, most capabilities have been demonstrated with
synthetic samples in laboratory conditions. Some detection protocols involve the use
of sensitive reagents and multiple-step procedures which increase measurement time
and cost and make field implementation difficult. Translation of this technology into
the food safety and regulatory field requires rigorous validation with conventional
methodologies, testing of real samples and careful evaluation of interferences.
The effect of environmental parameters, storage and operational stability in field
conditions should also be established. Moreover, concerns have been raised regarding
the potential toxicity of nanomaterials. This aspect should be further considered
before these platforms can be introduced into the marketplace.

Analysis of food is a difficult problem due to the inherent complexity of
these samples. Challenges for implementation of emerging technologies as viable
platforms for assessing food safety and quality are related to interferences and the
need for sample preparation. Most developed sensors require sample preparation
steps. Some advances have been made with the use of MNPs for immunoseparation.
In the future, the integration of sample extraction and separation units with the
sensing platforms would greatly improve portability for field use. The long term
storage is another challenge especially for systems that include biological sensing
components such as enzymes and antibodies. Achieving high specificity is also
critical to minimize background signals and reduce the likelihood of false-positive
results. Miniaturization, automation, multidetection capabilities and an effort to
lower the cost per assay are some of the current trends in this field. The use
of inexpensive materials such as paper to build these sensors has demonstrated
potential as field-portable devices but their functionality for the analysis of complex
food samples and the need for sample pretreatment are yet to be demonstrated.
The performance of disposable SPC electrodes has been improved with the use
of nanomaterials. Validation and testing of statistically-relevant sample numbers,
comparability and inter-laboratory studies to demonstrate robustness of such
platforms are the next critical steps for achieving industry acceptance and regulatory
approvals. Future work to adapt these sensors so that they can be attached to food
packaging to indicate contamination would be highly valuable for on-line control
and safety of processed and stored food. Increased portability can also be achieved
through connectivity and integration with largely used communication devices
such as cell-phones and tablets. However, development of cybersensors for food
monitoring is still in infancy and constitutes a fertile area for future investigation.
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Abstract: During cutting and processing of meat, the loss of water is critical in
determining both product quality and value. From the point of slaughter until
packaging, water is lost due to the hanging, movement, handling, and cutting of
the carcass, with every 1% of lost water having the potential to cost a large meat
processing plant somewhere in the region of €50,000 per day. Currently the options
for monitoring the loss of water from meat, or determining its drip loss, are limited
to destructive tests which take 24–72 h to complete. This paper presents results from
work which has led to the development of a novel microwave cavity sensor capable
of providing an indication of drip loss within 6 min, while demonstrating good
correlation with the well-known EZ-Driploss method (R2 = 0.896).

Reprinted from Sensors. Cite as: Mason, A.; Abdullah, B.; Muradov, M.;
Korostynska, O.; Al-Shamma’a, A.; Bjarnadottir, S.G.; Lunde, K.; Alvseike, O.
Theoretical Basis and Application for Measuring Pork Loin Drip Loss Using
Microwave Spectroscopy. Sensors 2016, 16, 182.

1. Introduction

From the point at which an animal is slaughtered during the meat production
process, it is inevitable that water will be lost from the carcass. This is a key concern
for meat producers as this water content is said to contribute to the juiciness and
tenderness of meat products [1,2], which impacts on consumer opinion, thus affecting
demand and saleable value. While the loss of product quality and appeal is often
difficult to measure due to its subjective nature, Table 1 demonstrates the average
basic constituents of common meat products, with many containing greater than 75%
water [3].

Since most meat products are sold on the basis of their weight, it stands to reason
that loss of water is directly proportional to a loss in revenue. It is estimated that for
large production facilities (i.e., those processing in the order of thousands of animals
per day), for every 1% of water lost, this could equate to €50,000 (this estimate is
based up on a large processing plant, but of course is dependent on the volume of
meat trimmings produced in addition to the market value of meat at the time of
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processing) per day in lost revenue. For this reason, meat producers are keen to
employ new tools which enable them to monitor the production process more quickly
and effectively than current methods allow, therefore permitting minimization of
water loss. This paper builds significantly upon previous proof of concept work [4,5]
by the authors in the use of a novel microwave spectroscopy technique to measure
drip loss in pork. In particular, this paper demonstrates how the technique compares
with the most widely used industry method for drip loss measurement (i.e., the
EZ-Driploss method).

Table 1. Average constituents of common meat cuts.

Meat Cut Water % Protein % Fat % Ash %

Pork

Boston butt 74.9 19.5 4.7 1.1
Loin 75.3 21.1 2.4 1.2

Cutlets/chops 1 54.5 15.5 29.4 0.8
Ham 75.0 20.2 3.6 1.1

Side cuts 60.3 17.8 21.1 0.85

Beef
Shank 76.4 21.8 0.7 1.2

Sirloin steak 1 76.4 21.8 0.7 1.2

Chicken
Hind leg 73.3 20.0 5.5 1.2

Breast 74.4 23.3 1.2 1.1
1 With adhering adipose tissue.

2. Water Holding Capacity

The term drip loss, or its reciprocal parameter Water Holding Capacity (WHC),
is used by the food industry to refer to the ability of meat products to retain water,
with much of our current knowledge on the topic being based on fundamental
research by Hamm [6] in 1960, followed by Offer and Trinick [7] in 1983. There is
a general agreement [8,9] that water in meat can exist in three forms: (1) bound;
(2) immobilized; and (3) free, with these representing as much as 5%, 15%, and 85%
of total water content, respectively. Bound water is tightly bound to proteins and is
not free to move around, cannot be frozen, and is not affected by chemical changes
(e.g., pH), while immobilized water shares similar properties, albeit with weaker
protein bonding. Free water, on the other hand, is held loosely in the capillary space
between and within proteins and, unlike bound and immobilized water, is easily lost.
Therefore, anything which alters the protein structure or spacing will affect the ability
of the meat to retain free water. Examples of factors which might impact protein
structure, and hence drip loss, include post mortem rigor (the steric effect) [10,11];
pre-slaughter stress [8,12]; pH [1,13]; and common processing techniques [14], such
as heating, grinding, cutting, pressing, and freezing.

Measuring the drip loss of meat at various stages during the production process
could enable impact assessments of the factors causing water loss. In principle this

300



would allow optimization of processes in addition to the sorting of carcasses or cuts
so that resources are allocated to optimal products. Such action would reduce lost
revenue and ensure consistent meat quality and tenderness. In practice, however,
measurement of drip loss is challenging, as the current commercially available
methods are destructive, manual, and time consuming. Furthermore, despite efforts
described by Honikel [15], there is no international standard method, which makes
comparison of results derived from the various techniques difficult; Table 2 presents
an overview of these techniques.

A number of attempts to provide a sensor technique to standardize and
automate the measurement of drip loss or WHC have been made. X-ray diffraction
has been used extensively within the food industry for foreign object detection (e.g.,
metal, glass, and plastic shards) in addition to recent systems such as the MeatMaster
(FOSS, Denmark) which can give online prediction of fat content in meat trimmings.
It has also proven to give excellent resolution in relation to the spacing between
muscle filaments [16–18]; since it is said that most of the water in meat is held
between the muscle filaments (or myofibrils) this can give an indication of WHC of
samples. Despite this, X-ray systems have been unable to demonstrate a method for
online prediction of WHC, most likely because the technique, itself, is exacting,
requiring careful dissection of muscle slips and long exposure times. Notably,
however, recent work from O’Farrell et al. [19] has demonstrated an energy-dispersive
diffraction system with a correlation of R2 = 0.72 when compared with the industry
standard EZ-Driploss method which is described in Table 2. While this is promising,
particularly because the technique offers measurement speeds of minutes rather than
hours as described in some works, X-ray systems are usually deployed at only one or
two locations across a production line (e.g., at the point of packaging if checking for
foreign objects). For effective drip loss measurement, many points of measurement
are required which precludes the use of X-ray largely due to the costly nature of the
equipment in addition to concerns regarding worker exposure to radiation.

Near-Infrared Spectroscopy (NIRS) has also been considered in relation to the
issue of drip loss. As with X-ray systems, NIRS devices are becoming popular
in the meat industry for online compositional analysis; three examples are the
QVision 500 Analyzer (TOMRA, Norway), ProFoss (Foss, Norway), and Spektron
(Prediktor, Norway). However, work by Kapper [20] and O’Farrell et al. [19] have
demonstrated poor correlation between NIRS measurements and drip loss; Kapper
noted R2 between 0.36 and 0.73 depending on meat color and O’Farrell’s work
demonstrated R2 = 0.47, despite a number of outlier data points (10%) being removed
in the latter work.

A further method has also been demonstrated by Lee et al. [21] using an electrical
conductivity measurement to attempt correlation of drip loss. This method showed
some promise, with three categories of drip loss used to determine the effectiveness
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of the technique: <2%, 2%–6%, and >6%. It was demonstrated that 80% of the
time the technique could correctly categorize meat samples from a production plant,
albeit under laboratory conditions. It is notable however that in the vast majority
of production facilities, the invasive nature of the electrodes used in this method
would preclude it from online testing due to the potential for product contamination
and spoilage.

Table 2. Manual methods of measuring water holding capacity, or its reciprocal
parameter, drip loss, used in the commercial and research environments.

Method Description

EZ-Driploss

The day after slaughter the muscles to be analyzed are taken from the carcass. Within one
hour, a 25 mm slice is cut at a right angle to the muscle fiber direction, with samples being
taken from this slice using a cork borer, again cutting in the fiber direction. The cylindrical
sample, 25 mm in diameter and 25 mm in height, is weighed and then placed in a special
container equipped with a lid to avoid evaporation and loss of water. The container is
stored for 24 h at 4 ˝C–6 ˝C before being weighed again; the WHC is determined by ratio
of the two weight measurements [22].

Filter Paper Press

This method involves the pressing of a meat sample into a filter paper; typically a defined
pressure is recommended and the amount of released water is determined by weighing the
meat sample or the filter paper before and after pressing. Hamm suggested a more
rigorous protocol in 1972, which involves small meat samples (0.3 g) being pressed onto a
filter paper at a pressure of 35 kg/cm2 between two plates. Five minutes later, meat
samples are removed. The areas covered by the flattened meat sample and the stain from
the meat sample are marked and measured [23,24].

Centrifuge

A weighed meat sample (3–4 g) is centrifuged at 100,000 xg for 1 h in a stainless steel tube.
The water released from the meat is decanted off as quickly as possible (in order to avoid
re-absorption). The meat sample is removed from the tube with forceps, dried with tissue
paper, and then reweighed to determine liquid loss. If the residue is dried in the tube at 105
˝C, the total water content of the sample can be determined, and WHC can be expressed as
released or bound water as a percentage of total water. The need for a high-speed
centrifuge makes it almost impossible to use this type of method in a slaughterhouse [25].

Bag

Meat samples (weighing approxiamte 100 g) are cut from a carcass and immediately
weighed. The samples are then placed in a bag and hung in an airtight container using a
hook under the lid. After the required storage time at the temperature under investigation
(usually 24–48 h at 1 ˝C–4 ˝C) samples are weighed again [15].

Absorption

Cotton-rayon material is inserted into a “+” shaped incision in the longissimus muscle
through the subcutaneous fat layer. The incision is approx. 2.4 inches deep at a
well-defined place (e.g., 12th rib) and is left for either 15 min at 15 min post-mortem or
15 min at 24 h post-mortem. Absorption is calculated as the difference between the final
weight plus exudates and the initial dry weight of the material. Notably this technique is
the quickest of all those listed here, however it also requires a skilled operator to enable
repeatable incisions and measurement [26].

3. Microwave Spectroscopy

Sensors which operate at microwave frequencies are widely used in a variety of
industrial sectors in addition to having been demonstrated in the research domain.
Examples include structural analysis [27,28], water quality monitoring [29–31], and
medical applications [32–37]. Aside from research considering quality classification
of fresh [38,39] and cured meats [40,41], there is little evidence of microwave sensors
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making a significant impact in the food industry. This point is supported by a recent
comprehensive review of electromagnetic wave sensors (from radio frequencies to
X-ray) conducted by Damez and Clerjon [42].

Microwave sensors provide the opportunity for a rapid non-invasive and
robust method of materials analysis. The authors have also demonstrated that
the technique can take on many physical forms, including resonant cavities [43],
planar structures [30,37], and fluidic devices [36], which makes it highly adaptable
to a range of situations and applications. Furthermore, the technology to generate
and detect microwave signals is inexpensive; it is featured in the many millions
of smart phone devices, tablets, and portable computers, for example, that make
use of wireless communications. This is a particularly attractive feature for the
food industry, given the desire for high-resolution drip loss information from across
production facilities, which is unlikely to be cost effective with technologies such
as X-ray. Added to this, the technique is non-ionizing, utilizing less than 10 mW
of power, significantly less than modern wireless communication devices and is,
therefore, thought to be safe to use within food production without fear of harming
the product or nearby workers.

The principle of monitoring using microwave sensors, in the context of this
work, is based on the interaction of electromagnetic (EM) waves with a sample
under test. When this sample is exposed to EM irradiation it alters the velocity
of the signal, attenuates, or reflects it. If one considers a hollow structure with
conducting walls (i.e., a cavity), it will resonate when it is excited at an appropriate
EM frequency provided some means for this to occur is introduced, for example,
via a small antenna placed inside it. Resonant modes occur inside the cavity when
the electric or magnetic components of the EM signal form standing waves, which
are dependent on the dimensions of the cavity and the dielectric properties of the
test sample. The resonant frequency for TEnml and TMnml modes in a rectangular
waveguide [44] can be calculated using Equation (1), where c is the speed of light, µr

is of the relative permeability, εr is the relative permittivity, pnm is the value of the
Bessel function for the TE or TM modes of a rectangular waveguide, a is the width of
the cavity, b is the height of the cavity and d is the depth of the cavity.
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Any number of such antennae may be placed within the cavity for the purposes
of transmission and reception of EM energy, however the most typical configurations
involve one and two port (thus, one or two antennae) cavities since often the materials
placed within them are assumed to be relatively homogeneous and therefore further
ports serve little purpose.
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In a one port configuration it is possible, using a Vector Network Analyzer
(VNA), to measure the power which is reflected from the cavity; this is often referred
to simply as an S11 measurement. In a two port configuration, one can also measure
power transmitted through the cavity; this is referred to as an S21 measurement. This
is illustrated in Figure 1a, which shows a 3D model of the cavity designed specifically
for this work using Ansys High Frequency Structure Simulator (HFSS) finite element
modelling package; Figure 1b shows the sample model which is an EZ-Driploss
sample container. With reference to the full description of this drip loss measurement
method given in Table 2, the EZ-Driploss container holds a cylindrical meat sample
in the larger top section, with water lost over the 24 h measurement period being
collected at the bottom of the thin tube. The cavity is designed such that only the
larger top section resides within the cavity as it serves no purpose to measure any
fluids lost from the meat samples. EZ-Driploss containers were used to hold the
sample during the course of this work to allow direct correlation of the standard
EZ-Driploss measurement against the data acquired from the microwave cavity.
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From Equation (1) it is shown that all EM modes have the same dependence
upon

?
εr, so when the cavity is excited over an appropriate range of frequencies and

the resultant spectra is captured, the resonant peaks corresponding to these modes
will shift, typically in frequency and amplitude, as the permittivity is varied. This
can be demonstrated by taking the model illustrated in Figure 1a and varying the
sample height, h, shown in Figure 1b such that the sample in this case is water when
the cavity it resonating in the TE010 mode, as represented in Figure 2. It is assumed
that this approximates the composition of most fresh meat products immediately
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post mortem since, as noted in Table 1, water is the major constituent. Figure 3 shows
the relationship for both the signal amplitude and resonant frequency shift as h is
varied in the range 2–16 mm. A high correlation, using this modelling approach,
is demonstrated for both signal amplitude (R2 = 0.874) and resonant frequency
(R2 = 0.978) and shows the responsiveness of the technique to variations in water,
which provides the basis for its use in monitoring the drip loss of meat samples.
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EZ-Driploss container which ensures maximum interaction of the EM signal with the target sample. 

Figure 2. The resonant cavity model with electric field distribution overlay when
resonant at approx. 1.5 GHz, which is where the TE010 mode is present within the
cavity according to Equation (1). Notably the electric field is concentrated, as noted
by the red/orange coloration, around the EZ-Driploss container which ensures
maximum interaction of the EM signal with the target sample.
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4. Experimental Methodology

The purpose of the experimental work outlined in this paper was to compare and
correlate drip loss measurements from the microwave cavity illustrated in Section 3
with the current dominant method used in industry, i.e., the EZ-Driploss method [22].

To this end, a total of 24 pork carcasses were selected after pre-sorting based
on a wide range of pH and breeds in an attempt to obtain a large variation of drip
loss across the samples. While it was impossible to guarantee with absolute certainty
a wide range of drip loss from the selected samples (i.e., there is no current online
method available for this purpose), the link between pH and ability of meat to retain
water is widely reported [8]. Furthermore, the carcasses were selected from Noroc
and Landrace breeds since there is typically a pH difference between them; namely,
Landrace often have a lower pH than Noroc breeds.

To prepare the samples, a loin was taken from each carcass, with each loin
having a slice of approximate 20 mm thickness taken from the middle. Each loin
was split into two portions; one portion was retained by researchers at Animalia to
establish a baseline or control EZ-Driploss measurement, and the other was provided
to the researchers from Liverpool John Moores University who had developed the
microwave cavity sensor. All work measurements took place simultaneously at
Animalia’s pilot plant facility, located in Oslo, Norway.

From these loin portions, two 25 mm diameter core samples were taken with a
borer. Each core sample was then placed into a separate EZ-Driploss polypropylene
container and lid was closed prior to measurement commencing. Therefore, four
core samples were taken from each loin sample and measured using the EZ-Driploss
method, giving 96 core samples in total. The procedure for sample preparation is
illustrated in Figure 4. Care was taken when preparing samples to avoid deposits of
fat and other visible inconsistences in the product, which is standard practice when
employing the EZ-Driploss method.

All core samples were weighed prior to being stored for a period of 24 h at
between 4 ˝C and 6 ˝C. After this period, all core samples were weighed once
more and drip loss was calculated using Equation (2), where Wc is the weight of
an empty EZ-Driploss container, Wt is the weight of the container with meat and
exudate and Wl is the weight of the container with liquid only. While only one
of the core samples taken from each loin could be measured using the microwave
method (therefore, 24 measurements in total), an average value was determined for
the EZ-Driploss method from across the four core samples taken from each loin. All
measurements (i.e., 96 EZ-Driploss and 24 using the microwave cavity) took place
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over three days, which allowed time for system configuration between measurements
and sample preparations.

Drip LossEZ p%q “
Wl ´Wc

Wt ´Wc
ˆ 100 (2)
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measurements were taken for 30 min per sample; the microwave spectrum was captured between 1 
and 6 GHz every minute. This timing was established as a result of a preliminary study [4] which 
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capturing spectral data, which was automated via a bespoke National Instruments LabVIEW® 
interface as shown in Figure 5b. 
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Figure 5. (a) Experimental setup showing the microwave cavity connected to a Rohde and Schwarz 
Vector Network Analyzer; and (b) a bespoke LabVIEW® interface capturing spectral data. 

5. Results and Discussion 

5.1. Comparison of Drip Loss Measurements 

As noted in Section 4, drip loss measurements following the EZ-Driploss method were 
conducted on two portions of the same meat, with one portion being used only for drip loss 
measurement and the other being used for measurements with the microwave cavity sensor. The 
comparison of EZ-Driploss measurements obtained is shown in Figure 6, and demonstrates that 
there is a reasonable agreement (R2 = 0.76) between the two portions of the same pork loin which 

Figure 4. (a) Preparation of the 25 mm diameter core samples from the 20 mm thick
slice of loin; and (b) placement of a sample in an EZ-Driploss container.

The microwave cavity sensor was used immediately after sample preparation,
with the sample being placed inside the cavity as shown in Figure 5a. The
measurement equipment was configured inside a refrigerated chamber in order
to ensure that measurements were undertaken at similar temperatures to which
samples were stored. Both reflected (S11) and transmitted (S21) power measurements
were taken for 30 min per sample; the microwave spectrum was captured between 1
and 6 GHz every minute. This timing was established as a result of a preliminary
study [4] which measured similar samples over a 24 h period. A Rohde and Schwarz
ZVL6 VNA was used for capturing spectral data, which was automated via a bespoke
National Instruments LabVIEW® interface as shown in Figure 5b.
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Figure 5. (a) Experimental setup showing the microwave cavity connected to
a Rohde and Schwarz Vector Network Analyzer; and (b) a bespoke LabVIEW®

interface capturing spectral data.

5. Results and Discussion

5.1. Comparison of Drip Loss Measurements

As noted in Section 4, drip loss measurements following the EZ-Driploss method
were conducted on two portions of the same meat, with one portion being used only
for drip loss measurement and the other being used for measurements with the
microwave cavity sensor. The comparison of EZ-Driploss measurements obtained is
shown in Figure 6, and demonstrates that there is a reasonable agreement (R2 = 0.76)
between the two portions of the same pork loin which gives confidence that the
sample preparation methods are similar. It does however also serve to highlight the
potential for error or variation when using the EZ-Driploss method since the meat
itself is heterogeneous, and despite the best efforts of the operator, this is likely to be
a factor. It is also notable that results from EZ-Driploss testing can vary from operator
to operator, which is noted by a number of authors, including Christensen [45] for
example. Therefore, when considering measurement data from the microwave sensor
system, or any other for that matter, it is important to remember that the EZ-Driploss
test, despite being a widely used and accepted method for drip loss measurement,
harbors considerable inherent variability.
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used for microwave measurement in this work, where R2 = 0.76.

5.2. Microwave Cavity Measurements

When using microwave sensors for measuring properties or changes in
materials, it is often possible to derive a correlation directly from single measurements
of the sample(s) under test and, therefore, one would be able to rapidly develop
a calibration curve to define the sensor performance. However, due to the
heterogeneous nature of meat and the small physical size of the sample, this typical
approach yielded only a weak correlation at 4.23 GHz (S11), where R2 = 0.62. This is
illustrated in Figure 7.

Fortunately, data was collected for each sample over a time period of 30 min
(where timing begins at the moment when the sample is inserted into the cavity
sensor), with measurements taken at 1 min intervals. This gave the opportunity
to consider whether the sensor responded to any immediate change in the sample
after it was placed within the EZ-Driploss container. This yielded some rather
interesting findings, as illustrated in Figure 8, whereby change in the S21 spectra
gave a relationship to the end drip loss measurement for each sample. In particular,
Figure 8 shows the microwave spectra between 5.4 and 6.0 GHz for two samples; one
with a low drip loss (0.42%) and one with a high drip loss (7.15%) as determined by
subsequent EZ-Driploss measurements. Over the 30 min measurement period both
samples exhibited a reduction in resonant frequency, most notable in the range 5.47
to 5.50 GHz, as well as at 5.636 to 5.656 GHz. This reduction in resonant frequency is
indicative of a change in the bulk relative permittivity of the meat sample, possibly
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due to diffusion or redistribution of water, post-preparation, while the sample is
housed in the EZ-Driploss container. It is thought that such diffusion or redistribution
of water would occur more rapidly in samples with a high drip loss owing to the
availability of free water, thus enabling the sensor to be utilized for the purposes of
determining the drip loss of the sample.Sensors 2016, 16, 182 9 of 13 
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Figure 8. The microwave spectra between 5.46 and 5.52 GHz for two samples; one with (a) low drip 
loss (0.42%) and one with (b) high drip loss (7.15%) as determined by EZ-Driploss measurements. 
The change in resonant frequency in the range (c) 5.47 to 5.50 GHz and (d) 5.636 to 6.656 GHz are 
demonstrated and compared for the high and low drip loss samples. 

This principle was applied to all 24 samples measured using the microwave sensor technique, 
using the frequency shift gradient between the first and subsequent S21 measurements between 5.47 
and 5.50 GHz as a reference against which to correlate with the EZ-Driploss results. 

An aim of this process was to establish the minimum time in which a result with acceptable 
agreement to the EZ-Driploss measurement could be obtained. While a measurement time of 30 min 
is clearly favorable when compared to the current 24 h required of the EZ-Driploss test, it is of 

Figure 7. Correlation of the microwave cavity sensor at 4.23 GHz, with S11

amplitude changing as a function of drip loss (R2 = 0.62).

This principle was applied to all 24 samples measured using the microwave
sensor technique, using the frequency shift gradient between the first and subsequent
S21 measurements between 5.47 and 5.50 GHz as a reference against which to correlate
with the EZ-Driploss results.

An aim of this process was to establish the minimum time in which a result with
acceptable agreement to the EZ-Driploss measurement could be obtained. While
a measurement time of 30 min is clearly favorable when compared to the current
24 h required of the EZ-Driploss test, it is of industrial value to reduce this time
as much as possible. To this end, the captured data was analyzed with a view to
understanding the point at which the correlation between the microwave cavity and
EZ-Driploss measurements fell significantly. Referring to Figure 9, the maximum
R2 value is obtained over the full 30 min measurement (R2 = 0.967). It is also noted
that at 6 min, the R2 value (0.896) is still acceptable; below this measurement time
the correlation drops significantly to a minimum of 0.401. A comparison of the data
produced for 30 and 6 min measurements is evidenced in Figure 10.
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Figure 8. The microwave spectra between 5.46 and 5.52 GHz for two samples; one
with (a) low drip loss (0.42%) and one with (b) high drip loss (7.15%) as determined
by EZ-Driploss measurements. The change in resonant frequency in the range (c)
5.47 to 5.50 GHz and (d) 5.636 to 6.656 GHz are demonstrated and compared for
the high and low drip loss samples.

While there is still some way to go to produce a commercially viable rapid
non-invasive drip loss measurement system, this work demonstrates that it is possible
to provide a measurement with good correlation to the existing industry standard
EZ-Driploss test within 6 min. The correlation between the results evidenced in this
paper exceeds that of other reported non-invasive systems such as X-ray or NIRS.
Furthermore, microwave sensor systems are much cheaper by comparison, since
the components to produce them are often based upon wireless electronics available
in consumer devices (e.g., Wi-Fi, mobile phones, etc.). Concerns regarding safety
are also alleviated since the system used in this work utilizes low power (<10 dBm)
non-ionizing radiation.

311



Sensors 2016, 16, 182 10 of 13 

 

industrial value to reduce this time as much as possible. To this end, the captured data was analyzed 
with a view to understanding the point at which the correlation between the microwave cavity and 
EZ-Driploss measurements fell significantly. Referring to Figure 9, the maximum R2 value is 
obtained over the full 30 min measurement (R2 = 0.967). It is also noted that at 6 min, the R2 value 
(0.896) is still acceptable; below this measurement time the correlation drops significantly to a 
minimum of 0.401. A comparison of the data produced for 30 and 6 min measurements is evidenced 
in Figure 10. 

 
Figure 9. The relationship between R2 value and measurement time of the sample inside the 
microwave cavity sensor. 

 
Figure 10. Correlation of the microwave cavity sensor when sample is measured for 30 min (R2 = 
0.967) and 6 min (R2 = 0.8955). 

While there is still some way to go to produce a commercially viable rapid non-invasive drip 
loss measurement system, this work demonstrates that it is possible to provide a measurement with 
good correlation to the existing industry standard EZ-Driploss test within 6 min. The correlation 
between the results evidenced in this paper exceeds that of other reported non-invasive systems 
such as X-ray or NIRS. Furthermore, microwave sensor systems are much cheaper by comparison, 

Figure 9. The relationship between R2 value and measurement time of the sample
inside the microwave cavity sensor.

Sensors 2016, 16, 182 10 of 13 

 

industrial value to reduce this time as much as possible. To this end, the captured data was analyzed 
with a view to understanding the point at which the correlation between the microwave cavity and 
EZ-Driploss measurements fell significantly. Referring to Figure 9, the maximum R2 value is 
obtained over the full 30 min measurement (R2 = 0.967). It is also noted that at 6 min, the R2 value 
(0.896) is still acceptable; below this measurement time the correlation drops significantly to a 
minimum of 0.401. A comparison of the data produced for 30 and 6 min measurements is evidenced 
in Figure 10. 

 
Figure 9. The relationship between R2 value and measurement time of the sample inside the 
microwave cavity sensor. 

 
Figure 10. Correlation of the microwave cavity sensor when sample is measured for 30 min (R2 = 
0.967) and 6 min (R2 = 0.8955). 

While there is still some way to go to produce a commercially viable rapid non-invasive drip 
loss measurement system, this work demonstrates that it is possible to provide a measurement with 
good correlation to the existing industry standard EZ-Driploss test within 6 min. The correlation 
between the results evidenced in this paper exceeds that of other reported non-invasive systems 
such as X-ray or NIRS. Furthermore, microwave sensor systems are much cheaper by comparison, 

Figure 10. Correlation of the microwave cavity sensor when sample is measured
for 30 min (R2 = 0.967) and 6 min (R2 = 0.8955).

6. Conclusions/Outlook

This paper presents a novel microwave cavity sensor for the measurement
of drip loss, correlating results obtained from 24 pork loin samples against the
widely used EZ-Driploss test, which typically takes 24 h to yield a result. It was
shown that the sensor can provide a maximum correlation of R2 = 0.967 with a
30 min measurement time, or a weaker correlation of R2 = 0.896 with a 6 min
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measurement time. Not only does the sensor provide results in good agreement
with the EZ-Driploss method, it demonstrates comparable, if not better, performance
than reported alternative automated techniques, such as NIRS, X-ray and electrode
based methods.

Future work in developing this technique could consider a number of directions,
including the application of the technique to a broader spectrum of meat types (e.g.,
beef and lamb) in addition to considering the translation of the method for online
use. Owing to the highly flexible nature of microwave spectroscopy, particularly in
terms of the format of the sensor, the team foresees that it may be possible to identify
and sort carcasses with high drip loss at an early stage post-slaughter. This would
have significant implications for the industry in relation to meat production costs.
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