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The many technical and computational problems that appear to be constantly emerging in various
branches of physics and engineering beg for a more detailed understanding of the fundamental
mathematics that serves as the cornerstone of our way of understanding natural phenomena.
The purpose of this Special Issue is to establish a brief collection of carefully selected articles authored
by promising young scientists and the world’s leading experts in pure and applied mathematics,
highlighting the state-of-the-art of the various research lines focusing on the study of analytical and
numerical mathematical methods for pure and applied sciences.

Our collection opens with a featured review article [1], by Yuri Luchko, aimed at providing a
pedagogical discussion of the role of integral transforms in mathematical physics, with particular
regard for the Laplace and Mellin transforms. We continue with another survey paper [2], by Roberto
Garrappa, Eva Kaslik, and Marina Popolizio, dedicated to an in-depth analysis evaluation of fractional
integrals and derivatives of some elementary functions. Similarly to the first article, the work of R.
Garrappa et al. is very pedagogical in nature and can serve as an effective reference to those who wish
to gradually approach the study of numerical aspects of fractional calculus.

This collection then continues with two important featured articles. Specifically, it starts with
the work [3], by Emilia Bazhlekova and Ivan Bazhlekov, concerning a subordination approach to the
multi-dimensional space–time fractional diffusion equation. In detail, the fundamental solution of this
equation is studied by means of the subordination principle, which in turn provides a relation to the
classical Gaussian function. We then move to the contribution [4], by Silvia Vitali, Iva Budimir, Claudio
Runfola, and Gastone Castellani, dedicated to the study of the role of the central limit theorem within
the framework of an heterogeneous ensemble of Brownian particles (dubbed the HEBP approach,
for short).

The collection then closes with a series of eight very interesting original contributions. We begin
this series with the work of Marina Popolizio [5] analyzing numerical properties and theoretical
features of the Mittag–Leffler function with matrix arguments. It is then followed by an interesting
note [6] on a generalization of the time-fractional relativistic diffusion equation based on the application
of Caputo fractional derivatives of a function with respect to another function, by Luisa Beghin and
Roberto Garra. We then move to biophysical modeling with the inspiring work [7] by Berardino
D’Acunto, Luigi Frunzo, Vincenzo Luongo, and Maria Rosaria Mattei, in which the authors propose
a mathematical model of heavy metal sorption and interaction in a multispecies biofilm. We then
continue with a pedagogical article on space–time exterior calculus [8], and its relation to Maxwell’s
theory, by Ivano Colombaro, Josep Font-Segura, and Alfonso Martinez. One then finds an interesting
proposal for a mathematical model of economic growth with fading memory and a continuous
distribution of time-delay. This work [9], by Vasily E. Tarasov, and Valentina V. Tarasova, represents a
generalization of the standard Keynesian macroeconomic model based on Abel-type integrals and
integro-differential operators involving the confluent hypergeometric Kummer function in the kernel.
The collection then features a work [10] by Natalie Baddour on the discrete two-dimensional Fourier
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transform in polar coordinates, in which both the general theory and operational rules are discussed.
One then finds a contribution by Giulio Starita and Alfonsina Tartaglione [11] analyzing the Fredholm
property of trace operators associated with the elastic layer potentials. Finally, the collection is
completed by the work of Michael D. Marcozzi [12] that discusses a probabilistic interpretation of the
solutions of linear ultraparabolic equations.
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Abstract: In this survey article, some schemata for applications of the integral transforms of
mathematical physics are presented. First, integral transforms of mathematical physics are defined
by using the notions of the inverse transforms and generating operators. The convolutions and
generating operators of the integral transforms of mathematical physics are closely connected with
the integral, differential, and integro-differential equations that can be solved by means of the
corresponding integral transforms. Another important technique for applications of the integral
transforms is the Mikusinski-type operational calculi that are also discussed in the article. The general
schemata for applications of the integral transforms of mathematical physics are illustrated on
an example of the Laplace integral transform. Finally, the Mellin integral transform and its basic
properties and applications are briefly discussed.

Keywords: integral transforms; Laplace integral transform; transmutation operator; generating
operator; integral equations; differential equations; operational calculus of Mikusinski type; Mellin
integral transform

MSC: 45-02; 33C60; 44A10; 44A15; 44A20; 44A45; 45A05; 45E10; 45J05

1. Introduction

In this survey article, we discuss some schemata for applications of the integral transforms of
mathematical physics to differential, integral, and integro-differential equations, and in the theory of
special functions. The literature devoted to this subject is huge and includes many books and reams
of papers. For more details regarding this topic we refer the readers to, say, [1–4]. Of course, in a
short survey article it is not possible to mention all known integral transforms and their numerous
applications. That is why we focus on just some selected integral transforms and their applications
that are of general nature and valid for most of the integral transforms in one or another form.

We start with introducing the integral transforms of mathematical physics that possess the inverses
in form of the linear integral transforms and can be interpreted as transmutation operators for their
generating operators. The integral transforms of mathematical physics, their generating operators, and
convolutions are closely related to each other. In particular, the integral transform technique can be
employed for derivation of the closed form solutions to some integral equations of convolution type
and to the integral, differential, or integro-differential equations with the generating operators.

Another powerful technique for applications of the integral transforms is the Mikusinski-type
operational calculi. They can be developed for the left-inverse operators of the generating operators of
the integral transforms. A basic element of this construction is the convolutions for the corresponding
integral transforms that play the role of multiplication in some rings of functions. This ring is then
extended to a field of convolution quotients following the standard procedure. One of the advantages
of this extension is that the left-inverse operator D to the generating operator L of the given integral
transform T can be then represented as multiplication with a certain field element. Thus, the differential

Mathematics 2019, 7, 254; doi:10.3390/math7030254 www.mdpi.com/journal/mathematics3
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or integro-differential equations with the operator D are reduced to some algebraic equations in the
field of convolution quotients and can be solved in explicit form. The so obtained “generalized”
solution can be sometimes represented as a conventional function from the initial ring of functions by
using the so-called operational relations.

The general schemata for applications of the integral transforms of mathematical physics
mentioned above are demonstrated on an example of the Laplace integral transform. The Laplace
integral transform is a simple particular case of the general H-transform that is a Mellin convolution
type integral transform with the Fox H-function in the kernel. The general schemata for applications of
the integral transforms presented in this article are valid for the H-transform, too. For the theory of the
generating operators, convolutions, and operational calculi of the Mikusinski type for the H-transforms
we refer the interested readers to [4–8] (see also numerous references therein). In this article, we restrict
ourselves to discussion of some fundamental properties of the Mellin integral transform that is a basis
for the theory of the Mellin convolution type integral transforms in general and of the H-transform
in particular.

The rest of the article is organized as follows: In the second section, general schemata for some
applications of the integral transforms to analysis of the integral, differential, and integro-differential
equations are presented. In particular, the main ideas behind an operational calculus of Mikusinski
type are discussed. The third section illustrates these schemata on the example of the Laplace integral
transform. The fourth section deals with the basic properties of the Mellin integral transform.

2. Integral Transforms of Mathematical Physics

The focus of this survey article is on properties of the integral transforms and their applications to
different problems of analysis, differential and integral equations, and special functions. Thus, we do
not discuss the integral transforms from the viewpoint of functional analysis by considering, say, their
mapping properties in some spaces of functions. Instead, we try to illustrate the underlying ideas and
procedures both for analysis of the integral transforms and for their applications.

2.1. Applications of the Integral Transforms

The integral transforms of mathematical physics are not arbitrary linear integral operators, but
rather those with the known inverse operators and the known generating operators. For the sake of
simplicity and clarity, in this article we restrict ourselves to the case of the one-dimensional integral
transforms. However, a similar theory can be also developed for the multi-dimensional integral
transforms. A one-dimensional integral transform (of mathematical physics) of a function f : R→ R

at the point t ∈ R is defined by the (convergent) integral

g(t) = T { f (x); t} =
∫ +∞

−∞
K(t, x) f (x) dx . (1)

Its inverse operator must be also a linear integral transform

f (x) = T −1 {g(t); x} =
∫ +∞

−∞
K̂(x, t) g(t) dt (2)

with a known kernel function K̂. The kernel functions K and K̂ of the integral transforms (1) and (2)
satisfy the relation ∫ +∞

−∞
K̂(x, t)K(t, y) dt = δ(x− y) (3)

with the Dirac δ-function.

4
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Many applications of the integral transforms of mathematical physics are based on the operational
relations of the following form:

T {(L f )(x); t} = L(t)T { f (x); t} . (4)

The integral transform T satisfying the relation (4) is called a transmutation that translates an
operatorL into multiplication by the function L. Following [4,8,9], we call the operatorL the generating
operator of the integral transform T . For the general H-transform, one of the important classes of their
generating operators can be represented in form of finite compositions of the fractional Erdelyi-Kober
integrals and derivatives [4–8]. In the case of the Laplace integral transform, the generating operator is
just the first derivative.

Let us now discuss a general schema for applications of the transmutation Formula (4) on an
example of the equation

P(L)y(x) = f (x), (5)

where P is a polynomial and f is a given function. Applying the integral transform (1) to Equation (5)
and employing the transmutation Formula (4) lead to the algebraic (in fact, linear) equation

P(L(t))T {y(x); t} = T { f (x); t} (6)

for the integral transform T of the unknown function y with a solution in form

T {y(x); t} =
T { f (x); t}

P(L(t))
. (7)

In the system theory, the function 1/P(L(t)) is often called the transfer function. The inversion
Formula (2) allows then to represent the solution (7) as follows:

y(x) = T −1
{T { f (x); t}

P(L(t))
; x
}

. (8)

In many applications of the integral transforms of mathematical physics, one deals with the linear
differential operators of the form

L(x,
d

dx
)y =

n

∑
k=0

lk(x)
dky
dxk . (9)

Let us suppose that L is a generating operator of the integral transform (1) with the inverse
integral transform (2) such that the relation (4) holds true. By

LT(x,
d

dx
)y =

n

∑
k=0

(−1)k dk

dxk (lk(x)y) (10)

we denote the operator conjugate to the operator L.
Then it is known that the kernel K of the integral transform (1) is an eigenfunction of the operator

LT and the kernel K̂ of the inverse integral transform (2) is an eigenfunction of the operator L [9]:

LT(x,
d

dx
)K(t, x) = L(t)K(t, x),

L(x,
d

dx
)K̂(x, t) = L(t)K̂(x, t).

5
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Let us note that the Formulas (1) and (2) for the integral transform T of a function f and its
inverse integral transform can be put together into the form

f (x) =
∫ +∞

−∞
K̂(x, t) T { f (x); t} dt

and then interpreted as an expansion of the function f by the eigenfunctions of the linear differential
operator L.

Thus, the integral transforms of mathematical physics are closely connected with the eigenvalues
of some differential operators. However, the eigenvalues of the differential operators are known in
explicit form only in a few cases and therefore the amount of the integral transforms of mathematical
physics is very restricted.

As a rule, the generating operators of the integral transforms of mathematical physics are
differential operators either of the first or of the second order. Examples of the integral transforms with
the generating operators in form of the differential operators of the first order are:

(a) the Laplace integral transform with the kernel function K(t, x) = e−xt if x > 0 and K(t, x) = 0 if
x ≤ 0,

(b) the sine- and cosine Fourier integral transforms with the kernel functions K(t, x) =
√

2/π sin(xt)
if x > 0 and K(t, x) = 0 if x ≤ 0 and K(t, x) =

√
2/π cos(xt) if x > 0 and K(t, x) = 0 if x ≤ 0,

respectively,
(c) the Fourier integral transform with the kernel function K(t, x) = e−ixt,
(d) the Mellin integral transform with the kernel function K(t, x) = xt−1 if x > 0 and K(t, x) = 0 if

x ≤ 0.

Following integral transforms possess generating operators in form of the differential operators
of the second order:

(a) the Hankel integral transform with the kernel function K(t, x) =
√

xtJν(xt) (Jν stands for the
Bessel function) if x > 0 and K(t, x) = 0 if x ≤ 0,

(b) the Meijer integral transform with the kernel function K(t, x) =
√

xtKν(xt) (Kν is the Macdonald
function) if x > 0 and K(t, x) = 0 if x ≤ 0,

(c) the Kontorovich- Lebedev integral transform with the kernel function K(t, x) = Kit(x) if x > 0
and K(t, x) = 0 if x ≤ 0,

(d) the Mehler-Fock integral transform with the kernel function K(t, x) = Pk
it−1/2(x) (Pμ

ν denotes the
Legendre function of the first kind) if x > 1 and K(t, x) = 0 if x ≤ 1.

As already mentioned, the generating operators of the H-transform are certain compositions of the
Erdelyi-Kober fractional integrals and derivatives. This connection allows to solve equations of type
(5) with the operator L in form of a composition of the Erdelyi-Kober fractional integro-differential
operators [4–8].

Another operation that plays a very important role in applications of the integral transforms of
mathematical physics is a convolution of two functions associated with a certain integral transform.

In general, a convolution on a linear vector space of functions is defined as a bilinear, commutative,
and associative operation defined on a direct product of a linear vector space by itself. Together with
the usual addition of two elements of the vector space, the convolution thus equips the linear vector
space with a structure of a commutative ring.

A convolution
T∗ associated with the integral transform T and defined on a linear functional

vector space X satisfies the relation (convolution theorem)

T
{
( f

T∗ g)(x); t
}

= T { f (x); t} T {g(x); t} , ∀ f , g ∈ X . (11)

6
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The reader can find many examples of convolutions for different integral transforms of
mathematical physics in [4,5].

One of the basic applications of the convolutions is for analysis of the integral equations of
convolution type. The convolutions of the integral transforms of mathematical physics are often
represented in form of some integrals. In these cases the convolution equations like, e.g.,

y(x)− λ(y
T∗ K)(x) = f (x), λ ∈ R or λ ∈ C, (12)

where f and K are some known functions and the function y is unknown, are integral equations.
To solve the integral Equation (12), we apply the integral transform T to both parts of (12).

Then we first get an algebraic (in fact, a linear) equation

T {y(x); t} − λT {y(x); t} T {K(x); t} = T { f (x); t} (13)

with the solution

T {y(x); t} =
T { f (x); t}

1− λT {K(x); t} . (14)

Applying the inverse transform T −1 to (14), the solution of the integral Equation (12) can be then
represented in the form

y(x) = T −1
{ T { f (x); t}

1− λT {K(x); t} ; x
}

. (15)

In many cases, the right-hand side of (15) has a convolution form and thus the solution to (12) can
be rewritten as follows:

y(x) = f (x) + λ( f
T∗ M)(x), (16)

where M is a known function.

2.2. Basic Ideas Behind an Operational Calculus of Mikusinski Type

Another useful technique employed for solution of both integral equations of convolution type
(12) and differential or integro-differential equations of type (5) is an algebraic approach based on the
operational calculi of Mikusinski type [4–6,10–14].

In an operational calculus of Mikusinski type, a close relation between an integral transform, its
convolution and its generating operator plays a very essential role as investigated in detail in [15].

Following [15], we first introduce a convolution of a linear operator L. Let X be a linear vector
space and L : X → X a linear operator defined on the elements of X . A bilinear, commutative, and
associative operation ∗ : X ×X → X is said to be a convolution of the linear operator L if and only if
the relation

L( f ∗ g) = (L f ) ∗ g (17)

holds true for all f , g ∈ X .
As shown in [4], if L is a generating operator of the integral transform T (the Formula (4) holds

true) and if
T∗ is a convolution of T that satisfies the relation (11), then

T∗ is a convolution of the
generating operator L in the sense of the relation (17).

Another important fact is that any of the convolution operators of the type

(L f )(x) = (h
T∗ f )(x), (18)

where
T∗ is a convolution of the integral transform T and h is a fixed element of X can be interpreted

as a generating operator of the integral transform T , i.e., it satisfies the transmutation relation (4).

7
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The generating operator L given by (18) is an integral operator that is defined on the functions

from the convolution ringR = (X ,
T∗,+) as multiplication by a fixed element h ∈ X . It is important to

stress that the representations of this type are not possible for the generating operators of the differential
type, e.g., for the left-inverse operators of the integral operator (18). However, similar representations

of differential operators can be derived on an extension of the convolution ringR = (X ,
T∗,+) to the

field of the convolution quotients. In fact, this extension is a basic element of any operational calculus

of Mikusinski type. In the case when the ring R = (X ,
T∗,+) has no divisors of zero, the extension

follows the pattern of the extension of the ring of integer numbers to the field of rational numbers.

If the ringR = (X ,
T∗,+) has some divisors of zero, the construction of the field of convolution

quotients becomes more complicated (see, e.g., [15] for details). A divisor-free convolution ring is
usually extended to a field F of convolution quotients by factorization of the set X × (X − {0}) with
respect to the equivalence relation

( f , g) ∼ ( f1, g1)⇔ ( f
T∗ g1)(x) = (g

T∗ f1)(x). (19)

The elements of the field F are sets of all pairs ( f , g), f , g ∈ X that are equivalent to each other
with respect to the equivalence relation (19). They are often formally denoted as quotients f /g. The
addition + and multiplication · operations are defined on F in a standard way:

f /g + f1/g1 = ( f
T∗ g1 + g

T∗ f1)/(g
T∗ g1), (20)

f /g · f1/g1 = ( f
T∗ f1)/(g

T∗ g1). (21)

It is an easy exercise in algebra to show that the results of the operations (20) and (21) do not
depend on the representatives of the field elements f /g and f1/g1 and thus these operations are well
defined. Equipped with the operations + and ·, the set F becomes a commutative field that is denoted
by (F , ·,+).

The ringR = (X ,
T∗,+) can be embedded into the field (F , ·,+), say, by the map

f ∈ R → ( f
T∗ h)/h ∈ F , (22)

where h ∈ R is any non-zero element of the ring R. A natural choice for the element h ∈ R in the
relation (22) is the function from the Formula (18) that defines the generating operator L. In this
case, the corresponding operational calculus is constructed for the differential operator D that is a
left-inverse operator to the integral operator (18), i.e., for the operator D that satisfies the relation

D(L f ) = f , ∀ f ∈ X . (23)

On the ringR = (X ,
T∗,+), the operator L applied to a function f ∈ X is just multiplication of f

with a fixed element h ∈ X . On the other hand, the differential operator D (a left-inverse operator to
the integral operator L) can be represented on the field (F , ·,+) in the form

D f = S · f − S · P f , (24)

where the operator P = Id−LD is called a projector of the generating operator L and S ∈ F is the
element reciprocal to h ∈ R ⊂ F defined by the Formula (18), i.e.,

S = h−1 = I/h = h/(h
T∗ h) = h/h2 = · · · = hk/hk+1, k = 0, 1, 2, . . . . (25)

8
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The element S ∈ F is often called an algebraic inverse of the generating operator L in the field of
convolution quotients.

The operational Formula (24) is very important in applications of the constructed operational
calculus because it allows a reduction of the linear differential equations with the operator D to some
algebraic equations in the field (F , ·,+) of convolution quotients. The obtained equations can be then
often solved in explicit form that leads to the “generalized” solutions that belong to the convolution
quotients field (F , ·,+). In some cases, by making use of the embedding (22) and of the so-called
operational relations, these generalized solutions can be reduced to the conventional functions from
the initial ringR. In particular, the following operational relation plays a very important role in any
operational calculus:

(S− ρ)−1 = I/(S− ρ) = h/(I − ρh) = h · (I + ρh + ρ2h2 + . . . )

= h(x) + ρh2(x) + ρ2h3(x) + · · · = H(x) ∈ R, ρ ∈ C, hk = h
T∗ h

T∗ · · · T∗ h︸ ︷︷ ︸
k

. (26)

The general schema for construction of an operational calculus and for its applications that was
presented above seems to be not especially complicated. However, in the case of a given generating
operator a lot of serious problems can appear while developing the corresponding operational calculus.
The main questions are how to construct an appropriate convolution, how to determine its divisors
of zero in the corresponding ring of functions (or show that it is divisors-free), how to calculate the
projector operator (the projector operator determines the form of the initial conditions for the ordinary
or fractional differential equations that can be solved by employing the operational calculus), how
to specify the operational relations such as the one given in the Formula (26), etc. For discussions
regarding how to overcome all these difficulties for operational calculi for different operators of
Fractional Calculus see, e.g., ref. [4] or [5–8].

3. The Laplace Integral Transform

The Laplace integral transform—along with the Fourier integral transform and the Mellin integral
transform—is one of the most important classical integral transforms that is widely used in analysis,
differential equations, theory of special functions and integral transforms, and for other problems of
mathematical physics. For a function f , its Laplace transform at the point p ∈ C is defined by the
following improper integral (in the case it is a convergent one):

f̃ (p) = L { f (t); p} =
∫ ∞

0
e−pt f (t) dt , � (p) > a f . (27)

A sufficient condition for existence of the Laplace integral at the right-hand side of (27) for a
function f ∈ Lc(0,+∞) is the estimate of the type

| f (t)| ≤ Mf ea f t, t > Tf , (28)

where Mf , a f , and Tf are some constants depending on the function f . The space of functions
Lc(0,+∞) consists of all real or complex-valued functions of a real variable that are continuous on the
open interval (0, +∞) except, possibly, at a counted number of isolated points, where these functions
can tend to infinity and for that the improper Riemann integral absolutely converges on (0, +∞) .
In this section, the set of all functions from Lc(0,+∞) that satisfy the estimate (28) with some constants
depending on the functions will be denoted byO. In the following discussions, we always assume that
the functions we deal with belong to the space of functions O. For the functions from O, their Laplace
transforms f̃ (p) defined by the right-hand side of (27) are analytic function in the half complex plane
�(p) > a f . This feature makes the Laplace transform technique very powerful because all methods
and ideas elaborated in the well-developed theory of analytical functions can be employed in the
Laplace domain.

9
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Let a function f be piecewise differentiable and its Laplace transform exist for � (p) > a f . At all
points where f is continuous, it can be represented via the inverse Laplace transform

f (t) = L−1
{

f̃ (p); t
}
=

1
2πi

∫ γ+i∞

γ−i∞
ept f̃ (p) dp , � (p) = γ > a f , (29)

where the integral at the right-hand side is understood in the sense of the Cauchy principal value.
Let us mention here that in some cases the bilateral Laplace transform can be useful. It is defined

by the formula

Lbl { f (t); p} =
∫ ∞

−∞
e−pt f (t) dt , b f > � (p) > a f . (30)

In our article, we assume that the model equations we deal with refer to the causal processes and
thus we restrict ourselves to discussion of the Laplace transform.

The Laplace integral transform is treated in many textbooks (see, e.g., [11,16–21]). Here,
we demonstrate on the example of the Laplace integral transform how the general schemata for
applications of the integral transforms of mathematical physics work. It is worth mentioning that
the same constructions can be applied for the general H-transform and its numerous particular
cases ([4–8]).

Let the inclusion f ′ ∈ O be valid. The integration by parts formula applied to the Laplace integral
leads to following transmutation relation for the Laplace integral transform:

L
{

d
dt

f (t); p
}

= pL { f (t); p} − f (0). (31)

This means that the Laplace integral transform is a transmutation operator for the first derivative
that translates it into multiplication with the linear factor p.

The Formula (31) and its generalization (for f (n) ∈ O)

L
{

f (n)(t); p
}

= pn L { f (t); p} − pn−1 f (0) − . . . − f (n−1)(0) (32)

are the basic formulas for application of the Laplace transform technique to solution of the linear
differential equations.

As an example, let us consider the following initial value problem:{
x(n)(t) + a1x(n−1)(t) + · · ·+ anx(t) = f (t), t > 0,

x(0) = x0, dx
dt |t=0 = x1, . . . , dn−1x

dtn−1 |t=0 = xn−1.
(33)

Applying of the Laplace integral transform to Equation (33) to the initial value problem (33) we
get an algebraic (in fact, a linear) equation for the Laplace transform of the unknown function x:

L(p)L {x(t); p} = L { f (t); p} + M(p), (34)

where L(p) = pn + a1 pn−1 + · · ·+ an and M(p) = pn−1x0 + · · ·+ xn−1 + a1(pn−2x0 + · · ·+ xn−2) +

· · ·+ an−1x0. The polynomial L is known as a characteristic polynomial of Equation (33).
For applicability of this technique, the function f from the left-hand side of Equation (33) must

satisfy the condition (28).
The linear Equation (34) can be easily solved:

L {x(t); p} =
L { f (t); p} + M(p)

L(p)
. (35)

10
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Thus, the unique solution to (33) can be (formally) obtained by applying the inverse Laplace
transform to the right-hand side of (35):

x(t) = L−1
{L { f (t); p} + M(p)

L(p)
; t
}

. (36)

Often, the inverse Laplace transform at the right-hand side of the Formula (36) can be evaluated
by means of the Cauchy residue theorem or by employing the tables of the Laplace integral
transforms [19,20].

The same procedure as above is applicable for the systems of linear ordinary differential equations
with the constant coefficients. A similar method can be applied for the linear ordinary differential
equations with the polynomial coefficients ([11]). In the case of the time-dependent partial linear
differential equations with the constant coefficients, application of the Laplace integral transform with
respect to the time variable transforms them to the stationary partial differential equations of elliptic
type with some parameters dependent on the Laplace variable p.

A prominent role in several applications of the Laplace integral transform is played by its
convolution that is defined by the well-known formula

( f
L∗ g)(t) =

∫ t

0
f (τ)g(t− τ) dτ. (37)

The Borel convolution theorem states the main property of the Laplace convolution (37). Let the
Laplace integral transforms of the functions f , g ∈ O be well defined for � (p) > γ. Then the Laplace
convolution (37) also exists for � (p) > γ and the convolution formula

L
{
( f

L∗ g)(t); p
}

= L { f (t); p} × L {g(t); p} (38)

holds true.
In [4,5], a close relation of the Laplace convolution to the Euler Beta-function was established. It

turned out that the Formula (37) for the Laplace convolution follows from the well-known formula

B(s, t) =
∫ 1

0
xs−1(1− x)t−1 dx =

Γ(s)Γ(t)
Γ(s + t)

, (39)

Γ being the Euler Gamma-function defined as

Γ(s) =
∫ ∞

0
e−xxs−1 dx, �(s) > 0. (40)

Applying the Formula (37) for the Laplace convolution and the Formula (39) for the
B-function, convolutions of many other integral transforms including the general H-transform can be
constructed [4,5].

The Borel Formula (38) can be employed for solving some integral equations of the Laplace
convolution type. As an example, let us consider an integral equation of the second kind in the form

x(t) − λ
∫ t

0
k(t− τ)x(τ) dτ = f (t). (41)

Application of the Laplace integral transform to Equation (41) reduces it to the algebraic (in fact,
linear) equation

L {x(t); p} − λL {x(t); p} L {k(t); p} = L { f (t); p} (42)

11
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for the Laplace transform of the unknown function. Its solution is given by the formula

L {x(t); p} =
L { f (t); p}

1− λL {k(t); p} . (43)

To get a solution for the integral Equation (41), the inverse Laplace integral transform can
be applied to Equation Lap-8. However, let us follow another approach and get a representation
of the solution by using the Formula (38). To do this, let us take a closer look at the expression
L {x(t); p} − L { f (t); p}. The Formula (43) leads to the representation

L {x(t); p} − L { f (t); p} = L{ f (t);p}
1−λL{k(t);p} − L { f (t); p}

= L { f (t); p}
(

1
1−λL{k(t);p} − 1

)
= λL { f (t); p} L{k(t);p}

1−λL{k(t);p} .
(44)

Because of the Formula (38), we can represent a solution for the integral Equation (41) in the form

x(t) = f (t) + λ
∫ t

0
h(t− τ) f (τ) dτ. (45)

In this formula, the function h is the inverse Laplace transform of the function L {k(t); p} /(1−
λL {k(t); p}).

The same method can be employed for the initial value problems for the ordinary differential
equations in form (33). Let us revisit the Formula (35) and represent the rational functions 1/L and
M/L as sums of partial fractions

1
L(p)

=
1

(p− λ1)m1 × . . .× (p− λk)mk
=

k

∑
j=1

mj

∑
r=1

cjr

(p− λj)r , λj, cjr ∈ C (46)

M(p)
L(p)

=
m

∑
j=1

sj

∑
r=1

djr

(p− ηj)r , ηj, djr ∈ C. (47)

The operational formula

L
{

tn eat; p
}
=
∫ ∞

0
tn e−t(p−a) dt =

Γ(n + 1)
(p− a)n+1 =

n!
(p− a)n+1 , �(p− a) > 0 (48)

and the Borel convolution Formula (38) allow us to represent the solution of the initial value problem
(33) in the form

x(t) =
∫ t

0
f (t− τ)

(
k

∑
j=1

mj

∑
r=1

cjr

(r− 1)!
τr−1 eλj τ

)
dτ +

m

∑
j=1

sj

∑
r=1

djr

(r− 1)!
tr−1 eηj t. (49)

It is worth mentioning that the Formula (48) is valid not only for the power functions in the form
tn, n ∈ N, but also for the arbitrary power functions with the exponents α > −1:

L
{

tα eat; p
}
=
∫ ∞

0
tα e−t(p−a) dt =

Γ(α + 1)
(p− a)α+1 , α > −1, �(p− a) > 0. (50)

In order to solve the linear ordinary differential equations with the polynomial coefficients, a
slightly different procedure compared to the method demonstrated above is often employed. Its main
element consists in representation of an unknown solution to a differential equation in the form similar
to the form of the inverse Laplace transform

x(t) =
∫

C
φ(p) ept dp (51)
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with an unknown contour C. In the process of solution, the contour C must be appropriately
chosen [22].

To illustrate this technique, let us consider another—a little bit exotic—application of the Laplace
integral transform technique, namely, for solving a functional equation. The Euler Gamma-function
(40) is a generalization of the factorial function. It satisfies the functional equation

F(s + 1) = s F(s), �(s) > 0, F(1) = 1. (52)

Let us show that the functional Equation (52) has a unique solution, namely, the Gamma-function
in the functional space of smooth functions. To solve the functional Equation (52), the Laplace transform
method mentioned above is employed. We look for the solutions F of (52) in form

F(s) =
∫ ∞

−∞
φ(p) e−ps dp. (53)

Then the relation

s F(s) = s
∫ ∞

−∞
φ(p) e−ps dp = −φ(p) e−ps|∞−∞ +

∫ ∞

−∞
φ′(p) e−ps dp (54)

holds valid if the unknown function φ is a smooth function on R and the limits limp→±∞ φ(p) e−ps

exist and are finite. Moreover, let the relations limp→±∞ φ(p) e−ps = 0 hold true. At this stage we just
suppose that the unknown function φ satisfies the conditions above. However, after the functional
Equation (52) will be solved, these conditions can be directly verified.

Using the representation (that directly follows from (53))

F(s + 1) =
∫ ∞

−∞
φ(p) e−ps e−p dp,

and the Formula (54), the functional Equation (52) is reduced to a differential equation for the unknown
function φ:

φ(p) e−p = φ′(p).

The general solution formula of the above equation can be derived by separating the variables p
and φ:

φ(p) = −C e−e−p
, C ∈ R. (55)

Evidently, the function φ defined by the right-hand side of (55) satisfies the conditions
limp→±∞ φ(p) e−ps = 0 for �(s) > 0. Substituting (55) into (53) and by the variables substitution
x = exp(−p), we get the solution formula

F(s) = C
∫ ∞

0
e−x xs−1 dx, �(s) > 0. (56)

The initial condition from (52) leads to a unique value of the constant C:

1 = F(1) = C
∫ ∞

0
e−x dx = C.

Thus, the solution Formula (56) coincides with the integral representation of the Gamma-function
and the Gamma-function is the only smooth solution to the functional Equation (52) with the initial
condition F(1) = 1.

In our last example of this section, we prove the Formula (39) for the Beta-function by employing
the Laplace transform technique. We start with an observation that the Beta-function B is the Laplace
convolution of two power functions evaluated at the point x = 1:

B(s, t) = (τs−1 L∗ τt−1)(x)|x=1 =
∫ x

0
τs−1 (x− τ)t−1 dτ|x=1.

13
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Let us define an auxiliary function

β(s, t, x) = (τs−1 L∗ τt−1)(x) =
∫ x

0
τs−1 (x− τ)t−1 dτ, x > 0.

Its Laplace integral transform is given by the formula

L{β(x); p} = Γ(s)
ps

Γ(t)
pt =

Γ(s)Γ(t)
ps+t (57)

because of the operational relation (50) with a = 0 and the Borel convolution formula.
Again using the operational relation (50), we determine the function β with the Laplace transform

given by (57) in the form:

β(s, t, x) =
Γ(s)Γ(t)
Γ(s + t)

xs+t−1. (58)

Specifying the Formula (58) for x = 1, we receive the well-known representation of the
Beta-function in terms of the Gamma-function:

B(s, t) =
∫ x

0
τs−1 (x− τ)t−1 dτ|x=1 = β(s, t, 1) =

Γ(s)Γ(t)
Γ(s + t)

.

As to the Mikusinski-type operational calculus associated with the Laplace integral transform, we
start with the Volterra integral operator that is one of the generating operators for the Laplace integral
transform. Indeed, this operator can be represented as the Laplace convolution of the functions f and
{1} ({1} is the function that is identically equal to 1):

(V f )(t) = ( f
L∗ {1})(t) =

∫ t

0
f (τ) dτ. (59)

Evidently, the Volterra integral operator is a linear operator on C[0, ∞) with the Laplace
convolution as its convolution in the sense of Formula (17).

As stated by the well-known Titchmarsh theorem [23], the space of functions C[0, ∞) equipped

with the operations + and
L∗ is a commutative ring without divisors of zero. The basic idea behind the

classical Mikusinski operational calculus is an extension of this ring to a field of convolution quotients
according to the schema presented in the previous section. The so constructed Mikusinski operational
calculus is closely related with the first derivative d

dt that is a left-inverse operator to the Volterra
integral operator (59). The projector of the Volterra integral operator is given by the expression

P f = f − V d f
dt

= f (0). (60)

It is worth mentioning that the projector (60) determines the form of the initial conditions for the
differential equations that can be solved by applying the Mikusinski operational calculus.

4. The Mellin Integral Transform

In this section, some basic definitions and formulas for the Mellin integral transform are presented.
The Mellin integral transform is one of the main tools for a treatment of the integral transforms of
the Mellin convolution type, their convolutions and generating operators. More details regarding the
Mellin integral transform, its properties and particular cases can be found in [4,24–29].

The Mellin integral transform of a sufficiently well-behaved function f at the point s ∈ C is
defined as

M{ f (t); s} = f ∗(s) =
∫ +∞

0
f (t)ts−1dt, (61)

14
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and the inverse Mellin integral transform as

f (t) =M−1{ f ∗(s); t} = 1
2πi

∫ γ+i∞

γ−i∞
f ∗(s)t−sds, t > 0, γ = �(s), (62)

where the integral is understood in the sense of the Cauchy principal value.
The Mellin integral transform can be interpreted as the Fourier integral transform changed by a

variables substitution and by a rotation of the complex plane:

M{ f (t); s} =
∫ +∞

0
f (t)ts−1dt =

∫ +∞

−∞
f (et)eit(−is)dt = F{ f (et);−is}.

The integral at the right-hand side of the Formula (61) is well defined, say, for the functions
f ∈ Lc(ε, E) , 0 < ε < E < ∞ that are continuous on the intervals (0, ε] , [E,+∞) and satisfy the
estimates | f (t)| ≤ M t−γ1 for 0 < t < ε , | f (t)| ≤ M t−γ2 for t > E , where M is a constant and
γ1 < γ2 . Under these conditions, the Mellin transform f ∗ exists and is an analytical function in the
vertical strip γ1 < �(s) < γ2.

The Formula (62) for the inverse Mellin integral transform holds true at all points where the
function f is continuous if f is piecewise differentiable, f (t) tγ−1 ∈ Lc(0,+∞), and its Mellin integral
transform f ∗ is given by (61).

For the reader’s convenience, we present in this section some important theorems concerning the
Mellin integral transform (for the proofs see e.g., [29]).

Theorem 1. Let f be a function of bounded variation in the neighborhood of a point t = x, tγ−1 f (t) ∈
L(0, ∞), and

F(s) =M{ f (t), s} =
∫ +∞

0
f (t)ts−1dt, s = γ + iτ. (63)

Then
f (x + 0) + f (x− 0)

2
=

1
2πi

lim
T→∞

∫ γ+iT

γ−iT
F(s)x−sds. (64)

Theorem 2. Let F(s), s = γ + iτ be a function of bounded variation in the neighborhood of a point τ = x,
F ∈ L(−∞,+∞), and

f (t) =M−1{F(s); t} = 1
2πi

∫ γ+i∞

γ−i∞
F(s)t−sds. (65)

Then
F(γ + i(x + 0)) + F(γ + i(x− 0))

2
= lim

λ→∞

∫ λ

1/λ
f (t)tγ+ix−1dt. (66)

To formulate other theorems, some special spaces of functions are first introduced.
By Lp(μ(t);R+), p ≥ 1 the space of functions summable in the Lebesgue sense on the interval
(0,+∞) to the power p and with the weight μ(t) > 0, t > 0 is denoted. The norm of the space
Lp(μ(t);R+) is defined by

‖ f ‖Lp(μ(t);R+) =

{∫ ∞

0
μ(t)| f (t)|pdt

}1/p
< ∞. (67)

In particular, when μ(t) ≡ 1, t > 0, the space Lp(μ(t);R+) is reduced to the usual Lp-space.
While estimating the integrals in Lp, the Hölder inequality∫ ∞

0
| f (t)g(t)|dt ≤ ‖ f ‖Lp(R+)‖g‖Lq(R+), (68)
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where 1
p + 1

q = 1 and the Minkowski inequality

{∫ ∞

0
dx
∣∣∣∣∫ ∞

0
f (x, y)dy

∣∣∣∣p}1/p

≤
∫ ∞

0
dy
{∫ ∞

0
| f (x, y)|pdx

}1/p
(69)

are often used.

Theorem 3. Let f ∈ L2(t2γ−1;R+). Then the function

f ∗(s, λ) =
∫ λ

1/λ
f (t)tγ+iτ−1dt, s = γ + iτ (70)

converges in the norm of L2(γ− i∞, γ + i∞) to a function f ∗ and the function

f (t, λ) =
1

2πi

∫ γ+iλ

γ−iλ
f ∗(s)t−sds (71)

converges in the norm of L2(t2γ−1;R+) to the function f , i.e.,

lim
λ→∞

∫ ∞

0
| f (t)− f (t, λ)|2t2γ−1dt = 0. (72)

Moreover, the Parseval equality∫ ∞

0
| f (t)|2t2γ−1dt =

1
2π

∫ +∞

−∞
| f ∗(γ + iτ)|2dτ (73)

holds true.

Theorem 4. Let f ∈ L2(t2γ−1;R+), g ∈ L2(t1−2γ;R+) and f ∗, g∗ be their Mellin integral transforms,
respectively. Then the Mellin-Parseval equality

∫ ∞

0
f (t)g(t)dt =

1
2πi

∫ γ+i∞

γ−i∞
f ∗(s)g∗(1− s)ds (74)

holds true.

The Mellin convolution

( f
M∗ g)(x) =

∫ +∞

0
f (x/t)g(t)

dt
t

(75)

is a very essential element of the integral transforms of the Mellin convolution type. Following [29],
we formulate the following important theorem:

Theorem 5. Let f (t) tγ−1 ∈ L(0, ∞) and g(t) tγ−1 ∈ L(0, ∞). Then the Mellin convolution h = ( f
M∗ g)

given by (75) is well defined, h(x) xγ−1 ∈ L(0, ∞) and the convolution formula

M
{
( f

M∗ g)(x); s
}

=M{ f (t); s} ×M{g(t); s} (76)

holds true along with the Parseval equality

∫ +∞

0
f (x/t)g(t)

dt
t
=

1
2πi

∫ γ+i∞

γ−i∞
f ∗(s)g∗(s)x−sds. (77)
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In particular, the Parseval equality (77) can be employed while treating integrals of the Fourier
cos- and sin-transforms type for x > 0:

Ic(x) =
1
π

∫ ∞

0
f (t) cos (t x) dt,

Is(x) =
1
π

∫ ∞

0
f (t) sin (t x) dt.

Indeed, the integrals Ic and Is can be interpreted as Mellin convolutions (75) of the function f and
the functions

gc(t) =
1

π x t
cos
(

1
t

)
, gs(t) =

1
π x t

sin
(

1
t

)
,

respectively, evaluated at the point 1/x.
The Mellin integral transforms of the functions gc , gs are well known ([26] or [27]):

g∗c (s) =M{gc(t); s} = Γ(1− s)
π x

sin
(πs

2

)
, 0 < �(s) < 1,

g∗s (s) =M{gs(t); s} = Γ(1− s)
π x

cos
(πs

2

)
, 0 < �(s) < 2 .

Thus the integrals Ic and Is can be represented by means of the Parseval equality (77) as follows:

Ic(x) =
1

π x
1

2πi

∫ γ+i∞

γ−i∞
f ∗(s) Γ(1− s) sin

(π s
2

)
xs ds , x > 0 , 0 < γ < 1 ,

Is(x) =
1

π x
1

2πi

∫ γ+i∞

γ−i∞
f ∗(s) Γ(1− s) cos

(π s
2

)
xs ds , x > 0 , 0 < γ < 2 .

In [4], the method presented above was employed to introduce the notion of the generalized
H-transform.

In the applications, elementary properties of the Mellin integral transform are often employed.
They are presented in the rest of this section.

Let us denote by M↔ the juxtaposition of a function f with its Mellin transform f ∗. The basic Mellin
transform rules are as follows:

f (at) M↔ a−s f ∗(s), a > 0, (78)

tp f (t) M↔ f ∗(s + p), (79)

f (tp)
M↔ 1

|p| f ∗(s/p), p �= 0, (80)

f (n)(t) M↔ Γ(n + 1− s)
Γ(1− s)

f ∗(s− n) (81)

if lim
t→0

ts−k−1 f (k)(t) = 0, k = 0, 1, . . . , n− 1,(
t

d
dt

)n
f (t) M↔ (−s)n f ∗(s), (82)(

d
dt

t
)n

f (t) M↔ (1− s)n f ∗(s). (83)

In [24,26,27], the Mellin transforms of the elementary and many of the special functions are given.
Here we list just some basic Mellin transform formulas that are often used in applications.
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e−tp M↔ 1
|p|Γ(

s
p
) if �( s

p
) > 0, (84)

(1− tp)α−1
+

Γ(α)
M↔

Γ( s
p )

|p|Γ( s
p + α)

if �(α) > 0, �( s
p
) > 0, (85)

(tp − 1)α−1
+

Γ(α)
M↔

Γ(1− α− s
p )

|p|Γ(1− s
p )

if 0 < �(α) < 1−�( s
p
), (86)

Γ(ρ)(1 + t)−ρ M↔ Γ(s)Γ(ρ− s) if 0 < �(s) < �(ρ), (87)
1

π(1− t)
M↔ Γ(s)Γ(1− s)

Γ(s + 1/2)Γ(1/2− s)
if 0 < �(s) < 1, (88)

sin(2
√

t)√
π

M↔ Γ(s + 1/2)
Γ(1− s)

if |�(s)| < 1/2, (89)

√
π erf (

√
t) M↔ Γ(s + 1/2)Γ(−s)

Γ(1− s)
if − 1/2 < �(s) < 0, (90)

Jν(2
√

t) M↔ Γ(s + ν
2 )

Γ(1 + ν
2 − s)

if −�(ν

2
) < �(s) < 3

4
, (91)

2Kν(2
√

t) M↔ Γ(s +
ν

2
)Γ(s− ν

2
) if �(s) > |�(ν)|

2
, (92)

Γ(a)
Γ(c) 1F1(a; c;−t) M↔ Γ(s)Γ(a− s)

Γ(c− s)
if 0 < �(s) < �(a), (93)

|1− t|μ/2Pμ
ν (
√

t) M↔ Γ(s)Γ(s + 1
2 )Γ(

1+ν−μ
2 − s)Γ(− μ+ν

2 − s)
π2μ+1Γ(1− μ + ν)Γ(−μ− ν)

(94)

if 0 < �(s) < min{1 +�(ν− μ)

2
,−�(ν + μ)

2
},

Γ(a)Γ(b)
Γ(c) 2F1(a, b; c;−t) M↔ Γ(s)Γ(a− s)Γ(b− s)

Γ(c− s)
(95)

if 0 < �(s) < min{�(a),�(b)},

(1− t)c−1
+

Γ(c) 2F1(a, b; c; 1− t) M↔ Γ(s)Γ(s + c− a− b)
Γ(s + c− a)Γ(s + c− b)

if 0 < �(s), (96)

0 < �(c), 0 < �(s + c− a− b),

pFq((a)p; (b)q;−t) M↔
∏

q
j=1 Γ(bj)

∏
p
j=1 Γ(aj)

∏
p
j=1 Γ(aj − s)Γ(s)

∏
q
j=1 Γ(bj − s)

(97)

if 0 < �(s) < min
1≤j≤p

�(aj),

bk �= 0,−1, . . . , 1 ≤ k ≤ q

and

(1) q = p− 1 or

(2) q = p or

(3) q = p + 1 and

�(s) < 1
4
− 1

2

(
�
(

p

∑
j=1

aj −
q

∑
j=1

bj

))
,

where Jν is the Bessel function, Kν is the Macdonald function, Pμ
ν denotes the Legendre function of the

first kind, and pFq((a)p; (b)q; z) stands for the generalized hypergeometric function.
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As to applications of the Mellin integral transform, we mention here its applications in the theory
of the integral transform of the Mellin convolution type [4], for evaluation of improper integrals [26,27],
in the theory of special functions of the hypergeometric type [26], for construction of the operational
calculi of Mikusinski type for the compositions of the fractional Erdelyi-Kober derivatives [5], for
derivation of the fundamental solutions to the space-time fractional diffusion equation [30,31], for
analysis of the multi-dimensional fractional diffusion-wave equations [32], for derivation of the
subordination principles for the multi-dimensional space-time-fractional diffusion-wave equation [33],
and for several other important problems in Fractional Calculus [34].

5. Conclusions

In this survey article, we considered some elements of theory and applications of the integral
transforms of mathematical physics. These integral transforms are not arbitrary integral transforms
but those possessing well defined inverse integral transforms and generating operators. The basic
constructions for most of applications of these integral transforms are their convolutions and generating
operators. They lead to some simple and efficient solution methods for the corresponding integral,
differential, and integro-differential equations. Another important technique for applications of the
integral transforms is the Mikusinski-type operational calculi that were also discussed in the article.

The general schemata for applications of the integral transforms of mathematical physics were
illustrated in detail by considering the Laplace integral transform. Similar, but more complicated
constructions and solution methods are valid for the general H-transform as a generalization of
the Laplace integral transform. In this case, the “integral” generating operators are in form of
the compositions of the fractional Erdelyi-Kober right- and left-hand sided fractional integrals
and derivatives. Their left-inverse “differential” operators are in form of certain compositions
of the fractional Erdelyi-Kober left- and right-hand sided fractional derivatives and integrals.
The convolutions of the general H-transform can be constructed in explicit form as some
multiple integrals.

In the article, some basic elements of the Mellin integral transform were discussed, too. The Mellin
integral transform is a foundation for the theory of the Mellin convolution type integral transforms in
general and of the H-transform in particular. For details we refer the interested readers to [4] or [5–8].
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Abstract: Several fractional-order operators are available and an in-depth knowledge of the selected
operator is necessary for the evaluation of fractional integrals and derivatives of even simple functions.
In this paper, we reviewed some of the most commonly used operators and illustrated two approaches
to generalize integer-order derivatives to fractional order; the aim was to provide a tool for a full
understanding of the specific features of each fractional derivative and to better highlight their
differences. We hence provided a guide to the evaluation of fractional integrals and derivatives
of some elementary functions and studied the action of different derivatives on the same function.
In particular, we observed how Riemann–Liouville and Caputo’s derivatives converge, on long
times, to the Grünwald–Letnikov derivative which appears as an ideal generalization of standard
integer-order derivatives although not always useful for practical applications.

Keywords: fractional derivative; fractional integral; Mittag–Leffler function; Riemann–Liouville
derivative; Caputo derivative; Grünwald–Letnikov derivative

1. Introduction

Fractional calculus, the branch of calculus devoted to the study of integrals and derivatives of
non integer order, is nowadays extremely popular due to a large extent of its applications to real-life
problems (see, for instance, [1–8]).

Although this subject is as old as the more classic integer-order calculus, its development and
diffusion mainly started to take place no more than 20 or 30 years ago. As a consequence, several
important results in fractional calculus are still not completely known or understood by non-specialists,
and this topic is usually not taught in undergraduate courses.

The presence of more than one type of fractional derivative is sometimes a source of confusion
and it is not occasional to find wrong or not completely rigorous results in distinguished journals as
well. Even the simple evaluation of a fractional integral or derivative of elementary functions is in
some cases not reported in a correct way, which is also due to the difficulty of properly handling the
different operators.

For instance, in regards to the exponential, the sine and the cosine functions, the usual and
well-known relationships:

dn

dtn etΩ = ΩnetΩ,
dn

dtn sin tΩ = Ωn sin
(

tΩ +
nπ

2

)
,

dn

dtn cos tΩ = Ωn cos
(

tΩ +
nπ

2

)
, (1)
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which hold for any n ∈ N and turn out extremely useful for simplifying a lot of mathematical
derivations, are in general no longer true with fractional derivatives, unless a very special definition is
used, which presents some not secondary drawbacks.

The main aim of this paper is to provide a tutorial for the evaluation of fractional integrals and
derivatives of some elementary functions and to show the main differences resulting from the action
of different types of fractional derivatives. At the same time, we present an alternative perspective for
the derivation of some of the most commonly used fractional derivatives in order to help the reader to
better interpret the results obtained from their application.

In particular, the more widely used definitions of fractional derivatives, namely those known as
Grünwald–Letnikov, Riemann–Liouville and Caputo, are introduced according to two approaches:
One based on the inversion of the generalization of the integer-order integral and the other based on
the more direct generalization of the limit of the difference quotients defining integer-order derivatives.
Although they lead to equivalent results, the second and less usual approach allows for a more
comprehensive understanding of the nature of the different operators and a better explanation of the
effects produced on elementary functions. In particular we will observe when relationships similar to
Equation (1) apply to fractional derivatives and the way in which fractional derivatives deviate from
Equation (1).

Some of the material presented in this paper is clearly not new (proper references will be given
through the paper). Nevertheless, we think that it is important to collect in a single paper a series
of results which are scattered among several references or are not clearly exposed, thus to provide a
systematic treatment and a guide for researchers approaching fractional calculus for the first time.

The paper is organized as follows: In Section 2 we recall the fractional Riemann–Liouville
integral and some definitions of fractional derivatives relying on its inversion. We hence present in
Section 3 a different view of the same definitions by showing, in a step-by-step way, how they can
be obtained as a generalization of the limit of different quotients defining standard integer-order
derivatives after operating a replacement of the function to cope with convergence difficulties. Since
the Mittag–Leffler (ML) function plays an important role in fractional calculus, and indeed most of
the results on derivatives of elementary functions will be based on this function, Section 4 is devoted
to present this function and some of its main properties; in particular, we provide a useful result on
the asymptotic behavior of the ML function which allows to investigate the relationships between
the action of the different fractional derivatives on the same function. Sections 5–7 are devoted to
presenting the evaluation of derivatives of some elementary functions (power, exponential and sine
and cosine functions), to study their properties and to highlight the different effects of the various
operators. Clearly the results on the few elementary functions considered in this paper may be adopted
as a guide to extend the investigation to further and more involved functions. Some concluding
remarks are finally presented in Section 8.

2. Fractional Derivatives as Inverses of the Fractional Riemann–Liouville Integral

To simplify the reading of this paper we recall in this Section the most common definitions in
fractional calculus and review some of their properties. For a more comprehensive introduction
to fractional integrals and fractional derivatives we refer the reader to any of the available
textbooks [3,5,9–12] or review papers [13,14]. In particular, we follow here the approach based on the
generalization, to any real positive order, of standard integer-order integrals and on the introduction
of fractional derivatives as their inverse operators. We therefore start by recalling the well-known
definition of the fractional Riemann–Liouville (RL) integral.

Definition 1. For a function f ∈ L1([t0, T]
)

the RL integral of order α > 0 and origin t0 is defined as:

Jα
t0

f (t) =
1

Γ(α)

∫ t

t0

(t− τ)α−1 f (τ)dτ, ∀t ∈ (t0, T]. (2)
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As usual, L1([t0, T]
)

denotes the set of Lebesgue integrable functions on [t0, T] and Γ(x) is the
Euler gamma function

Γ(x) =
∫ ∞

0
tx−1e−tdt, (3)

a function playing an important role in fractional calculus since it generalizes the factorial to real
arguments; it is indeed possible to verify that Γ(x + 1) = xΓ(x) and hence, since Γ(1) = 1, it is:

Γ(n + 1) = n! for any n ∈ N.

It is due to the above fundamental property of the Euler gamma function that the RL integral (2)
can be viewed as a straightforward extension of standard n-fold repeated integrals:∫ t

t0

∫ τ1

t0

· · ·
∫ τn−1

t0

f (τn)dτn · · ·dτ2 dτ1 =
1

(n− 1)!

∫ t

t0

(t− τ)n−1 f (τ)dτ

where it is sufficient to replace the integer n with any real α > 0 to obtain RL integral (2).
In the special case of the starting point t0 → −∞ the integral on the whole real axis:

Jα
−∞ f (t) = lim

t0→−∞
Jα
t0

f (t) =
1

Γ(α)

∫ t

−∞
(t− τ)α−1 f (τ)dτ, t ∈ R, (4)

is usually referred to as the Liouville (left-sided) fractional integral (see [12] (Chapter 5) or [10] (§2.3))
and satisfies similar properties as the integer-order integral, such as Jα

−∞eΩt = Ω−αeΩt.
Once a robust definition for fractional-order integrals is available, as the RL integral (2), fractional

derivatives can be introduced as their left-inverses in a similar way as standard integer-order
derivatives are the inverse operators of the corresponding integrals.

To this purpose let us denote with m = �α� the smallest integer greater or equal to α and,
since m− α > 0, consider the RL integral Jm−α

t0
. Thanks to the semigroup property Jm−α

t0
Jα
t0

f (t) =

Jm
t0

f (t) [9] (Theorem 2.1) which returns an integer-order integral, it is sufficient to apply the
integer-order derivative Dm to obtain the identity:

Dm Jm−α
t0

Jα
t0

f (t) = Dm Jm
t0

f (t) = f (t);

the concatenation Dm Jm−α
t0

hence provides the left-inverse of Jα
t0

and therefore justifies the following
definition of the RL fractional derivative.

Definition 2. Let α > 0, m = �α� and t0 ∈ R. The RL fractional derivative of order α and starting point t0 is:

RLDα
t0

f (t) := Dm Jm−α
t0

f (t) =
1

Γ(m− α)

dm

dtm

∫ t

t0

(t− τ)m−α−1 f (τ)dτ, t > t0. (5)

The RL derivative (5) is not the only left inverse of Jα
t0

and in applications, a different operator is
usually preferred. One of the major drawbacks of the RL derivative is that it requires to be initialized
by means of fractional integrals and fractional derivatives. To fully understand this issue it is useful to
consider the following result on the Laplace transform (LT) of the RL derivative [10].

Proposition 1. Let α > 0 and m = �α�. The LT of the RL derivative of a function f (t) is:

L
(

RLDα
t0

f (t) ; s
)
= sαF(s)−

m−1

∑
j=1

sm−1−j RLDα−m+j
t0

f (t)
∣∣∣
t=t+0

− sm−1 Jm−α
t0

f (t)
∣∣∣
t=t+0

,

with F(s) the LT of f (t).
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A consequence of this result is that fractional differential equations (FDEs) with the RL derivative
need to be initialized with the same kind of values. The uniqueness of the solution y(t) of a FDE
requires that initial conditions on Jm−α

t0
y(t)
∣∣
t=t+0

and RLDα−m+j
t0

y(t)
∣∣
t=t+0

, j = 1, . . . , m− 1, are assigned
(e.g., see [9] (Theorem 5.1) or [10] (Chapter 3)).

In the majority of applications, however, these values are not available because they do not have
a clear physical meaning and therefore the description of the initial state of a system is quite difficult
when the RL derivative is involved. This is one of the reasons which motivated the introduction of
the alternative fractional Caputo’s derivative obtained by simply interchanging differentiation and
integration in RL Derivative (5).

Definition 3. Let α > 0, m = �α� and t0 ∈ R. For a function f ∈ Am([t0, T]
)
, i.e., such that f (m−1) is

absolutely continuous, the Caputo’s derivative is defined as:

CDα
t0

f (t) := Jm−α
t0

Dm f (t) =
1

Γ(m− α)

∫ t

t0

(t− τ)m−α−1 f (m)(τ)dτ, t > t0, (6)

where Dm and f (m) denote integer-order derivatives.

Unlike the RL derivative, the LT of the Caputo’s derivative is initialized by standard initial values
expressed in terms of integer-order derivatives, as summarized in the following result [9].

Proposition 2. Let α > 0 and m = �α�. The LT of the Caputo’s derivative of a function f (t) is:

L
(

CDα
t0

f (t) ; s
)
= sαF(s)−

m−1

∑
j=0

sα−1−j f (j)(t0),

with F(s) the LT of f (t).

It is a clear consequence of the above result that FDEs with the Caputo’s derivative require, to
ensure the uniqueness of the solution y(t), the assignment of initial conditions in the more traditional
Cauchy form y(j)(t0) = y0,j, j = 0, 1, . . . , m − 1, thus allowing a more convenient application to
real-life problems.

Although different, the Caputo’s derivative shares with the RL derivative the property of being
the left inverse of the RL integral since CDα

t0
Jα
t0

f = f [9] (Theorem 3.7). However, CDα
t0

is not the right
inverse of Jα

t0
since [9] (Theorem 3.8),

Jα
t0

CDα
t0

f (t) = f (t)− Tm−1[ f ; t0](t), (7)

where Tm−1[ f ; t0](t) is the Taylor polynomial of f centered at t0,

Tm−1[ f ; t0](t) =
m−1

∑
k=0

(t− t0)
k

k!
f (k)(t0). (8)

The polynomial Tm−1[ f ; t0](t) is important for establishing the relationship between fractional
derivatives of RL and Caputo type. After differentiating both sides of Formula (7) in the RL sense it is
possible to derive:

CDα
t0

f (t) = RLDα
t0

(
f (t)− Tm−1[ f ; t0](t)

)
. (9)

Although several other definitions of fractional integrals and derivatives have been introduced in
the last years, we confine our treatment to the above operators which are the most popular; the utility
and the nature of some of the operators recently proposed is indeed still under scientific debate and
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we refer, for instance, to [15–19] for a critical analysis of the properties which a fractional derivative
should (or should not) satisfy.

3. Fractional Derivatives as Limits of Difference Quotients

To better focus on their main characteristic features, we take a look at the fractional derivatives
introduced in the previous section from an alternative perspective. We start from recalling the usual
definition of the integer-order derivative based on the limit of the difference quotient:

f ′(t) = lim
h→0

f (t)− f (t− h)
h

,

where obviously we assume that the above limit exists. By recursion this definition can be generalized
to higher orders and, indeed, it is simple to evaluate:

f ′′(t) = lim
h→0

f ′(t)− f ′(t− h)
h

= lim
h→0

f (t)− 2 f (t− h) + f (t− 2h)
h2

f ′′′(t) = lim
h→0

f ′′(t− h)− f ′′(t)
h

= lim
h→0

f (t)− 3 f (t− h) + 3 f (t− 2h)− f (t− 3h)
h3

and, more generally, to prove the following result whose proof is straightforward and hence omitted.

Proposition 3. Let t ∈ R, n ∈ N and assume the function f to be n-times differentiable. Then,

f (n)(t) = lim
h→0

1
hn

n

∑
j=0

(−1)j
(

n
j

)
f (t− jh), (10)

where the binomial coefficients are defined as:

(
n
j

)
=

n(n− 1) · · · (n− j + 1)
j!

=

⎧⎨⎩
n!

j!(n− j)!
j = 0, 1, . . . , n,

0 j > n.
(11)

Formula (10) is of interest since a possible generalization to fractional-order can be proposed by
replacing the integer n with any real α > 0. While this replacement in the power hn of Formula (10) is
straightforward, some difficulties arise in the other two instances of the integer-order n in Formula (10):
the upper limit of the summation cannot be replaced by a real number and the binomial coefficients
must be properly defined for real parameters.

The first difficulty can be easily overcome since binomial coefficients vanish when j > n. Thus,
since no contribution in the summation is given from the presence of terms with j > n, the upper
limit in Formula (10) can be raised to any value greater than n and, hence, the finite summation in
Formula (10) can be replaced with the infinite series:

f (n)(t) = lim
h→0

1
hn

∞

∑
j=0

(−1)j
(

n
j

)
f (t− jh). (12)

To extend binomial coefficients and cope with real parameters we use again the Euler gamma
function in place of factorials in Formula (11); generalized binomial coefficients are hence defined as:(

α

j

)
=

α(α− 1) · · · (α− j + 1)
j!

=
Γ(α + 1)

j!Γ(α− j + 1)
, j = 0, 1, . . . . (13)

Note that the above binomial coefficients are the coefficients in the binomial series:

(1− x)α =
∞

∑
j=0

(−1)j
(

α

j

)
xj (14)
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which for real α > 0 converges when |x| ≤ 1. However, they do not vanish anymore for j > α when
α �∈ N.

Combining Equation (12) with Equation (13) provides the main justification for the following
extension of the integer-order derivative (10) to any real order α > 0 which was proposed
independently, and almost simultaneously, by Grünwald [20] and Letnikov [21].

Definition 4. Let α > 0. The Grünwald–Letnikov (GL) fractional derivative of order α is:

GLDα f (t) = lim
h→0

1
hα

∞

∑
j=0

(−1)j
(

α

j

)
f (t− jh), t ∈ R. (15)

Referring to Equation (15) as the Grünwald–Letnikov fractional derivative is quite common in
the literature (e.g., see [10] (§2.8) or [12] (§20)). Moreover, once a starting point t0 has been assigned,
for practical reasons the following (truncated) Grünwald–Letnikov fractional derivative [9,22] is often
preferred since it can be applied to functions not defined (or simply not known) in (−∞, t0).

Definition 5. Let α > 0 and t0 ∈ R. The (truncated) GL fractional derivative of order α is:

GLDα
t0

f (t) = lim
h→0

1
hα

N

∑
j=0

(−1)j
(

α

j

)
f (t− jh), N =

⌈
t− t0

h

⌉
, t > t0. (16)

Although they are both named as Grünwald–Letnikov derivatives, GLDα and GLDα
t0

are different
operators. We note however, that GLDα corresponds to GLDα

t0
when t0 → −∞, namely GLDα = GLDα

−∞.
There is a close relationship between the RL derivative and Equation (16). Indeed, it is possible to

see that whenever f ∈ Cm[t0, T], with m = �α�, then [9] (Theorem 2.25),

GLDα
t0

f (t) = RLDα
t0

f (t), t ∈ (t0, T]. (17)

The GL derivative (15) possesses similar properties to integer-order derivatives, such as GLDαtk = 0,
for k < α, and generalizes in a straightforward way the relationships of Equation (1) since, for instance
GLDαeΩt = ΩαeΩt when Re Ω ≥ 0 (we will better investigate these properties later on). Since this
last relationship was the starting point of Liouville for the construction of the fractional calculus, the
derivative (15) is sometimes recognized as the Liouville derivative (we refer to some papers on this
operator and its application, for instance, in signal theory [23,24]).

It is also worthwhile to remark that the GL derivative (15) is closely related to the Marchaud
derivative as discussed, for instance, in [12] (Chapter 20) and [25].

Another interesting feature is the correspondence between the standard Cauchy’s integral formula:

f (n)(z) =
n!

2πi

∫
C

f (u)
(u− z)n+1 du, z ∈ C, n ∈ N,

and its analogous generalized Cauchy fractional derivative which, as proved in [23], once C is chosen
as a complex U-shaped contour encircling the selected branch cut, it is equivalent to GLDα, namely:

GLDα f (z) =
Γ(α + 1)

2πi

∫
C

f (u)
(u− z)α+1 du, z ∈ C, α > 0.

In view of all these attractive properties, the GL derivative GLDα may appear as the ideal
generalization, to any positive real order, of the integer-order derivative. Unfortunately, there are
instead serious issues discouraging the use of the GL derivative in most applications. We observe that:

• The evaluation of GLDα f (t) at any point t requires the knowledge of the function f (t) over the
whole interval (−∞, t];
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• The series (15) converges only for a restricted range of functions, as for instance for bounded
functions in (−∞, t] or functions which do not increase too fast for t → −∞ (we refer to [12] (§4.20)
for a discussion about the convergence of GLDα).

To face the above difficulties, the function f (t) can be replaced with some related functions.
Two main options are commonly used to perform this replacement and, as we will see, they actually
lead to the RL and Caputo’s fractional derivatives introduced in the previous Section.

3.1. Replacement with a Discontinuous Function: The RL Derivative

Once a starting point t0 has been selected, the function f (t) can be replaced, as illustrated in
Figure 1, by a function f R(t) which is equal to f for t ≥ t0 and equal to 0 otherwise:

f R(t) =

{
0 t ∈ (−∞, t0)

f (t) t ≥ t0
;

namely all the past history of the function f is assumed to be equal to 0 before t0.

t0

f(t)
fR(t)

Figure 1. Replacement of f (t) (dotted and solid lines) by f R(t) (solid line) for a given point t0.

It is quite intuitive to observe the following relationship between the GL derivative of f R(t) and
the truncated GL derivative (16) of the original function f (t) and, in the end, of its RL derivative.

Proposition 4. Let α > 0, m = �α� and f ∈ Cm[t0, T]. Then, for any t ∈ (t0, T] it is:

GLDα f R(t) = GLDα
t0

f (t) = RLDα
t0

f (t).

Proof. The application of the GL fractional derivative GLDα to f R(t) leads to:

GLDα f R(t) = lim
h→0

1
hα

∞

∑
j=0

(−1)j
(

α

j

)
f R(t− jh) = lim

h→0

1
hα

N

∑
j=0

(−1)j
(

α

j

)
f (t− jh)

where N = �(t− t0)/h� is the smallest integer such that f R(t− jh) ≡ 0 for j = N + 1, N + 2, . . . and
hence GLDα f R(t) = GLDα

t0
f (t). The second equality comes from (17).

Unless f (t0) = 0, the replacement of f (t) with f R(t) introduces a discontinuity at t0 and, even
when f (t0) = 0, the function f R(t) may suffer from a lack of regularity at t0 due to the discontinuity of
its higher-order derivatives. As we will see, this discontinuity seriously affects the RL derivative of
several functions which, indeed, are often unbounded at t0. Therefore, to provide a regularization and
reduce the lack of smoothness introduced by f R(t), a different replacement is proposed.

3.2. Replacement with a More Regular Function: The Caputo’s Derivative

An alternative approach is based on the replacement, as depicted in Figure 2, of f (t) with a
function having a more regular behavior at t0, and whose regularity depends on α. The proposed
function is a continuation of f (t) before t0 in terms of its Taylor polynomial at t0, namely:
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f C(t) =

{
Tm−1[ f ; t0](t) t ∈ (−∞, t0)

f (t) t ≥ t0

where Tm−1[ f ; t0](t) is the same Taylor polynomial of f centered at t0 introduced in (8) and m = �α�.
It is clear that, unlike f R(t), the function f C(t) preserves a possible smoothness of f (t) at t0 since:

f C(t)
∣∣∣
t→t−0

= f (t0),
d
dt

f C(t)
∣∣∣
t→t−0

= f ′(t0), . . . ,
dm−1

dtm−1 f C(t)
∣∣∣
t→t−0

= f (m−1)(t0).

t0

f(t)

T0[f, t0](t)

T1[f
, t0](

t)

fC (t)

Figure 2. Replacement of f (t) (dotted and solid lines) by f C(t) (solid line) for a given point t0 and for
m = 0 (branch labeled T0[ f , t0](t)) and m = 1 (branch labeled T1[ f , t0](t)).

Before showing the effects of the replacement of f (t) by f C(t) we first have to consider the
following preliminary result.

Lemma 1. Let α > 0 and m = �α�. For any integer k = 0, 1, . . . , m− 1 it is:

∞

∑
j=0

(−1)
(

α

j

)
jk = 0.

Proof. When α ∈ N we refer to [26] (Proposition 2.1). Assume now α �∈ N and, after using the
alternative formulation of the binomial coefficients, one obtains:

∞

∑
j=0

(−1)
(

α

j

)
jk =

1
Γ(−α)

∞

∑
j=0

Γ(j− α)

Γ(j + 1)
jk.

From [26] (Theorem 3.2) we know that the following asymptotic expansion holds:

n

∑
j=0

Γ(j− α)

Γ(j + 1)
jk =

∞

∑
�=0

F�nk−α−�, n → ∞,

with coefficients F� depending on α and k but not on n. The proof hence immediately follows since
k− α < 0.

We are now able to study the relationship between the GL derivative of f C(t) and the truncated
GL derivative (16) and the Caputo’s derivative (6) of f (t).

Proposition 5. Let α > 0, m = �α� and f ∈ Cm[t0, T]. Then, for any t ∈ (t0, T] it is:

GLDα f C(t) = GLDα
t0

(
f (t)− Tm−1[ f ; t0](t)

)
= CDα

t0
f (t).

Proof. The application of the GL fractional derivative GLDα to f C(t) leads to:

28



Mathematics 2019, 7, 407

GLDα f C(t) = lim
h→0

1
hα

∞

∑
j=0

(−1)j
(

α

j

)
f C(t− jh)

= lim
h→0

1
hα

[
N

∑
j=0

(−1)j
(

α

j

)
f (t− jh) +

∞

∑
j=N+1

(−1)j
(

α

j

)
Tm−1[ f ; t0](t− jh)

]
Observe now that:

Tm−1[ f ; t0](t− jh) =
m−1

∑
k=0

(t− jh− t0)
k

k!
f (k)(t0) =

m−1

∑
k=0

1
k!

f (k)(t0)
k

∑
�=0

(
k
�

)
(t− t0)

�(−jh)k−�

and hence,

∞

∑
j=N+1

(−1)j
(

α

j

)
Tm−1[ f ; t0](t− jh) =

m−1

∑
k=0

1
k!

f (k)(t0)
k

∑
�=0

(
k
�

)
(−h)k−�(t− t0)

�
∞

∑
j=N+1

(−1)j
(

α

j

)
jk−�.

Since from Lemma 1 it is:

∞

∑
j=N+1

(−1)j
(

α

j

)
jk = −

N

∑
j=0

(−1)j
(

α

j

)
jk

we obtain,

∞

∑
j=N+1

(−1)j
(

α

j

)
Tm−1[ f ; t0](t− jh) = −

m−1

∑
k=0

1
k!

f (k)(t0)
k

∑
�=0

(
k
�

)
(−h)k−�(t− t0)

�
N

∑
j=0

(−1)j
(

α

j

)
jk−�

= −
N

∑
j=0

(−1)j
(

α

j

) m−1

∑
k=0

1
k!

f (k)(t0)
k

∑
�=0

(
k
�

)
(−hj)k−�(t− t0)

�

= −
N

∑
j=0

(−1)j
(

α

j

)
Tm−1[ f ; t0](t− jh)

from which the first equality follows. The second equality is consequence of Proposition 4 together
with Equation (9).

4. The Mittag–Leffler Function

The Mittag–Leffler (ML) function plays a special role in fractional calculus and in the representation
of fractional derivatives of elementary functions and will be better investigated later on. It is therefore
mandatory to recall some of the main properties of this function.

The definition of the two-parameter ML function is given by:

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, z ∈ C, (18)

where α and β are two (possibly complex, but with Re α > 0) parameters.
The importance of the ML function in fractional calculus is particularly related to the fact that it is

the eigenfunction of RL and Caputo’s fractional derivatives. It is indeed possible to show that for any
t > t0 and j = 0, 1, . . . , m− 1, with m = �α�, it is:
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RLDα
t0

y(t) = Ωy(t), y(t) = (t− t0)
α−j−1Eα,α−j

(
Ω(t− t0)

α
)
,

CDα
t0

y(t) = Ωy(t), y(t) = (t− t0)
jEα,j+1

(
Ω(t− t0)

α
)
,

and therefore the ML function has in fractional calculus the same importance as the exponential in the
integer-order calculus (indeed, the ML function generalizes the exponential since E1,1(z) = ez).

It is useful to introduce the Laplace transform (LT) of the ML function which, for any real t > 0
and z ∈ C, is given by:

L
(

tβ−1Eα,β(tαz) ; s
)
=

sα−β

sα − z
, Re s > 0, |zs−α| < 1, (19)

and, for convenience, we impose a branch cut on the negative real semi-axis in order to make the
function sα single valued.

The special instance E1,β(z) of the ML function will be encountered in the representation of
fractional integrals and derivatives of some elementary functions. E1,β(z) is closely related to the
exponential function and, as for instance emphasized in [27], it is:

E1,β(z) = ez · P̂β(z), P̂β(z) =
1

Γ(β− 1)

∞

∑
k=0

(−z)k

k!(β− 1 + k)
.

It is however more convenient to express the ML function as a deviation from the exponential
function according to the following result which will turn out to be useful in the subsequent sections.

Theorem 1. Let Ω ∈ C with | arg(Ω)| < π. For any β > −1 and t ≥ 0 it is:

t−βE1,1−β(Ωt) = ΩβetΩ + Fβ(t; Ω), (20)

where,

Fβ(t; Ω) =
sin
(

βπ
)

π

∫ ∞

0
e−rt rβ

r + Ω
dr. (21)

Proof. Thanks to Formula (19) for the LT of the ML we observe that:

L
(

t−βE1,1−β(Ωt) ; s
)
=

sβ

s−Ω
;

thus, the formula for the inversion of the LT allows to write this function as:

t−βE1,1−β(Ωt) =
1

2πi

∫ σ+i∞

σ−i∞
est sβ

s−Ω
ds, σ > max{0, Re Ω}.

The Bromwich line (σ− i∞, σ + i∞) can be deformed into an Hankel contour Hε starting at
−∞ below the negative real semi-axis and ending at −∞ above the negative real semi-axis after
surrounding the origin along a circular disc |s| = ε. Since Ω does not lie on the branch cut, the contour
Hε can be collapsed onto the branch-cut by letting ε → 0. The contour thus passes over the singularity
Ω and the residue subtraction leads to:

t−βE1,1−β(Ωt) = Res
(

est sβ

s−Ω
, Ω
)
+ Fβ(t; Ω)

where, for shortness, we denoted:

Fβ(t; Ω) = lim
ε→0

1
2πi

∫
Hε

est sβ

s−Ω
ds.

The residue can be easily computed as:
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Res
(

est sβ

s−Ω
, Ω
)
= ΩβeΩt,

whilst to evaluate Fβ(t; Ω) we first decompose the Hankel contour into its three main paths:

Hε = γ1 + γ2 + γ3,

⎧⎪⎨⎪⎩
γ1 : s = re−iπ , ∞ > r ≥ ε,
γ2 : s = εeiθ , −π < θ < π,
γ3 : s = reiπ , ε ≤ r < ∞,

thanks to which we are able to write:

1
2πi

∫
Hε

est sβ

s−Ω
ds = I1 + I2 + I3, I� =

1
2πi

∫
γ�

est sβ

s−Ω
ds, � = 1, 2, 3.

Since eiπ = e−iπ = −1, it is possible to compute:

I1 =
1

2πi

∫ ε

∞
e−rt rβe−iβπe−iπ

−r−Ω
dr = −e−iβπ

2πi

∫ ∞

ε
e−rt rβ

r + Ω
dr

I2 =
εβ+1

2π

∫ π

−π

eεt cos θ+i[(β+1)θ+εt sin θ]

ε cos θ −Ω + iε sin θ
dθ

I3 =
1

2πi

∫ ∞

ε
e−rt rβeiβπeiπ

−r−Ω
dr =

eiβπ

2πi

∫ ∞

ε
e−rt rβ

r + Ω
dr

and we observe that, due to the presence of the term εβ+1, where we assumed β > −1, the integral I2

vanishes when ε → 0. For the remaining term I1 + I2 we note that:

eiβπ

2πi
− e−iβπ

2πi
=

sin βπ

π
,

and, hence, the representation (21) of Fβ(t; Ω) easily follows.

The relationship between the ML function and the exponential is even more clear in the presence
of an integer second parameter.

Proposition 6. Let m ∈ N and Ω ∈ C. For any t ∈ R it is:

tmE1,1+m(Ωt) =
1

Ωm

(
eΩt −

m−1

∑
j=0

Ωjtj

j!

)
,

t−mE1,1−m(Ωt) = ΩmeΩt.

Proof. The first equality directly follows from the definition (18) of the ML function since it is:

tmE1,1+m(Ωt) =
1

Ωm

∞

∑
k=0

Ωk+mtk+m

Γ(k + 1 + m)
=

1
Ωm

∞

∑
j=m

Ωjtj

Γ(j + 1)
=

1
Ωm

(
∞

∑
j=0

Ωjtj

j!
−

m−1

∑
j=0

Ωjtj

j!

)

whilst the second equality is a special case of Theorem 1.

The following result will prove its particular utility when studying the asymptotic behavior of
the fractional derivatives of some functions which will be expressed, in the next sections, in terms of
special instances of the ML function.

Proposition 7. Let β > −1, Ω ∈ C, | arg Ω| < π, and t ≥ 0. Then,

Fβ(t; Ω) = CβΩ−1t−β−1
(

1 +O
(
t−1)) , t → ∞,
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with Cβ independent of t and Ω.

Proof. By a change of the integration variable we can write:

Fβ(t; Ω) = Ωβ sin βπ

π

∫ ∞

0
e−rΩt rβ

r + 1
dr = Ωβ sin βπ

π
Γ(β + 1)U(β + 1, β + 1, Ωt)

where U(a, b, z) is the Tricomi function (often known as the confluent hypergeometric function
of the second kind) defined for Re a > 0 and Re z > 0 and by analytic continuation
elsewhere [28] (Chapter 48). After putting Cβ = Γ(β + 1) sin(βπ)/π, it is therefore [29] (Chapter 7,
§ 10.1),

Fβ(t; Ω) ∼ t−β−1CβΩ−1
∞

∑
j=0

(−1)j Γ(β + 1 + j)
Γ(β + 1)

t−jΩ−j, t → ∞, | arg Ω| ≤ 3
2

π − δ

for arbitrary small δ > 0. Hence the proof follows since the selection of the branch cut on the negative
real semi-axis.

5. Fractional Integral and Derivatives of the Power Function

Basic results on fractional integral and derivatives of the power function (t− t0)
β, for β > −1, are

available in the literature; see, for instance [9] for the RL integral:

Jα
t0
(t− t0)

β =
Γ(β + 1)

Γ(β + α + 1)
(t− t0)

β+α, (22)

for the RL derivative (as usual, m = �α�):

RLDα
t0
(t− t0)

β =

⎧⎨⎩ 0 β ∈
{

α−m, α−m + 1, . . . , α− 1
}

Γ(β + 1)
Γ(β− α + 1)

(t− t0)
β−α otherwise

(23)

and for the Caputo’s derivative:

CDα
t0
(t− t0)

β =

⎧⎪⎪⎨⎪⎪⎩
0 β ∈

{
0, 1, . . . , m− 1

}
Γ(β + 1)

Γ(β− α + 1)
(t− t0)

β−α β > m− 1

non existing otherwise

(24)

The absence of the Caputo’s derivative of (t− t0)
β for real β < m− 1 with β �∈

{
0, 1, . . . , m− 1

}
is related to the fact that once the m-th order derivative of (t − t0)

β is evaluated the integrand in
Equation (6) is no longer integrable.

For general power functions independent from the starting point, i.e., for tk instead of (t− t0)
k,

we can provide the following results.

Proposition 8. Let α > 0 and m = �α�. Then for any k ∈ N:

1. GLDαtk = 0 for k < α;

2. RLDα
t0

tk =
k

∑
�=0

k!
(k− �)!Γ(�+ 1− α)

(t− t0)
�−αtk−�

0 ;

3. CDα
t0

tk =

⎧⎪⎨⎪⎩
0 if k < α

k

∑
�=m

k!
(k− �)!Γ(�+ 1− α)

(t− t0)
�−αtk−�

0 otherwhise
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Proof. For GLDαtk we first write:

(t− jh)k =
k

∑
�=0

(
k
�

)
t�(−h)k−� jk−�

and hence by using the Definition 4 it is possible to see that:

GLDαtk = lim
h→0

1
hα

∞

∑
j=0

(−1)j
(

α

j

)
(t− jh)k = lim

h→0

1
hα

k

∑
�=0

(
k
�

)
t�(−h)k−�

∞

∑
j=0

(−1)j
(

α

j

)
jk−� = 0

where we applied Lemma 1. For RLDα
t0

tk we expand:

tk =
k

∑
�=0

(
k
�

)
(t− t0)

�tk−�
0

and hence the proof immediately follows from Equation (23). Similarly for CDα
t0

tk by using
Equation (24).

Note that GLDαtk diverges when k > α. A representation of CDα
t0

tβ, for general real but not integer
β, is provided in terms of the hypergeometric 2F1 function in [9] (Appendix B).

6. Fractional Integral and Derivatives of the Exponential Function

The exponential function is of great importance in mathematics and in several applications, also
to approximate other functions. We therefore study here fractional integral and derivatives of the
exponential function.

Proposition 9. Let α > 0, m = �α� and t0 ∈ R. For any Ω ∈ C and t > t0 the exponential function eΩ(t−t0)

has the following fractional integral and derivatives:

Jα
t0

eΩ(t−t0) = (t− t0)
αE1,1+α(Ω(t− t0)),

RLDα
t0

eΩ(t−t0) = (t− t0)
−αE1,1−α(Ω(t− t0)),

CDα
t0

eΩ(t−t0) = Ωm(t− t0)
m−αE1,m−α+1(Ω(t− t0)),

and, moreover, for any t ∈ R and Re(Ω) ≥ 0 it is:

GLDαeΩt = ΩαeΩt.

Proof. By applying a term-by-term integration to the series expansion of the exponential function:

eΩt =
∞

∑
k=0

Ωktk

k!
, (25)

and thanks to Equation (22) and to Definition (18) of the ML function, we obtain:

Jα
t0

eΩ(t−t0) =
∞

∑
k=0

Ωk

k!
Jα
t0
(t− t0)

k =
∞

∑
k=0

Ωk

Γ(k + α + 1)
(t− t0)

k+α = (t− t0)
αE1,1+α(Ω(t− t0)).

For the evaluation of the RL derivative RLDα
0 eΩ(t−t0) we again consider the series expansion

Equation (25) and, by differentiating term by term thanks to Equation (23), it is:
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RLDα
t0

eΩ(t−t0) = RLDα
t0

∞

∑
k=0

Ωk(t− t0)
k

k!
=

∞

∑
k=0

Ωk

k!
RLDα

t0
(t− t0)

k =
∞

∑
k=0

Ωk(t− t0)
k−α

Γ(k− α + 1)

from which the proof follows thanks again to Definition (18) of the ML function. We proceed in a
similar way for CDα

t0
eΩ(t−t0) for which it is:

CDα
t0

eΩ(t−t0) = CDα
t0

(
m−1

∑
k=0

Ωk(t− t0)
k

k!
+

∞

∑
k=m

Ωk(t− t0)
k

k!

)
=

∞

∑
k=m

Ωk

k!
CDα

t0
(t− t0)

k =
∞

∑
k=m

Ωk(t− t0)
k−α

Γ(k− α + 1)

and, after a change j = k−m in the summation index and rearranging some terms we obtain:

CDα
t0

eΩ(t−t0) =
∞

∑
j=0

Ωj+m(t− t0)
j+m−α

Γ(j + m− α + 1)
= Ωm(t− t0)

m−α
∞

∑
j=0

Ωj(t− t0)
j

Γ(j + m− α + 1)

from which, again, the proof follows from Definition (18) of the ML function. To finally evaluate the
GL derivative GLDαeΩt we first apply its definition from Equation (15)

GLDαeΩt = lim
h→0

1
hα

∞

∑
j=0

(−1)j
(

α

j

)
eΩ(t−jh) = eΩt lim

h→0

1
hα

∞

∑
j=0

(−1)j
(

α

j

)
e−jhΩ

and, since we are assuming Re(Ω) ≥ 0, it is |e−hΩ| ≤ 1 and hence the binomial series converges:

∞

∑
j=0

(−1)j
(

α

j

)
e−jhΩ =

(
1− e−hΩ)α (26)

thanks to which we can easily evaluate:

GLDαeΩt = eΩt lim
h→0

(1− e−hΩ)α

hα
= eΩt lim

h→0

(
1− e−hΩ

h

)α

= ΩαeΩt

to conclude the proof:

Whenever α ∈ N, and hence m = α, the standard integer-order results,

Jm
t0

eΩ(t−t0) =
1

Ωm

(
eΩ(t−t0) −

m−1

∑
j=0

(t− t0)
j

j!

)
, DmeΩ(t−t0) = ΩmeΩ(t−t0)

are recovered. This is a direct consequence of Proposition 6 for Jα
t0

and RLDα
t0

whilst it comes from the
equivalence ez = E1,1(z) for CDα

t0
. It is moreover obvious for GLDα, for which we just observed that the

restriction Re(Ω) ≥ 0 is no longer necessary when α ∈ N since the binomial series (26) has just a finite
number of nonzero terms and hence converges for any Ω ∈ C.

The correspondence GLDαeΩt = ΩαeΩt appears as the most natural generalization of the
integer-order derivatives but it holds only when Re(Ω) ≥ 0. By combining Proposition 9 and
Theorem 1 it is immediately seen that RLDα

t0
eΩ(t−t0) and CDα

t0
eΩ(t−t0) can be represented as a deviation

from ΩαeΩt as stated in the following result.

Proposition 10. Let α > 0, m = �α� and t0 ∈ R. For any Ω ∈ C, | arg Ω| < π, and t > t0 it is:

RLDα
t0

eΩ(t−t0) = ΩαeΩ(t−t0) + Fα(t− t0; Ω),
CDα

t0
eΩ(t−t0) = ΩαeΩ(t−t0) + ΩmFα−m(t− t0; Ω).
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The terms Fα(t − t0, Ω) and ΩmFα−m(t − t0, Ω) describe the deviation of RLDα
t0

eΩ(t−t0) and
CDα

t0
eΩ(t−t0) from the ideal value ΩαeΩ(t−t0). From Proposition 7 we know that these deviations

decrease in magnitude, until they vanish, as t → ∞. Consequently, RLDα
t0

eΩ(t−t0) and CDα
t0

eΩ(t−t0)

asymptotically tend to ΩαeΩ(t−t0) (and hence to GLDαeΩ(t−t0) when Re Ω ≥ 0), namely:

RLDα
t0

eΩ(t−t0) ∼ CDα
t0

eΩ(t−t0) ∼ ΩαeΩ(t−t0), t → ∞, | arg Ω| < π.

This asymptotic behavior can be explained by recalling that the above derivatives differ from the
way in which the function is assumed before the starting point t0 and the influence of the function on
(−∞, t0) clearly becomes of less and less importance as t goes away from t0, namely as t → ∞.

We observe from Figure 3, where the values α = 0.7 and Ω = −0.5 + 2i have been considered,
that actually both RLDα

t0
eΩt and CDα

t0
eΩt converge towards ΩαeΩt, in quite a fast way, as t increases.

In all the experiments we used, for ease of presentation, t0 = 0 and the ML function was evaluated by
means of the Matlab code described in [30] and based on some ideas previously developed in [31].

Ω
αetΩ

RL

Dα

0 e
tΩ

C

Dα

0 e
tΩ

Figure 3. Comparison of RLDα
0 eΩt and CDα

0 eΩt with ΩαeΩt for α = 0.7 and Ω = −0.5 + 2i.

The unbounded nature of the real part of RLDα
t0

eΩt at the origin is due to the presence of the factor
(t− t0)

−α (see Proposition 9) but it can also be interpreted as a consequence of the replacement of
f (t) by f R(t) in the RL derivative, as discussed in Section 3.1, which introduces a discontinuity at the
starting point; the same phenomena will be observed for the cosine function but, obviously, not for the
sine function for which the value at 0 is the same forced in (−∞, 0).

It is not surprising that RLDα
t0

eΩt and CDα
t0

eΩt have the same imaginary part (which indeed overlap
in the second plot of Figure 3) when 0 < α < 1. The imaginary part of the exponential is indeed zero at
the origin and hence RL and Caputo’s derivatives coincide since relation in Equation (9) for 0 < α < 1
simply reads as CDα

t0
f (t) = RLDα

t0

(
f (t)− f (t0)

)
.

From Figure 3 we observe that the RL derivative converges faster to ΩαeΩt than the Caputo
derivative. This behavior can be easily explained by observing from Proposition 10 that as t → ∞:

RLDα
t0

eΩ(t−t0) −ΩαeΩ(t−t0) = Fα(t− t0; Ω) ∼ (t− t0)
−α−1

CDα
t0

eΩ(t−t0) −ΩαeΩ(t−t0) = ΩmFα−m(t− t0; Ω) ∼ (t− t0)
m−α−1

which tell us that while CDα
t0

eΩ(t−t0) converges towards ΩαeΩ(t−t0) according to a power law with
exponent −1 < m− α− 1 < 0, the RL derivative RLDα

t0
eΩ(t−t0) converges according to a power law

with exponent −α− 1 < −1.
Similar behaviors, showing the convergence for t → ∞ of the different derivatives, are obtained

also for α = 1.7 and Ω = −0.5+ 2i as we can observe from Figure 4. In this case, however, the imaginary
parts of RLDα

t0
eΩt and CDα

t0
eΩt are no longer the same since when 1 < α < 2 the relationship between

the two derivatives is given by CDα
t0

f (t) = RLDα
t0

(
f (t)− f (t0)− (t− t0) f ′(t0)

)
and the imaginary part

of f ′(t0) is not equal to 0 as the imaginary part of f (t0).
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Ω
αetΩ

RL

Dα

0 e
tΩ

C

Dα

0 e
tΩ

Figure 4. Comparison of RLDα
0 eΩt and CDα

0 eΩt with ΩαeΩt for α = 1.7 and Ω = −0.5 + 2i.

7. Fractional Integral and Derivatives of Sine and Cosine Functions

Once fractional derivatives of the exponential are available, the fractional derivatives of the basic
trigonometric functions can be easily evaluated by means of the well-known De Moivre formulas:

sin Ωt =
eiΩt − e−iΩt

2i
, cos Ωt =

eiΩt + e−iΩt

2
,

which allow to state the following results.

Proposition 11. Let α > 0, m = �α� and Ω ∈ R. For t ≥ t0 the function sin
(
Ω(t− t0)

)
has the following

fractional integral and derivatives:

Jα
t0

sin
(
Ω(t− t0)

)
=

(t− t0)
α

2i

(
E1,1+α(+iΩ(t− t0))− E1,1+α(−iΩ(t− t0))

)
RLDα

t0
sin
(
Ω(t− t0)

)
=

(t− t0)
−α

2i

(
E1,1−α(+iΩ(t− t0))− E1,1−α(−iΩ(t− t0))

)
CDα

t0
sin
(
Ω(t− t0)

)
= imΩm (t− t0)

m−α

2i

(
E1,m−α+1(+iΩ(t− t0))− (−1)mE1,m−α+1(−iΩ(t− t0))

)
and, moreover, for any t ∈ R it is:

GLDα sin
(
Ωt
)
= Ωα sin

(
Ωt + α

π

2
)
.

Proof. The proof for Jα
t0

sin
(
Ω(t− t0)

)
, RLDα

t0
sin
(
Ω(t− t0)

)
and CDα

t0
sin
(
Ω(t− t0)

)
is a straightforward

consequence of Proposition 9. For GLDα sin
(
Ωt
)

we observe that the direct application of Proposition 9
leads to:

GLDα sin
(
Ωt
)
=

(+i)αΩαe+iΩt − (−i)αΩαe−iΩt

2i
(27)

and since e±iΩt = cos Ωt± i sin Ωt and (±i)α = e±iαπ/2, the proof follows from the application of
basic trigonometric rules.

Note that the assumption Re Ω ≥ 0 is no longer necessary for GLDα sin
(
Ωt
)

since the arguments
of the exponential functions in Equation (27) are always on the imaginary axis. Similar results can also
be stated for the cosine function and the proofs are omitted since they are similar to the previous ones.
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Proposition 12. Let α > 0, m = �α� and Ω ∈ R. For t ≥ t0 the function cos
(
Ω(t− t0)

)
has the following

fractional integral and derivatives:

Jα
t0

cos
(
Ω(t− t0)

)
=

(t− t0)
α

2

(
E1,1+α(+iΩ(t− t0)) + E1,1+α(−iΩ(t− t0))

)
RLDα

t0
cos
(
Ω(t− t0)

)
=

(t− t0)
−α

2

(
E1,1−α(+iΩ(t− t0)) + E1,1−α(−iΩ(t− t0))

)
CDα

t0
cos
(
Ω(t− t0)

)
= imΩm (t− t0)

m−α

2

(
E1,m−α+1(+iΩ(t− t0)) + (−1)mE1,m−α+1(−iΩ(t− t0))

)
and, moreover, for any t ∈ R it is:

GLDα cos
(
Ωt
)
= Ωα cos

(
Ωt + α

π

2
)
.

As for the exponential function, we observe that with the basic trigonometric functions, the GL
derivative GLDα generalizes the known results holding for integer-order derivatives.

Furthermore, in this case, with the help of Proposition 1, it is possible to see that the RL and
Caputo’s derivatives of sin

(
Ω(t − t0)

)
and cos

(
Ω(t − t0)

)
can be expressed as deviations from

Ωα sin
(
Ωt + α π

2
)

and Ωα cos
(
Ωt + α π

2
)

respectively. The following results (whose proof is omitted
since it is obvious) can indeed be provided.

Proposition 13. Let α > 0, m = �α� and Ω ∈ R. Then for any t ≥ t0 it is:

RLDα
t0

sin
(
Ω(t− t0)

)
= Ωα sin

(
Ω(t− t0) + α

π

2
)
+

Fα(t− t0; iΩ)− Fα(t− t0;−iΩ)

2i
CDα

t0
sin
(
Ω(t− t0)

)
= Ωα sin

(
Ω(t− t0) + α

π

2
)
+ imΩm Fα−m(t− t0; iΩ)− (−1)mFα−m(t− t0;−iΩ)

2i
RLDα

t0
cos
(
Ω(t− t0)

)
= Ωα cos

(
Ω(t− t0) + α

π

2
)
+

Fα(t− t0; iΩ) + Fα(t− t0;−iΩ)

2
CDα

t0
cos
(
Ω(t− t0)

)
= Ωα cos

(
Ω(t− t0) + α

π

2
)
+ imΩm Fα−m(t− t0; iΩ) + (−1)mFα−m(t− t0;−iΩ)

2

Since the function Fβ(t;±iΩ) asymptotically vanishes when t → ∞, we can argue that:

RLDα
t0

sin
(
Ω(t− t0)

)
∼ CDα

t0
sin
(
Ω(t− t0)

)
∼ Ωα sin

(
Ωt + α

π

2
)
, t → ∞

RLDα
t0

cos
(
Ω(t− t0)

)
∼ CDα

t0
cos
(
Ω(t− t0)

)
∼ Ωα cos

(
Ωt + α

π

2
)
, t → ∞

(28)

as we can clearly observe from Figure 5 and 6.

Ω
α sin

[
Ωt +α

π

2

]

RL

Dα

0 sinΩt
C

Dα

0 sinΩt

Figure 5. Comparison of RLDα
0 sin Ωt and CDα

0 sin Ωt with Ωα sin
(
Ωt + α π

2
)

for Ω = 1.5, α = 0.7
(left plot) and α = 1.7 (right plot).
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Ω
α cos

[
Ωt + α

π

2

]

RL

Dα

0 cosΩt
C

Dα

0 cosΩt

Figure 6. Comparison of RLDα
0 cos Ωt and CDα

0 cos Ωt with Ωα cos
(
Ωt + α π

2
)

for Ω = 1.5, α = 0.7
(left plot) and α = 1.7 (right plot).

The above results are mainly useful for studying the asymptotic behavior of different operators
applied to the sine and cosine functions. The representation of integrals and derivatives can be
simplified thanks to the following results.

Proposition 14. Let α > 0, m = �α� and Ω ∈ R. For t ≥ t0 the function sin
(
Ω(t− t0)

)
has the following

fractional integral and derivatives:

Jα
t0

sin
(
Ω(t− t0)

)
= Ω(t− t0)

1+αE2,2+α(−Ω2(t− t0)
2)

RLDα
t0

sin
(
Ω(t− t0)

)
= Ω(t− t0)

1−αE2,2−α(−Ω2(t− t0)
2)

CDα
t0

sin
(
Ω(t− t0)

)
=

{
(−1)

m−1
2 Ωm(t− t0)

m−αE2,m−α+1(−Ω2(t− t0)
2) odd m

(−1)
m
2 Ωm+1(t− t0)

m−α+1E2,m−α+2(−Ω2(t− t0)
2) even m

Proof. By using the series expansion of the ML function in Equation (18), for any β ∈ C it is:

Gm,β(z) := E1,m+β(+iz)− (−1)mE1,m+β(−iz) =
∞

∑
k=0

ikzk

Γ(k + m + β)

(
1− (−1)m+k)

and since,

1− (−1)j =

{
0 even j
2 odd j

,

it is simple to evaluate:

Gm,β(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2

∞

∑
k=0

even k

ikzk

Γ(k + m + β)
= 2

∞

∑
k=0

i2kz2k

Γ(2k + m + β)
= 2E2,m+β(−z2) odd m

2
∞

∑
k=0

odd k

ikzk

Γ(k + m + β)
= 2

∞

∑
k=0

i2k+1z2k+1

Γ(2k + 1 + m + β)
= 2izE2,m+β+1(−z2) even m

.

Moreover it is sufficient to observe, thanks to Proposition 11, that:

Jα
t0

sin
(
Ω(t− t0)

)
=

(t− t0)
α

2i
G0,1+α(Ω(t− t0))

RLDα
t0

sin
(
Ω(t− t0)

)
=

(t− t0)
−α

2i
G0,1−α(Ω(t− t0))

CDα
t0

sin
(
Ω(t− t0)

)
= imΩm (t− t0)

m−α

2i
Gm,1−α(Ω(t− t0))

from which the proof immediately follows.
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Proposition 15. Let α > 0, m = �α� and Ω ∈ R. For t ≥ t0 the function cos
(
Ω(t− t0)

)
has the following

fractional integral and derivatives:

Jα
t0

cos
(
Ω(t− t0)

)
= (t− t0)

αE2,1+α(−Ω2(t− t0)
2)

RLDα
t0

cos
(
Ω(t− t0)

)
= (t− t0)

−αE2,1−α(−Ω2(t− t0)
2)

CDα
t0

cos
(
Ω(t− t0)

)
=

{
(−1)

m+1
2 Ωm+1(t− t0)

m−α+1E2,m−α+2(−Ω2(t− t0)
2) odd m

(−1)
m
2 Ωm(t− t0)

m−αE2,m−α+1(−Ω2(t− t0)
2) even m

Proof. The proof is similar to the proof of Proposition 14 where we consider now the function:

Hm,β(z) := E1,m+β(+iz) + (−1)mE1,m+β(−iz) =
∞

∑
k=0

ikΩk(t− t0)
k

Γ(k + m + β)

(
1 + (−1)m+k)

with,

1 + (−1)j =

{
2 even j
0 odd j

and for which we obtain:

Hm,β(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2

∞

∑
k=0

odd k

ikzk

Γ(k + m + β)
= 2

∞

∑
k=0

i2k+1z2k+1

Γ(2k + 1 + m + β)
= 2izE2,m+β+1(−z2) odd m

2
∞

∑
k=0

even k

ikzk

Γ(k + m + β)
= 2

∞

∑
k=0

i2kz2k

Γ(2k + m + β)
= 2E2,m+β(−z2) even m

thanks to which the proof follows by applying Proposition 12.

The representation of RLDα
t0

sin
(
Ω(t− t0)

)
and RLDα

t0
cos
(
Ω(t− t0)

)
, together with other related

results, was already provided in [32] ([Remark 3). The above Propositions allow to extend to the RL
integral and to the Caputo’s derivative the results given in [32] solely for the RL derivative.

8. Concluding Remarks

We have discussed the evaluation of fractional integrals and fractional derivatives of some
elementary functions. An alternative way of deriving RL and Caputo’s derivatives from the GL has
also been presented. We have observed that for several functions, the GL derivative generalizes, in a
quite direct way, classic rules for integer-order differentiation. The RL and Caputo’s derivatives of
exponential, sine and cosine function have also been evaluated and represented in terms of special
instances of the ML function. We have also shown that they appear as deviations from the GL
derivative. The RL derivative converges, as the independent variable t → ∞, faster than the Caputo’s
counterpart towards the GL derivative and an analytical explanation based on the asymptotic behavior
of the ML function has been provided. Thanks to available codes for the evaluation of the ML function,
the accurate computation of fractional derivatives of several elementary functions is possible.
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The following abbreviations are used in this manuscript:

FDE Fractional differential equation
GL Grünwald–Letnikov
LT Laplace transform
ML Mittag–Leffler
RL Riemann–Liouville
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1. Introduction

This work is concerned with the n-dimensional space-time fractional diffusion equation

D
β
t u(x, t) = −(−Δ)αu(x, t), t > 0, x ∈ R

n; u(x, 0) = v(x); (1)

where 0 < α, β ≤ 1, Dβ
t is the Caputo time-fractional derivative [1,2]

D
β
t f (t) =

1
Γ(1− β)

d
dt

∫ t

0

f (t)− f (0)
(t− τ)β

dτ, t > 0, 0 < β < 1, (2)

and −(−Δ)α, α ∈ (0, 1), is the full-space fractional Laplace operator in Rn. Ten equivalent definitions
of the fractional Laplacian −(−Δ)α are given in the survey paper [3]. In particular, it can be defined as
a pseudo-differential operator, as follows:

F{−(−Δ)α f ; κ} = −|κ|2αF{ f ; κ}, κ ∈ R
n,

where F{ f ; κ} denotes the Fourier transform of a function f at the point κ. In the one-dimensional
case −(−Δ)α is the Riesz space-fractional derivative of order 2α.

The space-time fractional diffusion Equation (1) has been extensively studied [4–15]. The solution
u(x, t) of Problem (1) is given in terms of the fundamental solution Gα,β,n(x, t) and the initial function
v(x), as follows:

u(x, t) =
∫
Rn

Gα,β,n(y, t)v(x− y) dy, x ∈ R
n, t > 0.

Therefore, the behavior of the solution to Problem (1) is determined by the properties of the
fundamental solution. In this paper, we limit our attention to representations of the fundamental
solution Gα,β,n(x, t).
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In the classical case α = β = 1, Equation (1) reduces to the standard diffusion equation with the
fundamental solution G1,1,n(x, t), given by the Gaussian function (see e.g., [16]):

G1,1,n(x, t) =
1

(4πt)n/2 e−|x|
2/4t, x ∈ R

n, t > 0. (3)

In the fractional-order setting, the following closed-form representations for the fundamental
solution are known:

G α
2 ,α,1(x, t) =

1
π

tα|x|α−1 sin(απ/2)
t2α + 2tα|x|α cos(απ/2) + |x|2α

, x ∈ R, t > 0, 0 < α ≤ 1; (4)

Gα,α,2(x, t) =
1

4πt

( |x|2
4t

)α−1

Eα,α

(
−
( |x|2

4t

)α
)

, x ∈ R
2, t > 0, 0 < α ≤ 1; (5)

G 1
2 , 1

2 ,1(x, t) =
1

2π3/2
√

t
ex2/4tE1

(
x2

4t

)
, x ∈ R, t > 0; (6)

G 1
2 , 1

2 ,n(x, t) =
Γ
(

n+1
2

)
2nπn/2+1tn/2 U

(
n + 1

2
,

n + 1
2

,
|x|2
4t

)
, x ∈ R

n, t > 0; (7)

where Eα,α denotes the Mittag-Leffler function (see (18)), E1 is the exponential integral [17]

E1(r) =
∫ ∞

r

e−ξ

ξ
dξ, (8)

and U is the Tricomi’s confluent hypergeometric function [17]

U(a, b, r) =
1

Γ(a)

∫ ∞

0
ξa−1(1 + ξ)b−a−1e−rξ dξ, a > 0, r > 0. (9)

Representation (4) can be found in a more general setting in [5]. Formula (5) was first derived in
the paper [10]. Formula (6) is established in the early work [4]. A derivation of representations (4)–(7)
using the subordination relation (see (10)) can be found in [15]. In [13,15], additional closed-form
representations for the fundamental solution were derived from (4)–(6) by applying the relations
between Gα,β,n+2(x, t) and Gα,β,n(x, t). However, all such simple closed-form expressions for the
fundamental solution in terms of known special functions are limited to particular values of
the parameters.

Extensive research has been devoted to representations of the fundamental solution in the form of
the Mellin-Barnes integral or the Fox H-function, such as in [5,6,11] for the one-dimensional and [12–14]
for the multi-dimensional space-time fractional diffusion-wave equation. One of the advantages of
such representations is that the asymptotic behavior of the fundamental solution can be derived from
them, because the asymptotic behavior of the Fox H-function has been well-studied (see e.g., [18]
or [19]).

An alternative approach to dealing with the space-time fractional diffusion Equation (1) is based
on the subordination formula, which relates the fundamental solution Gα,β,n(x, t) and the Gaussian
function G1,1,n(x, t) as follows [14,15]

Gα,β,n(x, t) =
∫ ∞

0
ψα,β(t, τ)G1,1,n(x, τ) dτ, x ∈ R

n, t > 0, (10)

where ψα,β(t, τ) is a unilateral probability density function (pdf) in τ, that is:

ψα,β(t, τ) ≥ 0,
∫ ∞

0
ψα,β(t, τ) dτ = 1. (11)
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The subordination kernel ψα,β(t, τ) depends on the similarity variable τt−β/α and admits the
representation [14]

ψα,β(t, τ) = t−β/αKα,β(τt−β/α), (12)

where the function Kα,β(r) can be defined as the inverse Laplace transform of the Mittag-Leffler
function Eβ(−λα), that is: ∫ ∞

0
e−λrKα,β(r) dr = Eβ(−λα). (13)

The Laplace transform pair (13) was first derived in [14] (see Remark 4.4).
It is worth noting that some known basic properties of Gα,β,n(x, t) follow in a straightforward way

from the subordination relation (10), taking into account that the subordination kernel is a pdf. In this
way, we can prove that for any dimension n ≥ 1, the fundamental solution Gα,β,n(x, t) is a spatial pdf
evolving in time:

Gα,β,n(x, t) ≥ 0,
∫
Rn

Gα,β,n(x, t) dx = 1.

Therefore, Gα,β,n(x, t), 0 < α, β ≤ 1, inherits this property of the classical Gaussian kernel
G1,1,n(x, t). In a similar way, estimates for the fundamental solution Gα,β,n(x, t) can be derived from
known estimates for the Gaussian kernel G1,1,n(x, t). For example, since ‖G1,1,n(·, t)‖L1(Rn) = 1
(see e.g., [16], Remark 3.7.10.), the subordination Formula (10), together with properties (11) imply

‖Gα,β,n(·, t)‖L1(Rn) ≤
∫ ∞

0
ψα,β(t, τ)‖G1,1,n(·, τ)‖L1(Rn) dτ ≤

∫ ∞

0
ψα,β(t, τ) dτ = 1.

A principle of subordination is closely related to the concept of subordination in stochastic
processes [20,21]. It has been extensively studied and employed in the context of fractional order
equations. The subordination principle for space-fractional evolution equations has been established
in [22] in the setting of abstract Cauchy problems. Subordination formulae for the one-dimensional
space-time fractional diffusion equation have been studied in [6,9]. In [14,15], subordination principles
for the multi-dimensional space-time fractional diffusion equation are deduced. In the case of
time-fractional evolution equations with general time-fractional operators, subordination principles
have been studied and employed in [23–28].

Based on the subordination principles for space- and time-fractional diffusion equations and
the dominated convergence theorem, exact asymptotic expressions for the fundamental solution of
the multi-dimensional space-time fractional diffusion equation and more general nonlocal equations
have recently been established in [29]. For completeness, we next present the asymptotic expansions
for Gα,β,n(x, t), α, β ∈ (0, 1), from [29], Corollary 2.6 (written in our notations and in a slightly more
compact form):

If |x|−2αtβ → ∞, then

Gα,β,n(x, t) ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2α sin
(

π
2α

)
Γ(1− β

2α )
t−

β
2α , n = 1, α ∈ (1/2, 1),

β

πΓ(1− β)
t−β ln

(
t|x|−1/β

)
, n = 1, α = 1/2,

1
4απn/2

Γ(n/2− α)

Γ(α)Γ(1− β)

t−β

|x|n−2α
, n > 2α.

(14)

If |x|−2αtβ → 0, then

Gα,β,n(x, t) ∼ 4α

πn/2
αΓ(n/2 + α)

Γ(1− α)Γ(β + 1)
tβ

|x|n+2α
. (15)

The asymptotic expansions (14) and (15) are in agreement with those obtained for particular
ranges of parameter values in, for example, [5,11,15], as well as with the asymptotic behavior of the
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closed-form solutions (4)–(7), which can be checked by taking into account the asymptotic expansions
for the exponential integral ([17], Eqs. 5.1.11 and 5.1.51)

E1(r) ∼ ln
(

1
r

)
, r → 0; E1(r) ∼

e−r

r

(
1− 1

r

)
, r → +∞, (16)

and for the Tricomi’s confluent hypergeometric function ([17], Section 13.5)

U(a, b, r) ∼ Γ(b− 1)
Γ(a)

r1−b, r → 0, b > 1; U(a, b, r) ∼ r−a, r → +∞, (17)

and using some basic properties of the Gamma function.
In the present work, the subordination Formula (10) serves as a starting point for deriving

integral representations for the fundamental solution Gα,β,n(x, t). First, an integral representation for
the subordination kernel ψα,β(t, τ) is established in terms of the Mittag-Leffler function of complex
argument. Let us note that a study of the function ψα,β(t, τ) is of interest, since it also plays the
role of subordination kernel related to problems with more general spatial operators, such as in [15].
In addition, ψα,β(t, x) coincides with the solution of the one-dimensional space-time fractional diffusion
equation with the Riesz-Feller space-fractional derivative of order α and skewness −α, as well as the
Caputo time-derivative of order β, studied in [5] (see [15], Remark 3). Next, based on the subordination
Formula (10), we derive integral representations for the fundamental solution in terms of Mittag-Leffler
functions, which are appropriate for numerical implementation.

The paper is organized as follows. Definitions and basic properties of Mittag-Leffler functions and
Bessel functions of the first kind are listed in the next section. In Section 3, an integral representation
for the subordination kernel is established. In Section 4, computable integral representations for the
fundamental solution are derived for n = 1, 2, 3 and used for numerical experiments.

2. Preliminaries

The Mittag-Leffler function is an entire function defined by the series [1,2,30]

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, Eα(z) = Eα,1(z), α, β, z ∈ C, �α > 0. (18)

For 0 < α < 2 and β ∈ R, the following asymptotic expansion for large |z| holds true in the sector
of the complex plane | arg(−z)| < (1− α/2)π

Eα,β(z) = −
N−1

∑
k=1

z−k

Γ(β− αk)
+ O(|z|−N), |z| → ∞. (19)

Therefore, taking into account the identity Γ(z)−1 = 0 for z = 0,−1,−2, . . . we derive from (19)
two useful asymptotic expressions for |z| → ∞ and | arg z| < (1− α/2)π

Eα(−z) ∼ z−1

Γ(1− α)
; Eα,β(−z) ∼ − z−2

Γ(β− 2α)
, β− α = 0,−1,−2, . . . (20)

The faster decay for large |z| of the second function in (20), compared to the first, will be used
essentially in this work.

The relations

d
dz

Eα(−zα) = −zα−1Eα,α(−zα),
d
dz

(
zα−1Eα,α(−zα)

)
= zα−2Eα,α−1(−zα), (21)
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can be derived directly from the definition (18) of the Mittag-Leffler function; (21) and (20) imply that,
by differentiation of the Mittag-Leffler function Eα(−zα), a faster decay for large |z| can be achieved.

We point out the following representation of the Mittag-Leffler functions as Laplace transforms
(see [31]):

tβ−1Eα,β(−μtα) =
1
π

∫ ∞

0
e−rt rα sin βπ + μ sin(β− α)π

r2α + 2μrα cos απ + μ2 rα−β dr, (22)

where μ > 0, 0 < α, β ≤ 1, excluding the case α = β = 1. Expression (22) is appropriate for numerical
computation of the Mittag-Leffler functions. Let us note, however, that (22) is valid only for real values
of μ. For computation of the Mittag-Leffler function of complex arguments, another technique should
be used (see e.g., [32]).

The Bessel function of the first kind Jν(z) is defined by the series [17]

Jν(z) =
∞

∑
k=0

(−1)k(z/2)ν+2k

k!Γ(ν + k + 1)
. (23)

The following particular expressions are of interest in the present work:

J−1/2(z) =

√
2

πz
cos z, J1/2(z) =

√
2

πz
sin z, J0(z) =

1
π

∫ π

0
cos(z cos θ) dθ. (24)

The asymptotic expansions of the Bessel function Jν(r) for small and large real arguments are
as follows:

Jν(r) ∼
1

Γ(ν + 1)

( r
2

)ν
, r → 0; Jν(r) ∼

√
2

πr
cos(r− νπ/2− π/4), r → +∞. (25)

For more details on Mittag-Leffler and Bessel functions, we refer to [2,17,30,33,34].

3. An Integral Representation for the Subordination Kernel

Representations of the subordination kernel ψα,β(t, τ) are useful in view of the integral
expression (10) for the fundamental solution. In a limited number of particular cases, the subordination
kernel can be expressed in terms of elementary functions [15,16,22]:

ψ 1
2 ,1(t, τ) =

te−t2/4τ

2
√

πτ3/2 , ψ1, 1
2
(t, τ) =

1√
πt

e−τ2/4t, (26)

ψα,α(t, τ) =
1
π

tατα−1 sin απ

t2α + 2tατα cos απ + τ2α
, 0 < α < 1. (27)

However, for arbitrary values of the fractional parameters, explicit expressions are not available
and other types of representations are needed.

The following Laplace transform pairs for the subordination kernel ψα,β(t, τ) can be derived
from (12) and (13) (see also [15]): ∫ ∞

0
ψα,β(t, τ)e−λτ dτ = Eβ(−λαtβ), (28)

and ∫ ∞

0
ψα,β(t, τ)e−st dt = sβ−1τα−1Eα,α(−sβτα). (29)

In this section, we deduce an integral representation of the subordination kernel ψα,β(t, τ) by
inversion of the Laplace transform pair (29). We choose (29) instead of (28), because of the faster decay
for large arguments of the correponding Mittag-Leffler function (see (20)).
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Assume 0 < α, β ≤ 1 and α + β < 2. Applying the complex Laplace inversion formula
to (29) yields:

ψα,β(t, τ) =
τα−1

2πi

∫ c+i∞

c−i∞
estsβ−1Eα,α(−ταsβ) ds, c > 0, (30)

where sβ = exp(β ln s) means the principal branch of the corresponding multi-valued function defined
in the whole complex plane cut along the negative real semi-axis. Since the Mittag-Leffler function
is an entire function, Eα,α(−ταsβ) is analytic for s ∈ C\(−∞, 0]. Therefore, by the Cauchy’s theorem,
the integral in (30) can be replaced by an integral over the composite contour Γ = Γ−1 ∪ Γ−2 ∪ Γ3 ∪ Γ+

2 ∪
Γ+

1 , where

Γ±1 = {s = q± iR, q ∈ (0, c)}, Γ±2 = {s = re±iπ/2, r ∈ (ρ, R)}, Γ3 = {s = ρeiθ , θ ∈ (−π/2, π/2)},

with an appropriate orientation (see Figure 1) and letting ρ → 0, R → ∞.

Γ
-
2

Γ
+
1

Γ
-
1

-R

R

c

ρ

0
-ρ

� s

� s

Γ
+
2

Γ
3

Figure 1. Contour Γ.

Since (q + iR)β ∼ Rβeiβπ/2 as R → ∞, for the integration on Γ+
1 as R → ∞ we obtain∣∣∣∣∫Γ+

1

estsβ−1Eα,α(−ταsβ) ds
∣∣∣∣ ≤ C

∫ c

0
eqtRβ−1|Eα,α(−ταRβeiβπ/2)| dq → 0, R → ∞, (31)

due to the asymptotic expansion (20) for the Mittag-Leffler function, which is satisfied since
| arg(ταRβeiβπ/2)| = βπ/2 < (1− α/2)π. The integral on Γ−1 is treated in the same way.

Concerning the integral over Γ3, we have∣∣∣∣∫Γ3

estsβ−1Eα,α(−ταsβ) ds
∣∣∣∣ ≤ ∫ π/2

−π/2
eρt cos θεβ|Eα,α(−ταρβeiβθ)| dθ → 0, ρ → 0, (32)

since the Mittag-Leffler function under the integral sign is bounded as ρ → 0. Therefore, (30)–(32)
imply that ψα,β(t, τ) is given by the integral over Γ+

2 ∪ Γ−2 along the imaginary axis with ρ → 0 and
R → ∞. This implies:

ψα,β(t, τ) =
τα−1

2πi

∫ i∞

−i∞
estsβ−1Eα,α(−ταsβ) ds

=
τα−1

2πi

(∫ ∞

0
exp(rteiπ/2)rβ−1eiβπ/2Eα,α(−ταrβeiβπ/2) dr

+
∫ ∞

0
exp(rte−iπ/2)rβ−1e−iβπ/2Eα,α(−ταrβe−iβπ/2 dr

)
.
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Therefore,

ψα,β(t, τ) =
τα−1

π

∫ ∞

0
rβ−1�

{
ei(rt+βπ/2)Eα,α(−ταrβeiβπ/2)

}
dr. (33)

We observe that the integral in (33) is convergent, since the integrand behaves as rβ−1 for
r → 0 and as r−β−1 for r → ∞ due to the asymptotic Expansion (20) for the Mittag-Leffler function.
The representation (33) can also be rewriten in the form

ψα,β(t, τ) =
τα−1

π

∫ ∞

0
rβ−1 (cos(rt + βπ/2)Iα,β(r, τ) + sin(rt + βπ/2)Rα,β(r, τ)

)
dr, (34)

where
Iα,β(r, τ) = �{Eα,α(−ταrβeiβπ/2)}, Rα,β(r, τ) = �{Eα,α(−ταrβeiβπ/2)}.

For the numerical implementation of Formula (34), the real and imaginary parts above can be
numerically calculated by employing a method of computation of the Mittag-Leffler function of
complex arguments.

In the particular case of α = 1 (time-fractional diffusion), representation (34) yields the following
simpler formula for the subordination kernel

ψ1,β(t, τ) =
1
π

∫ ∞

0
rβ−1 sin

(
rt + βπ/2− τrβ sin βπ/2

)
exp(−τrβ cos βπ/2) dr. (35)

Let us recall the relation ψ1,β(t, τ) = t−β Mβ(τt−β), where Mβ(·) denotes the Mainardi function
(see [30]). Numerical results based on Formula (35) for the subordination kernel ψ1,β(t, τ) are given in
Figure 2.
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Figure 2. Subordination kernel ψ1,β(t, τ) as a function of τ for: t = 1 and different values of β (left);
β = 0.8 and different values of t (right). Numerical computations are based on Equation (35). The exact
Expression (26) for α = 1, β = 0.5, is given by symbols (∗).

4. Integral Representations for the Fundamental Solution

According to the subordination Relation (10) and the formula for the Gaussian kernel (3),
the fundamental solution of Problem (1) admits the representation

Gα,β,n(x, t) =
1

(4π)n/2

∫ ∞

0
ψα,β(t, τ)τ−n/2e−|x|

2/4τ dτ, x ∈ R
n, t > 0. (36)
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Subordination Formula (36) yields after the change of variables σ = 1/τ

Gα,β,n(x, t) =
1

(4π)n/2

∫ ∞

0
ψα,β(t, σ−1)σn/2−2e−aσ dσ, a = |x|2/4. (37)

Applying the formula for the Laplace transform ([35], Section 4.1, Eq. (25))∫ ∞

0
σν−1 f (σ−1)e−aσ dσ = a−

1
2 ν
∫ ∞

0
s

1
2 ν Jν(2

√
as)g(s) ds, Re ν > −1,

where Jν(·) denotes the Bessel Function (23) and g(s) = L{ f ; s} =
∫ ∞

0 e−sσ f (σ) dσ, we deduce
from (37) and (28) the following representation:

Gα,β,n(x, t) =
|x|1− n

2

(2π)
n
2

∫ ∞

0
σ

n
2 J n

2−1(|x|σ)Eβ(−σ2αtβ) dσ. (38)

The obtained integral representation (38) is not new—see, for example, [12–14], where it is
deduced by applying a different argument.

Let us first note that for β = 1, the integral in (38) is always convergent and gives the following
representation for the fundamental solution to the space-fractional diffusion equation:

Gα,1,n(x, t) =
|x|1− n

2

(2π)n/2

∫ ∞

0
σn/2 J n

2−1(|x|σ) exp(−σ2αt) dσ.

We observe, however, that if β < 1, the integral in (38) is convergent only for very limited ranges
for the values of the other two parameters. Indeed, according to the asymptotic expansions of the
Bessel and the Mittag-Leffler functions, (25) and (20), the integral in (38) is convergent only in the
following cases: n = 1 and α > 1/2 or n = 2 and α > 3/4. If n ≥ 3, the integral is divergent for
any α ∈ (0, 1). Our aim here is to derive from (38) convergent integral representations for n = 1, 2, 3,
which hold for all α, β ∈ (0, 1).

First, let n = 1. Plugging in (38), the representation for J− 1
2
(·) from (24) yields:

Gα,β,1(x, t) =
1
π

∫ ∞

0
cos(|x|σ)Eβ(−σ2αtβ) dσ, (39)

which, according to (20), is convergent at +∞ only if 2α > 1, unless β = 1. However, we can improve
the convergence by performing integration by parts in (39). We use the identity

d
dσ

Eβ(−σ2αtβ) = −2α

β
σ2α−1tβEβ,β(−σ2αtβ), (40)

which is derived from (21). In this way, the following integral representation is established:

Gα,β,1(x, t) =
2α

β

tβ

π|x|
∫ ∞

0
sin(|x|σ)σ2α−1Eβ,β(−σ2αtβ) dσ. (41)

The asymptotic Expression (20) indicates that the integral in (41) is convergent for all 0 < α, β ≤ 1.
In the particular case α = β/2, representation (41) can also be found in [15], Equation 4.13.

Representation (41) was used for the numerical evaluation of the one-dimensional fundamental
solution, and the results are given in Figure 3. For numerical computation of the Mittag-Leffler function
in (41), the integral representation (22) was used. Figure 3 shows that the numerical results based on
Formula (41) are in good agreement with the exact solutions, (4) and (6).
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Figure 3. The fundamental solution Gα,β,1(x, t) as a function of t for: x = 1, α = 0.5 and different
values of β (left); x = 1, β = 0.5 and different values of α (right). Numerical computations are based on
Formula (41). Exact Solution (6) for α = β = 0.5 is given by symbols (∗); exact solution for α = 0.5, β = 1
computed using (4) is given by symbols (◦).

Next, let us consider n = 3. Plugging in the general Formula (38), the representation for J 1
2
(·)

from (24) yields:

Gα,β,3(x, t) =
1

2π2|x|
∫ ∞

0
σ sin(|x|σ)Eβ(−σ2αtα) dσ.

This integral is divergent for all 0 < α, β < 1. Integration by parts gives

Gα,β,3(x, t) =
1

2π2|x|2
∫ ∞

0
cos(|x|σ) d

dσ

(
σEβ(−σ2αtα)

)
dσ

and, by applying Formula (40), we obtain the following integral expression for the three-dimensional
fundamental solution

Gα,β,3(x, t) =
1

2π2|x|2
∫ ∞

0
cos(|x|σ)Fα,β(σ, t) dσ, (42)

where
Fα,β(σ, t) = Eβ(−σ2αtβ)− 2α

β
σ2αtβEβ,β(−σ2αtβ). (43)

The asymptotic Expansions (20) of the Mittag-Leffler functions imply that the integral in (42) is
convergent for 1/2 < α < 1 and 0 < β ≤ 1. Again applying integration by parts in (42) yields

Gα,β,3(x, t) =
1

2π2|x|3
∫ ∞

0
sin(|x|σ)Hα,β(σ, t) dσ, (44)

where Hα,β(σ, t) = − d
dσ Fα,β(σ, t) and therefore, by (43) and (21),

Hα,β(σ, t) =
2α

β
σ2α−1tβ

((
1 +

2α

β

)
Eβ,β(−σ2αtβ) +

2α

β
Eβ,β−1(−σ2αtβ)

)
. (45)

The asymptotic behavior of the Mittag-Leffler functions (20) implies that the integral in (44) is
convergent for all 0 < α, β < 1.

In an analogous way, for n = 2, we deduce from (38) and (24)

Gα,β,2(x, t) = − 1
2π2|x|2

∫ π

0

1
cos2 θ

(
1 +

∫ ∞

0
cos(|x|σ cos θ)Hα,β(σ, t) dσ

)
dθ, (46)

where the function Hα,β is defined in (45). The integral in (46) is convergent for all 0 < α, β < 1.
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It is verified numerically that integral representations (41), (46) and (44) for the two- and
three-dimensional fundamental solutions are in agreement with the exact Solutions (5) and (7). For the
numerical computation of the Mittag-Leffler functions in Hα,β, the integral representation (22) is used.

Numerical results and comparison of the one- and two-dimensional fundamental solutions are
given in Figure 4.
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Figure 4. The fundamental solution Gα,β,n(x, t) for n = 1 and n = 2 as a function of t for α = β = 0.9
and different values of |x|. One-dimensional solution (left) and two-dimensional solution (right).

For a discussion on other integral representations for the fundamental solution, we refer to [7,12].
All numerical computations in this work were performed with the help of MATLAB.

5. Concluding Remarks

The subordination principle for space-time fractional diffusion equations is a useful tool for
finding integral representations of the fundamental solution. The derived integral representations (41),
(46) and (44) for n = 1, 2, 3, respectively, are appropriate for numerical implementation. The performed
numerical experiments confirm that the analytical findings in this work are in agreement with the
known exact solutions.

The technique used in the present work for deriving the integral representation for the
subordination kernel does not rely on the scaling property and can be extended to equations with
more general nonlocal operators in space, such as those considered in [36], as well as operators with a
general memory kernel in time, as in [24,37].
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3. Kwaśnicki, M. Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 2017, 20,

7–51. [CrossRef]

51



Mathematics 2019, 7, 415

4. Saichev, A.; Zaslavsky, G. Fractional kinetic equations: Solutions and applications. Chaos 1997, 7, 753–764.
[CrossRef]

5. Mainardi, F.; Luchko, Y.; Pagnini, G. The fundamental solution of the space-time fractional diffusion equation.
Fract. Calc. Appl. Anal. 2001, 4, 153–192.

6. Mainardi, F.; Pagnini, G.; Gorenflo, R. Mellin transform and subordination laws in fractional diffusion
processes. Fract. Calc. Appl. Anal. 2003, 6, 441–459.

7. Hanyga, A. Multi-dimensional solutions of space-time-fractional diffusion equations. Proc. R. Soc. Lond. A
2002, 458, 429–450. [CrossRef]

8. Meerschaert, M.M.; Sikorski, A. Stochastic Models for Fractional Calculus; De Gruyter Studies in Math;
Walter de Gruyter: Berlin, Germany; Boston, MA, USA, 2012; Volume 43.

9. Gorenflo, R.; Mainardi, F. Subordination pathways to fractional diffusion. Eur. Phys. J. Spec. Top. 2011, 193,
119–132. [CrossRef]

10. Luchko, Y. A new fractional calculus model for the two-dimensional anomalous diffusion and its analysis.
Math. Model. Nat. Phenom. 2016, 11, 1–17. [CrossRef]

11. Luchko, Y. Entropy production rate of a one-dimensional alpha-fractional diffusion process. Axioms 2016,
5, 6. [CrossRef]

12. Luchko, Y. On some new properties of the fundamental solution to the multi-dimensional space- and
time-fractional diffusion-wave equation. Mathematics 2017, 5, 76. [CrossRef]

13. Boyadjiev, L.; Luchko, Y. Mellin integral transform approach to analyze the multidimensional diffusion-wave
equations. Chaos Solit. Fract. 2017, 102, 127–134. [CrossRef]

14. Luchko, Y. Subordination principles for the multi-dimensional space-time-fractional diffusion-wave equation.
Theory Probab. Math. Stat. 2018, 98, 121–141.

15. Bazhlekova, E. Subordination principle for space-time fractional evolution equations and some applications.
Integr. Transf. Spec. Funct. 2019, 30, 431–452. [CrossRef]

16. Arendt, W.; Batty, C.J.K.; Hieber, M.; Neubrander, F. Vector-Valued Laplace Transforms and Cauchy Problems;
Birkhäuser: Basel, Switzerland, 2011.

17. Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables;
Dover: New York, NY, USA, 1964.

18. Braaksma, B.L.J. Asymptotic expansions and analytic continuations for a class of Barnes-integrals.
Compos. Math. 1963, 15, 239–341.

19. Kilbas, A.A.; Saigo, M. H-Transforms: Theory and Applications; Chapman & Hall/CRC Press: Boca Raton, FL,
USA, 2004.

20. Feller, W. An Introduction to Probability Theory and Its Applications; Willey: New York, NY, USA, 1971; Volume 2.
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Abstract: The central limit theorem (CLT) and its generalization to stable distributions have been
widely described in literature. However, many variations of the theorem have been defined and
often their applicability in practical situations is not straightforward. In particular, the applicability
of the CLT is essential for a derivation of heterogeneous ensemble of Brownian particles (HEBP).
Here, we analyze the role of the CLT within the HEBP approach in more detail and derive the
conditions under which the existing theorems are valid.

Keywords: central limit theorem; anomalous diffusion; stable distribution; fractional calculus;
power law

1. Introduction

The heterogeneous ensemble of Brownian particle (HEBP) [1,2] describes a large class of
anomalous diffusion phenomena, observed in many physical and biological systems [3–6]. The HEPB
approach is based on the Langevin stochastic equation of diffusion of a free particle, i.e., the mesoscopic
description of Brownian motion (Bm). The relaxation time (τ) and the diffusivity (ν) of the particle
constitute two important scales of Bm process. In the classic Langevin approach, τ and ν are constant
parameters. Instead, in the HEPB approach, it is assumed that τ and ν are time-independent random
variables. In HEPB the single-particle trajectory (SPT) follows a classic Langevin dynamics and it is
characterized by a stochastic realization of the parameters (τi and νi for particle i). The random nature
of the scales τ and ν of the SPTs mimics the heterogeneity of the environment and/or the heterogeneity
of an ensemble of particles diffusing in the environment. In fact, the anomalous diffusion behavior
described by HEPB is generated by the heterogeneity of τ and ν values in different SPT realizations.

Long time and space correlation, characteristics of many anomalous diffusion processes [7–9],
are often introduced by modifying the laws of the dynamics, by including memory kernels and/or
integral operators [10,11] in the equations, for example, the fractional derivatives [12]. These changes
in the dynamics introduce often non-Markovianity and/or non-locality in the processes.

The HEPB approach maintains the Markovianity of the process because the fundamental process
remains the classical Brownian motion (Bm), but the heterogeneity of the scales involved in the
system permits to describe a process with stationary features different from the Bm [13]. We will
refer to this heterogeneity as to a population of scales, because the values of these scales follow a given
probability distribution. Furthermore, the model structure permits to keep the standard dynamical
laws, with integer time derivative of physical variables like the velocity (V) and the spatial coordinate
(X) of the particle, and to avoid the introduction of fractional time derivatives.

Mathematics 2019, 7, 1145; doi:10.3390/math7121145 www.mdpi.com/journal/mathematics54
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One of the random scales contributing to the anomalous behavior the Langevin description of
HEPB [1] is the time scale τ. When the distribution of τ is properly chosen and ν is kept constant,
the HEPB describes the same one-time one-point probability density function (PDF) of the fractional
Brownian motion (fBm), i.e., a normal distribution with variance (the mean squared displacement of
the process, MSD) scaling as a power law of time in the long time limit:

σ2
x(t) = 〈(x(t + t0)− x(t0))

2〉 = Dαtα , (1)

where 0 < α ≤ 2 and Dα is the constant playing the role of diffusion coefficient. Depending on the
value of the exponent α, it is possible to distinguish what is called super-diffusion and sub-diffusion,
associated respectively to super-linear and sub-linear values of the parameter.

The convergence of the PDF to a normal distribution depends on the applicability of the classical
central limit theorem (CLT). We will demonstrate later that by choosing properly the population of the
time scales according to certain PDFs, both the Gaussian shape of the PDF and the anomalous scaling
of the variance can be guaranteed.

The CLT represents a cornerstone in probability theory. It states that when a large amount of one
-or multi-dimensional, real-valued and independent (or weakly dependent [14]) random variables are
summed, the probability distribution of their sum will tend to the Gaussian distribution G, defined by
its characteristic function:

ĝG(k) = exp(−iμk− k2σ

2
) . (2)

This result has been generalized by the generalized CLT to a larger class of stable distributions
described by the following characteristic function [15]:

ĝα(k) = exp(−iμk− C|k|α[1 + iβ(sign(k))ω(k, α)]), (3)

where α, β, μ, C ∈ R, ω(k, α) = tan(απ/2) if α �= 1, else ω(k, α) = 2/πln(|k|). The Gaussian
distribution can be found to be a special yet fundamental case when α = 2.

The generalized CLT [15] describes the convergence of the sum of stable variables with also infinite
variance, for example, the symmetric Levy stable distribution. The stability property of the symmetric
Levy stable distribution is fundamental to obtain a random walk with infinite large displacements as
the well known Lévy–Feller diffusion process [8,16,17]. The PDF of this process converges in fact to
the non-Gaussian but symmetric Levy stable distributions.

In the following sections, we briefly review the CLT formulation, then we introduce the problem
of the convergence in the distribution of a mixture of Gaussian random components with random
variances when the variance distribution is particularly extreme. Thereafter we recall the HEBP model
formulation and define the sufficient conditions over τ to obtain a fBm-like process.

2. The Classical CLT Formulation

For completeness, we summarize here the most famous versions of the CLT and introduce some
useful notation and definitions.

For parameters μ ∈ R and σ ∈ R+, a normal (or Gaussian) distribution N (μ, σ2) is a continuous
probability distribution defined by its density function

f (x | μ, σ2) =
1√

2πσ2
e−

(x−μ)2

2σ2 , (4)

where μ and σ2 are the expectation and variance of the distribution, respectively. For μ = 0 and σ = 1,
we obtain what is usually called the standard normal distribution N (0, 1).

For the sequence of random variables (Xn)n≥1, we define random variables (Sn)n≥1 as partial
sums Sn = X1 + X2 + · · ·+ Xn. The theory of central limit theorem derives conditions for which there
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exist sequences of constants (an)n≥1, an > 0, and (bn)n≥1 such that the sequence
(

Sn−bn
an

)
n≥1

converges

in distribution to a non-degenerate random variable. In particular, CLT describes the convergence to
standard normal distribution with constants defined as a2

n = ∑n
k=1 Var [Xk] and bn = ∑n

k=1 E [Xk].
Different constraints on variables X1, X2, . . . lead to different versions of the CLT. We will briefly

review the most prominent results of the theory of central limit theorems. For a more pedagogical
and/or historical perspective, see [18–24].

We start with the case when variables X1, X2, . . . are independent and identically distributed.
With additional requirements of finite mean μ and positive and finite variance σ2, we obtain:

Sn − nμ

σ
√

n
d−→ N (0, 1) as n → ∞. (5)

Dealing with independent, but not necessary identically distributed, random variables X1, X2, . . .
with finite variance, we define μk = EXk, σ2

k = VarXk and s2
n = ∑n

k=1 σ2
k for every k ≥ 1. To obtain the

main result, we need two Lindeberg’s conditions:

L1(n) = max
1≤k≤n

σ2
k

s2
n
→ 0 as n → ∞, (6)

and

L2(n) =
1
s2

n

n

∑
k=1

E |Xk −mk|2 I {|Xk −mk| > εsn} → 0 as n → ∞ (for every ε > 0) . (7)

The Lindeberg–Lévy–Feller theorem provides sufficient and necessary conditions for the
following result:

Sn −ESn

sn

d−→ N (0, 1) as n → ∞. (8)

Lindeberg and Lévy proved (using different techniques) that if (7) holds, so do (6) and (8). Feller
proved that if both (6) and (8) are satisfied, then so is (7).

Since Lindeberg’s condition (7) can be hard to verify, we can instead use the Lyapounov’s condition
which assumes that for some δ > 0, E |Xk|2+δ < ∞ (for all k ≥ 1) and

1
s2+δ

n

n

∑
k=1

E |Xk − μk|2+δ → 0 as n → ∞. (9)

If for independent random variables X1, X2, . . . the Lyapounov’s condition is satisfied, then the
central limit theorem (8) holds. Since the Lyapounov’s condition implies the Linderberg’s second
condition this result follows directly from the Lindeberg–Lévy theorem.

In all versions of the CLT mentioned so far, the assumption of finite variance was crucial. To extend
our observations to the case when variance does not exist (or is infinite), we introduce the notion
of domains of attraction. We are observing a sequence X, X1, X2, . . . of independent, identically
distributed random variables. We say that X, or, equivalently, its distribution function FX , belongs to
the domain of attraction of the (non-degenerate) distribution G if there exist normalizing sequences
(an)n≥1, an > 0, and (bn)n≥1, such that

Sn − bn

an

d−→ G as n → ∞. (10)

Another important concept is the one of stable distribution. Retaining the same notion,

the distribution X is stable if there exist constants (cn)n≥1, cn > 0, and (dn)n≥1 such that Sn
d
= cnX + dn

(for all n ≥ 1).
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It can be shown that only stable distributions possess a domain of attraction [18]. The most
notable stable distribution is Gaussian and by the classical CLT we know that all distributions X with
finite variance belong to the domain of attraction of the Gauss Law. However, there are also some
distributions with infinite variance that belong to it. More precisely, it can be shown [25] that random
variable X with the distribution function FX belongs to the domain of the attraction of the Gauss law if
and only if

lim
x→+∞

x2 [1− FX(x) + FX(−x)]∫ x
−x t2dFX(t)

= 0. (11)

3. CLT for a Population of Gaussian Random Variables

We reviewed the fundamental theorems related to the classical CLT, having the Gaussian
distribution as limit distribution of the sum of random variables Sn. The recurrent and sufficient
(but not necessary) condition leading to the classical CLT description is that the variance of the
i.i.d. random variables that are summed should be finite. However, there exist distributions with
infinite variance that fall in the Gaussian domain of attraction [15,25]. In this paragraph, we provide
a preparatory example to introduce the role of the CLT in the HEBP. The sum of a population of
Gaussian variables with random variances (which may tend to infinity), is here rewritten as the sum of
i.i.d. random variables defined as the mixture of random Gaussian components with random variances.
If such a mixture has finite variance, the standard CLT conditions are satisfied. In fact, as it will be
explained in more details hereafter, the convergence in distribution of the sum to a Gaussian is not
always guaranteed when some extreme distribution of the random variance is considered.

Let us consider partial sums of independent Gaussian random variables

Sn =
n

∑
k=1

Xk , (12)

where, denoting with fk(xk) the PDF of Xk, we have:

fk(x) ∼ N(0, σ2
k ) . (13)

The distribution of the sum of n random variables can be exploited in term of a convolution
integral. Thus, we can derive explicitly the limit distribution of Equation (12) by inverting the
characteristic function φ(ω) of Sn, which corresponds to the product of the characteristics φk(ω) of Xk:

φ(ω) = Πn
k=1φk(ω), (14)

which gives

φ(ω) = Πn
k=1

(
e−

ω2
2 σ2

k

)
(15)

= e−
ω2
2 ∑n

k=1 σ2
k . (16)

Let us assume σk ∼
√

Λ, with Λ distributed according to a generic PDF f (λ). If the first moment
of Λ exists in the limit of large n, by applying the law of large numbers, we can well approximate the
Equation (16) in terms of EΛ:

φ(ω) = e−
ω2
2 ·n·EΛ , (17)

which is indeed the characteristic function of a Gaussian distribution with variance n ·EΛ for finite
expectation of f (λ) even if the supremum of Λ does not exists.

The convergence of Sn can be proven using the CLT for the sequence of independent, identically
distributed random variables X, X1, X2, . . . with X ∼ N (0, Λ). These variables, in general, will not
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have a Gaussian shape and can equivalently be defined as the product of the independent random
variables:

X =
√

Λ · Z, (18)

where Z ∼ f1(z) = N(0, 1), Λ ∼ f2(λ), Λ ∈ R+. The PDF f (x) of X can be represented by the integral
form [26]

f (x) =
∫ ∞

0
f1(x/

√
λ) f2(λ)

dλ√
λ

. (19)

Since Z is a Gaussian distribution, it follows that 1√
λ

f1(x/
√

λ) = N(0, λ). Using Fubini’s theorem,
now it is easy to compute the second moment of X:

VarX =
∫ ∞

−∞
x2
∫ ∞

0
f1(x/

√
λ) f2(λ)

dλ√
λ

dx (20)

=
∫ ∞

0
λ f2(λ)dλ = EΛ. (21)

If EΛ is finite the partial sums Sn = X1 + · · · + Xn of i.i.d. random variables Xk converge in
distribution to a Gaussian

Sn√
n

d−→ N (0,EΛ) . (22)

If EΛ is not finite, the distribution f (x) may fall out of the Gaussian domain of attraction.
For example, by choosing Λ (the random variance) to be the extremal Lévy density distribution,
it follows that f (x) (the mixture defined by Equation (19)) corresponds to the symmetric Lévy stable
distribution [27]. In fact in the case f (x) is itself a stable distribution, like the Levy stable distribution
is, its sum belongs to its own domain of attraction.

However, infinite variance is not a synonym of stability. In fact, despite the presence of infinite EΛ,
under certain constraints on the tail of the distribution f (x), f (x) still satisfies (11) and falls in Gaussian
domain of attraction, for example if its PDF for large x is proportional to x−3 , x−3log(x) , x−3/log(x) [15].

4. Application of the CLT in the HEBP

In the HEBP Langevin model [1] the anomalous time scaling of the ensemble-averaged MSD is
generated by the superposition of a population of Bm processes in a similar way to equation (12),
where each single process is characterized by its own independent timescale, and with frequency of
appearance of such timescale described by the same PDF.

CLT applicability guarantees that after averaging over a properly chosen timescale distribution
the shape of the PDF will remain Gaussian despite the time scaling will change from being linear in
time to be a power low of time in the long time limit, following Equation (1). In order to show this
applicability let first introduce the HEPB construction.

Let us start with the classic Langevin equation describing the dynamics of a free particle moving
in a viscous medium (or Bm):

dV = − 1
τ

Vdt +
√

2νdW, (23)

where V is the random process representing the particle velocity, τ in classical approach corresponds
to the characteristic time scale of the process, i.e., the scale of decorrelation of the system. In the classic
Langevin description the timescale is defined by the ratio m

γ , with m being the mass of the diffusing
particle and γ the Stoke’s drag force coefficient of the velocity. The multiplicative constant of the
Wiener noise increment dW in the square root, ν, represents the velocity diffusivity and is related to
the drag term by the fluctuation-dissipation theorem (FDT) [28]. This relation does not depend on the
mass of the particle but on the average energy of the environment (the fluid) and the cross-sectional
interaction between the medium and the particle moving. The Wiener increment dW is the increment
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per infinitesimal time induced by the presence of a Gaussian white noise with unit variance and is
hence fully characterized by its first two moments:

〈dW(t)〉 = 0 , 〈dW(t)2〉 = t . (24)

The presence of Gaussian increments in the stochastic equation leads to the stationary state
V ∼ N(0, kT/m) and, being V = dX/dt, to the stationary increments process X(t) ∼ N(x0, σ2

x(t)),
with σ2

x(t) = ντ2t.
Let now the parameters ν and τ be time independent random variables: ν ∼ pν(ν) and τ ∼ pτ(τ).

The way it will affect V(t) and X(t) is clear in the case of ν, but more complicated to specify in the
case of τ.

Let us consider the velocity defined as a product of random variables V =
√

νV′. It is easy
to show that

√
ν factorizes out from the stochastic differential equation, resulting in the following

description of the evolution of V′:

dV′ = − 1
τ

V′dt +
√

2dW . (25)

Therefore, the PDF associated to the processes V(t) and X(t) can be derived by applying the
same integral formula of Equation (19), eventually producing non-Gaussian PDF and weak ergodicity
breaking stochastic processes as result [29–31].

Dealing with random timescales is much more tricky because the variable τ is embedded in the
correlation functions and is not possible to factorize it out without simultaneously transforming the
time variable. Furthermore, because of the time variable transformation different realizations of the
process would not be comparable directly anymore without reverse transformation.

To avoid these complications, we define V′ as the superposition of Nτ independent Bm processes
each with its own timescale:

V′(t) =
1

Nτ
∑
τ

V′′(t|τ) , (26)

where V′′(t) can still be described by the Equation (25). If the resulting process V′(t) is still a Gaussian
process, the previously described approach to derive V =

√
νV′ can be applied without further

changes. However, all the correlation functions of V′ and moments will become the sum of the
correlation functions of the single processes V′′(t|τ), which is equivalent to averaging with respect to
pτ(τ). A careful choice of this distribution permits to obtain non-linear time scaling of the MSD of V′.

Let us demonstrate the applicability of the CLT explicitly making use of the Equation (17).
Assuming that a global stationary state (in the sense of stationary increments) has been reached,
the relation between the MSD and the VACF determined by the free particle Langevin dynamics can
be expressed by:

σ2
x(t, τ) = 2

∫ t

0
(t− s)R(s, τ) ds , (27)

where R(t, τ) = ντe−t/τ , with ν being an arbitrary constant, is the stationary VACF of the process
associated to the realization τ of the timescale, V′′(t|τ).

By omitting time dependence for sake of conciseness, we can define λ = σ2
x = f (τ), which can

be considered as a random variable itself distributed according to the PDF P(λ) = pτ( f−1(λ)) ·
∂λ( f−1(λ)). The average over λ is thus equivalent to computation of the expectation 〈 f (τ)〉 with
respect to τ.

In principle we may compute the expectation after the integration of Equation (27), however, it is
much easier to compute it before performing the integration to avoid self-canceling terms:

〈λ〉 = 2
∫ t

0
(t− s)〈R(s, τ)〉τ ds , (28)
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For a generic PDF pτ(τ) we obtain:

〈R(t, τ)〉τ = ν
∫ ∞

0
τe−t/τ pτ(τ)dτ. (29)

This expression is finite for any value of time only if 〈τ〉 is finite. Moreover, this is a very important
physical condition. In fact, when times goes to zero, 〈R(t = 0, τ)〉τ is proportional to the average
kinetic energy of the system.

The distribution pτ(τ) should have a power-law tail to introduce the desired anomalous time
scaling of λ but a finite value of the first moment of τ to maintain CLT applicability. The importance
of this assumption can be seen explicitly by solving the integral in Equation (29) for the distribution
employed in [1]:

pτ(τ) =
α

Γ(1/α)

1
τ

Lα
α(

τ

C
), (30)

where the constant C = 〈τ〉 Γ(1/α)
α serves to control the value of the average and Lα

α(·) is the extreme
Levy density distribution [10].

By considering the integral representation of the extremal Lévy density distribution and the
Euler’s gamma function with some more simplification (see Section 3.5, equation 3.109 in [32]),
the result in (29) can be represented by the integral form:

R(t) = ν〈τ〉 1
2πi

∫ γ+i∞

γ−i∞

Γ(z/α + 1)Γ(−z)
Γ(z + 1)

(
t
C

)z
dz . (31)

This expression can be solved through the residues theorem considering the poles z/α+ 1 = −n or
z = n, with n = 0, 1, 2, . . . , ∞, to obtain the short or the long time scaling of the variable. An interested
reader can verify the explicit derivation in [1,32]. By plugging this result in Equation (28), without any
assumption about time values, we observe that the condition of finite 〈τ〉 is necessary to guarantee 〈λ〉
to be finite too, ensuring the Gaussian form of the PDF.

5. Discussions

The CLT has a fundamental role in the HEBP approach and, generally, in the theory of stochastic
processes. The domain of attraction of the distribution of the increments determines the shape of the
PDF of the stochastic process in the long time limit. In this work, we reviewed the main conditions of
the classical CLT, by including also the less known case of distributions with infinite variance which fall
in the Gaussian domain (with slower convergence). We proposed and analyzed a preparatory exercise
to give the mathematical foundations to understand the approach used in HEBP to generate PDFs
with Gaussian shape and non-linear scaling of the variance in time for the long time limit. It is shown
that the sum of such a population of Gaussian random variables is mathematically defined by the
sum of a more complex, and in general non-Gaussian, i.i.d. random variables. The population of
Gaussian distributions can be interpreted, within a Bayesian approach, as the likelihood modulated
by the prior distribution of a parameter of the model. The formal randomization of the parameter of
the distribution (Equation (19)) is equivalent to the computation of the marginal likelihood, which
corresponds indeed to the PDF of the i.i.d. random variables. This approach could be easily generalized
to other distributions and parameters for statistical application purposes. The role of CLT in HEPB is
then clarified. After recalling the derivation of the model, the conditions obtained in the preparatory
example have been explicitly proven.
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Abstract: Many situations, as for example within the context of Fractional Calculus theory,
require computing the Mittag–Leffler (ML) function with matrix arguments. In this paper, we collect
theoretical properties of the matrix ML function. Moreover, we describe the available numerical
methods aimed at this purpose by stressing advantages and weaknesses.
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1. Introduction

The Mittag–Leffler (ML) function has earned the title of “Queen function of fractional
calculus” [1–3] for the fundamental role it plays within this subject. Indeed, the solution of many
integral or differential equations of noninteger order can be expressed in terms of this function.

For this reason, the accurate evaluation of the ML function has deserved great attention,
not least because of the serious difficulties this computation raises. We cite, among the most fruitful
contributions, the papers [4–8].

We have recently observed an increasing interest in computing the ML function for matrix
arguments (e.g., see [9–15]): this need occurs, for example, when dealing with multiterm Fractional
Differential Equations (FDEs), or with systems of FDEs, or to decide the observability and controllability
of fractional linear systems.

In this paper, we want to collect the main results concerning the matrix ML function: we will start
from the theoretical properties to move to the practical aspects related to its numerical approximation.
Our inspiring work is the milestone paper by Moler and van Loan [16], dating back to 1978, dealing
with the several ways to compute the matrix exponential. The authors offered indeed a review of the
available methods which were declaimed, already in the paper’s title, as “dubious” in the sense that
none of them can be considered the top-ranked. Due to the great interest of the topic, twenty-five years
later, the same authors published a revised version of this paper [17] to discuss important contributions
given in the meantime. In this paper, we would like to use the same simple approach to highlight the
difficulties related to the numerical approximation of the matrix ML function.

It is worth stressing that the exponential function is a special ML function; however, it has very
nice properties that are not valid for any other instance of ML functions. The semi-group property is
one of these and the impossibility to apply it enables, for example, the use of local approximations
(which, in the case of the exponential, can be generalized to any argument by exploiting the cited
property). Moreover, several methods for the matrix exponential computation were deduced from
the fact that this function can be regarded as the solution of simple ordinary differential equations.
An analog of this strategy for the ML function presents more difficulties since it can be regarded as a
solution of the more involved FDEs.

Mathematics 2019, 7, 1140; doi:10.3390/math7121140 www.mdpi.com/journal/mathematics63
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It becomes clear then that the difficult goal of settling the best numerical method for the
exponential function becomes even more tough when treating the matrix ML function. However, in
this case, we can affirm that a top-ranked method exists; it was recently proposed [18] and is based on
the combination of the Schur–Parlett method [19] and the Optimal Parabolic Contour (OPC) method
[4] for the scalar ML function and its derivative. Roughly speaking, this method starts from a Schur
decomposition, with reordering and blocking, of the matrix argument and then applies the Parlett’s
recurrence to compute the function in the triangular factor. Since this step involves the computation of
the ML scalar function and its derivatives, the OPC method [4] is, with some suitable modification,
fruitfully applied, as we will accurately describe in the following.

The paper is organized as follows: in Section 2, we recall the definition of the ML function and
some basic facts about it. In Section 3, we collect the main theoretical properties of the ML function
when evaluated in matrix arguments. We then move to the description of the numerical methods for
the matrix ML function in Section 4 and to the computation of its action on given vectors in Section 5.
Finally, some concluding remarks are collected in Section 6.

2. The Matrix ML Function

The ML function is defined for complex parameters α and β, with �(α) > 0, by means of the series

Eα,β(z) =
∞

∑
j=0

zj

Γ(αj + β)
, z ∈ C, (1)

with the Euler’s gamma function Γ(z) =
∫ ∞

0 tz−1e−tdt.
It was introduced for β = 1 by the Swedish mathematician Magnus Gustaf Mittag–Leffler at the

beginning of the twentieth century [20,21] and then generalized to any complex β by Wiman [22].
Throughout the paper, we will consider real parameters α and β since they are the most common.

The exponential is trivially a ML function for α = β = 1.
Even the numerical computation of the scalar ML function is not a trivial task, and several studies

have been devoted to it [4–6,23]. They all agree that the best approach to numerically evaluate Eα,β(z)
is based on a series representation for small values of |z|, asymptotic expansions for large arguments,
and special integral representations for intermediate values of z. Finally, Garrappa [4] proposed an
effective code, based on some ideas previously developed in [5], which allows for reaching any desired
accuracy on the whole complex plane. It is implemented in Matlab (2019, MathWorks Inc., Natick, MA,
USA) and we will use this routine for the numerical tests in the following .

The simplest way to compute the matrix ML function is for diagonal arguments. Indeed,
if A is a diagonal matrix with eigenvalues λ1, . . . , λn, then Eα,β(A) is also a diagonal matrix,
namely Eα,β(A) = diag(Eα,β(λ1), . . . , Eα,β(λn)), and only the ML function for scalar arguments comes
into play.

There are many equivalent ways to extend the definition of the ML function to matrix arguments,
as for more general functions [24]. Here, we recall some of them:

Definition 1. Let A ∈ Cn×n, α and β complex values with �(α) > 0. Then, the following equivalent
definitions hold for the matrix ML function:

• Taylor series

Eα,β(A) =
∞

∑
j=0

Aj

Γ(αj + β)
. (2)

• Jordan canonical form
Let λ1, . . . , λp be the distinct eigenvalues of A; then, A can be expressed in the Jordan canonical form

A = ZJZ−1 = Zdiag(J1, . . . , Jp)Z−1

64



Mathematics 2019, 7, 1140

with

Jk =

⎡⎢⎢⎢⎢⎢⎣
λk 1 0

λk
. . .
. . . 1

0 λk

⎤⎥⎥⎥⎥⎥⎦ ∈ C
mk×mk (3)

and
m1 + . . . + mp = n.

Then,
Eα,β(A) = ZEα,β(J)Z−1 = Zdiag(Eα,β(J1), . . . , Eα,β(Jp))Z−1

with

Eα,β(Jk) =

⎡⎢⎢⎢⎢⎢⎢⎣
Eα,β(λk) E′α,β(λk) . . .

E
(mk−1)
α,β (λk)

(mk−1)!

Eα,β(λk)
. . .

...
. . . E′α,β(λk)

0 Eα,β(λk)

⎤⎥⎥⎥⎥⎥⎥⎦ .

• Cauchy integral

Eα,β(A) :=
1

2πi

∮
Γ

Eα,β(z)(zI − A)−1dz, (4)

where Γ is a simple closed rectifiable curve that strictly encloses the spectrum of A.
• Hermite interpolation

If A has the eigenvalues λ1, λ2, . . . , λp with multiplicities m1, m2, . . . , mp, then

Eα,β(A) := r(A),

where r is the unique Hermite interpolating polynomial of degree less than ∑
p
i=1 mi that satisfies the

interpolation conditions

r(j)(λi) = Eα,β(λi), j = 0, . . . , mi − 1, i = 1, . . . , p.

3. Theoretical Properties of the Matrix ML Function

We collect here the main theoretical properties of the matrix ML function [24–26]: the first 11 hold
for general matrix functions while the remaining are specific for the ML function.

Proposition 1. Let A, B ∈ Cn×n, α, β ∈ R with α > 0. Let I and 0 denote the identity and the zero matrix,
respectively, of dimension n. Then,

1. AEα,β(A) = Eα,β(A)A;
2. Eα,β(AT) = (Eα,β(A))T;
3. Eα,β(XAX−1) = XEα,β(A)X−1 for any nonsingular matrix X ∈ Cn×n;
4. the eigenvalues of Eα,β(A) are Eα,β(λi) where λi are the eigenvalues of A;
5. if B commutes with A, then B commutes with Eα,β(A);
6. if A = (Aij) is block triangular, then F = Eα,β(A) is block triangular with the same block structure of A

and Fii = Eα,β(Aii);
7. if A = diag(A11, . . . , Amm) is block diagonal, then

Eα,β(A) = diag(Eα,β(A11), . . . , Eα,β(Amm));

65



Mathematics 2019, 7, 1140

8. Eα,β(A⊗ I) = Eα,β(A)⊗ I, where ⊗ is the Kronecker product;
9. Eα,β(I ⊗ A) = I ⊗ Eα,β(A);
10. there is a polynomial p(t) of degree at most n− 1 such that Eα,β(A) = p(A);
11. Eα,β(AB)A = AEα,β(BA);
12. Eα,β(0) = 1

Γ(β)
I;

13. mEmα,β(Am) =
m−1

∑
k=0

Eα,β(e2πki/m A) for any natural number m ≥ 1;

14. mArEmα,β+rα(Am) =
m−1

∑
k=0

e2πki(m−r)/mEα,β(e2πki/m A) for any natural numbers m and r with m ≥ 1 and

m > r;

15. AmEα,β+mα(A) = Eα,β(A)−
m−1

∑
k=0

Ak

Γ(αk + β)
for β ≥ 0.

If A has no eigenvalues on the negative real axis, then

16. Eα,β(A) = 1
m

m−1

∑
k=0

Eα/m,β(e2πki/m A1/m);

17. E2α,β(A) = 1
2 [Eα,β(A1/2) + Eα,β(−A1/2)].

4. Numerical Evaluation of the Matrix ML Function

We give now an overview of different methods for the numerical evaluation of the matrix ML
function, with emphasis on the strengths and weaknesses of each of them.

4.1. Series Expansion

As for the exponential, the Taylor series expansion (2) may be regarded as the most direct way to
compute the matrix ML function. Indeed, in this definition, only matrix products appear thus to make
the approach ideally very simple to implement. In practice, once a fixed number K of terms is chosen,
one can use the approximation

Eα,β(A) ≈
K

∑
j=0

Aj

Γ(αj + β)
. (5)

However, by following exactly the example presented in [16] for the exponential, we show the
weakness of this approach. Indeed, we consider the matrix argument

A =

[
−49 24
−64 31

]
, (6)

whose eigenvectors and eigenvalues are explicitly known,

V =

[
1 3
2 4

]
, D =

[
−1 0
0 −17

]
.

Then, the exact solution can be directly computed as VEα,β(D)V−1 and Eα,β(D) is the diagonal
matrix of diagonal entries Eα,β(−1) and Eα,β(−17). In Figure 1, we relate the relative error, in norm,
between the exact solution and the approximation (5) as K varies, for three different values of α and
β = 1.

Figure 1 clearly shows that the numerical approximation (5) can give unreliable results. In this
specific example, the impressive growth of the error is due to numerical cancellation; indeed, the
summation terms in Equation (5) get larger as j enlarges and they change sign by passing from the jth
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power to the next one. This means that we sum up terms with very large modulus and opposite sign,
and this is an undisputed source of catastrophic errors.

0 5 10 15 20 25 30 35

K

100

1010

1020

1030

1040

E
rr

or

=0.2
=0.5
=0.9

Figure 1. Relative error Vs number of terms K in the series (5) for three values of α, β = 1 and the
matrix A as in Equation (6).

4.2. Polynomial Methods

Methods based on the minimal polynomial or the eigenpolynomial of a matrix have been proposed
to numerically evaluate the matrix ML function. This kind of approach is in general poor and we show
the weak points (which are exactly the same we encounter in applying it for the matrix exponential [16]).

The first thing to stress is that they require the eigenvalues’ knowledge. This is usually not a
priori available and numerical methods for their computation are usually very expensive. Thus, their
application is limited to the case in which eigenvalues are at one’s disposal.

Although in general the minimal polynomial and the eigenpolynomial are very difficult to
compute, the latter is simpler to calculate and we focus on this approach.

Let c(z) denote the characteristic polynomial of A with

c(z) = det(zI − A) = zn −
n−1

∑
k=0

ckzk.

Then, by means of the Cayley–Hamilton theorem, it is easy to prove that any power of A can
be expressed as a linear combination of I, A, . . . , An−1. Thus, also Eα,β(tA) is a polynomial in A with
analytic coefficients in t; indeed, formula (2) for the matrix ML function reads

Eα,β(tA) =
∞

∑
j=0

tj Aj

Γ(αj + β)
=

∞

∑
j=0

tj

Γ(αj + β)

(
n−1

∑
k=0

pjk Ak

)

=
n−1

∑
k=0

(
∞

∑
j=0

pjk
tj

Γ(αj + β)

)
Ak =

n−1

∑
k=0

p̃k(t)Ak.

The expression of coefficients pjk is simply obtained once the coefficients cj are known. However,
the weak point is related to their numerical computation since it is very prone to round off
error (as shown in [16] already for the 1-by-1 case). For this reason, methods of this kind are
strongly discouraged.
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4.3. The Schur–Parlett Method Combined with the OPC Method

The third property of Proposition 1 suggests looking for a suitable similarity transformation
which moves the attention to the matrix function evaluated in a different argument, hopefully simpler
to deal with. In particular, among the best conditioned similarity transformations, one can resort to the
Schur one. Indeed, it factors a matrix A as

A = QTQ∗

with T upper triangular and Q unitary. Then,

Eα,β(A) = QEα,β(T)Q∗. (7)

The Schur decomposition is among the best factorization one can consider since its computation is
perfectly stable, unlike other decompositions, as the Jordan one that we will describe in the following.
For this reason, it is commonly employed for computing matrix functions [27,28]. The actual evaluation
of Equation (7) requires the computation of the ML function for a triangular matrix factor. This topic
has been properly addressed for general functions by Parlett in 1976 [29], resulting in a cheap method.
Unfortunately, Parlett’s recurrence can give inaccurate results when T has close eigenvalues. In 2003,
Higham and Davies [19] proposed an improved version of this method: once the Schur decomposition
is computed, the matrix T is reordered and blocked according to its eigenvalues resulting in a matrix,
say T̃. Specifically, each diagonal block of T̃ has “close” eigenvalues and distinct diagonal blocks have
“sufficiently distinct” eigenvalues. In this way, Parlett’s recurrence works well even in the presence of
closed eigenvalues of T. Just a final reordering is required at the end of the process to recover Eα,β(T)
from Eα,β(T̃).

The evaluation of Eα,β(T̃) starts from the evaluation of the ML function of its diagonal blocks,
which are still triangular matrices whose eigenvalues are “close”. Let Tii be one of these diagonal
blocks and σ denotes the mean of these eigenvalues. Then, Tii = σI + M and

Eα,β(T) =
∞

∑
k=0

E(k)
α,β(σ)

k!
Mk, (8)

with E(k)
α,β denoting the k-th order derivative of Eα,β. The powers of M are expected to decay quickly

since the eigenvalues of Tii are close. This means that only a few terms of (8), usually less than the
dimension of the block Tii, suffice to get a good accuracy.

Evidently, the computation of (8) involves the computation of the derivatives of the scalar ML
function, up to an order depending on the eigenvalues’ properties. This issue has been completely
addressed in [18], and we refer to it for the details.

In particular, the analysis of the derivatives of the ML function has been facilitated by resorting to
the three parameters’ ML function (also known as the Prabhakar function)

Eγ
α,β(z) =

1
Γ(γ)

∞

∑
k=0

Γ(γ + k)zk

k!Γ(αk + β)
, α, β, γ ∈ C, �(α) > 0,

since
E(m)

α,β (t) = m!Em+1
α,β+αm(t). (9)

The Prabhakar function is an important function occurring in the description of many physical
models [30–35].

In practice, as for the scalar ML function, one could compute the Prabhakar function, or
equivalently the ML derivatives, by the Taylor series for small arguments, the asymptotic expansion
for large arguments and an integral representation in the remaining cases. In [18], however, to obtain
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the same accuracy for all arguments, the inverse Laplace transform has been used in all cases to obtain
the simple expression

Eγ
α,β(z) =

1
2πi

∫
C

es sαγ−β(
sα − z

)γ ds,

with C any suitable contour in the complex plane encompassing at the left the singularities of the
integrand. This last issue is quite delicate: indeed, from a theoretical point of view, the contours chosen
to define the inverse Laplace transform are all equivalent while they can lead to extremely different
results when the numerical evaluation of these integrals comes into play. Then, an accurate analysis
is needed to choose the “optimal” contour which guarantees the desired accuracy, minimizes the
computational complexity, and results in a simple implementation. The method proposed in [18],
grounded on well established analysis [4,5,15], actually fulfills these requirements since the obtained
accuracy is in any case close to the machine precision and the computational complexity is very
reasonable. The Matlab code ml_matrix.m implements this method and will be used in the following
for numerical tests.

4.4. Jordan Canonical Form

The expression of the matrix ML function in terms of its Jordan canonical form, as stated in
Equation (3), could be a direct way to numerically evaluate it. However, the true obstacle in using it
is the high sensitivity of the Jordan canonical form to numerical errors (in general, “there exists no
numerically stable way to compute Jordan canonical forms” [36]).

To give an example, we consider the Matlab code by Matychyn [37], which implements this
approach. We restrict the attention to the exponential case (that is, α = β = 1) to have as reference
solution the result of the well-established expm code by Matlab.

We consider the Chebyshev spectral differentiation matrix of dimension 10. Oddly, even for this
“simple” function, the relative error is quite high, namely proportional to 10−3.

The error source is almost certainly the well-known ill-conditioning of the eigenvector matrix.
Indeed, the code ml_matrix gives a relative error proportional to 10−7 since it does not involve the
Jordan canonical form.

Now, we consider as example the test matrix in [36]

A =

[
ε 0
1 0

]
as matrix argument; as before, we just consider the simplest case α = β = 1 as a significant example.

For small values of ε, say ε < 10−16, the code [37] stops running, since, when computing the
Jordan canonical form, Matlab recognizes that the matrix is singular. On the other hand, the code
ml_matrix works very well even for tiny values, say ε equal to the Matlab machine precision.

Analogously, let

A =

⎡⎢⎢⎢⎢⎢⎣
0 1

. . . . . .
. . . 1

ε 0

⎤⎥⎥⎥⎥⎥⎦
be a n× n matrix. For n = 16 and ε = 10−16, the code [37] just reaches an accuracy proportional to
10−2, while the code ml_matrix reaches 10−17.

From these examples, we can appreciate the high accuracy reached by the code ml_matrix
described in Section 4.3. Moreover, its computational cost is lower than the code based on the Jordan
canonical form and, far more important, it does not suffer from the eigenvalues’ conditioning.
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4.5. Rational Approximations

Among the nineteen methods to approximate the matrix exponential, Moler and van Loan [16]
consider the “exact” evaluation of a rational approximation of the exponential function evaluated
in the desired matrix argument. This is indeed a very common approach when dealing with more
general functions having good rational approximations (see, e.g., [38–40]).

Indeed, let pμ and qν be polynomials of degree μ and ν, respectively, such that, for scalar
arguments z,

Eα,β(z) ≈
pμ(z)
qν(z)

.

To evaluate the approximation above in the matrix case, we use a partial fraction expansion of the
right-hand side above, leading to

Eα,β(z) ≈ p̃�(z) +
ν

∑
i=1

ωi
1

z− σi
, (10)

in this way, the computation of p̃�(A) is trivial while the sum requires the computation of ν matrix
inversions, namely (A− σi I)−1, for i = 1, . . . , ν.

Once the rational approximation is fixed, the sum (10) can be computed by actually inverting the
matrices (A− σi I)−1 if A is a small well-conditioned matrix or, if it is large, incomplete factorizations
of A can be cheaply applied [40].

For the ML function, the problem is the detection of a suitable rational approximation to use.
The Padé and the Chebyshev rational approximation are commonly preferred for the exponential; this
choice is mainly due to their good approximation properties, to the fact that they are explicitly known,
and the error analysis is well established.

A key feature of the Padé approximation is that it can be used if ‖A‖ is not too large. This does not
represent a restriction for the exponential function since it is endowed with the fundamental property

exp(A) = (exp(A/m))m,

it allows for computing the exponential of an arbitrarily small argument A/m to then extend it to the
original argument A. In general, m is chosen as a power of two in order to require only the repeated
squaring of the matrix argument.

The property above is only valid for the exponential function, meaning that, for the ML function,
there is no direct way to extend the local approximation to the global case.

Some years ago, a global Padé approximation to the ML function was proposed [8] working on
the whole real semiaxis (−∞, 0]. In the matrix case, this restricts the applicability to matrix arguments
with real positive eigenvalues. Moreover, the computation of the coefficients is arduous; for this reason,
small degrees are considered in [8], which lead to quite important errors.

We now describe the Carathéodory–Fejér approximation of the ML function as an effective tool
when a rational approximation is needed.

Carathéodory–Fejér Approximation of the ML Function

As concerns the ML function, Trefethen was the first to address the problem of finding rational
approximations when α = 1 and β ∈ N [41]. Later on, the most general case has been deeply
analyzed [11] grounding on the Carathéodory–Fejér (CF) theory; this theory is important since it
allows for constructing a near best rational approximation of the ML function. In practice, once we
fix a given degree ν, the residues ω0, . . . , ων and the poles σ1, . . . , σν are found that define the CF
approximation of degree ν of the ML function. Thus,
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Eα,β(A) ≈ ω0 I +
ν

∑
j=1

ωj(A− σj I)−1. (11)

When dealing with real arguments, the sum can be arranged as to almost halve the number of
terms to compute. Moreover, since a small degree ν usually suffices to give a good approximation, only
a few matrix inverses are actually required. Obviously, this approach is meaningful only for matrix
arguments whose inversion can be computed in a stable and reliable way.

5. Numerical Computation of Eα,β(A)b for a Given Vector b

In many situations, the interest is in the computation of Eα,β(A)b for a given vector b. Any method
described so far can be applied to compute Eα,β(A) and then multiply it by the vector b. However,
when the dimension of the matrix argument A is very large, ad hoc strategies have to be preferred.

The rational approximation (11) is, for example, a good solution; indeed, it reads

Eα,β(A)b ≈ ω0b +
ν

∑
j=1

ωj(A− σj I)−1b

and, rather than matrix inversions, the right-hand side requires only solving linear systems.
This approach is effective even for small matrix arguments A, in which case direct methods can
be applied for the linear systems involved. When the matrix argument is very large, several
alternatives are at one’s disposal: iterative methods can be, for example, applied (see [11]) and,
when preconditioning is needed, the same preconditioner can be computed just once and then applied
to all shifted systems. Incomplete factorizations of A can be used for example as preconditioners for
the systems involved (we refer to [40] for a deep description of the approach).

Krylov subspace methods are an effective tool for the numerical approximation of vectors like
Eα,β(A)b; their first application was related to the exponential and then they have been successfully
employed for general functions [38,42,43]. In particular, for the ML function, we refer to [11,12].
The idea is to approximate Eα,β(A)b in Krylov subspaces defined as

Km(A, b) ≡ span{b, Ab, . . . , Am−1b}, m ∈ N.

The matrix A is projected in these spaces as Hm = VT
m AVm, where Vm ∈ Cn×m is an orthonormal

basis of Km(A, b) built by applying the Gram–Schmidt procedure with b/‖b‖ as starting vector
and Hm ∈ Cm×m is an unreduced Hessenberg matrix whose entries are the coefficients of the
orthonormalization process.

Then,
Eα,β(A)b ≈ ‖b‖VmEα,β(Hm)e1, (12)

where e1 denotes the first column of the identity matrix of dimension m×m.
The potency of these techniques is that usually a small dimension m is enough to get a sufficiently

accurate approximation; thus, some classical method usually works to compute Eα,β(Hm).
The convergence of Krylov subspace methods can be quite slow when the spectrum of A is

large; this phenomenon was primarily studied for the exponential [44] and successively for the ML
function [12]. In these cases, the Rational Arnoldi method can be successfully used, with superb results
already for the “one-pole case” [12,45–47]. The idea of this method, known as Shift and Invert in the
context of eigenvalue problems, is to fix a parameter γ and to approximate Eα,β(A)b in the Krylov
subspaces generated by Z = (I + γA)−1, rather than A and b.

The computational complexity is larger than for standard Krylov subspace methods since the
construction of the Krylov subspaces requires computing vectors of the form (I + γA)−1y, that is,
solving several linear systems with the same shifted coefficient matrix. However, for suitable shift
parameters, the convergence becomes much faster, to thus compensate the additional cost.
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We refer to [12] for a comprehensive description of this method applied to the computation of
the matrix ML function, together with the numerical tests to show the effectiveness of the approach.
Moreover, for completeness, we want to stress that the actual computation of the matrix ML function
in [12] was accomplished by combining the Schur–Parlett recurrence and the Matlab code mlf.m by
Podlubny and Kacenak [48]. However, this approach cannot handle the derivatives of the ML scalar
function; therefore, to treat more general situations, as, for example, matrix arguments with repeated
eigenvalues, the approach described in Section 4.3 has to be considered within the implementation.

6. Conclusions

This paper offers an overview of the matrix ML function: the most important theoretical
properties are collected to serve as a review and to help in the treatment of this function. Moreover,
the existing methods for its numerical computation are presented, by following the plot used
by Moler and Van Loan [16] to describe the methods for the numerical computation of the matrix
exponential.

From this analysis, we may conclude that the approach based on the combination of the
Schur–Parlett method and the OPC method is the most efficient: it is indeed cheap, accurate, and easy
to implement.
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CF Carathéodory–Fejér
FDE Fractional Differential Equation
ML Mittag–Leffler
OPC Optimal Parabolic Contour
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Abstract: We study here a generalization of the time-fractional relativistic diffusion equation based
on the application of Caputo fractional derivatives of a function with respect to another function.
We find the Fourier transform of the fundamental solution and discuss the probabilistic meaning
of the results obtained in relation to the time-scaled fractional relativistic stable process. We briefly
consider also the application of fractional derivatives of a function with respect to another function in
order to generalize fractional Riesz-Bessel equations, suggesting their stochastic meaning.
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1. Introduction

In recent papers, relativistic diffusion equations have been investigated both from the physical [1]
and mathematical [2,3] points of view. It is well known that these kinds of space-fractional equations
are strictly related to relativistic stable processes (see, e.g., [2]).

In [2], a fractional relativistic stable process was considered, connected with a time-fractional
relativistic diffusion equation involving a derivative in the sense of Caputo. In [3], the Fourier transform
of the fundamental solution and the probabilistic interpretation of the solution for the Cauchy problem
of a time-fractional relativistic equation was discussed. On the other hand, the fractional derivative of
a function with respect to another function is a useful mathematical tool that is recently gaining more
interest in relation to models involving time-varying coefficients, see, e.g., [4–6] and the references
therein.

The aim of this short paper is to consider the generalization of the time-fractional relativistic diffusion
equation by means of a Caputo fractional derivative of a function with respect to another function.

We are able to find the Fourier transform of the fundamental solution for this new class of
generalized relativistic diffusion equations. Moreover, we discuss its probabilistic meaning, showing
the role of the time-scaling involved in the application of time-fractional operators. A time-scaled
fractional tempered stable process is considered in connection to this class of equations.
The time-scaled fractional relativistic stable process is also analyzed by evaluating the covariance and
correlation coefficient and the connections with fractional-type equations.

We finally apply fractional derivatives with respect to another function in order to generalize the
fractional Bessel-Riesz motion recently considered in [7].

Mathematics 2019, 7, 1009; doi:10.3390/math7111009 www.mdpi.com/journal/mathematics75
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2. Preliminaries on Fractional Relativistic Stable Processes and Fractional Operators

2.1. Fractional Relativistic Diffusion and Relativistic Stable Processes

The tempered stable subordinator (TSS) Tμ,α(t), t > 0, with stability index α ∈ (0, 1) and
tempering parameter μ > 0, is a Lévy process with Laplace transform

E(e−sTμ,α(t)) = e−t((s+μ)α−μα) (1)

and transition density
fμ,α(x, t) := e−μx+μαthα(x, t), (2)

where hα(x, t) = Pr{Hα(t) ∈ dx} andHα(t) is the α-stable subordinator. Moreover, let us denote with
Lα(t) := inf{s : Hα(s) > t}, t ≥ 0, α ∈ (0, 1) the inverse of the α-stable subordinator. For more details
about TSS and applications we refer, for example, to [8,9].

The relativistic α-stable process is defined as a Brownian motion (hereafter denoted by B(t), t ≥ 0)
subordinated via an independent TSS, i.e.,

Xμ,α(t) := B(Tμ,α(t)), t > 0. (3)

Following the notation used, for example, in [3], in this paper we generalize the relativistic
diffusion equation

∂u
∂t

= Hα,mu, (4)

where the spatial differential operator

Hα,m := m−
(

m
2
α − Δ

) α
2 , α ∈ (0, 2), m > 0, (5)

is a relativistic diffusion operator, i.e., the infinitesimal generator of the relativistic stable process. In [3]
the time-fractional generalization has been considered by replacing the first-order time-derivative with
a Caputo fractional derivative. The related stochastic process has interesting properties, as discussed
in [2,3].

We here briefly recall the notion of fractional tempered stable (TS) process introduced in [2].

Definition 1. Let Lβ(t), t ≥ 0 be the inverse of the stable subordinator, then the fractional TS process is
defined as

T β
μ,α(t) := Tμ,α(Lβ(t)), t ≥ 0, μ ≥ 0, α, β ∈ (0, 1) (6)

where Lβ is independent of the tempered stable subordinator (TSS) Tμ,α.

The density of the fractional TS process T β
μ,α(t) satisfies the fractional equation (see [2] Theorem 6)

Dβ
t f =

[
μα −

(
μ +

∂

∂x

)α ]
f , α ∈ (0, 1), μ ≥ 0, (7)

under initial-boundary conditions {
f (x, 0) = δ(x),

f (0, t) = 0.
(8)

We here denote by Dβ
t the Caputo fractional derivative of order β ∈ (0, 1), i.e.,

Dβ
t f (t) =

1
Γ(1− β)

∫ t

0
(t− τ)−β ∂ f

∂τ
dτ. (9)
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Definition 2. The fractional relativistic stable process is defined as the time-changed Brownian motion

X β
μ,α(t) := B(T β

μ,α(t)), t ≥ 0. (10)

The density of the fractional relativistic stable process X β
μ,α(t) coincides with the solution of the

time-fractional relativistic diffusion equation ([2], Theorem 16)

Dβ
t g =

[
μα − (μ− Δ)α

]
g, (11)

under initial and boundary conditions ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g(x, 0) = δ(x),

lim
|x|→∞

g(x) = 0,

lim
|x|→∞

∂

∂x
g(x) = 0.

(12)

We will here present some generalizations of Equations (7) and (11) obtained by using fractional
derivatives of a function with respect to another function.

2.2. Fractional Derivatives of a Function with Respect to Another Function

Fractional derivatives of a function with respect to another function have been considered in the
classical monograph by Samko et al. [10] and Kilbas et al. [11] (Section 2.5). Recently they were reconsidered
by Almeida in [4] where the Caputo-type regularization of the existing definition and some interesting
properties are provided. We recall the basic definitions and properties for the reader’s convenience.

Let ν > 0, f (t) ∈ C1([a, t]) an increasing function such that f ′(t) �= 0 in [a, t], the fractional
integral of a function g(t) with respect to another function f (t) is given by

Iν, f
a+ g(t) :=

1
Γ(ν)

∫ t

a
f ′(τ)( f (t)− f (τ))ν−1g(τ)dτ. (13)

Observe that for f (t) = tβ we recover the definition of Erdélyi-Kober fractional integral recently
applied, for example, in connection with the Generalized Grey Brownian Motion [12].

The corresponding Caputo-type evolution operator (according to our notation) is given by

Oν, f
t g(t) := In−ν, f

a+

(
1

f ′(t)
d
dt

)n
g(t), (14)

where n = [ν] + 1. Here we have used the symbol Oν, f
t (·) in order to underline the generic

integro-differential nature of the time-evolution operator, beyond the fractional calculus theory.
A relevant property of Equation (14) is that, if g(t) = ( f (t) − f (a))β−1 with β > 1, then (see

Lemma 1 of [4])

Oν, f
t g(t) =

Γ(β)

Γ(β− ν)
( f (t)− f (a))β−ν−1. (15)

As a consequence, the composite Mittag-Leffler function (see [6,13] for Mittag-Leffler functions)

g(t) = Eν(λ( f (t)− f (a))ν) (16)

is an eigenfunction of the operator Oν, f
t . In the next section we will consider a = 0.

Hereafter we denote by f̂ (k) the Fourier transform of a given function f (x).
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3. On the Generalized Relativistic Diffusion Equation

Theorem 1. Let f (t) ∈ C2[0, T], such that f (0) = 0 and f ′ �= 0 ∀t ∈ (0, T], then the Fourier transform of
the fundamental solution of the generalized time-fractional relativistic diffusion equation

Oν, f
t u(x, t) =

[
m− (m2/α − Δ)α/2

]
u(x, t), α ∈ (0, 2), ν ∈ (0, 1), (17)

is given by
û(k, t) = Eν(−θ(|k|)( f (t))ν), (18)

where
θ(|k|) = (m

α
2 + |k|2)α/2 −m. (19)

Moreover, in the case ν = 1, the fundamental solution of the equation(
1

f ′(t)
∂

∂t

)
u(x, t) =

[
m− (m2/α − Δ)α/2

]
u(x, t), α ∈ (0, 2) (20)

is given by
û(k, t) = e−θ(|k|) f (t). (21)

Proof. By taking the spatial Fourier transform of Equation (17), we have that

Oν, f
t û(k, t) = −{(m α

2 + |k|2)α/2 −m}û(k, t) = −θ(|k|)û(k, t), (22)

under the initial condition û(k, 0) = 1. Then, by using the fact that

Oν, f
t Eν(−θ(|k|)( f (t))ν) = −θ(|k|)Eν(−θ(|k|)( f (t))ν), (23)

we obtain the claimed result.
The case ν = 1 can be checked by simple calculations.

Remark 1. Observe that, for m = 0, we obtain the Fourier transform of the fundamental solution of the
generalized space-time-fractional diffusion equation

Oν, f
t u(x, t) = −(−Δ)α/2u(x, t), α ∈ (0, 2), ν ∈ (0, 1), (24)

while, for α = 2, m = 0, we have the Fourier transform of the generalized time-fractional heat equation

Oν, f
t u(x, t) = Δu(x, t), ν ∈ (0, 1). (25)

In the latter, some interesting cases have been considered in the literature. In particular

• if f (t) = t, we recover the time-fractional diffusion equation, which is widely studied in the literature,
(we refer, for example, to [14,15]).

• if f (t) = (1− e−βt)/β, we have the fractional Dodson diffusion equation studied in [6].
• if f (t) = ln t, we have the time-fractional diffusion involving a regularized Hadamard fractional derivative.

Remark 2. In Theorem 1, we take for simplicity the condition that a = 0 in the definition of the fractional
operator Oν, f

t and we consider the renstriction to functions f such that f (0) = 0. In the more general case
a > 0, f (a) �= 0, we have that the Fourier transform of the fundamental solution for Equation (17) is given by

û(k, t) = Eν(−θ(|k|)( f (t)− f (a))ν). (26)
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Much care should be given, for example, to the case of logarithmic functions, where "a" must be greater
than zero.

Remark 3. Equation (20) with α = 1 can be euristically interpreted as a relativistic Schrödinger-type equation
with time-dependent mass.

4. Time-Scaled Fractional Tempered Stable Process

Let us consider the following equation

Oβ, f
t h =

[
μα − (μ +

∂

∂x
)α

]
h, (27)

under the initial-boundary conditions {
h(x, 0) = δ(x),

h(0, t) = 0.
(28)

Let us denote by f̃ the Laplace transform of a function f , i.e., f̃ (η) :=
∫ +∞

0 e−ηx f (x)dx. We now
evaluate the Laplace transform, with respect to the space argument, of Equation (27), which reads

Oβ, f
t h̃(η, t) = ψα,μ(η)h̃(η, t), η > 0,

with initial condition h̃(η, 0) = 1 and where ψα,μ(η) := (η + μ)α − μα (see [2] for details). Thus, we can
write its solution as

h̃(η, t) = Eβ(−ψα,μ(η)[ f (t)− f (0)]β). (29)

By comparing Equation (29) with Equation (20) in [2], we can derive the following relationship
holding for the corresponding process T β, f

μ,α (t), for any t > 0

Ee−ηT β, f
μ,α (t) = Ee−ηT β

μ,α( f (t)) = Eβ(−ψα,μ(η)[ f (t)− f (0)]β) (30)

and, by the unicity of the Laplace transform, we can write the following equality of the one-dimensional
distributions

T β, f
μ,α (t) d

= T β
μ,α( f (t)),

which holds for any t > 0. Thus the process T β, f
μ,α can be called time-scaled fractional tempered

stable process.
Therefore, we have the following:

Theorem 2. The density of the time-scaled fractional TS process T β
μ,α( f (t)) satisfies the fractional Equation (27)

under the initial-boundary Conditions (28).

From the finiteness of the moments of the standard tempered stable process and by taking into
account Equation (6), we can draw the conclusion that the moment generating function of T β, f

μ,α exists,
for any f and α, β ∈ (0, 1), and is equal to Equation (30), for κ = −η. By differentiating

EeκT β, f
μ,α (t) = Eβ(−ψα,μ(−κ)[ f (t)− f (0)]β),

we then obtain the first and second moments of T β, f
μ,α as follows

ET β, f
μ,α (t) =

αμα−1[ f (t)− f (0)]β

Γ(β + 1)
(31)
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and

E

[
T β, f

μ,α (t)
]2

=
α(1− α)μα−2[ f (t)− f (0)]β

Γ(β + 1)
+

2α2μ2α−2[ f (t)− f (0)]2β

Γ(2β + 1)
, (32)

which, for β = 1 and f (t) = t, for any t, coincide with those of the standard tempered stable process
(see [8]). Since, in this case, the process is not Lévy, we also loose the stationarity of increments.

We study the tails’ behavior of the distribution of the time-scaled fractional TS process T β, f
μ,α (t),

i.e., we obtain an estimate for P(T β, f
μ,α (t) > x), for x → +∞, by means of the asymptotic result holding

for the usual TS subordinator Tμ,α(t): It is well-known that, for x → +∞,

P(Tμ,α(t) > x) ∼ e−μx+μαtx−αΓ(1 + α) sin(πα)t
απ

(33)

(see [16]). Let f (0) = 0, for simplicity, and let lβ(x, t) := P{Lβ(t) ∈ dx} be the transition density of the
inverse β-stable subordinator, then we can write, by considering Equations (6) and (29) together, that

P
(
T β, f

μ,α (t) > x
)

=
∫ +∞

0
P(Tμ,α(z) > x)lβ(z, f (t))dz

= [by (33)]

∼ e−μxx−αΓ(1 + α) sin(πα)

απ

∫ +∞

0
eμαzzlβ(z, f (t))dz

=
e−μxx−αΓ(1 + α) sin(πα)

απ

∂

∂k

∫ +∞

0
ekzlβ(z, f (t))dz

∣∣∣∣
k=μα

=
e−μxx−αΓ(1 + α) sin(πα)

απ

∂

∂k
Eβ(k f (t)β)

∣∣∣
k=μα

∼ e−μxx−αΓ(1 + α) sin(πα) f (t)β

απβ
Eβ,β(μ

α f (t)β).

Taking the derivative out of the integral, in the previous lines, is allowed by the standard
arguments for the moment generating function of the inverse stable subordinator

∫ +∞

0
ekzlβ(z, f (t))dz = Eβ(k f (t)β)

(see also [17]).

Going back to the problem considered in the previous section, we are now able to provide
a stochastic interpretation for the fundamental solution of the generalized fractional relativistic
diffusion equation.

Theorem 3. The fundamental solution of the generalized time-fractional relativistic diffusion Equation (17)
coincides with the density of the time-scaled fractional relativistic stable process X ν

m2/α, α
2
( f (t)) = B(T ν

m2/α, α
2
( f (t)).

We omit the complete proof, since it can be easily derived from [2], Corollary 13. Indeed, we here
underline that, by using a time-fractional derivative with respect to a function, we obtain a deterministic
time-change; therefore the related process is the time-scaled counterpart of the original process.

We can evaluate, by conditioning the expected value and variance of the time-scaled fractional
relativistic stable process X ν

m,α/2. Indeed, we can write

EX ν
m2/α ,α/2(t) = EB(T ν, f

μ,α (t)) = 0

and

varX ν
m2/α ,α/2(t) = E

{
E

[
B(T ν, f

μ,α (t))
∣∣∣ T ν, f

μ,α (t)
]2
}

= ET ν, f
μ,α (t) =

αμα−1[ f (t)− f (0)]ν

Γ(ν + 1)
.
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This confirms that the mean-square displacement of the process behaves as f (t)ν and thus crucially
depends on the choice of f .

We also evaluate the covariance and correlation coefficient of the process B(T ν, f
μ,α (t)), at least in the

special case where f is a sublinear or linear function. Let moreover f (0) = 0, for simplicity. We prove,
under these assumptions, that the process displays a long-range dependence (LRD). We need the
following definition for LRD of non-stationary processes (see [9,18]):

Definition 3. Let s > 0 and t > s. If, for a process Z(t), t ≥ 0, the following asymptotic behavior of the
correlation function holds

corr(Z(s), Z(t)) ∼ c(s)t−d, t → +∞,

where c(s) is a constant (for fixed s) and d ∈ (0, 1), then Z(t) is said to have the LRD property.

We restrict our analysis to the class of increasing, positive functions f , such that lim
t→+∞

f (t)
tρ = const,

or equivalently f (t) ∼ tρ, for ρ ∈ (0, 1]. It corresponds to considering sublinear functions, for which
| f (t − s)| ≤ f (t) − f (s), for any t ≥ s, (recalling that the last difference is always positive for an
increasing function). The equality holds in the special case of linear functions. We start by recalling
that the Brownian motion has stationary increments and the same holds for the tempered stable and
the inverse stable subordinators (see, for example, [16,19], respectively). Moreover, it is easy to check
that the stationarity of increments is preserved under composition of processes. As a consequence,
taking into account Equations (6) and (10), we can write, for s ≤ t, that

cov(B(T ν, f
μ,α (s)), B(T ν, f

μ,α (t)))

=
1
2

{
E

(
B(T ν, f

μ,α (s))
)2

+E

(
B(T ν, f

μ,α (t))
)2
−E

(
B(T ν, f

μ,α (t))− B(T ν, f
μ,α (s))

)2
}

=
1
2
E

(
B(T ν, f

μ,α (s))
)2

+
1
2
E

(
B(T ν, f

μ,α (t))
)2
− 1

2
E

(
B(T ν, f

μ,α (t− s))
)2

=
1
2

αμα−1 f (t)ν

Γ(ν + 1)
+

1
2

αμα−1 f (s)ν

Γ(ν + 1)
− αμα−1 f (t− s)ν

2Γ(ν + 1)

≥ 1
2

αμα−1 f (t)ν

Γ(ν + 1)

[
−

∞

∑
j=1

(
ν

j

)
f (t)−j(− f (s))j + f (s)ν f (t)−ν

]

=
1
2

αμα−1 f (t)ν

Γ(ν + 1)

[
ν f (s)
f (t)

∞

∑
l=0

(
ν− 1

l

)
f (t)−l(− f (s))l

l + 1
+ f (s)ν f (t)−ν

]

=
1
2

αμα−1 f (t)ν

Γ(ν + 1)

[
ν f (s)
f (t)

+ f (s)ν f (t)−ν + O( f (t)−2)

]
∼ 1

2
ανμα−1 f (s)

Γ(ν + 1)
f (t)ν−1.

Thus we easily check that the correlation coefficient is bounded below by the following asymptotic
expression f (s)1−ν/2 f (t)(ν/2)−1 ∼ f (s)1−ν/2tρ(ν/2)−ρ (for any fixed s and t → +∞). This means that
B(T ν, f

μ,α (t)) exhibits LRD behavior with d = ρ(1− ν/2) ∈ (ρ/2, 1), at least inside the class of sublinear
functions (asymptotically behaving as fractional powers of t).
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5. An Application to Generalized Fractional Bessel-Riesz Motion

In the recent paper [7], the authors give a stochastic representation for the solution of the following
fractional Cauchy problem

Dβ
t p = −λ(−Δ)α/2(I − Δ)γ/2 p, , γ ≥ 0, α ∈ (0, 2], β ∈ (0, 1] (34)

p(x, 0) = δ(x), (35)

where (−Δ)α/2 and (I − Δ)γ/2 are the inverses of the Riesz and the Bessel potential respectively.
The Fourier transform of the Cauchy Equation (34), has been obtained in the form

Ĝ(k, t) = Eβ

(
−λtβ‖k‖α(1 + ‖k‖2)γ/2

)
. (36)

In [7], it was proved that the fundamental solution for Equation (34) coincides with the density of
the stochastic process

XBR(t) = W(Lα,γ(Lβ(t))), t ≥ 0 (37)

where W is the n-dimensional Brownian motion, Lβ(t) is the inverse stable subordinator (according to
our notation) and Lα,γ is the Lévy subordinator with Laplace exponent

Φ(s) = λsα/2(1 + s)γ/2, s > 0. (38)

All these three processes are jointly independent.
Let us consider the generalized fractional counterpart of the Cauchy Equation (34) involving

fractional derivatives with respect to another function, i.e.,

Oν, f
t u(x, t) = −λ(−Δ)α/2(I − Δ)γ/2u(x, t). (39)

Assuming that f (t) is a suitable smooth function such that f (0) = 0, we have that the fundamental
solution of Equation (39) given by

u(x, t) = Eβ

(
−λ( f (t))β‖k‖α(1 + ‖k‖2)γ/2

)
(40)

and therefore it coincides with the density of the time-scaled stochastic processes depending on f

XBR(t) = W(Lα,γ(Lβ( f (t)))), t ≥ 0 (41)

6. Conclusions and Open Problems

We have analyzed here some applications of the time-fractional derivative with respect to a
function, in the context of the so-called fractional relativistic diffusion equation. It is well-known that
the most interesting case from the physical point of view corresponds to α = 1, where the operator
−H1,m appearing in Equation (5) represents the free energy of the relativistic Schrödinger equation.
A physical discussion about the utility and meaning of the time-fractional generalizations of the
relativistic diffusion is still missing. In view of the wide exhisting literature on the time-fractional
Schrödinger equation, it is worth investigating this topic for future studies, also for the stochastic
interpretation discussed here.

From the mathematical point of view, another interesting topic is the connection between higher
order equations and time-fractional equations (see, e.g., [20]). In this case the relation is not trivial and
it probably works only for specific values of the real order of the derivative.

Finally, a probabilistic interpretation of the fractional integrals with respect to a function can be
developed, following the discussion presented in [21].
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Abstract: A mathematical model able to simulate the physical, chemical and biological interactions
prevailing in multispecies biofilms in the presence of a toxic heavy metal is presented. The free
boundary value problem related to biofilm growth and evolution is governed by a nonlinear
ordinary differential equation. The problem requires the integration of a system of nonlinear
hyperbolic partial differential equations describing the biofilm components evolution, and a systems
of semilinear parabolic partial differential equations accounting for substrates diffusion and reaction
within the biofilm. In addition, a semilinear parabolic partial differential equation is introduced to
describe heavy metal diffusion and sorption. The biosoption process modeling is completed by the
definition and integration of other two systems of nonlinear hyperbolic partial differential equations
describing the free and occupied binding sites evolution, respectively. Numerical simulations of the
heterotrophic-autotrophic interaction occurring in biofilm reactors devoted to wastewater treatment
are presented. The high biosorption ability of bacteria living in a mature biofilm is highlighted,
as well as the toxicity effect of heavy metals on autotrophic bacteria, whose growth directly affects
the nitrification performance of bioreactors.

Keywords: multispecies biofilm; biosorption; free boundary value problem; heavy metals toxicity;
method of characteristics

1. Introduction

Most of the living microbial communities organize themselves in complex structures where
the interaction between different species leads to advantageous environmental conditions for their
growth [1,2]. These structures, known as multispecies biofilms, include different components, such as
living cells, inert materials and extracellular polymeric substances (EPS) [3–6]. Their structural
organization confers to these biological systems enhanced mechanical characteristics and adaptive
features to many environmental conditions [7–9]. For instance, the protective self-secreted EPS matrix
can strongly affect the dynamics of substances within the biofilm and it can also serve as a source of
nutrients for bacteria [10,11].

These aspects are highly relevant in many applications as biofilms result in being more resistant
than individual planktonic cells to toxic substances such as heavy metals, antibiotics, chlorine and
detergents, due to the presence of natural diffusion barriers [12]. In recent years, biofilms have
been widely used as biosorption technologies for metal immobilization and sequestration [13,14].
Biosorption is a combination of complex phenomena leading to the entrapment of a substance onto
the surface of a living/dead organism or EPS. The mechanisms involved (complexation, precipitation,
ion exchange, adsorption) are strongly affected by several biotic and abiotic parameters, such as
pH, temperature, binding site density and affinity, which in turn influence the biosorption efficiency.
Significant applications of biofilm technology to biosorption have been presented in the field of
groundwater purification and mining industry wastewater treatment.
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The sorption properties of various components constituting a biofilm (i.e., microorganisms,
EPS and inert materials) depend on the different affinity of each specific component to heavy metals.
It is known, for instance, that the cell membrane of many microorganisms allows for heavy metals
accumulation due to the presence of surface functional groups [15]. These act as binding agents
removing heavy metals during biofilm growth. On the other hand, heavy metals can be highly toxic
compounds for a wide range of bacteria, i.e., autotrophic microorganisms, as they can act as inhibiting
agent when significant metal concentrations are reached in bioreactors [16–19].

Many experimental studies demonstrated the possibility of using bacteria to govern heavy
metal mobility in different aquatic ecosystems [20–22], but additional efforts are still required to
completely understand the complex dynamics and interactions occurring between biofilms and heavy
metals. In this context, mathematical modeling represents an appropriate tool to provide basic
information on specific biosorption phenomena and stimulate further research on the multiplicity of
mechanisms regulating biosorption process by biofilms [2]. For instance, multidimensional models
can be implemented for specific applications when micro-scale outputs are required [7]. The spatial
distribution of diffusing compounds and microbial species within the biofilm, and the physical
structure of the biofilm at a micro-scale level can be investigated by using complex 2D and 3D
mathematical models [23–26]. If a macro-scale output is required, as in the case of engineering biofilm
reactors, 1D formulations have been recognized as efficient tools to analyze bioreactor performances in
terms of biomass accumulation and degradation of substrates [27].

To this aim, a 1D mathematical model reproducing a biosorption phenomenon occurring in
a typical biofilm reactor devoted to wastewater treatment has been proposed. The model is presented
in its general form and then applied to a relevant case in wastewater treatment field. Specifically,
the case study accounts for the coexistence of two different microbial species performing nitrification
and organic carbon degradation. A continuum approach was used to describe biomass growth
and decay within the biofilm [28]. The model accounts for the diffusion–reaction of substrates and
the diffusion–biosorption of heavy metals within the biofilm [29,30]. More precisely, in this work,
heterotrofic bacteria have been characterized by a high specific number of binding sites on their cell
wall allowing heavy metal sequestration during biofilm evolution. On the other hand, the kinetics of
autotrophic bacteria, which are usually more sensitive to toxic compounds then heterotrophic species,
have been supposed to be negatively affected by the heavy metal concentration, which acts as an
inhibiting agent and affects the efficiency of the nitrification process.

The main objective is to apply the knowledge of recently introduced mathematical approaches for
biosorption in multispecies biofilms to highlight the effects of heavy metals in a traditional biofilm
system for wastewater treatment. The work elucidates different ecological aspects of biofilms/heavy
metals interaction, such as spatial distribution of biofilm components over time, substrate and heavy
metals dynamics, and effects of heavy metals contamination. Numerical simulations remarked on the
consistency of the model and showed the effect of toxic heavy metals on different microbial species
coexisting in a multispecies biofilm.

2. Statement of the Problem

The effect of an inhibiting agent diffusing in a multispecies biofilm and the related biosorption
interactions are discussed in the following sections. The specific case study concerns the competition
for oxygen of heterotrophic and autotrophic microorganisms performing organic carbon degradation
and nitrification, respectively. This is a typical situation occurring in the biological treatment units of
municipal wastewater treatment plants.

According to [29], the biofilm dynamics were modeled as a free boundary problem essentially
hyperbolic, where the free boundary is represented by the biofilm thickness. Its evolution is dictated by
the growth of the microbial species constituting the biofilm Xi(z, t) and the exchange fluxes between
the biofilm and the bulk liquid. The biofilm growth is catalyzed by the availability of substrates Sj(z, t),
which diffuse from the bulk liquid into the biofilm where they are consumed by microbial species.
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The model considers biofilm as constituted of four different components Xi, i = 1, ..., 4 (green and gray
in Figure 1), which can accumulate/growth and decrease/decay during time. The biofilm growth
and development is governed by the availability of substrates Sj, j = 1, ..., 3 (blue in Figure 1) within
the biofilm, which regulate the microbial metabolism and interactions. These components include
heterotrophic bacteria X1 = ρ1 f1, autotrophic bacteria X2 = ρ2 f2, inert material X3 = ρ3 f3 and EPS
X4 = ρ4 f4, with fi denoting the volume fraction of each biofilm component i and ρi the corresponding
density. Specifically, EPS production was taken into account according to the approach proposed
by [31]. Three different substrates, ammonium S1, organic carbon S2, and oxygen S3 were taken
into account as they are involved in metabolic pathways. The active microbial biomasses X1 and
X2 naturally decrease via respiration and decay processes, producing residual inert biomass X3.
Contextually, they produce EPS as a metabolic byproduct during their growth. The autotrophs X2

are nitrifying bacteria that grow by consuming ammonium S1 and oxygen S3. On the other hand,
the heterotrophic bacteria simultaneously uptake organic carbon S2 and oxygen S3 for their growth.
The two species compete for space and oxygen in multispecies biofilms [28].

Figure 1. Schematic representation of the kinetic process.

The inhibiting agent μ (orange in Figure 1) was assumed to interact with the biofilm in two
different ways: it can adsorb on a specific biofilm component, e.g., the heterotrophic biomass X1, and act
as inhibiting agent for an active microbial biomass, e.g., the autotrophic bacteria X2. Note that a single
inhibiting agent μ was considered in this work, but, in more complex cases, the effect of different heavy
metals μk, k = 1, ..., l can be taken into account by using a similar approach. The concentration of heavy
metals in biofilm reactors negatively affects the kinetics of autotrophic bacteria, which are typically
more sensitive to contamination than heterotrophic species. Consequently, a specific inhibition term
was exclusively introduced in the autotrophic growth rate function. The sorption phenomenon was
modeled by directly taking into account the dynamics of the binding sites of the biofilm matrix.

The biofilm growth is governed by the following equations:

∂Xi
∂t

+
∂

∂z
(uXi) = ρirM,i(z, t, μ, X, S), i = 1, ..., 4, 0 ≤ z ≤ L(t), t > 0,

Xi(z, 0) = Xi0(z), i = 1, ..., 4, 0 ≤ z ≤ L0, (1)
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∂u
∂z

=
4

∑
i=1

rM,i(z, t, μ, X, S), 0 < z ≤ L(t), t ≥ 0, u(0, t) = 0, t ≥ 0, (2)

L̇(t) = u(L(t), t) + σa(t)− σd(L(t)), t > 0, L(0) = L0, (3)

where Xi = ρi fi(z, t) denotes the concentration of the four biofilm components considered, ρi is
the constant density, u(z, t) is the velocity of microbial mass displacement with respect to the
biofilm substratum, rM,i(z, t, μ, X, S) is the biomass growth rate, L(t) is the biofilm thickness,
X = (X1, X2, X3, X4), and S = (S1, S2, S3). Equation (1) is derived from local mass balance
considerations and governs the growth of the microbial species constituting the biofilm. The biomass
expansion is modelled as an advective flux and depends on the metabolic reactions carried out
by the microbial species. The reaction terms rM,i account for the microbial growth and decay,
and EPS production. Equation (2) governs the biomass growth velocity; it is obtained summing
over i Equation (1) and considering the constrain ∑n

i=1 fi = 1. The biofilm thickness evolution is
ruled by an ordinary differential equation (Equation (3)) that is derived from global mass balance
considerations and depends on both the biomass growth velocity u(L(t), t) and the detachment
σd(L(t)) and attachment σa(t) fluxes [32,33]. The latter represent the exchange fluxes between the
biofilm and the bulk liquid compartment.

The kinetic terms rMi(z, t, μ, X, S) for the biofilm components X1, X2, X3, and X4 can be expressed
as specified in the following lines. For the active biomass X1 and X2,

rM,1 = ((1− k1)Kmax,1
S2

K1,2 + S2

S3

K1,3 + S3
− bm,1F1

S3

K1,3 + S3
− (1− F1)cm,1)X1, (4)

rM,2 = ((1− k2)Kmax,2
S1

K2,1 + S1

S3

K2,3 + S3

KI
KI + μ

− bm,2F2
S3

K2,3 + S3
− (1− F2)cm,2)X2, (5)

and, for the inert component X3,

rM,3 = (1− F1)cm,1X1 + (1− F2)cm,2X2, (6)

while, for the EPS component X4,

rM,4 = k1Kmax,1
S2

K1,2 + S2

S3

K1,3 + S3
X1 + k2Kmax,2

S1

K2,1 + S1

S3

K2,3 + S3

KI
KI + μ

X2, (7)

where Kmax,i denotes the maximum growth rate for biomass i, ki is the coefficient associated with
EPS formation, Ki,j represents the affinity constant of substrate j for biomass i, bm,i denotes the
endogenous rate for biomass i, cm,i is the decay–inactivation rate for biomass i, Fi represents the
biodegradable fraction of biomass i, μ is the concentration of the heavy metal, which is supposed
toxic for autotrophic bacteria X2, and KI is the inhibition constant. The kinetic growth rates for
the inert material (Equation (6)) end EPS component (Equation (7)) are directly connected to the
biological activities performed by the microbial species. These are modeled by Monod-like kinetics
(Equations (4) and (5)) regulated by the availability of substrates within the biofilm.

The evolution of the free ϑi(z, t) and occupied ϑ̄i(z, t) binding sites is modeled by the equations

∂ ϑi
∂t

+
∂

∂z
(uϑi) = rM,i(z, t, μ, X, S)− rD,i(z, t, μ, ϑ), i = 1, ..., 4, 0 ≤ z ≤ L(t), t > 0,

ϑi(z, 0) = ϑi0(z), i = 1, ..., 4, 0 ≤ z ≤ L0, (8)

∂ ϑ̄i
∂t

+
∂

∂z
(uϑ̄i) = rD,i(z, t, μ, ϑ), i = 1, ..., 4, , t > 0, 0 ≤ z ≤ L(t),

ϑ̄i(z, 0) = ϑ̄i0(z), i = 1, ..., 4, 0 ≤ z ≤ L0, (9)
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where rD,i denotes the sorption rate, and ϑi0 and ϑ̄i0 are the initial distribution of the free and occupied
binding sites, respectively. The free binding site fractions can increase (Equation (8)) due to the
generation of new biomass, or decrease due to the biosorption. A parabolic partial differential equation
(PDE) describes the evolution of the adsorbing compound μ within the biofilm

∂μ

∂t
− ∂

∂z

(
Dμ

∂μ

∂z

)
= −YADSNμrD(z, t, μ, ϑi), 0 < z < L(t), t > 0,

μ(z, 0) = μ0(z),
∂μ

∂z
(0, t) = 0, μ(L(t), t) = μL(t), 0 ≤ z ≤ L0, t > 0, (10)

where Dμ is the diffusivity coefficient for the adsorbing compound, Nμ denotes the binding sites density
and YADS is the yield of the adsorbing compound. The kinetic term rD describes a non-reversible
heavy metal sorption mechanism. This is expressed by

rD = Kadsμϑ1, (11)

where Kads denotes the adsorption constant. According to Equations (10) and (11), the dynamics of the
adsorbing compound μ are regulated by the sorption rate rD, which is multiplied by two parameters
with physical meaning; YADS is the amount of adsorbing compound allocated in each binding site,
and Nμ is the number of binding sites related to the specific biofilm component. These parameters
describe the sequestration ability of a specific biofilm component.

The diffusion−reaction of each substrate was modeled by the equations

∂Sj

∂t
− ∂

∂z

(
DS,j

∂Sj

∂z

)
= rS,j(z, t, μ, X, S), j = 1, ..., 3, 0 < z < L(t), t > 0,

Sj(z, 0) = Sj0(z),
∂Sj

∂z
(0, t) = 0, Sj(L(t), t) = SjL, j = 1, ..., 3, 0 ≤ z ≤ L0, t > 0, (12)

where DS,j is the diffusivity coefficient, and rS,j(z, t, μ, X, S) is the conversion rate of substrate j.
These terms are specifically expressed by

rS,1 = − 1
Y2

((1− k2)Kmax,2
S1

K2,1 + S1

S3

K2,3 + S3

KI
KI + μ

X2, (13)

rS,2 = − 1
Y1

((1− k1)Kmax,1
S2

K1,2 + S2

S3

K1,3 + S3
X1, (14)

rS,3 = −(1− k1)
(1−Y1)

Y1
((1− k1)Kmax,1

S2

K1,2 + S2

S3

K1,3 + S3
X1,

−(1− k2)
(1−Y2)

Y2
((1− k2)Kmax,2

S1

K2,1 + S1

S3

K2,3 + S3

KI
KI + μ

X2,

− bm,1F1
S3

K1,3 + S3
X1 − bm,2F2

S3

K2,3 + S3
X2, (15)

where Yi denotes the yield for biomass i. A schematic representation of the model structure is shown
in Figure 1.

3. Numerical Simulation

The presented mathematical model was applied to simulate the effect of exposition to a toxic heavy
metal in a multispecies biofilm with an initial thickness of 300 μm. The metal represents an adsorbing
compound for one of the microbial species and acts as a toxic agent for the other. In particular,
μ is supposed to be toxic for autotrophic bacteria but can be sorbed on the cellular membrane of
heterotrophic bacteria. The values of the kinetic and stoichiometric parameters, and the mass transfer

88



Mathematics 2019, 7, 781

coefficients are reported in Table 1. They were adopted according to [30]. The initial conditions and
biological parameters adopted in the simulations are reported in Table 2.

Numerical solutions to the free boundary problem stated in Section 2 were obtained by using
the method of characteristics, e.g., [34–37]. Accuracy was checked by comparison to the geometric
constraint ∑4

i=1 fi(z, t) = 1. Simulations were performed using an original software developed on the
Matlab platform.

Table 1. Kinetic parameters used for model simulations.

Parameter Definition Unit Value

Kmax,1 Maximum growth rate for X1 d−1 4.8
Kmax,2 Maximum growth rate for X2 d−1 0.95
k1 EPS formation by X1 mg COD/mg COD 0.02
k2 EPS formation by X2 mg COD/mg COD 0.011
K1,2 Organics half saturation constant for X1 mg COD L−1 5
K1,3 Oxygen half saturation constant for X1 mg L−1 0.1
K2,1 Ammonium half saturation constant for X2 mg N L−1 1
K2,3 Oxygen half saturation constant for X2 mg L−1 0.1
bm,1 Endogenous rate for X1 d−1 0.025
bm,2 Endogenous rate for X2 d−1 0.0625
F1 Biodegradable fraction of X1 – 0.8
F2 Biodegradable fraction of X2 – 0.8
cm,1 Decay-inactivation rate for X1 d−1 0.05
cm,2 Decay-inactivation rate for X2 d−1 0.05
Y1 Yield of X1 gbiomass/gsubstrate 0.4
Y2 Yield of X2 gbiomass/gsubstrate 0.22
Yads Yield of adsorbent gmetal/nsites 1
Nμ Binding sites density for X1 nsitesL−1 1 and 50
KI Inhibition constant mg L−1 10−5

ρ Biofilm density g m−3 2500
λ Biomass shear constant mm d−1 1250

Table 2. Initial conditions for biofilm growth.

Parameter Symbol Unit Value

COD concentration at L = L(t) S1L mgL−1 20
Oxygen concentration at L = L(t) S3L mgL−1 8
Ammonium concentration at L = L(t) S2L mgL−1 2
Free metal concentration at L = L(t) μL mgL−1 2
Time Simulation T d 100
Initial Biofilm thickness L0 mm 0.3
Initial Volume Fraction of Autotrophs (X1) f1,0(z) – 0.399
Initial Volume Fraction of Heterotrophs (X2) f2,0(z) – 0.5
Initial Volume Fraction of Inert (X3) f3,0(z) – 0.001
Initial Volume Fraction of EPS (X4) f4,0(z) – 0.1

For all the dissolved species, i.e., substrates and adsorbing contaminant, Dirichlet conditions on
the free boundary were assumed. In Equation (3) governing the free boundary evolution, σd(L(t)) was
assumed to be a known function of L and t

σd(L(t)) = λL2(t), (16)

where λ is the share constant whose value is reported in Table 1. No attachment phenomena were
considered for all the numerical simulation, thus σa(t) was fixed to zero. The initial biofilm composition
is defined in Table 2. In particular, the biofilm is set to be initially constituted by the autotrophic
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(39.9%) and heterotrophic (50%) bacteria, EPS (10%) and inert (0.1%). The simulations reproduce
a typical environmental condition occurring in the biological units of municipal wastewater treatment
plants. The oxygen concentration in the bulk liquid was fixed to 8 mg/L, consistently with real scale
continuous aerated systems. The concentrations of soluble organic carbon, i.e., chemical oxygen
demand (COD), and ammonium, i.e., nitrogen content (N), in the bulk liquid were fixed to 20 mg/L
and 2 mg/L, respectively.

The model outputs are reported in Figures 2 and 3. Numerical simulations demonstrate model
capability of predicting the spatial distribution of biofilm components, the occupied and free binding
site fractions, the substrate trends, the free contaminants profiles over biofilm depth and the biofilm
thickness. The simulations show the effect of the biosorption phenomenon on the biological evolution
of the overall system, and how the different features of the heterotrophic biomass, such as the binding
site density Nμ, can substantially affect the final configuration of the biofilm and its properties.

(a) (b) (c)

Figure 2. Effect of site density Nμ = 1 on adsorption phenomenon and biological activity: (a) microbial
species distribution (A1–A4); (b) substrate profiles (B1–B4); (c) adsorbed and free metal profile (C1–C4)
after 1 (A1,B1,C1), 10 (A2,B2,C2), 20 (A3,B3,C3), and 100 (A4,B4,C4) days of simulation. The free metal
concentration μ is multiplied by a factor of 103. The initial condition is reported in Table 2.
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Two different values of the binding site density Nμ were used for numerical simulations
(Figures 2 and 3). In the first simulation set, the value of site density Nμ was fixed to 1 (Figure 2),
while, in the second set, Nμ was increased to 50 (Figure 3). In the first case (Nμ = 1), the low site
density determines a low adsorption rate resulting in a high diffusion of the free contaminant, which
shows a fully penetrated profile (Figure 2, C1). The presence of μ in the inner part of the biofilm
inhibits the metabolic activities of autotrophic bacteria. Despite the presence of autotrophs into the
biofilm (Figure 2, A1), the ammonium is not degraded; indeed, the concentration of ammonium in the
system remains constant (Figure 2, B1). The fraction of autotrophic bacteria decreases with time due to
the toxic effect of μ (Figure 2, A2, A3 and A4). After 100 days of simulation, the autotrophs completely
disappear from the biofilm (Figure 2, A4).

(a) (b) (c)

Figure 3. Effect of site density Nμ = 50 on adsorption phenomenon and biological activity: (a) microbial
species distribution (A1–A4); (b) substrate profiles (B1–B4); (c) adsorbed and free metal profile (C1–C4)
after 1 (A1,B1,C1), 10 (A2,B2,C2), 20 (A3,B3,C3), and 100 (A4,B4,C4) days of simulation. The free metal
concentration μ is multiplied by a factor of 104. The initial condition is reported in Table 2.
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In the second case (Nμ = 50), the higher site density determines a higher adsorption rate resulting
in a lower diffusion of the heavy metal than in the first case (Figure 2, C1). It is interesting to notice
that the concentration of the metal μ is essentially zero in the inner part of the biofilm, allowing the
proliferation of autotrophic bacteria (Figure 3, A1). Due to the absence of μ, the metabolic activity
of autotrophic bacteria is not inhibited and the ammonium is degraded (Figure 3, B1). Notably,
the existence of autotrophic bacteria in the inner part of the biofilm is due to the relevant adsorption
phenomenon occurring in the external part of the biofilm. Indeed, heterotrophic bacteria act as
a biological shield for autotrophic bacteria, which can live and proliferate in the biofilm structure
performing their biological activity. The coexistence of the two species is preserved after 100 d of
simulation as it is possible to notice from the final distribution of the microbial species within the
biofilm (Figure 2, A4).

Additional simulations were run by varying the inhibition constant KI and the metal concentration
within the bulk liquid μL. The first set of simulations was performed to test the effect of an increasing
resistance of the autrotrophic component X2 to the toxic metal. The site density was set to Nμ = 1 to
reproduce the case of a heterotrophic-autotrophic biofilm with a low sorption capability. The results
were summarized in Figure 4.

Figure 4. Effect of the inhibition constant KI on (A) autotrophic fraction; (B) substrate profiles; (C) free
metal trend within the biofilm with site density Nμ = 1 after 100 days of simulation time.

When varying KI from 10−5 to 10−4 (Figure 4A), the autotrophic fraction rises from 0 to 15%.
By further increasing the value of KI to 10−3 and 10−2, the autotrophic fraction reaches 18 and 17%,
respectively. This slight difference is due to the biofilm thickness, which is smaller in the case of
KI = 10−3, and affects the diffusion of substrates within the biofilm (Figure 4B). Ammonia shows
a fully penetrated profile for all values of KI , due to the low concentration of autotrophic bacteria
(<20%) within the biofilm. Oxygen is characterized by a similar trend for the lowest values of KI .
When the autotrophic fraction increases as a result of a higher KI value, the oxygen concentration
decreases all over the biofilm due to the additional consumption related to the autotrophic metabolism.
No significant differences can be noted in the μ profile, which shows a fully penetrated profile for all
KI values (Figure 4C). The simulation results highlight the key role played by the inhibition constant
in the definition of the biofilm composition.

The second set of simulations was performed by varying the metal concentration in the bulk
liquid to test the effectiveness of the biological shield provided by heterotrophic bacteria (Figure 5).
The final simulation time and the site density were set at T = 100 d and Nμ = 50, respectively.
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For μL = 4 × 10−2, the metal showed a fully penetrated profile (Figure 5C), which determines a strong
inhibition of the autotrophic species. For all the other values of μL, the metal concentration reaches
zero within the biofilm.

Figure 5. Effect of the free metal concentration in the bulk liquid μL on (A) autotrophic fraction;
(B) substrate profiles; (C) free metal trend within the biofilm with site density Nμ = 50 after 100 days
of simulation time.

Increasing μL from 4 × 10−4 to 2 × 10−2, the volume fraction of the autotrophic species
slightly increases (Figure 5A) due to the small difference in biofilm thickness and substrates trends
within the biofilm. When the autotrophic fraction is inhibited by the high metal concentration,
ammonia remains constant within the biofilm and oxygen shows a fully penetrated profile. For all the
simulations, the COD profile is invariant (Figure 5B). Except for μL = 4× 10−2, the simulation results
prove the effectiveness of the heterotrophic component in protecting the autotrophic fraction from
metal exposure.

Further numerical simulations were carried out to test the influence of the initial distribution
of biofilm components in both the experimental cases Nμ = 1 and Nμ = 50 (data not shown).
After 100 days of simulation time, numerical results showed a negligible variation of the biofilm
components distribution and a similar biological response to the heavy metal exposition.

4. Conclusions

In this work, a free boundary problem related to biofim growth and evolution during heavy metal
exposition in wastewater treatment plants has been discussed. The model highlights the dynamic
interactions occurring between different biofilm components when an inhibiting compound diffuses
from the bulk liquid within the biofilm structure. The biosorption phenomenon has been considered
by assigning a specific binding site density to the heterotrophic biomass, which is able to act as a
biological shield for autotrophic bacteria. Numerical results showed the crucial role of heterotrophic
bacteria on biosorption processes occurring in wastewater treatment plants. The combined effect
of heavy metals inhibition and biosorption phenomena within the biofilm structure has been newly
analyzed in this study. The general form and the structure of the mathematical model allow for its
application to different biological cases of high engineering interest. Simulation results demonstrated
that biofilm systems can be effectively used in the context of bioremediation. The development of 1D
mathematical models able to predict biofilm evolution and features under different environmental
condition is highly relevant for real scale applications, such as heavy metal recovery in biofilm
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reactors. Further experimental studies are still required to elucidate the different interactions occurring
between heavy metals and specific biofilm components. For instance, the role of EPS on heavy metals
biosorption can affect the biological response of a specific multispecies biofilm. This role could be
further taken into account with the presented mathematical model by assigning a specific site density
for the EPS component as a function of the biosorption affinity with the diffusing heavy metal.
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Abstract: The basic concepts of exterior calculus for space–time multivectors are presented: Interior
and exterior products, interior and exterior derivatives, oriented integrals over hypersurfaces,
circulation and flux of multivector fields. Two Stokes theorems relating the exterior and interior
derivatives with circulation and flux, respectively, are derived. As an application, it is shown how
the exterior-calculus space–time formulation of the electromagnetic Maxwell equations and Lorentz
force recovers the standard vector-calculus formulations, in both differential and integral forms.

Keywords: exterior calculus; exterior algebra; electromagnetism; Maxwell equations; differential
forms; tensor calculus

1. Introduction

Vector calculus has, since its introduction by J. W. Gibbs [1] and Heaviside, been the tool of
choice to represent many physical phenomena. In mechanics, hydrodynamics and electromagnetism,
quantities such as forces, velocities and currents are modeled as vector fields in space, while flux,
circulation, divergence or curl describe operations on the vector fields themselves.

With relativity theory, it was observed that space and time are not independent but just coordinates
in space–time [2] (pp. 111–120). Tensors like the Faraday tensor in electromagnetism were quickly
adopted as a natural representation of fields in space–time [3] (pp. 135–144). In parallel, mathematicians
such as Cartan generalized the fundamental theorems of vector calculus, i.e., Gauss, Green, and Stokes,
by means of differential forms [4]. Later on, differential forms were used in Hamiltonian mechanics,
e. g. to calculate trajectories as vector field integrals [5] (pp. 194–198).

A third extension of vector calculus is given by geometric and Clifford algebras [6], where vectors
are replaced by multivectors and operations such as the cross and the dot products subsumed in the
geometric product. However, the absence of an explicit formula for the geometric product hinders
its widespread use. An alternative would have been the exterior algebra developed by Grassmann
which nevertheless has received little attention in the literature [7]. An early work in this direction was
Sommerfeld’s presentation of electromagnetism in terms of six-vectors [8].

We present a generalization of vector calculus to exterior algebra and calculus. The basic notions
of space–time exterior algebra, introduced in Section 2, are extended to exterior calculus in Section 3
and applied to rederive the equations of electromagnetism in Section 4. In contrast to geometric
algebra, our interior and exterior products admit explicit formulations, thereby merging the simplicity
and intuitiveness of standard vector calculus with the power of tensors and differential forms.

2. Exterior Algebra

Vector calculus is constructed around the vector space R3, where every point is represented by
three spatial coordinates. In relativity theory the underlying vector space is R1`3 and time is treated as
a coordinate in the same footing as the three spatial dimensions. We build our theory in space–time
with k time dimensions and n space dimensions. The number of space–time dimensions is thus k ` n
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and we may refer to a pk, nq- or pk ` nq-space–time, Rk`n. We adopt the convention that the first
k indices, i.e., i “ 0, . . . , k ´ 1, correspond to time components and the indices i “ k, . . . , k ` n ´ 1
represent space components and both k and n are non-negative integers. A point or position in this
space–time is denoted by x, with components txiuk`n´1

i“0 in the canonical basis teiuk`n´1
i“0 , that is

x “
k`n´1ÿ

i“0

xiei. (1)

Given two arbitrary canonical basis vectors ei and ej, then their dot product in space–time is

ei ¨ ej “

$’’&
’’%

´1, i “ j, 0 ď i ď k ´ 1,

`1, i “ j, k ď i ď k ` n ´ 1,

0, i ‰ j.

(2)

For convenience, we define the symbol Δij “ ei ¨ ej as the metric diagonal tensor in Minkowski
space–time [2] (pp. 118–120), such that time unit vectors ei have negative norm Δii “ ´1, whereas
space unit vectors ei have positive norm Δii “ `1. The dot product of two vectors x and y is the
extension by linearity of the product in Equation (2), namely

x ¨ y “
k`n´1ÿ

i“0

xiyiΔii “ ´
k´1ÿ
i“0

xiyi `
k`n´1ÿ

i“k

xiyi. (3)

2.1. Grade, Multivectors, and Exterior Product

In addition to the pk ` nq-dimensional vector space Rk`n with canonical basis vectors ei, there
exist other natural vector spaces indexed by ordered lists I “ pi1, . . . , imq of m non-identical space and
time indices for every m “ 0, . . . , k ` n. As there are

`k`n
m

˘
such lists, the dimension of this vector space

is
`k`n

m
˘
. We shall refer to m as grade and to these vectors as multivectors or grade-m vectors if we

wish to be more specific. A general multivector can be written as

v “
ÿ

I

vIeI , (4)

where the summation extends to all possible ordered lists with m indices. If m “ 0, the list is empty
and the corresponding vector space is R. The direct sum of these vector spaces for all m is a larger
vector space of dimension

řk`n
m“0

`k`n
m

˘ “ 2k`n, the exterior algebra. In tensor algebra, multivectors
correspond to antisymmetric tensors of rank m. In this paper, we study vector fields vpxq, namely
multivector-valued functions v varying over the space–time position x.

The basis vectors for any grade m may be constructed from the canonical basis vectors ei by
means of the exterior product (also known as wedge product), an operation denoted by ^ [9] (p. 2). We
identify the vector eI for the ordered list I “ pi1, i2, . . . , imq with the exterior product of ei1 , ei2 , . . . , eim :

eI “ ei1 ^ ei2 ^ ¨ ¨ ¨ ^ eim . (5)

In general, we may compute the exterior product as follows. Let two basis vectors eI and eJ
have grades m “ |I| and m1 “ |J|, where |I| and |J| are the lengths of the respective index lists. Let
pI, Jq “ ti1, . . . , im, j1, . . . , jm1 u denote the concatenation of I and J, let σpI, Jq denote the signature of
the permutation sorting the elements of this concatenated list of m ` m1 indices, and let εpI, Jq denote
the resulting sorted list, which we also denote by I ` J. Then, the exterior product eI of eJ is defined as

eI ^ eJ “ σpI, JqeεpI,Jq. (6)
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The exterior product of vectors v and w is the bilinear extension of the product in Equation (6),

v ^ w “
ÿ
I,J

vIwJ eI ^ eJ . (7)

Since permutations with repeated indices have zero signature, the exterior product is zero if
m ` m1 ą k ` n or more generally if both vectors have at least one index in common. Therefore,
the exterior product is either zero or a vector of grade m ` m1. Further, the exterior product is a
skew-commutative operation, as we can also write Equation (6) as eI ^ eJ “ p´1q|I||J|eJ ^ eI .

At this point, we define the dot product ¨ for arbitrary grade-m basis vectors eI and eJ as

eI ¨ eJ “ ΔI,J “ Δi1,j1 Δi2,j2 ¨ ¨ ¨ Δim ,jm , (8)

where I and J are the ordered lists I “ pi1, i2, . . . , imq and J “ pj1, j2, . . . , jmq. As before, we extend this
operation to arbitrary grade-m vectors by linearity.

Finally, we define the complement of a multivector. For a unit vector eI with grade m, its
Grassmann or Hodge complement [10] (pp. 361–364), denoted by eHI , is the unit pk ` n ´ mq-vector

eHI “ ΔI,IσpI, IcqeIc , (9)

where Ic is the complement of the list I, namely the ordered sequence of indices not included in I. As
before, σpI, Icq is the signature of the permutation sorting the elements of the concatenated list pI, Icq
containing all space–time indices. In other words eIc is the basis vector of grade k ` n ´ m whose
indices are in the complement of I. In addition, we define the inverse complement transformation as

eH
´1

I “ ΔIc ,Ic σpIc, IqeIc . (10)

We extend the complement and its inverse to general vectors in the space–time algebra by linearity.

2.2. Interior Products

While the exterior product of two multivectors is an operation that outputs a multivector whose
grade is the addition of the input grades, the dot product takes two multivectors of identical grade
and subtracts their grades, yielding a zero-grade multivector, i.e., a scalar. We say that the exterior
product raises the grade while the dot product lowers the grade. In this section, we define the left and
right interior products of two multivectors as operations that lower the grade and output a multivector
whose grade is the difference of the input multivector grades.

As always, we start by defining the operation for the canonical basis vectors. Let eI and eJ be two
basis vectors of respective grades |I| and |J|. The left interior product, denoted by , is defined as

eI eJ “ ΔI,Iσ
`
εpI, Jcqc, I

˘
eεpI,Jcqc . (11)

If I is not a subset of J, that is when there are elements in I not present in J, e. g. for |I| ą |J|, the
signature of the permutation sorting the concatenated list

`
εpI, Jcqc, I

˘
is zero as there are repeated

indices in the list to be sorted, and the left interior product is zero. Otherwise, if I is a subset of J, the
permutation rearranges the indices in J in such a way that the last |I| positions coincide with I and
εpI, Jcqc represents the first |J|´ |I| elements in the rearranged sequence, that is εpI, Jcqc “ JzI.

The right interior product, denoted by , of two basis vectors eI and eJ is defined as

eI eJ “ ΔJ,Jσ
`

J, εpIc, Jqc˘
eεpIc ,Jqc . (12)

As with the left interior product, if J is a subset of I, εpIc, Jqc “ IzJ then the permutation rearranges
the indices in I so that the first |J| positions coincide with J, otherwise the right interior product is zero.
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In general, we have that eI eJ “ eJ eIp´1q|I|p|J|´|I|q, as verified in Appendix A.1. We note that
these interior products are not commutative, unless either |J|´ |I| or |I| is an even number, e. g. when
|I| “ |J|, in which case both interior products coincide with the dot product of the two vectors. The
interior products may therefore be seen as generalizations of the dot product.

As with the dot and the exterior products, the value of the interior products does not depend on
the choice of basis and we may thus compute the left interior product of two vectors v and w as

v w “
ÿ
I,J

vIwJ eI eJ , (13)

and a similar expression holds for the right interior product v w. Both are grade-lowering operations,
as the left (resp. right) interior product is either zero or a multivector of grade m1 ´ m (resp. m ´ m1).

The interior products are not independent operations from the exterior product, as they can be
expressed in terms of the latter, the Hodge complement and its inverse (proved in Appendix A.2):

eI eJ “ `
eI ^ eHJ

˘H´1
, (14)

eI eJ “ `
eH

´1
I ^ eJ

˘H. (15)

If u and v are 1-vectors and w is an r-vector, then we have the following expression

u pv ^ wq “ p´1qrpu ¨ vqw ` v ^ pu wq, (16)

as proved in Appendix A.3. This expression can be seen as a generalization of the vectorial expression

a ˆ pb ˆ cq “ pa ¨ cqb ´ pa ¨ bqc (17)

in the vector space R3, i.e., a k “ 0, n “ 3 space–time. This fact is built of the realization that the cross
product between two vectors v and w can be expressed in the following alternative ways

v ˆ w “ pv ^ wqH´1 “ v wH´1 “ v wH. (18)

Whenever it holds that I Ď J, the interior and exterior products are related by the following:

peI eJq ^ eI “ ΔI,IeJ , (19)

eI ^ peJ eIq “ ΔI,IeJ . (20)

Having introduced the basic notions of space–time exterior algebra, the next section focuses on
operations with elements in the exterior algebra, namely integrals and derivatives of vector fields.

3. Integrals and Derivatives of Vector Fields: Circulation and Flux

3.1. Oriented Integrals

Integrals are, together with derivatives, the fundamental mathematical objects of calculus. For
example, operations on vectors fields lying in exterior algebra such as the flux and the circulation are
expressed in terms of integrals over high-dimensional geometric objects. The integral of an m-graded
vector field v over a hypersurface Vm of the same dimension, denoted asż

Vm
dmx ¨ v, (21)

is the limit of the Riemann sums for the dot product dmx ¨ v over points in the hypersurface, where
dmx is an m-dimensional infinitesimal vector element. For any � “ 0, . . . , k ` n, the infinitesimal vector
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element d�x is given by the sum of all possible differentials for �-dimensional hypersurfaces in a pk, nq
space–time, and is represented in the canonical basis as

d�x “
ÿ

I“pi1,...,i�q
dxIeI , (22)

where for a given list I “ pi1, . . . , i�q each differential is given by dxI “ dxi1 ¨ ¨ ¨ dxi� .
As in traditional calculus, the integral in Equation (21) exhibits coordinate invariance, while the

integrand dmx ¨ v is regarded as an oriented object. Orientation is well defined for integrals along a
curve from one point to another, or integrals over a surface oriented at the direction of the normal to
the surface. Switching the extreme points of the curve, or taking the opposite direction of the normal
would induce a change of sign in the line and surface integrals. In our generalization of vector calculus,
a positive orientation is implicit in the ordering of the canonical basis. The skew-symmetry property
of the exterior product Equation (6) may introduce sign changes to compensate an eventual change of
orientation after changes of coordinates such as permutations of the space–time components.

For a given hypersurface Vm, a convenient transformation for solving the integral in Equation (21)
is one such that, at a given point x in the hypersurface, the infinitesimal vector element dmx has
one component that is tangent to the hypersurface at that point. Let e be a unit m-graded vector
parallel to Vm at point x, and let e1

0, . . . , e1
k`n´1 form an orthonormal basis of Rk`n such that e “

e1
k`n´m ^ ¨ ¨ ¨ ^ e1

k`n´1 for the given point x in Vm. This change of coordinates from the canonical basis
to the new basis is described by a unitary matrix U, dependent on x, and that satisfies

e0 ^ ¨ ¨ ¨ ^ ek`n´1 “ detpUq e1
0 ^ ¨ ¨ ¨ ^ e1

k`n´1. (23)

Being a unitary matrix, the determinant of U is ˘1. Assuming an orientation-preserving change
of coordinates, that is detpUq “ 1, the infinitesimal vector element in Equation (22) for � “ m can be
expressed as

dmx “ dx e `
ÿ

I“pi1,...,imq : IXK‰H
dxIe

1
I , (24)

where K“ t0, . . . , k ` n ´ m ´ 1u is the set of indices for the unit vectors in the new basis orthogonal to
Vm. Since all elements in the summation in Equation (24) have at least one differential element lying
outside the integration hypersurface, their integrals vanish and thereforeż

Vm
dmx “

ż
Vm

dx e . (25)

In analogy to e , a multivector of grade m, we define a unit pk ` n ´ mq-grade vector eK normal to
Vm at point x such that eK ^ e “ e0 ^ ¨ ¨ ¨ ^ ek`n´1. From Equation (10), we see that one such normal
multivector with the correct orientation is

eK “ eH
´1

eH
´1 ¨ eH

´1 . (26)

For the common spaces considered in vector calculus, R2 and R3, and according to Equation (23),
orientation-preserving changes of coordinates must respectively satisfy eK ^ e “ e0 ^ e1 and eK ^
e “ e0 ^ e1 ^ e2, where eK is the basis element normal to Vm. These two equalities turn out to describe
the counterclockwise (resp. right-hand rule) orientation when eK conventionally points outside an
integration path for R2 (resp. a surface for R3) [5] (pp. 184–185).

Building on the concepts and operations of circulation and flux in vector calculus, the right and
left interior products lead to general definitions of circulation and flux of multivector fields in exterior
algebra along and across hypersurfaces of arbitrary number of dimensions.
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3.2. Circulation and Flux of Multivector Fields

Definition 1. The circulation of a vector field vpxq of grade m along an �-dimensional hypersurface V �, denoted
by Cpv,V �q, is given by

Cpv,V �q “
ż
V �

d�x v. (27)

Expressing the vector field in the canonical basis and using the definition of d�x in Equation (22),
the circulation can be specified in some cases of interest. For � “ m, the circulation readsż

Vm
dmx ¨ v “

ÿ
I“pi1,...,imq

ΔI,I

ż
Vm

dxIvI . (28)

For instance, for � “ m “ 1 and Rn, this formula recovers the definition the circulation of a vector
field along a closed path with the appropriate orientation.

Alternatively, using Equation (25), we note that v is integrated along the direction of e , tangential
to the hypersurface, in an orientation-preserving change of coordinates, that isż

Vm
dmx v “

ż
Vm

dx e v. (29)

Intuitively, the circulation Equation (27) measures the alignment of an m-vector field v with
respect to V � for any � and m, with the circulation being an p� ´ mq-vector if � ě m and zero otherwise.

Definition 2. The flux of a vector field vpxq of grade m across an �-dimensional hypersurface V �, denoted by
Fpv,V �q, is given by

Fpv,V �q “
ż
V �

d�xH
´1

v. (30)

Expressing both v and d�x in the canonical basis, and using the inverse Hodge operation
in Equation (10), the flux in the special case of � “ k ` n ´ m can be written asż

V �
d�xH

´1 ¨ v “
ÿ

I“pi1,...,imq
σpI, Icq

ż
V �

dxIc vI . (31)

As an example in R3, the flux of a vector field v through a surface V2 readsż
V2

d2xH
´1 ¨ v “

ż
V2

ÿ
I,iRI

dxIσpi, Iqei ¨ v. (32)

The right-hand side of Equation (32) is a conventional surface integral, upon the identification ofř
I,iRI dxIσpi, Iqei as an infinitesimal surface element dS.

Alternatively, using the analogous of Equation (25) for the differential vector element d�xH
´1 , the

equivalent to Equation (29) for the flux isż
V �

d�xH
´1

v “
ż
V �

dx eH
´1

v. (33)

This equation implies that v is integrated along a normal component to the hypersurface since eH
´1

is a multivector of grade k ` n ´ � orthogonal to V �. Intuitively, the flux Equation (30) measures the
magnitude of the multivector field crossing the hypersurface. In general, the flux is a vector of grade
pm ` � ´ n ´ kq if � ě k ` n ´ m and zero otherwise. For instance, if � “ k ` n, the flux of v over an
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pk ` nq-dimensional hypersurface V k`n gives the integral of v over V k`n, an extension of the volume
integral to Rk`n, ż

V k`n
dk`nxH

´1
v “

ż
V k`n

dxi1,¨¨¨ ,ik`n v, (34)

where we used the relation 1H “ ei1,...,ik`n , implying that dk`nxH
´1 “ dxi1,¨¨¨ ,ik`n , and that 1 v “ v.

3.3. Exterior and Interior Derivatives

In vector calculus, extensive use is made of the nabla operator ∇, a vector operator that takes
partial space derivatives. For instance, operations such as gradient, divergence or curl are expressed in
terms of this operator. In our case, we need the generalization to pk, nq space–time to the differential
vector operator BBB, defined as p´B0, ´B2, . . . , ´Bk´1, Bk, . . . , Bk`n´1q, that is

BBB “
k`n´1ÿ

i“0

ΔiieiBi. (35)

For a given vector field v of grade m, we define the exterior derivative of v as BBB ^ v, namely

BBB ^ v “
k`n´1ÿ

i“0

ÿ
I

ΔiiBivIσpi, Iq eεpi,Iq. (36)

The grade of the exterior derivative of v is m ` 1, unless m “ k ` n, in which case the exterior
derivative is zero, as can be deduced from the fact that all signatures are zero.

In addition, we define the interior derivative of v as BBB v, namely

BBB v “
ÿ

i,I: iPI

BivIσpIzi, iqeIzi. (37)

The grade of the interior derivative of v is m ´ 1, unless m “ 0, in which case the interior derivative
is zero, as implied by the fact that the grade of BBB is larger than the grade of v. Using Equation (16) with
u “ BBB and assuming that v and w are 1-vectors, we obtain a generalization of Leibniz’s product rule

BBB pv ^ wq “ vpBBB ¨ wq ´ pBBB ¨ vqw. (38)

The formulas for the exterior and interior derivatives allow us express some common expressions
in vector calculus. For a scalar function φ, its gradient is given by its exterior derivative ∇φ “ BBB ^ φ,
while for a vector field v, its divergence ∇ ¨ v is given by its interior derivative ∇ ¨ v “ BBB v.
From Equation (16) we further observe that for a scalar function φ we recover the relation

∇ ¨ p∇φq “ p∇ ¨∇qφ. (39)

In addition, for a vector fields v in R3, taking into account Equation (18) then the curl can be
variously expressed as

∇ˆ v “ p∇^ vqH´1 “ ∇ vH
´1 “ ∇ vH. (40)

This formula allows us to write the curl of a vector field ∇ˆ v in terms of the exterior and interior
products and the Hodge complement, while generalizing both the cross product and the curl to
grade-m vector fields in space–time algebras with different dimensions. Moreover, from Equation (16)
we can recover for r “ 1 the well-known formula for the curl of the curl of a vector,

∇ˆ p∇ˆ vq “ ∇p∇ ¨ vq ´∇2v. (41)
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It is easy to verify that the exterior derivative of an exterior derivative is zero, as is the interior
derivative of an interior derivative, that is for any vector field v, we have that

BBB ^ pBBB ^ vq “ 0 (42)

BBB pBBB vq “ 0. (43)

In regard to the vector space R3, and using Equation (18), these expressions imply the well-known
facts that the curl of the gradient and the divergence of the curl are zero:

∇ˆ p∇φq “ p∇^ p∇^ φqqH´1 “ 0 (44)

∇ ¨ p∇ˆ vq “ ∇ p∇ vHq “ 0. (45)

3.4. Stokes Theorem for the Circulation

In vector calculus in R3, the Kelvin-Stokes theorem for the circulation of a vector field v of grade 1
along the boundary BV2 of a bidimensional surface V2 relates its value to that of the surface integral
of the curl of the vector field over the surface itself. In the notation used in the previous section, the
surface integral is the flux of the curl of the vector field across the surface and this theorem readsż

BV2
dx ¨ v “

ż
V2

d2xH
´1 ¨ p∇ˆ vq. (46)

Taking into account the identity ∇ˆ v “ p∇^ vqH´1 in Equation (40), we rewrite the right-hand
side in Equation (46) as ş

V2 d2xH
´1 ¨ p∇ˆ vq “ ş

V2 d2xH
´1 ¨ p∇^ vqH´1

“ ş
V2 d2x ¨ p∇^ vq,

(47)

where we used that u ¨ w “ uH
´1 ¨ wH´1 “ uH ¨ wH for vectors u, w. The flux of the curl of the vector

field across a surface is also the circulation of the exterior derivative of the vector field along that surface.
The generalized Stokes theorem for differential forms [4] (p. 80) allows us to extend the

Kelvin-Stokes theorem to multivectors of any grade m as we do in the following theorem.

Theorem 1. The circulation of a grade-m vector field v along the boundary BV � of an �-dimensional hypersurface
V � is equal to the circulation of the exterior derivative of v along V �:

Cpv, BV �q “ CpBBB ^ v,V �q. (48)

As hinted at above, the role of the vector curl in the right-hand side of Equation (46) is played by
the exterior derivative in this generalized theorem.

Proof. We start by stating the generalized Stokes Theorem for differential forms [4] (p. 80)ż
BV �

ω “
ż
V �

dω, (49)

where ω is a differential form and dω its exterior derivative, represented by the operator

d “
ÿ

j

dxjBj. (50)
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Expressing the circulations in Equation (48) by means of the integrals in Equation (27), we obtainż
BV �

d�´1x v “
ż
V �

d�x pBBB ^ vq. (51)

In the integral in the left-hand side of Equation (51), the integrand is a differential form ω “ d�´1x v.
After expanding the interior product using the definitions of d�´1x and v we obtain

ω “
˜ ÿ

J�´1

dxJ eJ

¸ ˜ÿ
Im

vI eI

¸
“

ÿ
J�´1,Im : IĎJ

ΔI,IσpI, εpI, JcqcqvI dxJ eεpI,Jcqc . (52)

Then, computing the exterior derivative of this form with Equation (50) gives

dω “
ÿ

J�´1,Im : IĎJ

ÿ
jRJ

ΔI,IσpI, εpI, JcqcqBjvIσpj, Jq dxεpj,Jq eεpI,Jcqc . (53)

We next write down the integrand in the right-hand side of Equation (51), d�x pBBB ^ vq, that is

d�x pBBB ^ vq “
˜ř

K�`1
dxK eK

¸ ˜ř
Im

ř
jRI Δj,jBjvI σpj, Iq eεpj,Iq

¸
“ ř

K� ,Im : εpj,IqĎK�

ř
jRI Δj,jBjvI dxK σpj, IqΔεpj,Iq,εpj,Iq σpεpj, Iq, εpKc, εpj, Iqqcq eεpKc ,εpj,Iqqc

“ ř
K� ,Im : εpj,IqĎK�`1

ř
jRI ΔI,IBjvI dxK σpj, Iqσpεpj, Iq, εpKc, εpj, Iqqcq eεpKc ,εpj,Iqqc ,

(54)

and verify that it coincides with exterior derivative in Equation (53). As the set of m indices Im is
included in the sets J�´1 or K� in Equation (53) or (54), we may write K� “ εpJ�´1, jq for some j R J�´1.
Then, we obtain the following chain of equalities for the basis elements in Equations (53) and (54):

eεpKc ,εpj,Iqqc “ eεpKcYtjuYIqc “ eεpJcztjuYtjuYIqc “ eεpJcYIqc “ eεpI,Jcqc . (55)

Therefore, and using that εpJcztju, εpj, Iqqc “ JzI, we can write Equation (54) as

d�x pBBB ^ vq “
ÿ

J�´1,Im ,jRI : εpj,IqĎJYtju
ΔI,IBjvI dxεpJ,jq σpj, Iqσpεpj, Iq, JzIq eεpI,Jcqc . (56)

Comparing Equation (56) with Equation (53), the expressions coincide if this identity holds:

σpj, JqσpI, JzIq “ σpj, Iqσpj ` I, JzIq. (57)

To prove Equation (57) we exploit that the σ are permutation signatures and that the signature
of the composition of permutations is the product of the respective signatures. We proceed with the
help of a visual aid in Figure 1, which depicts the identity between two different ways of sorting
the concatenated list pj, I, JzIq. On the left column we first sort the list pI, JzIq to obtain J and then
sort the list pj, Jq. On the right column, we first sort the list pj, Iq and then the list pj ` I, JzIq. This
proves Equation (57) and the theorem.

| |I| |j |JzI

| |J| |j

| |εpj, Jq

| |I| |j |JzI

| |j ` I |JzI

| |εpj, Jq

Figure 1. Visual aid for the identity among permutations in Equation (57).

104



Mathematics 2019, 7, 564

Finally, we note that, had we defined the circulation with the left interior product, we would have
got an incompatible relation in Equation (57), which could not be solved.

3.5. Stokes Theorem for the Flux

In vector calculus in R3, the Gauss theorem relates the volume integral of the divergence of a
vector field v over a region V3 to the surface integral of the vector field over the region boundary BV3.
In the notation used in previous sections, and taking into account that both the surface integral and
the volume integral can be expressed as fluxes for R3, this theorem readsż

BV3
d2xH

´1 ¨ v “
ż
V3

d3xH
´1p∇ ¨ vq. (58)

Making use of the identity ∇ ¨ v “ ∇ v, we can rewrite the right-hand side in Equation (58) asż
V3

d3xH
´1p∇ ¨ vq “

ż
V3

d3xH
´1 p∇ vq. (59)

In other words, the Gauss theorem relates the flux of the interior derivative of a vector field v

across a region V3 to the flux of the vector field itself across the region boundary BV3.
The generalized Stokes theorem for differential forms allows us to extend the Gauss theorem to

multivectors of any grade m as we do in the following theorem.

Theorem 2. The flux of a grade-m vector field v across the boundary BV � of an �-dimensional hypersurface V �

is equal to the flux of the interior derivative of v across V �:

Fpv, BV �q “ FpBBB v,V �q. (60)

Proof. Expressing the fluxes in Equation (60) by means of the integrals in Equation (30), we obtainż
BV �

d�´1xH
´1

v “
ż
V �

d�xH
´1 pBBB vq. (61)

As in the proof of Theorem 1, we apply the Stokes theorem for differential forms in Equation (49)
upon the identifications ω with d�´1xH

´1
v and dω with d�xH

´1 pBBB vq. First, for ω, we get˜ř
J�´1

dxJΔJc ,Jc σpJc, JqeJc

¸ ˜ř
Im

vI eI

¸
“ ř

J�´1,Im : JcĎI vI dxJσpJc, JqσpεpJc, Icqc, Jcq eεpJc, Icqc

“ ř
J�´1,Im : JcĎI vI dxJσpJc, JqσpIzJc, Jcq eIzJc .

(62)

Now, taking the exterior derivative of Equation (62), we obtain

dω “
ÿ

J�´1,Im : JcĎI

ÿ
jRJ

BjvI dxεpj,Jqσpj, JqσpJc, JqσpIzJc, Jcq eIzJc . (63)

This quantity should be equal to d�xH
´1 pBBB vq in the right-hand side of Equation (61), which

we expand as

d�xH
´1 pBBB vq “

˜ř
K�

dxKΔKc ,Kc σpKc, KqeKc

¸ ˜ř
I:jPI BjvIσpIzj, jqeIzj

¸
“ ř

K� ,Im : KcĎIzj
ř

jPI BjvI dxKσpKc, KqσpIzj, jqσpIzjzKc, Kcq eIzjzKc .

(64)

We first consider the sets in the summations in the alternative expressions for dω, Equations (63)
and (64). Since Jc contains j and is a subset of I, but Kc does not contain j and is also a subset of I (with

105



Mathematics 2019, 7, 564

j P I), then we can assert that K “ J Y tju so that the conditions in the summations are equivalent.
The basis elements coincide and so do the differentials and derivatives, and it remains to verify
the identity

σpj, JqσpJc, JqσpIzJc, Jcq “ σpKc, KqσpIzj, jqσpIzjzKc, Kcq. (65)

With the definition L “ IzJc, and expressed in terms of j, J, and L, this condition gives

σpj, JqσpJc, JqσpL, Jcq “ σpJczj, J ` jqσpJczj ` L, jqσpL, Jczjq. (66)

Multiplying both sides of the equation by σpJc, Jq, σpJczj, J ` jq and σpJczj, jq, and taking into
account that the square of a signature is `1, we obtain

σpJczj, jqσpL, Jcqσpj, JqσpJczj, J ` jq “ σpL, JczjqσpJczj ` L, jqσpJczj, jqσpJc, Jq. (67)

We start by simplifying Equation (67) by noting that

σpJczj, jqσpL, Jcq “ σpL, JczjqσpJczj ` L, jq, (68)

with help of the visual aid in Figure 2. The permutations on the left column first merge pJczjq with j
and then the resulting Jc with L. Similarly, on the right column, we start with L, pJczjq and tju, then
concatenate pL, Jczjq and then add j, getting the same result as the left column.

| |L |Jczj | |j

| |L |Jc

| |εpL, Jcq

| |L |Jczj | |j

| |L ` Jczj | |j

| |εpL, Jcq

Figure 2. Visual aid for the identity σpJczj, jqσpL, Jcq “ σpL, JczjqσpJczj ` L, jq.

Therefore, we have reduced Equation (67) to the simpler form

σpj, JqσpJczj, J ` jq “ σpJczj, jqσpJc, Jq, (69)

which we prove with the aid depicted in Figure 3. On the left column, j and J are first merged and
then the concatenation pJczj, J ` jq gives the sorted εpJc, Jq. On the right column, after sorting pJczjq
with j, merging it with J leads to the same final sequence.

| |Jczj | |j |J

| |Jczj |J ` j

| |εpJc, Jq

| |Jczj | |j |J

| |Jc
|J

| |εpJc, Jq

Figure 3. Visual aid for the identity σpj, JqσpJczj, J ` jq “ σpJczj, jqσpJc, Jq.

4. An Application to Electromagnetism in 1+3 Dimensions

In this section, we show how to recover the standard form of Maxwell equations and Lorentz force
in 1 ` 3 dimensions from a formulation with exterior calculus involving an electromagnetic bivector
field F and a 4-dimensional current density vector J. In the appropriate units, the bivector field F can
be decomposed as F “ FE ` FB, where FE contains the electric-field E time-space components and FB
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contains the space-space components for the magnetic field B. Similarly, the current density depends
on the charge density ρ and the spatial current density j. More specifically,

J “ ρe0 ` j (70)

F “ FE ` FB “ e0 ^ E ` BH. (71)

Here the Hodge complement acts only on the space components, and BH “ BH´1 . The bivector field F

is closely related to the Faraday tensor, a rank-2 antisymmetric tensor.
Maxwell equations, in their differential form, constrain the divergence of the electric and the

magnetic field, Equations (72) and (73), respectively, and the curl of E and B, namely Equations (74)
and (75) [11] (p. 4-1).

∇ ¨ E “ ρ (72)

∇ ¨ B “ 0 (73)

∇ˆ E “ ´B0B (74)

∇ˆ B “ B0E ` j. (75)

We refer to Equations (73) and (74) as homogeneous Maxwell equations and to Equations (72)
and (75) as inhomogeneous Maxwell equations, as they include the fields and the sources given by
charge and current densities. In exterior-calculus notation, both pairs of equations can be combined
into simple multivector equations,

BBB ^ F “ 0 (76)

BBB F “ J, (77)

where BBB is the differential operator BBB “ ´B0e0 `∇ for k “ 1 and n “ 3. As a consistency check, note
that the wedge product raises the grade of F, and the zero in Equation (76) is the zero trivector; also, as
the left interior product lowers the grade of F, both sides of Equation (77) relate space–time vectors.

Next to Maxwell equations, the Lorentz force density fff characterizes, after integrating over the
appropriate region, the force exerted by the electromagnetic field upon a system of charges described
by the charge and current densities ρ and j [11] (pp. 13-1–13-3),

fff “ ρE ` j ˆ B. (78)

In relativistic form, the Lorentz force density becomes a four-dimensional vector f [2] (pp. 153–157).
The time component of this vector is j ¨ E, the power dissipated per unit of volume, or after
integrating over the appropriate region, the rate of work being done on the charges by the fields.
In exterior-calculus notation, the Lorentz force density vector can be computed as a left interior
product, namely

f “ J F. (79)

4.1. Equivalence of the Lorentz Force Density

In this section, we prove that Equation (79) indeed recovers the relativistic Lorentz force density
by verifying that its components in both vector-calculus and exterior-calculus coincide. From the
definitions of J and F, and using the distributive property of the interior product, we get

f “ pρe0 ` jq pFE ` FBq
“ ρe0 FE ` ρe0 FB ` j FE ` j FB

“ ρe0 pe0 ^ Eq ` ρe0 BH ` j pe0 ^ Eq ` j BH´1 .
(80)
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Some straightforward calculations give e0 pe0 ^ Eq “ E, e0 BH “ 0, and j pe0 ^ Eq “ e0j ¨ E.
In addition, the formula for the left interior product in Equation (18) gives j BH´1 “ pj ^ BqH´1 “ j ˆ B,
where the cross product is only valid for three dimensions. With these calculations, we obtain

f “ ρE ` e0j ¨ E ` j ˆ B, (81)

namely, a time-component j ¨ E and a spatial component equal to the Lorentz force density ρE ` j ˆ B.

4.2. Equivalence of the Differential Form of Maxwell Equations

In this section, we prove that Equation (76) indeed recovers the homogeneous Maxwell equations
and that Equation (77) recovers the inhomogeneous Maxwell equations.

First, we observe that the exterior derivative BBB ^ F gives a trivector with 4 components, while
the homogeneous Maxwell equations are a scalar, Equation (73), and a vector, Equation (74). We shall
verify that the scalar equation turns out to be given by the trivector component e123 of BBB ^ F, while the
vector equation is given by the trivector components e012, e013, and e023 of the exterior derivative.

We evaluate the exterior derivative BBB ^ F using the decomposition of F in Equation (71),

BBB ^ F “ ´B0e0 ^ e0 ^ E ´ B0e0 ^ BH `∇^ e0 ^ E `∇^ BH

“ ´B0e0 ^ BH ´ e0 ^ p∇^ Eq `∇^ BH

“ ´e0 ^ pB0BH `∇^ Eq `∇^ BH,
(82)

where we used that e0 ^ e0 “ 0 and that∇^ e0 “ ´e0 ^∇ in the second step of Equation (82). Taking
advantage of Equation (40) we have the equality ∇^ E “ p∇ˆ EqH, while ∇^ BH “ p∇ ¨ BqH, and

BBB ^ F “ ´e0 ^ pB0BH ` p∇ˆ EqHq ` p∇ ¨ BqH. (83)

Indeed, the first summand vanishes when B0BH ` p∇ˆ EqH “ 0 or, taking the inverse Hodge
complement, when Equation (74) holds. In terms of components, the spatial Hodge complement
in this equation transforms a spatial vector into a bivector with components e12, e13, and e23 only
and this equation recovers the homogeneous Maxwell equation in Equation (74). After taking the
exterior product with e0, we obtain the trivector components e012, e013, and e023. Similarly, the second
term vanishes for p∇ ¨ BqH “ 0, recovering Equation (73). In terms of components, the spatial Hodge
complement directly transforms a scalar into a trivector with a unique component e123, recovering the
homogeneous Maxwell equation in Equation (73).

We move on to the inhomogeneous Maxwell equations. We compute the interior derivative BBB F,

BBB F “ p´B0e0 `∇q pFE ` FBq
“ ´B0E ´ B0e0 BH ` e0∇ ¨ E `∇ BH

“ ´B0E ` e0∇ ¨ E `∇ BH,
(84)

since e0 BH “ 0. The interior derivative BBB F gives a space–time vector with 4 components, while
the inhomogeneous Maxwell equations are a scalar, Equation (72), and a spatial vector, Equation (75).

We can verify that the scalar equation turns out to be given by the vector component e0 of BBB F,
while the spatial vector equation is given by the spatial vector components e1, e2, and e3 of BBB F.
Indeed, if we match this expression with the current density vector J, then the time component e0 of
BBB F gives Equation (72). Selecting the space components of BBB F, the differential equation is

´ B0E `∇ BH “ j, (85)

which, using the relation ∇ BH “ ∇ˆ B can be written as Equation (75).
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4.3. Equivalence of the Integral Form of Maxwell Equations

After studying the exterior-calculus differential formulation of Maxwell equations, we recover
the standard integral formulation. Applying the Stokes Theorem 1 to Equation (76), we find that the
circulation of the bivector field F along the boundary of any three-dimensional space–time volume V3 is zero:ż

BV3
d2x ¨ F “

ż
V3

d3x ¨ pBBB ^ Fq “ 0. (86)

At this point, Equation (86) is a scalar equation and we obtain the pair of homogeneous Maxwell
equations by considering two different hypersurfaces V3.

First, let the domain V3 “ V contain only spatial coordinates. There are no tangential components
to V with time indices and the contribution of FE to the circulation of F over BV3 in Equation (86) is
zero, i.e., ż

BV
d2x ¨ F “

ż
BV

d2x ¨ FB. (87)

Using that u ¨ w “ uH
´1 ¨ wH´1 for any vectors u, w, and therefore d2x ¨ F “ d2xH

´1 ¨ FH
´1

B and the
definition FB “ BH, the integral in the right-hand side of Equation (87) becomesş

BV d2x ¨ FB “ ş
BV d2xH

´1 ¨ B

“ ş
BV dS ¨ B,

(88)

where we used Equation (32) to write the last surface integral. Substituting Equation (88) back
into Equation (86) gives the Gauss law for the magnetic field [11] (pp. 1-5–1-9).

Let now V3 be a time-space domain pt0, t1q ˆ S, where S is a two-dimensional spatial surface.
With no real loss of generality we assume that S lies on the e1 ^ e2 plane. Its boundary BV3 is the union
of the sets pt0, t1q ˆ BS, t0 ˆ S and t1 ˆ S. For the first set, we choose eK as the vector normal to BS
pointing outwards on the plane defined by S and e “ e0 ^ eBS, where eBS is a vector tangent to BS
with a counterclockwise orientation, so that eK ^ e “ ´e012. Further, since e is a time-space bivector,
the contribution of FB to the circulation of F over this first set in Equation (86) is zero, andż

pt0,t1qˆBS
d2x ¨ F “ ´

ż
pt0,t1qˆBS

d2x ¨ FE. (89)

Writing the differential vector as d2x “ dt dxe0x, parameterizing the line integral over the
boundary BS by the variable x with unit vector e0x, and using that e0x ¨ FE “ ´ex ¨ E and therefore
dx e0x ¨ FE “ ´ dx ¨ E, the integral of the right-hand side of Equation (89) becomesż t1

t0

dt
ż

BS
dx ¨ E. (90)

For the second and third sets the normal vector to the integration surface pointing outwards
are eK “ ´e0 and eK “ e0 respectively. Since e is a space-space bivector in both cases, then the
contribution of FE to the circulation is zero. We express the circulations of FB as fluxes of B and surface
integrals as done in Equation (88).Using these observations the integral for the circulation of F over
these two sets in Equation (86) is given byż

t0ˆS
d2x ¨ F `

ż
t1ˆS

d2x ¨ F “ ´
ż

S
dS ¨ Bpt0q `

ż
S

dS ¨ Bpt1q. (91)
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Combining Equations (90) and (91) in Equation (86) we recover the integral over time of the so
called Faraday law [11] (pp. 17-1–17-2). Equivalently, taking the time derivative recovers the usual
Faraday law, namely ż

BS
dx ¨ E ` Bt

ż
S

dS ¨ B “ 0. (92)

In regard to the inhomogeneous Maxwell equations, applying the Stokes Theorem 2 to
Equation (77), we find that the flux of the bivector field F across the boundary of any three-dimensional
space–time volume is equal to the flux of the current density J across the three-dimensional space–time volume:ż

BV3
d2xH

´1 ¨ F “
ż
V3

d3xH
´1 ¨ pBBB Fq “

ż
V3

d3xH
´1 ¨ J. (93)

As with the homogeneous Maxwell equations, the scalar Equation (93) yields the inhomogeneous
Maxwell equations by considering two different hypersurfaces V3.

First, let the integration domain V3 be a spatial volume V. Since there are no normal components
to V with space indices only, the contribution of FB to the flux is zero so that Equation (93) becomesż

BV
d2xH

´1 ¨ FE “
ż

V
d3xH

´1 ¨ J. (94)

From the definition of inverse Hodge complement in Equation (10), we write the differential vectors

d2xH
´1 “ ´

ÿ
I,iRI

d2xIσp0i, Iqe0i (95)

d3xH
´1 “ ´ dVe0. (96)

Plugging these expressions in Equation (94), using the definitions of FE and J, and computing the
dot products on both sides of the equality, we obtain that Equation (94) simplifies as

´
ż

BV

˜ ÿ
I,iRI

d2xIσp0i, Iqe0i

¸
¨
˜ÿ

j

Eje0j

¸
“ ´

ż
V

dVe0 ¨ pρe0 ` jq (97)

ż
BV

ÿ
I,iRI

d2xIσpi, IqEi “
ż

V
dVρ (98)

ż
BV

dS ¨ E “
ż

V
dVρ. (99)

In Equation (98) we used that σp0i, Iq “ σpi, Iq and in Equation (99) we used that
ř

I,iRI d2xIσpi, IqEi “
d2xH

´1 ¨ E. Since the Hodge complement is over space, the result is a surface integral with positive
orientation as in Equation (32). We recovered in Equation (99) the Gauss law for the electric field [11]
(pp. 4-7–4-9).

For V3 “ pt0, t1q ˆ S where S is a two-dimensional surface lying on the e1 ^ e2 plane, the boundary
BV3 is the union of the sets pt0, t1q ˆ BS, t0 ˆ S and t1 ˆ S. For the first set, since d2xH

´1 has no time
components, the contribution of FE to this set is zero, that isż

pt0,t1qˆBS
d2xH

´1 ¨ F “
ż

pt0,t1qˆBS
d2xH

´1 ¨ FB. (100)

As in the homogeneous case, we choose eK as the vector normal to BS pointing outwards on the
plane defined by S and e “ e0 ^ eBS, where eBS is a vector tangent to BS with a counterclockwise
orientation, such that eK ^ e “ ´e012 introduces a change of sign. Expressing d2xH

´1 and FB in the
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canonical basis, defining I “ p0, iq so that Ic contains only space indexes, and using that eIc ¨ eic “ 1
and σpIc, Iq “ σpIc, 0, iq “ σp0, Ic, iq “ σpIc, iq, we obtain that Equation (100) simplifies toş

pt0,t1qˆBS d2xH
´1 ¨ F “ ş

pt0,t1qˆBS př
I dxIσpIc, IqeIc q ¨ př

i Bieic σpic, iqq
“ ´ şt1

t0
dt

ş
BS dxBx

“ ´ şt1
t0

dt
ş
BS dx ¨ B.

(101)

For the second and third sets we respectively choose eK “ ´e0 and eK “ e0 pointing outside V3,
implying that the contribution of FB is zero for this set as the inverse Hodge complement of eK is a
space vector. Expressing d2xH

´1 in Equation (95) and using similar steps as in Equations (97)–(99), the
left-hand side of Equation (93) over these two sets is given byż

t0ˆBS
d2xH

´1 ¨ F `
ż

t1ˆBS
d2xH

´1 ¨ F “ ´
ż

S
dS ¨ Ept0q `

ż
S

dS ¨ Ept1q (102)

Finally, for the right-hand side of Equation (93), we choose eK as the vector normal to V3 pointing
outside. Since e “ e012 implies that eK ^ e “ ´e0123, we obtain thatż

V3
d3xH

´1 ¨ J “ ´
ż t1

t0

dt
ż

S
dS ¨ j. (103)

We have thusly recovered the integral form of the Ampere-Maxwell equation [11] (p. 18-1–18-4)
integrated over the time interval pt0, t1q by combining Equations (101)–(103) into Equation (93), that isż t1

t0

dt
ż

BS
dx ¨ B “

ż t1

t0

dt
ż

S
dS ¨ j `

ż
S

dS ¨ Ept1q ´
ż

S
dS ¨ Ept0q. (104)

5. Summary

In this paper, we aimed at showing how exterior calculus provides a tool merging the simplicity
and intuitiveness of standard vector calculus with the power of tensors and differential forms. Set in
the context of a general space–time algebra with multiple space and time components, we provided
the basic concepts of exterior algebra and calculus, such as multivectors, wedge product and interior
products, with a distinction between left and right products, Hodge complement, and exterior and
interior derivatives. While a space–time with multiple time coordinates leads to several issues from
the physical point of view [12], we did not deal with these problems as this paper focuses on the
mathematical constructions. We also defined oriented integrals, with two important examples being
the flux and circulation of grade m-vector fields as integrals of the normal and tangent components of
the field to a hypersurface respectively. These operations extend the standard circulation of a vector
field as a line integral and the flux of a vector field as a surface integral in three dimensions to any
number of dimensions and any vector grade.

Armed with the theory of differential forms, we proved two exterior-calculus Stokes theorems,
one for the circulation and one for the flux, that generalize the Kelvin-Stokes, Gauss and Green
theorems. We saw that the flux of the curl of a vector field in three dimensions across a surface is also
the circulation of the exterior derivative of the vector field along that surface. In exterior calculus, these
Stokes theorems hold for any number of dimensions and any vector grade and are simply expressed in
terms of the exterior and interior derivatives for the circulation and flux respectively.

As an application of our tools, we showed how to recover the classical laws of electromagnetism,
Maxwell equations and Lorentz force, from a exterior-calculus formalism in relativistic space–time
with one temporal and three spatial dimensions. The electromagnetic field is described by a bivector
field with six components, closely related to Faraday’s antisymmetric tensor, containing both electric
and magnetic fields. The differential form of Maxwell equations relates the exterior derivative of the
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bivector field with the zero trivector and the interior derivative of the field with the current density
vector. In the integral form, these equations correspond to the statements that the circulation of the
bivector field along the boundary of any three-dimensional space–time volume is zero, and that the
flux of the bivector field across the boundary of any three-dimensional space–time volume is equal to
the flux of the current density across the same space–time volume.
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Appendix A. Proofs of Product Identities

In this appendix, we verify the relations about interior products introduced in Section 2.

Appendix A.1. Relation between Left and Right Interior Products

We now prove the formula

eI eJ “ eJ eIp´1q|I|p|J|´|I|q, (A1)

relating left and right interior products. For two lists I and J, we have

eI eJ “ ΔI,Iσ
`

JzI, I
˘
eJzI , (A2)

eJ eI “ ΔI,Iσ
`

I, JzI
˘
eJzI , (A3)

where we assumed that I Ď J with no loss of generality and used that εpI, Jcqc “ JzI in this case. The
only difference between the expressions lies in the signatures, that are related by setting A “ JzI and
B “ I in the following lemma.

Lemma A1. Given two arbitrary lists A and B, of length |A| and |B| respectively, then the permutations
sorting the concatenated lists pA, Bq and pB, Aq satisfy the formula

σpA, Bq “ σpB, Aqp´1q|A||B|. (A4)

Proof. Given a list A, let sA be the reversed list, namely the list where the order of all the elements is
reversed. Counting the number of position jumps needed to reverse the list, we obtain the signature of
this reversing operation as

σrpAq “ σrp sAq “ p´1q|A|´1`|A|´2`...`1 “ p´1q |A|p|A|´1q
2 . (A5)

The proof is based on the identity between two different ways of rearranging the concatenated
list pA, Bq into the ordered list εpA, Bq, as depicted in Figure A1.

| |A | |B

A

A

| |εpA, Bq
| |A | |B

| |sA| |sB
| |A| |B

| |εpA, Bq

Figure A1. Visual aid for the relation between σpA, Bq and σpB, Aq.
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First, in the left column of Figure A1 we depict how a single permutation with signature σpA, Bq
orders the list pA, Bq. In the right column of Figure A1 we depict how a different series of permutations
achieves the same result. We start by reversing the concatenated list pA, Bq, an operation with signature
σrpsB, sAq. Then, we separately partially reverse the lists sB and sA, operations with respective signatures
σrpsBq and σrp sAq. A final permutation with signature σpB, Aq orders the list pB, Aq into εpA, Bq. Since
the signature of a composition of permutations is the product of the signatures, we obtain that

σpA, Bq “ σrpsB, sAqσrp sAqσrpsBqσpB, Aq. (A6)

Using Equation (A5) in every σr in Equation (A6) and carrying out some simplifications
yields Equation (A4).

Appendix A.2. Relation between Interior and Exterior Products

We start with the expression for the left interior product Equation (14). From Equations (9)
and (10), we compute

`
eI ^ eHJ

˘H´1 “ `
ΔJ,JσpJ, JcqeI ^ eJc

˘H´1

“ ΔJ,JΔεpI,Jcqc ,εpI,Jcqc σpJ, JcqσpI, JcqσpεpI, Jcqc, εpI, Jcqq eεpI,Jcqc ,
(A7)

and since ΔεpI,Jcqc ,εpI,Jcqc “ ΔJzI,JzI , we can conclude that ΔJ,JΔεpI,Jcqc ,εpI,Jcqc “ ΔI,I . If we now compare
the result with Equation (11), we need just to verify the identity

σ
`
εpI, Jcqc, I

˘ “ σpJ, JcqσpI, JcqσpεpI, Jcqc, εpI, Jcqq , (A8)

or equivalently
σ

`
εpI, Jcqc, I

˘
σpJ, Jcq “ σpεpI, Jcqc, εpI, JcqqσpI, Jcq . (A9)

The left-hand side of Equation (A9) corresponds to taking the sets εpI, Jcqc “ JzI, I and Jc, in this
order, and then merging and sorting JzI with I and then merging and sorting the resulting set J with Jc,
as shown in the left column of Figure A2. On the right-hand side, we start we the same three lists, but
we first merge and sort I with Jc, and then we get the whole list by merging and sorting the result with
JzI, as represented in the right column of Figure A2. Thus, starting from the three sets and rearranging
them in different ways, we get the same final ordered list, and since the signatures of the left-hand
side and right-hand side are the same, and Equation (A9) is proved. As a consequence, Equation (14)
is verified.

| |J |Jc

| |εpI, Jcqc

| |I |Jc

| |εpJ, Jcq
| |εpI, Jcqc

|εpI, Jcq
| |εpI, Jcqc

| |I |Jc

| |εpJ, Jcq

Figure A2. Visual aid for the permutations in Equation (A9).

Afterwards, we prove the formula for the right interior product Equation (15). Using Equations (9)
and (10), we write`

eH
´1

I ^ eJ
˘H “ `

ΔIc ,Ic σpIc, IqeIc ^ eJ
˘H

“ ΔIc ,Ic σpIc, IqσpIc, Jq eH
εpIc ,Jq

“ ΔIc ,Ic σpIc, IqσpIc, JqΔεpIc ,Jq,εpIc ,JqσpεpIc, Jq, εpIc, Jqcq eεpIc ,Jqc .

(A10)
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Using that ΔεpIc ,Jq,εpIc ,JqΔIc ,Ic “ ΔJ,J , in order to prove the validity of Equation (15), we need to
prove the relation

σpJ, εpIc, Jqcq “ σpIc, IqσpIc, JqσpεpIc, Jq, εpIc, Jqcq . (A11)

We can prove it applying Lemma A1 to obtain the expression Equation (A8), or by following the
same procedure as before, paying attention to the difference that now list J is included in I.

Appendix A.3. Triple mixed product

Given two 1-vectors u and v and a r-vector w, we prove the relation

u pv ^ wq “ p´1qrpu ¨ vqw ` v ^ pu wq. (A12)

Proof. We start by evaluating u pv ^ wq explicitly, separating terms i “ j and i ‰ j, namely

u pv ^ wq “
ÿ
i,j,I

jRI,iPI

Δi,iuivjwIσpj, IqσpI ` jzi, iqeI`jzi `
ÿ
i,I
iPI

Δi,iuiviwIσpi, IqσpI, iqeI , (A13)

then, using σpi, IqσpI, iq “ p´1qr and adding and removing a term p´1qr
ÿ
i,I
iRI

Δi,iuiviwIeI , we get

u pv ^ wq “
ÿ
i,j,I

iPI,jRIzi

Δi,iuivjwIσpj, IqσpI ` jzi, iqeI`jzi ` p´1qr
ÿ
i,I

Δi,iuiviwIeI . (A14)

More concretely, the left-hand side u pv ^ wq is given byř
i,j,I

jRI,iPI
Δi,iuivjwIσpj, IqσpI ` jzi, iqeI`jzi ´ p´1qr ř

i,I
iRI

Δi,iuiviwIeI

“ ř
i,j,I

jRI,iPI
Δi,iuivjwIσpj, IqσpI ` jzi, iqeI`jzi ´ ř

i,j,I
j“i,jRIzi,iPI

Δi,iuivjwIσpj, IqσpI ` jzi, iqeI`jzi

“ ř
i,j,I

iPI,jRIzi
Δi,iuivjwIσpj, IqσpI ` jzi, iqeI`jzi.

(A15)

Similarly, we evaluate the right-hand side v ^ pu wq as

v ^ pu wq “
ÿ
i,j,I

iPI,jRIzi

Δi,iuivjwIσpIzi, iqσpj, IziqeI`jzi. (A16)

Comparing Equations (A15) and (A16), it remains to prove the equality, and now we prove
the equality

σpj, IqσpI ` jzi, iq “ σpIzi, iqσpj, Iziq. (A17)

We rewrite Equation (A17) multiplying both sides for σpj, Iqσpj, Iziq so that we obtain

σpj, IziqσpI ` jzi, iq “ σpIzi, iqσpj, Iq (A18)

which we verify with the help of Figure A3. On the left column, we first merge j with Izi and then the
resulting list with i. On the right columns, the permutations first join Izi and i and the resulting I is
then merged with j, getting the same result in both sides of the relation.
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| |j |Izi |i

| |I ` jzi |i

| |I ` j

| |j |Izi |i

| |j |I

| |I ` j

Figure A3. Visual aid for the identity σpj, IziqσpI ` jzi, iq “ σpIzi, iqσpj, Iq.

Thus, we can write

u pv ^ wq “
ÿ
i,j,I

iPI,jRIzi

Δi,iuivjwIσpIzi, iqσpj, IziqeI`jzi ` p´1qr

˜ÿ
i

Δi,iuivi

¸ ˜ÿ
I

wIeI

¸
, (A19)

where we identify the term p´1qrpu ¨ vqw, and finally conclude

u pv ^ wq ´ v ^ pu wq “ p´1qrpu ¨ vqw, (A20)

which proves our initial formula.
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Abstract: A mathematical model of economic growth with fading memory and continuous
distribution of delay time is suggested. This model can be considered as a generalization of the
standard Keynesian macroeconomic model. To take into account the memory and gamma-distributed
lag we use the Abel-type integral and integro-differential operators with the confluent hypergeometric
Kummer function in the kernel. These operators allow us to propose an economic accelerator, in which
the memory and lag are taken into account. The fractional differential equation, which describes
the dynamics of national income in this generalized model, is suggested. The solution of this
fractional differential equation is obtained in the form of series of the confluent hypergeometric
Kummer functions. The asymptotic behavior of national income, which is described by this solution,
is considered.

Keywords: fractional differential equations; fractional derivative; Abel-type integral; time delay;
distributed lag; gamma distribution; macroeconomics; Keynesian model
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1. Introduction

Advanced mathematical methods of fractional calculus [1–5] are a powerful tool for describing
the fading memory and spatial non-locality. Fractional derivatives and integrals of non-integer order
have different applications in natural and social sciences [6,7].

In this article, we suggest a generalization of one of the most famous models of economic growth,
which is associated with the founder of modern macroeconomic theory, John M. Keynes [8–10]. In the
suggested generalization, we take into account two types of phenomena: (I) long memory with
power-law fading and (II) continuously distributed lag with gamma distribution of delay time.

The continuously distributed lag has been considered in economics starting with the works
of Michal A. Kalecki [11] and Alban W.H. Phillips [12,13]. The macrodynamic models of business
cycles, where the continuous uniform distribution of delay time is used, were considered by Michal
A. Kalecki in 1935 [11], (see also Section 8.4 of [14], (pp. 251–254)). The economic growth models
with continuously distributed lag were proposed by Alban W.H. Phillips [12,13] in 1954. In his
works, the distribution of delay time has been described by exponential distribution. Operators with
continuously distributed lag were considered by Roy G.D. Allen [14] (pp. 23–29), in 1956.

The time delay (lag) is caused by finite speeds of processes, i.e., the change of one variable does
not lead to instant changes of another variable. Therefore, the distributed lag (time delay) cannot
be considered as a long memory in processes. For example, in physics, the retarded potential of the
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electromagnetic field is well known. The change in the value of the electromagnetic field at the point
of observation r1 is delayed with respect to the change in the sources of the field located at the point
r2 at the time t = |r1r2| /c, where c is the speed of propagation of disturbances. It is known that
the processes of propagation of the electromagnetic field in a vacuum do not mean the presence of
memory in this process.

Long memory has been considered in economics starting with the works of C.W.J. Granger [15–18].
For the first time, the importance of long-range time dependence in economic data was recognized by
C.W.J. Granger [15,16] in 1964, 1966. The long-range time dependencies have empirically observed
in economics [19–21]. For these dependencies, the correlations between values of variables decay
to zero more slowly than it can be expected from independent variables or variables from classical
Markov model and autoregressive moving average (ARMA) model [19–25]. An interpretation of these
dependencies between variables is that this process has a long memory. In economics, long memory
was first related to fractional differencing and integrating by C.W.J. Granger., R. Joyeux [26] and J.R.M.
Hosking [27] by using the discrete time approach. Granger, Joyeux, and Hosking independently
proposed the so-called autoregressive fractional integrated moving average models (ARFIMA models).
These models use the difference operator Δd := (1− L)d, where L is the lag operator LX(t) = X(t− 1),
and d is the order of the fractional differencing if d > 0 (fractional integrating if d < 0), which need not
be an integer. In papers [28,29], we noted that the operator Δd coincides with the Grunwald–Letnikov
fractional difference Δα

τ := (1− Tτ)
α of order α = d and the unit step τ= 1, where Tτ is the translation

(shift) operator that is defined [1], (pp. 95–96), by the expression (TτY)(t) = Y(t− τ ), where τ > 0
is the delay time. The Grunwald–Letnikov fractional differences were proposed over a hundred and
fifty years ago. In mathematics these fractional differences are actively used (for example, see [1],
(pp. 371–387), and [3], (pp. 43–62) and [4], (pp. 121–123)). Due to the historical circumstances, the
description of processes with memory in economics was based on the Granger—Joyeux approach and
models with discrete time only. The continuous time form of economic models with memory was
practically not considered and advanced mathematical methods of fractional calculus were not applied
in mathematical economics.

An application of advanced mathematical methods of fractional calculus in Keynesian economic
models with continuous time was proposed by authors [30,31] in 2016 (see also [32–34]). The fractional
differential equations of the dynamic Keynesian model with power-law memory and their solutions
have been considered in [30–34]. Continuously distributed lag was not discussed in these works.

For macroeconomics, it is important to simultaneously take into account lagging and memory
phenomena. In this article, we consider memory with power-law fading and lag with gamma
distribution of delay time. The memory is described by the Riemann–Liouville fractional integrals and
the Caputo fractional derivatives. The distributed lag is described by the translation Tτ , in which the
delay time τ > 0 is considered as a random variable that is distributed by probability law (distribution)
on positive semiaxis. The composition of these operators is represented as the Abel-type integral
and integro-differential operators with the confluent hypergeometric Kummer function in the kernel.
Using these operators, we propose the fractional differential equation for the generalized dynamic
Keynesian model that describes the fractional dynamics of national income. We obtain a solution for
this equation that describes the macroeconomic growth with power-law fading memory and gamma
distribution of delay time.

2. Standard Dynamic Keynesian Model

In macroeconomic growth models, two types of variables are used [14,35,36]. First, exogenous
variables are considered as independent quantities that are external to the considered economic
model. Secondly, endogenous variables are internal variables that are formed within the model.
The endogenous variables are described as functions of exogenous variables. In models with
continuous time, all these variables are considered as functions of time t.
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Let us consider the standard dynamical Keynesian model with continuous time. In the Keynesian
model, the following variables are used to describe the dynamics of the revenue and expenditure parts
of the economy: Y(t) is a national income; G(t) is the government expenditure; C(t) describes the
consumption expenditure; I(t) describes the investment expenditure, E(t) is a total expenditure, i.e.,
E(t) is defined as the sum of all expenditures:

E(t) = C(t) + I(t) + G(t). (1)

In dynamic equilibrium, we have
Y(t) = E(t). (2)

In this case, the balance equation establishes the equality of the national income to the sum of
all expenditures

Y(t) = C(t) + I(t) + G(t). (3)

In the Keynesian model, it is assumed that the consumption expenditure in period t depends on
the income level in the same period. The consumption expenditure C(t) is regarded as an endogenous
variable equal to the amount of domestic consumption of some part of the national income and final
consumption independent of income. As a result, the consumption expenditure C(t) is described by
the linear equation of the economic multiplier

C(t) = m(t)Y(t) + b(t), (4)

where m(t) is the multiplier factor that describes the marginal propensity to consume (0 < m(t) < 1),
and the function b(t) > 0 describes the autonomous consumption that does not depend on income.
The expression m(t)Y(t) describes the part of consumption that depends on income.

In the static model, the investment expenditure and government expenditure are considered as
exogenous variables. In the dynamic Keynesian model, the investment expenditure I(t) is treated as
endogenous and it is assumed to depend on the level of income [35], (pp. 95–97). The investment
expenditure I(t) is determined by the rate of change of the national income. This assumption is
described by the equation of the economic accelerator

I(t) = v(t)Y(1)(t), (5)

where v(t) is the rate of acceleration, which characterizes the level of technology and state
infrastructure, and Y(1)(t) = dY(t)/dt is the first-order derivative of the income function Y(t) with
respect to the time variable.

In the Keynesian model, government expenditure G(t), the propensity to consume m(t), the rate
of acceleration v(t), and the autonomous consumption b(t) are exogenous variables that are specified
as external to the model and characterize the functioning and development of the economy. These
variables, as functions of time, are assumed to be given.

The purpose of the dynamic Keynesian model is to describe the behavior of the national income.
For this, it is necessary to find the national income Y(t), as a function of time t. Substituting the
multiplier Equation (4) and the accelerator Equation (5) into the balance Equation (3), we obtain

Y(t) = m(t)Y(t) + b(t) + v(t)Y(1)(t) + G(t). (6)

This equation can be written in the form

dY(t)
dt

− 1−m(t)
v(t)

Y(t) = −G(t) + b(t)
v(t)

. (7)
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Equation (7) of the dynamic Keynesian model is a non-homogeneous linear differential equation with
a first-order derivative.

We see that the functions G(t) and b(t) are included in Equation (7) as a sum. This could be
expected since G(t) is an independent expenditure on investment, that is independent of income, and
b(t) is an independent expenditure on consumption, also not dependent on national income. From
the point of view of the main purpose of the Keynesian model, which is to describe the dynamics of
the national income, these two types of expenditure simply complement each other [35], (pp. 95–98).
Therefore, it is convenient to use the sum

Gb(t) = G(t) + b(t), (8)

which describes the independent expenditure. In this case, the consumption function C(t) = m(t)Y(t)
is that part of consumption that depends on income. All this allows us to write down the equation of
the standard dynamic Keynesian model in the form

dY(t)
dt

=
1−m(t)

v(t)
Y(t)− Gb(t)

v(t)
, (9)

where 0 < 1− m(t) < 1, and v(t) > 0. Equation (9) is a non-homogeneous first-order differential
equation that describes the standard dynamic Keynesian model, which does not take into account the
effects of memory and delay.

3. Dynamic Keynesian Model with Memory

In the standard Keynesian model, Equation (9) implies an instantaneous change in the investment
expenditure, when the rate of growth of national income changes. This means that the equation of this
model does not take into account the effects of memory and delay. Mathematically, this is due to the
fact that the standard model equation is a first-order differential equation. The derivative of the first
order, which is used in accelerator Equations (5), implies an instantaneous change of the investment
expenditure I(t), when changing the rate of the national income Y(t). Because of this, accelerator
Equation (5) does not take into account memory and lag. Multiplier Equation (4) also assumes that
the consumption expenditure C(t) changes instantly when the national income changes. As a result,
model Equation (9) can describe an economy, in which agents have no memory. This fact greatly limits
the applicability of the standard model to describe the real processes in the economy. To expand the
scope of the model, we should take into account that economic agents can remember the history of
changes of the national income and the investment expenditure, because it affects the behavior of
these agents.

Generalization of the standard Keynesian model, in which memory [37,38] is taken into account,
was proposed by the authors [30,31]. Let us briefly describe this generalized model with memory.
The equation of investment accelerator with memory [37,39] can be written as

I(t) = v(t)
∫ t

0
M(t− τ) Y(n)(τ)dτ, (10)

where M(t− τ) is the memory function. Note that Equation (10) can also be used to describe the
distributed lag. In this case, M(t− τ) is called the weighting function, which is interpreted as the
probability density function. Equation (5) can be obtained from (10) in the case M(t− τ) = δ(t− τ)

and n = 1. Substitution of the investment I(t) in the form of expression (10), and the consumption
expenditure (4) into balance Equation (3), we get

v(t)
∫ t

0
M(t− τ)Y(n)(τ)dτ = (1−m(t))Y(t)− Gb(t), (11)
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where Gb(t) is defined by (8). Equation (9) of the standard Keynesian model without memory and lag
can be obtained from (11) by using M(t− τ) = δ(t− τ) and n = 1.

Equation (11) describes the fractional dynamics of the national income within the framework of
the Keynesian model of growth with memory. If the parameters m(t) and v(t) are given, the growth of
national income Y(t) is conditioned by the behavior of the independent expenditure (8).

The memory with one-parameter power-law fading is described [37,39] by the function

M(t− τ) = Mn−α
RL (t− τ) =

1
Γ(n− α)

(t− τ)n−α−1, (12)

where Γ(α) is the gamma function and n− 1 < α ≤ n. Using (12), the accelerator with memory (10) is
represented [37,39] as

I(t) = v(t) (Dα
C,0+Y)(t), (13)

where (Dα
C,0+Y)(t) is the Caputo fractional derivative [4,5]. In general, the rate of acceleration v(t)

depends on the parameter of memory fading, i.e., v(t) = v(t, α). The parameter α > 0 is interpreted as
a fading parameter of power-law memory [37]. The concept of an accelerator with memory [39] allows
us to get the equation of the Keynesian model with power-law memory in the form of the fractional
differential equation

(Dα
C,0+Y)(t) =

1−m(t)
v(t)

Y(t)− Gb(t)
v(t)

, (14)

where the Caputo fractional derivative can be represented by the Laplace convolution

(Dα
C,0+Y)(t) = (Mn−α

RL ∗Y(n))(t) =
1

Γ(n− α)

∫ t

0
(t− τ)n−α−1Y(n)(τ)dτ, (15)

where n = [α] + 1 for α /∈ N and n = α for α ∈ N, and the function Y(τ) has integer-order derivatives
Y(j)(τ), j = 1, . . . , (n− 1), that are absolutely continuous.

The solution of Equation (14) with constant values of m(t) = m and v(t) = v has the form

Y(t) =
n−1

∑
j=0

Y(j)(0)tjEα,j+1

[
1−m

v
tα

]
− 1

v

∫ t

0
(t− τ)α−1Eα,α

[
1−m

v
(t− τ)α

]
Gb(t)dτ, (16)

where n− 1 < α ≤ n. Solution (16) of the fractional differential Equation (14) and its properties are
described in [30,31] (see also [32–34]).

4. Memory and Lag by Abel-Type Integral and Derivative with Kummer Functions

The economic accelerator and multiplier with continuously distributed lag were proposed by
Alban W.H. Phillips [12,13] in 1954 (see also Sections 3.4, 3.5 and 8.7 in [14]). The distribution of delay
time has been described by the exponential distribution. In 1956, the operators with continuously
distributed lag were considered by Roy G.D. Allen in the book [14], (pp. 23–29). In the general
case, the distribution of delay time can be described by other probability distributions [40], not just
exponential distributions. Note that the time delay is caused by finite speeds of processes. Therefore,
the distributed lag (time delay) cannot be interpreted as a memory.

4.1. Fractional Integral with Memory and Lag

The translation operator Tτ is defined [1], (pp. 95–96), by the expression (TτY)(t) = Y(t− τ ),
where τ > 0 is the delay time. In the general case, the delay time τ > 0 can be considered as a random
variable, which is distributed by probability law (distribution) on positive semiaxis [40]. The translation
operator with the continuously distributed delay time can be defined [40] by the equation
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(TMY)(t) =
∫ ∞

0
MT(τ) (TτY)(t) dτ =

∫ ∞

0
MT(τ) Y(t− τ)dτ, (17)

where we assume that Y(t) and MT(t) are piecewise continuous functions on R and the integral∫ ∞
0 MT(τ) |Y(t− τ)| dτ converges. In Equation (17), the kernel MT(τ) is the weighting function that

satisfies the condition
MT(τ) ≥ 0,

∫ ∞

0
MT(τ)dτ = 1. (18)

To take into account the distributed time delay and power-law fading memory, we can use a
composition of the translation operator (17) and integration of non-integer order. The Riemann–
Liouville fractional integral with a distributed time delay can be defined [40] by the equation

(Iα
T;RL;t0

Y)(t) = (TM(Iα
RL,t0

Y))(t) =
∫ ∞

0
MT(τ) (Iα

RL,t0
Y)(t− τ)dτ, (19)

where (Iα
RL,t0

Y)(t) is the Riemann–Liouville fractional integral of the order α ∈ R+, and MT(τ) is
the weighting function that satisfies the conditions (18). Here we can assume that (Iα

RL,t0
Y)(t) and

MT(t) are piecewise continuous functions on R such that
∫ ∞

0 MT(τ)
∣∣∣(Iα

RL,t0
Y)(t− τ)

∣∣∣ dτ converges.
The Riemann–Liouville fractional integral Iα

RL,t0
is defined [4], (p. 92), by the expression

(Iα
RL,t0

Y)(t) =
1

Γ(α)

∫ t

t0

(t− τ)α−1Y(τ)dτ, (20)

where α ≥ 0 is the order of the fractional integral, Γ(α) is the gamma function, and τ ∈ [t0, t].
However, in order for definition (19) to be correct, it needs to take into account that the fractional

integral (20) is defined for the case t > t0 [4], (p. 69). By virtue of this, we can consider the two
following cases.

For t0 = −∞, Equation (20) defines the Liouville fractional integral (Iα
L,+Y)(t), where τ ∈ (−∞, t].

Then the Liouville fractional integration with continuously distributed lag is defined in the form

(Iα
T,LY)(t) = (TM(Iα

L,+Y))(t) =
∫ ∞

0
MT(τ) (Iα

L,+Y)(t− τ)dτ. (21)

Considering that integral (20) is defined for the case t > t0 = 0 [4], (p. 69), we can assume that
(Iα

RL,0+Y)(t) = 0 for t < t0 = 0 in expression (20) with t0 = 0. Here the function Y(τ) is defined on
the finite interval [t0, t1] with 0 = t0 < t1 < ∞, [4], (p. 69). This allows us to use the upper limit t > 0
insteat of infinity in Equation (19), such that

(Iα
T;RL;0+Y)(t) = (TM(Iα

RL,0+Y))(t) =
∫ t

0
MT(τ) (Iα

RL,0+Y)(t− τ)dτ. (22)

As a result, we can define the fractional integration with the gamma-distributed lag in the form

(Iλ,a;α
T;C;0+Y)(t) = (Mλ,a

T (τ) ∗ (Iα
RL,0+Y))(t) =

∫ t

0
Mλ,a

T (τ)(Iα
RL,0+Y)(t− τ) dτ, (23)

where MT(τ) = Mλ,a
T (τ) is the probability density function of the gamma distribution

Mλ,a
T (τ) =

{
λa τa−1

Γ(a) exp(−λ τ)

0
i f τ > 0,
i f τ ≤ 0

(24)

with the shape parameter a > 0 and the rate parameter λ > 0. If a = 1, the function (24) describes the
exponential distribution.
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In economics, the gamma distribution (24) is applied to take into account waiting times, when
there is a sharp increase in the average delay time. For example, this distribution is used to describe
delays orders in queues, delays in payments, and to take into account the likelihood of risk events.
The distribution also describes the time of receipt of the order for the enterprise, the service life of
device components, and time between store visits.

Substitution of (24) into (23) gives the Riemann–Liouville fractional integral with gamma
distribution of delay time in the form of the Laplace convolution of memory and weighting functions

(Iλ,a;α
T;C;0+Y)(t) =

∫ t

0
Mλ,a

T (τ)(Iα
RL,0+Y)(t− τ) dτ = (Mλ,a

T ∗ (Mα
RL ∗Y))(t), (25)

where Mα
RL (t) = (t− τ)α−1/Γ(α) is the kernel of the Riemann–Liouville fractional integral (20).

The associativity of the Laplace convolution gives

(Mλ,a
T ∗ (Mα

RL ∗Y(n)))(t) = (Mλ,a;α
TRL ∗Y(n))(t), (26)

where Mλ,a;α
TRL (t) is the memory-and-lag function

Mλ,a;α
TRL (t) = (Mλ,a

T ∗Mα
RL )(t). (27)

This allows us to represent operator (25) in the form

(Iλ,a;α
T;C;0+Y)(t) = (Tλ,a

M (Iα
RL,0+Y))(t) =

∫ t

0
Mλ,a;α

TRL (t− τ)Y(τ) dτ, (28)

where Mλ,a;α
TRL (t− τ) is defined by Equation (27). Let us obtain an explicit form of the memory-and-lag

function Mλ,a;α
TRL (t). For this purpose, we can use Equation 2.3.6.1 of [41], (p. 324), that has the form

∫ t

0
(t− τ)α−1τβ−1 exp(−λ τ)dτ =

Γ(α)Γ(β)

Γ(α + β)
tα+β−1F1,1(β; α + β;−λt), (29)

where Re(α) > 0, Re(β) > 0 and F1,1(a; b; z) is the confluent hypergeometric Kummer function. The
function F1,1(a; b; z) can be defined (see [42], (p. 115), and [4], (pp. 29–30)) by the equation

F1,1(a; c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
ta−1(1− t)c−a−1 exp (zt)dt =

∞

∑
k=0

Γ(a + k)Γ(c)
Γ(a)Γ(c + k)

zk

k!
, (30)

where a, z ∈ C, Re(c) > Re(a) > 0 such that c �= 0,−1,−2, . . .. Series (30) is absolutely convergent for
all z ∈ C.

Using Equation (29), the memory-and-lag function (27) can be written as

Mλ,a;α
TRL (t) =

λa Γ(a)
Γ(a + n− α)

ta+α−1F1,1(a; a + α;−λt) (31)

that defines the kernel of operator (28). In general, the function (31) can be interpreted as a new
memory function. Note that equality F1,1(a; c; z) = Γ(c)Ea

1,c(z) (see Equation 5.1.18 of [43]) allows us
to represent the memory kernel (31) through the three parameter Mittag–Leffler functions [43].

As a result, the Riemann–Liouville fractional integral with gamma distribution of delay time can
represented [40] by the equation

(Iλ,a;α
T;RL;0+Y)(t) =

λa Γ(a)
Γ(a + α)

∫ t

0
(t− τ)α+a−1F1,1(a; a + α;−λ(t− τ))Y(τ) dτ, (32)
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where α > 0 is the order of integration and the parameters a > 0, λ > 0 describe the shape and rate of
the gamma distribution, respectively.

It is known (see Section 37 of [2] and [44]), the integral operators of the form

(AαY)(t) =
∫ t

0
(t− τ)α−1K(t, τ)Y(τ) dτ (33)

are called the Abel-type integral operators. For example, we can consider the confluent hypergeometric
Kummer function F1,1(β; α; λ(t− τ)) as the kernel K(t, τ) of the operator (33). It is known that the
Abel-type (AT) fractional integral operator with Kummer function in the kernel (see equation 37.1
in [1], (p. 731), and [45]) is defined by the equation

(Iα,β,λ,
AT;0+Y)(t) =

1
Γ(α)

∫ t

0
(t− τ)α−1F1,1(β; α; λ(t− τ))Y(τ) dτ. (34)

In paper [45], the integral operator (34) is denoted as K0(β, α, λ).
As a result, the Riemann–Liouville fractional integral with gamma-distributed lag (32) can be

expressed through the AT fractional integral (34) by the equation

(Iλ,a;α
T;RL;0+Y)(t) = λa Γ(a)(Ia+α,a,−λ,

AT;0+ Y)(t). (35)

The AT fractional integral (34) can be represented as an infinite series of the Riemann–Liouville
fractional integrals

Iα,β,λ
AT;0+ =

∞

∑
k=0

(β)k
k!

λk Iα+k
RL,0+, (36)

where (β)k = Γ(β + k)/Γ(β) is the Pochhammer symbol. Expression (36) is called the Neumann
generalized series (see Equation 37.10 of [1], (p. 732)), which characterizes the structure of the AT
fractional integral operator (34). Using (35) and (36), the Riemann–Liouville fractional integral with
gamma-distributed lag (32) can be represented as the series

(Iλ,a;α
T;RL;0+Y)(t) =

∞

∑
k=0

Γ(a + k)
Γ(k + 1)

(−1)kλk+a Iα+a+k
RL,0+ . (37)

Since the Riemann–Liouville fractional integrals (20) are bounded in Lp(t0, t1), where p ≥ 1,
t1 < ∞ (see the proof of Theorem 2.6 in [1], (pp. 48–51)), then the series (37) may be summed for
|λ| < I1

RL,a+
−1
Lp(t0,t1)

. After evaluating the sums one may remove this restriction on λ and on the sum
(37), since the suggested fractional integral operators (32) are analytic functions with respect to λ

(see [1], (p. 732)).
Using Equation (37) and the semigroup property of the Riemann–Liouville fractional integrals, we

can get the semigroup property for the Riemann–Liouville fractional integral with gamma-distributed
lag (32) in the form

Iλ,a;α
T;RL;0+Iλ,b;β

T;RL;0+ = B(α, β)Iλ,a+b;α+β
T;RL;0+ , (38)

where

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
(39)

is the beta function. Equality (38) directly follows from Equation 37.14 of [1], (p. 733).
Using Theorem 37.1 of [1], (p. 733), and Equation (35), we can state that the suggested fractional

integral with lag (32) has the same range in Lp(t0, t1) as the Riemann–Liouville fractional integrals and
it is bounden from Lp(t0, t1) onto Iα

RL,0+[Lp(t0, t1)] ⊂ Lp(t0, t1).
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Using the condition of the invertibility of the AT operators (34), which is described by Theorem
37.2 of [1], (p. 736), and Equation 37.32 of [1], (p. 735), we get that the solution of the fractional
integral Equation

m(t)(Iα,β,λ
AT;0+Y)(t) = X(t) (40)

can be represented in the form

Y(t) =
m(t)

λa Γ(a)
e−λtDa

RL,0+ (eλtDα
RL,0+ X)(t) , (41)

where Dα
RL,0+ and Da

RL,0+ are the Riemann–Liouville fractional derivatives of orders α > 0 and
a > 0 respectively. These derivatives can be defined by the Laplace convolution as (Dα

RL,0+X)(t) =
Dn

t (Mn−α
RL ∗ X)(t), where Dn

t = dn/dtn, n ∈ N.
Note that Equation (40) can be interpreted as an equation of economic multiplier with power-law

memory and distributed lag [39], which is a generalization of the multiplier Equation (4), where m(t)
is the multiplier factor. In this case, Equation (41) can be considered as the equation of an economic
accelerator with memory [39]. The equation of multiplier with memory is a reversible, such that the
dual (inverse) equation describes an accelerator with memory (see Section 4 of [39]).

4.2. Fractional Derivative with Memory and Lag

Using the integral operator (32), we can define the fractional derivatives with continuously
distributed lag [40]. For example, the Caputo fractional derivative with gamma-distributed lag is
defined by the Laplace convolution in the form

(Dλ,a;α
T;C;0+Y)(t) =

∫ t

0
Mλ,a

T (τ)(Dα
C,0+Y)(t− τ) dτ = (Mλ,a

T ∗ (Mn−α
RL ∗Y(n)))(t). (42)

The convolution is an associative operation that allows us to write

(Mλ,a
T ∗ (Mn−α

RL ∗Y(n)))(t) = (Mλ,a;n−α
TRL ∗Y(n))(t), (43)

where Mλ,a;n−α
TRL (t) is defined by Equation (31). This allows us to represent operators (42) in the form

(Dλ,a;α
T;C;0+Y)(t) =

∫ t

0
Mλ,a;n−α

TRL (t− τ)Y(n)(τ) dτ, (44)

where n− 1 < α ≤ n. Using Equation (31), we have the representation of the kernel Mλ,a;n−α
TRL (t) in

the form

Mλ,a;n−α
TRL (t) =

λa Γ(a)
Γ(a + n− α)

ta+n−α−1F1,1(a; a + n− α;−λt). (45)

As a result, the Caputo fractional derivative with gamma-distributed lag is represented [40] by
the Equation

(Dλ,a;α
T;C;0+Y)(t) =

λa Γ(a)
Γ(a + n− α)

∫ t

0
(t− τ)n−α+a−1F1,1(a; a + n− α;−λ(t− τ))Y(n)(τ) dτ, (46)

where n− 1 < α ≤ n. Fractional differential operator (46) can be expressed through the Riemann–
Liouville fractional integral (32) with gamma-distributed lag in the form

(Dλ,a;α
T;C;0+Y)(t) = (Iλ,a;n−α

T;RL;0+Y(n))(t), (47)

where n− 1 < α ≤ n.
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Using the Laplace transform of the Caputo fractional derivative and the gamma distribution
function, we get [40] the Laplace transform of the Caputo fractional derivative with gamma-distributed
lag in the form

(L(Dλ,a;α
T;C;0+Y)(t))(s) =

λa

(s + λ)a

(
sα(LY)(s)−

n−1

∑
j=0

sα−j−1Y(j)(0)

)
, (48)

where n− 1 < α ≤ n.
Let us note that the operator (42) with a = 1 describes the Caputo fractional derivative with

exponentially distributed lag [40]. Using the fact that the Caputo fractional derivatives with integer
values α = n ∈ N are the integer-order derivatives (Dα

C,0+Y)(t) = dnY(t)/dtn, the operator (42) with
a = 1 and α = n describes the integer-order derivatives with the exponential distribution [40]. Note
that these operators with exponentially distributed lag were defined in the works of Caputo and
Fabrizio [46,47], where they have been misinterpreted as fractional derivatives of non-integer orders.
We can state [40] that the derivative of integer order with exponentially distributed lag coincides
with the Caputo–Fabrizio operator of the order β = n− 1/(λ + 1), where λ is the rate parameter of
the distribution and n = [β] + 1. As a result, the Caputo–Fabrizio operator can be interpreted as an
integer-order derivative with the exponentially distributed lag.

The proposed operator (42) in the form (46) can be interpreted as a new generalized operator
with the memory function given by the confluent hypergeometric function. The generalized fractional
derivative (46) can be used to simultaneously account of long memory with power-law fading
and distributed lag with the gamma distribution of delay time. In the next section, we describe
a macroeconomic model with memory and distributed lag by using this proposed operator.

5. Fractional Differential Equation of a Keynesian Model with Memory and Lag

Let us take into account that the relationship between the investment expenditure I(t) and the
national income Y(t) depends on memory and lag effects. For the case of the power-law memory and
gamma distribution of the delay time, we can use the generalized accelerator equation

I(t) = v(t) (Dλ,a;α
T;C;0+Y)(t), (49)

where Dλ,a;α
T;C;0+ is the Caputo fractional derivative with distributed lag given by (46). Equation (49)

describes the economic accelerator that takes into account the power-law fading memory and the
gamma-distributed lag.

Substituting expressions (49) and (4) into balance Equation (3), we obtain the fractional differential
equation of the Keynesian model with power-law memory and gamma distribution of delay time in
the form

(Dλ,a;α
T;C;0+Y)(t) =

1−m(t)
v(t)

Y(t)− Gb(t)
v(t)

, (50)

where α is the parameter of memory fading, a > 0 is the shape parameter and λ > 0 is the rate
parameter of the gamma distribution of the delay time.

Let us consider the case where v(t) and m(t) are constant quantities. Then the Keynesian model
with one-parameter power-law memory and gamma-distributed lag is described by the fractional
differential equation

(Dλ,a;α
T;C;0+Y)(t) = ωY(t) + F(t), (51)

where ω = (1−m)/v and F(t) = −v−1Gb(t).
The general solution of Equation (51) can be written as

Y(t) = Y0(t) + YF(t), (52)
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where Y0(t) is the solution of Equation (51) with F(t) = 0, i.e., the homogeneous equation

(Dλ,a;α
T;C;0+Y)(t) = ωY(t), (53)

and YF(t) is particular solution of (51) that can be represented in the form

YF(t) =
∫ t

0
Gα[t− τ] F(τ)dτ, (54)

where Gα[t− τ] is the generalized Green function [4], (p.281,295). Equation (54) yields the solution
YF(t) for Equation (51) with initial conditions, Y(j)(0) = 0 for all j = 0, . . . , (n− 1).

Theorem 1. The fractional differential Equation

(Dλ,a;α
T;C;0+Y)(t) = ωY(t) + F(t), (55)

where Dλ,a;α
T;C;0+ is the fractional derivative of order α > 0 with gamma-distributed lag, in which a > 0 and λ > 0

are the shape and rate parameters of the gamma distribution respectively, has the solution

Y(t) =
n−1

∑
j=0

Sα−j−1
α,a [ω λ−a, λ|t]Y(j)(0) +

1
ω

F(t)− 1
ω

∫ t

0
Sα

α,a
[
ω λ−a, λ

∣∣t− τ
]

F(τ)dτ, (56)

where n = [α] + 1, and Sγ
α,δ [μ, λ|t] is the special function that is defined by the expression

Sγ
α,δ [μ, λ|t] = −

∞

∑
k=0

tδ(k+1)−αk−γ−1

μk+1Γ(δ(k + 1)− αk− γ)
F1,1(δ(k + 1); δ(k + 1)− αk− γ,−λt), (57)

where F1,1(a; b; z) is the confluent hypergeometric Kummer function (30).

Proof. The first step is to find a solution for the homogeneous Equation (53). Using the Laplace
transform of Equation (53), we get

λa

(s + λ)a

(
sα(LY)(s)−

n−1

∑
j=0

sα−j−1Y(j)(0)

)
= ω(LY)(s). (58)

Then we can write

(L Y)(s) =
n−1

∑
j=0

sα−j−1

sα − μ(s + λ)a Y(j)(0), (59)

where μ = ω λ−a. Using Equation 5.4.9 of [48] in the form(
L−1

(
sa

(s + b)c

))
(s) =

1
Γ(c− a)

tc−a−1F1,1(c; c− a,−bt), (60)

where Re(c− a) > 0, we get [40] the Laplace transform of the function (57) (Theorem 1) as

L (Sγ
α,δ [μ, λ

∣∣∣t] )(s) = sγ

sα − μ(s + λ)δ
. (61)

Using Equation (61) the solution of the homogenous fractional differential Equation (53) has the form

Y0(t) =
n−1

∑
j=0

Sα−j−1
α,a [ω λ−a, λ|t]Y(j)(0), (62)
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where Sα−j−1
α,a [ω λ−a, λ

∣∣∣t] is defined by Equation (57).
The second step is to find a particular solution (54) of Equation (55). The Laplace transform of

Equation (55) with conditions Y(j)(0) = 0 for all j = 0, . . . (n− 1) gives the expression

λa

(s + λ)a sα(LY)(s) = ω(LY)(s) + (LF)(s) (63)

that can be rewritten in the from

(LY)(s) =
(s + λ)a

λa sα −ω(s + λ)a (LF)(s). (64)

The equality
(s + λ)a

λa sα −ω(s + λ)a = − 1
ω

+
1
ω

sα

sα − μ(s + λ)a , (65)

where μ = ω λ−a, gives

(LY)(s) = − 1
ω
(LF)(s) +

1
ω

sα

sα − μ(s + λ)a (LF)(s). (66)

Using (61) with δ = a, γ = α, we have

Gα[t− τ] = − 1
ω

δ(t− τ) +
1
ω

Sα
α,a [μ, λ|t− τ]. (67)

As a result, we obtain

YF(t) =
1
ω

F(t)− 1
ω

∫ t

0
Sα

α,a [μ, λ|t− τ] F(τ)dτ (68)

that describes the particular solution of Equation (55).
Substitution of (62) and (68) into (52) gives (56).
This ends the proof. �

As a result, the solution of Equation (55) of the Keynesian model with one-parameter power-law
memory and gamma-distributed lag for constant v(t) = v and m(t) = m is described by the expression

Y(t) =
n−1

∑
j=0

Sα−j−1
α,a [ω λ−a, λ|t]Y(j)(0)− 1

1−m
Gb(t) +

1
1−m

∫ t

0
Sα

α,a
[
ω λ−a, λ

∣∣t− τ
]

Gb(τ)dτ, (69)

where Gb(τ) = G(τ) + g(τ) and ω = (1−m)/v.

6. Asymptotic Behavior of National Income Growth with Memory and Lag

In economic theory, the important concept of the Harrod’s warranted rate of growth [14] is
used, which is also called the technological growth rate. The warranted growth rate describes the
growth when the following two conditions are satisfied. The first condition is the constancy of the
structure of the economy. This condition means that the parameters of the model do not change over
time. In the Keynesian model, we should consider the parameters (t), b(t), and m(t) as constant
quantities. The second condition is the absence of external influences. This condition means the
absence of exogenous variables. In the Keynesian model, we should consider the case of the absence
of the independent expenditure, i.e., Gb(t) = 0. Mathematically the warranted growth rate can be
obtained from the asymptotic expression of the solution of the homogeneous differential equation
of the macroeconomic model. In the standard Keynesian model, the solution of Equation (9) with
Gb(t) = 0 has the form Y(t) = Y(0) exp(ω t). Therefore, the warranted growth rate of this model is
described by the value ω = (1−m)/v, when Gb(t) = 0.
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The Keynesian model with memory was suggested by authors [30,31] in 2016 (see also [32–34]).
For this growth model, the fractional differential equation, its solution, and properties have been
described. We proved [32,33] that the warranted growth rate with memory is equal to the value
ωeff(α) = ω1/α, where α > 0 is a parameter of power-law memory fading and ω is the rate of growth
without memory (α = 1). The warranted growth rates of models with memory do not coincide with
the growth rates of the standard Keynesian model. The memory effects can significantly change the
growth rates of the economy [32–34] and lead to new types of behavior for the same parameters of the
economic model. The principles of changing growth rates by memory have been proposed in [32,33].
The memory effects can both increase and decrease the warranted growth rates in comparison with the
standard Keynesian model. For the memory fading with α < 1, we get a slowdown in the growth and
decline of the economy. We can state that memory with α < 1 leads to inhibition of economic growth
or decline, i.e., we have stagnation of the economy if α < 1. For the memory fading with α > 1 we
have an improvement in the economy. In this case, the memory effect leads either to the slowdown in
the decline rate or to the replacement of the decline with growth, or to the increase in the growth rate.

To consider the warranted growth rate of national income for the Keynesian model with memory
and distributed lag, we should obtain an asymptotic behavior of the solution (62) of homogenous
model Equation (53). This solution is expressed by the function Sγ

α,δ [μ, λ|t] that is represented as
an infinite sum (57) of the confluent hypergeometric Kummer function F1,1(a; c; z). We can use the
asymptotic expression of the function F1,1(a; c; z) at infinity z → −∞ that is given in [4] (p. 29),
in the form

F1,1(a; c; z) =
Γ(c)

Γ(c− a)
e−iπaz−a

(
1 + O

(
1
z

))
, (70)

where z = −λt < 0. Therefore the asymptotic expression for t → ∞ is

F1,1(δ(k + 1); δ(k + 1)− αk− γ,−λt) =
Γ(δ(k + 1)− αk− γ)

Γ(−αk− γ)
(λt)−δ(k+1)e−iπδ(k+1)

(
1 + O

(
1
t

))
. (71)

Equation (71) leads to the asymptotic expression at infinity ( t → ∞ ) of the function (57) in the form

Sγ
α,δ [μ, λ|t] = −

∞
∑

k=0

λ−δ(k+1)t−αk−γ−1

μk+1Γ(−αk− γ)
e−iπδ(k+1)

(
1 + O

(
1
t

))
= −λ−δt−γ−1

μ1Γ(−γ)
e−iπδ

(
1 + O

(
t−α−γ−1)), (72)

where αk + γ �= 0, 1, 2, . . . for all integer k.
Solution (62) is expressed by the function Sα−j−1

α,a [μ, λ|t], where μ = ω λ−a. Then using Equation
(72), we get the asymptotic expression

Sα−j−1
α,a

[
ω λ−a, λ

∣∣t] = − ∞

∑
k=0

λ−at−α(k+1)+j

ωk+1 Γ(−α(k + 1) + j + 1)
e−iπa

(
1 + O

(
1
t

))
. (73)

For the gamma distribution with the integer shape parameter (a = m ∈ N), which is called the Erlang
distribution, expression (73) gives

Sα−j−1
α,m

[
ω λ−a, λ

∣∣t] = − ∞

∑
k=0

(−1)mλ−mt−α(k+1)+j

ωk+1 Γ(−α(k + 1) + j + 1)

(
1 + O

(
1
t

))
, (74)

where e−iπm = (−1)m is used.
Using Equation 5.1.18 of [43], (p. 99), in the form F1,1(a; c; z) = Γ(c)Ea

1,c(z), we can get asymptotic
expressions (72) and (74) by using asymptotic expressions of the three parameter Mittag–Leffler
functions Eδ(k+1)

1,δ(k+1)−αk−γ
(−λt) (for example, see [49]). Using Equation (74) we can see that the series
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(74) can be represented through the two-parameter Mittag–Leffler function with the negative first
parameter [50] as

−
∞

∑
k=0

(−1)mλ−mt−α(k+1)+j

ωk+1 Γ(−α(k + 1) + j + 1)
=

(−1)mλ−mtj

Γ(j + 1)
− (−1)mλ−mtjE−α,j+1

(
t−α/ω

)
. (75)

This allows us to state that the function Sα−j−1
α,m [ω λ−a, λ|t] in the long time limit leads to a series, which

can be interpreted as a two-parameter Mittag–Leffler function, which is analogous to the property of
the three-parameter Mittag–Leffler function described in [51].

Equation (74) allows us to give the asymptotic expression

Sα−j−1
α,a

[
ω λ−a, λ

∣∣t] = − (−1)mλ−mt−α+j

ω1 Γ(−α + j + 1)

(
1 + O

(
t−2α+j

))
. (76)

As a result, the asymptotic behavior of solution (69) with Gb(t) = 0 can be described by the Equation

Y(t) =
n−1

∑
j=0

(−1)m+1λ−mt−α+j

ω Γ(−α + j + 1)
Y(j)(0)

(
1 + O

(
t−2α+j

))
(77)

that characterizes warranted growth of national income, which is represented by solution (69) with
Gb(τ) = 0 and a = m ∈ N. Equation (77) allows us to state that the warranted growth has the
power-law form with the power −α + j, where j ∈ {0, . . . , n− 1} is the smallest value at which
Y(j)(0) �= 0. As a result, the warranted growth of the national income with memory and distributed
lag has the power-law type instead of the exponential type of growth with memory without time
delay [32,33], where warranted growth rate is ωeff(α) = ω1/α. Therefore we can state that the
distributed lag (time delay) suppresses the effects of fading memory.

7. Conclusions

The standard Keynesian model [8–10,14] describes the dynamics of national income in the absence
of long memory and distributed time delay. The Keynesian model with power-law memory has been
suggested by authors [30,31]. The effects of continuously distributed lag are not considered in [30,31].
In this paper, we generalize the Keynesian model with memory by taking into account gamma
distribution of delay time. To take into account the distributed lag, we use the operators that are
compositions of the translation operator with distributed delay time and the fractional derivatives or
integrals. These operators allow us to take into account the memory and lag in the economic accelerator.
These operators are the Abel-type integro-differential operators with the confluent hypergeometric
Kummer function in the kernel. The solution of the suggested fractional differential Equation, which
describes the fractional dynamics of national income, has been suggested. The asymptotic behavior
of economic processes with memory and distributed lag demonstrates power-law growth. In the
absence of delays, the processes with fading memory demonstrate exponential growth. The warranted
growth rate with memory [30–34] is equal to the value ωeff(α) = ω1/α, where α > 0 is a memory
fading parameter. Therefore effects of long memory can significantly accelerate the growth rate of the
economy by several orders of magnitude [30–33]. Fading memory can lead to an increase in the growth
rate in processes without lag [30–34]. The appearance of distributed lag does not accelerate growth
due to the memory effect (see also [52,53]). Moreover, we can state that the lag can suppress the effect
of fading memory. The distributed lag leads to slower growth. We assume that the suggested approach
and model can be used for economic growth modeling by analogy with the computer simulation of the
economy in [54–58]. It should also be noted that fractional differential Equations have been applied to
describe power-law memory in continuous-time finance [59–72]. This fact allows us to assume that
the proposed approach can be used to take into account the continuously distributed time delay and
memory in financial processes with the waiting-time distribution [60,62].
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Abstract: The theory of the continuous two-dimensional (2D) Fourier transform in polar coordinates
has been recently developed but no discrete counterpart exists to date. In this paper, we propose and
evaluate the theory of the 2D discrete Fourier transform (DFT) in polar coordinates. This discrete
theory is shown to arise from discretization schemes that have been previously employed with the
1D DFT and the discrete Hankel transform (DHT). The proposed transform possesses orthogonality
properties, which leads to invertibility of the transform. In the first part of this two-part paper, the
theory of the actual manipulated quantities is shown, including the standard set of shift, modulation,
multiplication, and convolution rules. Parseval and modified Parseval relationships are shown,
depending on which choice of kernel is used. Similar to its continuous counterpart, the 2D DFT in
polar coordinates is shown to consist of a 1D DFT, DHT and 1D inverse DFT.

Keywords: Fourier Theory; DFT in polar coordinates; polar coordinates; multidimensional DFT;
discrete Hankel Transform; discrete Fourier Transform; Orthogonality

1. Introduction

The Fourier transform (FT) in continuous and discrete forms has seen much application in various
disciplines [1]. It easily expands to multiple dimensions, with all the same rules of the one-dimensional
(1D) case carrying into the multiple dimensions. Recent work has developed the complete toolkit for
working with the continuous multidimensional Fourier transform in two-dimensional (2D) polar and
three-dimensional (3D) spherical polar coordinates [2–4]. However, to date no discrete version of the
2D Fourier transform exists in polar coordinates. Hence, the aim of this paper is to develop the discrete
version of the 2D Fourier transform in polar coordinates.

For the discrete version of the transform, the values of the transform will be available only at
discrete points. To quote Bracewell [5], “we often think of this as though an underlying function
of a continuous variable really exists and we are approximating it. From an operational viewpoint,
however, it is irrelevant to talk about the existence of values other than those given and those
computed (the input and output). Therefore, it is desirable to have a mathematical theory of the actual
quantities manipulated”. This paper thus aims to develop the mathematical theory of the discrete
two-dimensional Fourier transform in polar coordinates. Standard ‘operational rules’ associated with
any Fourier transform (shift, modulation, multiplication, and convolution) will be developed. Parseval
and modified Parseval relationships will also be shown, depending on the choice of kernel used.

To the best of the author’s knowledge, there is no discrete version of the 2D Fourier transform in
polar coordinates. It was shown in [2,4] that the 2D continuous Fourier transform in polar coordinates
is actually a combination of a single dimensional Fourier transform, a Hankel transform, followed by
an inverse Fourier transform. Of course, the discrete version of the 1D standard Fourier transform
is very well known and the literature on this subject alone is vast. Recently, a discrete version of the
Hankel transform has been proposed [6,7], yet this discrete transform is still in one dimension. We will
show further on that the 2D Fourier transform in polar coordinates requires this transform.

Mathematics 2019, 7, 698; doi:10.3390/math7080698 www.mdpi.com/journal/mathematics133
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Other researchers have defined the idea of a polar Fourier transform (polar FT), in which the
original function in the spatial domain is in Cartesian coordinates but its FT is computed in polar
coordinates, meaning discrete polar Fourier data and Cartesian spatial data [8–10]. Fast Fourier
transforms (FFT) have also been developed for non-equispaced data, referred to as a unequally spaced
FFT (USFFT) or non-uniform FFT (NUFFT) [11–15]. Using this approach, frequencies in a polar
frequency domain can be considered to be unequally spaced and hence the problem of evaluating
a polar FT can be considered as a special case of the USFFT. Averbuch et al. [8] compared the
accuracy results of their proposed approach which used a pseudo-polar grid to those obtained by
an USFFT approach and demonstrated that their approach show marked advantage over the USFFT.
Fenn et al. [10] examined computing the FT on a polar, modified and pseudo-polar grid using the
NUFFT, for both forward and backwards transforms. They demonstrated that the NUFFT was effective
at this computation. Although the above demonstrate that the computation of a discrete 2D FT on a
polar grid has previously been considered in the literature, there is, to date, no discrete 2D Fourier
transform in polar coordinates that exists as a transform in its own right, with its own set of rules of
the actual manipulated quantities.

The outline of the paper is as follows. Section 2 presents some of the necessary background
material. Section 3 introduces an intuitive ‘motivation’ for the definition of the 2D Discrete Fourier
Transform (DFT) in polar coordinates that will be introduced by considering space and band-limited
functions. This leads to an intuitive discretization scheme and an intuitive kernel for the proposed 2D
DFT, which is introduced in Section 4. Section 5 introduces the proposed transform while Section 6
derives the transform properties including modulation, shift, multiplication and convolution rules.
Section 7 discusses Parseval relations while Section 8 demonstrates that the proposed transform can
indeed be decomposed a sequence of DFT, Discrete Hankel Transform (DHT) and inverse DFT (IDFT),
in keeping with the approach of the continuous version of the transform. Finally, Section 8 concludes
the paper.

2. Background: Continuous 2D Fourier Transforms in Polar Coordinates

The 2D Fourier transform of a function f (
→
r ) = f (x, y) expressed in 2D Cartesian coordinates is

defined as [4]:

F
(→
ω
)
= F(ωx,ωy) =

∞∫
−∞

∞∫
−∞

f (x, y) e−i
→
ω·→r dx dy (1)

The inverse Fourier transform is given by:

f
(→

r
)
= f (x, y) =

1

(2π)2

∞∫
−∞

∞∫
−∞

F(ωx,ωy)ei
→
ω·→r dωx dωy (2)

where the shorthand notation of
→
ω =

(
ωx,ωy

)
,
→
r = (x, y) has been used. For functions with cylindrical

or circular symmetry, it is often more convenient to express both the original function f (
→
r ) and

its 2D Fourier transform F
(→
ω
)

in polar coordinates. If so, polar coordinates can be introduced as
x = r cosθ, y = r sinθ and similarly in the spatial frequency domain asωx = ρ cosψ andωy = ρ sinψ,
otherwise written as, r2 = x2 + y2, θ = arctan(y/x) and ρ2 = ω2

x +ω2
y, ψ = arctan

(
ωy/ωx

)
.

Given a function in polar coordinates f (r,θ), where θ is the angular variable and r is the radial
variable, the function can be expanded into a Fourier series as:

f
(→

r
)
= f (r,θ) =

∞∑
n=−∞

fn(r) einθ (3)
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where the Fourier coefficients are given by:

fn(r) =
1

2π

π∫
−π

f (r,θ) e−inθdθ (4)

Similarly, the 2D Fourier transform of f (r,θ) is given by F(ρ,ψ). The function F(ρ,ψ), where ψ
is the angular frequency variable and ρ is the radial frequency variable, can also be expanded into a
Fourier series as:

F
(→
ω
)
= F(ρ,ψ) =

∞∑
n=−∞

Fn(ρ) einψ (5)

where:

Fn(ρ) =
1

2π

π∫
−π

F(ρ,ψ)e−inψdψ (6)

We note that Fn(ρ) is NOT the Fourier transform of fn(r). The development details can be found
in [4], where it is demonstrated that the relationship is given by:

Fn(ρ) = 2π i−n
∞∫
0

fn(r)Jn(ρr) rdr

= 2π i−nHn
{
fn(r)
}
,

(7)

where Hn{·} denotes an nth order Hankel transform [3], see Appendix A.1 [3]. The inverse relationship
is given by:

fn(r) = in
2π

∞∫
0

Fn(ρ)Jn(ρr) ρdρ

= in
2π Hn

{
Fn(ρ)

}
.

(8)

Thus, the nth term in the Fourier series of the original function will Hankel transform into the
nth term of the Fourier series of the Fourier transform function via an nth order Hankel transform for
the nth term. Therefore, the steps for finding the 2D Fourier transform F(ρ,ψ) of a function f (r,θ)
are (i) finding its Fourier series coefficients in the angular variable fn(r), Equation (4), (ii) finding the
Fourier series coefficient of the Fourier transform, Fn(ρ) via Fn(ρ) = 2π i−nHn

{
fn(r)
}
, then (iii) taking

the inverse Fourier series transform (summing the series) with respect to the frequency angular variable,
Equation (5).

The discrete equivalent to the relationships given by Equations (3) to (8) have not been developed
and it is the goal of this paper to develop the discrete counterparts of these equations.

3. Motivation for the Discrete 2D Fourier Transform in Polar Coordinates

3.1. Space-Limited Functions

To motivate the discrete version of a 2D Fourier transform in polar coordinates, we follow the
same path used to derive the classical discrete Fourier transform (DFT) and also the recently-proposed
discrete Hankel transform (DHT) [6]. This approach starts with a space (or time for the traditional
FT) limited function in one domain and then makes the assumption that the transform of the function
is also limited in the corresponding frequency domain. While strictly speaking, functions cannot be
limited in both space and spatial frequency domains, in practice, they can be made ‘effectively’ limited
in the domain where they are not exactly limited by suitable truncation of an appropriate series. This is
how the DFT and DHT were both motivated. The discrete transforms derived in this manner then have
properties that exist in their own right, independent of their ability to approximate their continuous
transform counterpart.
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The same path is followed here. A function f (r,θ) in polar coordinates, where θ is the angular
variable and r is the radial variable, is expanded into a Fourier series given by Equation (3) where
fn (r) is given by Equation (4). It is now supposed that the function f (r,θ) is space-limited, meaning
that f (r,θ) and, by virtue of Equation (4), all the Fourier coefficients fn (r) are zero for r ≥ R. Then,
it follows that each of the Fourier coefficients fn (r) can be written in terms of a Fourier Bessel series
(see [6] and Appendix A.2) as:

fn(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞∑

k=1
C f

nkJn
( jnkr

R

)
r < R

0 r ≥ R
(9)

where the order, n, of the Bessel function in (9) matches the order fn of the Fourier coefficient, C f
nk

denotes the kth coefficient of the Fourier–Bessel expansion of fn(r) and denotes the kth zero of the nth
Bessel function. The C f

nk can be found from [16]:

C f
nk =

2
R2 J2

n+1( jnk)

R∫
0

fn(r)Jn

(
jnkr
R

)
r dr (10)

Equation (7) gives the relationship between the Fourier coefficients of the function itself and
its 2D Fourier transform. Using Equation (7) and making use of the space limited nature of fn(r),
Equation (10) can be written as:

C f
nk =

2
R2 J2

n+1( jnk)

∞∫
0

fn(r)Jn

(
jnkr
R

)
r dr =

in

πR2 J2
n+1( jnk)

Fn

(
jnk

R

)
(11)

Therefore, for r < R, Equation (9) becomes:

fn(r) =
in

πR2

∞∑
m=1

Fn

(
jnm

R

)
1

J2
n+1( jnm)

Jn

(
jnmr
R

)
(12)

Equation (12) with its infinite summation is exact. Now, evaluating Equation (12) at r = rnk =
jnkR
jnN1

for any N1 and where k < N1 gives:

fn

(
jnkR
jnN1

)
=

in

πR2

∞∑
m=1

Fn

(
jnm

R

)
1

J2
n+1( jnm)

Jn

(
jnm jnk

jnN1

)
k < N1 (13)

For k < N1, then rnk =
jnkR
jnN1

< R, and Equation (13), summing over infinite m, is still exact. For k ≥ N1,

then rnk =
jnkR
jnN1
≥ R and by the assumption of the space-limited nature of the function, f (rnk) = 0 for

k ≥ N1.
We now assume that the function is also effectively band limited, in addition to being space-limited.

Now, a function cannot be finite in both space and spatial frequency (equivalently if using a standard
Fourier transform it cannot be finite in both time and frequency). However, if a function is effectively
band-limited, then there exists an integer N1 for which Fn

( jnm
R

)
≈ 0 for m > N1. In other words, an

interval can be found beyond which the Fourier transform coefficients Fn(ρ) become very small. Since
the convergence of the Fourier–Bessel series in (13) is known, then lim

m→∞Fn
( jnm

R

)
= 0. In other words,

for any arbitrarily small ρ, there exists an integer N1 for which Fn
( jnm

R

)
< ρ for m > N1.

Hence, using notion of an effective band-limit as stated in the preceding paragraph, the series in
Equation (13) can be terminated at a suitably chosen N1, thus giving an effective band limit. Termination
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of the series at m = N1 is equivalent to assuming that Fn(ρ) ≈ 0 for ρ > Wρ =
jnN1

R . It is noted that at

m = N1, the last term in Equation (13) is Jn

(
jnN1 jnk

jnN1

)
= Jn( jnk) = 0, so that termination of the series at

N1 implies that Equation (13) becomes

fn

(
jnkR
jnN1

)
=

in

πR2

N1−1∑
m=1

1
J2
n+1( jnm)

Jn

(
jnm jnk

jnN1

)
Fn

(
jnm

R

)
k = 1..N1 − 1 (14)

Equation (14) is the discrete equivalent of Equation (8) in that it demonstrates that the relationship
between discrete samples of fn(r) and Fn(r) is given by a discrete Hankel transform type of relationship,
whereas the continuous relationship involved a continuous Hankel transform. The termination of the
series at N1 is equivalent to assuming an “effective” band-limit on the function. In other words, it states
that for m > N1, the values of Fn

( jnm
R

)
, which from Equation (11) are proportional to the Fourier–Bessel

coefficients, are negligibly small. Of course, this is never exactly true, however, since the Fourier–Bessel
series converges, it is always possible to choose N1 so that the approximation introduced by truncating
the series at N1 is good [16].

The truncation of the series at N1 also permits Equation (14) to be easily inverted. Multiplying

both sides of (14) by
4Jn

(
jnk jnp
jnN1

)
j2nN1

J2
n+1( jnk)

and summing over k gives:

N1−1∑
k=1

fn

(
jnkR
jnN1

) 4Jn

(
jnk jnp
jnN1

)
j2nN1

J2
n+1( jnk)

=

N1−1∑
m=1

in

πR2

N1−1∑
k=1

4Jn

(
jnm jnk
jnN1

)
Jn

(
jnk jnp
jnN1

)
j2nN1

J2
n+1( jnm)J2

n+1( jnk)︸�������������������������������︷︷�������������������������������︸
=δmp

Fn

(
jnm

R

)
(15)

where we have used the discrete orthogonality of the Bessel functions as given in Appendix A.4. Hence,

Fn

(
jnp

R

)
= i−nπR2

N1−1∑
k=1

fn

(
jnkR
jnN1

) 4Jn

(
jnk jnp
jnN1

)
j2nN1

J2
n+1( jnk)

(16)

Equations (14) and (16) offer the basic structure on which to base the discrete transform formulation.
Equation (16) is the basic structure to define the forward transform and Equation (14) offers the basic
structure to define the inverse transform.

To proceed further, we need ways to compute fn
(

jnkR
jnN1

)
and Fn

( jnm
R

)
. Here, the theory of discrete

Fourier transforms can be used. For n ∈ [−M, M] where N2 = 2M+ 1, it is shown in [17] that the Fourier
coefficients fn(r) and Fn(ρ) can be well approximated with expressions given by (see Appendix A.5):

Fn(ρ) ≈ 1
N2

M∑
p=−M

F
(
ρ, 2πp

N2

)
e−i 2πnp

N2

fn(r) ≈ 1
N2

M∑
p=−M

f
(
r, 2πp

N2

)
e−i 2πnp

N2

(17)

Hence, we will use Equation (17) to write:

Fn

( jnm
R

)
= 1

N2

M∑
p=−M

F
(

jpm
R , 2πp

N2

)
e−i 2πnp

N2

fn
(

jnkR
jnN1

)
= 1

N2

M∑
p=−M

f
(

jpkR
jpN1

, 2πp
N2

)
e−i 2πnp

N2

(18)
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Equation (18) is a key assumption of the development. Note that in both cases, the function is

sampled in the summation over p at the radial variable
(

jpk,m
R

)
, that is, it is included in the summation

index. However, the function on the left hand side of Equation (18) is sampled at
( jnm

R

)
We show in

Appendix A.6 that this assumption is valid. This assumption is what also permits the invertibility
of the discrete transforms, since without this assumption it would not be possible to propose an
invertible, orthogonal discrete transform. Equation (18) will be used to derive the forward and inverse
discrete transforms.

3.1.1. Forward Transform

For the forward transform, we can start with Equation (16), and use the key relationships given
by Equation (18). Under these conditions, Equation (16) becomes:

1
N2

M∑
l=−M

F
(

jlm
R

,
2πl
N2

)
e−i 2πnl

N2

︸����������������������������︷︷����������������������������︸
Fn(

jnm
R )

= i−nπR2
N1−1∑
k=1

4Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 1
N2

M∑
p=−M

f
( jpkR

jpN1

,
2πp
N2

)
e−i 2πnp

N2

⎫⎪⎪⎪⎬⎪⎪⎪⎭︸������������������������������������︷︷������������������������������������︸
fn(

jnkR
jnN1

)

(19)

Equation (19) is the discrete equivalent of Equation (7). From Equation (19), multiply both sides

by e+i 2πnq
N2 and sum from n = −M..M gives:

M∑
n=−M

M∑
l=−M

F
( jlm

R , 2πl
N2

)
e−i 2πnl

N2 e+i 2πnq
N2 =

M∑
n=−M

i−nπR2
N1−1∑
k=1

4Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

M∑
p=−M

f
(

jpkR
jpN1

, 2πp
N2

)
e−i 2πnp

N2 e+i 2πnq
N2 (20)

Interchanging the order of summation on the left hand side of (20) and using the orthogonality
relationship of the complex exponential (Appendix A.3) gives:

F
(

jqm

R
,

2πq
N2

)
=

2πR2

N2

M∑
n=−M

N1−1∑
k=1

M∑
p=−M

f
( jpkR

jpN1

,
2πp
N2

) 2i−nJn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

e−i 2πnp
N2 e+i 2πnq

N2 (21)

3.1.2. Inverse Transform

For the inverse transform, we start with the structure of Equation (14) and then use the key
approximations given in Equation (18) to obtain:

1
N2

M∑
p=−M

f
( jpkR

jpN1

,
2πp
N2

)
e−i 2πnp

N2

︸��������������������������������︷︷��������������������������������︸
fn(

jnkR
jnN1

)

=
in

πR2

N1−1∑
m=1

Jn

(
jnm jnk
jnN1

)
J2
n+1( jnm)

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 1
N2

M∑
q=−M

F
(

jqm

R
,

2πq
N2

)
e−i 2πnq

N2

⎫⎪⎪⎪⎬⎪⎪⎪⎭︸����������������������������������︷︷����������������������������������︸
Fn(

jnm
R )

(22)

Multiplying both sides of Equation (22) by e+i 2πnp
N2 , summing from n = −M..M, interchanging

the order of summation on the left hand side and using the orthogonality relationship of the discrete
complex exponential gives:

f
( jpkR

jpN1

,
2πp
N2

)
=

1
2πR2N2

M∑
n=−M

N1−1∑
m=1

M∑
q=−M

F
(

jqm

R
,

2πq
N2

) 2inJn

(
jnm jnk
jnN1

)
J2
n+1( jnm)

e−i 2πnq
N2 e+i 2πnp

N2 (23)
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3.2. Band-Limited Functions

The process in the previous section can be repeated by starting with the assumption that the
function is band-limited. That is, we suppose that the 2D Fourier transform F(ρ,ψ) of f (r,θ) is
band-limited, meaning that F(ρ,ψ) itself and therefore by virtue of the equivalent of Equation (9), all
of its Fourier coefficients Fn(ρ) are zero for ρ ≥Wρ = 2πW. Typically, W would be given in units of
Hz (cycles per second) if using temporal units, or cycles per meter if using spatial units. Hence, the
definition of Wρ (with a multiplication by 2π) ensures that the final units are given in s−1 or m−1. The
details of this development follow the same steps as for the space-limited function but start with the
assumption of a band-limited function and then impose a space-limit (i.e., truncation of the series).
The results of this are summarized below.

3.3. Summary of Above Relationships

From the above, we summarize the derived relationships. In the case of a space-limited function,
it is found that the forward transform is given by:

F
(

jqm

R
,

2πq
N2

)
=

2πR2

N2

M∑
n=−M

N1−1∑
k=1

M∑
p=−M

f
( jpkR

jpN1

,
2πp
N2

) 2i−nJn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

e−i 2πnp
N2 e+i 2πnq

N2 (24)

and the inverse transform is given by:

f
( jpkR

jpN1

,
2πp
N2

)
=

1
2πR2N2

M∑
n=−M

N1−1∑
m=1

M∑
q=−M

F
(

jqm

R
,

2πq
N2

) 2inJn

(
jnm jnk
jnN1

)
J2
n+1( jnm)

e−i 2πnq
N2 e+i 2πnp

N2 (25)

Similarly, starting from the assumption of a bandlimited function, the forward transform is
given by:

F
(

jqmWρ

jqN1

,
2πq
N2

)
=

2π
W2
ρN2

M∑
n=−M

N1∑
k=1

M∑
p=−M

f
( jpk

Wρ
,

2πp
N2

)2 i−nJn

(
jnk jnm
jnN1

)
J2
n+1( jnk)

e−i 2πnp
N2 e+i 2πnq

N2 (26)

and the inverse transform is given by:

f
( jpk

Wρ
,

2πp
N2

)
=

W2
ρ

2πN2

M∑
n=−M

N1−1∑
m=1

M∑
q=−M

F
(

jqmWρ

jqN1

,
2πq
N2

) 2inJn

(
jnm jnk
jnN1

)
j2nN1

J2
n+1( jnm)

e−i 2πnq
N2 e+i 2πnp

N2 (27)

It is noted that the forward-inverse transform pair defined by Equations (24) and (25) is similar to
the transform pair defined by (26) and (27), with a few differences. First, the sampling points appear to
be slightly different, depending on whether we started with the assumption of a space-limited function
or a bandlimited function. The second observation is that the form of the transform itself might appear
to be slightly different, depending on whether a space-limited or a band-limited function was assumed
as a starting point. However, it was shown in [6] that for a nth order discrete Hankel transform,
the required relationship between the band limit and space limit is given by WρR = jnN1 . If the
substitution WρR = jnN1 is used in Equations (24) and (25), then it yields the same discrete transform
as the transform pair defined by (26) and (27). Also, the relationship WρR = jnN1 arose naturally in the
development above when the truncation of the Fourier–Bessel series at N1 was implemented, meaning
that the truncation of the series at N1 is the same as assuming WρR = jnN1 .
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Formally using the relationship WρR = jnN1 , the expressions in Equations (24) and (25) can also
be written using a symmetric forward/inverse transform pair, where the forward transform is given by:

F
(

jqm

R
,

2πq
N2

)
=

2πR
N2Wρ

M∑
n=−M

N1−1∑
k=1

M∑
p=−M

f
( jpkR

jpN1

,
2πp
N2

) 2i−nJn

(
jnk jnm
jnN1

)
jnN1

J2
n+1( jnk)

e−i 2πnp
N2 e+i 2πnq

N2 (28)

For the inverse transform, we can similarly write:

f
( jpkR

jpN1

,
2πp
N2

)
=

Wρ

2πRN2

M∑
n=−M

N1−1∑
m=1

M∑
q=−M

F
(

jqm

R
,

2πq
N2

) 2inJn

(
jnm jnk
jnN1

)
jnN1 J2

n+1( jnm)
e−i 2πnq

N2 e+i 2πnp
N2 (29)

The advantage of the formulation in Equations (28) and (29) shall be noted in the next section in
that it suggests a symmetric form of the kernel for the 2D discrete transform in polar coordinates.

The above demonstrates that a natural, (N1 − 1) ×N2 dimensional discretization scheme in finite
space and finite frequency space is given by:

rpk =
jpkR

jpN1

or rpk =
jpk

Wρ
, and θp =

p2π
N2

(30)

and:

ρqm =
jqm

R
or ρqm =

jqmWρ

jqN1

, and ψq =
q2π
N2

(31)

where p, k, q, m, n, N1, and N2 are integers such that −M ≤ n ≤M, where 2M+ 1 = N2, 1 ≤ m, k,≤ N1 − 1

and −M ≤ p, q ≤M. The relationship Wρ =
jnN1

R can be used to formally switch from a finite frequency
domain to a finite space domain. This is a ‘formal’ approach because in making this substitution, the
index of the Bessel function is not fixed whereas Wρ and R are assumed fixed values. Nevertheless,
it demonstrates the approach to switching from a space-limited based discretization scheme to a
band-limited discretization scheme.

4. Proposed Kernel for the Discrete Transform

4.1. Proposed Kernel for 2D Polar Discrete Fourier Transform

To work with the polar 2D DFT, a kernel for the transformation is required. Inspired by the
formulations shown in Equations (24) and (25), we propose the following kernels:

E−qm;pk =
1

N2

M∑
n=−M

Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

2i−ne−in 2πp
N2 e+in 2πq

N2

E+
qm;pk =

1
N2

M∑
n=−M

Jn

(
jnm jnk
jnN1

)
J2
n+1( jnm)

2ine+i 2πnp
N2 e−i 2πnq

N2

(32)

where p, k, q, m, n, N1, and N2 are integers such that −M ≤ n ≤M, where 2M+ 1 = N2, 1 ≤ m, k,≤ N1 − 1
and −M ≤ p, q ≤M. It is noted that the proposed kernels in Equation (32) are almost complex conjugates
of each other save for a factor of j2nN1

in the denominator of E−qm;pk. The formulation in Equation (32) is
proposed in order to emulate Equations (24) and (25). A symmetric formulation of the kernels, with
one jnN1

in the denominator of each of E−(qm; pk) and E+(qm; pk) would also be possible and would
make E±qm;pk complex conjugates of each other; however, such a kernel would be more of a departure
from a discretization of the continuous transform. The integers N1, and N2 denote the size of the
working spaces, with N2 giving the size in the angular direction and N1 giving the size in the radial
direction. Since N2 = 2M + 1, it follows that N2 must be an odd integer. The notation for E−(qm; pk)
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and E+(qm; pk) are chosen deliberately. The subscript (+ or -) indicate the sign on the i± and on the
exponent containing the p variable; the q variable exponent then takes the opposite sign.

4.2. Another Choice of Kernel

A second, more symmetric choice of kernel is also possible. We will see that this choice of kernel
will allow for a more traditional version of Parseval’s theorem. All the following expressions will hold
with either form of kernel. Using as inspiration the forms written in Equations (28) and (29), then we
suggest for a kernel the following expression:

E(s)−
qm;pk =

1
N2

M∑
n=−M

Jn

(
jnk jnm
jnN1

)
jnN1

J2
n+1( jnk)

2i−ne−in 2πp
N2 e+in 2πq

N2

E(s)+
qm;pk =

1
N2

M∑
n=−M

Jn

(
jnm jnk
jnN1

)
jnN1

J2
n+1( jnm)

2ine+i 2πnp
N2 e−i 2πnq

N2

(33)

As before, p, k, q, m, n, N1, and N2 are integers such that −M ≤ n ≤ M, where 2M + 1 = N2

1 ≤ m, k,≤ N1 − 1 and −M ≤ p, q ≤M. In Equation (33), E(s)+
qm;pk is now the complex conjugate of E(s)−

qm;pk,
as mentioned above.

4.3. Orthogonality of the Proposed Kernel

In what follows, we assume the ranges of the variables are such that p, k, q, m, n, N1, and N2 are
integers such that −M ≤ n ≤ M, where 2M + 1 = N2, 1 ≤ m, k,≤ N1 − 1 and −M ≤ p, q ≤ M. We state
and prove that the following relationship is true:

N1−1∑
m=1

M∑
q=−M

E−qm;pkE+
qm;p′k′ = δpp′δkk′ (34)

where δpp′ is the Kronecker-delta function, defined as δpp′ = 1 if p = p′ and δpp′ = 0 otherwise. It is
known that the continuous complex exponential expression can be written as:

ei
→
ω·→r =

∞∑
n=−∞

inJn(ρr) einθe−inψ (35)

Hence, the form of the discrete kernel as proposed in (32) or (33) resembles discrete samples of
the right hand side of Equation (35). It then follows that our proposed kernels in (32) or (33) can be
considered to be the (discrete) corresponding form of the complex exponential kernel for the proposed
discrete transform. The orthogonality relationship in (34) can then be considered to be the discrete
version of:

∞∫
0

2π∫
0

e−i
→
ω·→r ei

→
ω·→r ′d→ω = δ

(→
r −→r ′

)
(36)

where the integration over the frequency vector
→
ω has been replaced with a discrete sum over the

frequency vector indices (q,m). The proof of Equation (34) uses the orthogonality of the discrete
complex exponential and the discrete Hankel transform and can be found in Appendix A.7.

It can be similarly shown that the following orthogonality relationship is also true:

N1−1∑
k=1

M∑
p=−M

E−qm;pkE+
q′m′;pk = δqq′δmm′ (37)
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which is similarly to be considered to be the discrete version of:

∞∫
0

2π∫
0

e−i
→
ω·→r ei

→
ω
′·→r d

→
r = δ

(→
ω −→ω′

)
(38)

Once again, the integration over the vector
→
r has been replaced with a discrete sum over the

→
r

vector indices (p,k). The proof of Equation (37) can also be found in Appendix A.7. The orthogonality
expressions in Equations (34) and (37) still hold if E±qm;pk is replaced with the symmetric E(s)±

qm;pk since the

only difference between the E±qm;pk and E(s)±
qm;pk is the attribution of a jnN1 term in the denominator and

this makes no difference when the two kernels are multiplied.

5. Proposed Transform

In this section, we propose a definition of the 2D discrete Fourier transform (DFT) in polar
coordinates which is motivated by the results of the 2D Fourier transform applied to space-limited and
band-limited functions and also by the proposed kernel. The 2D DFT in polar coordinates will be a
transform that transforms a 2-subscript set of numbers (ie matrix) fpk to another set of values, matrix
Fqm where p, k, q, m, are integers such that 1 ≤ m, k,≤ N1 − 1 and −M ≤ p, q ≤M where N2 = 2M + 1 for
integers N1, and N2.

Forward and Inverse Transform

The proposed forward transform, fpk → Fqm is given by:

Fqm = 1
N2

M∑
n=−M

N1−1∑
k=1

M∑
p=−M

2i−n fpk

Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

e−i 2πnp
N2 e+i 2πnq

N2

=
N1−1∑
k=1

M∑
p=−M

fpkE−qm;pk

(39)

where N2 = 2M + 1 for some integer M. Similarly, for the inverse transform we propose:

fpk = 1
N2

M∑
n=−M

N1−1∑
m=1

M∑
q=−M

2inFqm

Jn

(
jnm jnk
jnN1

)
J2
n+1( jnm)

e−i 2πnq
N2 e+i 2πnp

N2

=
N1−1∑
m=1

M∑
q=−M

FqmE+
qm;pk

(40)

In the proposed transform, E(s)±
qm;pk could easily be used in placed of E±qm;pk and all the following

expressions will still be valid.

Proof. Substituting Equation (39) into the right-hand side of (40), interchanging the order of summation
and using the orthogonality relationships of the kernel given in Equation (34) gives:

N1−1∑
m=1

M∑
q=−M

⎧⎪⎪⎨⎪⎪⎩
N1−1∑
l=1

M∑
s=−M

fslE−qm;sl

⎫⎪⎪⎬⎪⎪⎭︸��������������������︷︷��������������������︸
Fqm

E+
qm;pk =

N1−1∑
l=1

M∑
s=−M

fslδspδlk = fpk (41)
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Similarly, substituting Equation (40) into the right-hand side of (39), interchanging the order of
summation and using the orthogonality of the kernel given in Equation (37) gives:

N1−1∑
k=1

M∑
p=−M

⎧⎪⎪⎨⎪⎪⎩
N1−1∑
l=1

M∑
s=−M

FslE+
sl;pk

⎫⎪⎪⎬⎪⎪⎭︸��������������������︷︷��������������������︸
fpk

E−qm;pk =

N1−1∑
l=1

M∑
s=−M

Fslδsqδlm = Fqm (42)

Hence, Equation (39) and (40) are inverses of each other. These expressions would also hold if
E(s)±

qm;pk were used instead of E±qm;pk.

6. Properties of the Transform—Transform Rules

6.1. The Complex Exponential

For the discrete case, the functions E−qm;pk and E+
qm;pk as introduced above are the complex

exponentials for this space, satisfying the required orthogonality condition and functioning as the

kernel for the 2D-DFT in polar coordinates. These kernels are not e±i
→
ω·→r evaluated at particular points

because the evaluation of the discrete radial variables in regular and frequency space varies with the
order of the Bessel function. Nevertheless, these functions are the ‘effective’ complex exponentials for
the space under consideration. From the orthogonality condition of the 2D polar DFT kernel, it can
be shown that the expected Fourier rule of a complex exponential transforming to a delta function
applies. Specifically, the 2D DFT of fpk = E+

q0m0;pk for some fixed, given values (q0, m0) is given by:

Fqm =
N1−1∑
k=1

M∑
p=−M

fpkE−qm;pk =
N1−1∑
k=1

M∑
p=−M

E+
q0m0;pkE−qm;pk

= δqq0δmm0

(43)

Hence, fpk = E+
q0m0;pk transforms to δqq0δmm0 or in compact notation, E+

q0m0;pk ⇔ δqq0δmm0 . This is

the discrete version of the transform of exp
(→
ω0 · →r

)
.

6.2. The Delta Function

Clearly, the discrete equivalent of the Dirac-delta function is the Kronecker-delta function and
in 2D, this needs to be a 2-subscript function. Thus, the discrete function whose 2D DFT is sought
is given by fpk = δpp0δkk0 , which defines a matrix indexed by (p, k) where all the entries are zero
except for the index where p = p0 and k = k0. The dimensions of this matrix are in keeping with
all the dimensions assumed for the space which are p, k, q, m, n, N1, and N2 are integers such that
−M ≤ n ≤ M, 1 ≤ m, k,≤ N1 − 1 and −M ≤ p, q ≤ M and where 2M + 1 = N2. Finding the 2D DFT of
this function gives:

Fqm =
N1−1∑
k=1

N2−1∑
p=0

fpkE−qm;pk =
N1−1∑
k=1

N2−1∑
p=0

δpp0δkk0E−qm;pk

= E−qm;p0k0

(44)

Hence, as in the continuous case, the delta function transforms to the complex exponential (with a
negative sign in the exponent). Hence we have another the Fourier pair δpp0δkk0 ⇔ E−qm;p0k0

.
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6.3. The Generalized Shift Operator

For a one dimensional Fourier transform, the shift rule is one of the known transform rules. This
rule says that a shift in time is equivalent to a modulation in frequency. Mathematically, this is stated as:

f (t− a) = F
−1
{
e−iaω f̂ (ω)

}
=

1
2π

∞∫
−∞

{
e−iaω f̂ (ω)

}
eiωtdω (45)

Using this result as motivation, a generalized-shift operator is defined by finding the inverse DFT
of the DFT of the function multiplied by the DFT kernel (modulation). A generalized shift operator
was first proposed by Levitan [18], and our definition is a discretized version of this definition. Levitan
suggested the complex conjugate of the Fourier operator as a generalized shift operator, which for
Fourier transforms is the inverse transform operator. This approach to a generalized shift operator
has previously been used with the Hankel transform itself [6,19]. Thus, we define the definition of a
generalized-shifted function f p0k0

pk as the inverse Fourier transform of the function multiplied by the
inverse transform operator. That is, it is defined as:

f p0k0
pk :=

M∑
q=−M

N1−1∑
m=1

{
FqmE−qm;p0k0

}
E+

qm;pk (46)

Here, fpk is the original (unshifted) function with 2D DFT Fqm such that fpk → Fqm. f p0k0
pk is the

shifted function where p0k0 denotes the amount of the shift (the equivalent of a in Equation (45)).
The shifted function f p0k0

pk can also be expressed in terms of the unshifted function fpk by writing
Fqm in terms of fpk such as:

f p0k0
pk =

M∑
q=−M

N1−1∑
m=1

FqmE−qm;p0k0
E+

qm;pk

=
M∑

q=−M

N1−1∑
m=1

⎧⎪⎪⎨⎪⎪⎩ M∑
p′=−M

N1−1∑
k′=1

fp′k′E−qm;p′k′

⎫⎪⎪⎬⎪⎪⎭E−qm;p0k0
E+

qm;pk

(47)

By interchanging the order of summation, this can be rewritten as:

f p0k0
pk =

M∑
p′=−M

N1−1∑
k′=1

fp′k′
M∑

q=−M

N1−1∑
m=1

E−qm;p′k′E
+
qm;pkE−qm;p0k0︸����������������������������������︷︷����������������������������������︸

shift operator in space domain
= Sp0k0

p′k′,pk

(48)

Equation (48) permits the definition of a shift operator so that the shift operator in the spatial
domain is defined as:

Sp0k0
p′k′,pk =

M∑
q=−M

N1−1∑
m=1

E−qm;p′k′E
+
qm;pkE−qm;p0k0

(49)

This triple-product shift operator resembles previous definitions of shift operators for
multidimensional Fourier transforms [2,3], generalized Hankel convolutions [20–22] and also discrete
Hankel transforms [6].
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6.4. Forward Transform of the Generalized Shift

We now consider the forward 2D Fourier transform of the generalized shifted function f p0k0
pk . From

the definition of the shifted function given in Equation (46), it is obvious that the forward transform of
the shifted function is given by:

F
2D
(

f p0k0
pk

)
= FqmE−qm;p0k0

(50)

The above can also be verified directly. The 2D Fourier transform of the shifted function can be
found from:

F2D
(

f p0k0
pk

)
=

M∑
p=−M

N1−1∑
k=1

f p0k0
pk E−qm;pk

=
M∑

p=−M

N1−1∑
k=1

⎧⎪⎪⎨⎪⎪⎩ M∑
q′=−M

N1−1∑
m′=1

Fq′m′E−q′m′;p0k0
E+

q′m′;pk

⎫⎪⎪⎬⎪⎪⎭E−qm;pk

(51)

where the definition in (46) was used. Interchanging the order of summation and using the orthogonality
result in (37) gives:

F
2D
(

f p0k0
pk

)
=

M∑
q′=−M

N1−1∑
m′=1

Fq′m′E−q′m′;p0k0

M∑
p=−M

N1−1∑
k=1

E+
q′m′;pkE−qm;pk

︸������������������������︷︷������������������������︸
=δqq′δmm′

= FqmE−qm;p0k0
(52)

This gives another transform pair and also defines the shift-modulation rule. This rule is in
analogy with the shift-modulation rule for regular Fourier transforms that states that a shift in the
spatial/time domain is equivalent to modulation in the frequency domain:

f p0k0
pk ⇔ FqmE−qm;p0k0

(53)

Equation (53) is equivalent to the standard 1D continuous transform rule of:

F
{
f (t− a)

}
= e−iaω f̂ (ω) (54)

6.5. Modulation

We suppose that the forward 2D-DHT of a function gpk is ‘modulated’ in the space domain so that
the function whose transform we seek is fpk = E+

q0m0;pkgpk. This is the discrete equivalent of a function

g(t) modulated as eiatg(t) Here, the interpretation of fpk = E+
q0m0;pkgpk is as follows:

fpk = E+
q0m0;pkgpk

fpk = gpk
2

N2

M∑
n=−M

Jn

(
jnm0 jnk

jnN1

)
Jn+1( jnm0)

ine+i 2πnp
N2 e−i

2πnq0
N2

(55)

Again, we implement the definition of the forward transform on the modulated function
fpk = E+

q0m0;pkgpk so that:

Fqm =

N1−1∑
k=1

M∑
p=−M

fpkE−qm;pk =

N1−1∑
k=1

M∑
p=−M

E+
q0m0;pkgpkE−qm;pk (56)
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and write gpk in terms of its inverse transform:

gpk =

N1−1∑
m=1

M∑
q=−M

GqmE+
qm;pk (57)

So that Equation (56) becomes:

Fqm =

N1−1∑
k=1

M∑
p=−M

E+
q0m0;pk

N1−1∑
m′=1

M∑
q′=−M

Gq′m′E+
q′m′;pkE−qm;pk (58)

Interchanging the order of summation gives:

Fqm =

N1−1∑
m′=1

M∑
q′=−M

Gq′m′
N1−1∑
k=1

M∑
p=−M

E+
q′m′;pkE−qm;pkE+

q0m0;pk

︸����������������������������������︷︷����������������������������������︸
shift operator in the frequency domain

= Gq0m0
qm (59)

By comparing Equation (59) with Equation (49), we recognize the shift operator as shown in (59).
This follows from a shift over the (q,m) variables and defines a shift operator in the frequency domain as:

Sq0m0
q′m′,qm =

N1−1∑
k=1

M∑
p=−M

E+
q′m′;pkE−qm;pkE+

q0m0;pk (60)

Hence, Equation (59) can be written as:

Fqm =

N1−1∑
m′=1

M∑
q′=−M

Gq′m′S
q0m0
q′m′,qm = Gq0m0

qm (61)

The shift operator in the frequency domain over the (q,m) variables as given by Equation (60) can
be compared to the shift operator over the (p,k) variables in the space domain as shown in (49). We
note that operations in the spatial domains are operations that involve the (p,k) variables or the second
group of variables in E±qm;pk. Similarly, operations in the frequency domain involve operations over the
(q,m) variables or the first set of variables in E±qm;pk.

Hence, the above development shows the derivation of a modulation-shift rule, where the forward
2D-DHT of a modulated function is equivalent to a generalized shift in the frequency domain. This
gives the following transform pair:

E+
q0m0;pkgpk ⇔ Gq0m0

qm (62)

Otherwise stated, Equation (62) shows that modulation in the space domain is equivalent to shift
in the frequency domain, in keeping with expectations for a (generalized) Fourier transform.

6.6. Convolution–Multiplication

For a 2D convolution/multiplication rule, we consider a 2D convolution in the space domain. The
convolution is defined in the traditional manner as the product of a shifted function with another
unshifted function, and then the summation over all possible shifts. Specifically, we write it as:
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fpk = hpk ∗ ∗gpk =
M∑

p0=−M

N1−1∑
k0=1︸�������︷︷�������︸

summation over
all possible shifts

hp0k0
pk︸︷︷︸

shifted
function

gp0k0︸︷︷︸
unshifted
function

(63)

where hp0k0
pk is the hpk shifted by p0k0 given by:

hp0k0
pk =

M∑
q=−M

N1−1∑
m=1

HqmE−qm;p0k0
E+

qm;pk (64)

The summation in Equation (63) is then over all the possible shifts. Taking the forward transform
of fpk as defined in (63) gives:

Fqm =
N1−1∑
k=1

M∑
p=−M

fpkE−qm;pk =
N1−1∑
k=1

M∑
p=−M

⎧⎪⎪⎨⎪⎪⎩ M∑
p0=−M

N1−1∑
k0=1

hp0k0
pk gp0k0

⎫⎪⎪⎬⎪⎪⎭E−qm;pk

=
N1−1∑
k=1

M∑
p=−M

M∑
p0=−M

N1−1∑
k0=1

M∑
q′=−M

N1−1∑
m′=1

Hq′m′E−q′m′;p0k0
E+

q′m′;pk

︸������������������������������������︷︷������������������������������������︸
h

p0k0
pk

M∑
q′′=−M

N1−1∑
m′′=1

Gq′′m′′ E+
q′′m′′ ;p0k0︸��������������������������������︷︷��������������������������������︸

gp0k0

E−qm;pk
(65)

Interchanging the order of summation so that the summation over p,k is performed first and using
the orthogonality of the kernel gives:

Fqm =
M∑

p0=−M

N1−1∑
k0=1

M∑
q′=−M

N1−1∑
m′=1

M∑
q′′=−M

N1−1∑
m′′=1

Hq′m′E−q′m′;p0k0
Gq′′m′′ E+

q′′m′′ ;p0k0
δqq′δmm′

=
M∑

p0=−M

N1−1∑
k0=1

M∑
q′′=−M

N1−1∑
m′′=1

HqmE−qm;p0k0
Gq′′m′′ E+

q′′m′′ ;p0k0

(66)

Now summing over p0, k0 and again using the orthogonality of the kernel gives:

Fqm =
M∑

q′′=−M

N1−1∑
m′′=1

HqmGq′′m′′ δqq′′ δmm′′ = HqmGqm (67)

In other words, we have the result that:

hpk ∗ ∗gpk ⇔ HqmGqm (68)

Equation (68) is, of course, the expected convolution–multiplication rule where convolution in the
space domain is equivalent to multiplication in the frequency domain.

6.7. Multiplication–Convolution Rule

We now consider the forward 2D FT of a term-by-term product in the space domain so that
fpk = hpkgpk. Then, the forward transform of the term-by-term product is given by:

Fqm =

N1−1∑
k=1

M∑
p=−M

fpkE−qm;pk =

N1−1∑
k=1

M∑
p=−M

{
hpkgpk

}
E−qm;pk (69)
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Using the definitions of the inverse 2D FT to write hpk and gpk then:

Fqm =
N1−1∑
k=1

M∑
p=−M

fpkE−qm;pk =
N1−1∑
k=1

M∑
p=−M

M∑
q′=−M

N1−1∑
m′=1

Hq′m′E+
q′m′;pk

︸������������������������︷︷������������������������︸
hpk

gpkE−qm;pk

=
M∑

q′=−M

N1−1∑
m′=1

Hq′m′
N1−1∑
k=1

M∑
p=−M

gpkE+
q′m′;pkE−qm;pk

︸����������������������������︷︷����������������������������︸
=Gq′m′

qm

(70)

In Equation (70), we have used the modulation rule E+
q0m0;pkgpk ⇔ Gq0m0

qm . In other words,
Equation (70) states that:

Fqm =
M∑

q′=−M

N1−1∑
m′=1

Hq′m′G
q′m′
qm = Hqm ∗ ∗Gqm (71)

Hence, hpkgpk ⇔ Hqm ∗ ∗Gqm which is the multiplication-convolution rule where multiplication in
the space domain is equivalent to convolution in the frequency domain.

6.8. Rotation

It is generally known that rotating a function in 2D space also rotates its 2D Fourier transform.
We demonstrate that this is still true with our definition of the discrete 2D DFT in polar coordinates.
To see this, we consider a shift of the function in frequency space, meaning consider F(q−q0)m where a
shift by q0 in the angular coordinate has been implemented. In this case, since the circular direction is
circularly periodic, we interpret q− q0 in the sense of modulo N2. So consider the inverse discrete 2D
DFT of F(q−q0)m, that is from the definition in Equation (40)

F
−1
2D

{
F(q−q0)m

}
=

1
N2

M∑
n=−M

jnN1
ine+i 2πnp

N2

N1−1∑
m=1

2Jn

(
jnm jnk
jnN1

)
jnN1 J2

n+1( jnm)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M∑

q=−M

F(q−q0)me−i 2πnq
N2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (72)

Now suppose that q′ = q − q0 so that q = q′ + q0 and q = −M implies q′ = −q0 −M and also
q = +M implies q′ = −q0 + M. Hence, Equation (72) becomes:

1
N2

M∑
n=−M

jnN1
ine+i 2πnp

N2

N1−1∑
m=1

2Jn

(
jnm jnk
jnN1

)
jnN1 J2

n+1( jnm)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q′=−q0+M∑
q′=−q0−M

Fq′me−i
2πn(q′+q0)

N2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (73)

But because of the circular (N2) periodicity of the function, then:

q′=−q0+M∑
q′=−q0−M

Fq′me−i
2πn(q′+q0)

N2 = e−i
2πnq0

N2

q′=−q0+M∑
q′=−q0−M

Fq′me−i 2πnq′
N2 = e−i

2πnq0
N2

q′=+M∑
q′=−M

Fq′me−i 2πnq′
N2 (74)

Hence, Equation (72) becomes:

1
N2

M∑
n=−M

jnN1
ine+i 2πnp

N2 e−i
2πnq0

N2︸�����������︷︷�����������︸
=e

+i
2πn(p−q0)

N2

N1−1∑
m=1

2Jn

(
jnm jnk
jnN1

)
jnN1 J2

n+1( jnm)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M∑

q=−M

Fqme−i 2πnq
N2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = f(p−q0)k (75)
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As above, f(p−q0)k is to be interpreted in the sense of modulo N2. However, what this clearly
demonstrates is that rotating the Fourier transform by q0 is equivalent to rotating the original function
by q0, as is expected of a 2D Fourier transform.

7. Generalized Parseval Theorem

Under the proposed transform, inner products are preserved and, therefore, energies are
preserved with the symmetric version of the transform. With the non-symmetric version of the
transform, a modified version of Parseval’s theorem is possible. This will be demonstrated in the
following subsections.

7.1. Parseval’s Theorem with the Symmetric Kernel

Consider the total energy of the term-by-term product (Hadamard product) of two matrices in the
spatial domain fpk = hpkgpk. We use the overbar notation to denote the complex conjugate, so that gpk
denotes the complex conjugate of gpk. We recall that in the case of the symmetric kernel, the complex

conjugate of E(s)+
qm;pk is E(s)−

qm;pk, which is what will enable the Parseval relationship to exist in its expected
form, as will be shown. More specifically, it is noted that:

N1−1∑
k=1

M∑
p=−M

hpkgpk =
N1−1∑
k=1

M∑
p=−M

⎧⎪⎪⎨⎪⎪⎩
N1−1∑
m′=1

M∑
q′=−M

Hq′m′E
(s)+
q′m′;pk

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩

N1−1∑
m′′=1

M∑
q′′=−M

Gq′′m′′ E
(s)−
q′′m′′ ;pk

⎫⎪⎪⎬⎪⎪⎭
=

N1−1∑
m′=1

M∑
q′=−M

Hq′m′
N1−1∑
m′′=1

M∑
q′′=−M

Gq′′m′′
N1−1∑
k=1

M∑
p=−M

E(s)+
q′m′;pkE(s)−

q′′ q′′ ;pk

(76)

However,
N1−1∑
k=1

M∑
p=−M

E(s)+
q′m′;pkE(s)−

q′′m′′ ;pk = δq′q′′ δm′m′′ (77)

Hence, Equation (76) becomes:

N1−1∑
k=1

M∑
p=−M

hpkgpk =
N1−1∑
m′=1

M∑
q′=−M

Hq′m′
N1−1∑
m′′=1

M∑
q′′=−M

Gq′′m′′ δq′q′′ δm′m′′

=
N1−1∑
m′=1

M∑
q′=−M

Hq′m′Gq′m′
(78)

For the special case that gpk = hpk then Equation (78) yields:

N1−1∑
k=1

M∑
p=−M

∣∣∣hpk
∣∣∣2 =

N1−1∑
m=1

M∑
q=−M

∣∣∣Hqm
∣∣∣2 (79)

Equations (78) and (79) are the expected for of the Parseval relationship, which essentially states
that the energy computed in one domain is equivalent to the energy computed in the other domain.
The reader is reminded that the symmetric kernel was used for the derivation in (79).

7.2. Parseval’s Theorem with the Non-Symmetric Kernel

For the non-symmetric kernel, some modifications to the above Parseval relationship are necessary.
Again, we consider the total energy of a Hadamard product of two matrices in the spatial domain.
However, now we need to define a more ‘general’ version of a complex conjugate expression in order
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for the Parseval relationship to exist. We denote this more general version as gpk
∗(over bar and star)

and define this expression as:

gpk
∗ :=

N1−1∑
m′′=1

M∑
q′′=−M

Gq′′m′′ E−q′′m′′ ;pk (definition) (80)

We note in Equation (80) that gpk
∗ uses E−q′′m′′ ;pk instead of E+

q′′m′′ ;pk (where the latter would
normally be used for the complex conjugate). The reason for this is that with the non-symmetric

kernel, using E+
q′′m′′ ;pk will not lead to the required orthogonality condition. However, with our

‘modified’ version of the complex conjugate as denoted by the gpk
∗ and defined in Equation (80), it then

follows that:

N1−1∑
k=1

M∑
p=−M

hpkgpk
∗ =

N1−1∑
k=1

M∑
p=−M

⎧⎪⎪⎨⎪⎪⎩
N1−1∑
m′=1

M∑
q′=−M

Hq′m′E+
q′m′;pk

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩

N1−1∑
m′′=1

M∑
q′′=−M

Gq′′m′′ E−q′′m′′ ;pk

⎫⎪⎪⎬⎪⎪⎭
=

N1−1∑
m′=1

M∑
q′=−M

Hq′m′
N1−1∑
m′′=1

M∑
q′′=−M

Gq′′m′′
N1−1∑
k=1

M∑
p=−M

E+
q′m′;pkE−q′′m′′ ;pk

︸����������������������������︷︷����������������������������︸
δq′q′′ δm′m′′

(81)

Using the orthogonality of the kernel, Equation (81) becomes:

N1−1∑
k=1

M∑
p=−M

hpkgpk
∗ =

N1−1∑
m′=1

M∑
q′=−M

Hq′m′
N1−1∑
m′′=1

M∑
q′′=−M

Gq′′m′′ δq′q′′ δm′m′′

=
N1−1∑
m′=1

M∑
q′=−M

Hq′m′Gq′m′
(82)

Similarly, we can consider the special product in the frequency domain Fqm = HqmGqm
∗

where
again the special expression Gqm

∗
needs to be defined as follows:

Gqm
∗

:=
N1−1∑
k′′=1

M∑
p′′=−M

gp′′ k′′ E+
qm;p′′ k′′ (definition) (83)

Consider:

N1−1∑
m=1

M∑
q=−M

HqmGqm
∗
=

N1−1∑
m=1

M∑
q=−M

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N1−1∑
k′=1

M∑
p′=−M

hp′k′E−qm;p′k′

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ·
⎧⎪⎪⎪⎨⎪⎪⎪⎩

N1−1∑
k′′=1

M∑
p′′=−M

gp′′ k′′ E+
qm;p′′ k′′

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (84)

Interchanging the order of summation and summing over the (q,m) variables first gives:

N1−1∑
m=1

M∑
q=−M

HqmGqm
∗
=

N1−1∑
k′=1

M∑
p′=−M

hp′k′
N1−1∑
k′′=1

M∑
p′′=−M

gp′′ k′′
N1−1∑
m=1

M∑
q=−M

E−qm;p′k′E
+
qm;p′′ k′′ (85)

Using the orthogonality of the kernel, the last line can be rewritten as:

N1−1∑
m=1

M∑
q=−M

HqmGqm
∗

=
N1−1∑
k′=1

M∑
p′=−M

hp′k′
N1−1∑
k′=1

M∑
p′′=−M

gp′′ p′′ δp′p′′ δk′k′′

=
N1−1∑
k′=1

M∑
p′=−M

hp′k′gp′k′
(86)
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In summary, Equation (82) shows how to interpret
N1−1∑
m′=1

M∑
q′=−M

Hq′m′Gq′m′ and Equation (86) shows

how to interpret
N1−1∑
k′=1

M∑
p′=−M

hp′k′ gp′k′ and also shows that they are not quite equivalent as was the case

for the symmetric kernel. In summary,

N1−1∑
m=1

M∑
q=−M

HqmGqm =
N1−1∑
k=1

M∑
p=−M

hpkgpk
∗

N1−1∑
k=1

M∑
p=−M

hpkgpk =
N1−1∑
m=1

M∑
q=−M

HqmGqm
∗ (87)

In the special case that h = g, then Equation (87) becomes:

N1−1∑
m=1

M∑
q=−M

∣∣∣Hqm
∣∣∣2 =

N1−1∑
k=1

M∑
p=−M

hpkhpk
∗

N1−1∑
k=1

M∑
p=−M

∣∣∣hpk
∣∣∣2 =

N1−1∑
m=1

M∑
q=−M

HqmHqm
∗ (88)

8. Discussion: Interpretation of the Transform

In the previous sections, we demonstrated that the 2D DFT in polar coordinates is most conveniently
defined in terms of the kernels E±qm;pk or E(s)±

qm;pk, and indeed this definition allows many of the proofs
of the DFT properties to assume a straightforward form that exploits the properties of the kernel. In
this section, we demonstrate that the proposed forms of the 2D DFT can be interpreted in terms of a
sequence of 1D DFT, DHT and IDFT discrete transforms, thereby demonstrating that the proposed
transform follows the same path as the continuous 2D transform in that it can be decomposed into a
sequence of Fourier, Hankel and inverse Fourier transforms [2].

8.1. Interpretation of the 2D Forward DFT in Polar Coordinates

Let us reconsider the definition of the forward 2D DFT, Equation (39), and rewrite it as:

Fqm =
1

N2

M∑
n=−M

e+in 2πq
N2

i−n

jnN1

N1−1∑
k=1

2Jn

(
jnk jnm
jnN1

)
jnN1

J2
n+1( jnk)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M∑

p=−M

fpke−in 2πp
N2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (89)

We can consider these as a sequence of 1D discrete Fourier transforms, with a discrete Hankel
transform, as explained in the following. The first step is a forward 1D DFT transforming fpk → f̃nk
where the p subscript is transformed to the n subscript as:

f̃nk =
M∑

p=−M

fpke−in 2πp
N2 for n = −M..M, k = 1..N1 − 1 (90)

The tilde is used to indicate a standard 1D DFT. In matrix terms, this says that each column of fpk

is DFT’ed to yield f̃nk. The second step of Equation (89) is a discrete Hankel transform of order n that

transforms f̃nk → ˆ̃f nm, where the k subscript is Hankel transformed to the m subscript via:

ˆ̃f nm =

N1−1∑
k=1

2Jn

(
jnk jnm
jnN1

)
jnN1

J2
n+1( jnk)

f̃nk for n = −M..M, m = 1..N1 − 1 (91)
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The overhat denotes a DHT, as defined in [6]. Using the transformation matrix notation defined
in [6], we define:

YnN1
m,k =

2
jnN1 J2

n+1( jnk)
Jn

(
jnm jnk

jnN1

)
1 ≤ m, k ≤ N1 − 1 (92)

Hence Equation (91) can be written as

ˆ̃f nm =

N1−1∑
k=1

YnN1
m,k f̃nk for n = −M..M, m = 1..N1 − 1 (93)

In matrix terms, this shows that each row of f̃nk is nth-order DHT’ed to yield ˆ̃f nm. The nth row is
nth order DHT’ed (with some loose interpretation of row counters since in this case the index n takes

on negative values). A scaling operation then gives the Fourier coefficients of the 2D DFT ˆ̃f nm → F̃nm

such that:

F̃nm =
i−n

jnN1

ˆ̃f nm =
i−n

jnN1

N1−1∑
k=1

YnN1
m,k f̃nk for n = −M..M, m = 1..N1 − 1 (94)

It is noted that Equation (94) exactly parallels the equivalent step of the continuous form of the
transform where Fn(ρ) = 2π i−nHn

{
fn(r)
}
, see [4,6]. If the symmetric form of the kernel is used, that is,

Equation (33), then Equation (94) is replaced with F̃nm = i−n ˆ̃f nm.
The final step to compute the forward 2D DFT in polar coordinates is then a standard inverse 1D

DFT. Here, each column of F̃nm → Fqm is transformed so that the n subscript is (inverse) transformed to
the q subscript via

Fqm =
1

N2

M∑
n=−M

F̃nme+in 2πq
N2 for q = −M..M, m = 1..N1 − 1 (95)

This last step is a 1D IDFT for each column of F̃nm to obtain Fqm. It was shown in [2,4] that a
continuous 2D Fourier transform in polar coordinates is a sequence of operations consisting of (i) a
Fourier series transform (transforming the continuous function to its discrete set of Fourier coefficients),
(ii) a Hankel transform for each Fourier coefficient (an nth order transform for the nth coefficient), and
(iii) an inverse Fourier series transform (a set of Fourier coefficients is transformed back to a continuous
function via the infinite Fourier series summation). Hence, we have shown here that the proposed 2D
DFT in polar coordinates consists of the same sequence of transforms: a forward DFT, a forward DHT
and then an inverse DFT.

8.2. Interpretation of the 2D Inverse DFT in Polar Coordinates

Similarly, we can decompose the inverse 2D DFT in polar coordinates, from Equation (40)
written as:

fpk =
1

N2

M∑
n=−M

jnN1
ine+i 2πnp

N2

N1−1∑
m=1

2Jn

(
jnm jnk
jnN1

)
jnN1 J2

n+1( jnm)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M∑

q=−M

Fqme−i 2πnq
N2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (96)

The steps of the inverse 2D DFT are the reverse of those outlined for the forward 2DDFT. First
Fqm → F̃nm via a forward 1D DFT:

F̃nm =
M∑

q=−M

Fqme−i 2πnq
N2 n = −M..M, m = 1..N1 − 1 (97)
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This is followed by a discrete Hankel transform to obtain F̃nm → ˆ̃Fnk

ˆ̃Fnk =

N1−1∑
m=1

YnN1
k,m F̃nm for n = −M..M, k = 1..N1 − 1 (98)

The next step is a scaling operation to obtain ˆ̃Fnk → f̃nk via:

f̃nk = jnN1
i+n ˆ̃Fnk for n = −M..M, k = 1..N1 − 1 (99)

The step in Equation (99) follows the pattern of the continuous form transform, where fn(r) =
in
2π Hn

{
Fn(ρ)

}
, see [2,4,6]. As before, if the symmetric form of the kernel is used (Equation (33)), then

Equation (99) is replaced with f̃nk = i+n ˆ̃Fnk. Finally, an inverse 1D DFT is used to obtain f̃nk → fpk via:

fpk =
1

N2

M∑
n=−M

f̃nke+i 2πnp
N2 for p = −M..M, k = 1..N1 − 1 (100)

As previously mentioned, this parallels the steps taken for the continuous case, with each
continuous operation (Fourier series, Hankel transform) replaced by its discrete counterpart (DFT, DHT).

For both forward and inverse 2D DFT, the same sequence of steps are followed. The operations
are a 1D DFT of each column of the given matrix, then a DHT of each row, then a term-by-term scaling,
and finally an IDFT of each column.

9. Conclusions

In this paper, a discrete 2D Fourier transform in polar coordinates was motivated and proposed
by applying a discretization and truncation approach to the continuous 2D Fourier transform in polar
coordinates. This new transform stands in its own right and, unlike previous approaches to a polar
FT, is not an evaluation of the Cartesian form of the transform on a polar grid. This approach yields
two possible kernels for the discrete 2D transform in polar coordinates. One of these two kernels
is closer to the continuous version of the transform and the second kernel is symmetric, in that the
kernel for the forward transform is the complex conjugate of the kernel for the inverse transform. Both
versions of the kernel yield a 2D transform that transform a 2-subscripted entity (matrix) to another
one. The standard set of shift, modulation, multiplication and convolution rules were derived for both
kernels and are the same for either form of the kernel. However, only the symmetric kernel yields the
expected Parseval relationship. It was also shown that the 2D discrete transform can be interpreted as
a 1D discrete Fourier transform (DFT), followed by a 1D discrete Hankel transform (DHT), followed
by a 1D inverse DFT. This DFT-DHT-IDFT pattern mimics the manner in which the continuous 2D
Fourier transform in polar coordinates is evaluated. In conclusion, part I of the paper proposes the
form of the 2D DFT in polar coordinates, and demonstrates the expected operational rules for this
transform. Part II of the paper will examine how the proposed 2D DFT in polar coordinates can be
used to approximate the continuous FT at certain discrete points.
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Appendix A

The following appendices give important definitions for Hankel transforms (Appendix A.1),
Fourier Bessel series (Appendix A.2), finite Fourier transforms (Appendix A.5) and also contain
statements of the orthogonality of the discrete complex exponential (Appendix A.3) and the discrete
Bessel functions (Appendix A.4). Section Appendix A.6 contains a discussion on the sampling points
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and how they affect the proposed evaluation of the discrete Fourier coefficients at the chosen sampling
points. Proofs of the orthogonality of the proposed kernel can be found in Appendix A.7.

Appendix A.1. Hankel Transform

The nth order Hankel transform is defined by the integral [3]:

�
f

n
(ρ) =

∞∫
0

f (r)Jn(ρr)rdr (A1)

where Jn(z) is the nth order Bessel function with the overhat indicating a Hankel transform as shown
in Equation (A1). Here, n may be an arbitrary real or complex number. The Hankel transform is
self-reciprocating and the inversion formula is given by:

f (r) =

∞∫
0

�
f

n
(ρ)Jn(ρr)ρdρ (A2)

The Hankel transform exists only if the Dirichlet condition is satisfied, i.e.,
∞∫
0

∣∣∣r1/2 f (r)
∣∣∣dr exists

and is particularly useful for problems involving cylindrical symmetry.

Appendix A.2. Fourier–Bessel Series

Functions defined on a finite portion of the real line [0, R] in the radial coordinate can be expanded
in terms of a Fourier–Bessel series [16] given by:

f (r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞∑

k=1
fk Jn
( jnkr

R

)
r ≤ R

0 r > R
(A3)

where Jn(z) is the nth order Bessel function, the order of the Bessel function in (A3) is arbitrary and
jnk denotes the kth root of the nth Bessel function. The kth order Fourier–Bessel coefficients fk of the
function f (r) can be found from:

fk =
2

R2 J2
n+1( jnk)

R∫
0

f (r)Jn

(
jnkr
R

)
r dr (A4)

Equations (A3) and (A4) can be considered to be a transform pair where the continuous function
f (r) is forward-transformed to the discrete vector fk given by the finite integral in (A4). The summation
in Equation (A3) is then taken as the inverse transformation which returns f (r) when starting with fk.
The Fourier–Bessel series is the cylindrical coordinate counterpart of the Fourier series. Just as the
Fourier series is defined for a finite interval and has a counterpart, the continuous Fourier transform
over an infinite interval, so the Fourier–Bessel series has a counterpart over an infinite interval, namely
the Hankel transform.
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Appendix A.3. Orthogonality of the Discrete Complex Exponential

The success of the discrete Fourier transform (DFT) is based on the exploitation of known discrete
orthogonality relationships for the complex exponential evaluated at a finite number of certain special
points [23]. This relationship is given by:

N−1∑
p=0

e−
ip2πn

N e+
ip2πm

N = Nδmn (A5)

where m, n, p, N are integers. In Equation (A5), δmn is the Kronecker delta function, defined as:

δmn =

{
1 if m = n

0 otherwise
(A6)

It can easily be shown by a simple change of variables that the following orthogonality relationship
is true:

M∑
p′=−M

e−
ip′2πn

N e+
ip′2πm

N = Nδmn (A7)

Appendix A.4. Discrete Orthogonality of the Bessel Functions

It is shown in [24] that the following discrete orthogonality relationship is true:

N−1∑
k=1

Jn
( jnm jnk

jnN

)
Jn
( jni jnk

jnN

)
J2
n+1( jnk)

=
j2nN
4

J2
n+1( jnm)δmi (A8)

where jnm represents the mth zero of Jn(x).
It is noted that Equation (A8) is the discrete version of the Bessel orthogonality relationship on a

finite interval given by:
1∫

0
Jn(rjnm)Jn(rjni)rdr =

J2
n+1( jnm)

2 δmi

b∫
0

Jn

(
r′ jnm

b

)
Jn

(
r′ jni

b

)
r′dr′ =

b2 J2
n+1( jnm)

2 δmi

(A9)

From Watson in [25], the following expressions are also valid:

Wρ∫
0

Jn

(
jnkρ
Wρ

)
Jn(rρ)ρdρ =

jnk
j2nk
W2
ρ
−r2

Jn+1( jnk)Jn
(
rWρ

)
R∫

0
Jn
( jnkr

R

)
Jn(ρr)rdr =

jnk
j2nk
R2 −ρ2

Jn+1( jnk)Jn(ρR)

(A10)

Appendix A.5. Fourier Series and Finite Fourier Transform

A function of angular position f (θ), where −π ≤ θ ≤ π can be expanded into a Fourier series as:

f (θ) =
∞∑

n=−∞
fn einθ (A11)
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where the Fourier coefficients are given by:

fn =
1

2π

π∫
−π

f (θ) e−inθdθ (A12)

A principal application of the finite Fourier transform (FFT) is to approximately compute samples
of the Fourier transform of a function. We define the FFT partial sum of the samples f

( 2πp
N2

)
of the

continuous function f (θ) as:

f n =
1

N2

M∑
p=−M

f
(

2πp
N2

)
e−i 2πnp

N2 n ∈ [−M, M] (A13)

where N2 is an integer such that N2 = 2M + 1 for some other integer M. The over square-hat notation
f indicates the taking of a (finite) Fourier transform. Clearly, Equation (A13) is a Riemann sum for
the integral in (A12). It is generally asserted in the signal processing literature that f n ≈ fn, and it is
specifically shown in [17] that f n provides a uniformly good estimate for fn for n ∈ [−M, M].

It is also shown in [17] that the finite Fourier transform partial sum given by:

f (θ) =
M∑

n=−M

f neinθ (A14)

is almost as good an approximation to f (θ) as the usual partial sum:

f N2(θ) =
M∑

n=−M

fn einθ (A15)

Appendix A.6. Sampling Points

In this section, the difference between including the radial sampling points in the index of
summation for the discrete Fourier transform is discussed. We noted above in Equation (18) that the
radial sampling point is included in the index of summation of the discrete Fourier transform. In other
words, we wrote for n ∈ [−M, M] that:

Fn

(
jnl

R

)
=

1
N2

M∑
p=−M

F
( jpl

R
,

2πp
N2

)
e−i 2πnp

N2 (i) (A16)

However, strictly speaking, the radial sampling points should be fixed to the value of the radial
sampling point on the left hand side, that is the expected discrete definition of Fn

( jnl
R

)
should be given by:

Fn

(
jnl

R

)
=

1
N2

M∑
p=−M

F
(

jnl

R
,

2πp
N2

)
e−i 2πnp

N2 (ii) (A17)

Note that in both Equations (A16) and (A17), the index of summation is p, and the radial sampling
point is jpl in (A16) but jnl in (A17).

Which of the definitions for Fn

( jnl
R

)
is correct? Definition (i), as given in Equation (A16), or

definition (ii) as given in Equation (A17)? Traditionally, (ii) of Equation (A17) would be expected but
taking this form does not allow the 2D discrete transform that ensues to be invertible. We showed
above in the main text of the manuscript, that version (i) with Equation (A16) leads to an invertible,
discrete 2D transform. We show in this section that if we confine ourselves to the chosen sampling
points, then both versions are equivalent.
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Considering the reconstruction formula based on (A14) which says:

F
(

jml

R
,θ
)
=

M∑
n=−M

Fn

(
jml

R

)
einθ (A18)

Then, sampling at θ = 2πm
N2

gives:

F
(

jml

R
,

2πm
N2

)
=

M∑
n=−M

Fn

(
jml

R

)
ei 2πnm

N2 (A19)

So now consider the right hand side of Equation (A19) under the two different sampling assumptions
implied by (i) or (ii). That is:

M∑
n=−M

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

N2

M∑
p=−M

F
( jpl

R
,

2πp
N2

)
︸���������������︷︷���������������︸

Fn(
jml
R ) using (i)

e−i 2πnp
N2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
ei 2πnm

N2 (i)

M∑
n=−M

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

N2

M∑
p=−M

F
(

jml

R
,

2πp
N2

)
︸����������������︷︷����������������︸

Fn(
jml
R ) using (ii)

e−i 2πnp
N2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
ei 2πnm

N2 (ii)

(A20)

Equation (A20) (i) gives:

M∑
p=−M

F
( jml

R , 2πp
N2

) 1
N2

M∑
n=−M

e−i 2πnp
N2 ei 2πnm

N2

︸���������������������︷︷���������������������︸
N2δpm

=
M∑

p=−M
F
( jml

R , 2πp
N2

)
δpm = F

( jml
R , 2πm

N2

)
(A21)

Therefore, the (i) version works the way it is expected to work. Now considering the (ii) version:

M∑
p=−M

F
( jml

R , 2πp
N2

) 1
N2

M∑
n=−M

e−i 2πnp
N2 ei 2πnm

N2

︸���������������������︷︷���������������������︸
N2δpm

=
M∑

p=−M
F
( jml

R , 2πp
N2

)
δpm = F

( jml
R , 2πm

N2

)
(A22)

Therefore, the (ii) version also works the way it is expected to work. Therefore, both (i) and (ii)
work properly.
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However, if we try evaluating at different values of angular position, say θ = 2πr
N2

where now the
sampling index on the angle and the Bessel function do not match, in other words:

F
(

jml

R
,

2πr
N2

)
=

M∑
n=−M

Fn

(
jml

R

)
ei 2πnr

N2 (A23)

Then,

F
( jml

R , 2πr
N2

)
=

M∑
n=−M

⎧⎪⎪⎨⎪⎪⎩ 1
N2

M∑
p=−M

F
(

jpl
R , 2πp

N2

)
e−i 2πnp

N2

⎫⎪⎪⎬⎪⎪⎭ei 2πnr
N2

=
M∑

p=−M
F
(

jpl
R , 2πp

N2

)
δpr = F

( jrl
R , 2πr

N2

)
(i)

F
( jml

R , 2πr
N2

)
=

M∑
n=−M

⎧⎪⎪⎨⎪⎪⎩ 1
N2

M∑
p=−M

F
( jml

R , 2πp
N2

)
e−i 2πnp

N2

⎫⎪⎪⎬⎪⎪⎭ei 2πnr
N2

=
M∑

p=−M
F
( jml

R , 2πp
N2

)
δpr = F

( jml
R , 2πr

N2

)
(ii)

(A24)

In this case, (ii) does not yield the expected result, but (i) does. So the question of (i) vs (ii) becomes
a question of where on the theta (angular position) the total function needs to be evaluated—not only a
question of evaluating on a discrete radial position. However, if the fixed set of sampling points that
have been proposed for the discrete 2D transform are used, where the indices on radial and angular
position match, then the results are as expected.

Appendix A.7. Proofs of Orthogonality of the Proposed Kernel

In what follows, we assume the ranges of the variables are such that p, k, q, m, n, N1, and N2 are
integers such that −M ≤ n ≤M, where 2M + 1 = N2 1 ≤ m, k,≤ N1 − 1 and 0 ≤ p, q ≤ N2 − 1.

Appendix A.7.1. Proof of Orthogonality of the Kernel over the Frequency Indices

We state and prove that the following relationship is true:

N1−1∑
m=1

M∑
q=−M

E−qm;pkE+
qm;p′k′ = δpp′δkk′ (A25)

The proof is as follows. We start by substituting the definition of the kernel into the expression:

N1−1∑
m=1

M∑
q=−M

E−qm;pkE+
qm;p′k′ =

N1−1∑
m=1

M∑
q=−M

4
N2

2

M∑
n=−M

Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

i−ne−in 2πp
N2 e+in 2πq

N2
M∑

n′=−M

Jn′
(

jn′m jn′k′
jn′N1

)
J2
n′+1

( jn′m)
in
′
e+i 2πn′p′

N2 e−i 2πn′q
N2

(A26)

Summing over the index q and using the orthogonality of the discrete complex exponential
(Appendix A.3) returns a N2δnn′ so that n′ = n and Equation (A26) becomes:

4
N2

N1−1∑
m=1

M∑
n=−M

Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

e−in 2πp
N2

Jn

(
jnm jnk′

jnN1

)
J2
n+1( jnm)

e+i 2πnp′
N2 (A27)

This can be rewritten as:
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1
N2

M∑
n=−M

e−i 2πnp
N2 e+i 2πnp′

N2

N1−1∑
m=1

4Jn

(
jnk jnm
jnN1

)
Jn

(
jnm jnk′

jnN1

)
j2nN1

J2
n+1( jnk)J2

n+1( jnm)︸�������������������������������︷︷�������������������������������︸
=δkk′

(A28)

Now, summing over the index and using the discrete orthogonality relationship of the Bessel
functions (Appendix A.4) gives:

1
N2

M∑
n=−M

e−i 2πnp
N2 e+i 2πnp′

N2 δkk′ = δpp′δkk′ (A29)

where the orthogonality relationship of the discrete complex exponential has been used again.

Appendix A.7.2. Proof of Orthogonality of the Kernel over the Spatial Indices

It can be similarly shown that the following orthogonality relationship is also true:

N1−1∑
k=1

M∑
p=−M

E−qm;pkE+
q′m′;pk = δqq′δmm′ (A30)

The proof is as follows. We start by substituting the definition of the kernel into the expression:

N1−1∑
k=1

M∑
p=−M

E−qm;pkE+
q′m′;pk

=
N1−1∑
k=1

M∑
p=−M

1
N2

M∑
n=−M

Jn

(
jnk jnm
jnN1

)
2i−ne

−in
2πp
N2 e

+in
2πq
N2

j2nN1
J2
n+1( jnk)

1
N2

M∑
n′=−M

Jn′
(

jn′m′ jn′k
jn′N1

)
2in
′
e
+i

2πn′p
N2 e

−i
2πn′q′

N2

J2
n′+1

( jn′m′ )

(A31)

Summation over p gives:

N1−1∑
k=1

M∑
p=−M

E−qm;pkE+
q′m′;pk

=
N1−1∑
k=1

1
N2

M∑
n=−M

Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

2i−ne+in 2πq
N2 1

N2

M∑
n′=−M

Jn′
(

jn′m′ jn′k
jn′N1

)
J2
n′+1

( jn′m′ )
2in

′
e−i 2πn′q′

N2 N2δnn′

=
N1−1∑
k=1

1
N2

M∑
n=−M

Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

2e+in 2πq
N2

Jn

(
jnm′ jnk

jnN1

)
J2
n+1( jnm′ )

2e−i 2πnq′
N2

(A32)

Now summation over k gives the right hand side of (A32) and using the discrete orthogonality of
the Bessel functions (Appendix A.4) gives for the right hand side:

1
N2

M∑
n=−M

δmm′e
+in 2πq

N2 e−i 2πnq′
N2 (A33)

Then, finally summation over n and using the orthogonality of the discrete complex exponential
(Appendix A.3) finally gives:

N1−1∑
k=1

M∑
p=−M

E−qm;pkE+
q′m′;pk = δmm′δqq′ (A34)

as required.
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Abstract: We deal with the system of equations of linear elastostatics, governing the equilibrium
configurations of a linearly elastic body. We recall the basics of the theory of the elastic layer potentials
and we extend the trace operators associated with the layer potentials to suitable sets of singular densities.
We prove that the trace operators defined, for example, on W1−k−1/q,q(∂Ω) (with k ≥ 2, q ∈ (1,+∞) and
Ω an open connected set of R3 of class Ck), satisfy the Fredholm property.
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1. Introduction

As is well-known [1], the equilibrium configurations of a homogeneous linearly elastic body
Ω ⊂ R3 (see Notation and Functional spaces in Section 2) with no body forces acting on it, satisfy
the differential system

divC[∇u] = 0, (1)

where C is the elasticity tensor and u is the unknown displacement field. Wide efforts have been directed,
from a theoretical point of view, to the problem of existence and uniqueness of solutions of system (1) when
the displacement, the traction, or a combination of them are prescribed on the boundary (see, e.g., [2–5]).
In all the cited references, the regularity of the boundary values is required, since the problem is formulated
within the approach of the variational theory. Nevertheless, in view of possible applications, it is clear that
the investigation of the boundary value problems when the data are singular is a notable and engaging
issue. Now, since the elasticity tensor C is independent on the point, the analysis can be done by means
of the elastic layer potentials defined through the fundamental solution (see Section 2). In particular,
the proof of the existence and uniqueness of a solution of (1) passes through the possibility to apply the
Fredholm alternative to the integral equation translating the boundary value problem which is examined.
So, a preliminary step in the analysis of the existence and uniqueness problem is to show that the trace
operators involved in the integral equations satisfy the so-called Fredholm property (see Notation and
Functional spaces in Section 2). Obviously, this is well-understood when the densities are regular fields on
the boundary (see, e.g., [6]). The aim of this paper is to show that the Fredholm property is also met for
singular densities. For example, we prove that the trace operator associated with the single layer potential
with density in W1−k−1/q,q(∂Ω) is Fredholmian.

The paper is organized as follows. In Section 2 we recall some classical results about the system of
homogeneous elastostatics and some notations on the involved functional spaces. In Sections 3 and 4 we
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recall the most important facts about the layer potentials and we prove the Fredholm property for the
associated trace operators.

2. Some Classical Results of Homogeneous Elastostatics

We essentially follow the notation in [1]. In particular, we denote by Lin the set of all tensors, i.e., linear
applications from R3 to R3 and by Skw⊂Lin the set of all skew tensors. We use bold lower-case letters,
like a and b, for vectors, and bold upper–case letters, like E, L and W for tensors.

Recall that the elasticity tensor C, representing the elastic properties of the body, is a linear map from
Lin → Lin such that

C[W ] = 0, ∀W ∈ Skw (2)

and
E ·C[L] = L ·C[E], ∀ E, L ∈ Lin. (3)

C is positive definite if
π[E] ≥ |symE|2, ∀ E ∈ Lin (4)

where
π[E] = E ·C[E], ∀E ∈ Lin (5)

and C is strongly elliptic if

π[a⊗ b] = (a⊗ b) ·C[a⊗ b] > 0, ∀ a, b �= 0. (6)

• From now on we shall assume C to be at least strongly elliptic.

A weak solution of (1) (variational solution for q = 2) is a field u ∈ W1,q
loc (Ω) such that∫

Ω
∇φ ·C[∇u] = 0, ∀φ ∈ C∞

0 (Ω). (7)

It is well–known that for C strongly elliptic, every weak solution to (1) is analytical in Ω.
Equation (1) admits a fundamental solution U(x− y) [7], i.e., a regular solution for all x �= y to

divC[∇U(x− y)] = δ(x− y)

where δ denotes the Dirac distribution, expressed by

U(z) =
Φ(z)
|z| , (8)

with Φ homogeneous second–order tensor function of degree zero.

If Ω is a bounded domain, then a standard computation assures that every solution u ∈ W1,q(Ω) of
(1) is represented by the Somigliana formula [1]

u(x) =
∫ �

∂Ω
U(x− ζ)s(u)(ζ)dσζ +

∫ �

∂Ω
C[∇U(x− ζ)](u⊗ n)(ζ)dσζ (9)

for all x ∈ Ω, where
s(u) = C[∇u]n on ∂Ω (10)
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is the traction field on ∂Ω associated with u (from now on we denote by n the unit normal to ∂Ω exterior
[resp. interior] with respect to Ω for Ω bounded [resp. exterior] domain). Starting from (9) and making
use of Liouville’s theorem (see, e.g., [8,9]) one proves that if u ∈ W1,q

loc (Ω) is a solution of (1) in an exterior
domain such that u = o(r2), then (9) becomes

u(x) = Ax + u0 +
∫ �

∂Ω
U(x− ζ)s(u)(ζ)dσζ

+
∫ �

∂Ω
C[∇U(x− ζ)](u⊗ n)(ζ)dσζ ,

for suitable constants u0 and A. Hence the following representation follows

u(x) = Ax + u0 + U(x)
∫ �

∂Ω
s(u) + f (x), (11)

with
∇k f (x) = O(r−2−k).

Clearly, for A = u0 = 0,

u = O(r−2) ⇔
∫ �

∂Ω
s(u) = 0. (12)

Let u ∈ W1,2
loc (Ω) be a variational solution of (1). If Ω is bounded, then the work and energy theorem

follows [1] ∫
Ω

π[∇u] =
∫ �

∂Ω
u · s(u). (13)

Let denote by R the set of all (infinitesimal) rigid displacements.
If Ω is exterior and u = � + o(1), with � = u0 + ω× x ∈ R assigned, (13) implies∫

ΩR

π[∇u] =
∫ �

∂Ω
(u− �) · s(u) +

∫
∂SR

(u− �) · s(u).

Hence, taking into account that by (11) (u− �) · s(u) = O(r−3), letting R → +∞ we obtain the work
and energy theorem in exterior domains [1]∫

Ω
π[∇u] =

∫ �

∂Ω
u · s(u)− u0 ·

∫ �

∂Ω
s(u)−ω ·

∫ �

∂Ω
x× s(u). (14)

The following result is due to L. Van Hove [10] (see also [1] p. 105).

Lemma 1. It holds ∫
Ω
|∇u|2 ≤

∫
Ω

π[∇u],

for all u ∈ D1,2
0 (Ω), where D1,2

0 (Ω) denotes the completion of C∞
0 (Ω) with respect to ‖∇φ‖L2(Ω).

Relations (13), (14) and Lemma 1 imply the following classical uniqueness results [1]: if u is
a variational solution of (1), with u = o(1) for Ω exterior, then

u|∂Ω = 0 ⇒ u ≡ 0
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and

C positive definite,
∫ �

∂Ω
u · s(u) ≤ 0 =⇒ u

{
∈ R, Ω bounded,

= 0, Ω exterior.

• From now on uniqueness for the traction problem in bounded domains will be understood in the
class of normalized displacement, i.e, the set of fields u such that (cf. [1] p. 110)∫ �

∂Ω
u = 0,

∫ �

∂Ω
x× u = 0.

We will need the following result.

Lemma 2. If u is a variational solution of (1), then

‖u‖Wk,2(Ω′′) ≤ c‖u‖L2(Ω̃) (15)

for all bounded domains Ω′′, Ω̃ such that Ω′′ ⊂ Ω̃ ⊂ Ω, with c independent of u.

Proof. (15) is a simple consequence of the classical Caccioppoli’s inequality (see, e.g., [11])∫
SR(x0)

|∇u|2 ≤ c
R2

∫
S2R(x0)\SR(x0)

|u|2

for all x0 ∈ Ω and R < dist (x0, ∂Ω)/2, with c independent of u, taking into account that any derivative of
u is a solution of (1) and making use of Sobolev’s lemma.

Notation and Functional spaces – The body is identified with the domain Ω ⊂ R3 it occupies in
a reference configuration. We suppose Ω to be a bounded or exterior domain of class Ck (k ≥ 2). We denote
by o the origin of the reference frame; we suppose o ∈ Ω [resp. o ∈ �Ω] for Ω bounded [resp. exterior]
domain. For every x ∈ R3 we set x = x − o; r = |x|. Unless otherwise specified, in the formulas
including integrals, the variable of integration is a point of the region indicated by the integral (Ω, ∂Ω,
etc.); we shall omit it when it will be clear from the context. If Ω is exterior, we set ΩR = Ω ∩ SR,
where SR = {x ∈ R3 : r < R} and, as usual, if f (x) and g(r) > 0 are two functions on Ω, by f = o(g) and
f = O(g) we mean that limr→+∞ f (x)/g(r) = 0 and | f (x)| ≤ cg(r).

Wk,q(Ω) is the Sobolev space of all ϕ ∈ L1
loc(Ω) such that ‖ϕ‖Wk,q(Ω) = ‖ϕ‖Lq(Ω) + ‖∇k ϕ‖Lq(Ω) <

+∞; Wk,q
0 (Ω) is the completion of C∞

0 (Ω) with respect to ‖ϕ‖Wk,q(Ω) and W−k,q′(Ω) is its dual space.

Wk−1/q,q(∂Ω) is the trace space of Wk,q(Ω) and W1−k−1/q′ ,q′(∂Ω) is its dual space. We set

∫ �

Ω
f ϕ

[∫ �

∂Ω
f ϕ

]

to denote (say) the value of the functional f ∈ W−k,q′(Ω) [ f ∈ W−k,q′(∂Ω)] at ϕ ∈ Wk,q
0 (Ω) [ϕ ∈ Wk,q(∂Ω)].

Of course, if f ϕ is integrable, then
∫
≡
∫ �. If Ω is of class Ck, since Wk−1/q,q(∂Ω) ↪→ Ck−1,μ(∂Ω),

for kq > 3 and μ = 1 − 3/q, we have that [Ck−1,μ(∂Ω)]′ ↪→ W1−k−1/q′ ,q′(∂Ω). Then, in particular,
W−1,q(∂Ω), q ∈ (1, 2) contains the space of all Borel measures on ∂Ω.

If F (Ω) is a functional space in Ω, we denote by Floc(Ω) the set of all functions that belong to F (K)
for every compact set K ⊂ Ω.
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Let B, D be two Banach spaces and denote by B′, D′ their dual spaces. A linear and continuous
map T : B→ D is said to be Fredholmian (or satisfies the Fredholm property) if its range is closed and
dim KernT = dim KernT′ ∈ N0, where T′ : D′ → B′ is the adjoint of T. A Fredholmian operator satisfies
the classical Fredholm alternative and a well–known result of J. Peetre [12] assures that T is Fredholmian if
there is a compact operator C from B into a Banach space G such that

‖u‖B ≤ c {‖T[u]‖D + ‖C[u]‖G}

and dim KernT = dim KernT′.

3. The Trace Operators Associated with the Simple Layer Potential

Every integral at right hand side of (9) is an analytic solution of (1) in R3 \ ∂Ω. More in general,
for every ψ ∈ L1(∂Ω) the field

v[ψ](x) =
∫

∂Ω
U(x− ζ)ψ(ζ)dσζ (16)

defines an analytical solution of (1) in R3 \ ∂Ω known as simple layer potential with density ψ. Note that
v[ψ] behaves at infinity as the fundamental solution U. In particular,

∇kv[ψ](x) = O(r−1−k) (17)

and ∫
∂Ω

ψ = 0 ⇒ ∇kv[ψ](x) = O(r−2−k). (18)

It is well–known that for a density ψ ∈ Wk−1−1/q,q(∂Ω)

‖v[ψ]‖Wk,q(Ω) ≤ c‖ψ‖Wk−1−1/q,q(∂Ω) (19)

with c independent of ψ, the limit

lim
ε→0±

v[ψ](ξ − εl(ξ)) = S [ψ](ξ) (20)

exists for almost all ξ ∈ ∂Ω (by the embedding theorem if q > 3/k, then (20) holds for all ξ) and axis l in
a ball tangent (on the side of n) to ∂Ω at ξ and defines the trace of the simple layer potential with density
ψ [13]. As a consequence, v[ψ] is continuous in R3. Moreover, the map

S : Wk−1−1/q,q(∂Ω)→ Wk−1/q,q(∂Ω) (21)

is continuous; accordingly,
‖S [ψ]‖Wk−1/q,q(∂Ω) ≤ c‖ψ‖Wk−1−1/q,q(∂Ω) (22)

for some constant c depending only on k, q and Ω. Let ψ ∈ W1−k−1/q,q(∂Ω) and let ψk be a regular
sequence which converges to ψ strongly in W1−k−1/q,q(∂Ω). By (22)∣∣∣∣∫

∂Ω
φ · S [ψk]

∣∣∣∣ = ∣∣∣∣∫
∂Ω

ψk · S [φ]

∣∣∣∣ ≤ c‖ψk‖W1−k−1/q,q(∂Ω)‖φ‖Wk−1−1/q,q(∂Ω).

Therefore, by well-known results of functional analysis, S can be extended to a linear and
continuous operator

S′ : W1−k−1/q′ ,q′(∂Ω)→ W2−k−1/q′ ,q′(∂Ω),
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which is the adjoint of S and defines the trace of the simple layer with density ψ ∈ W1−k−1/q′ ,q′(∂Ω):

v[ψ](x) =
∫ �

∂Ω
U(x− ζ)ψ(ζ)dσζ . (23)

By (19) it is not difficult to see that

‖v[ψ]‖W2−k,q′ (Ω)
≤ c‖ψ‖W1−k−1/q′ ,q′ (∂Ω)

. (24)

The traction field associated with the simple layer potential (16) with density ψ ∈ Wk−1−1/q,q(∂Ω) is
defined on both “faces” of ∂Ω by the limit

lim
ε→0+

C[∇v[ψ]](ξ ∓ εl(ξ))n(ξ) = T ±[ψ](ξ) (25)

for almost all ξ ∈ ∂Ω (by the embedding theorem if q > 3/(k− 1), then (25) holds for all ξ) and axis l in
a ball tangent (on the side of n) to ∂Ω at ξ. Moreover,

‖T ±[ψ]‖Wk−1−1/q,q(∂Ω) ≤ c‖ψ‖Wk−1−1/q,q(∂Ω) (26)

for some constant c depending only on k, q and Ω, and the classical jump condition holds

ψ = T +[ψ]− T −[ψ]. (27)

We now show that the trace operator S is Fredholmian. To this aim we make use of the following
well–known results (cf. [11,14–18]).

Lemma 3. Let Ω be a bounded domain of class Ck (k ≥ 2). If û ∈ Wk−1/q,q(∂Ω), q ∈ (1,+∞), and φ ∈ C∞
0 (Ω),

then the displacement problem
divC[∇u] = φ in Ω,

u = û on ∂Ω,
(28)

has a unique solution u ∈ Wk,q(Ω) and

‖u‖Wk,q(Ω) ≤ c
{
‖û‖Wk−1/q,q(∂Ω) + ‖φ‖Wk−2,q(Ω)

}
. (29)

Lemma 4. Let Ω be a bounded domain of class Ck (k ≥ 2). If ŝ ∈ Wk−1−1/q,q(∂Ω), q ∈ (1,+∞) satisfies∫
∂Ω

� · ŝ = 0, ∀ � ∈ R,

and φ ∈ C∞
0 (Ω), then the traction problem

divC[∇u] = φ in Ω,

s(u) = ŝ on ∂Ω,
(30)

has a unique normalized solution u ∈ Wk,q(Ω) and

‖u‖Wk,q(Ω) ≤ c
{
‖ŝ‖Wk−1−1/q,q(∂Ω) + ‖φ‖Wk−2,q(Ω)

}
. (31)

The following theorem holds true.
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Theorem 1. Let Ω be a bounded or an exterior domain of class Ck (k ≥ 2), k ∈ N. The operator S is Fredholmian
and KernS = KernS′ = {0}.

Proof. Let Ω be bounded. By the trace theorem, (20) and classical interior estimates (see Lemma 2) from
(27) it follows

‖ψ‖Wk−1−1/q,q(∂Ω) ≤ ‖T +[ψ]‖Wk−1−1/q,q(∂Ω) + ‖T −[ψ]‖Wk−1−1/q,q(∂Ω)

≤ c
{
‖v[ψ]‖Wk,q(Ω) + ‖v[ψ]‖Wk,q(�Ω∩SR)

}
≤ c
{
‖S [ψ‖Wk−1/q,q(∂Ω) + ‖C‖

}
,

(32)

where SR(⊃ Ω) is a ball of radius R centered at o and C is a completely continuous map from
Wk−1−1/q,q(∂Ω) in a Banach space. Hence by Peetre’s result (see Notation and Functional spaces in
Section 2) it follows that S has a closed range. If ψ ∈ KernS then by (17) an integration by parts gives∫

Ω
π[∇v[ψ]] =

∫
∂Ω
S [ψ] · T +[ψ] = 0,∫

�Ω
π[∇v[ψ]] = −

∫
∂Ω
S [ψ] · T −[ψ] = 0.

(33)

Hence by Lemma 1 it follows that v[ψ] = 0 in R3 so that by (27) ψ = 0.
Let ψ ∈ KernS′ and let {ψk}k∈N be a regular sequence which converges to ψ strongly in

W1−k−1/q′ ,q′(∂Ω). Of course, from (24) it follows that v[ψk] → v[ψ] strongly in W2−k,q′(Ω). Let z be
the solution of

divC[∇z] = φ in Ω,

z = 0 on ∂Ω.
(34)

Then, integrating by parts we have∫
Ω

v[ψk] ·φ =
∫

∂Ω
S [ψk] · s(z).

Hence letting k → +∞ it follows that ∫ �

Ω
v[ψ] ·φ = 0,

for all φ ∈ C∞
0 (Ω) so that v[ψ] = 0 in Ω.

It is well–known that the system

divC[∇z] = φ in �Ω,

z = 0 on ∂Ω
(35)

has a unique solution z ∈ D1,2
0 (Ω). Let g be a regular function vanishing outside S2R, equal to 1 in SR and

such that |∇g| ≤ c/R for R ! diam Ω. Then integrating by parts we have∫
�Ω

gv[ψk] ·φ = −
∫

∂Ω
S [ψk] · s(z)

+
∫
�Ω
∇g ·

{
C
[
∇v[ψk]

]
z−C

[
∇z]v[ψk]

}
.

(36)
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By Schwarz’s inequality and the properties of g∣∣∣∣∫�Ω
∇g ·C

[
∇v[ψk]

]
z
∣∣∣∣ ≤ c

R

∫
S2R\SR

|∇v[ψk]||z|

≤ c
R
‖∇v[ψk]‖L2(S2R\SR)

‖z‖L2(S2R\SR)
.

Likewise, ∣∣∣∣∫�Ω
∇g ·C[∇z]v[ψk]

∣∣∣∣ ≤ c
R
‖[∇z]‖L2(S2R\SR)

‖v[ψk]‖L2(S2R\SR)
.

Therefore, taking into account Hardy’s inequality

∫
�Ω

|h|2
r2 ≤ c

∫
�Ω
|∇h|2

for all h ∈ D1,2
0 (Ω), we can let R → +∞ in (36) to have∫

�Ω
v[ψk] ·φ = −

∫
∂Ω
S [ψk] · s(z).

Hence letting k → +∞ yields ∫ �

�Ω
v[ψ] ·φ = 0 (37)

so that v[ψ] = 0 in �Ω and (27) and the above results imply that ψ = 0.
The proof of the Lemma for Ω exterior follows the same steps so it is omitted.

4. The Trace Operators Associated with the Double Layer Potential

For every ϕ ∈ L1(∂Ω) the field

w[ϕ](x) =
∫

∂Ω
C[∇U(x− ζ)](ϕ⊗ n)(ζ)dσζ (38)

defines analytical solutions of (1) in R3 \ ∂Ω and is known as double layer potential with density ϕ.
Note that

∇kw[ϕ](x) = O(r−2−k). (39)

The trace on ∂Ω of a double layer potential with density ϕ ∈ Wk−1/q,q(∂Ω) is defined on both “faces”
of ∂Ω by the limit

lim
ε→0+

w[ϕ](ξ ∓ εl(ξ)) =W±[ψ](ξ) (40)

for almost all ξ ∈ ∂Ω (by the embedding theorem if q > 3/k, then (40) holds for all ξ) and axis l in a ball
tangent (on the side of n) to ∂Ω at ξ. Moreover,

‖W±[ϕ]‖Wk−1/q,q(∂Ω) ≤ c‖ϕ‖Wk−1/q,q(∂Ω) (41)

and for Ω bounded
‖w[ϕ]‖Wk,q(Ω) ≤ c‖ϕ‖Wk−1/q,q(∂Ω) (42)

for some constant c depending only on k, q and Ω. The jump condition

ϕ =W+[ϕ]−W−[ϕ] (43)
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holds and the classical Liapounov–Tauber theorem assures that the traction field associated with w[ϕ]

assumes the same value on both “faces” of ∂Ω

lim
ε→0±

C[∇w[ϕ]](ξ − εl(ξ))n(ξ) = Z [ϕ](ξ) (44)

and defines a linear, continuous operator

Z : Wk−1/q,q(∂Ω)→ Wk−1−1/q,q(∂Ω)

i.e.,
‖Z [ϕ]‖Wk−1−1/q,q(∂Ω) ≤ c‖ϕ‖Wk−1/q,q(∂Ω) (45)

for some constant c depending only on k, q and Ω. A standard argument shows that W± and T ∓ are
adjoint each other. Hence, for instance,

W− : W2−k−1/q′ ,q′(∂Ω)→ W2−k−1/q′ ,q′(∂Ω)

is the adjoint of
T + : Wk−1−1/q,q(∂Ω)→ Wk−1−1/q,q(∂Ω)

and defines the trace of a double layer potential w[ϕ] with density in W2−k−1/q′ ,q′(∂Ω):

w[ϕ](x) =
∫ �

∂Ω
C[∇U(x− ζ)](ϕ⊗ n)(ζ)dσζ .

As we did for the trace operator of the single layer potential we can show that the adjoint operator
of Z

Z′ : W2−k−1/q′ ,q′(∂Ω)→ W1−k−1/q′ ,q′(∂Ω)

is the trace of the traction field of the double layer potential w[ϕ] with density ϕ ∈ W2−k−1/q′ ,q′(∂Ω).
As for the operator S in the previous section, starting from Lemma 3, 4, we show that the operators

W±, T ± and Z are Fredholmian.

Theorem 2. Let Ω be a bounded or an exterior domain of class Ck (k ≥ 2). The operatorsW±, T ± are Fredholmian,
KernW+ = Kern T − = {0} and

Kern T + =

{{
ψ : S [ψ] ∈ R}, Ω bounded,

{0}, Ω exterior,

KernW− =

{
R, Ω bounded,

{0}, Ω exterior.

(46)
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Proof. Let Ω be bounded. By Lemmas 3 and 4, the trace theorem and interior estimates

‖W+[ϕ]‖Wk−1/q,q(∂Ω) ≤ ‖w[ϕ]‖Wk,q(Ω) ≤ c‖Z [ϕ]‖Wk−1−1/q,q(∂Ω)

≤ c‖w[ϕ]‖Wk,q(�Ω∩SR)
≤ c
{
‖W−[ϕ]‖Wk−1/q,q(∂Ω) + ‖C‖

}
‖W−[ϕ]‖Wk−1/q,q(∂Ω) ≤ ‖w[ϕ]‖Wk,q(Ω∩SR)

≤ c
{
‖Z [ϕ]‖Wk−1−1/q,q(∂Ω) + ‖C1‖

}
≤ c
{
‖W+[ϕ]‖Wk−1/q,q(∂Ω) + ‖C1‖

}
‖T +[ψ]‖Wk−1−1/q,q(∂Ω) ≤ ‖v[ψ]‖Wk,q(Ω) ≤ c‖S [ψ]‖Wk−1/q,q(∂Ω)

≤ c‖v[ψ]‖Wk,q(�Ω∩SR)
≤ c
{
‖T −[ψ]‖Wk−1−1/q,q(∂Ω) + ‖C2‖

}
‖T −[ψ]‖Wk−1−1/q,q(∂Ω) ≤ ‖v[ψ]‖Wk,q(�Ω∩SR)

≤ c
{
‖S [ψ]‖Wk−1/q,q(∂Ω) + ‖C3‖

}
≤ c
{
‖T +[ψ]‖Wk−1−1/q,q(∂Ω) + ‖C3‖

}
where C, C1 are completely continuous maps from Wk−1/q,q(∂Ω) in a Banach space and C2, C3 completely
continuous maps from Wk−1−1/q,q(∂Ω) in a Banach space. Therefore, by (42), (43) and (27)

‖ϕ‖Wk−1/q,q(∂Ω) ≤ c
{
‖W±[ϕ]‖Wk−1/q,q(∂Ω) + ‖C′‖

}
‖ψ‖Wk−1−1/q,q(∂Ω) ≤ c

{
‖T ±[ψ]‖Wk−1−1/q,q(∂Ω) + ‖C′′‖

}
for some completely continuous operators. Hence it follows thatW± and T ± have closed ranges.

If ϕ ∈ KernW+. By the uniqueness theorem w[ϕ] = 0 in Ω so that Z [ϕ] = 0. Hence again by
uniqueness w[ϕ] = 0 in �Ω so that ϕ = 0 on ∂Ω. If ψ ∈ Kern T −, with T − : W1−k−1/q′ ,q′(∂Ω) →
W1−k−1/q′ ,q′(∂Ω), consider a regular sequence ψk which converges to ψ strongly in W1−k−1/q′ ,q′(∂Ω) and
the solution z of

divC[∇z] = φ in �Ω,

s(z) = 0 on ∂Ω
(47)

for φ ∈ C∞
0 (Ω). Integrating by parts and taking into account (17), we have∫

�Ω
v[ψk] ·φ = −

∫
∂Ω

z · T −[v[ψk].

Hence, letting k → +∞, it follows that v[ψ] = 0 in �Ω, so that T −[ψ] = 0. On the other hand,
by uniqueness v[ψ] = 0 in Ω so that T +[ψ] = 0. Hence by (27) ψ = 0. The proof of the other properties
are quite analogous so it is omitted.

Theorem 3. Let Ω be a bounded domain or an exterior domain of class Ck (k ≥ 2). The operator Z is
Fredholmian and

KernZ = KernZ′ = R. (48)

Proof. Let Ω be bounded. The trace theorem and interior estimates yield

‖ϕ‖Wk−1/q,q(∂Ω) ≤ ‖W+[ϕ]‖Wk−1/q,q(∂Ω) + ‖W−[ϕ]‖Wk−1/q,q(∂Ω)

≤ c
{
‖w[ϕ]‖Wk,q(Ω) + ‖w[ϕ]‖Wk,q(�Ω∩SR)

}
≤ c
{
‖Z [ϕ‖Wk−1−1/q,q(∂Ω) + ‖C‖

}
,

(49)
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with C completely continuous map from Wk−1/q,q(∂Ω) in a Banach space. Therefore, by Peetre’s result,
Z has closed range.

Let ϕ ∈ KernZ . By the uniqueness theorem w[ϕ] = 0 in �Ω and w[ϕ] ∈ R in Ω. Therefore, by (43),
it follows that ϕ ∈ R. On the other hand, a direct inspection shows that ϕ ∈ R belongs to KernZ .

Let now ϕ ∈ KernZ′ and consider the sequence ϕk strongly converging to ϕ in W2−k−1/q,q(∂Ω) and
the solution z of

divC[∇z] = φ in Ω,

s(z) = 0 on ∂Ω
(50)

with φ such that ∫
Ω

� ·φ = 0, ∀ � ∈ R.

An integration by parts yields ∫
Ω

w[ϕk] ·φ = −
∫

∂Ω
z · s(w[ϕk]).

Hence, letting k → +∞, it follows that w[ϕ] ∈ R in Ω so that, by (43), KernZ′ = KernZ = R.
The proof for exterior domains is analogous to the previous one, so it is omitted.

5. Conclusions

In this article we dealt with some properties related to the trace operators associated with the elastic
layer potentials. In particular, we proved that their extensions to some sets of singular densities satisfy
the Fredholm property (Theorems 1–3). These results represent an important step in the analysis of the
system of linear elastostatics, as they could lead to the existence and uniqueness of solutions to the main
boundary value problems with singular data, to which we are going to dedicate our next researches.

Author Contributions: The authors contributed equally to this work. All authors read and approved the
final manuscript.

Funding: This research was supported by Programma VALERE - Università degli Studi della Campania
“Luigi Vanvitelli”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gurtin, M.E. The linear theory of elasticity. in Handbuch der Physik; Truesedell, C., Ed.; Springer-Verlag:
Berlin/Heidelberg, Germany, 1972.

2. Fichera, G. Sull’esistenza e sul calcolo delle soluzioni dei problemi al contorno, relativi all’equilibrio di un corpo
elastico. Annali della Scuola Normale Superiore di Pisa 1950, 4 , 35–99.

3. Fichera, G. Existence theorems in elasticity. In Handbuch der Physik; Truesedell, C., Ed.; Springer-Verlag:
Berlin/Heidelberg, Germany, 1972.

4. Russo, R. An extension of the basic theorems of linear elastostatics to exterior domains. Ann. Univ. Ferrara,
Sez. VII Sci. Mat. 1988, 34, 101–119.

5. Russo, R. On the traction problem in linear elastostatics. J. Elast. 1992, 27, 57–68. [CrossRef]
6. Kupradze, V.D.; Gegelia, T.G.; Basheleishvili, M.O.; Burchuladze, T.V. Three Dimensional Problems of the

Mathematical Theory of Elasticity and Thermoelasticity; North–Holland: Amsterdam, The Netherlands, 1979.
7. John, F. Plane Waves and Spherical Means Applied to Partial Differential Equations; Interscience: New York,

NY, USA, 1955.
8. Duvant, G.; Lions, J.L. Inequalities in Mechanics and Physics; Springer-Verlag: Berlin/Heidelberg, Germany, 1976.

171



Mathematics 2019, 7, 134

9. Russo, R. On Stokes’ problem. In Advances in Mathematical Fluid Mechanics; Rannacher, R., Sequeira, A., Eds.;
Springer-Verlag: Berlin/Heidelberg, Germany, 2010; pp. 473–511.

10. Van Hove, L. Sur l’extension de la condition de Legendre du calcul des variations aux intégrales multiples à
plusieurs fonctions inconnues. Proc. Koninkl. Ned. Adad. Wetenschap. 1947, 50, 18–23.

11. Giusti, E. Direct Methods in the Calculus of Variations; Word Scientific: Singapore, 2004.
12. Schechter, M. Principles of Functional Analysis; Graduate Studies in Mathematics; American Mathematical Society:

Providence, RI, USA, 2002.
13. Miranda, C. Partial Differential Equations of Elliptic Type; Springer-Verlag: Berlin/Heidelberg, Germany, 1970.
14. Lions, J.L. Magenes, E. Non–Homogeneous Boundary—Value Problems and Applications; Springer-Verlag:

Berlin/Heidelberg, Germany, 1972; Volume I.
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1. Introduction

The connection between parabolic equations and diffusion processes is well understood; the same
cannot be said for ultraparabolic equations and ultradiffusion processes. Until recently, theoretical
results have been fairly limited relative to the existence and uniqueness of solutions to ultraparabolic
equations, deriving from two methodologies. In one, the analysis is affected along the characteristic
of the first-order temporal operator, requiring that the speed of propagation varies only spatially.
Such an approach was developed by Piskunov [1] in the classical case and extended by Lions [2] to
the generalized sense. The second approach is based on the method of fundamental solutions and
was implemented by Il’in [3] for the classical Cauchy problem and extended to more general domains
via convolution by Vladimirov and Drožžinov [4], albeit at the expense of necessitating constant
coefficients in the operator. Recently, however, using energic techniques Marcozzi [5] has established
the well-posedness and Galerkin approximation of the generalized solution (strong and weak) to
the terminal value problem for square integrable data on bounded temporal and spatial domains.
We extend here the results of [5] to linear ultraparabolic terminal value/infinite-horizon temporal
problems posed on unbounded spatial domains. We then provide a probabilistic interpretation of the
solution in terms of the expectation of an associated ultradiffusion process.

Historically, the connection between the expectation of ultradiffusion processess and the solution
to ultradiffusion equations arose from the work of Kolmogorov [6,7] and Uhlenbeck and Ornstein [8]
in relation to Brownian motion in phase space—the same with respect to Chandrasekhar [9] in the
context of boundary layers and Marshak [10] relative to the Bolzmann equation. A contemporary
example may be found in the formulation of so-called Asian options from mathematical finance
(cf. [11]), which obtains theoretical context with the present results. The paper is organized as
follows. In Section 2, we consider deterministic aspects of the problem, while, in Section 3, the
probabilistic interpretation is presented. Appendix A introduces certain regularity results, which,
while essential for the analysis, are too extensive to prove in full. In Appendix B, we show formally that
the ultraparabolic/ultradiffusion association is locally that of a parameterized parabolic/diffusion.

2. Approximation Solvability

We consider here the existence, uniqueness and approximation of the terminal value/infinite
horizon problem on unbounded spatial domains for the linear ultraparabolic equations. To this

Mathematics 2018, 6, 286; doi:10.3390/math6120286 www.mdpi.com/journal/mathematics173
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end, let ÕT,ϑ = (0, T) × (0, ∞), Õϑ,x = (0, ∞) × (−∞, ∞), ÕT,x = (0, T) × (−∞, ∞), and finally
Q̃ = (0, T)× (0, ∞)× (−∞, ∞), for some finite T > 0. The functional setting will be the weighted
Sobolev spaces defined as follows. Spatially, we let

mμ(x) = e−μ|x| ,

such that
Hμ =

{
v(x) | mμ(x) v(x) ∈ L2(R)

}
and

Vμ =
{

v ∈ Hμ

∣∣∣ ∂v(x)/∂x ∈ Hμ

}
,

with their respective norms

|v|μ =

{∫
R

[mμ(x) v(x)]2dx
}1/2

,

for all v ∈ Hμ, and

‖v‖μ =

{
|v|2μ + |∂v/∂x|2μ

}1/2

,

for all v ∈ Vμ. The relation “Vμ ⊆ Hμ ⊂ V∗μ ” constitutes an evolution triple.
Temporally, let t = (t, ϑ) and

nγ(t) = e−γϑ ,

such that
Xγ,μ = L2

γ(ÕT,ϑ; Vμ) =
{

u(t) | nγ(t) u(t) ∈ L2(ÕT,ϑ; Vμ)
}

,

which we equip with the norm

‖u‖γ,μ = ‖u‖Xγ,μ =

{∫
ÕT,ϑ

‖nγ(t) u(t)‖2
μ dO

}1/2
,

for all u ∈ Xγ,μ. We associate with Xγ,μ the dual space

X ∗γ,μ = L2
γ(Ot,ϑ; V∗μ )

and the norm ‖u∗‖X ∗γ,μ , for all u∗ ∈ Xγ,μ. In addition, let

Wγ,μ = W1
γ(Ot,ϑ; Vμ, Hμ) =

{
u ∈ Xγ,μ : ∇t(u) ∈ X ∗γ,μ ×X∗γ,μ

}
,

where ∇t(u) = (∂u/∂t, ∂u/∂ϑ), which we associate with the norm

‖u‖Wγ,μ =
(
‖u‖2

Xγ,μ
+ ‖∂u/∂t‖2

X ∗γ,μ
+ ‖∂u/∂ϑ‖2

X ∗γ,μ

)2
,

for all u ∈ Wγ,μ. Finally, we define

L2
γ((0, ∞); Hμ) =

{
u(ϑ) | nγ(t) u(t) ∈ L2(ÕT,ϑ; Hμ)

}
.

We consider the ultraparabolic t-terminal value/infinite ϑ-horizon problem for u ∈ Wγ,μ satisfying
the evolutionary equation

−∂u
∂t
− ∂(bu)

∂ϑ
+ A(t) u = f a.e. on Q̃, (1)
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subject to the terminal condition

u(T, ϑ, x) = υ(ϑ, x) a.e. on Õϑ,x, (2)

where

A(t) u = − ∂

∂x

(
a2

∂u
∂x

)
+ a1

∂u
∂x

+ a0 u ,

for given

a0 , a1 , a2 ∈ L∞(Q̃) , b ∈ C1
(
Q̃
)

, (3)

0 < b ≤ b(t, x) ≤ 2 b , ∂b/∂ϑ bounded , (4)

υ ∈ L2
γ((0, ∞); Hμ) , (5)

f ∈ X ∗γ,μ , (6)

0 < α ≤ a2 and 0 < β ≤ a0 , (7)

for some sufficiently large β.
The generalized problem associated with (1)–(2) is: supposing (3)–(7), find u ∈ Wγ,μ satisfying

− ∂

∂t
(u(t)|v)Hμ

− ∂

∂ϑ
(b(t) u(t)|v)Hμ

+ aμ (t; u(t), v) = 〈 f (t), v〉Vμ
, (8)

for almost all t ∈ ÕT,ϑ, such that
u(Tϑ) = υ(ϑ) on Õϑ,x , (9)

where (u|v)X is the scalar product canonically defined on the Hilbert space X, 〈 f (t), v〉Vμ
denotes the

value of the linear functional f (t) ∈ V∗μ at v ∈ Vμ, Tϑ = (T, ϑ) and

aμ (t; u, v) =
∫
R

a2
∂u
∂x

∂v
∂x

m2
μ dx +

∫
R

a1
∂u
∂x

v m2
μ dx +

∫
R

a0 u v m2
μ dx ,

for all u, v ∈ Vμ and t ∈ ÕT,ϑ. In Equation (8), the expressions ∂/∂t and ∂/∂ϑ denote generalized
derivatives on ÕT,ϑ; that is, Equation (8) means explicitly

∫
ÕT,ϑ

(u(t)|v)Hμ

∂

∂t
ϕ(t) n2

γ dO +
∫
ÕT,ϑ

(b(t) u(t)|v)Hμ

∂

∂ϑ
ϕ(t) n2

γ dO (10)

+
∫
ÕT,ϑ

a (t; u(t), v) ϕ(t) dO =
∫
ÕT,ϑ

〈 f (t), v〉Vμ
ϕ(t) n2

γ dO ,

for all test functions ϕ ∈ C∞
0 (ÕT,ϑ).

For t ∈ ÕT,ϑ , the mapping aμ(t) : Vμ ×Vμ is bilinear and bounded; we likewise assume that aμ(t)
is strongly positive;

c‖u(t)‖2
μ ≤ aμ(t; u(t), u(t)) . (11)

Remark 1. We note that Equations (1)–(2) is an infinite horizon problem in ϑ. That is, the far-field behavior
of ϑ is implicitly defined relative to the weight γ.

Remark 2. In general, the validity of (11) will be problem dependent, predicated upon the spatial asymptotic
behavior of u.

For t ∈ ÕT,ϑ , we define the operator Aμ(t) : Vμ → V∗μ such that
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〈
Aμ(t) u, v

〉
Vμ

= aμ(t; u, v) , (12)

from which it follows that Aμ(t) is linear, continuous, and strongly monotone by (11). In particular,
we have

‖A(t) u‖X ∗γ,μ ≤ C‖u‖Xγ,μ (13)

and
c‖u‖2

μ ≤ 〈A(t) u, u〉Vμ
, (14)

for all u ∈ Vμ and t ∈ ÕT,ϑ .

Lemma 1. Given (3)–(7), the formulations (1)–(2) and (8)–(9) are equivalent.

Proof of Lemma 1. By integration by parts and the density of test functions in Vμ, we have

∂

∂t
(u(t)|v) =

〈
∂u(t)

∂t
, v
〉

Vμ

and
∂

∂ϑ
(u(t)|v) =

〈
∂u(t)

∂ϑ
, v
〉

Vμ

, (15)

for all v ∈ Vμ and almost all t ∈ ÕT,ϑ. From (8), (12) and (15), we deduce that〈
−∂u(t)

∂t
− ∂ (b(t)u(t))

∂ϑ
+ A(t)u(t)− f (t), v

〉
Vμ

= 0 ,

for all v ∈ Vμ and almost all t ∈ OT,Θ , in which case (1) follows. The converse derives from (1) and
u ∈ Wγ,μ, which imply (8).

Proposition 1. Uniqueness. We suppose (3)–(7) and (11); let 0 < γ < c. Then, there exists at most one
solution to (8)–(9).

Proof of Proposition 1. We consider (8)–(9) with f = 0 and υ = 0; setting v = u in (8), we obtain

−1
2

∂

∂t
|u(t)|2μ −

1
2

∂

∂ϑ

∣∣∣∣√b(t) u(t)
∣∣∣∣2
μ

+ aμ (t; u(t), u(t)) = 0

or

2c‖u(t)‖2
μ ≤

∂

∂t
|u(t)|2μ +

∂

∂ϑ

∣∣∣∣√b(t) u(t)
∣∣∣∣2
μ

,

from (11), in which case

0 ≤ ∂

∂t

(
e−2cϑ |u(t)|2μ

)
+

∂

∂ϑ

(
e−2cϑ

∣∣∣∣√b(t) u(t)
∣∣∣∣2
μ

)
.

Integrating over the domain (0, T)× (0, Θ), for some Θ > 0, and applying Green’s Theorem,
it follows that

∫ Θ

0
e−2cϑ |u(0, ϑ)|2μ dϑ +

∫ T

0

∣∣∣∣√b(t, 0) u(t, 0)
∣∣∣∣2
μ

dt ≤
∫ T

0
e−2cΘ

∣∣∣∣√b(t, Θ) u(t, Θ)

∣∣∣∣2
μ

dt

and so
0 < c̃ ≤ e−2cΘ |u(t, Θ)|2μ .

However,
c̃e−2(c−γ)Θ ≤ e−2cΘ |u(t, Θ)|2μ

176



Mathematics 2018, 6, 286

is not summable on (0, ∞), which contradicts the condition u ∈ Xγ,μ, from which it follows that
u = 0.

We consider the regularization of (1)–(2) to domains of finite extent. To this end, it suffices for υ to
have an extension to, or to be of compact support in, Q̃. Without loss of generality, we may assume
that υ = 0. For m ∈ N, let

Qm = (0, T)× (0, m)× (−m, m) ,

fm = f on Qm ,

Vm = H1
0(−m, m) ,

Hm = L2(−m, m) ,

Xm = L2((0, T)× (0, m); Vm) ,

X ∗m = L2((0, T)× (0, m); V∗m),

and
Wm = {um ∈ Xm | ∇t(um) ∈ X ∗m ×X∗m } .

There exists a unique um ∈ Wm satisfying the ultraparabolic terminal value problem (cf. [5])

−∂um

∂t
− ∂(bum)

∂ϑ
+ A(t, ϑ) um = fm a.e. on Qm (16)

subject to the terminal conditions

u(T, ϑ, x) = 0 a.e. on (0, m)× (−m, m) , (17)

u(t, m, x) = 0 a.e. on (0, T)× (−m, m) , (18)

and boundary conditions

u(t, ϑ,−m) = u(t, ϑ,−m) = 0 a.e. on (0, T)× (0, m) . (19)

We denote by ũm the extension of um by zero to the compliment of Qm.

Lemma 2. We suppose (3)–(7), (11),

∇t(ai) ∈ L∞(Q̃)× L∞(Q̃) , (20)

0 < γ < c / b and f ∈ L2
γ(Õt,ϑ; Hμ); then,

‖ũm‖γ,μ ≤ C , (21)

for all m ∈ N.

Proof of Lemma 2. Taking the inner product of (16) with ũm, we have

−
(

∂ũm

∂t
, ũm

)
μ

−
(

∂bũm

∂ϑ
, ũm

)
μ

+ aμ(t; ũm, ũm) = ( fm, ũm)μ

or
−e−2γϑ 1

2
∂

∂t
|ũm|2μ − e−2γϑ 1

2
∂

∂ϑ

∣∣∣√bũm

∣∣∣2
μ
+ ce−2γϑ‖ũm‖2

μ ≤ e−2γϑ( fm, ũm)μ .
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Integrating the above over (0, T)× (ϑ, m), it follows that

−
∫ T

0

∫ m

ϑ
e−2γϑ 1

2
∂

∂t
|ũm|2μ −

∫ T

0

∫ m

ϑ
e−2γϑ 1

2
∂

∂ϑ

∣∣∣√bũm

∣∣∣2
μ

+c
∫ T

0

∫ m

ϑ
e−2γϑ‖ũm‖2

μ ≤
∫ T

0

∫ m

ϑ
e−2γϑ( fm, ũm)μ

or

−
{∫ T

0

∫ m

ϑ

∂

∂t

[
e−2γϑ |ũm|2μ

]
+
∫ T

0

∫ m

ϑ

∂

∂ϑ

[
e−2γϑ

∣∣∣√bũm

∣∣∣2
μ

]}
−
∫ T

0

∫ m

ϑ
2γe−2γϑ

∣∣∣√bũm

∣∣∣2
μ
+ 2c

∫ T

0

∫ m

ϑ
e−2γϑ‖ũm‖2

μ

≤ 2
∫ T

0

∫ m

ϑ
e−2γϑ( fm, ũm)μ

and so ∫ m

ϑ
e−2γϑ |ũm(0, ϑ)|2μ +

∫ T

0
e−2γϑ |ũm(t, ϑ)|2μ −

∫ T

0

∫ m

ϑ
2γe−2γϑ

∣∣∣√bũm

∣∣∣2
μ

+2c
∫ T

0

∫ m

ϑ
e−2γϑ‖ũm‖2

μ ≤ 2
∫ T

0

∫ m

ϑ
e−2γϑ( fm, ũm)μ

in which case

2c
∫ T

0

∫ m

ϑ
e−2γϑ‖ũm‖2

μ −
∫ T

0

∫ m

ϑ
2γe−2γϑ

∣∣∣√bũm

∣∣∣2
μ

≤ 2
∫ T

0

∫ m

ϑ
e−2γϑ( fm, ũm)μ

or (
c− b γ

) ∫ T

0

∫ m

ϑ
e−2γϑ‖ũm‖2

μ ≤
∫ T

0

∫ m

ϑ
e−2γϑ( fm, ũm)μ

≤
(∫ T

0

∫ m

ϑ
e−2γϑ‖ f̃m‖2

μ

)1/2 (∫ T

0

∫ m

ϑ
e−2γϑ‖ũm‖2

μ

)1/2

such that ∫ T

0

∫ m

ϑ
e−2γϑ‖ũm‖2

μ ≤ C ;

therefore,
‖ũm‖γ,μ ≤ C

for all m ∈ N.

We obtain a supplementary estimate on ∇t(ũm).

Lemma 3. We suppose (3)–(7), (11), (20), 0 < γ < c / b and f ∈ L2
γ(Ot,ϑ; Hμ), then∥∥∥∥∂ũm

∂t

∥∥∥∥
γ,μ
≤ C and

∥∥∥∥∂ũm

∂ϑ

∥∥∥∥
γ,μ
≤ C . (22)

Proof of Lemma 3. We consider the parabolic regularization with respect to ϑ of (16)–(19). To this end,
letHm(0, Θ) = L2(0, Θ; Hm); we define the space of test functions on (0, m)× (−m, m) such that

Vm(0, m) =

{
v | v ,

∂v
∂x

,
∂v
∂ϑ
∈ L2(0, m; Hm) , v(t, ϑ,−m) = v(t, ϑ, m) = v(t, m, x) = 0

}
,
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in which case we obtain the evolution triple “Vm(0, m) ⊂ Hm(0, m) ⊂ V∗m(0, m)”. We denote
Hm = Hm(0, m) and Vm = Vm(0, m) for brevity and equip Vm with the norm

‖v‖2
Vm

=
∫
(0,m)

‖v(θ)‖2
Hm

dθ +
∫
(0,m)

‖∂v(θ)/∂x‖2
Hm

dθ +
∫
(0,m)

‖∂v(θ)/∂θ‖2
Hm

dθ

= ‖v‖2
Hm

+ ‖∂v/∂x‖2
Hm

+ ‖∂v/∂ϑ‖2
Hm

.

Let

Wm =Wm(0, T;Vm,Hm) =

{
v | v ∈ Xm ,

∂v
∂t
∈ X ∗m ,

∂v
∂ϑ
∈ X ∗m , v(t, m, x) = 0

}
,

where Xm = L2((0, m) × (−m.m); Vm) and X ∗m = L2((0, m) × (−m.m); V∗m), which we equip with
the norm

‖v‖2
Wm

=
∫ T

0
‖v(τ)‖2

Vm
dτ +

∫ T

0
‖∂v(τ)/∂τ‖2

X ∗m dτ .

The perturbation problem associated with (16)–(19) is: for any ε > 0, we seek uε
m satisfying the

parabolic equation

−∂uε
m

∂t
− ε

∂2uε
m

∂ϑ2 − ∂(b uε
m)

∂ϑ
+ A(t) uε

m = fm a.e. on Q , (23)

where A(t) = A(t, ϑ), subject to the terminal condition

uε
m(T, ϑ, x) = υ(ϑ, x) a.e. on (0, m)× (−m, m) , (24)

and boundary conditions

uε
m(t, Θ, x) = 0 a.e. on (0, T)× (−m, m) , (25)

uε(t, ϑ,−m) = uε(t, ϑ, m) = 0 a.e. on (0, t)× (0, m) , (26)

∂uε
m

∂ϑ
(t, m, x) = 0 a.e. on (0, T)× (−m, m) . (27)

The problem (23)–(27) is well-posed, noting in particular the necessity of the auxiliary boundary
condition (27).

We denote by ũε
m the extension of uε

m by zero to the compliment of Qm. Taking the inner product
of (23) with −n2

γ ∂ũε
m/∂t, it follows that

∫
(0,m)

(
∂ũε

m
∂t

∣∣∣n2
γ

∂ũε
m

∂t

)
μ

dθ + aε
0,μ,γ

(
t; ũε

m,−∂ũε
m

∂t

)
=
∫
(0,m)

(
f − A1ũε

m

∣∣∣− n2
γ

∂ũε
m

∂t

)
μ

dθ ,

where
aε

0,μ,γ (t; u, v) = ε
∫
Õϑ,x

∂u
∂ϑ

∂v
∂ϑ

m2
μn2

γ dO +
∫
Õϑ,x

a2(t)
∂u
∂x

∂v
∂x

m2
μn2

γ dO

and

A1u =
∂(bu)

∂ϑ
− a1

∂u
∂x
− a0u ,

in which case ∫
(0,m)

n2
γ

∣∣∣∣∂ũε
m

∂t

∣∣∣∣2
μ

dθ − 1
2

d
dt

aε
0,μ,γ (t; ũε

m, ũε
m) +

1
2
•
a ε

0,μ,γ (t; ũε
m, ũε

m)

=
∫
(0,m)

n2
γ

(
f − A1ũε

m,−∂ũε
m

∂ϑ

)
μ

dθ ,
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where
•
a ε

0,μ,γ (ϑ; u, v) =
∫
Õϑ,x

da2(t)
dt

∂u
∂x

∂v
∂x

m2
μn2

γ dO .

Integrating the above in time, we have that

∫
ÕT,ϑ

n2
γ

∣∣∣∣∂ũε
m

∂t

∣∣∣∣2
μ

dO +
1
2

aε
0,μ,γ (0; ũε

m, ũε
m) =

1
2

aε
0,μ,γ (T; ũε

m, ũε
m)

−1
2

∫ T

0

•
a ε

0 (t; ũε
m, ũε

m) dt +
∫
ÕT,ϑ

n2
γ

(
f − A1ũε

m,−∂ũε
m

∂t

)
μ

dO .

With (21), we proceed as per Lemma 2 to obtain

∫
ÕT,ϑ

n2
γ

∣∣∣∣∂ũε
m

∂t

∣∣∣∣2
μ

dO ≤ C ,

which is valid for all ũε
m; passing to the limit, we obtain∥∥∥∥∂ũm

∂t

∥∥∥∥
γ,μ
≤ C ,

which holds for all m. We determine the estimate in ϑ analogously.

In the following result, we establish the existence of the solution to (8)–(9) as well as its
approximation by the regularization (16)–(19).

Proposition 2. Existence. We suppose (3)–(7), (11), (20), 0 < γ < c / b and f ∈ L2
γ(Ot,ϑ; Hμ); then, there

exists a u ∈ Wγ,μ satisfying (8)–(9). Moreover, the sequence {ũm} converges such that ũm → u in Xγ,μ and

max
t∈O

{∫ T

t
|
√

b(τ, ϑ)(ũm(τ, ϑ)− u(τ, ϑ)|2μ dτ +
∫ Θ

ϑ
|ũm(t, θ)− u(t, θ)|2μ dθ

}
→ 0 ,

as m → ∞, where O = (0, T)× (0, Θ), for any (fixed) Θ > 0.

Proof of Proposition 2. From the estimates (21) and (22), it follows that, possibly after extracting
a subsequence, ũm ⇀ u in Xγ,μ, ∂ũm/∂t ⇀ ∂u/∂t in L2

γ(O, Hμ)) and ∂ũm/∂ϑ ⇀ ∂u/∂ϑ in L2
γ(O, Hμ)),

where u satisfies (8)–(9).
In order to show convergence of the regularizations ũm, we have from (8) that

−1
2

∂

∂t
|u(t)− ũ(t)|2μ −

1
2

∂

∂ϑ

∣∣∣∣√b(t) (u(t)− ũ(t))
∣∣∣∣2
μ

+aμ (t; u(t)− ũ(t), u(t)− ũ(t)) = ( f (t)|u(t)− ũ(t))μ .

Multiplying the above by n2
γ and applying the Green’s formula over O, we obtain

∫ T

t
|
√

b(τ, ϑ) un(τ, ϑ)− u(τ, ϑ)|2μ dτ +
∫ Θ

ϑ
|un(t, θ)− u(t, θ)|2μ dθ

+2
∫
O

aμ (t; u(t)− ũ(t), u(t)− ũ(t)) dO = 2
∫
O
( f (t)|u(t)− ũ(t))μ dO ,

and the result follows from (11) and ũm ⇀ u in Xγ,μ.
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Let {w1, w2, . . .} denote a basis in Vm. We set

um,n(t, ϑ, x) =
n

∑
k=1

ckn(t, ϑ)wk(x) , (28)

υn(ϑ, x) =
n

∑
k=1

αkn(ϑ)wk(x) , (29)

where ckn(t, ϑ) ∈ L2((0, T)× (0, m)) and αkn(ϑ) ∈ L2(0, m), such that αkn(m) = 0, υn ∈ L2(0, m; Vm) and

υm,n → υ in L2(0, m; Hm) , (30)

as n → ∞. The Galerkin equations associated with (16)-(19) are defined

−
n

∑
k=1

∂

∂t
ckn(t)(wk|wj)Hm −

n

∑
k=1

∂

∂ϑ
ckn(t)(

√
b(t)wk|

√
b(t)wj)Hm (31)

+
n

∑
k=1

ckn(t) a(t; wk|wj) = 〈 f (t), wj〉Vm on (0, T)× (0, m)

for j = 1, . . . , n, such that
ckn(T, ϑ) = αkn(ϑ) a.e. on (0, m), (32)

ckn(t, m) = 0 a.e. on (0, T), (33)

for k = 1, . . . , n, where

a (t; u, v) =
∫
(0,X)

a2
∂u
∂x

∂v
∂x

dx +
∫
(0,X)

a1
∂u
∂x

v dx +
∫
(0,X)

a0 u v dx ,

for all u, v ∈ V and t ∈ (0, T) × (0, m), (u|v)Hm
is the inner product on the Hilbert space Hm,

and 〈 f , v〉Vm is the value of the linear functional f ∈ V∗m at v ∈ Vm.
We immediately obtain the constructive approximation of (8)–(9)) by the Galerkin procedure

(28)–(33) from ([5], Propositions 4 and 5) and Proposition 2.

Proposition 3. Galerkin Approximation. We suppose (3)–(7), (11), (20), 0 < γ < c/2b, and f ∈
L2

γ(Ot,ϑ; Hμ). Let um,m be the mth-Galerkin approximation to um defined by (28)–(33) and u the solution to
(8)–(9), then um,m → u in X and

max
t∈O

{∫ T

t
|
√

b(τ, ϑ) um,m(τ, ϑ)− u(τ, ϑ)|2μ dτ +
∫ Θ

ϑ
|um,m(t, θ)− u(t, θ)|2μ dθ

}
→ 0

as m → ∞, where O = (0, T)× (0, Θ), for any (fixed) Θ > 0.

Remark 3. Propositions 2 and 3 likewise hold with f ∈ X ∗γ,μ, where we imply the Galerkin approximation per
the proof of Lemma 3.

3. Probabilistic Interpretation

In order to provide a probabilistic interpretation of the solution to (1)–(2), we make the additional
assumptions that

a2 , a1 , a0 , b ∈ C1
(
Q̃
)

; a2 bounded, (34)

∂2a2

∂x2 ,
∂2a2

∂x∂ϑ
,

∂2a2

∂ϑ2 ∈ C0
(
Q̃
)

, bounded, (35)
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∂a0

∂x
,

∂a1

∂x
,

∂a2

∂x
,

∂b
∂x

bounded, (36)

∂a0

∂ϑ
,

∂a1

∂ϑ
,

∂a2

∂ϑ
,

∂b
∂ϑ

bounded, (37)

∂2a2

∂t∂x
,

∂2a2

∂t∂ϑ
,

∂a2

∂x2 ∈ Lp
loc(Q̃), (38)

f ,
∂ f
∂x
∈ C0

(
Q̃
)

, (39)

| f (t, ϑ, x)| ≤
[
1 + (ϑ2 + x2)m/2

]
, (40)∣∣∣∣∂ f

∂x

∣∣∣∣ ≤ C
[
1 + (ϑ2 + x2)m/2

]
, (41)

∂ f
∂t
∈ Lp

loc(Q̃) . (42)

We likewise suppose the existence of a function

Ψ ∈ C2,1
(
Q̃
)
∩ C0

(
Q̃
)

, (43)

∣∣∣∣∂Ψ
∂x

∣∣∣∣ ≤ C
[
1 + (ϑ2 + x2)m/2

]
, (44)

such that
υ(ϑ, x) = Ψ(T, ϑ, x) (45)

and

g = −∂Ψ
∂t
− ∂(bΨ)

∂ϑ
+ A(t, ϑ)Ψ (46)

satisfies the same assumptions as f . From Proposition 2 and Appendix A, we allow that there exists

a unique solution u ∈ C2,1(Q̃) ∩ C0
(
Q̃
)

to the problem (1)–(2).

We let σ =
√

2a2 (or a2 = σ2/2) and define

a(t, ϑ, x) =
∂a2

∂x
− a1 (47)

and
α0 = a0 −

∂b
∂ϑ

, (48)

in which case α0 > 0 for β sufficiently large (cf. (7)). In particular, σ, a and b are elements of C1
(
Q̃
)

.

Moreover, by extending the functions a, b, and σ outside of Q, we may assume that

|σ(t, ϑ2, x2)− σ(t, ϑ1, x1)|+ |a(t, ϑ2, x2)− a(t, ϑ2, x1)|

+|b(t, ϑ2, x2)− b(t, ϑ1, x1)| ≤ K
(
|ϑ2 − ϑ1|2 + |x2 − x1|2

)1/2
(49)

as well as
|σ| ≤ Ko and |a(t, ϑ, x)|2 + |b(t, ϑ, x)|2 ≤ K2

1(1 + |ϑ|2 + |x|2) , (50)

for all t ∈ ÕT,ϑ.
We now seek a probabilistic interpretation of the function u satisfying (1)–(2) by constructing

a stochastic differential equation for which the trajectories (Θ(t), X(t)) are the characteristics of
−∂(b ·)/∂ϑ + A. To this end, we take a probability space (Ω,A, P), an increasing family of
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sub-σ-algebras Ft of A, and a R-valued standardized Wiener process w(t), which is an Ft martingale.
We can then consider, on an arbitrary finite interval, the stochastic differential equation

dX(t) = a(t, Θ(t), X(t)) dt + σ(t, y) dw(t) , (51)

dΘ(t) = b(t, Θ(t), X(t)) dt, (52)

X(0) = x ∈ R , (53)

Θ(0) = ϑ ∈ R+ , (54)

where x and ϑ are fixed and non-random; the solution of (51)–(54) is unique.

Proposition 4. The assumptions of Proposition 2, as well as (34) through (46); the solution of (1)–(2) is given by

u(t, ϑ, x) = E

{∫ T

t
f (s, Θ(s), X(s)) exp

[
−
∫ s

t
α0(ς, Θ(ς), X(ς)) dς

]
ds
}

(55)

+E

{
υ(Θ(T), X(T)) exp

[
−
∫ T

t
α0(s, Θ(s), X(s)) ds

]}
.

Proof of Proposition 4. The proof relies on the existence and uniqueness of the regular solution to the
ultraparabolic terminal value problem (1)–(2). With this exception, the result is standard such that we
will provide only a brief exposition, deferring to e.g., ([12], Chapter 2, Theorem 7.4). For the process
(Θ(t), X(t)), we have that

E

[(
|Θ(s)|2 + |X(s)|2

)k
]
≤ C

[
1 +
(
|ϑ|2 + |x|2

)k
]

, (56)

for all s ∈ [t, T] and all k ∈ N, in which case the right-hand side of (55) is well-defined.
We shall now prove (55) in the case υ = 0. We set

Z(s) = exp
{
−
∫ s

t

[
a0(ς, Θ(ς), X(ς))− ∂b

∂ϑ

]
dς

}
. (57)

Then, Z(s) satisfies

dZ(s)
ds

=
∂b
∂ϑ
− a0(s, Θ(s), X(s)) Z(s) , Z(t) = 1 . (58)

Differentiating the functional Ψ · Z, applying Ito’s formula to Ψ, and integrating from t to T,
we obtain

Ψ(T, Θ(T), X(T)) = Ψ(t, ϑ, x)

+
∫ T

t

[
∂Ψ
∂s

+
∂(bΨ)

∂ϑ
− A(s, ϑ)Ψ

]
(s, Θ(s), X(s)) Z(s) ds

+
∫ T

t
Z(s)

[
∂Ψ
∂x

σ

]
(s, Θ(s), X(s)) dw .

From (56) with k = m and the assumptions (44) on the growth of ∂Ψ/∂x, we have that the
expectation of the stochastic integral is defined and is equal to zero. We therefore have that

E {υ(Θ(T), X(T)) Z(T)} = Ψ(t, ϑ, x)−E

{∫ T

t
g(s, Θ(s), X(s)) Z(s)

}
,
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in which case (55) is identical to

u(t, x)−Ψ(t, ϑ, x) = E

{∫ T

t
[ f (s, Θ(s), X(s))− g(s, Θ(s), X(s))] Z(s)

}

and so the problem reduces to proving (55) with υ = 0, with f replaced by f − g, and with u replaced
by u−Ψ and a solution to (1)–(2) corresponding to data f − g and 0.

We therefore assume υ = 0; we prove that

u(t, ϑ, x) = E

{∫ T

t
f (s, Θ(s), X(s)) Z(s) ds

}
. (59)

We start by considering the bounded case. We approximate f by fNM defined by

fNM =

⎧⎪⎨⎪⎩
N if N ≤ f ,
f if −M ≤ f ≤ N,

−M if f ≤ −M.

Since fNM ∈ C0
(
Õ
)

and ∂ fNM/∂x, ∂ fNM/∂t, ∂ fNM/∂ϑ ∈ Lp
loc(Õ), we can uniquely define uNM

as the solution of
uNM ∈ L2(ÕT,ϑ; H1

μ) ∩ C0
(
Q̃
)
∩ C2,1(Q)

such that
−∂uNM

∂t
− ∂b uNM

∂ϑ
+ A(t)uNM = fNM (60)

and
uNM(T, ϑ, x) = 0 . (61)

We note that uMN is bounded. This follows as per ([5], Prop. 2’).
We show:

uNM(t, ϑ, x) = E

{∫ T

t
fNM(s, Θ(s), X(s)) Z(s) ds

}
. (62)

To this end, let OR =
{

ξ ∈ R2 | |ξ| ≤ R
}

and τR be the exit time form OR of the process
(Θ(t), X(t)). We can suppose that the (fixed) initial data (x, ϑ) of (51)–(54) belongs to OR, for R
that is sufficiently large. That is, we have, from the continuity of the process a.s. τR ≥ T for some
R0(ω) with R ≥ R0(ω), in which case

a.s. τR ∧ T = T , (63)

for R ≥ R0(ω). As above, with the use of Ito’s formula applied to uNM between the instants t and

τR ∧ T − ε, taking ε → 0, and using the continuity of uNM on Q̃, we have

uNM(t, ϑ, x) = E

{∫ τR∧T

t
fNM(s, Θ(s), X(s)) Z(s) ds

}
(64)

+E {uNM(τR, Θ(τR), X(τR)) Z(τR) χT(τR)} ,

where

χT(t) =

{
1, if t < T,
0, if t ≥ T .

However, from (63), we have

uNM(τR, Θ(τR), X(τR)) z(τR) χT(τR) = 0 ,
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for R ≥ R0(ω), and so

E {uNM(τR, Θ(τR), X(τR)) Z(τR) χT(τR)} → 0 a.s. ,

as R → ∞. Application of Lesbesque’s theorem then provides the result (62).
From the estimates

|uNM| ≤ C
[

1 +
(

ϑ2 + x2
)m/2

]
and ∣∣∣∣∂uNM

∂x

∣∣∣∣ ≤ C
[

1 +
(

ϑ2 + x2
)m/2

]
,

it follows that uNM lies in a bounded subset of L2(ÕT,ϑ; H1
μ) and we obtain (59) by proceeding to the

limit successively in M and N.

4. Conclusions

We have demonstrated the existence and uniqueness of the solution to linear ultraparabolic
equations on unbounded domains, both spatial and temporal, as well as the strong convergence of the
regularized problem, providing a basis for the subsequent application of a Galerkin approximation.
Furthermore, we present a probabilistic interpretation of the solution in terms of the expectation of
an associative ultradiffusion process. In practice, the usefulness of this result often stems from the
converse formulation; that is, one often wishes to obtain the discounted expectation associated with
an ultradiffusion process, e.g., the valuation of an Asian option in mathematical finance (cf. [11]).
To this end, the regularity assumptions of Section 3 are necessary for the existence of the solution
to the ultradiffusion process (3.5). With respect to a simple regular transformation, the associated
ultraparabolic problem maintains the approximation solvability of Section 2, for which efficient and
general numerical procedures are readily available (cf. [13–15]).
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Appendix A. Regularity

There exist two approaches to obtaining regularity; for parabolic differential equations of the
second order, we note that Wloka [16] has provided regularity theorems based on raising the
differentiability assumptions of the data while Ladyženskaja et al. [17] have taken the approach
of increasing the p-power summability of the data. The results stated below follow the latter approach,
the demonstration of which lies outside the scope of this manuscript. As regularity theorems are local,
they do not require assumptions on the boundary or the boundedness of the domain .

We letW1,2,p(Q̃) denote the space of functions u such that

u,
∂u
∂t

,
∂u
∂ϑ

,
∂u
∂x

,
∂2u
∂x2 ∈ Lp(Q̃) ,

for 1 ≤ p ≤ ∞. Here, the “1” refers to the order of temporal derivatives, and “2” refers to the
number of spatial derivatives. If p = 2, we writeW1,2(Q̃), which we equip with the natural Banach-
and Hilbert-space norm. We denote by W1,2,p

loc (Q̃) the space of functions u such that, for all test
functions ϕ ∈ D(Q̃), the set of infinitely differentiable functions with compact support in Q̃, we have
ϕ u ∈ W1,2,p

loc (Q̃).
We suppose that

a2, a1, a0, b ∈ C1(Q̃) . (65)
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Moreover, for v ∈ Lp
loc(Q̃), we denote by Lv the following distribution on Q̃:

〈Lv, ψ〉 =
∫
Q̃

v
[

∂ψ

∂t
+

∂(b ψ)

∂ϑ
− ∂

∂x

(
a2

∂ψ

∂x

)
− ∂

∂x
(a1ψ) + a0ψ

]
dQ̃ ,

for all ψ ∈ D(Q̃).

Proposition A1. Local Regularity. The assumptions of Proposition 2, as well as (65). Let u ∈ Lp
loc(Q̃) be

such that

Lu = −∂u
∂t
− ∂(b u)

∂ϑ
+ A(t, ϑ) u = f ∈ Lp

loc(Q̃) ,

then u ∈ W1,2,p
loc (Q̃), for p > 1.

Proof of Proposition A1. The case for p = 2 follows with a slight modification from ([12], Chapter 2,
Theorem 5.5).

In order to obtain results on the boundary, we set

f̃ =

{
f , on (0, T),
0, on (−T, 0) and (T, 2T),

and extend the operator A(t, ϑ) in such a way that it is defined over (−T, 2T), all the while retaining
the properties of the coefficients. Finally, we consider the solution of ũ of

−∂ũ
∂t
− ∂(bũ)

∂ϑ
+ A(t, ϑ) ũ = f̃ a.e. on Q̃ (66)

subject to the terminal condition

ũ(2T, ϑ, x) = 0 a.e. on Õϑ,x . (67)

Corollary A1. The assumptions of Proposition A1; we have

u ∈ C0
(
Q̃
)

,

for p > 2.

Proof of Corollary A1. From Proposition A1 applied to ũ in (66)–(67), we obtain ũ ∈ W1,2,p
loc (Q̃) from

which we derive the result.

Increased smoothness of the data may then be translated into smoothness of the solution.

Proposition A2. The assumptions of Proposition A1, as well as

∂2a2

∂t∂x
,

∂2a2

∂ϑ∂x
,

∂2a2

∂x2 ∈ Lp
loc(Q̃) , (68)

f ,
∂ f
∂t

,
∂ f
∂ϑ

,
∂ f
∂x
∈ Lp

loc(Q̃) , (69)

u ∈ Lp
loc(Q̃) ,

and Lu = f , then
u ∈ W1,3,p

loc (Q̃)
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and
∂u
∂t

,
∂u
∂ϑ
∈ W1,2,p

loc (Q̃) .

In particular, u ∈ C1,2(Q̃).

Proof of Proposition A2. We consider the differential quotients technique per Section 4 of [5] such
that, if f ∈ W1,1,p

loc (Q̃), then u ∈ W1,3,p
loc (Q̃).

Finally, the key regularity result is:

Proposition A3. The assumptions of Proposition A2. If f ∈ Lp(Q̃) and υ = 0, then the unique solution to
(1)–(2) also satisfies u ∈ Lp

loc(Q̃).

Appendix B. Localization

In order to highlight the temporal nature of the variable ϑ in the probabilistic framework,
we examine formally the localization of the ultradiffusion process (51)–(54) and its relation to
(1)–(2). To this end, we freeze the drift and volitility in a neighborhood of t = 0 and consider
the ultradiffusion process

dX(t) = a dt + σ dw(t) , (70)

dΘ(t) = b dt , (71)

X(0) = x ∈ R , (72)

Θ(0) = ϑ ∈ R+ , (73)

where x and ϑ are again fixed and non-random. It follows then that the solution to ultraparabolic
infinite horizon/ terminal boundary value problem

−∂u
∂t
− ∂(bu)

∂ϑ
+ A u = 0 a.e. on Q̃, (74)

u(T, ϑ, x) = υ(ϑ, x) a.e. on Õϑ,x (75)

may be characterized as

u(t, ϑ, x) = E {υ(Θ(T), X(T)) exp [−a0(T − t)]} . (76)

In particular, we consider the temporal characteristic transformation t = t(τ) and ϑ = ϑ(τ)

such that
d t(τ)

d τ
= 1 ; t(0) = 0 , (77)

d ϑ(τ)

d τ
= b ; ϑ(0) = ϑ0 , (78)

where ϑ0 > 0, in which case t(τ) = τ and ϑ(τ) = b τ + ϑ0 or, more simply, t = τ and ϑ(t) = b t + ϑ0.
Note then that, along the characteristic line (t(τ), ϑ(τ)), the Formulations (70)–(76) may be restated in
terms of the characteristic parameterized diffusion

dX (τ; ϑ0) = a dτ + σ d�(τ) , (79)

X (0; ϑ0) = x ∈ R , (80)

such that the solution v(τ, x; ϑ0) = u(t(τ), ϑ(τ), x) to the characteristic parameterized parabolic
terminal value problem
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− ∂v
∂τ

+ A v = 0 a.e. on (0, T)×R, (81)

v(T, x; ϑ0) = υ(ϑ0, x) a.e. on Õϑ,x, (82)

satisfies
v(τ, x) = E

′ {v(X (T)) exp [−a0(T − τ)]} . (83)

The temporal nature of ϑ then follows from the characteristic problem (77)–(83). Due to (77)–(78), the
vector (1, b) (resp. b) is known as the velocity (resp. speed) of propagation.

References

1. Piskunov, N.S. Problémes Limits pour les Équations du Type Elliptic–Parabolique. Mat. Sb. 1940, 7, 385–424.
2. Lions, J.L. Sur Certaines Équations aux Dérivativées Partielles, à Coefficients Opérateurs non Bornés.

J. Anal. Math. 1958, 6, 333–355. [CrossRef]
3. Il’in, A.M. On a Class of Ultraparabolic Equations. Soviet Math. Dokl. 1964, 5, 1673–1676.
4. Vladimirov, V.S.; Drožžinov, J.N. Generalized Cauchy Problem for an Ultraparabolic Equation. Math. USSR Izv.

1967, 1, 1285–1303.
5. Marcozzi, M.D. Well-Posedness of Linear Ultraparabolic Equations on Bounded Domains. J. Evol. Equ. 2018,

18, 75–104. [CrossRef]
6. Kolmogorov, A.N. Zur Theorie der Stetigen Zufalligen Progresse. Math. Ann. 1933, 108, 149–160. [CrossRef]
7. Kolmogorov, A.N. Zufällige Bewegungen. Ann. Math. 1934, 35, 116–117.
8. Uhlenbeck, G.E.; Ornstein, L.S. On the Theory of the Brownian Motion. Phys. Rev. 1930, 36, 823–841.

[CrossRef]
9. Chandrasekhar, S. Stochastic Problems in Physics and Astronomy. In Selected Papers on Noise and Stochastic

Processes; Wax, N., Ed.; Dover: New York, NY, USA, 2013; Reprint.
10. Marshak, R.E. Theory of the Slowing Down of Neutrons by Elastic Collisions with Atomic Nuclei.

Rev. Mod. Phys. 1947, 19, 185–238. [CrossRef]
11. Hull, J.C. Options, Futures, and Other Derivatives, 10th ed.; Pearson: New York, NY, USA, 2017.
12. Bensoussan, A.; Lions, J.L. Applications of Variational Inequalities in Stochastic Control; North Holland:

Amsterdam, The Netherlands, 1982.
13. Akrivis, G.M.; Crouzeix, M.; Thomee, V. Numerical methods for ultraparabolic equations. Calcolo 1996,

31, 179–190. [CrossRef]
14. Marcozzi, M.D. On the valuation of Asian options by variational methods. SIAM J. Sci. Comput. 2003,

24, 1124–1140. [CrossRef]
15. Marcozzi, M.D. Extrapolation discontinuous Galerkin method for ultraparabolic equations. J. Comput.

Appl. Math. 2009, 224, 679–687. [CrossRef]
16. Wloka, J. Partial Differential Equations; Cambridge University Press: Cambridge, UK, 1987.
17. Ladyženskaja, O.A.; Solonnikov, V.A.; Ural’ceva, N.N. Linear and Quasilinear Equations of Parabolic Type; American

Mathematical Society: Providence, RI, USA, 1967; Volume 23 of Translations of Mathematical Monographs.

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

188



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03928-247-0 


	Blank Page

