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Preface to “Remote Sensing Applications for

Agriculture and Crop Modelling”

Crop models and remote sensing techniques have been combined and applied in agriculture and

crop estimation on local and regional scales, or worldwide, based on the simultaneous development

of crop models and remote sensing. The literature shows that many new remote sensing sensors

and valuable methods have been developed for the retrieval of canopy state variables and soil

properties from remote sensing data for assimilating the retrieved variables into crop models. At

the same time, remote sensing has been used in a staggering number of applications for agriculture.

This book sets the context for remote sensing and modelling for agricultural systems as a mean to

minimize the environmental impact, while increasing production and productivity. The eighteen

papers published in this Special Issue, although not representative of all the work carried out in the

field of Remote Sensing for agriculture and crop modeling, provide insight into the diversity and the

complexity of developments of RS applications in agriculture. Five thematic focuses have emerged

from the published papers: yield estimation, land cover mapping, soil nutrient balance, time-specific

management zone delineation and the use of UAV as agricultural aerial sprayers. All contributions

exploited the use of remote sensing data from different platforms (UAV, Sentinel, Landsat, QuickBird,

CBERS, MODIS, WorldView), their assimilation into crop models (DSSAT, AQUACROP, EPIC,

DELPHI) or on the synergy of Remote Sensing and modeling, applied to cardamom, wheat, tomato,

sorghum, rice, sugarcane and olive.

The intended audience is researchers and postgraduate students, as well as those outside

academia in policy and practice.

Piero Toscano

Special Issue Editor
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Abstract: Large Cardamom (Amomum subulatum Roxb.) is one of the most valuable cash crop of
the Himalayan mountain region including Nepal, India, and Bhutan. Nepal is the world’s largest
producer of the crop while the Taplejung district contributes a 30%–40% share in Nepal’s total
production. Large cardamom is an herbaceous perennial crop usually grown under the shade of
the Uttis tree in very specialized bioclimatic conditions. In recent years, a decline in cardamom
production has been observed which is being attributed to climate-related indicators. To understand
the current dynamics of this under-canopy herbaceous crop distribution and its future potential under
climate change, a combination of modelling, remote sensing, and expert knowledge is applied for
the assessment. The results suggest that currently, Uttis tree cover is 10,735 ha in the district, while
50% (5198 ha) of this cover has a large cardamom crop underneath. When existing cultivation is
compared with modelled suitable areas, it is observed that the cultivatable area has not yet reached
its full potential. In a future climate scenario, the current habitat will be negatively affected, where
mid elevations will remain stable while lower and higher elevation will become infeasible for the
crop. Future changes are closely related to temperature and precipitation which are steadily changing
in Nepal over time.

Keywords: large cardamom; remote sensing; species modelling; habitat assessment; climate change

1. Introduction

Large cardamom (Amomum subulatum Roxb.) is mostly being cultivated in the Himalayan
mountain region of Nepal, India, and Bhutan [1]. There is an increasing demand of the spices from local
to global markets which has fascinated farmers in its commercial cultivation [2]. The high-value crop
cultivation has substantially improved the livelihood of farmers residing in these mountain regions.
However, several studies have highlighted threats of cardamom farming which include problems
in disease management, change in climatic conditions, and human activities such as infrastructure
development in cardamom growing areas [2,3]. Alongside this, comprehensive information on its
current distribution and potentially suitable areas for cultivation is unavailable, which is essential for
crop planning and management. Further, for its distribution and current suitability, information on the
impacts of climate change is also vital for future planning as climate has a significant impact on the
geographical distribution of plant species and also alters habitat conditions [4,5].

Large cardamom is an herbaceous perennial crop usually grown under shade. Uttis (Alnus
nepalensis) trees provide excellent shade, supply a good amount of litter from twigs and leaves, and
nitrogen from the root nodules to understory cardamom when they are young. The crop is generally
grown at an altitude of 700 to 2000 m above sea level in humid conditions, with temperature ranges
between 4–20 ◦C and annual precipitation around 2000–2500 mm [6].

Agronomy 2019, 9, 481; doi:agronomy9090481 www.mdpi.com/journal/agronomy1
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Although satellite remote sensing data can be used for accurate, timely, and consistent information
on the agricultural productivity at local and regional scales [7,8], detection of understory plants is
inhibited due to canopy cover, canopy gap shadowing, and terrain variability [9]. Differentiating
signals of understory vegetation from overstory canopy is still challenging due to complex interactions
between overstory and understory vegetation [10]. Several studies have been conducted to distinguish
understory vegetation using remote sensing approaches. In this regard, evergreen understory vegetation
were identified from Landsat images of leaf off-season in deciduous forest [11,12]. Phenological
difference between overstory and understory vegetation was also used to detect understory vegetation
using Landsat images [13,14]. However, such studies require multi-temporal data which are generally
available in coarser spatial resolutions. Leduc et al. [15] have mapped wild leek which grows on forest
floors using low flying Unmanned Aerial Vehicle (UAV). Other studies have used data from active
sensor, mainly LIDAR data, to map understory plants in boreal forests [16,17]. Combinations of LIDAR
data and hyperspectral images were used to map understory invasive species in tropical forests [9],
and the use of LIDAR data and high-resolution IKONOS imagery to identify understory plant invasion
in urban forests [18]. Nevertheless, there are limitations on the use of these data due to its high cost
and low availability, mainly in developing countries [19].

Understory vegetation are usually hard to identify only from remote sensing, thus a substantial
efforts have been made to identify these vegetation through the integration of several approaches.
For instance, Wang et al. [20] have mapped understory bamboo by integrating neural network
and Geographic Information System (GIS) expert system, and Tuanmu et al. [10] have detected
understory vegetation using phenology metrics derived from time series of Moderate Resolution
Imaging Spectroradiometer (MODIS) data together with a suitability model like the maximum entropy
(Maxent) model. The Maxent model is a species distribution model (SDM) that provides an approach
for making predictions from existing distribution and a set of predictors [21]. Such models predicting
the potential distribution of species are useful for several applications in conservation biology [22,23].
Other approaches, such as object-based image analysis (OBIA) on multispectral and hyperspectral
data, were found to be effective in identifying understory plant species [24] due to its characteristics of
using contextual relationships together with spectral information. In addition, expert knowledge [25]
and other ancillary data such as elevation, slope, and aspect can also be used to improve classification
accuracy. Moreover, the combination of participatory mapping with remote sensing technique can
further improve the accuracy as the two methods complement and validate each other [26]. Participatory
mapping is an effective tool to obtain accurate baseline data of the field [27], which can be integrated in
remote sensing analyses to produce more accurate maps [28].

Several species distribution models such as the genetic algorithm for rule-set production (GARP),
ecological niche factor analysis (ENFA), bioclimatic modeling (BIOCLIM), CLIMEX (climate change
experiment), domain environmental envelope (DOMAIN), and Maxent (maximum entropy) have
been used for species distribution prediction. Among these, Maxent is widely used as it can perform
better even with small sample sizes compared to other modelling methods [29–31]. In addition, it has
other merits, such as: it requires only presence data of the species and environmental variables for the
study area, it can use both categorical and continuous data and can incorporate interactions among
different variables, it can produce spatially explicit habitat suitability maps, and the importance of
each environmental variable on the model can be evaluated using the built-in jackknife test.

This study aims to evaluate existing spatial distribution, potential suitable areas for cultivation
under various scenarios, and core distributional shift with future climate condition in the Taplejung
district of Nepal. The study uses a combination of expert knowledge and species modelling approach to
capture all aspects of habitat conditions in the complex environmental conditions in the mountain region.
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2. Materials and Methods

2.1. Study Area

The study area, the Taplejung district, lies in eastern Nepal. The district (27
◦
57′10′′–27

◦
16′5′′ N

and 87
◦
26′40′′–88

◦
12′6′′ E) with an area of 3646 km2 physiographically lies in the mid-hill to high-himal

region. It lies at an elevation of 498 m to 8464 m. Forest is the major land cover of the district followed
by agriculture, bare land, grass, snow, shrub, water body, and built-up, respectively. The district
is the major producer of large cardamom in the country, which is the major source of income for
farmers in the district. In Nepal, an estimated 12,000 ha of land in over 40 mid-hills districts are under
cardamom cultivation with estimated annual production of 6000 metric tons. While the Taplejung
district contribute around 4500 ha of land and yearly production of around 2600 metric tons [32].

The study broadly followed two broad approaches for Cardamom habitat mapping including
species modelling- and expert knowledge-based assessment (Figure 1).

Figure 1. Methodology flow diagram.

2.2. Expert Knowledge-Based Mapping

2.2.1. Participatory Mapping

Participatory mapping with the community in developing countries is found to be effective for
understanding local level phenomena [33]. A two-day exercise was conducted with a community
representative to map existing large cardamom farming areas on the high-resolution data of Google
Earth images available in digital format as well as on the printed maps. During the exercise, large
clusters of cardamom cultivated fields were identified. However, detailed delineation of cardamom
fields including small patches was not possible. The data was gathered to get existing farming areas on
the district which was also cross-checked with outputs obtained from remote sensing data. A part of
the pockets identified by the farmers in the participatory exercise was further verified through ground
validation exercise. This validation also provided GPS samples of cardamom field points along with
other vegetation in the area.

3



Agronomy 2019, 9, 481

2.2.2. Uttis (Alnus nepalensis) Mapping Using High-Resolution Satellite Data

During the participatory mapping and the field activity, it was observed that the Uttis is the
major tree species grown for shade to cultivate large cardamom. Since the understory crop could not
be directly mapped using remote sensing data, delineation of Uttis cover was consider as proxy to
map the large cardamom crop. Our focus was to map Uttis in the entire district, which can provide
information on prospective cultivation of large cardamom. Uttis tree cover was mapped by using
Sentinel-2A Level 1C product image acquired in February 2016. The image has very high-resolution
spectral coverage that includes 12 bands (coastal aerosol, blue green, red, 3 vegetation red edge, NIR,
vegetation red edge water vapor, SWIR Cirrus, and 2 SWIR respectively). The spatial resolution of
blue green, red and NIR is 10 m. The resolution of the vegetation red edge band is 20 m and for the rest
of the bands it is 60 m. These features of the sensor are suited for agricultural monitoring systems [34].
Level 1C product is a Top of Atmosphere (TOA) product for which atmospheric correction had to be
done to get reflectance values of the image so that the image can be used for mapping. SNAP (Sentinel
toolbox) software (version 5.0.0) was used for atmospheric correction of the image.

Spectral separability of forest types such as coniferous forest, broadleaf forest, Uttis, and shrub
was studied before the classification. The mean pixel values of the abovementioned forest types
and shrub were plotted against eight bands of Sentinel-2A image to evaluate the potential of image
spectral separability before the classification. The object-based image analysis (OBIA) classification
approach was adopted for Sentinel-2A image classification. The technique uses spectral and contextual
information in an integrative way [25]. The fundamental technique of OBIA is the segmentation of
satellite images which overcome the salt and pepper effect [35]. In this study, the chessboard and
multi-resolution segmentation algorithm in eCognition software (version 8.7,) was used to develop
image objects [36] using scale parameter = 80, shape = 0.1, and compactness = 0.8.

After segmentation, Assign Class algorithm was used to classify general classes (agriculture,
conifer forest, broadleaf forest, shrub, water, and snow). This was done to filter the land cover which
were not the focus of the study. Several features such as NDVI, brightness, slope, elevation, and field
information were used in this step. For the rest of the unclassified image objects, Nearest Neighbor
Classification was applied, which is a powerful approach [37] to map Uttis trees. Uttis trees grown
between the elevation range of 800–2200 m and slope up to 45 degrees were mapped. This is also
the elevation and the slope range where large cardamom is cultivated [38]. Seventy percent (70%) of
field data were used to train the samples while the remaining 30% were used as test data for accuracy
assessment. Further, in order to reduce error and improve classification accuracy, interactive visual
analysis was done on a classified map using Google Earth images [39].

The remote sensing-derived Uttis cover and participatory mapping-based identification of
cardamom crop areas were overlaid to get the existing large cardamom farming area. The obtained
large cardamom maps in the Taplejung district were further analyzed based on elevation, slope, aspect,
and Village Development Committees (VDCs). The analysis was done to understand the pattern of
cultivation and environment suitability conditions in the district and the information could be useful
in further planning and management of large cardamom farming in the district. Elevation range of
the study area was categorized into 9 ranges (below 800 m, 800–1000 m, 1000–1200 m, 1200–1400 m,
1400–1600 m, 1600–1800 m, 1800–2000 m, 2000–2200 m, and above 2200 m). In order to comprehend the
farming area slope-wise, the slope was categorized into four gradient levels (0◦–15◦, 15◦–30◦, 30◦–45◦,
45◦ above).

2.3. Species Modelling

2.3.1. Environmental Variables and Species Occurrence Records

The habitat suitability model was primarily developed based on the variables related to climate,
soil, terrain, and vegetation type. Initially, 24 variables were selected to model the current distribution
pattern. These comprised of 19 bioclimatic variables with 30 arc seconds (~1 km) spatial resolution
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from WorldClim dataset (http://www.worldclim.org/), 12.5 m resolution digital elevation model (DEM)
generated by The Japan Aerospace Exploration Agency (JAXA) using ALOS PALSAR RTC products [40],
slope and aspect layers generated from the DEM using spatial analyst tools in ArcGIS 10.6.1 soil pH
with the resolution of 250 m was downloaded from https://soilgrids.org/#!/?layer=TAXNWRB_250m&
vector=1 and Uttis cover thematic layer. All bioclimatic variables, topographic layers, and pH were
resampled into 20 m spatial resolution to make them compatible with the resolution of Uttis cover. This
was done in ArcGIS 10.6.1 with the nearest neighbor resampling technique. For future scenarios (year
2050), we initially selected DEM, slope, aspect, and 19 bioclimatic variables for RCP2.6 (the minimum
greenhouse gas emission scenario), and RCP8.5 (the maximum greenhouse gas emission scenario) as
adopted by the Intergovernmental Panel on Climate Change (IPCC) in its fifth assessment report (AR5).
The climatic variables were also resampled into 20 m to make the variables uniform at one resolution.

Multicollinearity between predictor variables was tested as it can lead to inaccurate prediction
by excluding significant explanatory variables [41]. The test was conducted calculating Pearson’s
Correlation Coefficient (r) to assess the cross-correlation and the one variable from any pair of variables
with a cross-correlation coefficient value of > ±0.8 was excluded [42]. Variables were chosen based
on biological relevancy to the species. For example, pH was highly correlated with temperature
seasonality (BIO4) (r = 0.88), from this pair BIO4 (temperature seasonality) was removed as pH plays a
crucial role in cardamom plantation [2]. In addition, the variation inflation factor (VIF) was also used
to check collinearity among the variables in R software (version 3.6). Variables with VIF values greater
than 10 were excluded for modelling [43]. Out of 24 variables, 8 environmental variables (Uttis cover,
pH, slope, aspect, isothermality, maximum temperature of warmest month, minimum temperature
of coldest month, and precipitation of wettest month) were selected for the current scenario. For the
future scenario of RCP2.6-2050 and for RCP8.5-2050, 6 variables (slope, aspect, isothermality, maximum
temperature of warmest month, minimum temperature of coldest month, and precipitation of wettest
month) were selected for modelling. As part of the species presence data, a total of 102 occurrence
records (GPS coordinates of points) of large cardamom were collected randomly during the field visit
conducted in May 2016.

2.3.2. Spatial Modelling and Statistical Analysis

The maximum entropy modelling approach using Maxent software (version 3.3.3k) was applied
in this study for predicting habitat suitability of the large cardamom. Maxent is a machine-learning
method with a simple and precise mathematical formulation. It uses a maximum entropy algorithm
to produce a model that shows the probability of presence of the species that varies from 0 to 1, i.e.,
from the lowest to the highest probability [21]. We selected 70% of the data for training and the
remaining 30% for testing. Area under the ROC (receiver operating characteristic) curve (AUC) was
used to evaluate the model performance which ranges from 0 to 1. The curve is plotted with True
Positive Rate (sensitivity) at the vertical axis and False Positive Rate (1-specificity) at the horizontal
axis. The jackknife was used to evaluate the importance of the variables on the model. The model used
logistic format. The final distribution maps have values ranges from 0 to 1 which were grouped into
four classes of suitable habitat viz., unsuitable (<0.2), marginally suitable (0.2–0.4), moderately suitable
(0.4–0.6), and highly suitable (>0.6). Further, analysis of existing farming area in comparison to current
habitat suitability map was performed to understand the gaps and opportunities. In order to assess
the change between current and future suitable areas, we quantified the areas (ha) of classes of habitat
suitability under different scenarios across different elevation ranges.

3. Results and Discussions

3.1. Participatory Mapping of Large Cardamom

The spatial location of large cardamom fields in the Taplejung District was recorded on the basis
of local people knowledge. Out of 50 VDCs in the district, 49 VDCs were found cultivating (Figure 2)

5



Agronomy 2019, 9, 481

large cardamom. However, the farming area varies from VDC to VDC. Participatory mapping has
given a general overview of farming area in the district.

Figure 2. Mapping of large cardamom crop clusters across the Taplejung district based on
participatory mapping.

3.2. Uttis (Alnus nepalensis) Cover Mapping and Delineation of Accurate Large Cardamom Map

Spectral separability of major vegetation of the study area using Sentinel-2A image shows that the
vegetation are largely separable from each other in NIR and Red Edge bands (Figure 3a). In this study,
integration of ancillary data with Sentinel-2A image was applied to map Uttis using OBIA (Figure 3b,c).
The classification approach in eCognition has helped to use expert knowledge in differentiating trees
within agricultural land and forests, resulting in better classification accuracy. During post classification
improvement, small tree patches of Uttis within agricultural land were separated. Shadow in high
mountain areas was affecting the classification which was improved during post classification using
Google Earth images. There are several studies done on forest type classification [44,45] and land cover
classification [39], however, these studies do not include separation of tree species within the forest
cover classes.

Figure 3. (a) Spectral separability of vegetation, (b) Sentinel-2A satellite image (False color), (c)
object-based classification of satellite data.

6



Agronomy 2019, 9, 481

Uttis cover in the Taplejung district is about 10,735 ha (Figure 4a). Overall, accuracy of the
classification was 80% with producer’s and user’s accuracies at 89% and 84%, respectively (Table 1).
The obtained Uttis cover and participatory maps were overplayed to get fine resolution large cardamom
farming area (Figure 4b). The overlay produced 5198 ha of existing farming area in the district.

(a) (b)

Figure 4. (a) Spatial distribution of Uttis tree cover, (b) spatial distribution of cardamom under Uttis
tree and standalone Uttis tree cover.

Table 1. Contingency matrix for accuracy assessment.

Observed Vegetation Classes
Grand
Total

User’s
Accuracy

Agriculture Conifer
Other

Broadleaf
Shrubs Uttis

Mapped
Vegetation

Classes

Agriculture 15 0 0 3 1 19 79
Conifer 0 16 2 0 1 19 84

Other Broadleaf 0 2 12 0 2 16 75
Shrubs 2 0 3 16 0 21 76
Uttis 2 0 3 1 25 31 81

Grand Total: 19 18 20 20 29 106

Producer’s Accuracy: 79 89 60 80 86

Overall accuracy: 80%

The highest cultivation area is found at the elevation range of 1600–1800 m followed by 1800–2000 m,
1400–1600 m, 1200–1400 m, 2000–2200 m, 1000–1200 m, and 800–1000 m, respectively (Figure 5a).
Although appropriate elevation for large cardamom is 800–2200 m [38], the farming is also observed
below 800 m and above 2200 m. However, there are several species of large cardamom which can be
farmed based on altitude [2]. The optimal productivity is possible if large cardamom species is chosen
based on elevation.

The largest cultivation area is found in the range of 15◦–30◦ slope while the least is found in the
range of 45◦ and above (Figure 5b). The cultivation area is nearly doubled on the slope of 30◦–45◦
compared to the 0◦–15◦ slope. Several literatures [46,47] stated that the best aspect for cardamom
cultivation is North and North-East facing slope. The field data collected for the study showed that
cardamom is being cultivated in all aspects. There is no such strict constraint in the selection of aspect
for farming. The result shows that the farming area is primarily found in South-West followed by
West, North, East, South, North-East, South-East, and North-West (Figure 5c). This indicates that large
cardamom can be grown in all kinds of aspects. An evaluation on productivity of large cardamom
cultivated at various aspects is essential to identify the best aspect for the crop farming.

Out of 50 VDCs of the Taplejung district, Dhungesanghu, Hangdewa, Hangpang, Phurumbu,
Sikecha, and Thukinba are the top six VDCs which have the highest cultivation area (Figure 5d).
Among those VDCs, Phurumbu and Hangdewa consist of more than 400 ha of farming area whereas
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Dhungesanghu and Hangpang contain approximately 285 ha to 305 ha of cultivation area. Sikecha and
Thukimba hold around 200 ha of cardamom field.

(a) (b)

(c) (d)

Figure 5. Analysis of large cardamom cultivation area based on elevation, slope, aspect, and
VDCs. (a). Cardamom cultivation area with elevation; (b). Cardamom cultivation area with slope;
(c). Cardamom cultivation area in various aspects; (d). Top 6 VDCs with the highest cultivation area.

3.3. Current Suitable Habitat

The Maxent model provided a comprehensive understanding of the distribution of large cardamom
(Figure 6a). Currently, the highly suitable area in the district is about 13,679 ha and the moderately
suitable habitat is about 27,778 ha. The most suitable habitat for large cardamom was predicted in the
southern part of Taplejung and its distribution is almost continuous. Suitability decreases with an
increase in altitude. The maxent-predicted model had high accuracy with an AUC value of 0.941 for
training data and 0.934 for test data. Jackknife results showed that Bio6 (minimum temperature of
coldest month) among the eight variables considered for the model had the highest predictive power.
The Bio5 (maximum temperature of warmest month) is the second most important variable followed
by Bio13 (precipitation of wettest month), pH, Uttis cover, and Bio3 (Isothermality) (Figure 6b).

SDM are influenced by several factors, such as data quality [48,49] and decisions taken during the
model fitting [50], sample size [51], multicollinearity [52], and selection of independent variables [53].
Despite these, SDM are increasingly used for various purposes, such as species conservation
planning [42] and risk analysis [50]. In this study, we have dealt with some of these issues, such as
multicollinearity by removing highly correlated variables, selection of important variables for the
species, and considered default settings in Maxent as it provided the best model. Maxent performs
best among other modelling methods and even performs better with small sample sizes compared to
other modelling methods [30,54,55].

3.4. Current Cardamom Cultivation and Habitat Suitability Analysis

Almost 33% of the current farming area is found in the highly suitable class, 44% of the area is
found in the moderately suitable class, and nearly 23% of the area is in the marginally suitable class.
This indicates that the cultivation has not yet reached its full potential range. Therefore, the farmers
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need sensitization on potential areas for the farming which would eventually improve productivity
(Figure 7).

Without variable
With only variable
With all variables

(a)

(b)

Figure 6. (a) Potential distribution of cardamom in the district, (b) Relative predictive power of different
contributing variables based on the jackknife of regularized training gain in the Maxent model for
large cardamom.
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Figure 7. VDC-wise statistics to identify current utilization of the potential habitat.

The Uttis map, existing cultivated area, and current habitat suitability of large cardamom provided
the means to look at the gaps and opportunities for cardamom cultivation at the VDC level. Figure 7
demonstrates that the current cultivation area of large cardamom is much less in most of the VDCs,
though there are more Uttis areas and highly suitable areas. The cardamom cultivated area and Uttis
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area in Ambegudin, Hangdewa, Phurumbu, and Thukimba VDCs are much closer, whereas current
highly suitable areas in Hangdewa, Ikhabu, Nalbu, Phurumbu, and Tellok VDCs are less than the
existing cultivated area. The statistics describing gaps and opportunities for cardamom crop cultivation
will support management plans across the administrative area.

Suitability maps help in selecting the areas for better success in cultivating any particular crop.
However, productivity of a crop is not solely dependent on suitable site but also heavily depend on
many other factors, such as infrastructure and investments (like irrigation, fertilization, and farm
management), biological (insect, pests, and disease), and governance (farmers’ training on growth
management). A map on Large Cardamom suitability classes and crop yield data, of year 2011, across
the VDCs of Taplejung District is given in the Supplementary Materials S1 and S2.

3.5. Suitable Habitat under Climate Change Scenerio

The predicted future habitat suitability for large cardamom in the district under RCP2.6-2050 and
RCP8.5-2050 is shown in Figure 8. The model predicted under RCP2.6-2050 has accuracy with an AUC
value of 0.94 and 0.914 for training and test data, respectively. Under RCP8.5-2050, the AUC values are
0.939 and 0.916 for training and test data, respectively.

Year 2050 (RCP 2.6) Year 2050 (RCP 8.5)

Figure 8. Distribution of large cardamom in Taplejung, Nepal, under future scenarios.

3.6. Projected Changes in the Suitable Habitat Area

Compared to the currently suitable areas, the total areas tend to decrease in both the future
scenarios. However, there is no major difference in total areas of the highly suitable class (2%) in
RCP 2.6 and a relatively high change in RCP 8.5 (12%). Elevation-wise, we can see there is loss of
highly suitable area from the current scenario to both future scenarios, which for the lower is 80% and
in higher elevation it is 94% (Table 2). The area tends to maintain a nearly steady-state at elevation
range 1000–2000 m, which is ± 0.2%. In conclusion, total potentially suitable areas maintain a nearly
steady-state under medium elevation range (1000–2000 m) for all scenarios, whereas the areas are
decreasing under future scenarios for the low (500–1000 m) and high elevation (2000–3000 m) (Table 2).

This is the first study to explore current crop cultivation as well as the climate change impacts on the
potential distribution of large cardamom crop. Models with AUC values more than 0.75 are considered
robust, acceptable, and potentially useful for ecological niche model interpretation [56,57]. Our models
obtained AUC values greater than 0.9 which shows our models are satisfactory. The spatial distribution
trend under climate change may vary with species causing shifts, contraction, or expansions [58–61].
Our prediction showed suitable habitat for the crop is diminishing under future conditions compared
to the current scenario.
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Future changes in suitable habitat area are closely related to temperature and precipitation, which
are steadily changing in Nepal over time. It is really important to understand the dynamics of these
environmental variables. Stations data showed that the maximum temperature in Nepal increased at
the rate of 0.056 ◦C/year for the period of 1975–2014 [62]. The rate was recorded higher at stations
placed at higher altitude, whereas very wet and extremely wet days are diminishing significantly in
the northern districts of Nepal [63]. Climate projections for temperature developed for entire Nepal
by the Ministry of Forest and Environment (MoFE) [63] showed that the temperature trend is higher
in high mountains than other regions in both medium- (2016–2045 for RCP 4.5 and RCP 8.5) and
long-term (2036–2065 for RCP 4.5 and RCP 8.5) scenarios. The study found central and western parts
of the country will be wetter than the eastern region despite the fact that average annual precipitation
change tends to increase by 2.1% in the medium-term period and increase by 7.9% in the long-term
period. As large cardamom needs cool and humid climatic conditions [39], most of the current
habitat will be negatively affected in future considering the climate projection and data recorded in
the past. Particularly, lower altitude would not be favorable for the crop as the temperature tends
to reach higher degrees in these elevations. Although annual precipitation change increases in the
country, warmer temperature in High Mountain would lead to it becoming drier as it would stimulate
more evapotranspiration [58]. These projected drier conditions will negatively influence the habitat
suitability of cardamom in the study area. Further, Gudade et al. [64] observed that declining soil
nutrition and soil moisture are key drivers in reduction in crop productivity both in India and Nepal.

4. Conclusions

Mapping understory crops and respective habitat conditions is challenging particularly in a
complex mountain terrain. The study demonstrated using a combination of expert knowledge-based
mapping and species modelling based on bio-climatic factors to understand crop dynamics in a complex
mountain terrain. The work applied object-based image analysis on freely available high-resolution
satellite data of Sentinel-2A to identify Uttis tree cover in the study area. Use of textures and
related indices made it possible to identify a particular tree species within the land cover map.
The methodology developed in this study can be used for Uttis cover mapping in other areas of Nepal
related to cardamom mapping.

This is the first study to demonstrate potential distribution of large cardamom in the region and
the impact of climate change on the distribution. The study showed that crop habitat distribution
patterns of understory crop could be modelled using Maxent and coupled with expert knowledge-based
mapping to understand the environmental constraints and dynamics. The model under the current
scenario showed potentially suitable areas for large cardamom, which has created scope to fill the
gaps between farmers’ practice in selection of farming land, and planners to develop sustainable
land use planning and management. Current cultivation area is shown the highest in the medium
suitability class. Farmers can change the farming area on high suitability area. The planning agencies
can use the cardamom map and other information produced in this work for land use planning and
crop management to optimize the crop sown area. Models under future scenarios showed that the
overall suitable habitat is shrinking to mid-hill elevations (1000–2000 m). Therefore, in response to
the projected loss of potential distribution, appropriate spatial planning for crop management and
livelihood strategies needs to be developed for large cardamom farmers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/9/481/s1,
Supplementary Materials S1: Relative contributions of the environmental variables to the Maxent model;
Supplementary Material S2: Map of Suitability map and crop yield.
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Abstract: The availability of big data in agriculture, enhanced by free remote sensing data and
on-board sensor-based data, provides an opportunity to understand within-field and year-to-year
variability and promote precision farming practices for site-specific management. This paper explores
the performance in durum wheat yield estimation using different technologies and data processing
methods. A state-of-the-art data cleaning technique has been applied to data from a yield monitoring
system, giving a good agreement between yield monitoring data and hand sampled data. The potential
use of Sentinel-2 and Landsat-8 images in precision agriculture for within-field production variability
is then assessed, and the optimal time for remote sensing to relate to durum wheat yield is also
explored. Comparison of the Normalized Difference Vegetation Index(NDVI) with yield monitoring
data reveals significant and highly positive linear relationships (r ranging from 0.54 to 0.74) explaining
most within-field variability for all the images acquired between March and April. Remote sensing
data analyzed with these methods could be used to assess durum wheat yield and above all to depict
spatial variability in order to adopt site-specific management and improve productivity, save time
and provide a potential alternative to traditional farming practices.

Keywords: yield mapping; remote sensing; durum wheat; precision agriculture

1. Introduction

Durum wheat (Triticum durum, Desf.), although it represents only 8% of global wheat production,
is one of the most common cereal crops in the Mediterranean basin, traditionally grown under rainfed
conditions using conventional tillage [1–3]. Climate variability, price volatility and socio-economic
factors are the main sources of uncertainty and concern for farmers in durum wheat cultivation [4,5].
For climate variability, it was shown how, in rainfed conditions, these affected both the quality and
quantity of durum wheat production [6]. For other crops, evidence was given by Bowman and
Zilberman [7] of how both price volatility and socio-economic factors might influence the agronomic
techniques adopted. In light of this, it is increasingly urgent to provide information to optimize crop
management and estimate crop yields before harvest for a sustainable agricultural income and ensuring
food security. Precision agriculture (PA) has been used for ≥25 years to optimize the use of farm inputs
such as fertilizers and herbicides [8,9], and thus maximize profit and minimize negative environmental
impacts [10] by addressing spatial variability.

Yield mapping is one of the most widely-used precision agriculture techniques [11–13]. Most of
these datasets are characterized by a non-normal distribution due to the presence of errors and outliers
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and can be misleading if used for decision making processes. Over the last 25 years, several studies
have analyzed the sources of errors that cause this non-normality and proposed different processing
techniques to reduce their effect [11,14,15]. However, among the studies highlighting accuracy issues
associated with the use of the yield monitoring systems, only one compared yield monitoring with
hand sampled data [16].

During the same period many studies have been published using satellite imagery to estimate
crop parameters and yields [17–19], many of these using empirical relationships between yields and
various vegetation indices (VIs) with limited applicability to different areas or years [9], especially in
the recent era of prolific satellite data availability [20].

In the last years many studies have focused on the use of medium resolution satellite data
(10–100 m) for yield estimation at broader spatial resolution (local, regional, country scales) even for
long-term yield series analysis [20–26]. While studies are conducted by the use of very high resolution
imagery [27–30] to identify within-field variability of crop growth and yield and for the definition of
management zones, few [31] have used Sentinel-2 to provide an insight into field productivity variation
for better future management [32–34]. The objectives of this study were to:

• Evaluate the correctness of yield monitoring maps comparing them with hand sampled yield data;
• Evaluate the ability of the most commonly used VI (NDVI) calculated from Landsat-8 and

Sentinel-2 satellite platforms to understand within-field variability;
• Understand the optimal time for NDVI acquisition for better yield evaluation;
• Evaluate the relations between NDVI and yield for four durum wheat crop seasons with different

climatic conditions and yield performance.

For the last two points, given the scarcity of satellite images, a durum wheat simulation model [5]
was used to reconstruct the crop growth variables and analyze in detail the differences that emerged in
the yield-NDVI correlation for the four crop seasons.

2. Materials and Methods

2.1. Study Site and Field Trial

The research was performed at the Menichella Experimental Farm of CREA-AA (Council for
Agricultural Research and Economics—Research Centre for Agriculture and Environment), located
in the Foggia countryside (Southern Italy, 41◦27′05.9” N, 15◦30′43.6” E; 88 m a.s.l.), within the study
area of the JECAM site (http://jecam.org/studysite/italy-apulian-tavoliere/), during the 2013–2014,
2014–2015, 2015–2016 and 2016–2017 crop seasons. This study was conducted on a 5 ha field cropped
with rainfed durum wheat (Triticum durum, Desf., cv Claudio) under conventional management and
continuous cultivation.

The field is in a flat area called ‘Apulian Tavoliere’ and the soil is silty-clay Vertisol of alluvial
origin classified as Fine Mesic Typic Cromoxerert by Soil Taxonomy USDA [35].

The soil in the upper 60 cm layer has a good availability of total nitrogen (0.12 g 100 g−1), organic
matter (2.07 g 100 g−1) and 41 mg kg−1 of available phosphorus (P2O5). In summer 4–5 cm wide cracks
frequently appear from the surface to about 50 cm depth.

The climate is classified as Mediterranean subtropical with a thermic soil temperature regime.
Rainfall, unevenly distributed throughout the seasons and with a long-term annual average of 550 mm,
is mostly concentrated in the winter months, while the dry period is from May to September [36]. Daily
weather parameters (air temperature, relative humidity, global solar radiation, rainfall and wind speed),
were recorded at the agro-meteorological station of the CNR-IBE weather station network (Foggia,
41◦30′00.4” N, 15◦30′46.4” E, 69 m a.s.l.). The field has been cultivated with a common agronomic
management, applying 36 kg ha−1 of N as diammonium phosphate (18–46) before sowing and 68.4 kg
ha−1 as ammonium nitrate (34.2) as top dressing at the end of tillering stage.
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Sowing date varied between November and December due to the weather conditions (12 December
2013, 20 November 2014, 19 November 2015 and 29 November 2016). In each cropping season, the
sowing density was of 350 germinable seeds/m2 with 15 cm row spacing.

2.2. Hand Yield Samplings and Yield Map Monitoring

At maturity stage of each season aboveground biomass was collected over 1 m2 areas in proximity
to the 104 sampling points at the nodes of a 20× 20 m cell-grid (Figure 1). The points were georeferenced
in UTM coordinates WGS 84 using a TOPCON GPS, differentially corrected with an accuracy of less
than one meter. All measurements were repeated at the same points over the years.

Figure 1. Location of study site and 104 sampling points.

At harvesting in 14 July 2014, 29 June 2015 and 12 July 2016, yield data were recorded by external
services provider with a John Deere T670i combine (Deere & Company, Moline, USA) equipped with a
yield monitor system (grain mass flow and moisture sensors). The data were recorded every second,
which produced a support (footprint) of 6 × 1 m2 depending on the forward speed of the machine.

For 2017, the last year of analysis, a yield monitoring map was unavailable. The data were
measured only at the 104 sampling points.

2.3. Satellite Data

Remote sensing images acquired by the Operational Land Imager (OLI) instrument aboard the
Landsat-8 satellite and by the Multi-Spectral Instrument (MSI) aboard the Sentinel-2A satellite were
used in the study. Landsat-8/OLI captures images of the earth’s surface in nine spectral bands at 30 m
spatial resolution (15 m for panchromatic band) while Sentinel-2A/MSI captures images in 13 spectral
bands at 10 m, 20 m and 60 m spatial resolution. After cloud and shadow screening, a total of 11
Landsat-8 and five Sentinel-2A (Table 1 images of the study area from 1 March 2013 to 1 June 2017
were selected.
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Table 1. Acquired dates of Landsat-8 and Sentinel-2 (2014–2017).

LANDSAT-8 SENTINEL-2

2014 19 March, 20 April NA

2015 14 April, 30 April NA

2016 13 March, 9 April,
18 May, 27 May 23 May

2017 2 March, 12 April,
30 May

9 March, 29 March,
8 April, 18 May

The Landsat-8/OLI images were downloaded using USGS (earthexplore.com) that provides data
corrected from atmospheric effects.

Sentinel-2A/MSI images were atmospherically corrected for surface reflectance using the
European Space Agency’s (ESA) Sen2Cor algorithm (http://step.esa.int/main/third-party-plugins-
2/sen2cor), which processes ESA’s Level-1C top-of-atmosphere reflectance to atmospherically-corrected
bottom-of-atmosphere (BoA) reflectance (Level-2A).

Lastly, NDVI [37] was calculated for Landsat-8 images using band 5 (NIR) and band 4 (RED), and
for Sentinel-2A images using band 8 (NIR) and band 4 (RED) according to the formula:

NDVI = (NIR − RED)/(NIR + RED) (1)

Providing two estimates with different support: 30 × 30 m2 for Landsat-8 and 10 × 10 m2

for Sentinel-2A.

2.4. Data Analysis

Yield map data were firstly normalized to 13% grain moisture content (hereinafter referred to
as raw data) and then processed following the Vega et al. [13] protocol. The geographic coordinates
of each dataset were converted into UTM Cartesian coordinates, specifying the zone (33, north) and
the ellipsoid (WGS84). The 3 years maps in shapefile format (SHP) were pre-processed following a
workflow using GeoDa software [38] for Moran index calculation for outliers identification, QGIS [39]
for vegetation indices (VIs) calculation, Vesper software [40] for geostatistical interpolation, Matlab [41]
for data statistical analysis.

Yield monitoring data underwent a pre-processing procedure in order to automatically identify
and delete incorrect values through the two following steps suggested by Vega et al. [13].

Step 1: A threshold was applied by removing the yield values of less than 0.1 t/ha and then yield
data points up to 10 m from the edge were removed in order to avoid edge effects. Lastly, yield data
out of mean ±3 SD were automatically detected and deleted. This filter was used to prevent changes in
inflation as a result of an incorrect estimate of very low data.

Step 2: Moran’s local index of spatial autocorrelation and Moran’s plot were applied to detect
spatial outliers [42,43].

Lastly, the yield map for each year and dataset was assessed separately (raw data, Step1 and Step1
+ Step2) by means of ordinary kriging, evaluating spatial variability using a semivariogram of the
variable (yield monitoring).

Vesper software was used and an exponential model was fitted to the experimental variogram
and model parameters: Nugget (micro-scale variation or measurement error), sill (asymptotic value
approximately corresponding to sample variance) and effective range (distance at which 95% sill is
reached) were estimated.

Yield values from the prediction map based on raw yield data and Step1 + Step2 yield data
were then extracted in the neighborhood (3 m radius) of 104 yield sampled grid points and compared
with them.
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Step1 + Step2 yield monitoring data were interpolated using block kriging over a block of 10 × 10
m2 or 30 × 30 m2 to assess the spatial relationship between yield and the two types of remote sensing
data (Sentinel-2A and Landsat-8, respectively) and to report on the optimal timing at which spectral
measurements should be taken in durum wheat to maximize the correlation with yield (2014, 2015,
2016). The same procedure was adopted for hand yield samplings (block of 10 × 10 m2 or 30 × 30 m2)
to assess the spatial relationship between yield and remote sensing data for 2017.

The Pearson coefficient, which is an index that measures the degree of correlation between linearly
related variables and ranges between −1 and +1, was used to assess the linear relationship between
yield monitoring data and yield sampling data, and between the NDVI and yield monitoring data.

For each regression analysis the correlation coefficient, regression coefficients (intercept and slope)
and their corresponding probability levels were estimated, to test the statistical significance (null
hypothesis equal to zero).

The performance of the protocol for automating error removal from yield monitoring data was
evaluated using the root-mean-square error (RMSE).

2.5. Modelling

To better understand the correlations between remote sensing data and yield and go into
detail about crop development and spectral signature, we used the Delphi crop growth model to
perform field-scale simulations. The Delphi model was chosen due to the recent validations of its
ability to simulate crop growth, yield and product quality conducted in the same study area [1,5].
The Delphi model is based on a FORTRAN-based mechanistic model [44] calibrated for durum wheat
in Mediterranean conditions. Plant transpiration and soil evaporation, water and nitrogen soil-plant
cycle are incorporated in the model. Input weather data at daily time scale are: Air temperature
(maximum, minimum and average), global shortwave radiation, rainfall, wind speed (average) and
relative humidity (average). Input data of the main physiological parameters of the durum wheat
cultivar, sowing date and number of seeds/m2, the soil hydrological profile, soil total nitrogen content
profile, agronomic data on quality and quantity of nitrogen and roots growth data are also required.

Due to the strong correlation between leaf area index (LAI) and aboveground dry biomass [45],
because aboveground dry biomass of plants generally determines LAI, the Delphi model was
implemented to calculate LAI for each crop season. The model also predicted the heading, anthesis,
maturity dates and length of time between these phases.

These pieces of information were used for detailed analysis of interannual variability and to better
understand the different relationships between yield and NDVI over the years.

The weather data input to perform the Delphi simulation were acquired by the weather station
located at Foggia, 41◦30′00.4” N, 15◦30′46.4” E, 69 m a.s.l., while sowing date, number of seeds/m2

and nitrogen fertilization application data were set according to the data reported in Section 2.1. No
changes were made to the Delphi model, as it had already been calibrated, validated and tested over
11 crop seasons for this region [5].

3. Results and Discussion

3.1. Yield Map and Yield Sample

A yield map is the basis for understanding yield variability within a field, analyzing its causes
and improving management to increase profit [46].

A number of errors may be associated with common yield data collection: The yield monitor
may not shut off at the field end and will register 0 value until harvestable crop again moves into the
combine; the combine grain-flow system may plug temporarily, especially if the crop has lodged or
weeds interfere with continuous grain flow; a time lag can occur between the time the crop is cut and
the time its yield is measured in the grain flow [14,15,47]. Researchers have reported that 10% to 50%
of observations reveal measurement errors [13,48].
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The raw yield data of all three crop seasons used in this study showed high positive skewness
coefficient (Table 2 and Figure 2). However, after Step1 and Step1 + Step2, the yield probability
distributions were practically symmetric and the statistics were not biased by the presence of atypical
data. After removing statistical outliers, the variable distribution tended to be more symmetric, without
affecting the spatial structuring.

Table 2. Statistical features of yield monitoring datasets for uncleaned and cleaned yield data. Yield
monitoring vs. yield sampling based on interpolated data.

Year

Number of Yield
Monitoring Data

Skewness Yield Monitoring vs. Yield Sampling

RAW Step1 Step2 RAW Step1 Step2 RAW Step1 + Step2

2014 6369 4703
−26.2%

4641
−1.32% 17.72 2.72 2.71

r = 0.11
p-value = 0.25

RMSE = 1.14 t/ha

r = 0.40
p-value < 0.0001
RMSE = 1.05 t/ha

2015 6351 4737
−25.4%

4648
−1.88% 21.58 0.65 0.44

r = 0.37
p-value < 0.0001
RMSE = 0.68 t/ha

r = 0.50
p-value < 0.0001
RMSE = 0.59 t/ha

2016 6699 5084
−24.1%

4967
−2.30% 23.94 0.39 0.38

r = 0.43
p-value < 0.0001
RMSE = 0.84 t/ha

r = 0.49
p-value < 0.0001
RMSE = 0.82 t/ha

Figure 2. Distribution of yield monitoring datasets for uncleaned and cleaned yield data (data not
interpolated).
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In fact, after Step1 + Step2 the skewness had values close to zero for 2015 and 2016 crop seasons
(Table 2), while for 2014 the final skewness of 2.71 was due to a longer tail on the right side of the data
distribution. After Step1 between 24.1% and 26.2% of points were removed, whilst after Step2 a further
1.3% to 2.3% of the dataset was removed. Following the Step1 + Step2 protocol, the percentage of points
removed was from 25.9% to 27.1%, close to the range previously reported in the literature [13,47–50].

Figure 3 presents a visual analysis of the location of data removed from each year after both
Step1 and Step2: First of all, the highest quantity of removed points came from the filtering of edges,
secondly all the data points with overlapping coordinates and lastly, data points identified as outliers
through local Moran’s index of spatial autocorrelation (Step2).

Figure 3. Maps showing yield monitoring datasets: Raw data (left), Step1 and Step2 data (center), data
cleaned (right). Raw and Steps 1–2 maps are colored according to quartiles of yield distributions (data
not interpolated).

Certainly, the cleaning protocol did not affect the main patterns present in the raw data and
allowed both comparison with the sampled yield data and, after interpolation, comparison with the
data observed by Landsat-8 (at 30 m of resolution) and Sentinel-2 (at 10 m).

For all three crop seasons, the correlation, its significance and RMSE improved in passing from
raw yield monitoring vs. sampled yield to the comparison Step1 + Step2 yield monitoring vs. sampled
yield (Table 2). The best improvement was achieved for 2014, where from being non-significant, we
found a significant correlation and with a reduction of the RMSE which, however, remained the highest
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compared to other years. For both 2015 and 2016, the initial correlations between raw data and sampled
data were significant and with low RMSE. In any case, the data cleaning procedures improved the
performances in terms of both correlation and RMSE.

The different behavior of the 2014 season compared to the other two may be due to intense
weeding during the first year of the trial, which caused a large within-field variability of yield.

Given the nature of the comparison between two sets of data that do not refer strictly to the same
harvested plants, the worst results obtained for 2014 seem to be clearly linked to the greater variability
of within-field yield, unlike crop seasons with uniformly low within-field yield (2015) or uniformly
high yield (2016) (Table 3). This corresponds well with Arslan and Colvin [51], who reported that
high accuracy cannot be achieved by spot measurements; however, the overall yield trend can be
determined. The correlations between spatial data are strongly scale-dependent [52] and of course
depend on the coincidence of location between the sampled and monitored data, that in our study is
not possible since the hand yield sampling was destructive (before yield mapping).

Table 3. Comparison between yield (t/ha) sampled and monitoring data (mean, max, min and std)
(2014–2017).

2014 2015 2016 2017

Sample
(t/ha)

Monitor
(t/ha)

Sample
(t/ha)

Monitor
(t/ha)

Sample
(t/ha)

Monitor
(t/ha)

Sample
(t/ha)

Monitor
(t/ha)

Mean 3.07 2.65 2.31 2.11 3.88 3.90 5.00 N/A
Min 0.42 0.18 0.87 0.15 2.15 0.12 3.23 N/A
Max 5.69 10.48 3.64 6.90 6.01 11.62 7.43 N/A
Std 1.01 1.12 0.57 0.53 0.71 0.91 0.94 N/A

The correlation coefficients found for all three crop seasons (ranging from 0.40 to 0.50) were in
general lower but similar to the findings of Ingeli et al. [16]. The latter is the only published paper to
have compared two sources of yield data, the hand sampled data as independent variable and yield
monitoring data as dependent variable. For five different crop seasons, the authors found correlations
ranging between 0.3 to 0.9 but reporting on a small number of hand sampled data (18 + 3 replications)
spread over a larger field area (16 ha) unlike our case study with 104 samples in a smaller area (5 ha).

3.2. Yield and NDVI

For the whole period, few Landsat-8 and Sentinel-2 images were used because most of those
acquired were useless due to the presence of clouds. For the first two years (2014 and 2015) the images
are limited to two in a fairly short time window and in any case always before crop heading stage. In
2016 there are four useful images spread over a much wider period (March–May), while three images
are available in 2017 for the same period.

The scientific and operational life of Sentinel-2 started in July 2015, so the useful passages only
relate to 2016 and 2017. In 2016 it is possible to use only one image and it was taken at the end of May.
In 2017 there are four useful images in a time window similar to that of the Landsat-8 images for 2017
(Table 3).

A comparison of the NDVI with yield monitoring values (Step1 + Step2) (for 2014–2015–2016,
Figures 4–7) reveals significant positive linear relationships (r ranging from 0.54 to 0.74) explaining
most of the within-field variability in 2014 with the image acquired in April (R2 = 0.55) and in 2016 with
the image acquired in March (R2 = 0.55). In all other cases, although the correlations are significant, R2

are lower than 0.5.
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Figure 4. Relationship between observed yield (yield monitor) and NDVI (Landsat-8) for 2013–2014
crop season in (a) 19 March and (b) 20 April.

Figure 5. Relationship between observed yield (yield monitor) and NDVI (Landsat-8) for 2014–2015
crop season in (a) 14 April and (b) 30 April.
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Figure 6. Relationship between observed yield (yield monitor) and NDVI (Landsat-8) for 2015–2016
crop season in (a) 13 March, (b) 9 April, (c) 18 May and (d) 27 May.
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Figure 7. Relationship between observed yield (yield monitor) and NDVI (Sentinel-2) for 2015–2016
crop season.

These results, in terms of both correlations and timing, are in line with Mahey et al. [53]. Freeman
et al. [54] found NDVI and wheat grain yield to be highly correlated, establishing the potential to
predict yield with remotely sensed data as reported subsequently in several studies for a variety of
crop types [55–58].

Freeman et al. [54] also indicated that yield estimates for wheat may be made two months prior
to harvest.

Instead, only for 2016, from post-flowering to grain filling, we report weaker but significant
negative correlations between NDVI and yield. This is for the Landsat-8 (18 and 27 May, Figure 6)
images and the only one available for Sentinel-2 (23 May, Figure 7).

Although negative correlations between NDVI and crop yield are reported in the literature for
potato late in the season [55] and for canola, after bolting and once the plants start transitioning to the
reproductive stages [59], there are few similar findings for cereal crops when analyzing single or multi
cultivars [60–63]. All these latter authors found a negative correlation under severe stress conditions,
such as high temperature and drought, during grain filling.

Conversely, in our case study and for 2015–2016 crop season, this unique behavior of NDVI that
from strongly positively correlation swings negative to more than −0.6 late in the season is mainly due
to opposite climatic conditions (cool-moist) that characterized crop development and above all the
period from heading to maturity (Table 4).
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Table 4. Climate conditions, phenological length for heading to maturity (H to M) and anthesis to
maturity (A to M), leaf area index (LAI) function derivative rate of change for the four crop seasons
from anthesis to maturity.

Number of
Days

Total Rainfall
(mm)

Air Temperature
(◦C)

LAI
Rate of Change

2014 H to M
A to M

79
57

125.4
89.6

20.51
22.33 −0.099

2015 H to M
A to M

59
41

64.0
64.0

21.34
21.64 −0.142

2016 H to M
A to M

83
64

129.2
81.8

18.88
19.62 −0.085

2017 H to M
A to M

67
46

104.6
62.4

19.46
20.58 −0.131

In fact, the longest duration of heading to maturity and anthesis to maturity was observed in 2016
(Table 4) as well as the highest amount of rainfall from heading to maturity (129.2 mm) and lowest
mean air temperature both from heading to maturity and anthesis to maturity (18.88 ◦C and 19.62 ◦C
respectively). These conditions resulted in a general delayed leaf senescence and prolonged late grain
filling as a sort of stay green effect [1,64] that is confirmed by the lowest decline rate of LAI in 2016
(Figure 8, Table 4). The derivatives of the modelled LAI function from heading to maturity has a rate
of change for 2016 of −0.085, so is lower compared to other years. In the absence of water-stress, as
for 2016, stay green is not always correlated with yield (in wheat [65,66] and in sorghum [67]) and
can even be associated with reduced yield. For instance, in irrigated wheat and in rice in China, stay
green was associated with slow export of leaf carbohydrate to the grain, increased lodging, and harvest
difficulties due to delayed ripening, all of which can contribute to reduce yield [68,69]. In our case
study, it is likely that this did not occur uniformly due to site-specific soil plant interactions, and the
areas within the field that exhibited higher NDVI values during maturation then had translocation
problems to the grains. This is confirmed by the fact that the areas with the lowest production (highest
NDVI) in 2016 fall in the same low production areas as 2014 and 2015 (Figure 3). Contrary to what
happened in 2014, the presence of weeds was not reported for 2016.

Figure 8. Modelled LAI (green), observed rainfall after heading (blue) and satellite observation (red)
for (a) 2013–2014, (b) 2014–2015, (c) 2015–2016 and (d) 2016–2017 seasons.
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For 2017, having no yield monitoring data, it was possible to compare NDVI data only with hand
sampled data (Figures 9 and 10). Also, in this case the highest correlations are observed in the months
of March and April, then tend to decrease in May (Sentinel-2, Figure 10) or become non-significant for
the Landsat-8 passage in late May (Figure 9). The low and non-significant relationship in late May is
probably due to the fact that the drying process had already started unevenly in some areas of the
field [33].

Figure 9. Relationship between observed yield (sampled) and NDVI (Landsat-8) for 2016–2017 crop
season in (a) 2 March, (b) 12 April and (c) 30 May.
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Figure 10. Relationship between observed yield (sampled) and NDVI (Sentinel-2) for 2016–2017 crop
season in (a) 9 March, (b) 29 March, (c) 8 April and (d) 18 May.

Unfortunately, all the empirical relationships determined over the whole study period cannot be
applied elsewhere, since a universal conversion from vegetation indices to yield values does not exist, as
pointed out by Georgi et al. [9]. Many efforts have been made to determine this relationship [17,70,71],
with results indicating that replicability is mostly limited by crop type and climate zone, confirming
our case study findings. Our results highlight the potential use of remote sensing imagery (Sentinel-2
and Landsat-8) for within-field and interannual durum wheat yield assessment under Mediterranean
conditions. Although it is not possible to retrieve absolute yield values, the results show the capacity
of the NDVI to describe within-field yield levels providing objective criteria, also in terms of potential
performance, on which to base nutrient management zones for soil sampling and variable-rate nutrient
application, especially thanks to the availability of multiple years of data. This is also facilitated by the
fact that, even if multiple surveys are done during crop development, NDVI and yield are strongly
correlated at stem elongation and heading stages, which are among the most important for agronomic
management to support and improve durum wheat yield and quality.

4. Conclusions

The first part of the study is mainly practice oriented, testing a state of the art protocol for error
removal from yield monitoring data and comparing the cleaning map with hand field sampling
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data. The cleaning process improved measurement accuracy of spatial variability, which is key for
adopting precision farming techniques to make daily fieldwork more efficient and increase agricultural
productivity. In light of this, in the second part of the study, the usefulness of remote sensing information
collected during the optimal period for characterizing within-field spatial variability of durum wheat
productivity has been assessed.

Findings suggest that the best time to relate NDVI to durum wheat yields under rainfed conditions
in the Mediterranean area is the period leading up to 90–60 days before harvest (March–April). At the
same time the results, based on a four year yield dataset, support the conclusion that a unique
NDVI-yield relationship cannot be achieved and applied to different years or environments, but year
by year can suggest the best management approach while taking farmers’ requirements into account.

Additional research is needed in the future to: (i) test different methods of comparing heterogeneous
data (different supports, spatial resolution), (ii) address the performance of other VIs and promote
them among end users. Furthermore, in case of long periods between satellite images due to cloud
cover, the use of a crop simulation model has proved to be of fundamental importance to simulate the
crop stage and growth conditions and better understand differences underlying correlations between
yield and VIs.
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Abstract: A research study was conducted in an open field tomato crop in order to: (i) Evaluate the
capability of Sentinel-2 imagery to assess tomato canopy growth and its crop water requirements;
and (ii) explore the possibility to predict crop water requirements by assimilating the canopy cover
estimated by Sentinel-2 imagery into AquaCrop model. The pilot area was in Campania, a region
in the south west of Italy, characterized by a typical Mediterranean climate, where field campaigns
were conducted in seasons 2017 and 2018 on processing tomato. Crop water use and irrigation
requirement were estimated by means of three different methods: (i) The AquaCrop model; (ii) an
irrigation advisory service based on Sentinel-2 imagery known as IRRISAT and (iii) assimilating the
canopy cover estimated by Sentinel-2 imagery into AquaCrop model Sentinel-2 imagery proved to
be effective for monitoring canopy growth and for predicting irrigation water requirements during
mid-season stage of the crop, when the canopy is fully developed. Conversely, the integration of
the Sentinel-2 imagery with a crop growth model can contribute to improve the irrigation water
requirement predictions in the early and development stage of the crop, when the soil evaporation is
not negligible with respect to the total evapotranspiration.

Keywords: fractional cover; irrigation; satellite; crop simulation model; AquaCrop

1. Introduction

Worldwide significant progress has been made to utilize precision agriculture for irrigation as
a mean to increase water use efficiency or decrease the water footprint in irrigated agriculture [1,2].
The progress is mainly restricted to advances at the plot scale and individual systems such as installations
for drip irrigation or central pivots. As well known, actual crop evapotranspiration (ET) is a major term
of water budget in agriculture and it is the main variable used to determine crops water requirement.
Beside their massive progress during the recent years, accurate field measurements (soil moisture,
plant-based sensors, etc.) are very scarce because sensors and measuring devices are expensive, their
use requires specific expertise and complex maintenance and are typically limited to experimental
stations. For this reason, many attempts have been made for developing indirect ET estimation
methods based on crop data at a field scale easily available across large regions. Concordantly, the use
of remotely sensed data has become more common to monitoring and controlling activities at different
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spatial and temporal scales including precision farming. Surface energy balance methods based on
satellite observations in the thermal band [3] have been developed and applied in many areas with the
aim of determining actual evapotranspiration and assessing the water balance of irrigated areas and
the corresponding water accounting practices [4,5].

Sentinel-2 mission, launched by European Space Agency as part of the Copernicus program
(http://www.copernicus.eu/) [6], has been a great step forward for continuous crop monitoring.
Sentinel-2 carries a sensor, which captures data at 10, 20 and 60-m spatial resolution over 13 spectral
bands and with a very high temporal resolution of five days at the equator. Thanks to the characteristics
of these new technologies, commercial services started to develop for operational applications. In this
context, Irrigation Advisory Services (IASs) for optimizing water management rapidly grow. Among
them, IRRISAT is a fully operative satellite-based IAS provided in Campania Region, which combines
Copernicus Sentinel-2A data with daily weather data for estimating irrigation water requirements.
Since 2007 it has been active over the area, providing evidence of high efficiency for water saving (up to
30%) [7].

Moreover, the state of the art suggests that significant progresses in saving irrigation volumes
at the farm level can be probably attained by assessing crop water requirements through an optimal
combination of crop satellite images with a crop growth model since satellite images provide information
concerning the current state of the crop canopy and a crop model is able to simulate the biophysical
processes of the growing crop.

Ultimately, examples are implemented to derive crop water requirements from satellite estimates
of biophysical parameters assimilated into agro-meteorological models [8] to monitor the nitrogen
status and to apply fertilizer with variable rates or to derive agronomic variables [9].

Since the rapid development and availability of products with different spatial and temporal
resolutions, the integration of remote sensing data into crop growth models has increased in recent years.
Among the existing crop models, AquaCrop has been widely used for assessing water requirements
and optimal irrigation scheduling for different crops and environments. AquaCrop, in fact, is a crop
water productivity model developed by the Land and Water Division of FAO (Food and Agriculture
Organization) in 2009 [10,11]. It simulates yield response to water of crops and it is mainly used to
increase water efficiency practices in agricultural production

Linker and Ioslovich [12] have successfully shown the possibility of assimilating ground measured
canopy cover data (using digital images above the canopy) during the growing season within the
AquaCrop model for potato and cotton, based on the Extended Kalman Filter algorithm. However,
this innovative procedure requires field data collection during the season, which is budget-and
time-consuming but today, it can be facilitated and improved using Earth Observation data, especially
from Sentinel-2 satellite sensors whose temporal and spatial resolution is adapted for parcel monitoring.
Jin et al. [13] used spectral-based biomass values computed with on field spectral measurement data to
calibrate the AquaCrop model with a particle swarm optimization (PSO) algorithm for winter wheat
in China.

The same PSO algorithm was used for winter wheat by Silvestro et al. [14] and Jin et al. [15]
to assimilate optical and radar satellite data into the AquaCrop model. Several coupling methods
have been categorized and detailed by Jin et al. [16]. One of these methods is by substituting crop
growth models variables with remotely sensed data [17]. A similar approach using remote sensing
data was used to calibrate the AquaCrop model with the leaf area index from MODIS (Moderate
Resolution Imaging Spectroradiometer) for winter wheat in Italy by Trombetta et al. [18]. It was only
applied to large agricultural parcels, due to MODIS’s limited spatial resolution. However, their use in
real/operational scenarios is generally limited by data availability, i.e., crop initial conditions, planting
date and application of inputs. Under this scenario, a possible alternative for assisting the models in
reproducing the actual processes in the field is the use of algorithms relating to remote sensing data
and key canopy biophysical parameters in the crop growth models.

This study aims to evaluate:
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The capability of Sentinel-2 imagery to assess canopy growth of a tomato open field crop and the
corresponding irrigation water requirement by means of Sentinel-2 imagery;

The possibility to predict crop water requirements by assimilating the fractional cover estimated
by Sentinel-2 imagery into the AquaCrop model.

2. Materials and Methods

2.1. Test Site

The research was carried out in Frignano, located in Caserta province (Campania, Italy) (Figure 1).
The area is characterized by a warm-temperate climate with an average annual temperature of 15.2 ◦C
and 900 mm of annual cumulated precipitation, with the rainiest period occurring in winter and driest
period in summer.

 

Figure 1. Localization of the pilot area and the two experimental fields.

Processing tomato (Solanum lycopersicum L.) was cultivated in years 2017 (41◦00′26.33” N
14◦10′13.93” E) and 2018 (41◦01′39.60” N 14◦10′32.87” E) in two parcels of 4 ha each. Soil samples (three
samples were averaged for analysis) were examined for assessing the main physical–chemical properties,
including gravel (%), soil texture, bulk density (t/m3), pH and organic matter (%), at a depth of 15 cm.
In 2018 soil characteristics were obtained by the soil map of Region Campania (pedological maps 1:50,000;
http://agricoltura.regione.campania.it/pedologia/suoli.html). SPAW software (Soil–Plant–Air–Water;
v6.02.75, United States Department of Agriculture-USDA, Washington, DC, USA) was used for
assessing soil hydraulic properties, such as soil water retention, soil hydraulic conductivity, field
capacity and plant available water.

Soil was ploughed at 40 cm depth, and tomato seedlings were transplanted on April 9 in continuous
double rows with 33.5–40.0 cm space between plants, 50 cm between rows, 1.10–1.20 cm between
double rows, with a final plant density of 32,000 and 33,500 plants/ha in year 2017 and 2018, respectively.

Fertilization was applied before transplanting (broadcast) with 120 kg/ha of diammonium
phosphate (18-46-0) and 400 kg/ha of organic-mineral fertilizer (10-5-12); at transplanting (localized)
with 160 kg/ha of diammonium phosphate and 20 kg/ha of seed sprint H5 (12-43-0).

Meteorological daily data of maximum and minimum temperature (◦C), relative humidity (%),
wind speed (m s−1) and precipitation (mm) were collected at a complete weather station located in the
study area for the two cropping seasons.

Plants were watered by light driplines, with 30 cm dripper spacing and 2 L/h flow rate at 1 bar.
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Based on the farmer best knowledge, a total volume of 130 L/plant of water, corresponding to 4160
m3/ha, and 120 L/plant corresponding to 4020 m3/ha of irrigation was given throughout the growing
period in 2017 and 2018, respectively. Such volumes were then considered as reference values against
which the different estimation methods (AquaCrop, IRRISAT, integration of Sentinel 2A imagery into
AquaCrop model) were tested.

2.2. Satellite-Based Assessment of Crop Water Requirement: IRRISAT

The remote sensing technique employed is the one employed by IRRISAT, a satellite-based
irrigation advisory service developed in Italy and operational since 2007 in Southern Italy [7]. The
service aims at providing farmers and water managers with real time information on crop water
needs, which are estimated by combining high resolution data from Earth Observation satellites
with weather data for the calculation of crop water requirements. More recently, IRRISAT has been
combined with numerical weather predictions for forecasting crop water needs up to five days in
advance [19,20]. Information is delivered in near-real time (24 h) to users (farmers, Water User
Association and water agencies) by means of a dedicated WebGIS accessible from PC, tablets and
smartphones (https://www.irrisat.com/en/). In 2016, the operational irrigation advisory service of the
Campania region has reached about 2000 farmers with a total irrigation area larger than 80,000 hectares:
The achieved water saving has been estimated to be larger than 30% [7]. In 2016 the Italian Ministry of
Agriculture has listed IRRISAT among the applicable methodologies for the estimation of the irrigation
volume, complying with the EU Water Framework Directive.

The IRRISAT methodology is summarized in Figure 2. Crop potential evapotranspiration (ETp)
is computed with the Penman–Monteith equation, with crop parameters albedo (α) and leaf area
index (LAI) derived from processing Sentinel-2A/B images in the visible and infrared regions [7] while
assuming fixed values for the stomatal resistance (sr ≈ 100 sm−1) and crop height (hc = 0.4 m) for
herbaceous crop [8]. Following this approach, the calculation of ETp requires standard meteorological
data (daily air temperature, relative humidity, solar radiation, wind speed and precipitation), LAI and
surface α.

 

Figure 2. Flowchart shows dataset and processing procedure required to estimate crop potential
evapotranspiration (ETp), and irrigation water requirements (IWR), Earth Observation-based direct
FAO-56 Penman-Monteith equation method. Legend: Ta = air temperature, RH = relative humidity;
Rs = solar radiation; U =wind speed; P = precipitation.
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The irrigation water requirement (IWR) is then calculated as the difference between ETp and the
crop effective rainfall (Pn), according to the following equation:

IWR = ETp − Pn (1)

It is assumed that capillary rise does not contribute to root zone soil moisture in the summer
season, as usually occurs in the southern European regions. Runoff and deep drainage are assumed to
be negligible considering the low amount of rainfall during the two growing seasons. Pn is obtained
by reducing the precipitation above canopy (P) by a quantity that depends on canopy development,
according to an empirical function of the LAI and the fractional vegetation cover fc, as reported in
Vuolo et al. [7].

In this study, 10 and 21 multispectral high-resolution images from Sentinel-2A and 2B have
been acquired during 2017 and 2018, respectively. The multi spectral instrument (MSI) on board of
Sentinel-2A/2B captures data at 10, 20 and 60 m of spatial resolution over 13 spectral bands with a
very high temporal resolution of five days at the equator. Individual Sentinel-2 granules Level-1C
(processed at the top-of-atmosphere reflectance) were acquired from Copernicus Open Access Hub
(https://scihub.copernicus.eu/), already ortho-rectified in UTM/WGS84 (image tiles of 100 × 100 km2).
The information gathered by Sentinel-2 system (orbit, attitude, date accuracy and viewing directions of
all detectors) are exploited for geolocating all Sentinel-2 pixels with an accuracy of about 11 m for about
97% of the cases, which is about the size of one Sentinel-2 pixel. The standard need for multi-temporal
registration errors is 0.3 pixels, and the current performances show that for more than 50% of the cases,
the performance does not meet that requirement. The resolution is estimated to be three times the
registration error, thus the resolution Sentinel-2 time series is around 30 m.

Level-1C products were processed into Level-2A-Bottom-of-Atmosphere (BoA) reflectance-data
using the ESA’s Sen2Cor v2.5.5 tool (http://step.esa.int/main/third-party-plugins-2/sen2cor/sen2cor_v2-
5-5/). Sen2Cor tool performs the atmospheric, terrain and cirrus correction of Top-Of-Atmosphere
Level 1C input data, and creates Bottom-Of-Atmosphere, optionally terrain and cirrus corrected
reflectance images; additional, aerosol optical thickness, water vapor, scene classification maps and
quality indicators for cloud and snow probabilities.

In order to obtain homogeneous and comparable products as time series, all value-added products
(LAI, α and fc) are calculated based on atmospherically corrected Level-2A data. LAI and fc are
calculated by S2ToolBox [21], an artificial neural network (ANN) algorithm, trained by using radiative
transfer simulations from PROSPECT [22] and SAIL [23] models, and tailored for Sentinel-2 data.
The algorithm requires eight Sentinel-2 spectral bands (B3–B7, B8a, B11 and B12) at 10 and 20 m (pixel
size), which are all resampled to 10 m to derive LAI and fc. Experimental studies have shown the
accuracy of this approach for LAI estimation in different environments and crops [24,25]. In this study,
average and variance of LAI and fc at parcel scale were assessed by taking a minimum of 50 pixels
falling within each parcel, after excluding pixels affected by boundary effects or cloudiness, according
to the quality indicator provided by S2ToolBox.

The broadband surface albedo has been calculated, when the observed surface is considered as
Lambertian, as the integration of at-surface reflectance across the shortwave spectrum [26], as shown
in equation:

α =
∑

bi

∣∣∣ρbi·ωbi
∣∣∣ (2)

where α is albedo, ρbi is surface reflectance for a given band bi at Level-2A Sentinel-2 surface reflectance,
ωbi is the weighting coefficient representing the solar radiation fraction derived from the solar irradiance
spectrum [26] within the spectral range (spectral response curves) for bands bi and is calculated as
equation:

ωbi =

∫ UPbi
LObi

Rsλ·dλ∫ 2.4
0.4 Rsλ·dλ

(3)
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where Rsλ is extra-terrestrial irradiance for wavelength λ (μm); and UPbi and LObi are upper and lower
wavelength bounds for Sentinel-2A/B band bi, respectively.

2.3. Model-Based Assessment of Crop Water Requirement: AquaCrop

AquaCrop simulates crop yield in four steps: Crop development, crop transpiration, biomass
production and yield formation. It calculates the daily soil water balance and divides evapotranspiration
into soil evaporation and crop transpiration. AquaCrop describes the foliage development of the crop
by the canopy cover (CC), that is formally equivalent to the fractional cover (fc) estimated by Sentinel-2
imagery, i.e., it is the fraction of soil surface covered by the green canopy. Hereinafter, we use the two
terms canopy cover (CC) and fractional cover (fc) just to distinguish the two variables, respectively
derived with AquaCrop and Sentinel-2 imagery.

Transpiration is a function of CC, while evaporation is proportional to the area of soil not covered
by vegetation. The CC is multiplied by reference evapotranspiration (ETo), determined by the FAO
Penman–Monteith equation, and the crop coefficient (Kc) to calculate potential crop transpiration.
Actual transpiration (Ta) is calculated starting from potential one by accounting for water stress.
Then, Ta is used for the calculation of crop biomass though its multiplication with water productivity
normalized for climate. By using a harvest index (HI), crop yield is obtained by the biomass. To describe
the effect of water stress, the model considers different thresholds of water available to the root zone.
The first affects leaf canopy expansion (slowing down); the second threshold affects canopy senescence
(quickening); the third is referred to as stomata closure (increase) and so to transpiration. Stress
coefficients (Ks) range between 1 (no stress) and 0 (complete stress) and are multiplicative factors of
the target process.

Model parameters are grouped into two classes: Conservative and non-conservative. Conservative
parameters are not dependent on local and management conditions: Canopy growth (CGC) and canopy
decline (CDC) coefficients; full canopy crop transpiration coefficient (Kc); biomass WP and soil water
depletion thresholds. Non-conservative parameters vary depending on crop and field management,
soil type, and climate (sowing date and density, length of crop cycle and phenological stages, maximum
canopy cover, etc.). Such parameters can be either retrieved from AquaCrop literature or calibrated by
the user (e.g., by means of field experiments). Main AquaCrop outputs are crop production (biomass
and yield) and crop water use.

AquaCrop Implementation

In this study, a limited number of AquaCrop parameters were partly calibrated with field
observations, including management information: Transplant dates and densities, flowering date and
duration, starting of senescence, maturity, and final yield were used for local calibration of the model.
For simulating irrigation, the model was set in net irrigation requirement mode, which estimates the
crop water requirement based on a selected threshold of allowed root zone (water) depletion (RZD).
In order to reproduce the irrigation method adopted by the farmer, drip irrigation was simulated to
ensure that RZD was always above 50% of the readily available water (RAW).

2.4. Assimilation-Based Assessment of Crop Water Requirement

The third method for assessing crop water requirements was based on the integration of Sentinel-2
crop derived data with AquaCrop. The fractional cover (fc) estimated by Sentinel-2 has been sequentially
assimilated into AquaCrop, by direct insertion, in place of the canopy cover (CC) simulated by the
model. The sequential direct insertion is applied under the assumption that a continuous update
of one crop model state based on remote observations can reduce the biases induced by the model
simplifications of the processes and environmental conditions influencing the crop growth dynamics.

Crop CC simulated by AquaCrop along the growing season and the fc values measured by satellite
were compared and the differences were statistically analyzed by means of the Pearson correlation

40



Agronomy 2019, 9, 404

coefficient (r), root mean square error (RMSE%), Nash–Sutcliffe model efficiency coefficient (EF) and
Willmott index of agreement (d).

3. Results and Discussion

3.1. Test Site Characteristics

The parcel cultivated in 2017 had a Vitric Phaeozems (Eutric) soil (WRB classification), with a
loamy texture (USDA classification), while soil was Vitric Cambisols with a loamy-sand texture in 2018.
Soils were both deep, well drained and with no fertility constraints (Table 1).

Table 1. Main soil characteristics of the two soils.

Parameter Unit 2017 2018

Texture Loam Silty loam
Gravel (vol%) <5 <5

Saturation (vol%) 52 46
Field Capacity (vol%) 29 33
Wilting Point (vol%) 10 13

Cation Exchange Capacity (meq/100g) 32 24
Bulk Density (t/m3) 1.1 1.3
pH in H2O U.pH 6.9 7.1

Organic Matter (%) 2.6 2.7

Considering the climatology of the study area, average temperature of 15.2 ◦C and precipitation
of 900 mm (period 1982–2012), year 2017 was relatively dry, with a cumulated rainfall of 579 mm and
16.6 ◦C of average temperature, whereas 2018 was relatively wet and warm, with 1047 mm of rainfall
and an average temperature of 17.25 ◦C (Figure 3). Observed processing tomato yield (expressed in
dry matter) was 7.20 t/ha in 2017 and 7.35 t/ha in 2018.

 

Figure 3. Temperature (line) and precipitation (bars) in the experimental area in year 2017 (a) and
2018 (b).

3.2. AquaCrop Calibration and Implementation

AquaCrop parameters were calibrated to obtain the best fit between field observations and
simulations, both in 2017 and 2018 (Table 2). AquaCrop simulated yields were 7.23 and 7.60 t/ha (dry
weight) in 2017 and 2018, with an error of 0.42% and 3.40%, respectively (Table 3). The growth of
the green canopy simulated by the model was compared with the fc values observed by IRRISAT.
In both seasons the simulated growing curve fitted well with the satellite observations, although an
underestimation for the initial canopy cover (late April–early May) and an overestimation during the
last part of the growing season (July) was observed (Figure 4). Nevertheless, the statistical analysis
(RMSE, EF, d) showed a very good agreement between simulated CC and fc, which correlation was
highly significant in both years (α = 0.001; Table 4; Figure 5). In 2017 the spatial variability of the crop
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canopy within the study parcel was larger than in 2018, as testified by the larger variance of the fc
values retrieved in 2017.

Table 2. Input crop file used for AquaCrop simulations (HI: Harvest index, GDD: Growing degree days).

Crop Parameter Unit Value

Max canopy cover GDD 686
Flowering GDD 612

Flowering duration GDD 531
Length building up HI GDD 448

Senescence GDD 1013
Maturity GDD 1358

Max rooting depth GDD 612

Initial canopy cover % 0.64
Maxi canopy cover % 75

Reference HI % 63

Base temperature ◦C 5
Upper temperature ◦C 30

Canopy expansion Upper 0.15
Canopy expansion Lower 0.55

Stomatal closure 0.5
Early canopy senescence 0.7

Table 3. Crop and water balance variables (Tr: Crop transpiration, E: Soil evaporation, ETp: Potential
evapotranspiration, IWR: Irrigation water requirement, WPET: Evapotranspiration water productivity,
WPIWR: Irrigation water requirement water productivity).

Yield
(t/ha)

Tr
(mm)

E
(mm)

ETp
(mm)

IWR
(mm)

WPET

(kg/m3)
WPIWR

(kg/m3)

2017

Observed 7.20 416 1.73
IRRISAT 450 450

AquaCrop 7.23 345 192 537 461 1.35 1.57
Assimilation 8.23 372 165 537 461 1.52 1.79

2018

Observed 7.35 402 1.82
IRRISAT 349 298

AquaCrop 7.60 291 137 428 332 1.78 2.29
Assimilation 7.34 273 139 412 317 1.78 2.31

 

Figure 4. Canopy cover of tomato simulated by AquaCrop, after calibration with field data (line)
and corresponding fractional cover values (dots) retrieved by Sentinel-2 imagery during 2017 (a) and
2018 (b) growing seasons, with corresponding standard deviations.
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Table 4. Evaluation of canopy cover simulation results: Number of observations/simulations (n),
Pearson correlation coefficient (r), root mean square error (RMSE%), Nash–Sutcliffe model efficiency
coefficient (EF) and Willmott index of agreement (d).

n r RMSE EF d

2017 10 0.95 9.10 0.8 0.96

2018 22 0.97 8.10 0.91 0.98

 

R2 R2 

Figure 5. Linear correlation between tomato canopy cover simulated by AquaCrop and fractional cover
retrieved by Sentinel-2 imagery in 2017 (a) and 2018 (b). Standard deviation (bars) and 1:1 line (dashed
line) are reported.

3.3. Estimation of Crop Water Irrigation Requirements

During the 2017 crop growing season, spanning from June 9th to July 20th, the accumulated rainfall
was 40.4 mm, the estimated reference evapotranspiration (ETo) was 553 mm, while crop transpiration
(Tr) and soil evaporation (E) estimated by AquaCrop were 345 and 192 mm, respectively. In such
conditions, AquaCrop modeled an irrigation water requirement (IWR) of 461 mm corresponding to
144 L/plants.

In year 2018, wetter conditions occurred, with an accumulated rainfall of 125 mm and an estimated
ETo of 439 mm. Under such conditions, both crop Tr (291 mm) and E (137 mm) were lower. Accordingly,
a lower IWR, 332 mm, was estimated by the model. Being the final yields very similar, the consequent
evapotranspiration (WPET) was higher in 2018 than 2017 (Tab 3).

In Figure 6, three different daily ETp series were compared, respectively produced by calibrated
AquaCrop, IRRISAT and AquaCrop after replacing CC with fc estimated by IRRISAT.

Figure 6. Crop evapotranspiration estimated by AquaCrop (blue), IRRISAT (red) and direct insertion
(green) of fc retrieved by Sentinel-2 imagery into AquaCrop, in 2017 (a) and 2018 (b).
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The agreement between AquaCrop and IRRISAT ETp estimates is excellent in the mid-season
stage, between about the 50th and 85th day after transplant, when the crop canopy is fully developed.
This result is remarkable considering that IRRISAT is fully based on remote observations weather data,
and not relying on field or crop data. Moreover, IRRISAT predictions are not based on a continuous
assessment of the crop dynamics, rather it provides ETp estimates based on crop parameters retrieved
from the last available image, thus with a delay of five or more days, depending on the sky conditions
(i.e., cloudiness).

In the initial stage and in the crop development stage (first 50 days after transplant), before canopy
is fully developed, the estimation of ETp in AquaCrop is higher than the one determined by IRRISAT.
This is due to the conceptually different calculation schemes: Whilst IRRISAT has a resistance-based
approach in the Penman–Monteith linked to the LAI at the pixel scale (according to the “big leaf”
schematization), AquaCrop has a crop coefficient approach for soil evaporation depending on soil
properties. Diversely, with growing LAI and soil cover, the two estimates converge toward very similar
values of ETp, hence irrigation requirements.

In the senescence stage, after about the 85th day from transplant, the values of ETp derived by
means of the two methods slightly diverge again, with higher ETp for IRRISAT respect to AquaCrop,
again due to the difference between the LAI-based approach of the first one and the crop coefficient of
the second one. Furthermore, AquaCrop explicitly consider the transpiration reduction associated
with the senescence, which cannot be fully predicted by the reduction of the observed LAI applied into
the Penman–Monteith equation.

The canopy cover fc maps retrieved from Sentinel-2 imagery can be more effectively employed for
constraining AquaCrop predictions to the actual observed crop growth and for assessing its spatial
variability. In this study we applied a simple assimilation technique, known in the literature as “direct”
insertion [27], consisting in replacing the model state variable CC with the remotely retrieved variable
fc. As displayed in Figure 6, AquaCrop ETp estimates after direct insertion are essentially equal to the
calibrated AquaCrop, except for the development and senescence stages, when the average fc sensibly
deviates from the model calibrated growth curve. As illustrated in Table 3, fc direct insertion does
not affect the cumulative ETp, rather it affects its partitioning in transpiration (Tr) an evaporation
(E), with a slight increase in Tr and a decrease in E. In 2018, instead, fc direct insertion implies a
slight reduction of ETp, mainly associated with a reduction of Tr. Correspondingly, tomato yield
was overestimated compared with the observed and the calibrated values in 2017 (+14.3%), while
slightly underestimated in 2018 (−1.03%). This result confirmed that sequential assimilation of one
state variable does not necessarily improve the prediction performance of all model state variables.
In this sense, more complex sequential assimilation techniques are needed, in order to account for the
structure of the observation and prediction errors [28], as well of the atmospheric forcing [29].

The impact of the direct insertion in terms of irrigation water requirement (IWR) is null in 2017,
while it determines a 5% decrease in 2018. As illustrated in Figure 7, also the temporal pattern of
IWR is almost unchanged in the two simulated seasons. A potential water saving of 70 mm could be
achieved in 2018 according to AquaCrop, by accounting for the effective contribution of the summer
rainfall (125 mm) to the soil water deficit.

Looking again at Table 3, it is interesting to note that IRRISAT, despite the significant reduction
of the cumulative ETp both in 2017 (16%) and 2018 (19%) compared with the calibrated AquaCrop,
predicts cumulative IWR just 3% smaller in 2017 and 11% smaller in 2018 than the calibrated AquaCrop.
As illustrated in Figure 7, this reduction is essentially due to the initial and development stage, when
AquaCrop, differently form IRRISAT, accounts for the soil evaporation in the IWR assessment. After the
crop is fully developed, the cumulative IWR curves are almost parallel, testifying the good agreement
of the remotely assessed daily IWR with AquaCrop.
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Figure 7. Cumulated irrigation water requirement (mm) estimated by the three methods: AquaCrop
(blue), IRRISAT (red) and direct insertion (green) of fractional cover retrieved by Sentinel-2 imagery
into AquaCrop, in 2017 (a) and 2018 (b). Rainfall is also plotted (histograms).

4. Conclusions

Sentinel-2 imagery can be effectively exploited for monitory canopy growth of tomato crops in
open field. Irrigation advisory services, such as IRRISAT, which are only based on crop data retrieved
by Sentinel-2 and weather data, can provide a reliable assessment of crop water requirements of tomato
field crops especially when crop canopy is fully developed. It should be considered that IRRISAT
does not require input data concerning the soil or crop phenology, since it is entirely based on crop
growth monitoring from space. Hence, integrating Sentinel-2 imagery with a crop growth model
such as AquaCrop can be an effective strategy for assessing crop water requirement in the initial and
development stage of the crop, as well as for identifying the senescence stage. Further, being the
satellite imagery a spatial information, the integration into a crop model can help in assessing crop
water requirement at field or higher scales, i.e., at territorial level. Thus, a sequential assimilation
can be used to support irrigation planning by Irrigation and Land Reclamation consortia. In this
study a simple direct insertion method has been applied for assimilating canopy cover retrieved by
Sentinel-2 imagery into AquaCrop, which does not guarantee an optimal model-data integration.
Additional studies are required for testing more advanced data assimilation techniques, accounting for
the structure of the model state and observation errors.
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Abstract: We assess the discriminative strength of three different satellite spectral settings (HyspIRI,
the forthcoming Landsat 9 and Sentinel 2-MSI), in mapping tomato (Solanum lycopersicum Linnaeus)
plants grown under hydroponic system, using human-excreta derived materials (HEDM), namely,
anaerobic baffled reactor (ABR) effluent and nitrified urine concentrate (NUC) and commercial
hydroponic fertilizer mix (CHFM) as main sources of nutrients. Simulated spectral settings of
HyspIRI, Landsat 9 and Sentinel 2-MSI were resampled from spectrometric proximally sensed data.
Discriminant analysis (DA) was applied in discriminating tomatoes grown under these different
nutrient sources. Results showed that the simulated spectral settings of HyspIRI sensor better
discriminate tomatoes grown under different fertilizer regimes when compared to Landsat 9 OLI
and Sentinel-2 MSI spectral configurations. Using the DA algorithm, HyspIRI exhibited high overall
accuracy (OA) of 0.99 and a kappa statistic of 0.99 whereas Landsat OLI and Sentinel-2 MSI exhibited
OA of 0.94 and 0.95 and 0.79 and 0.85 kappa statistics, respectively. Simulated HyspIRI wavebands
710, 720, 690, 840, 1370 and 2110 nm, Sentinel 2-MSI bands 7 (783 nm), 6 (740 nm), 5 (705 nm) and
8a (865 nm) as well as Landsat bands 5 (865 nm), 6 (1610 nm), 7 (2200 nm) and 8 (590 nm), in order
of importance, were selected as the most suitable bands for discriminating tomatoes grown under
different fertilizer regimes. Overall, the performance of simulated HyspIRI, Landsat 9 OLI-2 and
Sentinel-2 MSI spectral bands seem to bring new opportunities for crop monitoring.

Keywords: hydroponic; vegetable monitoring; crop production; spectral simulation; hyperspectral data

1. Introduction

Food insecurity is a large and growing challenge in sub-Saharan Africa [1,2]. It is estimated that
at least one out of four people are hungry and undernourished in sub-Saharan Africa. The World
Bank estimates that in 2030, nearly 9 in 10 extremely poor people will be living in Sub-Saharan
Africa [3]. This is exacerbated by droughts and soil nutrients deficiencies resulting from limited
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fertilizer applications [1,2]. This is in turn associated with high fertilizer and food prices, amongst
other factors. According to FAO [4] the annual food inflation increased from 5% in 2014 to 6%
in 2018 whereas in Europe it remained stable and declined in Latin America, Asia, and Oceania.
Subsequently, the improvement of crop production which leads to food security has been amongst
the principal priorities required to fulfil the goals of sustainable human development as well as the
African Union’s Agenda 2063 [5]. Furthermore, food demand is anticipated to triple in sub-Saharan
Africa after the projected 2.5-fold increase in population increase [6]. Specifically, a 60% increase in
agricultural and horticultural production will be required by the increasing population in the light of
diminishing water and soil nutrient resources [6]. The major concern is the current dietary transition,
which is in favour of vegetables such as tomatoes amongst other crops, which is projected to increase,
especially in urban areas, while water and soil nutrients are in decline [6–8].

Tomato fruits have a critical dietary role in providing folate, vitamins A, C and E; as well as
antioxidants (lycopene, beta-carotene, gamma-carotene); trace elements of flavonoids; phytosterols
and water-soluble vitamins important for human health [7]. To circumvent the challenge of decreasing
soil nutrients and increase the production of vegetables (tomatoes) within a small land area, efforts
have been exerted towards improving soil fertility and reducing expenses associated with commercial
hydroponic fertilizer mix (CHFM) through the use of anaerobic baffled reactor (ABR) effluents and
nitrified urine concentrate (NUC) both as a source of soil nutrients and water [8,9]. Smith and Smith [9],
for instance, noted that nitrogen recovered from wastewater supported a high increase in tomato
(Solanum lycopersicum) plant canopy volume, flower and fruit production when compared to plants
treated with commercial hydroponic fertilizer mix (CHFM) which contained N, P, K, Ca, Mg and Si.
Al-Hamdan, Cruise et al. (2014) in Jordan noted that treatment of tomato crop using waste water
facilitated and increased their fruit size by up to 2 cm in diameter, and weight up to 78.7 g in relation to
those administered with potable water in their field experiment. However, the challenge that has been
lurking in the agricultural sector is the lack of comprehensive spatial explicit frameworks as well as
objective criteria for crop growth and productivity monitoring. Spatially explicit data is important in
effectively and precisely managing production both in the field and greenhouses to meet the increasing
demand of high quality and safe agricultural products such as tomatoes. Information on vegetable
crop type, growth, productivity or health status was previously measured in situ or done through
routine field surveys which are often time consuming and date lagged [10,11]. Despite the fact that
these in situ methods obtained plausible levels of accuracy in characterizing crops, they lacked spatial
representativeness. Consequently, there is need for spatial explicit techniques that can be operationally
used not only to characterize the crop’s areal extent, but also their physiognomies due to lack or
excess of soil nutrients. This information can help deduce and understand crop quality, growth and
productivity patterns, which are critical in ensuring food security and coming up with well-informed
intervention mechanisms or management strategies where necessary.

Meanwhile, earth observation technologies offer spatially explicit non-destructive synoptic
views, innovative and economically feasible timely spatial scale means of generating farm scale crop
monitoring. Literature shows that crop/plant physiology and structure such as leaf area index, water
content plant pigment content, canopy architecture and canopy density are associated with specific
key spectral wavebands [12–15]. Subsequently the variations in these biochemical and physical
characteristics of crop plants caused by various crop management practices (i.e., different fertilizer
regimes) facilitates unique variations in their spectral finger prints. This makes remote sensing and
earth observation facilities to be critical reservoirs of spatially and crop explicit information required in
ensuring good quality of crop produce. Remotely sensed data is robust and very sensitive to subtle
vegetation traits such as those induced by different water and nutrient regimes. Rajah et al. showed
that hyperspectral remotely sensed data could discriminate common dry beans that were rain-fed
from those that were irrigated. Lu, et al. [16] discriminated tomato crops that were infected with
multi-diseases at different phenological stages using hyperspectral data. Their results exhibited a high
overall classification accuracy of 100% in discriminating multi-diseases during the early, asymptomatic
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and late stages of leaves growth. Above all, the advent and advancement of earth observation
facilities has unveiled opportunities for assessing previously unresolved crop quality, growth and
productivity related questions linked to plant physiognomies such as that induced by different fertilizer
regimes on plant spectral characteristics [11]. Despite hyperspectral data’s trade-off between cost
and accuracy, it remains the most accurate spatial data for monitoring crop growth and productivity.
Unlike broadband satellite data, hyperspectral data has numerous contiguous spectral channels with a
potential ability to detect and characterize subtle differences in plant traits such as those induced by
different fertilizer application regimes in relation. For example, Česonienė, et al. [17] demonstrated
that hyperspectral data could discriminate between conventionally and organically grown carrots in
Lithuania to Jeffries-Matusita distances ranging between 1.98 and 2.00. They attributed their results
to the ability of hyperspectral data to discern on the variations in the cell structure conditions and
canopy structure of the carrots grown under different farming methods. Meanwhile, multispectral
sensors like Landsat, Satellite Pour l’Observation de la Terre (SPOT), MODerate Resolution Imaging
Spectroradiometer (MODIS) are characterized with broad bands making it difficult to discern subtle
plant traits as they tend to mask out critical plant information.

Although hyperspectral sensors provide accurate datasets, a number of sensors have been or
are being developed with improved sensing capabilities because of the exorbitant acquisition costs
associated with it [18]. For example, the earth observation community recently witnessed the launching
of Sentinel 2 multispectral imager (MSI) and Landsat 8 OLI etc. Sentinel 2 MSI has been the first freely
available sensor with a set of spectral wavebands covering the red-edge section of the electromagnetic
spectrum (B5 (705 nm), 6 (740 nm), and 7 (783 nm)) at a relatively fine spatial resolution of 20m.
The sensor has a wide swath-width of 290 km, coupled with a high spatial resolution of 10 m as well as a
five-day temporal resolution making it a better facility for crop mapping and monitoring. Both sensors
(i.e., Sentinel 2 MSI and Landsat 8 OLI) have been tested in various environmental application areas
with plausible findings and conclusions [19–22]. However, in some instances they have been reported
to experience challenges, especially when applied at farm level monitoring. This has been attributed to
the presence of broad wavebands which are perceived to be concealing most important information.
As a result, now new sensors such as the proposed Landsat 9 OLI-2 (with improved noise-to-signal
ratio), Environmental Mapping and Analysis Program (EnMAP) and Hyperspectral Infrared Imager
(HyspIRI) are being developed. The National Aeronautics and Space Administration agency (NASA)
is looking forward to launching the state-of-the-art HyspIRI instruments covering the visible and
near-infrared section (Vis/NIR) as well as the thermal infrared (TIR). There is a need to evaluate their
performance in discriminating subtle plant properties resulting from crop management practices in
relation to the available broadband multispectral sensors. These sensors could help by providing
a spatially explicit non-destructive method of characterizing crop quality, growth and productivity
patterns which are required in the food industry for pricing as well as in agricultural production for
ensuring food security.

The upcoming hyperspectral instruments have a potential to supply the much-needed spatially
explicit, accurate, consistent information on vegetable crops. Both of these instruments will be
spectrometric covering the spectral ranges of 420–2450 nm and 380–2510 nm at different sampling
distances of 6.5 nm for EnMAP’s VNIR and 10 nm for EnMAP’s SWIR section as well as HyspIRI’s
VSWIR [23,24]. The swath width of HyspIRI will be 185 km at 30 and 60 m spatial resolutions whereas
EnMAP have 30-km-wide coverage across-track at a ground-sampling unit of 30m. The temporal
resolution of EnMAP will be 4 days at the equator whereas that of HyspIRI will be 5 days. The fine
spectral, spatial and temporal resolutions of these sensors make them relatively more suitable for
agriculture applications. The major advantage with such instruments is that they will avail quality
data at relatively low costs for data scarce regions such as the sub-Saharan Africa where resources are
limited. In this regard, there is need to compare the performance of these hyperspectral sensors to
the recently launched freely available and forthcoming multispectral sensors (i.e., Sentinel 2 MSI and
Landsat 9 OLI-2 with improve spectral settings) so as to ascertain their full potential.

50



Agronomy 2019, 9, 373

Considering the fact that literature states that hyperspectral data is generally characterized by
high collinearity and that there is no specific algorithm that is suitable for discriminating vegetation
characteristics at different places and times, this study also examined the performance of discriminant
analysis (DA) and partial least squares discriminant analysis (PLS-DA) in discriminating tomato plants
grown under different fertilizer regimes. PLS-DA and DA have been widely used in discriminating
plants with different characteristics using both hyperspectral and broadband sensors data [25–27].
These Algorithms have been widely used because they offer an opportunity to evaluate and interpret
the minute spectral pattern variations in plants, especially those grown under different management
regimes. PLS-DA and DA classification ensembles construct a distinctive spectrum that represents
the spectral signatures of the plants samples while simplifying the discrimination process when
compared with other methods such as K-nearest neighbours [28–30]. Despite the optimal performance
of these methods in vegetation discrimination, the robustness and accuracy of these two is yet to be
established [31] particularly in discriminating fine spectral variations of vegetable crops (i.e., tomatoes)
induced by different fertilizer application regimes. Furthermore, hyperspectral data could be widely
renowned for its exceptional performance in literature in relation to broad bands sensors but the
performance of these forthcoming sensors remains undocumented. This study therefore, sought to
assess the discriminative performance of HyspIRI, Landsat 9 OLI-2 and Sentinel 2 MSI in characterizing
tomato (Solanum lycopersicum) crops grown under commercial hydroponic fertilizer mix, anaerobic
baffled reactor effluent and nitrified urine concentrate as nutrient sources. HyspIRI was selected as a
representative of hyperspectral sensors in this study due to the fact that both EnMAP and HyspIRI will
have similar spectral and spatial characteristics and that HyspIRI is going to cover a larger spectral
portion of the electromagnetic spectrum particularly in the VSWIR sensor in relation to that of EnMAP.
In addition, this study also assessed the performance of DA and PLS-DA in discriminating tomato
crops grown under different fertilizer regimes using HyspIRI, Landsat 9 OLI-2 and Sentinel 2 MSI
spectral data simulated from hyperspectral data.

2. Materials and Methods

2.1. Experimental Set-Up

A pot experiment was conducted in a hydroponic system that was set up in a polyethylene tunnel
located at Newlands-Mashu Research Station under eThekwini Municipality, Durban, South Africa
(29◦46′25.648” E 30◦58′28.329” S). The hydroponic system was designed to run three nutrients streams
namely, anaerobic baffle reactor (ABR) effluents, nitrified urine concentrate (NUC) and commercial
hydroponic fertilizer mix (CHFM) as a control. Each hydroponic system consisted of 150 L tank and the
nutrient solution for each system was enclosed in a 100 L container stacked on the ground at the foot of
each system.

Six-weeks-old, seedlings of ‘Monica’, a determinate tomato cultivar purchased from a local nursery
(Sunshine seedlings, Pietermaritzburg, South Africa) were transplanted to 30 cm polyethylene pots filled
with pine sawdust as a growing medium. The nutrient solution for each nutrient source was supplied to
the plants using a pressure pump (DAB Model K30/70M, DAB Pumps, MarcoPolo, Mestrino, Italy) via a
20 m irrigation line. A 20 cm drip irrigation emitters (2 L) were placed and irrigation was performed at six
intervals of 5 min/duration daily using a timer. The study was arranged using a complete randomised
design with three replications of five plants each, giving fifteen experimental units per nutrient source.

Tomato plants of the control treatment were irrigated with a commercial hydroponic fertilizer
mix (Hygroponic® and Solu-cal®) at the rate of 800 g + 620 g/1000 L of water as recommended for
hydroponic tomato production; NUC, commercial fertilizer application rate was used as a standard as
recommended by Jonsson et al. (2004) and ABR effluents with no specified application rate. For the
CHFM and NUC treatment, the fertilizer was mixed using municipal tap water whereas for the
ABR treatment only effluent from the anaerobic baffle reactor component was used as nutrient and
irrigation source. The experiment was allowed to run for 12 weeks before the crop was harvested.
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Remotely sensed proximal spectra data was collected at vegetative stage (i.e., four weeks after
transplanting) and two weeks after flowering. In this study all requirements for the photosynthetic
activity of the tomato plants were the same except for the fertilisation treatments. This was done so as
to make sure that any spectral differences between the CHFM, ABR, NUC treated tomato plants were
mainly due to the fertiliser applications since all conditions were the same.

2.2. Remotely Sensed Data

The FieldSpec-3 (ASD Inc., Boulder, CO, USA) Analytic Spectral Device (ASD) FieldSpec instrument
was used to acquire the spectral reflectance of tomatoes plants receiving ABR effluents, NUC and
CHFM. The ASD measured the radiation at 1.4 nm intervals for the 350–1000 nm and 2 nm intervals for
the 1000–2500 nm spectral regions. The reflectance measurements were conducted using bare fibre-optic
held at nadir position ~0.5m above the tomato canopies resulting in a field of view with a diameter of
~0.225m. This diameter was found to be adequate to capture the reflectance of the tomato canopies.
The normalization of spectral measurements was conducted after every 5 to 10 spectral measurements,
using a standard white spectralon. A standard spectralon is optically flat to ±4% over the range
of 250–2500 nm and ±1% over the photopic region of the spectrum [32,33]. Its diffuse reflectance
standards are highly Lambertian [33]. This was done to circumvent the possible changes in weather
conditions as well as irradiance from the sun [34]. The spectral measurements were conducted under
clear skies during the day between 10:00 and 14:00 since this is the time with maximum net radiation.
A total of 900 spectral samples were measured on canopies of tomatoes treated with CHFM (n = 300),
ABR (n = 300) and NUC (n = 300). Noise regions between 350 and 399, 1355 and 1420 nm, 1810 and
1940 nm and 2470–2500 nm were cleaned prior to any analysis of the data [35]. The spectrometrically
sensed proximal spectra were then resampled into the spectral settings of HyspIRI, Sentinel 2_MSI and
Landsat 9 OLI-2 (Table 1). To simulate the HyspIRI VSWIR sampling rate, 21 successive ASD bands
were averaged to create one proxy HyspIRI band using a Gaussian averaging window as detailed in
Prasad et al. (2009) [36] and Samiappan et al. (2010) [37]. To simulate the ASD data into the spectral
settings of broad spectral sensors, the PRISM in IDL-ENVI was used.

Table 1. Properties of HyspIRI, Sentinel 2-MSI and Landsat 9 OLI-2 sensors.

Sensor Orbital Altitude Revisit Time (days) Swath Width (Km) Spectral Bands Band Centre Spatial Resolution

HyspIRI (VSWIR) 626 km 16 185 km Contiguous (10 nm) 30
380–2500 nm

Landsat 9 OLI-2 705 km 16 185 km 1Coastal/Aerosol 443 30
2Blue 482 30

3Green 562 30
4Red 655 30
5NIR 865 30

6SWIR 1 1610 30
7SWIR 2 2200 30

8Panchromatic 590 15
9Cirrus 1375 30

10Thermal 10,800 100
11Thermal 12,000 100

Sentinel 2-MSI 786 km 5 280km 1Coastal aerosols 443 60
2Blue 490 10

3Green 560 10
4Yellow 665 10

5Red edge 705 20
6Red edge 740 20
7Red edge 783 20

8NIR 842 10
8aNIR 865 20
9NIR 945 60

10SWIR 1375 60
11SWIR 1610 20
12SWIR 2190 20
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2.3. Discriminating Tomato Plants Grown under Different Fertilizer Regimes

Exploratory data analysis was conducted to determine if the data followed a normal distribution
curve. Normality test was performed using the Kolmogorov-Smirnov test. Further, we assessed
spectral separability as well as administered a pre-filter [38] after hyperspectral data resampling it to
HyspIRI, Sentinel-2 MSI and Landsat 8/9 OLI spectral configurations. Resampling was based on the
Analysis of Variance test (ANOVA). We then conducted post hoc test to establish the channels that
exhibited significant differences between the spectral data of the tomato crops receiving nutrients from
ABR effluent, NUC and CHFM.

The other objective of this study was to assess the accuracies of partial least squares discriminant
analysis and discriminant analysis algorithms in characterizing tomato crops grown under the three
fertilizer regimes. In that regard, we used the PLSDA and the DA to classify the spectral reflectance of
tomato crops growing under UNC, UNF and ABR fertilizer treatments. Details about DA and PLS DA
are provided in Zhang, et al. [39] and Boulesteix [29]. Prior to conducting PLS-DA and DA, the spectral
samples were partitioned into training (70%) and testing (30%) data.

2.4. Classification Accuracy Assessment

The 30 percent of the samples were used for classification accuracy assessment (90 per treatment).
Confusion matrices were computed and used to evaluate the classification accuracies of the DA and
PLS DA models. We further computed the overall, producer and user accuracies, as well as the kappa
statistics for each set of spectral settings as classified by the two algorithms based on the confusion
matrices. To compare the performance of the two algorithms, a McNemar’s test was conducted as
detailed by Manandhar, et al. [40] and de Leeuw, et al. [41].

3. Results

Analysis of variance tests results showed significant differences (α = 0.05) between tomato plants
treated with different fertilizer combinations based on the spectral settings of HyspIRI, Sentinel-2MSI
and Landsat 9 OLI. Figure 1 illustrates spectral signatures (mean spectral reflectance) of tomato plants
grown under ABR, CHFM and NUC treatments. Specifically, the spectral signatures of tomatoes grown
under NUC exhibited higher reflectance curves when compared to those growing under CHFM and
ABR in all the sections of the electromagnetic spectrum across all the sensors. The CHFM spectral
signature was the lowest in comparison to the other to fertilizer treatments across all the spectral
signatures and sensors. For HyspIRI resampled data, significant differences were observed in the
visible, NIR as well as the SWIR portions of the electromagnetic spectrum (Figure 1). Meanwhile the
most glaring differences in the reflectance of tomato plants grown under ABR, CHFM and NUC
treatments were observed in the NIR portion of the electromagnetic spectrum based on the simulated
Sentinel 2 MSI and Landsat 9 OLI-2 data (Figure 1). HyspIRI spectral settings exhibited more potential
spectral windows of separability between tomato plants grown under ABR, CHFM and NUC treatments
when compared with the broadband sensors. Potential spectral windows of separability exhibited by
Sentinel 2 MSI and Landsat 9 OLI-2 were only in the near infrared regions (Figure 1).
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Figure 1. Cont.
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Figure 1. Collected spectra (a) and Mean spectral signatures of tomato crops grown under ABR
effluent, NUC and CHFM treatments based on (b) HyspIRI (c) Sentinel -2 MSI and (d) Landsat
9 OLI-2 spectral settings.

3.1. Discriminating Tomatoes under ABR Effluent, NUC and CHFM

All sensors better characterized tomato crops administered with ABR when compared to
those administered with CHFM and NUC. Specifically, high producer and user accuracies ranging
between 91% and 100% were observed in characterizing tomatoes treated with ABR (Table 2).
Meanwhile tomatoes administered with ABR and CHFM were characterized with slightly lower
accuracies (Table 2). Moreover, HyspIRI, produced high accuracies characterized by kappa statistics of
0.99, whereas the spectral settings of Sentinel-2 MSI and Landsat 9 OLI-2′s spectral settings exhibited
kappa statistics of 0.85 and 0.79, respectively. HyspIRI spectral settings exhibited high producer
accuracies of 100%, 92% and 100% for ABR, CHFM and NUC respectively. Meanwhile Sentinel-2 MSI
exhibited slightly lower producer accuracies (ABR = 91%, CHFM = 86% and NUC = 100%).
Landsat OLI-2 exhibited producer accuracies that were comparable to those of Sentinel 2 MSI
which were 91% for ABR, 83% for CHFM and 100% for NUC. The same trend could be observed on the
user accuracies (Table 2). In general, the CHFM treatments had slightly lower-class accuracies across
all sensors in relation to the HEDM treatments.
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Table 2. Classification accuracies derived using HyspIRI, Sentinel 2 MSI and Lands 9 OLI-2 spectral settings.

Sensor PLS-DA DA PLS-DA DA

PA UA PA UA OA Kappa OA Kappa
ABR 100 95 100 100 0.97 0.90 0.99 0.99

HyspIRI CHFM 92 100 100 100
NUC 100 94 100 100

Sentinel 2 MSI ABR 91 100 100 100 0.90 0.69 0.95 0.85
CHFM 86 100 89 100
NUC 100 65 100 82

Landsat 9 OLI-2 ABR 91 95 95 100 0.89 0.63 0.94 0.79
CHFM 83 100 89 100
NUC 100 65 100 76

3.2. Performance of DA and PLS-DA Algorithms in Discriminating Tomatoes under ABR Effluent, NUC
and CHFM

When comparing the performance of algorithms, DA exhibited very high accuracies. For instance,
DA’s producer accuracies derived using DA across all fertilizer treatments and sensor simulations
ranged from a minimum of 89% whereas PLS-DA had a slightly lower minimum of 83% (Table 2).
The user accuracies derived using DA ranged from a minimum of 76% whereas those derived using
PLS-DA ranged from 65% to 100%. The overall accuracies derived using DA were higher (i.e., 0.94–0.99)
when compared to those derived using PLS-DA (i.e., 0.3–0.97). Uniformly, the kappa statistics derived
using DA were higher, ranging between 0.79 and 0.99 whereas those derived using PLS-DA were
lower ranging between 0.63 and 0.90 (Table 2). Table 3 summarizes potential spectral variables for
discriminating tomato plants grown under ABR, CHFM and NUC treatments using HyspIRI, Sentinel
2 MSI and Landsat 9 OLI-2. HyspIRI wavebands 710, 720, 690, 840, 1370 and 2110 nm, Sentinel 2-MSI
bands 7, 6, 5 and 8a as well as Landsat bands 5, 6, 7 and 8, in order of importance, were identified as
the most optimal spectral variables for discriminating tomato plants grown under different fertilizer
regimes. NIR was the most prominent optimal section with a potential of discriminating tomatoes
plants grown under different fertilizer regimes across the three sensors, although it did not outperform
the red-edge section of the electromagnetic spectrum which was the most influential region.

Table 3. Influential bands in discriminating tomato plants grown under different fertilizer regimes.

Spectrum
Sensor

HyspIRI Sentinel Landsat

DA PLS-DA DA PLS-DA DA PLS-DA
Visible 5 4 2 1 2 1

Red edge 12 10 3 3
NIR 10 10 2 2 1 1

SWIR 8 7 1 1 2 2
M/FWIR 7 7

Total 42 38 8 7 5 4

NB M/FWIR means Mid/Far wavelength infrared.

4. Discussion

We sought to compare the strength of HyspIRI’s spectral configuration in relation to Landsat
9 OLI-2 and Sentinel 2 MSI spectral settings in characterizing tomato (Solanum lycopersicum) crops
grown under CHFM, ABR and NUC treatment regimes. Results of this study showed that tomatoes
that were fertilized using ABR could be optimally discriminated (i.e., Kappa statics ranging 0.79 to 0.99)
from those that were administered with CHFM and NUC. The spectral reflectance of HDME fertilized
crops was higher than that of those treated with CHFM. This indicates the potential of HEDM fertilizer
for sustaining the health of vegetables in a manner comparable to that of conventional chemical
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fertilizers. This could be attributed to the fact that ABR effluents have nutrient properties favorable for
tomato plants, which facilitate excessive vegetative growth, high biomass accumulation, delayed or
uneven maturity [42–44]. Tomato crops with excessive vegetative growth, high biomass accumulation,
delayed or uneven maturity tend to be easily detected and discriminated by satellite sensors compared
to those which are not. Subsequently, tomatoes growing under the ABR treatments have a different
spectral signature from those that are fertilized using CHFM and NUC. Literature illustrates that
ABR tends to facilitate high biomass accumulation (i.e., increased leaf area index) hence the high
classification accuracies exhibited by all remotely sensed data in this study in characterizing the HEDM
fertiliser treatments [11,28,29]. For example, Al-Lahham, El Assi and Fayyad [45] illustrated that
tomato crops that were administered with high quantities of waste water had big fruit sizes hence
high biomass accumulation in relation to those that were administered with potable water. In a
related study, Zavadil (2009) noted that primary treated waste water which contained an average of
14-fold nitrogen amounts (70.6 mg/L, which was 89% ammonia form) and also a 3-fold of the total
phosphorus, resulted in high biomass accumulation and yields of lettuce salad, radishes and carrots
in their study assessing the influence of sewage in relation to potable water on vegetable growth.
Subsequently, the increases in biomass accumulation associated with wastewater treated vegetables
could explain the discrimination of ABR treated tomato crops in comparison to those administered
with CHFM and NUC, in this study. Furthermore, the most influential wavebands that facilitated
high classification accuracies in discriminating tomato plants grown under human-excreta derived
materials (HEDM) from those growing under CHFM conditions were from the red-edge section of the
electromagnetic spectrum which is generally associated with healthy plants. The red-edge section of
the electromagnetic spectrum is very sensitive to high chlorophyll, leaf angle distribution, leaf area
index levels associated with plants grown in more nutritious environments such as the those exhibited
by ABR. As aforementioned, HEDM have a high turnover of N P K plant nutrients which is comparable
to that of commercial soluble fertilizers [46–48]. In this regard, the high turnover of plant nutrients
such as nitrogen facilitates an increase in biomass, LAD, LAI which in turn makes the canopy spectral
signature of those plants treated with HEDM to be discriminable from other plants especially in the
red-edge and the NIR sections of the electromagnetic spectrum [49,50]. Subsequently, the red-edge
and the NIR regions of the electromagnetic spectrum illustrate that the spectral signatures and the
health of plants grown under HEDM are comparable to those grown under the CHFM.

When assessing the performance of sensors, HyspIRI outperformed the two multispectral sensors
namely, Sentinel-2 MSI and Landsat OLI spectral settings in discriminating tomato crops grown under
different fertilizer regimes. This could be explained by the fact that HyspIRI is a hyperspectral sensor
characterized by narrow spectral wavebands that are more sensitive to the spectral reflectance of
tomato crops grown under different fertilizer regimes than broadband sensor settings such as those
of Landsat which could be masking out those minute tomato crops spectral variations. There is a
consistently growing body of literature that supports the claim that hyperspectral sensors are more
sensitive to minute vegetation spectral variabilities compared to broadband sensors due to the narrowed
bandwidths configuration [51–56]. Specifically, Thenkabail, Smith and De Pauw [55,57] illustrated
that narrow bands characterized different crop traits such as yield as well as spectral variations when
compared to broadband spectral data. Also, they were able to better characterize wheat from barley
using hyperspectral data in relation to the data from broadband sensors. They attributed this to
the variation in spectral settings (bandwidths) of the sensors they used. These variations in spectral
settings affected the detail that determined the accuracy of their models for plant trait characterization.
Meanwhile, Clark [57] noted that there was no significant variation in the performance of HyspIRI
and Sentinel-2 MSI as well as Landsat OLI in landcover classification of the San Francisco Bay Area in
northern California, USA. However, their results confirmed that HyspIRI exhibited higher classification
accuracies in their study.

Results of this study also illustrated that Sentinel 2 MSI and Landsat 9 performed satisfactorily in
discriminating tomatoes grown under different fertilizer regimes, although Sentinel-2 MSI outperformed
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Landsat OLI. This could be explained by the fact that Sentinel-2 MSI spectral settings cover the red-edge
portion of the electromagnetic spectrum which is critical in mapping and detecting various vegetation
traits. Moreover, there is a large and growing body of literature illustrating that Sentinel-2 MSI performs
better than Landsat OLI in vegetation mapping [22,57,58]. The study by Colkesen and Kavzoglu [58]
illustrated that Sentinel-2 MSI outperformed Landsat OLI in discriminating alfalfa, sugar beet and
bean in the agricultural lands of the Ferizli district, Turkey. Shoko and Mutanga [22] also illustrated the
robustness of Sentinel-2 MSI remotely sensed data in better discriminating C3 Festuca costata Nees from
the C4 Themeda triandra Forssk grasses in a mountainous area in South Africa. They also attributed the
optimal performance of Sentinel-2 MSI to the presence of red-edge bands in discriminating Festuca
costata from Themeda triandra grasses.

Even though this study successfully illustrated the robustness of the spectral settings of these
sensors in discriminating tomato crops grown under different fertilizer regimes using simulated data,
there is still need to assess their satellite remotely sensed data. This study only sought to evaluate the
spectral configuration of these sensors, hence there is still need to evaluate their radiometric and spatial
resolutions in a similar application setup. Generally, the reflectance of remotely sensed satellite data
tends to be affected by numerous factors associated with the sensor’s platform, atmospheric related
influences etc. [59–61]. Factors that affect satellite remotely sensed data are different from those that
affect spectrometric proximally sensed data. Spectrometric proximally sensed data tends to be less
affected by atmospheric related influences; hence, it offers a robust dataset suitable for testing the
spectral settings of sensors, particularly the forth coming ones. The performance of the same sensors’
spectral settings derived using satellite platforms, therefore, still needs to be evaluated.

Although this was not the major objective of the study, DA outperformed PLS-DA in discriminating
tomato crops grown under different fertilizer regimes. In this study PLS-DA failed to derive unnecessary
variables for characterizing tomato crops grown under different fertilizer regimes. On the other hand,
there are numerous studies that have illustrated the optimal performance of DA in dimension reduction
as well as feature extraction [62–64]. Our results also indicated that DA selected more spectral bands
in relation to PLS-DA as optimal spectral variables for discriminating tomatoes grown under different
fertilizer treatment regimes. The optimal performance of DA in relation to PLS-DA could be attributed
to the conservative nature of PLS-DA in classifying tomato plants [31].

Implications of the Study’S Findings for Horticultural Crop Production

The optimal performance of HyspIRI’s spectral settings in characterizing tomato plants grown
under different fertilizer treatments illustrates its great potential in providing additional invaluable
spatially explicit information urgently required in horticulture management and decision-making
processes particularly for successful site and crop specific management practices. For instance, this
study shows that based on remotely sensed data HEDM fertilizers have a great potential of improving
vegetable crops health in manner comparable to that of conventional fertilisers. The fact that this
study showed that HyspIRI, Sentinel 2 MSI and Landsat 9 OLI-2 could detect the differences between
HEDM fertilized plants and those that are grown under conventional fertilizers underscores the
potential of these sensors in providing information that could also be used in other applications
such as crop inventory, condition, production forecast, assessment of nutrient deficiencies as well as
growth and health of tomato plants and other horticultural crops. Furthermore, these sensors offer
cheap, fast and reliable spatial explicit information on crop conditions required in the administration
of precise and proper fertilizer applications while optimizing resources and increasing net returns
especially in sub-Saharan countries with limited data and financial resources for facilitating high
production of horticultural crops. However, more and extensive research efforts still need to be
exerted in fully ascertaining and exploiting the potential of remotely sensed data in other horticultural
crop-management applications.
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5. Conclusions

The prime objective of this study was to compare the strength of the forthcoming hyperspectral
sensor HyspIRI’s spectral settings in the context of characterizing the effects of different
fertilizer-treatment regimes on tomato crops. Furthermore, the study assessed the performance
of PLS-DA in relation to DA in discriminating tomatoes treated with ABR, NUC and CHFM. Based on
the results exhibited by this study we conclude that:

• The forthcoming HyspIRI sensor has the potential to accurately map tomato crops under various
fertilizer regimes. Landsat and Sentinel, performed comparably to HyspIRI spectral settings.

• Overall, all the sensors were able to characterise the comparable impact of HEDM in relation to
that of CHFM fertilizers on the spectral characteristics of tomato plants as a proxy of their health.

• DA offers optimal accuracies in characterizing tomatoes grown under different fertilizer regimes
when compared to PLS-DA.

These findings are a substantial foundation upon which comprehensive precision agricultural
assessments initiatives could be formed. These initiatives are required in order to attain sustainable
agriculture as well as food security in regions such as sub-Saharan Africa where agricultural crop
monitoring is currently hindered by the limited access to robust spatial data sets.
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Abstract: The spatial distribution and location of crops are necessary information for agricultural
planning. The free availability of optical satellites such as Landsat offers an opportunity to obtain this
key information. Crop type mapping using satellite data is challenged by its reliance on ground truth
data. The Integrated Administration and Control System (IACS) data, submitted by farmers in Europe
for subsidy payments, provide a solution to the issue of periodic field data collection. The present
study tested the performance of the IACS data in the development of a generalized predictive crop
type model, which is independent of the calibration year. Using the IACS polygons as objects,
the mean spectral information based on four different vegetation indices and six Landsat bands were
extracted for each crop type and used as predictors in a random forest model. Two modelling methods
called single-year (SY) and multiple-year (MY) calibration were tested to find out their performance in
the prediction of grassland, maize, summer, and winter crops. The independent validation of SY and
MY resulted in a mean overall accuracy of 71.5% and 77.3%, respectively. The field-based approach of
calibration used in this study dealt with the ‘salt and pepper’ effects of the pixel-based approach.

Keywords: agricultural land-cover; multi-spectral; generalized model; machine learning; crop type
mapping; Integrated Administration and Control System; remote sensing

1. Introduction

The increasing world population coupled with the high demand for agricultural resources [1]
require reliable data on agricultural lands for decision making and planning towards the future [2].
The knowledge on available croplands is fundamental to food security [3], sustainable cropping [4]
and the maximization of food production [5]. Information about the spatial distribution of crops and
the spatial extent of croplands are also essential to ascertain the impact of any human activity on
croplands [6].

Reliable and accurate information about agricultural lands requires an efficient and precise
approach, which remote sensing (RS) can offer [7–9]. RS-based methods can be used to obtain various
crop information, such as crop type [10], biomass [11], or yield [12]. The advent of satellite-based
optical RS has revolutionized large-scale cropland mapping and has been used in many local, regional,
and global agricultural projects [4,13–15].

The free availability of some of these images adds to the many advantages of satellite-based
optical remote sensing in agriculture [16]. Such data, which is also available for historic time periods
back to the early 1970s, provides a means to study the present landscapes in relation to how they
were in the past. Landsat, which is the oldest running earth monitoring program, provides a 47-year
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archive of satellite data of the entire earth at a 30-meter resolution. As a result, most of the crop
types and other agricultural mapping studies have used Landsat images as the main data source.
For instance, Lui et al., [16] used multi-temporal Landsat-8 to successfully map winter wheat in China.
Maxwell et al., [17] demonstrated an effective corn classification from Landsat images through an
automated process in south-central Nebraska of USA, and Yin et al., [18] used dense Landsat time series
data to map agricultural and land abandonment with a high level of accuracy in the Caucasus, covering
parts of Russia and Georgia. Many of these studies either employed supervised or unsupervised
classification to ascertain the needed land-cover information [19,20], either at the pixel or object-based
levels. Despite their accurate performances, they have some limitations [21,22]. Supervised learning
always requires field information, also known as training or ground-truth data [23]. Even with the
unsupervised learning, knowledge about the study area is required to assign the correct land cover
type to the classification results.

A large number of studies on crop type and cropland mapping used field data from the same
mapping year [24–26]. This way of mapping is limited in situations, where there are no ground truth
data available, or data collection is impossible for the period of interest. Due to the yearly and periodic
changes in cultivated crops, continuous collection of ground truth information is necessary to reliably
map crop types. However, given the labor-intensive, expensive and difficult nature of ground truth
data collection [27], studies such as Botkin et al., [28] and Sonobe et al., [29] have recommended research
into the development of training and classification methods, which is applicable to years where field
information is not available (i.e., a generalized classifier).

Given the rotation of crops on fields at different seasons and the fast changes in biomass and
phenology of crops, the use of temporal information is very crucial in the discrimination of crops.
Prediction of land-cover based on multi-temporal data involves the use of data from several different
seasons and has proven to be effective in many studies [30,31], as it integrates the varying phenological
characteristics among vegetation. Leaf pigment, water, and canopy structure are proven to relate
with spectral reflectance of crops but varies at different growing seasons [32]. The use of data from
a single date is known to inefficiently capture the differences among the many crops which share
similar spectral characteristics [10]. Manfron et al., [33] for instance, analyzed time series of satellite
images to efficiently estimate the inter-annual variability of the sowing dates of winter wheat Many
other studies have employed vegetation indices such as the normalized difference vegetation index
and the enhanced vegetation index to capture the seasonal dynamics of crops and other land-cover
characteristics [19,34].

In Europe, there exists a remarkably rich agricultural land cover data body within the Integrated
Administration and Control System (IACS), which are regularly collected by farmers as part of the
subsidy payment scheme in the common agricultural policy [35]. A similar agricultural data in the
United States of America is the reference data collected by the Department of Agriculture (USDA) to
produce the annual crop data layer (CDL) [36]. These reference data are not available to the public,
which may be the reason why the CDL has served as validation data in many crop type mapping
studies [8,37]. Conversely, the IACS data can be freely obtained by scientists and research institutions
for scientific purposes upon an official request. However, not much has been done with the IACS data
in crop type mapping. Griffiths et al., [38] created a national single-year wall-to-wall land-cover map
of Germany and used IACS data as a reference to validate some part of the study area. The study of
Vuolo et al., [30] demonstrated how multi-temporal Sentinel-2 data can improve the accuracy of crop
prediction when IACS data was used to independently validate the classified map. To the best of the
authors’ knowledge, there is no research that has used multi-temporal IACS data as training data to
develop a generalized model to predict crop types from satellite data at the field level.

Therefore, we hypothesize that the IACS data can be used to train a multi-temporal field-based
model, which can predict crop types from a satellite image that is independent of the model’s training
year. Hence, the calibration data, as well as the data used for testing the models, are from different
years. In addressing the stated hypothesis, two different modelling approaches, i.e., multiple-year
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(MY) and single-year (SY) calibrations were tested in the present study. While SY models are calibrated
using data from just one year, MY modelling involves model training based on data from two or
more years. The SY and MY approaches have been applied in some crop mapping studies, e.g., [8],
but were done at the pixel level, which is characterized by the problem of ‘salt and pepper’ effects
(i.e., a misclassification of neighbouring pixels despite large similarities). On the other side, the
object-based method of land cover classification, that has recently attracted considerable attention [39]
as a replacement for the pixel-based [40], suffers from difficulties in the segmentation scale selection.
Further, it was shown to depend on the size of the objects being mapped [41] and tend to misclassify
small land-cover objects in low to medium satellite images, such as Landsat [22]. Therefore, this study
employs a field/polygon-based calibration approach using the exact crop field shapes from the IACS
database. Our study addresses the following questions:

(1) How well do models based on a single year’s spectral information predict crops when tested on
years not included in the model calibration process?

(2) What is the prediction performance of models calibrated on spectral information from
multiple years?

(3) Is the accuracy of the classification models affected by field size?

2. Materials and Methods

2.1. Study Area

The study was done in the Northern Hesse region of Germany (Figure 1) comprising the districts
of Kassel, Waldeck-Frankenberg, Schwalm-Eder, Hersfeld Rotenburg, and Werra-Meissner. The study
area comprises ca. 6900 km2 and is characterized by diverse landscapes and sites with favorable and
less favorable environmental conditions for farming. The favourable arable lands are mostly found
in flat valleys and on plateaus with moderate slopes, which are often covered by loess of substantial
thickness mainly in the western and northern parts [42]. The less favourable arable sites show shallow
soils with less native water and nutrient availability.

 

Figure 1. Map of the study area. (A) shows a map of Germany and the location of the study area, with
the boundaries of the Landsat scenes; (B) shows the five districts, where the study was done.
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Elevation ranges from 101 to 754 m with mean annual temperatures of 9–10 ◦C in the lowlands
and 5–6 ◦C in the highlands. The mean annual rainfall ranges from 500–1300 mm [43]. The calendar of
the crop types considered in this study can be seen in Table 1.

Table 1. Generalized calendar of the four crop types in the study area.

Crop Types Sowing Window Peak Greenness Harvesting Window

Grassland Depending on the grassland management system
Maize Late April Mid-August Mid-late September

Summer crops Late March-Mid April Mid-Late June July-September
Winter crops September-October Mid-June July-August

2.2. Data

2.2.1. Satellite Data

A total of 63 satellite images from the period April to October between 2005 and 2015 were used
for this study. Surface reflectance Landsat scenes (Level-2) as summarized in Table 2 were downloaded
from USGS’s Earth Explorer [44]. Images from only six years were used because of little to no clouds.
The images of Landsat 5 TM and 7 ETM+ had been atmospherically corrected using Landsat Ecosystem
Disturbances Adaptive Processing System (LEDAPS) by NASA [45]. Surface reflectance of Landsat-8
was produced using Landsat Surface Reflectance Code [46]. Table 3 shows detailed information about
the six spectral bands of the Landsat data used. Despite the small differences in the spectral ranges
of the Landsat types, which have been well studied [47,48] to be smaller than 1 standard deviation
of time-series of the spectral curve had no significant effect on classification results. Additionally,
according to USGS [49], the Level-2 product (surface reflectance) of the Landsat images are similar,
therefore, the Landsat data was not normalized. The atmospherically corrected Landsat images were
accompanied by cloud mask layers. The images were categorized according to the dates when the
images were captured, i.e., early summer (ES, April to May) and late summer (LS, July to October).
ES and LS seasons cover the growing period of crop types in the study area; hence their use can help
capture the different phenology of the crops at different stages of their development.

Table 2. Summary of satellite images used. (TM: Thematic Mapper, ETM+: Enhanced Thematic
Mapper plus). The numbers in brackets represent the number of images used per date.

Date of Image Acquisition

Year Satellite Early Summer Late Summer

2005 Landsat 5 TM 03-Apr. (1), 21-Apr. (2) 18-Aug. (2)
Landsat 7 ETM+ 4-Apr. (2)

2007 Landsat 5 TM 02-Apr. (2), 25-Apr. (1), 27-Apr. (1) 16-Jul. (2), 01-Aug. (1), 24-Aug. (2)
Landsat 7 ETM+ 26-Apr (2)

2009 Landsat 5 TM 07-Apr. (2), 14-Apr. (2), 16-Apr. (2),
02-May (1), 25-May (1) 06-Aug. (2), 20-Aug. (2)

Landsat 7 ETM+ 05-Aug. (1), 22-Sep. (1)

2010 Landsat 5 TM 17- Apr. (2), 19-Apr. (2) 08-Jul. (1), 31-Jul. (1), 07-Aug. (2)
Landsat 7 ETM+ 18-Apr. (2)

2011 Landsat 5 TM 20-Apr. (1), 22-Apr. (2), 08-May (1) 03-Aug. (1), 15-Oct. (1), 22-Oct. (1)
Landsat 7 ETM+ 21-Apr. (2), 07-May(2) 20-Aug. (1), 03-Sep. (2), 21-Sep (1), 28-Sep. (2)

2015 Landsat 8 24-Apr. (2) 30-Aug. (2)
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Table 3. Summary of the six spectral bands of the Landsat 5, 7 and 8. NIR =Near infra-red, SWIR =
Shortwave infra-red, TM = Thematic Mapper, ETM+ = Enhanced Thematic Mapper plus.

Landsat 5 TM and 7 ETM+ Landsat 8

Band
Number

Band
Name

Wavelength
(μm)

Band
Number

Band
Name

Wavelength
(μm)

Band 1 Blue 0.441–0.514 Band 2 Blue 0.452–0.512
Band 2 Green 0.519–0.601 Band 3 Green 0.533–0.590
Band 3 Red 0.631–0.692 Band 4 Red 0.636–0.673
Band 4 NIR 0.772–0.898 Band 5 NIR 0.851–0.879
Band 5 SWIR-1 1.547–1.749 Band 6 SWIR-1 1.566–1.651
Band 7 SWIR-2 2.064–2.345 Band 7 SWIR-2 2.107–2.294

2.2.2. Reference Data

The IACS data were used as ancillary data in this study. These are spatial data collected by
farmers as part of the subsidy support system within the EU. It is made up of the shapes of agricultural
fields and the crop types planted in each cropping season. The models were initially developed to
predict individual crop species in the study area, but tests (not shown) exhibited incorrect predictions
among crops species of similar spectral characteristics and growing periods. Therefore, several crops
were grouped into four crop types. They were grassland, maize, summer, and winter crops with their
vegetation profiles shown in Figure 2. These vegetation profiles depict the spectral characteristics
of the crop types at different stages of their development and show a similar trend across all years.
Farmers are not obliged to register their fields; except for farmers who apply for subsidies. Therefore,
the reference data used in this study is limited to the declared fields as submitted to the responsible
agency. Fallow fields were not considered in this study since the reference data (i.e., the IACS) used for
modelling consists of only cultivated fields.

 

Figure 2. Vegetation profiles of the four crops based on enhanced vegetation index (EVI). Early
summer = April to May, Late summer = July to October.
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2.3. Data Processing

Image Pre-processing

The different bands (i.e., blue, green, red, near infra-red and shortwave infra-red 1 and 2) of the
satellite images were stacked together, based on the years and acquisition time (Figure 3). Some of
the images had small areas of clouds since cloud cover of less than 10% was considered appropriate
for the study purpose. As a result, the cloud masks that came with the images were used to mask
out all clouds. The masked areas were replaced with non-cloudy data from other images of the same
area around the same time frame (i.e., May for ES and September, October for LS). With respect to the
Landsat 7, the scan lines which resulted from the failure of the scan line corrector of the ETM+ sensor
were also replaced with cloud-free satellite data from other images of the same area using the “cover”
function [50] from the “raster” package in R software [51]. As our study area includes more than one
Landsat image, some images were mosaicked to cover the entire area of interest. Mean values were
used for overlapping layers during the mosaicking process. Figure 3 shows a complete workflow of
the data analysis of this study.

Figure 3. The workflow of the data analysis. SY-Single-year, MY-Multiple-years, VIs-Vegetation
Indices, B-Blue, G-Green, R-Red, NIR-Near Infra-red, SWIR-Shortwave Infra-red, NDVI-Normalized
Difference Vegetation Index, EVI-Enhanced Vegetation Index, SAVI-Soil Adjusted Vegetation Index,
NDMI-Normalized Difference Moisture Index.
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2.4. Model Calibration and Validation

Crop type prediction models were built based on random forest (RF) algorithm, which is an
ensemble supervised machine learning classifier that creates numerous decision trees for prediction by
randomly selecting subsets of the training data through the process of bagging [52]. Higher accuracies
have been achieved with RF as compared to other machine learning algorithms in many crop mapping
studies [7,8]. It can effectively function with only two main parameters, i.e., the number of trees to
grow (Ntree) and the number of predictor variables selected for the best splitting of each tree node
(Mtry) [53]. In this study, Ntree was set at 500 for all models since the error steadies before this number
is reached, while Mtry was set to the square root of the input variables as reviewed by Belgiu and
Drăgu [53].

2.4.1. Input Variables Used in the Model

Spectral data obtained from the satellite data and used as predictors in the crop type predictive
models consisted of blue, green, red, near infra-red (NIR), shortwave infra-red 1 (SWIR 1) and shortwave
infra-red 2 (SWIR 2). Additionally, four widely used spectral vegetation indices (VIs), i.e., normalized
difference vegetation index (NDVI) [54], enhanced vegetation index (EVI) [34], soil adjusted vegetation
index (SAVI) [55] and normalized difference moisture index (NDMI) [56], were computed from a ratio
of different satellite bands (see Equations (1)–(4)) and included as explanatory variables. These VIs
capture the dynamics of vegetation like greenness and vigor among others at different phenological
stages. The potential of NDVI to assess vegetation dynamics of crops has been demonstrated by a
number of studies [10,19]. However, it has shortcomings of sensitivity to saturation, soil background
effects, or atmospheric effects. In dealing with these limitations, EVI and SAVI were added. SAVI deals
with the soil background effects, while EVI uses the blue band to deal with the atmospheric influences
by aerosols. EVI, NDVI, and SAVI, as shown in Equations (1)–(3), respectively, use the NIR and red
bands in their computation, and they complement each other when used in vegetation analysis. NDMI,
which uses NIR and SWIR for measuring the water content in vegetation, was also included in the
analysis (Equation (4)), as it adds some complementary information to the other VIs.

NDVI = (NIR − Red)/(NIR + Red) (1)

EVI = G × (NIR − Red)/(NIR + C1 × Red − C2 × Blue + L) (2)

SAVI = [(NIR − Red)/(NIR + Red + L)] × (1+ L) (3)

NDMI = (NIR − SWIR)/(NIR + SWIR) (4)

where NIR =Near Infra-red, G = gain factor, C1 and C2 are aerosol resistance term coefficients, L in
Equation (2) is non-linear canopy background adjustment, L in Equation (3) is soil brightness factor
and SWIR = Shortwave Infra − red (values: G = 2.5, C1 = 6, C2 = 7.5, LEVI = 1, LSAVI = 0.5).

2.4.2. Field-based Extraction of Spectral Information.

The extraction of the spectral information was done at field base with the exact crop fields as
objects. Mean values of each crop’s field were extracted from the spectral data, which consisted of
six individual bands of the satellite image, as well as four vegetation indices; grouped into early
summer (ES) and late summer (LS) spectral information. In all, 20 different spectral information were
used as predictors in the RF models. Since the IACS data (Figure 5) represent field information and,
crops are cultivated with unequal distribution of fields for each crop type, almost equal numbers
of polygon/field samples for each crop type were selected. Thus, crop types with many fields were
always undersampled compared to those which were represented by fewer fields. Six different data
tables were built for the six respective years, which were later used to calibrate and validate the

69



Agronomy 2019, 9, 309

crop type prediction model, with the spectral information and crop types as predictor and response
variables, respectively.

2.4.3. Crop Type Prediction Modelling

Two different modelling approaches called same-year (SY) and multiple-year (MY) training were
employed. With respect to SY models, an RF algorithm was trained using only the spectral information
of one year and cross-validated using the remaining years as shown in Figure 4A. This was repeated
six times, where for each repetition a different year was used to train the model, and the model’s
performance in predicting crop types was assessed using the remaining single-year data.

 

Figure 4. An illustration of the two modelling approaches.

MY models were trained by combining the extracted spectral information from five different years
during the training phase and tested on an independent year. The training combination with multiple
years was done six times, and with each repetition a single year was left out to validate the efficacy
of the MY models (Figure 4B). The contribution of the predictors was assessed based on the internal
mean decrease Gini of RF, which is the average of all Gini impurity recorded for each input variable
when selected for splitting at each tree node [57]. Graphs showing the six most important predictor
variables (based on percentages of the mean decrease Gini Index) of the best modelling method were
created for visualization.

2.4.4. Accuracy Assessment

The performance of the models in predicting crop types was independently evaluated at field
scale based on a confusion matrix. The independent validation was done by comparing the predicted
crop types with the known crops using the reference data. The three most important and widely used
metrics namely, overall accuracy (OA), user accuracy (UA) and producer accuracy (PA), resulting from
the confusion matrix were calculated. OA assesses the overall performance of a model and is the
ratio of correctly predicted crops and the total number of predicted crops. UA evaluates how well the
predicted crops agree with the known reference data (i.e., the IACS field data), while PA measures
the agreement between the reference data and the prediction. From the confusion matrix, the error of
commission (EC) and error of omission (EO) of the respective land cover types can be obtained. Since
the performance of each developed SY model was tested for all years, except for the training years,
the presented accuracy measures are averages of OA, UA, and PA of the same years. Since accuracies
and errors of spatial data are spatially explicit, a map was created that demonstrates our models’ ability
to visualize correctly and wrongly predicted fields using the best modelling method.

2.5. Relationship between Field Size and Accuracy

To check whether the accuracy of crop type prediction depended on the size of crop fields,
the correctly and wrongly predicted fields along with their sizes were extracted for each of the MY
models. Field sizes were rounded to the nearest multiples of 1.5 ha (i.e., the average field size) to create
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field size classes, with the count of the all correct (True) and wrong (False) predictions for each field
size category. The percentages of correct predictions for all the field size categories were computed.

3. Results

3.1. Agricultural Land Cover Data

The IACS data used as reference data to calibrate and validate the developed models showed
different field numbers, average field size, and area for grassland, maize, summer crops, and winter
crops (Figure 5). The average field size for grassland was around 1 ha and did not change significantly
over time. Summer crops showed a slightly higher average field size between 1.2 and 1.5 ha for
all years under consideration. Maize and winter crops had the biggest average field sizes, ranging
between 1.8 ha to 2 ha from 2005 to 2015.

While grassland had the highest number of fields followed by winter crops, the number of maize
and summer crops were the lowest. Consequently, winter crops covered the largest area of arable
lands in the study area followed by grassland, whereas the area of maize and summer crops was
comparatively small.

Figure 5. Characteristics of Integrated Administration and Control System (IACS) data used as reference
information for the predictive crop type models.

3.2. Assessment of the Modelling Approaches

The general performance of the two modelling approaches as indicated by the OA (Figure 6)
ranged from 67.7% to 73.4% with an average value of 71.5% for the SY models. The MY modelling
approach showed an OA between 67.1% and 86.1% with an average of 77.3% (Figure 7). The lowest
OA for the SY models was observed when they were tested with crops in the year 2015, while the
highest OA value was achieved in 2011. Conversely, MY models achieved their highest OA in 2015,
whereas, the lowest performance was observed in 2011.
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The SY prediction of individual crop types in different years based on user (UA) and producer
accuracy (PA) showed a high UA (81.6%) and PA (82.2%) values for grassland, while UA (76.7%) and
PA values (67%) for maize were somewhat lower. Prediction of summer crops (UA and PA of 60.6 %
and 69.5 % respectively) was less accurate than winter crops (UA 76%, PA 71.1%).

Figure 6. Accuracies of single year models. The mean bars represent average PA and UA, respectively,
for each crop across years. Values in brackets represent the average overall accuracies of all models.
UA = User accuracy and PA = producer accuracy.

The application of MY models to identify grassland area of different years resulted in a mean UA
of 83.1% and a PA of 87.8% (Figure 7). Maize was discriminated with a mean UA and PA of 71.8%
and 85.2% respectively, while winter crops were discriminated with a mean accuracy of 79% (UA)
and 79.6% (PA). The average accuracy for summer crops was comparatively low (PA = 71.5% and
PA = 69.3%), which was mainly a result of the confusion between summer crops and the other crops.

Overall, grasslands always exhibited higher accuracies (UA and PA > 80%) across years when
predicted by the two modelling methods, whereas the arable crops were better predicted by the MY
models in comparison to the SY models.
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Figure 7. Accuracies of multiple-year models. The mean bars represent average producer accuracies
(PA) and user accuracy (UA), respectively, for each crop across years. Values in brackets represent the
average overall accuracies of all models.

3.3. Classified Maps Based on Best Modelling Method

Since MY models proved to be the best modelling approach, their capability to create accurate
crop-type maps are exhibited in Figure 8 for 2015, which corresponds to an OA of 86.1% (see Appendix A,
Table A6 for a confusion matrix). The map was derived with model 6 (Figure 4B), which is an MY
model developed based on information from 2005, 2007, 2009, 2010, and 2011. On closer examination,
regions at higher altitudes with less favourable growth conditions, which are dominated by grasslands
(Figure 8A), can be clearly distinguished from fertile areas, where a multitude of arable crops is grown
and where grassland is only interspersed. Moreover, the spatial distribution and patterns of crops,
the shape, and edges of fields can clearly be observed. The so-called ‘salt and pepper’ effects, that
characterize most land-cover maps at a pixel base were not experienced with the maps produced
in this research, which may be a result of the fact that our models were calibrated with the mean
spectral information at field scale based on the IACS field polygons. Maps of the remaining years
and their respective confusion matrices are shown in the Appendix A, that is, Figures A1–A5 and
Tables A1–A5, respectively.
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Figure 8. A classified map of 2015 resulting from a multiple-year model based on spectral information
of 2005, 2007, 2009, 2010 and 2011. ‘A’ and ‘B’ show areas dominated by grassland at higher altitudes
and fertile areas dominated by arable crops respectively.

3.4. Relationship between Model Accuracy and Field Size

An increase in mean accuracy from 74% to 87% was observed as the field size increased
(i.e., 1.5–9 ha) (Figure 9). Furthermore, a slight decrease in the mean accuracy from 87% to 85% of
crop type prediction was seen with increasing field size from 9 ha to 12 ha. As the field size increased
further to 13.5 ha, a slight increase in accuracy was observed (from 85% to 88%). However, a marginal
reduction to 87% accuracy was observed as the field size increased further. The consistent and marginal
rise and fall in accuracy with increasing field sizes indicate that crop type prediction by MY models is
independent of field size. But it is important to state that the majority of fields (> 60%) belong to the
smallest field category (1.5 ha). The accuracy maps of the MY models can be seen in Figure 10 and the
rest in the Appendix A (Figures A6–A10)

 

Figure 9. The relationship between the accuracy of crop type prediction and field size based on the
multiple-year models. The accuracies are mean values for all years, with the last bin representing the
average accuracy of all fields ranging 15–34.5 ha. The value on top of each bar represents the number
of fields for each field size group.
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Figure 10. An IACS-based accuracy map of 2015 resulting from a multiple-year model calibrated using
spectral data of 2005, 2007, 2009, 2010 and 2011 representing wrongly and correctly predicted fields. ‘A’
and ‘B’ show areas dominated by grassland at higher altitudes and fertile areas dominated by arable
crops respectively.

3.5. Importance of Predictor Variables

One of the strengths of RF models is the ability to measure and assess the contribution of each
predictor variable used. Figure 11 presents the importance values of the first 6 most important input
variables used in the MY models. Late summer (LS) NDMI was the first most important predictor
variable in most models, and only in one instance the means of early summer (ES) NDVI was ranked
first (Figure 11B). Another predictor that seemed to be important across models was the early summer
NDVI as shown in Figure 11A,C–F. The contribution of VIs in the prediction of crops was much stronger
than the individual bands. Red and green bands are the only bands that appeared among the first six
important predictors, with red being the dominant one across all models.

Figure 11. Cont.
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Figure 11. The 6 most important predictors used in the multi-year models expressed in decreasing
order of importance from the top of the y-axis. Variable importance on the x-axis is expressed as a
percentage of Mean Decrease Gini. (A–F) are MY models trained by a combination of (2005 + 2007 +
2009 + 2010 + 2011), (2005 + 2007 + 2009 + 2010 + 2015), (2005 + 2007 + 2009 + 2011 + 2015), (2005 +
2007 + 2010 + 2011 + 2015), (2005 + 2009 + 2010 + 2011 + 2015) and (2007 + 2009 + 2010 + 2011 + 2015)
respectively. LS = Late summer, ES = Early summer.

4. Discussion

Crop type mapping in large agricultural landscapes is challenged by the daunting task of periodic
training data collection. The traditional satellite-based mapping approach of using reference data
from the same year impedes mapping specifically in periods where reference data is not available.
The IACS data, which is a field-based crop type data presents reliable reference datasets to deal with
the problem of frequent training data collection for satellite-based crop type mapping through the
development of a generalized model. The issue of generalized classifiers has been raised and exploited
in a few agricultural mapping studies, but less focus was put on specific crop type mapping. Thus, this
study aimed at assessing the efficacy of IACS data to be used as reference data for the development of
generalized SY and MY crop type models to predict grassland, maize, summer and winter crops as
land-cover categories.

The accuracies achieved in our study are similar to the work of [8], where corn and soybeans were
predicted based on spectral characteristics using the single-year modelling approach. While our study
considers four different crop types with an acceptable average UA and PA for grassland across years
(>80%), maize, summer and winter crops were predicted at somewhat lower accuracies. That means
that despite the somewhat low performance of SY models in predicting the other crop types, it is able
to predict grassland with an acceptable level of accuracy across years.

The overall accuracy of the SY calibration method employed in our study is rather low compared
to the traditional method, where calibration and testing data are from the same year. Probable reasons
may be different growing dates of the crops in different years, inter-annual differences in climate,
image acquisition time as well as variation in image quality between years, as was also suggested
by Laborte et al., [58] and Zhong et al., [8]. The performance of MY models in predicting crop types
showed higher robustness across years than the SY calibration approach. An average increment of 6%
in OA (i.e., 77.3%) was achieved by MY models across years. A similar OA of 73.1% was achieved by
Massey et al., [37] when an MY calibrated model was used to predict crop types from MODIS data
for an independent year. The higher robustness of MY models might be attributable to the fact that,
through the use of spectral information from different years, the interannual climate variability as well
as variations in image quality from different years, are reduced to a certain degree [8,58]. Thus, these
factors make them generic with high prediction accuracies when applied to predict crops from data
not seen by the model. Additionally, MY calibration compensates for the phenological differences of
crops among years through the inclusion of many phenological situations using multiple data from
different years. This makes MY models more efficient and generalized for satellite-based crop type
classification when training data is not available for a period of interest.

The prediction of crops from the spectral-temporal profiles of satellite images can heavily depend
on the time and quality of the images used [10,58]. Occasionally, a compromise has to be made between
the quality and time of images in the same growing season, which may ultimately have the consequence
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that not all years will have high accuracies when data from multiple years are used [8]. In this study,
for example, the 2009 and 2011 seasons comprised of very late September and October images (Table 2)
due to the lack of earlier images. However, in the study area, maize fields are harvested as late as the
end of September or early October, whereas summer crops are harvested much earlier to give way for
winter crops, which might have developed one or two leaves at this time. Such sources of variation
might explain the somewhat lower accuracies of 2009 and 2011 data as compared to the other years.

The data on the assessment of the spectral predictors used in the MY models indicates a paramount
contribution of VIs in the prediction of crops as compared to the individual bands. A similar conclusion
was drawn by Fletcher [59] in the discrimination of soybean and three weed species. The highest
contribution of VIs in the prediction of the crops was expected since their calculation involved two or
more bands and as a result, used the unique spectral characteristics of the individual bands to produce
a single layer which captured the different phenological dynamics among the crops. Vegetation
indices, which are based on SWIR and NIR spectral bands, are known for their contributions to plant
separation [59]. Therefore, despite the contributions of the other predictor variables, the late summer
NDMI is ranked as the topmost dominant predictor variables for almost all years, followed by early
summer NDVI. NDMI uses a normalized ratio of the difference and sum of NIR and SWIR and is
known to be sensitive to changes in water content of vegetations canopies [56]. It can, therefore, be
inferred that the differences among the four crop types are better captured by the content of moisture
in their leaf canopies during late summer.

The subject of object size and prediction accuracy is very crucial in the mapping of agricultural
areas [39]. Our results suggest that the prediction of a particular crop type does not necessarily
depend on the corresponding size of the field. It was expected that the prediction of bigger fields
may be easier than with smaller fields, but the results do not confirm that. The biggest crop field
category (≥15 ha) achieved a prediction accuracy of 88%, nonetheless, comparatively smaller field
sizes (9 ha) also achieved the same accuracy. Thus, the present study does not support the conclusions
of Castilla et al., [41], that the possibility of correct classification of land-cover type decreases with
decreasing object size. The reason may be that Castilla et al., [41] employed a segmentation method,
which is dependent on the land cover size, whereas the present study used the exact field polygons
declared by farmers in the study area as objects for the prediction of the crop types. However, since
the present study area is dominated by smaller fields with very few large fields, future research is
required to further investigate the relationship between field size and accuracy of crop types prediction
in agricultural areas with a relatively even distribution of field sizes.

The uniqueness of this study compared to other studies of generalized classifiers for cropland
mapping is the field-based approach employed. This approach deals with some of the challenges
associated with the widely used methods. The issue of segmentation scale selection of the other
object-based classification [21] is avoided. Moreover, the ‘salt and pepper’ effects that characterize the
pixel-based prediction of land-cover types are equally averted in this study. Hence, our MY modelling
approach can be used to map past and present crop types which may be necessary to ascertain the
impacts of any agricultural activity (e.g., biogas production) heavily dependent on croplands.

Finally, the hypothesis that IACS data can be used to calibrate models for the prediction of crop
types from a satellite image differing from the calibration year has been proven through a field-based
SY and MY calibration approach. However, Cai et al., [60] stated that increasing the calibration years
to a maximum of 10 years can further increase accuracy. Therefore, our five-year MY models could be
improved further by incorporating more years of spectral information, as more satellite data (Sentinel
and EnMap) become available in the future.

5. Conclusions

For the first time, this study used a field-based approach to test the usefulness of IACS data in
calibrating an RF-based model to predict crop types from satellite images, that are not from the same
year as the calibration year. Thus, two modelling methods called SY (i.e., using spectral data from
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a single year) and MY calibration (i.e., using spectral data from multiple years) were tested in the
discrimination of grassland, maize, summer and winter crops.

The results depict a superior performance of the MY approach as compared to SY model. The MY
approach included a larger range of inter-annual variability in image quality, climate, and growing
dates of crops from different years, thus, contributing to its robustness in predicting crop type from
satellite images of different years. The approach employed in this work, unlike other object-based
methods, is not dependent on field size. It is, therefore, recommended to use the field-based MY
calibration approach for practical crop type mapping, particularly when reference data for the mapping
year is not available. This method is useful for practical reasons and can be used to map past and
present croplands for comparative analysis. However, the inclusion of soil data and phenological
metrics as predictors of MY model may have a potential for future research. This might help improve
performance and provide an opportunity for more specific crop type mapping, rather than generic
crops like summer and winter crops as used in this study. A combination of data from different
satellites like Sentinel or upcoming satellites like EnMap or HyspIRI might further improve the MY
modelling approach due to higher revisiting time and thus a denser time series
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Appendix A

 

Figure A1. A classified map of 2005 resulting from a multiple-year model based on spectral information
of 2007, 2009, 2010, 2011 and 2015.
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Figure A2. A classified map of 2007 resulting from a multiple-year model based on spectral information
of 2005, 2009, 2010, 2011 and 2015.

 

Figure A3. A classified map of 2009 resulting from a multiple-year model based on spectral information
of 2005, 2007, 2010, 2011 and 2015.

79



Agronomy 2019, 9, 309

 

Figure A4. A classified map of 2010 resulting from a multiple-year model based on spectral information
of 2005, 2007, 2009, 2011 and 2015.

 

Figure A5. A classified map of 2011 resulting from a multiple-year model based on spectral information
of 2005, 2007, 2009, 2010 and 2015.
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Figure A6. An IACS-based accuracy map of 2005 resulting from a multiple-year model calibrated using
spectral data from 2007, 2009, 2010, 2011 and 2015.

 

Figure A7. An IACS-based accuracy map of 2007 resulting from a multiple-year model calibrated using
spectral data from 2005, 2009, 2010, 2011 and 2015.
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Figure A8. An IACS-based accuracy map of 2009 resulting from a multiple-year model calibrated using
spectral data from 2005, 2007, 2010, 2011 and 2015.

 
Figure A9. An IACS-based accuracy map of 2010 resulting from a multiple-year model calibrated using
spectral data from 2005, 2007, 2009, 2011 and 2015.
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Figure A10. An IACS-based accuracy map of 2011 resulting from a multiple-year model calibrated
using spectral data from 2005, 2007, 2009, 2010 and 2015.

Table A1. Confusion matrix of the classified map of 2005 using the multiple-year model. The shaded
diagonals represent the number of correctly predicted crops. GL = Grassland, MZ =Maize,
SC = Summer crops, WC =Winter crops, UA = User accuracy, PA = Producer accuracy, EC = Error of
commission, EO = Error of omission and OA = Overall accuracy.

Reference

GL MZ SC WC Total UA (%) CE (%)

Prediction

GL 4339 137 270 214 4960 87.48 12.52
MZ 292 4527 442 33 5294 85.51 14.49
SC 264 229 3792 1099 5384 70.43 29.57
WC 105 48 496 3654 4303 84.92 15.08
Total 5000 4941 5000 5000

PA (%) 86.78 91.62 75.84 73.08
OE (%) 13.22 8.38 24.16 26.92
OA (%) 81.8

Table A2. Confusion matrix of the classified map of 2007 using the multiple-year model. The shaded
diagonals represent the number of correctly predicted crops. GL = Grassland, MZ =Maize,
SC = Summer crops, WC =Winter crops, UA = User accuracy, PA = Producer accuracy, EC = Error of
commission, EO = Error of omission and OA = Overall accuracy.

Reference

GL MZ SC WC Total UA (%) CE (%)

Prediction

GL 4380 203 316 156 5055 86.65 13.35
MZ 158 3738 463 38 4397 85.01 14.99
SC 68 358 3384 154 3964 85.37 14.63
WC 394 90 837 4652 5973 77.88 22.12
Total 5000 4389 5000 5000

PA (%) 87.60 85.17 67.68 93.04
OE (%) 12.40 14.83 32.32 6.96
OA (%) 83.32
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Table A3. Confusion matrix of the classified map of 2009 using the multiple-year model. The shaded
diagonals represent the number of correctly predicted crops. GL = Grassland, MZ =Maize,
SC = Summer crops, WC =Winter crops, UA = User accuracy, PA = Producer accuracy, EC = Error of
commission, EO = Error of omission and OA = Overall accuracy.

Reference

GL MZ SC WC Total UA (%) CE (%)

Prediction

GL 4185 986 430 175 5776 72.45 27.55
MZ 166 4070 394 26 4656 87.41 12.59
SC 345 889 3347 748 5329 62.81 37.19
WC 304 531 1743 4051 6629 61.11 38.89
Total 5000 6476 5914 5000

PA (%) 83.70 62.85 56.59 81.02
OE (%) 16.30 37.15 43.41 18.98
OA (%) 69.91

Table A4. Confusion matrix of the classified map of 2010 using the multiple-year model. The shaded
diagonals represent the number of correctly predicted crops. GL = Grassland, MZ =Maize,
SC = Summer crops, WC =Winter crops, UA = User accuracy, PA = Producer accuracy, EC = Error of
commission, EO = Error of omission and OA = Overall accuracy.

Reference

GL MZ SC WC Total UA (%) CE (%)

Prediction

GL 4262 376 179 91 4908 86.84 13.16
MZ 172 4990 956 185 6303 79.17 20.83
SC 238 1830 4388 827 7283 60.25 39.75
WC 328 171 307 3897 4703 82.86 17.14
Total 5000 7367 5830 5000

PA (%) 85.24 67.73 75.27 77.94
OE (%) 14.76 32.27 24.73 22.06
OA (%) 75.6

Table A5. Confusion matrix of the classified map of 2011 using the multiple-year model. The shaded
diagonals represent the number of correctly predicted crops. GL = Grassland, MZ =Maize,
SC = Summer crops, WC =Winter crops, UA = User accuracy, PA = Producer accuracy, EC = Error of
commission, EO = Error of omission and OA = Overall accuracy.

Reference

GL MZ SC WC Total UA (%) CE (%)

Prediction

GL 4493 209 264 460 5426 82.81 17.19
MZ 141 3427 732 151 4451 76.99 23.01
SC 108 4073 4644 363 9188 50.54 49.46
WC 258 507 872 4026 5663 71.09 28.91
Total 5000 8216 6512 5000

PA (%) 89.86 41.71 71.31 80.52
OE (%) 10.14 58.29 28.69 19.48
OA (%) 67.09
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Table A6. Confusion matrix of the classified map of 2015 using the multiple-year model. The shaded
diagonals represent the number of correctly predicted crops. GL = Grassland, MZ =Maize,
SC = Summer crops, WC =Winter crops, UA = User accuracy, PA = Producer accuracy, EC = Error of
commission, EO = Error of omission and OA = Overall accuracy.

Reference

GL MZ SC WC Total UA (%) CE (%)

Prediction

GL 10,313 461 592 1163 12,529 82.31 17.69
MZ 183 8111 891 69 9254 87.65 12.35
SC 305 296 9943 1134 11,678 85.14 14.86
WC 199 53 464 7634 8350 91.43 8.57
Total 11,000 8921 11,890 10,000

PA (%) 93.75 90.92 83.62 76.34
OE (%) 6.25 9.08 16.38 23.66
OA (%) 86.1
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Abstract: Battery-powered multi-rotor UAVs (Unmanned Aerial Vehicles) have been employed as
chemical applicators in agriculture for small fields in China. Major challenges in spraying include
reducing the influence of environmental factors and appropriate chemical use. Therefore, the objective
of this research was to obtain the law of droplet drift and deposition by CFD (Computational Fluid
Dynamics), a universal method to solve the fluid problem using a discretization mathematical
method. DPM (Discrete Phase Model) was taken to simulate the motion of droplet particles since it
is an appropriate way to simulate discrete phase in flow field and can track particle trajectory. The
figure of deposition concentration and trace of droplet drift was obtained by controlling the variables
of wind speed, pressure, and spray height. The droplet drifting models influenced by different factors
were established by least square method after analysis of drift quantity to get the equation of drift
quantity and safe distance. The relationship model, Yi(m), between three dependent variables, wind
speed Xw(m s−1), pressure Xp(MPa) and spray height Xh(m), are listed as follows: The edge drift
distance model was Y1 = 0.887Xw + 0.550Xp + 1.552Xh − 3.906 and the correlation coefficient (R2)
was 0.837; the center drift distance model was Y2 = 0.167Xw + 0.085Xp + 0.308Xh − 0.667 and the
correlation coefficient (R2) was 0.774; the overlap width model was Y3 = 0.692xw + 0.529xp + 1.469xh

− 3.374 and the correlation coefficient (R2) was 0.795. For the three models, the coefficients of the
three variables were all positive, indicating that the three factors were all positively correlated with
edge drift distance, center drift distance, and overlap width. The results of this study can provide
theoretical support for improving the spray quality of UAV and reducing the drift of droplets.

Keywords: UAV chemical application; droplet drift; flat-fan atomizer; simulation analysis;
control variables

1. Introduction

China is a large agricultural country with the most serious occurrence of crop diseases and pests
in the world, and has the largest use of pesticides [1]. Diseases and pests are important factors in
agricultural production, and chemical pesticides are the main means to prevent and control crop
diseases and pests in China [2,3]. The traditional method of pesticide application is manual control
of ground application machinery, but this is strictly limited by the terrain [4]. With the development
and implementation of new aerial application technology, the use of unmanned aerial vehicles
(UAV) for aerial pesticide application is an inevitable trend for the intelligent development of green
agriculture [5,6]. Therefore, it is critical to analyze and evaluate various performance parameters of
UAV pesticide application technology. The performance evaluation of a UAV pesticide application
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system mainly involves an analysis of droplet drift and deposition characteristics under different
working conditions [7].

In recent years, research concerning drift deposition characteristics and nozzle performance of
UAVs used for the protection of small plants has increased. Due to aerial operation environment and
the influence of natural airflow, the drifting and deposition problems of spraying is complicated [8–10].
Chen et al. [11] measured the wind field distribution under the rotor of a multi-rotor electric UAV
using a UAV rotor wind field measurement system. The results showed that the vertical wind speed
had an impact on the droplet deposition in the effective spray area. Qiu et al. [12] studied the
relationship between spray deposition and flight height for unmanned helicopters. The results showed
the significant effects of application height on deposition concentration. Shen et al. [13] obtained
the flow field characteristics of multi-rotor UAV at different speeds by simulating the flow field of
multi-rotor UAV through CFD. Nuyttens et al. [14] established a CFD three-dimensional spray drift
model, which considered droplet characteristics, meteorological conditions, chemical characteristics,
canopy structure and crop characteristics, etc. They carried out field experiments, verifying that
their CFD model was useful for reducing spray drift in the field. Teske et al. [15–17] developed the
AGDISP model based on the droplet trajectory model, which covered aircraft models, aircraft vortices,
nozzle types, weather factors, and more. Luo et al. [18] carried out gas–solid two-phase flow field
simulations for three types of nozzles, acquiring data to assist in the selection of nozzles for specific
applications. Chen et al. [19] carried out multi-nozzle atomization field simulations using the UDF
method. Their results showed that there was interference between multiple nozzles, and the number
and position of nozzles affected the overall atomization effect. There have been many analyses of UAV
performance as agricultural aerial sprayers, but relatively fewer analyses concerned with the effect of
nozzle characteristics. Thus, this study aimed to simulate and analyze the droplet drift and deposition
law of a flat fan nozzle under different working conditions and explore the droplet drift and deposition
phenomenon under the influence of different factors.

2. Materials and Methods

2.1. Geometric Model Building

According to the actual spray situation (Figure 1), a cuboid model is established in software ANSYS
ICEM CFD15.0 (NASDAQ: ANSS, Canonsburg, PA, USA). The length and width of the simulation
calculation area was set as 10 m and 4 m to simulate the spraying area, the height was set as 0.8 m,
1 m and 1.5 m to simulate the spraying heights, for total grid area of 228,000. The left side of the cuboid
is an application target area, and the right side is a droplet drift (off-target) area. Grids in the target
area are encrypted to have a better spatial resolution. The two nozzles are positioned directly above
the center point of the target area (Figure 2).

Figure 1. The sketch of UAV, wind and flight direction is shown in diagram to simulate the actual
spray picture. The target area is set under the UAV and the off-target area is set down wind relative to
the UAV.
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Figure 2. Computational domain and boundary setup are shown. The two nozzles are positioned on
top of the domain.

The simulation analysis mainly obtains the droplet deposition rule and its influencing factor
indexes. The boundary conditions are set as follows: The left face of the cuboid is the velocity inlet;
the right face is the droplet receiving area pressure outlet; the other four surfaces are all pressure
outlets; and the outlets are set as boundary escapes. According to the actual spraying operation height
of the plant protection UAV, the sprayer height was changed to 0.8 m, 1 m and 1.5 m, respectively,
by adjusting the position of the nozzles. The parameter settings are shown in Table 1.

Table 1. Parameters of the flat fan atomizer used to simulate XR8002 nozzle.

Parameters (Unit) Value

X-Center (m) 1.75/2.25
Y-Center (m) 2
Z-Center (m) 1.494

X-Virtual Center (m) 1.75/2.25
Y-Virtual Center (m) 2
Z-Virtual Center (m) 1.5
X-Fan Normal Vector 0
Y-Fan Normal Vector −1
Z-Fan Normal Vector 1

Flow Rate (kg s−1) 0.01316
Spray Half Angle (deg) 40

Orifice Width (m) 0.00091
Flat Fan Sheet Constant 3

Atomizer Dispersion Angle (deg) 6

In the simulation analysis, the continuous phase substance is air and the discrete uses the
parameters of liquid water to simulate chemical. In the steady-state calculation mode, the standard k-ε
model (ANSYS, 15.0) [20,21] is selected to simulate the turbulent wind flow. Its transport equations are
shown in Equations (1) and (2).

∂(ρk)
∂t

+
∂(ρkui)

∂xi
=
∂
∂xj

[(μ+
μt

σk
)
∂k
∂xj

] + Gk + Gb − ρε−YM + Sk (1)

∂(ρε)

∂t
+
∂(ρεui)

∂xi
=
∂
∂xj

[(μ+
μt

σε
)
∂ε
∂xj

] + C1ε
ε
k
(Gk + C3εGb) −C2ερ

ε2

k
+ Sε (2)

where k is the turbulence kinetic energy, ε is the turbulence dissipation rate, μ is the dynamic viscosity,
μt is the turbulence viscosity, Gk is generated by turbulent kinetic energy caused by the average velocity
gradient, and Gb is generated by turbulent kinetic energy caused by buoyancy. YM is a pulsating
expansion term in compressible turbulence, C1ε, C2ε and C3ε are empirical constants, Prandtl numbers
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of σk and σε correspond to turbulent kinetic energy k and turbulent dissipation rate respectively, Sk
and Sε is a user-defined source item.

The variation of air density under standard atmospheric pressure and normal temperature is less
than 5%, it is regarded as an incompressible fluid, the pressure-based solver type is selected. All the
simulations are based on the transient calculation. The convergence criterion is set to 10−5, which means
that the converged solutions are reached when the residuals of several significant variables are equal
to or less than 10−5.

2.2. Design of Experiment

As is shown in Figure 3, the spray effect is seriously affected by wind speed. The control variates
method was used to solve the problem including multivariate by changing one of the factors. This study
used different wind speeds, 0 m s−1, 1 m s−1, 3 m s−1 and 5 m s−1, to seek the law of droplet drift, and
different particle mass flow rates, 0.01083 kg s−1, 0.01316 kg s−1 and 0.01516 kg s−1, to control the spray
pressure at 0.2 MPa, 0.3 MPa and 0.4 MPa, respectively. The overall control variates of the parameters
are shown in Table 2.

  
a 0 m s 1 b 3 m s 1 

Figure 3. Droplets deposition in target area at different wind speed (0 m s−1 and 3 m s−1). (a) The
distribution of droplets is ideal at 0 m s−1, (b) The droplet was influenced by wind clearly and the
distribution of droplets is not satisfied at 3 m s−1.

Table 2. Total variates of spray height (0.8, 1, and 1.5 m), pressure (0.2, 0.3, and 0.4 MPa) and wind
speed (0, 1, 3, and 5 m s−1).

Spray Height(m) 0.8 1 1.5

Pressure (MPa) 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

Wind Speed (m s−1)

0 A11 A12 A13 B11 B12 B13 C11 C12 C13
1 A21 A22 A23 B21 B22 B23 C21 C22 C23
3 A31 A32 A33 B31 B32 B33 C31 C32 C33
5 A41 A42 A43 B41 B42 B43 C41 C42 C43

The ability of DPM has been shown to accurately simulate particle dispersion and
deposition [22–24]. In this study, the flat fan atomizer model of the DPM was selected to simulate the
XR8002 nozzle of Teejet Company (Wheaton, IL, USA, 60187). In the DPM model, Euler method is
used to describe the continuous phase. Navier-Stokes equation [25] is used to obtain velocity and
other parameters. The discrete phase is described by Lagrange method, and its movement is obtained
by integrating the motion equations of a large number of particles. Therefore, this model is called
Euler-Lagrange model, and its transport equation can be expressed as [26]

dup

dt
=

18μCDRe

24ρpdp2 (u− up) +
gx(ρp − ρ)
ρp

+
1
2
ρ

ρp

d
dt
(u− up) (3)

where u is the continuous phase velocity, up is the velocity of particle, ρp is the density of particle, dp is
the particle diameter, gx is the acceleration of gravity, Re is the relative Reynolds number, and CD is the
drag coefficient.
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2.3. Method of Analysis

In order to show the influence of three factors (wind speed, spray pressure, and spray height) on
the droplet drift distance, deposition center drift distance, and overlap width, the multivariate curve
fitting was carried out by the least square method [27,28]. The equation is listed as follows:

y1= a0 + a1xw + a2xp + a3xh (4)

y2= a4 + a5xw + a6xp + a7xh (5)

y3= a8 + a9xw + a10xp + a11xh (6)

Satisfy
n∑

i=1

(
y− yi

)2
= min

n∑
i=1

(
y− yi

)2
(7)

The model obtained by the least square method can be verified by Equation (8),

yo= a0 − yn + yf (8)

where yo is the overlap width influenced by wind, ao is the overlap width in nature, yn is the drift
distance of near tuyere edge, and yf is the drift distance of far tuyere edge. Their relationship can be
portrayed in Figure 4.

 
Figure 4. The natural curve of droplets is shown by solid lines and the drift curve influenced by wind
is shown by dotted lines, a0 is overlap width, y2 is the drift distance of near tuyere edge, y3 is the drift
distance of far tuyere edge, and y4 is the overlap width influenced by wind.

3. Results and Discussion

3.1. Simulation of Influence of Different Factors on Droplet Drift

3.1.1. Influence of Wind Speed on Droplet Drift

Inlet pressure (0.3 MPa) and spray height (1.5 m) were set to constant and the effect of ambient
wind speeds of 0 m s−1, 1 m s−1, 3 m s−1, and 5 m s−1 were explored. The droplet deposition density at
different target positions is plotted in Figure 5.

92



Agronomy 2019, 9, 308

 

(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Concentration of droplets deposition at different wind speeds, (a) 0 m s−1, (b) 1 m s−1,
(c) 3 m s−1, and (d) 5 m s−1. X-axis indicates a different position of target area and off-target area.
Y-axis shows DPM concentration (kg m−3) of droplets deposition at different wind speeds, 0 m s−1,
1 m s−1, 3 m s−1, and 5 m s−1. The point means concentration of different position, the dotted line
means the droplet concentration deposition center, and the solid line means the biggest concentration
of corresponding point.

It is clear that droplet deposition concentration at different target locations varied with wind speed
(Figure 5). When the wind speed was 0 m s−1, the droplets did not drift. The droplet concentration
deposition center point was 2 m and the drift distance was 0. When the wind speed was 1 m s−1,
the droplet had a minor drift phenomenon. The droplet concentration deposition center point was
2.05 m and the drift distance was 0.05 m. When the wind speed was 3 m s−1, the droplet had obvious
drift phenomenon. The droplet concentration deposition center point was 2.35 m and the drift distance
was 0.35 m. When the wind speed was 5 m s−1, the droplets had a large amount of drift. The droplet
concentration deposition center point was 2.85 m and the drift distance was 0.85 m. The three main
performance indicators to evaluate drift characteristics, drift distance of deposition center, near tuyere
edge, and far tuyere edge, and the relationships between these parameters and wind speed are shown
in Table 3 and Figure 6.

Table 3. Droplet drift distance of deposition center, near tuyere edge, far tuyere edge, and overlap
width at different wind speed, 0 m s−1, 1 m s−1, 3 m s−1 and 5 m s−1.

Wind Speed
(m s−1)

Deposition Center
(m)

Near Tuyere Edge
(m)

Far Tuyere Edge
(m)

Overlap Width
(m)

0 0 0 0 0.20
1 0.05 0.05 0.05 0.65
3 0.45 0.25 2.40 2.35
5 0.85 0.55 4.60 3.95
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Figure 6. The relationship between wind speed and drift distance (center point, near tuyere edge, far
tuyere edge, and overlap width).

The least square method was used to fit the drift distance and overlap width under different wind
speeds. The center point drift model was y1 = 0.176xw + 0.091, near tuyere edge drift model was
y2 = 0.110xw − 0.038, far tuyere edge drift model was y3 = 1.016xw − 0.636, and the overlap width
model was y4 = 0.901xw − 0.382. In these models, xw was wind speed (m s−1) and y was distance
(m). It can be seen that the wind speed was positively correlated with drift distance and overlap
width. For every 1 m s−1 increase in wind speed, drift distance of droplet center point was increased
by 0.176 m, near tuyere edge was increased by 0.11 m, far tuyere edge was increased by 1.016 m,
and overlap width was increased by 0.901 m. The accuracy can be verified by the model obtained
above with a0 representing the droplet overlap width in the natural state. The simulation showed that
when a0 = 0.2, y4 − (a0 − y2 + y3) = 0.005x + 0.0156 was about 0, which proved that the model fits the
actual situation.

3.1.2. Influence of Inlet Pressure on Droplet Drift

Wind speed (3 m s−1) and spray height (1.5 m) were set to constant and the pressure of 0.2 MPa,
0.3 MPa and 0.4 MPa was explored. The droplet deposition density at different target positions is
plotted in Figure 7.

 

(a) 

 
(b) 

Figure 7. Cont.
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(c) 
Figure 7. Concentration of droplets deposition under different pressures, (a) 0.2 MPa, (b) 0.3 MPa, and
(c) 0.4 MPa. X-axis indicates different position of target area and off-target area, Y-axis shows DPM
Concentration (kg m−3) of droplets deposition under different pressure, 0.2 MPa, 0.3 MPa, and 0.4 MPa.
The point means concentration of different position, the dotted line means the droplet concentration
deposition center, and the solid line means the biggest concentration of corresponding point.

It is clear that droplet deposition concentration at different target locations varies under the
influence of pressure (Figure 7). When the pressure was 0.2 MPa, the droplet concentration deposition
center point is 2.35 m and the drift distance is 0.35 m. When the pressure was 0.3 MPa, the droplet
concentration deposition center point is 2.45 m and the drift distance is 0.45 m. When the pressure
was 0.4 MPa, the droplet concentration deposition center point is 2.6 m and the drift distance is 0.6 m.
The drift distance of deposition center, the edge of near tuyere, and the edge of far tuyere and the
relationships between these parameters and pressure are shown in Table 4 and Figure 8.

Table 4. Droplet drift distance of deposition center, near tuyere edge, far tuyere edge, and overlap
width under different pressure, 0.2 MPa, 0.3 MPa, and 0.4 MPa.

Pressure
(MPa)

Deposition Center
(m)

Near Tuyere Edge
(m)

Far Tuyere Edge
(m)

Overlap Width
(m)

0.2 0.60 0.25 1.70 1.55
0.3 0.45 0.25 2.40 2.35
0.4 0.65 0.35 2.85 2.70

 
Figure 8. The relationship between pressure and drift distance (center point, near tuyere edge, far tuyere
edge and overlap width).

The least square method was used to fit the drift distance and overlap width under different
wind speeds. The center point drift model is y5 = 0.110xp + 0.090, the near tuyere edge drift model
is y6 = 0.050xp + 0.140, the far tuyere edge drift model is y7 = 0.605xp + 0.325, and the overlap width
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model is y8 = 0.601xp + 0.600. In the models, x is inlet pressure (MPa) and y is distance (m). It can be
seen that inlet pressure is positively correlated with droplet drift distance and overlap width. For every
0.1 MPa increased in the inlet pressure, the drift distance of deposition center point was increased
by 0.11 m, the edge of near tuyere was increased by 0.05 m, the edge of far tuyere was increased by
0.605 m, and the overlap width was increased by 0.6 m.

3.1.3. Influence of Spray Height on Droplet Drift

Wind speed (3 m s−1) and pressure (0.3 MPa) were set to constant and the spray height of 0.8 m,
1 m, and 1.5 m was explored. The droplet deposition density at different target positions is plotted in
Figure 9.

 

(a) 

 
(b) 

 
(c) 

Figure 9. Concentration of droplets deposition in different spray heights, (a) 0.8 m, (b) 1 m, and (c) 1.5 m.
X-axis means different position of target area and off-target area, Y-axis means DPM Concentration
(kg m−3) of droplets deposition in different spray height, 0.8 m, 1 m, and 1.5 m. The point means
concentration of different position, the dotted line means the droplet concentration deposition center
and the solid line means the biggest concentration of corresponding point.

It is clear that droplet deposition concentration at different target locations varied with spray
height (Figure 9). When the spray height was 0.8 m, the droplet concentration deposition center point
is 2.35 m and the drift distance is 0.35 m. When the spray height was 1 m, the droplet concentration
deposition center point is 2.45 m and the drift distance is 0.45 m. When the spray height was 1.5 m,
the droplet concentration deposition center point is 2.6 m and the drift distance is 0.6 m. The deposition
center, near tuyere edge, and far tuyere edge, and the relationship between these parameters and spray
height are shown in Table 5 and Figure 10.
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Table 5. Droplet drift distance of deposition center, near tuyere edge, far tuyere edge, and overlap
width in different spray height, 0.8 m, 1 m, and 1.5 m.

Spray Height
(m)

Deposition Center
(m)

Near Tuyere Edge
(m)

Far Tuyere Edge
(m)

Overlap Width
(m)

0.8 0.35 0.15 1.55 1.35
1 0.45 0.25 2.40 2.60

1.5 0.60 0.35 3.25 2.75

 
Figure 10. The relationship between spray height and drift distance (center point, near tuyere edge, far
tuyere edge, and overlap width).

Again, the least square method was used to fit the drift distance and overlap width under different
spray heights. The center point drift model is y9 = 0.235xh + 0.125, the near tuyere drift model is
y10 = 0.115xh + 0.902, the far tuyere drift model is y11 = 1.654xh − 0.081, and the overlap width is
y12 = 1.670xh + 0.789. In the models, x is the spray height (m) and y is the distance (m). It can be
seen that the spray height is positively correlated with droplet drift distance and overlap width, i.e.,
for every 1m increase in spray height, the drift distance of deposition center point was increased by
0.235 m, the drift distance of near tuyere increased by 0.115 m, the drift distance of far tuyere was
increased by 1.654 m, and the overlap width was increased by 1.67 m.

3.2. Drift Distance Analysis of Fitting Regression Results

The least square method was taken to fit a curve of drift, with y1 (edge drift distance), y2 (deposition
center drift distance), and y3 (overlap width) as dependent variables, and xw (wind speed), xp (inlet
pressure), and xh (spray height) as independent variables, and C (constant term). The corresponding
equations of multivariate linear function groups can be explained as follows:
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and solved by MATLAB 2015a®(MathWorks, MA, USA),

(a0 a1 a2 a3)
T = (−3.096 0.887 0.550 1.552)T (12)

(a0 a1 a2 a3)
T = (−0.667 0.167 0.085 0.308)T (13)

(a0 a1 a2 a3)
T = (−3.374 0.692 0.529 1.469)T (14)

Table 6 shows the variance and regression analysis of the influence of three factors on edge drift
distance, deposition center drift distance and overlap width. According to the analysis results (Table 6),
the influence of wind speed on edge drift distance, deposition center drift distance and overlap width
is very significant, pressure and spray height is significant. The influence of three factors on edge drift
distance, deposition center drift distance, and overlap width is also significant, so a linear equation can
be established.

Table 6. The variance and regression analysis of the influence of three factors on edge drift distance,
deposition center drift distance, and overlap width analysis.

Dependent
Variable

Source of
Difference

Regression
Coefficient

T-Distribution
Value

Significance
95% Confidence Interval

R R2

Lower Limit Upper Limit

Y1

Xw 0.887 9.941 ** 0.702 1.071

0.915 0.837
Xp 0.550 3.083 * 0.181 0.919
Xh 1.552 3.137 * 0.529 2.576
C −3.096 −4.752 −5.606 −2.206

Y2

Xw 0.167 8.196 ** 0.125 0.209

0.880 0.774
Xp 0.085 2.083 * 0.001 0.169
Xh 0.308 2.728 * 0.074 0.541
C −0.667 −3.558 −1.054 −0.279

Y3

Xw 0.692 8.303 ** 0.520 0.865

0.892 0.795
Xp 0.529 3.173 * 0.184 0.874
Xh 1.469 3.176 * 0.512 2.426
C −3.374 −4.391 −4.963 −1.785

The dependent variables (Y1, Y2, Y3) are edge drift distance, deposition center drift distance, and overlap width.
The different sources (Xw, Xp, Xh, C) are wind speed, inlet pressure, spray height and constant term. The significances
are the results of significance analysis and the number of stars means the degree of influence by independent
variables. The two stars (**) means the influence is very significant, one star (*) is significant, and no star is
not significant.

The regression coefficients of the three variables in the regression equation of edge drift distance
are 0.887, 0.550, and 1.552, and the constant term (C) is −3.096. Therefore, the relationship model
between edge drift distance Y1 and wind speed Xw (m s−1), pressure Xp (MPa) and spray height Xh

(m) is
Y1 = 0.887Xw + 0.550Xp + 1.552Xh − 3.906 (R2 = 0.837) (15)

In this model (15), the coefficients of the three variables are all positive, indicating that the three
factors are all positively correlated with droplet drift distance of far tuyere edge. At the same time,
this model also provides a reference for safe distance. This model is the drift distance of the droplet far
from far tuyere edge, which is also the farthest distance to which the droplet can drift.

The regression coefficients of the three variables in the regression equation of center drift distance
are 0.167, 0.085, and 0.308, and the C is −0.667. Therefore, the relationship model between drift distance
Y2 of deposition center and wind speed Xw (m s−1), pressure Xp (MPa) and spray height Xh (m) is

Y2 = 0.167Xw + 0.085Xp + 0.308Xh − 0.667 (R2 = 0.774) (16)
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In this model (16), the coefficients of the three variables are all positive, indicating that the three
factors are positively correlated with the drift distance of droplet deposition center. At the same time,
this model also provides a reference for the selection of spray deposition center. This model is the drift
distance of droplet deposition center, which is also the point where droplet deposition concentration is
the largest.

The regression coefficients of the three variables in the regression equation of overlap width are
0.692, 0.529, and 1.469, and the C is −3.374. Therefore, the relationship model between overlap width
Y3 and wind speed Xw (m s−1), pressure Xp (MPa), and spray height Xh (m) is

Y3 = 0.692xw + 0.529xp + 1.469xh − 3.374 (R2 = 0.795) (17)

In this model (17), the coefficients of the three variables are all positive, indicating that the three
factors are positively correlated with the overlap width. At the same time, this model also provides a
reference for the selection of nozzle distance and how to get the best droplet overlapping effect.

3.3. Analysis of Droplet Drift Curve Characteristic

Under the influence of different wind speeds, the droplet drift curve of XR8002 (spray height
1.5 m; inlet pressure 0.3 MPa) is shown in Figure 11.

(a) 0 m s 1 (b) 1 m s 1 

(c) 3 m s 1 (d) 5 m s 1 

Figure 11. Trace of droplet drift curve at wind speed 0, 1, 3, and 5 m s−1 when spray height was 1.5 m
and inlet pressure was 3 MPa. (a) The droplets have no drift at 0 m s−1, (b) The droplets hardly drift at
1 m s−1, (c) The droplets have obvious drift at 3 m s−1, (d) The droplets have serious drift at 5 m s−1.

As can be seen from the above Figure 11, when the wind speed was 1 m s−1, the droplets hardly
drift. When the wind speed exceeded 1 m s−1, the droplets drift slightly. When the wind speed
exceeded 3 m s−1, the droplets will obviously drift. It is also the reason why UAV could not work in
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high wind speed. The analysis of droplet drift curves at the wind speeds of 3 m s−1 and 5 m s−1 were
also made in Figure 12.

 
(a) 3 m s 1 

 
(b) 5 m s 1 

Figure 12. Droplet drift curve of different wind speed (3 and 5 m s−1), X-axis means deposition area of
0 to 10m, and Y-axis means spray height. (a) The droplet angle was 90◦ and 20.67◦ at 3 m s−1, (b) The
droplet angle was 70.42◦ and 11.27◦ at 5 m s−1.

As is shown in Figure 12, both sides of the droplet drift curve were approximately a straight line.
When the wind speed was 3 m s−1, the droplet angle on the left side was 90◦and the right side was
20.67◦. When the wind speed was 5 m s−1, the droplet angle on the left side was 70.42◦and the right
side was 11.27◦, which showed that the inclination angle of the straight line was negatively related
to the wind speed. Results displayed in Figure 12 show trends matching the previously observed
behavior of a drift distance increase with a droplet angle decrease. The droplet angle also could be
used to estimate the influence of wind, and the drift distance.

4. Conclusions

In this study, CFD simulation method was used to acquire droplet deposition distribution and
drift under the influence of different factors. DPM model was used to simulate droplet drift from
a double XR8002 nozzle at various wind speeds (0, 1, 3, 5 m s−1), nozzle pressures (0.2, 0.3, 0.4 MPa)
and spray heights (0.8, 1, 1.5 m). The information obtained from these simulations provided valuable
insight into the characteristic of spray drift. General analysis suggest that the droplet drift curves
were influenced by the three factors. Additionally, the influence coefficients of the three factors on the
droplet drift distance were calculated. On the basis of analysis of the variance and regression results
aimed at the edge drift distance, the center drift distance, and the overlap width, the three models were
established. The expressions of three models are important on guiding significance to the practice.
The analysis of the droplet drift curves showed that the droplet angle is closely related to drift. Results
made from these simulations have provided a tool which can be used to ensure future UAV chemical
application can be designed to maximize efficacy, reduce waste, and minimize damage to organisms
not being targeted.
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Abstract: Vegetation indices and canopy temperature are the most usual remote sensing approaches
to assess cereal performance. Understanding the relationships of these parameters and yield may
help design more efficient strategies to monitor crop performance. We present an evaluation of
vegetation indices (derived from RGB images and multispectral data) and water status traits (through
the canopy temperature, stomatal conductance and carbon isotopic composition) measured during
the reproductive stage for genotype phenotyping in a study of four wheat genotypes growing under
different water and nitrogen regimes in north Algeria. Differences among the cultivars were reported
through the vegetation indices, but not with the water status traits. Both approximations correlated
significantly with grain yield (GY), reporting stronger correlations under support irrigation and
N-fertilization than the rainfed or the no N-fertilization conditions. For N-fertilized trials (irrigated or
rainfed) water status parameters were the main factors predicting relative GY performance, while in
the absence of N-fertilization, the green canopy area (assessed through GGA) was the main factor
negatively correlated with GY. Regression models for GY estimation were generated using data from
three consecutive growing seasons. The results highlighted the usefulness of vegetation indices
derived from RGB images predicting GY.

Keywords: wheat; canopy temperature depression; NDVI; RGB images; grain yield; δ13C

1. Introduction

Bread wheat is one of the most cultivated herbaceous crops in the Mediterranean region [1],
with water stress and low nitrogen fertility being the main constraints limiting productivity [2].
These limitations are likely to increase in the future because climatic change is expected to decrease
precipitation and increase evapotranspiration in the Mediterranean region [3]. Increasing productivity
in these semi-arid environments depends on the efficiency of crop management [2] and breeding [4],
where efficient and affordable methodologies to monitor crop performance, or to assess phenotypic
variability for breeding, are needed. Remote sensing techniques at the canopy level have become
valuable tools for precision agriculture and high throughput phenotyping [5–7]. Thus, both spectral
and thermal approaches have been proposed as potential solutions to identify crop N status and
water stress across large areas [8,9]. In this way, these techniques can help farmers to practice more
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sustainable agriculture, minimizing risks of losing the harvest by providing (whenever possible) the
resources (e.g., water and fertilizer) needed to secure yield. However, the adoption of new technologies
often requires much up-front investment and is therefore restricted to large-scale production and/or
farmers with substantial economic resources. This limitation is particularly evident for smallholder
farmers from developing countries. Nevertheless, satellite-derived indices can be used in local
management to support farmers’ decision making, including the rate of irrigation and fertilizer
application, and eventually yield prediction in wheat [10,11] and other crops [12,13]. While satellite
images are often freely available, as in the case of Sentinel-2 [14], the resolution (not higher than
100 square meters per pixel), together with the periodicity of image acquisition and weather constraints
(e.g., clouds) and the need for computing support and trained staffmakes this form of remote sensing
is unattainable for smallholder farmers. Different approaches to small-scale-tailored crop management
have been proposed. For example, site-specific nitrogen management using leaf color charts has
been proposed in irrigated wheat [15,16]. However, the interaction of the water regime with nitrogen
status may affect leaf color, making this method impractical for rainfed or deficit-irrigation crops.
A more flexible alternative uses optical sensors such as portable spectroradiometers (like, for example,
the GreenSeeker) [17,18]. However, the cost of the equipment may limit the uptake of this approach.
In this sense, the use of low-cost remote sensing methods to schedule irrigation and fertilization and
predict yield, such as digital conventional imagery and/or infrared thermometry [19], may contribute
to more sustainable agriculture in arid and semi-arid regions of the Mediterranean where irrigation
and fertilization are not optimized in terms of timing and amount. While remote sensing has been
regarded as a potentially useful approach in predicting grain yield, an inherent limitation of remote
sensing methods is that the relationships between yield and vegetation indices may be site and season
specific, changing between sites and years. Thus, for example, in the case of sensor calibration for N
management, site-year characteristics have a critical impact [20]. While new methods for sensor-based
site-specific N management are probably needed, it is likely that the best approaches will arise from
the use of multiple sensors [20,21], therefore increasing the cost of deployment. Even when low cost
remote sensing approaches using single sensors have shown great potential in experimental trials with
wheat [22], their practical application needs to be proven.

The normalized difference vegetation index (NDVI) is one of the most well-known multispectral
vegetation indices. The NDVI has been used extensively to estimate plant biomass [23–25], nitrogen
status [26] and yield in wheat and other cereals [27–29]. The leaf chlorophyll content measured with
a portable chlorophyll meter, which uses the same principle as the NDVI, but on the basis of the
light transmitted through the leaf, has also been used extensively [30]. As an alternative, information
derived from conventional digital Red-Green-Blue (RGB) images to formulate canopy vegetation
indices is a low-cost and an easy proximal sensing approach to assess grain yield in cereals [31–33],
even when limitations related to shadows and changes in ambient light conditions need to be taken into
consideration [34]. Information derived from RGB images allows estimation of a wide range of crop
traits in durum and bread wheat, such as early vigor, leaf area index, leaf senescence, aerial biomass
and grain yield [31,33]. The green area and the greener area are two indices derived from conventional
digital images [31]. The first parameter describes the amount of green biomass in the picture, while the
second one excludes the more yellowish-green pixels. In fact, greener area is aimed at capturing
active photosynthetic area and plant senescence [31]. Such indices are formulated using open access
software [19,35].

It has been long recognized that plant temperature may represent a valuable index to detect
differences in plant water regimes [36–38]. Reynolds et al. (2007) [39] have reported that wheat canopy
temperature is a relative measure of plant transpiration associated with water uptake from the soil.
Under water limited conditions, transpiration and its associated evaporative cooling are reduced,
resulting in higher leaf temperatures. Given that a major role of transpiration is leaf cooling, canopy
temperature and its depression relative to ambient air temperature is an indicator of the degree to
which transpiration cools leaves under a demanding environmental load [40]. In that sense, infrared
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thermometry has been proposed as a low-cost approach in crop management to enable scheduling of
support irrigation [41], to assess spatial soil heterogeneity [42], or to evaluate genotypic performance to
drought [43]. However, potential interaction effects between N fertilization and water regime should
be considered. In particular, how does N fertilization affect the water by temperature relationships and
even how does water affect the interaction of N fertilization with vegetation indices. This is not trivial
because haying-off, which is the negative effect of nitrogen fertilization on productivity caused by an
imbalance between transpired biomass and the available water, is regarded as a potential problem for
wheat cultivation in Mediterranean regions [44]. As a consequence, unexpected relationships between
remote sensing readings and grain yield may occur.

Similarly, other physiological characteristics related to plant water status, such as stable carbon
isotope composition (δ13C; frequently measured as discrimination from the surrounding air, Δ13C)
are also often used for evaluating genotypic performance under water stress [40,44] or even to
monitor spatial variability and water status [45]. The natural 13C abundance in plant matter provides
time-integrated information of the effects of water stress on the photosynthetic carbon assimilation
of C3 species, including wheat [46–48]. Conditions inducing stomatal closure (e.g., water deficit or
salinity) restrict the CO2 supply to carboxylation sites, which then decreases the Δ13C (or increases the
δ13C) of plant matter [47,49]. Under Mediterranean conditions the δ13C of mature kernels is better
correlated with grain yield than the δ13C of other plant parts [50]. The costs of these analyses have
decreased throughout the years, making their analysis increasingly feasible.

The objective of this study was to assess the grain yield performance of wheat under a range
of water and fertilization conditions in the Mediterranean, using different low-cost remote sensing
approaches to assess canopy green biomass (NDVI and vegetation indices derived from conventional
RGB images), and characteristics associated with plant water status, (canopy temperature depression),
together with additional traits informing on the water status (δ13C of mature grains and the stomatal
conductance of the flag leaf). The novelty of the study centers on (i) testing how different low-cost,
user-friendly remote sensing techniques may contribute to site-specific wheat management and
eventually to the prediction of yield across seasons; and (ii) how interactions between growing
conditions (water regime and N fertilization) may affect the predictive strength of these techniques.
Moreover, to better explore the potential usefulness of our study for wheat phenotyping we developed
a conceptual model of how the combination of these different traits explains genotypic variability in
grain yield under different combinations of water regimes and nitrogen fertilization.

2. Materials and Methods

2.1. Plant Material and Growing Conditions

Field trials were conducted during the 2014–2015 crop season at Bir Ould Khelifa in the area of
Khemis Miliana commune, approximately 230 km to the south west of Algiers (Algeria) and with
geographical coordinates 36◦11′50.23” N and 2◦13′17.69” E. This commune receives an average rainfall
of between 400 and 450 mm, and it is characterized by clay-silty fertile soils, with high organic
matter content and high levels of total and mineral nitrogen (Table S1). Monthly total accumulated
rainfall and temperatures for the study region for the 2014–2015 crop season are presented in Table S2.
Four bread wheat (Triticum aestivum L.) genotypes were planted on 14 December 2014. The wheat
genotypes were “Ain-Abid” and “Arz” (modern varieties) and “Wifak” and “Maaouna” (local varieties).
The experimental design was a split-split-plot, with the main-plot factor being water regime, the subplot
factor was the N amount and the sub-subplot factor was genotype (Figure S1). A total of 108 plots
(four genotypes, three replicates per genotype, three water regimes, and three nitrogen fertilization
treatments) each with a size of 10 m × 1.2 m and six rows, 20 cm apart, were studied. The three water
regimes consisted of one rainfed and two support irrigation treatments of 30 mm (SI-1, a single amount
of supplemental irrigation) and 60 mm (SI-2, a double amount of supplemental irrigation) aimed at
providing water in the typical range for the agronomic practices in this area. Supplementary irrigation
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was applied with sprinklers around the beginning of stem elongation. For SI-1, one irrigation (30 mm)
was applied at the beginning of stem elongation (31 Zadoks stage), whereas for SI-2, a second irrigation
was also delivered at heading (58 Zadoks stage). Nitrogen fertilization was applied using urea fertilizer,
and treatments consisted of no fertilizer (N0) and 60 kg ha−1 and 120 kg ha−1 of nitrogen fertilizer
(N60, N120 respectively). Application of N fertilization was achieved at two growing stages, tillering
and jointing (26 and 31 Zadoks stages). Plots were harvested with a sickle after physiological maturity
and grain yield was estimated. Thousand kernel weight and the number of kernels per square meter
(Kernel m−2) were evaluated.

2.2. Vegetation Indices

Remote sensing measurements were performed on a sunny day around anthesis (26 March 2015)
between 10 h and 15 h solar time. The NDVI was determined with a portable spectroradiometer
(GreenSeeker handheld crop sensor, Trimble, Sunnyvale, CA, USA). The NDVI is formulated using
the following equation: (NIR − R)/(NIR + R), where R is the reflectance in the red band and NIR is
the reflectance in the near-infrared band. The distance between the sensor and the plots was kept
constant at around 50–60 cm above and perpendicular to the canopy. Additionally, one conventional
digital picture was taken per plot, holding the camera about 80 cm above the plant canopy in
a zenithal plane and focusing near the center of each plot. The images were acquired with an
Olympus E-M10 camera (Olympus Corporation, Tokyo, Japan), using a 14 mm lens, triggered
at a speed of 1/125 seconds with the aperture programmed in automatic mode. The size of the
images was 4608 × 3456 pixels stored in JPG format using RGB color standard [51]. Pictures
were analyzed with the free-access BreedPix 0.2 software, now integrated within the CerealScanner
plugin (https://integrativecropecophysiology.com/software-development/cerealscanner/), from the
Mediterranean Crop Ecophysiology Group, University of Barcelona [22], which was developed for
digital image processing. This software quickly provides digital values from different color properties.
The vegetation indices measured were the green area (GA) and the greener area (GGA). GA is the
portion (as a %) of pixels with 60 <Hue < 120 from the total amount of pixels, whereas greener area
is formulated as the % of pixels with 80 <Hue < 120 [31,52]. GGA is designed to capture the active
photosynthetic area excluding senescent leaves. In addition, the leaf chlorophyll content of five flag
leaf blades per plot was measured using a Minolta SPAD-502 portable meter (Spectrum Technologies
Inc., Plainfield, IL, USA).

2.3. Canopy Temperature Measurements

Canopy temperature (CT) was measured at noon (12 h–14 h), on the same day around anthesis
as the vegetation indices, using an infrared thermometer (PhotoTempTM MXSTMTD, Raytek®,
Santa Cruz, CA, USA). Measurements were taken above the plants, pointing towards the canopy
at a distance of about one meter and having the sun towards the rear. The air temperature was
measured simultaneously for each plot with a temperature humidity meter (Testo 177-H1 Logger,
Testo, Lenzkirch, Germany) and employed for the calculation of the canopy temperature depression
(CTD) as the difference between the ambient and the canopy temperature.

2.4. Stomatal Conductance

Stomatal conductance was measured on the flag leaves on the same days as the remote sensing
traits. Two measurements per plot were taken around noon (12 h–14 h), using a Decagon SC-1 Leaf
Porometer (Decagon Devices Inc., Pullman, WA, USA).

2.5. Stable Carbon Isotope Composition

Carbon isotope composition was analyzed in mature grains using an Elemental Analyzer (Flash
1112 EA; ThermoFinnigan, Bremen, Germany) coupled with an Isotope Ratio Mass Spectrometer (Delta
C IRMS, ThermoFinnigan, Bremen, Germany) operating in continuous flow mode to determine the
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stable carbon (13C/12C) isotope ratios. Samples of about 0.7 mg of dry matter and reference materials
were weighed into tin capsules, sealed, and then loaded into an automatic sampler (ThermoFinnigan,
Bremen, Germany) prior to EAIRMS analysis. Measurements were carried out at the Scientific Facilities
of the University of Barcelona. The 13C/12C ratios were expressed in δ notation determined by:
δ13C = (13C/12C)sample/(13C/12C)standard − 1 [53], where sample refers to plant material and standard to
Pee Dee Belemnite (PDB) calcium carbonate. International isotope secondary standards of known
13C/12C ratios (IAEA CH7 polyethylene foil, IAEA CH6 sucrose, and USGS 40 L-glutamic acid) were
used for calibration to a precision of 0.1%�.

2.6. Statistical Analysis

Data were subjected to factorial ANOVA to test the effects of the growing conditions (water regime
and nitrogen fertilization), genotype, and their interaction. Mean comparisons were performed using
Tukey’s honestly significant difference (HSD) test. Pearson correlation coefficients between grain yield
and all different traits were calculated. Multiple linear regression analysis (stepwise) was used to
analyze grain yield under different growing conditions. Data were analyzed using IBM SPSS Statistics
24 (SPSS Inc., Chicago, IL, USA). Figures were created using Sigma-Plot 11.0 for Windows (Systat
Software Inc., Point Richmond, CA, USA).

The performance of the different remote sensing traits in predicting yield performance across
the seasons was evaluated using data from the present study, together with data already published
by our team from the two previous seasons (2012–2013 and 2013–2014) related to grain yield and
different remote sensing traits measured in a set of genotypes grown under different water regimes [54].
The equations of the linear relationships between these traits and grain yield (GY) determined in the
first crop season (2012–2013) were further tested during the two following crop seasons 2013–2014 and
2014–2015 (the latter of these conducted during the present study). Predicted and measured grain
yields were expressed as relative values; grain yields were normalized with regard to the highest yield
combination (genotype and growing condition), then the means of the three replicates per genotype
were calculated. Finally, we performed path analyses to quantify the relative contributions of direct
and indirect effects of water status (δ13C, gs and CTD) and vegetation indices (GA, GGA) on grain
yield. This methodology offers the possibility of building associations between variables on the basis
of prior knowledge. Mechanisms that play potential roles in grain yield variation and involving
traits that exhibited genotypic differences have been proposed, as detailed in the conceptual model
displayed in Figure S2. This model was aimed at understanding grain yield responses to genotypic
differences under different levels of nitrogen fertilization (N0, N60, N120) and under different water
regimes (supplementary irrigation and rainfed). A model with a comparative fit index (CFI) [42] with
values > 0.9 was taken as indicative of a good fit. Data were analyzed using IBM, SPSS, Amos 21
(SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Irrigation and Fertilization Effects on Grain Yield

Both irrigation and nitrogen fertilization significantly affected the grain yield (GY) and the
agronomic yield components (Table 1). The doubled amount of supplemental irrigation (SI-2 with all
nitrogen fertilization combined) and the highest nitrogen fertilization N120 (120 kg N ha−1 of fertilizer
with all irrigations combined) were the growing conditions that exhibited the highest grain yield.
Significant interactions only existed for grain yield between genotype and water regime (p = 0.049).
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Table 1. Mean values of genotypes, water regimes, nitrogen fertilization levels for grain yield (GY),
thousand kernel weight (TKW) and kernels m−2 and the corresponding ANOVA.

GY (T ha−1) TKW (g) Kernels m−2

Genotypes

Ain Abid 2.20 a 21.73 a 275.9 a

Arz 2.35 ab 23.70 b 298.3 ab

Maaouna 2.35 ab 24.35 b 307.9 b

Wifak 2.50 b 24.83 b 308.6 b

Water regime

RF 2.07 a 22.42 a 270.6 a

SI-1 2.29 b 22.72 a 308.8 b

SI-2 2.68 c 25.83 b 313.7 b

Nitrogen fertilization

N0 2.05 a 22.60 a 291.3 a

N60 2.40 b 23.43 a 307.6 a

N120 2.60 c 24.93 b 294.1 a

Level of significance

Genotype (G) 0.026 0.000 0.029
Water regime (WR) 0.000 0.000 0.000

Nitrogen fertilization (N) 0.000 0.001 0.256
G ×WR 0.049 0.126 0.388
G × N 0.065 0.141 0.688

N ×WR 0.070 0.110 0.840
G ×WR × N 0.801 0.050 0.863

Means followed by different letters are significantly different (p < 0.05) according to Tukey’s honestly significant
difference (HSD) test. For more details, including the acronyms for the treatments, see Materials and Methods.

3.2. Vegetation Indices

The water regime significantly affected the NDVI (p < 0.001), as well as the green area (GA)
(p < 0.001) and the greener area (GGA) (p < 0.001) indices (Table 2). The values of these three vegetation
indices were highest under SI-2 compared to the single amount of supplemental irrigation (SI-1) and
rainfed conditions. However, no difference was observed in vegetation indices across fertilization
treatments except for GGA (p = 0.005). Moreover, leaf chlorophyll content (LC) slightly increased
(Table 2) under SI-1 and rainfed conditions compared to SI-2 and under N60 and N120 compared
to N0. Interactions were not significant, whatever the combination (genotypes, water regimes and
fertilization levels) or variables considered.

Table 2. Mean values of genotypes, water regimes, and nitrogen fertilization levels for the vegetation
indices NDVI (Normalized Difference Vegetation Index), GA (Green Area), GGA (Greener Area) and
LC (Leaf chlorophyll content) and the corresponding ANOVA. Parameters were measured around
anthesis. Means followed by different letters are significantly different (p < 0.05) according to Tukey’s
honestly significant difference (HSD) test.

NDVI GA GGA LC

Genotypes

Ain Abid 0.70 c 0.88 c 0.74 d 46.88 a

Arz 0.64 b 0.82 b 0.58 b 52.32 c

Maaouna 0.57 a 0.74 a 0.50 a 50.04 b

Wifak 0.58 a 0.81 b 0.64 c 50.57 bc

Water regime

RF 0.56 a 0.73 a 0.52 a 50.52 b

SI-1 0.62 b 0.78 b 0.60 b 50.35 ab

SI-2 0.70 c 0.93 c 0.73 c 49.00 a
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Table 2. Cont.

NDVI GA GGA LC

Nitrogen fertilization

N0 0.62 a 0.80 a 0.58 a 49.08 a

N60 0.63 a 0.82 a 0.64 b 50.75 b

N120 0.63 a 0.82 a 0.63 b 50.03 ab

Level of significance

Genotype (G) 0.000 0.000 0.000 0.000
Water regime (WR) 0.000 0.000 0.000 0.037

Nitrogen fertilization (N) 0.699 0.304 0.005 0.038
G ×WR 0.071 0.073 0.381 0.144
G × N 0.729 0.423 0.562 0.438

N ×WR 0.765 0.721 0.598 0.495
G ×WR × N 0.975 0.518 0.492 0.257

3.3. Canopy Temperature Depression, Stable Carbon Isotope Composition and Stomatal Conductance

Water regime affected significantly the canopy temperature depression (CTD) (p < 0.001),
the stomatal conductance (gs) (p < 0.001) and the stable carbon isotope composition (δ13C) (p < 0.001)
of mature grains. Rainfed conditions decreased gs and CTD, whereas δ13C increased compared to
support irrigation conditions (Table 3). Nevertheless, fertilization treatments did not affect any of these
three parameters (Table 3). No significant interactions were observed except for the δ13C between the
water regime and nitrogen fertilization (p = 0.022).

Table 3. Mean values of genotypes, water regimes, and nitrogen fertilization levels for canopy
temperature depression (CTD), stomatal conductance (gs) of the flag leaves and the stable carbon
isotope composition (δ13C) of the mature grains. Means followed by different letters are significantly
different (p < 0.05) according to Tukey’s honestly significant difference (HSD) test.

CTD (◦C) gs (μmol CO2 m−2 s−1) δ13C (%�)

Genotypes

Ain Abid 1.92 a 143.71 a −24.07 b

Arz 1.48 a 119.07 a −24.09 b

Maaouna 1.20 a 119.51 a −24.43 a

Wifak 1.07 a 149.90 a −24.64 a

Water regime

RF −0.49 a 71.18 a −23.50 c

SI-1 1.68 b 95.31 a −24.19 b

SI-2 3.07 c 232.65 b −25.23 a

Nitrogen fertilization

N0 1.67 a 132.37 a −24.28 a

N60 1.40 a 146.86 a −24.34 a

N120 1.19 a 119.93 a −24.31 a

Level of significance

Genotype (G) 0.066 0.102 0.000
Water regime (WR) 0.000 0.000 0.000

Nitrogen fertilization (N) 0.269 0.142 0.841
G ×WR 0.743 0.689 0.371
G × N 0.307 0.963 0.502

N ×WR 0.336 0.950 0.022
G ×WR × N 0.658 0.106 0.932
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3.4. Genotypic Effect on Grain Yield, Vegetation Indices and Water Status Traits

The genotypic effect was significant (p < 0.05) for grain yield (GY) and (p < 0.001) for vegetation
indices (Tables 1 and 2) under the growing conditions analyzed together, whereas only the δ13C (in
the case of water status traits) was significantly (p < 0.001) different between genotypes (Table 3).
The genotypic difference was also examined within each of the nine growing conditions, resulting
from the combination of the three water regimes and the three nitrogen fertilization levels (Table 4).
GY only showed a genotypic effect under SI-2 combined with nitrogen fertilization (either N120 or N60).
However, under the SI-1 and rainfed conditions, GY did not show genotypic differences, regardless of
the N fertilization regime. The vegetation indices, LC content, δ13C and gs also showed genotypic
effects in some specific growing conditions while CTD did not (Table 4).

Table 4. Genotype effect on the Normalized Difference Vegetation Index (NDVI) and the Green Area
and the Greener Area (GA and GGA) vegetation indices, the leaf chlorophyll content (LC), the stomatal
conductance (gs) of the flag leaf, the canopy temperature depression (CTD), the stable carbon isotope
composition (δ13C) of the mature grains and the grain yield (GY).

Growing
Conditions

NDVI GA GGA LC gs CTD δ13C GY

SI-2 with N120 0.002 ** 0.089 ns 0.010 ** 0.037 * 0.061 ns 0.493 ns 0.308 ns 0.048 *
SI-2 with N60 0.000 *** 0.009 ** 0.002 ** 0.043 * 0.970 ns 0.564 ns 0.216 ns 0.024 *
SI-2 without N 0.003 ** 0.000 *** 0.001 *** 0.008 ** 0.796 ns 0.111 ns 0.112 ns 0.144 ns

SI-1 with N120 0.127 ns 0.650 ns 0.299 ns 0.118 ns 0.624 ns 0.703 ns 0.292 ns 0.279 ns

SI-1 with N60 0.050 * 0.109 ns 0.006 ** 0.071 ns 0.000 *** 0.076 ns 0.205 ns 0.708 ns

SI-1 without N 0.129 ns 0.519 ns 0.455 ns 0.883 ns 0.973 ns 0.610 ns 0.027 * 0.070 ns

Rainfed with N120 0.064 ns 0.150 ns 0.056 ns 0.035 * 0.212 ns 0.738 ns 0.594 ns 0.732 ns

Rainfed with N60 0.034 * 0.005 ** 0.034 * 0.002 ** 0.416 ns 0.682 ns 0.019 * 0.751 ns

Rainfed without N 0.000 *** 0.002 ** 0.001 *** 0.103 ns 0.242 ns 0.519 ns 0.086 ns 0.149 ns

Significance levels—ns, not significant; * p < 0.05; ** p < 0.01 and *** p < 0.001.

3.5. Relationships of the Grain Yield with the Vegetation Indices

Combining both irrigation (SI-2 and SI-1) conditions, the two RGB vegetation indices (GA and
GGA) were positively correlated with GY at N120 and only GA at N60, while the NDVI was not
correlated with GY (Figure 1). Moreover, under rainfed conditions GA, GGA and the NDVI were
correlated with GY at N60 (Figure 1). In the absence of nitrogen fertilization, no correlation was found
between GY and the different vegetation indices (Table S3).
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Figure 1. Relationships of grain yield (GY) with NDVI, GA, and GGA, δ13C of mature grains and
the canopy temperature depression (CTD) under (left column) irrigation with N120, (central column)
irrigation with N60, and (central column) rainfed conditions with N60. The irrigation data combines
the two support-irrigation regimes (SI-1, SI-2). Significance levels—ns, not significant; * p < 0.05 and
** p < 0.01. Abbreviations for variables and growing conditions are as defined in Tables 1 and 2.

3.6. Relationships of the Grain Yield with the Canopy Temperature Depression and the δ13C

Grain yield was negatively correlated with the δ13C of mature grains under irrigation at both N120
and N60, and positively correlated with the δ13C of rainfed conditions at N120 (Figure 1). Moreover,
GY was positively correlated with CTD under either irrigation (SI-1 and SI-2 combined) or rainfed
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conditions at N120, while under N60 no association was found (Figure 1 and Table S3). In the absence
of N fertilizer, no correlations were found (Table S3).

3.7. Relationships of Vegetation and Water Status Indices

The NDVI correlated highly and positively with both the GA and GGA vegetation indices when all
genotypes, growing conditions, and replicates analyzed were combined (Table 5). Moreover, the CTD
was also significantly (p < 0.01) correlated with the other water status parameters; negatively with δ13C
and positively with gs. Likewise, both vegetation and water status indices were significantly (p < 0.01)
correlated; the NDVI, GA and GGA were positively associated with CTD and gs and negatively
correlated with δ13C (Table 5).

Table 5. Correlation coefficients of the relationships between different indices used to measure crop
biomass and water status. Parameters were measured at anthesis. Treatments and genotypes were
analyzed together. Significance levels—** p < 0.010; *** p < 0.000. Abbreviations of variables as in
Tables 1 and 3.

Vegetation Indices Correlation Coefficients

NDVI vs. GA 0.77 ***
NDVI vs. GGA 0.73 ***

Water status indices

CTD vs. δ13C −0.57 **
CTD vs. gs 0.63 **

Vegetation and water status indices

NDVI vs. CTD 0.63 **
GA vs. CTD 0.55 **

GGA vs. CTD 0.54 **
NDVI vs. gs 0.51 **

GA vs. gs 0.58 **
GGA vs. gs 0.55 **

NDVI vs. δ13C −0.43 **
GA vs. δ13C −0.49 **

GGA vs. δ13C −0.44 **

3.8. Grain Yield Estimation Using Vegetation Indices and Canopy Temperature

A general model using linear regression of the NDVI, GA and CTD with GY in the 2012–2013 crop
season was developed in this study to estimate GY in the two successive crop seasons (2013–2014 and
2014–2015). Only the NDVI, GA and CTD were involved in this model because they were the three
variables included in the stepwise models to explain the difference in GY in the present study (see
Section 3.9 below) and were significantly (p < 0.01) correlated with GY in the first crop season [54].
With all growing conditions and genotypes analyzed together, the predicted and measured grain yields
were positively and highly significantly (p < 0.01) correlated in 2013-2014 and 2014–2015 (Figure 2)
using any of the three parameters studied alone (NDVI, GA, CTD). However, the range of normalized
values predicted was smaller, in general, using the NDVI (at 2014–2015 crop season) than either of the
other two indices. Predicted and measured GY for the 2013–2014 crop season was also positively and
highly correlated using the NDVI, GA and CTD (Figure 3) under irrigation (SI-2 and SI-1 combined)
with N fertilization (N120 and N60 combined) and without N fertilization (N0). For the 2014–2015
crop season, predicted and measured grain yields were also highly significantly (p < 0.01) correlated
using either the NDVI, GA or CTD (Figure 3), but only under irrigation (SI-2 and SI-1 combined) with
N fertilizer (N120 and N60 combined) and with no correlation under N0. In the absence of irrigation
(rainfed conditions) and regardless of the N fertilization conditions, we did not find any association
between the predicted and the measured grain yields (Figure 3). Grain yield estimation was also
examined within each of the nine growing conditions resulting from the combination of the three
water regimes and the three nitrogen fertilization levels (Figure S3). Under any of the two irrigation
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conditions with and without N fertilizer and the rainfed conditions with N fertilizer, the predicted GY
was positively correlated with the measured GY in both 2013–2014 and 2014–2015 using at least one of
the NDVI, GA or CTD parameters (Figure S3). Under rainfed conditions and N0 the predicted and
measured GYs were not correlated in either crop season (Figure S3).

Figure 2. Relationships of the measured versus the predicted grain yields of wheat achieved during
two successive crop seasons (2013–2014 and 2014–2015). Predicted grain yield values were calculated
using the linear relationships of the grain yield with two vegetation indices, the Normalized Difference
Vegetation Index (NDVI), the relative Green Area index (GA), as well as the canopy temperature
depression (CTD). All variables were evaluated during the 2012–2013 crop season. Measurements were
performed in the same region as the present study. For each crop season, different combinations of
wheat genotypes under different water regimes and nitrogen fertilization levels are plotted together.
Significance levels—ns, not significant; * p < 0.05; *** p < 0.01 and *** p < 0.001.
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Figure 3. Correlation coefficients of the relationships of the measured versus the predicted grain
yields achieved during two successive crop seasons (2013–2014 and 2014–2015). Predicted grain yield
values were calculated using the linear relationships of the grain yield with the NDVI, (GA) and CTD
evaluated during the 2012–2013 crop season in the same region as the present study. Predicted and
measured grain yield were correlated under irrigation and rainfed conditions both with and without
N. The irrigation with N values combine both irrigation regimes and the N120 and N60 treatments,
irrigation without N combines the two irrigation regimes without N fertilization, and the rainfed
conditions with N combine the two levels of N fertilization. Significance levels—ns, not significant;
** p < 0.01 and *** p < 0.001. Abbreviations of variables are as in Tables 1–3.

3.9. The Combined Effect of Remote Sensing Indices and Physiological Traits in Explaining Grain Yield

Stepwise regressions were performed for the irrigation conditions combined (SI-1 and SI-2) and
the rainfed conditions, and considered both groups under each of the three N fertilization levels using
grain yield (GY) as the dependent variable and the vegetation indices (NDVI, GA, GGA and LC)
and water status traits (CTD, gs, and δ13C) as independent variables (Table 6). Except for the rainfed
conditions with N60, the first trait selected by the model to explain GY was related to the plant water
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status, while under rainfed conditions the NDVI was the first and only trait chosen by the model
(Table 6).

Table 6. Multiple linear regressions (stepwise) explaining grain yield (GY) variation as a dependent
variable and the NDVI, GA, GGA, LC, CTD, gs and δ13C as independent variables.

Dependent
Variable

Growing
Conditions

Variable Chosen
Correlation
Coefficients

Final Stepwise
Model

GY Irrigation with N120 CTD 0.63 *** 0.24 CTD + 2.14
GY Irrigation with N60 δ13C 0.55 ** −0.42 δ13C − 7.91
GY Irrigation without N No variables were entered into the equation for this treatment
GY Rainfed with N120 CTD 0.66 *** 0.09 CTD + 2.27
GY Rainfed with N60 NDVI 0.63 ** 0.80 NDVI + 2.33
GY Rainfed without N No variables were entered into the equation for this treatment

Data were analyzed under each level of N fertilizer for the irrigation (combined SI-1 and SI-2) and the rainfed
treatments. Significance levels—** p < 0.01 and *** p < 0.001. Abbreviations for variables and growing conditions as
defined in Tables 1–3.

Furthermore, the genotypic differences in grain yield within each of the nine growing conditions
(resulting from the combination of the three water regimes and the three nitrogen fertilization levels)
were assessed through a stepwise model having GY as the dependent variable and any of the vegetation
indices and water status traits as independent variables. The model identified at least one trait
positively correlated with GY in only four of the nine growing conditions (Table S4).

Additionally, a conceptual model based on a path analysis was proposed (Figure S2) that separated
direct acclimation responses in grain yield related to water status traits and vegetation indices (through
GA and GGA). The three water status traits were included in the model because they represent
different scales: Temporal (δ13C), individual organ (gs) and canopy (CTD). Concerning the vegetation
indices, the NDVI was discarded because GA (whole photosynthetic biomass) and GGA (non-senescent
biomass) already tracked the same parameter. The final objective of the model was to dissect how
these physiological traits may have directly or indirectly assessed GY performance within different
growing conditions. The four path models proposed (Figure 4) provided an acceptable fit to the
data (CFI > 0.9 in all cases). Under irrigation and with and without N fertilizer, gs had a strong and
negative association with δ13C and strong and positive associations with CTD and GA. Significant
paths corresponding to a direct (negative) association of δ13C with GY were also observed in irrigation
conditions without N fertilizer and without, while CTD had a positive association with GY only under
irrigation with N fertilizer. A direct positive and strong association of GA with GGA was observed
under irrigation. GGA was in turn strongly and negatively associated with GY only under irrigation
without N fertilizer. Under rainfed conditions, GY was not associated with δ13C, but was positively
associated with CTD and GGA with N fertilizer, and negatively associated with GGA without fertilizer.
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Figure 4. Path analyses of four wheat genotypes grown under different combinations of nitrogen
fertilization and water regimes. The irrigation with N values combine both the SI-1 and SI-2 irrigation
regimes and the N120 and N60 nitrogen treatments, irrigation without N combines the two irrigation
regimes (SI-1 and SI-2) without N fertilization, and the rainfed conditions with N combine the two levels
of N fertilization (N60 and N120). Physiological parameters included in the model are: The stomatal
conductance (gs), the stable carbon isotope composition (δ13C) of mature grains, the Relative Green
Area (GA) and the Relative Greener Area (GGA), and the canopy temperature depression (CTD).
The width of the arrows is proportional to the path coefficient values. Dashed lines indicate negative
relationships. CFIs with values > 0.9 are taken as indicative of a good fit. Significance levels—* p < 0.05;
** p < 0.01 and *** p < 0.001.

Path analysis was also examined within each of the nine growing conditions (resulting from
the combination of the three water regimes and the three nitrogen fertilization levels (Figure S4).
Water irrigation conditions with and without N fertilization indicated the dependence of grain yield
on the water status traits δ13C and CTD (and the latter also under rainfed conditions with N fertilizer).
In the absence of N fertilization under both irrigation and rainfed conditions, GY seemed strongly and
negatively dependent on the vegetation index GGA.

4. Discussion

The grain yields achieved, even under the best growing conditions (SI-2 with N120) are
below 3 tonnes per hectare, and this clearly corresponds with moderate–low yielding conditions
in the Mediterranean [44,54]. The vegetation indices tested in this study, generated either
spectroradiometrically (NDVI) or derived from RGB images, performed well when assessing differences
in water conditions. The efficacy of these indices in capturing differences in growth and senescence in
response to water regime has been reported for wheat already [32,33,54]. The choice of anthesis as the
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phenological stage for the remote sensing measurements was decided based on the results of Yousfi et al.
(2016) [54] under similar agro-ecological conditions as in the present study, together with an additional
study under Mediterranean conditions where NDVI and RGB indices were measured periodically
during the crop cycle [22], with robust correlations between those indices measured at anthesis and
grain yield being reported. While the argument may be valid that any action on N management at
anthesis is probably too late to significantly affect yield, particularly for fully irrigated wheat, it may
still positively affect grain quality. More importantly, scheduling irrigation at anthesis may be fully
relevant for cereals under Mediterranean conditions where drought increases progressively during
the reproductive stage of the crop. Thus, following previous reports in wheat [54–56], a significant
association between the NDVI, GA and GGA vegetation indices and the water status parameters
(δ13C, gs and CTD) was also found in this study. The NDVI, GA and GGA were positively associated
with CTD and gs and negatively associated with δ13C. In this context, Lopes and Reynolds (2012) [57]
reported that the relationship observed between chlorophyll retention or ‘stay-green’ (assessed via
the NDVI) and canopy temperature would confirm the functionality of stay-green in terms of gas
exchange and would explain a better capacity to use water by the stay-green genotypes under stressful
environments related to low fertilization and the lack of water. Our data confirm the close association
between vegetation indices and water status parameters and identified the canopy greenness as a good
indicator of crop water status and irrigation management.

4.1. Vegetation Indices and Nitrogen Fertilization

Digital images have been used to evaluate the nitrogen status of crops [58,59]. Our results showed
that GGA was the only vegetation index exhibiting a significant difference between N treatments,
with lower values found under N0 compared with N60 and N120. The absence of N fertilizer limits
plant growth, whereas it may accelerate plant senescence during the reproductive stage of the crop,
therefore decreasing GGA compared to plants fertilized with nitrogen. In this context, [31] described
the greener area index (GGA) derived from RGB images is a good parameter for capturing active
photosynthetic area and plant senescence because it is formulated with green pixels alone. Furthermore,
the NDVI failed to assess differences under different N treatments. Digital pictures provide information
that is not currently acquired through spectral reflectance measurements, such as the portion of yellow
leaves in wheat growing under field conditions [31,32,52]. In the case of GA, this index, which takes
into account yellow/green pixels, is less stringent in terms of excluding non-senescent parts of the
plant. This may explain why GA measured during anthesis was not affected by N fertilization.

4.2. Canopy Temperature and Water Status in Wheat

Many studies have recognized canopy temperature depression (CTD) as an indicator of overall
plant water status [36,60] and a potential tool for irrigation management [9,61]. In our study,
CTD measured with an infrared thermometer was lower (and even negative) under rainfed conditions
compared to support irrigation. A priori, a higher CTD indicates a greater capacity for transpiration,
for taking up water from the soil, and therefore for maintaining a better plant water status [36]. In the
case of the rainfed trials, the fact that the leaf temperature was higher than the air temperature indicates
that rainfed plants were subjected to severe water stress that closed the stomata. In fact, the stomatal
conductance measured in the rainfed plants was very low and one third of that measured under the
best support-irrigation regime.

In addition, Gutierrez et al. (2010) [62] reported that the association between canopy temperature
and the normalized difference water index confirmed that canopy temperature is a good indicator of
hydration status. According to this, our results showed highly significant associations of CTD with
δ13C (negative) and gs (positive). Furthermore, CTD seems to be a better indicator of the water status
at the crop level than other traits related to water status, such as leaf gs [63]. In our study, CTD was
strongly associated with δ13C (r = 0.84 ***) under SI-1 at N60, with the NDVI (r = 0.67 **) under rainfed
conditions without N, and with grain yield (r = 0.66 **) under rainfed conditions at N120, while gs
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was not correlated with any of these parameters. These results confirm the close association between
canopy temperature and other water status parameters and identify the canopy temperature as a good
indicator of crop water status.

4.3. Relationship of Vegetation Indices and Water Status Traits with GY

As found in previous studies in wheat, the RGB canopy indices measured at flowering were
strongly correlated with GY [31,32,64]. For wheat under Mediterranean conditions, the reproductive
stage is usually the best period for crop monitoring, since the crop is exposed to increasing stress
(drought) conditions during the last part of the crop cycle. Following on from this, the present study
revealed a positive relationship between GA and GGA with grain yield under irrigation. Additionally,
stepwise analysis reinforced the evidence for the usefulness of the RGB vegetation indices to assess GY.
The GA vegetation index was chosen by the model as the first independent variable, explaining 66% of
GY variability under SI-2 without N fertilizer. Moreover, various studies have reported that RGB-based
indices may perform far better than the NDVI for GY prediction in wheat [32,56,65]. In our study,
the NDVI failed to assess GY under irrigation. In contrast, the NDVI was correlated (positively) with
GY under rainfed conditions and was also the only variable chosen by the stepwise model, explaining
63% of GY variation under rainfed conditions. In this context, Casadesus et al. 2007 [18] reported that
the NDVI measured at anthesis in durum wheat correlated positively with GY under severe water stress
conditions, but failed to correlate under well-watered conditions. Verhulst and Govaerts (2010) [66]
have also reported that the NDVI has been correlated with long-term water stress. The reason for
the low correlation of NDVI against GY under well-watered conditions is because plant canopies
during anthesis are very dense and the measured NDVI values become saturated. NDVI is an index
based on the strong contrast between the near infrared and the red band reflectance of a vegetation
canopy, and this difference becomes wider as the canopy cover increases. Thus, NDVI works better
with stress conditions where canopies are sparse and/or early senescence is present [27,31]. In any
case, anthesis proved to be the correct phenological stage for remote sensing evaluations when crops
under different levels of stress were compared, which may be the case for crops exposed to a range of
different combinations of water and nitrogen fertilization conditions.

Furthermore, the water status of plants can also be associated with grain yield. In our study,
CTD (positively) and δ13C (negatively) correlated with GY and both parameters were chosen by
the stepwise model as the first variables to explain GY variation under different irrigated and
rainfed growing conditions. In this context, previous studies have shown that a higher CTD is
associated with increased wheat yield under irrigated, hot environments [38,67], but also under
dryland environments [68].

However, in our study, and regardless of the water regime (rainfed or irrigation), neither the
vegetation indices (NDVI, GA and GGA) nor the water status indices (CTD and δ13C) were associated
with GY in the absence of N fertilizer. A lack of variability in green biomass and grain yield associated
with the lack of nitrogen fertilization might explain this outcome.

4.4. Phenotyping Parameters under Different Water and N Supplies

The results of our study have shown the usefulness of vegetation indices with low implementation
costs as a means to identify genetic variability under different growing conditions in the field. From nine
of the growing conditions studied (resulting from the combination of the three water regimes and the
three nitrogen fertilization levels), GY was significantly different between genotypes under only two
of the growing conditions (SI-2 at N120 and N60). In contrast, two of the vegetation indices (NDVI,
GGA) measured at anthesis were able to distinguish between the genotypes growing under six of
the nine growing conditions (including rainfed), regardless of the N fertilization conditions. In this
context, multispectral ground-based portable spectroradiometric devices have been used in wheat
phenotyping [24,27]. The conventional RGB images have also been proposed as a selection tool for
cereal breeding [18–20].
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The genotypic differences observed using vegetation indices possibly reflect differences in canopy
stay green during the reproductive stage. Lopes and Reynolds (2012) [57] reported that stay-green
is regarded as a key indicator of stress adaptation. Thus, our study revealed the usefulness of the
vegetation indices to select the most tolerant genotypes in terms of retaining a greener biomass during
the last part of the crop cycle. The three vegetation indices assayed were able to identify genotypic
differences, even under the most severe growing conditions, such as rainfed with and without N
fertilizer and where GY failed to detect differences among genotypes. Phenotyping wheat genotypes for
water and N fertilization deficit at anthesis using these vegetation indices should permit the formulation
of the best crosses between genotypes. However, by comparison, canopy temperature performed much
worse as a phenotyping parameter in our study. It has been reported that CTD is a poor indicator of
plant performance when the yield is highly dependent on limited amounts of soil-stored water [69,70].
Moreover, the canopy in these trials, particularly during the reproductive stages, frequently leaves
areas of bare soil exposed that may affect the canopy temperature readings. Leaf chlorophyll content
measured by a portable device was perfect for distinguishing among genotypes, regardless of the water
status (irrigation or rainfed), but only when trials were provided with nitrogen fertilizer. Therefore,
for the agronomic conditions of our study, the vegetation indices assessed at the canopy level performed
better as phenotyping tools than canopy temperature and chlorophyll content measures.

4.5. Grain Yield Prediction across Crop Seasons Using Low-Cost Remote Sensing Techniques

The results of data combining the growing conditions, genotypes and replicates support the use
of different affordable remote sensing techniques to estimate grain yield across crop seasons. However,
in agreement with Clevers (1997) [71], estimates of crop growth and yield using crop growth models
often lost accuracy as the growing conditions became more stressed. The loss of accuracy may be the
consequence of a very narrow range of variability in grain yield associated with stressed growing
conditions. Moreover, vegetation indices derived from RGB images performed comparatively better
than the NDVI, probably because GA was less saturated than the NDVI. The application timing
could have played a critical role here—i.e., saturated NDVI at anthesis is indeed not expected to
perform well, while the saturation pattern of RGB indices is less evident. In fact, the acquisition of
high-resolution RGB images is fast and its dependence on atmospheric conditions (e.g., sunny versus
cloudy days) is minimal [22,32]. Therefore, the availability, cost and practicality of digital cameras
make them an ideal tool for the management of crop water and fertilization status [19,22]. However,
in agreement with previous reports, the relationships between yield and vegetation were site and
season specific [20,21]. In our study models were not able to predict absolute yields, but rather relative
differences in yield, which makes the approach unfeasible for yield forecasting, but it is still useful
in terms of crop management and even phenotyping. The strong relationships of these vegetation
and water status indices with grain yield expressed in relative units support the effectiveness of these
low-cost indices in crop management. Nevertheless, whereas the evaluations in the three successive
seasons were performed in the same region, crop management conditions (water and fertilization
regimes) affected the performance of the models. Hence, to make yield predictions more holistic and
effective across different environments, it is necessary to use more robust calibration; for example,
incorporating site-year covariates or a multi sensor approach [21].

4.6. An Integrated Model to Predict Grain Yield That Combines Remote-Sensing Traits, Canopy Reflectance
Measurements and Grain δ13C

In this study, we performed a path analysis to dissect how the vegetation indices (GA and GGA)
and the water status (CTD, δ13C and gs) indices directly or indirectly assessed GY performance within
each of the growing conditions assayed. The following parameters may provide suitable coverage of
the factors affecting GY performance under a given water regime and nitrogen fertilization supply:
Vegetation indices as indicators of photosynthetic capacity (GA) and the effect of early senescence
(GGA) on the canopy; CTD which informs about the current water status of the canopy; the δ13C
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in mature grains as a time-integrated indicator of photosynthetic and transpirative gas exchange of
the crop; and the water status at the single organ level (assessed as the gs of the flag leaf). Under
irrigation and nitrogen fertilization, both δ13C and CTD (indicators of photosynthetic and water status)
had a direct association with GY. Better grain yield performance is associated with higher CTD and
lower δ13C under supplementary irrigation. The association of δ13C (negative) and CTD (positive)
with GY is probably due the higher stomatal conductance and transpiration, (which increases CTD),
therefore increasing the photosynthetic capacity even at the expense of a lower water use efficiency
(and thus δ13C) and the consequent increases in GY [47,72]. Under rainfed conditions with N fertilizer,
the transpiration/water status (assessed through CTD) and photosynthetic potential (evaluated through
vegetation indices) affected GY. Under rainfed conditions with N120, CTD had a positive effect on GY.
We suggest that N fertilization only had a positive effect on grain yield providing that there was water
available to maintain transpiration (higher CTD), stomatal conductance and thus photosynthesis in the
available canopy (higher vegetation indices).

In the absence of nitrogen fertilization, and despite the water conditions (irrigated or rainfed),
the total canopy area (evaluated through GA) has a positive effect on GY. However, an excess of
young (not senescing) leaf area (evaluated through GAA) had a strong negative association with GY.
Stay-green character may have a negative effect on GY in the absence of nitrogen fertilization because
it limits the retranslocation of N to the inflorescences and ultimately affects grain filling. In the case of
the rainfed crop fertilized with a limited amount of nitrogen (N60), the active canopy area (evaluated
through GGA) had a positive effect on grain yield, which may indicate that the limitation is imposed
by the amount of photosynthetic area rather than by the availability of N to reproductive tissues.
Under conditions of high nitrogen fertilization (N120) and irrespective of the water regime (irrigated
or rainfed), GY is not affected by the size of the canopy or even by its greenness (assessed through GA
or GGA), but by the water status of the crop (evaluated through CTD and δ13C).

5. Conclusions

This study demonstrated the potential of low-cost RGB vegetation indices and the canopy
temperature for the management of growing conditions (essentially the water and nitrogen regimes)
under Mediterranean conditions. Although the models did not predict absolute yields, they are still
useful in terms of crop management and even phenotyping. Nevertheless, grain yield estimation
performs better under irrigation than under the low-yielding conditions of rainfed cultivation in the
absence of nitrogen fertilization and this illustrates one of the potential limitations associated with
the remote sensing-based yield predictions; they are affected by specific environmental conditions.
Even though a multispectral vegetation index, such as the NDVI is a widely accepted approach to
monitor changes in growth under different conditions, in this study we have shown that vegetation
indices derived from conventional images like the GA and GAA indices provided a similar if not better
prediction of grain yield and at a comparatively lower cost than the NDVI. The use of vegetation indices
derived from RGB images to assess GY could be popularized in the near future via apps installed on
mobile phones.

The vegetation indices have also proven their suitability for differentiating among genotypes.
Furthermore, these traits may contribute through path analysis to develop physiological models for
assessing wheat ideotypes best suited to different water and nitrogen regimes. The models showed that
for nitrogen fertilized trials, and regardless of the water regime imposed, the water status parameters
were the main factors determining GY performance. Moreover, a larger green area at anthesis may
also contribute to a larger yield. In the absence of nitrogen fertilization, a large greener canopy area
(assessed through GGA) at anthesis is a factor that negatively affects grain yield.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/6/285/s1,
Figure S1: Scheme detailing the different plots of the experimental design, Figure S2: Conceptual model of the path
analyses quantifying the relative strengths of the direct and indirect relationships of the different physiological
traits and grain yield. Physiological parameters included in the model are: The stomatal conductance (gs),
the stable carbon isotope composition (δ13C) of mature grains, the Relative Green Area (GA) and the Relative
Greener Area (GGA) indices calculated from digital pictures, and the canopy temperature depression (CTD)
measured with an infrared thermometer, Figure S3: Relationships of the measured versus the predicted grain yields
of wheat achieved during two successive crop seasons (2013–2014 and 2014–2015). Predicted grain yield values
were calculated using the linear relationships of the grain yield with the two vegetation indices, the Normalized
Difference Vegetation Index (NDVI) measured with a portable spectroradiometer, and the relative Green Area
index (GA) calculated from digital images, and the canopy temperature depression (CTD) measured with an
infrared thermometer. All variables were evaluated during the 2012–2013 crop season. Measurements were
performed in the same region as the present study. Grain yield and vegetation index data of the two first crop
seasons have been reported in Yousfi et al. (2016). For each crop season, the nine different growing conditions
(resulting from the combination of the three water regimes and the three nitrogen fertilization levels) were analysed.
The different combinations of nitrogen fertilization and water regimes for the 2013–2014 crop season were as
follows: Supplementary irrigation (SI-2) with nitrogen fertilization N120 and N60 and without N fertilization;
Supplementary irrigation (SI-1) with nitrogen fertilization N120 and N60 and without N fertilization; Rainfed
with nitrogen fertilization N120 and N60 and without N fertilization. In addition, for the 2014–2015 crop season
the combinations were as follows: Supplementary irrigation (SI-2) with nitrogen fertilization N120 and N60 and
without N fertilization; Supplementary irrigation (SI-1) with nitrogen fertilization N120 and N60 and without N
fertilization; Rainfed with nitrogen fertilization N120 and N60 and without N fertilization. Significance levels—ns,
not significant; * p < 0.05; ** p < 0.01 and *** p < 0.001, Figure S4: Path analyses of four wheat genotypes grown
under different combinations of nitrogen fertilization and water regimes. The different combinations of nitrogen
fertilization and water regimes are as follows: (A) SI-2 with high fertilization (N120); (B) SI-2 with medium
nitrogen fertilization (N60); (C) SI-2 without nitrogen fertilization; (D) SI-I with high nitrogen fertilization (N120);
(E) SI-I without nitrogen fertilization (N60); (F) Rainfed with high fertilization (N120); (G) Rainfed with medium
nitrogen fertilization (N60); (H) Rainfed without nitrogen fertilization. Physiological parameters included in
the model are: The stomatal conductance (gs), the stable carbon isotope composition (δ13C) of mature grains,
the Relative Green Area (GA) and the Relative Greener Area (GGA) indices calculated from digital pictures,
and the canopy temperature depression (CTD) measured with an infrared thermometer. The width of the arrows
is proportional to the path coefficient values. Dashed lines indicate negative relationships. Overall fit statistics
for each path model (chi-squared, the probability and comparative fit index, CFI) are shown at the bottom left
of each panel. CFIs with values > 0.9 were taken as indicative of a good fit. Significance levels—* p < 0.05;
** p < 0.01 and *** p < 0.001; Table S1: Soil chemical characteristics at different depths, Table S2: Monthly total
accumulated rainfall (PP), minimum air temperature (T min), maximum air temperature (T max) and average air
temperature (T aver) for the 2014–2015 crop season. Values were collected at the meteorological station of Khemis
Miliana (Algeria), Table S3: Correlation coefficients of the linear relationships of grain yield (GY) with NDVI,
GA, GGA, CTD and δ13C under irrigation without N fertilization and rainfed conditions with N120, N60 and
without N, Table S4. Multiple linear regressions (stepwise) across genotypes and replicates explaining grain yield
(GY) variation as a dependent variable and the NDVI, GA, GGA, LC, CTD, gs and δ13C as independent variables.
Data were analyzed within each level of nitrogen fertilization and water regime. Significance levels—* p < 0.05;
** p < 0.01 and *** p < 0.001. Abbreviations for variables and growing conditions as defined in Tables 1 and 2.
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Abstract: This study aimed to compare standard and precision nitrogen (N) fertilization with variable
rate technology (VRT) in winter wheat (Triticum aestivum L.) by combining data of NDVI (Normalized
Difference Vegetation Index) from the Sentinel 2 satellite, grain yield mapping, and protein content.
Precision N rates were calculated using simple linear models that can be easily used by non-specialists
of precision agriculture, starting from widely available Sentinel 2 NDVI data. To remove the effects
of not measured or unknown factors, the study area of about 14 hectares, located in Central Italy,
was divided into 168 experimental units laid down in a randomized design. The first fertilization
rate was the same for all experimental units (30 kg N ha−1). The second one was varied according to
three different treatments: 1) a standard rate of 120 kg N ha−1 calculated by a common N balance; 2) a
variable rate (60–120 kg N ha−1) calculated from NDVI using a linear model where the maximum
rate was equal to the standard rate (Var-N-low); 3) a variable rate (90–150 kg N ha−1) calculated from
NDVI using a linear model where the mean rate was equal to the standard rate (Var-N-high). Results
indicate that differences between treatments in crop vegetation index, grain yield, and protein content
were negligible and generally not significant. This evidence suggests that a low-N management
approach, based on simple linear NDVI models and VRT, may considerably reduce the economic and
environmental impact of N fertilization in winter wheat.

Keywords: NDVI; remote sensing; GIS; precision farming; variable rate technology; yield mapping;
protein content

1. Introduction

In recent decades, population growth and the expanding demand of agricultural products
for multiple purposes have constantly increased the environmental pressures on land and water
resources. Worldwide concern of citizens and governments on environmental issues, together with
the availability of improved and cost-effective methodologies and tools for spatial data acquisition,
analysis, and modeling, have promoted the development of precision agriculture (PA) techniques.
PA is based on innovative system approaches that use a combination of various technologies such as
Geographic Information System (GIS), Global Navigation Satellite System (GNSS), computer modeling,
Remote Sensing (RS), variable rate technology (VRT), yield mapping and advanced information
processing for timely in-season and between season crop management [1].

Currently, a wide range of satellite data is available that varies in terms of acquisition cost,
technique (active/passive), spatial resolution, spectral range, and viewing geometry [2]. A recent step
forward was made thanks to the launches of Sentinel-2A (2015) and Sentinel-2B (2017) satellites by
the European Space Agency (ESA), intended for Earth observation and monitoring of land surface
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variability. The Sentinel-2 satellites are equipped with a multispectral sensor (MSI) including 13 spectral
bands, with a spatial resolution ranging from 10 m to 60 m, which provides relevant information for
supporting precision agriculture [3]. Images provided by Sentinel-2 satellites are publicly available for
free through the Copernicus Open Access Hub with 5 days temporal resolution averaging (2–3 days in
mid-latitudes), in L1C or L2A processing levels, which make them attractive for time-series analysis
and PA applications. The Level-2A product provides Bottom Of Atmosphere (BOA) reflectance images
derived from the associated Level-1C product, which provides Top Of Atmosphere (TOA) reflectance
images [4].

Satellite remote sensing of vegetation is mainly based on the green (495–570 nm) and red
(620–750 nm) regions of the visible spectrum, the red-edge (680–730 nm), near and mid infrared bands
(850–1700 nm). These bands are often combined with a range of algebraic formulas to obtain several
Vegetation Indices (VIs) for assessing vegetation status and crop management (see e.g. references [5–7]).
The Normalized Difference Vegetation Index (NDVI) [8], a normalized difference between reflectance of
Red and Near-Infrared (NIR) spectral bands, is still the most used index worldwide because of its ease
of calculation and interpretation. It varies between 0 and 1 in cropped areas, increasing with soil cover,
LAI (Leaf Area Index), chlorophyll content, and plant N-nutritional status (see e.g. references [9–11]).
The NDVI has been widely tested to assess wheat N-nutritional status and yield, with encouraging
results [12–14].

N is the main nutrient supplied to most crops, including wheat, and may cause environmental
impacts on near-surface and deep aquifers [15]. Increasing the N rate generally increases crop yield
since it increases the grain number and size [16]. However, increasing the N rates reduces the N
uptake efficiency and increases the amount of residual N in the soil which is exposed to leaching
risks [9,17]. Countless studies are available on wheat N nutrition and several of the recent ones have
dealt with precision N fertilization, but most of them propose quite complex approaches that are
not widely adoptable by non-specialists of PA. For example, Bourdin et al. [18] propose a complex
model starting from LAI, estimated by remote sensing, and yields from previous years; Basso et al. [19]
use a crop simulated model (SALUS) based on weather and yields from previous years. Another
approach consists in assessing spatial variability to delineate homogeneous sub-field areas overlapping
various thematic spatial maps (such as yield, soil properties) or applying a multivariate geostatistical
approach of the factors that affect yield and grain quality [20]. In this context Song et al. [21] delineated
management zones on the basis of soil, yield data and remote sensing information derived from
Quickbird imagery. Besides these methods, to improve the use of N prescription maps in PA, various
simplified approaches based on NDVI have also been developed through user-friendly web interfaces
(e.g. CropSAT [22], Agrosat [23], OneSoil [24]) but these approaches can be applied only in specific
areas or lack either quantitative analysis or validation.

While traditional flat-rate spreaders typically tend to over- or under-apply fertilizers, with VRT
spreaders it is possible to modify the distribution rate according to on-the-go proximal sensors
measuring, in real-time, plant properties or prescription maps derived through more or less advanced
models including various spatial factors (e.g.: vegetation indices, soil variables, yield maps, crop
nutrition status) [25]. However, the majority of precision fertilization approaches are generally
map-based, because on-the-go sensors are too expensive, not sufficiently accurate, or not available [26].
VRT spreaders are subject to errors depending on the technology and the intrinsic characteristics of the
fertilizer [27].

Grain yield mapping aims at providing or increasing knowledge about the spatial heterogeneity of
yields. This technology is based on the recording of georeferenced yield data thanks to the integration
of different subsystems mounted on the combines [28]: (i) harvest quantity measurement sensors (mass
or volume); (ii) GNSS location sensors; (iii) reference area measurement sensors (working width, speed,
time); (iv) data recording and processing units. To generate yield maps, the harvested quantities are
georeferenced and associated with the corresponding reference area which is calculated by multiplying
the working width by the area length (working speed * time interval). Yield mapping accuracy is
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influenced by many factors including flow sensor calibration, combined speed changes, grain flow
variations, grain moisture, and the level of smoothing applied for mapping [29].

While many studies combine VIs (from various remote or proximal sensors) and VRT crop
fertilization, only a small quantity of research integrates yield mapping sensors, and, to our knowledge,
probably no study has ever combined VIs, VRT fertilization, and yield mapping in a PA case study
and, in particular, to assess the effects of different variable N-rate treatments on winter wheat.

In this framework, this study was aimed at comparing two VRT N fertilization treatments (based
on Sentinel 2) versus a standard flat N rate in terms of crop NDVI trend, grain yield, and protein
content. In order to promote the adoption of PA techniques among farmers and non-specialists in
PA, a simplified approach, based on free and open-source software, the widely used NDVI, and an
easily-applicable linear model, was applied to calculate the VRT N fertilization rates.

2. Materials and Methods

2.1. Crop Management and Experimental Treatments

The experiment was carried out in the cropping season 2017-2018, on a 14 ha plain field of the
middle Tiber valley, near Deruta, Umbria, Italy (170 m a.s.l., 42◦95’07” N, 12◦38’18” E), provided by the
Foundation for Agricultural Education of Perugia (Figure 1). The soil was loam with increasing sand
content from the west to the east side. The climate is Mediterranean, characterized by a dry season
between May and September and a cold and rainy season from October-November to March-April.
The cropping season 2017–2018 was unusually rainy in December and March, while temperatures were
generally higher than the poly-annual trend except for a very cold end of February (Figure 2).

 
Figure 1. Geographical location of the study area and experimental layout. Flat-N (standard rate of
120 kg N ha−1), Var-N-low (variable rate from 60 to 120 kg N ha−1), Var-N-high (variable rate from 90
to 150 kg N ha−1).

The experimental crop was a rainfed winter wheat (Triticum aestivum L., cv. PRR58) sown on
10 November 2017 at a nominal density of 450 viable seeds m-2. The previous crop had been pea
(Pisum sativum Asch et Gr). The crop was managed according to ordinary practices, while weeds
and diseases were controlled chemically. The N rate was split in two application times in order to
increase N uptake efficiency, support the formation of yield components and limit N leaching by
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fall-spring rainfall. The first N application (as urea) occurred on 18 January 2018 with 30 kg N ha−1,
while the second N fertilization (as urea), occurred on 26 March 2018 and was managed according to
three experimental treatments: 1) a standard rate of 120 kg N ha−1 (Flat-N) derived by an N balance
approach (the relatively high rate is justified by the very rainy winter); 2) a variable rate of 60 to
120 kg N ha−1, based on NDVI, where the maximum rate was equal to the standard rate (Var-N-low);
3) a variable rate of 90 to 150 kg N ha−1, based on NDVI, where the medium rate was equal to the
standard rate (Var-N-high). An inverse linear relationship between NDVI and VRT N-rates was
adopted in Var-N-low and Var-N-high on the assumption that NDVI and other correlated VIs (e.g.
NIR/Red simple ratio), before the second N fertilization (7–8 Feekes’ stage), are directly related to
crop N nutritional status [10,13,30]. Thus, the Var-N-high was defined with the aim of keeping the
average N-rate equal to the flat N-rate while optimizing the N fertilization according to the supposed
N nutritional status. The range adopted in Var-N-high represents a variation of ±25% of the flat N rate,
and a ±20% of the total N supplied (including the 30 kg N ha−1 of the first N application), which was
considered as being appropriate to see appreciable effects on wheat yield. The Var-N-low was defined
with the aim of testing a sensible N reduction, the results of which were very important in those areas
where a more eco-compatible approach is required. So, the flat N-rate was considered as the maximum
N level and the −50% of the flat N rate (−40% of the total rate, equal to 90 Kg/ha including the first N
application) was adopted as a lowest reference level based on the evidence from a previous study in
the same location [16].

 
Figure 2. Monthly cumulated rainfall and average temperatures per decade during the wheat growing
season 2017–2018 and in the long term (temperature 1951–2018, rainfall 1921–2018).

To account for the possible not measured or unknown factors, the 14 ha study area was divided
into 168 plots of about 700 square meters each (35 m long, 21 m wide) grouped in 28 zones. The three
treatments were laid down according to a randomized design with 2 replicates per treatment in each
zone for a total of 56 replicates per treatment in the whole study area (Figure 1). All the precision on-field
operations were performed using a tractor equipped with a Topcon GNSS automatic guide device
connected to a Real Time Kinematic (RTK) network. The variable rate treatments were performed using
a Sulky 40+ (ECONOV) VRT fertilizer spreader connected through ISOBUS (a widely used software
protocol complaint to ISO 11783 standard) to the Topcon system console. The console, after each VRT
fertilization, releases the output of each fertilization map showing the estimated distributed rates.
This output was compared to the prescription map to investigate the accuracy of the N distribution.
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2.2. Calculation of Rates for VRT Treatments

A Level 2A Sentinel-2 image collected on 22 March 2018 (i.e., four days before the second
fertilization), georeferenced according to WGS84-UTM32, was downloaded from The Copernicus
Open Access Hub. NDVI, calculated from bands 4 and 8 using QGIS Raster calculator (Figure 3a), was
used for the N rates calculation of the two variable rate treatments. In both cases, a linear relationship
was imposed between the average NDVI value calculated for all experimental units and fertilizer-N
rates where the 5◦ percentile of NDVI value corresponded to the minimum fertilizer-N rates (60 or
90 kg N ha−1) and the 95◦ percentile of NDVI value corresponded to the maximum fertilizer-N rate
(120 or 150 kg N ha−1) (Figure 3b). All the data processing and analysis were carried out using QGIS
software, version 2.18.12 64bit [31] and MS Excel 2016. Average NDVI values were calculated using
the SAGA grid statistics for the polygons algorithm included in the QGIS processing framework.
To simplify this step, pixels overlapping the border of the experimental plots were not excluded from
the calculation. To assess the effect of these pixels, average NDVI values were compared with those
obtained while considering only non-overlapping pixels.

Figure 3. (a) NDVI calculated from Level 2A Sentinel-2 image collected on 22 March 2018; (b)
Prescription N map developed by integrating the three different experimental treatments.

2.3. Determination of NDVI

To monitor and compare the NDVI of experimental treatments, all relevant level 2A Sentinel-2
images with no cloud cover on the study area, were collected from 22 March to the beginning of the
senescence. Average NDVI values were calculated for each plot using the SAGA grid statistics for
the polygons algorithm included in the QGIS processing framework. Six to nine S2 pixels fell within
each experimental unit. To highlight possible differences between the effects of the experimental
treatments while considering different crop vigor status before the second N fertilization, the NDVI
time series analysis was performed by classifying plots according to three NDVI classes (NDVI ≤ 0.68;
0.68 < NDVI ≤ 0.79; NDVI > 0.79), as revealed by the S2 image from 22 March.

2.4. Determination of Grain Yield and Protein Content

Harvest was carried out on 26 June 2018 using a combined harvester Claas Lexion 780–740
equipped with a Topcon YieldTrakk system (processing data from the optical sensor measuring grain
mass flow and moisture sensors), which produced a georeferenced yield map as an ESRI polygon
shapefile. The combine harvester had a cutting width of 7.50 m and was equipped with a tilt sensor to
correct the effect of slope on the sensor readings. An initial on-field calibration was performed on the
combine to adjust for the actual working width and measure the unit weight of grain, which was used
by the system to convert the measured mass flow (l/s) to Mg.
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The output shapefile containing the georeferenced yield data was intersected with the experimental
units to calculate the average yield expressed in Mg ha−1 which was used for the subsequent analysis.
To produce an easy-to-read yield map, the shapefile was converted to a 5 m resolution raster. Subsequent
gaussian kernel smoothing, based on a 50 m search radius, produced the final yield map.

Protein content was measured on 20 June 2018 (i.e., six days before final harvest). To reduce
the number of samples, the sampling scheme was defined according to the three classes of NDVI
previously defined for a total of 36 field samples, then merged two by two to obtain 18 lab samples,
which were analyzed according to the official Kjeldahl method, a widely used chemical procedure for
the quantitative determination of protein content in food, feed, feed ingredients and beverages [32].

3. Results

The NDVI values on 22 March show within-field differences mainly associated with the west-east
textural gradient (Figure 3a). Average NDVI values including overlapping pixels with plot borders
differ only slightly from those obtained while excluding these pixels (0.015 in average absolute
value, 0.011 St. Dev.). According to the linear model used for N-rates calculation, these differences
correspond only to 2.6 kg/ha (1.8 St. Dev.) for Var-N-low treatment and 2.6 kg/ha (2.1 St. Dev.) for the
Var-N-high treatment.

A comparison between the prescription map and the Sulky output (Figure 4a) shows that the
correlation between the prescribed rate and the rate actually supplied by the VRT machine within each
plot was very good (R2 = 0.91) (Figure 4b), with only a little bias which resulted in smoothing the
extremes, raising the lower rates and lowering the higher ones (Table 1).

 
Figure 4. (a) Comparison between prescription map and the distributed Sulky output. (b) Scatter plot
between the prescribed and distributed rate within each plot.

Table 1. Amounts of N prescribed and supplied with the second N application in the three treatments:
Flat-N (standard rate of 120 kg N ha−1), Var-N-low (variable rate from 60 to 120 kg N ha−1), Var-N-high
(variable rate from 90 to 150 kg N ha−1).

Treatments
Average N
prescribed

(Kg N ha−1)

Average N supply
(Kg N ha−1)

Average
Δ (%)

Δ St. Dev.
(Kg N ha−1)

Flat-N 120.0 116.5 −1.3% 0.03
Var-N-low 90.2 95.4 5.4% 0.06
Var-N-high 120.5 117.0 −3.0% 0.05
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After the second fertilization, the trend of NDVI, considering the three vigor classes previously
defined, was not affected by fertilization treatments (Figure 5). In the portion of the field where the
NDVI was already high on 22 March (class III—about 0.85), all treatments showed a further moderate
increase up to over 0.9, while in the portion of the field where NDVI was low (class I—just over 0.6),
all treatments showed an increase up to 0.85 in about one month, and nearly 0.9 later on. As expected,
an intermediate trend can be observed for treatments with NDVI falling within class II. Thus, whatever
the crop vigor status was on March 22nd, all treatments reached a high NDVI one month after the
second N application (Figure 5).

 
Figure 5. NDVI time series analysis, considering the three vigor classes as identified in the S2
image of March 22nd (I: NDVI ≤ 0.68; II: 0.68 < NDVI ≤ 0.79; III: NDVI > 0.79), for the three N
fertilization treatments: 1) Flat-N (standard rate of 120 kg N ha−1); 2) Var-N-low (variable rate from 60
to 120 kg N ha−1); 3) Var-N-high (variable rate from 90 to 150 kg N ha−1).

Grain Yield and Quality

The yield map used for the quantitative analysis is shown in Figure 6a, while the generalized
version used only for visual analysis purposes is shown in Figure 6b. The three treatments did not
differ significantly for total yield (Table 2) and no relationship was found between the N rate and
yield (R2 = 0.087). Similarly, no correlation was found between N treatments and protein content
(R2 = 0.001). However, the slight difference in protein content observed between Flat-N and Var-N-low
(Table 2) was statistically significant (p = 0.02) even though it was not agronomically relevant. Finally,
grain yield was weakly correlated to NDVI at any time of NDVI measurements (Table 3).

Table 2. Grain yield and protein content for the three N fertilization treatments: Flat-N (standard rate
of 120 kg N ha−1), Var-N-low (variable rate from 60 to 120 kg N ha−1), Var-N-high (variable rate from
90 to 150 kg N ha−1).

Treatment
Average Yield

(Mg ha−1)
St. Dev. Yield (Mg

ha−1)

Average Protein
Content (%)

St. Dev. Protein
Content (%)

Flat-N 6.74 0.36 9.4 0.31
Var-N-low 6.73 0.39 8.9 0.37
Var-N-high 6.76 0.38 9.2 0.48
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Table 3. Correlation between yield and NDVI at any time of NDVI measurement plotted over all of the
168 plots.

Date R2

22 Mar 0.29

6 Apr 0.26

21 Apr 0.24

29 Apr 0.19

11 May 0.19

10 May 0.18

26 May 0.27

31 May 0.26

 
Figure 6. (a) yield map used for quantitative analysis; (b) generalized version of yield map.

4. Discussion

Our study investigated the differences between a flat N fertilization rate and two variable rates
defined through a simplified method based on Sentinel-2 NDVI collected a few days before the second
fertilization. One of the two variable rates was aimed at drastically reducing the overall N input
(Var-N-low), the other one was aimed at maintaining the same overall input (Var-N-high) as in the
flat rate (Flat-N), i.e., 120 kg N ha−1 while optimizing the N fertilization according to the supposed N
nutritional status. Our results show that a VRT approach with a lower overall N rate may be more
efficient, giving same grain yield and quality (Table 2) with a lower N input (Table 1). This result is
consistent with the evidence of Raun et al. [33] which reports that the VRT method improves the NUE
(Nitrogen Use Efficiency) by 15% compared to a flat rate. In vulnerable contexts, as in the study area,
the N-rate reduction results environmentally and economically very relevant since it could reduce
water pollution (still a critical issue in Umbria and all over the world) and decrease expenditures on N.
However, differently from our case study, a Var-N-low treatment could determine a lower protein grain
content. In this regard, the economic trade-off between lower N costs and reduced yield value due to
lower grain protein content could be calculated by the farmers using their local costs and prices. Indeed,
the treatment Var-N-low differed from the other two treatments by only about 20 kg N ha−1 on average,
which was supposed to be not so important compared to the total amount available (i.e., about 160 vs
180 kg ha−1), accounting for the residual N left by the previous pea crop (likely around 30 kg N ha−1)
and the amount of N supplied with the first mineral N application (30 kg N ha−1). It is worth noting
that about 180 kg ha−1 of available N was in line with the usual practice adopted by farmers in the
Tiber valley of Umbria and adequate, if not limiting, in view of the high yielding potential of this area
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(6–8 tons grains ha−1). Nonetheless, the rainy fall-spring of 2017–2018 caused a relevant N loss from
the soil, thus, in this case, a difference of 20 kg N ha−1 was expected to make a difference. Several
reasons can be addressed to explain the lack of difference among treatments. The main one is that
crop development was not associated to N availability but to the soil textural gradient, with NDVI
values tendentially as lower as higher appeared the sand content in the soil. In such a condition, and
considering the rainy season, forcing the N rate in plots with low NDVI (i.e., with higher sand content)
resulted in losing N (mainly by leaching) without affecting yield. As reported by Asseng & Turner [34],
NUE is mainly influenced by soil and rain. Thus, in our case, the N rate increase did not translate
in a NUE increase as this was probably limited by the other factors. This would justify that, in some
cases, the N rate should be directly related to the NDVI [35], i.e., increased where NDVI is higher and
decreased where NDVI is lower, on the assumption that lower NDVI values could prove that other soil
characteristics, besides N availability, are not suitable for allowing high yields. For example, a soil
with low water retention is not suitable in case of dry grain filling periods (as it is in Mediterranean
areas) due to water shortage and thus lower yields whatever the N availability [36–38]. The similar
time course of NDVI observed in all the three treatments, distinguishing three different vigor status
before the second fertilization (Figure 5), also proves that N was not the limiting factor, or at least, the
20 kg N ha−1 of difference among treatments was not relevant for crop NDVI.

The weak correlation between grain yield and NDVIs at any date of monitoring (R2 always below
0.3) appears in contrast with the evidence of Sultana et al. [12] and Liu et al. [39] which show high
correlation between NDVI and yield, especially for NDVI recorded during the milky-grain vegetative
stage. However, the NDVI recorded in our experiment from 21 April onwards was quite high for all
treatments, whereas it is known that the correlation with yield stands only when a wide range of NDVI
is considered [16].

As discussed above, the textural gradient likely affected yield through N and water availability,
more than the N fertilization treatments. This assumption is supported by the case study of
Basso et al. [19] who observed a high correlation between yield and pedological conditions, in particular
soil water capacity. Also, Zhao et al. [40] reported that fertilization, as well as the availability of water,
significantly affected the content of wheat proteins, even though the latter was more influent, especially
for those cultivars characterized by an intermediate protein content. Probably, further splitting the
rate, with a third application at the end of shooting, would have prevented some N loss and increased
the grain protein content [41], which was quite low compared to the standard of our cultivar. Again,
the low protein content can be ascribed to the rainy season, as it was widespread for the harvest of
2018 in Umbria and all-over Central Italy.

Concerning the prescription map used in the study, including the overlapping pixels with plot
borders in average NDVI calculation simplifies the GIS procedures without generating agronomically
meaningful N-rates differences. Because of the high variability within field zones and among plots,
the map could be considered as a kind of stress test for the VRT device. The very little differences
between prescribed and distributed rates (Table 2) suggest that this technology is suitable for precision
fertilization even with highly detailed prescription maps. The highlighted differences are clearly due
to small plot size and random allotment of treatments. As a result, the VRT machine was subjected to
abrupt rate variations due to the short time available to adapt the opening of the distribution valve.

The simple linear approach to calculate a N prescription map proposed in this research, even
though requiring average GIS skills could be effective for VRT adoption by non-specialist farmers.
Coherently with other similar experiences [22–24], to improve the overall usability of the method
by non-specialists in PA and allow further validations and tuning, all the RS data management and
GIS calculation could be implemented in an user-friendly web-GIS application where the user could
upload (or digitize on aerial data) his own fields, choose the S2 NDVI reference date, and decide the
most suitable approach for defining the N rate. NDVI S2 data could be conveniently accessed through
the Sentinel Hub platform API [42].
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Concerning the integration of NDVI from Sentinel 2, VRT fertilization, and yield mapping in
PA, our experience confirms that these technologies, thanks also to both the web-based applications
for calculating satellite-based prescription maps [22–24] and the user-friendly interfaces of system
consoles, could be ordinarily used even in small or medium-sized farms. However, a preliminary
cost-benefit analysis and a start-up training and support by a PA expert is often necessary.

5. Conclusions

Our results regarding crop vegetation index, grain yield, and protein content indicate that the
adoption of a low-N management approach, based on simple linear models and VRT, may considerably
reduce the economic and environmental impact of nitrogen fertilization in winter wheat. However, the
rainfed nature of winter wheat in Mediterranean environments may cause unpredictable yield and
quality variations depending on climatic trends and soil properties due to their effects on both soil
nitrogen and water availability. In this view, VRT nitrogen fertilization can only partially mitigate the
heterogeneity of production determined by such environmental factors. The alternative approach of
providing a nitrogen supply proportional to the crop NDVI deserves to be considered when factors
other than N fertilizer rate come into play, as it is with sandy soils where NDVI and yield may be
limited by low N and water retention. Despite the known limitations of predictions and prescriptions
based on remoted sensed vegetation indices, their use provides relevant information about within-field
and between-fields variability. This information can support the implementation of crop fertilization
management approaches based on GNSS/RTK and VRT technologies to replace the traditional flat-N
rate, which provides results that are neither economically nor environmentally sustainable.
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Abstract: Remote sensing data, crop growth models, and optimization routines constitute a toolset
that can be used together to map crop yield over large areas when access to field data is limited. In this
study, Leaf Area Index (LAI) data from the Copernicus Sentinel-2 satellite were combined with the
Environmental Policy Integrated Climate (EPIC) model to estimate crop yield using a re-calibration
data assimilation approach. The experiment was implemented for a winter wheat crop during
two growing seasons (2016 and 2017) under four different fertilization management strategies.
A number of field measurements were conducted spanning from LAI to biomass and crop yields.
LAI showed a good correlation between the Sentinel-2 estimates and the ground measurements using
non-destructive method. A correlating fit between satellite LAI curves and EPIC modelled LAI curves
was also observed. The assimilation of LAI in EPIC provided an improvement in yield estimation
in both years even though in 2017 strong underestimations were observed. The diverging results
obtained in the two years indicated that the assimilation framework has to be tested under different
environmental conditions before being applied on a larger scale with limited field data.

Keywords: crop growth model; data assimilation; Leaf Area Index; Sentinel-2; EPIC model;
yield estimation

1. Introduction

Agriculture is facing great challenges to increase food production while decreasing global
impact [1]. In this context, better crop management strategies can help to guarantee sustainable food
production and security [2]. It is of paramount importance to set up accurate and timely monitoring
tools that ensure spatially detailed and accurate information on crop yields and on the required
production inputs (e.g., water, fertilizer). Remotely-sensed data can provide spatially and temporally
consistent information over large agricultural areas [3] to monitor the seasonal patterns related to the
biological lifecycle of the crop [4]. Through the use of some variables estimated by remotely-sensed
data, it is possible to obtain crop yield predictions. Thus, different estimation approaches are described,
based on remote sensing data. Statistical regression methods are the most commonly adopted for
quantifying the expected yield [5]. For instance, the Normalized Difference Vegetation Index (NDVI) is
commonly used as an independent variable in regression models to estimate the crop yield. The main
limitations of this technique is the need for sufficiently long and consistent time series of both remote
sensing data and agricultural statistics to calibrate the empirical models [6]. In order to improve
the predictive power of remotely-sensed data, it is possible to add independent meteorological
(or bio-climatic) variables into the regression models as shown in several studies [7,8]. The interaction
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of these two different sources of data provides different types of information even if the bio-climatic
indicators, especially if derived from satellites as well, are not totally independent from the vegetation
indices [6]. An alternative approach to obtain crop yield is to consider the crop physiological processes
using semi-empirical approaches such as the Monteith’s efficiency model [9]. The latter computes
the daily production of dry matter (DM) integrating incident global solar radiation, usually available
from the meteorological stations, and the diagnostic estimation of the status and the activity of the
plant provided by remote sensing data [10]. The approach uses only the amount of photosynthetically
active solar radiation (PAR) adsorbed by the plant, although it is known that the crop yield depends
also on the interaction of other variables, such as fertilizer, soil, cultivar diversity, weather conditions,
water availability, pests, and diseases.

A more sophisticated approach to account for the interaction of environmental factors and field
management strategies is based on dynamic crop growth models (CGMs) [11]. The main advantage of
CGMs is their capacity to take into account such limiting factors (e.g., soil, weather, water, nitrogen)
dynamically [12]. CGMs are able to describe the behavior of the real crop by predicting the physiological
mechanisms of the crop growth (e.g., phenological development, photosynthesis, dry matter, portioning,
and organogenesis) using mechanistic equations [13]. Their applicability is, however, complex at field
or regional scales because they are designed to describe the plant growth at the point scale, assuming
that the field conditions are uniform [14]. In this context, the use of satellite data to provide spatially
integrated information over large areas is widely recognized to support CGMs [11,12,15,16]. The crop
phenology, which can be assimilated into the crop growth models, becomes fundamental to control the
crop dry matter distribution during the growth process inside the model itself [17].

The integration of remote sensing data and CGM can be achieved in different ways [18,19]:
(1) Forcing strategy, where the remote sensing data are used to replace the crop model simulation

data. For each time step of the model simulation (e.g., daily), direct ingestion of the variables into
the model is done. It requires continuous data and it is subject to frequent instabilities in the overall
model setting.

(2) Updating strategy, which consists of continuously updating the model state variables whenever
new observations from the satellite are available. This method assumes that better-simulated state
variables at day t will also improve the accuracy of the simulated state variables on succeeding days.

(3) Calibration method, which considers adjusting either the model or initial state variables to obtain
an optimal agreement between simulated and observed state variables. Key model’s state variables
are changed according to the driving variable obtained from the satellite. Generally, a minimization
algorithm is used to minimize the difference between the model state variable and the driving variable
obtained from the satellite [20,21].

Various implementations exist in the literature. For example, the commonly used EPIC model
(Environmental Policy Integrated Climate) [14] shows good accuracy in the estimation of yield by
assimilating variables derived from remote sensing data with a calibration approach [22]. The model is
suitable for simulating crop yield over a large range of soils, crops, and management scenarios [23].
Satellite-based Leaf Area Index (LAI) is one of the most commonly used variables in model assimilation
for yield estimation [21,24,25]. LAI is one of the key crop state biophysical variables required by
many CGMs and is able to describe the relationship between soil, plant, and atmosphere system [26].
LAI can be obtained using freely available data from operational satellites such the USGS Landsat-8 or
the Copernicus Sentinel-2 missions. The latter is composed of two identical satellites (Sentinel-2 A
and B) providing 5 days of revisit time [27] and this increases the possibility to have cloud-free
observations in key phenological periods during the crop growing cycle. Sentinel-2 mission provides
improved possibilities for retrieving biophysical parameters such as LAI, thanks to the higher spectral,
spatial, and temporal resolutions [28]. Recent studies show good correlation between LAI ground
measurements and LAI estimates starting from Sentinel-2 reflectance data and using machine learning
approaches [29,30]. Pre-calculated LAI maps with an accuracy of around 12% at 10 m spatial resolution
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can be obtained from the service platform for Sentinel-2 implemented by the University of Natural
Resources and Life Science, BOKU [29].

Building on the BOKU Sentinel-2 LAI data, in this study we apply a data assimilation framework
using the EPIC model over a winter wheat cereal crop for two growing seasons (2016 and 2017).
A re-calibration of the model parameters was done using a minimization function in order to find the
minimum difference between the remote sensing LAI data and the simulated LAI data. The main goal
is the evaluation of (1) the data assimilation approach and (2) of the capability of the model to estimate
crop yield for possible future application at regional scale. For this reason, the yields estimated by
EPIC were validated using measured yield data. The validation of the LAI values obtained from
Sentinel-2 was also done through the comparison with LAI ground measurements collected during
both the growing seasons.

2. Materials and Methods

2.1. Study Area

The winter wheat experimental fields used in this study are located in the Marchfeld region,
an agricultural area in the east of Vienna in Lower Austria (Lat. 48.20◦N, Long. 16.72◦ E) (Figure 1). This area
was designated as a pilot area for the H2020 FATIMA (Farming Tools for external nutrient Inputs and
Water Management) project [31] and field data were collected in this framework. The Marchfeld region
covers about 75,000 ha and the most important crop types are: winter wheat, vegetables (e.g., carrots,
onions, green peas, asparagus, spinach, green salad), sugar beet, grain maize, and potatoes [31].
The climate is semi-arid with cold winters characterized by frequently strong frosts and limited snow
cover, and hot and intermittently dry summers [32]. The average annual temperature is between 9
and 10 ◦C and the annual precipitation ranges from 500–550 mm with a maximum in early summer,
from May to July. During the vegetation period from April to September, the precipitation is between
200 and 440 mm [32]. The presence of wind, blowing at an average speed of 3.5 m/s, encourages the dry
conditions in the summer and, additionally, leads to high evapotranspirative demand. Different types
of soils with high spatial variability can be found [33] and the general soil conditions are characterized
by a humus-rich A horizon and a sandy C horizon [34].
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Figure 1. Study area of Marchfeld (left), Lower Austria, and the experimental plots in 2016 (top right)
and 2017 (bottom right). It is possible to notice the variability in LAI values as a result of different
fertilization rates given during the growing cycle.

2.2. Experimental Plots

Field measurements were conducted in 2016 and 2017 in two experimental fields of winter wheat
(cultivar Capo) with total field area of 12 hectares (ha), divided in 12 plots, each of 1 ha (100 m × 100 m).
Each plot received different fertilization rates with 3 repetitions of four different levels of fertilization
(variant) in a range between 0 and 180 kg N/ha (0, 60, 120, 180 kg N/ha) (Figure 1).

The soil characteristics were measured before, during and after the crop growing cycle for each of
the 12 plots in both years, the information was provided by the Austrian Agency for Health and Food
Safety (AGES) together with the soil management practice (including date of sowing and harvest).
The soil texture in the first 30 cm is silty-clay-loam or loam with small difference amongst the plots.
For the experimental plots in the year 2016, the range of sand particles was between 10.9% and 33.7%
with a median value of 19.65%, while presence of silt was between 40.5% and 57.4% with a median
value of 48.65%. In 2017, the presence of sand was between 15.4% and 28.9% with a median value of
22.8%, while the presence of silt was between 43.9% and 50.9% with a median value of 46.3%. In both
the experimental fields, the soil was slightly alkaline, indeed the pH in the first 30 cm was around
7.5–7.6 [35]. The before seeding management was characterized by a disk harrow soil processing at
twelve centimeters depth and a seedbed preparation at 5 cm in depth. After sowing, the mineral
fertilization was applied using calcium ammonium nitrate (N = 27%) at three times (March, April,
and May). The same procedure was applied in both years. At harvest, the final yield of dry matter in
kg/ha was measured and provided by AGES.

2.3. Leaf Area Index Measurements

Ground measurements of LAI were undertaken once a week during both years alternatively one
week in the experimental plots and the following week in other randomly selected fields in the region.
The 2016 field data collection began in the middle of April and finished in the middle of May, while for
2017 the data collection started at the end of April and ended in the middle of June.

In situ LAI measurements were collected with a non-destructive and indirect method using
a Li-Cor LAI-2200C Plant Canopy Analyzer (Li-Cor Biosciences, Lincoln, NB, USA) [36]. Li-Cor
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Biosciences is a privately held company based in Lincoln, Nebraska that was founded in 1971 and it
is a leader in the design, production, and marketing instruments for biological and environmental
research [37]. The LAI-2200C has been largely used for LAI measurement; it estimates LAI from the
values of canopy transmittance by identifying the attenuation of the radiation as it passes through the
canopy [36]. Therefore, measurements were taken above- (A) and below-canopy (B). The measures
were done in elementary sampling units (ESU) within a radius of about 10 m of a geo-referenced
point (accuracy ± 3–5 m using GPS signals); each ESU represents a homogenous area (in terms of
crop development conditions). In the experimental fields, the ESUs were located in the center of each
of the 12 plots. In the random fields that were additionally sampled, the centers of the ESU were
placed in the corner of a square area of about 60 × 60 m, measured from an accessible border of the
field. This ensures a representative sampling for the whole field and makes sure that the point also
represents the Sentinel-2 pixel at 10 m and 20 m ground sampling distances. In both cases, in order to
obtain a representative LAI sample within a radius of about 10 m, each ESU was ideally divided into
four sectors; for each sector one measurement was done above the canopy and six below it. The latter
were performed at random in each of the four sectors to well represent the ESU. A total of 24 readings
were recorded for each ESU and were used to calculate the average representative LAI value used for
comparison with the satellite data (Figure 2).

The LAI sampling was always carried out early in the morning or later in the afternoon under
diffuse light conditions. Previous studies showed that the best results for LAI were measured in diffuse
light conditions to avoid direct sunlight and, therefore, minimizing the underestimation of LAI [38,39].

Figure 2. Workflow for collecting in situ LAI measurements using the Li-Cor LAI 2200C Plant Canopy
Analyzer. Step 1 is the selection of the field; in Step 2 the GPS point, representative of the center of the
ESU, is taken; and in Step 3 the measurements are performed obtaining an LAI value as a mean value
of the 24 measurements below the canopy (six for each square).

2.4. Satellite Data

Leaf Area Index

Satellite-based estimates of LAI were obtained using an artificial neural network (ANN) developed
at INRA. An ANN consist of a large number of simple processors, called “neurons”, linked by weighted
connections where each output depends only on the information that is locally available [40]. The ANN
is a “black box” approach which has great capacity in predictive modelling but all the characters
describing the unknown situation must be presented to the trained ANN and the identification
(prediction) is then given [41]. The network was trained using PROSPECT and SAIL radiative transfer
models and it uses eight Sentinel-2 spectral bands (B3, B4, B5, B6, B7, B8A, B11, and B12) [42]. On the
basis of this approach, LAI was calculated and available as LAI maps at 10 m resolution at the BOKU
data service platform for Sentinel-2 [29]. The LAI image data used for the 2016 and 2017 are listed in
Table 1. In both years the maximum timespan between satellite acquisitions and ground measurements
of LAI was five days. To guarantee that the ground reference points were not covered by clouds or
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shadows in the image data, the scene classification layer (SCL) was used [43]. For the validation of
the LAI retrieval, LAI values were extracted for the central points of each LAI ESU measurements
with a buffer of 10 m (an equal expansion in each direction from our GPS point) and used for the
comparison with the field data as a mean value inside of the buffer for each ESU. This was done to
compensate for the location of the center points, as some did not cover exactly one pixel or were located
on a pixel border.

Table 1. List of Sentinel-2 (S2) acquisitions and dates of LAI ground measurements (three in 2016 and
four in 2017) used for the LAI validation. The cloud cover indicates the percentage of the land surface
covered by clouds in the image data.

S2 Acquisition Date Cloud Cover LAI Ground Measurements Date

2016
April 13 0.0% April 13–18 1

April 26 18.4% April 25
May 06 3.8% May 02–09

2017

April 21 10.3% April 25
May 18 51.9% May 18
May 28 0.0% May 23–29
June 20 0.0% June 19

1 Considering the timespan is possible to use LAI ground measurements from both the days.

For the assimilation of LAI in the EPIC model, LAI values were extracted from the image data
using a crop mask of the fields of interest (divided in different plots). The latter involved restricting
the analysis to a subset of pixels, rather than using all the pixel of the image [4]. For each polygon
representing each plot, considered as an independent field, an inner buffer of 20 m (equal reduction
in every direction of the space of our spatial analysis) was created to extract the median value of
LAI. The inner buffer is useful in this case to exclude possible outliers in the boundaries of the field.
This operation was carried out for each LAI image where the fields of interest were cloud-free and
available in the Sentinel-2 data service platform. The date of acquisition and cloud cover of the image
data are listed in Table 2.

Table 2. List of Sentinel-2 (S2) LAI acquisitions and cloud cover during both the growing seasons of
winter wheat in the area of interest (nine in 2016 and 12 in 2017).

S2 Acquisition Date Cloud Cover S2 Acquisition Date Cloud Cover

2016 March 14 1.3% 2017 March 29 11.7%
March 17 3.7% April 1 0.0%
April 13 0.0% April 21 10.3%
May 6 3.8% May 11 79.3%
May 23 35.6% May 18 52%
June 2 31.8% May 28 0.0%

June 22 4.9% June 10 43%
July 2 0.0% June 20 0.0%
July 12 4.0% June 30 29.6%

July 5 7.7%
July 12 14.8%
July 17 12%

2.5. EPIC Input and Forcing

2.5.1. EPIC Model

EPIC is a physically-based crop growth model that operates on a daily time-step. One of the most
important processes simulated by EPIC is the crop growth, and a wide range of crop types can be

143



Agronomy 2019, 9, 255

simulated using a generic growth routine. The crop growth process includes the interception of solar
radiation, conversion of intercepted light to the biomass, partition of biomass into roots, above ground
biomass and economic yield, and also simulated root growth [44]. The annual crop growth from
planting to harvest depends on the potential heat unit for the crop. The growing period starts when the
average daily temperature exceeds the base temperature of the plant and the phenological development
of the crop is based on the daily heat unit accumulation (growing degree day approach) [44]. The heat
units are used to calculate the heat unit index (ranging between 0 and 1) as a fraction of the potential
heat units (PHU) required for the maturation of the crop under study [45].

The potential daily increase of the biomass is estimated using Monteith’s approach [9] as a function
of intercepted photosynthetic active radiation. The interception of solar radiation depends on the
LAI [23], which is described by five model parameters: DMLA, DLAP1, DLAP2, DLAI, and RLAD.
The model LAI curve is built considering two simulation stages: from emergence to leaf decline, LAI
depends on three input factors DLAP1 and DLAP2, which are two points used for the definition of
the optimal leaf development curve and DMLA, namely the maximum potential LAI. The second
simulation stage starts from the leaf decline (which depends on DLAI parameter, the fraction of the
growing season when leaf area starts to decline) to the end of the growing season. The rate of the LAI
is influenced by LAI decline parameter (RLAD). Both simulation stages are also influenced by the heat
units and, theoretically, by the estimated stresses caused by water, nutrients, temperature, aeration,
and radiation. The potential biomass is also adjusted daily, taking into consideration the minimum
of the EPIC plant growth constraints (nutrients, water, temperature, aeration, and radiation) [23].
The crop yield is estimated using the harvest index (HI) approach as a nonlinear function of heat units
from zero (at the planting stage) to the optimal value (at maturity) [44]. The HI could be altered by
high temperature, low solar radiation, or water stress during critical crop stages [23]. In particular,
under water stress conditions, the default parameterization of the model would adjust the HI from the
second half of the growing season considering a lower limit of HI. The latter is called water stress yield
factor (WSYF) [46], a fraction between 0 and the HI value that represents the lowest HI expected due
to the water stress [45]. The water stress effect on HI is controlled by PARM (3), namely the fraction
of the growing season where water stress starts reducing HI, which also controls the accumulation
of actual and potential evapotranspiration until harvest. At harvest, the ratio between potential and
actual evapotranspiration (ET) is used with an S-shaped curve to estimate the final HI [45].

2.5.2. EPIC Input Data

EPIC is designed to simulate field, farm or small watershed, homogenous with respect to climate,
soil, land use, and topographic management system parameters [45]. In this study each plot was
considered as an independent field. The model enables the preparation of different parameters,
operations, and run files to execute the model. The soil characteristics, such as soil hydrologic group,
number of the soil layers and layer depth, soil texture, pH, organic carbon concentration, calcium
carbonate content of soil, the sum of bases, cation exchange capacity, and bulk density were used to
build the soil parameters file. In the latter file, three soil layers were considered with 30 cm of layer’s
depth. The soil hydraulic parameters were also calculated by default empirical equations provided by
EPIC. These equations give as a result the wilting point, field capacity, saturated soil water content,
and saturated hydraulic conductivity based on measured values of bulk density, sand content, and silt
content [47]. Site files were prepared for every plot while the operation schedule files were prepared
for each variant. The climate data (solar radiation, maximum and minimum temperature, precipitation,
relative humidity, and wind velocity) were taken from the ZAMG (Zentralanstalt für Meteorologie
und Geodynamik) weather station of Gross-Enzersdorf (48◦19′ N 16◦55′ E) located 30 km away from
the experimental fields. Weather files were built using the monthly weather statistic generator WXPM
p3020 available from EPIC model website [48], using historical data from 1997.
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2.5.3. Model Calibration

Four plots (Figure 1; site 1,2,3,4) with different fertilization variants from the 2016 dataset were
used to calibrate two unknown parameters of the EPIC model namely the potential heat unit (PHU) and
the potential evapotranspiration (PET), which was estimated using the Penman–Monteith approach.
For normal operation, knowing the date of sowing and harvest, it is possible to check the output file of
the model HUSC index. If this index is higher than 1.2 or smaller than 1, the PHU must be adjusted in
order to obtain a value around 1. In this way it is possible to arrive to the right value of PHU from
planting to maturity. The other unknown parameters inside of the model, except those involved in the
temporal definition of the LAI curve, were left as the default setting.

2.5.4. Data Assimilation

The temporal evolution of the optimal LAI curve is defined by the five parameters described
in Section 2.5.1. First we identify the DMLA (maximum potential LAI) as the maximum value
(98th percentile) observed in the image data during the full growing season for each field. Subsequently,
the re-calibration of the other parameters (DLAP1, DLAP2, DLAI, and RLAD) that define the LAI
curve in EPIC was performed on the basis of the minimization of the root mean square error (RMSE)
(Equation (1)) between the LAI simulated by the model and the LAI observed by satellite at the day of
the satellite observation. Default values were used for the parameters that were not measured or not
available for our specific experiment.

RMSE =

√√
1
n

n∑
i=1

(LAIsim − LAIobs)
2 (1)

The minimization of the cost function (Equation (1)) was done using a MATLAB optimization
toolbox called Fmincon that allows to find the minimum of a constrained nonlinear multivariable
function. It uses the interior-point approach for solving nonlinearity constrained optimization problems
(Equation (2)) where the objective is to find the local minimum of the function x subject to constraints [49]:

min f (x) subject to h(x) = 0 g(x) ≤ 0 (2)

Starting from the original problem definition in Equation (2), the crucial steps of the optimization
algorithm are the formulation and solution of the equality constrained barrier sub-problems, with i
steps [50] (Equation (3)). Each sub-problem is called barrier sub-problem and could be approximated
at the form (for each μ > 0):

min
x,s

f (x) − μ
m∑

i=1

lnsi subject to h(x) = 0 g(x) + s = 0 (3)

where μ is the barrier parameter and si is the slack variables that are restricted to be positive by adding
ln (si) bounded [50]. As μ decrease close to zero, the minimum of fμ should approach the minimum
of f. The added logarithmic term is called a barrier function [50] and this is easier to solve than the
original inequality-constrained problem (Equation (2)). For the optimization, we identified the bound
constraints (minimum and maximum values for DLAP1, DLAP2, DLAI, and RLAD) by studying the
model LAI outputs in correspondence of the four calibration plots (Section 2.5.3, Figure 1; site 1, 2, 3, 4).
The bound constraints values found respectively for DLAP1, DLAP2, DLAI, and RLAD are: 05.01,
25.70, 0.50, and 0.50 for the lower bound and 20.10, 60.99, 1.00, and 3.00 for the upper bound constraints.

2.6. Accuracy Assessment

The model performance was estimated using the root mean square error (RMSE), the coefficient
of determination (R2) and relative root mean square error (RRMSE). The R2 (Equation (4)) defines
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the proportion of the dependent variable variance that is predictable by the independent one [51].
It represents a normalized measure between 0 and 1 and it is given by the ratio between the “error
sum of the square”, that quantifies how much the data points Yi vary around the estimated regression
line Ŷi, and the “total sum of square”, that quantifies how much the data points Yi vary around
their mean, Y. In environmental research, a good value of R2 is above 0.6 [52] even if it depends
on the type of estimated variable. For instance, if we consider the range of LAI values, R2 value
larger than 0.9 is considered as excellent performance and between 0.5 and 0.8 a good one [53].
The RMSE is a performance indicator of a model and gives a quantity estimates of the deviation of the
model’s output from measurements [54]. The RMSE produces results in the same units as that used
for measurements [55] and it is calculated as the root square of the mean of the difference between
predicted values (Vp) and observed values (Vobs). If the RMSE is 0, there is no difference between
predicted and measured values and the perfect fit is achieved. The relative RMSE (Equation (5)) is
dimensionless and it is obtained by dividing the RMSE by the mean of the observed variables and thus
is less sensitive to the magnitude of the variables [53]. The desired result of the RRMSE for an excellent
performance of the model is less than 10% and, for a good one, is between 10% and 20% [53]:

R2 = 1−
∑n

i=1 (Yi − Ŷi)
2

∑n
i=1 (Yi −Y)

2 (4)

RMSE =

√∑n
i=1

(
Vp −Vobs

)2
n

(5)

RMSE = 100
RMSE

Mean (obs)
(6)

3. Results

3.1. LAI Validation

Good agreement and low error between Sentinel-2 LAI for the winter wheat and LAI reference
measurements was found in both years (Figure 3). Better RMSE and RRMSE values were obtained in
2017 compared to 2016 (RMSE = 0.46 vs. 0.44) (RRMSE = 19% vs. 17%). In the 2016 year, a slightly
lower R2 value was found compared to 2017 (R2 = 0.72 vs 0.89). Although the comparison between
ground and satellite LAI estimations showed good results in both years, there are some cases in which
we can find a small disagreement. In 2016, a general small overestimation by the LAI-2200 compared
to satellite observations was observed. In 2017, there are three cases for which Sentinel-2 overestimated
LAI remarkably.
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Figure 3. Scatterplot between ground and satellite LAI measurement for Marchfeld in 2016 (n = 31,
Feb.–May) and in 2017 (n = 35, Feb.–June) for winter cereals.

3.2. EPIC Calibration and Assessment

Figure 4 shows the EPIC-LAI curves achieved after the assimilation of satellite data and the LAI
curves built using the Sentinel-2 observations for the calibration plots in 2016. In this case, the shape
of the LAI curves is similar and the only use of the bound constraints on the parameters to optimize
seems sufficient to ensure a good fit between the simulated (EPIC) and the observed (Sentinel-2) LAI
curves. However, Figure 4D (180 kg N/ha) shows a temporal delay in the crop development trend
simulated by EPIC compared to the satellite observations.
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Figure 4. Calibration: the graphs show the different LAI values in four plots for 2016 for different levels
of fertilization: 0 kg N/ha (A, id: 1-1), 60 kg N/ha (B, id: 2-1), 120 kg N/ha (C, id: 3-1), and 180 kg N/ha
(D, id: 4-1). The green line is the daily LAI curve obtained by EPIC model, while the light blue points
are the LAI measurements obtained using Sentinel-2 data.

This temporal displacement between the two LAI curves is larger in 2017 compared to 2016 as
shown in Figure 5 for the highest fertilization treatment plots (Figure 5C,D), for which an incorrect
parameterization appears clear especially for DLAP1, DLAP2, and DLAI. Probably, only use of the
bound constraints is not always sufficient to reach a good calibration. It could also be that the model is
not able to perfectly represent the satellite curve in all conditions.

3.3. Yield Estimation in 2016

Figure 6A shows a relevant good agreement (R2 = 0.95) and low error (RMSE = 317 kg/ha and
RRMSE = 6%) between the yield estimated by the EPIC model (with assimilation of LAI data from
Sentinel-2) and the observed yield for the year 2016. The yield estimation notably improves with
LAI assimilation compared to the one obtained using the default EPIC parameterization as shown
in Figure 6B (R2 = 0.93, RMSE = 572 kg/ha and RRMSE = 11%). Using the latter calibration, a model
overestimation was found in the lower range of yield values (0 and 60 kg/ha of nitrogen during the
growing season). Figure 6B also shows that the high yield values are approximately the same in both
the plot with 120 and 180 kg N/ha, while using LAI assimilation from satellite, the yield values are
better distributed along the regression line. Thus, the assimilation of LAI data seems to improve the
sensitivity to the different amount of nitrogen provided during the growing season.
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Figure 5. Assessment showing the different LAI values in four 2017 plots for different levels of
fertilization: 0 kg N/ha (A, id: 1-1), 60 kg N/ha (B, id: 2-1), 120 kg N/ha (C, id: 3-1), and 180 kg N/ha
(D, id: 4-1). The green line is the daily LAI curve obtained by EPIC model while the light blue points
are the LAI measurements obtained using Sentinel-2 data.

Figure 6. Yield estimation with (A) and without (B) the assimilation of LAI from Sentinel-2 data.
The orange triangles are the plot used for the calibration of fmincon and the EPIC unknown parameters,
and the blue square symbols represent plots used for the assessment only.

However, we encountered a major flaw for the assimilation of LAI data in EPIC under nitrogen
stress conditions. The model lacks a correction feedback on simulated LAI. Only simulated biomass is
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corrected for the stress induced by limited nitrogen application. The EPIC-LAI curve is influenced
mainly by the temperature and not by the variable amount of N.

Figure 7 shows the simulated LAI and biomass curves obtained using default parameters of the
model for the different nitrogen fertilization applications. It appears clear that the LAI curve does
not change even if the fertilization management changes. Therefore, the EPIC-LAI curve is referred
to the optimal development of the LAI, without considering limiting stress conditions for the crop.
With this approach, a saturation in the biomass is clearly visible for the high fertilization treatments
(120–180 kg N/ha) and this causes errors in the estimation of the yield (Figure 7B).

Figure 7. LAI (A) and biomass (B) curves obtained with default LAI parameters for the four different
fertilization management treatments (0, 60, 120, and 180 Kg N/ha) in 2016. The graphs show a variation
in the biomass levels but not in LAI.

3.4. Yield Estimation for 2017

Regarding the year 2017, we found a strong underestimation of the model compared to the yield
measured in the field with R2 = 0.97, RMSE = 1961, and RRMSE = 55% (Figure 8). A little improvement
can be seen by assimilating LAI from the satellite (Figure 8A) compared to a parameterization using
default model values (Figure 8B).

Figure 8. Comparison between (A) yield estimated with the assimilation of LAI from Sentinel-2 and
(B) yield obtained with default EPIC parameters for 2017. The green line represents the regression line
between the values.
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The output of the model was further analyzed to understand the strong underestimation. One main
reason for the underestimation was found to be due to a major decrease in the harvest index (HI) for
the year 2017 (0.214–0.218) compared to 2016 (0.416–0.425). The small intra-year variations in the HI
values are probably due to the different phenological development of the crop during the growing
season related to the different LAI parameterization for each plot. The strong decrease in the HI in
2017 is probably related to water stress induced by limited rainfall. For comparison, Figure 9 shows
the amount of precipitation during the growing season 2016 and 2017. It is known that drought stress
at any growth stages decreases grain yield, especially in the stem elongation, flowering, and grain
falling stages.

It appeared clear that the impact of water stress excessively reduces the HI index. Therefore,
we further tuned the HI by modifying the parameter PARM(3) inside of the parameter file. For this
parameter a value of 3 was set. Using the letter value, the water stress influences HI only when the heat
unit accumulation is equal to three times the potential heat unit accumulation of the crop. In addition,
the lower limit of HI, namely the WSYF that was set equal to the HI value. As a result of this adjustment,
Figure 10 shows an improvement of the yield estimation (R2 = 0.97, RMSE = 281, and RRMSE = 8.1%).

Figure 9. Precipitation (blue bars) and simulated water content in the root zone (black line) in 2016 (A)
and in 2017 (B) for one of the high fertilizer plots (180 kg N /ha).

Figure 10. Yield obtained using the modified PARM(3) value that allows to reduce the impact of the
water stress on the harvest index.
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4. Discussion

Regarding the accuracy of LAI estimation with Sentinel-2 data, our study confirmed a previous
study [29] that reported an R2 of 0.83 and a RMSE of 0.32 m2/m2. When assimilated in a crop model,
satellite-based LAI improves yield estimates as reported also in other studies that used a similar
assimilation strategy [12,56]. The only use of the bound constraints on the model parameters,
without including other restriction as nonlinear constraints, seems sufficient to find the minimum of
the minimization problem but a good fit between the satellite observations and the LAI curve of the
model was found only in the plot where a low amount of fertilizer was provided. However, in both
the years, a yield improvement was obtained and this may be due to a forcing of the DMLA parameter
using satellite observations. The use of the maximum value of LAI (98th percentile) to set DMLA can
be considered as a priori knowledge of the canopy conditions. In this study, an ideal maximum LAI
reachable by the crop was found for each field. In this context, the combination of Sentinel-2A and
Sentinel-2B satellite data can provide timely and dense sets of observations to precisely characterize
the crop growth curves and maximum LAI values.

The combination of the EPIC model and satellite-based LAI was found to be not ideal because
there is no nitrogen stress feedback on the LAI in the model. In real field conditions, LAI is significantly
influenced by nitrogen levels [57], while, in EPIC, the LAI curve is modeled without taking into
consideration the nitrogen stress. Only simulated biomass is affected by the nitrogen constraints.

However, under high level of nitrogen application (above 120 kg/ha in our study), the simulated
biomass saturates and, in this case, forcing LAI can help the model to achieve an increased precision.
Therefore, the coupling of satellite-based LAI observations and potential EPIC LAI curves might
improve the description of the spatial variability, for both LAI and biomass estimation, as confirmed by
an improvement in yield estimation obtained in both years under study. Regarding the year specific
results: in 2016, a good yield estimation was found assimilating remotely-sensed data even if only
a slight improvement in R2, RMSE, and RRMSE was obtained if compared to the yield estimation
without data assimilation. This could be partially attributed to the site-specific parameterization of the
model using field observations and, thus, an accurate description of the environment where the crop has
been growing up. In 2017, a slight improvement in the yield results was also found especially regarding
the correlation (improvement of R2). However, both a data assimilation approach and a standard EPIC
parameterization provided a strong underestimation in yield due to water stress. This is probably
caused by three reasons: (1) the rainfall data may not be representative of the field condition and they
can affect the model estimation, (2) the default parameters of the model are non-representative for the
specific year of simulation; or (3) the impact of water stress conditions are erroneously modelled.

One of the problems that we should consider is the capability of the model to estimate yields under
different scenarios and in the presence of high variability, especially in the regional scale application.
Previous studies have shown promising results considering the EPIC yield estimation at the regional
scale in the presence of high variability [58]. More examples should be obtained using remote sensing
data that allows the improvement in the information about the crop and the environment of interest
even if, due to a large amount of parameters required by the model and, therefore, the large rate of
uncertainty, the regional scale application of EPIC seems difficult. Furthermore, the definition of the
model parameter-bound constraints in the minimization function without a site-specific calibration is
not always representative of the different geographical areas, and a multi-location calibration appears
fundamental, for the application in different sub-areas (such as at the field scale) or at the regional
scale. It seems necessary to add additional information in the minimization function. The application
of EPIC model at the sub-field scale seems more suitable than the regional application, but specific
field and crop data are needed.

5. Conclusions

The use of satellite data together with a crop growth model gives a wide range of possibilities
to obtain yield estimates. However, the availability of satellite data and the ability of the model to
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represent both satellite observations and the characteristics of the crop system has to be evaluated.
In this study, the fit between the modelled LAI and the observed LAI curves was reached for both years
under investigation (2016 and 2017). However, yield was not always well estimated. This problem
could be attributed to the non-capability of the model to represent the environment of study or
to issues related to the data used for the model calibration. EPIC was chosen after a literature
review showing the potential of the model to simulate grain yield under different environmental
and management conditions. In the evaluation of our results, the adoption of a specific calibration
of the model parameters, taking into consideration four plots from one growing season only (2016),
has to be taken into consideration. Therefore, the cost function minimization approach, together
with the EPIC capability to assimilate satellite data, need to be tested under different environmental
and management conditions, at different spatial scales, and using general constraints, not specific
for the study site. Limitations of the re-calibration approach used in this study are the fact that it
does not consider uncertainties in the satellite observations, in the model parameterization and in the
model variables’ estimations. This approach is also expensive in terms of computing time. For future
applications, the updating methods could be considered in order to alleviate the shortcoming of the
re-calibration methods. Two classes exist: on the one hand, stochastic methods that are generally
implemented using ensemble data assimilation (e.g., the ensemble Kalman filter or particle filter).
On the other hand, the variational methods used in other disciplines, as for example the 4D-Var
approach, seem to be promising also in the crop growth model assimilation. The 4D-Var methods can
simultaneously assimilate the observational data at multiple times in an assimilation window starting
with the assumption that the model is perfect. The choice of the best possible model according to the
available data and the amount of the data required by the model is one of the key points, together with
the quality of the satellite observations and applicability of the data assimilation method that should
be considered in the data assimilation framework.
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Abstract: An on-farm research study was carried out on two small-plots cultivated with two cultivars
of durum wheat (Odisseo and Ariosto). The paper presents a theoretical approach for investigating
frequency vegetation indices (VIs) in different areas of the experimental plot for early detection
of agronomic spatial variability. Four flights were carried out with an unmanned aerial vehicle
(UAV) to calculate high-resolution normalized difference vegetation index (NDVI) and optimized
soil-adjusted vegetation index (OSAVI) images. Ground agronomic data (biomass, leaf area index
(LAI), spikes, plant height, and yield) have been linked to the vegetation indices (VIs) at different
growth stages. Regression coefficients of all samplings data were highly significant for both the
cultivars and VIs at anthesis and tillering stage. At harvest, the whole plot (W) data were analyzed
and compared with two sub-areas characterized by high agronomic performance (H) yield 20% higher
than the whole plot, and low performances (L), about 20% lower of yield related to the whole plot).
The whole plot and two sub-areas were analyzed backward in time comparing the VIs frequency
curves. At anthesis, more than 75% of the surface of H sub-areas showed a VIs value higher than
the L sub-plot. The differences were evident also at the tillering and seedling stages, when the 75%
(third percentile) of VIs H data was over the 50% (second percentile) of the W curve and over the 25%
(first percentile) of L sub-plot. The use of high-resolution images for analyzing the frequency value of
VIs in different areas can be a useful approach for the detection of agronomic constraints for precision
agriculture purposes.

Keywords: UAV; vegetation indices; relative frequencies; yield; precision agriculture; cultivars

1. Introduction

Monitoring the spatial and temporal variability of wheat within a season is crucial to
decision-making in precision farming. Precision agriculture is a modern farming management
concept using digital techniques to monitor and optimize agricultural production processes. Precision
agriculture can play an important role in enhancing crop yield and ensuring sustainability [1]. Among
the tools used to acquire information, unmanned aerial vehicles (UAVs) equipped with visible
and near-infrared cameras, provide, in a fast and easy way, field data for precision agriculture
applications [2,3]. The resolution of information from satellite data typically ranges from 5 to 30 m
pixels and is unsuitable in agronomy trials given the limitations of real-time monitoring and accuracy [4].
In contrast to satellite imagery and aircraft-based remote sensing, UAVs can be used frequently during
the entire growth period [5]. Furthermore, vegetation indices (VIs) of UAV imagery have the same
ability as ground-based recordings to quantify crop responses to experimental treatments [6]. UAVs are
a useful technology for crop monitoring at different scales and can be used for agronomic experiments
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where space, resource, and time constraints limit manual sampling [7]. Furthermore, UAVs provide
images at small pixel sizes (3–5 cm2 pixels), with a higher resolution than an aerial or satellite
platform [8–10]. Moreover, a field can be frequently surveyed to study ongoing different phenological
development phenomena [3]. Unmanned aerial vehicles equipped with near-infrared (NIR) and
multispectral sensors have been useful in the research environment for determining principal spectral
patterns and wavebands that relate to plant stress, through the estimation of vegetation indices (VIs),
which are based on formulations fitted with the canopy light reflected at different wavelengths [11,12].
Starting from wavebands and spectral patterns, different VIs have been developed and were related to
vegetation canopies including plant nutrient status, plant growth rate, physiological conditions, and
crop yields [13–16]. Among VIs, the normalized difference vegetation index (NDVI) and optimized
soil-adjusted vegetation index (OSAVI) are generally employed as the typical quantitative data for the
estimation indicator of crop growth. Crop phenotyping involves the measurement and evaluation
of physical characteristics such as biomass, leaf area index (LAI), height [17,18] and that represents
a bottleneck for the fine-tuning management of field crops [19]. Crop phenology is characterized
by a set of growth stages; it is well known that a single crop trait in a single growth stage plays
an important role in establishing the final grain yield [20,21]. These phenological events affect the
vegetation index (VI) value and provide essential information for the detection of the agronomic
practices and the identification of sub-field areas having the same yield-limiting factors or similar
attributes that significantly affect crop yield [22].

Indeed, there are still many aspects to be analyzed in order to discriminate homogeneous
agronomic areas, starting from spectroradiometric data, because many agronomic factors affect spatial
and temporal crop variability. For precision agriculture purposes it is important to define, within each
field, sub-areas having similar biotic or abiotic factors that are expected to affect yield significantly [23]
and point out an automatic technique to detect homogeneous sub-areas. The most appropriate time to
start crop monitoring for defining sub-plot areas remains unsolved [22]. Several cluster methods [24],
among vegetation indices, and crop and soil parameters for delineating management zones maps have
been used. Candiago et al., [3] proposed a new approach for analyzing the high-resolution contents of
the VI images based on relative frequency distributions of VIs on vineyard and tomato crop, identifying
best and worst vegetative areas, stating however that the main limitation of the study was the lack of
ground measurements.

In the present paper, a new approach is proposed based on the combination of cluster analysis,
relative frequency distribution of VIs and ground agronomic data of winter wheat cultivars.

Since each VI has its own peculiar suitability for specific purposes and practical applications,
ground agronomic data of Odisseo (O) and Ariosto (A) at seedling, tillering, and anthesis have been
linked to NDVI and OSAVI indices to verify the ability of VIs to detect yield and yield components.

Once the ability to detect crop parameters has been verified, within each cultivar, the relative
frequency value of high-resolution VI data of the whole plot and of two homogeneous sub-areas
identified by cluster analysis [22], one with high yield (HO and HA) and the second one with low yield
(LO and LA) were investigated. The whole plot and the sub-areas were analyzed backward in time to
assess the power of high-resolution VI data to detect, explain, and quantify the agronomic spatial and
temporal variability.

2. Materials and Methods

2.1. Study Area and Field Measurements

An on-farm research study was carried out in Central Italy (411081.29 E, 4730618.48 N; UTM-WGS84
zone 33N Italy), in a flat area at 75 m above sea level, in the 2015 crop season. The experimental
field (2 hectares) was cultivated with different plots of durum and winter wheat. Two cultivars of
durum wheat, Odisseo and Ariosto, were cultivated on small plots 24 m × 30 m (720 m2), previously
cultivated with soybean. Sowing was performed in December 2014 (200 kg of seeds ha−1) and the crop
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was harvested in July 2015. The soil was prepared with the help of minimum-tillage equipment and
basic fertilization was performed with 200 kg ha−1 of P2O5 (27%). Nitrogen was applied at the end of
March (tillering) with a slow release nitrogen fertilizer, 35% N; 23% SO3, and at April (booting/stem
elongation) with 150 kg ha−1 of fertilizer with 30% N; 23% SO3 and with two foliar nitrogen application.
The weed and pest control scouting was carried out with chemical pesticides during the crop cycle.

A standard agro-meteorological station was placed in the experimental fields and temperatures,
rainfall, wind, humidity, and radiation were recorded. The minimum temperature (−1 ◦C) was
recorded in December 2014, while the maximum (36.2 ◦C) was recorded in July 2015. Through the
whole cropping season (December 2014–July 2015), precipitation amounted to 680.2 mm; a good half
of the total precipitation was recorded in 6 weeks, from the final third of January to the first third of
March. From tillering to anthesis, rainfall was scarce, while from anthesis to ripening, rainfall was
considerable. Air temperatures were mild from emergence to anthesis and afterwards, maximum air
temperatures were around 30 ◦C, as expected.

The phenological stages of the wheat crop were periodically recorded according to the Zadoks Scale
(ZS), which is a standardized reference scale used to evaluate and measure plant growth stage in cereals [25].
During the crop growth, sampling was carried out for each cultivar: 10 at seedling growth 13—ZS
(February 23), 12 at tillering 25—ZS (March 30), 11 at anthesis 65—ZS (May 14), and 11 at harvest—99 ZS
(July 7). Plants from 0.5 m2 were georeferenced and hand cut for the calculation of yield-related traits
(biomass, green leaf area index—LAI, number of spikes, plant height, yield, and thousand kernels weight).
For each cultivar, 44 georeferenced samplings during crop growth were collected.

Whole plant dry mass was determined after oven drying the fresh plant material at 75 ◦C until
constant weight for 48 h. The sampling points based on visual-spatial crop variability and identified by
low-resolution orthoimages of flight were processed in real time in the field. Ground truth coordinates
of target locations were recorded with GPS Leica Viva GS15 (Leica Geosystems AG, Heerbrugg,
Switzerland) at each sampling and flight.

Furthermore, at harvest, within each cultivar, yield data and yield components of the whole
plot (720 m2) were measured, as well as for four sub-areas, 10 m2 each was characterized by the
different yield levels in Figure 1 (H = high yield and L = low yield). The sub-areas were selected
within the homogeneous areas detected using a hierarchical clustering method, Ward’s minimum
variance approach, as reported in a previous paper for Odisseo [25] and calculated for Ariosto. NDVI
and OSAVI high-resolution data of the four areas were analyzed backward in time to deliver relative
frequency histograms of VI values.

Figure 1. RGB images and samplings H (red) and L (green) areas of Odisseo (above) and Ariosto
(below) at seedling (a), tillering (b), anthesis (c), and harvest (d) stages.
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2.2. UAV System and Flight Missions

Four flight missions were carried out in the same dates to measure the destructive plant samples: for
seedling (February 23), tillering (March 30), anthesis (May 14), harvest (July 7), with eBee UAV (senseFly,
Cheseaux-sur-Lausanne, Switzerland). The eBee, designed as a fixed-wing UAV for application in
precision agriculture (payload of 150 g). All flights were carried out in stable ambient light conditions
from 11:30 a.m. to 1:00 p.m., with excellent visibility and wind below 5 m s−1, at a flight altitude
of 97 m (A.G.L.). The imaged area of the experimental field, including the surroundings, is about
15 hectares so that 96 camera stations (single flight) and 15 min flight were needed. The autopilot
analyzes (continuously) the inertial measurement unit (IMU) and onboard GPS data to control every
aspect of the eBee’s flight. The integration of the UAV and sensors with GPS and IMU enables obtaining
direct georeferencing imaging after image processing. At any acquisition date, two flights were carried
out, the first one by a Canon Powershot S110 photo camera (visible spectrum, RGB-red/green/blue) for
visible RGB image (orthophoto) to run a rapid analysis for visual crop variability. The second flight
used a Canon Powershot S110 NIR camera (near infra-red, NIRGB—near infra-red/green/blue) which
provides maximum absorption peaks at 550 nm (green), 625 nm (red), and 850 nm (NIR) wavelengths,
respectively, allowing the computation of VIs.

The S110 RGB and S110 NIR camera characteristics were: weight 0.7 kg, resolution 12 million
pixels, sensor size 5.58 × 7.44 mm2, pixel pitch 1.33 μm, and format images RAW JPEG. The S110 RGB
camera acquired the true-color, while the S110 NIR acquired the false-color image data at 0.55 μm
(green), 0.625 μm (red), and 0.85 μm (NIR) bands.

To avoid geometric distortion due to low altitude, 96 overlapping pictures from each camera and
flight were used for mosaicking to produce an ortho-image. An 80% frontal overlap and an 80% side
overlap were used.

To relate and orient UAV imagery to the ground, ten ground control points (GCPs) were distributed
across the field at the beginning of the season, to obtain photogrammetric imagery with uniform
vertical and horizontal accuracy. The GCPs were 25 cm × 25 cm square, with a specific albedo for
camera calibration (atmospheric corrections). The GCP coordinates were ensured with a Leica Viva
GS15 (Leica Geosystems AG, Heerbrugg, Switzerland) GPS (horizontal accuracy of 0.025 m-vertical
accuracy of 0.035 m). Fixed targets were used for a more accurate geo-referencing of UAV aerial
imagery and for overlaying the measurements from multiple dates.

2.3. Data Processing

The acquired images were processed by the eMotion software (senseFly, Cheseaux-sur-Lausanne,
Switzerland) to generate low-resolution visible (RGB) images of the crops. The eBee’s supplied
software to build a project using the drone’s geo-tagged images. The project is loaded on a laptop in
Pix4Dmapper Ag (senseFly, Cheseaux-sur-Lausanne, Switzerland) to run a rapid analysis for visual
crop variability.

The multiple overlapped images of the whole plot were stitched and ortho-rectified to create
the geo-referenced ortho-mosaicked image. In the laboratory, data processing (orthomosaicking) of
acquired images were performed with Postflight Terra 3D software package, a customized version of the
Pix4D digital photogrammetric solution specifically optimized for the eBee, to generate ortho-images.
Postflight Terra 3D incorporates a scale-invariant feature transform (SIFT) algorithm to match key
points across multiple images [26] and process data in three key steps: (1) initial processing, (2) point
cloud densification, and (3) orthomosaic generation.

Ortho-rectification by aero-triangulation and mosaicking were elaborated for processing, starting
from the exterior position and orientation parameters provided by the UAV internal system
(roll, pitch, and yaw angles). Orthoimages were produced from the flights, with a pixel resolution
of 5 cm. Ten GCPs (Leica Viva GS15 (Leica Geosystems AG, Heerbrugg, Switzerland) were used to
complete the external camera orientation. The orthomosaic was georeferenced to UTM-WGS84 zone
33N Italy. The final outputs were an RGB (Visible) GeoTIFF with a resolution of 5 cm2 pixels.
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The normalized difference vegetation index (NDVI) and the soil-adjusted vegetation index (SAVI)
layers were generated in a raster calculator from extracted red (R) and near infra-red (NIR) channels.
The index calculator function of Postflight Terra 3D was used for generating VI maps. A certificate of
calibration of Canon S110 NIR was uploaded in the software to optimize internal camera parameters,
such as focal length, principal points, and lens distortions. The ten GCPs with a known albedo for
Red, Green, and NIR channel (reflectance panel) were used to calibrate the camera to achieve uniform
quality of image (exposure and brightness) and for atmospheric correction in the software section
“processing options,” point 3 DSM, orthomosaic, index and for creating VIs map. The resolution of
the reflectance map has been set at 5 cm2 pixels, the whole map was elaborated for each VI and date,
and the NDVI and OSAVI formula were selected (index map function). The final outputs were an
NDVI GeoTIFF and an OSAVI GeoTIFF, both with a resolution of 5 cm2 pixels. GeoTIFF images and
georeferenced sampling data were processed for agronomic purpose with QGIS 2.8.1.

2.4. Vegetation Indices

The normalized difference vegetation index (NDVI) was calculated according to Equation (1):

NDVI = (NIR − RED)/(NIR + RED) (1)

The NDVI ranges from −1.0 to 1.0, where positive values indicate increasing greenness and
negative values indicate non-vegetated features. It has some disadvantages though such as saturation
in later growth stages [27,28].

The optimized soil-adjusted vegetation index (OSAVI) was calculated according to Equation (2).
The OSAVI index was proposed by Rondeaux et al. [29] using reflectance in the red and near-infrared
bands; through the following formulation:

OSAVI = (NIR − RED)/(NIR + RED + 0.16) (2)

where 0.16 is the soil adjustment coefficient, selected according to the optimal value to minimize soil
background variations.

2.5. Statistical Analysis

Regression analysis, coefficients of determination, significance levels, and RMSE were computed
on two sets of geo-referred data: ground crop samplings (LAI, Biomass, and spikes for square
meter) and remote UAV data using the statistical package Origin PRO 8 (Origin Lab Corporation,
Northampton, MA, USA). H and L sub-area were selected starting from homogeneous areas identified
in a previous paper [22] as follow: the yield-related traits and VIs data were analyzed using the
hierarchical clustering Ward’s minimum variance approach [30] to classify observations into groups,
in which the group members have common properties. Statistical procedures were computed using
OriginPRO 8. The difference between H and L sub-areas were recorded by the analysis of variance.

3. Results and Discussion

Ground agronomic data (biomass, green leaf area index, spikes, and plant height) of each cultivar
have been correlated to high-resolution multispectral images (NDVI and OSAVI). The correlation of
the whole crop cycle data was performed in accordance with van Ittersum et al. [31], who states that
it is essential to study the relationship among VIs and crop traits, to evaluate and estimate the yield
potential and the yield gap (Table 1). In the present study, polynomial regressions were found to be
the simplest adjustment to report the time-course variability along the growth stage, starting from
seedling to harvest. Moreover, significant relationships with different R2 values were found for both
the indices and crop growth traits. The spectro-radiometric response of the wheat canopy was not
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linear during the growing period in accordance with Aparicio et al. [32] and Dang et al. [33], since the
high sensitivity of the VIs when LAI is lower (early season) and less sensitive after the canopy closes.

The relationships among VIs and crop parameters were highly significant: the R2 for NDVI vs.
biomass reached 0.953 for Odisseo and 0.859 for Ariosto, while the R2 of OSAVI vs. biomass was
0.943 for Odisseo and 0.857 for Ariosto. The relationships among each VI and LAI showed an R2 of
0.910 for NDVI Odisseo and R2 of 0.777 for Ariosto, and it was 0.879 for OSAVI Odisseo and 0.763
for Ariosto. The relationships among each VI and height showed an R2 of 0.828 for NDVI Odisseo
and 0.817 for OSAVI Odisseo and R2 of 0.518 for both NDVI and OSAVI for Ariosto. Ground truth
georeferenced data of the number of spikes per square meter at harvest stages were also related to
NDVI and OSAVI data; significant relationships were found with an R2 of 0.788 for Odisseo and 0.769
for Ariosto recorded for NDVI index and an R2 of 0.790 for Odisseo and of 0.597 for Ariosto recorded
for OSAVI index.

Briefly, all R2 of yield components were highly correlated (p-value < 0.001) with VIs, and are
higher for Odisseo than the Ariosto.

Table 1. Polynomial regression analysis of vegetation index (VI) data and crop parameters each
based on 44 data points. LAI = leaf area index, RMSE = root mean square error. Significance level:
p-value < 0.001.

Odisseo Ariosto

NDVI OSAVI NDVI OSAVI

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Biomass 0.953 0.06 0.943 0.062 0.859 0.075 0.857 0.082
LAI 0.910 0.059 0.879 0.076 0.777 0.095 0.763 0.106

Spikes 0.788 0.067 0.790 0.075 0.769 0.042 0.597 0.065
Height 0.828 0.083 0.817 0.102 0.518 0.105 0.519 0.127

3.1. Agronomic Data and VIs at Different Crop Growth Stages

In the whole plot, the biomass at seedling stage ranged from 68 to 156 g m−2 for both cultivars
and that of LAI (0.12 to 0.47) (Table 2), while VIs ranged from 0.26 to 0.57 for NDVI and from 0.38 to
0.65 for OSAVI, for both cultivars. The light differences recorded within yield components as well as
VIs value gave no significant relationships among VIs and yield components (Table 3). This was due to
a low amount of accumulated biomass and LAI values, as well as the difficulties of simple indices to
discriminate between soil and vegetation as found also by many authors, such as Aparicio et al. [34]
and Chlingaryan et al. [24].

At the tillering stage, the spatial variability of crop traits was highly evident; thus, the most
productive data was shown by the biomass and LAI which was four times higher than the less favored
zones (Table 2).

In the most productive zones, VI values ranged from 0.85 to 0.99 (for both cultivars), which
revealed 2.5 times more than the lower value (Figure 2).

The relationships between VIs and crop parameters were highly significant for both cultivars
(Table 3). For biomass, the R2 reached 0.88 for Odisseo and 0.66 for Ariosto for LAI, the R2

reached 0.85 for Odisseo and 0.69 for Ariosto. The plant height and VI regression were not
significant for Ariosto. These results are in accordance with findings of several authors at tillering,
for example Dalla Marta et al. [35] found a highly significant (positive) relationship with biomass
weight, while Reyniers and Vrindts [36] and Magney et al. [37] found respectively an R2 of 0.76 and
R2 = 0.62 between NDVI and biomass.

At anthesis, the high spatial variability of the crop traits value and VI values were still evident
for both cultivars (Table 2, Figure 2). VIs were highly correlated to crop traits as reported in Table 3;
the values of the R2 for NDVI vs. biomass reached 0.89 for Odisseo and 0.82 for Ariosto, while the R2

of OSAVI vs. biomass was 0.80 for Odisseo and 0.78 for Ariosto (p < 0.001).
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Figure 2. Normalized difference vegetation index (NDVI) and optimized soil-adjusted vegetation index
(OSAVI) images for Odisseo (upper plot) and Ariosto (lower plot), at seedling, tillering, and anthesis
growth stages.

Table 2. Range value (min and max), mean and standard deviation (SD) of yield components (biomass,
LAI, plant height, and spike) and vegetation indices (VIs) (NDVI and OSAVI) measured at seedling,
tillering, and anthesis stages.

Growth Stages Yield Components and VIs
Odisseo Ariosto

Min Max Mean SD Min Max Mean SD

Seedling

Biomass (g m−2) 72.2 156.1 102.1 30.0 67.5 145.0 97.8 26.6
LAI 0.167 0.472 0.267 0.086 0.123 0.424 0.269 0.089

NDVI 0.266 0.467 0.383 0.083 0.263 0.569 0.414 0.098
OSAVI 0.386 0.596 0.499 0.087 0.381 0.650 0.532 0.088

Tillering

Biomass (g m−2) 116 558 332 149 185.2 740.8 363.05 185.9
LAI 0.328 1.610 0.922 0.409 0.500 2.259 1.106 0.566

Plant height (cm) 34.5 54.5 45.8 5.43 28.3 45.6 39.1 5.2
NDVI 0.338 0.828 0.639 0.165 0.434 0.857 0.637 0.145
OSAVI 0.400 0.978 0.755 0.195 0.500 0.991 0.743 0.166

Anthesis

Biomass (g m−2) 282 1116 761 258 587.5 1453.9 911.5 251.6
LAI 0.732 2.56 1.722 0.546 1.32 2.69 1.94 0.459

Spikes (n◦ m−2) 217 527 411 91 258 651 415 119
Plant height (cm) 39.0 73.0 63.2 10.7 60.0 73.0 69.5 3.9

NDVI 0.527 0.838 0.753 0.092 0.654 0.876 0.814 0.073
OSAVI 0.631 1.004 0.892 0.112 0.725 1.067 0.955 0.105
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Table 3. Polynomial regression analysis of VIs data and crop parameters (whole plots) during crop
cycle (seedling, tillering, and anthesis). LAI = leaf area index, RMSE = root mean square error,
n.s. = not significant.

Growth Stages VIs Yield Components
Odisseo Ariosto

R2 RMSE p-Value R2 RMSE p-Value

Seedling
NDVI

Biomass n.s. 0.0588 0.039 n.s. 0.082 0.012
LAI n.s. 0.0577 0.034 n.s. 0.079 0.097

OSAVI
Biomass n.s. 0.5175 0.032 n.s. 0.071 0.092

LAI n.s. 0.0684 0.079 n.s. 0.076 0.144

Tillering

NDVI
Biomass 0.882 0.063 0.001 0.665 0.077 0.007

LAI 0.852 0.070 0.001 0.689 0.089 0.005
Plant height 0.866 0.091 0.002 n.s. 0.141 0.320

OSAVI
Biomass 0.937 0.851 0.001 0.672 0.105 0.007

LAI 0.844 0.085 0.001 0.687 0.103 0.005
Plant height 0.859 0.110 0.002 n.s. 0.16 0.250

Anthesis

NDVI

Biomass 0.893 0.033 0.001 0.818 0.007 0.001
LAI 0.843 0.040 0.001 0.694 0.073 0.422

Spikes 0.725 0.060 0.001 0.768 0.044 0.001
Plant height 0.736 0.070 0.030 0.820 0.046 0.010

OSAVI

Biomass 0.804 0.756 0.001 0.777 0.055 0.002
LAI 0.745 0.063 0.002 0.672 0.106 0.470

Spikes 0.680 0.074 0.008 0.697 0.060 0.001
Plant height 0.680 0.091 0.061 0.803 0.070 0.016

These results are in accordance with the Marti et al. [38], who found the highest correlation
values between growth and NDVI measurements when performed around anthesis, such as with
Villegas et al. [39] that reported the highest values of R2 for the relationship between NDVI and crop dry
weight at anthesis. Cabrera-Bosquet et al. [40] have demonstrated a strong linear regression between
durum wheat and VIs. On the contrary, Dalla Marta et al. [35] found completely different results,
with no correlations observed between the crop parameters and the indices, due to VIs saturation.

3.2. Backward Analysis

Table 4 reports yield and yield components at harvest for the complete plot (W), as well as data of
the two sub-areas, HO and HA with high yield and LO and LA with low yield.

Table 4. Yield (t ha−1), biomass (g m−2), spike number (n◦ m−2), and plant height (cm) of Odisseo
and Ariosto at harvest stage. Mean data are related to the whole plot (W) and to the sub-areas;
Ho (high yield of Odisseo) and HA (high yield of Ariosto), LO (low yield Odisseo), and LA (low yield
Ariosto). The p-level values are related to H and L significant differences within each cultivar.

Odisseo Ariosto

W HO (SD) LO (SD) p-level W HA (SD) LA (SD) p-level

Yield (t ha−1) 5.73 6.77 (0.83) 4.66
(0.61) <0.0064 5.05 6.17 (0.44) 3.94 (0.25) 1.26 × 10−4

Biomass (g m−2) 760 1029 (106) 500 (208) <0.0398 911 1171 (200) 682 (77) <0.0039
Spikes (n◦ m−2) 412 509 (74.3) 320 (27.3) <0.0034 360 465 (25) 230 (31) 2.39 × 10−5

Plant height (cm) 63.2 72.2 (2.95) 50.5 (8.5) <0.0236 69.5 72.5 (5.57) 66.25 (4.78) n.s.

The yield data of both cultivars were in accordance with those reported by Visioli et al. [41] in
Italy. The crop yield of the whole plots was 5.73 t ha−1 for Odisseo (WO) and 5.05 t ha−1 for Ariosto
(WA). The yield of HO and HA were about 20% higher than the whole plot yield, which in turn were
20% higher than LO and LA. Yield components were ranked according to the yield levels: biomass and
spikes per square meter of H were about 25–35% higher than the W and 37–50% higher than L sub-plot
areas. Differences in plant heights were less marked.
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The subplot detected at harvest was analyzed backward in time from anthesis to seedling.
At anthesis, the analysis of VI value frequencies showed the maximum evidence of different crop

status of H and L sub-areas and W plots. More than the 75% of the surface of the sub-areas showed
a value higher (H sub-plot) or lower (L sub-plot) than W plot (Figure 3). The H and L areas curves
showed a low overlapping. The H curve appeared narrow and tall. Data were confirmed by all the
yield components that were significantly different from each other in the two sub-areas and W plot.

At tillering, the histogram of VIs frequency (Figure 4) shows differences among the whole plot
data, both H and L areas. These differences were lower than those detected at the anthesis stage.

For both the cultivars and indices, the H zones showed values of the frequency which were higher
than the 75% of HO and HA, and LA, LO VI values were higher and lower respectively than the median
value of the whole plot.

Figure 3. Relative frequency curves of the two VIs, NDVI (a–c) and OSAVI (b–d) within each cultivar,
Odisseo (a–b) and Ariosto (c–d). In grey, the whole plot (W) curves have been shown, in red the
low-yield sub-areas (L), and in blue the high-yield sub-areas (H) at the anthesis stage.

 
Figure 4. Relative frequency curves of the two VIs, NDVI (a–c) and OSAVI (b–d) within each cultivar,
Odisseo (a–b) and Ariosto (c–d). In grey, the whole plot (W) curves have been shown, in red the
low-yield sub-areas (L), and in blue the high-yield sub-areas (H) at the tillering stage.
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At the seedling stage, the relative frequency curves of the two VIs are presented in Figure 5.
In all the graphs, the curves appeared to be very close, except for the OSAVI of Ariosto (d) at the
seedling stage.

In all graphs, about 75% of the H data (third percentile) were higher than the second percentile of
the W curve as well as the first percentile of L data. The highest differences between H and L curves
were detected for the OSAVI index, Ariosto (d), because the index that considers soil brightness are
perform slightly better than the NDVI, as reported in different studies [42,43].

 
Figure 5. Relative frequency curves of the two VIs, NDVI (a–c) and OSAVI (b–d) within each cultivar,
Odisseo (a–b) and Ariosto (c–d). In grey, the whole plot (W) curves have been shown, in red the
low-yield sub-areas (L), and in blue the high-yield sub-areas (H) at the seedling stage.

4. Conclusions

In the last few years, UAVs have been used as tools that provide a high number of information
per square meter for precision agriculture management and its development. The potentials of the
information provided by the drone images have not yet been fully explored. In this paper, we have
analyzed the frequency distribution curves of high-resolution VIs images of the two cultivars of
durum wheat.

Within each cultivar, two yield sub-areas were detected by cluster analysis at the harvest stage and
analyzed backward at different growth stages, in comparison with the whole plot data. The crop yield
of the whole plots revealed 5.73 t ha−1 for Odisseo (WO) and 5.05 t ha−1 for Ariosto (WA). The yield for
HO and HA recorded 20% higher than the whole plot yield, which in turn were 20% higher than LO

and LA, moreover the biomass and the spikes per square meter of H was noted 25–35% higher than the
W and 37–50% higher than L sub-plot areas, confirming the ability of cluster analysis to detect groups
with the same variability.

The analysis of frequencies of high-resolution VI images showed that the 75% of H data
(third percentile) were recorded higher than the second percentile of the W curve as well as for
the first percentile of L data. The maximum evidence of different crop status of H and L sub-areas and
W plots were detected at anthesis by both indices and cultivars.

The analysis of frequency curves provided significant differences at the seedling stage where
agronomic parameters showed only slight differences which were revealed as not significant following
the traditional approach (regression between agronomic traits and VIs). For Ariosto, the seedling
OSAVI index showed an interesting differentiation among areas, confirming the ability of OSAVI to
consider the soil brightness.
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The analysis of frequencies of high-resolution VI images provided detailed information on crop
spatial and temporal variability and can allow developing a new approach for automatic detection of
suitable vegetation indices, and spatial and temporal crop variability for precision agriculture practices.
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Abstract: Sorghum crop is grown under tropical and temperate latitudes for several purposes including
production of health promoting food from the kernel and forage and biofuels from aboveground
biomass. One of the concerns of policy-makers and sorghum growers is to cost-effectively predict
biomass yields early during the cropping season to improve biomass and biofuel management.
The objective of this study was to investigate if Sentinel-2 satellite images could be used to predict
within-season biomass sorghum yields in the Mediterranean region. Thirteen machine learning
algorithms were tested on fortnightly Sentinel-2A and Sentinel-2B estimates of the fraction of Absorbed
Photosynthetically Active Radiation (fAPAR) in combination with in situ aboveground biomass
yields from demonstrative fields in Italy. A gradient boosting algorithm implementing the xgbtree
method was the best predictive model as it was satisfactorily implemented anywhere from May to July.
The best prediction time was the month of May followed by May–June and May–July. To the best
of our knowledge, this work represents the first time Sentinel-2-derived fAPAR is used in sorghum
biomass predictive modeling. The results from this study will help farmers improve their sorghum
biomass business operations and policy-makers and extension services improve energy planning and
avoid energy-related crises.

Keywords: sorghum biomass; prediction modeling; machine learning; fAPAR; Sentinel-2 satellite
imagery; big data technology; remote sensing

1. Introduction

Sorghum (Sorghum bicolor (L.) Moench) is a cereal with a C4 carbon fixation (the Hatch—Slack
pathway) cultivated mainly for food, feed, forage, and fuel [1]. Sorghum grain was historically used
for human consumption in developing countries but, because it is gluten-free, with low glycemic index
and high contents of macronutrients and antioxidants, its utilization as food extended worldwide.

There are several types of sorghum. Grain sorghums are generally shorter (usually having
recessive alleles at three of the four Dw genes) than biomass sorghums (having recessive alleles at two
Dw genes at most), and have been selected to have the grain as the primary sink for photosynthates.

Agronomy 2019, 9, 203; doi:10.3390/agronomy9040203 www.mdpi.com/journal/agronomy170



Agronomy 2019, 9, 203

Biomass sorghum of biofuel production interest was used in this work and includes dual purpose
(showing high grain and biomass yields), forage, sweet, and biomass sorghum types [2–5]. The sweet
sorghum type translocates photosynthates to the seeds and stem; their stems are juicy (d recessive
to D) instead of dry and sweet (x recessive to X) instead of nonsweet [6]. Sweet sorghums are high
biomass and sugar yielding crops, and were traditionally bred for syrup or molasses production.
Forage sorghum’s main characteristics include digestible fiber and low lignin content, while biomass
and dual purpose sorghums include high biomass yielding genotypes with high contents of structural
carbohydrates, which are being developed for feedstock production [5]. Sorghum can therefore supply
several products including starch, soluble sugars, structural carbohydrates, and organic matter for
energy production purposes. Several countries worldwide, including in higher latitudes [7], are
increasingly developing dedicated biomass sorghums in response to the pressing issue for nations to
get independent of foreign energy sources and to cut carbon emissions into the atmosphere [7,8]. As a
biofuel-dedicated biomass business, growing sorghum will have to meet critical requirements of high
and cost-effective productivity of biobased commodities.

Crop yield forecasting is one of the most important strategies in agriculture, which enables
sustainable development and helps avoid famines and shortages in several commodities [9–12].
In industrialized countries, crop yield forecasting provides data to governmental structures, companies,
and farmers, which results in strategic advantages such as the rationalization of policy adjustments,
price predictions and stabilization, efficient agricultural trade, and simplification of business operations
particularly through planning harvest and delivery of the produce, better deployments of machineries
and logistics, and a better management at the end user level (e.g., bioreactor owner).

Conventionally, and particularly in developed countries, the information on crop production
is collected and disseminated through field surveys and censuses, but this system is rather costly
and associated with significant uncertainties [13]. Using satellite imagery resulted in a superior
solution [14–16]. Remote sensing data has been used for many years to build operational crop yield
forecasting systems like the FAO’s Global Information and Early Warning System (GIEWS). The use
of remote sensing satellite data for crop yield forecasting is further motivated by wide coverage,
near-real time delivery of data and products, and the ability to provide vegetation indicators at low cost.
Many studies have shown that forecasting models based on remote sensing data can give similar or
better performance comparing to the more sophisticated physiological crop growth models [13,17–19].

The use of remote sensing parameters as proxies for biomass yields was documented in previous
works. Normalized difference vegetation index (NDVI), leaf area index (LAI), and fAPAR (fraction of
absorbed photosynthetically active radiation) are among the most frequently used parameters [14,16,20].
Recently, the use of biophysical parameters, such as fAPAR, gained more attention relative to using
vegetation indices [21,22]. Biophysical parameters reflect the state of the crops more adequately and
thus could be better suited for predicting crop yield and production [15,23,24]. fAPAR is defined as the
fraction of radiation absorbed by the green vegetation elements in the 400 to 700 nm spectral domain
under specified illumination conditions [25]. It is directly linked to photosynthesis, and therefore
expresses a canopy’s energy absorption capacity [26]. fAPAR values range from 0 to 1, indicating,
respectively, bare soil and fully crop covered soil.

Most of the aforementioned studies were focused on common field crops like corn, wheat, barley
or soybeans [16,20,27–30]. A few studies dealt with remote sensing-based yield monitoring and
prediction [16] in sorghum. For instance, Shafian et al. [31] described the use of unmanned aerial
vehicle-based remote sensing to investigate sorghum crop physiological properties. Yang et al. [32]
combined airborne digital videography with ground sampling, regression analysis, and image
processing to map spatial sorghum grain yield variability within fields and across the cropping season.
Johnson [16] presented a comprehensive assessment of the correlations between commonly used
Moderate Resolution Imaging Spectroradiometer (MODIS) products and field crop yields, including
sorghum, and used these correlations for biomass yield estimation and prediction.
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In most studies, however, remote sensing-based biomass yield estimation or prediction makes use
of low- or medium-resolution satellite images from sensors such as SPOT-VEGETATION [14,15,23,24]
or MODIS [16]. These satellite products have a coarser spatial resolution (250 to 1000 m) compared to
the data collected from the two Sentinel-2 satellites in this work (10-m spatial resolution). With the
launch of the Sentinel-2 constellation of satellites the overpass frequency (five days and locally even
two to three days) the temporal resolution is nearly as good as for SPOT-VEGETATION and MODIS
satellites (one to two days). The high spatial resolution of the Sentinel-2 images is an important asset
when monitoring crops in agricultural regions characterized by many small fields. To our knowledge no
previous studies assessed the efficiency of high resolution Sentinel-2-derived fAPAR data in predicting
within-season biomass sorghum yields, and this paper is therefore aimed at addressing this gap.

Deriving yield information from satellite imagery has shown promising results but this technology
is not extensively applied across farmers and crop species worldwide [27–29]. In this work, we
developed models for within-season prediction of annual and perennial sorghum biomass yields in
Emilia-Romagna, Italy, based on fAPAR measurements from Sentinel 2A and Sentinel 2B satellite
images on 42 mostly full-fledged commercial sorghum fields. We used machine learning algorithms to
create yield prediction equations. These equations can be implemented in decision support systems to
allow farmers and/or farming stakeholders to predict biomass yields from sorghum fields of interest
early on in the cropping season. This information is very helpful to efficiently schedule fleets of
harvesting machinery, transport vehicles, and storage facilities. The fAPAR-derived predictive models
for biomass yields can also be implemented by extension services and policy-makers for several
purposes, including the possibility to anticipate potential biomass availability and plan ahead, to avoid
specific crises such as fuel shortage.

2. Materials and Methods

2.1. Trial Set-Up

Forty-two demonstration trials were run in this work, 23 and 19 of which were evaluated in 2017
and 2018, respectively. In 2017, the experimental sites were located in Conselice, Nonantola, Mirandola,
and Anzola dell’Emilia, in the Italian region of Emilia Romagna (Table 1, Figure 1), while in 2018
the sites were established in Anzola, Mirandola, and Conselice (Figure 1, Table 1). The experimental
sites were strategically selected to maximize extension impact by conducting most of the trials in
the farmers’ fields. The experimental fields in Mirandola and Conselice belonged to respective two
big farming cooperatives with more than 2000 members each. In Nonantola, the fields belonged to
individual farmers, while in Anzola the fields were established in the experimental station of the
Council for Agricultural Research and Economics (CREA). The fields were generally of big size relative
to plot sizes commonly used under standard experimental settings [1] in order to serve the purpose of
demonstrative pilots with the objective of transferring into the production environment the technology
of sorghum crop monitoring using satellite imagery. The fields areas ranged from 0.06 ha to 50.00 ha,
with a mean and median of 5.70 ha and 1.10 ha, respectively. All the fields were planted with biomass
sorghums including biomass per se (high tonnage), sweet, forage, and dual purpose types. One-grain
sorghum trials were established in Anzola in 2017, but it was not included in this work in virtue
of a different kind of experiment management and a diverse market of the grain sorghum produce
relative to biomass sorghum. Thirty-five out of the 42 trials were sown with a single genotype of
Sorghum bicolor (annual), while the 17IT_mat was sown with a diversity panel of 228 biomass Sorghum
bicolor genotypes, and six (15R17, 16R17, 16R18, 15R18, 17R18, and 17US_mat) of the trials installed in
Anzola were made up of a diversity panel consisting of advanced perennial interploid biomass hybrids
deriving from S. bicolor × S. halepense (SB × SH) crosses. The original SB × SH materials originated from
The Land Institute (Salina, KS, United States of America). S. bicolor × S. halepense breeding strategy
was amply detailed in Piper and Kulakow [33] and in Habyarimana et al. [1]. The 15R, 16R, 17R,
and 17US_mat trials were sown in 2015, 2016, and 2017, respectively, meaning that regrowth-derived
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biomass was evaluated for the 15R, 16R, and 17R trials, while for the 17US_mat trial, the biomass
evaluated in this study was produced from direct sowing.

Table 1. Pilots descriptors: name, location, variety, season, and productivity.

Serial
Number

Field/Pilot
Name

Variety
Name

Variety
Type

Area (ha)
Dry Biomass
Yield (t ha−1)

Cropping
Season

Location
Name

1 Botte 1 Harmattan Dual purpose 9.00 14.13 2018 Conselice
2 Saracca 5 Harmattan Dual purpose 6.50 10.52 2018 Conselice
3 V. serrata Harmattan Dual purpose 44.87 9.69 2018 Conselice
4 Magnana P845F Forage 32.05 11.43 2018 Conselice
5 Cà bianca P845F Forage 3.72 11.11 2018 Conselice
6 Gamberina 3 Aralba Dual purpose 7.86 9.67 2018 Conselice
7 Sagrate Harmattan Dual purpose 50.00 8.90 2017 Conselice
8 Prato_Mensa Harmattan Dual purpose 3.29 19.10 2017 Conselice
9 Comuna P845F Forage 27.86 24.50 2017 Conselice

10 Gamberina_1 Aralba Dual purpose 7.60 12.80 2017 Conselice
11 Botte Harmattan Dual purpose 5.33 23.50 2017 Conselice
12 Carafolo_G Bulldozer Biomass 2.00 17.10 2017 Nonantola
13 Cavriani_S Merlin Biomass 2.00 19.50 2017 Nonantola
14 Ferrari_R Bulldozer Biomass 1.00 3.40 2017 Nonantola
15 Mattioli_R Bulldozer Biomass 1.00 4.90 2017 Nonantola
16 Serafini_G Bulldozer Biomass 2.00 15.30 2017 Nonantola
17 Zavatti_E Bulldozer Biomass 0.89 7.60 2017 Mirandola
18 Grandi_Magonza Bulldozer Biomass 0.80 12.80 2017 Mirandola
19 Grandi_Ponte Bulldozer Biomass 1.20 9.50 2017 Mirandola
20 Zini_L Palo Alto Biomass 2.50 8.00 2017 Mirandola
21 Villa_verdetta Bulldozer Biomass 1.00 6.25 2018 Mirandola
22 Cama_grande Bulldozer Biomass 4.40 14.94 2018 Mirandola
23 Cama_piccolo Bulldozer Biomass 4.00 15.35 2018 Mirandola
24 Golinelli_RaimondoBulldozer Biomass 2.02 10.48 2018 Mirandola
25 Barozzi_Lidia Bulldozer Biomass 3.00 7.19 2018 Mirandola
26 Molon_A Palo Alto Biomass 5.00 8.30 2017 Mirandola
27 T1_Anzola Sole Biomass 0.74 13.00 2017 Anzola
28 T2_Anzola Trudan Forage 0.71 19.00 2017 Anzola
29 T3_Anzola Hannibal Sweet 0.71 17.00 2017 Anzola
30 T4_Anzola Harmattan Dual purpose 0.70 14.00 2017 Anzola
31 T1_Anzola Bulldozer Biomass 0.74 17.00 2018 Anzola
32 T2_Anzola Hannibal Sweet 0.71 19.00 2018 Anzola
33 T3_Anzola Tarzan Biomass 0.71 21.00 2018 Anzola
34 T4_Anzola Trudan Forage 0.70 13.00 2018 Anzola
35 T5_Anzola Harmattan Dual purpose 0.70 15.00 2018 Anzola
36 15R17 Perennial Biomass 0.06 2.39 2017 Anzola
37 16R17 Perennial Biomass 0.15 8.27 2017 Anzola
38 17IT_mat Bicolor Biomass 0.17 18.30 2017 Anzola
39 17US_mat Bicolor Biomass 0.15 21.00 2017 Anzola
40 16R18 Perennial Biomass 0.15 14.35 2018 Anzola
41 15R18 Perennial Biomass 0.06 10.73 2018 Anzola
42 17R18 Perennial Biomass 0.15 17.47 2018 Anzola

Crop management followed local extension services guidelines and was well described in
Habyarimana et al. [1]. Planting density was 26 (0.75 m spacing between rows; 0.052 m spacing of hills
within row) plants per square meter for most (35) trials, and 13 (0.75 m spacing between rows; 0.10 m
spacing of hills within row) plants per square meter for 15R, 16R, 17R, 17IT_mat, and 17US_mat trials.
In terms of weather (Figures S1–S4), summer was generally dry across years and locations as expected.
In 2017, all sites had relatively wet spring except in Anzola, while in 2018 spring was relatively wet in
Anzola and Conselice, but dry in Mirandola.
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Figure 1. Map of Italy (A) with a rectangle inset indicating the geographical location of the experimental
sites (red dots) for pilots established in 2017 (B) and 2018 (C).

2.2. Biomass Data Collection

Trials in Nonantola, Mirandola, and Conselice were harvested at industrial scale from end of
August to late November, while all trials in Anzola were harvested end of November using a single-row
chopper harvester. Our experience showed that postponing harvest to later times may increase the
likelihood for lodging, which may lead to the crop touching the ground, adding grit to the biomass
material and possibly reducing biomass quality; delayed harvest also leads to kernel loss and kernel
quality deterioration particularly due to molds, insect, and bird damages. The trials were harvested
according to two machinery options: forage chopper or swathing the material into windrows and then
baling it in large square bales or large round bales. Chopped biomass was weighed immediately at
harvest, while baled biomass was weighed when bales were transported to the bioreactor. Chopped and
baled biomasses were supplied to private biogas and combustion bioreactors. From each field, a
1kg-composite sample was taken from the sold biomass at the time of shipment to the end user in
order to determine the dry mass content in the commercialized produce and calculate the dry biomass
yield for each entire field that will be used in modeling. For the diversity panels, samples were taken
from each genotype. Fresh samples were weighed and dried at 80 ◦C to constant weight in a forced air
oven. The fresh and dry weights of the samples, and the fresh weight of the entire field’s harvest, were
used to derive dry mass fraction of the fresh material and dry biomass yield of the entire field. For the
diversity panel fields, the final yields integrated the contributions of the component genotypes.

2.3. Satellite Data Acquisition

For this study we used Sentinel-2 optical satellite imagery. The Sentinel-2 mission is based on
a constellation of two satellites—Sentinel-2A and Sentinel-2B—both orbiting Earth at an altitude of
786 km, but 180 ◦ apart to optimize coverage and global revisit times. Swath width, i.e., the image
width across the satellite path when scanning the Earth, is 290 km. As a constellation, the revisit
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time is 5 days. This means that the same spot over the equator is revisited every five days, and even
faster at higher latitudes. Sentinel-2 data are acquired on 13 spectral bands in the VNIR (visible and
near-infrared) and SWIR (short-wave infrared) range, of which four bands with a spatial resolution of
10 meters (blue, green, red, and near-infrared (NIR)), six bands at 20 meters (three red edge bands, a
narrow NIR, and two SWIR bands), and three bands at 60 meters (a coastal aerosol, water vapor, and
cirrus band). Spatial resolution refers to the surface area measured on the ground and represented by an
individual pixel. Once the Sentinel data are acquired on-board, they are sent to ground and processed
by a network of Processing and Archiving Centers. Next, all data products are united, archived, and
disseminated online to the users by ESA’s Copernicus Space Component (CSC) Ground Segment via
the CSC Data Access Coordinated System. To facilitate image transfer and use, the projected Sentinel-2
images are converted to tiles with a fixed size of 100 square kilometers, each of which is approximately
500 MB.

For this study, Sentinel-2A and Sentinel-2B images from tile 32TQQ (including pilots from
Conselice) and 32TPQ (including pilots from Anzola, Mirandola, and Nonantola) were downloaded
from ESA and processed by Vlaamse Instelling voor Technologisch Onderzoek N.V. (VITO). Processing
included atmospheric correction with iCOR [34] and cloud and shadow detection using Sen2COR v2.5.5
(ESA-STEP, ESA, Paris, France). Biophysical parameters fAPAR, fCover, and leaf area index (LAI) were
calculated from the top of canopy normalized reflectances following the BV-NET (tool for mapping
surface and vegetation variables) method described by Weiss and Baret [35]. The BV-NET methodology
is based on neural networks which are trained on a synthetic dataset of ~50,000 simulations using the
PROSAIL (PROSPECT and SAIL radiative transfer models) model [36]. The BV-NET version used in
this study was calibrated with green, red and near infrared bands, all having a spatial resolution of
10 meters. Sen2Cor and BV-NET are publicly available through ESA’s SNAP (Sentinel Application
Platform, ESA, Paris, France) toolbox.

Previous studies such as Duveiller et al. [15], López-Lozano et al. [24], and Johnson et al. [16]
illustrated the good performance of satellite derived fAPAR for estimating and predicting biomass
yields of large field crops, including corn and sugarcane, which, together with sorghum, make-up the
world’s three economically important C4 crops of the Poaceae family with similar growth habits [37].
We therefore decided to use fAPAR for this study as well. The fAPAR estimates generated with BV-NET
from Sentinel-2A and 2B top of canopy reflectances over selected tiles in Emilia-Romagna had a spatial
resolution of 10 meters and a temporal resolution of 5 days up to 2–3 days in those areas where the
different satellite overpasses overlapped.

For monitoring the sorghum fields in this study “WatchITgrow” (Vlaamse Instelling voor
Technologisch Onderzoek N.V., MOL, Belgium) was used. WatchITgrow is a web-based application for
crop monitoring developed by VITO. It provides information on crop growth and development as well
as possible anomalies derived from Sentinel-2 satellite images and weather data, and it allows the user
to store all kinds of collected field data, such as planting and harvest dates and development stages, but
also information on crop treatments such as fertilization, spraying, or irrigation. Prior to monitoring,
the fields used in this study were geolocalized (Figure 1) using Field GPS (global positioning syatem)
application for iPhone with a final field boundary correction using Google Earth. The field polygons
were saved as kml files and then imported into WatchITgrow for monitoring. For each field, fAPAR or
“greenness” maps were created (see example in Figure 2), and a growth curve was built, showing the
evolution of the fAPAR values throughout the cropping season (see example in Figure 3). To build
the growth curve the fAPAR values of all pixels within the field were averaged, thereby accounting
for an inside buffer of ten meters (one pixel) in order to avoid capturing signals from neighboring
fields or other objects. To correct for artifacts in the resulting fAPAR curve such as abnormally low
fAPAR values due to undetected clouds, shadows or haze and to interpolate fAPAR values between
subsequent acquisition dates, a Whittaker smoothing filter was applied on the curve [38,39].
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Figure 2. Greenness (fAPAR) maps derived from Sentinel-2 satellite imagery for five sorghum fields in
Anzola (from left to right: T5-grain sorghum, T4-dual purpose sorghum, T3-sweet sorghum, T2-forage
sorghum, T1-biomass sorghum) for a selected number of dates in 2017, as available via WatchITgrow.
T5-grain sorghum was not included in this study (refer to Section 2.1 for detail).

Dual purpose sorghum (field T4) 

 

Sweet sorghum (field T3) 

 
Forage sorghum (field T2) 

 

Biomass sorghum (field T1) 

 

Figure 3. Cont.
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Perennial (field 16R17, regrowth) 

 

Perennial (field 17US_mat, direct sowing) 

 

Figure 3. Greenness (fAPAR) graphs derived from Sentinel-2 satellite imagery from 2017 for six sorghum
fields in Anzola (T4-dual purpose sorghum, T3-sweet sorghum, T2-forage sorghum, T1-biomass
sorghum, and 16R17-perennial, 17US_mat perennial), available via WatchITgrow.

2.4. Modeling Total Aboveground Biomass Yields

Thirteen models were assessed in this study to predict sorghum biomass yields. The models
included partial least square discriminant analysis (PLS-DA), principal component analysis discriminant
analysis (PCA-DA), neural network (NN), random forest (RF), support vector machine (SVM) with
linear classifier (SVML), nonlinear kernel (SVML_G), radial basis kernel (SVM_R), radial basis
kernel with polynomial basis kernel (SVM_P), neural network (NNET), eXtreme Gradient Boosting-
xgbtree method (GBT), eXtreme Gradient Boosting- xgbDART method (GBD), eXtreme Gradient
Boosting-xgbLinear method (GBL), simple linear model (LM), and Neural Network-neuralnet method
(NLNET). The simple linear model was used as a benchmark to gauge the performance of the models
implemented. The models evaluated in this work were selected based on their robustness as reported
in previous studies [40].

The field-based daily interpolated fAPAR estimates extracted from WatchITgrow were converted
to fortnightly fAPAR averages. In this study, preference was given to the use of fortnightly fAPAR
data as major morphophysiological changes in crops also occur fortnightly [41]. In addition pilots
established in experimental stations and in farmers’ fields were fortnightly visited at or close to the
times the fAPAR images used in this work were acquired. This time management was also favorable
and accommodated the busy schedules of farmers and scientists.

Six fortnightly fAPAR values registered from May to July—here referred to as six “days of year”
(DOY), that is, DOY 135 and 150 in May, 165 and 180 in June, and 195 and 210 in July—were used
as regressor variables in successive predictive modeling of sorghum biomass yields. May, June, and
July are important months concerning the predictive modeling, mimicking the 1 to 2 months required
to release yield predictions before harvest [42]; taking into account that biomass sorghum in the
Mediterranean region is harvested from August to November.

The research questions addressed in this work are (1) how accurately can we predict the yield of a
biomass sorghum field based of Sentinel-2-derived fAPAR profile early in the cropping season? (2)
Which months and/or days-of-year best contribute useful information for predicting biomass yields in
commercial sorghum fields? The solutions to the above problems were evaluated by solving the below
linear model for n trials or experimental locations (i = 1, . . . , n) and p prediction times or days of year
( j = 1, . . . , p). This model is represented by

yi = μ+

p∑
j=1

xijβ j + ei (1)

where μ is the overall mean, yi is the phenotypic observation (biomass yields) from field i, ei is the
residual comprising all other nongenetic and environmental factors, xij is the days of year covariates,
and β j is the effect of the jth day of year covariate on yi [43]. Note that it is beyond the scope being
presented here to identify and/or predict within-field yield variability for any potential applications.
In addition, different sorghum types were combined in this study as they qualified for commercial
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aboveground biomass production and to mimic farming practices in the region of the study. We also
assumed that the test region was homogeneous with respect to climatic conditions.

All statistical analyses were carried out using R software [44]. The predictive models were fitted
using the caret R package. In this work, the “one standard error” rule of Breiman et al. [45] was
implemented to avoid overfitting, and the caret built-in features were invoked to automatically choose
the tuning parameters associated with the best performance of the regression routines. During data
preparation, zero-variance regressors were removed and those remaining were centered and scaled in
order to avoid regressors with zero or near-zero variance, which often constitute a problem as they
behave as second intercepts in predictive models [40]. The dataset was randomly partitioned into
training (80% of the entire dataset; 34 observations) and testing set (20% of the entire dataset; eight
observations). The training set was used to run a cross-validation experiment to train and assess the
models using a 10× repeated 5-random fold cross-validation (CV) iterations, rendering a total of 50
estimates of accuracy and prediction error; a large number of repetitions is expected to compensate for
the high variance stemming from a reduced number of folds. Models were validated on the testing
set which was an external test (validation) sample set needed so that the model performance can be
characterized on data that were not used in the model training. The models were evaluated based
on the prediction accuracy, the mean absolute error (MAE), and the mean absolute percentage error
(MAPE). The MAE built within the repeated cross validation procedure (model calibration) was used to
assess the variability (dependability) of the model performance. On the other hand, the MAE, MAPE,
and accuracy obtained on the testing set were used to assess the model predictive ability. The MAPE
allows us to compare the prediction of different dependent variables in different scales. The MAE
measured the average magnitude of the errors in the set of predictions of biophysical variable values
produced in this work, without considering their direction. It represented the average over the test
sample of the absolute differences between prediction and actual observation where all individual
differences had equal weight. The MAE was chosen for the model verification because it provides an
unambiguous measure of the magnitude of the average error and is therefore more appropriate than the
Root Mean Square Error (RMSE) for dimensioned evaluations of average model performance error [46].
The distribution of the 50 MAE estimates from the optimal cross-validated models was characterized
using boxplot, while the comparison of mean accuracies across models and across prediction times was
performed using Duncan’s test [47]. The importance of the regressor variables (useful prediction times)
was determined using a 0 to 100 index, with 0 corresponding to no effect and 100 corresponding to the
highest magnitude of the regressor’s importance. The accuracy was defined as the Pearson correlation
coefficient between the predicted and the observed biomass yield values in the testing set [5]. From the
computed accuracy, r-squared values can be derived in order to better compare, for each model, the
proportion of the variance in the dependent variable that is predictable from the regressors.

3. Results

3.1. fAPAR Index Pattern Across Sorghum Types

Three fAPAR curve and map patterns were consistently observed as illustrated in the above
Figures 2 and 3 using data from the 2017 cropping season. In dual purpose and biomass sorghums, a
major peak was observed earlier in July followed by a drop and then a weak increase at the beginning
of the second half of September. For the sweet, forage, and the perennial sorghum (SB × SH) grown
from seeds, the fAPAR increased significantly in early July to reach a plateau from then up to late
September/early October, whereas, in October, the curve decreases sharply to reach the minimum value
in early November. On the other hand, in perennial sorghum regrown from rhizomes, two fAPAR
peaks (smaller peak in mid-May, bigger peak in late September/early October) were observed that were
separated by a deep drop extending from June to August.
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3.2. Assessment and Validation of the Predictive Models, and Importance of Regressors in Total Biomass
Prediction

Thirteen models implemented in this work were assessed using the prediction accuracy (Table 2)
in the validation set, the mean absolute error (MAE) and mean absolute percentage error (MAPE)
metrics (Table 2, Figure 4) produced during the repeated cross-validation, and during the validation
stage in the independent sample set. A repeated cross-validation iteration was run for each model,
resulting in MAE resample vectors, each containing 50 elements. Over the months evaluated, the
range and mean accuracy (Table 2) for NNET, RF, SVM-R, PCA-DA, PLS-DA, SVM-P, SVML, SVML-G,
GBT, GBD, GBL, LM, and NLNET, were 0.16–0.78 and 0.56, 0.39–0.82 and 0.63, −0.36–0.88 and 0.16,
−0.13–0.76 and 0.43, −0.02–0.77 and 0.47, 0.09–0.81 and 0.50, 0.49–0.80 and 0.64, 0.46–0.80 and 0.64,
0.56–0.81 and 0.66, −0.01–0.84 and 0.49, 0.03–0.93 and 0.47, 0.46–0.78 and 0.61, and 0.01–0.79 and
0.47, respectively.

Table 2. Predictive models × prediction time accuracies and May MAE for the training and
validation sets.

(1)

Model

(2) Accuracy (3) May_MAE.T
t ha−1

May_MAE.V

May June July May–June June–July May–July Mean t ha−1 %

PLS-DA 0.77 0.49 −0.02 0.69 0.32 0.56 0.47 ab 5.01 bcd 3.62 26.81
PCA-DA 0.76 0.49 −0.13 0.67 0.29 0.52 0.43 ab 5.00 bcd 2.91 21.56

RF 0.82 0.39 0.64 0.68 0.53 0.74 0.63 a 5.05 bcd 2.27 16.81
SVML 0.80 0.49 0.58 0.67 0.59 0.70 0.64 a 4.82 cd 3.74 27.70
SVML-G 0.80 0.49 0.58 0.66 0.61 0.72 0.64 a 4.84 cd 3.74 27.70
SVM-R 0.88 −0.36 0.51 0.02 −0.15 0.08 0.16 b 4.95 bcd 1.87 13.85
SVM-P 0.81 0.49 0.09 0.63 0.42 0.53 0.50 a 4.64 d 6.22 46.07
NNET 0.78 0.56 0.16 0.75 0.38 0.70 0.56 a 11.99 a 12.50 92.59
GBT 0.78 0.56 0.69 0.58 0.81 0.57 0.66 a 5.29 bc 2.68 19.85
GBD 0.84 0.37 −0.01 0.76 0.48 0.51 0.49 a 4.80 d 2.18 16.15
GBL 0.45 0.11 0.89 0.93 0.03 0.43 0.47 ab 5.43 b 3.40 25.19
LM 0.78 0.50 0.56 0.73 0.46 0.65 0.61 ab 4.88 cd 4.53 33.56

NLNET 0.79 0.09 0.33 0.79 0.01 0.79 0.47 ab 5.36 b 2.34 17.33
MEAN 0.77a 0.36b 0.37b 0.66a 0.37b 0.58ab 0.52 5.54 4.00 29.63

(1) PLS-DA, PCA-DA, RF, SVML, SVML-G, SVM-R, SVM-P, NNET, GBT, GBD, GBL, LM, and NLNET, respectively,
partial least squares discriminant analysis, principal component analysis discriminant analysis, random forest,
Support Vector Machines with Linear Kernel, Support Vector Machines with Linear Kernel grid search, Support Vector
Machines with Radial Basis Function Kernel, Support Vector Machines with Polynomial Kernel, neural network,
eXtreme Gradient Boosting- xgbtree method, eXtreme Gradient Boosting- xgbDART method, eXtreme Gradient
Boosting-xgbLinear method, Linear model, and Neural Network neuralnet method. (2) Accuracy represents the
Pearson correlation coefficient between the predicted and the observed values in the validation set. (3) May_MAE.T
mean absolute error relative to the optimal prediction model in the month of May using repeated cross-validation
in the training set; May MAE.V (MAE and MAPE) magnitude of the error relative to the predicted values in the
validation (testing) set; means with the same letter in a same column or row, are not significantly different at the 5%
probability level using Duncan’s multiple range test.

The mean comparison showed that SVM-R was the least accurate model. The other models
showed comparable accuracies, but RF, SVML, SVML-G, SVM-P, NNET, GBT, and GBD showed
prediction ability greater than SVM-R. GBT’s prediction ability was consistently greater than 0.5 across
the prediction times. Apart from GBL, the prediction ability of all models was high (prediction accuracy
greater than or equal to 0.76) and/or better in the month of May (Table 2). The mean accuracy across
models was high and not significantly different in May, May–June, and May–July. The across-model
average accuracy computed in May was significantly superior to the mean accuracy obtained in June,
June–July, and July. June, June–July, and July were statistically equally worst times for predicting
biomass yields in sorghum under the Mediterranean region.

The range and mean MAE values (in t ha−1) produced for each model during the calibration
experiments at one (May) of the best prediction times were 9.3–14.4 and 12.0, 2.4–7.4 and 5.0, 3.1–7.0
and 4.9, 2.8–7.3 and 5.0, 2.7–7.2 and 5.0, 3.1–6.7 and 4.6, 3.1–7.1 and 4.8, 3.1–7.1 and 4.8, 3.19–7.95 and
5.29, 2.64–7.34 and 4.80, 2.77–10.21 and 5.43, 2.82–7.09 and 4.88, and 2.18–7.63 and 5.36, for NNET, RF,
SVM-R, PCA-DA, PLS-DA, SVM-P, SVML, SVM-G, GBT, GBD, GBL, LM, and NLNET, respectively
(Figure 4, Table 2). The average MAE values during the training process were statistically higher in
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NNET followed by NLNET and GBL. Prediction error (MAE) was lower in SVM-P and GBD, while
it was not statistically different in PLS-DA, PCA-DA, RF, SVML, SVML-G, SVM-R, GBT, and LM
(Figure 4, Table 2). The MAE values (in t ha−1) calculated using the validation (testing) set and the
best prediction time (May) were, in increasing order, 1.87 (13.85%), 2.18 (16.15%), 2.27 (16.81%), 2.34
(17.33%), 2.68 (19.85%), 2.91 (21.56%), 3.40 (25.19%), 3.62 (26.81%), 3.74 (27.70%), 3.74 (27.7%), 4.53
(33.56%), 6.22 (46.07%), and 12.5 (92.59%), for SVM-R, GBD, RF, NLNET, GBT, PCA-DA, GBL, PLS-DA,
SVML, SVML-G, LM, SVM-P, and NNET algorithms, respectively.

Figure 4. Visualization of models MAE (t ha−1) dispersion using boxplot approach and fAPAR
acquired in May. PLS-DA, PCA-DA, RF, SVML, SVML-G, SVM-R, SVM-P, NNET, GBT, GBD, GBL, LM,
and NLNET, respectively, partial least squares discriminant analysis, principal component analysis
discriminant analysis, random forest, Support Vector Machines with Linear Kernel, Support Vector
Machines with Linear Kernel grid search, Support Vector Machines with Radial Basis Function Kernel,
Support Vector Machines with Polynomial Kernel, neural network, eXtreme Gradient Boosting xgbtree
method, eXtreme Gradient Boosting xgbDART method, eXtreme Gradient Boosting xgbLinear method,
Linear model, and Neural Network neuralnet method.

Spearman’s rank correlation coefficient (Spearman’s rho) between model accuracy and MAE
values (t ha−1 and %) corresponding to the testing set was −0.40. The Spearman’s rho method assesses
how well the relationship between two variables can be described using a monotonic function between
ordered sets that preserves or reverses the given order [48]. The Spearman’s rho approach was selected
to account for the small size of the samples whose pairwise statistical dependences could not be
correctly assessed with parametric approaches that have to be implemented on normally distributed
data. Indeed the Shapiro–Wilk test of normality for the vectors of model accuracies and MAE values,
was very highly significant (p < 0.001), meaning that we couldn’t assume the normality.

Over the May to July prediction time interval, six days of year corresponding to fortnightly fAPAR
indices, were used as regressors in this work. Among these regressors, the most important times to
predict the aboveground sorghum biomass yields were investigated using the GBT algorithm as this
model showed high and dependable performance that was insensitive to the prediction times across
the cropping season. The model showed that the day of year 150 was the most important (index = 100)
followed by DoY 165 (index = 80), DoY 135 (index = 30), DoY 195 (index = 20), and DoY 210 (index
= 10) (Figure 5). The day of year 180 was associated with no importance in terms of fAPAR-based
prediction of the aboveground biomass yields in sorghum under the Mediterranean environment.
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Figure 5. Relative importance of regressors (day of year, D) on sorghum biomass yields in 2017 and
2018, using eXtreme Gradient Boosting xgbtree (GBT) method.

4. Discussion

The fAPAR biophysical variable used in this work was derived from satellite imagery, which is
part of Earth Observation’s big data. Big data technology (BDT) is a new technological paradigm that
is driving entire economies, including low-tech industries such as agriculture where it is implemented
under the banner of precision farming (PF) [49]. In this work, BDT was built on geocoded maps of
agricultural experiment fields and the real-time monitoring of sorghum crops on commercial farms in
order to assess the possibility to monitor sorghum growth and development, with the ultimate aim
of predicting the aboveground biomass yields. Early prediction of biomass production has positive
implications including increased efficiency in biomass, biofuel, and farming resource management [50],
and avoidance of energy crises. Forty-two sorghum pilot trials were evaluated in this work using
fAPAR and different sorghum varieties belonging to four biomass producing sorghum types of dual
purpose, sweet, forage, and biomass per se. Combining different types of biomass producing sorghums
in this study was motivated by the need to mimic farming practice in the Mediterranean region.
In this region, farmers, farming cooperatives, and third-party biomass harvesting and biodigesting
companies manage the above-mentioned sorghum types indiscriminately on a regular basis. It made
therefore sense not to discriminate the biomass producing sorghum types as sources of variation in the
models implemented in this work. Similar investigations were reported in previous studies working
on different crop species [16,51]. Important regressors of interest were identified and used in the
predictive algorithms as suggested in literature [14,51].

The fAPAR index produced unique curves and maps that discriminated between the types of
sorghums evaluated in this work. The fAPAR profile paralleled the evolution of leaf senescence across
sorghum types [52] under the Mediterranean environment. The fAPAR curves presented in this work
were purposely derived from sorghum fields established side by side in the same location in Anzola
dell’Emilia. These pilots were sown and harvested on the same dates and managed identically, which
allows a coherent comparison. The above-described shapes of the curves were generally similar also
across locations in this study, though with slight discrepancies for some sorghum types. All sorghum
trials reported in this work were conducted under a rainfed regime. Given that Mediterranean region is
characterized by a semiarid climate wherein summer crops rely heavily on winter soil-stored moisture
and experience postanthesis drought stress, it can be inferred that the fAPAR in dual purpose and
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biomass sorghum types did not rise during the reproduction growth stage probably due to a combined
effect of sink demand and soil water scarcity in dual purpose, and mostly soil water scarcity in
biomass sorghum. Postanthesis drought stress in sorghum under the Mediterranean environment was
amply described by Habyarimana et al. [52–55]. The fAPAR profile in the sweet, forage, and SB ×
SH grown from seed reflects the reduced importance of the sink and the delayed leaf senescence in
these types. In these sorghum types, a slow fAPAR increase toward the harvest can be explained by
the precipitations registered in early fall in most locations (Figures S1 and S2), which stimulated the
growth of axillary tillers in annual Sorghum bicolor [54,55] and the growth of axillary tillers and ramets
in perennial SB × SH sorghum [54–57]. The above explanation holds also in the case of the SB × SH
regrown from rhizomes. In these plants, the deep fAPAR drop from mid-June (anthesis) to early fall
corresponds to the observed dry summers (Figures S1 and S2) and testifies to the increased susceptibility
to drought stress in these plants. The conclusions drawn on fAPAR profile held particularly for fields
established in the same location. Therefore, further investigations with replications in time and space
are in order before any generalization is made.

In this work, high levels of model prediction accuracy (r ≥ 0.70 or r2 ≥ 0.50) were obtained for 12 out
of the 13 models deployed at the best prediction time (May). The models were therefore able to explain
50% of the variability that existed in the sorghum biomass yield data, while the remaining variance
can be related to other factors non accounted for in this study such as the heterogeneity of external
environmental and anthropogenic factors including rainfall distribution, soil types, and planting/tilling
practices that could lead to different yield responses across the farms. The modeling performance
metrics achieved in this work are nonetheless comparable to previous findings. For instance, Battude
et al. [58], Shafian et al. [31], and Panda et al. [30] came across similar accuracy in their work on maize
biomass and grain yields, and sorghum yields, respectively. On the other hand, the accuracy realized
in this work was greater or equal to the values reported in Gao et al. [51], Diouf et al. [14], and the
optimal values in sorghum as presented in Johnson [16]. Linear and nonlinear models performed
comparably in terms of accuracy and mean absolute error implying that the relationship between
fAPAR and biomass yield was mainly linear, which was expected and also supported by previous
findings [14]. At the best prediction time (month of May), the correlation between the model accuracies
and the MAE values was negative, denoting the expected inverse relationship between the two metrics
of model prediction performance.

The simple linear model was implemented in this work to serve as a benchmark with respect to
the most complex models requiring parameters optimization. Since thirteen models were implemented
in this study, it is interesting to select the best algorithms. As biomass sorghum in the Mediterranean
region is harvested from end of August to late November, it can be interesting to be able to predict
the biomass production from May to July, allowing the farmer to know the amount to be produced
one to six months ahead of harvest [42,51]. SVML, SVML-G, GBT, and LM showed good prediction
accuracy (r ≥ 0.50) across the evaluated prediction times, with MAE values (%) of 27.70, 27.70, 19.85,
and 33.56, respectively. The GBT model was therefore the best algorithm as it performed consistently
well (r ≥ 0.60) across the prediction times, and was associated with low prediction error. The GBT
model can therefore be recommended for sorghum biomass yield prediction using Sentinel-2-derived
fAPAR as biophysical variable under the Mediterranean region. This model can be deployed anywhere
from May to July without significant loss function.

In terms of biomass yields prediction times, June, July, and June–July were the worst times. May,
May–June, and May–July showed comparable average accuracies, but accuracy in May was generally
high (r ≥ 0.70) across models except GBL. The month of May can therefore be recommended as the
best time to predict sorghum biomass yields in the Mediterranean region. In this work, several types
of sorghum were used, including high tonnage, sweet, forage, and dual purpose types. The suitability
of the month of May for sorghum biomass yields prediction can be partly explained by the fact that
in early sorghum growth stages, particularly in the period of time around the fast growth stage,
the four sorghum types exhibit similar levels of growth and development. Furthermore, sorghum
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crop as currently grown in the Mediterranean region, reaches the fast growth stage generally in the
month of May, meaning that predictions run in May are carried out on populations of sorghum types
that are mostly at the same stage of growth and development. Overall, the days of year 150 and
165 were the most important regressors followed by days of year 135, 195, and 210 in decreasing
order. The two regressors acquired in May (DoY 150 and 135) had important direct effects on the
sorghum biomass, which justifies the good prediction accuracies obtained in this month. On the other
hand, the two regressors corresponding to the month of July showed poor importance on biomass
yields, while one of the two regressors corresponding to the month of June had meaningless effect
on biomass yields, all of which explains the poor prediction accuracies obtained in June, July, and
June–July (Table 2). In the Mediterranean region, sorghum is sown mid-to-late April. Therefore,
being able to perform accurate sorghum biomass yields prediction in May, i.e., up to six months
ahead of harvesting is a remarkable opportunity for the farmer and farming cooperatives that can
use this information for several business-related purposes. They can efficiently organize the biomass
business operations including the rational mobilization of the fleets of harvesting machinery, transport
vehicles, and storage facilities. The predictive models developed in this work can also be used by
extension services and policy-makers for strategic purposes. Obtaining the information on potential
within-season biomass availability early on before actual harvest will help assess alternative means
for energy supply internally, import or export, which is expected to help avoid specific crises such
as fuel shortage. The findings in this work are limited in scope to one province in Italy, within the
Mediterranean region. The prediction equations produced in this work can therefore be safely used
in analogous modeling experiments in other Mediterranean areas. However, for these equations to
be extended to modeling activity at a global level, the training populations of farms would require
updates with inclusion of data accounting for sampling additional latitudes and longitudes relevant
for sorghum cultivation.

5. Conclusions

The importance of sorghum as food, feed, and biofuel crop was amply described in several
scientific literatures. Biomass sorghum demonstrated higher yields with better energy balance
relative to major crops of agroindustrial interest. As dedicated biomass sorghum crops are steadily
increasing and precision farming is driving agricultural economies worldwide, the harnessing satellite
technology is well-poised to bring about agricultural advantages including cutting farming operational
costs. Sentinel-2-derived fraction of absorbed photosynthetically active radiation was found to
satisfactorily explain primary productivity and was used in this study as biophysical variable in the
predictive modeling of aboveground biomass yields in annual and perennial sorghums. Across month
combinations from May to July and the thirteen machine learning prediction algorithms used in
this work, the gradient boosting machine learning algorithm implementing xgbtree was identified
as the best predictive model. The best prediction time for sorghum biomass was particularly the
month of May, followed by May–June and May–July using fortnightly fAPAR indices. To the best
of our knowledge, the present work represents the first time Sentinel-2-derived fAPAR is used in
predictive modeling of sorghum biomass yields. The outcome from this study is important and can
serve several purposes including farmers being able to improve their sorghum biomass business
operations. Policy-makers and extension services will also benefit from the findings in this work
allowing them early on within season information on potential biomass availability, which is critical to
wider energy planning and avoiding energy-related crises.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/4/203/s1,
Figure S1: Fifteen-day averaged temperatures and rainfall in Anzola dell’Emilia in 2017 and 2018 cropping seasons,
Figure S2: Fifteen-day averaged temperatures and rainfall in Conselice in 2017 and 2018 cropping seasons, Figure
S3: Fifteen-day averaged temperatures and rainfall in Mirandola in 2017 and 2018 cropping seasons, Figure S4:
Fifteen-day averaged temperatures and rainfall in Nonantola in 2017 cropping season.
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Abstract: Developing disease models to simulate and analyse yield losses for various pathogens
is a challenge for the crop modelling community. In this study, we developed and tested a simple
method to simulate septoria tritici blotch (STB) in the Cropsim-CERES Wheat model studying the
impacts of damage on wheat (Triticum aestivum L.) yield. A model extension was developed by
adding a pest damage module to the existing wheat model. The module simulates the impact
of daily damage on photosynthesis and leaf area index. The approach was tested on a two-year
dataset from Argentina with different wheat cultivars. The accuracy of the simulated yield and leaf
area index (LAI) was improved to a great extent. The Root mean squared error (RMSE) values for
yield (1144 kg ha−1) and LAI (1.19 m2 m−2) were reduced by half (499 kg ha−1) for yield and LAI
(0.69 m2 m−2). In addition, a sensitivity analysis of different disease progress curves on leaf area
index and yield was performed using a dataset from Germany. The sensitivity analysis demonstrated
the ability of the model to reduce yield accurately in an exponential relationship with increasing
infection levels (0–70%). The extended model is suitable for site specific simulations, coupled with
for example, available remote sensing data on STB infection.

Keywords: wheat; disease; yield; septoria tritici blotch; leaf area index; crop modelling;
decision support system for agrotechnology transfer (DSSAT); Cropsim-CERES Wheat

1. Introduction

Wheat (Triticum aestivum L.) is the second most important staple food crop for human nutrition.
It is grown worldwide on approximately 220 million hectares under different climatic conditions.
It is projected that wheat production must increase by 1.6% annually to meet the expected global
demand by 2050 [1]. However, increasing temperatures and changing global rainfall patterns will
likely influence breeding, management, fertilization and crop protection strategies for wheat [2] and
also influence disease patterns [3,4]. Hence, crop protection measures will play an important role
under future climate change, as rising temperatures and changes in rainfall pattern, will cause more
favourable conditions for pests and diseases, especially in the warming north, where wheat production
is predominant [2].

On a global scale, there are approximately 50 diseases and pests, which have the potential to
damage wheat and reduce farmer’s income [5–7]. On a global level, the most widely adapted wheat
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fungal diseases are leaf rust caused by “Puccinia triticina E.,” stripe rust caused by “Puccinia striiformis
W.,” stem or black rust caused by “Puccinia graminis E.,” powdery mildew caused by “Blumeria graminis
P.” and septoria tritici blotch (STB) caused by “Zymoseptoria tritici D.” [1]. The infection by “Zymoseptoria
tritici D.” is the most economically damaging wheat disease worldwide [8]. It can cause yield reductions
of 50% to 60% [9] by creating leaf lesions resulting in defoliation and reduced photosynthesis. It has
been estimated that 70% of the annual usage of fungicides in Europe is related to the treatment of this
disease [10].

During the past decade, there has been an increasing resistance of STB to azole and strobilurin
fungicides in Europe [9–11]. Breeding for STB disease resistance is complicated, due to the variability
of the pathogen reproduction cycle [12,13]. Researchers have studied different strategies including
tillage, crop rotation, delayed sowing, fungicide application and a proper level of fertilizer application
to reduce or control the infection of STB [14]. It appears that moderate fungicide application coupled
with the right amount of fertilizer is a strategy that holds promise for environmentally friendly wheat
production, while reducing at the same time STB infection.

Crop models are suitable for decision support and contribute to a better understanding in the
development of new wheat production strategies. They can play a vital role in understanding plant
growth processes, the impact of different weather scenarios as well as management strategies on disease
outbreak, final yield and grain quality. Hence, crop models might help to spread the production of
wheat in more economic and sustainable ways.

Crop models can also provide an insight into yield losses due to pests and diseases, including STB.
Several mechanistic wheat crop growth models have been developed over the last several decades,
including APSIM [15], WheatGrow [16], STICS [17], Sirius [18] and DSSAT [19]. These models were
developed to study crop-environment interaction and to evaluate optimum management strategies.

The Cropsim-CERES-Wheat (CCW) model [20–22] included in the DSSAT version 4.6 [23] was
developed to study the impact of genetics, management, weather and climate change on wheat
growth and yield. The model simulates daily plant development based on daily maximum and
minimum temperature, daylength and vernalisation requirements. Growth is computed on a daily
basis using a radiation use efficiency approach. Carbon is allocated daily to different plant parts based
on the development stage. The CCW model has been linked with remote sensing data [24] and was
successfully tested with different cultivars, soil characteristics as well as in different climatic conditions
including Canada [25], Argentina [26], Southern Italy [27] and the United Kingdom [28]. Currently the
CCW model does not account for damage due to weeds, pests or diseases [29]. As a consequence,
inaccurate simulations of crop growth and yield result when simulating datasets that include pests
and diseases [30,31].

Developing and incorporating a disease damage extension would expand the use of the
CCW model to simulate and study the impact of disease damage on crop growth and yield.
Batchelor et al. [32] incorporated a pest damage into the CROPGRO [33] family of models distributed
with the DSSAT [34]. In their approach, they defined pest coupling points as daily rate and state
variable modifiers to simulate the impact of daily pest damage on leaf, stem, seed, shell and root
state variables and daily photosynthesis rate based on daily inputs of pest damage. They tested this
approach for different pest damage types for peanut and soybean crops. They evaluated this approach
using a dataset to simulate the impact of velvetbean caterpillar on soybean.

Using the same approach, the purpose of this work was to: (i) develop a disease model extension
for the simulation of STB in wheat, to (ii) evaluate the model performance using a dataset from
Argentina; and (iii) to conduct a sensitivity analysis for the impact of different disease progress curves
on leaf area index and yield using a dataset from Germany.
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2. Materials and Methods

2.1. Model Development

Currently the CCW model does not account for competition with weeds, pests or diseases.
To solve this problem, modifications of the current CCW version are necessary to include the impact of
leaf diseases on final crop yield.

Plant dry matter accumulation and yield can be expressed as a function of leaf area index (LAI),
radiation use efficiency and the loss of assimilates due to respiration. Pathogens can modify both leaf
area index and daily photosynthesis [35].

The primary damage resulting from STB is defoliation, which reduces both leaf area and leaf
photosynthetic rate [36,37].

To apply the damage theory, it was necessary to integrate the pest damage module [32] structure
into the current CCW wheat model (Figure 1). These changes included the adding and linkage of
the following subroutines to the original version: PEST.for, LINDM.for, PESTCP.for, VEGDM.for and
OPPEST.for. A pest damage definition file was created to define the coupling point “leaf area” for
the leaf disease STB (Figure 1), where daily damage could be applied to state and rate variables in
the model. Percent cumulative leaf area destroyed (PCLA) was chosen as major coupling point in
the model.

 

Figure 1. A simplified diagram of the Cropsim-CERES-Wheat (CCW) model with the pest damage
module incorporated.

Field observed damage levels were entered in the time series file, referred to as File T in the DSSAT
family of models. In this file, the year and day of year (DOY) are entered, along with STB infection in
percent. Observed disease infection was linked to the percent cumulative leaf area destroyed (PCLA)
coupling point. This damage type (i.e., PCLA) is defined in the pest damage definition model input
file, which links field observed damage type and levels to the internal model pest damage coupling
point. The model uses a linear interpolation to compute daily damage from periodic field observations.
In this work, it was assumed that STB infection began ten days before the first infection symptoms were
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observed in the field. This assumption was made, based on Sánchez-Vallet et al. [38] who reported a
latent period for STB between day 8 and 14 after infection depending on the environmental conditions.
The daily percentage of damage (Npt) was calculated between field observations using

Npt = Prt∗ +
(Prt − Prt∗)(
Dpt − Dpt∗

) × (
Ds − Dpt∗

)
(1)

Npt = daily reported damage for damage type p at time t; Dpt = DOY of next field observation of
damage (Prt); Dpt* = DOY of previous field observation of damage (Prt*); Ds = day of current simulation;
Prt = damage level reported in the next field observation; Prt* = damage level reported in the previous
field observation.

The daily damage calculation, which was applied to the leaf area coupling point (Pit) is calculated
in the PESTCP. for subroutine (Figure 1) by Equation (2):

Pit =
(

Npt
)(

Cip
)

(2)

The pest coefficient (Cip) allows the model to convert units of damage into units used for the
model state or rate variable that is being damaged.

After calculating the daily damage to be applied to the diseased leaf area based on interpolations
from field observations, the daily damage (Dipt) to be applied to the leaf area state variable
(defoliated leaf area) is calculated by the following equation:

Dipt = Xit
∗ − (Xtit − Xsit)×

(
1 − Pit

100

)
(3)

Xit* = state or model variable i on day t, before application of damage; Xit = state or model variable i
on day t, after application of damage; Xtit = cumulative amount of coupling point I; Xsit = cumulative
senescence of coupling point I; Dipt = amount of damage applied on state or model variable i on day t;
Pit = coupling point leaf area.

Finally, the model state or rate variable is adjusted by subtracting the computed defoliation from
the leaf area state variable by Equation (4):

Xit = Xit
∗ − Dipt (4)

Xit = state or model variable i on day t, after application of damage; Xit* = state or model variable i on
day t, before application of damage; Dipt = amount of damage applied on state or model variable i on
day t.

2.2. Field Trials

In this study, datasets from two different locations were used for model development. The first
dataset was recorded on the Experimental Station Julio Hirschhorn in La Plata (34◦56’ S, 57◦57’ W, 15 m
above sea level, 16.3 ◦C average temperature; 946 mm mean annual precipitation) National University
of La Plata in Argentina. The second experiment was carried out at the Experimental Station Ihinger
Hof (48◦44’ N, 8◦55’ E; 480 m above sea level, mean annual temperature 9.1 ◦C and 714 mm mean
annual precipitation) University of Hohenheim in Germany.

The trial in Argentina was conducted in two consecutive years (2010 and 2011) and published by
Castro and Simón [39]. The objective of this trial was to test the tolerance of ten different Argentinean
wheat cultivars (Triticum aestivum L.) for STB and to evaluate the disease impact on grain yield and
grain quality. The sowing dates were on 15th of July in 2010 and 16th of June in 2011. The soil type
was a silty loam. Nitrogen was applied as urea at 100 kg N ha−1 at sowing and 80 kg N ha−1 at the
end of tillering. Three different inoculation levels with Zymoseptoria tritici D. were performed. The first
level was the control treatment, the second was considered to be a low inoculation level (with 5 × 105
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spores mL−1 suspension), while the third treatment was considered as high inoculation treatment
(5 × 106 spores ml−1 suspension). All inoculations were performed at growth stage 22 (beginning
of tillering) [40] and at growth stage 39 (flag leaf emergence). For model development weather data
(daily temperature, rainfall, solar radiation) from the weather station La Plata (34◦56’ S, 57◦57’ W),
disease severity ratings (%) from three growth stages (GS 39, 60, 82), leaf area index (LAI) which was
calculated from the green leaf area (GLAI) plus non-green leaf area (NGLAI), yield, soil properties and
management information were collected.

The second trial in Germany was conducted in 2006 using the cultivar Monopol with three
inoculation levels (control treatment; low inoculation 50%; high inoculation 100%) of Zymoseptoria
tritici. Inoculation was imposed by spraying 50% or 100% of a spore suspension (1 × 106 spores
per mL, strain CBS 292.69) onto the plots at growth stage 32 [41]. The sowing date was 22nd of
October 2005 on a silty clay soil. Nitrogen in form of ammonium nitrate was applied at three growth
stages: 100 kg N ha−1 at GS 30, 80 kg N ha−1 at GS 32 and 40 kg N ha−1 at GS 49. The objective
of this field trial was to use different vegetation indices to determine the occurrence of plant
diseases in winter wheat (Triticum aestivum L.). For model sensitivity analysis, data including
temperature, rainfall and solar radiation from the weather station Ihinger Hof, as well as growth stages,
yield monitoring data, disease severity ratings and the LAI at growth stages GS 31, 34 and 49 were
collected. Further information on the trial layout can be found in Gröll [41].

2.3. Model Calibration and Evaluation

The modified CCW model extension was incorporated into the DSSAT 4.6 software. Model inputs
were created for both datasets from Argentina and Germany. The dataset from La Plata of 2010,
which included phenological, yield, soil data (Table 1) and weather data, was used for calibration to
test the ability of the model to simulate the impact of STB on wheat growth and yield.

Table 1. Soil properties for experiments in La Plata and Ihinger Hof used in the simulation.

Location La Plata
Clay

Content %
Sand

Content %
Silt Content % LLL * DUL ** SAT ***

0–30 cm 20.7 28.9 50.4 0.226 0.457 0.561
30–60 cm 20.7 28.9 50.4 0.226 0.457 0.561
60–90 cm 20.7 28.9 50.4 0.226 0.457 0.561

Location Ihinger Hof

0–30 cm 43.3 9.9 46.8 0.247 0.412 0.467
30–60 cm 43.3 9.9 46.8 0.247 0.412 0.467
60–90 cm 25.0 18.8 56.2 0.142 0.313 0.503

* Lower limit =̂ permanent wilting point (pF 4.2). ** Drained upper limit =̂ field capacity (pF 1.8). *** Saturated =̂
saturated water content (pF 0).

Genetic coefficients for growth and development were calibrated using the 2010 dataset and the
control treatment for each cultivar. Calibration was performed by sequentially adjusting the genetic
coefficients (Table 2) to minimize the error between measured and simulated values [19]. The existing
species file was set as default and the existing ecotype UKWH01 as well as the cultivar file were
modified. Coefficients for phenological development (P1V, P1D, P1–P5 and PHINT) were calibrated in
the first step, followed by crop growth coefficients (G1, G2 and G3). The RMSE, index of agreement
(d-Index) and modelling efficiency (EF) statistics were used to assess the quality of the calibration
(see section statistical evaluation). After calibration of individual cultivars, the percentage infection
with STB of the low and high inoculation was applied to test the model response. The dataset from La
Plata of 2011 was used for model validation.
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The second dataset from Ihinger Hof was used for sensitivity analysis to test the model on a
different location to proof the concept and to test the responsiveness of the model of different STB
infection levels. The calibration was performed in the same way as in La Plata with the control
treatment by modifying the necessary cultivar coefficients (Table 2). We applied 0%, 10%, 20%, 30%,
50% and 70% damage rates at maximum LAI (GS 39) and started the damage application at growth
stage GS 31 to estimate the corresponding yield loss. The different damage rates were used to test the
model responsiveness on a broad disease range, which typically starts to impact yield after growth
stage 31 [42].

Statistical Evaluation

The statistical model evaluation was conducted by comparing the simulated and observed LAI
and yield of the different inoculation treatments (dataset from La Plata).

For statistical analysis, the root mean squared error (RMSE. Equation (5)), the index of agreement
(d-Index, Equation (6)) [43] and the modelling efficiency (EF, Equation (7)) were used. The RMSE was
used to quantify the amount of variation between simulated and measured values on a metric scale.
The d-Index shows if the model is under -or over-estimating the measurements. The EF parameter
compares simulated values with the average of the measurements. For a perfect fit between simulated
and observed data, the RMSE should be at 0 and the d-Index and EF parameter should have a value
of 1.0.

The statistical evaluation was done for simulation runs of the original CCW version and the
modified CCW for LAI and yield from both years (2010; 2011) on the location La Plata over all cultivars
and inoculation treatments.

Root mean square error (RMSE):

RMSE =

[
1
n

n

∑
i=1

(Si − Oi)
2

]0.5

(5)

Index of agreement (d):

d = 1 −
[

∑n
i=1(Si − Oi)

2

∑n
i=1

(∣∣Si − O
∣∣+ ∣∣Oi − O

∣∣)2

]
(6)

Modelling efficiency (EF):

EF = 1 −
[

∑n
i=1(Si − Oi)

2

∑n
i=1

(
Oi − O

)2

]
(7)

where: Oi = observed values; Si = simulated values; n = numbers of samples; O = mean of observed data

3. Results and Discussion

3.1. Model Calibration for La Plata

3.1.1. Leaf Area Index

The calibration was performed on the 2010 dataset by fitting the relevant genetic coefficients
(Table 2) for phenology and growth. One essential prerequisite for model development is an
accurate simulation of growth stages. In this study, growth stages (GS 39; GS 60; GS 82) were
predicted by the model conclusively: For all ten cultivars the flowering date (GS 65) was documented
approximately 110 days after sowing (DAS), the model simulated this growth stage 115 DAS. A similar
result was obtained by comparing observed and simulated DAS of the early dough stage (GS 82)
(observed approximately at 131 DAS, simulated 132 DAS).
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The main focus of this model calibration was on the adjustment of leaf area as a major coupling
point for disease damage. Figures 2 and 3 illustrate the simulated and the observed values for leaf area
index and grain yield across different inoculation treatments along with the statistics (Table 3).

Figure 2. Simulated vs. measured leaf area index (LAI) for calibration (year 2010 a–c) and validation
(year 2011 d–f) for all ten cultivars on the location La Plata. Different symbols represent the different
inoculation treatments where × = No Inoculation; Δ = Low Inoculation and O = High Inoculation.
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Figure 3. Simulated vs. measured yield (kg DM ha−1) for calibration and validation for all ten cultivars
on the location La Plata 2010 (a) and La Plata 2011 (b).

Table 3. Statistical evaluation of the simulation of leaf area index and grain yield of the original CCW
model and the developed CCW model extension for diseases using root mean square error (RMSE),
Willmott’s d statistic (d-Index) and modelling efficiency (EF).

Original CCW Modified CCW

Variable Experiment RMSE d-Index EF RMSE d-Index EF

Leaf area
index

La Plata 2010 1.19 0.33 −2.69 0.69 0.51 −1.07
La Plata 2011 2.88 0.24 −0.98 1.11 0.70 0.68

Yield
La Plata 2010 1144 0.47 −1.19 499 0.81 0.58
La Plata 2011 1755 0.50 −1.19 1285 0.66 −0.18

For demonstration of the overall model behaviour in regard to LAI changes induced by three
different STB inoculation treatments over time, the wheat cultivar K. Chaja was selected. This cultivar
was considered to be highly susceptible to STB infection [39]. Figure 4a shows the impact of disease
infestation on LAI according to different inoculation treatments 90 days after sowing. All three
simulation runs reached the maximum LAI at day 100. For the control treatment a maximum LAI of
3.5 was simulated. A difference of 0.5 LAI was found between the control and the high-inoculation
treatment. Comparing simulated and observed LAI values, the model predicted the LAI over the
vegetation period in an accurate manner (RMSE 0.47, d-Index 0.9).

Similar results are displayed in Figure 2a–c, which illustrates the simulated versus observed LAI
across three different inoculation treatments for different cultivars. Regardless of susceptibility, in GS
39 all ten cultivars showed a homogenous distribution of all data points around the 1:1 line with no
strong outliers. A slight tendency for an overestimation of LAI was given at GS 39 in the low and high
inoculation treatments, whereas for the control treatment a slight underestimation was shown over all
cultivars. In GS 60 and GS 82, a slight overestimation of LAI was found for all inoculation treatments.
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Figure 4. Simulated and measured leaf area index values for cultivar K. Chaja, year 2010 (a) and
2011 (b) including different inoculation treatments with septoria tritici blotch (STB). The error bars
demonstrate the LSD of the leaf area index.

Finally, the modified CCW model (RSME 0.69; d-Index 0.51) performed better compared to the
original CCW model (RSME 1.19; d-Index 0.33), as indicated by the corresponding statistics. Outliers in
Figure 2a–c can be explained by the LSD ranging from 0.4 to 1.0 depending on the sampling date,
reported from Castro and Simón [39].

Nevertheless, the model was able to account for all ten cultivars representing different tolerance
levels to STB at different growth stages and disease severities accurately.

3.1.2. Yield

A reduction in LAI after infection with STB also leads to a reduction in yield (Figure 5a).
Yield formation started for the cultivar K. Chaja (Figure 5a) on day 122 and was negatively
correlated with the inoculation treatment. Yield of the control treatment (3800 kg ha−1) was slightly
underestimated and the high inoculation treatment (3400 kg ha−1) showed a slight overestimation.

Figure 5. Simulated and measured grain yield values for cultivar K. Chaja year 2010 (a) and 2011 (b)
including different inoculation treatments with STB. The error bars demonstrate the LSD of the yield.

Figure 3a represents the observed versus the simulated yield for all ten cultivars and showed
a dense clustering of the different inoculation treatments around the 1:1 line. Overall, it indicated
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the highest simulated yield for the control and the lowest yield for the high inoculation treatment.
The results illustrated the capability of the modified CCW model to account for disease damage.
This is expressed in the statistical evaluation (Table 3), where a reduction of the RMSE from 1144
(original version) to 499 (modified version) was observed. The d-Index also underlined these findings,
which increased from 0.47 (original version) to 0.81 (modified version).

The modification of the existing CCW showed very good results in LAI and yield simulation
(Table 3). It indicated a clear improvement for all statistical parameters compared with the existing
CCW included in the current DSSAT version. The calibration successfully minimized the error between
measured and simulated data for both, LAI and yield.

3.2. Model Validation for La Plata

3.2.1. LAI

Illustrating LAI (Figure 2d–f) and yield (Figure 3b) for the cultivar K. Chaja and all cultivars in
the validation year 2011.

In 2011, a maximum LAI of 6.3 was observed in the control treatment for K. Chaja (Figure 4b)
at day 120. The model simulated a maximum LAI of 6.2 for the control treatment on the same day.
For the low-inoculation treatment, a maximum LAI of 4.7 was observed, whereas the model simulated
a maximum LAI of 5.8. Regarding the highest inoculation treatment, a LAI of 4.6 was observed in the
field experiment. The model simulated for the same treatment a maximum LAI of 5.7. The model was
capable to simulate the maximum LAI for the control treatment exactly but it slightly overestimated
the maximum LAI both for the lowest and highest inoculation treatment.

In general LAI was higher in 2011 than in 2010 independent of cultivars, growth stages and
inoculation treatments (Figure 2). For 2011 and GS 39, the 1:1 plot showed no strong outliers and a
slight overestimation for the control treatment and a slight underestimation for the highest inoculation
treatment. This can be caused by an earlier onset of disease in the inoculated treatments which was not
reported and cause a slightly underestimation in the model. For GS 60 and GS 82 the model predicted
the observed LAI values accurately.

3.2.2. Yield

Yield formation started 140 days after sowing for K. Chaja (Figure 5b), while full maturity was
reached on day 165. A maximum yield of 6000 kg ha−1 was reached in the control treatment compared
with the lowest yield of 5400 kg ha−1 in the high inoculation treatment. The corresponding error bars
of the measured values were met by the simulated curves, which indicated a high accuracy of the
simulation. Under consideration of all cultivars and inoculation treatments (Figure 3b) data points
scattered around the 1:1 line on a broader range compared to the calibration (Figure 3a). An inverse
relationship between inoculation level and yield was shown (Figure 5).

Overall, the developed model extension was able to account for STB disease damage. This is
also shown by the statistics (Table 3), where a 30% improvement of the RMSE in the modified CCW
version was achieved compared with the original model. This improvement was also shown by the
d-Index and EF values. Further, the calibration showed a higher model accuracy when compared with
the validation. Jing et al. [44] and Attia et al. [45] also reported a slightly weaker simulation accuracy
regarding the validation dataset.

For 2010, a 20 days shorter growing period due to a 30 days later sowing date and a 130 mm lower
precipitation compared to 2011 [39] was reported. Both factors resulted in a reduction of LAI and
yield in 2010. Despite these differences the model performed very well for each inoculation treatment
and showed its robustness when growing conditions differ between years. Measured yields in the
inoculation treatments were simulated quite accurately, while the measured mean value of the control
showed a 5% off-set. An explanation for this offset might be given in the way the disease ratings
were performed and represented in the model. The model used the mean values from the disease
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ratings of all repetitions and did not represent each individual plot. It is also possible that the trials
had a slight infection of other diseases, which were not measured and caused a slight model offset.
Another conceivable reason is the defined onset of disease ten days before disease rating was reported.
This assumption was made because of the reported latent period for STB between day 8 and 14 after
infection from Sánchez-Vallet et al. [38].

For 2010 and 2011, the d-Index values of the original CCW version are in a similar range for
both LAI and yield. In the developed model extension, the d-Index, which represents the model
accuracy, increased strongly even though in different intensities for each year. This may point to one
possible shortcoming of the current model extension, as it does not account for spore disposal [46].
Spore disposal model use different leaf layers, rain intensity thresholds, droplets, sporulation and
concentrations of starting spore pools and can therefore extend the simulation accuracy further.

Nevertheless, other STB models show a strong performance, if a minimum dataset is provided,
in which more inputs like leaf wetness are included [47] or in which the initial state of infection of
the first leaves is known [46]. Magarey et al. [47] also reported the necessity of hourly weather data
for many disease models. In previous datasets this information is not given [48] and they cannot be
used for disease modelling, which is literally a loss of information for agricultural decision making.
This clearly shows the advantage of the developed CCW extension, in which only the percentage of
disease rating, weather- and soil data is needed as a minimum dataset. This leads to a more accurate
simulation as shown in Table 3 and makes the CCW applicable for a broader use.

3.3. Sensitivity Analysis

In order to test the general responsiveness of the developed model extension, a sensitivity
analysis was carried out by comparing different inoculation treatments with the corresponding disease
infections [41]. The model was calibrated by using an independent dataset with disease infections from
Germany [41]. The disease infections varied between 4%, 13% and 15%. Disease infection started in
GS 31 (DAS 200). Figure 6a depicts the simulated curves for the three different inoculation treatments.
A maximum LAI of 7.3 was reached 40 days after GS 31. Simulated curves illustrate a clear separation
between the 4%, 13% and the 15% disease infection. A maximum LAI of 7.2, 6.3, 6.1 was reached at day
240 at 4%, 13% and the 15% disease infection rating. Comparing simulated infection scenarios with
measured values, the model simulated the LAIs of the three different disease infection levels accurately.

Figure 6. Sensitivity analysis of the CCW disease extension for measured disease infections (4%; 13%;
15%) (a) and for five infection scenarios (0%; 10%; 20%; 30%; 50%; 70% disease infection) (b) with STB
at the location Ihinger Hof.
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In the next step an artificial disease infection level of up to 70% was applied (Figure 6b) to test the
general responsiveness and the boundaries of the developed model and to test the leaf damage theory
on the leaf area coupling point (PCLA).

In Figure 6a a maximum LAI of 7.3 was reached 40 days after GS 31 in the control treatment.
LAI increased almost linearly from day 200 to day 240 before the onset of senescence led to a constant
decrease in LAI up to final harvest date. For the depicted disease infection scenarios of 10%, 20%,
30% and 50 % a maximum LAI of 7.3, 6.2, 5.4, 4.6, 2.9 and 1.3 was reached at day 240 (Figure 6b).
The 70% disease infection scenario showed that a maximum LAI of 2.0 was reached earlier at 220 DAS
(Figure 6b). Due to the massive destruction of leaf area, a shortage of assimilate production occurred,
which affected in a next step the growth of new leaves. Simulated LAI reduction for maximum LAI in
the different disease levels followed the magnitude of 12.5 % (10% diseased LAI), 24.8% (20% diseased
LAI), 37.1% (30% diseased LAI), 60.3% (50% diseased LAI) and 82.4% (70% diseased LAI) (Table 4).

Table 4. Yield evaluation of the sensitivity analysis from the Ihinger Hof dataset, by comparing the
percentage disease infection with STB and the corresponding simulated percentage yield reduction in
kg DM ha−1 for the cultivar Monopol.

% Disease
Infection

Simulated
Yield kg ha−1

Measured Yield
kg ha−1

% Yield
Reduction

% LAI Reduction
at Maximum LAI

0 4384 0 0
4 * 4332 4409 1.2 0.8
10 4190 4.4 12.5

13 * 4159 3934 5.1 14.5
15 * 4124 3965 5.9 12.0
20 3990 9.0 24.8
30 3737 14.8 37.1
50 3242 26.0 60.3
70 2380 45.7 82.4

* measured disease infection.

Table 4 shows the corresponding yields of the applied and measured disease infection levels.
The maximum observed yield obtained with the disease infection level of 4% was 4409 kg ha−1.
Higher disease infection levels (13%; 15%) resulted in lower yield (3934 kg ha−1; 3965 kg ha−1).
Simulated yield decreased gradually with higher infection levels. The control treatment resulted in a
maximum yield of 4384 kg ha−1, while the 70% disease infection level resulted in a total grain yield of
2380 kg ha−1 which corresponded to a 45.7% yield reduction. Over all tested disease infection levels,
the simulated yield reduction followed an exponential shape, indicating that yield reductions became
more severe and are more than doubled at higher disease infection levels. An exponential relationship
between yield loss and disease infection was also shown by King et al. [49].

Comparing simulated and measured yield, the model showed a slightly underestimation for the
4% level and a slight overestimation for the 13% and 15% disease infection level. These variations are
in an acceptable range.

Regarding the accuracy of the current simulation, similar results for yield reduction based on
the occurrence of leaf diseases are reported by Ziv and Eyal [50]. Ziv and Eyal [50] tested different
inoculation treatments in different spring wheat cultivars and reported yield losses of up to 53% at a
disease infection of 73%. The developed CCW model extension gave comparable results to a previous
study of Bhathal et al. [51] also at lower infection level scenarios. Bhathal et al. [51] tested different
inoculation treatments in wheat to evaluate the relationship between disease infection and yield.
Notably, they showed an onset of the disease as it was used in the sensitivity analysis of this study,
at GS 31 and demonstrated a 10% yield loss due to a natural disease infection of 26%. King et al. [49],
also confirmed this model theory on an independent dataset from the United Kingdom carried out at
four different locations. Similar observations and an exponential yield loss curve due to STB disease
were obtained. In addition, a yield loss of 30% by a disease infection of 55.1% as well as a yield
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reduction of 8% by a disease infection of 14.5% occurred. This confirmed the model theory and clearly
showed the capability to simulate leaf disease infection with STB by using the coupling point leaf area
(PCLA).

3.4. Future Model Applications

Despite the good simulation results, the developed model concept can currently only be
used for STB. The concept was not tested on other wheat diseases like stripe rust caused by
“Puccinia striiformis W.,” stem or black rust caused by “Puccinia graminis E.” or powdery mildew
caused by “Blumeria graminis P.” It can be assumed that this concept will also work for other diseases,
by changing the pest coefficient in the pest file to account for different damage types. Bastiaans [52]
showed a ß–value for STB, which represents the correlation between visible affected leaf area and
the affected photosynthetic rate. A ß–value > 1 indicates a stronger effect on photosynthetic rate as
it visually appears. For STB this value is close to 1 wherefore the pest coefficient in the CCW model
extension was set to 1. Bastiaans [52] reported a ß–value of 8.7 for “Erisyhe graminis” or 1.3 for “Puccinia
recondita” in winter wheat. It is assumed, that the pest coefficient has to be increased in a similar
manner but it has to be proven by real data. However, the structure of the model extension is set up in
a flexible way and has the possibility to be transferred to other leaf diseases.

Further, the disease extension routine can suite as a gateway between crop models and remote
sensing data, like it was published by Thorp et al. [53]. Thorp et al. [53] showed an improvement of
simulation results by updating the plant leaf area state variable with green LAI generated by remote
sensing. This offers the opportunity to simulate a given field on a site-specific scale, which means the
CCW model extension can be updated by the percentage diseased leaf area detected by for example,
remote sensing. In this way, the model could serve as decision support tool to give farmers an economic
advise on a field level as Ficke et al. [54] proposed.

4. Conclusions

In this study a disease extension for the CCW model was developed to simulate the damage effect
of STB disease on LAI and yield in wheat. The model was tested successfully in a sensitivity analysis
on a German dataset and on a dataset obtained from La Plata, Argentina. Results of the study clearly
showed the effect of the implementation of the coupling point “PCLA” and on the corresponding
LAI and yield for different locations. For the location La Plata, the obtained simulation results of the
modified CCW model indicated a higher model accuracy which almost doubled and clearly showed an
improved model behaviour. Especially for the cultivar K. Chaja, the CCW model extension showed a
high modelling accuracy. The LAI and yield were simulated very accurate in both years. Furthermore
the sensitivity analysis also displayed the flexibility of the CCW model extension to account for disease
damage over a broad range between 0 and 70% of STB disease infection.

Nevertheless, further research is needed to test the developed model on other leaf diseases like
leaf rust, powdery mildew or stripe rust in wheat. The model extension could be used in future
studies as decision support system for example, coupled with remote sensing technologies to obtain
the necessary disease ratings for the model input files.
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Abstract: Accurate estimation of the nitrogen (N) spatial distribution of rice (Oryza sativa L.) is
imperative when it is sought to maintain regional and global carbon balances. We systematically
evaluated the normalized differences of the soil and plant analysis development (SPAD) index
(the normalized difference SPAD indexes, NDSIs) between the upper (the first and second leaves
from the top), and lower (the third and fourth leaves from the top) leaves of Japonica rice. Four
multi-location, multi-N rate (0–390 kg ha−1) field experiments were conducted using seven Japonica
rice cultivars (9915, 27123, Wuxiangjing14, Wunyunjing19, Wunyunjing24, Liangyou9, and Yongyou8).
Growth analyses were performed at different growth stages ranging from tillering (TI) to the
ripening period (RP). We measured leaf N concentration (LNC), the N nutrition index (NNI),
the NDSI, and rice grain yield at maturity. The relationships among the NDSI, LNC, and NNI
at different growth stages showed that the NDSI values of the third and fourth fully expanded leaves
more reliably reflected the N nutritional status than those of the first and second fully expanded
leaves (LNC: NDSIL3,4, R2 > 0.81; NDSIothers, 0.77 > R2 > 0.06; NNI: NDSIL3,4, R2 > 0.83; NDSIothers,
0.76 > R2 > 0.07; all p < 0.01). Two new diagnostic models based on the NDSIL3,4 (from the tillering
to the ripening period) can be used for effective diagnosis of the LNC and NNI, which exhibited
reasonable distributions of residuals (LNC: relative root mean square error (RRMSE) = 0.0683; NNI:
RRMSE = 0.0688; p < 0.01). The relationship between grain yield, predicted yield, and NDSIL3,4

were established during critical growth stages (from the stem elongation to the heading stages;
R2 = 0.53, p < 0.01, RRMSE = 0.106). An NDSIL3,4 high-yield change curve was drawn to describe
critical NDSIL3,4 values for a high-yield target (10.28 t ha−1). Furthermore, dynamic-critical curve
models based on the NDSIL3,4 allowed a precise description of rice N status, facilitating the timing of
fertilization decisions to optimize yields in the intensive rice cropping systems of eastern China.

Keywords: SPAD; leaf nitrogen concentration; nitrogen nutrition index; grain yield; dynamic model
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1. Introduction

Nitrogen (N) is one of the most important yield-limiting factors [1]. Appropriate N management is
essential to achieve relatively high yields with low N input, particularly to ensure maximum rice yield
and quality [2,3]. Yield-target-based N fertilization plays an important role when developing profitable
and environmentally friendly rice production systems (which is good in environment protection
during field production) [4,5]. Accurate and remote in-season estimation of crop N status and its
site-specific applications in intensive rice cropping systems is challenging [6]. Rapid, non-destructive,
and cost-effective N diagnostic tools are imperative for accurate and timely diagnosis of rice N status
at critical growth stages—it is imperative to match N requirements to soil N supply [2,3].

Non-destructive diagnostic strategies use various devices to monitor crop growth and N
status [7,8]. A chlorophyll meter (Soil Plant Analysis Development, SPAD-502, Minolta Camera
Co., Osaka, Japan) has been widely used for simple, rapid, and non-destructive assessment of leaf
chlorophyll concentrations [9], however, the readings are significantly influenced by growth stage,
plant leaf position, leaf measurement location, leaf thickness, leaf weight, the cultivar, solar radiation,
and environmental stress [1,10,11].

Previous studies sought to correlate specific leaf weight (SLW) with SPAD values and leaf N
concentrations (LNC) [12,13], which range from 2–3.2% [4]; multiplying upper leaf SPAD values
by the leaf area index (LAI) [14,15], or linking sensor data to the product of SPAD and height [16].
Many researchers have developed SPAD indices [17], including SPAD positional difference sufficiency
index [18], a relative SPAD index [19], and a normalized SPAD index [20]. Chlorophyll meter readings
have also been linked with digital still canopy color images to improve chlorophyll meter data [13].
However, linking SPAD values to tissue N concentrations remains challenging due to controversies in
their reliability [4].

During the plant growth cycle, N and carbon (C) levels are in dynamic balance in crops; this is
particularly significant when paddy rice leaves turn from green to yellow [21]. Either an N deficit
or excess will retard crop growth. Cropping duration is controlled principally by genotype and N
nutritional status. Various rice canopy leaves reflect N status, the color difference between 4LFT (the
fourth fully expanded leaf from the top) and 3LFT (the third fully expanded leaf from the top) can be
used to diagnose the critical N concentration at the booting stage; this is 27 g kg−1 dry matter weight
(DW) for Japonica rice and 25 g kg−1 DW for Indica rice [22]. However, other indices, such as the
relative SPAD index (RSI) [23], the difference SPAD index (DSI) [24], the relative difference SPAD index
(RDSI) [22,25], and the normalized difference SPAD index [24], have been developed using the SPAD
readings of 1LFT (the first fully expanded leaf from the top), 2LFT (the second fully expanded leaf from
the top), and 3LFT to assess in-season crop N status. Recently, Yuan et al. reported that the 2LFT, 3LFT,
and 4LFT SPAD values were related to various N indicators (e.g., the N nutrition index (NNI) and leaf
N accumulation (LNA); the LNC index). The cited authors concluded that the normalized SPAD index
of 4LFT (the NSI4) could be used to increase grain yield and nitrogen efficiency [10]. Therefore, SPAD
indices of lower leaves are better than those of upper leaves regarding diagnosing rice N status.

Several attempts have been made to establish quantitative relationships between SPAD indicators
and the NNIs of C3 and C4 crops [26], such as wheat [24], rice [27], corn [28], barley [29], etc. Given
the differences among environmental conditions and genotypes, the relationships between NNI and
SPAD values vary greatly. However, the relative SPAD values are not notably influenced by the
cultivar, growing season, or growth stage. Calculating relative SPAD values requires the use of
a non-N-limiting treatment as a control, reducing the utility of the method regarding on-farm N
diagnosis [30]. SPAD value differences among varieties, and variations in production levels, can be
eliminated by normalizing experimental data before modeling [31]. Therefore, some studies have
used different normalized SPAD index (NDSI) values to reduce the effects of variation. LNCs of lower
leaves were more sensitive to increases in N application rate, and SPAD readings of lower leaves were
closely related to tissue N concentrations [28,32]. Thus, LNC of lower leaves may better reflect crop
N status when N application rates vary. Although efforts have been made to link crop N status to
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NDSI, no attempt has yet been made to associate NDSI values with the NNI or grain yield of rice, or to
establish the relationships between the NNIs and NDSIs of the four topmost fully expanded leaves,
on the one hand, and grain yield, on the other.

In recent years, many authors have sought to simulate the crop tiller number (LAI) and other
dynamic indicators [31]. Dynamic models of crop growth indices should ideally be universal [33],
but labor- and time-consuming due to destructive sampling required for obtaining the LAI, dry matter
(DM), tissue N concentration, and other growth parameters. As the LNC correlates strongly with
chlorophyll content, SPAD meters have been used as real-time, portable, non-destructive devices
for estimating N levels by assessing transmittance [7]. A previous study found that SPAD readings
of flag leaves correlated strongly with grain yields at different wheat growth stages, and multiple
regression implied that maintenance of optimal leaf chlorophyll content over the interval of 50–75 days
after sowing was essential to obtain high yields [34]. To date, few dynamic models based on spectral
indices are available. In 2017, Liu et al. reported a double logistic NDVI dynamic model for high-yield
production in rice, which can be used to accurately predict canopy NDVI dynamic changes during
the entire growth period [35]. Further studies on SPAD index variation regarding the establishment
of a SPAD index-based dynamic model are essential for monitoring and diagnosing crop nutritional
status in-season.

Therefore, we defined the relationships between NDSI, LNC, and NNI during different growth
periods: (1) to accurately access N nutrition status using SPAD-based index, and (2) to draw a
dynamic-critical curve showing when yields were lower than required by the NDSI target to guide N
fertilizer topdressing, thus aiding rice production in eastern China.

2. Materials and Methods

2.1. Sites and Experimental Design

Yangtze River Reaches is the main rice production region of China, which has a great influence on
China’s food security (Huang RH et al., 2002). Yangtze River Reaches is not only the major agricultural
regions of China, but also the oldest niche of rice cultivation [36]. China contributes 29% of global rice
production, and Yangtze River Reaches alone contributes more than 65% of the national rice production
in China [37]. Thus, four field experiments using multi-N rates (0–390 kg N ha−1; N0, N1, N2, N3, N4,
N5, N6, and N7 were 0, 130, 150, 225, 260, 300, 375, and 390 kg N ha−1, respectively) were conducted
at Jiangning (E 118.98◦, N 31.93◦) and Wujiang (E 121.28◦, N 31.33◦) in eastern China from 2007 to
2009, and in 2013. Seven Japonica rice cultivars (9915, 27123, Wuxiangjing14, Wuyunjing19, Yongyou8,
Wuyunjing24, Wuxiangjing19) used were the most widely cultivated cultivars in Jiangsu Province;
with distinct subspecies and yield potentials. All experiments were conducted using a randomized
complete block design with different N treatments and three replications. Details of the cultivars and
N application rates are shown in Table 1.

Rice seedlings with three to four fully expanded leaves were transplanted on the 20 June 2007,
25 June 2008, and 26 June 2013, which were raised alone. The hill spacing was 0.30 m × 0.15 m
(about 22 hills m−2), with three seedlings per hill in all experiments. Each plot was of 3 m × 6 m in
size. N treatment featured 30% N application at the pre-planting stage, and the remaining N was top
dressed three times at the tillering (TI, 20%), booting (BT, 30%), and heading (HD, 20%) stages, as
urea. In each experiment, 59 kg ha−1 phosphorus as P2O5 and 158 kg ha−1 potassium as K2O were
incorporated into each plot before transplantation following local standard rice production practices.
Crop management practices at each site followed local recommendations to maximize grain yield (the
only limiting factor was N fertilizer). Weeds, diseases, and insects were intensively controlled, as in
conventional cultivation, throughout the growing period. Data from Exp. 1, Exp. 2, and Exp. 4 were
used for model calibrating, while data of Exp. 3 were used to validate the models.
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2.2. Plant Sampling and Measurement; Shoot Biomass, Nitrogen Concentration, and the NNI

Plants collected by randomly clipping 1 m2 from the TI to the ripening period (RP) stages were
separated into green leaf blades (leaves) and culm-plus-sheath (stems), oven-dried for 30 min at
105 ◦C to halt metabolic processes, and then dried at 80 ◦C in a forced-draft oven until constant
weight was attained. Each component was then ground to powder, passed through a 1-mm-diameter
sieve in a Wiley mill, and stored at room temperature. Samples (0.2 g) were digested with H2O2

and H2SO4. N concentrations were determined using a continuous-flow auto-analyzer AA3 (Bran +
Luebbe; Norderstedt, Germany). Grain yield was measured at maturity by harvesting 1 m2 of crop
and drying to a moisture content of 14%. Leaf dry matter levels were measured using this material.

2.3. SPAD Measurements

The chlorophyll meter is a spectral instrument, it measures the difference between the
transmittance of a red (650 nm) and an infrared (940 nm) light through the leaf, generating a 3-digit
SPAD value, which was used to take SPAD readings from the four uppermost fully expanded leaves of
10 randomly selected plants from each plot. Three SPAD values per leaf, including one value around
the midpoint of the leaf blade and two values 3 cm apart from the midpoint, were averaged to give the
mean SPAD value of the leaf avoiding the midribs. These measurements were taken at each growth
stage and averaged [10]. Chlorophyll meter (SPAD) readings were obtained at six growth stages:
TI, stem elongation (SE), panicle initiation (PI), BT, HD, flowering (FL), grain filling (GF), and RP,
using a SPAD-502 meter (Minolta Camera Co., Osaka, Japan). SPAD readings were obtained from the
four, uppermost fully expanded leaves of 10 randomly selected plants in each plot. The normalized
difference SPAD index (NDSI) between LFTi and LFTj used to evaluate N nutritional status was that
for wheat developed by Zhao et al. [29], and the equation for other SPAD-based indices is described in
Table 2.

NDSILi,j = (SPADi − SPADj)/(SPADi + SPADj) (1)

where SPADi and SPADj are the SPAD readings of leaf positions i and j; i and j vary from 1 to 4,
and i < j.

Table 2. Equations of soil and plant analysis development (SPAD)-based indices.

Index Description Algorithm Reference

DSIL1-L3 The difference SPAD between 1LFT and 3LFT S1LFT − S3LFT [24]
SPADL3-L4 The difference SPAD between 3LFT and 4LFT S3LFT − S4LFT [18]
RSIL1/L3 The relative SPAD index between 1LFT and 3LFT S1LFT/S3LFT [23]
RDSIL1,3 The relative difference SPAD index between 1LFT and 3LFT S1LFT/(S1LFT + S3LFT) [25]
NDSIL1,3 The normalized differences SPAD and index between 1LFT and 3LFT (S1LFT − S3LFT)/(S1LFT + S3LFT) [28]

NDSI The normalized differences SPAD and index between i LFT and j LFT,
the range of i, j values is from 1 to 4, i < j

(SiLFT − SjLFT)/(SiLFT + SjLFT) [29]

Note: “S” means SPAD values; “LFT” represents the fully expanded leaf position form the top; “1-4 LFT” means the
first to fourth fully expanded leaf position form the top.

2.4. Data Analysis

2.4.1. Nitrogen Nutrition Index

The NNIs of various rice cultivars at different vegetative growth stages were calculated using
the critical N concentration (Nc) values obtained from the Nc dilution curve of rice developed by
Ata-Ul-Karim et al. [36], using the following equation:

Nc = 3.53 × W−0.28 (12.37 ≥ W ≥ 1.55 t ha−1; W < 1.55 t ha−1, Nc = 3.05%) (2)

NNI =
Na

Nc
(3)

where Nc is the critical rice N, W is the weight of the crop, and Na is the crop N concentration [36].
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2.4.2. Calibration of Dynamic-Critical Curve Models

The critical NDSIL3,4 curve of high-yield was in the shape of a sigmoid curve. Different equation
models were used to fit the curve, and the Boltzmann model was selected to image the changes of
NDSIL3,4, based on the R2 and the relative root mean square error (RRMSE):

y = A2 +
A1 − A2

1 + e
x−x0

dx

, Boltzmann model (4)

where A1 is the vegetative plateau, A2 the reproduction plateau, x0 the x value when NDSIL3,4 = 0,
and dx is a time constant. Three high-yield NDSIL3,4 trends were similar as a sigmoid curve.
In the NDSIL3,4-based high-yield critical curve, the A1, A2, x0, and dx values differed regarding
the NDSIL3,4 trend.

2.4.3. Statistical Analysis

All SPAD data were normalized using the maximum conversion ratio method. Data from each
sampling date and year were subjected to analysis of variance using SPSS ver.20.0 software (IBM,
Armonk, New York, NY, USA); this software was also used to compare yields. The least significant
difference (LSD) test was employed to compare differences between treatment means. GraphPad
Prism 5 software (GraphPad Software, San Diego, CA, USA) was used to fit the critical NDSI curve
to different grain yields and to compare the intercept and slope of the regression curve at different
growth stages. The R2 value and the relative root mean square error (RRMSE, %) were used to explore
the predictive accuracy of the model:

RRMSE =

√
∑n

i=1(Pi − Qi)
2

n
× 100

Qi
(5)

where n is the number of samples, Pi the measured values, Qi the predicted values, and the average of
Qi. The RRMSE was used to explore agreement between model predictions and measured values.

3. Results

3.1. SPAD Readings of Different Leaves

SPAD readings were measured from the TI to the RP stages under different N treatments.
The readings of Japonica rice (27123) increased with increasing N application, and ranged from
34–42 and 40–48 when low, or sufficient N, and excess N were applied, respectively (Figure 1). SPAD
reading trends of 1LFT and 2LFT differed greatly from those of 3LFT and 4LFT. The N application
rates had no significant effect on the SPAD values of 1LFT and 2LFT, but did affect SPAD values of
3LFT and 4LFT, especially 4LFT. However, a higher N fertilization rate did not significantly change
SPAD readings. SPAD reading of 1LFT gradually increased from the TI to the BT and RP stages, in a
deformed “S” manner. SPAD reading of 2LFT fell from the TI to the RP stage. SPAD readings of 3LFT
and 4LFT were variable from the TI stage to the flowering stage (FL), but then decreased toward the
RP stage. Regarding SPAD readings at different N rates, the N0 stage exhibited the lowest readings
at every leaf, and the N3 stage the highest. N2 readings were not always greater than those for N1
prior to the 1–3LFT PI stages. Thus, N topdressing fertilizer increased SPAD values and enhanced the
stability of the photosynthetic reaction.
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Figure 1. Changes over time in the soil and plant analysis development (SPAD) readings of different
leaves (“LFT” represents the fully expanded leaf position form the top; “1-4 LFT” means one to four
fully expanded leaf position form the top.; 1LFT, A; 2LFT, B; 3LFT, C; and 4LFT, D) of 27123 plants
evaluated in 2007 and 2008 at N levels of 120 kg ha−1. The vertical bars are standard error (TI, tillering;
SE, stem elongation; PI, panicle initiation; BT, booting; HD, heading; FL, flowering; GF, grain filling;
and RP, ripening).

3.2. Differences in the Normalized SPAD Indices

SPAD values were significantly affected by cultivar, growing season, and growth stage. We
calculated NDSI values to evaluate leaf performance. Table 3 shows that simple linear SPAD analysis
revealed that NDSIL1,3, NDSIL1,4, and NDSIL3,4 did not differ significantly among the seven varieties,
showing that SPAD readings were eliminated among variety differences. Furthermore, NDSIL1,3,
NDSIL2,3, and NDSIL3,4 values did not differ between the years. Therefore, compared to other SPAD
indicators, NDSIL3,4 better compared data from different years or varieties. Simple linear analysis of
the seven N rates indicated that all the NDSIL1,3, NDSIL2,3, and NDSIL3,4 differed significantly at the
0.01 probability level. For the various growth stages, all the NDSIL1,3, NDSIL1,4, NDSIL2,3, and NDSIL3,4

differed significantly at the 0.05 or 0.01 probability levels. Thus, NDSIL1,3, NDSIL2,3, and NDSIL3,4

indices can be used to describe the time course of N nutritional status.

Table 3. Simple grouping linear analysis of SPAD indicator.

SPAD Indicator
Variety Year Treatment Growth Stage Residual

df MS F-Value df MS F-Value df MS F-Value df MS F-Value df MS

NDSIL1,2 6 0.00612 ** 12.016 2 0.016 * 30.025 3 0.0001 ** 0.064 5 0.16 ns 53.7 271 0.0001
NDSIL1,3 6 0.013 ns 11.288 2 0.032 ns 27.303 3 0.0001 ns 0.184 5 0.04 * 81.014 271 0.001
NDSIL1,4 6 0.034 ns 11.751 2 0.079 ** 27.068 3 0.003 ns 0.863 5 0.1 ** 81 271 0.002
NDSIL2,3 6 0.002 * 1.706 2 0.003 ns 2.84 3 0.016 * 17.755 5 0.009 ** 10.771 271 0.001
NDSIL2,4 6 0.016 ** 8.448 2 0.035 * 17.932 3 0.006 ns 2.62 5 0.048 ns 44.103 271 0.002
NDSIL3,4 6 0.004 ns 6.65 2 0.009 ns 13.945 3 0.006 ** 10.29 5 0.017 ** 60.636 271 0.0001

“df” is degrees of freedom; “MS” is mean square; “ns” means non-significance; “*” indicates significant difference at
0.05 probability level; “**” indicates significant difference at 0.01 probability level. Variety include Japonica rice
“9915, 27123, Wuxiangjing14 Wuyunjing19, 27123, Wuxiangjing14, Wuyunjing19, Wuyunjing24, Wuxiangjing19”,
and Indica rice “Y-Liangyou8”; years are 2007, 2008, and 2013; treatment is the N rates (N1–N6); growth stage form
tillering to flowering.

3.3. The Relationship between the NDSILi,j and Leaf N Concentration

Linear relationships were evident between NDSILi,j and LNC, irrespective of growth stage or year
(2007, 2008, and 2013; Table 4). NDSIL3,4 exhibited less variability on regression analysis (R2 > 0.82,
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p < 0.01); lower coefficients of determination (R2) were apparent for the other leaves (0.77 > R2 > 0.06).
The standard deviation (SD) ranged from 0.15–0.54; the lowest SD was that of the NDSIL3,4 and the
highest were those of NDSIL1,4 and NDSIL2,3. NDSIL3,4 was thus an ideal index for diagnosis of LNC
reliability. Thus, we developed an NDSIL3,4-based model to determine LNC (Figure 2A); the variability
was 84%, proving that the model afforded good retrieval accuracy (RRMSE = 0.0683; Figure 3a).

Table 4. Quantitative relationships between the SPAD readings of different rice leaves and leaf
nitrogen concentrations.

Year SPAD Index Quantitative Relationship R2 SD

2007

SPADL3-L4 LNC = 2.243 × e−0.053SPAD 0.21 ns 0.37
RSIL1/L3 LNC = 2.12 × e−2.66RSI 0.56 * 0.27
DSIL1-L3 LNC = 11.909 × e−1.75DSI 0.53 * 0.33
RDSIL1,3 LNC = 2.054 × e−0.049RDSI 0.35 * 0.29
NDSIL1,2 LNC = 2.193 × e−11.38NDSI 0.77 ** 0.31
NDSIL1,3 LNC = 2.137 × e−5.072NDSI 0.61 * 0.33
NDSIL1,4 LNC = 2.205 × e−2.229NDSI 0.36 * 0.46
NDSIL2,3 LNC = 2.16 × e−7.467NDSI 0.36 * 0.23
NDSIL2,4 LNC = 2.257 × e−2.681NDSI 0.19 ns 0.25
NDSIL3,4 LNC = 2.249 × e−10.58NDSI 0.83 ** 0.23

2008

SPADL3-L4 LNC = 2.195 × e−0.042SPAD 0.11 ns 0.27
RSIL1/L3 LNC = 1.863 × e−6.747RSI 0.58 * 0.31
DSIL1-L3 LNC = 4.131 × e−0.688DSI 0.56 * 0.33
RDSIL1,3 LNC = 1.862 × e−0.163RDSI 0.59 * 0.24
NDSIL1,2 LNC = 1.896 × e−14.87NDSI 0.61 ** 0.21
NDSIL1,3 LNC = 1.898 × e−14.84NDSI 0.61 ** 0.21
NDSIL1,4 LNC = 2.092 × e−3.476NDSI 0.18 ns 0.48
NDSIL2,3 LNC = 2.019 × e−0.4133NDSI - 0.54
NDSIL2,4 LNC = 2.201 × e−1.895NDSI 0.06 ns 0.49
NDSIL3,4 LNC = 2.208 × e−14.71NDSI 0.81 ** 0.16

2013

SPADL3-L4 LNC = 1.974 × e−0.045SPAD 0.16 ns 0.41
RSIL1/L3 LNC = 1.979 × e−0.037RSI 0.49 * 0.34
DSIL1-L3 LNC = 8.39 × e−1.43DSI 0.17 ns 0.52
RDSIL1,3 LNC = 1.998 × e−1.434RDSI 0.57 * 0.36
NDSIL1,2 LNC = 2.167 × e−3.556NDSI 0.56 ** 0.34
NDSIL1,3 LNC = 2.219 × e−2.401NDSI 0.57 ** 0.29
NDSIL1,4 LNC = 2.324 × e−1.706NDSI 0.18 ns 0.39
NDSIL2,3 LNC = 2.363 × e−2.673NDSI 0.07 ns 0.15
NDSIL2,4 LNC = 2.385 × e−0.121NDSI - 0.24
NDSIL3,4 LNC = 2.246 × e−10.56NDSI 0.82 ** 0.18

“RSI” means relative SPAD index; “DSI” represents difference SPAD index; “RDSI” means relative difference
SPAD index; “NDSI” is the normalized difference SPAD index; “SD” is standard deviation value; “LNC” means
leaf nitrogen concentration; “NNI” is nitrogen nutrition index; “ns” and “-” mean non-significance; * indicates
significant difference at 0.05 probability level; ** indicates significant difference at 0.01 probability level.

Figure 2. Regression fits between the leaf nitrogen concentration (LNC, A), nitrogen nutrition index
(NNI, B), and NDSIL3,4. The experimental years are shown as 2007, 2008, or 2013; 9915, 27123, and
WXJ14 are the Wuxiangjing 14, WYJ19 means Wuyunjing19, and YY8 is Yongyou8. “**” means
significant difference at 0.01 probability level.
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Figure 3. The relationship between measured and predicted leaf nitrogen concentration (LNC, a),
nitrogen nutrition index (NNI, b) of four rice cultivars from the time of stem elongation (SE) to heading
(HD) (WYJ19, Wuyungjing19; YY8, Yongyou8; WXJ14, Wuxiangjing14; and WYJ24, Wuyungjing 24;
Japonica). The solid line is the linear regression line and the dotted line a line inclined at 45◦ to the axis.
** indicates significant difference at 0.01 probability level.

In Table 5, using the model equation of NDSILi,j (LNC = a × eb×NDSILi,j ), the least significant
difference (LSD) test was employed to measure differences in the “a” and “b” parameters among
years or varieties. Regarding years, “a” differed significantly among the NDSIL1,2 values, and “b”
differed significantly among the NDSIL2,4 values of the various varieties. In Table 5, “a” did not vary
among varieties, and “b” did not change with the year. Thus, NDSIL3,4 was an optimal indicator of
rice N status.

Table 5. Simple linear regression; fitted curves between the SPAD values of different leaves and rice
nitrogen indicators.

Nitrogen Indicator Parameter Impact Factor
Mean Square (MS)

NDSIL1,2 NDSIL1,3 NDSIL1,4 NDSIL2,3 NDSIL2,4 NDSIL3,4

LNC

a Year 0.27 * 0.27 ns 0.15 ns 0.0355 ns 0.09 ns 0.001 ns
variety 0.104 ns 0.035 ns 0.021 ns 0.0178 ns 0.26 ns 0.0252 ns

b
Year 42.67 ns 42.88 ns 0.83 ns 12.97 ns 1.72 ns 5.71 ns

variety 36.58 ns 41.24 ns 0.61 ns 8.73 ns 1.22* 3.07 ns

Residual 0.051 0.061 0.021 0.035 0.014 0.023

NNI

a Year 0.02 ns 0.01 ns 0.01 ns - - 0.02 ns
variety 0.21 ns 0.04 ns 0.09 * 0.17 ns 0.06 ns 0.51 ns

b
Year 5.51 ns 5.58 ns 0.54 ns 8.45 ns 5.91 ns 5.62 ns

variety 1.39 ns 6.71 ns 0.91 ns 4.27 ns 6.53 ns 4.98 ns

Residual 0.27 0.39 0.17 0.32 0.21 0.04

“LNC” means leaf nitrogen concentration; “NNI” is nitrogen nutrition index; “NDSI” represents normalized
difference SPAD index; “ns” and “-” mean non-significance; * indicates significant difference at 0.05 probability
level; ** indicates significant difference at 0.01 probability level.

3.4. Relationships between the NDSILi,j and N Nutrition Index

The NNI is a widely used diagnostic indicator; when NNI = 1, N nutrition is optimal; NNI >1
and NNI <1 indicate excess and deficient N nutrition, respectively. We found a non-linear relationship
between the NDSILi,j and the NNI. Table 6 shows that the relationships between NDSILi,j values of
the differences among LFTL1,2, LFTL1,3, LFTL3,4, and NNI were more stable than those of differences
in the other LFTLi,j values across both the growth stages and the cultivars (0.23 < R2 < 0.84 vs. 0.07
< R2 < 0.16). Regarding the SDs, these ranged from 0.15–0.54; the NDSIL3,4 value was the lowest
except in 2013; those of the NDSIL1,4 or NDSIL2,3 were the highest. The SDs were little affected by the
LNC model chosen. Compared to the other NDSILi,j values, the NDSIL3,4 was more closely related
to the NNI in both of the earlier years. We created a diagnostic model using the NDSIL3,4 values
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(Figure 2B). The NDSIL3,4 explained 78% of the variability in the NNI; thus, the NDSIL3,4 predicted N
status (RRMSE = 0.0688; Figure 3b).

Table 6. Quantitative relationships between SPAD readings of different rice leaves and the nitrogen
nutrition index.

Year SPAD Index Quantitative Relationship R2 SD

2007

SPADL3-L4 NNI = 0.780 × e−0.028SPAD 0.16 ns 0.49
RSIL1/L3 NNI = 0.739 × e−0.012RSI 0.35 * 0.38
DSIL1-L3 NNI = 1.017 × e−0.322DSI 0.26 ns 0.32
RDSIL1,3 NNI = 0.746 × e−0.627RDSI 0.56 * 0.27
NDSIL1,2 NNI = 0.776 × e−5.84NDSI 0.76 ** 0.31
NDSIL1,3 NNI = 0.759 × e−2.35NDSI 0.53 * 0.33
NDSIL1,4 NNI = 0.766 × e−1.06NDSI 0.15 ns 0.46
NDSIL2,3 NNI = 0.755 × e−2.89NDSI 0.61 * 0.23
NDSIL2,4 NNI = 0.773 × e−1.32NDSI 0.14 ns 0.25
NDSIL3,4 NNI = 0.809 × e−8.85NDSI 0.83 ** 0.23

2008

SPADL3-L4 NNI = 0.764 × e−0.36SPAD 0.14 ns 0.51
RSIL1/L3 NNI = 0.713 × e−2.91RSI 0.21 ns 0.34
DSIL1-L3 NNI = 0.498 × e0.41DSI 0.43 * 0.40
RDSIL1,3 NNI = 0.707 × e−0.07RDSI 0.67 * 0.26
NDSIL1,2 NNI = 0.709 × e−5.99NDSI 0.71 * 0.21
NDSIL1,3 NNI = 0.710 × e−6.05NDSI 0.62 * 0.21
NDSIL1,4 NNI = 0.749 × e0.50NDSI - 0.48
NDSIL2,3 NNI = 0.746 × e−2.11NDSI 0.68 * 0.54
NDSIL2,4 NNI = 0.742 × e1.48NDSI 0.07 ns 0.49
NDSIL3,4 NNI = 0.821 × e−11.96NDSI 0.85 ** 0.16

2013

SPADL3-L4 NNI = 0.653 × e−0.02SPAD 0.15 ns 0.39
RSIL1/L3 NNI = 0.610 × e−0.03RSI 0.32 * 0.28
DSIL1-L3 NNI = 2.492 × e−1.40DSI 0.51 * 0.36
RDSIL1,3 NNI = 0.615 × e−1.40RDSI 0.60 * 0.26
NDSIL1,2 NNI = 0.708 × e−1.85NDSI 0.57 * 0.34
NDSIL1,3 NNI = 0.711 × e−1.52NDSI 0.41 * 0.29
NDSIL1,4 NNI = 0.721 × e−1.96NDSI 0.25 * 0.39
NDSIL2,3 NNI = 0.733 × e−2.96NDSI 0.58 * 0.15
NDSIL2,4 NNI = 0.764 × e−3.36NDSI 0.16 ns 0.24
NDSIL3,4 NNI = 0.734 × e−13.51NDSI 0.84 ** 0.18

“RSI” means relative SPAD index; “DSI” represents difference SPAD index; “RDSI” means relative difference
SPAD index; “NDSI” is the normalized difference SPAD index; “SD” is standard deviation value; “LNC” means
leaf nitrogen concentration; “NNI” is nitrogen nutrition index; “ns” and “-” mean non-significance; * indicates
significant difference at 0.05 probability level; ** indicates significant difference at 0.01 probability level.

Table 5 also shows a simple exponential function regression exercise, grouping the fitted curves
between SPAD values at different positions and the rice NNI. The exponential regression equation is
(NNI = a × eb×NDSILi,j ). N either “a” nor “b” was influenced by year or variety, except for the “a” of
NDSIL1,4 (which varied by variety). The NDSIL3,4 residual was the smallest of all leaves. Thus, Table 5
shows that NDSIL3,4 was the optimal indicator of rice N status.

3.5. The Relationship between NDSIL3,4 and Grain Yield

Grain yield was positively associated with the NDSIL3,4 (Table 7), especially from the SE to HD
stages. In Table 7, the linear regressions between grain yield and NDSIL3,4 values at varying N addition
rates for all growth stages are plotted; we used data from Experiments 1, 2, and 4. The coefficients of
determination of the SE-to-HD stages tended to be higher than those of the TI and FL stages. Thus,
the NDSIL3,4 value was related to grain yield during the SE-to-BT stages, accounting for 53% of the
variation (Figure 4). The plateau/linear relationship showed that grain yield decreased linearly with
the NDSIL3,4 value when that value was >0.001 for paddy rice; at which time the yield approached
10.28 t·ha−1.
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Table 7. Linear regressions between various normalized SPAD indices and grain yield.

Year Variety
Growth Stage

TI SE PI BT HD FL

2007
9915 0.26 * 0.73 ** 0.79 ** 0.68 * 0.68 * 0.32 *
27123 0.21 * 0.48 * 0.62 * 0.75 ** 0.51 * 0.43 *

2008
27123 0.20 * 0.68 * 0.73 ** 0.72 ** 0.65 * 0.40 *
WXJ14 0.26 * 0.75 ** 0.79 ** 0.72 ** 0.54 * 0.37 *

2013
WYJ19 0.22 * 0.57 * 0.63 * 0.61 * 0.52 * 0.34 *

YY8 0.19 ns 0.74 ** 0.62 * 0.47 * 0.62 * 0.42 *

“ns” and “-” mean non-significant difference; * indicates significant difference at 0.05 probability level; ** indicates
significant difference at 0.01 probability level. “TI” is tillering stage; “SE” is stem elongation stage; “PI” is panicle
initiation stage; “BT” is booting stage; “HD” is heading stage; “FL” is flowering stage; “9915, 27123, WXJ14, WYJ19,
WYJ24, YY8, WXJ19” are different rice cultivars; “WXJ14” is Wuxiangjing14; “WYJ19” is Wuyunjing19; “WYJ24” is
Wuyunjing24; “YY8” is Yongyou8; “WXJ19” is Wuxiangjing19.

Figure 4. Correlations between NDSIL3,4 values and grain yields at critical growth stages (from
stem elongation to heading; cultivars: 9915, 27123 (2007); wuxiangjing14, 27123; 2013: wuyunjing19,
wuxiangjing19 (2008)).

Table 8 shows results of the differential function models fitted. The results showed that most
models had relatively high R2 (0.88 < R2 < 0.99), low RRMSE values (16% < RRMSE < 30%), and high
F-value (113 < F < 266; the higher F-value means model fitting). The equation in the shape of the
sigmoid curve obtained the higher R2 and low RRMSE values. The Boltzmann model performed the
best among all regression models. Therefore, given y = A1 +

A1−A2

1+e
x−x0

dx
(Boltzmann model) during

SE-to-HD stages is critical in terms of high yield. We had many data points from SE to GF; we covered
all the critical growth stages. Our studied varieties constitute distinct subspecies; all are high-yielding.
Next, we created a dynamic model based on a high-yield (10.28 t·ha−1) NDSIL3,4 value (Figure 4).
In the NDSIL3,4-based high-yield critical curve, the A1, A2, x0, and dx values differed in terms of the
NDSIL3,4 trend. In the high-yield critical curve, the day of the year (DOY) 205 to 220 (SE) was the
vegetative plateau; vegetative and reproductive growth was in describe from DOY220 to DOY250
(thus from PI to BT), and DOY250 was the start of the reproductive stage. When stress develops, N is
the pivotal factor limiting grain filling; we found that the NDSIL3,4 reliably indicated rice N nutrition.
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Table 8. Summary of fitting results of normalize difference SPAD index (NDSI) dynamic model under
different fitting equation.

Regression Model Equation R2 RRMSE (%) F-Value

linear model y = a + b × x 0.899 23.5 213.8
Boltzmann model y = A2 + (A1 − A2)/(1 + e((x − x0)/dx)) 0.975 16.8 265.9
Polynomial model y = A + B × x + C × x2+D × x3+ . . . 0.927 25.2 113.91
Exponential model y = a−b × cx 0.894 28.5 99.9
Bradley model y = a × ln(−b × ln(x)) 0.889 28.95 142.5
Power model y = a × xb 0.453 48.3 15.3
Nelder model y = (x + a)/(b0 + b1 × (x + a) + b2 × (x + a)2) 0.929 24.4 116.9
DoseResp model y = A1 + (A2 − A1)/(1 + 10((LOGx

0
− x) × p)) 0.931 23.4 119.8

Hyperbola model - - - -

Note: “RRMSE” indicates relative root mean square error; “a, b, A, A1, A2, B, b0, b1, C, and D” are parameters of the
equation; ‘LOG’ means the base-10 logarithm.

3.6. Use of the NDSIL3,4 Curve for N Management

Estimation of the in-season N requirement (NR) is essential for the management of N topdressing
during paddy rice production. However, we found that topdressing at critical growth stages (the
SE–HD stages) did not support N management at every growth stage. Therefore, we developed an
NDSIL3,4 change curve for high-yield, topdressing N management at critical growth stages. We used
this curve to first determine NDSIL3,4 values (Figure 4) for the in-season N nutritional status of Japonica
rice and a high-yield target, and then calculated ΔNNI values by evaluating quantitative relationships
between the NDSIL3,4 and NNI (Figure 2). Finally, the N fertilizer requirement for Japonica rice was
modeled as suggested by Ata-Ul-Karim et al. [2]. This fertilization decision support method precisely
estimates crop growth, grain yield, and the NR time-course (an N management strategy). However,
the tool cannot be implemented in the early (active) TI stage. Moreover, our N fertilizer topdressing
management strategy needs to be tested in other cultivars and rice growing regions to test its reliability
for predicting grain yield and crop N status. This section may be divided by subheadings. It should
provide a concise and precise description of the experimental results, their interpretation as well as the
experimental conclusions that can be drawn.

4. Discussion

The present study analyzed the N nutrient status of rice leaves, determining SPAD values in
four field experiments distributed in the Yangtze River Reaches. We examined N distribution by
evaluating color differences between upper and lower leaves, and via differential diagnosis of rice
N status. A previous study found that chlorophyll content reflected N nutritional status, but was
significantly influenced by variety, site, and year of experimentation [31]. A previous study indicated
that data normalization prior to modeling eliminated differences caused by variety, soil types, and
management strategies, etc. [30]. Therefore, NDSILi,j indicators can be used to correct traditional SPAD
indicators. Most previous studies used threshold SPAD indicators during critical growth periods
to diagnose N nutritional status [18]. However, most of the monitoring methods such as saturation
index (SI) or NNI were mainly based on the single test of each growth stage [38]. These methods were
mostly related to accessing the relationship with poor mechanism, using indicators with the complex
calculation methods [39]. In addition, the existence of deviation in the identification of growth stage,
environmental factors, time selection also have a greater impact on the single test. However, the single
measured value was treated as each stage in the calculation, which results in a greater deviation from
the actual value [40]. This minimizes field management but does not consider cropping duration.
Thus, a dynamic model incorporating cropping duration, not only the critical growth stages, is better.
Such models optimally display nutritional status over time, best-supporting careful agriculture.

We found a better relationship between NDSIL3,4 and the N indicators (pooled data from five
varieties in Exp. 1, 2, and 4) than between any other combination of NDSILi,j, and the N data, probably
due to the non-linear regressions between NDSILi,j and the N indicators varied over three years
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at the different sites. We found considerable differences between the linear regression coefficients
of SE, PI, and BT stages. When the 3-year data (2007, 2008, and 2013) were pooled, R2 decreased
considerably because of significant regression slopes during different growth periods for the various
varieties at different sites in different years. Such results showed that both the growth stage and leaf
position significantly influenced NDSILi,j values. The relationships between 4LFT and NSI4 were a
linear/plateau in nature, from the SE to the BT periods. Prost and Jeuffroy indicated that the 1LFT
showed poor defined relationship with N indicators, this might be due to the time difference in
maturity of the first expanded leaves, due to these differences and wide variation in 1LFT [41]. Wang
et al. reported that the lower leaf (3,4LFT) responded more to nitrogen supply than upper leaf (1,2LFT),
and also suggested that lower leaf (4LFT) could be the ideal sample leaf for diagnosis of plant nitrogen
nutrition [18]. Yuan et al. also proved that lower leaves afforded more reliable estimations of crop N
status [17].

At the same target yield, different varieties require very different N topdressing. A previous
study revealed that rice grain yield was positively associated with the SPAD readings of 4LFT, but the
intercepts of the response curves of grain yield (as a function of SPAD value) differed markedly for the
two varieties studied (Xiushui 63 and Hang 43) [27]. It has been reported that use of the NSI4 increased
grain yield and N use efficiency compared to 4LFT. This may vary by cultivar and site conditions [17].
The cited authors identified the most sensitive stages at which to measure N nutrition and grain yield,
and then created optimal fertilization prescriptions. However, such methods cannot diagnose N status
in real time. Attempts have been made to estimate grain yield based on dynamic LAI models [42].
The LAI had the highest, positive indirect effects on grain yield, as measured by kernel number per
spike, but it was difficult to describe the physiological condition of the crop directly. Wang et al.
reported that SPAD measured the difference between 4LFT and 3LFT [43]. Color differences between
these leaves could be used to determine N concentrations [21]. However, all models used to diagnosis
N nutrition status or grain yield operate only in the critical growth period of rice [15,17]. If crop
parameters are to be monitored, nutritional status should be diagnosed and regulated by simulating
the dynamic changes of SPAD indicators appropriate for paddy rice. To date, few studies have sought
to establish dynamic models based on spectral indices [35].

Further research on variations in such indices and establishment of index-based dynamic models
is necessary to monitor the nutrition of late crops and for dynamic diagnosis [31,44]. We attempted
to solve this problem by establishing NDSIL3,4 change curves for a high-yield target, thus slightly
higher than that of the high-yield rice cultivars grown Yangtze River Reaches [31]. In Figure 4 we
established the relationship between NDSIL3,4 and grain yield, and comprehensive comparisons of the
simulated and observed values at critical growth stages revealed that the slope was 1.02, the R2 = 0.74,
and RRMSE = 0.106 (Figure 5).

We developed a dynamic NDSIL3,4 model based on a high-yield target (Figure 6) to display the
critical change trends. Using the high-yield dynamic model, it is possible to guide N fertilizer rice
topdressing efficiently during the critical N growth period (from the SE to the HD). Some authors
have used a spectral index or a nitrogen indicator to manage N fertilizer topdressing at critical
growth stages [2,45]. N-deficient fields subject to intensive N-regulation become N-sufficient fields
after application of local agricultural practices, increasing potential production. Our model allows
detection of not only deficient N nutrition, but also excess N nutrition; there is no requirement for
N-saturation. However, more data are needed for assessing the reliability of the model in different rice
production areas.
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Figure 5. Relationships between measured and predicted grain yields of four rice cultivars in
2009 (WYJ19, Wuyungjing19; YY8, Yongyou8; WXJ14, Wuxiangjing14; and WYJ24, Wuyungjing24;
Japonica).‘x’ represents measured values, ‘y’ means predicted values. The solid line is the linear
regression line and the dotted line a line inclined at 45◦ to the axis.

Figure 6. Critical NDSIL3,4 data points used to define the changes in the NDSIL3,4 curve when data
of high-yield targets were pooled. The solid line is the critical NDSIL3,4 change curve (NDSI3,4 =

0.0195 + −0.0158−0.0195
1+e

DOY−235.91
6.95

; the A1, A2, x0, and dx values differ in terms of their effect on NDSIL3,4 trends)

of high-yield target rice in the Yangtze river valley.

5. Conclusions

4LFT SPAD values measured using a chlorophyll meter correlated significantly with rice LNC
and NNI values. The NDSIL3,4 difference between the third and fourth LFT [NDSIL3,4 = SPAD3

− SPAD4/(SPAD3 + SPAD4)] could be used to improve LNC and NNI estimations compared to
those afforded by isolated SPAD readings and the differences between other leaf positions. We have
developed two universal NDSIL3,4 based diagnostic models (from the TI to the RP). Both models
can be used for effective diagnosis of the LNC (R2 > 0.81, p < 0.001) and NNI (R2 > 0.83, p < 0.01)
with a reasonable distribution of residuals (LNC: RRMSE = 0.0683; NNI: RRMSE = 0.0688; p < 0.01).
To optimize N topdressing for Japonica rice, we first established the relationship between the NDSIL3,4

and grain yield to predict the yield during the SE-to-HD stages. Secondly, a new, critically dynamic
NDSIL3,4 model was developed based on the previous experiments. Thirdly, the ΔNNI was estimated
using both a dynamic model and the NNI–NDSIL3,4 model. Finally, the N requirement was determined
using the NNI model developed by Ata-Ul-Karim et al. [3]. However, parameters of the newly
developed model may require adjustment under varied conditions caused by different climatic features,
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etc. The robustness and sensitivity of the model should be further tested using data from different rice
production region.
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TI Tillering
RP Ripening period
BT Booting
HD Heading
SE Stem elongation
PI Panicle initiation
FL Flowering
GF Grain filling
SPAD Soil and plant analysis development
NDSI Normalized Different SPAD values
RSI Relative SPAD index
DSI Difference SPAD index
RDSI Relative difference SPAD index
NNI Nitrogen Nutrition Index
LNC Leaf Nitrogen concentration
LAI Leaf Area Index
DW Dry matter weight
SSNM Site-Specific Nitrogen Management
NUE Nitrogen Use Efficiency
DAT Day after Transplanting
RRMSE Relative root mean square error
LSD Least significant difference
LFT The position on upper fully expanded Leaf From the rice Top
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Abstract: Land reclamation influences the soil carbon and nitrogen cycling, but its scale and time
effects on the balance of soil carbon and nitrogen are still uncertain. Taking the Tarim Basin as the
study area, the impact of land reclamation on the soil organic carbon (SOC), total nitrogen (TN),
and carbon to nitrogen (C:N) ratio was explored by the multiple temporal changes of land use and
soil samples. Remote sensing detected that cropland nearly doubled in area from 1978 to 2015. Spatial
analysis techniques were used to identify land changes, including the prior land uses and cultivation
ages. Using land reclamation history information, a specially designed soil sampling was conducted
in 2015 and compared to soil properties in ca. 1978. Results found a decoupling characteristic between
the C:N ratio and SOC or TN, indicating that changes in SOC and TN do not correspond directly to
changes in the C:N ratio. The land reclamation history coupled with the baseline effect has opposite
impacts on the temporal rates of change in SOC, TN and C:N ratios. SOC and TN decreased during
the initial stage of conversion to cropland and subsequently recovered with increasing cultivation
time. By contrast, the C:N ratio for soils derived from grassland increased at the initial stage but the
increase declined when cultivated longer, and the C:N ratio decreased for soils derived from forest
and fluctuated with the cultivation time. Lower C:N ratios than the global average and its decreasing
trend with increasing reclamation age were found in newly reclaimed croplands from grasslands.
Sustainable agricultural management practices are suggested to enhance the accumulation of soil
carbon and nitrogen, as well as to increase the C:N ratio to match the nitrogen deposition to a larger
carbon sequestration.

Keywords: soil stoichiometry; land use change; soil organic carbon; nitrogen; Tarim Basin

1. Introduction

Soil carbon (C) and nitrogen (N) are the main sources of plant mineral nutrition and organic
nutrients, which are the two primary factors affecting soil fertility [1,2]. They also play an important
role in terrestrial soil C and N pools and global C and N cycles [3,4]. The ratio of soil organic carbon
(SOC) and total nitrogen (TN), labeled as the C:N ratio, reliably indicates changes in soil microbial
activity, decomposition, mineralization rates of SOC, and the cycle of soil C and N [5,6]. Moreover,
the soil C:N ratio can be a good predictor of key parameters in the related C and N cycles, such as the
dissolved organic carbon flux [7], nitrate leaching [8,9], and nitrous oxide emissions [10]. Therefore,
understanding soil C and N content and their variation can help explore the mechanisms of soil C and
N cycling and their coupling effects, and aid in enhancing soil C sequestration and reducing N losses
in the ecosystem.
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A high soil C:N ratio correlates with low organic matter (SOM) decomposition and mineralization
rates while in soils with a low C:N ratio, SOM can be decomposed and mineralized relatively quickly [1].
SOC, TN, and the C:N ratio are influenced by many factors, such as climatic conditions (temperature,
moisture), soil properties (soil texture, soil pH), terrain characteristics, and anthropogenic factors
(land use and management) [2,11–13]. The soil C:N ratio and its variation are determined by gains
(input of SOC and TN) and losses [11]. At the global scale, it has been shown that tundra, natural
wetlands, and boreal forest can have a relatively wide range of soil C:N ratios, while croplands
have a narrow range [2]. Land reclamation can alter the soil C and N bio-geochemical cycling
and spatial-temporal characteristics of soil C:N ratios greatly [14–17]. The conversion from native
vegetation to cropland decreases the input of vegetative tissues and increases soil temperatures to
accelerate the litter decomposition and soil micro-organisms in the decomposition of soil C and N [18].
Reclamation activities can further cause C and N losses and change the soil C:N ratio [3]. Meanwhile,
the increasing crop yields of land under sustainable agricultural management can enhance the input
crop residues and roots, which can in turn, increase the SOM content and promote the accumulation of
SOC and TN [19–21].

Generally, the dynamics of soil C:N ratios are determined by the relative changes in magnitude of
SOC and TN contents [22,23]. Many case studies have found that forest converted to cropland results in
a decrease in soil C:N ratio because of the high uptake and storage of N by trees [1,3,24,25]. In contrast,
agricultural management can promote maintenance of crop residues at the soil surface, which may
have beneficial impacts on soil fertility and increase the soil C:N ratio [1]. Plantation age also shows
complex effects on the accumulation and decomposition of SOC and TN. For example, soil C:N ratios
of cropland showed a significant increase over time at a sub-tropical site, although little change was
observed at three temperate sites [11]. The above studies illustrate that the variation in soil C:N ratios
during agricultural reclamation and management is complex and is not yet fully understood.

The dynamics of SOC, N, and the C:N ratio, which are affected by land use coupled with other
physical factors, present significant spatial and temporal variations. Agricultural reclamation activities
mean exploiting other land uses for croplands. Outcomes of reclamation are primarily the result of
changes in plant types associated with the changes in the litter input, detritus and litter decomposition,
root secretion and soil mineralization [14,26,27]. These changes are related to the prior land use type
before the reclamation, which directly or indirectly influence the soil C, N, and their balance after
the reclamation. Meanwhile, knowledge of the agricultural duration is important [28], because it is
related to the cultivation intensity and the soil mellowing process. Thus, land reclamation history,
including the different prior land use types and the duration age of the reclamation, will influence the
fate of soil C and N. However, the effects of reclamation history remain uncertain [29], and this leads
to difficulties in decision making and agriculture management. This calls for a deeper understanding
of the impact that past and future land use changes can have on soil C:N ratios.

Arid and semi-arid regions are especially susceptible to human disturbance and climate change [30],
which easily lead to land degradation and soil nutrient element loss [31–33]. Oasis agriculture is a specific
ecosystem surrounded by the desert in an arid area, where environmental conditions are milder
than the desert, ensuring fertility and allowing desert farming [34]. Aridisols, called Yermosols in
the FAO-UNESCO classification (Food and Agriculture Organization-United Nations Educational,
Scientific and Cultural Organization) [35], are the major original soil types, undisturbed by humans
in arid regions [36]. The expansion of oasis agriculture disturbs the soil environment and may
cause the loss of soil C and N. Under long-term sustainable tillage, fertilizing and irrigation of the
oasis agriculture [37,38], Aridisols are gradually developed to Anthrosols with changes in C and N
storage [35]. Thus, this calls for a deep understanding of how oasis agriculture influences the soil C
and N.
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The Tarim Basin contains the Taklimakan Desert, the world’s second largest shifting sand
desert [39]. It has experienced a significant expansion in oasis agriculture from its native vegetation,
and even the desert since 1949 [40]. The cropland area in this region has nearly doubled since the
1980s [41,42], which was much higher than the average increase rate in the world [43]. Due to the
extreme dry and hot climate with annual limited precipitation of 50–100 mm, almost the entire oasis
agriculture relies on irrigation for crop growth in harsh conditions and to resist drought [44]. For the
last few decades, land reclamation and the development of high-efficiency irrigation techniques has
played an important role in this region [45], making the Tarim Basin one of the main agricultural
production regions in China and one of the largest areas of oasis agriculture in the world. This dramatic
expansion in cropland has significantly changed the nutrients in the cultivated soils, and has also
caused the overuse of water sources and land desertification [46], which in turn, influence the terrestrial
C and N cycles [47]. Proper management of such changes requires a deep understanding of the effects
of the land reclamation history on the variation in SOC and TN and their balance. Thus, the Tarim Basin
was selected as the study area to explore the relationship between the land reclamation history and
changes in the soil C, N, and C:N ratio. The objectives of this study were to (1) design a soil sampling
campaign from land use change histories to quantify the changes in the SOC and TN dynamics of the
cultivated topsoil, and (2) investigate the effects of the land reclamation history on these changes and
the coupled relationships between SOC and TN.

2. Methods

2.1. Study Area

The Tarim Basin, located in the south of Xinjiang Province, Northwest China, was selected as
our study region. It is located between 38◦–43◦ N latitude and 76◦–87◦ E longitude. Five typical
sub-basins, the Aksu River Basin, the Kaidu-Kongque River Basin, the mainstream of Tarim River
Basin, the Weigan River Basin, and the Yarkant River Basin, were selected as the case study sites
with a total area of 311,765 km2 (Figure 1). They lie within an extremely dry climate zone, with high
temperatures of 20–30 ◦C in the summer and low temperatures of −10 to −20 ◦C in winter, a mean
annual precipitation of 50–100 mm, and an annual evaporation of 2000–3000 mm [48]. Landscapes
in the study area majorly consist of the desert, grassland, cropland, and forest. Native forests with
shrubs, mainly including the Populus euphratica Oliv. and Tamarix ramosissima Ledeb. [49], are located
in the riparian zone with an adequate water supply for vegetation growth. These climatic conditions
have resulted in a specific oasis agriculture, with widespread use of highly efficient water-saving
irrigation techniques.

2.2. Conceptual Framework for Exploring Impacts of Land Reclamation History on Soil C and N

Figure 2 showed the framework for exploring how land reclamation history influences the soil
properties. Using the land use maps at different time nodes and spatial overlaying techniques, the land
change histories at each location were identified from ca. 1978 to 2015. Also, the specific land reclamation
history, including the prior land use before the reclamation and the duration age after the reclamation
were extracted. Meanwhile, the simultaneous changes of SOC, TN, and C:N ratio were collected
by purposive survey sampling in 2015 and the soil dataset in ca. 1978. Based on the statistical test,
the impact of land reclamation history on SOC, TN, and the C:N ratio can be analyzed.
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Figure 1. Location and soil sampling sites in the area of the Tarim Basin.

Figure 2. Conceptual framework for exploring impacts of land reclamation history on soil C and N.

2.3. Land Use Change History Detection

The soil sampling strategy was designed on the basis of the land reclamation history, which
included land use prior to reclamation indicating the original soil nutrient status, while the cropland
age was used to characterize the duration of management practices. To examine the land use change
history on the SOC and TN dynamics from ca. 1980 (national soil surveys in 1978 to 1982) to 2015
(soil survey in this study), five time nodes, i.e., 1978, 1990, 2000, 2010, and 2015, of remote sensing
images from Landsat MSS/TM and Landsat-8 Operational Land Imager (OLI) images were collected
to map the land use via visual interpretation with a local expert tutorial on land use interpretation by
ourselves. The paths and rows covering the study area are shown in Table S1. Preprocessing, including
the application of geometric and atmospheric corrections, was conducted using ENVI 5.1 (ITT Visual
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Information Solutions Inc.). Images within ±2 y of the time node were used as a proxy when there
were no effective cloud-free images from a particular node.

The land use maps were divided into seven classes: cropland, forest, grassland, water body,
built-up land, bare land, and glacier. As the majority of the croplands were derived from grassland,
with a minority from forest and other land use types [47], this study focused on the effects of grassland
and forest conversion to croplands on the SOC and TN dynamics. Using spatial overlay techniques in
ArcGIS 10.1 (ESRI Inc., Redlands, CA, USA) for the land use vector maps with seven classes at the
five time nodes, the overlaying vector polygon representing the land use change trajectory from ca.
1978 to 2015 was obtained. With the overlaying land use maps, the time nodes where the reclamations
occurred were obtained, and the land use prior to the reclamation was identified. Grassland, forest,
and cropland were labeled as G, F, and C, respectively, and the land use types for each of the five
time nodes were identified. For example, “G→G→C→C→C” indicates the reclamation of grassland
to cropland in the period of 1990 to 2000. The label “C→C→C→C→C”, indicates that the cropland
was assarted before 1978, and land with this history of use was used as a reference for this study.
Following labeling for land use, the assarted croplands were grouped according to age as follows:
assarted between 2010 and 2015 (new, 1–5 years), 2000 and 2010 (young, 6–15 years), 1990 and 2000
(medium, 16–25 years), 1978 and 1990 (old, 26–37 years). In addition, in some areas land use changes
occurred more than once, and cases where cropland transferred to other land use types because of
abandonment or build-up and occupation were excluded in this study. Thus, cropland, grassland,
and forest were the three prior land use types in this study. Finally, three land use change types,
i.e., unchanged cropland, cropland from grassland, and cropland from forest over nearly four decades,
with five discrete reclamation ages were identified for the design of the soil sampling campaign.

2.4. Soil Sampling Design, Collection, and Laboratory Methods

Since we were particularly interested in the effect of land reclamation history, soil sampling
conducted in 2015 was only carried out for cropland with different reclamation histories. First,
the range of cropland in 2015 was extracted and 280 soil plots were identified in the croplands of
five sub-basins by a random sampling strategy. A minimum distance of 1000 m between plots of the
same category of land use change history was set. Next, three land use change types and five discrete
reclamation ages from 1978 to 2015 in the designed soil plots were identified based on the spatial
overlay techniques mentioned in Section 2.1. If the area of the vector polygon for overlaying land use
maps was smaller than 1 km2, the corresponding soil plots were excluded to minimize geolocalization
errors of land use interpretation and make the resolution of land use maps consistent with soil C
and N data. Finally, we collected samples from a total of 270 soil sample plots, including 126, 103,
and 41 plots of unchanged cropland, cropland from grassland, and cropland from forest between 1978
and 2015, respectively. At each sampling plot of 10 m × 10 m, five sites, four at the corners and one in
the center of the plot, were selected. According to the Genetic Soil Classification of China [38], the main
soil type of the soil samples is irrigation-silted soil (Aric Anthrols in the FAO-UNESCO classification).
Irrigation-silted soil is a type of Anthrosol and formed the new anthraquic epipedon in the soil irragric
process and mellowing process under cultivation, which means soil materials are silted with irrigation
water [38].

The soil C and N distribution within soil profile is highly influenced by management practices,
especially tillage systems [50]. As soil disturbance by agricultural tillage is a primary cause of the
historical change of soil nutrients, the tillage zone or management zone, mainly including the 0–20 cm
soil layer, was sampled using a soil auger of 5 cm diameter. Soil samples were transported to the
laboratory and preprocessing was conducted. Soil clods were crushed, and litter and living roots,
stones (>2 mm), and visible plant remains were removed. Next, the soil samples were air-dried in
the shade and passed through a 2 mm sieve. SOC and TN were measured by the H2SO4-K2Cr2O7

oxidation method [51] and Kjeldahl procedure [52], respectively. Soil C:N fractions were calculated as
the mass ratio of SOC to TN.
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To compare simultaneous changes in soil properties and land use, the SOM and TN from ca.
1978 were obtained from the soil characteristics database of China, which were measured by the same
chemical analysis methods as those used in 2015. This data has a resolution of 30 × 30 arc-seconds,
and was generated from soil data collected in the 1979–1982 national soil survey. As the designed
soil plots were located in the overlaying land use vector polygon with an area of larger than 1 km2

(close to 30 × 30 arc-seconds), the spatial resolution of land reclamation histories and soil properties in
the plot were consistent and could be compared and analyzed. The data was provided by the Cold
and Arid Regions Science Data Center at Lanzhou [53] and downloaded from their website (http:
//westdc.westgis.ac.cn/data). The SOC was then calculated from SOM values, using the Bemmelen
index of 0.58, which was widely used in previous studies [54,55]. Since the soil data set consists of eight
vertical layers with different depths, the SOC and TN at the study depth of 0–20 cm were estimated by
a weighted depth method provided by Yan, et al. [19].

2.5. Statistical Analysis

Statistical analysis was carried out using the SPSS18.0 statistical package (SPSS Inc., New York,
NY, USA). Differences in variation of SOC, TN, and C:N ratio for the 270 soil plots between ca. 1978
and 2015 were calculated using paired-samples t-tests, using 270 pairs in the same spatial coordinates.
The significance of differences in the levels and variations of SOC, TN, and C:N ratio in plots with
different land reclamation histories were tested with one-way analysis of variance (ANOVA) and
least-significant-difference (LSD) methods, followed by Tamhane post hoc tests (p < 0.05).

3. Results

3.1. Land Reclamation from 1978 to 2015 in Typical Areas of the Tarim Basin

The classification accuracy of land use maps was assessed by a total of 2000 ground-reference
data-points in the five sub-basins, including the field validation investigations with GPS in 2015,
and points from high resolution images from Google Earth in 2010 and 2015. The ground-reference
data-points were randomly collated by the stratified land use types. This assessment found a high
classification accuracy, with kappa coefficients of 0.913 and 0.906 and an overall accuracy of 92.30%
and 91.35% for the 2010 and 2015 data, respectively. Since the visual interpretation methods used for
other year were similar, it was assumed that the classification accuracies of land use maps for 1990 and
2000 were similar to those for the 2010 and 2015 maps. Similar to previous studies using the multiple
Landsat MSS/TM images for long time series of land use change detection [56,57], the land use map in
1978 interpreted by the same executor with the same satellite and similar images could be relied upon.
Figure 3 shows the land use maps for 1978 and 2015.

Croplands accounted for 10.37% of the total area of the five sub-basins of the Tarim Basin in 2015.
Areas of croplands were 1.72 × 104, 1.89 × 104, 2.11 × 104, 2.72 × 104, and 3.23 × 104 km2 for the
five time nodes of 1978, 1990, 2000, 2010, and 2015, respectively. The cropland area nearly doubled
with a significantly increased rate of 88.37% from 1978 to 2015. Most of them mainly expanded in the
vicinity of their existing areas. The assarted croplands were converted from grassland, forest, bare
land, and water body, with the proportions of 70.35%, 16.89%, 9.56%, and 3.20%, respectively.
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Figure 3. Land use maps of 1978 and 2015 in typical areas of the Tarim Basin.
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3.2. Status and Change in Soil C, N and C:N

Table 1 shows the statistical characteristics of SOC, TN, and C:N ratios in the Tarim Basin.
The mean values of these parameters increased from ca.1978 to 2015 with varying magnitudes, but do
not show a significant change (p < 0.05). The mean SOC content is 6.61 g/kg, with an increase of
0.17 g/kg from ca.1978 to 2015. The TN contents, meanwhile, increased from 0.63 g/kg to 0.65 g/kg.
It was found that the TN content is highly correlated with the SOC content in 270 soil sample plots,
showing high Pearson’s correlation coefficients of 0.938 and 0.925 in ca. 1978 and 2015, respectively.
Although the range of contents of SOC and TN increased from ca. 1978 to 2015 (Table 1), their standard
deviations decreased. With cultivation practices, the standard deviation of SOC and TN in 270 plots
show increases from 1.96 g/kg and 0.22 g/kg, respectively, in ca. 1978, to 2.90 g/kg and 0.28 g/kg,
respectively, in 2015.

The change in statistical characteristics for the C:N ratio is similar to those of SOC and TN content.
The mean C:N ratio is 10.22 in 2015, ranging from 6.11 to 17.25. Most of these values fall in the range
from 9.0 (10% quantile) to 11.5 (90% quantile). A larger increase in SOC over TN resulted in a slight
increase of 0.11 in the C:N ratio from circa (ca.) 1978 to 2015, with no significant change at the 95%
confidence level. Long-term cultivation has tended to homogenize the soil C:N ratio, resulting in a
decrease in standard deviation, from 1.73 in ca. 1978 to 1.21 in 2015, separating the soil plots as two
groups, i.e., the increased values from ca. 1978 to 2015 and decreased values at this period. Using the
paired-samples t-test, two-third of the total observations showed an increasing trend in SOC and TN at
a significant level of 99%, and other one-third showed a significant decrease. In contrast, about 59.26%
of the total observations showed an increasing trend in C:N ratio at a non-significant level of 95%,
with the remainder showing a decrease at a significant level of 95%. Thus, a deep exploration of change
in soil C and N based on the different land reclamation histories is called for.

Table 1. Statistical characteristics of soil properties.

Mean Standard Deviation Maximum Minimum

Soil bulk density (g cm−3)
ca.1978 1.30 0.18 1.75 0.93

2015 1.29 0.16 1.61 1.05

SOC content (g/kg) ca.1978 6.44 2.90 16.85 3.42
2015 6.61 1.96 17.65 2.26

TN content (g/kg) ca.1978 0.63 0.28 1.67 0.29
2015 0.65 0.22 1.76 0.19

C:N ratio
ca.1978 10.11 1.73 14.90 7.33

2015 10.22 1.21 17.25 6.11

3.3. Effects of Land Reclamation History on SOC and TN

The selected sites presented significant differences (p < 0.05) in SOC and TN contents in 2015,
depending on their prior land uses (Figure 4a,b). The SOC and TN contents of cropland soils for lands
assarted before 1978 were 7.29 g/kg and 0.74 g/kg, respectively. These values were significantly higher
than those for soils from land with prior use as grassland and forest assarted in the study period.
The SOC content in previously forested land (6.21 g/kg) is slightly higher than that for land that was
previously grassland (5.93 g/kg), and the TN content of soil from forest (0.59 g/kg) is close to that
from grassland (0.58 g/kg). Comparing the SOC and TN contents in ca. 1978 and 2015, differences in
change values according to prior land use were also significant (p < 0.05) (Figure 4c,d). In 2015, SOC
and TN content in those sites previously used as cropland had significantly increased, as indicated by
the paired-samples t-test (p < 0.05), the largest increases being 1.59 g/kg and 0.15 g/kg, respectively.
Sites where prior land use was grassland showed an increase in SOC content of 0.17 g/kg and a slight
decrease in TN content. In contrast, the SOC and TN content in previously forested land showed a
significant decrease of 4.18 g/kg and 0.30 g/kg, respectively.
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Figure 4. Soil C and N for different prior land uses: (a) Soil organic carbon content in 2015, (b) Total
nitrogen content in 2015, (c) Change of soil organic carbon content, (d) Change of total nitrogen content.
Note: 1. Group differences after one-way ANOVA (p < 0.05) was indicated by different lowercase
letters. 2. Bar length gives the mean value, vertical whisker of bar for each column indicate standard
errors of the mean. 3. Line within the boxes gives the median value, box means the 25th and 75th
percentile, whisker of box represents 1.5 times the length of the box from either end of the box (1.5 times
the interquartile range), circle represents outliers and extremes. The same as below.

With the increasing reclamation age, the accumulation of SOC and TN in soil from land derived
from grassland and forest increased (Figure 5a–d). The mean SOC and TN content in the newly
assarted soils were the lowest, and were significantly lower than those in the old assarted soils
(p < 0.05). In addition, SOC and TN content for old assarted soils were lower than the reference
cropland assarted before 1978, but were not significantly different. The SOC content in land that was
previously grassland and forest increased significantly from 5.17 and 5.23 g/kg in the newly assarted
soils to 6.60 and 6.95 g/kg in the old assarted soils, respectively (Figure 5a,c). Similarly, the TN content
in land that was previously grassland and forest increased significantly from 0.51 and 0.47 g/kg in the
newly assarted soils to 0.66 and 0.66 g/kg in the old assarted soils, respectively (Figure 5b,d).

An increase in the reclamation age resulted in an accumulation in SOC and TN at a significance
level of 95% (Figure 5e–h). Compared to the initial SOC and TN levels prior to reclamation, changes in
content for new, young, and medium assarted soils were negative. The decreases in the newly assarted
soils were the largest, and increasing reclamation age resulted in increases in SOC and TN stocks.
A slight decrease in SOC and TN content in the sites which were previously grassland was observed,
with a larger decrease for previously forested sites. For example, the changes in SOC content for new,
young, and medium croplands derived from grassland are −0.48, −0.32, and −0.07 g/kg, respectively;
and those for croplands derived from forest are −6.03, −3.90, and −4.19 g/kg, respectively. With a
longer cultivation age, the change in SOC and TN in old croplands derived from grassland was
positive, with mean values of 0.89 and 0.09 g/kg, respectively, which were significantly higher than
those of newly assarted croplands with mean changes of −0.48 and −0.06 (p < 0.05) (Figure 5e,f).
In contrast, changes in SOC and TN in soils from old croplands derived from forested lands were still
negative, with mean values of −2.91 and −0.25 g/kg, respectively (Figure 5g,h).
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Figure 5. Impact of reclamation ages on soil C and N: (a) Soil organic carbon content in 2015 assarted
from grassland, (b) Total nitrogen content in 2015 assarted from grassland, (c) Soil organic carbon
content in 2015 assarted from forest, (d) Total nitrogen content in 2015 assarted from forest, (e) Change
of soil organic carbon content assarted from grassland, (f) Change of total nitrogen content assarted
from grassland, (g) Change of soil organic carbon content assarted from forest, (h) Change of total
nitrogen content assarted from forest. NEW = newly assarted (1–5 years), YOU = young assarted
(6–15 years), MED = medium assarted (16–25 years), OLD = old assarted (26–37 years), REF = referenced
cropland assarted before 1978.

3.4. Effects of Land Reclamation History on Soil C:N Ratio

Compared to the difference in SOC and TN levels for different prior land uses, the C:N ratios
showed opposite characteristics (Figure 6a). The C:N ratio in previously forested land (10.85)
was significantly higher than where the prior land use was cropland or grassland (9.96 and 10.29,
respectively). Comparing the changes with the three prior land uses in the past four decades, the C:N
ratios showed non-significant variations (p < 0.05) (Figure 6b), of 0.05, 0.32, and −0.25 for sites with
prior land use as cropland, grassland, and forest, respectively. The C:N ratio for sites with prior
land use as cropland increased slightly, from 9.91 to 9.96 in two periods of ca. 1978 and 2015, with a
non-significant change as indicated by the paired-samples t-test (p < 0.05). In contrast, the C:N ratio
for soils from grassland sites increased from 9.97 to 10.29, and the ratio for forest sites decreased from
11.10 to 10.85.

Figure 6. Soil C:N ratio for different prior land uses: (a) Values in 2015, (b) Changes from ca.1978
to 2015.
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Although the SOC and TN changed significantly with increasing reclamation age, the change in
soil C:N ratios shows different trends (Figure 7a,b). With an increase in the reclamation age, C:N ratios
with prior land use as grassland significantly decreased from 10.79 in the newly assarted soils to 9.92
in the old assarted soils at a 95% confidence level (Figure 7a). The C:N ratio of old assarted soils was
close to the C:N ratio of 9.96 in the reference cropland soils assarted prior to 1978. In contrast, relatively
little variation, with a non-significant difference in C:N ratios, was found for soils from previously
forested land (Figure 7b). C:N ratios from the previously forested land are 10.98, 11.01, 10.83, and 10.87
for the new, young, medium, and old assarted soils, respectively.

Changes in C:N ratios in two periods of ca. 1978 and 2015 were found to have relatively less
variation (Figure 7c,d). The changes in C:N ratios for grassland tended to be positive, but that increased
magnitude tended to diminish with increasing reclamation age (Figure 7c). The mean increase in C:N
ratio was 0.89 for newly assarted soils, which is significantly higher than those in medium and old
assarted soils, with mean values of 0.28 and 0.06 at a 95% confidence level, respectively. Moreover,
for previously forested land, the change in the magnitude of the C:N ratios did not tend to vary
significantly with an increase in the reclamation age, being −0.43, −0.21, −0.23, −0.15 for new, young,
medium, and old assarted soils, respectively (Figure 7d).

Figure 7. Impact of reclamation ages on soil C:N ratio: (a) Values in 2015 assarted from grassland,
(b) values in 2015 assarted from forest, (c) Changes assarted from grassland, (d) Changes assarted
from forest. NEW = newly assarted (1–5 years), YOU = young assarted (6–15 years), MED = medium
assarted (16–25 years), OLD = old assarted (26–37 years), REF = referenced cropland assarted before
1978. NEW = newly assarted (1–5 years), YOU = young assarted (6–15 years), MED = medium assarted
(16–25 years), OLD = old assarted (26–37 years), REF = referenced cropland assarted before 1978.

4. Discussion

Land use change history is closely related to soil C and N dynamics [1,29]. Numerous studies
have explored the relationship between soil C and N, however, the balance between them and their
coupling relationship remains uncertain [55]. This study investigated how large-scale cultivation
has affected the SOC, TN, and C:N ratio. Using remote sensing and GIS techniques, this research
identified the land use change history, which indicated that cropland has nearly doubled in typical
regions of the Tarim Basin over the last four decades. According to different land reclamation histories,
large-scale soil sampling was conducted to quantify the spatial variability of soil C and N. The multiple
temporal changes of land use and soil proprieties using a repeated soil sampling strategy allowed the
investigation of the time effects of reclamation on the soil C:N ratio [22,58]. Results found that the
changes in soil C:N ratios are significantly different from the changes in SOC and TN under different
land reclamation histories. This research can serve as a better reference for the soil C and N balance in
ecological interactions and processes [59].

Land reclamation from grassland and forest in the study area resulted in SOC and TN loss during
the initial reclamation stages, but these recovered with increasing reclamation age (Figure 5), which is in
accordance with previous studies [18,60,61]. Anthropogenic disturbances frequently destroy the initial
soil structure and accelerate the mineralization and decomposition process of SOM, which can intensify
losses of C and N [62–64]. In the study area, the scarce water resources and low rate of bioaccumulation
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limited the growth of uncultivated grassland, primarily desert steppe [65], which resulted in a low level
of initial SOC and TN [47,66]. After reclamation, the conditions of soil moisture and biomass growth
improved in the arid regions; processes which can increase the above- and below-ground biomass,
and result in soil C and N accumulation with increasing reclamation age [67]. The high-efficiency
agricultural production in the Tarin Basin increases the crop yield with enhanced soil C and N input
through crop residues and also enhances the anthropogenic mellowing process of soils to improve the
soil structure and function, which further promotes the accumulation of soil C and N [68]. Improved
agricultural practices, including applying organic manure, and conservative tillage measures are used
in oasis agriculture, which enhances the soil C and N storage by providing water, organic amendments,
and increased crop residue is returned to the soil [19,69,70].

C and N cycling are tightly coupled in ecosystems [71] and TN change in soils is generally
assumed to follow variation in SOC, since both elements are bound into organic compounds [72,73].
The high correlation between these parameters was confirmed in this study. Land use change and
management practices can alter C and N bio-geochemical cycling, and the change in soil C:N ratio can
be used to determine the relative input and output of SOC and TN [23]. This study found that land
reclamation history change had an opposite effect on C:N ratio, compared to the trends observed for
SOC and TN. The magnitude of changes observed for C:N ratios were also smaller than those observed
for SOC and TN (Figures 4–7). This implied that the change in C:N ratio is complex and does not show
consistency with either C or N variations.

Different land use regulates C and N source availability, soil microbial activities, and therefore
litter decomposition rates [74–76]. In general, forested soils had a higher C:N ratio, which is to
be expected since trees take up more N and store it within their biomass rather than in the soil,
and also, microbial decomposers of forested soils have higher C:N ratios than cultivated soils [3,25].
This resulted in a significant decrease in C:N ratios when forests were converted to croplands (Figure 6).
In contrast, the conversion from grassland to cropland resulted in an increase in C:N ratios but a
decrease in SOC and TN (Figures 4 and 6) in the initial reclamation process, indicating a greater loss of
N compared to that of SOC. This may be partly explained by baseline effects [58]. In the Tarim Basin,
the uncultivated grassland, primarily desert steppe, was limited by water resources and a lower rate
of bioaccumulation [65], resulting in a lower level of initial SOC than TN [47,66]. Cultivation with
adequate water supplies and fertilizer application would significantly improve soil physicochemical
properties [77]. Land reclamation enhanced the C input of the litter returned to the soil and sped
up nutrient cycling, resulting in an increase in the soil C:N ratio [23,78]. This, in turn, can result in
relatively lower SOC losses, and more SOC accumulation compared to TN to increase the C:N ratio at
the initial reclamation stage.

Moreover, as the age of cultivated soils increased, the different accumulation rates of C and N
in the soils resulted in a change of C:N ratio [79]. With increasing reclamation age, it was found
that the increases in C:N ratios for sites previously used as grassland tended to be less (Figure 7c).
The increased N accumulation in the soil may be partly due to the overuse of N fertilizer, an effective
way to increase crop biomass and yield, enhancing the N deposition in soils [80]. An experimental
site receiving synthetic N fertilization over a 40–50 year period indicated a net decline in soil C [81].
Thus, the C:N ratio decreased according to the smaller change rate of SOC accumulation than N
deposition. In addition, C:N ratios from previously forested land stayed relatively stable, indicating
similar accumulation rates and a relative balance between SOC and TN. The variations in soil C:N ratio
are not only caused by C and N inputs, but also by decomposition in soils [11]. Soil micro-organisms
in the previously forested soils may enhance nitrogen-induced increases in the C uptake in the soil [82].
The underlying mechanisms of these variations and the longer time monitoring of C:N ratios require
further study.
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The global mean value of soil C:N ratios (0–30 cm) in cropland is 12.5 [2], which is much higher
than the mean level for our study area (10.22), and the highest value for sites derived from forest (10.85).
In addition, the C:N ratios for sites derived from grassland with low cropland ages tended to decrease
with increasing reclamation age. A reduction in the soil C:N ratio could disrupt the balance between
soil C and N cycling and cause loss of N through leaching and denitrification processes [1,22,83].
These results highlight the importance of effective agricultural management for the soils in the study
area. Although the change in C:N ratios for cropland assarted before 1978 has remained relatively
stable over the last four decades, it was found that over 10% of these C:N ratios were larger than
12.50, indicating that it is possible to increase the C:N ratio with the use of sustainable agricultural
management. For example, no-tillage can increase soil C:N ratios as compared to the use of traditional
pillow tillage [1,84,85]. In addition, using N fertilizer more efficiently and decreasing the overall
amounts used would effectively decrease the input of N to soils [80,86]. Management efforts in the
region should focus on how to enhance the accumulation of soil C and N, and also to better understand
their coupling characteristics in order that N deposition might be matched with C sequestration [87].

5. Conclusions

To reveal the effect of land use changes on the balance of soil C and N, a purpose designed
sampling strategy, along with the gathering of information on different land use change histories, was
conducted in representative areas within the Tarim Basin. Based on the visual interpretation of data
from remote sensing, cropland area nearly doubled in four decades in the study area, where over 70%
of new cropland was assarted mainly from grasslands, a small fraction from forest, and few from other
land use types. Using GIS spatial analysis techniques, three prior land uses and five types of cropland
age were identified. The status and change in soil C, N, and their fractions were investigated under
the different land reclamation histories. Results found that the prior land use significantly influenced
the soil C and N. Meanwhile, the relative magnitudes of C:N ratios for the various land uses were,:
forest > grassland > cropland. For soils assarted before 1978, SOC and TN significantly increased, but
the C:N ratio increased slightly by 0.05 without a significant difference. An increase was found in
the SOC, TN, and C:N ratio where prior land use was grassland, but these decreased in soils derived
from forest between 1978 and 2015. The change in magnitudes of SOC and TN with a significant
difference between three prior land uses is larger than that C:N ratio with a non-significant difference.
SOC and TN decreased in the initial stage of the reclamation process and did not recover in the short
term. After 30 years of cultivation, the decrease in initial SOC and TN values for land recovered
from grassland had recovered. SOC and TN loss from land derived from forest, however, was not
completely recovered even after 40 years of agricultural management. With increasing reclamation
age, the increase in C:N ratios of soils from land derived from grassland was less, but remained
relatively stable for land derived from forest. The findings in this study indicated near opposite effects
of land reclamation history on the soil C and N and C:N ratios. Differences in the variation of the soil
C:N ratio are determined by the relative input and output of SOC and TN under the different land
reclamation processes and associated cultivation practices. Since the C:N ratios are much lower than
the global average and show a decreasing trend in soils derived from grasslands, the application of
sustainable agricultural management is suggested to increase not only SOC and TN, but also the C:N
ratio, matching N deposition with the currently larger amount of carbon sequestration.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/2/86/s1,
Table S1: Landsat image description.
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Abstract: This study sought to verify whether remote sensing offers the ability to efficiently delineate
olive tree canopies using QuickBird (QB) satellite imagery. This paper compares four classification
algorithms performed in pixel- and object-based analyses. To increase the spectral and spatial
resolution of the standard QB image, three different pansharpened images were obtained based on
variations in the weight of the red and near infrared bands. The results showed slight differences
between classifiers. Maximum Likelihood algorithm yielded the highest results in pixel-based
classifications with an average overall accuracy (OA) of 94.2%. In object-based analyses, Maximum
Likelihood and Decision Tree classifiers offered the highest precisions with average OA of 95.3%
and 96.6%, respectively. Between pixel- and object-based analyses no clear difference was observed,
showing an increase of average OA values of approximately 1% for all classifiers except Decision
Tree, which improved up to 4.5%. The alteration of the weight of different bands in the pansharpen
process exhibited satisfactory results with a general performance improvement of up to 9% and 11%
in pixel- and object-based analyses, respectively. Thus, object-based analyses with the DT algorithm
and the pansharpened imagery with the near-infrared band altered would be highly recommended
to obtain accurate maps for site-specific management.

Keywords: Á Trous algorithm; conservation agriculture; crop inventory; remote sensing; spectral-
weight variations in fused images

1. Introduction

Nowadays, one of the most important objectives in agriculture is to perform precision agriculture
(PA) in most possible scenarios to control efficiently the input data and, consequently, reduce the
production cost and the environmental pollution produced by this activity. To facilitate and assist
this change in farm management, government institutions tend to regulate and encourage different
techniques based on PA. The European Commission is greatly concerned about the new challenges in
agriculture and promote the changes by different legal instruments and key texts [1]. Diverse action
areas such as farming, protection of natural or agricultural environment, food safety, security and
traceability, or even climate change mitigation are regulated. Some of the recommended or mandatory
practices are supported in an accurate control of the spatial distribution of crops. To obtain economical
funds from the common agricultural policy [2], PA promotes among many other actions, the application
of site-specific management or integrated management systems in crops production to reduce the use
of fertilisers, herbicides, or pesticides and the establishment of certain conservation agro-environmental
measures such as cover crops in olive orchards [3]. To control the correct application of PA techniques,
different monitoring systems were developed. The expensive, time-consuming, and imprecise
system based on sample and ground visit to small percentage of fields has forced a search for new
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techniques that reduce costs and increase the controlled area, maintaining high accuracy in the
analyses. Remote sensing data can significantly improve the deficiencies of ground visits, allowing
accurate maps.

Several studies have focused on addressing diverse PA topics by remote sensing, such as obtaining
accurate maps of crops [4–6]; detecting the location of weeds [7–9], pests [10–12], and diseases [13–15]
to apply site-specific management, or determining the level of water stress to design optimal irrigation
systems [16–18]. Nevertheless, most of the precision agriculture studies with remote sensing analysed
the characteristics of herbaceous crops, as these types of crops usually cover all the field and are easier
to study with digital imagery. Woody crops present very different spectral responses between tree
canopies, soils, and other covers presented in the field. Thus, very high spatial resolution images are
needed. Most of the studies which aim is to characterize the architecture of the trees used airborne or
Unmanned Aerial Vehicle (UAV) images to obtain the canopy information [19–21]. Nevertheless, few
studies used satellite imagery [22–24] and most of them were aid with LiDAR information [25–27].

High resolution satellite imagery can be useful to accurately map tree canopies. Companies that
distribute Earth Observation Satellite images usually offer the user community two separate products:
a high-spatial resolution panchromatic image and a low-spatial resolution multispectral one. While the
multispectral image facilitates the discrimination of land covers types, the panchromatic image allows
to delimit accurately each land cover [28]. To use simultaneously the advantages of both resolutions
in one image, fusion techniques have been developed. The pansharpen fusion method allows the
injection of spatial detail information from the panchromatic image into each band of the multispectral
image [29]. These new characteristics of the pansharpened image can help to accurately delineate the
tree canopies to apply PA techniques.

Supervised classification methods are extensively used in land use classification studies [30].
These procedures extrapolate the spectral characteristics obtained from the image training sites
defined for classification by the user to other areas of the image. Nowadays, there are classification
routines based on spectral or angular distances, probability analysis, and more advanced data mining
techniques. There is no one ideal classification routine. The most appropriate method is determined
by the needs and requirements of each study [31]. Many of the remote sensing classifications are
based on pixels as the minimum spatial information unit. These analyses provide very good results
in homogeneous land uses. Nevertheless, the increase of spatial resolution causes an increase in
the intraclass spectral variability and a reduction in classification performance and accuracy when
pixel-based analyses are used [32]. This is particularly true when the pixel size is significantly smaller
than the average size of the objects of interest [33]. To overcome this problem, different segmentation
techniques, in which adjacent pixels are grouped into spectrally and spatially homogeneous objects,
have been developed. The main segmentation algorithms can be classified into two general classes:
edge-based and object-merging algorithms [34]. Most of the segmentation procedure developed are
object merging algorithms, which take some pixels as seeds and grow the regions around them based
on certain homogeneity criteria [35]. Since Kettig and Landgrebe [36], the object-based approach has
hardly been used in favour of easier pixel-based analyses. Some researchers have reported that the
segmentation techniques used in classifications reduce the local variation caused by textures, shadows
and shape in forestry trees [37,38] and agricultural trees [39] classifications. However, object-based
classifications in typical agricultural dryland Mediterranean areas to map accurately olive tree canopies
using only high spatial resolution satellite imagery are lacking.

Therefore, the main objective of this paper was to evaluate the potential of four supervised
classification routines, applied to pixel- and object-based classifications, to delineate olive tree canopies
using a pansharpened QuickBird image. An additional goal was to check the effect of the variation
of the spectral weight in the pansharpen process, to emphasise the spectral information of different
wavelengths over another.
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2. Materials and Methods

2.1. Study Area and Satellite Image Acquisition

This study was focused on dryland olive (Olea europaea L.) orchards representative of the typical
continental Mediterranean climate [40]. The analysis was conducted in five olive orchards fields
named A, B, C, D and E (Figure 1) located near Montilla, province of Córdoba (Andalusia, southern
Spain, centre UTM X-Y coordinates 355,746–4,164,520 m, datum WGS84). This agricultural region
has a typical continental Mediterranean climate characterized with short mild winters and long dry
summers [41]. The study sites were located in a farmer-managed area where the farmers made
decisions individually. Thus, different characteristics of the studied fields such as size and morphology
of olive crowns, presence or not of vegetation cover or soil tillage, were found. The total areas of the A,
B, C, D and E fields were 2.16 ha, 22.80 ha, 15.66 ha, 24.55 ha and 28.44 ha, respectively.

Figure 1. Location of the study area in Andalusia, southern Spain. Detailed olive orchards fields are
depicted by QuickBird pansharpened images.

On 10 July 2004, a QuickBird (QB) satellite digital image was acquired for the study area. The QB
satellite provided four multispectral bands (blue, B: 450–520 nm; green, G: 520–600 nm; red, R:
630–690 nm; and near-infrared, NIR: 760–900 nm) with a spatial resolution of 2.8 m, and a panchromatic
band (PAN: 450–900 nm) with a spatial resolution of 0.7 m. Radiometric resolution of the QB image was
11 bit. A QB Standard image product was ordered, which included radiometric, sensor and geometric
corrections previously carried out by the distributor [42]. No atmospheric corrections were needed as
long as each classification was carried out in a single date image on the same relative scale [43].

2.2. Data Fusion: Pansharpening of Multispectral Images

To obtain an image of high spectral and spatial resolution, a pansharpening process was carried
out with the QB bands. The pansharpen techniques allow to obtain new bands with the spectral
resolution of the multispectral bands and the spatial resolution of the panchromatic band. In this
study, a weighting variant of the fusion algorithm based on the wavelet transform calculated using
the Á Trous algorithm was used to fuse the multispectral and panchromatic bands [44]. This fusion
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method consists basically of successive convolutions between the analyzed image and a low-pass
filter called the scaling function, which commonly is the b3-spline function. The filters to be applied
in the subsequent decomposition levels are obtained from the filter applied in the previous level,
intercalating it with zeros in the rows and columns. The wavelet coefficients are obtained from the
difference between two consecutive decomposition levels.

Knowing that the red and especially the near infrared bands are very important in the
discrimination of vegetation, these two bands were weighted differently. Thus, to evaluate the
effect of different weighted pansharpened bands in the classifications, three weight combinations were
proposed: (a) 1-1-1-1, (b) 1-1-5-5 and (c) 1-1-1-10 as weight factor for B-G-R-NIR bands, respectively.
As a result of this fusion or pansharpening process, three different images with four multispectral
bands (B, G, R and NIR) and with a spatial resolution of 0.7 m were obtained.

Usually, the global quality of the resulting pansharpened image is estimated with the ERGAS
index (Erreur Relative Globale Adimensionnelle de Synthèse) [45]. This relative dimensionless global
error in synthesis offers a global picture of the spectral quality of the fused product. Nevertheless,
in pansharpening techniques, high spectral quality implies low spatial quality and vice versa, which
suggests the necessity to control not only the spectral quality of the process, but also the spatial. Thus, a
spatial index based on ERGAS concepts and translated to the spatial domain [46] was used.

2.3. Segmentation

A segmentation procedure was performed to partition the QB pansharpened images into
homogeneous objects using the Fractal Net Evolution Approach (FNEA) segmentation algorithm [47]
(Figure 2). This algorithm allows the multiresolution bottom-up region-merging segmentation, a
process in which individual pixels merge to objects in successive fusing iterations. The merging
process continues until a threshold derived from the user-defined parameters is reached. The result is
an image in which the pixels are aggregated in highly homogeneous objects at an arbitrary resolution.

(a) (b) (c) 

Figure 2. Multiresolution segmentation of pansharpened QuickBird (QB) imagery in field A.
Pansharpen weight (B-G-R-NIR): (a) 1-1-1-1; (b) 1-1-5-5; and (c) 1-1-1-10.

The segmentation process can be controlled by the weighting of the input data and the definition
of three parameters. The scale parameter controls the size of the objects, while the colour and shape
parameters define the importance of the spectral and morphological information involved in the object
generation, respectively. The setting of the segmentation parameters were determined by testing
different segmentation input scenarios to evaluate their ability to delineate olive crowns. For each field,
the first parameter to adjust was the scale parameter to control the size of the objects depending on the
characteristics of the field. Then, with the scale parameter fixed, the spectral and morphological weight
of the information was defined. The morphological information is divided into two characteristics, the
compactness and the smoothness of the objects. For this study, as the trees crowns present a compact
structure, these two characteristics were fixed in all scenarios tested to 0.8 and 0.2 for compactness and
smoothness, respectively.

The segmentation procedure generates not only the mean spectral information of the objects,
which is derived from the spectral information of the pixels that form each object, but also a large
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amount of data divided mainly in three categories: spectral, morphological and textural. In this study,
only some spectral and morphological variables derived from the segmentation process were used
to characterize the olive orchards. Therefore, to perform this analysis eight object-based features,
three spectral and five morphological variables, were included (Table 1). The spectral feature Mean is
calculated for each multispectral band independently, obtaining 4 final features: Mean (Blue), Mean
(Green), Mean (Red) and Mean (Near-Infrared).

Table 1. Object-based features derived from segmentation.

Categories Features Brief Description

Spectral
Mean Mean of the intensity values of all pixels forming an image object
NDVI Normalized Difference Vegetation Index [48]
RDVI Renormalized Difference Vegetation Index [49]

Shape

Area Number of pixels forming an image object
Asymmetry Relative length of an image object compared to a regular ellipse polygon

Border index Ratio between the border lengths of the image object and the smallest
enclosing rectangle

Length Multiplication between the number of pixels and the length-to-width
ratio of an image object

Width Ratio between the number of pixels and the length-to-width ratio of an
image object

2.4. Classification and Accuracy Assessments

Both pixel- and object-based analyses with four different supervised classifiers were conducted
on the five olive orchards fields. The classification algorithms were Minimum Distance (MD), Spectral
Angle Mapper (SAM), Maximum Likelihood (ML) and Decision Tree (DT). MD classifies each pixel in
the category that presents the minimum spectral distance between the spectral signal of the pixel and
the spectral average of the class. The spectral distance is determined by Euclidean distance in N-bands
spectral space [50]. Similarly, SAM measures spectral similarity but assigns the category of each pixel
to the class that presents the minimum spectral angle, instead the spectral distance. The spectral
angle between two spectra is calculated by taking the arccosine of the dot product of the two spectral
vector [51]. ML creates classification rules based on probabilistic algorithms considering the spectral
average of each class and the variance. This algorithm assigns a pixel to the most probable class and
thus minimizes the probability of error using Bayesian theory [52]. Finally, DT classifier creates models
of decision based on conditional control statements. In this study, the DT classification was performed
with the data mining C4.5 algorithm, a top-down inductor of decision trees that expands nodes in
depth-first order for each step using the divide-and-conquer strategy [53]. Ground-truth land use was
randomly defined to substantiate and validate the classification procedures. For each field, a sampling
with distant and independent locations was digitized directly on the image. Approximately 25% of the
sampled surface were used to collect the spectral signature in the training process, and the remaining
75% were used to assess the accuracy of the classifications. To avoid any subjective estimation, the
training and verification procedure did not change in any of the classifications.

To determine the accuracy obtained with every classifier in each olive orchard field, the confusion
matrix of the classification and the Kappa test were analysed. The confusion matrix compares the
percentage of classified pixels of each class with the verified ground truth class, indicating the correct
assessment and the errors among the studied classes [38]. In addition to detailed accuracies obtained
in every classification category, the confusion matrix obtain the overall accuracy (OA), which indicates
the overall percentage of correctly classified pixels in the classification. The Kappa test yields the
Kappa coefficient (K), which determines if the results obtained in the classification are significantly
better than the results obtained in a random classification. The combination of both accuracy values is
more conservative than a simple percent agreement value [54,55].
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In pixel-based classification it is frequent to observe isolated-misclassified pixels dispersed within
the area of another class. To reduce this commonly named salt and pepper noise and increase
the accuracy of the classifications, a majority filter of 3 × 3 was applied to improve the classified
maps. In object-based classification this noise is practically eliminated when pixels group in the
segmentation process.

The pansharpened QB bands were generated with the IJFUSION software (Polytechnic University
of Madrid, Spain). To obtain the segmented bands used in object-based classifications, the eCognition
Developer 8 software (Definiens AG) was used. The Weka 3.8 software (University of Waikato,
New Zealand) determined the decision tree sequences. Finally, the software ENVI 5.1 (Harris Geospatial
Solutions) was used to carry out all the pixel- and object-based classifications.

3. Results and Discussion

3.1. Data Fusion: Pansharpening of Multispectral Images

Three pansharpen procedures were performed with the entire QB image. To control the quality
of the process, two ERGAS indexes were calculated. Table 2 shows the spectral and spatial ERGAS
indexes obtained in the study for each pansharpen combination. The spectral ERGAS index showed
values of 0.72, 1.84 and 1.83 whereas the spatial ERGAS index exhibited slightly higher values of 1.3,
1.73, and 1.86, for pansharpen B-G-R-NIR combinations 1-1-1-1; 1-1-5-5 and 1-1-1-10, respectively.
Being a value of 0 of each ERGAS index the maximum quality, the lower the ERGAS value, the higher
the spectral quality of fused images. ERGAS error lower than 3 are considered as good quality for
fused product [56]. In this study, the ERGAS errors obtained were considerably low (lower than 2
in all combinations), which implied a high spectral and spatial quality in the images obtained [57].
This premise is important in this type of study, as an accurate isolation of olive crowns need a very
high spatial resolution but without losing the spectral information, especially in complex areas where a
mixture of olive tree, natural cover, and soil spectral data can be observed. The increase of the ERGAS
indexes values in the pansharpened image, where the red and near-infrared bands were over-weighed,
was predictable. Gonzalo and Lillo-Saavedra [44] conceived the pansharpen algorithm performed in
this study to apply the exact weighted factor to every band to obtain same spatial and spectral quality
of the image, it means, to obtain the “best fused image”. In this study, and controlling that the quality
of the fused images does not exceed the ERGAS index limit, the weight of the bands was based on the
necessity of the study but not in the control of the pansharpen quality.

Table 2. Spectral and spatial indexes to control the quality of the pansharpened images.

Pansharpen Weight (B-G-R-NIR) Spectral ERGAS Spatial ERGAS

1-1-1-1 0.72 1.13
1-1-5-5 1.84 1.73

1-1-1-10 1.83 1.86

3.2. Segmentation

For the fifteen pansharpened fields analysed, three pansharpen combinations × five olive orchard
fields, a considerable number of input parameters were tested to obtain the criteria that provided the
most satisfactory inputs scenarios (Table 3). Each olive orchard field presented different characteristics,
which involved different segmentation parameters. As the aim of the segmentation is to obtain objects
with a similar or smaller area than an olive tree canopy, the values of the scale parameters were low,
ranging from 12 in the fields A and E to 25 in the fields B and C. The pansharpen images with the
weight 1-1-1-1 always required a smaller scale parameter than the other two pansharpen images. In the
segmentation process, the spectral information (colour) presented more weight than the morphology
of the objects (shape) in most of the scenarios evaluated, although colour never exceeded the 70% of
the weight. Only in the field D, the percentage of both types of information was divided equally (50%).
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As mentioned in Section 2.3, the compactness and smoothness characteristics of the morphology of the
objects were fixed to 0.8 and 0.2, respectively.

Table 3. Most satisfactory segmentation parameters obtained for each pansharpened field.

Field
Pansharpen Weight

(B-G-R-NIR)
Scale

Parameter
Colour Shape Compactness Smoothness

A
1-1-1-1 12 0.6 0.4 0.8 0.2
1-1-5-5 20 0.7 0.3 0.8 0.2
1-1-1-10 20 0.7 0.3 0.8 0.2

B
1-1-1-1 15 0.7 0.3 0.8 0.2
1-1-5-5 25 0.7 0.3 0.8 0.2
1-1-1-10 25 0.5 0.5 0.8 0.2

C
1-1-1-1 15 0.6 0.4 0.8 0.2
1-1-5-5 25 0.7 0.3 0.8 0.2
1-1-1-10 17 0.6 0.4 0.8 0.2

D
1-1-1-1 14 0.6 0.4 0.8 0.2
1-1-5-5 14 0.5 0.5 0.8 0.2
1-1-1-10 14 0.5 0.5 0.8 0.2

E
1-1-1-1 12 0.6 0.4 0.8 0.2
1-1-5-5 19 0.7 0.3 0.8 0.2
1-1-1-10 22 0.7 0.3 0.8 0.2

3.3. Olive Orchard Fields Classification

The accuracy assessments, OA and K, of the different pixel- and object-based classifications carried
out in the different weighted pansharpened images of every field are displayed in Table 4. Figure 3
shows an example of the least and the most accurate olive crowns classifications in an individual field.
Table 4 reveals slight differences between classifiers, yielding most of the scenarios evaluated very high
classification accuracies and showing that olive trees canopies could be discriminated very accurately
in most of the test carried out. All the classifiers achieved high comparable classification results,
although some classifiers stood out above others. In pixel-based classifications, MP exhibited the
highest average of OA and K with a value of 94.2% and 0.89, respectively. In object-based classification,
MP obtained the highest accuracies values in eight of the 15 images analysed and DT obtained the
highest precision in the remaining seven classifications. Nevertheless, the average results were slightly
higher with the DT classifier offering OA and K values of 96.6% and 0.94%, while ML obtained values
of 95.3% and 0.91%. ML and DT classification algorithms exhibited high reliability in all classifications
performed, while SAM and MD yielded more erratic results, showing always the lowest accuracies
of each analysis. As an example, in pixel-based classification of field E, MD obtained the highest
OA values for the pansharpen combinations 1-1-5-5 and 1-1-1-10 with 93.4% and 95.2%, respectively,
whereas this classifier showed very low OA value for the pansharpen combination 1-1-1-1, with a value
of 77.3%. Nevertheless, all the olive orchard fields could be classified very accurately with at least
one classifier, showing OA values greater than 90%. The results observed in this study satisfied the
commonly accepted requirements to consider an accurate classification when the OA value is at least an
85% [58] and the Kappa coefficient exceeds the 0.75 [59]. Such high accuracies are essential if the olive
orchard map obtained is going to be used in precision agriculture to design site specific management.
To emphasise one classifier from all of them, ML classifier could be selected considering that yielded
one of the highest precisions in all classifications performed and that the computational and expertise
requirements involved in this classification method is lower than the other most accurate classifier,
DT, a data mining algorithms which demands deeper knowledge. Additionally, ML algorithm is
implemented in most of the image processing software.
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Table 4. Classification accuracies of olive orchards at the five fields analysed in the three pansharpened
images using different classification algorithms.

Analyses

Pixel-Based Object-Based

Field Image 1 MD 2 SAM ML DT MD SAM ML DT

OA 3 K OA K OA K OA K OA K OA K OA K OA K

A
1-1-1-1 94.4 0.91 92.6 0.88 95.0 0.92 91.7 0.86 96.2 0.93 96.6 0.94 97.8 0.96 94.9 0.91
1-1-5-5 91.7 0.86 90.8 0.84 94.4 0.91 98.7 0.97 96.4 0.94 94.5 0.91 97.9 0.96 98.9 0.98

1-1-1-10 89.4 0.82 88.0 0.79 92.8 0.87 98.6 0.98 91.7 0.86 95.7 0.93 98.8 0.98 98.7 0.98

B
1-1-1-1 91.3 0.83 94.2 0.89 98.7 0.97 95.7 0.91 88.8 0.78 91.3 0.82 99.1 0.98 96.9 0.95
1-1-5-5 95.2 0.91 95.4 0.91 98.7 0.98 92.1 0.89 94.6 0.89 97.3 0.94 99.3 0.99 99.3 0.98

1-1-1-10 95.7 0.86 86.5 0.73 97.5 0.95 94.3 0.90 94.1 0.88 77.9 0.59 98.7 0.97 98.5 0.97

C
1-1-1-1 90.4 0.81 93.4 0.87 97.7 0.95 96.5 0.94 88.8 0.78 88.4 0.77 97.5 0.95 97.0 0.94
1-1-5-5 95.8 0.92 93.1 0.86 97.7 0.95 92.4 0.89 95.6 0.91 96.5 0.93 97.9 0.96 98.7 0.98

1-1-1-10 95.5 0.91 85.3 0.71 96.6 0.93 94.1 0.90 94.9 0.90 64.9 0.31 98.5 0.97 98.6 0.97

D
1-1-1-1 69.7 0.39 75.4 0.51 88.1 0.76 84.8 0.80 78.9 0.58 86.1 0.72 79.7 0.59 87.2 0.82
1-1-5-5 87.5 0.75 87.9 0.76 94.2 0.88 88.5 0.84 87.1 0.74 85.6 0.71 88.4 0.77 98.3 0.96

1-1-1-10 89.5 0.79 85.3 0.71 92.3 0.85 87.3 0.83 85.7 0.72 88.0 0.76 91.6 0.83 98.7 0.97

E
1-1-1-1 77.3 0.55 76.7 0.54 86.7 0.73 86.8 0.83 82.0 0.64 79.2 0.59 89.4 0.79 89.0 0.84
1-1-5-5 93.4 0.87 91.5 0.83 93.0 0.86 90.7 0.89 97.1 0.94 96.8 0.94 97.5 0.95 97.9 0.96

1-1-1-10 95.2 0.91 88.1 0.76 89.9 0.80 88.8 0.85 96.1 0.92 82.1 0.64 97.3 0.95 97.1 0.95
1 Pansharpen weight (B-G-R-NIR); 2 Method of classification: MD, Minimum Distance; SAM, Spectral Angel Mapper;
ML, Maximum Likelihood; DT, Decision Tree; 3 Accuracy values: OA, overall accuracy (%); K, Kappa coefficient.

Figure 3. Result of the least (a,c) and most accurate (b,d) olive orchard classifications of field E.
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Between pixel- and object-based analyses, no clear difference was observed. Despite that
object-based classifications analysed a greater number of segmented variables than pixel-based, the
precision of the classifications yielded were slightly higher. In object-based analyses, the increase
of average OA values was approximately 1% for all classifiers except DT, which improved its
general performance with an average increase of 4.5% and showed the most accurate average OA
(96.6%). Twelve of the fifteen pansharpen combinations classified improved the accuracies when the
object-based analysis were performed, but these increases usually were minimal, not exceeding in many
cases the 1% of improvement. The most significant variations between object- and pixel-based analyses
were observed in fields D and E. A 6.4% of improvement was observed in the pansharpen combination
1-1-1-10 of the field D, when the most accurate pixel-based analysis was performed with the MP
classifier and yielded an OA value of 92.3%, whereas the most accurate object-based classification
was obtained with DT algorithm and obtained an OA of 98.7%. Similarly, accuracy increases superior
to 4% could be observed with the pansharpen combination 1-1-5-5 of both, field D and E, obtaining
the greatest OA values of 98.3% and 97.9% with DT algorithm. Little advantage when applying
object-based techniques can be observed in other studies focused on precision agriculture when
pixel-based analyses offer reasonable performance. Pérez-Ortiz et al. [60] tested different scenarios of
pixel- and object-based classifications to detect weeds in sunflower crops and obtained similar results,
with improvements of up to 6%. Similarly, Castillejo González et al. [61] evaluated pixel- and object
based classifications to distinguish late-season wild oat weed patches in wheat fields and suggested
that the small sizes of the objects and the excellent behaviour of the classification algorithms in the
pixel-based classifications did not produce a significant improvement over the precision obtained in
the object-based classifications.

In object-based analyses eight different segmented variables were classified, which implies more
information that can enhance or worsen the capacity to distinguish among categories. MD, SAM, and
ML algorithms give equal weight to all the variables involved in the classification process, and use
all these variables in the process, independently of the level of improvement or deterioration that the
classification can suffer. Nevertheless, the DT algorithm analyses all the variables and selects only
the information that really help to distinguish among categories, increasing its efficiency. Figure 4
shows the percentage of use for each variable in DT classifications. From the eight segmented variables
managed in this study, DT algorithm only used six different variables in the total set of analyses, and
only two or three were necessary in most of the DT classifications. All spectral variables were used in
the DT analysis, but the bands that were selected more frequently were the NIR mean layer and the
NDVI index. Whereas the NIR mean layer showed the highest level of intervention in DT analysis with
a 44.4% for pansharpen combination 1-1-1-10 and a 37.5% for combination 1-1-5-5, the NDVI index
band was used in the three pansharpen combinations with a 27.3%, 22.2%, and 12.5% of intervention
for combinations 1-1-1-1, 1-1-1-10, and 1-1-5-5, respectively. From the five geometrical segmented
variables, only Width, Length, and Border index were used in those classifications. With feature was
the most useful, with a 45.5% of intervention for combination 1-1-1-1 and a 12.5% for combination
1-1-1-5. The scarce use of morphological variables can be explained because the olive is a tree that
presents different canopy architecture depending on characteristics such as age, farm management,
variety, pruning, etc. (Figure 5). The very high accuracies obtained with limited variables in DT
classifications agrees with the idea exposed in [62], when they concluded that DT tends to be very
efficient and robust when a large volume of predicted variables are introduced in a model, generally
performing fast and being insensitive to noise in input data. This behaviour explain the rise of the
accuracies that DT classifications exhibited in object-based analyses compared to ML algorithm.
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Figure 4. Relative contribution of object-based variables for DT classifications.

Figure 5. Example of differences in the morphology of the olive crowns.

The pansharpen process was necessary to obtain enough spatial resolution in the images to
accurately distinguish the olive trees canopies. The original idea of alter the spectral information of
the pansharpened images to emphasize the most useful spectral bands to distinguish vegetation from
other land uses exhibited satisfactory results, offering increases of accuracy in three of the five fields
studied. This improvement is especially significant in fields D and E, spectral complex fields which
showed more difficult to isolate the olive trees. Field D showed the greatest improvement with the
spectrally altered images. In pixel-based classifications, increases of approximately 6% and 4% were
observed among the combination 1-1-1-1 (OA of 88.1%), and the combinations 1-1-5-5 (94.2%) and
1-1-1-10 (92.3%). More prominent were the increases observed in object-based classifications, where
the combination 1-1-1-1 obtained an OA of 87.2% whereas the pansharpen combinations 1-1-5-5 and
1-1-1-10 showed OA values of 98.3% and 98.7%, respectively, which implied accuracy increases higher
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than 11%. Similarly, field E showed important accuracy increases of 6% and 9% in pixel-based analyses
and 8% and 7% in object-based classifications, for 1-1-5-5 and 1-1-1-10 pansharpened combinations,
respectively. Although studies based on pansharpened images performed with different spectral
weights were not found, the use of equal weight of the multispectral bands in the pansharpen process
were evaluated in agronomic scenarios. When homogeneous land uses such as herbaceous crops were
analysed with pansharpen imagery, the improvements in classification accuracy due to the use of
more spectral and spatially detailed imagery could not really be considered as remarkable regarding
the multispectral imagery [63]. Nevertheless, in land uses with high intraclass variability such as
woody crops, where the individual trees must be isolated from soil and other covers presented in the
field to design a site-specific crop management, the spatial detail is needed. García-Torres et al. [64]
analyzed the capacity of different spatial resolutions to isolate olive trees and suggested that imagery
with spatial resolutions from 0.25 to 1.5 m were generally suitable for olive grove characterization
with olive trees of over 3–4 m2. Scarce studies used pansharpen images to isolate trees, being more
frequent to obtain the information of the tree based on the fusion of different types of information such
as multispectral, hyperspectral or LiDAR data or with the analysis of very high spatial resolution UAV
imagery. Johnson et al. [65] tested different pansharpened processes to map residential area trees and
damaged oak trees. Since a hybrid approach including two pansharpening methods produced the best
results in this study, they recommend users planning to process the pansharpen themselves rather
than purchase pansharpened imagery directly from the image vendor, so that they can incorporate
variations in the methodology for their analysis.

An accurate map of olive orchards fields enable the design of site-specific management treatments
and can contribute to the follow up and assessment of agri-environmental regulations. Further studies
will focus on establishing a hierarchical classification system that aims at discriminating all olive
orchard fields present in the entire QB scene while evaluating the potential of image sharpening in
classifying different land uses. In the first level of the hierarchical analysis, the olive orchard fields
will be identified and isolated from the other land uses included in the whole studied region to,
subsequently, characterize the olive trees of each field. Additionally, with each tree individually
discriminated, different agri-environmental indicators of olive orchards related with the number and
area of the trees (e.g., potential productivity of each tree and potential production of each plot) and
related with bare soil and other vegetation covers (e.g., risk of erosion and run-off) can be predicted.

4. Conclusions

The olive production sector is characterized by a large number of small operators which directly
affect production. The results of the present study show that pansharpened multi-spectral QuickBird
imagery can be successfully used to map delineation of olive tree canopies. The knowledge of the
accurate location and delimitation of the olive trees can be used as a basis for the precision management
of fertilizers, pesticides and watering, since there is an obvious relationship between tree size and
potential productivity based on the requirements of nutrients, watering doses and plant protection
products such as fungicides. Although all classification algorithms tested offered accurate results,
ML and DT were the two most precise classifiers. Knowing that the red and especially the near
infrared bands are very important in the discrimination of vegetation, the alteration of the weight of
these spectral bands in the pansharpen process enhanced significantly the accuracy of the olive trees
delineation, with an average increase improvement of up to 9% and 11% in pixel- and object-based
analyses, respectively.

With regard to recommending one methodology to define the olive trees crowns, two
considerations should be made: the improvement in accuracy obtained and the computational or
expertise requirements involved in the process. The decision of whether or not to carry out more
complex analyses will depend on the importance of achieving maximum accuracy and the ratio
of cost/efficiency wished to obtain in the objectives. If one aimed to create a crop inventory, then
the performance of pixel-based classification with ML classifier and standard pansharpened images
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would be the best choice. However, if it desires to produce a map that is ready to be used for
precision agriculture decision-making procedures, object-based analyses with the DT algorithm and
the pansharpened imagery with the near-infrared band altered would be highly recommended.
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Abstract: Management zones (MZs) are used in precision agriculture to diversify agronomic
management across a field. According to current common practices, MZs are often spatially static:
they are developed once and used thereafter. However, the soil–plant relationship often varies over
time and space, decreasing the efficiency of static MZ designs. Therefore, we propose a novel workflow
for time-specific MZ delineation based on integration of plant and soil sensing data. The workflow
includes four steps: (1) geospatial sensor measurements are used to describe soil spatial variability
and in-season plant growth status; (2) moving-window regression modelling is used to characterize
the sub-field changes of the soil–plant relationship; (3) soil information and sub-field indicator(s)
of the soil–plant relationship (i.e., the local regression slope coefficient[s]) are used to delineate
time-specific MZs using fuzzy cluster analysis; and (4) MZ delineation is evaluated and interpreted.
We illustrate the workflow with an idealized, yet realistic, example using synthetic data and with an
experimental example from a 21-ha maize field in Italy using two years of maize growth, soil apparent
electrical conductivity and normalized difference vegetation index (NDVI) data. In both examples,
the MZs were characterized by unique combinations of soil properties and soil–plant relationships.
The proposed approach provides an opportunity to address the spatiotemporal nature of changes in
crop genetics × environment × management interactions.

Keywords: remote sensing; proximal sensing; crop modeling; soil; plant; management zone;
spatial variability; temporal variability; precision agriculture

1. Introduction

Crop yields and resource use efficiency (e.g., nutrients and water) have a strong spatial component,
which can be observed over a wide range of scales, from regional to subfield [1]. At the field scale,
yield variability in uniformly managed fields is often related to the spatial variability of soil properties
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and their impact on plant growth [2–6]. This variability can be addressed using precision agriculture
practices [7], such as variable rate management (VRM) [8]. According to VRM principles, efficiency or
crop production can be increased by varying agronomic inputs over a field according to varying soil
and crop conditions [9]. Within a field, areas with similar soil properties (e.g., texture, topography,
water holding capacity) that can be managed uniformly are commonly called management zones
(MZs) [10]. To justify the subdivision of a field into MZs, there should be sizeable difference in soil
properties between MZs [9,11]. The use of MZs for VRM has been shown to increase productivity,
decrease costs, and/or reduce environmental impacts of agronomic practices [12,13]. Several authors
have shown that within-MZ management should change over time [14–20], such an approach is often
referred to as “dynamic VRM” [14].

Shanahan et al. [21], Long et al. [22], and Quebrajo et al. [23] indicated that coupling soil and plant
data should increase the efficiency of MZ-based precision agriculture. Several sensor measurements can
be used as indicators of soil spatial variability, including: apparent electrical conductivity, gamma-ray
spectrometry, visible and near-infrared reflectance, and penetrometry [24–26]. Throughout the growing
season, field-scale crop canopy measurements from near-ground (e.g., tractor mounted sensors) and
remote sensing (e.g., unmanned aerial vehicles—UAV, satellites) can be used to provide information
about plant health [27]. In particular, visible, near-infrared, and thermal sensing can be used to infer
crop water status, nitrogen deficiency, and the effect of other biotic/abiotic stressors [28–31] and as an
indicator of potential yield [16,32–35].

According to current practices, MZ-designs derived from soil maps, crop sensing, and/or
historical yield maps are generally designed once and then implemented year after year. Nevertheless,
several authors have reported inconsistent benefits for this precision management strategy [21,22].
Spatial patterns in yield tend to change from year-to-year, mostly because of changes in meteorological
conditions [12,36–38]. In other words, the spatial patterns of most soil properties are fairly stable in
time, but at different times plants may be limited in different ways at the same location because of the
influence of transient factors affecting the soil–plant relationship, such as meteorological factors and
agronomical management [12,38,39].

Sadler et al. [40] indicated that there is a need for accurate and inexpensive systems to delineate
dynamic management zones, obtained by sensing within-field variability in real time, so that
agricultural management can be controlled adaptively. Recent research strongly suggested that
MZ designs should change over time, both intra- and inter-seasonally [19,20,38,41–44]. Myers [45]
formally justified the need for time-specific and spatially dynamic VRM through the “fundamental
theorem of precision agriculture production” where Crop Yield is a function of Genetics × Environment
× Management × Space × Time interactions. According to this theorem, the spatiotemporal variability
of crop performance should be addressed by adjusting the agronomic prescriptions over time and
space. Several examples of protocols and data analysis workflow for static soil and/or plant-based
MZ delineation are present in the scientific literature [46–49]. To our best knowledge, time-specific
MZ delineation based on soil and in-season plant information has not been commonly discussed in
the literature. Particularly, there is a lack of protocols and analytical workflow that farm managers,
agricultural consultants, and scientists can use to take advantage of free/inexpensive in-season crop
information (e.g., from UAV, Sentinel 2 satellite) and high-resolution soil maps.

We aim to present a novel workflow for the selection of time-specific MZs according to in-season
spatial measurements of crop growth status and its relationship with high-resolution soil spatial
information. The MZ should identify areas with homogeneous and unique (within a single field)
soil–plant relationships. The MZ-delineation workflow will be described in detail. We will also provide
two examples on how to implement the workflow. The first example is based on synthetic data.
The second example uses data from a maize (Zea mays L.) field in northeastern Italy.
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2. Materials and Methods

2.1. Time-Specific MZ-Delineation Workflow

The time-specific MZ delineation can be implemented as follows:

• STEP 1. Soil and time-specific plant spatial information acquisition, pre-processing, interpretation,
and interpolation

• STEP 2. Time-specific sub-field soil–plant modeling
• STEP 3. Time-specific MZ delineation with cluster analysis
• STEP 4. Evaluation/interpretation of time-specific MZ design

2.1.1. Soil and Time-Specific Plant Spatial Information

In STEP 1, high-resolution spatial measurements for target soil properties and in-season
plant-canopy information, such as canopy reflectance, are acquired, pre-processed, interpreted,
and interpolated. In-season plant-canopy reflectance is acquired and used as an indication of crop
status. Soil spatial information is used to interpret the crop canopy measurements.

Soil sensor data acquisition should be carried out according to established protocols [50–52] to
increase the accuracy and consistency of the survey across large areas. Attention should be paid to
selecting those sensors which represent the spatial variability of soil properties known or believed
to influence a crop at the site of interest [53,54]. For information on sensor data pre-processing
(e.g., conversion of spatial coordinates, removals of outliers), readers are referred to the first protocol
step of Córdoba, Bruno, Costa, Peralta, and Balzarini [49]. Subsequent to the sensor surveys, soil
sampling should be carried out across the root zone (e.g., 0–1.2 m) to calibrate/interpret the sensor
readings [50]. Sensor-directed sampling schemes can be used to minimize the number of sampling
sites [55,56]. Exploratory analyses, such as correlation analysis and principal component analysis
(PCA) should be carried out to investigate the relationships between soil sensor and laboratory soil
analyses. The strength of the relationships between collocated soil sensor values and laboratory soil
analyses should be investigated. If these relationships are moderately to very strong, the sensor data
can be considered as an indicator of spatial variability of the target soil properties. Then, sensor data
can be used to generate maps of the selected soil properties [57,58]. Soil maps should be generated
only if acceptable prediction errors [59] are obtained. Alternatively, for weak to moderately strong
relationships, the soil sensor maps should be used as qualitative indicator of soil spatial variability.
Córdoba, Bruno, Costa, Peralta, and Balzarini [49] describe how to practically process interpolated
data to obtain a raster of desired block support (e.g., of the same resolution chosen for the MZ design)
in the second step of their MZ-delineation protocol.

Free (e.g., Sentinel 2 satellite) or inexpensive (e.g., from UAV) crop measurements are available
throughout the growing season with moderately-high temporal resolution. For example, the Sentinel 2
satellite from the European Space Agency provides multi-spectral canopy reflectance at the 10 × 10-m
resolution, with a 5-day revisit time, free of charge. Remote sensing of crop canopy data can be used
to calculate vegetation indices [34]. Point measurements, such as those from tractor-mounted active
spectrometers [30], should be pre-processed and interpolated similarly to soil sensing measurements.
High-resolution raster data, such as that from satellite imagery, may need to be re-gridded and scaled
to the selected block support.

2.1.2. Time-Specific Sub-Field Soil–Plant Modeling

In STEP 2, soil information from STEP 1 is used to interpret in-season (i.e., time-specific)
measurements of crop status. The interpretation of crop canopy sensing measurements is not
straightforward—as they are influenced by species × growth-stage × stress levels × soil background
interactions [60–62].
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Moving window spatial regression modeling, such as geographically-weighted regression
(GWR) [63,64], can be used to understand the local (i.e., sub-field scale) variation in the plant–soil
relationship. With GWR, a regression is run for each grid location, rather than for the whole study
area [65]. Soil map(s) are used as the independent (explanatory) variable(s) and the in-season crop
status maps are the dependent variable. When multiple explanatory variables are available, one should
consider standardizing them. The GWR allows non-stationarity of the regression equation parameters
a (e.g., intercept, slope), estimating their values at each location i. For a dependent variable y the
equation reads:

yi = a0i + a1ix1i + . . . + akixki + εi (1)

where ε, is a random error term, a0 is the regression intercept, and a1 to ak are the regression coefficient(s)
for each explanatory variable(s) x1 to xk. The spatial variability of the soil–plant relationship can be
described with the maps of local a1 to ak coefficients (i.e., the regression slope[s]). Maps of GWR slope
coefficient(s) show the spatial variability of the impact (i.e., sensitivity) of the explanatory variable on
the regression [65].

In the GWR framework, spatial weighting is determined by incorporating all the dependent
and explanatory variables falling within a geographical kernel of each target feature [65]. The values
of the regression parameters and goodness-of-fit of the GWR depend on how the kernel size is
chosen [66]. Maps of the estimated dependent variable, local coefficient of determination (R2), and local
Pearson correlation coefficient r can be generated with the GWR [65]. The GWR is available in
commercial GIS software platforms (e.g., ArcMap’s Spatial Statistics package [65], version 10.5.1; ESRI,
Redlands, CA, USA), and freeware (e.g., spgwr package in R, version 3.4.1; the R Foundation for
Statistical Computing Platform, Vienna, Austria).

2.1.3. Time-Specific MZ Delineation with Cluster Analysis

In STEP 3, the MZ delineation is carried out using the soil map(s) and the time-specific GWR
slope maps from STEP 2 as ancillary variables. As indicated by Córdoba, Bruno, Costa, Peralta,
and Balzarini [49], fuzzy c-means (also known as “k-means”) unsupervised clustering algorithms [67]
can be employed to classify the data into MZs. ArcMap’s Grouping Analysis tool (e.g., [68]),
the Management Zone Analyst software [69] or the EZZone online tool [70] can be used to delineate
MZs. Several MZ designs can be tested. The optimum number of MZs can be identified using
cluster validity functions, including: the Calinski–Harabasz criterion [71], the fuzziness performance
index [67], the normalized classification entropy index [67,72], and the Jenks optimization method [73].
The Calinski–Harabasz criterion (CHC), also known as pseudo F-statistic, describes the ratio between
within-MZ similarity and between-MZ differences. It is defined as:

CHC =
BMZSS/(MZn − 1)

WMZSS/(N − MZn)
(2)

where N is the number of data points, MZn is the number of considered MZs, BMZSS is the
between-MZ sum of squares, and WMZSS is the within group sum of squares. The larger the value of
the CHC the higher are the within-MZ homogeneity and between-MZ differences. Finally, one may
consider smoothing the fuzzy c-means clustering results to reduce zone fragmentation [49,70].

2.1.4. Time-Specific MZ-Design Quality Control and Interpretation

In STEP 4, the quality of the MZ design from STEP 3 should be checked. Each MZ should identify
a unique combination of soil and soil–plant relationship characteristics. To infer differences across
MZs, parametric analysis of variance or the Kruskal–Wallis (KW) rank test [74] can be used. The KW
test is a nonparametric analysis assessing if samples originate from the same distribution. The test can
be used as alternative to the standard analysis of variance when assumptions for parametric testing
are not met.
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2.2. Synthetic Data Example

The proposed workflow can be demonstrated using synthetic data for soil clay content (percentage)
and normalized difference vegetation index (NDVI) [75].

A spatial random field for clay content was generated using the RFsimulate function in the
RandomFields package in R. The function estimated a Gaussian random field (RPgauss function)
having an exponential covariance function (RMexp function with variance = 25 and scale = 300),
a nugget effect (RMnugget function with variance = 5), and a pure trend model with covariance
0 (RMtrend function with mean = 15). The simulations were carried out over a square of size
250 × 250 cells. The random field was then converted into a 250 × 250-pixel raster with pixel size = 1 m
using the function raster from the raster package in R. The clay content raster was then exported from
R to a text file using the writeRaster function. We refer to this raster as the true clay content (TCC) map.

Next, we mimicked a field procedure for generating a soil clay content map, using TCC as the true,
unknown, high resolution clay content. Accurate approximations of true soil properties can be obtained
when high-resolution covariates, such as those from proximal-soil sensing [76], are available [77].
Soil sensor surveys can be calibrated to estimate the spatial variability of a target soil property by using
laboratory measurements on collocated soil cores [58]. Heggemann et al. [78] reported that gamma-ray
sensor readings can be calibrated to predict texture values with high accuracy (up to ~95 percent of
observed variance in soil texture). We mimicked a typical sensor survey (e.g., Lesch [55]) in which
1870 data points (average nearest neighbor distance = 3.2 m) were spread across 24 nearly-parallel
transects (average nearest neighbor distance = 9.9 m). Values from the TCC map were extracted at
the sensor survey locations. A random error having mean = 0 and variance equal to 5 percent of
the extracted TCC values was added to the sensor data. This simulated a realistic sensor calibration
with goodness-of-fit with a R2 close to 0.95. The spatial autocorrelation of the calibrated sensor
measurements was described with a spherical semivariogram having range = 50.3 m, and nugget
equal to 67% of the total sill. This spatial structure was similar to those reported by other authors in a
5-ha clay loam field in Italy [79] and in a cluster of fields with contrasting soil properties (from clay to
gravelly) in Germany [80]. These calibrated sensor measurements were then interpolated using simple
kriging in with ArcMap’s Geostatistical Analyst package. The resulting sensor-derived clay content
(SCC) map was retained for further analyses.

NDVI is a vegetation index calculated from surface reflectance in the red (RED) and near-infrared
(NIR) regions of the electromagnetic spectrum. It is defined as:

NDVI =
(NIR − RED)

(NIR + RED)
(3)

NDVI ranges from −1 to +1. NDVI for agricultural crops usually ranges from ~0.1 to ~0.9,
with lush vegetation generally having high NDVI [81,82]. The NDVI information was simulated with
the understanding that, often, the spatial relationship between remote sensing canopy measurement
and collocated soil properties has both deterministic and spatial random components [83–85].
The deterministic component of the relationship can be a linear model between the soil property
and the available remote sensing plant information [84]. The spatial random component is often equal
to the field of spatially correlated residuals from the deterministic linear model [57,83]. We simulated
the NDVI as follow:

NDVI = S × (TCC + SpERR) + O (4)

where SpERR was a spatial error raster, S was a scaling factor = 0.01, and O was an
offset coefficient = 0.4. SpERR was generated in R, using the RandomFields package. We estimated a
Gaussian random field based on a model with exponential covariance function (variance = 7.5 and
scale = 50) and a nugget effect (variance = 5).

A GWR with 30-m bandwidth size was used to model the spatial variability of the synthetic
NDVI image using the SCC map as explanatory variable. Then, MZs were delineated with a fuzzy
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c-mean unsupervised cluster analysis. Clustering was carried out in ArcMap using the Grouping
Analysis tool from the Spatial Statistics package. The SCC and the time-specific GWR slope maps were
used for the cluster analysis. No spatial constraints were set for the cluster analysis: the covariate
data points could be grouped according to their value, disregarding the values of their geographical
coordinates (i.e., points did not need to be neighbors to be part of the same MZ). The classifications
were carried out for scenarios outputting two, three, and four MZs. Then, the optimal number of MZs
was identified using the CHC. Differences in clay (from the SCC map), NDVI, and GWR slope across
MZs were investigated with the KW test using STATISTICA (version 12, StatSoft Inc., Tulsa, OK, USA).

2.3. Field Data Example

2.3.1. Site Description

Another example is given using experimental data from researchers at the University of Padua,
Italy [86–88]. Here, we describe two time-specific MZ designs for a maize field based on remote sensing
imagery acquired during the late kernel blister stage (R-2), in two consecutive growing seasons.

The study site (Figure 1) is a 21-ha field located at Chioggia, Venice, Italy, along the southern
margin of the Venice Lagoon (45◦10′7.0′ ′ N, 12◦13′55.0′ ′ E). Previous studies [86–89] discussed the
relationship between soil and maize yield at this site. The site lies below average sea level, and the
groundwater level is kept fairly shallow (approximately between −0.6 to −1.5 m below ground level)
by a pumping station [87] to promote sub-irrigation [88]. The soil in the area is classified as Molli-Gleyic
Cambisol [90] with two coarsely-textured paleochannels crossing it with SW-NE direction (Figure 1).
The field is affected by soil salinity due to its proximity to the Venice Lagoon [86].

Here, we analyzed the two maize growing seasons (April to September), 2010 and 2011. The two
growing seasons differed greatly in terms of meteorology. Compared to the average April to September
rainfall from 1993 to 2012, 2010 was rainy (in the upper third quartile, 540 mm) and 2011 was a
drought year (in the first quartile, 200 mm) [88]. The daily average reference evapotranspiration was
4.01 mm day−1 in 2010 and 4.42 mm day−1 in 2011. For the entire growing season, the reference
evapotranspiration was 569 mm in 2010 and 672 mm in 2011 [88]. Agronomic management
(base-dressing of 64 kg N ha−1, and 94 kg P2O5 ha−1 and urea top-dressing of 184 kg N ha−1)
and maize hybrid (PR32P26, Pioneer Hi-Bred Italia, Gadesco-Pieve Delmona, Italy) were the same in
the two years [86].

Figure 1. (a) Geographical location of the study area relatively to the Venice Lagoon, Italy,
and (b) locations of soil sampling locations and coarsely textured paleochannels. Modified after
Scudiero, Teatini, Corwin, Dal Ferro, Simonetti, and Morari [88].
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2.3.2. Soil Maps and Plant Spatiotemporal Information

Geospatial measurements of soil apparent electrical conductivity (ECa) were used as an indicator
of soil spatial variability at the study site. ECa over the 0–1.5 m soil profile (ECa Deep) was measured
in April of 2011 across the site with a frequency-domain electromagnetic induction sensor (CMD-1, GF
Instruments, Brno, Czech Republic) at 20,470 geo-referenced locations. Soil samples were taken
at 91 locations in May 2010 (Figure 1) down to 1.2 m with 0.3-m increments. Here we discuss
salinity and texture for the 0–1.2-m soil profile. Texture was measured with a Mastersizer 2000
(Malvern Instruments Ltd., Great Malvern, UK) and salinity was measured as EC1:2 (i.e., the electrical
conductivity of a 1:2 soil–water extract) [91]. Principal component analysis (PCA) carried out with
STATISTICA was used to visually assess similarities and differences between the ECa Deep dataset
and the selected soil properties [92]. The point measurements were preprocessed with a procedure
comparable to that of Córdoba, Bruno, Costa, Peralta, and Balzarini [49] and spatially interpolated with
ordinary kriging following Scudiero, Teatini, Corwin, Deiana, Berti, and Morari [86] on a 10 × 10-m
block support—the desired support for MZ at the site.

Two remotely sensed measures of crop status were available. On 31 July 31 2010 (10:39:40 UTC)
and 9 July 2011 (10:47:30 UTC) WorldView-2 (DigitalGlobe, Westminster, CO, USA) satellite scenes
were acquired over the study area. For both years, acquisition dates corresponded to late R-2 [88].
Pre-processing procedures, including sensor calibration, atmospheric correction, and radiometric
normalization, were applied according to Vicente-Serrano et al. [93]. Radiometric calibration was
required to convert digital numbers to top-of-atmosphere radiances [W m−2 sr−1 μm−1], using the
absolute radiometric calibration factors and effective bandwidths for each band, according to the
satellite data provider [94]. No topographic correction was applied to the images because the study
area is relatively flat and the solar incident angles (28.11◦ in 2010; 23.58◦ in 2011) were quite similar at
the two acquisition times. The top-of-atmosphere radiance was then transformed to surface reflectance
through the 6S code [95]. The values of aerosol optical thickness (AOT) at 550 nm collected from a
nearby AERONET (Aerosol Robotic Network, https://aeronet.gsfc.nasa.gov/) [96] station (45◦18′50.0”
N, 12◦30′29.9” E) were used as input for 6S. The AOT measurements were obtained simultaneously to
the satellite overpasses. WorldView-2 reflectance has 2 × 2-m spatial resolution over eight spectral
bands, at wavelengths spanning from 400 to 1040 nm. The red band (RED, 630–690 nm) and the
near-infrared band at 770–895 nm where used to calculate NDVI according to Equation (3). The NDVI
maps were aggregated (i.e., the coarsened pixel is the average of the pixels within the aggregated cell)
to the 10 × 10-m cell size, as suggested by Córdoba, Bruno, Costa, Peralta, and Balzarini [49].

2.3.3. Time-Specific Spatial Soil–Plant Modeling

The time-specific relationship between soil properties and in-season NDVI were described using
geographically weighted regressions (GWRs). The GWRs were carried out using the NDVI maps
as the dependent variable and spatial soil information (i.e., ECa Deep) as the independent variable.
GWRs were carried out with ArcMap using an adaptive kernel (i.e., moving window) of 70 neighbors.
For locations with significant GWR, the observed-estimated NDVI relationship was used as indication
of goodness-of-fit of the GWR models. The GWR slope map was selected as indicator of soil–plant
relationship type.

2.3.4. Delineating MZs with Cluster Analysis

Clustering was carried out using the Grouping Analysis tool in ArcMap. Spatial soil information
(i.e., ECa Deep) and the time-specific GWR slope map were used for the cluster analysis. No spatial
constraints were set for the cluster analysis. The classifications were carried out for scenarios outputting
three, four, and five MZs. Then, the optimal number of MZs was identified using the CHC. To compare
the proposed time-specific soil–plant based MZ delineation with a more traditional, static MZ design,
ECa Deep alone was used to select a static MZ design.
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2.3.5. Evaluation and Interpretation of MZ Design

Differences across MZs in the two years were investigated using the KW test in STATISTICA.
The following variables were tested for differences across MZs: ECa Deep, GWR slope, GWR local r,
EC1:2, and sand and clay contents. Additionally, in-season potential yield estimations were used to
evaluate the MZ designs. Appendix A reports on how yield maps (obtained from Scudiero, Teatini,
Corwin, Dal Ferro, Simonetti, and Morari [88]) and NDVI measurements were used to calculate yield
prediction maps.

3. Results and Discussion

3.1. Synthetic Data Example

Every time the crop status is mapped during the season (e.g., every week), a new set of MZ is
delineated (i.e., time-specific MZ design). Clearly, this applies only for crop growth stages when crop
canopy plays a relevant role in determining reflectance readings. For soil tillage, sowing, and early
vegetation stages when surface reflectance is mostly determined by soil, a static MZ delineation
approach based on the spatial variability of soil properties (e.g., [9]) may be more adequate.

Figure 2 outlines the proposed analytical protocol to delineate time-specific MZs from soil
information and in-season crop information using the synthetic dataset. In Step 1 of the protocol,
the soil and plant information were acquired and pre-processed. The clay content (percentage) map
had mean = 18.6%, standard deviation = 4.5%, minimum = 9%, and maximum = 30.1%. The NDVI map
had mean = 0.58, standard deviation = 0.04, minimum = 0.45, and maximum = 0.69. The NDVI values
are typical of vegetative stages for crops such as maize [97] and soybean (Glycine max (L.) Merr.) [98].
A simple linear model between the two maps had R2 = 0.61, with an intercept of 0.44 and a positive
slope of 0.007. Similar goodness-of-fit values between soil properties and vegetation reflectance were
reported by Gomez et al. [99] for clay and by Gomez et al. [100] for soil organic carbon. In Step 2, the clay
map was used as the explanatory variable in a GWR with NDVI as dependent variable. Through the
GWR analysis, clay explained 94.5% of the observed variance of NDVI. Such high goodness-of-fit
can be found in real-world data: Scudiero, Corwin, Wienhold, Bosley, Shanahan, and Johnson [54]
observed R2 ranging between 0.83 and 0.94 for their GWR analyses between soil maps and remotely
sensed winter wheat (Triticum aestivum L.) canopy reflectance. The GWR slope had mean = 0.009,
standard deviation = 0.008, minimum = −0.018, and maximum = 0.038. In Step 3, the clay and the
GWR slope maps were used to delineate MZs via unsupervised fuzzy c-means clustering. The CHC
indicated that the best number of MZs was three.

In Step 4, the MZ-design was evaluated and interpreted. The three MZs identified unique
combinations of clay content and GWR slope values. MZ 1 was characterized by low NDVI, low clay
content, and large GWR slope values (indicating high sensitivity of NDVI to clay). MZ 2 was
characterized by high NDVI, high clay, and moderately low GWR slope values. MZ 3 was characterized
by low NDVI, low clay content, and the smallest GWR slope values.
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Figure 2. Diagram outlining the proposed analytical protocol to delineate time-specific management
zones (MZs) from soil and (in-season) crop information. In Step 3, MZn refers to the number of
considered management zones.
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3.2. Field Data Example

3.2.1. Soil and Plant Information

Figure 3a shows an example of short-scale soil spatial variation at the site. Figure 3b depicts the
frequency distribution of measured soil salinity. At this site, soils with EC1:2 >0.79 dS m−1 should be
considered salt affected, with EC1:2 >1.4 dS m−1 indicating strongly saline soils [88]. Figure 3c reports
the observed texture at the 91 soil sampling locations. Soil texture is predominantly in the loam and
sandy loam classes. Few samples are in the clay loam and loamy sand class.

Figure 3. (a) Photograph showing the sharp textural change at the site (light vs. dark colors);
(b) histogram for measured soil salinity (EC1:2); (c) soil textural triangle; and (d) bi-plot of selected
variables (soil apparent electrical conductivity [ECa Deep], salinity, clay, and sand) on the two larger
factors in the principal components analysis.

The ECa Deep map is shown in Figure 4a. Descriptive statistics for the map are reported in
Table 1. ECa Deep showed a Pearson correlation coefficient of 0.89 with salinity, −0.51 with sand,
and 0.39 with clay. The PCA extracted two factors (with eigenvalues of 2.61 and 0.89) explaining 65.3%
(first component) and 22.3% (second component) of the total variance in the dataset. The bi-plot in
Figure 3d—see Abdi and Williams [92] for interpretation guidelines—indicates that the first component
contrasts the positive contribution of clay content and salinity on the ECa Deep measurements with the
negative correlation between sand content and ECa Deep. In Figure 3d, clay content was not clustered
with salinity and ECa Deep, indicating that the three variables were not collinear, yet negatively
correlated with sand content. According to the correlation and PCA analyses, high values of ECa Deep
were mainly interpreted as an indication of high salinity and fine soil texture. ECa readings larger than
1–2 dS m−1 are most likely due to high soil salinity rather than other edaphic factors contributing to
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soil conductivity [101,102]. Conversely, lower ECa Deep was interpreted as an indication of coarser
soils with low salinity. Note that Scudiero, Teatini, Corwin, Deiana, Berti, and Morari [86] reported
that the spatial patterns of ECa Deep remained stable over time at the study area.

The two in-season NDVI maps for the late R-2 growth stage are reported in Figure 4b (2010) and
Figure 4e (2011). Table 1 reports the descriptive statistics for the two NDVI maps. The 2010 NDVI
was more heterogeneous (mean = 0.79, standard deviation = 0.046) than that of 2011 (mean = 0.83,
standard deviation = 0.018). During the R-2 growth stage, environmental stressors (e.g., drought, heat,
severe nutrient deficiency) may prevent kernels from developing properly (e.g., kernel abortion at the
ear tip) [103,104].

Figure 4. Maps of: (a) apparent electrical conductivity of the 0–1.5-m soil profile (ECa Deep);
Normalized Difference Vegetation Index (NDVI) for (b) 2010 and (e) 2011; local geographically-weighted
regressions (GWRs) slope coefficient for (c) 2010 and (f) 2011; and observed versus estimated NDVI
relationship for (d) 2010 and (g) 2011 on significant local GWRs.

Table 1. Descriptive statistics for the soil apparent electrical conductivity map (ECa Deep), and the
2010 and 2011 Normalized Difference Vegetation Index (NDVI) maps.

Variable Mean Median Minimum Maximum Standard Deviation

ECa Deep (dS m−1) 0.96 0.86 0.32 2.49 0.36
2010 NDVI 0.790 0.80 0.470 0.867 0.046
2011 NDVI 0.829 0.83 0.664 0.858 0.018

3.2.2. Plant–Soil Relationship at Different Time Points

Figure 4 summarizes the GWR analysis between soil ECa Deep and in-season NDVI for 2010
and 2011. For 2010, 1149 cells (62.5% of total) were characterized by a significant (p < 0.05) local
Pearson correlation coefficient r. For 2011, 56.8% of the cells had a significant local r. At the locations
with significant local r, the observed-estimated NDVI relationship was characterized by R2 = 0.73 in
2010 (Figure 3d) and R2 = 0.62 in 2011 (Figure 3g). There was a strong negative relationship in both
years (r = −0.36 in 2010 and r = −0.43 in 2011) between the significant local r and ECa Deep maps.
The slope of this relationship was steeper in 2011 (−0.46 with standard error = 0.027) than in 2010
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(−0.38 with standard error = 0.026). This may indicate that low ECa Deep (e.g., indicating coarse
texture) was a greater constrain in 2011 than 2010. Scudiero, Teatini, Corwin, Dal Ferro, Simonetti,
and Morari [88] showed that water stress in areas with coarser soil texture is particularly limiting in
dry years, such as 2011.

In areas where the significant local r values were consistently negative in both years, the ECa

Deep averaged 1.17 dS m−1 (standard deviation = 0.39 dS m−1), whereas, in areas with negative
local r only in 2010, it averaged 0.94 dS m−1 (standard deviation = 0.28 dS m−1). This suggested that
only very high ECa Deep, which indicates high salinity, consistently limited crop growth in the two
years. As discussed by other authors [105–107], the effects of high salinity on crops are generally stable
throughout different growing seasons.

The GWR slope maps (Figure 4c for 2010, Figure 4f for 2011) changed remarkably between the two
years, indicating a change in the sensitivity of plant NDVI to changes in soil properties. Changes of crop
growth and yield spatial patterns are expected between seasons having widely different meteorology,
as discussed by Maestrini and Basso [38] and McBratney, Whelan, Ancev, and Bouma [37].

3.2.3. Time-Specific MZ Delineation

The GWR slope and ECa Deep maps were used to drive the delineation of in-season site-specific
MZs. The CHC index indicated that a five-MZ configuration was optimal for 2010. The CHC was 1901.3
for three MZs, 1979.7 for four MZs, and 2002.7 for five-MZs. In 2011, the CHC index indicated that a
four-MZ configuration was optimal. CHC was 1248.9 for three MZs, 1383.4 for four MZs, and 1374.0 for
five MZs. The two MZ delineations are shown in Figure 5a (for 2010) and Figure 5b (for 2011).

Overall, 45.1% of the cells were classified in the same MZ at both times. The consistency
rate was 94.3% for MZ I, 75.6% for MZ II, 20.1% for MZ III, and 48.5% for MZ IV. Conversely,
changes in local GWR slope led to 54.9% of the cells being assigned to a different time-specific
MZ. As reported by Maestrini and Basso [38], it is reasonable to expect portions of a field to have
stable (e.g., consistently high yields) and unstable crop outputs. Management in the unstable areas
should be addressed within each growing season to meet desired agronomic output goals [18,38].
The proposed methodology helps characterizing time-specific changes in the crop output according to
soil spatial variability.

Figure 5. In-season delineation of time-specific management zones (MZs) for maize late kernel blister
stage of (a) 2010 and (b) 2011. (c) Static MZ designs using soil apparent electrical conductivity for the
0–1.5 m soil profile (ECa Deep) only.

3.2.4. Time-Specific MZ-Design Quality Control and Interpretation

In both years, each time-specific MZ was characterized by unique combinations of the variables
used in MZ delineation. Moreover, the time-specific MZs differed greatly in terms of ECa Deep,
significant GWR r and slope, salinity, and texture (Table 2). Note that the local GWR r and slope,
which can be used to interpret the ECa Deep–NDVI relationship, remained fairly consistent over time
at the different MZs.
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Table 2. Count (n), mean, and standard deviation (Std. Dev.) of apparent electrical conductivity
for the 0–1.5-m soil profile (ECa Deep), local regression slope and Pearson correlation coefficient (r)
obtained from significant geographically weighted regressions (GWR), soil salinity (EC1:2), sand and
clay contents, and potential yield estimations at each time-specific management zone (MZ) for 2010
and 2011 (n.a. = not available; NA = not assessed).

Variable (Unit) MZ
2010 2011

n Mean Std. Dev. KW 1 n Mean Std. Dev. KW 1

ECa Deep (dS m−1)

I 53 0.44 0.10 e 263 0.65 0.21 d
II 779 0.68 0.12 d 1164 0.78 0.15 c
III 402 1.54 0.19 a 146 1.24 0.45 a
IV 513 1.09 0.12 b 574 1.38 0.23 b
V 400 0.80 0.12 c n.a. n.a. n.a. n.a.

GWR slope

I 53 (100.0% 2) 0.790 0.316 a 221 (84.0% 2) 0.073 0.040 a
II 371 (47.6% 2) 0.065 0.113 b 488 (41.9% 2) −0.024 0.028 b
III 334 (83.1% 2) −0.069 0.069 c 146 (100.0% 2) −0.132 0.050 c
IV 294 (57.3% 2) −0.048 0.055 c 364 (63.4% 2) −0.018 0.029 b
V 397 (99.3% 2) −0.176 0.092 d n.a. n.a. n.a. n.a.

GWR local r

I 53 (100.0% 2) 0.587 0.102 a 221 (84.0% 2) 0.433 0.126 a
II 371 (47.6% 2) 0.028 0.411 b 488 (41.9% 2) −0.279 0.285 b
III 334 (83.1% 2) −0.439 0.239 c 146 (100.0% 2) −0.597 0.190 d
IV 294 (57.3% 2) −0.399 0.281 c 364 (63.4% 2) −0.308 0.349 c
V 397 (99.3% 2) −0.537 0.150 d n.a. n.a. n.a. n.a.

EC1:2 (dS m−1)

I 1 0.21 NA ab 11 1.73 1.33 b
II 32 1.38 0.89 b 49 1.49 1.01 b
III 17 3.67 1.46 a 3 3.16 1.32 ab
IV 26 2.28 1.18 a 28 3.03 1.45 a
V 15 1.35 0.85 b n.a. n.a. n.a. n.a.

Sand (%)

I 1 71.1 NA ab 11 54.1 15.6 ab
II 32 50.6 12.6 b 49 53.1 12.4 a
III 17 42.8 10.9 b 3 37.5 13.6 ab
IV 26 42.7 8.8 b 28 42.1 9.2 b
V 15 63.8 8.5 a n.a. n.a. n.a. n.a.

Clay (%)

I 1 9.0 NA ab 11 12.6 6.6 ab
II 32 13.5 5.1 a 49 12.6 4.8 b
III 17 17.4 5.7 a 3 20.8 9.3 ab
IV 26 16.8 4.7 a 28 17.3 4.7 a
V 15 8.7 3.2 b n.a. n.a. n.a. n.a.

Potential Yield
(Mg ha−1)

I 53 7.03 1.90 bc 263 10.0 1.7 b
II 779 8.38 2.24 a 1164 10.5 1.2 a
III 402 7.61 1.75 b 146 9.3 2.1 c
IV 513 7.19 2.01 c 574 10.3 1.3 b
IV 400 7.08 1.90 c n.a. n.a. n.a. n.a.

1 Different letters are significantly different between MZs at the p < 0.05 level according to the Kruskal–Wallis (KW)
test. 2 Percentage of cells having significant GWR within the MZs.

In both years, MZ I consisted of soils with low ECa Deep, low salinity, and coarse soil texture.
MZ I had the highest positive GWR slope values, meaning NDVI would decrease with increasing sand
content. Scudiero, Teatini, Corwin, Dal Ferro, Simonetti, and Morari [88] monitored crop water and
salt stress at five soil–plant–water monitoring stations at the site. One of their stations (“Station E”)
was located in our MZ I. Scudiero, Teatini, Corwin, Dal Ferro, Simonetti, and Morari [88] indicated
that at Station E maize was not stressed by salinity but was under water stress, particularly in 2011,
when water stress was described as “severe”.

In contrast, MZ II in both years had GWR slope and r distributions overlapping with 0, indicating
little to no influence of soil on crop NDVI variability. This is perhaps the reason why MZ II was
consistently characterized by the highest potential yield estimations (Appendix A). The very saline
MZ III (highest measured average ECa Deep and EC1:2) was characterized by lower potential yield
estimations for both years in comparison with the other MZs (Table 2), as expected for (unmanaged)
very saline portions of farmlands [106]. Similarly, the moderately saline MZ IV (second highest
average ECa Deep), was characterized by the second lowest yield predictions in 2010 and 2011,
together with MZ I. MZ V was only selected in 2010. It grouped soils with moderately high ECa Deep
(third highest MZ average) together with the strongest negative GWR slope values and low potential
yield estimations. In 2011, 89.5% of the 2010 MZ V locations were classified into MZ II. Previous
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research focusing on spatiotemporal variability of yield patterns [38], indicates that fields generally
have areas of stable and unstable yield patterns. For unstable areas, in-season NDVI is suggested as
the best predictor for yield spatial distribution [38]. Our proposed approach further refines the NDVI
information by interpreting its spatial variability as a function of soil spatial variability.

A static MZ design based on ECa Deep only (Figure 5c) would identify four areas with significantly
different soil properties (Table 3), but very heterogeneous and inconsistent in terms of GWR local r
and slope (Table 4).

Table 3. Count (n), mean, and standard deviation (Std. Dev.) of apparent electrical conductivity for
the 0–1.5-m soil profile (ECa Deep), soil salinity (EC1:2), and sand and clay contents for the static
management zones (MZs) delineated using ECa Deep only.

Variable (Unit) Static MZ n Mean Std. Dev. KW 1

ECa Deep (dS m−1)

1 718 0.92 0.10 c
2 181 1.71 0.17 a
3 444 1.31 0.12 b
4 804 0.63 0.10 d

EC1:2 (dS m−1)

1 28 1.98 1.04 b
2 9 4.07 1.51 ab
3 21 2.82 1.25 a
4 33 1.07 0.68 c

Sand (%)

1 28 50.3 11.9 ab
2 9 41.0 9.3 b
3 21 41.1 9.8 b
4 33 55.9 12.9 a

Clay (%)

1 28 13.3 5.0 bc
2 9 18.3 5.7 ab
3 21 17.9 5.0 a
4 33 11.8 4.9 c

1 Different letters are significantly different between MZs at the p < 0.05 level according to the Kruskal–Wallis
(KW) test.

Table 4. Mean, standard deviation (Std. Dev.), and count (n) for the correlation coefficient (r) and slope
obtained from significant geographically weighted regressions (GWRs) for the static management zones
(MZs) delineated using soil apparent electrical conductivity for the 0–1.5-m soil profile (ECa Deep) only.

GWR Variable Static MZ
2010 2011

n Mean Std. Dev. n Mean Std. Dev.

Local r

1 490 (68.2% 1) −0.374 0.351 349 (48.6% 1) −0.156 0.383
2 163 (90.1% 1) −0.474 0.158 148 (81.8% 1) −0.542 0.158
3 313 (70.5% 1) −0.408 0.281 289 (65.1% 1) −0.303 0.408
4 483 (60.1% 1) −0.098 0.472 433 (53.9% 1) −0.041 0.420

Slope

1 490 (68.2% 1) −0.086 0.148 349 (48.6% 1) −0.009 0.039
2 163 (90.1% 1) −0.077 0.065 148 (81.8% 1) −0.074 0.068
3 313 (70.5% 1) −0.058 0.065 289 (65.1% 1) −0.023 0.045
4 483 (60.1% 1) 0.066 0.304 433 (53.9% 1) −0.002 0.079

1 Percentage of cells having significant GWR within the MZ.

4. Conclusions

Characterizing the temporal variability of the soil–plant relationship within the growing
season and over years is very relevant to developing best crop management practices with VRM.
Soil influences plants according to complex interactions between factors that may change in time,
such as meteorological conditions, nutrient availability, and water content. Static MZs are not ideal
when spatial patterns of soil–plant relationship change in time—because of changing meteorology
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and/or other transient factors. We presented a time-specific MZ-delineation workflow to address such
spatiotemporal variability.

The proposed approach for time-specific MZs should be further tested and evaluated in the field.
Future work should focus on multi-field and multi-year comparisons of time-specific and static MZs
and their relative impact on crop yields and resource use efficiency (e.g., water, nutrients).
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Appendix A Interpreting NDVI as Potential Yield Indicator

In-season potential yield predictions can be very useful for the producers to decide on the feasibility of VRM.
Throughout the season NDVI can be used as potential yield indicator [33,35]. Estimations can be made at different
growth stages [32], provided the NDVI measurements are calibrated accordingly [33]. This is particularly relevant
when historical yield data is available, so that yield-predicting NDVI functions can be developed and used in
following years.

According to [16], the in-season potential yield can be estimated by fitting the NDVI values to the 68th
percentile (i.e., sum of average and one standard deviation) of yield. The NDVI and yield data from 2010
and 2011 were clumped together. The yield data was obtained from Scudiero, Teatini, Corwin, Dal Ferro,
Simonetti, and Morari [88]. The dataset was divided into fifty quantiles according to NDVI. The within-quantile
average NDVI was then used as explanatory variable to estimate the within-quintile 68th percentile of yield.
The estimation was done using a second-degree locally-weighted least squares regression. The regression modeling
was carried out through the loess function (with span = 0.45) from the stats package in R. The span parameter was
selected through a leave-one-out cross-validation using the loess.wrapper function from the bisoreg package in R.
Figure A1a shows the scatterplot between NDVI (i.e., at late R-2) and maize yield, all points were clustered on a
uniform grid of hexagons using the hexbin package in R.

The model describing the potential yield (Mean absolute error = 0.26 Mg ha−1, mean error = −0.027 Mg ha−1,
and R2 = 0.98) is reported with a solid red line in Figure A1. The locally-weighted least squares regression estimations
were then applied to the two NDVI maps (Figure 4b,e) to obtain potential yield estimations across the whole study
area for 2010 (Figure A1b) and 2011 (Figure A1c).
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Figure A1. (a) Scatterplot between yield and WorldView-2 NDVI for both years. The modeled in-season
potential yield is depicted with a solid red line. Potential yield maps calculated for (b) 2010 and (c) 2011.
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Abstract: The total or partial removal of sugarcane (Saccharum spp. L.) straw for bioenergy production
may deplete soil quality and consequently affect negatively crop yield. Plants with lower yield
potential may present lower concentration of leaf-tissue nutrients, which in turn changes light
reflectance of canopy in different wavelengths. Therefore, vegetation indexes, such as the normalized
difference vegetation index (NDVI) associated with concentration of leaf-tissue nutrients could be a
useful tool for monitoring potential sugarcane yield changes under straw management. Two sites in
São Paulo state, Brazil were utilized to evaluate the potential of NDVI for monitoring sugarcane yield
changes imposed by different straw removal rates. The treatments were established with 0%, 25%,
50%, and 100% straw removal. The data used for the NDVI calculation was obtained using satellite
images (CBERS-4) and hyperspectral sensor (FieldSpec Spectroradiometer, Malvern Panalytical,
Almelo, Netherlands). Besides sugarcane yield, the concentration of the leaf-tissue nutrients (N, P, K,
Ca, and S) were also determined. The NDVI efficiently predicted sugarcane yield under different
rates of straw removal, with the highest performance achieved with NDVI derived from satellite
images than hyperspectral sensor. In addition, leaf-tissue N and P concentrations were also important
parameters to compose the prediction models of sugarcane yield. A prediction model approach based
on data of NDVI and leaf-tissue nutrient concentrations may help the Brazilian sugarcane sector to
monitor crop yield changes in areas intensively managed for bioenergy production.

Keywords: crop residue management; remote sensing; satellite images; hyperspectral sensor;
vegetation index; yield monitoring

1. Introduction

Brazil is the largest sugarcane producer in the world, representing 40% of global production [1].
Sugarcane area extends for approximately 9 million ha, with an ethanol production at around 27 billion
liters and about 40 million tonnes of sugar [2]. Although Brazil is a major player in the global
biofuel market, growing internal and external demands have been stimulated an increase in ethanol
production. Considering the current global production of 98.6 billion liters [3], it will be necessary
to double ethanol production to meet the estimated global demand of 200 billion liters in 2021 [4].
In addition, bioelectricity represents an important proportion of the revenues in the industry, and it
is projected that about 17% of the domestic electric energy production in Brazil will be provided by
sugarcane biomass by 2023 [5].
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An alternative to increase bioenergy production, without expanding area, is to use lignocellulosic
raw materials, such as bagasse and straw. In this process, crop residues, rich in carbohydrates,
are converted into simple sugars using enzymatic hydrolysis, followed by yeast fermentation to
produce ethanol, or crop residues are burnt to generate bioelectricity [6].

More recently, sugarcane straw has been considered as an alternative raw material to address
the increasing demand for bioenergy production [7]. Since adoption of mechanized harvesting of
sugarcane, about 10 to 20 Mg ha−1 (as dry mass) remains on the field annually [8]. However, integral or
partially straw retention on the soil surface is essential to support several soil functions [9,10], such as
thermal regulation [11], control of soil compaction [12], water retention [13], carbon storage [14],
nutrient cycling [15], biological activities [16], and control of erosion [17]. Consequently, changes in
soil quality can affect, directly or indirectly, crop production [14,18,19]. Therefore, monitoring the
yield of sugarcane could be a strategy to evaluate the effects of varying the amount of straw in the
soil–plant system.

Crop yield can be monitored by vegetation indexes. Indeed, Tucker et al. [20] reported that up to
64% of the grain yield variation was explained by spectral data. The applications of NDVI has been
broadly increased, not only because NDVI can be derived from data of either hyperspectral sensors or
satellite images [21], but also because it is closely correlated with yield of different crops [22], such as
maize (Zea mays L.) [23], soybean (Glycine max L.) [24], and sugarcane [25]. Additionally, deficiency and
excess of nutrients in the leaves can be diagnosed through spectral responses obtained by sensors
and, consequently, by vegetation indexes (e.g., NDVI) [26]). The variation in the concentration of
nutrients in the leaves indicates physiological stress, which can be caused by diverse limiting factors
that occurring in the production environment [27].

Although NDVI has been used for different purposes, as previously stated, in our knowledge,
there are no studies in the literature in which NDVI and concentration of leaf-tissue nutrients under
sugarcane straw removal management were used to develop predictive models for stalk yield. Thus,
the following hypotheses were established: (i) the NDVI and concentration of leaf-tissue nutrients
are efficient parameters to predict sugarcane yield under different straw removal rates; (ii) the NDVI
obtained using data from satellite images or hyperspectral sensors have similar performance for
predicting sugarcane yield; and (iii) the nutritional status of the crop (evaluated by the leaf-tissue
nutrient concentrations) is affected by the different straw removal rates. To test the hypotheses, a study
was conducted in areas managed with straw removal in southeastern Brazil to predict sugarcane yield
based on NDVI and plant nutritional status. In addition, the efficiency of the NDVI data for predicting
sugarcane yield, obtained using remote sensing imagery from various platforms, was compared.

2. Materials and Methods

2.1. Study Sites

The field study was conducted at two sites in southeastern Brazil, which represents the largest
sugarcane-producing region of the country. These areas are located in São Paulo state, near to Capivari,
at the Bom Retiro mill (Area 1) (Lat. 22◦59′42′ ′ S; Long. 47◦30′34′ ′ W) and Valparaiso, at the Univalem
mill (Area 2) (Lat. 21◦14′48” S; Long. 50◦47′04” W) (Figure 1).

Soil is classified as Rhodic Kandiudox [28] with a sandy clay loam texture in Area 1, whereas in
Area 2, the soil is classified as Kanhaplic Haplustults [28] with a sandy loam texture.

The regional climate for the Area 1 is humid subtropical-Cwa type (Köppen classification)
characterized by dry winters and hot summers, with a mean annual temperature of 21.8 ◦C and annual
precipitation of 1289 mm (Figure 2A). In the Area 2, the climate is tropical-Aw type, characterized
by dry winters, with a mean annual temperature of 23.4 ◦C and annual precipitation of 1241 mm
(Figure 2B). Rainfall at both sites is concentrated in the spring and summer (October to April), while the
dry season is in the autumn and winter (May to September).
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Figure 1. Geographical location of the experimental areas used in the study.
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Figure 2. Mean monthly temperatures (maximum, mean, and minimum) (◦C) and monthly
precipitation (mm) in Area 1 (Capivari, SP) (A) and Area 2 (Valparaiso, SP) (B) from 1 December
2015 to 31 December 2016. Sources: CEPAGRI [29] and ESALQ [30].
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2.2. Experimental Design

Within each site, sugarcane was planted in 15 February 2013, using the varieties CTC 14
and RB 867515 in Area 1 and Area 2, respectively. These varieties are broadly cultivated in this
sugarcane-producing region of Brazil. Before the experiment was installed, the areas were sampled in
order to obtain a chemical and physical characterization of the soils (Table 1), as previously presented
by Satiro et al. [12].

Table 1. Initial characterization of the soils in the experimental areas.

Soil
Layer
(cm)

pH C P K Ca Mg
Base

Saturation
Al

Saturation
Clay

H2O g kg−1 mg dm−3 mmolc dm−3 %

Area 1 (Bom Retiro)
0–10 5.2 11.3 29.3 9.3 26.1 7.7 68.8 0.8 33
10–20 4.8 11.0 24.9 5.1 19.0 5.9 54.7 3.5 33
20–30 4.5 9.4 22.1 3.3 12.5 2.95 36.8 4.2 34

Area 2 (Univalem)
0–10 5.2 6.1 17.4 3.3 9.3 2.9 51.1 2.4 11
10–20 4.8 5.5 14.1 2.6 4.8 1.5 34.8 5.6 11
20–30 4.5 4.9 12.7 2.1 3.6 1.0 27.5 7.4 12

The cane plant (i.e., first cycle) was cultivated for 20 months, thereafter the harvested was
performed in 15 October 2014 and the experiments with different rates of straw removal were
established. After 14 months, in 17 December 2015, the areas were harvested again and similar
experiments were conducted. Leaf sampling and sensor data collection were done during the second
sugarcane ratoon season (Figure 3). The experiments were mechanically established with harvester,
which was set up with different angular velocities on the primary extractor fan while the secondary
extractor fan was switched on or off to remove different quantities of sugarcane straw. Details on how
extractors were set up are described in Lisboa et al. [7].

Figure 3. Timeline of the experiments establishment (at harvesting) and conduction over two years in
southeast of Brazil. Source: adapted from Lisboa et al. [19].

The experimental design was randomized blocks with four treatments (i.e., straw removal rates),
and four replications (four plots of ~50 × 25 m). Initially, the aim was to remove the amount of
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straw proportional to 0%, 25%, 50%, and 100% of the straw yield in each area. However, under field
conditions, the exact proportion was hard to be achieved, but the removal rates were very close to
those proposed (Table 2).

Table 2. Amount of sugarcane straw left on soil surface after each treatment in the first and second
years in each experimental area.

Straw Removal Rate (%)
Area 1 (Bom Retiro) Area 2 (Univalem)

Year I Year II Year I Year II

Amount of straw left on the soil surface (Mg ha−1) #

100 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
50 8.7 ± 0.9 5.5 ± 1.0 10.2 ± 0.9 6.8 ± 0.4
25 15.1 ± 1.5 10.5 ± 0.1 12.5 ± 0.9 11.6 ± 0.5
0 18.9 ± 1.6 13.6 ± 2.0 16.4 ± 1.4 13.7 ± 1.1

# Dry mass; Source: adapted from Lisboa et al. [19].

At the start of each experiment period, the sugarcane straw was sampled to determine its elemental
composition (Table 3).

Table 3. Carbon (C) and macronutrient (nitrogen—N, phosphorus—P, potassium—K, calcium—Ca,
magnesium—Mg, sulphur—S) content of the sugarcane straw used in each experiment.

Sites
C N P K Ca Mg S C:N Ratio

g kg−1

Area 1 I (Bom Retiro) 479 2.58 0.39 1.66 1.96 1.38 0.45 177
Area 1 II (Bom Retiro) 470 3.10 0.34 0.56 2.44 1.24 0.35 152
Area 2 I (Univalem) 467 4.02 0.38 2.45 2.44 1.54 0.74 116
Area 2 II (Univalem) 422 6.04 0.58 1.30 8.55 2.55 0.95 73
I and II denote the first and second sugarcane ratoon, respectively. Source: adapted from Lisboa et al. [19].

Overall, this study frames the development of models based on NDVI and plant nutritional status
to predict sugarcane yield in field managed with straw removal. Plant tillering, growth, and stalk yield
under the same straw management were discussed in detail by Lisboa et al. [19]. Thus, part of the
primary data (i.e., amount of straw, characterization and stalk yield) presented on this study (mainly
in Material and Methods) were originally shown in Lisboa et al. [19].

2.3. Calculation of the NDVI

The data were obtained in the field using the FieldSpec Spectroradiometer (ASD–Analytical
Spectral Devices Inc., Boulder, CO, USA) hyperspectral sensor. This equipment is classified as
a passive hyperspectral sensor that uses the visible and infrared wavelengths (325 to 1075 nm),
with a spectral resolution of 3 nm and a view angle of 25◦. Before the canopy reading was initiated,
the spectroradiometer was calibrated using the standard Lambertian plate that accompanies the
apparatus. This calibration was repeated after reading approximately four plots or whenever a change
of light intensity was observed in the field. The NDVI was calculated using Equation (1).

NDVI =
(NIR − R)
(NIR + R)

(1)

where NDVI is the Normalized Difference Vegetation Index (unitless); NIR is the near infrared band
and R is the red band; NIR represents the reflected light at the near infrared band and R represents the
reflected light at the red band.

The field evaluations with the hyperspectral sensor were carried out on 28 April 2016 and
4 March 2016 for Areas 1 and 2, respectively, four months after harvesting. This period coincides
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with the recommended period for foliar diagnosis in sugarcane crop [31]. The evaluations were always
carried out on sunny days, between 10:00 a.m. and 2:00 p.m., with the sensor positioned 1 m above the
crop canopy and a field of view of 25◦, which allowed the evaluation of a circular area of approximately
0.25 m2 (Figure 4).

 

Figure 4. Representation of the hyperspectral sensor in the field (a) and Lambertini plate used for
calibration (b).

The satellite images were obtained from the satellite CBERS-4 (China Brazil Earth Resources
Satellite) on the 17 March 2016 and the 4 May 2016 for Areas 1 and 2, respectively. The images presented
a spatial resolution of 5 m, radiometric resolution of 8 bits and wavelength of 0.50–0.840 μm. As the
panchromatic band of CBERS-4 was supplied in digital numbers without atmospheric calibration,
the images were submitted to atmospheric correction according to Vermote et al. [32]. To perform
NDVI calculations, the image was converted to surface reflectance according to the method described
by Carlotto [33].

2.4. Plant Parameters

After measurements to calculate the NDVI, 50 leaves (i.e., the diagnose leaf) were randomly
collected from each plot for the determination of the leaf-tissue nutrient content. The third leaf from
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top to bottom of the stalk with clearly visible dewlap, is the most photosynthetically active and is used
for monitoring the nutritional status of sugarcane crop [31].

At the end of the ratoon cycle, approximately one year after previous harvesting, the sugarcane
yield was quantified. The fresh stalk mass was mechanically harvested from the five central rows
(500 m long covering an area of 525 m2) of each plot, weighed in the field using a wagon coupled to a
balance and the results expressed in Mg ha−1.

2.5. Data Analysis

The data were initially subjected to exploratory analysis (descriptive statistics), aiming to verify
the position and dispersion of the data using the Statistical Analysis System (SAS) 9.4 Software Package
for Windows 8 (SAS Inc, Cary, NC, USA).

In order to select the explaining variables of stalk yield, a stepwise multiple regression
(Y = a + b1x1 + b2x2 + ... + bnxn) was applied. This functions by the systematic addition or removal
of variables in the regression, based on a statistical test of significance for each variable (p < 0.05).
The final model includes only those variables that have a decisive influence on the dependent variable.
The models were evaluated according to the coefficient of determination, residual standard error and
the Durbin–Watson test. The Durbin–Watson test ranges from 0 to 4, where values closer to 2 indicate
optimal values [34], i.e., the absence of autocorrelation in the data. The means of variables selected
by stepwise multiple regression were compared according to Tukey’s test (p < 0.05). In addition,
the overall model that pools data from both studied areas was tested through sensitivity analysis,
where position measurements (maximum, minimum, and mean) of each selected variable were inserted
independently in the model, aiming to evaluate the resulting variations in sugarcane yield.

Finally, a model validation process was carried out with 30% of the data that were not used to
generate the models. The relationship between the observed and predicted values were evaluated
by the root mean square error (RMSE). The Pearson correlation matrix was also used to evaluate the
relationship between observed and predicted productivity of sugarcane with variables selected with
the stepwise models.

3. Results

3.1. NDVI Values

The NDVI obtained using the data from the hyperspectral sensor and the satellite images
presented differences with respect to the distribution and magnitude of the values between the
experimental areas (Figure 5). In Area 1, the NDVI values using the sensor and the satellite images
ranged between 0.60 to 0.80 and 0.40 to 0.60, respectively. However, in Area 2 the NDVI values
were smaller, ranging between 0.40 to 0.70 and 0.20 to 0.50 for the sensor and the satellite images,
respectively. On average, NDVI values (from both methodologies) were 34% higher in Area 1 than in
Area 2.

In both experimental areas, only the NDVI values derived from hyperspectral sensor followed a
normal distribution (Figure 5). The largest differences were found in the NDVI values derived from the
satellite images, especially when the removal rates were 25% and 50% for Area 1 and Area 2, which did
not follow a normal data distribution. Although there are variations between NDVI derived by these
two methods, the results showed a quite similar pattern in the variations of the NDVI data due to
straw removal rates.

3.2. Sugarcane Leaf-Tissue Nutrient Concentration

The nutrient concentration in the sugarcane leaves varied according to the straw removal rate at
both sites (Figures 6 and 7). The greatest variation was observed in the elements K (5 to 15 g/kg−1)
and Ca (2 to 6 g/kg−1), whereas that the variation was less intense for the other elements. Despite that,
for the majority of cases, nutrient data did not followed a normal distribution (Figures 6 and 7).
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Figure 5. Values of NDVI for Areas 1 (a) and 2 (b) at the different rates of straw removal. Shapiro–Wilk
Test for normal distribution, where: * significant (p < 0.05) and ns not significant. When significant,
it indicates that the hypothesis for normal distribution is rejected.
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Figure 6. Leaf-tissue concentrations of N, P, K, Ca, Mg, and S in sugarcane grown under straw removal
rates of 0 (a), 25 (b), 50 (c), and 100% (d) in Area 1. Shapiro–Wilk Test for normal distribution, where:
* significant (p < 0.05) and ns not significant. When significant, it indicates that the hypothesis for
normal distribution is rejected.

Figure 7. Leaf-tissue concentration of N, P, K, Ca, Mg, and S in sugarcane grown under straw removal
rates of 0 (a), 25 (b), 50 (c), and 100% (d) in Area 2. Shapiro–Wilk Test for normal distribution, where:
* significant (p < 0.05) and ns not significant. When significant, it indicates that the hypothesis for
normal distribution is rejected.
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3.3. Sugarcane Yield

Sugarcane yield varied from 60 to 85 Mg ha−1 and from 10 to 30 Mg ha−1 for the Areas 1 and 2,
respectively. On average, sugarcane yield was three times higher in Area 1 than in Area 2 (Figure 8).
Our findings showed that straw removal rates did not linearly affect sugarcane yield, but it depends
on the site-specific characteristics related to soil, climate, and variety.

Figure 8. Sugarcane yield (Mg ha−1) changes induced by straw removal rates in Areas 1 (a) and 2 (b).
Shapiro–Wilk Test for normal distribution, where: * significant (p < 0.05) and ns not significant. When
significant, it indicates that the hypothesis for normal distribution is rejected.

The data did not follow a normal distribution for the majority of the treatments (Figure 8), except
for data from 25% and 0% straw removal plots in Area 1 and 2, respectively.

3.4. Modelling Sugarcane Yields by Stepwise Analysis

Explaining variable of sugarcane yield were selected for each straw removal rate using stepwise
analysis (Table 4). The NDVI obtained from satellite images was more efficient to predict sugarcane
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yield compared to NDVI derived from hyperspectral sensor, and therefore, this parameter was included
in all the models.

Table 4. Stepwise models for estimating the components of sugarcane yield under straw removal rates
in Areas 1 and 2.

Straw Removal Rate (%) Models r2 * SRE DW

Area 1
0 y = 205.38 − 48.66 P − 0.83 K − 58.36 NDVISI 0.94 1.76 1.78
25 y = 546.65 − 58.07 P − 30.31 N + 7.18 NDVISI 0.91 1.31 1.52
50 y = 322.62 − 108.24 P − 6.33 N + 60.36 NDVISI 0.88 4.07 1.48

100 y = 193.25 − 56.54 P + 4.25 NDVISI + 0.27 N 0.85 2.10 1.65
Overall (Area 1) y = 136.70 + 42.84 NDVISI − 51.19 P + 1.61 N 0.97 2.56 1.56

Area 2
0 y = −13.20 + 1.75 N − 13.76 NDVISI 0.87 6.64 1.44
25 y = −166.31 + 25.60 P + 6.51 N + 22.76 NDVISI 0.91 8.65 1.65
50 y = 42.25 − 12.41 P + 22.23 NDVISI 0.76 4.50 1.59

100 y = 134.25 – 20.90 Ca − 20.51 P + 31.89 NDVISI 0.94 4.29 1.56
Overall (Area 2) y = −127.21 + 3.80 NDVISI − 0.26 N + 54.88 P 0.88 3.86 1.61

Overall (Area 1 and Area 2) y = −150.028 + 79.11 NDVISI − 3.65 N + 115.28 P 0.89 1.79 1.72

SRE: standard residual error (%); DW: Durbin–Watson test. N: nitrogen; P: phosphorus; K: potassium; Ca: calcium;
and NDVISI: NDVI obtained by satellite images. * correlation coefficient.

The nutrients that most influenced crop yield were P and N, being included in the model for at
least one straw removal rate in both experimental areas; while the K and Ca were only included in the
models for the removal rates of 0% and 25% for Area 1 and 100% for Area 2. Overall models for Area
1 and 2, separately and together, included the parameters such as NDVI obtained from the satellite
images, leaf-tissue concentration of P and N.

The models presented efficient performance to predict the sugarcane yield (Table 4). In Area 1,
the r2 values varied between 0.85 and 0.94 with the highest SRE encountered under the 50% removal
rate (4.07%). The r2 values varied between 0.76 and 0.94 for Area 2, with the highest SRE observed
under the 25% removal rate (8.65%). Although SRE of 8.65% was the highest value observed in the
two areas it was considered acceptable by the validation of the model. In the overall models, the r2

and SRE values for Areas 1 and 2 were 0.97% and 2.56%, and 0.88% and 3.86%, respectively, and for
the general model representing both areas the r2 and SRE values were 0.89% and 1.79%, respectively.
For the models generated individually for each straw removal rate in each of the two areas, for the
general models for each area and for the general model representing both areas, the Durbin–Watson
test values were similar, with values ranging between 1.44 and 1.78. These values were close to 2 (ideal
threshold), showing that the data do not present autocorrelation [34]. The sensitivity analysis of the
overall model for Areas 1 and 2, showed that yield ranged 11% (i.e., 39.2 to 52.5 Mg ha−1) when the
selected parameter changed from the minimum to maximum value. Individually, variation on NDVI,
P, and N impacts were 55.84%, 55.03%, and 53.10% in the sugarcane yield.

3.5. Effect of Sugarcane Straw Removal on Selected Yield-Explaining Variables

The comparison of the means of the selected variables by the stepwise model indicated that
sugarcane yield was not altered by straw removal management within the study period (Figure 9a).
In relation to the variables that explained the sugarcane yield, it was observed that 25% straw removal
rate induced a reduction in the NDVI, using the satellite image data (Figure 9b), and the leaf-tissue
P content (Figure 9d) in Area 1. However, 50% straw removal rate induced an increase in the NDVI,
using the satellite image data (Figure 9b) and the leaf-tissue N (Figure 9c) and P (Figure 9d) contents in
Area 2.
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Figure 9. Comparison of the sugarcane straw removal rates with the variables selected by the stepwise
model means. Sugarcane yield (a), the NDVI obtained from the satellite image data (b), leaf-tissue
N (c), P (d), K (e), and Ca (f) contents in Areas 1 and 2. Means followed by the same letter are not
statistically different by the Tukey test (p ≤ 0.05).

3.6. Validation of Models

The models were validated based on relationship between observed and predicted values
(Figure 10). In general, the results revealed increases of estimate errors (i.e., RMSE values) with
the increase in the straw removal rate (0% to 100% straw removal rate). The highest values were
observed for the rates of 50 (10.34 Mg ha−1) and 100% (4.15 Mg ha−1) for Areas 1 and 2 respectively.
The overall model, including Areas 1 and 2, was efficient to predict the sugarcane yield, presenting
RMSE of 0.77 Mg ha−1.
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Figure 10. Comparison of sugarcane yield observed with predicted values with Stepwise models.
The diagonal dashed line is the 1:1 line, whereas RMSE is the root mean square error.

Observed (OY) and predicted (PY) yield data presented satisfactory performance when compared
to the variables selected through the stepwise models (Table 5). Leaf-tissue P concentration presented
negative correlation with OY and PY yield data for the Area 1 subjected to all rates of straw removal
(i.e., 0%, 25%, 50%, and 100%). Similar pattern was also observed to the general model for the same
area. While for Area 2, P presented negative correlation with PY and OY data only under 50% of straw
removal. In addition, N presented positive and significant correlations with OY and PY data from
Area 1 under 50% and 100% of straw removal as well as for general model for this area, coefficients
of correlation (r) ranged from 0.33 to 0.68. The correlations among NDVISI, OY, and PY data were
positive for all rates of straw removal and overall model for the area 1. Same pattern was verified for
all rates of straw removal in the Area 2, except for the rate of 25% of straw removal; coefficients of
correlation ranged from −0.40 to 0.93 in Area 2.

It taking into account overall model established for both areas, leaf-tissue concentrations of P
and N were significantly correlated with stalk yield, but in different order, as follow: P negatively
correlated with OY (r = −0.45) and PY (r = −0.50) data, while N was positively correlated with OY
(r = 0.55) and PY (r = 0.58) data. Similarly, NDVISI correlated positively with OY (r = 0.60, p < 0.05) and
PY (r = 0.68, p < 0.05) data.
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4. Discussion

4.1. Effect of Straw Removal on the Leaf-Tissue Nutrient Concentration and Sugarcane Yield

Sugarcane straw removal had little or even no impacts on leaf-tissue nutrient content (Figures 6
and 7). Nutrient cycling in the soil was minimally affected by the straw removal rates in the short
term [12], and therefore, plant nutrition was little affected. Among the evaluated elements, K and Ca
presented the largest variations in both experimental areas. The sugarcane straw can recycle about
80–100 kg ha−1 of K [35,36]. According to Rosolem et al. [37], more than 80% of the K is present in
a soluble form in plant tissues, which makes this element easily leached from plant tissues [9] for
later absorption by the plant root system. Unbalanced absorption of K may also change Ca content in
plant tissues, since both elements interfere in the physiological process of transporting sugars into the
plant [38].

Although K and Ca were the most variable in the plant tissues as a function of straw removal,
N and P were the most sensitive nutrients to the straw removal rates (Figure 9c,d). When compared
to other nutrients—such as P, K, Ca, Mg, and S—N presented the largest reduction in the soil with
straw removal [39]. On the other hand, straw removal led to small reductions in the level of soil
P, since the content of this element in straw is low (Table 3). However, the majority of P is highly
adsorbed in the soil particles (especially Fe and Al oxides) [40], thus, small inputs of P in organic forms
via straw decomposition can be important to increase plant-availability P in the soils [41]. In addition,
the organic acids released during straw decomposition may compete for adsorption sites and increase
the availability of phosphate ions in the soil solution [42].

The sugarcane yield varied three times between the two areas evaluated (Figure 8). This difference
may be related to the greater soil fertility of Area 1, in which soil P, K, Ca, and Mg contents and base
saturation percentage were on the average 42%, 55%, 69%, 67%, and 29%, respectively higher than
Area 2. Thus, higher soil fertility in Area 1 likely allowed that plants accumulate higher levels of these
nutrients in the leaf tissue, which is directly related to the increase of the sugarcane yield [43]. Sugarcane
presents high nutritional needs once it a crop that remains in the field for several years (~5 to 8 years),
with high nutrient removal in each annual harvesting cycle. Therefore, improper replenishment of
nutrients is one of the reasons for yield loss during the annual harvesting cycles [44,45].

The sugarcane straw removal did not affect biomass production (Figure 9a). These results are in
agreement with other studies reporting that the removal of up to 50% of the straw produced did not
impact crop yield [18,19,46]. In addition, through an extensive literature review, Carvalho et al. [9]
suggested that at least 7 Mg ha−1 of straw should remain on the soil surface to sustain suitable soil
functioning and plant yield over time. However, as the crop tends to lose the productive potential
(stalk and straw) over successive harvesting cycles [19,47], the amount of straw that should be removed
after each harvesting cycle may be different.

Over the past few years, studies have brought very relevant understanding about the impacts of
straw removal management on soil quality [12,14,36,48], SOC accumulation [49,50], greenhouse gas
emissions [51–53], plant growth and stalk yield [18,19,46,54–56]. Despite this fact, future studies are
essential to understand the long-term implications of straw removal management on soil and stalk yield.
So far, we only have prediction performed by DayCent model of sugarcane straw removal impacts
on SOC accumulation across the different soil types within the main core occupied with the crop in
Brazil (i.e., central-south region) [49,50]. However, these estimates performed by Carvalho et al. [49]
and Oliveira et al. [50] still have to be validated by long-term experiment, still inexistent in Brazil.
The same statement is true for the yield prediction models developed in this present study, which gave
us relevant insights related to the potentialities of NVDI and leaf-tissue nutrient concentration to
predict sugarcane yield in fields impacted by straw removal management.
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4.2. NDVI Acquisition by Satellite Image vs Hyperspectral Sensor

The quality of the data used to calculate the NDVI is affected by interference from diverse factors,
depending on the form of data acquisition. When satellite images are used, although the data is
collected with minimum cloud cover, the interference of these few clouds at the moment of data
acquisition could alter the quality of the incident and reflected radiation [57]. Besides this, the capture
of satellite images tends to suffer a greater influence from the soil than that experienced using the
hyperspectral sensor, where readings are taken above the canopy and rows with minimal soil influence.
Thus, the NDVI values using satellite images are normally lower [58]. These interferences explain
the difference of 34% observed between the NDVI using the hyperspectral sensor those obtained
using satellite images for the sugarcane in the two experimental areas (Figure 5). Although several
studies have shown a high correlation between the NDVI obtained using hyperspectral sensor and
satellite image data [59,60], we suggest caution when choosing the spectral data acquisition platform
to calculate the NDVI.

The NDVI from the satellite images data was included in all the models generated (Table 4) and
was efficient for detecting the effects of straw removal rates on sugarcane yield in Areas 1 and 2
(Figure 9b). In spite of limitations attributed to NDVI data derived from satellite images, the results
showed that acquired data from satellite images better represented the variation in sugarcane yield [61].
This type of data acquisition has the advantage that it can be applied for larger areas in relation to
the data acquired using hyperespectral sensors, which are generally limited to smaller areas of the
crop canopy.

4.3. Sugarcane Yield Prediction Using the NVDI and Leaf-Tissue Nutrient Concentration

In all the stepwise models established to estimate sugarcane yield as a function of each straw
removal rate, the NDVI was included (Table 4). This inclusion can be explained by the fact that
most of models used to estimate sugarcane yield are based on the estimated biomass production [62].
This would explain, at least in part, the efficiency of the NDVI to detect stalk yield changes as a function
of the straw removal rates, as this index has a high correlation with crop biomass [63].

Among the nutrients included in the site-specific models (i.e., N, P, and K for Area 1; and N,
P, and Ca for Area 2), only N and P were included in the overall model for the two areas (Table 4).
Nutrients such as N and P are present in larger quantities in younger plants, being more sensitive
to changes caused by different management systems [64,65]. In addition, the relationship of these
nutrients with the NDVI in the models was expected due to the influence of these elements on the
photosynthetic process, which in turn, change the spectral responses by the plant, influencing the
NDVI [66,67]. In this approach, other studies can be performed to identify the spectral signatures of
the nutrients in the leaves so that the model can only be applied using spectral data.

The performance of the models in the validation process were also satisfactory when observed
RMSE values between the rates of 0% to 100%, ranged from 0.24 to 10.34 Mg ha−1 for the area
1 and 0.99 to 4.15 Mg ha−1 for Area 2 (Figure 10). These values agree with those reported by
Fernandes et al. [68], which found RMSE values of predicted sugarcane yields ranged from 7.20
to 11.00 Mg ha−1. In addition, the sensitivity analysis showed that overall model for Areas 1 and
2 provides a satisfactory margin for the prediction of sugarcane yield with similar soil and climate
conditions of this study. Therefore, the overall model performance showed NDVI from satellite images
and leaf-tissue nutrient concentrations can be useful and alternative tool to improve the sugarcane
yield predictions.

5. Conclusions

The normalized difference vegetation index (NDVI) can be a useful tool for predicting sugarcane
yield in fields managed with straw removal management in Brazil. Between the methods of data
acquisition to calculate NDVI, satellite image was more efficient than hyperspectral sensor for detecting
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straw removal effects on sugarcane yield. In addition, concentrations of leaf-tissue N and P were also
important parameters to develop the prediction models of sugarcane yield.

Prediction model approach based on data of NDVI and concentration of leaf-tissue nutrients
collected in early stages of crop growth can help the Brazilian sugarcane sector to predict crop
yield in fields intensively managed for bioenergy production. In addition, these models can be
used for monitoring spatio-temporal crop yield changes induced by straw removal and supporting
decision making towards a more sustainable crop residue management in Brazilian sugarcane fields.
The sugarcane yield prediction models developed in this study have to be further tested and validated
using data from long-term straw removal experiments, so far, still inexistent in Brazil.
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