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Preface to ”Numerical Analysis or Numerical Method

in Symmetry”

Numerical methods and, in particular, numerical analysis represent important fields of

investigation in modern mathematical research. In recent years, numerical analysis has undertaken

various lines of application in different areas of applied mathematics and, moreover, in applied

sciences, such as biology, physics, engineering, and so on. However, part of the research on the

topic of numerical analysis cannot exclude the fundamental role played by approximation theory and

some of the tools used to develop this research. In this Special Issue, we want to draw attention to

mathematical methods used in numerical analysis, such as special functions, orthogonal polynomials

and their theoretical instruments, such as Lie algebra, to investigate the concepts and properties

of some special and advanced methods that are useful in the description of solutions of linear and

non-linear differential equations. A further field of investigation is devoted to the theory and related

properties of fractional calculus with its suitable application to numerical methods.

Clemente Cesarano

Special Issue Editor
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Second-Order Method
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Abstract: We present an efficient linear second-order method for a Swift–Hohenberg (SH) type of
a partial differential equation having quadratic-cubic nonlinearity on surfaces to simulate pattern
formation on surfaces numerically. The equation is symmetric under a change of sign of the density
field if there is no quadratic nonlinearity. We introduce a narrow band neighborhood of a surface
and extend the equation on the surface to the narrow band domain. By applying a pseudo-Neumann
boundary condition through the closest point, the Laplace–Beltrami operator can be replaced by
the standard Laplacian operator. The equation on the narrow band domain is split into one linear
and two nonlinear subequations, where the nonlinear subequations are independent of spatial
derivatives and thus are ordinary differential equations and have closed-form solutions. Therefore,
we only solve the linear subequation on the narrow band domain using the Crank–Nicolson method.
Numerical experiments on various surfaces are given verifying the accuracy and efficiency of the
proposed method.

Keywords: Swift–Hohenberg type of equation; surfaces; narrow band domain; closest point method;
operator splitting method

1. Introduction

A Swift–Hohenberg (SH) type of partial differential equation [1] has been used to study pattern
formation [2–5]:

∂φ

∂t
= −

(
φ3 − gφ2 +

(
−ε + (1 + Δ)2

)
φ
)

,

where φ is the density field and g ≥ 0 and ε > 0 are constants. In general, the equation does not have
an analytical solution, thus various computational algorithms [6–13] have been proposed to obtain a
numerical solution. However, most of them were solved on flat surfaces except [12,13].

In this paper, we present an efficient linear second-order method for the SH type of equation on
surfaces, which is based on the closest point method [14,15]. We introduce a narrow band domain of
a surface and apply a pseudo-Neumann boundary condition on the boundary of the narrow band
domain through the closest point [16]. This results in a constant value of φ in the direction normal to
the surface, thus the Laplace–Beltrami operator can be replaced by the standard Laplacian operator.
In addition, we split the equation into one linear and two nonlinear subequations [17,18], where
the nonlinear subequations are independent of spatial derivatives and thus are ordinary differential
equations and have closed-form solutions. Therefore, we only solve the linear subequation on the
narrow band domain using the Crank–Nicolson method. As a result, our method is easy to implement
and linear.

This paper is organized as follows. In Section 2, we describe the SH type of equation on a narrow
band domain. In Section 3, we propose an efficient linear second-order method for the equation on

Symmetry 2019, 11, 1010; doi:10.3390/sym11081010 www.mdpi.com/journal/symmetry1
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the narrow band domain. Numerical examples on various surfaces are given in Section 4. Finally,
we conclude in Section 5.

2. Swift–Hohenberg Type of Equation on a Narrow Band Domain

The SH type of equation on a surface S is given by

∂φ(x, t)
∂t

= −
(

φ3(x, t)− gφ2(x, t) +
(
−ε + (1 + ΔS )2

)
φ(x, t)

)
, x ∈ S , 0 < t ≤ T, (1)

where ΔS is the Laplace–Beltrami operator [19,20]. Next, let Ωδ = {y| x ∈ S , y = x +

ηn(x) for |η| < δ} be a δ-neighborhood of S , where n(x) is a unit normal vector at x. Then, we extend
the Equation (1) to the narrow band domain Ωδ:

∂φ(x, t)
∂t

= −
(

φ3(x, t)− gφ2(x, t) +
(
−ε + (1 + ΔS )2

)
φ(x, t)

)
, x ∈ Ωδ, 0 < t ≤ T (2)

with the pseudo-Neumann boundary condition on ∂Ωδ:

φ(x, t) = φ(cp(x), t), (3)

where cp(x) is a point on S , which is closest to x ∈ ∂Ωδ [14]. For a sufficiently small δ, φ is constant in
the direction normal to the surface. Thus, the Laplace–Beltrami operator in Ωδ can be replaced by the
standard Laplacian operator [14], i.e.,

∂φ(x, t)
∂t

= −
(

φ3(x, t)− gφ2(x, t) +
(
−ε + (1 + Δ)2

)
φ(x, t)

)
, x ∈ Ωδ, 0 < t ≤ T. (4)

3. Numerical Method

In this section, we propose an efficient linear second-order method for solving Equation (4)
with the boundary condition (3). We discretize Equation (4) in Ω = [−Lx/2, Lx/2]× [−Ly/2, Ly/2]×
[−Lz/2, Lz/2] that includes Ωδ. Let h = Lx/Nx = Ly/Ny = Lz/Nz be the uniform grid size, where Nx,
Ny, and Nz are positive integers. Let Ωh = {xijk = (xi, yj, zk)| xi = −Lx/2 + ih, yj = −Ly/2 +

jh, zk = −Lz/2 + kh for 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ k ≤ Nz} be a discrete domain. Let φn
ijk be an

approximation of φ(xijk, nΔt), where Δt is the time step. Let Ωh
δ = {xijk| |ψijk| < δ} be a discrete narrow

band domain, where ψ is a signed distance function for the surface S , and ∂Ωh
δ = {xijk| Iijk|∇h Iijk| �=

0} are discrete domain boundary points, where ∇h Iijk = (Ii+1,j,k − Ii−1,j,k, Ii,j+1,k − Ii,j−1,k, Ii,j,k+1 −
Ii,j,k−1)/(2h). Here, Iijk = 0 if xijk ∈ Ωh

δ , and Iijk = 1, otherwise.
We here split Equation (4) into the following subequations:

∂φ

∂t
= −(φ3 − εφ), (5)

∂φ

∂t
= gφ2, (6)

∂φ

∂t
= −(1 + Δ)2φ. (7)

Equations (5) and (6) are solved analytically and the solutions φn+1
ijk are given as follows:

φn+1
ijk =

φn
ijk√

(φn
ijk)

2/ε + (1 − (φn
ijk)

2/ε)e−2εΔt
and φn+1

ijk =
φn

ijk

1 − gΔtφn
ijk

,

2
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respectively. In addition, Equation (7) is solved using the Crank–Nicolson method:

φn+1
ijk − φn

ijk

Δt
= − (1 + Δh)

2

2
(φn+1

ijk + φn
ijk) (8)

with the boundary condition on ∂Ωh
δ :

φn
ijk = φn(cp(xijk)).

Here, Δhφijk = (φi+1,j,k + φi−1,j,k + φi,j+1,k + φi,j−1,k + φi,j,k+1 + φi,j,k−1 − 6φijk)/h2. The numerical
closest point cp(xijk) for a point xijk ∈ ∂Ωh

δ is defined as

cp(xijk) = xijk − |ψijk|
∇h|ψijk|
|∇h|ψijk|| .

In general, cp(xijk) is not a grid point in Ωh
δ , i.e., cp(xijk) �∈ Ωh

δ , and thus we use trilinear
interpolation and take δ >

√
3h to obtain φ(cp(xijk)). The resulting implicit linear discrete system of

Equation (8) is solved efficiently using the Jacobi iterative method. We iterate the Jacobi iteration
until a discrete L2-norm of the consecutive error on Ωh

δ is less than a tolerance tol. Here, the discrete

L2-norm on Ωh
δ is defined as ‖φ‖L2(Ωh

δ )
=

√
∑xijk∈Ωh

δ
φ2

ijk/#Ωh
δ , where #Ωh

δ is the cardinality of Ωh
δ .

Then, the second-order solution of Equation (4) is evolved by five stages [21]

φ
(1)
ijk =

φn
ijk√

(φn
ijk)

2/ε + (1 − (φn
ijk)

2/ε)e−εΔt
,

φ
(2)
ijk =

φ
(1)
ijk

1 − (gΔt/2)φ(1)
ijk

,

φ
(3)
ijk − φ

(2)
ijk

Δt
= − (1 + Δh)

2

2
(φ

(3)
ijk + φ

(2)
ijk ),

φ
(4)
ijk =

φ
(3)
ijk

1 − (gΔt/2)φ(3)
ijk

,

φn+1
ijk =

φ
(4)
ijk√

(φ
(4)
ijk )

2/ε + (1 − (φ
(4)
ijk )

2/ε)e−εΔt
.

4. Numerical Experiments

4.1. Convergence Test

In order to verify the rate of convergence of the proposed method, we consider the evolution of φ

on a unit sphere. An initial piece of data is

φ(x, y, z, 0) = 0.15 + 0.1 cos(2πx) cos(2πy) cos(2πz)

and a signed distance function for the unit sphere is

ψ(x, y, z) =
√

x2 + y2 + z2 − 1

3
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on Ω = [−1.5, 1.5]3. We fix the grid size to h = 0.125 and vary Δt = T/2, T/22, T/23, T/24 for
T = 0.00025 with ε = 0.25, δ = 2.2

√
3h, and tol = Δt. Table 1 shows the L2-errors of φ(x, y, z, T) and

convergence rates with g = 0. Here, the errors are computed by comparison with a reference numerical
solution using Δt = T/26. It is observed that the method is second-order accurate in time. Note that
we obtain the same result for g = 1.

Table 1. L2-errors and convergence rates for g = 0.

Δt T/2 T/22 T/23 T/24

L2-error 5.445 × 10−3 1.341 × 10−3 2.862 × 10−4 5.519 × 10−5

Rate 2.02 2.22 2.37

4.2. Pattern Formation on a Sphere

Unless otherwise stated, we take an initial piece of data as

φ(x, y, z, 0) = 0.15 + rand(x, y, z),

where rand(x, y, z) is a uniformly distributed random number between −0.1 and 0.1 at the grid points,
and use ε = 0.25, h = 1, Δt = 0.1, δ = 1.1

√
3h, and tol = 10−4.

For g = 0 and 1, Figures 1 and 2 show the evolution of φ(x, y, z, t) on a sphere with ψ(x, y, z) =√
x2 + y2 + z2 − 32 on Ω = [−36, 36]3, respectively. Depending on the value of g, we have different

patterns, such as striped (Figure 1) and hexagonal (Figure 2) [11]. Figure 3 shows the energy decay
with g = 0 and 1, where the energy E(φ) is defined by

E(φ) =
∫

Ωδ

(
1
4

φ4 − g
3

φ3 +
1
2

φ
(
−ε + (1 + Δ)2

)
φ

)
dx.

(a) t = 12 (b) t = 20 (c) t = 100

Figure 1. Evolution of φ(x, y, z, t) with g = 0. The yellow and blue regions indicate φ = 0.7540 and
−0.7783, respectively.

(a) t = 12 (b) t = 16 (c) t = 100

Figure 2. Evolution of φ(x, y, z, t) with g = 1. The yellow and blue regions indicate φ = 1.4320 and
−0.7152, respectively.

4
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Figure 3. Evolution of E(φ)/E(φ0) on the sphere with g = 0 and 1.

4.3. Pattern Formation on a Sphere Perturbed by a Spherical Harmonic

In this section, we perform the evolution of φ on a sphere of center (0, 0, 0) and radius 32 perturbed
by a spherical harmonic 10 Y7

10(θ, ϕ). Here, θ and ϕ are the polar and azimuthal angles, respectively,
and the computational domain is Ω = [−40, 40]3. Figures 4 and 5 show the evolution of φ(x, y, z, t)
with g = 0 and 1, respectively. From the results in Figures 4 and 5, we can see that our method can
solve the SH type of equation on not only simple but also complex surfaces. Figure 6 shows the energy
decay with g = 0 and 1.

(a) t = 12 (b) t = 20 (c) t = 100

Figure 4. Evolution of φ(x, y, z, t) with g = 0. The yellow and blue regions indicate φ = 0.8717 and
−0.8372, respectively.

(a) t = 12 (b) t = 16 (c) t = 100

Figure 5. Evolution of φ(x, y, z, t) with g = 1. The yellow and blue regions indicate φ = 1.4833 and
−0.7135, respectively.
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Figure 6. Evolution of E(φ)/E(φ0) on the perturbed sphere with g = 0 and 1.

4.4. Pattern Formation on a Spindle

Finally, we simulate the evolution of φ on a spindle that has narrow and sharp tips. The spindle is
defined parametrically as

x = 16 cos θ sin ϕ, y = 16 sin θ sin ϕ, z = 32
(

2ϕ

π
− 1

)
,

where θ ∈ [0, 2π) and ϕ ∈ [0, π), and the computational domain is Ω = [−20, 20] × [−20, 20] ×
[−36, 36]. Figures 7 and 8 show the evolution of φ(x, y, z, t) with g = 0 and 1, respectively. The results
in Figures 7 and 8 suggest that pattern formation on a surface having narrow and sharp tips can be
simulated by using our method. Figure 9 shows the energy decay with g = 0 and 1.

(a) t = 12 (b) t = 20 (c) t = 100

Figure 7. Evolution of φ(x, y, z, t) with g = 0. The yellow and blue regions indicate φ = 0.7059 and
−0.7593, respectively.

(a) t = 12 (b) t = 16 (c) t = 100

Figure 8. Evolution of φ(x, y, z, t) with g = 1. The yellow and blue regions indicate φ = 1.3842 and
−0.6224, respectively.
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Figure 9. Evolution of E(φ)/E(φ0) on the spindle with g = 0 and 1.

5. Conclusions

We simulated pattern formation on surfaces numerically by solving the SH type of equation on
surfaces by using the efficient linear second-order method. The method was based on the closest point
and operator splitting methods and thus was easy to implement and linear. We confirmed that the
proposed method gives the desired order of accuracy in time and observed that pattern formation on
surfaces is affected by the value of g.
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Abstract: In this paper, we present a new computational method for solving linear Fredholm integral
equations of the second kind, which is based on the use of B-spline quasi-affine tight framelet systems
generated by the unitary and oblique extension principles. We convert the integral equation to
a system of linear equations. We provide an example of the construction of quasi-affine tight framelet
systems. We also give some numerical evidence to illustrate our method. The numerical results
confirm that the method is efficient, very effective and accurate.
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oblique extension principle; B-splines; wavelets; tight framelets

1. Introduction

Integral equations describe many different events in science and engineering fields. They are used
as mathematical models for many physical situations. Therefore, the study of integral equations and
methods for solving them are very useful in application. The aim of this paper is to present a numerical
method by using tight framelets for approximating the solution of a linear Fredholm integral equation
of the second kind given by

u(x) = f (x) + λ∫ b

a
K(x, t)u(t)dt, −∞ < a ≤ x ≤ b < ∞.

Although many numerical methods use wavelet expansions to solve integral equations, other
types of methods work better with redundant systems, of which framelets are the easiest to use.
The redundant system offered by frames has already been put to excellent use for many applications
in science and engineering. Reference [1], particularly, frames play key roles in wavelet theory,
time frequency analysis for signal processing, filter bank design in electrical engineering, the theory of
shift-invariant spaces, sampling theory and many other areas (see e.g., References [2–7]. The concept
of frame can be traced back to Reference [8]. It is known that the frame system is a redundant system.
The redundancy of frames plays an important role in approximation analysis for many classes of
functions. In the orthonormal wavelet systems, there is no redundancy. Hence, with redundant tight
framelet systems, we have more freedom in building better reconstruction and approximation order.

Since 1991, wavelets have been applied in a wide range of applications and methods for solving
integral equations. A short survey of these articles can be found in References [9,10]. There is a number
of approximate methods for numerically solving various classes of integral equations [11,12]. It is
known that Fredholm integral equations may be applied to boundary value problems and partial
differential equations in practice. Also, there is a difficulty to find the analytic solution of Fredholm
integral equations. Here, we use a new and efficient method that generalizes the Galerkin-wavelet
method used in the literature. We will call it the Galerkin-framelet method.

Symmetry 2019, 11, 854; doi:10.3390/sym11070854 www.mdpi.com/journal/symmetry9
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The paper is organized as follows. Section 2 is devoted to providing some preliminary background
of frames, some notations and its function representation. Section 3 provides some fundamentals in
the construction of quasi-affine B-spline tight framelet systems using the unitary extension principle
and its generalization. We then begin the presentation of solving linear Fredholm integral equations
based on the Galerkin-type method, based on quasi-affine tight framelets in Section 4. We present the
error analysis of the proposed method in Section 5. We further present the numerical results and some
graph illustrations in Section 6. We conclude with several remarks in Section 7.

2. Preliminary Results

Frame theory is a relatively emerging area in pure as well as applied mathematics research and
approximation. It has been applied in a wide range of applications in signal processing [13], image
denoising [14], and computational physics and biology [15]. Interested readers should consult the
references therein to get a complete picture.

The expansion of a function in general is not unique. So, we can have a redundancy for a given
representation. This happens, for instance, in the expansion using tight frames. Frames were introduced
in 1952 by Duffin and Schaeffer [8]. They used frames as a tool in their paper to study a certain class
of non-harmonic Fourier series. Thirty years later, Young introduced a beautiful development for
abstract frames and presented their applications to non-harmonic Fourier series [16]. Daubechies et al.
constructed frames for L2(R) based on dilations and translation of functions [17]. These papers and
others spurred a dramatic development of wavelet and framelet theory in the following years.

The space L2(R) is the set of all functions f (x) such that

∥ f ∥L2(R) = (∫
R

∣ f (x)∣2)1/2 < ∞.

Definition 1. A sequence { fk}∞k=1 of elements in L2(R) is a frame for L2(R) if there exist constants A, B > 0
such that

A∥ f ∥2 ≤ ∞∑
k=1

∣⟨ f , fk⟩∣2 ≤ B∥ f ∥2, ∀ f ∈ L2(R).
A frame is called tight if A = B.

Let �2(Z) be the set of all sequences of the form h[k] defined on Z, satisfying

( ∞∑
k=−∞

∣h[k]∣2)1/2 < ∞.

The Fourier transform of a function f ∈ L2(R) is defined by

f̂ (ξ) = ∫
R

f (t) e−iξtdt, ξ ∈ R,

and its inverse is
f (x) = 1

2π ∫
R

f̂ (ξ) eiξxdξ, x ∈ R.

Similarly, we can define the Fourier series for a sequence h ∈ �2(Z) by

ĥ(ξ) = ∑
k∈Z

h[k] e−iξk.

Definition 2. A compactly supported function φ ∈ L2(R) is said to be refinable if

φ(x) = 2 ∑
k∈Z

h0[k]φ(2x − k), (1)

10
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for some finite supported sequence h0[k] ∈ �2(Z). The sequence h0 is called the low pass filter of φ.

A wavelet is said to have a vanishing moment of order m if

∫ ∞

−∞
xpψ(x)dx = 0; p = 0, . . . , m − 1.

To formulate the matrix form and the numerical solution of a given Fredholm integral equation,
we will study and use tight framelets and their constructions that are derived from the unitary extension
principle (UEP) and the oblique extension principle (OEP) [18]. The UEP is a method to construct tight
frame wavelet filters. We recall a result by Ron and Shen, Theorem 1, which constructs a tight frame
from the UEP generated by a collection {ψ�}r

�=1. The interested reader may consult References [19–21],
and other related references for more details.

Let Ψ = {ψ�}r
�=1 ⊂ L2(R) be of the form

ψ� = 2 ∑
k∈Z

h�[k]φ(2 ⋅ −k), (2)

where {h�[k], k ∈ Z}r
�=1 is a finitely supported sequence and is called the high pass filter of the system.

Theorem 1 (Unitary Extension Principle [20]). Let φ ∈ L2(R) be the compactly supported refinable function
with its finitely supported low pass filter h0. Let {h�[k], k ∈ Z, � = 1, . . . , r} be a set of finitely supported
sequences, then the system

X (Ψ) = {ψ�
j,k ∶ 1 ≤ � ≤ r ; j, k ∈ Z} , (3)

where ψ�
j,k = 2j/2ψ�(2jx − k), forms a tight frame for L2(R) provided the equalities

r∑
�=0

∣̂h�(ξ)∣2 = 1 and
r∑

�=0
ĥ�(ξ)ĥ�(ξ +π) = 0 (4)

hold for all ξ ∈ [−π, π].
For the proof see [18].
This means for any f ∈ L2(R), we have the following tight framelets representation,

f = r∑
�=1

∑
j∈Z

∑
k∈Z

⟨ f , ψ�
j,k⟩ψ�

j,k. (5)

The representation (5) is one of many; however, it is known as the best possible representation of
f , which can be truncated by Sn, where

Sn f = r∑
�=1

∑
j<n

∑
k∈Z

⟨ f , ψ�
j,k⟩ψ�

j,k, n ∈ N, (6)

which are known as the quasi-projection operators [4].
Note that Sn f ∈ L2(R) and lim ∣∣Sn f − f ∣∣2 = 0 as n →∞ [22]. We will use this representation to find

the numerical solutions of a given Fredholm integral equation using the quasi-affine tight framelets
generated by some refinable functions.

3. Quasi-Affine B-Spline Tight Framelet Systems

There is an interesting family of refinable functions known as B-splines. It has an important role
in applied mathematics, geometric modeling and many other areas [23,24]. An investigation of the

11
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frame set using a class of functions that called generalized B-spline and which includes the B-spline
has been studied extensively in Reference [25].

In applications, the B-splines of order 2 and 4 are more popular than those of other orders. Also,
it is preferred to have the B-splines to be centered at x = 0. Therefore, we define the centered B-splines
as follows:

Definition 3 ([26]). The B-spline Bm+1 is defined as follows by using the convolution

Bm+1(x) ∶= (Bm ∗ B1)(x), x ∈ R,

where B1(x) is defined to be χ
[− 1

2 , 1
2 )
(x), the characteristic function for the interval [− 1

2 , 1
2).

Figure 1 shows the graphs of the first few B-splines.

Figure 1. The B-splines Bm for m = 1, . . . , 4, respectively.

One can easily show that the Fourier transform of the B-spline, Bm, of order m is given by

B̂m(ξ) = e−iξd (sin(ξ/2)
ξ/2 )m

and ĥm
0 (ξ) = e−iξd/2 cosm(ξ/2),

where d = 0 if m is even, and d = 1 if m is odd. We refer to [27] for more details.

3.1. Framelets by the UEP and Its Generalization

The UEP is a method to construct tight framelets from a given refinable function. For a given
refinable function and to construct tight framelets system, the function Θ, which is non-negative,
essentially bounded and continuous at the origin with Θ(0) = 1, should satisfy the following conditions

⎧⎪⎪⎨⎪⎪⎩
Θ(2ξ)∣̂h0(ξ)∣2 +∑r

�=1 ∣̂h�(ξ)∣2 = Θ(ξ);
Θ(2ξ)ĥ0(ξ)ĥ0(ξ +π) +∑r

�=1 ĥ�(ξ)ĥ�(ξ +π) = 0.
(7)

In applications, it is recommended to use tight framelet systems that are shift-invariant. The
set of functions is said to be ρ-shift-invariant if for any k ∈ Z and ψ ∈ S, we have ψ(⋅ − ρk) ∈ S.
Hence, the quasi-affine system was introduced to convert the system X(Ψ) (not shift-invariant) to
a shift-invariant system. Next, we present a quasi-affine system that allows us to construct a quasi-affine
tight framelet. This system is not an orthonormal basis [28].

Definition 4 ([22]). Let Ψ be defined as in the UEP. A corresponding quasi-affine system from level J is
defined as

XJ(Ψ) = {ψ�
j,k ∶ 1 ≤ � ≤ r, j, k ∈ Z,}

where ψ�
j,k is given by

ψ�
j,k = { 2j/2ψ�(2j ⋅ −k), j ≥ J

2jψ�(2j (⋅ − 2−Jk)), j < J
.

12
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The quasi-affine system is created by changing the basic definition of ψ�
j,k by sampling the tight

framelet system from the level J − 1 and below. Therefore, the system XJ(Ψ) is a 2−J-shift-invariant
system. Note that this downward sampling in the definition will not change the approximation order
as it is the same for both systems. So the error analysis will be the same. We use this definition to
solve a given Fredholm integral equation that will be defined later in Section 4. In the study of our
expansion method, we consider J = 0 where X0(Ψ) generates a quasi-affine tight framelet system for
L2(R) but not an orthonormal basis as stated earlier. It is well known that the system XJ(Ψ) is a tight
framelet L2(R) iff X(Ψ) it is a tight framelet for L2(R). We refer the reader to Reference [22] for full
details of the relation and analysis of both affine and quasi-affine systems.

To construct quasi-affine tight framelets generated by the OEP, (see Reference [20]), we should
choose Θ as a suitable approximation at ξ = 0 to the fraction 1/∣φ̂∣. As an example for the B-spline of
order m, we should choose Θ to be a 2π-periodic function that approximates the reciprocal of

∣sin(ξ/2)
ξ/2 ∣2m

at ξ = 0.
If ĥ0 is the low pass filter of a refinable function, then based on the OEP and to construct

quasi-affine tight framelets, it is assumed [22] that

H(ξ) = Θ(ξ) −Θ(2ξ)∣̂h0(ξ)∣2 −Θ(2ξ)∣̂h0(ξ +π)∣2 ≥ 0. (8)

This condition will help to find high pass filters easily. Let ∣h∣2 = H and ∣θ∣2 = Θ. Here the
square root is obtained by the Féjer-Riesz lemma [2]. Choose c2, c3 to be 2π-periodic trigonometric
polynomials such that

∣c2(ξ)∣2 + ∣c3(ξ)∣2 = 1, c2(ξ)c2(ξ +π) + c3(ξ)c3(ξ +π) = 0.

Then, we can find three high pass filters, namely

ĥ1(ξ) = eiξ θ(2ξ) ĥ0(ξ +π), ĥ2(ξ) = c2(ξ)h(ξ), ĥ3(ξ) = c3(ξ)h(ξ),
with a standard choice of c2(ξ) = (1/√2), and c3(ξ) = (1/√2)eiξ .

If we consider the UEP rather than the OEP in the construction above, that is, Θ = 1, then we will
use the assumption that ∣̂h0(ξ)∣2 + ∣̂h0(ξ +π)∣2 ≤ 1.

Define the high pass filters as

ĥ1(ξ) = eiξ ĥ0(π + ξ), ĥ2(ξ) = (√2/2)h(ξ), ĥ3(ξ) = eiξ ĥ2(ξ).
The number of generators can be reduced from three to two with the new fundamental function

1− H, where
ĥ1(ξ) = eiξ θ(2ξ)ĥ0(π + ξ), ĥ2(ξ) = h0(ξ)h(2ξ). (9)

However, this usually will affect the generators system by having less symmetry of the generators
or longer filters.

3.2. Examples of Quasi-Affine B-Spline Tight Framelets

Next, we give some examples of quasi-affine B-spline tight framelets of L2(R) constructed via the
UEP (OEP).

13
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Example 1 (Quasi-affine HAAR framelet (HAAR framelet)). Let h0 = [ 1
2 , 1

2 ] be the low pass filter of B1 (x).
By Equations (4), we have h1[k] = [ 1

2 ,− 1
2 ]. Then, the system X0 (ψ1) forms a quasi-affine tight framelet system

for L2(R).
Example 2 (B2-UEP). Let h0 = [ 1

4 , 1
2 , 1

4 ] be the low pass filter of B2 (x). We used Mathematica to obtain the

high pass filters h1 and h2, namely, h1 = ±[− 1
4 , 1

2 ,− 1
4 ]; h2 = ±[−√2

4 , 0,
√

2
4 ]. Considering Theorem 1, we obtain

that the system X0({ψ�}2
�=1) forms a quasi-affine tight framelet system for L2(R). B2 and its quasi-affine tight

framelet generators ψ1, ψ2 are illustrated in Figure 2.

Figure 2. Piecewise linear B-spline, B2(x), and the corresponding tight framelets.

Example 3 (B4-UEP). Let h0 = [ 1
16 , 1

4 , 3
8 , 1

4 , 1
16 ] be the low pass filter of B4 (x). Define

⎧⎪⎪⎨⎪⎪⎩
h1 = [ 1

16 ,− 1
4 , 3

8 ,− 1
4 , 1

16 ], h2 = [ 1
8 ,− 1

4 , 0, 1
4 ,− 1

8 ] ,

h3 = [ 1
8

√
3
2 , 0,− 1

4

√
3
2 , 0, 1

8

√
3
2 ], h4 = [− 1

8 ,− 1
4 , 0, 1

4 , 1
8 ].

Then, h0, h1 and h2 satisfy Equation (4). Hence, the system X0(Ψ) is a quasi-affine tight framelet system
for L2(R). The cubic quasi-affine tight framelets functions, ψ1, ψ2, ψ3, and ψ4, are depicted in Figure 3.

Figure 3. The corresponding tight framelets generated by the cubic B-spline.

Let us illustrate the discussion by providing some examples of quasi-affine tight framelets
generated using the OEP.

Example 4 (B2-OEP). Consider the hat function, the linear B-spline B2, and Θ(ξ) = 4/3 − e−iξ/6 − eiξ/6.
Define Ψ = {ψ1, ψ2}, where

ψ̂1(ξ) = −1
ξ2 (1− e−iξ/2)4

and ψ̂2(ξ) = 1√
6 ξ2

(−1+ e−iξ/2)4 (1+ 4e−iξ/2 + e−iξ) .

where θ and h in Equation (9) are obtained by using the spectral factorization theorem in [2]. Note that in time
domain, we have

ψ1(x) = ∣1− 2x∣ + ∣3− 2x∣ − 1
2
∣−2+ x∣ − 3 ∣−1+ x∣ − 1

2
∣x∣ , and

ψ2(x) = 1√
6
(−4 ∣3− 2x∣ + 1

2
∣−3+ x∣ − 9

2
∣−2+ x∣ + 1

2
∣−1+ x∣ + 1

2
∣x∣) ,

Then, the system X(Ψ) generated using Equation (7) forms a quasi-affine tight framelet system for L2(R).
B2, and its quasi-affine tight framelets, ψ1, ψ2, are given in Figure 4.

14
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Figure 4. Piecewise linear B-spline, B2(x), and the corresponding quasi-affine tight framelets generated
by the oblique extension principle (OEP).

Example 5 (B4-OEP). Consider B4(x), the cubic B-spline, and take the periodic function Θ defined by

Θ(ξ) = 2.59471−0.98631e
−iξ −0.98631e

iξ +0.209524e
−2iξ +0.209524e

2iξ −0.0205688e
−3iξ −0.0205688e

3iξ .

Now, define Ψ, where r = 3, as follows

ψ1(x) = 0.252839 ∣3− 2x∣3 + 0.707948 ∣5− 2x∣3 + 0.252839 ∣7− 2x∣3 + 0.0126419 ∣−5+ x∣3 −
0.442468 ∣−4+ x∣3 − 4.42468 ∣−3+ x∣3 − 4.42468 ∣−2+ x∣3 − 0.442468 ∣1+ x∣3 +
0.0126419 ∣x∣3 ,

ψ2(x) = −0.07207963 ∣3− 2x∣3 − 1.21209103 ∣5− 2x∣3 − 1.21209103 ∣7− 2x∣3 − 0.07207963 ∣9− 2x∣3 +
0.01105521 ∣−6+ x∣3 − 0.08269335 ∣−5+ x∣3 + 3.95289189 ∣−4+∣3 + 12.78422305 ∣−3+ x∣3 +
3.95289189 ∣−2+ x∣3 − 0.08269335 ∣−1+ x∣3 + 0.01105521 ∣x∣3 ,

ψ3(x) = 0.0666740 ∣5− 2x∣3 + 0.798605 ∣7− 2x∣3 + 0.066674 ∣9− 2x∣3 − 2.12302 ∗ 10−17 ∣11− 2x∣3 +
0.0119515 ∣−7+ x∣3 − 0.113791 ∣−6+ x∣3 + 0.468945 ∣−5+ x∣3 − 4.09492 ∣−4+ x∣3 −
4.09492 ∣−3+ x∣3 + 0.468945 ∣−2+ x∣3 − 0.113791 ∣−1+ x∣3 + 0.0119515 ∣x∣3 .

Then, the system X0(Ψ) satisfy Equation (7) and then forms a quasi-affine tight framelet system for L2(R).
The cubic B-spline, B4, and its quasi-affine tight framelet generators ψ1, ψ2, ψ3 are given in Figure 5.

Figure 5. The B-spline B4(x) and the corresponding tight framelets generated by the OEP.

The function H in Equation (8) for the B-splines of order 2 and 4 are illustrated in Figure 6. Note
that for B2, we have

H(ξ) = 1
48

(64− 16 R(e−iξ) − 4(∣1+ e−iξ ∣4 + ∣1− eiξ ∣4) +R(e−2iξ) (∣1+ e−iξ ∣4 + ∣1− eiξ ∣4)) .

Figure 6. Illustration of B2 and B4, with its corresponding positive function H, respectively.
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4. Solving Fredholm Integral Equation via Tight Framelets

Many methods have been presented to find exact and approximate solutions of different integral
equations. In this work, we introduce a new method for solving the above-mentioned class of equations.
We use quasi-affine tight framelets systems generated by the UEP and OEP for solving some types of
integral equations. Consider the second-kind linear Fredholm integral equation of the form:

u(x) = f (x) + λ∫ b

a
K(x, t)u(t)dt, −∞ < a ≤ x ≤ b < ∞, (10)

where λ is a real number, f and K are given functions and u is an unknown function to be determined.K is called the kernel of the integral Equation (10). A function u(x) defined over [a, b] can be expressed
by quasi-affine tight framelets as Equation (5). To find an approximate solution un of (10), we will
truncate the quasi-affine framelet representation of u as in Equation (6). Then,

u(x) ≈ un(x) = r∑
�=1

∑
j<n

∑
k∈Z

c�j,kψ�
j,k(x), (11)

where
c�j,k = ∫

R

un(x)ψ�
j,k(x)dx.

Substituting (11) into (10) yields

r∑
�=1

∑
j<n

∑
k∈Z

c�j,kψ�
j,k(x) = f (x) + λ

r∑
�=1

∑
j<n

∑
k∈Z

c�j,k ∫ b

a
K(x, t)ψ�

j,k(t)dt (12)

Multiply Equation (12) by ∑r
s=1 ψs

p,q(x) and integrate both sides from a to b. This can be
a generalization of Galerkin method used in Reference [29,30]. Then, with a few algebra, Equation (12)
can be simplified to a system of linear equations with the unknown coefficients c�j,k (to be determined)
given by

r∑
s,�=1

∑
j<n

∑
k∈Z

c�j,km�,s
j,k,p,q = gp,q, p, q ∈ Z, (13)

where

m�,s
j,k,p,q = ∫ b

a
ψ�

j,k(x)ψs
p,q(x)dx − λ∫ b

a
∫ b

a
K(x, t)ψ�

j,k(t)ψs
p,q(x)dxdt, p, q ∈ Z

and

gp,q = r∑
s=1

∫ b

a
f (x)ψs

p,q(x) dx, p, q ∈ Z. (14)

Note that, evaluating the values in Equation (14) and by considering the Haar framelet system,
we are able to determine the values of j, k for which the representation in Equation (11) is accurate.
This is done by avoiding the inner products that have zero values. If interval is [0, 1] and j = −n, . . . , n,
then k = −2n, . . . , 2n − 1. Thus, we have a linear system of order 2n+1(2n + 1) to be solved. This system
can be reduced to a smaller order by ignoring those zero inner products and again that depends on
the framelet’s support and the function domain being handled. Now the unknown coefficients are
determined by solving the resulting system of Equation (13), and then we get the approximate solution
un in Equation (11).

This can be formulated as a matrix form

MTC = G,
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where, for example, in the case of quasi-affine Haar framelet system, if

j = −n, . . . , a, . . . , n; p = −n, . . . , α, . . . , n; k = −2n, . . . , b, . . . , 2n − 1; q = −2n, . . . , β, . . . , 2n − 1;

� = 1, . . . , x, . . . , r; and s = 1, . . . , d, . . . , r,

then, the matrix M and the column vectors C and G are given by

M =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1,1
−n,−2n ,−n,−2n ⋯ mx,d

a,b,−n,−2n ⋯ mr,r
n,2n−1,−n,−2n⋮ ⋱ ⋮ ⋰ ⋮

m1,1
−n,−2n ,α,β ⋮ mx,d

a,b,α,β ⋮ mr,r
n,2n−1,α,β⋮ ⋰ ⋮ ⋱ ⋮

m1,1
−n,−2n ,n,2n−1 ⋯ mx,d

a,b,n,2n−1 ⋯ mr,r
n,2n−1,n,2n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

C = [c1
−n,−2n , . . . , cx

a,b, . . . , cr
n,2n−1],

G = [g−n,−2n , . . . , ga,b, . . . , gn,2n−1].
such that C and G are 2n+1(2n + 1) × 1 column vectors, and M is an 2n+1(2n + 1) × 2n+1(2n + 1) matrix.

The absolute error for this formulation is defined by

en = ∥u(x) − un(x)∥2 , x ∈ [a, b].
The error function is defined to be

En(x) = ∣u(x) − un(x)∣ , x ∈ [a, b].
5. Error Analysis

In this section, we get an upper bound for the error of our method. Let φ be as in Equation (1) and
Wm

2 (R) is the Sobolev space consists of all square integrable functions f such that { f (k)}m
k=0 ∈ L2(R).

Then, X0(Ψ) provides approximation order m, if

∥ f − Sn f ∥2 ≤ C2−nm∣∣ f (m)∣∣2, ∀ f ∈ Wm
2 (R), n ∈ N.

The approximation order of the truncated function Sn was studied in References [20,31]. It is well
known in the literature that the vanishing moments of the framelets can be determined by its low
and high pass filters ĥ�, � = 0, . . . , r. Also, if the quasi-affine framelet system has vanishing moments of
order say m1 and the low pass filter of the system satisfy the following,

1− ∣ĥ0(ξ)∣2 = O(∣ ⋅ ∣2m),
at the origin, then the approximation order of X0(Ψ) is equal to min{m1, m}. Therefore, as the
OEP increases the vanishing moments of the quasi-affine framelet system, the accuracy order of
the truncated framelet representation, will increase as well.

As mentioned earlier, integral equations describe many different events in applications such
as image processing and data reconstructions, for which the regularity of the function f is low and
does not meet the required order of smoothness. This makes the determination of the approximation
order difficult from the functional analysis side. Instead, it is assumed that the solution function to
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satisfy a decay condition with a wavelet characterization of Besov space Bs
2,2. We refer the reader to

Reference [32] for more details. Hence, we impose the following decay condition such that

Nf = r∑
�=1

∑
j≥0

∑
k∈Z

2sj ∣⟨ f , ψ�
j,k⟩∣ < ∞, (15)

where s ≥ −1.

Theorem 2. Let X0(Ψ) be a quasi-tight framelet system generated using the OEP from the compactly supported
function φ. Assume that f satisfies the condition (15). Then,

∥ f − Sn f ∥2 ≤ NfO(2−(s+1)n). (16)

Proof. Using Bessel property of X(Ψ), and by Equation (6), we have

∥ f − Sn f ∥2
2 = ::::::::::::

r∑
�=1

∑
j≥n

∑
k∈Z

⟨ f , ψ�
j,k⟩ψ�

j,k

::::::::::::
2

2

≤ r∑
�=1

∑
j≥n

∑
k∈Z

∣⟨ f , ψ�
j,k⟩∣2 .

Note that

∣⟨ f , ψ�
j,k⟩∣ ≤ ∥ f ∥∞ ∥ψ�

j,k∥1
= ∥ f ∥∞ 2−j/2 ∥ψ�∥

1
.

This leads to the following

∥ f − Sn f ∥2
2 ≤ ∥ f ∥∞max

�
∥ψ�∥

1

r∑
�=1

∑
j≥n

∑
k∈Z

2−j ∣⟨ f , ψ�
j,k⟩∣

≤ ∥ f ∥∞max
�

∥ψ�∥
1

r∑
�=1

∑
j≥n

∑
k∈Z

2−j 2j(s+1)

2n(s+1) ∣⟨ f , ψ�
j,k⟩∣

≤ ∥ f ∥∞max
�

∥ψ�∥
1

2−(s+1)nNf .

Thus, the inequality (16) is concluded.

6. Numerical Performance and Illustrative Examples

Based on the method presented in this paper, we solve the following examples using the
quasi-affine tight framelets constructed in Section 3.2. The computations associated with these examples
were obtained using Mathematica software.

Example 6. We consider the Fredholm integral equation of 2nd kind defined by:

u(x) = 1+∫ 1

−1
(xt + x2t2)u(t)dt.

The exact solution is u(x) = 1+ 10
9 x2.

In Tables 1 and 2 the absolute error en for different values of n and the numerical values of un(x)
when n = 2 are computed, respectively. Using quasi-affine Haar framelet system, Figures 7 and 8
demonstrated the graphs of the exact and approximate solutions and Figure 9 demonstrated the graphs
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of En(x) for different values of n. For the case of B2-UEP, Figure 10 demonstrated the graphs of the
exact and approximate solutions for different values of n.

Table 1. The errors en of Example 6 for five different quasi-affine tight framelet systems generated by
the unitary extension principle (UEP) and OEP, for increasing n.

n HAAR Framelet B2-UEP B4-UEP B2-OEP B4-OEP

2 6.55× 10−2 1.83× 10−3 8.89× 10−6 1.82× 10−3 8.24× 10−6

3 3.27× 10−2 4.58× 10−4 9.09× 10−6 6.78× 10−4 1.43× 10−7

4 1.64× 10−2 1.14× 10−4 1.39× 10−7 3.25× 10−4 9.46× 10−7

5 8.18× 10−3 2.86× 10−5 2.45× 10−8 1.87× 10−5 1.03× 10−9

6 4.09× 10−3 7.15× 10−5 1.33× 10−8 7.01× 10−6 5.71× 10−10

7 1.77× 10−4 9.88× 10−6 9.33× 10−9 8.79× 10−6 9.42× 10−11

8 5.92× 10−4 5.73× 10−6 7.40× 10−10 3.08× 10−7 5.08× 10−12

9 1.70× 10−5 4.03× 10−7 4.22× 10−11 4.01× 10−8 3.32× 10−13

10 8.65× 10−5 1.21× 10−8 3.52× 10−12 1.32× 10−9 2.21× 10−13

Table 2. Numerical results of the function un of Example 6 using different quasi-affine tight framelets
and for a level of n = 2.

x Exact HAAR Framelet B2-UEP B4-UEP B2-OEP B4-OEP

−0.9 1.9000000 1.9723995 1.8998802 1.8999970 1.8998802 1.9000001
−0.7 1.5444444 1.5235997 1.5457151 1.5444398 1.5457151 1.5444444
−0.5 1.2777777 1.2128922 1.2748830 1.2777713 1.2748830 1.2777777
−0.3 1.1000000 1.1093230 1.1012727 1.0999958 1.1012727 1.1000000
−0.1 1.0111111 1.0057538 1.0109953 1.0111080 1.0109953 1.0111100
0.0 1.0000000 1.0001228 0.9971065 0.9999965 0.9971065 1.0000000
0.1 1.0111111 1.0057538 1.0109953 1.0111078 1.0109953 1.0111110
0.3 1.1000000 1.1093230 1.1012727 1.0999938 1.1012727 1.1000000
0.5 1.2777777 1.3509844 1.2748830 1.2777699 1.2748830 1.2777777
0.7 1.5444444 1.5235997 1.5457151 1.5444346 1.5457151 1.5444442
0.9 1.9000000 1.9723995 1.8998802 1.8999885 1.8998802 1.9000000

u u u

Figure 7. The graphs of u and un for n = 2, 3, 4, respectively, based on the quasi-affine HAAR framelet
system of Example 6.
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u u

Figure 8. The graphs of u and un for n = 5, 6, respectively, based on the quasi-affine HAAR framelet
system of Example 6.

Figure 9. The graphs of En(x) for n = 2, 3, 6, respectively, and based on quasi-affine HAAR framelet
system of Example 6.

u u u

Figure 10. The graphs of u and un for n = 2, 3, 5, respectively, based on the quasi-affine B2-UEP
framelet system.

Example 7. We consider the Fredholm integral equation of 2nd kind defined by:

u(x) = ex − ex+1 − 1
x + 1

+∫ 1

0
extu(t)dt.

The exact solution is u(x) = ex.

In Tables 3 and 4 the absolute error en for different values of n and the numerical values of un(x)
when n = 2 are computed, respectively. Some illustration for the graphs of the exact and approximate
solutions are depicted in Figure 11.
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Table 3. The errors en of Example 7 for five different quasi-affine tight framelet systems generated by
the UEP and OEP, for increasing n.

n HAAR Framelet B2-UEP B4-UEP B2-OEP B4-OEP

2 6.47× 10−2 1.04× 10−3 6.07× 10−7 1.03× 10−3 4.45× 10−7

3 3.23× 10−2 4.73× 10−4 8.33× 10−8 1.08× 10−4 1.78× 10−7

4 2.68× 10−2 8.76× 10−4 3.35× 10−8 1.25× 10−4 4.35× 10−8

5 1.76× 10−3 1.56× 10−5 1.25× 10−8 9.78× 10−5 1.58× 10−9

6 2.11× 10−4 1.05× 10−5 4.33× 10−9 3.45× 10−6 6.92× 10−11

7 7.93× 10−5 6.84× 10−6 5.53× 10−10 2.39× 10−6 5.92× 10−11

8 9.02× 10−5 5.56× 10−6 5.51× 10−11 5.98× 10−7 1.82× 10−13

9 2.50× 10−6 1.98× 10−7 1.02× 10−12 5.45× 10−8 3.11× 10−14

10 4.05× 10−7 2.34× 10−8 2.42× 10−13 2.12× 10−9 4.23× 10−15

Table 4. Numerical results of the function un of Example 7 using different quasi-affine tight framelets
and for a level of n = 2.

x Exact HAAR Framelet B2-UEP B4-UEP B2-OEP B4-OEP

0.0 1.00000000 1.07061012 0.99866232 0.99999601 0.99863491 0.999999958
0.1 1.10517092 1.09061851 1.10508652 1.10517150 1.10505007 1.105170028
0.2 1.22140276 1.21247432 1.22209321 1.22140205 1.22203402 1.221402071
0.3 1.34985880 1.37321902 1.35065092 1.34985878 1.35060677 1.349858253
0.4 1.49182470 1.55532117 1.49179223 1.49182450 1.49179044 1.491824418
0.5 1.64872127 1.76165283 1.64658432 1.64872193 1.64660927 1.648721644
0.6 1.82211880 1.80165032 1.82197332 1.82211894 1.82198698 1.822118840
0.7 2.01375270 2.01543677 2.01488843 2.01375233 2.01490121 2.013752248
0.8 2.22554090 2.26031276 2.22684809 2.22554035 2.22686599 2.225540081
0.9 2.45960311 2.46041532 2.45955456 2.45960353 2.45956180 2.459603410
1.0 2.71828180 2.72765982 2.71485007 2.71828155 2.71483561 2.718281710

u u

Figure 11. The graphs of u and un for n = 2, based on the quasi-affine B2-UEP and B4-UEP framelet
systems, respectively, of Example 7.

To see the convergence of the proposed method using the quasi-affine tight framelet systems,
we use the log-log scale plot. Then, it is clear that as the partial sum increases, the error between
the approximated solution and exact solution approaches zero. The error history (log-log scale plot)
of Examples 6 and 7 is displayed in Figure 12, where we see very accurate convergence rates too.
This confirmed with respect to the theoretical predictions in the error analysis.
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Figure 12. The convergence rate graph of Examples 6 and 7 given in the log-log scale plot, respectively.

7. Conclusions

We created a new, efficient method for solving Fredholm integral equations of the second kind.
It turns out our method is efficient and has great accuracy. The proposed method shows highly accurate
results and the performance of the present method is reliable, efficient and converges to the exact
solution. Furthermore, the accuracy improves with increasing the partial sums and the number of
vanishing moments of the B-splines quasi-affine tight framelets generated using the UEP and OEP.

Funding: This research was funded by Zayed University Research Fund.

Acknowledgments: The author would like to thank the anonymous reviewers for their valuable comments to
improve the quality of the paper.

Conflicts of Interest: The author declare no conflict of interest.

References

1. Ionescu, M.; Okoudjou, K.A.; Rogers, L.G. Some spectral properties of pseudo-differential operators on the
Sierpinski gasket. Proc. Am. Math. Soc. 2017, 145, 2183–2198. [CrossRef]

2. Daubechies, I. Ten Lectures on Wavelets; SIAM: Philadelphia, PA, USA, 1992.
3. Grochenig, K. Foundations of Time-Frequency Analysis; Birkhäuser: Boston, MA, USA, 2001.
4. Han, B. Framelets and wavelets: Algorithms, analysis, and applications. In Applied and Numerical Harmonic

Analysis; Birkhäuser/Springer: Cham, Switzerland, 2017.
5. Mallat, S.G. A Wavelet Tour of Signal Processing, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1999.
6. Meyer, Y. Wavelets and Operators; Cambridge University Press: Cambridge, UK, 1992.
7. Meyer, Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth

Dean Jacqueline B. Lewis Memorial Lectures. American Mathematical Society. Available online: https:
//bookstore.ams.org/ulect-22 (accessed on 21 May 2019).

8. Duffin, R.; Schaeffer, A. A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 1952, 72, 341–366.
[CrossRef]

9. Adeh, Z.; Heydari, M.; Loghman, G.B. Numerical solution of Fredholm integral equations of the second
kind by using integral mean value theorem. Appl. Math. Model. 2011, 35, 2374–2383.

10. Lepik, U.; Tamme, E. Application of the Haar wavelets for solution of linear integral equations.
In Proceedings of the Dynamical Systems and Applications, Antalya, Turkey, 5–10 July 2005; pp. 395–407.

11. Singh, B.; Bhardwaj, A.; Alib, R. A wavelet method for solving singular integral equation of MHD.
Appl. Math. Comput. 2009, 214, 271–279 [CrossRef]

12. Islam, M.S.; Shirin, A. Numerical Solutions of Fredholm Integral Equations of Second Kind Using Piecewise
Bernoulli Polynomials. Dhaka Univ. J. Sci. 2011, 59, 103–107.

13. Cai, J.; Dong, B.; Shen, Z. Image restorations: A wavelet frame based model for piecewise smooth functions
and beyond. Appl. Comput. Harm. Anal. 2016, 41, 94–138. [CrossRef]

22



Symmetry 2019, 11, 854

14. Shen, Y.; Han, B.; Braverman, E. Adaptive frame-based color image denoising. Appl. Comput. Harm. Anal.
2016, 41, 54–74. [CrossRef]

15. Yang, J.; Zhu, G.; Tong, D.; Lu, L.; Shen, Z. B-spline tight frame based force matching method. J. Comput. Phys.
2018, 362, 208–219. [CrossRef]

16. Young, R. An Introduction to Non-Harmonic Fourier Series; Academic Press: New York, NY, USA, 1980.
17. Daubechies, I.; Grossmann, A.; Meyer, Y. Painless nonorthogonal expansions. J. Math. Phys. 1986, 341,

1271–1283. [CrossRef]
18. Ron, A. Factorization theorems of univariate splines on regular grids. Isr. J. Math. 1990, 70, 48–68. [CrossRef]
19. Chui, C.K.; He, W.; Stockler, J. Compactly supported tight and sibling frames with maximum vanishing

moments. Appl. Comput. Harmon. Anal. 2002, 341, 224–262. [CrossRef]
20. Daubechies, I.; Han, B.; Ron, A.; Shen, Z. Framelets: MRA-based constructions of wavelet frames.

Appl. Comput. Harmon. 2003, 14, 1–46. [CrossRef]
21. Ron, A.; Shen, Z. Affine systems in L2(Rd) II: Dual systems. J. Fourier Anal. Appl. 1997, 3, 617–637. [CrossRef]
22. Ron, A.; Shen, Z. Affine systems in L2(Rd): The analysis of the analysis operators. J. Funct. Anal. 1997, 148,

408–447. [CrossRef]
23. Mohammad, M.; Lin, E. Gibbs Phenomenon in Tight Framelet Expansions. Commun. Nonlinear Sci.

Numer. Simul. 2018, 55, 84–92. [CrossRef]
24. Mohammad, M.; Lin, E. Gibbs effects using Daubechies and Coiflet tight framelet systems, Frames and

Harmonic Analysis. Contemp. Math. 2018, 706, 271–282.
25. Atindehou, A.G.D.; Kouagou, Y.B.; Okoudjou, K.A. Frame sets for generalized B-splines. arXiv 2018,

arXiv:1804.02450.
26. He, T. Eulerian polynomials and B-splines. J. Comput. Appl. Math. 2012, 236, 3763–3773. [CrossRef]
27. De Boor, C. A Practical Guide to Splines; Springer: New York, NY, USA, 1978.
28. Dong, B.; Shen, Z. MRA Based Wavelet Frames and Applications. 2010. Available online: ftp://ftp.math.

ucla.edu/pub/camreport/cam10-69.pdf (accessed on 21 May 2019).
29. Bhatti, M.I.; Bracken, P. Solutions of differential equations in a Bernstein polynomial basis. J. Comput.

Appl. Math. 2007, 205, 272–280. [CrossRef]
30. Liang, X.Z.; Liu, M.C.; Che, X.J. Solving second kind integral equations by Galerkin methods with continuous

orthogonal wavelets. J. Comput. Appl. Math. 2001, 136, 149–161. [CrossRef]
31. De Boor, C.; DeVore, R.; Ron, A. Approximation from shift-invariant subspaces of L2(Rd). Trans. Am. Math. Soc.

1994, 341, 787–806.
32. Borup, L.; Gribonval, R.; Nielsen, M. Bi-framelet systems with few vanishing moments characterize Besov

spaces. Appl. Comput. Harmon. Anal. 2004, 17, 3–28. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

23





symmetryS S

Article

Qualitative Behavior of Solutions of Second Order
Differential Equations

Clemente Cesarano 1,*,† and Omar Bazighifan 2,†

1 Section of Mathematics, International Telematic University Uninettuno, CorsoVittorio Emanuele II, 39,
00186 Roma, Italy

2 Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout 50512, Yemen;
o.bazighifan@gmail.com

* Correspondence: c.cesarano@uninettunouniversity.net
† These authors contributed equally to this work.

Received: 10 May 2019; Accepted: 5 June 2019; Published: 11 June 2019

Abstract: In this work, we study the oscillation of second-order delay differential equations,
by employing a refinement of the generalized Riccati substitution. We establish a new oscillation
criterion. Symmetry ideas are often invisible in these studies, but they help us decide the right way
to study them, and to show us the correct direction for future developments. We illustrate the results
with some examples.
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1. Introduction

This paper is concerned with oscillation of a second-order differential equation[
a (z)w′ (z)

]′
+ q (z) f (w (τ (z))) = 0‚ z ≥ z0, (1)

where a, τ ∈ C1 ([z0‚ ∞), R+) , τ (z) ≤ z, lim
z→∞

τ (z) = ∞, τ′ (z) ≥ 0, q ∈ C ([z0‚ ∞), [0‚ ∞)) ,

the function f is nondecreasing and satisfies the following conditions

f ∈ C (R,R) , w f (w) > 0, f (w) /w ≥ k > 0, for w �= 0, (2)

and
lim

w→∞

w
f (w)

= M < ∞, (3)

where M is constant.
By a solution of Equation (1) we mean a function w ∈ C ([z0‚ ∞), R) , zw ≥ z0, which has the

property a (z) [w′ (z)] ∈ C1 ([z0‚ ∞), R) , and satisfies Equation (1) on [zw‚ ∞). We consider only those
solutions w of Equation (1) which satisfy sup{|w (z)| : z ≥ zw} > 0. Such a solution is said to be
oscillatory if it has arbitrarily large zeros and nonoscillatory otherwise.

Differential equations play an important role in many branches of mathematics, and they also
often appear in other sciences. This fact leads us to more studying such equations and related boundary
value problems in more detail, and a theory of solvability and (numerical) solutions for such equations
are needed for distinct scientific groups, (see [1–5]).

Usually, one cannot find an exact solution for such equations, and one then needs to describe its
qualitative properties in the appropriate functional spaces as well as to suggest a way of reducing the
starting equation to a certain well known studied case, or to suggest some computational algorithm
for the numerical solution. These studies are the intermediate points for solving equations.

Symmetry 2019, 11, 777; doi:10.3390/sym11060777 www.mdpi.com/journal/symmetry25
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The study of differential equations with deviating argument was initiated in 1918, appearing in
the first quarter of the twentieth century as an area of mathematics that has received a lot of attention,
(see [6–10]).

The oscillations of second order differential equations have been studied by authors and several
techniques have been proposed for obtaining oscillation for these equations. For treatments on this
subject, we refer the reader to the texts (see [11–15]). In what follows, we review some results that have
provided the background and the motivation for the present work.

Koplatadze [16] is concerned with the oscillation of equations

w′′ (z) + p (z)w (σ (z)) = 0‚ z ≥ z0,

and he proved it is oscillatory if

lim sup
s→∞

∫ z

σ(z)
σ (s) p (s) ds > 1.

Moaaz, et al. [17] discussed the equation[
a (z)

(
w′ (z)

)β
]′
+ p (z) f (w (τ (z))) = 0‚ z ≥ z0,

under the condition ∫ ∞

z0

1

a
1
β (z)

dz < ∞.

Trench [18] used the comparison technique for the following[
a (z)w′ (z)

]′
+ q (z)w (τ (z)) = 0,

that was compared with the oscillation of certain first order differential equation and under the condition∫ ∞

z0

1
a (z)

dz = ∞.

Wei in 1988 [19] discussed the equation

w′′ (z) + q (z)w (τ (z)) = 0‚ z ≥ z0,

and used the classical Riccati transformation technique.
The present authors in this paper use the generalized Riccati substitution which differs from those

reported in [20–22].
This paper deals with oscillatory behavior of second order delay for Equation (1) under the condition∫ ∞

z0

1
a (s)

ds < ∞, (4)

which would generalize and extend of the related results reported in the literature. In addition,
we use a generalized Riccati substitution. Some examples are included to illustrate the importance of
results obtained.

Here we mention some lemmas.

Lemma 1. (See [23], Lemma 2.1) Let β ≥ 1 be a ratio of two odd numbers, G, H, U, V ∈ R. Then

G
β+1

β − (G − H)
β+1

β ≤ H
1
β

β
[(1 + β) G − H] , GH ≥ 0,
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and

Uy − Vy
β+1

β ≤ ββ

(β + 1)β+1
Uβ+1

Vβ
, V > 0.

Lemma 2. (See [13], Lemma 1.1) Let y satisfy y(i) > 0, i = 0, 1, ..., n, and y(n+1) < 0, then

y (z)
zn/n!

≥ y′ (z)
zn−1/ (n − 1)!

.

Lemma 3. (See [24], Lemma 1) Assume that w (z) is an eventually positive solution of Equation (1). Then we
have two cases

(C1) a (z)w′ (z) > 0,
(
a (z)w′ (z)

)′
< 0,

(C2) a (z)w′ (z) < 0,
(
a (z)w′ (z)

)′
< 0, f or z ≥ z1 ≥ z0.

2. Main Results

In this section, we shall establish some oscillation criteria for Equation (1). For convenience, we denote

B (z) :=
∫ ∞

z

1
a (s)

ds, A (z) := kq (z)
τ2 (z)

z2

Φ (z) := δ (z)
[

A (z) +
1

a (z) B2(z)

]
.

θ (z) :=
δ′+ (z)
δ (z)

+
2

a (z) B(z)
and δ′+ (z) := max

{
0, δ′ (z)

}
.

In what follows, all occurring functional inequalities are assumed to hold eventually, that is,
they are satisfied for all t large enough. As usual and without loss of generality, we can deal only with
eventually positive solutions of Equation (1).

Theorem 1. Assume that Equation (3) holds and τ(z) ≤ z. If

lim
s→∞

sup
∫ z

τ(z)
B (s) q (s) ds > M, (5)

then all solutions of Equation (1) are oscillatory.

Proof. Assume, on the contrary, that w (z) is an eventually positive solution of Equation (1).
Since Equation (5) implies ∫ ∞

z0

B (s) q (s) ds < ∞,

thereby w (z) satisfies (C2) of Lemma 3, which yields

0 ≤ w(τ(z)) + a(τ(z))w′(τ(z)) (6)

≤ w(τ(z)).

Setting
φ (z) = w(z) + a(z)w′(z)B (z) , (7)

we see that
f (φ(τ(z))) ≤ f (w(τ(z))) . (8)
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A simple computation ensures that Equation (1) can be rewritten into the form(
a(z)w′(z)B (z) + w(z)

)′
+ B (z) q (z) f (w(τ(z))) = 0, (9)

which in view of Equation (9) implies that φ (z) is a positive decreasing solution of the first order delay
differential inequality

φ′ (z) + B (z) q (z) f (φ(τ(z))) ≤ 0.

Integrating from τ(z) to z, we get

φ(τ(z)) ≥
∫ z

τ(z)
B (s) q (s) f (φ(τ(s))) ds

≥ f (φ(τ(z)))
∫ z

τ(z)
B (s) q (s) ds.

Thus, we obtain
φ(τ(z))

f (φ(τ(z)))
≥

∫ z

τ(z)
B (s) q (s) ds.

Hence, we obtain

lim sup
s→∞

∫ z

τ(z)
B (s) q (s) ds ≤ lim sup

s→∞

(
φ(τ(z))

f (φ(τ(z)))

)
,

≤ M.

but is a contradiction. Theorem 1 is proved.

Theorem 2. Let Equation (4) hold and

w′ (z) < 0,
(
a (z)w′ (z)

)
< 0.

If there exists positive function δ ∈ C1 ([z0, ∞) , (0, ∞)) such that

∫ ∞

z0

(
Φ (s)− δ (s) a (s) (θ (s))2

4

)
ds = ∞. (10)

Then all solutions of Equation (1) are oscillatory.

Proof. Assume that (C2) holds. By Lemma 2, we find

w (z) ≥
( z

2

)
w′ (z)

and hence
w′ (z)
w (z)

≤ 2
z

.

Integrating from τ (z) to z, we get

w (z)
w (τ (z))

≤ z2

τ2 (z)

and hence
w (τ (z))

w (z)
≥ τ2 (z)

z2 . (11)
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It follows from (a (z) (w′ (z))) ≤ 0, we obtain

w′ (s) ≤
(

a (z)
a (s)

)
w′ (z) .

Integrating from z to z1, we get

w (z1) ≤ w (z) + a (z)w′ (z)
∫ z1

z
a−1 (s) ds. (12)

Letting z1 → ∞, we obtain
w(z) ≥ −B(z)a (z)w′ (z)

which implies that (
w (z)
B (z)

)′
≥ 0.

Define the function ψ (z) by

ψ (z) := δ (z)
[

a (z) (w′ (z))
w (z)

+
1

B(z)

]
, (13)

then ψ (z) > 0 for z ≥ z1 and

ψ′ (z) = δ′ (z)
[

a (z) (w′ (z))
w (z)

+
1

B(z)

]
+ δ (z)

(a (z)w′ (z))′

w (z)

−δ (z) a (z)
(w′)2 (z)

w2 (z)
+

δ (z)
a (z) B2(z)

=
δ′ (z)
δ (z)

(
δ (z)

[
a (z) (w′ (z))

w (z)
+

1
B(z)

])
+ δ (z)

(a (z)w′ (z))′

w (z)

−δ (z) a (z)
(w′)2 (z)

w2 (z)
+

δ (z)
a (z) B2(z)

.

Thus, we get

ψ′ (z) =
δ′ (z)
δ (z)

ψ (z) + δ (z)
(a (z)w′ (z))′

w (z)

−δ (z) a (z)
[

1
a (z)

(
a (z)w′ (z)

w (z)
+

1
B(z)

)
− 1

a (z) B(z)

]2

+
δ (z)

a (z) B2(z)
.

Using Equation (13) we obtain

ψ′ (z) =
δ′ (z)
δ (z)

ψ (z) + δ (z)
(a (z)w′ (z))′

w (z)
(14)

−δ (z) a (z)
[

ψ (z)
δ (z) a (z)

− 1
a (z) B(z)

]2
+

δ (z)
a (z) B2(z)

.

Using Lemma 1 with G = ψ(z)
δ(z)a(z) , H = 1

a(z)B(z) , β = 1, we get

[
ψ (z)

δ (z) a (z)
− 1

a (z) B(z)

]2
≥

(
ψ (z)

δ (z) a (z)

)2
(15)

− 1
a (z) B(z)

(
2ψ (z)

δ (z) a (z)
− 1

a (z) B(z)

)
.
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From Equations (14) and (15), we obtain

ψ′ (z) ≤ δ′+ (z)
δ (z)

ψ (z)− δ (z) kq (z)
w (τ (z))

w (z)
− δ (z) a (z)

(
ψ (z)

δ (z) a (z)

)2
(16)

−δ (z) a (z)
[ −1

a (z) B(z)

(
2ψ (z)

δ (z) a (z)
− 1

a (z) B(z)

)]
.

From Equations (11) and (16), we get

ψ′ (z) ≤ δ′+ (z)
δ (z)

ψ (z)− δ (z) A (z)− δ (z) a (z)
(

ψ (z)
δ (z) a (z)

)2

−δ (z) a (z)
[ −1

a (z) B(z)

(
2ψ (z)

δ (z) a (z)
− 1

a (z) B(z)

)]
.

This implies that

ψ′ (z) ≤
(

δ′+ (z)
δ (z)

+
2

a (z) B(z)

)
ψ (z)− 1

(δ (z) a (z))
ψ2 (z) (17)

−δ (z)
[

A (z) +
1

a (z) B2(z)

]
.

Thus, by Equation (14) yield

ψ′ (z) ≤ −Φ (z) + θ (z)ψ (z)− 1
(δ (z) a (z))

ψ2 (z) . (18)

Applying the Lemma 1 with U = θ (z) , V = 1
(δ(z)a(z)) and y = ψ (z), we get

ψ′ (z) ≤ −Φ (z) +
δ (z) a (z) (θ (z))2

4
. (19)

Integrating from z1 to z, we get

∫ z

z1

(
Φ (s)− δ (s) a (s) (θ (s))2

4

)
ds ≤ ψ (z1)− ψ (z) ≤ ψ (z1) ,

which contradicts Equation (10). The proof is complete.

Example 1. As an illustrative example, we consider the following equation:

(
z5w

′
(z)

)′
+ rzw

( z
2

)
= 0, (20)

where r > 0. Let
a (z) = z5, q (z) = rz, τ (z) =

z
2

.

It is easy to see that all conditions of Theorem 1 are satisfied.∫ ∞

z

1
a (s)

ds =
∫ ∞

z

1
s5 ds

=
1

4z4

< ∞,
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and

lim sup
z→∞

∫ z

τ(z)
B (s) q (s) ds

= lim sup
z→∞

∫ z

z
2

1
4s3 rds

< ∞.

Hence, by Theorem 1, all solutions of Equation (20) are oscillatory.

Example 2. We consider the equation:

(
z2x (z)′

)′
+ x

( z
3

)
= 0, z ≥ 1. (21)

Let
a (z) = z2, q (z) = 1, τ (z) =

z
3

.

If we now set δ (z) = 1 and k = 1, then all conditions of Theorem 2 are satisfied.

B (z) :=
∫ ∞

z

1
a (s)

ds =
1
z
< ∞.

A (z) = kq (z) (
τ (z)

z
)2 =

1
9

,

and ∫ ∞

z0

(
Φ (s)− δ (s) a (s) (θ (s))β+1

(β + 1)β+1

)
ds = ∞.

Applying Theorem 2, we obtain that all solutions of Equation (21) are oscillatory.

Remark 1. The results in [18] imply those in Equation (21).

Remark 2. The results obtained supplement and improve those in [16].

3. Conclusions

The results of this paper are presented in a form which is essentially new and of high degree of
generality. To the best of our knowledge, there are not many studies known about the oscillation of
Equation (1) under the assumption of Equation (4). Our primary goal is to fill this gap by presenting
simple criteria for the oscillation of all solutions of Equation (1) by using the generalized Riccati
transformations which differs from those reported in [22] and using a comparison technique with first
order differential equation. Further, we can consider the case of τ (z) ≥ z in the future work.
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Abstract: In this paper, a fast and accurate numerical Clenshaw-Curtis quadrature is proposed
for the approximation of highly oscillatory integrals with Cauchy and logarithmic singularities,

⨍1
−1

f (x) log(x−α)eikx

x−t dx, t ∉ (−1, 1), α ∈ [−1, 1] for a smooth function f (x). This method consists of evaluation
of the modified moments by stable recurrence relation and Cauchy kernel is solved by steepest descent
method that transforms the oscillatory integral into the sum of line integrals. Later theoretical analysis
and high accuracy of the method is illustrated by some examples.

Keywords: Clenshaw-Curtis quadrature; steepest descent method; logarithmic singularities; Cauchy
singularity; highly oscillatory integrals

1. Introduction

Boundary element method and finite element method are intensively eminent numerical approaches
to evaluate partial differential equations (PDEs), which appear in variety of disciplines from engineering
to astronomy and quantum mechanics [1–5]. Although these methods lead PDEs to Fredholm integral
equations or Voltera integral equations, but these kind of integral equations posses integrals of oscillatory,
Cauchy-singular, logarithmic singular, weak singular kernel functions. However, these classical
methods are failed to approximate the integrals constitute kernel functions of highly oscillation and
logarithmic singularity.

This paper aims at approximation of the integral

Iα[ f ] = ⨍ 1

−1

f (x) log(x − α)eikx

x − t dx, (1)

where t ∈ (−1, 1), k ≫ 1, α ∈ [−1, 1], f (x) is relatively smooth function. For integral (1) the developed
strategy for logarithmic singularity log(x − α) is valid for α ∈ [−1, 1]. In particular, the highly oscillatory
integral, ∫ 1

−1 f (x)eikxdx has been computed by many methods such as asymptotic expansion, Filon method,
Levin collocation method and numerical steepest descent method [6–10]. For instant, Dominguez et al. [11]
for function f (x) with integrable singularities have proposed an error bound, calculated in Sobolev spaces
Hm, for composite Filon-Clenshaw-Curtis quadrature. Error bound depends on the derivative of f (x)
and length of the interval M, for some C1( f ) defined as EN ≤ C1( f )( 1+∣ log(k)∣

k1+β )r(log M)1+β−r( 1
M )N+1−r for

β ∈ (−1, 0), r ∈ [0, 1 + β].
On the other hand, one methodology for numerical evaluation of integral ⨍1

−1
f (x)eikx

x−t dx is replacing
f (x) by different kind of polynomials [12,13]. Another technique is based on analytic continuation of the

Symmetry 2019, 11, 728; doi:10.3390/sym11060728 www.mdpi.com/journal/symmetry
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integral if the integrand f (x) is analytic in the complex region [14]. As far as for k = 0 solution methods and
properties of the solution for relative non-homogenous integrals have been discussed by using Brestain
polynomials and Chebyshev polynoimals of all four kinds in [3,15].

For integral ∫ 1
−1 f (x) log((x − α)2)eikxdx Clenshaw-Curtise rule is applied for numerical calculation.

Wherein the convergence rate is independent of k but depends on the number of nodes of quadrature
rule and function f (x) [16]. Furthermore, Piessense and Branders [17] established the Clenshaw-Curtis
quadrature rule, relies on the recurrence relation for ∫ 1

−1 f (x)eikx(x + 1)α log(x + 1)dx. They replaced the
nonoscillatory and nonsingular part of the integrand by Chebyshev series. Chen [18] presented the

numerical approximation of the integral I[ f ] = ⨍1
−1

f (x)eikx

(x+1)α(x−1)β ∏n
m=1(x−τm)γm dx, with α, β < 1, a < γm < b

and γm ≤ 1. For analytic function f (x) the integral was rewritten in the form of sum of line integrals,
wherein the integrands do not oscillate and decay exponentially. Moreover, Fang [19] established the

Clenshaw-Curtis quadrature for ⨍1
−1

(x+1)α(x−1)β f (x) log(x+1)eikx

x−t dx for general function f (x) where steepest
descent method is illustrated for analytic function f (x). Recently, John [20] introduced the algorithm for
integral approximation of Cauchy-singular, logarithmic-singular, Hadamard type and nearly singular
integrals having integrable endpoints singularities i.e., (1 − x)α(1 + x)β, (α, β > −1). Composed Gauss-Jacobi
quadrature consists of approximating the function f (x) by Jacobi polynomials {Pα,β

n }N−1
n=0 of degree N − 1.

However, all these proposed method are inadequate to apply directly on integral (1) in the presence
of oscillation and other singularities. This work presents Clenshaw-Curtis quadrature to get recurrence
relation to compute the modified moments, that takes just O(N log N) operations. The initial Cauchy
singular values for recurrence relation are obtained by the steepest descent method, as it prominently
renowned to evaluate highly oscillatory integrals when the integrands are analytic in sufficiently
large region.

The rest of the paper is organized as follows. Section 2 delineates the quadrature algorithm for
integral (1). Numerical calculation of the modified moments with recurrence relation by using some
Chebyshev properties is defined. Also steepest descent method is established for Cauchy singularity
where later the obtained line integrals are further approximated by generalized Gauss quadrature.
Section 3 alludes some error bounds derived in terms of Clenshaw-Curtis points and the rate of oscillation
k. In Section 4, numerical examples are provided to demonstrate the efficiency and accuracy of the
presented method.

2. Numerical Methods

In the computation of integral Iα[ f ], the Clenshaw-Curtis quadrature approach is extensively
adopted. The scheme is postulated on interpolating the function f (x) at Clenshaw-Curtis points set
XN+1 = {xj = cos jπ

N }N
j=0. Writing the interpolation polynomial as basis of Chebyshev series

f (x) ≈ PN(x) = N

∑
n=0

′′anTn(x), (2)

where Tn(x) is the Chebyshev polynomial of first kind of degree N and double prime denotes a sum whose
first and last terms are halved, the coefficients

an = 2
N

N

∑
j=0

′′ f (xj)Tn(xj) (3)
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can be computed efficiently by FFT in O(N log N) operations [8,9]. This paper appertains to
Clenshaw-Curtis quadrature, which depends on Hermite interpolating polynomial that allow us to
get higher order accuracy

P̃(xj) = f (xj), j = 0,⋯N; P̃(t) = f (t). (4)

For any fixed t, we can elect felicitous N such that t /∈ {xj}N
j=0 and rewrite Hermite interpolating

polynomial of degree N + 1 in terms of Chebyshev series

P̃N+1(x) = N+1

∑
n=0

cnTn(x) (5)

cn can be calculated in O(N) operations once if an are known [13,21]. Finally Clenshaw-Curtis quadrature
for integral Iα[ f ] is defined as

Iα
N+1[ f ] = N+1

∑
n=0

cn ⨍
1

−1

Tn(x) log(x − α)eikx

x − t dx

=
N+1

∑
n=0

cnDα
n(k, t)

(6)

where

Dα
n(k, t) = ⨍ 1

−1

Tn(x) log(x − α)eikx

x − t dx (7)

more specifically Dα
n(k, t) are called the modified moments. Efficiency of the Clenshaw-Curtis quadrature

depends on the fast computation of the moments. In ensuing sub-section, we deduce the recurrence
relation for Dα

n(k, t).
Computation of the Dα

n(k, t) Moments

A reputed property of Chebyshev polynomial [22]

Tn(x) = 1
2
(Un(x) − Un−2(x)), (8)

leads the modified moments Dα
n(k, t) = ⨍1

−1
Tn(x) log(x−α)eikx

x−t dx to

⨍ 1

−1

Tn(x) log(x − α)eikx

x − t dx = 1
2
(⨍ 1

−1

Un(x) log(x − α)eikx

x − t dx − ⨍ 1

−1

Un−2(x) log(x − α)eikx

x − t dx)
Dα

n(k, t) = 1
2
(Qα

n(k, t) − Qα
n−2(k, t)).

(9)

Forthcoming theorem defines the procedure to calculate the moments Qα
n(k, t) = ⨍1

−1
Un(x) log(x−α)eikx

x−t dx.

Proposition 1. The sequence Qα
n(k, t) = ⨍1

−1
Un(x) log(x−α)eikx

x−t dx satisfies the recurrence relation

Qα
n+1(k, t) = 2Qα

n(k) + 2tQα
n(k, t) − Qα

n−1(k, t), n ≥ 1

Qα
1(k, t) = 2Qα

0(k) + 2tQα
0(k, t). (10)
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where

Qα
n(k) = ∫ 1

−1
Un(x) log(x − α)eikxdx, Qα

0(k) = ∫ 1

−1
log(x − α)eikxdx. (11)

Proof. Using Chebyshev recurrence relation

Un+1(x) = 2xUn(x) − Un−1(x),
Qα

n+1(k, t) = ⨍ 1

−1

2(x − t + t)Un(x) log(x − α)eikx

x − t dx − ⨍ 1

−1

Un−1(x) log(x − α)eikx

x − t dx,

= ⨍ 1

−1
2Un(x) log(x − α)eikxdx + ⨍ 1

−1

2tUn(x) log(x − α)eikx

x − t dx

− ⨍ 1

−1

Un−1(x) log(x − α)eikx

x − t dx,

Qα
n+1(k, t) = 2Qα

n(k) + 2tQα
n(k, t) − Qα

n−1(k, t).

The proof completes with the initial values U0(x) = 1, U1(x) = 2x. The starting values Qα
0(k, t) and

Qα
0(k) of recurrence relation can be calculated by steepest descent method.

Proposition 2. Suppose that f (x) is an analytic function in the half-strip of the complex plan, a ≤ R(x) ≤ b and
I(x) ≥ 0, and satisfies the condition for constant M and 0 ≤ k0 < k

∫ 1

−1
∣ f (x + iR)∣dx ≤ Mek0R,

then the integral (1) for α ∈ [−1, 1] can be transformed into

I±1[ f ] = M±1
1 + M±1

2 + iπeikt f (t) log(t − (±1)),
Iα[ f ] = N1 + N2 + iπeikt f (t) log(t − α), (12)

where

N1 = i
k

e−ik ∫ kR

kr

f (−1 + i
k x) log(−1 + i

k x − α)e−x

−1 + i
k x − t

dx,

N2 = −
i
k

eik ∫ kR

kr

f (1 + i
k x) log(1 + i

k x − α)e−x

1 + i
k x − t

dx,

M±1
1 = ±

i
k

e∓ik ∫ kR

kr

f (∓1 + i
k x) log(∓2 + i

k x)e−x

∓1 + i
k x − t

dx,

M±1
2 = ∓

i
k

e±ik ∫ kR

kr

f (±1 + i
k x) log( i

k x)e−x

±1 + i
k x − t

dx.

(13)
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Proof. Following proof asserts the results for case α = 1, and for α ∈ [−1, 1) the same technique can be used

as well. Since the integrand f (x) log(x−1)eikx

x−t is analytic in the half strip of the complex plane, by Cauchy’s
Theorem, we have

∫
Γ1+Γ2+Γ3+Γ4−Γ5−Γ6−Γ7

f (x) log(x − 1)eikx

x − t dx = 0, (14)

with all the contours taken in clockwise direction (Figure 1).

Figure 1. Illustration of integration path of I+1[ f ].
Setting Îi = ∫Γi

f (x) log(x−1)eikx

x−t dx, i = 1, 2,⋯7, we obtain that

Î1 + Î2 + Î3 + Î4 = Î5 + Î6 + Î7. (15)

Î1 = ∫ R

r

f (−1 + ip) log(−1 + ip − 1)eik(−1+ip)
−1 + ip − t

idp

= i
k

e−ik ∫ kR

kr

f (−1 + i
k x) log(−2 + i

k x)e−x

−1 + i
k x − t

dx.

Similarly for Î3, we get

Î3 = −∫ R

r

f (1 + ip) log(1 + ip − 1)eik(1+ip)
1 + ip − t

idp

= −
i
k

eik ∫ kR

kr

f (1 + i
k x) log( i

k x)e−x

1 + i
k x − t

dx.

From the statement of the theorem, ∫ 1
−1 ∣ f (x + iR)∣ ≤ Mew0R,

Î2 = ∫ 1

−1

f (x + iR) log(x + iR − 1)eik(x+iR)
x + iR − t

dx

= 1
R
∫ 1

−1
f (x + iR) log(x + iR − 1)eik(x+iR)dx

→ 0 asR → ∞.
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Let x − 1 = reiθ , then

Î4 = ∫
π
2

0

f (reiθ + 1) log(reiθ)eik(reiθ+1)
1 + reiθ − t

ireiθdθ

= ir ∫
π
2

0

f (reiθ + 1) log(reiθ)eik(reiθ+1)
1 + reiθ − t

eiθdθ

→ 0 asr → 0.

In addition

Î6 = ∫ π

0

f (reiθ + t) log(t + reiθ − 1)eik(reiθ+t)
reiθ

ireiθdθ

r → 0

= iπeikt f (t) log(t − 1).
Thus, we complete the proof with

I+1[ f ] = lim
r→0,R→∞

( Î1 + Î2 + Î3 + Î4 − Î6)
= M+1

1 + M+1
2 + iπeikt f (t) log(t − 1). (16)

From Proposition 2.2 numerical scheme for the line integrals M±1
1 , M±1

2 can be evaluated by

generalized Gauss-Laguerre quadrature rule, using command lagpts in Chebfun [23]. Let {x(β)j , w(β)
j }N

j=1 be

the nodes and weights of the weight function xβe−x and let {x(β,l)
j , w(β,l)

j }N
j=1 be the nodes and weights of

the weight function xβ(x − 1 − ln(x))e−x. The line integrals M±1
1 and M±1

2 can be approximated by

M±1
1 ≈ R±1{1,N} = ±

i
k

e∓ik
N

∑
j=1

w(β)
j f (∓1 + i

k x(β)j ) log(∓2 + i
k x(β)j )

∓1 + i
k x(β)j − t

dx,

M±1
2 ≈ R±1{2,N} = ∓

i
k

eik[ log( i
k
) − 1) N

∑
j=1

w(β)
j

f (±1 + i
k x(β)j )

±1 + i
k xβ

j − t
dx

+
N

∑
j=1

w(β+1)
j

f (±1 + i
k x(β+1)

j )
±1 + i

k x(β+1)
j − t

dx −
N

∑
j=1

w(β,l)
j

f (±1 + i
k x(β,l)

j )
±1 + i

k x(β,l)
j − t

dx].

(17)

For simplicity
I±1[ f ] = R±1{1,N} + R±1{2,N} + iπ f (t) log(t − (±1)). (18)

By the same argument N1 and N2 can also be approximated with generalized Gauss-Laguerre
quadrature rule. Aforementioned theorem enlightens the another interesting fact that Iα[ f ] can also be
computed by it if f (x) is an analytic function.
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Computation of the moments Qα
n(k) is derived as, by using Chebyshev property (8)

1
2
(Qα

n(k) − Qα
n−2(k)) = Dα

n(k)
= ∫ 1

−1
(Tn(x) − Tn(α)) log(x − α)eikxdx + Tn(α)∫ 1

−1
log(x − α)eikxdx.

(19)

For α ≠ ±1, integrating by parts, we derive

∫ 1

−1
(Tn(x) − Tn(α)) log(x − α)eikxdx = 1

ik
[(Tn(x) − Tn(α)) log(x − α)eikx∣1−1

− ∫ 1

−1
T′

n(x) log(x − α)eikxdx − ⨍ 1

−1

(Tn(x) − Tn(α))(x − α) eikxdx]

= 1
ik
[(1 − Tn(α)) log(1 − α)eikx + ((−1)n+1 + Tn(α)) log(−1 − α)e−ik

− n∫ 1

−1
Un−1(x) log(x − α)eikxdx − 2∫ 1

−1
Un−1(x)eikxdx − 2

n−2

∑
j=0

Tn−1−j(α)∫ 1

−1
Uj(x)eikxdx].

(20)

We deduce the following recurrence relation by inserting (20) in (19)

Qα
n(k) − 2n

ik
Qα

n−1(k) + Qα
n−2(k) = δ

α
n(k) (21)

where

δ
α
n(k) = 2

ik
[(1 − Tn(α)) log(1 − α)eikx + ((−1)n+1 + Tn(α)) log(−1 − α)e−ik]

−
2
ik
[2

n−2

∑
j=0

Tn−1−j(α)Bj(k) + Bn−1(k)] + 2Tn(α)Qα
0(k), (22)

and

Bj(k) = ∫ 1

−1
Uj(x)eikxdx, j = 0,⋯, n − 1. (23)

It is worth to mention that (Bj(k))Nj=0 can be computed in O(N) operations [12]. For α = ±1 we obtain

the δ
±1
n (k) as

δ
±1
n (k) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

2 log(∓2)e∓ik n = odd

0 n = even.
(24)

Unfortunately, practical experiments demonstrate that the recurrence relation for Qα
n(k) is numerically

unstable in the forward direction for n > k, in this sense so-called Oliver’s algorithm is stable and used to
rewrite the recurrence relation in the tridiagonal form [24].
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3. Error Analysis

Lemma 1. ([9,13,14]) Suppose f ∈ Cm+1[−1, 1], for a non-negative integer m with f (t) = 0, then

����������(
f (x)
x − t )

(m)���������� ≤
2m+1 − 1

m + 1
∥ f (m+1)∥∞. (25)

Lemma 2. ([9,14]) Let f (x) be a Lipschitz continous function on [−1,1] and let PN[ f ] be the interpolation polynomial
of f (t) at N + 1 Clenshaw-Curtis points. Then it follows that

lim
N→+∞

∥ f − PN[ f ]∥∞ = 0. (26)

In particular, if f (x) is analytic with ∣ f (t)∣ ≤ M in an Bernstein ellipse ερ with foci ±1 and major and minor
semiaxis lengths summing to ρ > 1, then

∣∣ f − PN[ f ]∣∣∞ ≤ 4M
ρN(ρ − 1) . (27)

if f (x) has an absolutely continuous (κ0 − 1)st derivative and f (κ0) of bounded variation Vκ0 on [-1,1] for some κ0 ≥ 1,
then for N ≥ κ0 + 1

∣∣ f − PN[ f ]∣∣∞ ≤
4Vκ0

κ0πN(N − 1)⋯(N − κ0 + 1) . (28)

Lemma 3. (van der Corput Lemma [25]) Suppose that f ∈ C1[0, b], then for each β > −1, it follows

������∫
b

0
xβeikxdx

������ ≤ W1(k) (∣ f (b)∣ + ∫ b

0
∣ f ′(x)∣dx) ,

������∫
b

0
xβ log(x)eikxdx

������ ≤ W2(k) (∣ f (b)∣ + ∫ b

0
∣ f ′(x)∣dx) , (29)

where

W1(k) = { O (∣k∣−1−β) , −1 < β ≤ 0
O(∣k∣−1), β > 0

, W2(k) = { O (∣k∣−1−β(1 + ∣ log(k)∣)) , −1 < β ≤ 0
O(∣k∣−1), β > 0

.

Moreover, for some special cases we have

Lemma 4. Suppose that f ∈ C1[0, 1], then it follows for all k that

∫ 1

0
x(1 − x) log(x)eikxdx = O(∣k∣−2(1 + log ∣k∣)),∫ 1

0
x(1 − x) log(x − 1)eikxdx = O(∣k∣−2(1 + log ∣k∣)). (30)

Proof. For simplicity, here we prove the first identity in (3.29). Similar proof can be directly applied to the
second identity in (3.29).

Since

∫ 1

0
x(1 − x) log(x)eikxdx = 1

ik
∫ 1

0
x(1 − x) log(x)deikx = −

1
ik

∫ 1

0
eikx[(1 − x) log(x) − x log(x) + (1 − x)]dx,

it leads to the desired result by Lemma 3.3.
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Suppose that t ∉ XN+1, f ∈ C2[−1, 1] and define

φ(x) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
f (x)− f (t)(x−t) , x ≠ t

f ′(t), x = t.

From Lemma 2.1, we see that φ ∈ C1[−1, 1] and ∥φ
′∥∞ ≤ 3

2∥ f ′′∥∞, in addition, g(x) = P̃N+1(x)− f (t)
x−t

is a polynomial of degree at most N with g(xj) = φ(xj) for j = 0, 1, . . . , N [21]. Then the error on the
Clenshaw-Curtis quadrature (6) can be estimated by

∣EN+1∣ = ∣Iα[ f ] − Iα
N+1[ f ]∣ = ∣ ∫ 1

−1(φ(x) − g(x)) log(x − α)eikxdx∣
≤ ∥φ(x) − g(x)∥∞∣ ∫ 1

−1 log(x − α)dx∣
= O(∥φ(x) − g(x)∥∞).

Corollary 1. Suppose that t ∉ XN+1 and f ′′ is bounded on [−1, 1], then the Clenshaw-Curtis quadrature (6)
is convergent

lim
N→+∞

∣EN+1∣ = lim
N→+∞

∣Iα[ f ] − Iα
N+1[ f ]∣ = 0. (31)

In particular, if f (x) is analytic and ∣ f ′(x)∣ ≤ M in a Bernstein ellipse ερ, ρ > 1, then the error term satisfies

EN+1 = O ( 1
ρN

) . (32)

If f (x) has an absolutely continuous (κ0 − 1)st derivative and f (κ0) of bounded variation Vκ0 on [−1,1] for some
κ0 ≥ 1, then for N ≥ κ0 + 1 (κ0 ≥ 2)

EN+1 = O ( 1
N−κ0+1

) . (33)

Theorem 1. The error bound for Iα
N+1[ f ] for integral Iα[ f ] can be estimated as

EN+1 = { O (k−1(1 + ∣ log(k)∣)ρ−N) , f (x) analytic in the Bernstein ellipse ερ

O (k−1(1 + ∣ log(k)∣)N−κ0+2) , f (κ0+1) of bounded variation
. (34)

In addition, for α = ±1, it follows

EN+1 = O (k−2(1 + ∣ log(k)∣)) f ∈ C2[−1, 1]. (35)

Proof. Since

EN+1 = ∫ 1
−1(φ(x) − PN(x)) log(x − α)eikxdx = ∫ α

−1(φ(x) − PN(x)) log(x − α)eikxdx
+ ∫ 1

α (φ(x) − PN(x)) log(x − α)eikxdx,

by Lemma 3.3, it implies

EN+1 = O (k−1(1 + ∣ log(k)∣)(∥φ − PN∥∞ + ∥φ
′ − P′

N∥∞)) ,

which yields (3.33) together with the estimate on ∥φ
′ − P′

N∥∞ in [14].
The identity (3.34) follows from Lemma 3.4 due to that ∥φ(x) − PN(x)∥ = (1 + x)(1 − x)h(x) for some

h ∈ C1[−1, 1].
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Remark 1. From the convergence rates Corollary 3.1 and Theorem 3.1, compared with that in [19], the new scheme
is of much fast convergence rate. It is also illustrated by the numerical results (see Section 4).

4. Numerical Results

In this section, we will present several examples to illustrate the efficiency and accuracy of the
proposed method. The exact values of an integral (36) are computed through Mathematica 11. Unless
otherwise specifically stated, all the tested numerical examples are executed by using Matlab R2016a on a
4 GHz personal laptop with 8 GB of RAM.

Example 1. Let us consider the integral

I[ f ] = ⨍ 1

−1

sin(x) log(x − α)eikx

x − t dx, (36)

for α = −1, t = 0.3, Table 1 shows the results for relative error compared with results of integral (30) [19] in Table 2.

Table 1. The relative error of Clenshaw-Curtis quadrature rule for integral (36).

k N = 4 N = 7 N = 11 N = 16

20 5.642 × 10−6 1.432 × 10−8 1.299 × 10−13 1.795 × 10−14

100 1.819 × 10−7 8.954 × 10−10 4.693 × 10−15 1.051 × 10−15

500 1.223 × 10−8 5.462 × 10−11 5.586 × 10−15 5.276 × 10−15

10,000 4.469 × 10−11 1.054 × 10−13 1.114 × 10−13 1.115 × 10−13

Table 2. The relative error of Clenshaw-Curtis quadrature rule for integral (30) [19].

k N = 4 N = 7 N = 11 N = 16

20 3.710 × 10−3 2.126 × 10−8 2.846 × 10−13 1.781 × 10−14

100 3.016 × 10−3 2.221 × 10−8 1.473 × 10−13 8.427 × 10−16

500 2.924 × 10−3 2.094 × 10−8 1.408 × 10−13 5.351 × 10−15

10,000 3.047 × 10−3 2.181 × 10−8 1.836 × 10−13 1.115 × 10−13

Example 2. Let integral

⨍ 1

−1

ex log(x − α)eikx

x − t dx (37)

Tables 3–5 represent results for relative error computed by Clenshaw-Curtis quadrature. As exact value we just have
used that returned by the rule when a huge number of points is used.

Table 3. The relative error of Clenshaw-Curtis quadrature rule for integral (37) for α = −1, f (x) = ex, t = 0.5.

k Exact Value N = 4 N = 8 N = 10 N = 20

20 1.360346130460585 − 1.837213701909973i 3.505 × 10−6 1.356 × 10−10 1.744 × 10−13 1.744 × 10−13

100 0.528568077016834 + 2.007019282199925i 3.418 × 10−7 8.530 × 10−12 1.983 × 10−14 0.00
500 2.032501926854849 + 0.510184343854610i 1.619 × 10−8 3.974 × 10−13 7.640 × 10−16 5.297 × 10−17

10,000 2.074653919328735 + 0.324969073545833i 6.131 × 10−11 1.418 × 10−15 2.114 × 10−16 4.237 × 10−16
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Table 4. The relative error of Clenshaw-Curtis quadrature rule for integral (37) for α = 1, f (x) = ex, t = 0.5.

k Exact Value N = 4 N = 8 N = 10 N = 20

20 11.034821521905808 + 12.628898944623328i 1.144 × 10−6 2.364 × 10−11 1.232 × 10−13 2.118 × 10−16

100 −16.418938229588949 + 1.005287081095468i 3.020 × 10−8 1.064 × 10−12 3.356 × 10−15 2.620 × 10−16

500 −7.387722497395380 + 14.855177327546180i 3.485 × 10−9 8.256 × 10−14 2.394 × 10−16 1.197 × 10−16

10,000 −6.063084167285699 +15.515830521473685i 1.132 × 10−11 2.871 × 10−16 1.192 × 10−16 1.192 × 10−16

Table 5. The relative error of Clenshaw-Curtis quadrature rule for integral (37) for α = 0, f (x) = ex, t = 0.5.

k Exact Value N = 4 N = 8 N = 10 N = 20

20 −1.928049736402945 + 2.990487262985703i 3.066 × 10−6 8.567 × 10−11 2.780 × 10−13 1.248 × 10−16

100 −0.934970743093483 − 3.460743549362822i 1.163 × 10−7 2.942 × 10−12 6.977 × 10−15 2.770 × 10−16

500 −3.485804022702049 − 0.864498281620865i 4.687 × 10−9 1.177 × 10−13 2.764 × 10−16 9.274 × 10−17

10,000 −3.547102638652960 − 0.555272021948841i 1.174 × 10−11 2.473 × 10−16 1.274 × 10−16 3.092 × 10−17

Example 3. Let the integral be

⨍ 1

−1

cos(x) log(x − α)eikx

x − t dx (38)

Tables 6–8 represent results for relative error computed by Clenshaw-Curtis quadrature. As exact value is calculated
by using the rule for large number of points.

Table 6. The relative error of Clenshaw-Curtis quadrature rule for integral (38) for α = −1, f (x) = cos(x),
t = 0.8.

k Exact Value N = 4 N = 8 N = 10 N = 20

20 0.498125821203593 − 1.281802863555419i 6.031 × 10−6 2.150 × 10−10 3.026 × 10−13 9.449 × 10−16

100 1.264215353181015 − 0.141780191524840i 5.295 × 10−7 1.348 × 10−11 3.197 × 10−14 3.728 × 10−16

500 1.090289998226562 − 0.675652244977728i 2.584 × 10−8 6.432 × 10−13 1.596 × 10−15 1.935 × 10−16

10,000 −1.283945795748914 + 0.084367340279936i 9.738 × 10−11 2.749 × 10−15 3.649 × 10−16 1.186 × 10−16

Table 7. The relative error of Clenshaw-Curtis quadrature rule for integral (38) for α = 1, f (x) = cos(x),
t = 0.8.

k Exact Value N = 4 N = 8 N = 10 N = 20

20 5.342145332192533 + 5.729353825896764i 2.057 × 10−6 4.505 × 10−11 2.427 × 10−13 9.620 × 10−16

100 −2.621138174403697 + 7.318981197518284i 4.131 × 10−8 1.918 × 10−12 6.183 × 10−15 3.657 × 10−16

500 0.622301278817091 + 7.666316541113909i 6.007 × 10−9 1.558 × 10−13 4.418 × 10−16 1.291 × 10−16

10,000 3.064017684660896 − 7.095233976390074i 1.886 × 10−11 4.632 × 10−16 1.284 × 10−16 1.284 × 10−16

Table 8. The relative error of Clenshaw-Curtis quadrature rule for integral (38) for α = 0, f (x) = cos(x),
t = 0.8.

k Exact Value N = 4 N = 8 N = 10 N = 20

20 −0.112551138814753 + 0.430514461423602i 2.401 × 10−5 6.824 × 10−10 2.176 × 10−12 3.111 × 10−15

100 −0.477210698149339 + 0.058677959322354i 8.618 × 10−7 2.188 × 10−11 5.266 × 10−14 4.883 × 10−16

500 −0.417276484590423 + 0.257429625049396i 3.407 × 10−8 8.609 × 10−13 7.249 × 10−16 1.382 × 10−15

10,000 0.487266314746835 − 0.032032920039315i 8.567 × 10−11 2.205 × 10−15 6.556 × 10−16 4.626 × 10−16
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5. Conclusions

Clearly, Tables 1–8 illustrate the relative error of the Clenshaw-Curtis quadrature taken as
∣Iα

N+1[ f ]−Iα[ f ]∣∣Iα[ f ]∣ .
We can see that for proposed Clenshaw-Curtis quadrature based on Hermite interpolation polynomial,
with small value of points higher precision of the numerical results of integrals is obtained in O(N log N)
operations. Furthermore these tables show that more accurate results can be obtained as k increases with
fixed value of N. Conversely, more accurate approximation can be achieved as N increases but k is fixed.
Moreover, Tables demonstrate that results successfully satisfy the analysis derived in Section 3.
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Abstract: In high energy particle accelerators, a careful modeling of the electromagnetic interaction
between the particle beam and the structure is essential to ensure the performance of the experiments.
Particular interest arises in the presence of angular discontinuities of the structure, due to the
asymmetrical behavior. In this case, semi-analytical models allow one to reduce the computational
effort and to better understand the physics of the phenomena, with respect to purely numerical
models. In the paper, a model for analyzing the electromagnetic interaction between a traveling charge
particle and a perfectly conducting angular slot of a negligible thickness is discussed. The particle
travels at a constant velocity along a straight line parallel to the axis of symmetry of the strip.
The longitudinal and transverse coupling impedances are therefore evaluated for a wide range
of parameters.

Keywords: particle accelerator; coupling impedance; dual integral equations

1. Introduction

Recent discoveries in high-energy particle accelerators are connected to the possibility to reach
higher level of energies in the experiments [1]. One of the main limitations to the involved energy,
that is to say to the current of the beam, is the instability of the particle due to the electromagnetic
interaction with the surrounding structures [2]. The synthetic design parameter commonly adopted in
literature to describe the electromagnetic interaction between a traveling particle and a structure is the
coupling impedance [3–5]. This parameter is proportional to the energy lost by the traveling charge
due to the interaction with the scattered fields produced by the surrounding structures. Equivalently,
it is proportional to the energy that has to be spent to keep its speed constant, neglecting the slowing
effect of the surrounding structures. For structures invariant along the charge traveling direction,
a per-unit-length coupling impedance has to be introduced [4], whose longitudinal and transverse
components can be defined as

Z|| (r, ϕ, k) = −1
q

1
L

L/2∫
−L/2

Ez (r, ϕ, z, ω) ejkz/βdz Z⊥ (r, ϕ, k) =
1
k
∇⊥Z|| (r, ϕ, k) , (1)

where L is an unitary length, Ez (r, ϕ, z, ω) the x-component of the electric field in the frequency
domain, k the wavenumber, and the charge q is moving at constant velocity v = βc along the z axis.
The second equation in (1) is known as the Panofski–Wenzel theorem [6].

The research of new shapes of cavities with proper coupling impedances is actually of high interest
for the design of even more efficient particle accelerators [7–9]. Nowadays, powerful tools allow
performing the electromagnetic numerical analysis of complex structures [10]. However, analytical
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or semi-analytical solutions still play a valuable role in this field, enabling to better understand the
physics of some phenomena. Modal analysis is often adopted for close structures [11,12], diffractive
methods for high-frequency solutions, and integral formulations for open geometries or in the presence
of edges [13,14].

Most of the studies related to the coupling impedance consider, in a cylindrical reference
system, axially symmetric geometries. This choice is both because they represent most of the
structures of interest and because the symmetry allows finding the solution with less effort or even in
a semi-analytical form. In this paper, we want to analyze the interaction of a particle with a axially
asymmetric structure, in particular an angular slot, as shown in Figure 1. This configuration is
representative of particle accelerator components that break the axial symmetry. The proposed method
is quite general and can be adopted for a wide class of scattering and diffraction problems [15–20].
It can be easily generalized and adopted to analyze similar geometries.

Figure 1. Geometry of the problem.

The problem is formulated in the particle frame at first. Assuming the geometry invariant
along the traveling direction, in the particle frame a stationary model is adoptable, this simplifies
the formulation and the solution. In order to evaluate the coupling impedance, the electromagnetic
quantities are then obtained in the slot frame by means of Lorentz transforms.

The angular slot is assumed to be perfectly conductive; this is a common choice in the literature.
Although the finite conductivity of the strip can be taken into account with some complications,
neglecting it does not have a concrete effect on the validity of the analysis. The validity of such a choice
is discussed more in detail in the last section of the paper.

The primed notation is adopted to identify the quantities in the particle frame, the unprimed
notation in the slot frame.

The paper is composed of 6 sections: after this introduction, in the next section the problem is
formulated in the particle frame and a methodology for computing the unknown current density is
presented. In the following sections, the electromagnetic fields are evaluated in the particle and in
the structure frame and then the coupling impedance is estimated. Then, some numerical results are
presented. Finally, the conclusions are discussed.

2. Formulation of the Problem in the Particle Frame

In this section let us consider the geometry shown in Figure 1: a perfectly conducting angular slot
S = {r = a, |ϕ| ≤ ϕa, z} at distance a from the axis and covering an angular sector of 2ϕa. A travelling
charge q moves parallel to the slots’s axis, placed at (rq, ϕq), at constant speed v = βc, c being the speed
of light in free space.

The problem is formulated in term of integral equations and its solution is reduced to the
resolution of a linear system.

The electromagnetic interaction between the particle and the structure can be easily formulated
and solved in the particle frame, being an electrostatic model adequate for such a problem. Once the
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electromagnetic quantities are computed, their values in the slot frame can be obtained by means of
Lorentz transforms.

The electrostatic potential produced by the charge is

V′
q =

q

4πε0

√
r′2 + r2

q − 2r′rq cos
(

ϕ′ − ϕq
)
+ z′2

, (2)

while the potential produced by the induced charge density σ′(ϕ′, z′) on the slot can be expressed as

V′= a
4πε0

∫
S

σ′(ϕ0, z0) dϕ0dz0√
r′2 + a2 − 2r′a cos (ϕ′ − ϕ0) + (z′ − z0)

2
. (3)

Being a perfectly conducting slot, the boundary condition to be verified is that the tangential
components of the electric field vanishes on the slot. This corresponds to impose that

V′(r′ = a, ϕ′, z) + V′
q(r

′ = a, ϕ′, z) = 0 (4)

for every (ϕ′, z′) ∈ S.
Considering Equations (2) and (3), the boundary condition leads to

∫
S

σ′(ϕ0, z0) dϕ0dx0√
2a2 − 2a2 cos (ϕ′ − ϕ0) + (z′ − z0)

2
= − q/a√

a2 + r2
q − 2arq cos

(
ϕ′ − ϕq

)
+ z′2

(5)

From this equation, it is worth noting to observe that there is complete induction on the slot for
such a kind of geometry. In fact, by multiplying Equation (5) for the denominator of its second member
and performing a limit for z going toward +∞, it is possible to obtain that∫

S

σ′(ϕ0, z0) a dϕ0dz0 = −q. (6)

This result will be usefully employed later on in the computation of the coupling impedance.
In order to solve the problem it is necessary to recall a relevant integral ([21] R6.616.4)

π√
D2 + Z2

=

+∞∫
−∞

K0 (Dw) e−jwZdw, (7)

and its derived form
π Z

(D2 + Z2)
3/2 = j

+∞∫
−∞

wK0 (Dw) e−jwZdw. (8)

Then it is useful to introduce a spatial Fourier transform along the z axis, namely

σ̃′(ϕ, w) =
1

2π

+∞∫
−∞

σ′(ϕ, z)ejwzdz. (9)

By using Equation (7) on the integral Equation (5) and applying the inverse Fourier transform to
both members, with some manipulations it becomes
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ϕa∫
−ϕa

σ̃′(ϕ0, w)K0

(√
2a w

√
1 − cos (ϕ′ − ϕ0)

)
dϕ0 =

= − q
2πa

K0

(
a w

√
1 + (rq/a)2 − 2(rq/a) cos

(
ϕ′ − ϕq

))
. (10)

Equation (10) has to be verified on S, whereas the induced charge density vanishes outside the
angular slot, namely

+∞∫
−∞

σ̃′(ϕ0, w) e−jwzdw = 0. (11)

Equations (10) and (11) constitute a dual system of integral equation with respect to the induced
current density. An efficient solution of such a problem can be obtained by representing the unknown
in terms of Neuman series [22]:

σ′(ϕ′, z′) =

⎧⎪⎨⎪⎩
− q

2πa ϕa

∞
∑

n=0
σn(z′)

Tn (ϕ′/ϕa)√
1 − (ϕ′/ϕa)

2
, |ϕ| ≤ ϕa

0, |ϕ| > ϕa

(12)

where Tn(·) is the Chebychev polynomial of order n [23,24]. Such polynomials exhibit several relevant
properties [25,26] that can be adopted for the solution of some classes of electromagnetic problems.
According to Equation (9), then the induced current density in the transformed domain is

σ̃′(ϕ′, w) = − q
2πa ϕa

∞

∑
n=0

σ̃n(w)
Tn (ϕ′/ϕa)√
1 − (ϕ′/ϕa)

2
. (13)

With such a normalization, dimensionless expansion coefficients are obtained in the
transformed domain.

The chosen representation is a form of the more generic Neuman series, particularized for this
problem [27]. The chosen representation automatically matches the right edge behavior, this regularizes
the method and reduces the number of required coefficients.

In addition, the chosen current density representation already satisfies Equation (11). So,
by substituting it into the remaining Equation (10), it is found that

∞

∑
n=0

σ̃n(w)

ϕa∫
−ϕa

Tn (ϕ′/ϕa)√
1 − (ϕ′/ϕa)

2
K0

(√
2a w

√
1 − cos (ϕ′ − ϕ0)

)
dϕ0 =

= ϕaK0

(
a w

√
1 + (rq/a)2 − 2(rq/a) cos

(
ϕ′ − ϕq

))
. (14)

This equation has to be verified for every |ϕ′| ≤ ϕa. In order to impose this condition, Equation (14)
is projected on the same basis functions adopted for the representation of the current density (Galerkin
scheme). This converts Equation (14) in the linear system

AAAσ̃̃σ̃σ = bbb, (15)

where σ̃̃σ̃σ is the vector of the unknowns σ̃n, AAA is a symmetric matrix whose coefficients, obtained with
some trivial manipulations and changes of variable as

Anm =

π∫
0

π∫
0

K0

(
2a w

∣∣∣sin
( ϕa

2
(
cos ψ0 − cos ψ′))∣∣∣) cos (mψ0) cos

(
nψ′) dψ0dψ′ (16)
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and bbb the known term vector defined as

bm =

π∫
0

K0

(
a w

√
1 + (rq/a)2 − 2(rq/a) cos

(
ϕa cos ψ′ − ϕq

))
cos

(
mψ′) dψ′. (17)

It is worth noting that for rq = 0, that is to say when the particle is in the axis of the slot, all the
coefficients bm are zero but the first one, that is b0 = πK0 (a w).

3. Electromagnetic Fields in the Slot Frame

In order to complete the problem formulation, it is proper to express the electromagnetic fields in
the slot frame, too. This can be realized by applying the Lorentz transforms to the fields computed in
the previous section in particle frame.

Let us consider at first the z component of the electric field. The contribution provided by the
traveling charge in the frequency domain is well known and is

Ez,q =
jqκζ0

2πβγ
e−jzk/βK0

(
κ
√

r2 + r2
q − 2rrq cos (ϕ)

)
, (18)

where γ = 1/
√

1 − β2 is the Lorentz factor, κ = k/ (βγ), and ζ0 =
√

μ0/ε0 is the characteristic
impedance of free space.

The contribution produced by the induced current density on the slot can be obtained with some
manipulations as function of the representation coefficients σn.

In the particle frame, starting from Equation (3) it is possible to obtain

e′z(r′, ϕ′, z′) = a
4πε0

∫
S

σ′(ϕ0, z0) (z′ − z0) dϕ0dz0[
r′2 + a2 − 2r′a cos (ϕ′ − ϕ0) + (z′ − z0)

2
]3/2 . (19)

Lorentz transforms are now applied to obtain the electric field in the slot frame. In this specific
case they are

e′z = ez, σ′ = σγ, r′ = r, ϕ′ = ϕ, z′ = γ (z − vt) . (20)

Applying these transforms to Equation (19), it is found that

ez(r, ϕ, z, t) =
aγ

4πε0

∫
S

σ(ϕ0, z0) (γ (z − vt)− z0) dϕ0dz0[
r2 + a2 − 2ra cos (ϕ − ϕ0) + (γ (z − vt)− z0)

2
]3/2 . (21)

By means of Equation (8) and applying a spatial Fourier transform according to Equation (9), it is
found that

ez(r, ϕ, z, t) =
ja γ

2πε0

+ϕa∫
−ϕa

+∞∫
−∞

σ̃(ϕ0, w)wejwγvtK0

(
w
√

r2 + a2 − 2ra cos (ϕ − ϕ0)

)
e−jwγzdϕ0dw. (22)

Finally, by performing a time Fourier transform and then the integral on w, the required field is
finally found as

Ez(r, ϕ, z, ω) =
ja kζ0

β2 e−jzk/β

+ϕa∫
−ϕa

σ̃ (ϕ0, κ)K0

(
κ
√

r2 + a2 − 2ra cos (ϕ − ϕ0)

)
dϕ0. (23)

The last integral can be performed by substituting the representation of the current density (13),
leading to the very simple expression of the z-component of the electric field in the slot frame:
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Ez(r, ϕ, z, ω) = − jqkζ0

2πϕaβ2 e−jzk/β
∞

∑
n=0

σ̃n(κ)bn (r, ϕ, κ), (24)

where coefficients bn (r, ϕ, κ) have the same expression of Equation (29) but are computed as the
generic point (r, ϕ) and for w = κ.

With a similar procedure, all the other fields can be expressed. For instance, it is possible to easily
find that the charge density induced on the slot is

σ (ϕ, z, ω) = − q
aϕaγ

∞

∑
n=0

σn (κ)
Tn (ϕ/ϕa)√
1 − (ϕ/ϕa)

2
. (25)

4. Coupling Impedance

In order to compute the coupling impedance, just the longitudinal component of the electric field
produced by the induced currents is required, since the electric field produced by the traveling charge
does not contribute to the coupling impedance.

So, given Equation (24), the per-unit-length longitudinal coupling impedance (1) can be easily
computed in a generic point in the transverse plane as

Z|| (r, ϕ, k) =
jkζ0

2πϕaβ2

∞

∑
n=0

σ̃n(κ)bn (κ, r, ϕ). (26)

It is worth noting that, since the matrix and the known term vector in Equation (15) are purely real,
all the unknown terms σn are real, too. So, the longitudinal coupling impedance is purely imaginary.
This result is expected since there are not diffraction losses.

From Equation (26), by means of the definition (1) it is possible to find the expression of the
transverse coupling impedance, that is

Z⊥ (r, ϕ, k) =
jkζ0

2πϕaβ2

∞

∑
n=0

σ̃n(κ)

{
∂ bn (κ, r, ϕ)

∂r
r̂ +

1
r

∂ bn (κ, r, ϕ)

∂ϕ
ϕ̂

}
. (27)

In order to compute the transverse coupling impedance in a practical way, it is worth recalling
the addition theorem for the Hankel functions

K0 (wR) =
+∞

∑
p=−∞

(−1)p Ip
(
ρ′w

)
Kp (ρw) ejp(ϕ−ϕ′), (28)

being R =
√

ρ′2 + ρ2 − 2ρ′ρ cos (φ′ − φ) and ρ′ ≤ ρ.
With some manipulations, it can be used to analytically compute the integral in Equation (17),

expressing the coefficients bn as series of products of Bessel functions, namely

bm
(
rq, ϕq, w

)
= π

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

I0
(
rqw

)
K0 (aw) + 2

+∞
∑

p=1
(−1)p Ip

(
rqw

)
Kp (aw) J0 (pϕa) cos

(
pϕq

)
, m = 0,

2jm
+∞
∑

p=1
(−1)p Ip

(
rqw

)
Kp (aw) Jm (pϕa) cos

(
pϕq

)
, m even,

2jm
+∞
∑

p=1
(−1)p Ip

(
rqw

)
Kp (aw) Jm (pϕa) sin

(
pϕq

)
, m odd.

(29)

Then, the derivatives required in Equation (27) can be expressed as
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∂bn

∂r
(r, ϕ, κ) = 2π jn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

I1 (rκ)K0 (aκ) +

+
+∞
∑

p=1
(−1)p

[ p
r

Ip (rκ) + Ip+1 (rκ)
]

Kp (aκ) J0 (pϕa) cos (pϕ), m = 0,

+∞
∑

p=1
(−1)p

[ p
r

Ip (rκ) + Ip+1 (rκ)
]

Kp (aκ) Jn (pϕa) cos (pϕ), n even,

+∞
∑

p=1
(−1)p

[ p
r

Ip (rκ) + Ip+1 (rκ)
]

Kp (aκ) Jn (pϕa) sin (pϕ), n odd.

(30)

and

1
r

∂bn

∂ϕ
(r, ϕ, κ) =

2π jn

r

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+∞
∑

p=1
(−1)(p+1) pIp (rκ)Kp (aκ) Jn (pϕa) sin (pϕ), n even,

+∞
∑

p=1
(−1)(p+1) pIp (rκ)Kp (aκ) Jn (pϕa) cos (pϕ), n odd.

(31)

Among all the possible positions in the transverse plane, a relevant one is when the particle is
in the center of the slot, namely r = 0. In fact, in a particle accelerator, the particle is supposed to
travel along the radial axis of the structure, or eventually in a position very close to it. In this case,
as previously stated, all the coefficients bn (κ, 0) vanishes but the one for n = 0.

So the longitudinal coupling impedance Equation (26) assumes the very simple expression

Z|| (r, ϕ, k) =
jkζ0

2πϕaβ2 σ̃0(κ)b0 (κ, 0) . (32)

Then, performing the limits for r going to zero of Equations (30) and (31), the coefficients of
Equation (27) reduces to

∂bn

∂r
(r, ϕ, κ) = −π jnK1 (aκ) Jn (ϕa)

{
cos (ϕ) , n even,
sin (ϕ) , n odd.

(33)

and
1
r

∂bn

∂ϕ
(r, ϕ, κ) = π jnK1 (aκ) Jn (ϕa)

{
sin (ϕ) , n even,
cos (ϕ) , n odd.

(34)

So the transverse coupling impedance (27) can be easily expressed in Cartesian coordinates
and becomes

Z⊥ (r, ϕ, k) = − jkζ0

2ϕaβ2 K1 (a κ)
∞

∑
n=0

jnσ̃n(κ)Jn (ϕa) x̂. (35)

Such a result is coherent with the physics of the problem since, due to symmetry reasons, for such
particle position it is expected that the transverse coupling impedance is along the bisector of the
angular slot.

5. Numerical Results

Some numerical results are presented in this section, in order to discuss the efficiency of the
proposed method. In all the simulations, the shape of the angular slot is a = 1 cm, ϕa = 60◦. A Simpson
rule with an adaptive spacing is adopted to compute the matrix coefficients (16), while a Gaussian
quadrature algorithm is used for the coefficients (17). Since the kernel of the terms in Equation (16)
exhibits a logarithmic singularity and gives rise to computational problems, proper numerical
manipulations have to be introduced to navigate the problem. The adopted solution is discussed
in the Appendix A. At first, the behavior of the coefficients σn is shown for different values of the
frequency and of the distance between the particle and the structure. In Figure 2a the absolute values
of expansion coefficients are shown for different frequencies. The particle is in the center of the axis,
as that is the most realistic case in practice. At lower frequencies, the coefficients’ amplitudes quickly
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decrease, with few of them being enough to properly represent the current density: for aκ = 0.01,
the third coefficient is already four orders of magnitude lower than the first one. At higher frequencies,
the amplitude of the coefficients decreases more slowly, so an higher number of coefficients is required,
as expected.

In Figure 2b the coefficients are shown in case of offset of the particle beam. As expected,
the amplitude of the coefficients increases as the distance of the particle from the structure decreases.
Additionally, while the odd coefficients vanish in case of centred particle, they grow proportionally to
the particle offset.

(a) (b)

Figure 2. Absolute values of the expansion coefficients at βγ = 1 for: (a) different frequencies (rq = 0),
(b) different offsets of the particle (aκ = 1, ϕq = 30◦).

Then, in Figure 3 we show the behavior of the current density induced on the angular slot as in
Equation (25), for different values of the frequency, normalized with respect to the charge. The adopted
coefficients are the same as in Figure 2a. As expected, at low frequencies induced currents have a very
flat behavior, just exhibiting a divergence at the boundaries. As the frequency grows, the behavior
of the current density is more variable even in the middle of the angular slot. The results have been
successfully validated with a finite element tool, providing a very good correspondence in the middle
of the structure and being unable to reproduce the proper divergent boundary behavior, as expected.

Figure 3. Behavior of the current density induced on the structure (rq = 0, βγ = 1).
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Finally, the coupling impedance is discussed. In Figure 4a, the longitudinal coupling impedance
is shown, as a function of the frequency and of the particle speed. As already discussed, in practice it
is a coupling reactance, the real part being null. The shape is slightly influenced by the particle speed.
As expected, the coupling impedance drops to negligable values for high frequencies.

In Figure 4b, the transverse coupling impedance (reactance) is shown, as function of the frequency
and of the particle speed, with similar considerations with respect to the longitudinal impedance.

(a) (b)

Figure 4. Normalized per unit length (a) longitudinal and (b) transverse coupling reactance for different
frequencies (rq = 0).

6. Discussion

A method for the evaluation of the coupling impedance of a particle travelling parallel close to
a perfectly conducting angular slot has been presented. The method is accurate and effective, and can
be easily generalized to similar geometries exhibiting angular variation in cylindrical coordinates.

As stated in the introduction, the angular slot is assumed to be perfectly conducting.
This assumption is widely accepted in the literature on particle accelerator cavity design, for several
reasons. First of all, the coupling impedance mainly takes into account the electromagnetic interaction
between the particle and the surrounding structure, which is often mainly connected to structure shape.
In this sense, the real part of the coupling impedance aims to take into account the diffractive losses.
For this reason, most of the scientific paper consider the structure as perfectly conducting. In most of
the cases where the conductivity of the structure is taken into account, this aspect is usually added
to the perfectly conducting model with perturbative approaches and its effect usually smooths some
rough behaviors but does not produce relevant changes. For this reason, the study of structures with
perfectly conducting walls is often considered a valuable analysis, even if the inclusion of the finite
conductivity is of course an added value. Regarding our specific problem, most of the analysis does not
lose validity, even when adding the finite conductivity of the slot. Since the problem is formulated in
the particle frame at first, the model is stationary regardless of whether the slot’s conductivity is finite
or not. So the first part of the paper is not affected. After applying the Lorentz transforms, once the
current density is found in the strip frame, it is possible to evaluate the resistive power dissipation on
the slot. Finally, in real particle accelerators, despite whether the particle speed is close to the light
speed, the charge is extremely small and the current is not very high, usually hundreds of mA at most.
Therefore, the current densities in practical cases are not huge.

The angular slot and the travelling charge are placed in an open space. In a particle accelerator,
all the components are closed in a metallic pipe, which is necessary to maintain a vacuum. With respect
to the proposed formulation, it is possible to add the presence of the pipe by partially changing the
kernel of Equations (16) and (17). However, such a change just introduces some poles in the kernel,
connected to the pipe resonances, independent of the asymmetry of the angular slot. Since the aim of
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the paper is to propose a method to deal with angularly asymmetric structures, just focussing on that
and not mixing different phenomena, the external pipe has been neglected.

The proposed method has proven to be accurate and the series is quickly convergent. It is
suitable to analyze structures with angular asymmetry. The obtained results can be used to
benchmark numerical solutions or as reference geometry for more complex structures typical of
particle accelerators.
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D.A. and L.V.
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Appendix A. Computation of the Linear System

For low values of the argument, the kernel of the integral of Equation (16) exhibits a logarithmic
singularity, namely

K0 (z) ∼= − log (z/2)− γ0, (A1)

with γ0 being the Eulero–Mascheroni constant. For its efficient numerical computation, it is worth
adopting the variational form

Anm = Alog
nm + A0

nm, (A2)

where

A0
nm =

π∫
0

π∫
0

[
K0

(
2a w

∣∣∣sin
( ϕa

2
(
cos ψ0 − cos ψ′))∣∣∣)+

+ log
(

a w
∣∣∣sin

( ϕa

2
(
cos ψ0 − cos ψ′))∣∣∣)+ γ0

]
cos (mψ0) cos

(
nψ′) dψ0dψ′. (A3)

The new integral in Equation (A3) has no singularities and can be numerically computed with
minimal effort. Regarding the logarithmic, by means of the relevant expansion

log |sin (x/2)| = −
∞

∑
p=1

cos px
p

− log 2 , (A4)

with some manipulations it can be easily found that

Alog
nm = −

π∫
0

π∫
0

[
log

(
a w

∣∣∣sin
( ϕa

2
(
cos ψ0 − cos ψ′))∣∣∣)+ γ0

]
cos (mψ0) cos

(
nψ′) dψ0dψ′ =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−π2[ log (a w/2) + γ0
]
, m = n = 0

π2
∞
∑

p=1

Jm (p/ϕa) Jn (p/ϕa)

p
, m + n odd,

0, m + n even.

(A5)
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Abstract: In the paper, we study the oscillation of fourth-order delay differential equations, the present
authors used a Riccati transformation and the comparison technique for the fourth order delay
differential equation, and that was compared with the oscillation of the certain second order
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1. Introduction

In this work, we consider a fourth-order delay differential equation

Lz + q (y) f (z (σ (y))) = 0, (1)

where

Lz :=
[

m3 (y)
(

m2 (y)
[
m1 (y) z′ (y)

]′)′]′ .

We assume mi, q, σ ∈ C ([y0, ∞),R) , mi (y) > 0, i = 1, 2, 3, lim
y→∞

m3 (y)
m1 (y)

> 0, q > 0, σ (y) ≤ y

and lim
y→∞

σ (y) = ∞, f ∈ C (R,R) , f (u) /u ≥ k > 0 for u �= 0.

By a solution of (1) we mean a function z ∈ C ((σ (yz) , ∞)) , which has the property

m1 (y) z′ (y) , m2 (y) [m1 (y) z′ (y)]′ , m3 (y)
(

m2 (y) [m1 (y) z′ (y)]′
)′ ∈ C1[yz, ∞), and satisfies (1) on

[yz, ∞). We consider only those solutions z of (1) which satisfy sup{|z (y)| : y ≥ yz} > 0, for all y > yz.
Such a solution is said to be oscillatory if it has arbitrarily large zeros and nonoscillatory otherwise.

The study of differential equations with deviating argument was initiated in 1918, appearing in
the first quarter of the twentieth century as an area of mathematics that has since received a lot of
attention. It has been created in order to unify the study of differential and functional differential
equations. Since then, there has been much research activity concerning the oscillation of solutions of
various classes of differential and functional differential equations. Many authors have contributed on
various aspects of this theory, see ( [1–9]) .

The problem of the oscillation of higher and fourth order differential equations have been
widely studied by many authors, who have provided many techniques used for obtaining oscillatory

Symmetry 2019, 11, 628; doi:10.3390/sym11050628 www.mdpi.com/journal/symmetry59
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criteria for higher and fourth order differential equations. We refer the reader to the related books
(see [4,10–13]) and to the papers (see [11,14–18]). Because of the above motivating factors for the study
of fourth-order differential equations, as well as because of the theoretical interest in generalizing and
extending some known results from those given for lower-order equations, the study of oscillation of
such equations has received a considerable amount of attention. For a systematic summary of the most
significant efforts made as regards this theory, the reader is referred to the monographs of [19–22].

Especially, second and fourth order delay differential equations are of great interest in biology in
explaining self-balancing of the human body and in robotics in constructing biped robots.

One of the traditional tools in the study of oscillation of equations which are special cases of (1) has
been based on a reduction of order and the comparison with oscillation of first-order delay differential
equations. Another widely used technique, applicable also in the above-mentioned case, involves
the Riccati type transformation which has been used to reduce Equation (1) to a first-order Riccati
inequality see (see [2]) .

Moaaz et al. [11] improved and extended the Riccati transformation to obtain new oscillatory
criteria for the fourth order delay differential equations(

π (y)
(
z′′′ (y)

)α
)′

+
∫ m

a
q (y, ξ) f (z (Φ (y, ξ))) dσ (ξ) = 0‚ y ≥ y0.

Elabbasy et al. [7] studied the equation

[
m (y)

(
z(n−1) (y)

)γ]′
+

m

∑
i=1

qi (y) f (z (σi (y))) = 0‚ y ≥ y0.

Agarwal et al. [1] and the present authors in [18] used the comparison technique for the fourth
order delay differential equation[

m (y)
(

z(n−1) (y)
)γ]′

+ q (y) zγ (σ (y)) = 0‚ y ≥ y0,

that was compared with the oscillation of certain first order differential equation and under
the conditions ∫ ∞

y0

1

m
1
γ (y)

dy = ∞,

and ∫ ∞

y0

1

m
1
γ (y)

dy < ∞.

However, the authors of this paper used the comparison technique for the fourth order
delay differential equation and that was compared with the oscillation of certain second order
differential equation.

To the best of our knowledge, there is nothing known about the oscillation of (1) to be oscillatory
under the ∫ ∞

y0

1
mi (y)

dy = ∞. (2)

Our primary goal is to fill this gap by presenting simple criteria for the oscillation of all
solutions of (1). So the main advantage of studying (1) essentially lies in the direct application
of the well-known Kiguradze lemma [23] (Lemma 1), which allows one to classify the set of possible
nonoscillatory solutions.

In what follows, all occurring functional inequalities are assumed to hold eventually, that is,
they are satisfied for all t large enough. As usual and without loss of generality, we can deal only with
eventually positive solutions of (1).
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2. Main Results

In this section, we state some oscillation criteria for (1). For convenience, we denote

πi (y) =
∫ y

y1

1
mi (s)

ds, i = 1, 2, 3, I2 (y) =
∫ y

y1

1
m1 (s)

π2 (s) ds.

A2 (y) =
∫ y

y1

1
m2 (s)

π3 (s) ds , A3 (y) =
∫ y

y1

1
m1 (s)

A2 (s) ds.

Ē0z (y) = z (y) , Ēiz (y) = mi (Ēi−1z (y))′ , i = 1, 2, 3, Ē4z (y) = (Ē3z (y))′ .

where y1 is sufficiently large.
The main step to study Equation (1) is to determine the derivatives sign Ēiz (y) according to

Kiguradze’s lemma [23]
Ē4z (y) + q (y) f (z (σ (y))) = 0‚

the set Φ of nonoscillatory solutions can be divided into two parts

Φ = Φ1 ∪ Φ3,

say positive solution z (y) satisfies

z (y) ∈ Φ1 ⇐⇒ Ē1z (y) > 0, Ē2z (y) < 0, Ē3z (y) > 0, Ē4z (y) < 0,

or
z (y) ∈ Φ3 ⇐⇒ Ē1z (y) > 0, Ē2z (y) > 0, Ē3z (y) > 0, Ē4z (y) < 0.

Theorem 1. Let (2) hold. Assume that z(y) be a positive solution of Equation (1). If

(i) z (y) ∈ Φ1, then
z (y)
π1(y)

is decreasing.

(ii) z (y) ∈ Φ3, then
z (y)
A3(y)

is decreasing and Ē1z (y) ≥ A2 (y) Ē3z (y) .

Proof. Let z (y) be a positive solution of (1) and z (y) ∈ Φ1. It follows from the monotonicity of
Ē1z (y) that

z (y) > z (y)− z (y1)

=
∫ y

y1

1
m1 (s)

Ē1z (s) ds,

≥ Ē1z (y)
∫ y

y1

1
m1 (s)

ds,

≥ Ē1z (y)π1(y) > m1 (y) z′ (y)π1(y).

Therefore, (
z (y)
π1(y)

)′
=

z′ (y)π1(y)− z (y) 1
m1(y)

(π1(y))
2 < 0, (3)

case (i) is proved. Now let z (y) ∈ Φ3. Since

Ē2z (y) = Ē2z (y1) +
∫ y

y1

1
m3 (s)

Ē3z (s) ds

> Ē3z (y)π3 (y)
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then (
Ē2z (y)
π3(y)

)′
=

Ē
′
2z (y)π3(y)− Ē2z (y) 1

m3(y)

(π3(y))
2 < 0. (4)

Thus
Ē2z (y)
π3(y)

is decreasing. Moreover,

Ē1z (y) = Ē1z (y1) +
∫ y

y1

π3(s)
m2 (s)

Ē2z (s)
π3(s)

ds,

>
Ē2z (y)
π3(y)

A2(y).

we obtain Ē1z (y) ≥ A2(y)Ē3z (y) and

(
Ē1z (y)
A2(y)

)′
=

Ē
′
1z (y) A2(y)− 1

m2(y)
π3(y)Ē1z (y)

(A2(y))
2 < 0. (5)

Thus
Ē1z (y)
A2(y)

is decreasing. On the other hand,

z (y) = z (y1) +
∫ y

y1

A2(s)
m1 (s)

Ē1z (s)
A2(s)

ds,

>
Ē1z (y)
A2(y)

A3(y),

which implies (
z (y)
A3(y)

)′
=

z
′
(y) A3(y)− 1

m1(y)
A2(y)z (y)

(A3(y))
2 < 0. (6)

So that
z (y)
A3(y)

is decreasing. Theorem is proved.

Let

δ (y) =
1

m1 (y)

(∫ σ−1(y)

y

1
m2 (s)

∫ σ−1(y)

s

1
m3 (ν)

dνds
∫ ∞

σ−1(y)
kq (s) ds

)
.

Theorem 2. Let (2) hold. Let z(y) be a positive solution of Equation (1). If

(i) z (y) ∈ Φ1, then z
′
(y) ≥ δ (y) z (y) .

(ii) z (y) ∈ Φ3, then z
′
(y) ≥ 1

m1(y)π1(y)
z (y) .

Proof. Assume that z (y) is a positive solution of (1) and z (y) ∈ Φ1. For any u > y, we have Ē1z (y) that

−Ē2z (y) = Ē2z (u)− Ē2z (y) ,

=
∫ u

y

1
m3 (s)

Ē3z (s) ds, (7)

> Ē3z (u)
∫ u

y

1
m3 (s)

ds.
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Multiplying by
1

m2 (s)
and then integrating from y to u, one gets

Ē1z (y) ≥ ∫ u
y

Ē3z (y)
m2 (s)

∫ u
s

1
m3 (ν)

dνds,

> Ē3z (u)
∫ u

y
1

m2 (s)
∫ u

s
1

m3 (ν)
dνds.

(8)

An integration of (1) from u to ∞, yields

Ē3z (u) ≥
∫ ∞

u
kq (s) z (σ (s)) ds,

≥ z (σ (s))
∫ ∞

u
kq (s) ds.

Combining (7) together with (8) and setting u = σ−1 (y), we get

z
′
(y) ≥ 1

m1 (y)

(∫ σ−1(y)
y

1
m2 (s)

∫ σ−1(y)
s

1
m3 (ν)

dνds
∫ ∞

σ−1(y) kq (s) ds
)

z (y) .

≥ δ (y) z (y) .
(9)

and case (i) is proved. Now let z (y) ∈ Φ3. Employing (H2), the monotonicity of Ē1z (y) and the fact
that Ē1z (y) → ∞ as y → ∞, we get

z (y) = z (y1) +
∫ y

y1

1
m1 (s)

Ē1z (s) ds,

≤ z (y1) + Ē1z (y)
∫ y

y1

1
m1 (s)

ds,

= z (y1)− Ē1z (y)
∫ y1

0
1

m1 (s)
ds + Ē1z (y)

∫ y
0

1
m1 (s)

ds,

≤ Ē1z (s)
∫ y

0
1

m1 (s)
ds.

(10)

The proof is complete now.

Now, we apply the results of the previous cases to obtain the oscillation conditions of Equation (1).
We denote

δ1 (y) = q (y)
π1 (σ (y))

π1 (y)
,

δ2 (y) = kq (y)
A3 (σ (y))

A3 (y)
.

Theorem 3. Let (2) hold. Assume there exists a positive continuously differentiable functions ρ, ϑ ∈
C ([y0, ∞)) such that

lim sup
y→∞

∫ ∞

y1

[
ρ (ν)

m2 (ν)

∫ ∞

ν

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu − m1 (ν) (ρ

′ (ν))2

4ρ (ν)

]
dν = ∞, (11)

and

lim sup
y→∞

∫ ∞

y1

[
δ2 (ν) ϑ (s)− m1 (s) (ϑ′ (ν))2

4ρ (ν) A2 (s)

]
ds = ∞. (12)

Then every solution of Equation (1) is oscillatory.
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Proof. Assume that (1) has a nonoscillatory solution z(y). Without loss of generality, we can assume
that z (y) is a positive solution of (1). Then either z (y) ∈ Φ1 or z (y) ∈ Φ3. Now assume that
z (y) ∈ Φ1. Theorem 1 implies that

z (σ (y)) ≥ π1 (σ (y))
π1 (y)

z (y)

On the other hand, it follows from Theorem 2 that

z
′
(y) ≥ δ (y) z (y) .

Setting both estimates into (1), we get

Ē4z (y) + δ1 (y) ≤ 0.

Integrating from y to ∞ one gets

−Ē3z (y) ≥ ∫ ∞
y δ1 (s) z (s) ds,

≥ z (y)
∫ ∞

y δ1 (s) ds.
(13)

Integrating once more, we have

Ē2z (y) +
(∫ ∞

y

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu

)
z (y) ≤ 0. (14)

Define the function ω (y) by

ω (y) := ρ (y)
Ē1z (y)

z (y)
, (15)

then ω (y) > 0 and

ω′ (y) = ρ′ (y)
Ē1z (y)

z (y)
+ ρ (y)

Ē2z (y)
m2 (y) z (y)

− ρ (y)
Ē1z (y) z′ (y)

z2 (y)

≤ − ρ (y)
m2 (y) z (y)

∫ ∞

y

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu +

ρ′ (y)
ρ (y)

ω (y)− ω2 (y)
m1 (y) ρ (y)

(16)

≤ − ρ (y)
m2 (y) z (y)

∫ ∞

y

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu +

m1 (y) (ρ′ (y))
2

4ρ (y)
.

Integration of the previous inequality yields

∫ y

y1

[
ρ (ν)

m1 (ν)

∫ ∞

ν

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu − m1 (ν) (ρ

′ (ν))2

4ρ (ν)

]
dν ≤ ω (y1) ,

this contradicts with (11) as y → ∞. Now assume that z (y) ∈ Φ3. Theorems 1 and 2 guarantee that

z (σ (y)) ≥ A3 (σ (y))
A3 (y)

z (y) , z
′
(y) ≥ 1

m1 (y)π1 (y)
z (y) , Ē1z (y) ≥ A2 (y) Ē3z (y) ,

what in view of (1) provides
Ē4z (y) + δ2 (y) ≤ 0.

Now define ψ (y) by

ψ (y) := ϑ (y)
Ē3z (y)

z (y)
, (17)
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then ψ (y) > 0 and

ψ′ (y) = ϑ′ (y)
Ē3z (y)

z (y)
+ ϑ (y)

Ē4z (y)
z (y)

− ϑ (y)
Ē3z (y) z′ (y)

z2 (y)

≤ −ϑ (y) δ2 (y) +
ϑ′ (y)
ϑ (y)

ψ (y)− A2 (y)ψ2 (y)
m1 (y) ϑ (y)

(18)

≤ −ϑ (y) δ2 (y) +
m1 (y) (ϑ′ (y))2

4ϑ (y) A2
.

Integrating from y1to y and letting y → ∞, we get

∫ ∞

y1

[
δ2 (ν) ϑ (s)− m1 (s) (ϑ′ (ν))2

4ρ (ν) A2 (s)

]
ds ≤ ψ (y1) ,

which contradicts with (12) and the proof is complete.

Corollary 1. Let (2) hold and

lim sup
y→∞

∫ ∞

y1

[
π1 (ν)

m2 (ν)

∫ ∞

ν

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu − 1

4m1 (ν)π1 (ν)

]
dν = ∞, (19)

lim sup
y→∞

∫ ∞

y1

[
kq (s) A3 (σ (s))− A2 (s)

4m1 (s) A3 (s)

]
ds = ∞. (20)

Then every solution of Equation (1) is oscillatory.

Now, we use the comparison method to obtain other oscillation results. It is well known (see [10])
that the differential equation[

a (y)
(
z′ (y)

)]′
+ q (y) z (σ (y)) = 0‚ y ≥ y0, (21)

where a , q ∈ C[y0‚ ∞), a (y) , q (y) > 0, is nonoscillatory if and only if there exists a number y ≥ y0,
and a function υ ∈ C1[y‚ ∞), satisfying the inequality

υ′ (y) + αa−1 (y) υ2 (y) + q (y) ≤ 0‚ on [y‚ ∞).

Lemma 1 (see [10]). Let ∫ ∞

y0

1
a (s)

ds = ∞

holds, then the condition

lim inf
y→∞

(∫ ∞

y0

1
a (s)

ds
) ∫ ∞

y
q (s) ds >

1
4

.

Theorem 4. Let (2) hold. Assume that the equation

[
m1 (y) z′ (y)

]′
+

(
1

m2 (y)

∫ ∞

y

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu

)
z (y) = 0‚ (22)

and (
m1 (y)
π3 (y)

z′ (y)
)′

+ δ2 (y) z (y) = 0, (23)

are oscillatory, then every solution of (1) is oscillatory.
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Proof. Proceeding as in proof of the Theorem 3. We get (16). If we set ρ (y) = 1 in (16), then we obtain

ω′ (y) +
1

m1 (y)
ω2 (y)− 1

m2 (y)

∫ ∞

y

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu ≤ 0.

Thus, we can see that Equation (22) is nonoscillatory for every constant λ1 ∈ (0, 1) , which is
a contradiction. If we now set ϑ (y) = 1 in (18), then we find

ψ′ (y) +
A2 (y)
m1 (y)

ψ2 (y) + δ2 (y) ≤ 0.

Hence, Equation (23) is nonoscillatory, which is a contradiction.
Theorem 4 is proved.

In view of Lemma 1, oscillation criteria for (1) of Hille–Nehari-type are easily acquired.
Please note that

Corollary 2. Assume that

lim inf
y→∞

π1 (y)
∫ ∞

y

1
m2 (ν)

∫ ∞

ν

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu >

1
4

,

lim inf
y→∞

(∫ y

y0

A2 (s)
m1 (s)

ds
) ∫ ∞

y
δ2 (s) ds >

1
4

.

Then every solution of (1) is oscillatory.

3. Example

In this section, we give the following example to illustrate our main results.

Example 1. Let us consider the fourth-order differential equation of type(
y1\2

(
y1\2z′ (y)

)′′)′
+

1
y3 z (βy) = 0, y ≥ 1, (24)

where 0 < β < 1 is a constant. Let

m3 (y) = y1\2, m2 (y) = y1\2, m1 (y) = 1 > 0, q (y) =
1
y3 , σ (y) = βy,

and
πi (s) :=

∫ ∞

y◦

1
mi (s)

ds = ∞.

If we now set k = 1, It is easy to see that all conditions of Corollary 1 are satisfied.

A3 (σ (s)) =
∫ σ(s)

σ1(s)

1
m1 (σ (s))

A2 (σ (s)) ds

=
∫ σ(s)

σ1(s)

(∫ σ(s)

σ1(s)

1
m2 (σ (s))

π3 (σ (s)) ds
)

ds

=
∫ σ(s)

σ1(s)

(∫ σ(s)

σ1(s)

1

(βs)1/2

(∫ ∞

σ1(s)

1

(βs)1/2 ds

)
ds

)
ds
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A2 (s) =
∫ s

s1

1
m2 (s)

π3 (s) ds

=
∫ s

s1

1
s1/2

(∫ ∞

s1

1
s1/2 ds

)
ds

now

lim sup
y→∞

∫ ∞

y1

[
kq (s) A3 (σ (s))− A2 (s)

4m1 (s) A3 (s)

]
ds

lim sup
y→∞

∫ ∞

y1

[
1
s3

∫ σ(s)

σ1(s)

(∫ σ(s)

σ1(s)

1

(βs)1/2

(∫ ∞

σ1(s)

1

(βs)1/2 ds

)
ds

)
ds

]
ds

= ∞

and

lim sup
y→∞

∫ ∞

y1

[
π1 (ν)

m2 (ν)

∫ ∞

ν

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu − 1

4m1 (ν)π1 (ν)

]
dν = ∞.

Hence, by Corollary 1, every solution of Equation (25) is oscillatory.

Example 2. Consider a differential equation(
y
(

y
(
yz′ (y)

)′)′)′
+ yz (y) = 0, y ≥ 1, (25)

We see
m3 (y) = m2 (y) = m1 (y) = y > 0, q (y) = y, σ (y) = y,

and
πi (s) :=

∫ ∞

y◦

1
mi (s)

ds = ∞.

If we now set k = 1, It is easy to see that all conditions of Corollary 1 are satisfied.

lim sup
y→∞

∫ ∞

y1

[
π1 (ν)

m2 (ν)

∫ ∞

ν

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu − 1

4m1 (ν)π1 (ν)

]
dν = ∞,

lim sup
y→∞

∫ ∞

y1

[
kq (s) A3 (σ (s))− A2 (s)

4m1 (s) A3 (s)

]
ds = ∞.

Hence, by Corollary 1, every solution of Equation (25) is oscillatory.

4. Conclusions

The results of this paper are presented in a form which is essentially new and of high degree of
generality. To the best of our knowledge, there is nothing known about the oscillation of (1) under the
assumption (2), our primary goal is to fill this gap by presenting simple criteria for the oscillation of all
solutions of (1) by using the generalized Riccati transformations and comparison technique, so the
main advantage of studying (1) essentially lies in the direct application of the well-known Kiguradze
lemma [23] (Lemma 1). Further, we can consider the case of σ (y) ≥ y in the future work.
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Abstract: New sets of orthogonal functions, which correspond to the first, second, third, and fourth
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links of these new sets of irrational functions to the third and fourth kind Chebyshev polynomials are
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1. Introduction

In the second half of the XIX Century, Pafnuty Lvovich Chebyshev introduced two sets of
polynomials, presently known as the first and second kind Chebyshev polynomials, which are actually
a polynomial version of the circular sine and cosine functions. These polynomials have proved to be
of fundamental importance in many questions of an applicative nature (see the classical book by T.
Rivlin [1]). In fact, the roots of the first kind polynomials—the so called Chebyshev nodes—appear
in approximation theory, since, by using these nodes, the relevant Gaussian quadrature rule realizes
the highest possible degree of precision. Moreover, the resulting interpolation polynomial minimizes
the Runge phenomenon. Furthermore, by expanding a continuous function in terms of first kind
Chebyshev polynomials, the best approximation, with respect to the maximum norm, can be obtained.
The second kind Chebyshev polynomials appear in the computation of powers of 2 × 2 non-singular
matrices [2]. For the same problem, in the case of powers of higher order matrices, an extension of
these polynomials have been also introduced (see, e.g., [3,4]).

It is also useful to notice that Chebyshev polynomials represent an important tool in deriving
integral representations [5,6], and that they can be generalized by using the properties and formalism
of the Hermite polynomials [7]; for instance, by introducing multi-variable polynomials recognized as
belonging to the Chebyshev family [8–10].

An excellent book on this subject is [11]. The importance of the Chebyshev polynomials in
applications has been highlighted, in [12]. In a recent paper, the Chebyshev polynomials of the first and
second kind have been shown to represent the real and imaginary part, respectively, of the complex
Appell polynomials [13].

In a recent article [14], new sets of functions related to the classical Chebyshev polynomials have
been introduced, in connections with the complex version of the Bernoulli spiral. Actually, the real
and imaginary part of the Bernoulli spirals define the Rodhonea (or Grandi) curves of fractional index,
which often appear in natural shapes [15]. This allows us to define two sets of functions corresponding
to the first and second kind Chebyshev polynomials with fractional degree, called pseudo-Chebyshev
polynomials (or pseudo-Chebyshev functions), as they are irrational functions. It was shown that,

Symmetry 2019, 11, 274; doi:10.3390/sym11020274 www.mdpi.com/journal/symmetry69



Symmetry 2019, 11, 274

in the case of half-integer degree, the relevant pseudo-Chebyshev polynomials are orthogonal in the
interval (−1, 1), with respect to the same weights of the Chebyshev polynomials of the same type.

In this article, by using the results of [16], we show the connections of the third and fourth kind
pseudo-Chebyshev polynomials with the classical Chebyshev polynomials.

2. Definitions of Pseudo-Chebyshev Functions

The following polynomials Tk(x), Uk(x), Vk(x), and Wk(x) denote, respectively, the first, second,
third, and fourth kind classical Chebyshev polynomials.

We have, by definition, for any integer k:

Tk+ 1
2
(x) = cos

(
(k + 1

2 ) arccos(x)
)

,

√
1 − x2 Uk− 1

2
(x) = sin

(
(k + 1

2 ) arccos(x)
)

,

√
1 − x2 Vk+ 1

2
(x) = cos

(
(k + 1

2 ) arccos(x)
)

, and

Wk+ 1
2
(x) = sin

(
(k + 1

2 ) arccos(x)
)

.

(1)

Note that definition (1) holds even for negative integer—that is, for k + 1/2 < 0—according to
the parity properties of the trigonometric functions.

The first, second, third, and fourth kind pseudo-Chebyshev functions are represented, in terms of
the third and fourth kind Chebyshev polynomials, as follows:

Tk+ 1
2
(x) =

√
1+x

2 Vk(x) ,

√
1 − x2 Uk− 1

2
(x) =

√
1

2(1+x) Wk(x) ,

√
1 − x2 Vk+ 1

2
(x) =

√
1

2(1−x) Vk(x) , and

Wk+ 1
2
(x) =

√
1−x

2 Wk(x) .

(2)

3. Properties of the First and Second Kind Pseudo-Chebyshev Functions

3.1. The First Kind Pseudo-Chebyshev Tk+1/2

In this section, we recall the main properties of the first kind pseudo-Chebyshev functions (their
first few graphs are shown in Figure 1).

Recurrence relation ⎧⎪⎪⎨⎪⎪⎩
Tk+ 1

2
(x) = 2 x Tk− 1

2
(x)− Tk− 3

2
(x) ,

T± 1
2
(x) =

√
1+x

2 .

(3)

Differential equation

(1 − x2) y′′ − x y′ +
(

k + 1
2

)2
y = 0 . (4)
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Orthogonality property

∫ 1

−1
Th+ 1

2
(x) Tk+ 1

2
(x)

1√
1 − x2

dx = 0 , (h �= k) , (5)

where h,k are integer numbers such that h + k = 2n, n = 1, 2, 3, . . . ,

∫ 1

−1
T2

k+ 1
2
(x)

1√
1 − x2

dx =
π

2
. (6)

Figure 1. Pseudo-Chebyshev polynomials of the first kind, Tk+1/2(x), k = 1, 2, 3, 4, where k is: 1, Green;
2, red; 3, blue; and 4, orange.

3.2. The Second Kind Pseudo-Chebyshev Uk+1/2

In this section we recall the main properties of the second kind pseudo-Chebyshev functions
(their first few graphs are shown in Figure 2).

Recurrence relation⎧⎪⎪⎨⎪⎪⎩
Uk+ 1

2
(x) = 2 x Uk− 1

2
(x)− Uk− 3

2
(x) ,

U− 1
2
(x) = 1√

2(1+x)
, U 1

2
(x) = 2x+1√

2(1+x)
.

(7)

Differential equation

(1 − x2) y′′ − 3 x y′ +
(

k − 1
2

) (
k + 3

2
)

y = 0 . (8)
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Orthogonality property

∫ 1

−1
Uh+ 1

2
(x)Uk+ 1

2
(x)

√
1 − x2 dx = 0 , (h �= k) , (9)

where h,k are integer numbers such that h + k = 2n, n = 1, 2, 3, . . . ,

∫ 1

−1
U2

k+ 1
2
(x)

√
1 − x2 dx =

π

2
. (10)

Figure 2. Pseudo-Chebyshev polynomials of the second kind, Uk+1/2(x), k = 1, 2, 3, 4, where k is: 1,
Green; 2, red; 3, blue; and 4, orange.

4. The Third and Fourth Kind Pseudo-Chebyshev Functions

The third and fourth kind Chebyshev polynomials have been also introduced, and studied by
several authors (see [16–18]), because they can be applied in particular quadrature rules, where the
singularity of the considered function appears at only one of the extrema (+1 or −1) of the integration
interval (see [11]). Moreover, in a recent article, they have been used in the framework of solving high
odd-order boundary value problems [17].

In what follows, we use the excellent survey by K. Aghigh, M. Masjed-Jamei, and M. Dehghan [16],
which permits us to derive, in a straightforward way, the links among the pseudo-Chebyshev functions
and the third and fourth kind Chebyshev polynomials.

In Figures 3 and 4, graphs of the first few third and fourth kind pseudo-Chebyshev functions
are shown.
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Figure 3. Pseudo-Chebyshev polynomials of the third kind, Vk+1/2(x), k = 1, 2, 3, 4, 5, where k is: 1,
Grey; 2, red; 3, blue; 4, orange; and 5, violet.

Figure 4. Pseudo-Chebyshev polynomials of the fourths kind, Wk+1/2(x), k = 1, 2, 3, 4, 5, where k is: 1,
Red; 2, blue; 3, orange; 4, violet; and 5, grey.
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4.1. The Third Kind Pseudo-Chebyshev Vk+1/2

Recurrence relation ⎧⎪⎪⎨⎪⎪⎩
Vk+ 1

2
(x) = 2 x Vk− 1

2
(x)− Vk− 3

2
(x) ,

V± 1
2
(x) = 1√

2 (1−x)
.

(11)

Differential equation

Theorem 1. The third kind pseudo-Chebyshev functions Vk+1/2(x) satisfy the differential equation:

(1 − x2) y′′ − 3x y′ +
(

k − 1
2

) (
k + 3

2
)

y = 0 , (12)

so that the second and third kind pseudo-Chebyshev functions are solutions of the same differential equation.

Proof. Note that, from definition (1):

Dx Vk+ 1
2
(x) =

x
1 − x2 Vk+ 1

2
(x) +

(
k + 1

2

) 1
1 − x2 Wk+ 1

2
(x) ,

D2
x Vk+ 1

2
(x) = −

[(
k + 1

2

)2 − 1
]

1
1 − x2 Vk+ 1

2
(x) +

3x2

(1 − x2)2 Vk+ 1
2
(x) +

+ 3
(

k + 1
2

) x
(1 − x2)2 Wk+ 1

2
(x) ,

D2
x Vk+ 1

2
(x)− 3x

1 − x2 Dx Vk+ 1
2
(x) = −

[(
k − 1

2

) (
k + 3

2
) ]

Vk+ 1
2
(x) ,

so that Equation (12) follows.

Orthogonality property

∫ 1

−1
Vh+ 1

2
(x)Vk+ 1

2
(x)

√
1 − x2 dx = 0 , (h �= k) , (13)

where h,k are integer numbers such that h + k = 2n, n = 1, 2, 3, . . . ,

∫ 1

−1
V2

k+ 1
2
(x)

√
1 − x2 dx =

π

2
. (14)

4.2. The Fourth Kind Pseudo-Chebyshev Wk+1/2

Recurrence relation ⎧⎪⎪⎨⎪⎪⎩
Wk+ 1

2
(x) = 2 x Wk− 1

2
(x)− Wk− 3

2
(x) ,

W± 1
2
(x) = ±

√
1−x

2 .

(15)

Differential equation

Theorem 2. The fourth kind pseudo-Chebyshev functions Wk+1/2(x) satisfy the differential equation:

(1 − x2) y′′ + x y′ +
(

k + 1
2

)2
(1 − x2) y = 0 . (16)
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Proof. Note that

Dx Wk+ 1
2
(x) = −

(
k + 1

2

)
(1 − x2)−1/2 Tk+ 1

2
(x) ,

D2
x Wk+ 1

2
(x) = −

(
k + 1

2

)2
Wk+ 1

2
(x)−

(
k + 1

2

)
x (1 − x2)−3/2 Tk+ 1

2
(x) =

= −
(

k + 1
2

)2
Wk+ 1

2
(x)− x (1 − x2)−1 Dx Wk+ 1

2
(x) ,

so that Equation (16) follows.

Orthogonality property

∫ 1

−1
Wh+ 1

2
(x)Wk+ 1

2
(x)

1√
1 − x2

dx = 0 , (h �= k) , (17)

where h, k are integer numbers such that h + k = 2n, n = 1, 2, 3, . . . ,

∫ 1

−1
W2

k+ 1
2
(x)

1√
1 − x2

dx =
π

2
. (18)

5. Further Properties of the Pseudo-Chebyshev Functions

5.1. Generating Functions

Theorem 3. The generating functions of the pseudo-Chebyshev functions are given by:

∞

∑
k=0

Tk+ 1
2
(x) tk =

√
1+x

2
1 − t

1 − 2tx + t2 ,

∞

∑
k=0

Uk− 1
2
(x) tk =

√
1

2(1+x)
1 + t

1 − 2tx + t2 ,

∞

∑
k=0

Vk+ 1
2
(x) tk =

√
1

2(1−x)
1 − t

1 − 2tx + t2 , and

∞

∑
k=0

Wk+ 1
2
(x) tk =

√
1−x

2
1 + t

1 − 2tx + t2 .

(19)

Proof. Equations (19) follow from Definitions (2) by using the generating functions of the third and
fourth Chebyshev polynomials, which are given below (see [16]):

∞

∑
k=0

Vk(x) tk =
1 − t

1 − 2tx + t2 and

∞

∑
k=0

Wk(x) tk =
1 + t

1 − 2tx + t2 .

(20)
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5.2. Explicit Forms

Theorem 4. The explicit forms of the pseudo-Chebyshev functions are given by:

Tk+ 1
2
(x) =

√
1+x

2

k

∑
h=0

(−1)h(2k+1
2h )

(
1−x

2

)h ( 1+x
2

)k−h
,

Uk− 1
2
(x) =

√
1

2(1+x)

k

∑
h=0

(−1)h(2k+1
2h+1)

(
1−x

2

)h ( 1+x
2

)k−h
,

Vk+ 1
2
(x) =

√
1

2(1−x)

k

∑
h=0

(−1)h(2k+1
2h )

(
1−x

2

)h ( 1+x
2

)k−h
, and

Wk+ 1
2
(x) =

√
1−x

2

k

∑
h=0

(−1)h(2k+1
2h+1)

(
1−x

2

)h ( 1+x
2

)k−h
.

(21)

Proof. Recalling that

cos
(

1
2 arccos(x)

)
=
√

1+x
2 and sin

(
1
2 arccos(x)

)
=
√

1−x
2 , (22)

we find:

[
cos

(
1
2 arccos(x)

)
+ i sin

(
1
2 arccos(x)

)]2k+1
=

(√
1+x

2 + i
√

1−x
2

)2k+1
, (23)

so that, by the binomial theorem, we find (see [16]):(√
1+x

2 + i
√

1−x
2

)2k+1
=
√

1+x
2

k

∑
h=0

(−1)h(2k+1
2h )

(
1−x

2

)h ( 1+x
2

)k−h

+ i
√

1−x
2

k

∑
h=0

(−1)h(2k+1
2h+1)

(
1−x

2

)h ( 1+x
2

)k−h
.

(24)

Therefore, recalling Definitions (2), Equation (21) follows.

5.3. Location of Zeros

By Equation (1), the zeros of the pseudo-Chebyshev functions Tk+ 1
2
(x) and Vk+ 1

2
(x) are given by

xk,h = cos
(
(2h − 1)π

2k + 1

)
, (h = 1, 2, . . . , k), (25)

and the zeros of the pseudo-Chebyshev functions Uk+ 1
2
(x) and Wk+ 1

2
(x) are given by

xk,h = cos
(

2hπ

2k + 1

)
, (h = 1, 2, . . . , k) . (26)

Furthermore, the Wk+ 1
2
(x) functions always vanish at the end of the interval [−1, 1].
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5.4. Hypergeometric Representations

Theorem 5. The hypergeometric representations of the pseudo-Chebyshev functions are given by:

Tk+ 1
2
(x) =

√
1+x

2 2F1

(
−k, k + 1, 1

2

∣∣∣ 1−x
2

)
,

Uk− 1
2
(x) = 2k+1
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2
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2

)
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2
(x) = 2k+1

1−x

√
1
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2
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2
(x) = (2k + 1)

√
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2 2F1
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2

∣∣∣ 1−x
2

)
.

(27)

Proof. Equations (27) follow from the hypergeometric representations of the third and fourth kind
Chebyshev polynomials (see [16]):

Vk(x) = 2F1

(
−k, k + 1, 1

2

∣∣∣ 1−x
2

)
,

Wk(x) = (2k + 1) 2F1

(
−k, k + 1, 3

2

∣∣∣ 1−x
2

)
,

(28)

by using Definitions (2).

5.5. Rodrigues-Type Formulas

Theorem 6. The Rodrigues-type formulas for the pseudo-Chebyshev functions are given by:
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]
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2
dk
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]
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(29)

Proof. Equations (29) follow from the Rodrigues-type formulas of the third and fourth kind Chebyshev
polynomials (see [16]):

Vk(x) =
(−1)k

(2k − 1)!!

√
1−x
1+x

dk
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[
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]
,

Wk(x) =
(−1)k

(2k − 1)!!

√
1+x
1−x

dk

dxk

[
(1 − x)k+1/2 (1 + x)k−1/2

]
.

(30)

by using Definitions (2).
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6. Links with First and Second Kind Chebyshev Polynomials

Theorem 7. The pseudo-Chebyshev functions are connected with the first and second kind Chebyshev
polynomials by means of the equations:

Tk+ 1
2
(x) = T2k+1

(√
1+x

2

)
= T2k+1 (T1/2(x)) ,

Uk− 1
2
(x) = 1

1+x

√
1

2(1−x) U2k

(√
1+x

2

)
,

Vk+ 1
2
(x) = 1

1−x2 T2k+1

(√
1+x

2

)
= 1

1−x2 Tk+ 1
2
(x) , and

Wk+ 1
2
(x) =

√
1−x

2 U2k

(√
1+x

2

)
= (1 − x2)Uk− 1

2
(x) .

(31)

Proof. The results follow from the equations:

Vk(x) =
√

2
1+x T2k+1

(√
1+x

2

)
and

Wk(x) = U2k

(√
1+x

2

)
,

(32)

(see [16]), by using Definitions (2).

Remark 1. Note that the first equation in (31) is a generalization of the known nesting property, satisfied by
the first kind Chebyshev polynomials:

Tm (Tn(x)) = Tmn(x) . (33)

This property actually holds in general, independently of the indexes, as a consequence of the basic
definition Tk(x) = cos(k arccos(x)). Note that this composition identity still holds for the first kind Chebyshev
polynomials in several variables [4].

7. Conclusions

We have derived the main properties satisfied by the first, second, third, and fourth kind
pseudo-Chebyshev polynomials of half-integer degree, which are actually irrational functions.
The relevant properties and graphs of these new functions have been derived from their link with the
third and fourth kind classical Chebyshev polynomials.
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Abstract: The steady boundary layer flow of a nanofluid past a thin needle under the influences of
heat generation and chemical reaction is analyzed in the present work. The mathematical model
has been formulated by using Buongiornos’s nanofluid model which incorporates the effect of the
Brownian motion and thermophoretic diffusion. The governing coupled partial differential equations
are transformed into a set of nonlinear ordinary differential equations by using appropriate similarity
transformations. These equations are then computed numerically through MATLAB software using
the implemented package called bvp4c. The influences of various parameters such as Brownian
motion, thermophoresis, velocity ratio, needle thickness, heat generation and chemical reaction
parameters on the flow, heat and mass characteristics are investigated. The physical characteristics
which include the skin friction, heat and mass transfers, velocity, temperature and concentration
are further elaborated with the variation of governing parameters and presented through graphs.
It is observed that the multiple (dual) solutions are likely to exist when the needle moves against
the direction of the fluid flow. It is also noticed that the reduction in needle thickness contributes
to the enlargement of the region of the dual solutions. The determination of the stable solution has
been done using a stability analysis. The results indicate that the upper branch solutions are linearly
stable, while the lower branch solutions are linearly unstable. The study also revealed that the rate of
heat transfer is a decreasing function of heat generation parameter, while the rate of mass transfer is
an increasing function of heat generation and chemical reaction parameters.

Keywords: numerical analysis; heat generation; chemical reaction; thin needle; nanofluid

1. Introduction

In recent decades, the performance of heat transfer of conventional fluids like ethylene glycol,
lubricants, oil, kerosene and water, etc., has become less favorable in certain applications. Hence,
new kinds of fluid are needed to reach the thermal efficiency for heat exchangers in the future. Choi [1]
came out with a tactful idea to resolve the problem by adding dilute suspension of nanoparticles
into conventional fluids and this mixture is known as ‘nanofluid’. Normally, nanoparticles consist of
metals, carbides, oxides, nitrides or non-metals and have dimensions from 1 to 100 nm. Due to the
tiny size of nanoelements, nanofluids possess strong suspension stability and able to move without
clogging the flow system. Since nanoparticles have higher thermal conductivity than the base fluid,
nanofluids are regarded as better coolants particularly in nuclear reactors, domestic refrigerators,
transportations, cancer therapy, microelectronic devices, lubricants and also thin film solar energy
collectors. A comprehensive literature on the nanofluid applications can be found in the works by
Wong and Leon [2], Saidur et al. [3], Huminic and Huminic [4] and Colangelo et al. [5].
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In view of above relevant applications, many researchers started to employ nanofluid as
an alternative way to enhance the heat transfer efficacy. For instance, Buongiorno [6] established the
non-homogeneous equilibrium model which is comprised of seven slip mechanisms; thermophoresis,
Brownian diffusion, diffusiophoresis, inertia, gravity Magnus effect and fluid drainage. In this
model, the Brownian movement and thermophoretic diffusion of nanoparticles are two notable
effects that enhances the thermal conductivity of ordinary liquids. A year after the published
work of Buongiorno [6], Tiwari and Das [7] proposed a homogeneous model which taking into
account the effect of nanopartilces volume fractions. It is reported that the boundary layer flow of
nanofluids over a stretching surface has been studied by Khan and Pop [8]. Makinde and Aziz [9]
investigated the boundary layer flow of a nanofluid towards a stretching sheet with convective
boundary conditions. Some relevant works on the homogeneous and non-homogeneous models can
be seen in the references [10–17].

The study of chemical reactions has amazingly increased due to their wide range useful industrial
and technological applications in polymer processing and electrochemistry. Such applications include
chemical processing equipment, glass manufacturing, creation and distribution of fog, food processing,
energy transfer in a wet cooling tower and evaporation at the surface of the water body [18–20].
The consideration of mixed convection flow past a vertical surface implanted in a porous medium
carries species that are relatively soluble in the fluid. In fact, chemical reactions occur due to
the presence of a foreign mass in a fluid. In many chemical reactions, the reaction rate relies on
the concentration of the species itself. A chemical reactions between the conventional liquid and
nanoparticles can be classified as a homogeneous reaction or heterogeneous reaction. Homogeneous
reaction is a chemical reaction that occurs consistency in a single phase (gaseous, liquid, or solid).
In addition, a heterogeneous reaction is a reaction that involves two or more phases (solid and
gas, solid and liquid, two immiscible liquids) and takes place within the boundary of a phase.
It is worth mentioning that a chemical reaction is said to be a first order reaction if the reaction
rate is directly proportional to the concentration [21,22]. Some applications for the diffusion of
species in the boundary layer flow include fibrous insulation, pollution studies and oxidation and
synthesis materials. Furthermore, Mabood et al. [23] investigated the influence of chemical reaction on
magnetohydrodynamics (MHD) stagnation point flow of nanofluid in porous medium by considering
the additional effects of viscous dissipation and thermal radiation. Eid [24] analyzed the chemical
reaction effect on MHD nanofluid flow past a stretching sheet with heat generation. It is noticed from
his study that the presence of heat source and chemical reaction decrease the heat transfer rate and
increase the mass transfer rate. The influence of chemical reaction and heat generation on mixed
convection flow of a Casson nanofluid towards a permeable stretching sheet has been studied by
Ibrahim et al. [25]. Inspired by the previous works, many authors have considered the chemical reaction
effects on different flow concepts as can be seen in the references [26–29]. Very recently, Hayat et al. [30]
discussed the mixed convection flow of Williamson nanofluid subject to chemical reaction.

Moreover, the boundary layer flow over a thin needle is of considerable importance in the
biomedical and engineering purposes. For instance, it is commonly used in hot wire anemometer or
protected thermocouple for calculating the wind velocity, transportations, circulatory problems and
wire coating. The topic of thin needle seems very famous due to the movement of the needle that
distracts the free-stream flow. This criterion is a primary point of the flow and heat transfer process
to calculate the velocity and temperature distributions in experimental studies. Thin (or slender)
needle is categorized as a rebellious body whose thicknesses are comparable to that of boundary
layer or smaller. The boundary layer development adjacent to a thin needle in viscous fluid is first
considered by Lee [31]. Narain and Uberoi [32] analyzed free and mixed convection flow along a thin
needle. In extension to which, many works regarding slender needle in a viscous fluid are found in
the existing literature [33–36]. Furthermore, the literature shows that researchers have also devoted
their attention to the study of boundary layer flow near a slender needle in nanofluid. These situations
are caused by the usage of nanofluid that enhance the heat transfer rate. In 2011, the study of the
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forced convection flow with variable surface temperature over a slender needle has been done by
Grosan and Pop [37]. A collection of the boundary layer flow over a thin needle with various physical
effects in nanofluid can be found in the work by Trimbitas et al. [38], Hayat et al. [39], Soid et al. [40],
Krishna et al. [41] and Ahmad et al. [42]. Very recently, Salleh et al. [43] performed the numerical
analysis of magnetohydrodynamics flow over a moving vertical slender needle in nanofluid using
Buongiorno’s model with the revised boundary conditions.

Therefore, the novelty of the present work is to analyze the problem of the steady laminar
nanofluid flow adjacent to a slender needle by considering the additional effects of chemical reaction
and also heat source. Buongiorno’s model is chosen in the simulation of the nanofluid. The system of
nonlinear ordinary differential equations is computed numerically using bvp4c package in MATLAB
software. The graphical results are presented and discussed for the varying effect of emerging
parameters.

2. Governing Formula and Modeling

A steady nanofluid flow past a horizontal thin needle is examined. The geometry of the problem
is illustrated in Figure 1 with u and v denoting x and r components of velocity, respectively, and r =
R(x) = (νcx/U)1/2 represents the needle radius. The needle is considered to move with uniform
velocity Uw in the same or reverse direction of the external flow of constant velocity U∞ with the
composite velocity U = Uw + U∞. It is assumed that Tw and Cw are the constant wall temperature
and nanoparticle concentration and as r → ∞, the ambient temperature and nanoparticle fraction are
T∞ and C∞ such that Tw > T∞ and Cw > C∞. In view of small needle size, the pressure gradient is
ignored, however, the transverse curvature effect is required.

By using Buongiorno’s nanofluid model, the relevant governing boundary layer systems for the
flow are [6,42]

∂

∂x
(ru) +

∂

∂r
(rv) = 0, (1)

u
∂u
∂x

+ v
∂u
∂r

=
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r
∂

∂r

(
r

∂u
∂r

)
, (2)

u
∂T
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+ v
∂T
∂r

=
α

r
∂

∂r

(
r

∂T
∂r

)
+ κ

[
DB

∂T
∂r

∂C
∂r

+
DT
T∞

(
∂T
∂r

)2
]
+

Q∗

ρCp
(T − T∞), (3)

u
∂C
∂x

+ v
∂C
∂r

=
DB
r

∂

∂r

(
r

∂C
∂r

)
+

DT
T∞

1
r

∂

∂r

(
r

∂T
∂r

)
− K∗(C − C∞). (4)

The physical boundary restrictions are

u = Uw, v = 0, T = Tw, C = Cw at r = R(x),

u → U∞, T → T∞, C → C∞ as r → ∞, (5)

in which ν is kinematic viscosity, T is the temperature of nanofluid, C is the concentration of
nanoparticles, α is the thermal diffusivity, ρ is the density, Cp is the heat capacity at uniform pressure,
κ = (ρCp)s/(ρCp) f is the proportion of effectual heat capacity of nanofluid in which subscripts ‘s’
and ‘f’ refer to solid nanoparticle and base fluid, Q∗ = Q0/x is the dimensionless heat generation,
K∗ = K0/x is the dimensionless reaction rate, Q0 is the heat generation coefficient and K0 is the
chemical reaction coefficient. It is worth mentioning that the dimensionless parameters Q∗ and K∗

are the function of x and its value varies locally throughout the flow motion. Besides, DB and DT are
Brownian and thermophoresis diffusion coefficients, respectively.
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Figure 1. Schematic view of the present study.

The similarity transformation technique has been used for obtaining the ordinary differential
equations. Hence, the following non-dimensional parameters are introduced

ψ = νx f (η), η =
Ur2

νx
, θ(η) =

T − T∞

Tw − T∞
, φ(η) =

C − C∞

Cw − C∞
, (6)

where the stream functions are given as

u = r−1 ∂ψ

∂r
, v = −r−1 ∂ψ

∂x
. (7)

The stream functions (7) satisfies the continuity Equation (1). Using Equations (6) and (7),
we obtain the following equations

2η f ′′′ + 2 f ′′ + f f ′′ = 0, (8)

2
Pr

(ηθ′)′ + f θ′ + 2η
(

Ntθ′2 + Nbθ′φ′
)
+

1
2

Qθ = 0, (9)

2(ηφ′)′ + 2
Nt
Nb

(ηθ′)′ + Le f φ′ − 1
2

LeKφ = 0. (10)

Also, the boundary condition could be rewritten as

f (c) =
ε

2
c, f ′(c) = ε

2
, θ(c) = 1, φ(c) = 1,

f ′(η) → 1
2
(1 − ε), θ(η) → 0, φ(η) → 0 as η → ∞, (11)

where prime denotes the differentiation with regard to similarity variable η. Besides, assume η = c to
represent size or thickness of the needle.

Here, Pr, Nt, Nb, Q, Le and ε represent the Prandtl number, thermophoresis parameter, Brownian
motion parameter, heat generation parameter, Lewis number and velocity ratio parameter. K is the
chemical reaction parameter with K > 0 represents a destructive reaction, and K < 0 represents
generative reaction. These non-dimension parameters are defined as follows:

Pr =
ν

α
, Nt =

κDT(Tw − T∞)

νT∞
, Nb =

κDBC∞

ν
, Q =

Q0

ρCpU
, Le =

ν

DB
,

K =
K0

U
, ε =

Uw

U
, (12)

The skin friction coefficient Cf , local Nusselt number Nux and local Sherwood number Shx that
relate to the shear stress, heat transfer rate and mass transfer rate are defined as
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Cf =
μ

ρU2

(
∂u
∂r

)
r=c

= 4Re−1/2
x c1/2 f ′′(c), (13)

Nux =
x

(Tw − T∞)

(
∂T
∂r

)
r=c

= −2Re1/2
x c1/2θ′(c), (14)

Shx =
−x
C∞

(
∂C
∂r

)
r=c

= −2Re1/2
x c1/2φ′(c). (15)

where Rex = Ux/ν is the local Reynold number.

3. Stability Analysis

The idea of the stability analysis came from Weidman et al. [44]. In their study, they noticed that
there exists more than one solution called dual solutions. It is important to note that this analysis is
introduced to determine which solution provides a good physical meaning to the flow (stable solution).
Since we obtained the dual solutions, thus we are encouraged to determine which solutions are stable.
To carry out this analysis, Equations (2)–(4) must be in unsteady case. Hence, the new dimensionless
time variable is taken as τ = 2Ut/x. Thus, we have
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and the new similarity transformations take the following form

ψ = νx f (η, τ), η =
Ur2

νx
, θ(η, τ) =

T − T∞

Tw − T∞
, φ(η, τ) =
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2Ut
x

. (19)

Please note that the use of τ is related to an initial value problem that is consistent with the solution
that will be attained in practice (physically realizable). Afterwards, encorporating Equation (19) into
Equations (16)–(18), we obtains
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together with the boundary conditions

f (c, τ) =
ε

2
c + τ

∂ f
∂τ

(c, τ),
∂ f
∂η

(c, τ) =
ε

2
, θ(c, τ) = 1, φ(c, τ) = 1,

∂ f
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(η, τ) → 1
2
(1 − ε), θ(η, τ) → 0, φ(η, τ) → 0 as η → ∞. (23)
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Subsequently, we assume [44,45]

f (η, τ) = f0(η) + e−γτ F(η, τ),

θ(η, τ) = θ0(η) + e−γτG(η, τ),

φ(η, τ) = φ0(η) + e−γτ H(η, τ)

(24)

in order to specify the stability of solutions f = f0(η), θ = θ0(η) and φ = φ0(η) which meets the
boundary value problem (20)–(23). Also, functions F(η, τ), G(η, τ) and H(η, τ) represent small relative
to f0(η), θ0(η) and φ0(η), respectively, and γ denotes an unknown eigenvalue parameter.

Then, introducing Equation (24) into Equations (20)–(23) yields the linear eigenvalue equations below:
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The corresponds boundary conditions for these equations are given by

F0(c) = 0, F′
0(c) = 0, G0(c) = 0, H0(c) = 0,

F′
0(η) → 0, G0(η) → 0, H0(η) → 0 as η → ∞. (28)

Next, to identify an early growth or decomposition of the solution (24), we have to set τ = 0.
Hence, functions F, G and H can be expressed as F0(η), G0(η) and H0(η), respectively (see Weidman
et al. [44] for the detail).

In the present work, we computed the numerical results for Equations (25)–(27) associated with
conditions (28) by using the new boundary condition which is F′′

0 (c) = 1. This condition is obtained
by relaxing the condition F0(η) → 0 as η → ∞ (see [46] for details). It is to be noted that the flow will
be stable if γ is positive, while the flow will be unstable if γ is negative.

4. Graphical Results and Discussion

In this section, the graphical outputs of our problem are interpreted for various effects of the
involved parameters. All the computations have been carried out for a wide range of values of the
governing parameters; c(0.1 ≤ c ≤ 0.2), ε(−4.3 ≤ ε ≤ 0.8), K(−0.1 ≤ K ≤ 0.2), Q(0 ≤ Q ≤ 0.4),
Nb(0.1 ≤ Nb ≤ 0.5), Nt(0.1 ≤ Nt ≤ 0.5) and for a fixed values of Pr = 2 and Le = 1. Equations
(8)–(10) along with the conditions (11) are computed numerically via bvp4c function that implemented
in MATLAB software. Besides the shooting method, there is a new effective method for solving the
boundary value problem for ordinary differential equations that is bvp4c package. Mathematically,
this package uses the finite difference methods, in which the output is attained using an initial guess
provided at the starting mesh point and resize the step to obtain the particular certainty. Nevertheless,
to use this package, the boundary value problem must reduce to first order system of ordinary
differential equations. To validate the accuracy of the present results, we have initially compared our
results to those of Ahmad et al. [42] and Salleh et al. [43]. In this respect, Table 1 shows a comparison
value of shear stress f ′′(c) for ε = Le = Q = K = 0 for some of the thickness of the needle c when
Pr = 1. An excellent agreement is observed in these studies.

The effect of needle thickness c on the velocity, temperature and concentration profiles are
graphically presented in Figure 2a–c. It is noticed from the plots that the velocity, temperature and
concentration profiles for upper branch solution increase with the increasing value of needle thickness.
Similar observation is found for momentum, thermal and concentration boundary layer thicknesses
for the upper branch as the c increase. Mathematically, the shape of graphs obtained in these profiles
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has asymptote behaviors and it fulfills the requirement of boundary condition (11). One can see that an
increment in the needle thickness decreases the numerical values of surface shear stress f ′′(c), heat flux
−θ′(c) and also mass flux −φ′(c). These phenomena are clearly shown in Figure 3a–c. This situation
occurs due to an increase in the momentum, thermal and concentration boundary layer thicknesses
on the surface, and consequently decline the shear stress and slow down the heat and mass transfers
from the surface to the flow. Physically, the slender surface of the needle makes heat and mass to
diffuse through it quickly compared to thick surface. In addition, the critical values of ε, by which the
upper and lower branch solutions connected, are noticed to decrease as the needle thickness reduces.
In other words, we can say that the needle thickness has a significant effect on the existence of the
dual solutions.

Table 1. Comparison values of shear stress f ′′(c) when ε = Le = Q = K = 0 for some of the thickness
of the needle c when Pr = 1.

c Ahmad et al. [42] Salleh et al. [43] Current Study

0.01 8.4924360 8.4924452 8.4924453
0.1 1.2888171 1.2888299 1.2888300
0.15 - - 0.9383388
0.2 - - 0.7515725
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Figure 2. Sample of (a) velocity, (b) temperature and (c) concentration profiles for several values of
needle thickness c.
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Figure 3. Variation of surface (a) shear stress, (b) local heat flux and (c) local mass flux with velocity
ratio parameter ε for several values of needle thickness c.

The distributions of the temperature and concentration for several values of heat generation
parameter Q are illustrated in Figure 4a–b when K = 0.1. It is worth noticing from Figure 4a that
the fluid temperature enhances significantly within the thermal boundary layer for higher values of
heat generation parameter. However, the opposite effect is observed for the fluid concentration as
the heat generation parameter increases. This characteristic can be seen in Figure 4b. Figure 5a–b
visualize the effect of the heat generation parameter Q on the local heat and mass fluxes with velocity
ratio parameter ε. It is found from the figures that increasing values of Q reduce the heat flux at the
surface, while an opposite criterion is observed for the mass flux. Generally, the presence of the heat
generator produces a hot fluid layer near the needle surface due to mechanism of heat generation.
As a consequence, the rate of heat transfer decreases from the needle surface to the fluid flow. In
addition, the decrement of heat transfer is also due to an increment in the thermal boundary layer
thickness as Q increases (see Figure 4a). Moreover, the existence of the hot fluid in the system will
accelerate the motion of nanoparticles, and as the result increases the rate of mass transfer on the
needle surface. It is worth mentioning that the existence of the dual solutions is noted when the needle
moves against the free stream direction, ε < 0. In these variations, the presence of heat generation does
not affect the flow. This statement can be proved by looking at Equation (8), where it does not contain
the parameter Q inside.

The concentration distributions for some values of chemical reaction parameter K are plotted
in Figure 6 when Q = 0.1. It is discerned from this figure that the fluid concentration is decreasing
function of the chemical reaction parameter. It is important to know that the nanoparticle concentration
as well as boundary layer thickness diminishes with the destructive chemical reaction, K > 0.
Noteworthy, with the existence of destructive reaction, the change of the species as a cause of chemical
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reaction will reduce the nanoparticle concentration in the boundary layer thickness. Other than that,
Figure 7 elucidates the influence of chemical reaction parameter on the local mass flux. This figure
explains that increasing the chemical reaction parameter K results in an increase in the mass transfer
rate on the surface. The reason behind this is that the reduction of the concentration boundary layer
thickness causes the mass transfer takes place quickly between the needle surface and the fluid flow.
Since the chemical reaction parameter exists in Equation (10), thus we present only the result for the
mass flux here.
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Figure 4. Sample of (a) temperature and (b) concentration profiles for several values of heat generation
parameter Q.
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Figure 5. Variation of surface (a) local heat flux and (b) local mass flux with velocity ratio parameter ε

for several values of heat generation parameter Q.
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Figure 7. Variation of surface local mass flux for several values of chemical reaction parameter K.

The variations of the local Nusselt number (Rex)−1/2Nux and local Sherwood number
(Rex)−1/2Shx with thermophoresis parameter Nt and Brownian motion parameter Nb are presented
in Tables 2 and 3. Table 2 indicates that the higher values of Nt and Nb decrease the local Nusselt
number or rate of heat transfer occurs on the needle surface. The same features can be seen as the heat
generation parameter increases. It is quite clear from Figures 8a and 9a that the higher rate of Brownian
motion and thermophoresis enhance the temperature of the fluid as well as the thermal boundary layer
thickness. This increment in the boundary layer thickness minimizes the rate of heat transfer from
the needle to the flow. Furthermore, Table 3 clarifies that the rate of mass transfer (or local Sherwood
number) increases with an increase in thermophoresis and chemical reaction parameters. Noticeably,
the higher value of the Brownian motion parameter tends to slow down the rate of mass transfer in the
system. This happens due to the continuous collision of base fluid particles and nanoparticles which
cause the random movement of those particles in the fluid. In addition, it can be observed in Figure 8b
that the presence of higher value of Nb enhance the concentration profiles as well as the concentration
boundary layer thickness. This criterion leads to the decrement in the mass transfer rate. In addition,
as thermophoretic effect intensifies, nanoparticles with high thermal conductivity penetrate deeper in
the fluid, hence, decreases the concentration boundary layer thickness as well as concentration profiles
as can be seen in Figure 9b. This behavior leads to an increase in the local Sherwood Number.
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Figure 8. Sample of (a) temperature and (b) concentration profiles for several values of Brownian
motion parameter Nb.
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Figure 9. Sample of (a) temperature and (b) concentration profiles for several values of thermophoresis
parameter Nt.

Table 2. Effects of thermphoresis parameter Nt and Brownian motion parameter Nb on the numerical
values of local Nusselt number, (Rex)−1/2Nux for Q = 0.1 and Q = 0.2 when ε = −1.0, K = 0.2,
c = 0.1, Pr = 2 and Le = 1.

Heat Generation Parameter Thermphoresis Parameter
(Rex)−1/2Nux = −2c1/2θ′(c)

Nb = 0.1 Nb = 0.3 Nb = 0.5

0.1 1.208880 0.959223 0.749362
0.1 0.3 0.989170 0.777343 0.601318

0.5 0.805833 0.627349 0.480535
0.1 1.078738 0.832762 0.628219

0.2 0.3 0.863788 0.656596 0.486510
0.5 0.685682 0.512462 0.371923

Table 3. Effects of thermphoresis parameter Nt and Brownian motion parameter Nb on the numerical
values of local Sherwood number, (Rex)−1/2Shx for K = 0.1 and K = 0.2 when ε = −1.0, Q = 0.2,
c = 0.1, Pr = 2 and Le = 1.

Chemical Reaction Parameter Thermphoresis Parameter
(Rex)−1/2Shx = −2c1/2φ′(c)

Nb = 0.1 Nb = 0.3 Nb = 0.5

0.1 2.005009 1.825444 1.781448
0.1 0.3 3.271205 2.343083 2.135890

0.5 5.055702 2.990494 2.546082
0.1 2.085015 1.898138 1.852426

0.2 0.3 3.362939 2.418572 2.207592
0.5 5.144680 3.063527 2.615317

Since this study has more than one solution, we need to verify which of the solutions obtained are
physically relevant (stable solution) by solving Equations (25)–(28). The determination of the stable
solution count on the sign of the smallest eigenvalue γ gained through this analysis. Table 4 presents
the smallest eigenvalue γ for several values of chemical reaction, heat generation and velocity ratio
parameters when c = 0.1 and c = 0.2. Table 4 indicates that the positive sign of γ for upper branch
solution represents an initial decomposition of disturbance, while the negative sign of γ for lower
branch solution represents an initial growth of disturbance in the system. Please note that the flow
is said to be stable and physically relevant, if there is an initial decay of disturbance in the boundary
layer separation. Otherwise, the flow is said to be unstable and not physically relevant .
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Table 4. Smallest eigenvalues γ for several values of chemical reaction parameter K, heat generation
parameter Q and velocity ratio parameter ε for c = 0.1 and c = 0.2 when Nb = Nt = 0.1, Pr = 2 and
Le = 1.

K = Q c ε Upper Branch Lower Branch

0.1 0.1 −4.1994 0.0471 −0.0449
−4.199 0.0481 −0.0458
−4.19 0.0668 −0.0625

0.2 −2.7424 0.0150 −0.0147
−2.742 0.0175 −0.0170
−2.74 0.0265 −0.0255

0.2 0.1 −4.1246 0.1444 −0.1254
−4.124 0.1449 −0.1258
−4.12 0.1484 −0.1284

0.2 −2.7136 0.0793 −0.0706
−2.713 0.0801 −0.0713
−2.71 0.0841 −0.0744

5. Final Remarks

In this work, the numerical model is developed to study the boundary layer flow of two-phase
nanofluid on a moving slender needle. The influences of chemical reaction and heat generation on
the flow have been taken into consideration. The governing flow equations are solved and validated
numerically by applying bvp4c package through MATLAB software. The key findings of this analysis
can be summarized as follows:

• The heat generation parameter reduces the local heat flux as well as the rate of heat transfer.
• The presence of a chemical reaction increases the rate of mass transfer on the needle surface.
• The Brownian motion parameter diminishes the rate of heat and mass transfers from the needle

surface to the flow.
• An increase in the thermophoresis parameter results in an increase in the mass transfer rate,

while the reverse effect is noted for the heat transfer rate.
• An increment in the needle thickness leads to decrease the magnitudes of the surface shear stress,

local heat flux and local mass flux.
• The dual solutions are likely to exist when the needle surface moves against the free-stream

direction, ε < 0.
• The upper branch solution exhibits stable flow (or solution) and lower branch solution exhibits

unstable flow.
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Abbreviations

c Needle size
C Fluid concentration (kg m−3)
Cf Skin friction coefficient
C∞ Ambient nanoparticle volume fraction
Cw Surface volume fraction
Cp Specific heat at constant pressure
DB Brownian diffusion coefficient (m2 s−1)
DT Thermophoretic diffusion coefficient (m2 s−1)
f Similarity function for velocity
K Chemical reaction parameter
K0 Chemical reaction coefficient
K∗ Dimensionless reaction rate
Le Lewis number
Nb Brownian motion parameter
Nt Thermophoresis parameter
Nux Local Nusselt number
Pr Prandtl number
Q Heat generation parameter
Q0 Heat generation coefficient
Q∗ Dimensionless heat generation
r Cartesian coordinate
Rex Local Reynolds number
Shx Local Sherwood number
T Fluid temperature (K)
Tw Wall temperature (K)
T∞ Ambient temperature (K)
U Composite velocity (ms−1)
Uw Wall velocity (ms−1)
U∞ Ambient velocity (ms−1)
u Velocity in x direction (ms−1)
v Velocity in r direction (ms−1)
x Cartesian coordinate
α Thermal diffusivity (m2 s−1)
η Similarity independent variable
θ Dimensionless temperature
ε Velocity ratio parameter
κ Ratio of effective heat capacity of nanofluid
ρCp Volumetric heat capacity (J K−1)
ν Kinematic viscosity (m2 s−1)
μ Dynamic viscosity (kg m−1s−1)
ρ Fluid density (kg m−3)
φ Dimensionless solid volume fraction
w Condition at the wall
∞ Ambient condition
′ Differentiative with respect to η
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Abstract: In this paper, we expound on the hypergeometric series solutions for the second-order
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1. Introduction

It is well known that many phenomena in physical and technical applications are governed by
a variety of differential equations. We should notice that these differential equations have appeared
in many different research fields, for instance in the theory of automorphic function, in conformal
mapping theory, in the theory of representations of Lie algebras, and in the theory of difference
equations. Analytical and numerical methods to solve ordinary differential equations are an ancient
and interesting research direction in differentiable dynamical systems and their applications. Let us
consider a so-called non-homogeneous k-hypergeometric differential equation of the form:

kz(1 − kz)
d2y
dz2 + [c − (k + a + b)kz]

dy
dz

− aby = f (z) (1)

with the independent variable z, where a, b, c, k are several constants with a, b, c ∈ R, k ∈ R+, and the
function f (z) is holomorphic in an interval D ⊆ C. In the case of k = 1, if the function f (z) vanishes
identically, then Equation (1) degrades into a linear homogeneous hypergeometric ordinary differential
equation presented by Euler [1] in 1769, which has the following normalized form:

z(1 − z)
d2y
dz2 + [c − (1 + a + b)z]

dy
dz

− aby = 0; (2)

such an equation has been extensively studied.
The solutions of a differential equation relate to many absorbing special functions in mathematics,

physics, and engineering. For instance, the solution could be presented by power series [2,3], continued
fraction [4–6], zeta function [7–10], and hypergeometric series [11–16]. Among these special functions,
the hypergeometric series, denoted by:

2F1[a, b; c; z] =
∞

∑
n=0

(a)n(b)n

(c)nn!
zn,
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can be applied to the solution of the differential Equation (2). For Equation (2), a hypergeometric
series solution 2F1 can be derived by the Frobenius method. The so-called hypergeometric series
was researched firstly by Wallis [11] in 1655. Since then, Euler, too, had researched the topic on the
hypergeometric series, but the first full systematic study was introduced by Gauss [12]. Some works
and complete references concerning both the hypergeometric series and the certain equation (2) can
be found in Kummer [13], Riemann [14], Bailey [15,16], Chaundy [17], Srivastava [18], Whittaker [19],
Beukers [20], Gasper [21], Olde Daalhuis [22,23], Dwork [24], Chu [25], Yilmazer et al. [26],
Morita et al. [27], Abramov et al. [28], Alfedeel et al. [29], and the literature therein. However,
in contrast to the extensive studies on Equation (2), other hypergeometric differential equations with
k ∈ R+ are very limited.

If k is not necessarily equal to one and f (z) is still a zero function in Equation (1), then the
associated differential equation is written as follows:

kz(1 − kz)
d2y
dz2 + [c − (k + a + b)kz]

dy
dz

− aby = 0. (3)

This differential Equation (3), called the homogeneous k-hypergeometric differential equation,
has been defined only in recent years. For k ∈ R+ and f (z) = 0, Equation (3) has a solution in
the form of k-hypergeometric series 2F1,k, which will be introduced in Section 2. It is clear that the
k-hypergeometric series 2F1,k has evolved from the hypergeometric series 2F1. Hence, we mention
the works of Díaz et al. [30,31], Krasniqi [32,33], Kokologiannaki [34], Mubeen et al. (see [35–40]),
Rehman et al. [41,42], and the references therein for results on k-hypergeometric series and the
homogeneous k-hypergeometric differential equation. In 2005, the Pochhanner k-symbol was
developed by Díaz et al. [30]. Since then, for example, k-gamma and k-beta functions have been
researched, and their relevant properties have been shown [30,31]. By following the works of Díaz et al.,
in 2010, some fascinating results with respect to k-gamma, -beta, and -zeta functions were proven
in [32–34]. In 2012, a so-called k-fractional integral and its application were presented by Mubeen
and Habibullah [36]. Furthermore, based on the properties of Pochhammer k-symbols, k-gamma,
and k-beta functions, Mubeen et al. [35,37] suggested an integral representation of k-hypergeometric
functions and some generalized confluent k-hypergeometric functions. Mubeen [37] did not introduce
the second-order linear k-hypergeometric differential equation defined by Equation (3) until 2013.
Furthermore, in 2014, Mubeen et al. [38,39] solved the k-hypergeometric differential equation by using
the Frobenius method and gave its solution in the form of the so-called k-hypergeometric series 2F1,k
introduced by Díaz et al. [30]. In the case of k ∈ R+ and f (z) �= 0, the research for this question is
very limited.

Motivated by the above results, in this paper, we consider the k-hypergeometric series solutions of
Equation (1) when f (z) is a non-vanishing function and k ∈ R+. For simplicity, we choose f (z) as a

polynomial
m
∑

i=0
dizi. That is, we will discuss the general solution of the so-called non-homogeneous

k-hypergeometric equation:

kz(1 − kz)
d2y
dz2 + [c − (k + a + b)kz]

dy
dz

− aby =
m

∑
i=0

dizi, (4)

where k ∈ R+ and di, i = 0, 1, 2, . . . , m, are some real or complex constants. The corresponding
homogeneous k-hypergeometric equation of Equation (4) is denoted by Equation (3).

The aim of this paper to find general solutions of the non-homogeneous k-hypergeometric
Equation (4) by means of the k-hypergeometric series. This paper is organized as follows: in Section 2,
the basic definitions and facts of the k-hypergeometric series and ordinary differential equation are
presented. Our results are then introduced in Section 3. Some examples are given to illustrate the
applications of our results in Section 4. Some conclusions and future perspectives are given in the
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last section. Throughout this paper, we let C, R, R+, and N+ stand for the set of complex numbers,
the set of real numbers, the set of positive real numbers, and the set of positive integers, respectively.

2. Preliminaries

In this section, we briefly review some basic definitions and facts concerning the k-hypergeometric
series and the ordinary differential equation. Some surveys and literature for k-hypergeometric series
and the k-hypergeometric differential equation can be found in Díaz et al. [30,31], Krasniqi [32,33], and
Mubeen et al. [38,39].

Definition 1. Assume that x ∈ C, k ∈ R+ and n ∈ N+, then the Pochhammer k-symbol (x)n,k is defined by:

(x)n,k = x(x + k)(x + 2k) . . . [x + (n − 1)k] . (5)

In particular, we denote (x)0,k ≡ 1. Therefore, we have the following facts:

(i) (x)n+1,k = (x + nk)(x)n,k.

(ii) (1)n,1 = n!; (
1
2
)n,1 =

(2n − 1)!!
2n ; (

3
2
)n,1 =

(2n + 1)!!
2n .

(iii) (x)n,1 =
Γ(x + n)

Γ(x)
, where Γ(x) is the Gamma function defined by

∫ ∞

0
e−ttx−1dt.

(iv) (1)n,2 = (2n − 1)!!; (2)n,2 = (2n)!!; (3)n,2 = (2n + 1)!!; (4)n,2 =
(2n + 2)!!

2
.

Definition 2. Assume that a, b, c ∈ C, k ∈ R+ and n ∈ N+, then the k-hypergeometric series with three
parameters a, b, and c is defined as:

2F1,k[(a, k), (b, k); (c, k); z] =
∞

∑
n=0

(a)n,k(b)n,k

(c)n,kn!
zn, (6)

where c �= 0,−1,−2,−3, . . . and z ∈ C.

Definition 3. Assume that Y0(z), Y1(z), and Y2(z) are three functions of z. Let a second-order ordinary
differential equation be written in the following form:

Y2(z)
d2y
dz2 + Y1(z)

dy
dz

+ Y0(z) = 0. (7)

Then, the method about finding an infinite series solution of Equation (7) is called the Frobenius method.

Definition 4. For Equation (7), let its coefficient Y2(z) satisfy Y2(z0) = 0 about the point z0 ∈ D ⊆ C.
Further, if this coefficient Y2(z) is holomorphic in a deleted neighborhood {z| 0 < |z − z0| < ε} for some ε > 0
and is meromorphic (not all holomorphic) in a neighborhood {z| |z − z0| < ε}, then the point z0 is called a
singular point of Equation (7).

Definition 5. For the Equation (7), if the coefficient:

Y2(z) = (z − z0)
ih(z)

is holomorphic at the point z0, then the singular point z0 of Equation (7) is said to be regular.
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Dividing both sides of this Equation (7) by Y2(z) gives a differential equation of the following form:

d2y
dz2 +

Y1(z)
Y2(z)

dy
dz

+
Y0(z)
Y2(z)

= 0. (8)

As we know, if either Y0(z)
Y2(z)

or Y1(z)
Y2(z)

is not analytic at any regular singular point z0, then Equation (8)
cannot be solvable with the regular power series method. However, the method of Frobenius enables
us to gain a power series solution of the differential equation defined by Equation (8), provided that
both Y0(z)

Y2(z)
and Y1(z)

Y2(z)
are themselves analytic at z0 or they are analytic elsewhere and their limits exist

at z0.

3. The Solutions of Non-Homogeneous k-Hypergeometric Equations

In this section, by means of the Frobenius method, we expound upon the series solution of
the second-order non-homogeneous k-hypergeometric ordinary differential equation defined by
Equation (4). Before presenting the main results, in order to judge whether a series is convergent or not,
we usually need to apply the following criterion.

Lemma 1 (The d’Alembert test). If the series
∞
∑

n=0
un satisfies the following condition:

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ < 1 (resp. > 1),

then this series
∞
∑

n=0
un converges (resp. diverges).

Proof. Let us recall the following fact: The geometric series:

∞

∑
n=0

qn (q > 0),

converges (resp. diverges) if q < 1 (resp. q > 1). Then, the proof of Lemma 1 is a simple series exercise.

Theorem 1. Suppose that k ∈ R+ and all a, b, c belong to R. Let, in addition, c and 2k − c be neither zero,
nor negative integers. Then, the homogeneous k-hypergeometric ordinary differential Equation (3) can have a
general solution in the following form:

y(z) = A 2F1,k[(a, k), (b, k); (c, k); z] + B z1− c
k 2F1,k[(a + k − c, k), (b + k − c, k); (2k − c, k); z] (9)

for |z| < 1/k, where A and B are two constants in C.

Proof. Assume that:

y(z) = zg
∞

∑
i=0

uizi (10)

is any solution of the homogeneous ordinary differential Equation (3) with u0 �= 0. Then, differentiating
Equation (10) directly, one has:

y′(z) = zg
∞

∑
i=0

ui(i + g)zi−1 (11)

and:

y′′(z) = zg
∞

∑
i=0

ui(i + g)(i + g − 1)zi−2. (12)
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Substituting Equations (11) and (12) into the k-hypergeometric differential Equation (3), we have:

kzg
∞

∑
i=0

ui(i + g)(i + g − 1)zi−1 − k2zg
∞

∑
i=0

ui(i + g)(i + g − 1)zi (13)

+czg
∞

∑
i=0

ui(i + g)zi−1 − k(a + b + k)zg
∞

∑
i=0

ui(i + g)zi − abzg
∞

∑
i=0

uizi = 0,

or, equivalently,

u0g(k(g − 1) + c)zg−1 + kzg
∞

∑
i=1

ui(i + g)(i + g − 1)zi−1 (14)

−k2zg
∞

∑
i=1

ui−1(i + g − 1)(i + g − 2)zi−1 + czg
∞

∑
i=1

ui(i + g)zi−1

−k(a + b + k)zg
∞

∑
i=1

ui−1(i + g − 1)zi−1 − abzg
∞

∑
i=1

ui−1zi−1 = 0.

By comparing the coefficients on both sides of Equation (14), one can obtain the indicial equation:

g[k(g − 1) + c] = 0 (15)

and the difference equation:

(g + i + 1)[k(g + i) + c]ui+1 = [k(g + i) + a][k(g + i) + b]ui, (16)

for i = 0, 1, 2, . . ..
Solving the above indicial Equation (15) for g gives:

g = 0 and g = 1 − c
k

. (17)

Next, we discuss the solution of Equation (3) in two cases.

• Case 1: g = 0.

From Equation (16), we have the solution of Equation (3):

y1(z) = u0 2F1,k[(a, k), (b, k); (c, k); z], (18)

provided that c is not zero or a negative integer.

• Case 2: g = 1 − c
k .

In a similar manner, from Equation (16), we get the difference equation as follows:

(1 + i)(2k − c + ki)ui+1 = (a + k − c + ki)(b + k − c + ki)ui. (19)

Therefore, it follows that the other solution of Equation (3) is written as below:

y2(z) = u0z1− c
k 2F1,k[(a + k − c, k), (b + k − c, k); (2k − c, k); z], (20)

provided that 2k − c is not a negative integer or zero.
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Furthermore, from Equations (18) and (20), let us consider the radius of convergence of the series:

∞

∑
i=0

vi = 2F1,k[(a, k), (b, k); (c, k); z]

and:
∞

∑
i=0

wi = 2F1,k[(a + k − c, k), (b + k − c, k); (2k − c, k); z].

Referring to Lemma 1, we verify that:

lim
i→∞

∣∣∣∣vi+1

vi

∣∣∣∣ = lim
i→∞

∣∣∣∣ (a + ki)(b + ki)
(c + ki)(1 + i)

z
∣∣∣∣ = |kz| < 1

and:

lim
i→∞

∣∣∣∣wi+1

wi

∣∣∣∣ = lim
i→∞

∣∣∣∣ (a + k − c + ki)(b + k − c + ki)
(2k − c + ki)(1 + i)

z
∣∣∣∣ = |kz| < 1,

which imply that the series
∞
∑

i=0
vi and

∞
∑

i=0
wi have the same radius of convergence 1

k .

Therefore, the general solution of the k-hypergeometric differential Equation (3) can be written as:

y(z) =αy1(z) + βy2(z) = A 2F1,k[(a, k), (b, k); (c, k); z] (21)

+ B z1− c
k 2F1,k[(a + k − c, k), (b + k − c, k); (2k − c, k); z]

for |z| < 1/k, where α, β, A, and B are four constants in C.
Therefore, we have completed the proof of Theorem 1.

Next, when the function f (z) is a polynomial, that is:

f (z) =
m

∑
i=0

dizi, (m = 0, 1, 2, . . .), (22)

where di, i = 0, 1, 2, . . . , m, are real or complex constants, we consider the solution of the
non-homogeneous k-hypergeometric ordinary differential equation. The following theorem gives the
particular solution and general solution of Equation (4).

Theorem 2. Suppose that k ∈ R+ and all a, b, c belong to R. Let, in addition, c and 2k − c be neither zero, nor
negative integers. Then, the non-homogeneous k-hypergeometric ordinary differential Equation (4) can have a
particular solution in the following form:

y(z) = −
m

∑
j=0

[
(a)j,k(b)j,k

j!(c)j,k

m

∑
l=j

l!(c)l,k

(a)l+1,k(b)l+1,k
dl

]
zj. (23)

Therefore, a general solution of Equation (4) can be written as:

y(z) =A 2F1,k[(a, k), (b, k); (c, k); z] (24)

+ B z1− c
k 2F1,k[(a + k − c, k), (b + k − c, k); (2k − c, k); z]

−
m

∑
j=0

[
(a)j,k(b)j,k

j!(c)j,k

m

∑
l=j

l!(c)l,k

(a)l+1,k(b)l+1,k
dl

]
zj

for |z| < 1/k, where A and B are two constants in C.
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Proof. Let us assume that:

y(z) =
m

∑
j=0

sjzj (25)

is a particular solution of the non-homogeneous k-hypergeometric ordinary differential Equation (4),
where sj, j = 0, 1, 2, . . . , m, are undetermined coefficients. Differentiating Equation (25), then we have:

y′(z) =
m−1

∑
j=0

(j + 1)sj+1zj (26)

and:

y′′(z) =
m−2

∑
j=0

(j + 2)(j + 1)sj+2zj. (27)

Plugging Equations (26) and (27) into Equation (4) yields:

kz(1 − kz)
m−2

∑
j=0

(j + 2)(j + 1)sj+2zj + [c − (k + a + b)kz]
m−1

∑
j=0

(j + 1)sj+1zj − ab
m

∑
j=0

sjzj =
m

∑
i=0

dizi, (28)

and it follows that:

cs1 − abs0 + [2 · 1 · ks2 + 2cs2 − (k + a + b)ks1 − abs1]z (29)

+ [−2 · 1 · k2s2 + 3 · 2 · ks3 − 2k(k + a + b)s2 + 3cs3 − abs2]z2

+ . . .

+ [m(m − 1)ksm − (m − 1)(m − 2)k2sm−1 + mcsm

− (m − 1)(k + a + b)ksm−1 − absm−1]zm−1

+ [−m(m − 1)k2sm − mk(k + a + b)sm − absm]zm

= d0 + d1z + d2z2 + . . . dmzm.

Matching the coefficients on both sides of Equation (29) gives:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

cs1 − abs0 = d0,
2 · 1 · ks2 + 2cs2 − (k + a + b)ks1 − abs1 = d1,
. . .
m(m − 1)ksm − (m − 1)(m − 2)k2sm−1 + mcsm

− (m − 1)(k + a + b)ksm−1 − absm−1 = dm−1,
−m(m − 1)k2sm − mk(k + a + b)sm − absm = dm.

(30)

Thus, Equation (30) implies that:

sm = − dm

m(m − 1)k2 + mk(k + a + b) + ab
= − dm

(a + km)(b + km)
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and:

sm−1 =
m(m − 1)ksm + mcsm − dm−1

k2(m − 1)(m − 2) + k(m − 1)(k + a + b) + ab

=
m[c + (m − 1)k]

[a + (m − 1)k][b + (m − 1)k]
sm − dm−1

[a + (m − 1)k][b + (m − 1)k]

=
m[c + (m − 1)k]

[a + (m − 1)k][b + (m − 1)k]
−dm

(a + km)(b + km)
− dm−1

[a + (m − 1)k][b + (m − 1)k]

= − (a)m−1,k(b)m−1,k

(m − 1)!(c)m−1,k

m!(c)m,k

(a)m+1,k(b)m+1,k
dm − dm−1

[a + (m − 1)k][b + (m − 1)k]

= − (a)m−1,k(b)m−1,k

(m − 1)!(c)m−1,k

[
m!(c)m,k

(a)m+1,k(b)m+1,k
dm +

(m − 1)!(c)m−1,k

(a)m,k(b)m,k
dm−1

]
= − (a)m−1,k(b)m−1,k

(m − 1)!(c)m−1,k

m

∑
l=m−1

l!(c)l,k

(a)l+1,k(b)l+1,k
dl .

Consequently, these coefficients of the particular solution (25) are:

sj = − (a)j,k(b)j,k

j!(c)j,k

m

∑
l=j

l!(c)l,k

(a)l+1,k(b)l+1,k
dl (31)

for j = 0, 1, 2, . . . , m.
Replacing Equation (25) with Equation (31), we obtain a particular solution of the equation in the

following form:

y(z) = −
m

∑
j=0

[
(a)j,k(b)j,k

j!(c)j,k

m

∑
l=j

l!(c)l,k

(a)l+1,k(b)l+1,k
dl

]
zj. (32)

From the above Equation (32), we get a general solution of Equation (4), as shown in Equation (24).
We have shown Theorem 2.

4. Examples

Example 1. Find the solution to the following differential equation:

z(1 − z)
d2y
dz2 + (

1
2
− 3z)

dy
dz

− y = 1 + 2z2 (33)

for |z| < 1.

From Equation (33), it is easy to see that a = b = 1, c = 1
2 , k = 1, m = 2, d0 = 1, d1 = 0, and

d2 = 2. By Equation (24) in Theorem 2, then we have:

2F1,k[(a, k), (b, k); (c, k); z] = 2F1,1[(1, 1), (1, 1); (
1
2

, 1); z] =
∞

∑
i=0

i! · i!
( 1

2 )i,1i!
zi (34)

=
∞

∑
i=0

i!
( 1

2 )i,1
zi = 1 +

∞

∑
i=1

2ii!
(2i − 1)!!

zi,

2F1,k[(a + k − c, k), (b + k − c, k); (2k − c, k); z] = 2F1,1[(
3
2

, 1), (
3
2

, 1); (
3
2

, 1); z] (35)

=
∞

∑
i=0

( 3
2 )i,1

i!
zi =

∞

∑
i=0

(2i + 1)!!
2ii!

zi
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and:

y(z) = −
2

∑
i=0

[
(1)i,1(1)i,1

i!( 1
2 )i,1

2

∑
l=i

l!( 1
2 )l,1dl

(1)l+1,1(1)l+1,1

]
zi = −

(
13
12

+
1
6

z +
2
9

z2
)

. (36)

Combining Equations (34)–(36), we obtain the general solution of Equation (33) as below:

y = A 2F1,1[(1, 1), (1, 1); (
1
2

, 1); z] + B
√

z 2F1,1[(
3
2

, 1), (
3
2

, 1); (
3
2

, 1); z] + y(z) (37)

= A

(
1 +

∞

∑
i=1

2ii!
(2i − 1)!!

zi

)
+ B

√
z

(
∞

∑
i=0

(2i + 1)!!
2ii!

zi

)
− (

13
12

+
1
6

z +
2
9

z2 ),

where A and B are two constants.

Example 2. Find the solution to the following differential equation:

2z(1 − 2z)
d2y
dz2 + (1 − 14z)

dy
dz

− 6y = 1 + 2z + 3z2 (38)

for |z| < 1
2 .

From Equation (38), it is clear that k = 2, c = 1, m = 2, and d0 = 1, d1 = 2, d2 = 3. Then, let us
take a = 3, b = 2. According to Equation (24) in Theorem 2, we obtain:

2F1,k[(a, k), (b, k); (c, k); z] = 2F1,2[(3, 2), (2, 2); (1, 2); z] (39)

=
∞

∑
i=0

(2i + 1)!! (2i)!!
(2i − 1)!! i!

zi =
∞

∑
i=0

2i(2i + 1)zi,

2F1,k[(a + k − c, k), (b + k − c, k); (2k − c, k); z] = 2F1,2[(4, 2), (3, 2); (3, 2); z] (40)

=
∞

∑
i=0

(4)i,2

i!
zi =

∞

∑
i=0

2i(i + 1)zi

and:

y(z) = −
2

∑
i=0

[
(3)i,2(2)i,2

i!(1)i,2

2

∑
l=i

l!(1)l,2dl

(3)l+1,2(2)l+1,2

]
zi = −

(
157
840

+
17

140
z +

1
14

z2
)

. (41)

Substituting Equations (39)–(41) into Equation (24) gives the general solution of Equation (38)
as follows:

y = A 2F1,2[(3, 2), (2, 2); (1, 2); z] + B
√

z 2F1,2[(4, 2), (3, 2); (3, 2); z] + y(z) (42)

= A
∞

∑
i=0

2i(2i + 1)zi + B
√

z

(
∞

∑
i=0

2i(i + 1)zi

)
− 157

840
− 17

140
z − 1

14
z2,

where A and B are two constants.
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5. Conclusions

When |z| < 1/k and f (z) =
m
∑

i=0
dizi, di ∈ C, i = 0, 1, 2, . . . , m, in this paper, we present a formula of

the general solution of the non-homogeneous k-hypergeometric ordinary differential Equation (4),
provided that a, b, c ∈ R with both c and 2k − c neither zero, nor negative integers. The solutions of
this type of equations are denoted by in the form of k-hypergeometric series, and it is convenient that
we can make out the corresponding computer program and put it into calculation. When f (z) is not
a polynomial, it is a fascinating question to derive the particular or general series solutions for the
non-homogeneous k-hypergeometric ordinary differential Equation (1). It would be interesting to have
more research about this case.
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1. Introduction

Over the last few decades, a lot of progress has been made in developing numerical methods for
ordinary differential equations (ODEs), which can produce efficient, reliable and qualitatively correct
numerical solutions by preserving some qualitative features of the exact solutions [1,2]. This field of
research is called geometric numerical integration. In this paper, we are oriented to obtain numerical
approximation of Hamiltonian differential equations of the form,

dp
dt

= −∂H
∂q

,
dq
dt

=
∂H
∂p

, (1)

where H is known as the Hamiltonian or the total energy of the system and q and p are generalized
coordinates and generalized momenta respectively. The autonomous Hamiltonian systems have two
important properties; one is that the total energy remains constant,

dH
dt

=
∂H
∂p

· ∂p
∂t

+
∂H
∂q

· ∂q
∂t

= 0.

The second important property is that the phase flow is symplectic which imply that the motion
along the phase curve retains the area of a bounded sub-domain in the phase space. We need such
numerical methods which can mimic both properties of the Hamiltonian systems. For this we use
symplectic numerical methods to solve system of Equation (1). The symplectic methods are numerically
more efficient than non-symplectic methods for integration over long interval of time [3]. Among
the class of one step symplectic methods, the implicit symplectic Runge–Kutta (RK) methods were
developed and presented in [4].

Symmetry 2019, 11, 142; doi:10.3390/sym11020142 www.mdpi.com/journal/symmetry109
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For general explicit RK methods, it is known that up to order 4, number of stages required in a RK
method are equal to the order of the method whereas, for order ≥5, number of stages become greater
than the order of the method. Thus for example, an RK method of order 5 needs at least 6 stages and
an RK method of order 6 requires at least 17 stages and so on. The more the number of stages are,
the more costly the method is.

Butcher [5] tried to overcome this complexity of order barrier by presenting the idea of effective
order. He implemented his idea on RK method of order 5 and was able to construct explicit RK
methods of effective order 5 with just 5 internal stages [5]. Later on, the idea was extended to construct
diagonally extended singly implicit RK methods for the numerical integration of stiff differential
equations [6–9]. Butcher also used the effective order technique on symplectic RK methods for the
numerical integration of Hamiltonian systems [10,11].

A RK method v has an effective order q if we have another RK method w, known as the starting
method, such that wvnw−1 has an order q. The method w is used only once in the beginning followed
by n iterations of the main method v and the method w−1, known as the finishing method is used only
once at the end.

For separable Hamiltonian systems, it is advantageous to solve some components of the
differential-equation with one RK method and solve other components of differential equation with
another RK method and collectively they are termed as partitioned Runge–Kutta (PRK) methods. We
have extended the idea of Butcher to construct symplectic effective order PRK methods which are
explicit in nature and hence are less costly than symplectic implicit RK methods. For the effective order
PRK methods, we construct two main PRK methods, two starting and two finishing PRK methods
such that the two starting methods are applied once at the beginning followed by n iterations of the
main PRK methods and the two finishing methods are used at the end.

2. Algebraic Structure of PRK Methods

We are concerned with the numerical solution of separable Hamiltonian systems,(
u
v

)′
=

(
k(v)
r(u)

)
, u(t0) = u0, v(t0) = v0, k, r : IRN → IRN , (2)

using two s-stages RK methods M = [a b c] and M̃ = [ã b̃ c̃],

Ui = un + h
s−1

∑
j=1

aijk(Vj), Vi = vn + h
s

∑
j=1

ãijr(Uj), i = 1, 2, ..., s,

un+1 = un + h
s

∑
j=1

bjk(Vj), vn+1 = vn + h
s

∑
j=1

b̃jr(Uj),

where Ui and Vi are the stages for the u and v variables, bi and b̃i are quadrature weights, ci and c̃i
are quadrature nodes, A = (aij)s×s and Ã = (ãij)s×s are matrices of s-stage PRK methods M and M̃,
respectively. Here M is an explicit RK method and M̃ is an implicit RK method. Similarly, we can
define two PRK methods S = [A B C] and S̃ = [Ã B̃ C̃], termed as starting methods. The four PRK
methods can be represented by Butcher tableaux as,

c a

bT
,

c̃ ã

b̃T
,

C A

BT
, and

C̃ Ã

B̃T
.
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We need to find the composed methods MS and M̃S̃ , which are given by the Butcher tableaux,

c A 0

C + ∑s
i=1 bi b A

bT BT

,

c̃ Ã 0

C̃ + ∑s
i=1 b̃i b̃ Ã

b̃T B̃T

. (3)

The composition asserts to carry out the calculations with starting methods S and S̃ firstly and
applying the PRK methods M and M̃ to the output. To explain the composition (3), we consider four
PRK methods with two stages each given as,

c1 a11 a12

c2 a21 a22

b1 b2

,

c̃1 ã11 ã12

c̃2 ã21 ã22

b̃1 b̃2

,

C1 A11 A12

C2 A21 A22

B1 B2

,

C̃1 Ã11 Ã12

C̃2 Ã21 Ã22

B̃1 B̃2

.

Solving the differential equation u
′
= k(v), we take the first step going from u0 to u1 using starting

method S. We then take the second step going from u1 to u2 using main method M. The equations are
given as,

U1 = u0 + a11h k(V1) + a12h k(V2), U1 = u1 + A11h k(V1) + A12h k(V2),

U2 = u0 + a21h k(V1) + a22h k(V2), U2 = u1 + A21h k(V1) + A22h k(V2),

u1 = u0 + b1h k(V1) + b2h k(V2), u2 = u1 + B1h k(V1) + B2h k(V2).

The composition MS means that we are going from u0 to u2 using the composed method MS
given as,

U1 = u0 + a11h k(V1) + a12h k(V2),

U2 = u0 + a21h k(V1) + a22h k(V2),

U1 = u0 + b1h k(V1) + b2h k(V2) + A11h k(V1) + A12h k(V2),

U2 = u0 + b1h k(V1) + b2h k(V2) + A21h k(V1) + A22h k(V2),

u2 = u0 + b1h k(V1) + b2h k(V2) + B1h k(V1) + B2h k(V2).

(4)

The Butcher table for the above composed PRK methods is as follows

c1 a11 a12 0 0

c2 a21 a22 0 0

C1+∑ bi b1 b2 A11 A12

C2+∑ bi b1 b2 A21 A22

b1 b2 B1 B2

Similarly, the composition M̃S̃ can be obtained and is represented by the following Butcher table

c̃1 ã11 ã12 0 0

c̃2 ã21 ã22 0 0

C̃1+∑ b̃i b̃1 b̃2 Ã11 A12

C̃2+∑ b̃i b̃1 b̃2 Ã21 Ã22

b̃1 b̃2 B̃1 B̃2

A numerical scheme has order p, if after one iteration, the numerical solution matches with the
Taylor’s series of the exact solution to the extent that the remainder term has O(hp+1). The comparison
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of the numerical solution with the Taylor’s series of the exact solution provides order conditions which
must be satisfied to obtain a particular order numerical method. Thus for order 3 method, we have the
following order conditions:

∑
i

bi = 1, (5)

∑
i

b̃i = 1, (6)

∑
i

bi c̃i =
1
2

, (7)

∑
i

b̃ici =
1
2

, (8)

∑
i

bi c̃2
i =

1
3

, (9)

∑
i

b̃ic2
i =

1
3

, (10)

∑
i,j

bi,j ãijcj =
1
6

, (11)

∑
i,j

b̃iaij c̃j =
1
6

. (12)

3. Rooted Trees for PRK Methods and Order Conditions

There is a graph theoretical approach to study order conditions of RK methods due to Butcher [12].
We first study the basic concepts from graph theory and then relate the graphs to the order conditions
of RK methods.

A graph with non-cyclic representation consisting of vertices and edges with one vertex acting as
root is called as rooted tree. The rooted trees whose vertices are either black or white are known as
bi-color rooted trees. The trees having black color root is termed as t, while the white rooted trees are
represented by t̃. The order of a tree is total number of vertices in a tree. Whereas, the density γ(t) is
the product of number of vertices of a tree and their sub-trees, when we remove the root.

Example 1. Consider a bi-color tree with order 5 and γ(t) = 5 × 4 × 2 = 40.

The repeated differentiation of Equation (2) gives

u(1) = k(v), v(1) =r(u),

u(2) =
∂k
∂v

r, v(2) =
∂r
∂u

k,

u(3) =
∂2k

∂v ∂v
(r, r) +

∂k
∂v

∂r
∂u

k, v(3) =
∂2r

∂u ∂u
(k, k) +

∂r
∂u

∂k
∂v

r,

...
...

(13)

The terms on the right hand side of Equation (13) are called elementary differentials and can be
represented graphically with the help of bi-color rooted trees. Thus k is represented by a black vertex
and r is represented by a white vertex, whereas the differentiation is represented by an edge between
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two vertices. According to the nature of the differential Equation (2) in which k depends only on v
and r depends only on u, we only consider trees in which a black vertex has a white child and vice
versa [13]. Such trees are given in Tables 1 and 2. The elementary differentials can be represented by
bi-color rooted trees as shown in Table 3.

Table 1. Composition rule for trees with black vertex root.

ti Tree (βα)(ti) (Eβ)(ti)

t1 β1 + α1 β1 + 1

t2 β2 + β̃1α1 + α2 β2 + β1 +
1
2

t3 β3 + β̃2
1α1 + 2β̃1α2 + α3 β3 + 2β2 + β1 +

1
3

t4 β4 + β1α2 + β̃2α1 + α4 β4 + β2 +
1
2

β1 +
1
6

Table 2. Composition rule for trees with white vertex root.

ti Tree (β̃α̃)(ti) (Eβ̃)(ti)

t̃1 β̃1 + α̃1 β̃1 + 1

t̃2 β̃2 + β1α̃1 + α̃2 β̃2 + β̃1 +
1
2

t̃3 β̃3 + β2
1α̃1 + 2β1α̃2 + α̃3 β̃3 + 2β̃2 + β̃1 +

1
3

t̃4 β̃4 + β̃1α̃2 + β2α̃1 + α̃4 β̃4 + β̃2 +
1
2

β̃1 +
1
6

Table 3. Elementary differentials and elementary weights of bi-color rooted trees.

t Elementary Differentials Φ(t) t̃ Elementary Differentials Φ(t̃)

k bi r b̃i

∂k
∂v

r bi c̃i
∂r
∂u

k b̃ici

∂2k
∂v ∂v

(r, r) bi c̃2
i

∂2r
∂u ∂u

(k, k) b̃ic2
i

∂k
∂v

∂r
∂u

k bi ãijcj
∂r
∂u

∂k
∂v

r b̃iaij c̃j

The terms on left hand side from Equations (5)–(12) are called elementary weights Φ(t) and Φ(t̃).
The elementary weights are nonlinear expressions of the coefficients of PRK methods and can be
related to bi-color rooted trees as shown in Table 3 [12,13]. A PRK method is of order p iff

Φ(t) =
1

γ(t)
, and Φ(t̃) =

1
γ(t̃)

,

for all bi-color rooted trees t and t̃ of order less than or equal to p [13].
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Let the elementary weight functions of the methods M and M̃ are α and α̃, respectively such that
α maps trees t and α̃ maps trees t̃ to expression in terms of method coefficients as follows

α( ) = ∑ bic̃i
2, α̃( ) = ∑ b̃ici

2.

Similarly, we can define elementary weight functions β and β̃ for the starting methods S and
S̃, respectively. The composition of PRK methods in terms of their elementary weights is βα and β̃α̃

given as

βα( ) = β3 + 2β̃1α2 + β̃2
1α1 + α3, (14)

where the right hand side of Equation (14) contains terms from Table 4 which has tree u as a sub-tree
of tree t and t \ u is the remaining tree when u is removed from t.

Table 4. Calculation for the term βα(t3).

Tree No Cut First Cut Second Cut Third Cut All Cuts

t

u

t \ u
term β3 β̃1α2 β̃1α3 β̃2

1α1 α3

The order condition related to the tree for the composed method (4) is

bic̃2
i + Bi(C̃i + b̃i)

2 = bic̃2
i + 2b̃iBiC̃i + b̃2

i Bi + BiC̃2
i ,

= β3 + 2β̃1α2 + β̃2
1α1 + α3,

= βα( ).

4. Effective Order PRK Methods

Let M and S be two RK methods together with an inverse method S−1. The effective order q
means that the composition SMS−1 has order q [6]. For PRK methods, we are interested to construct
methods M,M̃, S, S̃ together with the inverse methods S−1 and S̃−1 such that the compositions SMS−1

and S̃M̃S̃−1 have the effective order q which implies βα(t) = Eβ(t) and β̃α̃(t̃) = Eβ̃(t̃) for all trees of
order q [12], where E is the exact flow for which corresponding order conditions are satisfied. The terms
are given in Tables 1 and 2.
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A method of effective order 3 is obtained by comparing two columns of Tables 1 and 2 each for
trees up to order 3. Thus we have

α1 =1, (15)

α̃1 =1, (16)

α2 =
1
2

, (17)

α̃2 =
1
2

, (18)

α3 =
1
3
+ 2β2, (19)

α̃3 =
1
3
+ 2β̃2, (20)

α4 =
1
6
+ β2 − β̃2, (21)

α̃4 =
1
6
+ β̃2 − β2. (22)

By eliminating β and β̃ values, Equations (19)–(22) become

6α4 + 3α̃3 − 3α3 =1, (23)

6α̃4 + 3α3 − 3α̃3 =1. (24)

5. Symplectic PRK Methods with Effective Order 3

The flow of a Hamiltonian system (2) is symplectic and it is a well known fact that the discrete
flow by symplectic Runge-Kutta methods is symplectic [14]. The PRK method M and M̃ for separable
Hamiltonian system (2) is symplectic if the following condition is satisfied [14]

diag(b)ã + aTdiag(b̃)− bb̃ = 0. (25)

Moreover, the composition of two symplectic RK methods is symplectic [10,15].
For symplectic PRK methods, the trees related to order conditions can be divided into superfluous

and non-superfluous bi-color trees. Unlike RK methods, the superfluous bi-color trees of PRK methods
also contribute one order condition together with one condition from non-superfluous bi-color tree [14].
Since, the underlying bi-color tree of the rooted trees t2 and t̃2 is superfluous. So, we can ignore the
condition (18) because it is automatically satisfied. Moreover, the underlying bi-color trees of t3, t4,
t̃3 and t̃4 are non-superfluous, we can either take α3 or α̃4 and also α4 or α̃3 resulting in reducing
Equations (23) and (24) to α3 = 1

3 and α̃3 = 1
3 . Now consider the following Butcher table for methods

M and M̃ which satisfy the symplectic condition (25)

0 0

b1 b1

b1 + b2 b1 b2

b1 b2 b3

b̃1 b̃1

b̃1 + b̃2 b̃1 b̃2

b̃1 + b̃2 + b̃3 b̃1 b̃2 b̃3

b̃1 b̃2 b̃3

(26)
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The Equations (15)–(17) and (23)–(24) after simplification can be written in terms of elementary
weights as

3

∑
i=1

bi = 1, (27)

3

∑
i=1

b̃i = 1, (28)

b1b̃1 + b2(b̃1 + b̃2) + b3 =
1
2

, (29)

b̃2
1b1 + b2(b̃1 + b̃2)

2 + b3(b̃1 + b̃2 + b̃3)
2 =

1
3

, (30)

b̃2b2
1 + b̃3(b1 + b2)

2 =
1
3

. (31)

To get the values of 6 unknowns from 5 equations, we have one degree of freedom. Let us take

b̃1 =
2
3

and solve Equations (27)–(31) to get M and M̃ methods as follows

0 0 0

13 +
√

205
12

0 0

13 +
√

205
12

5
6

0

13 +
√

205
12

5
6

−11 −√
205

12

2
3

0 0

2
3

5 +
√

205
30

0

2
3

5 +
√

205
30

5 −√
205

30
2
3

5 +
√

205
30

5 −√
205

30

Derivation of Starting Method

For the starting method, we have the following equations

β1 =0, (32)

β̃1 =0, (33)

β2 =
1
2

α3 − 1
6

, (34)

β̃2 =
1
2

α̃3 − 1
6

. (35)

The starting methods should be symplectic [16]. The solution of (32)–(35) leads us to the following
symplectic staring PRK methods S and S̃ as

0 0 0

1
3

0 0

1
3

2
5

0

1
3

2
5

−11
15

,

1
3

0 0

1
3

−11
18

0

1
3

−11
18

5
18

1
3

−11
18

5
18

.

6. Mutually Adjoint Symplectic Effective Order PRK Methods

A separable Hamiltonian system remains unchanged by changing the role of kinetic and potential
energies, position, and momentum and also inverting the direction of time. For the two PRK method
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tableaux (26) being mutually adjoint, we have b1 = b̃3, b2 = b̃2 and b3 = b̃1 in Equations (27)–(31),
so we have

3

∑
i=1

b̃i = 1, (36)

3

∑
i=1

b̃i = 1, (37)

b̃3b̃1 + b̃2(b̃1 + b̃2) + b̃1 =
1
2

, (38)

b̃2b̃2
3 + b̃3(b̃3 + b̃2)

2 =
1
3

. (39)

Sanz-Serna suggested in [14] to take b̃3 = 0.91966152, which leads us to the following main
methods M and M̃ with effective order 3 with just 3 stages

0 0 0

0.91966152 0 0

0.91966152 −0.18799162 0

0.91966152 −0.18799162 0.26833010

,

0.26833010 0 0

0.26833010 −0.18799162 0

0.26833010 −0.18799162 0.91966152

0.26833010 −0.18799162 0.91966152

.

The starting methods S and S̃ for mutually adjoint symplectic effective order PRK method are
constructed by using B1 = B̃3, B2 = B̃2, B3 = B̃1 in Equations (32) to (34) to get

B̃1 + B̃2 + B̃3 = 0, (40)

B̃1B̃3 + B̃2(B̃1 + B̃2) + B̃1(B̃1 + B̃2 + B̃3) � 0. (41)

By solving Equations (40) and (41) with B̃3 =
1
2

, we get the following S and S̃ methods:

0 0 0

1
2

0 0

1
2

−1
4

0

1
2

−1
4

−1
4

and

−1
4

0 0

−1
4

−1
4

0

−1
4

−1
4

1
2

−1
4

−1
4

1
2

7. Numerical Experiments

The symplectic RK methods should be implicit and hence their computational cost is higher
due to large number of function evaluations. On the other hand, we can use symplectic explicit PRK
methods for Hamiltonian systems with lesser computational cost because of the explicit nature of the
stages. Our derived effective order symplectic PRK methods are explicit and we have used MATLAB
to implement them on Hamiltonian systems for the energy conservation and order confirmation of
these methods.
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7.1. Kepler’s Two Body Problem

Consider Kepler’s two body problem given as

u
′
1 = v1, u1(0) = 1 − e,

u
′
2 = v2, u2(0) = 0,

v
′
1 =

−u1

r3 , v1(0) = 0,

v
′
2 =

−u2

r3 , v2(0) =

√
1 + e
1 − e

.

where r =
√

u2
1 + u2

2. The energy is given by,

H =
1
2
(v2

1 + v2
2)−

1√
u2

1 + u2
2

.

The exact solution after half revolution is

u1(π) = 1 + e, u2(π) = 0, v1(π) = 0, v2(π) =

√
1 − e
1 + e

.

To verify the effective order 3 behavior, we apply the starting methods S and S̃ to perturb initial
values to (ũ1)0, (ũ2)0 and (ṽ1)0, (ṽ2)0, respectively. Then we apply the main methods M and M̃ for n
number of iterations to (ũ1)0, (ũ2)0 and (ṽ1)0, (ṽ2)0, respectively and obtain the numerical solutions
(ũ1)n, (ũ2)n and (ṽ1)n, (ṽ2)n computed at tn = t0 + nh where h is the step-size. We then evaluate
exact solutions at tn to get u1(tn), u2(tn) and v1(tn), v2(tn) and perturb them using starting methods S
and S̃ to obtain ũ1(tn), ũ2(tn) and ṽ1(tn), ṽ2(tn). Finally, to obtain global error, we take the difference
between numerical and exact solutions, i.e., ||ũn − ũ(tn)||. Effective order 3 behavior for symplectic
and mutually adjoint symplectic PRK is confirmed from Tables 5 and 6.

Table 5. Global errors and their comparison: Symplectic Effective order PRK method.

h n Global Error Ratio

π

225
225 7.7741637102284 × 10−04

8.927465
π

450
450 8.7081425338124 × 10−05

8.475956
π

900
900 1.02739357736254 × 10−05

8.063877
π

1800
1800 1.27406905909534 × 10−06

We calculate the ratio of global errors calculated at step length h,
h
2

,
h
4

and
h
8

. For method of order
p, ratio should approximately be 2p [12].

The next experiment is to verify the energy conservation behaviour of the symplectic methods.
In this experiment, the step-size h = 2π/1000 is used for 105 iterations. Figures 1 and 2 depict good
conservation of energy with symplectic and mutually adjoint symplectic effective order PRK methods,
respectively. Whereas, the energy error was bounded above by 10−13 and 10−14, respectively.
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Figure 1. Energy error for the Kepler’s Problem (e = 0) with symplectic effective PRK method using
step size h = 2π/1000 for 105 steps.

Table 6. Global errors and their comparison: Mutually adjoint symplectic Effective order PRK method.

h n Global Error Ratio

π

40
40 4.635890382086 × 10−03

7.963129
π

80
80 5.82169473987045 × 10−04

8.062262
π

160
160 7.22091971134495 × 10−05

7.836579
π

320
320 9.21437776243649 × 10−06

0 100 200 300 400 500 600 700

Time

-10

-8

-6

-4

-2

0

2

En
er

gy
 er

ro
r

×10-14

Figure 2. Energy error for the Kepler’s Problem (e = 0) with mutually adjoint symplectic effective PRK
method using step-size h = 2π/1000 for 105 steps.
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7.2. Harmonic Oscillator

The motion of a unit mass attached to a spring with momentum u and position co-ordinates v
defines the Hamiltonian system

v
′
= u u

′
= v

The energy is given by

H=
u2

2
+

v2

2

The exact solution is [
u(t)
v(t)

]
=

[
cos(t) − sin(t)
sin(t) cos(t)

] [
u(0)
v(0)

]
We have applied the symplectic PRK and mutually adjoint symplectic PRK methods with step-size

h = 2π/1000 with 105 iteration in this experiment. We have obtained good energy conservation as
shown in Figures 3 and 4 by symplectic effective order PRK and mutually adjoint symplectic effective
order PRK methods, respectively.
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Figure 3. Energy error for the Harmonic oscillator problem (e = 0) with symplectic effective PRK
method using step size h = 2π/1000 for 105 steps.
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Figure 4. Energy error for the Harmonic oscillator problem (e = 0) with mutually adjoint symplectic
effective PRK method using step size h = 2π/1000 for 105 steps.

8. Conclusions

In this paper, the composition of two PRK methods is elaborated in terms of Butcher tableaux as
well as in terms of their elementary weight functions. The effective order conditions are provided for
PRK methods and 3 stage effective order 3 symplectic PRK methods are constructed and successfully
applied to separable Hamiltonian systems with good energy conservation. It is worth mentioning that
we are able to construct mutually adjoint symplectic effective order 3 PRK methods with just 3 stages,
whereas an equivalent method of order 3 with 4 stages is given in [16]. In dynamical solar systems,
we deal with many problems which are described by Hamiltonian systems, like, Kepler’s two body
problem and more realistic Jovian five body problem. These symplectic methods are much useful for
such types of physical phenomena to observe their positions and energy conservation.

Author Contributions: Formal analysis, J.A., A.A., S.S. and M.Y.; investigation, J.A., Y.H., S.u.R., A.A. and S.S.;
software, J.A., Y.H., S.u.R. and M.Y.; validation, J.A.; writing—original draft, J.A.; writing—review & editing, Y.H.,
S.u.R. and S.S.; conceptualization, Y.H.; methodology Y.H. and S.S.; Supervision, Y.H. and S.u.R.; visualization,
Y.H., A.A. and M.Y.; resources, S.S. and M.Y.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sanz-Serna, J.M.; Calvo, M.P. Numerical Hamiltonian Problems; Chapman & Hall: London, UK, 1994.
2. Blanes, S.; Moan, P.C. Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods.

J. Comput. Appl. Math. 2002, 142, 313–330. [CrossRef]
3. Chou, L.Y.; Sharp, P.W. On order 5 symplectic explicit Runge-Kutta Nyström methods. Adv. Decis. Sci. 2000,

4, 143–150. [CrossRef]
4. Geng, S. Construction of high order symplectic Runge-Kutta methods. J. Comput. Math. 1993, 11, 250–260.
5. Butcher, J.C. The effective order of Runge–Kutta methods. Lecture Notes Math. 1969, 109, 133–139.
6. Butcher, J.C. Order and effective order. Appl. Numer. Math. 1998, 28, 179–191. [CrossRef]
7. Butcher, J.C.; Chartier, P. A generalization of singly-implicit Runge-Kutta methods. Appl. Numer. Math. 1997,

24, 343–350. [CrossRef]
8. Butcher, J.C.; Chartier, P. The effective order of singly-implicit Runge-Kutta methods. Numer. Algorithms

1999, 20, 269–284. [CrossRef]

121



Symmetry 2019, 11, 142

9. Butcher, J.C.; Diamantakis, M.T. DESIRE: Diagonally extended singly implicit Runge—Kutta effective order
methods. Numer. Algorithms 1998, 17, 121–145. [CrossRef]

10. Butcher, J.C.; Imran, G. Symplectic effective order methods. Numer. Algorithms 2014, 65, 499–517. [CrossRef]
11. Lopez-Marcos, M.; Sanz-Serna, J.M.; Skeel, R.D. Cheap Enhancement of Symplectic Integrators. Numer. Anal.

1996, 25, 107–122.
12. Butcher, J.C. Numerical Methods for Ordinary Differential Equations, 2nd ed.; Wiley: Hoboken, NJ, USA, 2008.
13. Hairer, E.; Nørsett, S.P.; Wanner, G. Solving Ordinary Differential Equations I for Nonstiff Problems, 2nd ed.;

Springer: Berlin, Germany, 1987.
14. Sanz-Serna, J.M. Symplectic integrators for Hamiltonian problems. Acta Numer. 1992, 1, 123–124. [CrossRef]
15. Habib, Y. Long-Term Behaviour of G-symplectic Methods. Ph.D. Thesis, The University of Auckland,

Auckland, New Zealand, 2010.
16. Butcher, J.C.; D’Ambrosio, R. Partitioned general linear methods for separable Hamiltonian problems.

Appl. Numer. Math. 2017, 117, 69–86. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

122



symmetryS S

Article

Explicit Integrator of Runge-Kutta Type for Direct

Solution of u(4) = f (x, u, u′, u′′)
Nizam Ghawadri 1, Norazak Senu 1,2,*, Firas Adel Fawzi 3, Fudziah Ismail 1,2 and

Zarina Bibi Ibrahim 1,2

1 Institute for Mathematical Research , Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
nizamghawadri@gmail.com (N.G.); fudziah@upm.edu.my (F.I.); zarinabb@upm.edu.my (Z.B.I.)

2 Department of Mathematics, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
3 Department of Mathematics, Faculty of Computer Science and Mathematics, University of Tikrit,

Salah ad Din P.O. Box 42, Iraq; firasadil01@gmail.com
* Correspondence: norazak@upm.edu.my

Received: 30 November 2018; Accepted: 10 January 2019; Published: 16 February 2019

Abstract: The primary contribution of this work is to develop direct processes of explicit Runge-Kutta
type (RKT) as solutions for any fourth-order ordinary differential equation (ODEs) of the structure
u(4) = f (x, u, u′, u′′) and denoted as RKTF method. We presented the associated B-series and
quad-colored tree theory with the aim of deriving the prerequisites of the said order. Depending on
the order conditions, the method with algebraic order four with a three-stage and order five with a
four-stage denoted as RKTF4 and RKTF5 are discussed, respectively. Numerical outcomes are offered
to interpret the accuracy and efficacy of the new techniques via comparisons with various currently
available RK techniques after converting the problems into a system of first-order ODE systems.
Application of the new methods in real-life problems in ship dynamics is discussed.

Keywords: Runge-Kutta type methods; fourth-order ODEs; order conditions; B-series; quad-colored
trees

1. Introduction

Fourth-order ODEs can be found in several areas of neural network engineering and applied
sciences [1], fluid dynamics [2], ship dynamics [3–5], electric circuits [6] and beam theory [7,8]. In this
article, we are dealing with development and explanation of the numerical process to solve fourth-order
initial-value problems (IVPs) of the case:

u(4)(x) = f
(
x, u(x), u′(x), u′′(x)

)
, (1)

with initial conditions

u(x0) = u0, u′(x0) = u′
0, u′′(x0) = u′′

0 , u′′′(x0) = u′′′
0 , x ≥ x0

where u, u′, u′′, u′′′ ∈ Rd, f : R ×Rd ×Rd ×Rd → Rd constitute continuous vector-valued functions
without third derivatives. The general fourth order needs more function evaluations to be calculated,
which requires extra calculation effort and extended execution time. So we have presented the
explicit formulas of RKT to solve fourth-order ODEs directly of the structure u(4) = f (x, u, u′, u′′).
The numerical solution is very significant to ODEs of order four that are used in various applications
since the exact solutions usually do not exist. Many researchers have used classical approaches
to solve higher-order ODEs through converting them to first order system of ODEs and thus
using appropriate numerical approach to this arrangement (see [9–11]). However, this strategy
is extremely expensive because several researchers found that converting higher-order ODEs into

Symmetry 2019, 11, 246; doi:10.3390/sym11020246 www.mdpi.com/journal/symmetry123
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first-order ODE systems will increase the equation count (see [7,12,13]). Consequently, more function
evaluations need to be calculated, which requires into more computational effort and longer time.
Many researchers have suggested direct numerical approach to more accurate results with less
calculation time (see [14–19]). Furthermore, Ibrahim et al. [20] found a process by using multi-step
technique which could solve stiff differential equations of order three. Jain et al. [21] developed finite
difference approach to solve ODEs of order four, all the methods discussed above are multi-step in
nature. On the other hand, Mechee et al. [22,23], constructed a RK-based method for solving special
third-order ODEs directly. Senu et al. [24] developed embedded explicit RKT method to directly solve
special ODEs of order three. Subsequently, Hussain et al. [25] proposed RKT approach for solving the
aforementioned equations, except that the latter were of order four. The main purpose of this study
is using quad-colored trees theory to construct one step explicit RKT approach to solve fourth-order
ODEs of the structure u(4) = f (x, u, u′, u′′) denoted as RKTF method.

The motivation of this study is to solve specific real-life problems such as ship dynamics which
is special fourth-order ODE. Add to that, special method, RKTF will be considered that can solved
directly special fourth-order ODEs which is more efficient than the general method because of the
complexity of the method.

We organized this paper as follows: The idea of formulation of the RKTF methods to solve
problem (1) is discussed in Section 2. B-series and associated quad-colored for RKTF methods are
presented in Section 3. Section 4 investigates the construction of three- and four-staged RKTF methods
of fourth and fifth orders, respectively. In the subsequent section, the efficiencies as well as accuracies
the techniques will be compared against those of the existing methods. The ship dynamics problem is
discussed in Section 6. Lastly conclusions and discussion are given in Section 7.

2. Formulation of the RKTF Methods

The s-stage Runge-Kutta type technique for IVP (1) of order four is given through the scheme
as follows

Ui = un + cih u′
n +

1
2

c2
i h2 u′′

n +
1
6

c3
i h3 u′′′

n + h4
s

∑
j=1

aij f (xn + cjh, Uj, U′
j , U′′

j ),

U′
i = u′

n + ci h u′′
n +

1
2

c2
i h2 u′′′

n + h3
s

∑
j=1

āij f (xn + cjh, Uj, U′
j , U′′

j ),

U′′
i = u′′

n + ci h u′′′
n + h2

s

∑
j=1

¯̄aij f (xn + cjh, Uj, U′
j , U′′

j ),

un+1 = un + h u′
n +

1
2

h2 u′′
n +

1
6

h3 u′′′
n + h4

s

∑
i=1

bi f (xn + cih, Ui, U′
i , U′′

i ),

u′
n+1 = u′

n + h u′′
n +

1
2

h2 u′′′
n + h3

s

∑
i=1

b′i f (xn + cih, Ui, U′
i , U′′

i ),

u′′
n+1 = u′′

n + h u′′′
n + h2

s

∑
i=1

b′′i f (xn + cih, Ui, U′
i , U′′

i ),

u′′′
n+1 = u′′′

n + h
s

∑
i=1

b′′′i f (xn + cih, Ui, U′
i , U′′

i ). (2)
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The assumingly real new parameters bi, b′i , b′′i , b′′′i , aij, āij, ¯̄aij and ci of the RKTF method and used
for i, j = 1, 2, ..., s. The technique is explicit if aij = āij = ¯̄aij = 0 for i ≤ j and it is implicit otherwise.
In Kroneker’s block product, the scheme is given through as follows:

U =e ⊗ un + h(c ⊗ u′
n) +

h2

2
(c2 ⊗ u′′

n) +
h3

6
(c3 ⊗ u′′′

n ) + h4(A ⊗ Id) F(U, U′, U′′),

U′ =e ⊗ u′
n + h(c ⊗ u′′

n) +
h2

2
(c2 ⊗ u′′′

n ) + h3(Ā ⊗ Id) F(U, U′, U′′),

U′′ =e ⊗ u′′
n + h(c ⊗ u′′′

n ) + h2( ¯̄A ⊗ Id) F(U, U′, U′′),

un+1 = un + h u′
n +

1
2

h2 u′′
n +

1
6

h3 u′′′
n + h4(bT ⊗ Id) F(U, U′, U′′),

u′
n+1 = u′

n + h u′′
n +

1
2

h2 u′′′
n + h3(b′T ⊗ Id) F(U, U′, U′′),

u′′
n+1 = u′′

n + h u′′′
n + h2(b′′T ⊗ Id) F(U, U′, U′′),

u′′′
n+1 = u′′′

n + h(b′′′T ⊗ Id) F(U, U′, U′′).

where, e = [1, ..., 1]T , c = [c1, ..., cs]T , b = [b1, ..., bs]T , b′ = [b′1, ..., b′s]T , b′′ = [b′′1 , ..., b′′s ]T , b′′′ =

[b′′′1 , ..., b′′′s ]T , A = [aij]
T , Ā = [āij]

T , ¯̄A = [ ¯̄aij]
T denote s × s matrices while Id denotes d × d identity

matrix. The definition of all block vectors within Rs×d are as follows:

U =(UT
1 , ..., UT

s )
T ,

F(U, U′, U′′) =
(

f (xn + cih, Ui, U′
i , U′′

i )
T , ..., f (xn + csh, Us, U′

s, U′′
s )

T)T , i = 1, 2, ..., s.

The RKTF methods can be presented by the Butcher tableau of scheme (2) as follows (see Table 1):

Table 1. The Butcher tableau RKTF method.

c A Ā ¯̄A

bT b′T b′′T b′′′T

3. B-Series and Linked Quad-Colored for RKTF Methods

This section will provide the important definitions that linked relevant theorems used in this work.

Definition 1. The RKTF formula (2) is q-ordered if for every Equation (1) of sufficient smoothness, with respect
to a proposition that u(xn) = un, u′(xn) = u′

n, u′′(xn) = u′′
n , u′′′(xn) = u′′′

n , the local truncation errors of
the analytic solutions as well as their derivatives must fulfil the following: (see Hussain et al. [25] and Chen
et al. [26])

‖ u(xn + h)− un+1 ‖= O(hq+1), ‖ u′(xn + h)− u′
n+1 ‖= O(hq+1),

‖ u′′(xn + h)− u′′
n+1 ‖= O(hq+1), ‖ u′′′(xn + h)− u′′′

n+1 ‖= O(hq+1)

3.1. RKTF Trees and B-Series Theory

To construct the order conditions to RKTF approach Equation (2), we are required to use
autonomous formula of fourth-order IVP Equation (1)

u(4)(x) = f
(
u(x), u′(x), u′′(x)

)
, (3)

subject to initial prerequisites of

u(xn) = un, u′(xn) = u′
n, u′′(xn) = u′′

n , u′′′(xn) = u′′′
n .
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The IVP (1) of order four can be defined as the autonomous form through expansion of initial-value
problem (1) using one-dimensioned vector z = x

z(4) = 0,

u(4) = f (z, u, u′, u′′),
z(xn) := zn = xn, z′(xn) := z′n = 1, z′′(xn) := z′′n = 0, z′′′(xn) := z′′′n = 0,

u(xn) = un, u′(xn) = u′
n, u′′(xn) = u′′

n , u′′′(xn) = u′′′
n . (4)

We will obtain the same result when the RKTF approach (2) is applied to the autonomous
Equation (4) and also to the non-autonomous problem (1). Thus, we want only consider the
autonomous Equation (3) (see Hussain et al. [25]). Hence, to get a common method to obtain
the higher-order derivatives to the analytic solutions for Equation (3), we note that the elementary
differentials up to six derivatives for u(x) at x = x0 are given as follow:

u(1) = u′, u(2) = u′′, u(3) = u′′′, u(4) = f , u(5) = f ′uu′ + f ′u′u′′ + f ′u′′u′′′,

u(6) = f ′′uu(u
′, u′) + 2 f ′′uu′(u′, u′′) + f ′′u′u′(u′′, u′′) + 2 f ′′uu′′(u′, u′′′)+

2 f ′′u′u′′(u′′, u′′′) + f ′′u′′u′′(u′′′, u′′′) + f ′uu′′ + f ′u′u′′′ + f ′u′′ f (5)

Based on Hairer et al. ([9], p. 286) a better method to tackle this issue is to use graphical
exemplification indicated by quad-colored trees, in addition to some amendments to the ODEs of
order four. These trees contain four kinds of; “meagre” , “black ball”, “white bal l”, as well as “black
ball inside white ball” vertices both with brackets to link them. Fairly, in these trees we use the finish
“meagre vertex” to denote for all u′, the finish “black-ball vertices” to denote for all u′′, the finish
“white ball vertex” to denote for all u′′′ and the finish “black-ball-within-white-ball vertex” to denote
for all f , and all arc leaves of this vertex is the m-ordered f-derivative based on u, u′, u′′. The sign τ1

is denoted to the first algebraic order tree, the sign τ2 is denoted to the second algebraic order tree,
the sign τ3 is denoted to a algebraic order three tree, while τ4 is denoted to the fourth algebraic order
tree (see Figure 1).

τ1 = τ2 = τ3 = τ4 =

•

Figure 1. The quad-colored trees.

Definition 2. The repetitively explaining for the group of quad-colored trees (RT) that gives the following: (see
Hussain et al. [25] and Chen et al. [26])

(a) The tree τ1 includes just one “meagre vertex” (called root) and τ1 ∈ RT and also trees mentioned above τ2, τ3

and τ4 are in RT.
(b) If t1, ..., tr, tr+1, ..., tn , tn+1, ..., tm ∈ RT, then t = [t1, ..., tr,< tr+1, ..., tn >,< tn+1, ..., tm >]4 ∈ RT is

the tree gained through connecting t1, ..., tr, tr+1, ..., tn, tn+1, ..., tm, to “black ball inside white ball vertex”
of the tree τ4 in RT and the root of the “meagre vertex” τ1 is at the bottom. The subscript 4 is to remind
that the trees of the roots of t1, ..., tr, tr+1, ..., tn , tn+1, ..., tm to the tree τ4 include a series of four vertex.

To produce the quad-colored trees we shall use these basics:

(a) The “meagre” vertex is permanently the root.
(b) A “meagre” vertex has just one kid and this kid have to be “black ball".
(c) A “black-ball” vertex has just one kid and this kid have to be “white ball".
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(d) A “white ball” vertex has just one kid and this kid have to be “black ball inside white ball vertex”.
(e) Each kid of a “black ball inside white ball vertex” vertex has to be “meagre”.

Definition 3. We acquaint the order ρ(t) and similarity σ(t) functions as follows: (see Hussain et al. [25])

(a) ρ(τ1) = 1, ρ(τ2) = 2, ρ(τ3) = 3, ρ(τ4) = 4,
(b) σ(τ1) = 1, σ(τ2) = 1, σ(τ3) = 1, σ(τ4) = 1,
(c) If t = [t1, ..., tr,< tr+1, ..., tn >,< tn+1, ..., tm >]4, ∀t ∈ RT, then ρ(t) = 4 + ∑r

i=1 ρ(ti) +

∑n
i=r+1(ρ(ti)− 1)+∑m

i=n+1(ρ(ti)− 2) and σ(t) = ∏m
i=1(σ(ti))

μi !(μ1! μ2!...), where ρ(t) is the number
of vertices of t, t ∈ RT and μ1! μ2!... count equal trees between t1, ..., tm.

Then we can acquaint the set Sp that contain all trees RT of order p, where μi! is the multiplicity of ti for
i = 1, ..., m.

Definition 4. The vector-valued function F(t) : Rd ×Rd ×Rd ×Rd → Rd on RT is defined as the elementary
differential to every tree, t ε RT recursively by (see Hussain et al. [25])

(a) F(∅)(u, u′, u′′, u′′′) = u, F(τ1)(u, u′, u′′, u′′′) = u′, F(τ2)(u, u′, u′′, u′′′) =

u′′, F(τ3)(u, u′, u′′, u′′′) = u′′′, F(τ4)(u, u′, u′′, u′′′) = f (u, u′, u′′),
(b) F(t) = ∂m f

∂ur ∂u′n−r ∂u′′m−n

(
F(t1)(u, u′, u′′, u′′′), ..., F(tm)(u, u′, u′′, u′′′)

)
f ort = [t1, ..., tr,<

tr+1, ..., tn >,< tn+1, ..., tm >]4.

Note: we denote by < tr+1, ..., tn >,< tn+1, ..., tm > the quad-colored tree whose new roots are
black ball, white ball and black ball inside white ball. (see Table 2).

By the acquaint of B-series on the tri-colored trees in [27] and the acquaint of B-series on the root
trees in ([28], p. 57), we expanded these theorems and definitions to RKTF formulas to grant the use
qualifier of B-series on the group RT from the quad-colored trees.

Definition 5. For a mapping δ : RT ∪ {∅} → Rd, we can define format of an official series through:

B(δ, u, u′, u′′) = δ(∅)y + ∑
t∈RT

hρ(t)

σ(t)
δ(t)F(t)(u, u′, u′′, u′′′), (6)

is named a B-series. (see Chen et al. [26]).

We will give the fundamental lemma that provides an important role in this construct as following.

Lemma 1. Suppose δ be a function δ : RT ∪ {∅} → Rd with δ(∅) = 1, δ̄ be a
function δ̄ : RT → Rd with δ̄(τ1) = 1 and also ¯̄δ be a function ¯̄δ : RT → Rd

with ¯̄δ(τ2) = 1. Thus, h4 f (B(δ, u, u′, u′′), B( ρ
h δ̄, u, u′, u′′), B( ρ(ρ−1)

h2
¯̄δ, u, u′, u′′)) is also B-series

h4 f (B(δ, u, u′, u′′), B( ρ
h δ̄, u, u′, u′′), B( ρ(ρ−1)

h2
¯̄δ, u, u′, u′′)) =B(δ(4), u, u′, u′′) where δ(4)(∅) = δ(4)(τ1) =

δ(4)(τ2) = δ(4)(τ3) = δ(4)(τ4) = 0, δ(4)(τ4) = 1 and for t = [t1, ..., tr,< tr+1, ..., tn >,< tn+1, ..., tm >

]4,with ρ(t) ≥ 5, δ(4)(t) = ∏r
i=1 δ(ti) ∏n

i=r+1 ρ(ti) δ̄(ti) ∏m
i=n+1 ρ(ti) (ρ(ti)− 1) ¯̄δ(ti).
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Table 2. Quad-colored trees of orders up to six, elementary differentials and associated functions.

’ ’’ ’’’
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Table 2. Cont.

’ ’’ ’’’

’’ ’ ’ ’’ ’’

’’ ’’ ’ ’’’

’’ ’ ’’ ’’ ’’’

’’ ’’  ’’ ’’’ ’’’

 ’ ’’

’ ’ ’’’

 ’ ’’

Note: In this table, density is denoted as γ(t) and elementary weight is denoted as η(t).

Proof. By assumption, B(δ, u, u′, u′′) = u+O(h) , B( ρ
h δ̄, y, u′, u′′) = u′ +O(h) and B( ρ(ρ−1)

h2
¯̄δ, u, u′, u′′) =

u′′ + O(h). Thus, the Taylor expansion of f (B(δ, u, u′, u′′), B( ρ
h δ̄, u, u′, u′′), B( ρ(ρ−1)

h2
¯̄δ, u, u′, u′′)) shows

that f (B(δ, u, u′, u′′), B( ρ
h δ̄, u, u′, u′′), B( ρ(ρ−1)

h2
¯̄δ, u, u′, u′′)) = h4 f (u, u′, u′′) + O(h5) which implies that

δ(4)(∅) = δ(4)(τ1) = δ(4)(τ2) = δ(4)(τ3) = 0, δ(4)(τ4)=1.
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Depend on the proof in Hairer et al. [28], we have

h4 f (B(δ, u, u′, u′′), B(
ρ

h
δ̄, y, u′, u′′), B(

ρ(ρ − 1)
h2

¯̄δ, u, u′, u′′)) =

h4 ∑
m≥0

...
m

∑
n=0

m!
r!(n − r)!(m − n)!

∂m f
∂ur ∂u′n−r ∂u′′m−n (u, u′, u′′)

(
B(δ, u, u′′, u′′)− u

)r

(
B(

ρ

h
δ̄, u, u′′, u′′)− u′)n−r(B(

ρ (ρ − 1)
h2

¯̄δ, u, u′′, u′′)− u′′)m−n

= h4 ∑
m≥0

...
m

∑
n=0

m!
r!(n − r)!(m − n)! ∑

t1∈RT
... ∑

tr∈RT
∑

tr+1∈RT\{τ1,τ2,τ3}
... ∑

tn∈RT\{τ1,τ2,τ3}

∑
tn+1∈RT\{τ1,τ2,τ3}

... ∑
tm∈RT\{τ1,τ2,τ3}

hρ(t1)+ρ(t2)+...ρ(tm)−(m−n)

σ(t1)...σ(tm)
. ρ(tn + 1) ... ρ(tm) δ(t1) ...

δ(tr) δ̄(tr + 1) ... δ̄(tn) ¯̄δ(tn + 1) ... ¯̄δ(tm)
∂m f

∂ur ∂u′n−r ∂u′′m−n (u, u′, u′′)
(

F(t1)(u, u′, u′′, u′′′)

...F(tm)(u, u′, u′′, u′′′)
)
= ∑

m≥0

m

∑
r=0

∑
t1∈RT

... ∑
tr∈RT

∑
tr+1∈RT\{τ1,τ2,τ3}

...

∑
tn∈RT\{τ1,τ2,τ3}

∑
tn+1∈RT\{τ1,τ2,τ3}

... ∑
tm∈RT\{τ1,τ2,τ3}

hρ(t)

σ(t)
.

m! μ1! μ2! ... ξ1! ξ2! ... ζ1! ζ2! ...
r!(n − r)! (m − n)!

ρ(tn + 1) ... ρ(tm) δ(t1) ... δ(tr) δ̄(tr + 1) ... δ̄(tn) ¯̄δ(tn + 1) ... ¯̄δ(tm) F(t)(u, u′, u′′, u′′′)

= ∑
t∈RT, ρ(t)≥5

hρ(t)

σ(t)
ρ(tn + 1) ... ρ(tm) δ(t1) ... δ(tr) δ̄(tr + 1) ... δ̄(tn) ¯̄δ(tn + 1) ...

¯̄δ(tm) F(t)(u, u′, u′′, u′′′)

where, one equality t = [t1, ..., tr,< tr+1, ..., tn >,< tn+1, ..., tm >]4, and the number of methods of
ordering the subtrees t1, ..., tm in t = [t1, ..., tr,< tr+1, ..., tn >,< tn+1, ..., tm >]4, i.e., the multiplicity
of t = [t1, ..., tr,< tr+1, ..., tn >,< tn+1, ..., tm >]4 is r!(q−r)!(n−q)!(m−n)!

m! μ1! μ2! ... ξ1! ξ2! ... ζ1! ζ2! ... , μ1, μ2, ... count equal
trees between t1, ..., tr , ξ1, ξ2, ... count equal trees between tr+1, tr+2, ..., tn and ζ1, ζ2, ... count equal
trees between tn+1, tr+2, ..., tm we get

δ(4) =
r

∏
i=1

δ(ti)
n

∏
i=r+1

ρ(ti) δ̄(ti)
m

∏
i=n+1

ρ(ti) (ρ(ti)− 1) ¯̄δ(ti).

Then we have

h4 f (B(δ, u, u′, u′′), B(
ρ

h
δ̄, y, u′, u′′), B(

ρ(ρ − 1)
h2

¯̄δ, u, u′, u′′)) =

∑
t∈RT

hρ(t)

σ(t)
δ(4) F(t)(u, u′, u′′, u′′′) = B(δ(4), u, u′, u′′).

Theorem 1. Suppose that the analytic solution u(x0 + h) of the form (3) is B-series, B(e, u0, u′
0, u′′

0 ) with a
real function e defined on RT ∪ {∅}. Then

e(∅) = 1, e(τ1) = 1, e(τ2) =
1
2

, e(τ3) =
1
6

, e(τ4) =
1
24

,
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and for t = [t1, ..., tr,< tr+1, ..., tn >,< tn+1, ..., tm >]4,

e(t) =
1

ρ(t)(ρ(t)− 1)(ρ(t)− 2)(ρ(t)− 3)

r

∏
i=1

e(ti)
n

∏
i=r+1

ρ(ti)e(ti)

m

∏
i=n+1

ρ(ti) (ρ(ti)− 1)e(ti).

Proof.

u(x0 + h) = B(e, u0, u′
0, u′′

0 )

= e(∅)u0 + he(τ1)u′
0 + h2e(τ2)u′′

0 + h3e(τ3)u′′′
0 + h4e(τ4) f (u0, u′

0, u′′
0 )

+ ∑
tr+1∈RT\{τ1,τ2,τ3,τ4}

hρ(t)

σ(t)
e(t) F(u0, u′

0, u′′
0 , u′′′

0 ),

Thus, the first fourth derivative of u(x0 + h) is presented by

(u(x0 + h))′ = d
dh

[u(x0 + h)] = e(τ1)u′
0 + 2he(τ2)u′′

0 + 3h2e(τ3)u′′′
0 + 4h3e(τ4) f (u0, u′

0, u′′
0 )

+ ∑
tr+1∈RT\{τ1,τ2,τ3,τ4}

ρ(t)hρ(t)−1

σ(t)
e(t) F(u0, u′

0, u′′
0 , u′′′

0 ) = B(
ρ e
h

, u0, u′
0, u′′

0 ), (7)

(u(x0 + h))(2) =
d2

dh2 [u(x0 + h)] = 2e(τ2)u′′
0 + 6he(τ3)u′′′

0 + 12h2e(τ4) f (u0, u′
0, u′′

0 )

+ ∑
tr+1∈RT\{τ1,τ2,τ3,τ4}

ρ(t)(ρ(t)− 1)hρ(t)−2

σ(t)
e(t) F(u0, u′

0, u′′
0 , u′′′

0 ))

= B(
ρ(ρ − 1)e

h2 , u0, u′
0, u′′

0 ), (8)

(u(x0 + h))(3) =
d3

dh3 [u(x0 + h)] = 6e(τ3)u′′′
0 + 24he(τ4) f (u0, u′

0, u′′
0 )

+ ∑
tr+1∈RT\{τ1,τ2,τ3,τ4}

ρ(t)(ρ(t)− 1)(ρ(t)− 2)hρ(t)−3

σ(t)
e(t) F(u0, u′

0, u′′
0 , u′′′

0 )

= B(
ρ(ρ − 1)(ρ − 2)e

h3 , u0, u′
0, u′′

0 ),

(u(x0 + h))(4) =
d4

dh4 [u(x0 + h)] = 24e(τ4) f (u0, u′
0, u′′

0 )

+ ∑
tr+1∈RT\{τ1,τ2,τ3,τ4}

ρ(t)(ρ(t)− 1)(ρ(t)− 2)(ρ(t)− 3)hρ(t)−4

σ(t)
e(t) F(u0, u′

0, u′′
0 , u′′′

0 )

= B(
ρ(ρ − 1)(ρ − 2)(ρ − 3)e

h4 , u0, u′
0, u′′

0 ), (9)

Moreover, of Lemma 1, we have

f (B(e, u, u′, u′′), B(
ρ

h
e, u, u′, u′′), B(

ρ(ρ − 1)
h2 e, u, u′, u′′)) = e(4)(τ4) f (u0, u′

0, u′′
0 )

+ ∑
t∈RT\{τ1,τ2,τ3,τ4}

hρ(t)−4

σ(t)
e(4)(t) F(u0, u′

0, u′′
0 , u′′′

0 ), (10)
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where e(4)(τ4) = 1 and t = [t1, ..., tr,< tr+1, ..., tn >,< tn+1, ..., tm >]4 ∈ RT\{τ1, τ2, τ3, τ4},

e(4)(t) =
r

∏
i=1

e(ti)
n

∏
i=r+1

ρ(ti)e(ti)
m

∏
i=n+1

ρ(ti)(ρ(ti)− 1)e(ti),

Inserting (9) and (10) to Equation (3), then depending on the both sides, we compare the
coefficients of the same elementary differential to obtain

e(τ4) =
1
24

,

and t = [t1, ..., tr,< tr+1, ..., tn >,< tn+1, ..., tm >]4 ∈ RT\{τ1, τ2, τ3, τ4},

e(t) =
1

ρ(t)(ρ(t)− 1) (ρ(t)− 2) (ρ(t)− 3)

r

∏
i=1

e(ti)
n

∏
i=r+1

ρ(ti)e(ti)

m

∏
i=n+1

ρ(ti)(ρ(ti)− 1)e(ti).

lastly, depending on the Taylor series expansions of u(x0 + h) about h = 0, e(∅) = e(τ1) = 1,
e(τ2) =

1
2 , e(τ3) =

1
6 , e(τ4) =

1
24 .

∀t ∈ RT, we lead to write the density as follows γ(t) = 1
e(t) and also write non-negative integer as

follows α(t) = ρ(t)!
σ(t)γ(t) . Thus, from Theorem 1 we have two propositions that we will mention below.

Proposition 1. ∀t ∈ RT, the density γ(t) is the non-negative integer valued function on RT satisfying. (see
Hussain et al. [25] and Chen et al. [26])

(i) γ(τ1) = 1, γ(τ2) = 2, γ(τ3) = 6, γ(τ4) = 24,
(ii) t = [t1, ..., tr,< tr+1, ..., tn >,< tn+1, ..., tm >]4 ∈ RT,

γ(t) = ρ(t) (ρ(t)− 1) (ρ(t)− 2) (ρ(t)− 3)
r

∏
i=1

γ(ti)
n

∏
i=r+1

γ(ti)

ρ(ti)

m

∏
i=n+1

γ(ti)

ρ(ti)(ρ(ti)− 1)
,

Proposition 2. ∀t ∈ RT , α(t) is the positive-integer satisfying. (see Chen et al. [26])

(i) α(t1) = 1, α(t2) = 1, α(t3) = 1, α(t4) = 1,
(ii) t = [tμ1

1 , ..., tμr
r ,< tμr+1

r+1 , ..., tμn
n >, ,< tμn+1

n+1 , ..., tμm
m >]4 ∈ RT, with t1, ..., tr distinct and tr+1, ..., tn

distinct, tn+1, ..., tm distinct,

α(t) = (ρ(t)− 4)!
r

∏
i=1

1
μi!

(
α(ti)

ρ(ti)!

)μi n

∏
i=r+1

1
μi!

(
α(ti)

ρ(ti)− 1)!

)μi m

∏
i=n+1

1
μi!

(
α(ti)

ρ(ti)− 2)!

)μi

,

where μi is the multiplicity of ti, i = 1, ..., m.

Then the B-series (6) can be written as follows:

B(δ, u, u′, u′′) = δ(∅)y + ∑
t∈RT

hρ(t)

ρ(t)!
δ(t) γ(t) α(t) F(t)(u, u′, u′′, u′′′), (11)
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and f (B(δ, u, u′, u′′), B( ρ
h δ̄, y, u′, u′′), B( ρ(ρ−1)

h2
¯̄δ, u, u′, u′′)), can be expressed as

f (B(δ, u, u′, u′′), B(
ρ

h
δ̄, y, u′, u′′), B(

ρ(ρ − 1)
h2

¯̄δ, u, u′, u′′)) =

∑
t∈RT\{τ1,τ2,τ3}

hρ(t)−4

ρ(t)!
δ(4) γ(t) α(t) F(t)(u, u′, u′′, u′′′). (12)

3.2. B-Series of the Exact Solution and Exact Derivative

Depending on the former analysis, we can present the theorem as following

Theorem 2. The analytic solution u(x0 + h) of the problem (3) and the derivative u′(x0 + h), u′′(x0 + h),
u′′′(x0 + h) have B-series respectively as follows,

u(x0 + h) = u0 + ∑
t∈RT

hρ(t)

ρ(t)!
α(t) F(t)(u0, u′

0, u′′
0 , u′′′

0 ) = B
(

α(t)σ
ρ!

, u0, u′
0, u′′

0

)
= B

(
1

γ(t)
, u0, u′

0, u′′
0

)
, (13)

u′(x0 + h) = ∑
t∈RT

hρ(t)−1

(ρ(t)− 1)!
α(t) F(t)(u0, u′

0, u′′
0 , u′′′

0 ) = B
(

α(t)σ
h(ρ − 1)!

, u0, u′
0, u′′

0

)
= B

(
ρ

hγ(t)
, u0, u′

0, u′′
0

)
, (14)

u′′(x0 + h) = ∑
t∈RT

hρ(t)−2

(ρ(t)− 2)!
α(t) F(t)(u0, u′

0, u′′
0 , u′′′

0 ) = B
(

α(t)σ
h2(ρ − 2)!

, u0, u′
0, u′′

0

)
= B

(
ρ(ρ − 1)
h2γ(t)

, u0, u′
0, u′′

0

)
, (15)

u′′′(x0 + h) = ∑
t∈RT

hρ(t)−3

(ρ(t)− 3)!
α(t) F(t)(u0, u′

0, u′′
0 , u′′′

0 ) = B
(

α(t)σ
h3(ρ − 3)!

, u0, u′
0, u′′

0

)
= B

(
ρ(ρ − 1)(ρ − 2)

h3γ(t)
, u0, u′

0, u′′
0

)
. (16)

The proof is given by Hussain et al. [25]

3.3. B-Series of the Numerical Solution and Numerical Derivative

So as to constitute the B-series for the numerical solution u1 and the numerical derivative u′
1, u′′

1 , u′′′
1

of the form (3) created by the RKTF approach (2), we suppose that Ui, U′
i and U′′

i in Equation (2) can

be developed as B-series Ui = B(ψi, u0, u′
0, u′′

0 ) , U′
i = B( ρ

h ψ̄i, u0, u′
0, u′′

0 ) and U′′
i = B( ρ(ρ−1)

h2
¯̄ψi, u0, u′

0, u′′
0 )

respectively. Then the first-three equations in the scheme (2) are as follows,

B(ψi, u0, u′
0, u′′

0 ) = u0 + cih u′
0 +

1
2

c2
i h2 u′′

0 +
1
6

c3
i h3 u′′′

0

+ h4
s

∑
j=1

aij f
(

B(ψi, u0, u′
0, u′′

0 ), B(
ρ

h
ψ̄i, u0, u′

0, u′′
0 ), B(

ρ(ρ − 1)
h2

¯̄ψi, u0, u′
0, u′′

0 )
)
,
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B(
ρ

h
ψ̄i, u0, u′

0, u′′
0 ) = u′

0 + cih u′′
0 +

1
2

c2
i h2 u′′′

0

+ h3
s

∑
j=1

āij f
(

B(ψi, u0, u′
0, u′′

0 ), B(
ρ

h
ψ̄i, u0, u′

0, u′′
0 ), B(

ρ(ρ − 1)
h2

¯̄ψi, u0, u′
0, u′′

0 )
)
,

B(
ρ(ρ − 1)

h2
¯̄ψi, u0, u′

0, u′′
0 ) = u′′

0 + cih u′′′
0

+ h2
s

∑
j=1

¯̄aij f
(

B(ψi, u0, u′
0, u′′

0 ), B(
ρ

h
ψ̄i, u0, u′

0, u′′
0 ), B(

ρ(ρ − 1)
h2

¯̄ψi, u0, u′
0, u′′

0 )
)
,

by (11) and (12) the former two equations can be presented as

ψi(∅)u0 + ∑
t∈RT

hρ(t)

ρ(t)!
ψi(t) γ(t) α(t) F(t)(u, u′, u′′, u′′′) = u0 + cih u′

0 +
1
2

c2
i h2 u′′

0

+
1
6

c3
i h3 u′′′

0 + h4
s

∑
j=1

∑
t∈RT\{τ1,τ2,τ3}

hρ(t)

ρ(t)!
aij ψj

(4) γ(t) α(t) F(t)(u0, u′
0, u′′

0 , u′′′
0 ),

∑
t∈RT

hρ(t)−1

(ρ(t)− 1)!
ψ̄i(t) γ(t) α(t) F(t)(u0, u′

0, u′′
0 , u′′′

0 ) = u′
0 + cih u′′

0 +
1
2

c2
i h2 u′′′

0 + h3

s

∑
j=1

∑
t∈RT\{τ1,τ2,τ3}

hρ(t)−1

ρ(t)!
āij ψj

(4) γ(t) α(t) F(t)(u0, u′
0, u′′

0 , u′′′
0 ),

∑
t∈RT

hρ(t)−2

(ρ(t)− 2)!
¯̄ψi(t) γ(t) α(t) F(t)(u0, u′

0, u′′
0 , u′′′

0 ) = u′′
0 + cih u′′′

0

h2
s

∑
j=1

∑
t∈RT\{τ1,τ2,τ3}

hρ(t)−2

ρ(t)!
¯̄aij ψj

(4) γ(t) α(t) F(t)(u0, u′
0, u′′

0 , u′′′
0 ).

It follows that

ψi(∅) = 1, ψi(τ1) = ci, ψi(τ2) =
1
2

c2
i , ψi(τ3) =

1
6

c3
i ,

ψi(τ4) = ∑ aij ψj
(4)(τ4) =

s

∑
j=1

aij, (17)

ψ̄i(τ1) = 1, ψ̄i(τ2) = ci, ψ̄i(τ3) =
1
2

c2
i , ψ̄i(τ4) =

1
4

s

∑
j=1

āij,

¯̄ψi(τ2) = 1, ¯̄ψi(τ3) = ci, ¯̄ψi(τ4) =
1
12 ∑ ¯̄aij, (18)

and

ψi(t) =
s

∑
j=1

aijψj
(4)(t), ψ̄i(t) =

s

∑
j=1

āij

ρ(t)
ψj

(4)(t), ¯̄ψi(t) =
s

∑
j=1

¯̄aij

ρ(t)(ρ(t)− 1)
ψj

(4)(t), (19)

furthermore, for trees t = [t1, ..., tr,< tr+1, ..., tn >,< tn+1, ..., tm >]4 ∈ RT and ρ(t) ≥ 5, Lemma 5 gives

ψj
(4)(t) =

r

∏
i=1

ψj(ti)
n

∏
i=r+1

ρ(ti)ψ̄j

m

∏
i=n+1

ρ(ti)(ρ(ti)− 1) ¯̄ψj, (20)
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inserting (19) into (20) we obtain:

ψj
(4)(t) =

r

∏
i=1

[ s

∑
k=1

ajkψk
(4)(ti)

] n

∏
i=r+1

[ s

∑
k=1

ājkψ̄k
(4)(ti)

] m

∏
i=n+1

[ s

∑
k=1

¯̄ajk
¯̄ψ(4)

k (ti)

]
. (21)

We denote ψj
(4)(ti) = ηj(t), for all trees t = [t1, ..., tr,< tr+1, ..., tn >,< tn+1, ..., tm >]4 ∈ RT

and ρ(t) ≥ 5.
Thus, (21) can be written as follows,

ηj(t) =
r

∏
i=1

[ s

∑
k=1

ajkηk(ti)

] n

∏
i=r+1

[ s

∑
k=1

ājkη̄k(ti)

] m

∏
i=n+1

[ s

∑
k=1

¯̄ajk ¯̄ηk(ti)

]
.

Commonly, the next significant lemma yields the values of ηj(τ) for each tree belonging to
RT\{τ1, τ2, τ3}

Lemma 2. We can compute the function ηj(t) on ∈ RT\{τ1, τ2, τ3} recursively.

(i) ηj(τ4) = 1
(ii) for t = [τ

μ1
1 , ..., tμr

r ,< tμr+1
r+1 , ..., tμn

n >,< tμn+1
n+1 , ..., tμm

m >]4 ∈ RT with t4, ..., tr distinct and different
from τ1, τ2, τ3, and , tr+1, ..., tn distinct, tn+1, ..., tm distinct,

ηi(t) =
1

2μ2 6μ3
cμ1+2μ2+3μ3

i

r

∏
k=4

[ s

∑
j=1

aijηj(tk)

]μk

.
n

∏
k=r+1

[ s

∑
j=1

āijηj(tk)

]μk

m

∏
k=n+1

[ s

∑
j=1

¯̄aijηj(tk)

]μk

,

where, μ1, μ2, μ3 is the multiplicity of τ1, τ2, τ3 respectively and μk is the multiplicity of tk for k = 4, .., n.

Here, we define the vector η(t) =
(
η1(t), ..., ηs(t)

)T for t ∈ RT\{τ1, τ2, τ3}
(i) The initial weight linked to un+1 is denoted by ϕ(t) = ∑ biηi(t) = bTη(t)
(ii) ϕ

′
(t) is denoted to the initial weight linked with u′

n+1 and written as follows:
ϕ
′
(t) = ∑s

i=1 b′iηi(t) = b′Ti η(t)
(iii) ϕ

′′
(t) is denoted to the initial weight linked with u′′

n+1 and written as follows:
ϕ
′′
(t) = ∑s

i=1 b′′i ηi(t) = b′′Ti η(t).
(iv) ϕ

′′′
(t) is denoted to the initial weight linked with u′′′

n+1 and written as follows:
ϕ
′′′
(t) = ∑s

i=1 b′′′i ηi(t) = b′′′Ti η(t).

Theorem 3. The numerical solution u1 and the numerical derivative u′
1, u′′

1 , u′′′
1 of Equation (3) produced by

the RKTF approach (2) have the following B-series

u1(x0 + h) = u0 + h u′
0 +

1
2

h2 u′′
0 +

1
6

h3 u′′′
0 + ∑

t∈RT\{τ1,τ2,τ3}

hρ(t)

ρ(t)!
ϕ(t) γ(t) α(t) F(t)(u0, u′

0, u′′
0 , u′′′

0 ),
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u′
1(x0 + h) = u′

0 + h u′′
0 +

1
2

h2 u′′′
0 + ∑

t∈RT\{τ1,τ2,τ3}

hρ(t)−1

ρ(t)!
ϕ
′
(t) γ(t) α(t) F(t)(u0, u′

0, u′′
0 , u′′′

0 ),

u′′
1 (x0 + h) = u′′

0 + h u′′′
0 + ∑

t∈RT\{τ1,τ2,τ3}

hρ(t)−2

ρ(t)!
ϕ
′′
(t) γ(t) α(t) F(t)(u0, u′

0, u′′
0 , u′′′

0 ),

u′′′
1 (x0 + h) = u′′′

0 + ∑
t∈RT\{τ1,τ2,τ3}

hρ(t)−3

ρ(t)!
ϕ
′′′
(t) γ(t) α(t) F(t)(u0, u′

0, u′′
0 , u′′′

0 ).

Proof. By assumption, ui , u′
i and u′′

i in the scheme (2) are B-series B(ψi, u0, u′
0, u′′

0 ), B( ρ
h ψ̄i, u0, u′

0, u′′
0 )

and B( ρ(ρ−1)
h2

¯̄ψi, u0, u′
0, u′′

0 ) respectively, from Lemma 5 we have

h4F(ui, u′
i, u′′

i ) =B(ψ(4)
i , u0, u′

0, u′′
0 ) = ∑

t∈RT\{τ1,τ2,τ3}

hρ(t)

ρ(t)!
ψ(4) γ(t) α(t) F(t)(u0, u′

0, u′′
0 , u′′′

0 ).

Therefore,

u1(x0 + h) = u0 + h u′
0 +

1
2

h2 u′′
0 +

1
6

h3 u′′′
0 +

s

∑
i=1

bi B(ψ(4)
i , u0, u′

0, u′′
0 )

=u0 + h u′
0 +

1
2

h2 u′′
0 +

1
6

h3 u′′′
0 + ∑

t∈RT\{τ1,τ2,τ3}

hρ(t)

ρ(t)!
ϕ(t) γ(t) α(t) F(t)(u0, u′

0, u′′
0 , u′′′

0 ),

u′
1(x0 + h) = u′

0 + h u′′
0 +

1
2

h2 u′′′
0 +

1
h

s

∑
i=1

b′i B(ψ(4)
i , u0, u′

0, u′′
0 )

= u′
0 + h u′′

0 +
1
2

h2 u′′′
0 + ∑

t∈RT\{τ1,τ2,τ3}

hρ(t)−1

ρ(t)!
ϕ
′
(t) γ(t) α(t) F(t)(u0, u′

0, u′′
0 , u′′′

0 ),

u′′
1 (x0 + h) = u′′

0 + h u′′′
0 +

1
h2

s

∑
i=1

b′′i B(ψ(4)
i , u0, u′

0, u′′
0 )

= u′′
0 + h u′′′

0 + ∑
t∈RT\{τ1,τ2,τ3}

hρ(t)−2

ρ(t)!
ϕ
′′
(t) γ(t) α(t) F(t)(u0, u′

0, u′′
0 , u′′′

0 ),

u′′′
1 (x0 + h) = u′′′

0 +
1
h3

s

∑
i=1

b′′′i B(ψ(4)
i , u0, u′

0, u′′
0 )

= u′′′
0 + ∑

t∈RT\{τ1,τ2,τ3}

hρ(t)−3

ρ(t)!
ϕ
′′′
(t) γ(t) α(t) F(t)(u0, u′

0, u′′
0 , u′′′

0 ).

3.4. Algebraic Order Conditions

Through Theorem 1 and 3, we arrived at the major goal of this study.

Theorem 4. The RKTF method (2) has order q( 4 ≤ q) if and only if the following conditions are satisfied as
given in Hussain et al. [25])

(i) ϕ(t) = 1
γ(t) , ρ(t) ≤ q,

(ii) ϕ
′
(t) = ρ(t)

γ(t) , ρ(t) ≤ q + 1,

(iii) ϕ
′′
(t) = ρ(t) (ρ(t)−1)

γ(t) , ρ(t) ≤ q + 2,

(iv) ϕ
′′′
(t) = ρ(t) (ρ(t)−1) (ρ(t)−2)

γ(t) , ρ(t) ≤ q + 3.
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Corollary 1. (see Hussain et al. [25]). Assume that

t∗ =[τ
μ1+2 μ2+3 μ3
1 , tμ4

4 , ... , tμr
r ,< tμr+1

r+1 , ..., tμn
n >,< tμn+1

n+1 , ..., tμm
m >]4,

t̂ =[τ
μ1
1 , τ

μ2
2 , τ

μ3
3 , tμ4

4 , ... , tμr
r ,< tμr+1

r+1 , ..., tμn
n >,< tμn+1

n+1 , ..., tμm
m >]4

where t4, ..., tr are distinct and different from τ1, τ2 and τ3 and tr+1, ..., tn , tn+1, ..., tm are distinct. Then

ηi(t̂) =
1

2μ2 6μ3
ηi(t∗), ρ(t̂) = ρi(t∗), γ(t̂) = 2μ2 6μ3 γ(t∗).

Based on Corollary 1 assuming that the t∗ and t̂ trees grant the same order conditions, then these
trees are equivalent. Thus, we can delete some trees since they are equivalent. For example, in Table 2
trees t61 and t68 of sixth-order are equivalent.

Based on Theorem 4 and Corollary 1, the algebraic order conditions up to order six for the RKTF
formula can be presented as follows:

order 1:
b′′′Te = 1. (22)

order 2:
b′′′Tc =

1
2

, b′′Te =
1
2

. (23)

order 3:
b′′′Tc2 =

1
3

, b′′′T ¯̄A =
1
6

, b′′Tc =
1
6

, b′Te =
1
6

. (24)

order 4:

b′′′Tc3 =
1
4

, b′′′T Ā =
1

24
, b′′′T(c. ¯̄Ae) =

1
8

, b′′′T ¯̄Ac =
1

24
,

b′′Tc2 =
1
12

, b′′T ¯̄A =
1
24

, b′Tc =
1

24
, bTe =

1
24

. (25)

order 5:

b′′′Tc4 =
1
5

, b′′′T A =
1

120
, b′′′T Āc =

1
120

, b′′′Tc.Āe =
1

30
, b′′′T ¯̄Ac2 =

1
60

,

b′′′T(c2. ¯̄A) =
1
10

, b′′′T(c. ¯̄Ac) =
1
30

, b′′Tc3 =
1
20

, b′′T Ā =
1

120
, b′′T(c. ¯̄Ae) =

1
40

,

b′′T ¯̄Ac =
1

120
, b′Tc2 =

1
60

, b′T ¯̄A =
1

120
, bTc =

1
120

. (26)

137



Symmetry 2019, 11, 246

order 6:

b′′′Tc5 =
1
6

, b′′′T Ac =
1

720
, b′′′T(c.Ae) =

1
144

, b′′′T Āc2 =
1

360
,

b′′′T(c. ¯̄Ac2) =
1
72

, b′′′T(Āc2) =
1

360
, b′′′T(c2.Āe) =

1
36

,

b′′′T(c.Āc) =
1

144
, b′′′T(c3. ¯̄Ae) =

1
12

, b′′′T ¯̄Ac3 =
1

120
,

b′′′T(c. ¯̄Ac2) =
1

144
, b′′′T(c2. ¯̄Ac) =

1
36

, b′′T(c. ¯̄Ac) =
1

180
, b′′Tc4 =

1
30

,

b′′T A =
1

720
, b′′T Āc =

1
720

, b′′T(c.Āe) =
1

180
, b′′T ¯̄Ac2 =

1
360

,

b′′T(c2. ¯̄Ae) =
1
60

, b′Tc3 =
1

120
, b′T Ā =

1
720

, b′T(c. ¯̄Ae) =
1

240
,

b′T ¯̄Ac =
1

720
, bT ¯̄A =

1
720

, bTc2 =
1

360
. (27)

The following simplifying assumption is used to reduce the number of equations to be solved:

∑ ¯̄aij =
c2

i
2 .

3.5. Zero-Stability of the New Method

Here, we will discuss the zero-stability of the new techniques. It is stable at zero significance to
prove the convergence of multi-step techniques and stability (see [10,11]). In [29], also discussed on the
zero-stability to obtain the upper boundedness of the multi-steps methods. Now, the first characteristic
polynomial for the RKTF method for Equation (2) is based on the following equation:⎡⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

un+1

hu′
n+1

h2u′′
n+1

h3u′′′
n+1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 1 1

2
1
6

0 1 1 1
2

0 0 1 1
0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

un

hu′
n

h2u′′
n

h3u′′′
n

⎤⎥⎥⎥⎦ ,

where I =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ is the identity matrix coefficient of un+1, h u′
n+1, h2u′′

n+1 and h3u′′′
n+1

and A =

⎡⎢⎢⎢⎣
1 1 1

2
1
6

0 1 1 1
2

0 0 1 1
0 0 0 1

⎤⎥⎥⎥⎦ is matrix coefficient of un, h u′
n, h2u′′

n and h3u′′′
n , respectively.

Then, the first characteristic polynomial of new methods is

ρ(ζ) = det[Iζ − A] =

∣∣∣∣∣∣∣∣∣
ζ − 1 −1 − 1

2 − 1
6

0 ζ − 1 −1 − 1
2

0 0 ζ − 1 −1
0 0 0 ζ − 1

∣∣∣∣∣∣∣∣∣
.

thus, ρ(ζ) = (ζ − 1)4. By solving the characteristic polynomial, we obtain the roots, ζ = 1, 1,
1, 1. Therefore, the RKTF methods is zero stable since the roots of the characteristic polynomial
have modulus less than or equal to one. The RKTF is consistent because the RKTF has order p ≥ 4.
This property, with the zero stable of the methods, implies the convergence of the RKT method.
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4. Construction of the RKTF Methods

According the order conditions stated in Section 3.4 before we proceed to construct explicit RKTF
methods. The local truncated error for the q order RKTF technique is defined as follows:

‖ L(q+1)
g ‖2=

⎛⎝nq+1

∑
i=1

(
L(q+1)

i

)2
+

n′
q+1

∑
i=1

(
L′

i
(q+1)

)2
+

n′′
q+1

∑
i=1

(
L′′

i
(q+1)

)2
+

n′′′
q+1

∑
i=1

(
L′′′

i
(q+1)

)2
⎞⎠

1
2

(28)

where L(q+1), L′(q+1), L′′(q+1) and L′′′(q+1) are the local truncation error terms for u, u′, u′′ and u′′′

respectively, Lg
(q+1) is the global local truncation error.

4.1. A Three-Stage Fourth-Order RKTF Method

In this subsection the derivation of the three-stage RKTF technique of order four by using the

algebraic order conditions up to order four and simplifying assumption ∑ ¯̄aij =
c2

i
2 will be considered.

The resulting system consists of 15 nonlinear equations with 23 unknown variables, solving the
system simultaneously and the family of solution in terms of a21, a31, a32, ā32, b2 , c3 and letting
ā21 = 0, b3 = 0, and b′3 = 0 are given as follows:

ā31 = − ā32 +
3
4

c3 − 2 c3
2 +

3
2

c3
3,

¯̄a21 =
(−3 + 4 c3)

2

8 (−2 + 3 c3)
2 , ¯̄a31 = − c3

(
14 c3 − 20 c3

2 − 3 + 9 c3
3)

−3 + 4 c3
,

¯̄a32 =

(
3 − 8 c3 + 6 c3

2) c3 (−2 + 3 c3)

2 (−3 + 4 c3)
, b1 =

1
24

− b2, b′1 =
−4 + 5 c3

12 (−3 + 4 c3)
,

b′2 =
−2 + 3 c3

12(−3 + 4 c3)
, b′′1 =

6 c3
2 − 6 c3 + 1

6 (−3 + 4 c3) c3
, b′′2 =

(
2 − 7 c3 + 6 c3

2) (−2 + 3 c3)

3 (3 − 8 c3 + 6 c32) (−3 + 4 c3)
,

b′′3 =
−(−1 + c3)

6 (3 − 8 c3 + 6 c32) c3
, b′′′1 =

6 c3
2 − 6 c3 + 1

6 (−3 + 4 c3) c3
, b′′′2 =

2
(
4 − 12 c3 + 9 c3

2) (−2 + 3 c3)

3 (3 − 8 c3 + 6 c32) (−3 + 4 c3)
,

b′′′3 =
1

6 (3 − 8 c3 + 6 c32) c3
, c2 =

−3 + 4 c3

2 (−2 + 3 c3)
.

Next, we minimize the truncation error term by using minimize command in Maple. Thus, for
the optimized value of coefficients in fractional form we chose a21 = − 23

50 , a31 = 8
25 , a32 = 8

25 , ā32 = 3
50 ,

c3 = 21
25 and b2 = 1

50 with these values ‖ τ
(5)
g ‖2= 7.98593 × 10−3. Finally, all the parameters of

three-stage fourth-order RKTF approach that will be denoted as RKTF4 can be written as follows (see
Table 3):

Table 3. The RKTF4 Method.

0 0 0 0
9

26 − 23
50 0 0 0 81

1352 0
21
25

8
25

8
25 0 2991

62,500
3

50 0 644
15,625

9737
31,250 0

13
600

1
50 0 5

108
13
108 0 121

1134
2873
8667

1250
20223

121
1134

4394
8667

15,625
40,446

4.2. A Four-Stage RKTF Method of Order Five

For four-stage RKTF technique of order five, the algebraic conditions up to order five will be
solved. The resulting system consists of 29 nonlinear equations with 37 unknown variables, solving
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the system together will give a family of solution with 11 free parameters of a21, a32, a42, a43, ā21, ā42,
ā43, b′4, c2, b3 and b4 are given as follows:

ā31 =
1

10 (16 c22 − 8 c2 + 1) (5 c2 − 4) (4 c2 − 1)3 (50000 c2
6 ā4,2 − 880 c2

5 − 1040 c2
2 ā2,1 − 18750 c2

3 ā4,2

+ 11250 c2
3 ā4,3 + 800 c2

3 ā2,1 + 66250 c2
4 ā4,2 − 21250 c2

4 ā4,3 − 97500 c2
5 ā4,2 + 12500 c2

5 ā4,3

− 40 ā2,1 + 320 c2
2 − 32 c2 − 1134 c2

3 + 1684 c2
4 + 1875 c2

2 ā4,2 − 1875 c2
2 ā4,3 + 370 c2 ā2,1),

¯̄a21 =
c2

2

2
, ¯̄a31 =

c2
2

2 (4 c2 − 1)2 , ¯̄a41 = − 4 (50 c2
4 − 260 c2

3 + 321 c2
2 − 128 c2 + 16)

625 c22 (10 c22 − 12 c2 + 3)
,

a31 =
−1

10 (16 c22 − 8 c2 + 1) (5 c2 − 4) (4 c2 − 1)2 (12500 a4,2c2
5 + 12500 a4,3c2

5 − 220 c2
5 + 12800 a3,2c2

5

− 23040 a3,2c2
4 − 21250 a4,2c2

4 − 21250 a4,3c2
4 + 366 c2

4 − 192 c2
3 + 15040 a3,2c2

3 + 11250 a4,2c2
3

+ 11250 a4,3c2
3 − 1875 a4,2c2

2 − 1875 a4,3c2
2 + 32 c2

2 − 4640 a3,2c2
2 + 690 a3,2c2 + 110 a2,1c2 − 40 a3,2

− 40 a2,1),

ā32 =
− (2 c2 − 1) c2

10 (16 c22 − 8 c2 + 1) (5 c2 − 4) (4 c2 − 1)3 (−440 c2
3 + 622 c2

2 − 256 c2 + 32 + 25000 c2
4 ā4,2

− 36250 c2
3 ā4,2 + 15000 c2

2 ā4,2 − 1875 ā4,2c2 + 6250 c2
3 ā4,3 − 7500 c2

2 ā4,3 + 1875 c2 ā4,3),

ā41 = − 1
125 c2 (10 c22 − 12 c2 + 3)

(1250 c2
3 ā4,3 − 110 c2

3 + 1250 c2
3 ā4,2 − 1500 c2

2 ā4,3 + 128 c2
2

− 1500 c2
2 ā4,2 − 32 c2 + 375 c2 ā4,3 + 375 ā4,2c2 + 20 ā2,1),

¯̄a42 =
(5 c2 − 4)

(
33 c2

2 − 34 c2 + 8
)

625 (2 c2 − 1) c22 (10 c22 − 12 c2 + 3)
, ¯̄a43 =

(4 c2 − 1)2 (275 c2
3 − 430 c2

2 + 208 c2 − 32
)

625 (2 c2 − 1) c22 (10 c22 − 12 c2 + 3)
,

b1 =
660 c2

2b4 + 20 c2 − 768 c2b4 − 5 + 192 b4

300 c22 , b2 = − −15 c2 + 1056 c2b4 − 384 b4 + 10
1200 (2 c2 − 1) c22 , c4 =

4
5

,

b′1 = − −20 c2
2 + 9 c2 − 240 b′3c2 − 504 b′4c2 + 96 b′4 − 1 + 480 b′3c2

2 + 480 b′4c2
2

120 c2 (4 c2 − 1)
, c3 =

c2

4 c2 − 1
,

b′2 = − 120 b′3c2 + 384 b′4c2 − 96 b′4 − 4 c2 + 1
120 c2 (4 c2 − 1)

, b′′1 =
2 c2

2 + 4 c2 − 1
48 c22 , b′′2 = − c2 − 1

24 c22 (5 c2 − 4) (2 c2 − 1)
,

b′′3 =
192 c2

4 − 208 c2
3 + 84 c2

2 − 15 c2 + 1
24 (2 c2 − 1) c22 (11 c2 − 4)

, b′′4 =
25(10 c2

2 − 12 c2 + 3)
48 (11 c2 − 4) (5 c2 − 4)

, b′′′1 =
2 c2

2 + 4 c2 − 1
48c22 ,

b′′′2 =
1

24 c22 (5 c2 − 4) (2 c2 − 1)
, b′′′3 =

(4 c2 − 1)2 (16 c2
2 − 8 c2 + 1

)
24 c22 (11 c2 − 4) (2 c2 − 1)

, b′′′4 =
125(10 c2

2 − 12 c2 + 3)
48 (11 c2 − 4) (5 c2 − 4)

.

Minimizing the local truncation error norms and the optimized value of coefficients in fractional
form will result in a21 = 1

2 , a32 = − 1
25 , a42 = − 6

25 , a43 = 13
25 , ā21 = 1

200 , ā42 = 1
1000 , ā43 = 3

100 , c2 = 37
50 ,

b3 = 2
5 , b4 = 11

10 and b′4 = 3
100 with these values ‖ τ

(6)
g ‖2= 8.771395898 × 10−3.

Lastly, all the parameters of four-stage fifth-order RKTF method indicated by RKTF5 can be
written as follows :
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c2 =
37
50

, a21 =
1
2

, ā21 =
1

200
, ¯̄a21 =

1369
5000

, c3 =
37
98

, a31 =
29, 560, 597
288, 240, 050

, a32 = − 1
25

,

ā31 =
23, 408, 341

4, 519, 603, 984
, ā32 = − 20, 407, 091

4, 519, 603, 984
, ¯̄a31 =

1369
19, 208

, ¯̄a32 = 0, c4 =
4
5

, a41 = 0, a42 = − 6
25

,

a43 =
13
25

, ā41 =
77, 969

3, 737, 000
, ā42 =

1
1000

, ā43 =
3

100
, ¯̄a41 =

3, 347, 324
17, 283, 625

, ¯̄a42 =
2277

553, 076
,

¯̄a43 =
8, 449, 119

69, 134, 500
, b1 = − 1107

14, 504
, b2 = −30, 067

21, 756
, b3 =

2
5

, b4 =
11
10

, b
′
1 =

116, 911
2, 053, 500

, b
′
2 = − 13, 529

394, 272
,

b
′
3 =

5, 620, 741
49, 284, 000

, b
′
4 =

3
100

, b
′′
1 =

1273
10, 952

, b
′′
2 = − 40, 625

295, 704
, b

′′
3 =

7, 176, 589
20, 403, 576

, b
′′
4 =

2525
14, 904

,

b
′′′
1 =

1273
10, 952

, b
′′′
2 = − 78, 125

147, 852
, b

′′′
3 =

5, 764, 801
10, 201, 788

, b
′′′
4 =

12, 625
14, 904

5. Numerical Experiments

Some of the problems involving u(4) = f (x, u, u′, u′′) are tested in this section. The numerical
results are compared with the results obtained when the same group of examples is transformed to a
system of first order and is solved using the existing RK of the same order.

• RKTF5: the explicit RKTF method of order five with four-stage derived in this paper.
• RKTF4: the explicit RKTF method of order four with three-stage constructed in this paper.
• RKF5: the fifth-order RK method with six-stage given in Lambert [11].
• DOPRI5: the fifth-order RK method with seven-stage derived in Dormand [10].
• RK4: the classical RK method of order four with four-stage as given in Butcher [29].
• RKM4: the RK method of order four with five-stage derived in Hairer [9].

Problem 1: (Linear System Inhomogeneous)

u(4)
1 (x) = −u′′

2 (x), u1(0) = 1, u′
1(0) = 1, u′′

1 (0) = 1, u′′′
1 (0) = 1,

u(4)
2 (x) = −u′′

1 (x), u2(0) = −1, u′
2(0) = −1, u′′

2 (0) = −1, u′′′
2 (0) = −1,

u(4)
3 (x) = −u′′

3 (x)− u3(x)− cos(x), u3(0) = −1, u′
3(0) = 0, u′′

3 (0) = 1, u′′′
3 (0) = 0,

u(4)
4 (x) = −u′′

4 (x)− u4(x)− 2 cos(x), u4(0) = −2, u′
4(0) = 0, u′′

4 (0) = 2, u′′′
4 (0) = 0,

The exact solution is

u1(x) = e(x), u2(x) = −e(x), u3(x) = − cos(x), u4(x) = −2 cos(x),

Problem 2: (Homogeneous Linear Problem)

u(4)(x) = −u′′(x), u(0) = 1, u′(0) = 0, u′′(0) = −1, u′′′(0) = 0,

The exact solution is

u(x) = cos(x).

Problem 3: (Inhomogeneous Nonlinear Problem)

u(4)(x) = u2(x) + cos2(x)− u′′(x)− 1,

u(0) = 0, u′(0) = 1, u′′(0) = 0, u′′′(0) = −1,
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The exact solution is u(x) = sin(x).
Problem 4: (Inhomogeneous Linear Problem)

u(4)(x) = −2u′′(x)− u(x) + 1,

u(0) = 0, u′(0) = 0, u′′(0) = 1, u′′′(0) = 0,

The exact solution is u(x) = 1 − cos(x).
Problem 5: Linear system homogeneous given in Hussain et al. [25]

u(4)
1 (x) = e3 xu4(x), u1(0) = 1, u′

1(0) = −1, u′′
1 (0) = 1, u′′′

1 (0) = −1,

u(4)
2 (x) = 16 e− xu1(x), u2(0) = 1, u′

2(0) = −2, u′′
2 (0) = 4, u′′′

2 (0) = −8,

u(4)
3 (x) = 81 e− xu2(x), u3(0) = 1, u′

3(0) = −3, u′′
3 (0) = 9, u′′′

3 (0) = −27,

u(4)
4 (x) = 256 e− xu3(x), u4(0) = 1, u′

4(0) = −4, u′′
4 (0) = 16, u′′′

4 (0) = −64,

The exact solution is given by

u1(x) = e−x, u2(x) = e−2 x, u3(x) = e−3 x, u4(x) = e−4 x, 0 ≤ x ≤ 3.

Table 4. Numerical results for Problem 1 for RKTF4 method.

h Methods F.N MAXE TIME

RKTF4 404 1.222871(−1) 0.017
0.1 RK4 1616 1.885232(−1) 0.037

RKM4 2020 3.403273(−2) 0.065

RKTF4 1600 1.338047(−4) 0.018
0.025 RK4 6400 7.022302(−4) 0.060

RKM4 8000 1.194765(−4) 0.066

RKTF4 3204 5.157453(−6) 0.019
0.0125 RK4 12,816 4.496182(−5) 0.064

RKM4 16,020 7.571023(−6) 0.075

RKTF4 6404 2.224660(−7) 0.020
0.00625 RK4 25,616 2.798824(−6) 0.068

RKM4 32,020 4.633184(−6) 0.090

Table 5. Numerical results for Problem 2 for RKTF4 method.

h Methods F.N MAXE TIME

RKTF4 12,000 5.534239(−5) 0.020
0.1 RK4 64,000 6.414194(−4) 0.022

RKM4 80,000 5.560571(−5) 0.039

RKTF4 48,003 2.162515(−7) 0.025
0.025 RK4 256,016 2.365790(−6) 0.029

RKM4 320,020 2.164114(−7) 0.041

RKTF4 96,003 1.329278(−8) 0.026
0.0125 RK4 512,016 8.094855(−8) 0.044

RKM4 640,020 1.330367(−8) 0.056

RKTF4 192,000 1.193586(−9) 0.039
0.00625 RK4 1,024,000 5.429163(−9) 0.057

RKM4 1,201,354 1.201354(−9) 0.063
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Table 6. Numerical results for Problem 3 for RKTF4 method.

h Methods F.N MAXE TIME

RKTF4 303 5.505858(−5) 0.016
0.1 RK4 1616 1.231418(−4) 0.018

RKM4 2020 7.157474(−5) 0.019

RKTF4 1200 8.246706(−7) 0.018
0.025 RK4 6400 4.384085(−7) 0.019

RKM4 8000 2.778406(−7) 0.020

RKTF4 2403 5.811466(−8) 0.020
0.0125 RK4 12,816 2.730099(−8) 0.022

RKM4 16,020 1.765267(−8) 0.024

RKTF4 4803 3.800168(−9) 0.021
0.00625 RK4 25,616 1.687264(−9) 0.025

RKM4 32,020 1.102847(−9) 0.029

Table 7. Numerical results for Problem 4 for RKTF4 method.

h Methods F.N MAXE TIME

RKTF4 33 2.916673(−7) 0.013
0.1 RK4 176 5.134405(−7) 0.015

RKM4 220 7.799860(−8) 0.019

RKTF4 120 4.476108(−10) 0.025
0.025 RK4 640 1.870891(−9) 0.029

RKM4 800 3.044243(−10) 0.032

RKTF4 243 2.326739(−11) 0.028
0.0125 RK4 1296 1.155365(−11) 0.033

RKM4 1620 1.902623(−11) 0.057

RKTF4 483 1.281475(−12) 0.039
0.00625 RK4 2576 7.177037(−12) 0.047

RKM4 3220 1.187606(−12) 0.065

Table 8. Numerical results for Problem 5 for RKTF4 method.

h Methods F.N MAXE TIME

RKTF4 90 1.950979(0) 0.018
0.1 RK4 480 3.529526(1) 0.022

RKM4 600 8.144031(0) 0.025

RKTF4 363 1.141631(−3) 0.019
0.025 RK4 1936 1.560395(−1) 0.026

RKM4 2420 3.606455(−2) 0.038

RKTF4 720 7.384678(−5) 0.021
0.0125 RK4 3840 8.711749(−3) 0.036

RKM4 4800 2.014647(−3) 0.056

RKTF4 1440 1.991337(−6) 0.024
0.00625 RK4 7680 5.445548(−4) 0.057

RKM4 9600 1.259457(−4) 0.071
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Table 9. Numerical results for Problem 1 for RKTF5 method.

h Methods F.N MAXE TIME

RKTF5 404 5.327998(−5) 0.021
0.1 RKF5 2424 2.064967(−3) 0.024

DOPRI5 2828 5.732670(−4) 0.027

RKTF5 1600 4.254471(−7) 0.022
0.025 RKF5 9600 1.917218(−6) 0.031

DOPRI5 11,200 5.706643(−7) 0.033

RKTF5 3204 1.786611(−8) 0.023
0.0125 RKF5 19,224 6.053233(−8) 0.040

DOPRI5 22,428 1.931767(−8) 0.043

RKTF5 6404 6.002665(−9) 0.028
0.00625 RKF5 38,424 4.878530(−9) 0.064

DOPRI5 44,828 7.250492(−9) 0.075

Table 10. Numerical results for Problem 2 for RKTF5 method.

h Methods F.N MAXE TIME

RKTF5 16,000 8.041249(−6) 0.020
0.1 RKF5 96,000 3.609465(−6) 0.023

DOPRI5 112,000 1.108071(−6) 0.026

RKTF5 64,004 7.853954(−9) 0.028
0.025 RKF5 384,024 3.523595(−9) 0.032

DOPRI5 448,028 1.085847(−9) 0.045

RKTF5 128,004 4.112761(−10) 0.035
0.0125 RKF5 768,024 2.510125(−10) 0.067

DOPRI5 896,028 2.290347(−10) 0.075

RKTF5 256,000 3.651384(−10) 0.043
0.00625 RKF5 1,536,000 3.557808(−10) 0.090

DOPRI5 1,792,000 3.557941(−10) 0.105

Table 11. Numerical results for Problem 3 for RKTF5 method.

h Methods F.N MAXE TIME

RKTF5 404 5.997978(−5) 0.020
0.1 RKF5 2424 9.761318(−5) 0.029

DOPRI5 2828 2.837350(−5) 0.037

RKTF5 1600 1.024417(−8) 0.021
0.025 RKF5 9600 6.841436(−8) 0.043

DOPRI5 11,200 1.404994(−8) 0.053

RKTF5 3204 1.413103(−9) 0.035
0.0125 RKF5 19,224 2.045084(−9) 0.046

DOPRI5 22,428 3.752920(−9) 0.059

RKTF5 6404 1.078057(−10) 0.042
0.00625 RKF5 38,424 4.854006(−11) 0.072

DOPRI5 44,828 1.245892(−11) 0.080
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Table 12. Numerical results for Problem 4 for RKTF5 method.

h Methods F.N MAXE TIME

RKTF5 404 2.812051(−7) 0.016
0.1 RKF5 2424 1.813420(−6) 0.017

DOPRI5 2828 2.251424(−8) 0.025

RKTF5 1600 2.432738(−10) 0.018
0.025 RKF5 9600 1.767513(−10) 0.019

DOPRI5 12,200 6.083276(−10) 0.021

RKTF5 3204 7.153833(−12) 0.021
0.0125 RKF5 19,224 5.553996(−12) 0.023

DOPRI5 22,428 1.871991(−12) 0.027

RKTF5 6404 4.845013(−13) 0.025
0.00625 RKF5 38,424 2.333522(−13) 0.030

DOPRI5 44,828 3.941292(−13) 0.038

Table 13. Numerical results for Problem 5 for RKTF5 method.

h Methods F.N MAXE TIME

RKTF5 120 1.534759(−1) 0.018
0.1 RKF5 720 6.153184(−1) 0.023

DOPRI5 840 5.531381(−1) 0.028

RKTF5 484 3.920592(−5) 0.021
0.025 RKF5 2904 6.983629(−4) 0.034

DOPRI5 3388 1.877126(−5) 0.039

RKTF5 5760 1.960240(−5) 0.024
0.0125 RKF5 5760 1.960240(−5) 0.061

DOPRI5 6720 3.310441(−6) 0.074

RKTF5 1920 1.468912(−7) 0.030
0.00625 RKF5 11,520 6.140969(−7) 0.065

DOPRI5 13,440 7.817222(−8) 0.121

6. Application to Problem from Ship Dynamics

This new technique is used to solve a physical problem from ship dynamics. As declared by
Wu et al. [3], when a sinusoidal wave of hesitancy Ω passes along a ship or offshore structure,
the resultant fluid actions vary with time x. In a specific status for the research by Wu et al. [3],
the fourth-order problem is presented as

u(4) = −3u′′ − u(2 + ε cos(Ωx)), x > 0 (29)

which is based on several initial conditions:

u(0) = 1, u′(0) = u′′(0) = u′′′(0) = 0.

where ε = 0 for the presence of the theoretical solution, y(x) = 2 cos(x)− cos(x
√

2). The theoretical
solution is indeterminate when ε �= 0 (see Twizell [4]). Previously, somewhat numerical experiences
for solving ordinary differential equations of order four have been expanded to solve ship dynamics.
Numerical realization was offered by Twizell [4] and Cortell [5] in connection with the order four
ordinary differential Equation (29) when ε = 0 and ε = 1 for Ω = 0.25(

√
2 − 1). Instead of solving the

order four ordinary differential equations directly, Twizell [4] and Cortell [5] opined that traditional
path is alleviation way for first order ODEs. Twizell [4] constructed the global extrapolation with a
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family of numerical formulas to raise the order of the formulas. Furthermore, Cortell [5] developed
the expansion of the classical Runge-Kutta formula.

Table 14. Numerical results for Problem (29) for RKTF4 method with ε = 0.

h Methods F.N MAXE TIME

RKTF4 120 4.343559(−5) 0.016
0.1 RK4 480 2.898981(−5) 0.017

RKM4 600 4.708466(−5) 0.018

RKTF4 484 4.042540(−8) 0.018
0.025 RK4 1936 1.106125(−7) 0.058

RKM4 2420 1.828451(−8) 0.061

RKTF4 960 1.560340(−9) 0.034
0.0125 RK4 3840 6.884182(−9) 0.063

RKM4 4800 1.142450(−9) 0.069

RKTF4 1920 7.905333(−11) 0.056
0.00625 RK4 7680 4.293583(−10) 0.068

RKM4 9600 7.143930(−11) 0.074

Table 15. Numerical results for Problem (29) for RKTF5 method with ε = 0.

h Methods F.N MAXE TIME

RKTF5 120 8.312096(−7) 0.014
0.1 RKF5 720 5.273884(−7) 0.015

DOPRI5 840 1.489234(−7) 0.018

RKTF5 484 2.413660(−10) 0.023
0.025 RKF5 2904 5.506529(−10) 0.059

DOPRI5 3388 1.660703(−10) 0.062

RKTF5 960 6.902590(−12) 0.052
0.0125 RKF5 5760 1.690381(−11) 0.063

DOPRI5 6720 5.136336(−12) 0.066

RKTF5 1920 2.069456(−13) 0.061
0.00625 RKF5 11,520 5.315748(−13) 0.069

DOPRI5 13,440 1.643130(−13) 0.077

Table 16. Numerical results for Problem (29) for RKTF4 method with ε = 1.

h Methods F.N MAXE TIME

RKTF4 6 4.255906(−3) 0.017
0.5 RK4 48 2.418471(−3) 0.018

RKM4 60 6.260650(−4) 0.023

RKTF4 15 5.127330(−5) 0.023
0.2 RK4 96 7.798540(−5) 0.025

RKM4 120 1.423970(−5) 0.033

RKTF4 33 1.854900(−6) 0.026
0.1 RK4 176 5.067700(−6) 0.044

RKM4 220 8.710000(−6) 0.069

RKTF4 120 3.300000(−9) 0.056
0.025 RK4 640 2.010000(−8) 0.055

RKM4 800 3.300000(−9) 0.074
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Table 17. Numerical results for Problem (29) for RKTF5 method with ε = 1.

h Methods F.N MAXE TIME

RKTF5 8 2.511868(−2) 0.016
0.5 RKF5 72 1.646000(−3) 0.017

DOPRI5 84 8.809400(−4) 0.019

RKTF5 20 5.912040(−6) 0.018
0.2 RKF5 144 9.133000(−7) 0.021

DOPRI5 168 4.852000(−7) 0.029

RKTF5 44 7.086000(−8) 0.026
0.1 RKF5 264 1.930000(−8) 0.050

DOPRI5 308 9.400000(−8) 0.060

RKTF5 160 1.000000(−10) 0.036
0.025 RKF5 960 1.000000(−10) 0.065

DOPRI5 1120 1.000000(−10) 0.076

7. Discussion and Conclusions

In this work, we are focusing on the algebraic theory of order conditions of RKTF method in the
form of u(4) = f (x, u, u′, u′′) to solve ODEs of order four directly. Depending on the idea and concepts
of rooted trees used to solve first and second order ordinary differential equations, many researchers
have presented the definitions and algebraic theories of order algebraic conditions that we can see
in [29–31]. Moreover, [32,33] introduced the idea and concept of B-series theory that are dependent on
algebraic order conditions.

In fact, the motivation of our new work in using the B-series to construct RKT formula based on
the algebraic order conditions developed in the form of u(4) = f (x, u, u′, u′′) to solve directly ODEs of
order four. Furthermore, we developed three-stage of order four and four-stage of order five known as
RKTF4 and RKTF5 methods, respectively.

The numerical outcomes are tabulated in Tables 4–17 and plotted in Figures 2–8. Those figures
show the proficiency curves when compared the new methods with RKTF5, DOPRI5, RK4 and RKM4
methods by the number of function evaluations and maximum global error. Figures 2 and 3, RKTF4
and RKTF5 methods outperform over RKTF5, DOPRI5, RK4 and RKM4 methods in terms number
function evaluations. Next, Figure 4 displays the efficacy of the new methods for inhomogeneous
nonlinear problem. In Figures 5 and 6, we can see that RKTF4 and RKTF5 approaches are the more
efficient and accurate methods compared to the other existing RK methods. Figures 7 and 8 show
that the new methods require less function evaluations than RKF5, DOPRI5, RK4 and RKM4 methods.
This is because when Equation (29) is solved using RKTF5, DOPRI5, RK4 and RKM4 methods, it needs
to be reduced to a system of first-order equations which is four times the dimension. From numerical
results in all tables, we noticed that the proposed methods outperform existing RK methods in terms
of time for all step size. From numerical results in all figures, we noticed that the number of function
evaluations of RKTF4 and RKTF5 methods are less than number of function evaluations for other
existing RK methods and they have shown that the new methods are more accurate and appropriate
when solving fourth-order ODEs in the form of u(4) = f (x, u, u′, u′′).
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Figure 2. Efficiency curves for RKTF5, RKTF4, RKF5, DOPRI5, RK4 and RKM4 when solving Problem 1
with step size h = 0.1, 0.025, 0.0125, 0.00625 and xend = 10.
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Figure 3. Efficiency curves for RKTF5, RKTF4, RKF5, DOPRI5, RK4 and RKM4 when solving Problem
2 with step size h = 0.1, 0.025, 0.0125, 0.00625 and xend = 400.
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Figure 4. Efficiency curves for RKTF5, RKTF4, RKF5, DOPRI5, RK4 and RKM4 when solving Problem
3 with step size h = 0.1, 0.025, 0.0125, 0.00625 and xend = 10.
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Figure 5. Efficiency curves for RKTF5, RKTF4, RKF5, DOPRI5, RK4 and RKM4 when solving Problem
4 with step size h = 0.1, 0.025, 0.0125, 0.00625 and xend = 10.

log
10

(Number of function evaluations)
1.5 2 2.5 3 3.5 4 4.5

lo
g 10

(M
ax

 g
lo

ba
l e

rr
or

)

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

 RKTF5
RKF5
DOPRI5
RKTF4
RK4
RKM4

Figure 6. Efficiency curves for RKTF5, RKTF4, RKF5, DOPRI5, RK4 and RKM4 when solving Problem
5 with step size h = 0.1, 0.025, 0.0125, 0.00625 and xend = 3.
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Figure 7. Efficiency curves for Equation (29) with h = 0.1, 0.025, 0.0125, 0.00625 , ε = 0 and xend = 3.
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Abbreviations

The following abbreviations are used in this manuscript:

h Step size used.
IVPs Initial value problems.
RKTF5 The explicit RKTF method of order five with four-stage derived in this paper.
RKTF4 The explicit RKTF method of order four with three-stage constructed in this paper
RKF5 The fifth-order RK method with six-stage given in Lambert [11].
DOPRI5 The fifth-order RK method with seven-stage derived in Dormand [10].
RK4 The classical RK method of order four with four-stage as given in Butcher [29].
RKM4 The RK method of order four with five-stage derived in Hairer [9].

References

1. Malek, A.; Beidokhti, R.S. Numerical solution for high order differential equations using a hybrid neural
network—Optimization method. Appl. Math. Comput. 2006, 183, 260–271. [CrossRef]

2. Alomari, A.; Anakira, N.R.; Bataineh, A.S.; Hashim, I. Approximate solution of nonlinear system of bvp
arising in fluid flow problem. Math. Probl. Eng. 2013, 2013, 136043. [CrossRef]

3. Wu, X.; Wang, Y.; Price, W. Multiple resonances, responses, and parametric instabilities in offshore structures.
J. Ship Res. 1988, 32, 285–296.

4. Twizell, E. A family of numerical methods for the solution of high-order general initial value problems.
Comput. Methods Appl. Mech. Eng. 1988, 67, 15–25. [CrossRef]

5. Cortell, R. Application of the fourth-order Runge-Kutta method for the solution of high-order general initial
value problems. Comput. Struct. 1993, 49, 897–900. [CrossRef]

6. Boutayeb, A.; Chetouani, A. A mini-review of numerical methods for high-order problems. Int. J.
Comput. Math. 2007, 84, 563–579. [CrossRef]

150



Symmetry 2019, 11, 246

7. Jator, S.N. Numerical integrators for fourth order initial and boundary value problems. Int. J. Pure Appl. Math.
2008, 47, 563–576.

8. Kelesoglu, O. The solution of fourth order boundary value problem arising out of the beam-column theory
using adomian decomposition method. Math. Probl. Eng. 2014, 2014, 649471. [CrossRef]

9. Hairer, E.; Nrsett, G.; Wanner, G. Solving Ordinary Differential Equations I: Nonstiff Problems; Springer: Berlin,
Germany, 1993.

10. Dormand, J.R. Numerical Methods for Differential Equations: A Computational Approach; CRC Press: Boca Raton,
FL, USA, 1996; Volume 3.

11. Lambert, J.D. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem; John Wiley &
Sons, Inc.: New York, NY, USA, 1991.

12. Waeleh, N.; Majid, Z.; Ismail, F.; Suleiman, M. Numerical solution of higher order ordinary differential
equations by direct block code. J. Math. Stat. 2012, 8, 77–81.

13. Awoyemi, D. Algorithmic collocation approach for direct solution of fourth-order initial-value problems of
ordinary differential equations. Int. J. Comput. Math. 2005, 82, 321–329. [CrossRef]

14. Kayode, S.J. An efficient zero-stable numerical method for fourth-order differential equations. Int. J. Math.
Math. Sci. 2008, 2008, 364021. [CrossRef]

15. Jator, S.N.; Li, J. A self-starting linear multistep method for a direct solution of the general second-order
initial value problem. Int. J. Comput. Math. 2009, 86, 827–836. [CrossRef]

16. Jator, S.N. Solving second order initial value problems by a hybrid multistep method without predictors.
Appl. Math. Comput. 2010, 217, 4036–4046. [CrossRef]

17. Waeleh, N.; Majid, Z.; Ismail, F. A new algorithm for solving higher order ivps of odes. Appl. Math. Sci. 2011,
5, 2795–2805.

18. Awoyemi, D. A p-stable linear multistep method for solving general third order ordinary differential
equations. Int. J. Comput. Math. 2003, 80, 985–991. [CrossRef]

19. Awoyemi, D.; Idowu, O. A class of hybrid collocation methods for third-order ordinary differential equations.
Int. J. Comput. Math. 2005, 82, 1287–1293. [CrossRef]

20. Ibrahim, Z.B.; Othman, K.I.; Suleiman, M. Implicit r-point block backward differentiation formula for solving
first-order stiff odes. Appl. Math. Comput. 2007, 186, 558–565. [CrossRef]

21. Jain, M.; Iyengar, S.; Saldanha, J. Numerical solution of a fourth-order ordinary differential equation. J. Eng.
Math. 1977, 11, 373–380. [CrossRef]

22. Mechee, M.; Senu, N.; Ismail, F.; Nikouravan, B.; Siri, Z. A three-stage fifth-order Runge-Kutta method for
directly solving special third-order differential equation with application to thin film flow problem. Math.
Probl. Eng. 2013, 2013, 795397. [CrossRef]

23. Mechee, M.; Ismail, F.; Siri, Z.; Senu, N. A four-stage sixth-order RKD method for directly solving special
third-order ordinary differential equations. Life Sci. J. 2014, 11, 399–404.

24. Senu, N.; Mechee, M.; Ismail, F.; Siri, Z. Embedded explicit Runge–Kutta type methods for directly solving
special third order differential equations y′′′ = f (x, y). Appl. Math. Comput. 2014, 240, 281–293. [CrossRef]

25. Hussain, K.; Ismail, F.; Senu, N. Solving directly special fourth-order ordinary differential equations using
Runge–Kutta type method. J. Comput. Appl. Math. 2016, 306, 179–199. [CrossRef]

26. Chen, Z.; Qiu, Z.; Li, J.; You, X. Two-derivative Runge-Kutta-Nyström methods for second-order ordinary
differential equations. Numer. Algorithms 2015, 70, 897–927. [CrossRef]

27. You, X.; Chen, Z. Direct integrators of Runge–Kutta type for special third-order ordinary differential
equations. Appl. Numer. Math. 2013, 74, 128–150. [CrossRef]

28. Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary
Differential Equations; Springer Science & Business Media: New York, NY, USA, 2006; Volume 31.

29. Butcher, J.C. Numerical Methods for Ordinary Differential Equations, 2nd ed.; John Wiley & Sons: Chichester,
UK, 2008.

30. Butcher, J.C. Numerical methods for ordinary differential equations in the 20th century. J. Comput. Appl.
Math. 2000, 125, 1–29. [CrossRef]

151



Symmetry 2019, 11, 246

31. Butcher, J.C. An algebraic theory of integration methods. Math. Comput. 1972, 26, 79–106. [CrossRef]
32. Hairer, E.; Wanner, G. A theory for Nyström methods. Numer. Math. 1975, 25, 383–400. [CrossRef]
33. Hairer, E.; Wanner, G. On the butcher group and general multi-value methods. Computing 1974, 13, 1–15.

[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

152



symmetryS S

Article

Improvement of Risk Assessment Using Numerical
Analysis for an Offshore Plant Dipole Antenna

Yun-Jeong Cho 1, Kichang Im 2, Dongkoo Shon 1, Daehoon Park 3 and Jong-Myon Kim 1,*

1 School of Computer Engineering and Information Technology, University of Ulsan, Ulsan 44610, Korea;
j_j7756@naver.com (Y.-J.C.); dongkoo88@gmail.com (D.S.)

2 ICT Safety Convergence Center, University of Ulsan, Ulsan 44610, Korea; kichang@ulsan.ac.kr
3 Convergence Technology Institute, Hyundai Heavy Industries Co., Ltd., Seongnam 13591, Korea;

daehoon_park@hhi.co.kr
* Correspondence: jmkim07@ulsan.ac.kr; Tel.: +82-52-259-2217

Received: 30 October 2018; Accepted: 22 November 2018; Published: 1 December 2018

Abstract: This paper proposes a numerical analysis method for improving risk assessment of radio
frequency (RF) hazards. To compare the results of conventional code analysis, the values required for
dipole antenna risk assessment, which is widely used in offshore plants based on the British standards
(BS) guide, are calculated using the proposed numerical analysis. Based on the BS (published
document CENELEC technical report (PD CLC/TR) 50427:2004 and international electrotechnical
commission (IEC) 60079 for an offshore plant dipole antenna, an initial assessment, a full assessment,
and on-site test procedures are performed to determine if there is a potential risk of high-frequency
ignition. Alternatively, numerical analysis is performed using the Ansys high frequency structure
simulator (HFSS) tool to compare results based on the BS guide. The proposed method computes the
effective field strength and power for the antenna without any special consideration of the structure to
simplify the calculation. Experimental results show that the proposed numerical analysis outperforms
the risk assessment based on the BS guide in accuracy of the evaluation.

Keywords: risk assessment; numerical analysis; ignition hazard; effective field strength;
offshore plant

1. Introduction

At offshore plants, high-frequency waves, such as ultra high frequency (UHF) and very high
frequency (VHF), are used for wireless communication, and automatic identification system (AIS),
global positioning system (GPS), and radar scanners are installed. In such wireless communication
devices, electromagnetic waves with high waves are generated. Additionally, structures such as metal
objects, pipelines, crane ropes, etc. existing in the offshore plant can act as receivers. High-frequency
electromagnetic waves from various devices induce voltage and current in metallic conductor
structures at the offshore plant. The amplitude of such induced current depends on the wavelength of
the transmitted signal, the surrounding electromagnetic field, and the shape and size of the structure.
In addition, if the induced voltage or current is large enough, sparks can occur and cause large fires
and explosions.

Offshore plants are subject to a variety of marine environmental conditions during operation,
with more than 70% of accidents involving explosions or fires. This can lead to large-scale explosions
in the event of an accident, leading to human casualties, and can cause serious marine pollution, which
can lead to great economic and industrial losses. The possibility of fires and explosions caused by
high-frequency radiation is analyzed considering the electromagnetic wave intensity generated from
the communication facility of the offshore plant, the characteristics of the metallic structure acting as
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a receiving antenna, the size of the induced received power, and the characteristics of combustible
material at the plant. The risk should be evaluated and reflected in design and construction.

The current state of related papers is as follows. Sang-Won Choi and Hyuk-Myun Kwon [1]
performed an experiment to reduce electric shock and ignition by current and voltage induced by
electromagnetic waves from a large crane. The necessity of various studies on the energy required to
cause fires and explosions by a spark has been suggested. Eckhoff and Thomassen [2] studied various
sources of ignition in offshore plants. Among them, the influence of high-frequency propagation was
considered. According to their paper, electromagnetic waves are emitted by all systems that generate
high-frequency electrical energy (104 Hz to 1011 Hz), and ignition sources can be generated if the
field is strong enough and the receiver antenna is large enough. In this regard, a method of securing
safety levels based on guidance was studied. Bradby [3] studied various practical applications of
fire risk assessment based on BS 6656:2002 code. BS 6656:2002 [4] is a code detailing a systematic
approach, such as initial assessment and full assessment, to assess radio frequency-induced ignition
risk. The initial assessment is performed in three steps: (1) determine the size of the maximum
vulnerable zone, (2) identify significant transmission sources within the vulnerable zone, and (3)
screen each type of transmission source using BS 6656. Full assessment performs the full assessment
methodology for the remaining sources. The study by Rajkumar and Bhattacharjee [5] carried out a
step-by-step risk assessment from transmission based on BS 6656:2002. The evaluation step calculated
the effective field strength according to frequency. The risk of fires and explosions in the explosion
environment was evaluated by calculating the energy generated by sparks in the conductive structure
caused by electromagnetic waves, and safety measures for the risk of radio frequency (RF) ignition
were suggested. Wang [6] recommended RF mechanisms that directly or indirectly cause fires and
explosions and summarized RF risk studies in flammable and explosive environments. In addition,
some issues of RF risk studies were discussed, and RF risk studies were conducted.

Examining the status of related papers, most studies on high-frequency and RF risk assessment
were based on the BS guide, and studies conducted in parallel with numerical analysis were rare.
In addition, overall studies on land and sea have been conducted on the risk of high-frequency
ignition. In this paper, a risk assessment for a dipole antenna commonly used in an offshore plant
is performed. The assessment is based on BS PD CLC/TR 50427:2004 [7] and IEC 60079 [8–10] for
risk assessment for high-frequency radiation. BS PD CLC/TR 50427:2004 is a guideline for assessing
the risk of ignition of a facility where flammable gases due to RF emissions from communications,
radar or other transmit antennas may be present. It specifies procedures and formulas necessary
for risk assessment. IEC 60079 standard refers to IEC 60079-0, IEC 60079-10-1, and IEC 60079-10-2.
IEC 60079-0 specifies the general requirements for the manufacture, testing and marking of electrical
equipment and explosive (EX) components for use in explosive atmospheres. IEC 60079-10-1 is an
international standard for identification and classification of explosive gas atmospheres and regions
where combustible gases, vapors of mist can exist. IEC 60079-10-2 is an international standard for the
identification and classification of explosive dust atmospheres and regions where combustible dust
layers may be present. The IEC international standard was used to determine the gas threshold. At the
same time, Ansys HFSS numerical analysis is performed to contribute to the accuracy of the existing
risk assessment based on the BS guide.

2. Detailed Specification of the Analysis Object

In this paper, code and numerical analysis are performed by choosing antennas that are widely
used in offshore plants. Code and numerical analysis are performed for both single and multiple
transmission. In the code analysis, the risk of high-frequency ignition is evaluated according to the
BS and IEC, and numerical analysis is compared with code analysis by modeling and analysis of the
selected antenna.

A case study evaluates whether installed transmissions are at risk of high-frequency ignition in
the vulnerable area. The case study is performed for a single transmission and multiple transmissions.
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Additionally, the dipole transmission used selects MP4 among various AEP VHF antennas; the
shape and detailed specifications for MP4 are shown in Table 1. Many marine companies use the
MP4 [11] model because of the wide frequency bandwidth, the wide applicability, and the included
mounting nut.

Table 1. Detailed specifications of MP4 [11].

Bottom Diameter
(mm)

Length
(m)

Weight
(kg)

Frequency
(MHz)

Max Input
(W)

Gain
(dB)

Impedance
(Ω)

28 1.20 1.00 163 100 3 50

3. Risk Assessment Based on the BS Guide

Analysis of the risk assessment is performed in accordance with the BS guide, and methods for
assessing potential RF ignition risk include initial assessment, full assessment, and on-site tests. There
are two initial assessments: assessment of the risk to a particular plant and assessment of the risk from
a particular transmitter. First, referring to the table of the BS guide for the risk to a particular plant, the
different radii of vulnerable zones are calculated for all loop structures whose inside perimeter is 40 m
or less, for horizontal loops whose height is 5 m or less, and for all other loop structures. The second is
a risk assessment for a particular transmitter. For the cases where the inside circumference of the roof
structure is less than 85 m at the frequency of 30 MHz or more and the maximum circumference of the
largest structure in the plant is 40 m at the frequency of 30 MHz or less and the height is less than 5 m
for the horizontal loop structure, the radius of the zone of vulnerable is calculated by referring to the
table of BS guide. If the initial assessment indicates a risk inside the vulnerable zone, a full assessment
is performed. In this paper, a risk assessment based on the BS guide was performed for a frequency of
30 MHz or more and an inner circumference of the loop structure of 85 m or less.

In the full assessment, the power or energy that can be extracted is calculated and compared with
the threshold value according to the gas group. Finally, if a potential hazard is indicated in the full
assessment, the power that can be extracted from the on-site test is measured and compared with
the threshold value according to the gas group. If an on-site test indicates a hazard, measures such
as plant design changes, plant movement, and transmission power reduction are considered. The
full assessment of the entire procedure for performing a risk assessment from an antenna is shown
in Figure 1, which is taken from the BS guide. As shown in Figure 1, all information about the plant
or transmission is first collected ( 1© of Figure 1), and then the effective field strength is calculated ( 2©
of Figure 1) according to the equation provided by the BS guide. Then, the equation is classified into
three types according to frequency and polarization. Once the effective field strength is calculated,
the extractable power is calculated ( 3© of Figure 1). The extractable power is calculated according to
the formula provided by the BS guide, and classified into two types according to frequency. At this
time, if the frequency is less than 30 MHz, the internal circumference of the structure is taken into
account. If the frequency exceeds 30 MHz, the inside circumference of the structure is not considered.
If the transmission used in the evaluation is a single transmission ( 4© of Figure 1), risk is evaluated
by comparing it with the extracted power and the code-based threshold power. On the other hand,
when the transmission is a multiple transmission ( 5© of Figure 1), the maximum extractable power is
recalculated and compared with the threshold power to assess the risk. Finally, the threshold power
is compared with the extractable power ( 6© of Figure 1). If the extractable power is smaller than the
threshold power, it is checked whether there is no potential ignition risk ( 7© of Figure 1). On the other
hand, if the extractable power is greater than or equal to the threshold power, it is checked whether
there is a potential ignition risk ( 8© of Figure 1) and the on-site test should proceed.
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Figure 1. Full assessment procedure [7].

To evaluate the potential risks to the analysis object, risk assessment is performed based on the BS
guide from Sections 3.1–3.3. For the dipole antenna to be analyzed in this paper, initial assessment is
carried out for general and offshore plant-specific criteria in Section 3.1. As a result, of the analysis,
it is judged if there is a potential risk, and the full assessment is performed in a single transmission
environment in Section 3.2. Similarly, the full assessment in a multiple transmission environment
is performed at Section 3.3. As a result, the analysis object determines whether there is a potential
ignition risk under the condition.

3.1. Initial Assessment

Initial assessments are carried out on land and offshore plants in accordance with the BS guide.
Offshore plants are a special concern in the assessment of ignition hazards by RF emissions. Therefore,
the BS guide represents the standard for all transmissions, and the transmission criterion for offshore
plants is a separate set of transmissions for special offshore plants.

A transmission in accordance with the BS guide is selected to determine the zone of vulnerability;
then, it is determined if any gases or vapors that may be dangerous are inside or outside the zone
of vulnerability. If gases or vapors are found to be outside the vulnerable area, the transmission is
considered not to cause an RF ignition hazard, and the evaluation is stopped. Conversely, if gases or
vapors are found to be located inside a vulnerable zone, the transmission is considered to cause an RF
ignition hazard, and a full assessment procedure is followed.

First, initial assessment is conducted using general criteria, including land and sea. Here, the
frequency is 30 MHz or more, and the loop structure is initialized to a specific transmission by setting
the inner circumference to 85 m or less. Since the frequency of the antenna is 163 MHz, the transmission
given in Table 2 is selected and performed. Table 2 is a reference to the radii of vulnerable zones of the
BS guide and includes all land and sea transmissions. If the details of the transmissions are different
from those shown in Table 2, the IIC group representing the largest vulnerable area of the closest
equivalent transmission in Table 2 is selected. The initial assessment results are most similar to serial
number 54 VHF and UHF land, fixed, and mobile and maritime mobile transmission, which is the
largest IIC group, and the size of the vulnerable zone was determined to be 6 m.
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Table 2. Radii of vulnerable zones (subsection) [7].

Serial No. Type of Transmission Frequency Power Modulation
Antenna Gain

(dBi)

Radii of Vulnerable
Zones (m)

Group
I/IIA

Group
IIB

Group
IIC

54
VHF and UHF land,

fixed and mobile and
maritime mobile

68 MHz to
470 MHz 25 W AM/RM 2 3.5 4.5 6

Second, offshore plants are a special issue in the assessment of risk of ignition by RF radiation.
Thus, from general RF transmissions and antennas used in offshore plants, the vulnerable zone radius
is based on the most common size of structures or cranes that can exist in an offshore plant according
to BS PD CLC/TR 50427:2004. Antenna specifications and structural conditions apply equally to the
general standards. Initial assessment should be performed by selecting the transmission given in
Table 3. If the details of the transmission are not identical to those shown in Table 3, the vulnerable
area of the nearest equivalent transmission is selected. The initial assessment results are compared to
the transmission details given in Table 3. The most similar is marine VHF fixed, and the size of the
vulnerable zone is determined to be 1.1 m.

Table 3. Radio frequency transmitters offshore (subsection) [7].

Transmitter Frequency
Maximum Output Power

(kW)
Typical Antenna Gain

(dBi)

Radius of the Vulnerable
Zone in the Main Beam

(m)

Marine VHF fixed 156 MHz to 174 MHz 0.025 3 1.1

Both initial assessment on the general criteria and initial assessment specific to the offshore plant
were performed on the transmission. The results on land were more conservative, with the vulnerable
area of 6 m, compared to the 1.1 m of the offshore plant.

3.2. Full Assessment

Full assessment should be carried out in the initial assessment when a potential hazard appears
and proceeds as follows:

• Collect all relevant information on transmissions and the plant
• Calculate the effective field strength taking into account effects of modulation
• Calculate the extractable power or energy from the adventitious antenna
• Compare the extractable power or energy from the adventitious antenna with the threshold values

Because most transmissions are modulated, the modulation must be made with clearance, and
the calculated field strengths use the modulation factor to obtain the effective field strength.

The transmission is subjected to full assessment up to 6 m in the vulnerable area where the initial
assessment result is more conservative. Effective field strengths are classified into three categories
based on 10.4.3 [7] of the BS guide. The first one is horizontal polarization with a frequency of less
than 30 MHz. The second one is vertical polarization with frequency below 30 MHz. The third one is
when the frequency exceeds 30 MHz. The effective field strength is calculated by selecting one of three
equations for each transmitter condition [12]. Since the frequency of the transmission is more than 30
MHz at 163 MHz, the effective field strength is calculated as follows:

E =
0.173mF

√
(PG)

d
(1)
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In this case, the modulation factor (m) of the VHF is 1.0 as a frequency of phase modulation (FM),
and the horizontal radiation pattern (F) is 1. The antenna gain (G) is measured by the directional power
(dB). If the gain is expressed in decibels, it is calculated by the following equation of BS guide [7]:

G = 100.1g (2)

The calculated effective field strengths are quantified in Table 4.

Table 4. Effective field strength for single transmissions.

No. m F P
(kW)

g
(dBi)

G d
(km)

E
(V/m)

1 1 1 0.1 3 1.995 0.001 77.3
2 1 1 0.1 3 1.995 0.002 38.6
3 1 1 0.1 3 1.995 0.003 25.8
4 1 1 0.1 3 1.995 0.0035 22.1
5 1 1 0.1 3 1.995 0.004 19.3
6 1 1 0.1 3 1.995 0.005 15.5
7 1 1 0.1 3 1.995 0.006 12.9

The extractable power is calculated considering the inner circumference of the loop-type structure
when the frequency is 30 MHz or less. In contrast, for frequencies above 30 MHz, without considering
the perimeter of the structure, the equation given below is calculated, taking into account only the
effective field strength and frequency.

Pmax =
124E2

f 2 + 3030
(3)

The calculated extractable power is shown in Table 5.

Table 5. Extractable power for single transmissions.

No.
f

(MHz)
d

(km)
E

(V/m)
Pmax
(W)

1 163 0.001 77.3 25.02
2 163 0.002 38.6 6.25
3 163 0.003 25.8 2.78
4 163 0.0035 22.1 2.04
5 163 0.004 19.3 1.56
6 163 0.005 15.5 1.00
7 163 0.006 12.9 0.69

The calculated power is compared to the threshold value specified in the BS guide. Table 6 shows
the threshold power and thermal initiation time criterion from the BS guide. In this paper, the risk of
ignition was evaluated using threshold power. If the Pmax calculated for each gas group is less than
Pth on the BS, the evaluation is no longer carried out because there is no risk of RF ignition. If Pmax is
greater than or equal to Pth, there is a potential risk of high-frequency ignition.
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Table 6. Radio frequency power thresholds [7].

Gas Group
Threshold Power, Pth

(W)
Thermal Initiation Time

(μs)
Representative Gas

I 6 for long narrow structures, e.g., cranes;
8 for all other structures 200 Methane

IIA 6 100 Propane
IIB 3.5 80 Ethylene
IIC 2 20 Hydrogen

The gas type is assumed to be the IIC group, considering the hydrogen as a high-risk gas located
in the offshore plant, and the results are compared. As a result, of evaluating risk of ignition depending
on distance, there is a risk of high-frequency ignition because Pmax is equal to or larger than Pth from
the transmission to 3.5 m. In contrast, from 4 m to 6 m, Pmax is smaller than Pth, so there is no danger
of high-frequency ignition.

The full assessment result and the initial assessment result at 30 MHz or more were compared
with each other. In the initial evaluation using the general criteria, it was judged that there was a risk
of ignition within 6 m of the vulnerable zone, and there was a danger from the full assessment to
3.5 m after the initial assessment. However, in the initial assessment, which applied specific criteria
for offshore plants, it was judged that there was a risk of ignition within 1.1 m of the vulnerable
zone. This analysis shows that the BS guide on general criteria including land and sea produces more
conservative results, and that marine plant-specific criteria are limited.

3.3. Multiple Transmission Assessment

In the case of multiple transmissions, the effective field strength and Pmax for each transmission
are calculated according to frequency. If the sum of all the values of Pmax is less than Pth, there is no risk
of RF ignition, and the assessment can be stopped. However, if the sum of these values of Pmax is larger
than Pth, then the off-resonance effects should be considered by calculation of the modulus match
power, Pmm. Pmm can be obtained using the following equation, where fr is the resonant frequency of
structure, ft is the transmission frequency, and Qk is the circuit factor:

Pmm

Pmax
=

2
1 + n

(4)

n =

Qk

[
1 +

{
Qk −

(
Qk +

1
Qk

)(
fr
ft

)2
}2

]1/2

(1 + Qk
2)

1/2
(

fr
ft

)2 (5)

Qk (quality factor or circuit factor) [13–15] at resonance is the quality of the frequency selection
characteristic and is calculated using the equation below. The resonance frequency divided by the 3 dB
bandwidth on both sides is Qk, which means that the band is wide when the value is low and narrow
when it is high.

Qk =
resonance frequency

3dB Bandwidth
(6)

ft is the frequency of the transmission used in the assessment, 163 MHz, and fr and Qk are obtained
through calculation. fr is the resonance frequency of the structure and is determined to be the most
conservative value at which the ratio of ft:fr is 1.0 with reference to Figure 2. fr is determined to be
163 MHz since ft is 163 MHz. Figure 2 is taken from the BS guide, and the Qk value is 5 as an example.
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Figure 2. Modulus match powers.

As a result, if ft and fr are the most conservative values, n is 1 regardless of Qk, according to the
above Equation (4). Therefore, the value of Pmm is equal to the value of Pmax. That is, the power of
the multiplex transmission is the sum of Pmm of the transmitters as shown in Table 7. Comparing the
threshold power and the sum of Pmm in Table 6, it is determined that there is a danger of high-frequency
ignition because the sum of Pmm is equal to or greater than the threshold power up to a distance of 5 m.
However, when the distance is more than 5 m, it is assumed that there is no danger of high-frequency
ignition because Pmm is less than the critical power.

Table 7. Extractable power for multiple transmissions.

No.
f

(MHz)
d

(km)
Pmm
(W)

Sum of Pmm
(W)

1 163 0.001 25.02 50.03
2 163 0.002 6.25 12.51
3 163 0.003 2.78 5.56
4 163 0.0035 2.04 4.08
5 163 0.004 1.56 3.13
6 163 0.005 1.00 2.00
7 163 0.006 0.69 1.39

Therefore, the on-site test should be performed at the point, where it is judged if there is a risk of
high-frequency ignition because the power value that can be extracted from the threshold power is
greater than or equal to the threshold value. The on-site test is used to measure the actual extractable
power and compare it with the threshold power of the gas group. if the results of on-site tests indicate
a risk, we can investigate measures such as plant design changes, plant movement, transmission
movement, and transmission power reduction. Methods include bonding, insulation, reducing the
effectiveness of the structure as a receiving antenna, and de-tuning.
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4. Numerical Analysis

To compare with the results based on the BS guide, the effective field strength and power are
calculated by Ansys HFSS. Numerical analysis derives the effective field strength and power at a
specific distance from the transmission without considering the structure to simplify the calculation.
Numerical analysis was performed to measure the effective field strength up to 5 m because of the
risk assessment of code analysis. Numerical analysis was performed for a single transmission and
multiple transmissions. The actual shape of the dipole antenna, which is the basic transmission, and
the modeled shape are shown in Figure 3. The detailed specifications are shown in Table 1.

Figure 3. (a) Actual dipole antenna; (b) model for the dipole antenna.

In the numerical analysis, the effective field strength (E) of 1 m to 5 m from the transmission to
the X-axis is measured from 0 to 360 degrees in 5-degree intervals according to phase and power (P).
The effective field strength was calculated by assuming root mean square (RMS), which is an average
value index widely used in antenna analysis. The RMS equation is defined as follows:

Erms =

√
E1

2 + E22 + · · · + En2

n
(7)

The power passing through the surface of a specific location was calculated using the Ansys HFSS
Fields Calculator. The defined power equation is as follows. Here, S is the surface used to calculate the
force, and

→
n is the normal vector for S.

W =
∫
S

Re(
→
P)·→n dS (8)

The Fields Calculator [16] referenced HFSS’s Fields Calculator Cookbook’s Fields
Calculator Recipes.

4.1. Analysis for a Single Transmission

For a single transmission, the effective field strength (E) and power (P) were calculated from 1 m
to 5 m from the transmission on the X-axis. The modeling of the transmission is shown in Figure 4, and
the main specifications are as follows. Since the boundary conditions cannot be infinite in the analysis
space, the boundaries are selected to be ±5.2 m on the X-, Y-, and Z-axes, and radiation conditions
are given to the outermost surfaces. The port is a lumped condition, and the impedance is fed to the
default value of 50 Ω. The frequency of the transmission is 163 MHz, the power is 100 W, the antenna
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length is 1200 mm, and the antenna thickness is 28 mm. The E field had an omni-directional shape, as
shown in Figure 5. Table 8 shows the effective field strength and power measured by Ansys HFSS.

Figure 4. Modeling and measurement point for a single transmission.

Figure 5. E field for a single transmission.

Table 8. Results for a single transmission.

No.
F

(MHz)
P

(kW)
d

(km)
E

(V/m)
Pmax
(W)

1 163 0.1 0.001 39.3 3.98
2 163 0.1 0.002 32.0 1.36
3 163 0.1 0.003 26.3 0.64
4 163 0.1 0.0035 23.8 0.48
5 163 0.1 0.004 22.3 0.37
6 163 0.1 0.005 17.6 0.25

4.2. Analysis of Multiple Transmissions

In the case of multiple transmissions, modeling is done as shown in Figure 6, and the condition is
the same as a single transmission. The E field is shown in Figure 7. Unlike a single transmission, two
antennas transmit to each other, producing interference. Both transmissions emit the same radiation
and are located 4.5 m from each other. The effective field strength (E) and power (P) were calculated
from the axis between the two transmissions, from 1 m to 5 m, on the same X-axis as the single antenna.
The results of Ansys HFSS are shown in Table 9.
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Figure 6. Modeling and measurement point for multiple transmissions.

Figure 7. E field for multiple transmissions.

Table 9. Results for multiple transmissions.

No.
F

(MHz)
P

(kW)
d

(km)
E

(V/m)
Pmax
(W)

1 163 0.1 0.001 41.5 0.91
2 163 0.1 0.002 23.4 1.14
3 163 0.1 0.003 15.4 1.04
4 163 0.1 0.0035 13.9 0.97
5 163 0.1 0.004 11.7 0.86
6 163 0.1 0.005 10.0 0.66

5. Comparison and Analysis

In this paper, risk assessment was performed based on the BS guide and numerical analysis using
Ansys HFSS to improve the accuracy of the results.

Table 10 compares the effective field strength and power for a single transmission. The code
analysis calculates the effective field strength and power according to the entire procedure of the
BS guide. Numerical analysis is performed by measuring the Ansys HFSS results. As a result, the
effective field strength and power for a single transmission are calculated to be more conservative in
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the results based on the BS guide. Figure 8 shows comparison between P of BS guide and P of HFSS
for a single transmission.

Table 10. Comparison between BS guide and HFSS for a single transmission.

No.
d

(km)
E of the BS Guide

(V/m)
E of HFSS

(V/m)
P of the BS Guide

(W)
P of HFSS

(W)

1 0.001 77.3 39.3 25.02 3.98
2 0.002 38.6 32.0 6.25 1.36
3 0.003 25.8 26.3 2.78 0.64
4 0.0035 22.1 23.8 2.04 0.48
5 0.004 19.3 22.3 1.56 0.37
6 0.005 15.5 17.6 1.00 0.25

 
Figure 8. Comparison between P of BS guide and P of HFSS for a single transmission.

Table 11 compares the power for multiple transmissions. In the multiple transmission
environment, it is possible to calculate the effective field strength and power in the numerical analysis.
However, since the BS guide cannot calculate the effective field strength, only power can be calculated.
Therefore, only power values are compared in the multiple transmission environment. The results are
calculated at the same point as for the single transmission. The power for multiple transmissions is
calculated to be more conservative for the results based on the BS guide. Figure 9 shows comparison
between the power of BS guide and that of HFSS for multiple transmission. The BS guide calculates
the effective field strength by using the distance difference, the antenna gain, and the antenna power,
and simply calculates the power considering the antenna frequency. On the other hand, the Ansys
HFSS calculates the intensity of the electric power by calculating the 3D electromagnetic field formula.
Therefore, it is expected that the accuracy of risk assessment based on the BS guide can be improved
by using the proposed numerical analysis.

Table 11. Comparison between BS guide and HFSS for multiple transmissions.

No.
d

(km)
P of the BS Guide

(W)
P of HFSS

(W)

1 0.001 50.03 0.91
2 0.002 12.51 1.14
3 0.003 5.56 1.04
4 0.0035 4.08 0.97
5 0.004 3.13 0.86
6 0.005 2.00 0.66
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Figure 9. Comparison between the power of BS guide and that of HFSS for multiple transmission.

6. Conclusions

This paper proposed a numerical analysis method to improve the accuracy of risk assessment
based on the BS guide. In this paper, risk assessment was performed based on BS PD CLC/TR
50427:2004 and IEC 6007 for a dipole antenna with an inner circumference of less than 85 m and a
frequency of 30 MHz or more, which are commonly used in offshore plants. In addition, the proposed
numerical analysis was performed using Ansys HFSS. Initial assessment and full assessment were
performed according to the assessment procedure of the BS guide for the dipole antenna. Then, to
simplify the calculation, the proposed numerical analysis was performed under conditions that did
not consider the structure, and the effective field strength and power were derived. Comparing the
effective field strength and power of a conventional code analysis and the proposed numerical analysis,
the results of code analysis were more conservatively calculated. Experimental results showed that the
proposed method using numerical analysis outperforms the code analysis in accuracy of the evaluation.
n our observation, code analysis based on risk assessment was ineffective for practical site because it
performed with the most general conditions without any consideration of actual environment such
as structure. Therefore, it is possible to improve the accuracy of the result by using the proposed
numerical analysis method.
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1. Introduction

Marius Sophus Lie proposed a symmetry-based method for the analytical solution of differential
equations using groups of continuous transformations known as Lie groups [1–4]. Amalie Emmy
Noether later presented her remarkable theorem that relates variational symmetries with conservation
laws or first integrals in Reference [5]. In the literature, different methods are available to calculate
first integrals of ordinary differential equations (ODEs), including the direct method, the characteristic
or multiplier method, the Noether approach, and the partial Noether approach [6–9]. In this paper,
we used the classical Noether approach to calculate the first integrals of a harmonic oscillator. We then
applied the complex symmetry method in the restricted domain to find the first integrals of a system
of harmonic oscillators by considering the Lagrangian in the complex variable domain [10–12].

Concerning the numerical solutions of ODEs with quadratic first integrals, it is well known
that symplectic numerical methods are a suitable candidate [13]. These methods are a subclass of
geometric integrators that preserve the geometric properties of the exact flow of ODEs. One class of
symplectic methods with optimal order are the Gauss–Legendre Runge–Kutta methods. They are
one-step numerical methods for ODEs and preserve all linear and quadratic first integrals of a dynamic
system [14]. If we intend to preserve cubic or higher-order first integrals, we do not have a general
numerical scheme for such a purpose, but we can design a numerical method that has this as
its specific goal, for example, with the splitting and discrete-gradient methods [14]. In this paper,
we present a way of constructing symplectic Runge–Kutta methods. We then take fourth-order
Gauss–Legendre Runge–Kutta methods for the numerical integration of ODEs and report good
preservation of first integrals by the numerical solution.

Symmetry 2019, 11, 11; doi:10.3390/sym11010011 www.mdpi.com/journal/symmetry167
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2. Symmetries and First Integrals

Consider a second-order ordinary differential equation,

d2y
dt

= f (t, y′, y), (1)

which admits a Lagrangian L satisfying the Euler–Lagrange equation,

d
dt
(

∂L
∂y′ )−

∂L
∂y

= 0. (2)

To explain the invariance criteria for variational problems under a group of transformation, we
consider the operator

X = ξ(t, y)
∂

∂t
+ η(t, y)

∂

∂y
, (3)

where X is the Noether symmetry generator for the Lagrangian L with gauge function B(t, y), provided
the following condition holds,

X(1)(L) + Dt(ξ)L − Dt(B) = 0, (4)

where X(1) is a first-order prolongation of X and D represents total derivative,

Dt =
∂

∂t
+ y′ ∂

∂y
. (5)

According to the Noether theorem, for each Noether symmetry of a Euler–Lagrange equation,
there corresponds a function I

I = ξL + (η − ξy′) ∂L
∂y′ − B(t, y), (6)

called the first integral or conserved quantity of Equation (1) with respect to symmetry generator X.

Complex Symmetry Analysis

We first discuss some important results related to complex Noether symmetries, complex
Lagrangian, and the Noether theorem in the restricted complex domain. We use them to determine
first integrals of second-order restricted complex ODEs [15]. We then present expressions for
Euler–Lagrange-like equations, conditions for Noether-like operators, and expressions for first integrals
corresponding to these operators. For more details, see Reference [10] and references therein.

Consider a system of two second-order ordinary differential equations of the form

d2 f
dt

= w1(t, g, f , g′, f ′),

d2g
dt

= w2(t, g, f , g′, f ′).
(7)

Suppose we have a transformation y(t) = f + ig and w = w1 + iw2, which converts System (7)
to a second-order restricted complex ODE,

y′′ = w(t, y, y′). (8)
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Assume that Equation (8) admits a complex Lagrangian L(t, f , g, f ′, g′), i.e., L = L1 + iL2.
Therefore, we have two Lagrangians, L1 and L2, for System (7) that satisfy Euler–Lagrange-like equations:

∂L1

∂ f
+

∂L2

∂g
− d

dt
(

∂L1

∂ f ′ +
∂L1

∂g′ ) = 0,

∂L2

∂ f
− ∂L1

∂g
− d

dt
(

∂L2

∂ f ′ −
∂L1

∂g′ ) = 0.
(9)

The operators

X1 = ς1
∂

∂t
+ χ1

∂

∂ f
+ χ2

∂

∂g
,

X2 = ς2
∂

∂t
+ χ2

∂

∂ f
− χ1

∂

∂g
.

(10)

are called Noether-like operators for Lagrangians L1 and L2 such that:

−X(1)
2 (L2) + X(1)

1 (L1) + (Dtς1)L1 − (Dtς2)L2 = Dt A1,

X(1)
2 (L1) + X(1)

1 (L2) + (Dtς1)L2 + (Dtς2)L1 = Dt A2,
(11)

where A1 and A2 are suitable gauge functions. The two first integrals corresponding to Noether-like
operators X1 and X2 can be found as:

I1 = −A1 + ς1L1 + ∂ f ′ L1(χ1 − ς2L2 − ς1 f ′ − ς2g′)− ∂ f ′ L2(χ2 − ς2 f ′ − ς1g′),

I2 = −A2 + ς1L2 + ∂ f ′ L2(χ1 + ς2L1 − ς1 f ′ − ς2g′) + ∂ f ′ L1(χ2 − ς2 f ′ − ς1g′).
(12)

3. Runge–Kutta Methods

Runge–Kutta methods [16] are one-step numerical methods for the approximate solution of IVPs:

y′(t) = f (y(t)), y(t0) = y0, y(t) ∈ R
n. (13)

These methods provide approximation yn = y(tn) of the exact solution y(t) at time tn = nh,
where n = 0, 1, · · · and h corresponds to the stepsize. The generalized form of an s-stage Runge–Kutta
method is

Yk = yn−1 +
s

∑
i=1

akih f (Yi), k = 1, · · · , s, (14)

yn = yn−1 +
s

∑
l=1

blh f (Yl),

with bi representing the weights and ci, the nodes at which stages Yk are evaluated. A Runge–Kutta
method can be represented by a Butcher tableau:

c1 a11 · · · a1n
...

...
. . .

...
cn an1 · · · ann

b1 · · · bn

.

For explicit Runge–Kutta methods, we have aki = 0 for k ≤ i,; otherwise, they are implicit.
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3.1. Symplectic Runge–Kutta Methods

If Equation (13) has a quadratic first integral

I(y) = 〈y, Sy〉 = yTSy,

where S is a symmetric square matrix, then we have

〈y, f (y)〉 = yTS f (y) = 0.

We want to determine numerical solutions yn such that first integral I(y) is preserved
numerically, i.e.,

〈yn, Syn〉 = 〈yn−1, Syn−1〉 n = 0, 1, . . . .

It has been shown in References [17–19] that only symplectic Runge–Kutta methods preserve
quadratic first integrals while numerically integrating System (13). Moreover, in this paper we are
only considering implicit Runge–Kutta methods to check the numerical preservation of first integrals
because explicit methods cannot be symplectic [20]. A Runge–Kutta method is symplectic if its
coefficients satisfy the following condition [18,19,21]:

biaij + bjaji − bibj = 0 ∀ j, i = 1, . . . , s, (15)

which can be derived as follows.
Firstly, apply the Runge–Kutta method (14) to solve the IVP (13). The stage values are

Yi = yn−1 + ∑
j

haij f (Yj).

Since

〈Yi, S f (Yi)〉 = 0,

⇒ 〈yn−1, S f (Yi)〉+ ∑
j

haij〈 f (Yj), S f (Yi)〉 = 0. (16)

Moreover, for the output values, we have

yn = yn−1 +
s

∑
i=1

bih f (Yi).

Thus,

〈yn, Syn〉 = 〈yn−1, Syn−1〉+ h ∑
i

bi〈yn−1, S f (Yi)〉

+ h ∑
j

bj〈 f (Yj), Syn−1〉+ h2 ∑
i,j

bjbi〈 f (Yi), S f (Yj)〉. (17)

Evidently from Systems (16) and (17), we have

〈yn, Syn〉 = 〈yn−1, Syn−1〉,

provided that
bjaji + biaij − bibj = 0. (18)
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3.2. Construction of Symplectic RK Methods

Although there exist several techniques to construct symplectic RK methods in the literature [14,22],
here we constructed symplectic Runge–Kutta methods with the help of a Vandermonde transformation.
This was first discussed in reference [23].

A Vandermonde matrix is given as

V =

⎡⎢⎣1 c1 . . . cn−1
1

...
...

. . .
...

1 cn . . . cn−1
n

⎤⎥⎦ = cj−1
i .

Pre- and postmultiply, Vandermonde matrix V with symplectic condition (15) as

ck−1
i (bjaji + biaij − bjbi)cl−1

j = 0, ∀ l, k, j, i = 1, 2, . . . , s. (19)

To construct methods with two stages (s = 2), we consider
For l, k = 1,

∑
i,j
(bjaji + biaij − bjbi) = 0. (20)

For l = 1 and k = 2,

∑
i,j
(bjcjaji + biaijcj − bjcjbi) = 0. (21)

For l = 2 and k = 1,

∑
i,j
(biaijcj + bjcjaji − bibjcj) = 0. (22)

For l, k = 2,

∑
i,j
(biciaijcj + bjcjajici − bicibjcj) = 0. (23)

The following order two conditions must be satisfied.

∑
j

bj = 1, ∑
j

bjcj =
1
2

. (24)

Using Equation (24) in Equations (20)–(23), we have

∑
i

bici =
1
2 ,

2

∑
i,j=1

(biaijcj + bjcjaji) =
1
2 ,

2

∑
i,j=1

(biciaij + bjajici) =
1
2 ,

2

∑
i,j=1

biciaijcj =
1
8 .

If we take bi(ci − c1) = bici − bic1) and take summation of i from 1 to 2, we get

b2c2 − b2c1 =
1
2
− c1,

b2 =
c1 − 1

2
c1 − c2

.

171



Symmetry 2019, 11, 11

Similarly,

b1 =
c2 − 1

2
c2 − c1

.

If we take the relation

bi(cj − c1)aij(ci − c1) = biciaijcj − biciaijc1 − biaijcjc1 + biaijc1c1.

Thus, we get

a22 =
1
8 − c1

6 − c1
3 + c1c1

2
b2(c2 − c1)2 .

Similarly, we get

a11 =
1
8 − c2

6 − c2
3 + c2c2

2
b1(c1 − c2)2 ,

a21 =
1
8 − c2

3 − c1
6 + c1c2

2
b2(c2 − c1)(c1 − c2)

,

a12 =
1
8 − c1

3 − c2
6 + c1c2

2
b1(c2 − c1)(c1 − c2)

.

Let us consider the shifted Legendre polynomials P∗
t on the interval [0, 1],

P∗
t (y) =

t

∑
n=0

t!
2t

(
t
n

)(
t + n

n

)
(−1)t−nyn.

For Gauss methods, we choose abscissa ci as zeros of P∗
t which have an order 2t. For Radau

methods, we choose either c1 = 0 or ct = 1, or both of them and then take for Radau I methods,
the abscissa as the zeros of the polynomial P∗

t−1(y) + P∗
t (y) of order 2t − 1. Similarly, for Radau

II methods, we take the abscissa as the zeros of the polynomial P∗
t (y) − P∗

t−1(y) of order 2t − 1.
Moreover, for Lobatto III methods, we take the abscissa as the zeros of the polynomial P∗

t (y)− P∗
t−2(y)

of order 2t − 2. Thus, we have the following symplectic methods:
Gauss, s = 2:

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

Radau I, s = 2:

0 1
8

−1
8

2
3

7
24

3
8

1
4

3
4
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Radau II, s=2:

1
3

3
8

−1
24

1 7
8

1
8

3
4

1
4

Similarly, we can construct methods with more stages and a higher order.

4. Construction of First Integrals and Their Numerical Preservation

We construct the first integrals of a system of harmonic oscillators (both coupled and uncoupled)
determined by the second-order ODE:

y′′ = −k2y. (25)

We take different values of k and y, as follows:

Case I: (k2 = 1 and y is real)

When k2 = 1 and y(t) is real-valued, (25) becomes a one-dimensional harmonic
oscillator equation:

y′′ = −y, (26)

that possesses the standard Lagrangian

L =
y′2

2
− y2

2
. (27)

Taking the Lagrangian and inserting it in System (4) yields the following determining system
of equations:

−ηy + ηty′ + (ηy − 1
2

ξt)y′2 − 1
2

ξyy′3 − 1
2

ξty2 − 1
2

ξyy2y′ − Bt − y′By = 0. (28)

Comparing different powers of y′, we have a system of four partial differential equations whose
solution gives rise to:

ξ(t, y) = c1 + c2 sin (2t) + c3 cos (2t),

η(t, y) = sin t c4 + (cos (2t)y c2 − sin (2t)y c3) + cos t c5,

B(t, y) = −(c2 sin (2t) + c3 cos (2t))y2 + (c4 cos t − c5 sin t)y.

(29)

We thus obtain the following 5-Noether symmetry generators:

X1 =
∂

∂t
,

X2 = sin (2t)
∂

∂t
+ y cos (2t)

∂

∂y
,

X3 = cos (2t)
∂

∂t
− y sin (2t)

∂

∂y
,

X4 = cos (t)
∂

∂y
,

X5 = sin (t)
∂

∂y
.

(30)
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Using Symmetries (30) and Lagrangian (27) in Noether’s Theorem (6), we obtain the following
first integrals:

I1 =
y′2

2
+

y2

2
,

I2 = y sin t + y′ cos t,

I3 = −y cos t + y′ sin t,

I4 = −1
2

y′2 cos 2t − yy′ sin 2t +
1
2

y2 cos 2t,

I5 = −1
2

y′2 sin 2t + yy′ cos 2t +
1
2

y2 sin 2t.

(31)

Among these five first integrals, only two are independent [8]. We numerically integrate
system (26) using a fourth-order Gauss s = 2 symplectic Runge–Kutta method that we refer to
from now on as Gauss2. We compare the results of the Gauss2 method with the famous symplectic
Euler method [14], given as:

Un+1 = Un + h f (Vn),

Vn+1 = Vn − hg(Un+1),

for numerically integrating U′ = f (V) and V′ = g(U). We take stepsize h = 0.01, and n = 10,000
number of steps. By employing symplectic integrators, we expect the first integrals of the system to
be preserved by the numerical schemes, and this is what we have achieved. We look at the deviation
of numerically evaluated first integral I(yn) from the actual value of first integral I(y0). We calculate
error by taking the difference of the first integral evaluated at initial value I(y0) with the value of
the first integral evaluated at all subsequent numerically approximated values I(yn) given by the
formula Error = |I(yn)− I(y0)|. Figures 1 and 2 represent the absolute error in integral I2 using the
Gauss2 and symplectic Euler method, respectively. Similarly, Figures 3 and 4 represent the absolute
error in integral I3 using the Gauss2 and symplectic Euler method, respectively. It is clear from the
figures that the error is very small and bounded, depicting qualitatively correct numerical results. It is
worth noting that the error of the Gauss2 method is much less compared to the error of the symplectic
Euler method. The reason is that the Gauss2 method is fourth-order and more accurate compared to
symplectic Euler method, which has order 1. Similar error behavior is obtained for other first integrals.

Figure 1. Error in integral I2 using Gauss2.
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Figure 2. Error in integral I2 using symplectic Euler.

Figure 3. Error in integral I3 using Gauss2.
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Figure 4. Error in integral I3 using symplectic Euler.

Case II: (k2 = 1 and y is complex)

When k2 = 1 and y(t) is a complex function y = f + ig for f and g being real functions of t,
we get:

f ′′ = − f , g′′ = −g, (32)

which admits the following Lagrangians:

L1 =
1
2
(−g′g′ + f ′ f ′ − f f + gg),

L2 = g′ f ′ − f g.
(33)
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Using Lagrangians (33) in (11), we obtain 9-Noether-like operators

X1 =
∂

∂t
, X2 = sin t

∂

∂ f
, X3 = sin t

∂

∂g
, X4 = cos t

∂

∂ f
, X5 = cos t

∂

∂g
,

X6 = sin 2t
∂

∂t
+ f cos 2t

∂

∂ f
+ g cos 2t

∂

∂g
,

X7 = g cos 2t
∂

∂ f
− f cos 2t

∂

∂g
,

X8 = cos 2t
∂

∂t
− f sin 2t

∂

∂ f
− g sin 2t

∂

∂g
,

X9 = −g sin 2t
∂

∂ f
+ f sin 2t

∂

∂g
.

(34)

Invoking Equation (12), we obtain the following invariants:

I1,1 = ( f ′ f ′ − g′g′ − f f + gg) sin 2t − 2( f f ′ − gg′) cos 2t,

I1,2 = 2( f ′g′ − f g) sin 2t − 2( f g′ + f ′g) cos 2t,

I2,1 = ( f ′ f ′ − g′g′ − f f + gg) cos 2t + 2( f ′ f − g′g) sin 2t,

I2,2 = 2( f ′g′ − f g) cos 2t + 2( f g′ + f ′g) sin 2t,

I3,1 = −2 f ′ cos t − 2 f sin t,

I3,2 = −2g′ cos t − 2g sin t,

I4,1 = −2 f ′ sin t + 2 f cos t,

I4,2 = −2g′ sin t + 2g cos t,

I5,1 = f ′ f ′ − g′g′ − f 2 + g2,

I5,2 = 2g′ f ′ + 2g f .

(35)

associated with Noether-like operators (34). System of Equation (32) is integrated using the Gauss2
method with stepsize h = 0.01 and n = 10,000 number of steps. The absolute error in first integrals I2,1,
I2,2, I4,1, and I4,2 is plotted in Figures 5–8, respectively. Similar error behavior is obtained for I1,1, I1,2,
I3,1, I3,2, I5,1, and I5,2. We observe that the error does not grow out of bounds, which shows that the
numerical method can mimic the true qualitative feature of the dynamical system.

Figure 5. Error in integral I2,1.
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Figure 6. Error in integral I2,2

Figure 7. Error in integral I4,1.

Figure 8. Error in integral I4,2.

Case III: (k and y are complex)

When k and y(t) are both complex, i.e., k = α1 + iα2 and y = f + ig for f , g, α1, and α2 being real,
the following coupled system of harmonic oscillators is obtained:

f ′′ = −(α2
1 − α2

2) f + 2α1α2g,

g′′ = −(α2
1 − α2

2)g − 2α1α2 f ,
(36)
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which admits a pair of Lagrangians [11]:

L1 =
1
2

f ′2 − 1
2

g′2 − 1
2
(α2

1 − α2
2)( f 2 − g2) + 2α1α2 f g,

L2 = f ′g′ − α1α2( f 2 − g2)− (α2
1 − α2

2) f g.
(37)

System (36) admits the following 9 Noether-like operators and first integrals:

X1 =
∂

∂t
,

X2 = sin(α1t) cosh(α2t)
∂

∂ f
+ cos(α1t) sinh(α2t)

∂

∂g
,

X3 = cos(α1t) sinh(α2t)
∂

∂ f
− sin(α1t) cosh(α2t)

∂

∂g
,

X4 = cos(α1t) cosh(α2t)
∂

∂ f
− sin(α1t) sinh(α2t)

∂

∂g
,

X5 = − sin(α1t) sinh(α2t)
∂

∂ f
− cos(α1t) cosh(α2t)

∂

∂g
,

X6 = sin(2α1t) cosh(2α2t)
∂

∂t
+ {(α1 f − α2g) cos(2α1t) cosh(2α2t)

+ {(α1g + α2 f ) cos(2α1t) cosh(2α2t)− (α1 f − α2g) sin(2α1t) sinh(2α2t)} ∂

∂g

+ (α1g + α2 f ) sin(2α1t) sinh(2α2t)} ∂

∂ f
,

X7 = cos(2α1t) sinh(2α2t)
∂

∂t
+ {(α1g + α2 f ) cos(2α1t) cosh(2α2t)

− {(α1 f − α2g) cos(2α1t) cosh(2α2t) + (α1g + α2 f ) sin(2α1t) sinh(2α2t)} ∂

∂g

− (α1 f − α2g) sin(2α1t) sinh(2α2t)} ∂

∂ f
,

X8 = cos(2α1t) cosh(2α2t)
∂

∂t
+ {(α1 f − α2g) sin(2α1t) cosh(2α2t)

+ {(α1 f − α2g) cos(2α1t) sinh(2α2t) + (α1g + α2 f ) sin(2α1t) cosh(2α2t)} ∂

∂g

− (α1g + α2 f ) cos(2α1t) sinh(2α2t)} ∂

∂ f
,

X9 = − sin(2α1t) sinh(2α2t)
∂

∂t
+ {(α1 f − α2g) cos(2α1t) sinh(2α2t)

− {(α1 f − α2g) sin(2α1t) cosh(2α2t)− (α1g + α2 f ) cos(2α1t) sinh(2α2t)} ∂

∂g

+ (α1g + α2 f ) sin(2α1t) cosh(2α2t)} ∂

∂ f
.

(38)
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I1,1 = (α2
1 − α2

2)( f 2 − g2) + f ′2 − 4α1α2 f g − g′2,

I1,2 = 2(α2
1 − α2

2) f g + 2α1α2( f 2 − g2) + 2 f ′g′,
I2,1 = f ′ sin(α1t) cosh(α2t)− g′ cos(α1t) sinh(α2t)− (α1 f − α2g) cos(α1t) cosh(α2t)

− (α1g + α2 f ) sin(α1t) sinh(α2t),

I2,2 = g′ sin(α1t) cosh(α2t) + f ′ cos(α1t) sinh(α2t)− (α1g + α2 f ) cos(α1t) cosh(α2t)

+ (α1 f − α2g) sin(α1t) sinh(α2t),

I3,1 = f ′ cos(α1t) cosh(α2t) + g′ sin(α1t) sinh(α2t) + (α1 f − α2g) sin(α1t) cosh(α2t)

− (α1g + α2 f ) cos(α1t) sinh(α2t),

I3,2 = g′ cos(α1t) cosh(α2t)− f ′ sin(α1t) sinh(α2t) + (α1g + α2 f ) sin(α1t) cosh(α2t)

+ (α1 f − α2g) cos(α1t) sinh(α2t),

I4,1 =
1
2
[{(α2

1 − α2
2)(−g2 + f 2)− 4α1α2g f − (−g′2 + f ′2)} sin(2α1t) cosh(2α2t)

− {2α1α2 f 2 − 2α1α2g2 + 2(α2
1 − α2

2)g f − 2g′ f ′} cos(2α1t) sinh(2α2t)]

+ {α1( f ′ f − g′g)− α2(g′ f + f ′g)} cos(2α1t) cosh(2α2t)

+ {α1g′ f + α1 f ′g + α2 f ′ f − α2g′g} sin(2α1t) sinh(2α2t)

I4,2 =
1
2
[{(α2

1 − α2
2)(−g2 + f 2)− 4α1α2g f + (g′2 − f ′2)} cos(2α1t) sinh(2α2t)

+ {2α1α2( f 2 − g2) + 2 f g(α2
1 − α2

2)− 2 f ′g′} sin(2α1t) cosh(2α2t)]

+ [{α1 f ′g + α1 f g′ + α2( f ′ f − gg′)} cos(2α1t) cosh(2α2t)]

− [{α1 f f ′ − α1g′g)− α2g′ f − α2 f ′g)} sin(2α1t) sinh(2α2t)]

I5,1 =
1
2
[{(α2

1 − α2
2)(−g2 + f 2)− 4α1α2 f g − (−g′2 + f ′2)} cos(2α1t) cosh(2α2t)

+ {2α1α2 f 2 − {2α1α2g2 + 2(α2
1 − α2

2)g f − 2g′ f ′} sin(2α1t) sinh(2α2t)]

+ {α1 f g′ + α1g f ′ + α2( f f ′ − gg′)} cos(2α1t) sinh(2α2t)

− {−α1g′g + α1 f ′ f − α2 f g′ − α2 f ′g} sin(2α1t) cosh(2α2t)

I5,2 =
1
2
[{−(α2

1 − α2
2)(−g2 + f 2) + 4α1α2 f g − g′2 + f ′2} sin(2α1t) sinh(2α2t)

+ {2α1α2( f 2 − g2) + 2 f g(α2
1 − α2

2)− 2 f ′g′} cos(2α1t) cosh(2α2t)]

− [{α1 f ′g + α1g′ f − α2 f ′ f + α2gg′} sin(2α1t) cosh(2α2t)]

− [{α1 f ′ f − α1g′g − α2g′ f − α2 f ′g} cos(2α1t) sinh(2α2t)]

The Gauss2 method is again used to integrate Equation (36) with stepsize h = 0.01 and n = 10,000
number of steps. The absolute error in the first integrals is calculated as before. The absolute error
in integrals I1,1, I1,2, I3,1 and I3,2 is plotted in Figures 9–12, respectively, which remains bounded for
long time. Similar error behavior is obtained for I2,1, I2,2, I4,1, I4,2, I5,1, and I5,2. The symplectic Gauss2
method is able to preserve all first integrals obtained by performing complex symmetry analysis.
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Figure 9. Error in integral I1,1.

Figure 10. Error in integral I1,2.

Figure 11. Error in integral I3,1.
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Figure 12. Error in integral I3,2.

5. Conclusions

The first integrals of dynamical system y′′ = −k2y were obtained via the classical Noether
approach and the complex symmetry method. The later approach yields invariant energy
as a particular example that is stored in both oscillators. Since these first integrals are quadratic
in nature, the symplectic Runge–Kutta method, whose construction is also given in this paper,
was successfully applied to the system, and numerical preservation of these first integrals was obtained.
Interestingly, the numerical method presented in this paper could preserve the energy of the single
oscillator as well as the energy stored in the pair of coupled oscillators that arise from the complex
Noether approach. The error in the first integrals remained bounded for a long time, which would not
have been possible if we have employed nonsymplectic integrators.
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