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Preface to ”Virus Bioinformatics”

Viruses are the cause of a considerable burden to human and animal health. In recent years, we

have witnessed both the emergence of new viral diseases and the re-emergence of known diseases

in new geographical areas. The power of new genome-sequencing technologies in association

with new tools to handle “big data” provide unprecedented opportunities to address fundamental

questions in virology. Virus bioinformatics has become central to virology research, and advances in

bioinformatics have led to improved approaches to investigate viral infections and outbreaks, being

successfully used to detect, control, and treat infections of humans and animals.

The European Virus Bioinformatics Center (EVBC) was established in 2017 to bring together

experts in virology and virus bioinformatics in Europe. During our annual meetings, we have

observed that virus bioinformatics is evolving and succeeding as a research area in its own right,

representing the interface of virology and computer science. As part of the Third Annual Meeting

of the European Virus Bioinformatics Center (EVBC), we have published this Special Issue on Virus

Bioinformatics.

Manja Marz, Bashar Ibrahim, Franziska Hufsky, David L. Robertson

Special Issue Editors

ix
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Abstract: The Third Annual Meeting of the European Virus Bioinformatics Center (EVBC) took
place in Glasgow, United Kingdom, 28–29 March 2019. Virus bioinformatics has become central to
virology research, and advances in bioinformatics have led to improved approaches to investigate
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viral infections and outbreaks, being successfully used to detect, control, and treat infections of
humans and animals. This active field of research has attracted approximately 110 experts in virology
and bioinformatics/computational biology from Europe and other parts of the world to attend the
two-day meeting in Glasgow to increase scientific exchange between laboratory- and computer-based
researchers. The meeting was held at the McIntyre Building of the University of Glasgow; a perfect
location, as it was originally built to be a place for “rubbing your brains with those of other people”,
as Rector Stanley Baldwin described it. The goal of the meeting was to provide a meaningful and
interactive scientific environment to promote discussion and collaboration and to inspire and suggest
new research directions and questions. The meeting featured eight invited and twelve contributed
talks, on the four main topics: (1) systems virology, (2) virus-host interactions and the virome, (3) virus
classification and evolution and (4) epidemiology, surveillance and evolution. Further, the meeting
featured 34 oral poster presentations, all of which focused on specific areas of virus bioinformatics.
This report summarizes the main research findings and highlights presented at the meeting.

Keywords: virology; virus bioinformatics; software; systems virology; metagenomics; virome; viral
taxonomy; virus classification; genome evolution; bacteriophage; virosphere

1. Introduction

The European Virus Bioinformatics Center (EVBC) was conceived of in 2017 to bring together
experts in virology and virus bioinformatics in Europe [1,2]. EVBC’s member numbers have increased
steadily since then with currently 151 members from 78 research institutions distributed over
26 countries across Europe and internationally. This spring, the Annual Meeting of the EVBC was
held for the third time (Table 1). The Third Annual Meeting of the EVBC attracted experts at all career
stages to attend the two-day meeting in Glasgow in an inspiring and interactive scientific environment
to promote discussion, exchange of ideas and collaboration and to inspire and suggest new research
directions and opportunities.

Table 1. History of the Annual Meeting of the European Virus Bioinformatics Center(EVBC).

Date Location # of Participants Key outcomes

6–8 March 2017 Friedrich Schiller
University Jena,
Germany

~100 Founding of the Center;
Discussion of the role of EVBC;
Election of the first Board of Directors;
Insights into EU policy and funding opportunities.

9–10 April 2018 Utrecht University,
Netherlands

~120 Extending of the EVBC network to include America
and Asia;
Discussion and design of joint projects;
Insights on first applied European fund among
EVBC members [3].

28–29 March 2019 University of
Glasgow,
United Kingdom

~110 Inclusion of contributed talks in themed sections in
the scientific programme;
Establishment of travel, poster and best contributed
talk awards for junior scientists;
Need for greater coordination and communication
within the European virology community.

2. Sessions and Oral Presentations

During the two-day conference, about 110 participants from 20 countries contributed in productive
discussion on the four topics: (1) systems virology, (2) virus-host interactions and the virome,
(3) virus classification and evolution and (4) epidemiology, surveillance and evolution. A number
of high quality presentations were given by leading virologists and junior scientists. In addition
to the eight invited speakers, we had twelve talks selected from the contributed submissions (see
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http://evbc.uni-jena.de/events/3rd-evbc-meeting). It was clear that the distinction between
laboratory and computer researchers is often blurred. That collaborating teams of individuals with
different skill sets are often a road to success, while individuals working alone can still make massive
contributions. Data-driven research is now mainstream, and the scale and complexity of datasets
is ever increasing. Discussions highlighted how virology, like all of biology, is now a data science,
exploiting methods from dimensionality reduction of large datasets to data visualisation. We took
from this that virus bioinformatics is evolving and succeeding as an area of research in its own right
at the interface of virology and computer science and that there are many ways to be a successful
researcher.

2.1. Systems Virology

This session was chaired by Philippe Le Mercier (University of Geneva Medical School,
Switzerland), board member of the EVBC. Two speakers have been invited on this topic. Volker
Thiel (University of Bern, Switzerland), board member of the EVBC, presented about host proteins
composing the microenvironment of coronavirus replicase complexes. EVBC member Stefanie
Deinhardt-Emmer (Jena University Hospital, Germany) presented about co-infection between
Staphylococcus aureus and influenza virus. From the submitted abstracts, we selected talks by Jenna
Nicole Kelly (University of Bern, Switzerland) on single-cell analysis of influenza virus infection,
Florian Erhard (University of Würzburg, Germany) on tools revealing core features of CMV-induced
regulation in single cells and Daniel Blanco Melo (Icahn School of Medicine at Mount Sinai, New York,
USA) on in-depth transcriptomic analysis in influenza A virus infection. Studying virus infections at
the molecular level is as complex as studying the host systems they infect.

2.1.1. Determination of Host Proteins Composing the Microenvironment of Coronavirus Replicase
Complexes, by Volker Thiel

Coronaviruses are positive-sense RNA viruses that infect a variety of mammalian and avian
species and are mainly associated with respiratory and enteric diseases. In humans, there are
four coronaviruses known to cause rather mild respiratory symptoms; however, the appearance
of zoonotic viruses, such as the Severe Acute Respiratory Syndrome (SARS) and Middle East
Respiratory Syndrome (MERS) coronaviruses, exemplified that coronaviruses can also cause severe
and lethal diseases in humans. Within their target cells, coronaviruses replicate their RNA genome at
host-derived membranes in the host cell cytoplasm. The Replicase Complex (RC) that is synthesizing
the viral RNA is encoded on the genomic RNA and comprises a set of 15–16 non-structural proteins
(nsps). Besides canonical functions associated with RNA synthesis, such as RNA-dependent RNA
polymerase, helicase and methyltransferases, a wealth of additional enzymatic activities, such as
endoribonuclease, ADP-ribosylation and de-ubiquitination, are included within the coronaviral RC,
suggesting that various virus–host interactions are taking place at the site of viral RNA synthesis.
However, our knowledge about host factors at the interface between the RC and the host cell cytoplasm
is rudimentary. To identify the composition of the viral RC and adjacent host cell proteins composing
the RC-microenvironment, we engineered a biotin ligase into a coronaviral RC. This allowed us to
biotinylate, affinity-purify and identify specifically all viral components constituting the coronavirus
RC and host cell proteins that are in close proximity (Figure 1). Amongst the >500 host proteins
constituting the RC-microenvironment, we identified numerous proteins associated with vesicular
trafficking pathways, ubiquitin-dependent and autophagy-related processes and translation initiation.
Notably, following the detection of translation initiation factors at the RC, we were able to visualize
and demonstrate active translation proximal to the site of viral RNA synthesis of several coronaviruses.
Collectively, our work established a spatial link between viral RNA synthesis and diverse host factors
of unprecedented breadth. Many of the coronavirus RC-proximal host proteins and pathways have
also documented roles in the life cycle of other positive-stranded RNA viruses, suggesting considerable
commonalities and conserved virus-host interactions at the RCs of a broad range of RNA viruses.

3
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Our data may thus serve as a paradigm for other RNA viruses and provide a starting point for
a comprehensive analysis of critical virus-host interactions that represent targets for therapeutic
intervention [4].

Figure 1. Illustration of the experimental design to determine the microenvironment of coronavirus
Replicase Complexes (RCs) (adapted from V’kovski et al. [4]).

2.1.2. Co-Infection between Staphylococcus aureus and Influenza Virus Reduces Endothelial Barrier
Function, by Stefanie Deinhardt-Emmer

Pneumonia is the most serious inflammatory disease of the respiratory tract and also the most
common infectious disease. The classification of pneumonia into Hospital-Acquired Pneumonia
(HAP), Community-Acquired Pneumonia (CAP) and Ventilated-Acquired Pneumonia (VAP) indicates
the source of disease by a wide variety of microorganisms including bacteria, viruses and fungi.
Respiratory tract infections and in particular pneumonia represent the most common cause of
sepsis [5]. Long-time associated with bacterial infection, sepsis definition became more in focus
as a multifaceted host response to an infecting pathogen, which leads to organ failure [6]. However,
Influenza Virus (IV) as a pneumotropic virus can lead to lung failure and systemic host reaction with
subsequent multiple organ failure. IV circulates worldwide and causes highly contagious respiratory
diseases characterized by mild to severe symptoms. The seasonal IV-associated bronchopneumonia
is one of these infectious diseases with the highest population-based mortality rates [7]. Besides
virulence factors, the sudden increase of pathogenicity is the most striking problem of influenza
accompanied by bacterial co-infection. In a single-centre study conducted at the Jena University
Hospital during the winter season 2017/2018, we detected 1197 influenza-virus-positive samples
and 89 S. aureus-positive respiratory specimens. However, the diagnosis of a co-infection was
significantly lower with 17 samples. Interestingly, the mortality rate increased dramatically from
single infection (approximately 20%) to co-infection (approximately 80%). Even larger studies
indicating similarly dates and also the Spanish flu of 1918 showed that co-infection results in
high mortality rates [8]. While the pathogen–host interaction-induced severe dysregulations of
the immune response is under investigation in many studies, the regulatory effects between the
different pathogens and the subsequent impact on the host are barely understood. In a multifactorial
process, a wide range of pathogen factors and pathogen-regulated signalling events are involved in
co-pathogenesis. This process is associated with elevated host-response, changed repair-processes,
and modifications in the cellular immune response [9]. It is shown that primary IV-infection inhibits
the apoptosis mechanism and the following infection with S. aureus inhibits IV-induced apoptosis
by procaspase-8 activation [10]. Various models are available for studying the mechanisms of the
viral–bacterial interference. However, the use of murine models is adversely regarded because of
obvious discrepancies between men and mice despite the attempts of humanized murine models to
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fill the gaps. New methods enable investigations with cost-saving and efficient cell culture models as
an excellent supplement to animal experiments. Organ-on-a-chip technology allows species-specific
investigations for different cell types and also immune cells. Using this method, viral-bacterial
interference can be investigated in a human-specific manner.

2.1.3. Single Cell Analysis of iNfluenza Virus Infection in Its Natural Target Cells Reveals Cell
Type-Specific Host Responses and Disparate Viral Burden, by Jenna Nicole Kelly

The human respiratory epithelium is a pseudostratified epithelium that constitutes the first line of
defence against invading respiratory pathogens, including influenza viruses. Although several studies
have now shown that both viral transcript production and the innate immune response to infection
vary widely among single influenza-infected cells, the cause of this extreme heterogeneity remains
unclear [11,12]. More specifically, it remains unknown how key innate immune components are
distributed among the different cell populations found in the respiratory epithelium and how the latter
may influence the host response to infection. To determine the distribution of these innate immune
components and to examine how specific cell types respond to influenza infection, we used single-cell
RNA sequencing to acquire transcriptomes from primary human Airway Epithelial Cells (hAEC)
infected with Influenza A Virus (IAV) (Figure 2) [13]. A low MOI was used to infect hAECs with either
Wild-Type (WT) pandemic IAV or an NS1mutated form of the virus (NS1R38A) that impairs its ability
to counteract Interferon (IFN) and produces an amplified innate immune response. We then annotated
both host and viral transcriptomes of more than 19,000 single cells across the five major hAEC cell types
for mock, WT, and NS1R38A conditions. We observed a large heterogeneity in viral burden; however,
in contrast to what was found in previous studies, no absence of viral genes was detected. Interestingly,
in both WT- and NS1R38A-infected cultures, there was a significant decrease in the fraction of ciliated
and goblet cells compared to mock hAECs. We also identified a number of cell-type-specific innate
immune responses, including the expression of type I and III IFNs in all major cell types. Collectively,
our results represent the first comprehensive report on how individual cells contribute to the antiviral
response during IAV infection in the context of the human respiratory epithelium.

Figure 2. Sequencing and annotation workflow for single influenza-infected cells in the human
respiratory epithelium. hAEC, human Airway Epithelial Cells.
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2.2. Virus–Host Interactions and the Virome

This session was chaired by David Robertson (MRC-University of Glasgow Centre for Virus
Research, United Kingdom), the local organizer of the meeting. Bacteriophages, the viruses of bacteria,
are an important and usually neglected component of microbiome studies. Two speakers have been
invited on this topic. Martha Clokie (University of Leicester, United Kingdom) presented about the
roles of phages in impacting infectious diseases in human microbiomes. EVBC member Bas Dutilh
(Utrecht University, Netherlands) presented about global phylogeography and the ancient evolution
of the widespread human gut virus crAssphage. From the submitted abstracts, we selected talks
by Katherine Brown (University of Cambridge, United Kingdom) on viral transcripts in RNA-seq
datasets from bees, mites, and ants, Evelien Adriaenssens (Quadram Institute Bioscience, Norwich,
United Kingdom) on genome-resolved metaviromics for the detection of pathogenic viruses in the
environment and Josquin Daron (Centre National de la Recherche Scientifique, Montpellier, France) on
codon usage preference similarity among human-infecting viruses and their hosts.

2.2.1. Roles of Phages in Impacting Infectious Diseases in Human Microbiomes, by R. J. Martha Clokie

Most of the roles of phages in human health and disease are yet to be unravelled. However,
phages in all environments including the human microbiome are increasingly acknowledged to be
the puppeteers of their bacterial hosts, shaping their structure and evolution and physiology. Phages
associated with bacterial pathogens have multiple, often complex interactions with their bacterial
hosts, forcing them to interact differently with other bacterial and human cells. Besides being the
ultimate bacterial killers, phages can change bacterial surfaces to prevent recognition by the human
immune system. In cystic fibrosis, they can allow their hosts to cope with anaerobic conditions found
in mucus-laden lungs, and in many bacteria, they encode potent toxins [14]. There is indeed a plethora
of unknown phage-mediated bacterial phenotypes that could be critical for our understanding of
disease. Their ability to be developed as targeted removers of pathogenic bacteria is likely to be critical
to solving the antimicrobial resistance crisis.

A major limitation for our ability to develop therapeutic phages and also understand fully the
ways that phages impact bacteria is that the vast majority of phage gene functions are hypothetical or
unknown. In bacterial genomes, there are around 25% unknown genes, or genes that have no known
ascribed function, but in phage genomes, only around 25% of the genes are generally known! Thus,
when trying to establish how phages specifically interact with their hosts, there is large number of
genes of which we need to try and make sense.

To illustrate the diversity within one specific phage set, Martha Clokie presented the work from
her lab on phages that infect the gut pathogen Clostridium difficile [15–17]. They have identified sets
of phages that target clinically-relevant and prevalent strains. Despite the most effective phage set
being isolated from one geographical location, they are strikingly variable (Figure 3) with very few
identifiable genes in common.

Martha Clokie’s group is currently in the process of creating and examining genetic mutants to
identify phenotypes and conducting structural work on novel proteins, for example to identify tail
fibres. However, this work is time consuming and technically demanding. Choosing which genes
to focus on is key, as downstream work is key to unravelling critical phenotypes. Martha Clokie
presented data on the efficacy of this phage set to treat disease along with a framework for their
ongoing work to use different machine learning approaches to examine the genomes of these phages
and their associated bacteria robustly in order to identify hard-to-identify features, for example shared
and unique genes of interest. These approaches will direct work to unravel the mechanics of phage
efficacy for virulent phages and modes of action for lysogens.
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Figure 3. Set of Clostridium difficile phages on the vertical axis, which includes six well-characterised
myoviruses from Martha Clokies’ laboratory (red dots). The genes commonly identified in C. difficile
phages are shown on the horizontal axis and homologous genes represented by a green line. It is clear
that these phages do not share a large common gene set.

2.2.2. Global Phylogeography and Ancient Evolution of the Widespread Human Gut Virus
crAssphage, by Bas E. Dutilh

While viruses are vastly abundant and ubiquitous throughout the biosphere, they have remained
a relatively unexplored superkingdom of life. Early findings of genomic mosaicism [18] and
enhanced mutation rates of especially RNA viruses [19] have led to the conception of viruses as
genomically highly variable entities. This was further supported as metagenomics unveiled the
extent of genetic diversity of viruses, initially in marine water and human faeces [20], and in many
different biomes since. Images of an unparalleled diversity that is dominated by unknown sequences
has been the common theme of viral metagenomic explorations. However, while the virosphere is
undoubtedly diverse, ubiquitous viruses are increasingly being discovered by metagenomic analysis
of globally-distributed, ecologically-stable ecosystems, including once again the global oceans [21,22]
and the human gut [23–25].

Moreover, the genome sequence in individual viral lineages may be more conserved than could
previously be recognized. Recently, large-scale comparisons of gene order in the genome sequences
of dsDNA bacteriophages revealed a surprisingly conserved genomic structure [26,27]. A possible
mechanism at play is the genomic encoding of different transcriptional regions with promoters that
govern the expression of early, middle and late specific genes, such as known from the well-studied case
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of the T4 bacteriophage [28]. Together, these findings suggest a highly-optimized genomic encoding of
gene expression regulation that is consistent across globally-diverse viral populations.

While the conservation of genomic architecture between distantly-related bacteriophages as
outlined above is a striking observation, many open questions remain. For example, it remains unclear
to what extent the observations of conserved genomic architecture described above reflect a biased
sampling, for example of temperate, dsDNA and/or tailed bacteriophages that have been observed
to dominate, e.g., marine systems [29]. Indeed, the modes of genome evolution differ for viruses
with different lifestyles [30]. Nevertheless, viruses have vast global population sizes that result in
highly-efficient evolutionary selection pressures and optimized genomes. Moreover, viruses and their
cellular hosts have been co-evolving for billions of years, allowing ample time for optimization of their
genome structures.

Viral mutation rates (including recombination rates) have remained difficult to quantify due to a
lack of evolutionary calibration points. For example, on a short time scale of thirty years, a constant
recombination rate of five events per year has been observed for Siphoviridae bacteriophages [31],
but when longer timespans are assessed, mutation rate estimates may drop dramatically by orders
of magnitude [32]. One way of obtaining ancient calibration points in viral evolution in the absence
of fossil data is by exploiting their association to hosts. One of the most conserved constituents of
the human gut virome is the widespread and abundant bacteriophage crAssphage [23]. Recently,
near-complete genome sequences of crAss-like viruses were detected in faecal samples of a range of
wild non-human primates living on different continents, including Old-World monkeys, New-World
monkeys and apes [33]. Strikingly, these genomes revealed a strong collinearity with human-associated
crAss-like viruses, suggesting that the association of crAss-like viruses with the primate gut biome may
be millions of years old. Moreover, these findings open the door to investigations into viral mutation
rates at long time-scales, once again illustrating how viral metagenomics opens up a treasure trove for
virus discovery [34], as well as evolutionary analyses of these smallest and most abundant biological
entities on Earth.

2.2.3. Genome-Resolved Metaviromics for the Detection of Pathogenic Viruses in the Environment:
Will Eating Shellfish Make You Ill?, by Evelien M. Adriaenssens

Viromics or viral metagenomics has been proposed as an alternative method to qPCR-based
approaches for the detection of pathogenic viruses linked to food- and water-borne illness in the
aquatic environment [35,36]. The main advantage is that viral communities can be investigated
without prior knowledge of the genome sequences or genotypes of the viruses present in the sample.
There are, however, several drawbacks associated with viromics, such as laboratory and computational
costs, scalability and the issue of viral dark matter in which sequence data are classified as “unknown”.
In her presentation, Evelien Adriaenssens focused on the latter aspect and showed that reconstruction
of Uncultivated Virus Genomes (UViGs) [37] and classification into families reduced the fraction
of completely unknown sequences, particularly for RNA viruses. Using read mapping approaches
followed by visualisation and analysis with Anvi’o [38], she showed that they can identify pathogenic
virus genomes present in the Conwy River catchment area, mainly found in wastewater [39], and
showed changing abundance patterns between sample sites and types. Using species-level clustering
and differential read mapping, comparative genomics and phylogenetics, she could gradually descend
from the bigger picture of viral diversity to strain-level resolution, identifying the genotype of
potentially pathogenic viruses. This workflow is ideally suited to find new pathogenic viral species
and identify markers for wastewater contamination of the environment.

Evelien M. Adriaenssens was funded by the Biotechnology and Biological Sciences Research Council
(BBSRC) under the BBSRC Institute Strategic Programme Gut Microbes and Health BB/R012490/1.
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2.3. Virus Classification and Evolution

This session was chaired by Darren Obbard (University of Edinburgh, United Kingdom).
Two speakers have been invited on this topic. Peter Simmonds (University of Oxford, United Kingdom)
presented about classification of viruses in metagenomic datasets. Unfortunately, Olga Kalinina (Max
Planck Institute for Informatics, Saarbrücken, Germany) was unable to make it to the meeting. Instead,
Manja Marz (Friedrich Schiller University Jena, Germany), Managing director of the EVBC, presented
about machine learning applied to virus data. From the submitted abstracts, we selected talks by Julian
Susat (Institute of Clinical Molecular Biology, Kiel, Germany) on the detection of viruses in ancient
human remains, Aare Abroi (University of Tartu, Estonia) on the relation between virosphere and
biosphere, and Kevin Lamkiewicz (Friedrich Schiller University Jena, Germany) on RNA secondary
structures in whole genome alignments of viruses. Based on this submission, Kevin was competitively
awarded the PhD travel award.

2.3.1. The Classification of Viruses in Metagenomic Datasets—Where Do You Draw the Line?,
by Peter Simmonds

Methodological advances, such as High-Throughput Sequencing (HTS), and new capabilities to
recover and assemble genome sequences has unearthed vast numbers of previously-undescribed
viruses from environmental, human clinical, veterinary and plant samples. How such viruses
can be incorporated into the current virus taxonomy is a major challenge, especially at the family
and species levels, which have been historically based largely on descriptive taxon definitions of
phenotypic properties that “sequence-only” viruses often lack. These assignments typically encapsulate
descriptions of replication strategies, virion structure, and clinical and epidemiological features, such
as host range, geographical distribution and disease outcomes. If “sequence-only” viruses are to be
formally placed into the classification maintained by the International Committee on the Taxonomy
of Viruses (ICTV) as recently proposed [40], then their assignments will have to be based largely
or entirely on metrics of genetic relatedness and any other features that might be inferred from
their genome sequences. However, there are no published guidelines in the ICTV code on how
similar or how divergent viruses must be in order to be considered as new species or new families
(https://talk.ictvonline.org/information/w/ictv-information/383/ictv-code).

Peter Simmonds described their investigations of the extent to which the existing virus taxonomy
could be reproduced by the recoverable genetic relationships between sequences of viruses currently
classified by the ICTV. Comparisons of viruses were based on extraction of protein coding gene
signatures and genome organisational features from virus sequences and using these to construct
a metric of genetic relatedness through computation of Composite Generalised Jaccard (CGJ)
distances between each pair of viruses [41]. For eukaryotic viruses, there was large-scale consistency
between such genetic relationships and their current family- and genus-level taxonomic assignments,
irrespective of genome configurations and genome sizes. The analysis pipeline, “Genome Relationships
Applied to Virus Taxonomy” (GRAViTy), diagrammatically summarised in Figure 4, predicted family
membership of eukaryotic viruses with close to 100% accuracy and specificity; this method should
therefore enable the vast collection of metagenomic sequences to be classified in a manner consistent
with the current ICTV taxonomy. Preliminary analysis of such datasets revealed that over one half
(460/921) of (near)-complete genome sequences from recently-generated eukaryotic virus datasets
could be assigned to 127 novel family-level groupings, more than double the number of eukaryotic
virus families in the ICTV taxonomy.

The taxonomy of the 20 currently-classified prokaryotic virus families differs substantially [42].
Members of three families in particular (Podoviridae, Siphoviridae and Myoviridae) were far more
divergent from each other than observed within eukaryotic and archaeal virus families. Applying a
CGJ distance threshold of 0.8, prokaryotic viruses form over 100 groupings equivalent to eukaryotic
virus families. The use of a common benchmark with which to compare taxonomies of eukaryotic and
prokaryotic viruses supports ongoing efforts by the ICTV to revise thoroughly the phage taxonomy so
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that assignment criteria are consistent across all virus groups. Developing a consistent classification of
viruses in which assignments at family and other taxonomic levels extending the current framework,
but which will be underpinned both by metrics of genomic relatedness, is essential for future,
evidence-based classification of metagenomic viruses.

Figure 4. Overview of virus taxonomy prediction by “Genome Relationships Applied to Virus
Taxonomy” (GRAViTy). A simplified diagram of the steps used to construct profile tables from
sequences of viruses with assigned taxonomic status (reference virus genomes). It further illustrates the
steps to classify viruses of of undetermined taxonomic relationships. The method is based on extraction
of protein sequences from reference virus genomes and their clustering using pairwise BLASTp bit
scores. Sequences in each cluster are then aligned and turned into a Protein Profile Hidden Markov
Model (PPHMM). Reference genomes are subsequently scanned against the database of PPHMMs
to determine the locations of their genes, and Genomic Organisation Models (GOMs) for each virus
family are constructed. These models form the core of the genome annotator (Annotator), which is used
to annotate query sequences with information on the presence of genes and the degree of similarity
of their genomic organisation to reference virus sequences. From this, genome relationships can be
extracted by computation of various genetic distance metrics, including composite generalised Jaccard
similarity, which forms the basis for heat maps and dendrograms that depict the relationships of query
sequences to the dataset of classified viruses (Classifier) and recommendations for their taxonomic
assignments (Evaluator).

2.3.2. Detecting Viruses in Ancient Human Remains, by Julian Susat

The field of ancient DNA covers a wide range of research topics, spanning from human evolution,
megafauna to pathogen evolution. Despite the recent advantages in ancient DNA techniques and
modern metagenomic screening tools, the identification of authentic viral sequences from ancient
material is still challenging. The materials that are mainly used in ancient DNA research, teeth and
petrous bones, already limit the number of detectable viruses by their nature. Only viruses that
are present in the bloodstream can be detected. The fast evolution of viral pathogens and therefore
the comparability to modern variability in viruses makes it even more difficult to identify their
ancestors reliably. The highly-fragmented and degraded nature of ancient genetic material and the
high risk of modern contamination are causing further problems in the analysis. For the detection
of viruses, a wide variety of software utilizing different approaches like HMMs, dedicated marker
genes and complete genome references are available to screen these ancient samples for the presence
of pathogens. Each of these approaches has its own characteristic strengths and weaknesses. In a
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competitive alignment approach using all complete virus genomes as a reference, we were able to
detect three Hepatitis-B Viruses (HBV) during our regular screening. All three samples originated
in Germany and dated to the mediaeval times (1000 BP) and the Neolithic (5000 and 7000 BP). After
sequencing and competitive mapping against 16 HBV references, complete HBV genomes could be
recovered from all three samples. This resulted in the oldest human pathogenic viral genome that
is known up to know. Phylogenetic analysis revealed that the medieval strain was genotype D and
surprisingly conserved. The ancient Neolithic strains were closer together than to any other modern
and closest to strains from Old-World monkeys. These findings might suggest reciprocal cross-species
transmission between human and ape. Furthermore, we could show that the genomic structure of
ancient strains closely resembles the structure of modern HBV strains. Since publishing these results,
we and others detected more HBV-positive samples, supporting the notion that viruses will become
more important for the aDNAcommunity (Figure 5). The new HBV genomes we reconstructed support
our earlier findings. A bigger number of HBV cases spanning over longer time frames opens the door
for reliable diachronic analysis and maybe even epidemiological analysis. Besides the recent findings of
ancient viruses (e.g., Parvovirus), an open question still remains how we could detect and reconstruct
extinct or highly-altered virus genomes. Bioinformatic protocols for the detection of unknown viral
protein families based on long sequencing reads and high coverage data are published and available,
but due to the above-described nature of aDNA, applying these methods is not straightforward, and
strong optimization needs to be carried out. Still, these HBV and other findings have opened a new
door within the aDNA community and blazed a trail for upcoming viral ancient DNA studies. This
work was done by a team composed of Ben Krause-Kyora, Julian Susat, Felix M. Key, Denise Kühnert,
Alexander Immel, Alexander Herbig, Almut Nebel and Johannes Krause.
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Figure 5. Network of 493 modern genomes, 15 published ancient strains and 12 newly-discovered
ancient strains. Single letters indicate HBV genotypes (A–H); coloured strains are of ancient origin;
OWM = Old-World Monkey HBV strains, NWM = New-World Monkey HBV strains. D: five new
ancient strains, six ancient strains [43–45]; C: one ancient strain [46]; B: one ancient strain [45]; A: two
new ancient strains, three ancient strains [45]; G: one new ancient strain; OWM: three new ancient
strains, four ancient strains [44,45].

2.3.3. Virosphere and Biosphere—How Related They Are? A Protein (Domain) Based View, by
Aare Abroi

Viruses are not always pathogens, and they are also an important and inseparable part of the
biosphere and should be studied as such. Unfortunately, the wider functional and evolutionary
role of viruses in the biosphere is not yet widely accepted in most disciplines, a good exception
being marine biology/ecology, where viruses are already accepted as important players. How the
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virosphere is related to the rest of the biosphere can be examined in several different ways. One of
these ways is a protein domain-based view. We analysed how virosphere protein domain occurrence
is related to the occurrence of protein domains in all (sequenced) organisms (we called the last the
phylogenomic space of protein domains). This is based on the distribution of protein domains in
viruses and in organisms (by superkingdom), i.e., which protein domains are found in viruses (or a
specific set of viruses) and to what extent and where these domains are found elsewhere in organisms.
In our analysis, we used predefined protein domain databases Pfam, Superfamily and Gene3D.
Domains found in the virosphere can be found in a different number of organisms, starting from a few
organisms for some viral domains up to all organisms in the others. However, if we specify a narrower
set of viruses (Baltimore class, viral family or host range), differences between viral taxons appear.
Therefore, the heterogeneity of viruses is also very clearly expressed by where in the phylogenomic
space the domains that are found in different viral taxons are located. A few examples are shown in
Figure 6. An important conclusion from our analysis is the existence of virosphere-specific protein
domains (domains not found in cellular organisms), even at the level of structural homology. Several
evolutionary routes that may lead to virosphere specificity (absence in cellular organisms) will be
discussed. Considering the new knowledge on virus-to-host gene transfers in eukaryotes during
the last ten years, it is clear that the virosphere is a source of functional and structural novelties
also for this superkingdom. A possible route for the genesis of novel domains in viruses (as well
as in organisms) is double coding or overprinted genes. We have developed a web-tool cRegions
(http://bioinfo.ut.ee/cRegions/), which helps to find potential double coding regions (and other
embedded functional elements) in coding sequences [47,48]. Of course, there exist many domains that
are shared by viruses and organisms. Beside others, virus-to-host gene transfer is one process leading
to shared domains. A number of examples for this kind of transfer have been described; however,
they are all based on sequence-to-sequence comparison. Taking into account the very fast evolution
of viruses, the sequence similarity may fall below the confidential detection limit relatively fast. We
applied structure-guided information to detect more ancestral virus-to-host transfers. Our data show
that “as a proof of principle”, using protein structure-guided HMM models, it is possible to detect
V2Htransfers not “visible”; with BLAST analysis.

Figure 6. Distribution of the protein domains found in three viral families according to their occurrence
in different superkingdoms. Protein domains as they are defined in SCOPat the superfamily level and
the occurrence of these domains according to Superfamily assignment (www.supfam.org). For example,
Coronaviridae encodes 13 protein domains not found in eukaryotic genomes and nine domains found
in more than 90% of eukaryotic genomes.

2.3.4. RNA Secondary Structures in Whole Genome Alignments of Viruses, by Kevin Lamkiewicz

RNA secondary structures are known to play important roles in viruses, and especially in
RNA viruses, since they can initiate and facilitate transcription, translation and replication. Several
studies indicate that structures are cis-acting regulators for transcription. However, only looking at
local structures is not sufficient to capture all RNA–RNA interactions of one molecule. Long-Range
Interactions (LRI) are described in a few RNA virus families [49], but are computationally intensive
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to predict. Further, studies show that a single nucleotide changing can disrupt the replication of a
coronavirus completely [50]. Thus, a deep understanding of conserved RNA structures is necessary to
develop anti-viral therapies.

In order to increase the confidence of predictions, Multiple Sequence Alignments (MSA) are
needed, since they provide conservation information between viruses. Identifying conserved secondary
structures in whole genomes of viruses is computationally challenging, as the whole genome has to be
considered for possible structures and interactions.

Here, we give an overview of the landscape of RNA secondary structures in viruses and provide
a pipeline that generates whole genome alignments with structure annotation for downstream
analyses. Our pipeline distinguishes itself from other tools by considering both the sequence and
structure of input genomes for the final alignment. Therefore, for the first time, the generation of
structure-annotated whole genome alignments for viruses enables sophisticated and comprehensive
downstream analysis for RNA structures and RNA functions. This is achieved with an iterative
combination of the sequence-based aligner MAFFT [51] and the structure-based aligner LocARNA [52].
For our example case, we were able to predict structures in the genus Flavivirus [53] that are consistent
with described structures in the literature (Figure 7). Further, we predicted novel structural elements
in coding regions of genomes.
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Figure 7. First results of our VeGETApipeline on an example input set consisting of flaviviruses.
We were able to identify the West-Nile Virus (WNV), Dengue Virus 1 (DENV1), Japanese Encephalitis
Virus (JEV), Yellow Fever Virus (YFW), Saint Louis Encephalitis Virus (SLEV) and Murray
Valley Encephalitis Virus (MVEV) as representative viruses from downloaded virus genomes [53].
The resulting alignment calculated by VeGETA has structure annotations for the complete genomes,
including 5’ UTR, coding regions and 3’ UTR. Here, we extracted the 5’ UTR from the alignment
and visualized the annotated structure elements. These elements agree with the literature [54], as we
were able to reconstruct the SLA, SLL, SLBand cHPelements accurately. The first two elements were
recognized by the viral replication mechanism (NS5) [55]. The sequence embedded in the SLB structure
is known to play a role in the genome circularization of flaviviruses [56], whereas the cHP facilitates the
translation of the coding region by pausing the translation machinery and finding the correct starting
triplet [57].

2.4. Epidemiology, Surveillance and Evolution

This session was chaired by Edward Hutchinson (MRC-University of Glasgow Centre for Virus
Research, United Kingdom). Two speakers have been invited on this topic. Samantha Lycett (University
of Edinburgh, United Kingdom) presented about phylodynamics for tracking epidemic, endemic
and evolving viral strains. Roman Biek (University of Glasgow, United Kingdom) presented about
leveraging pathogen genomics to reveal and control the spread of rabies virus. From the submitted
abstracts, we selected talks by Marina Escalera-Zamudio (University of Oxford, United Kingdom) on
parallel evolution and the emergence of highly-pathogenic avian influenza A viruses, David Bauer
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(University of Oxford, United Kingdom) on the structure of the influenza A virus genome and Lu
Lu (University of Edinburgh, United Kingdom) on the evolutionary origins of the epidemic potential
among human RNA viruses.

2.4.1. Phylodynamics for Tracking Epidemic, Endemic and Evolving Viral Strains, by Samantha Lycett

Infectious diseases caused by viral pathogens in animal and livestock populations can have
important economic and health consequences globally. The ability to foresee where, in which host
species and under what conditions outbreaks could occur is key to developing prevention and control
strategies. Sequencing pathogens from infected animals has become much more affordable and
widespread in recent years, especially during outbreaks and in endemic disease settings with targeted
surveillance programmes. Consequently, there are growing collections of animal virus sequences
from around the globe. In this talk, the use of viral sequence data together with phylodynamic
methodologies for understanding the transmission patterns in animal populations was discussed,
using Avian Influenza (AI), Foot-and-Mouth Disease (FMD) and Porcine Reproductive and Respiratory
Syndrome (PRRS) as examples [58–60].

Since RNA viruses have fast mutation rates and variable sequences, transmission routes between
places and host species can be inferred [59,60]. One approach is to group sequences from individual
hosts into discrete locations and/or host species and consider these as discrete traits or subpopulations
on time-resolved phylogenetic trees, with the goal to infer which group infected which. Alternatively,
locations may be represented as continuous traits (latitude and longitude) in order to estimate spatial
diffusion rates and routes.

Using avian influenza as an example of a widespread multi-species disease system, it was shown
that wild birds (wild Anseriformes) were responsible for long-range transmissions of highly-pathogenic
H5N8, by using a combination of discrete host traits and continuous spatial traits on time-resolved
phylogenetic trees [58]. Furthermore the clade to which the H5N8 strains belong is unusual
because unlike the highly-pathogenic H5N1 strains, they reassort frequently, picking up different
neuraminidase subtypes. By using both host and neuraminidase subtype as discrete traits, it was also
shown that reassortment was preferentially occurring in Anseriformes species (ducks, geese, etc.).

To conclude, phylodynamic methods using viral sequence data with time, space and species
metadata reveal complex transmission patterns and can be used to understand, track, model and
ultimately inform disease control measures.

2.4.2. Parallel Evolution and the Emergence of Highly-Pathogenic Avian Influenza A Viruses,
by Marina Escalera-Zamudio

Avian Influenza A Viruses (AIVs) circulate among wild and domestic bird populations worldwide.
While some strains only cause mild to asymptomatic infections, known as Low Pathogenicity avian
influenza viruses (LP), High Pathogenicity avian influenza viruses (HP) can have an extremely
high mortality rate in both domestic and wild bird populations, leading to huge economic loses
(Figure 8A) [61]. Thus, surveillance of AIVs is crucial for early detection of outbreaks. Although
virulence is a polygenic trait, molecular determinants of virulence have been well characterised for
AIVs, such as a polybasic proteolytic cleavage site within the hemagglutinin protein, which enables a
systemic viral spread within the host [62]. We hypothesise that the parallel evolution of HP lineages
from LP ancestors may have been facilitated by permissive or compensatory secondary mutations
occurring anywhere in the viral genome, preceding or following the appearance of a polybasic
proteolytic cleavage site. We used a comparative phylogenetic and structural approach to detect shared
mutations evolving under positive selection across the whole genome of HP AIVs of the H7NX and
H5NX subtypes and developed a model that statistically assesses genotype-phenotype associations.
We present cumulative evolutionary and structural evidence that supports the association between
parallel mutations and the evolution of the HP phenotype. Parallel mutations occur frequently among
HP lineages of the same viral subtype (Figure 8B). Many of the mutations have been previously
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determined to increase viral fitness in terms of their biological properties, whilst most of these are
ranked as stabilising to protein structure, supporting that these are rather permissive/compensatory.
The mutational panel provided here may function as an early detection system for transitional virulence
stages. Circulating AIVs that do not have a polybasic cleavage site yet, but show all or some of the
amino acid changes ranked, should remain under surveillance.
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Figure 8. (A) Geographical occurrence of historic Highly-Pathogenic (HP) outbreaks for the H7NX
viruses. Countries of emergence are highlighted in red. Year of circulation, virus subtype and
consensus sequence for the polybasic Cleavage Site (pCS) within the Hemagglutinin (HA) protein
are indicated for the selected outbreaks used in this work (C1-C9). Each outbreak corresponds to a
distinct genotype, defined as well- supported clusters within all viral genome segment trees (data
not shown). (B) MCCtree for the HA protein with reconstruction of ancestral states for site 143, as
mutation A143T was found to be evolving under parallel evolution and to be associated with the HP
phenotype, occurring in 4/9 of the HP clusters analysed. This mutation is a non-conservative amino
acid change located within an antigenic pocket site. Branches within the trees are coloured according
to the corresponding amino acid states in nodes (tip states not shown). Ancestral nodes preceding the
emergence of a mutation associated with the HP lineages are represented with coloured circles. The
probabilities of a given amino acid state occurring within ancestral/descending nodes are indicated.
The HP clusters of interest are highlighted with blue circles. Mutations strongly associated with an HP
phenotype may function as an early detection system for transitional virulence stages.
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2.4.3. Evolutionary Origins of Epidemic Potential among Human RNA Viruses, by Lu Lu

For a virus to have epidemic potential in human populations, an infected individual must be
capable of transmitting the infection to other individuals. However, for the majority of human RNA
virus species, human infections are acquired only from non-human reservoirs. The evolution of human
transmissibility is poorly understood. Through parallel analyses of 1755 RNA viruses, we identified
at least 90 nodes across 39 genus-level phylogenies associated with transitions involving the gain of
human infectivity and/or transmissibility. Human-infective and human-transmissible viruses evolve
independently, and at least 73% of human-transmissible RNA virus lineages emerged directly from
non-human virus lineages in diverse mammal or bird taxa. Negative sense single-stranded RNA virus
lineages generate a higher proportion of strictly zoonotic viruses. Our analysis demonstrates that RNA
viruses from mammal/bird lineages not currently known to be infective to humans are a likely source
of future epidemics in human populations, a public health threat recently designated “Disease X”.

3. Poster Session

Another important facet of this year’s annual EVBC meeting was the poster session on Thursday
evening. The standard of the research presented was extremely high and, combined with a networking
event in the Glasgow University Union, provided plenty of opportunity to meet the presenters.
The relaxed atmosphere was instrumental to promoting discussions and developing new interactions
between attendees. The list of poster presenters and titles can be found online (http://evbc.uni-jena.
de/events/3rd-evbc-meeting).

4. Conclusions

The Third Annual Meeting of the European Virus Bioinformatics Center brought together scientists
in the field with expertise in different disciplines for scientific exchange and provided the opportunity
for discussing ongoing and new collaborations. The meeting attracted new researchers to virus
bioinformatics, which was reflected by several first-time attendees. The presentations strongly
underlined the interdisciplinary “virology meets bioinformatics” character of the meeting. We enjoyed
lively discussions after the speakers’ presentations, in the breaks, during the poster session and at the
social events.

We hope that speakers summaries provided in this report will give an interesting insight into
the field of virus bioinformatics and will encourage interested researchers to join us at the Fourth
Annual Meeting of the EVBC to be held in Switzerland in 2020. For more information, do not hesitate
to contact us via evbc@uni-jena.de.
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Bacteriophage Combinations Significantly Reduce Clostridium difficile Growth In Vitro and Proliferation In
Vivo. Antimicrob. Agents Chemother. 2016, 60, 968–981. [CrossRef]

18. Hendrix, R.W.; Smith, M.C.; Burns, R.N.; Ford, M.E.; Hatfull, G.F. Evolutionary relationships among diverse
bacteriophages and prophages: All the world’s a phage. Proc. Natl. Acad. Sci. USA 1999, 96, 2192–2197.
[CrossRef]

19. Sanjuán, R.; Nebot, M.R.; Chirico, N.; Mansky, L.M.; Belshaw, R. Viral mutation rates. J. Virol. 2010,
84, 9733–9748. [CrossRef]

20. Breitbart, M.; Salamon, P.; Andresen, B.; Mahaffy, J.M.; Segall, A.M.; Mead, D.; Azam, F.; Rohwer, F. Genomic
analysis of uncultured marine viral communities. Proc. Natl. Acad. Sci. USA 2002, 99, 14250–14255. [CrossRef]

21. Roux, S.; Brum, J.R.; Dutilh, B.E.; Sunagawa, S.; Duhaime, M.B.; Loy, A.; Poulos, B.T.; Solonenko, N.; Lara, E.;
Poulain, J.; et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses.
Nature 2016, 537, 689. [CrossRef]

22. Breitbart, M.; Rohwer, F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 2005,
13, 278–284. [CrossRef] [PubMed]

17



Viruses 2019, 11, 420

23. Dutilh, B.E.; Cassman, N.; McNair, K.; Sanchez, S.E.; Silva, G.G.Z.; Boling, L.; Barr, J.J.; Speth, D.R.;
Seguritan, V.; Aziz, R.K.; et al. A highly abundant bacteriophage discovered in the unknown sequences of
human faecal metagenomes. Nat. Commun. 2014, 5, 4498. [CrossRef] [PubMed]

24. Stern, A.; Mick, E.; Tirosh, I.; Sagy, O.; Sorek, R. CRISPR targeting reveals a reservoir of common phages
associated with the human gut microbiome. Genome Res. 2012, 22, 1985–1994. [CrossRef] [PubMed]

25. Manrique, P.; Bolduc, B.; Walk, S.T.; van der Oost, J.; de Vos, W.M.; Young, M.J. Healthy human gut
phageome. Proc. Natl. Acad. Sci. USA 2016, 113, 10400–10405. [CrossRef] [PubMed]

26. Mahmoudabadi, G.; Phillips, R. A comprehensive and quantitative exploration of thousands of viral
genomes. eLife 2018, 7, e31955. [CrossRef] [PubMed]

27. Kang, H.S.; McNair, K.; Cuevas, D.; Bailey, B.; Segall, A.; Edwards, R.A. Prophage genomics reveals patterns
in phage genome organization and replication. bioRxiv 2017, 114819. [CrossRef]

28. Miller, E.S.; Kutter, E.; Mosig, G.; Arisaka, F.; Kunisawa, T.; Ruger, W. Bacteriophage T4 Genome.
Microbiol. Mol. Biol. Rev. 2003, 67, 86–156. [CrossRef]

29. Brum, J.R.; Schenck, R.O.; Sullivan, M.B. Global morphological analysis of marine viruses shows minimal
regional variation and dominance of non-tailed viruses. ISME J. 2013, 7, 1738–1751. [CrossRef] [PubMed]

30. Mavrich, T.N.; Hatfull, G.F. Bacteriophage evolution differs by host, lifestyle and genome. Nat. Microbiol.
2017, 2. [CrossRef]

31. Kupczok, A.; Neve, H.; Huang, K.D.; Hoeppner, M.P.; Heller, K.J.; Franz, C.M.A.P.; Dagan, T. Rates of
Mutation and Recombination in Siphoviridae Phage Genome Evolution over Three Decades. Mol. Biol. Evol.
2018, 35, 1147–1159. [CrossRef]

32. Simmonds, P.; Aiewsakun, P.; Katzourakis, A. Prisoners of war — host adaptation and its constraints on
virus evolution. Nat. Rev. Microbiol. 2018, 17, 321–328. [CrossRef] [PubMed]

33. Edwards, R.; Vega, A.; Norman, H.; Ohaeri, M.C.; Levi, K.; Dinsdale, E.; Cinek, O.; Aziz, R.; McNair, K.;
Barr, J.; et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage.
bioRxiv 2019, 527796. [CrossRef]

34. Mokili, J.L.; Rohwer, F.; Dutilh, B.E. Metagenomics and future perspectives in virus discovery.
Curr. Opin. Virol. 2012, 2, 63–77. [CrossRef] [PubMed]

35. Symonds, E.M.; Breitbart, M. Affordable Enteric Virus Detection Techniques Are Needed to Support
Changing Paradigms in Water Quality Management. Clean 2014, 43, 8–12. [CrossRef]

36. Bibby, K. Metagenomic identification of viral pathogens. Trends Biotechnol. 2013, 31, 275–279. [CrossRef]
[PubMed]

37. Roux, S.; Adriaenssens, E.M.; Dutilh, B.E.; Koonin, E.V.; Kropinski, A.M.; Krupovic, M.; Kuhn, J.H.;
Lavigne, R.; Brister, J.R.; Varsani, A.; et al. Minimum Information about an Uncultivated Virus Genome
(MIUViG). Nat. Biotechnol. 2018. [CrossRef]

38. Eren, A.M.; Esen, Ö.C.; Quince, C.; Vineis, J.H.; Morrison, H.G.; Sogin, M.L.; Delmont, T.O. Anvi’o:
An advanced analysis and visualization platform for ’omics data. PeerJ 2015, 3, e1319. [CrossRef]

39. Adriaenssens, E.; Farkas, K.; Harrison, C.; Jones, D.; Allison, H.E.; McCarthy, A.J. Viromic analysis of
wastewater input to a river catchment reveals a diverse assemblage of RNA viruses. bioRxiv 2018, 248203.
[CrossRef]
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Abstract: Base-By-Base is a comprehensive tool for the creation and editing of multiple sequence
alignments that is coded in Java and runs on multiple platforms. It can be used with gene
and protein sequences as well as with large viral genomes, which themselves can contain gene
annotations. This report describes new features added to Base-By-Base over the last 7 years. The two
most significant additions are: (1) The recoding and inclusion of “consensus-degenerate hybrid
oligonucleotide primers” (CODEHOP), a popular tool for the design of degenerate primers from a
multiple sequence alignment of proteins; and (2) the ability to perform fuzzy searches within the
columns of sequence data in multiple sequence alignments to determine the distribution of sequence
variants among the sequences. The intuitive interface focuses on the presentation of results in easily
understood visualizations and providing the ability to annotate the sequences in a multiple alignment
with analytic and user data.

Keywords: bioinformatics; virus; comparative genomics; software; Base-By-Base; BBB; poxvirus;
ASFV; MSA

1. Introduction

Base-By-Base (BBB) [1,2], a multiple sequence alignment (MSA) editor, has been under
development for more than 15 years and forms an integral component in the Viral Bioinformatics
Resource Center (VBRC) platform (www.4virology.net) that supports comparative genomics of large
DNA viruses. Although the viruses supported by VBRC are primarily poxviruses and African swine
fever virus (ASFV) because of our research interests, BBB is equally valuable for other viral genomes
and nucleic acid and protein sequences, which can be imported into BBB from FASTA or GenBank files.
The consistent theme running throughout the development of VBRC’s tools has been to provide the
virologist/biologist with easy-to-use graphical tools that let the user visualize and interact with the raw
sequence data. The simplest example of this is providing the ability to quickly and visually scan a viral
genome MSA for alignment errors and make manual corrections or use a second alignment algorithm
to realign a section of a larger MSA. Without visually reviewing the output of a bioinformatics analysis,
users may unknowingly use algorithms and parameters that are not appropriate for their analysis.
For example, different tools may include or ignore gaps when calculating percent identity between
sequence pairs; for example, counting a single gap of 100 nucleotides as 100 mismatches in one of
a pair of sequences (1 kb alignment) that are otherwise 99% identical would create the illusion of
89% identity. The performance of a visual assessment of MSAs should be a routine “reality check” for
researchers, rather than relying solely on the numerical output of alignment tools.

Viruses 2018, 10, 637; doi:10.3390/v10110637 www.mdpi.com/journal/viruses20
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Previously described features of BBB include:

• Java code; uses Java Web Start to launch and automate updating of BBB for users;
• Integration with the VBRC’s viral genome database (viral orthologous clusters; VOCs);
• Alignment of sequences or subsequences (MUSCLE, ClustalW, MAFFT);
• MSA editing, with intuitive highlighting of differences between sequences;
• Applicability to gene, protein, and virus genome sequences;
• Ability to edit individual sequences;
• Intuitive graphical user interface (GUI) with ability to view sequence residues or full

sequence summaries;
• Display of 6-reading frames; understands and links to gene location (data from GenBank files);
• Multiple methods to annotate sequences and MSAs, treating the BBB file as a “results notebook”.

Over the years, as we have needed novel functions in our investigations of viral genomes, we have
used BBB as our standard platform for analyses that required manipulation and visual presentation of
DNA and protein sequences. Thus, what otherwise might have been a solitary Perl or Python script
became a feature within BBB. This enhances the functionality of BBB and provides open user access
to new functions as new scripts get added. As a result, BBB has become an integrated platform with
multiple features that provides a common user-friendly interface for both input of sequences and
output of results.

This communication describes new features that have been incorporated into BBB: New
“Advanced/Experimental tools” include j-CODEHOP, Find Differences, SNIP, and MAFFT-add;
new “Reports” include Get Counts, Get Unique Positions, and Get SNP Counts (of top 2
sequences); new “Tools” that export alignment after deletion of Specified Columns or Columns

Containing Gap(s). It should be noted that these single nucleotide differences between viral genomes
are not “polymorphisms” in the strictest sense, but we have used the term SNP (single nucleotide
polymorphism) as it is a recognizable and understandable term among virologists.

2. Materials and Methods

When the BBB project began more than 15 years ago, Java was chosen as the coding language
because (1) web browsers were not as capable as today’s JavaScript powered interfaces; (2) Java was
the primary language taught to undergraduates at the University of Victoria; and (3) it was relatively
platform-independent, promising “code once, deploy everywhere” capability, thereby eliminating the
compilation and installation obstacles that hinder users that want to try out new tools.

This updated software application is available from the www.4virology.net website (previously
virology.uvic.ca) and code is made available upon request under the GNU General Public License
version 3. In addition, the BBB and “consensus-degenerate hybrid oligonucleotide primers”
(CODEHOP) source code described below has recently been submitted to the GitHub repository
(https://github.com/vbrclab/basebybase; https://github.com/vbrclab/Codehop).

j-CODEHOP can be launched from within BBB (menu: Advanced) or from its own web page on
the www.4virology.net website. In each case, the initial step is the download of the BBB alignment
editor configuration file (*.jnlp), which is started by Java Web Start on the user’s own computer
by default. Java Web Start requires at least Java 7, but less than Java 11 to run. The Java Runtime
Environment (JRE) can be downloaded for free, if needed.

Multiple “help” files for BBB and CODEHOP are available, including a “quick start page”, “how to
doc” and “help book”, which get progressively more detailed. A j-CODEHOP tutorial is also provided.
Although users are requested to register their email for use of the VBRC, this is only used to allow
the resource to email users occasionally to make them aware of important new features; many users
choose to use nonidentifying email addresses.

The cowpox viruses (CPXV) used as examples are: BR (AF482758.2), Norway 1994 MAN
(HQ420899.1), Germany 1998 2 (HQ420897.1), Germany 1980 EP4 (HQ420895.1), Germany 2002
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MKY (HQ420898.1), EleGri07/1 (KC813507.1), BeaBer04/1 (KC813491.1), RatHei09/1 (KC813504.1),
GRI-90 (X94355.2), and HumGra07 (KC813510.1). The core conserved nucleotide alignment (60 kb) was
used to generate a maximum-likelihood phylogenetic tree using the GTRGAMMA model in RAxML
v.8.2.10 [3].

Currently, BBB has an upper limit of about 500 protein sequences (300 aa each) due to the memory
assigned to the tool.

3. Results

3.1. CODEHOP Integration

Even though vast amounts of genomic sequences have been obtained recently, it is unlikely that
the complete genome sequence will have been determined for all living species that might provide
valuable scientific and medical insights. In order to obtain sequence information for specific genes
in unsequenced organisms or pathogens, a primer design strategy for PCR amplification of novel
genes using ”consensus-degenerate hybrid oligonucleotide primers” (CODEHOPs) was previously
developed [4]. CODEHOPs are designed from amino acid sequence motifs that are highly conserved
within a gene family, and are used in PCR amplification to identify unknown related family members.
Each CODEHOP consists of a pool of primers containing all possible nucleotide sequences within
a 3′ degenerate core encoding a stretch of 3–4 highly conserved amino acids (Figure 1). A longer 5′

nondegenerate clamp region in the primers contains the most probable nucleotide predicted for each
flanking codon. The degenerate core allows primer binding to all existing target variations in the
initial PCR cycles, while the clamp region, once integrated into early PCR products, leads to efficient
amplification of the PCR products in later PCR cycles. CODEHOPs designed from two adjacent
conserved motifs are used to amplify the gene sequences between these motifs.

 
Figure 1. Anatomy of a “consensus-degenerate hybrid oligonucleotide primers” (CODEHOP)
PCR primer. A CODEHOP is a pool of related primers containing all possible nucleotide sequences
encoding 3 to 4 highly conserved amino acids within a 3′ degenerate core and a 5′ consensus clamp
containing the most probable nucleotide at each position for the flanking codons. (A) multiple
alignment of protein sequences; (B) predicted CODEHOP primer pool.

Other methods to identify unknown genes have used degenerate primers, containing most
or all of the possible nucleotide sequences encoding amino acid motifs, or a consensus primer
containing the most common nucleotide at each codon position within the motifs. However,
unlike strictly degenerate or consensus approaches, the CODEHOP PCR approach has proven to
be highly successful in amplifying distantly related genes containing significant sequence variations at
low copy numbers. The primer design software and the CODEHOP PCR strategy have been utilized
for the identification and characterization of new gene orthologs and paralogs in different plant, animal,
and bacterial species, as well as for virus typing (e.g., enteroviruses [5]); consequently, the original
publication has been cited in more than 800 subsequent publications. In addition, this approach has
been successful in identifying new pathogen species and genes, as we have previously published [6–12].
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A computer strategy to predict CODEHOP PCR primers from multiply aligned sets of related
protein sequences was previously developed, which has been continuously accessible over the internet
since 1998 as an integral part of the BLOCKS database developed by Steven Henikoff and hosted by
the Fred Hutchinson Cancer Research Center [4]. A description of the CODEHOP program and its uses
was published in the 2003 NAR Web services edition [13]. Subsequently, we developed iCODEHOP, an
interactive web application independent of the BLOCKS database, to simplify and automate the process
of designing CODEHOP PCR primers. The iCODEHOP program added new features, including
interactive visualization of predicted CODEHOPs, phylogenetic plots for multiple aligned sequences,
and user sessions on the server that allowed data to be stored during the design process [14]. However,
due to advances in web browser technology, problems with the stored server sessions, and resource
limitations, the iCODEHOP web application could no longer be supported and we have now developed
a Java-based iteration called j-CODEHOP for integration into BBB (menu: Advanced).

j-CODEHOP guides users through the CODEHOP PCR primer design process, including
uploading sequences, creating a multiple alignment, and identifying and visualizing primer pools that
match the specified design criteria. A linked tutorial provides a step-by-step guide to demonstrate
how to create CODEHOPs, using a sample FASTA file containing related sequences within the uracil
DNA glycosylase family. The input to j-CODEHOP can be a set of nonaligned protein sequences
or a set of aligned protein sequences. Protein sequence files may be formatted as GenBank (*.gb,
*.gbk), EMBL (*.embl), BBB (*.bbb), FASTA (*.fasta, *.fas, *.fa) or CLUSTAL (*.clustal, *.clustalw).
The program’s output includes a graphic showing predicted CODEHOP primers at their locations
along a consensus protein sequence, a graphical representation of the region of the multiple alignment
from which they are derived, and a set of metadata about each primer pool (length, degeneracy,
and annealing temperature range). j-CODEHOP enables the user to visually scan the entire set of
predicted CODEHOP primers to assess their relative positions and orientations within the consensus
protein sequence and select individual CODEHOP primers for further analysis.

For the aligned protein sequences and chosen criteria, j-CODEHOP computes all primer
possibilities. The initial output shows the consensus amino acid sequence for conserved blocks of the
multiple protein alignment (Figure 2A). This sequence is numbered according to the positions in the
multiple alignment, with capital letters for amino acids matching the minimum conservation criteria.
A second window lists the possible primers to export. The user can view the consensus sequence
to visualize the positions of the predicted primers, which are shown as arrows, forward or reverse.
The amino acid motif targeted by the 3′ degenerate core of the primer is aligned with the primer arrow,
as are the flanking amino acids specifying the 5′ non-degenerate clamp. A specific primer
can be selected, which will open a third window to show the CODEHOP sequence, the block of
aligned sequences used for primer design, and the primer design criteria (Figure 2B). Both forward
and reverse CODEHOPs in the correct orientation need to be identified. If an insufficient number
of CODEHOPs are predicted, the program can be rerun using more relaxed design criteria or the
distance between the group of sequences can be reduced. Detailed methodologies have been previously
published that describe the design of CODEHOP PCR primers and their use in identifying novel
sequences [4,11,13,14].
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Figure 2. j-CODEHOP primer design output. The uracil DNA glycosylase test data set was used as
input for the j-CODEHOP program and the following options were used for primer design: (1) Block
making alignment tool—“MUSCLE”; (2) Codon table—“Homo sapiens”; (3) Clamp (nondegenerate
5′ region) length—“25”; (4) Core (degenerate 3′ region)—max degeneracy “16”, length of degenerate
core in aa “4”, strictness (%) “0”, min aa conservation (%) “80”. Default values were used for the
Advanced options: (1) 3′ nucleotide—“Invariant 3′ nt”; (2) Min block length—“5”; Primer concentration
(nM)—“50”; (3) Restrict 3′ nucleotide to G or C—“unchecked”; (4) Exclude Leu, Ser, and Arg from 3′

region—“unchecked”. (A) Initial graphical output showing the consensus amino acid sequence for
the ordered blocks of multiply aligned protein sequences. Amino acids showing conservation above
the chosen minimum value are capitalized. The positions of predicted CODEHOP PCR primers are
indicated showing the extent of the amino acid sequence used for primer design, the direction of the
primer (forward (F) or reverse (R)), and the degeneracy of the 3′ degenerate region, i.e., 4×, 8× or 16×.
A CODEHOP with 4× degeneracy is composed of a pool of 4 different primers that provide all possible
sequences encoding the 3–4 highly conserved amino acid motif targeted by the CODEHOP primer.
The amino acid sequence of the motif is used to name the primer, ex. “PWNY”. (B) The output obtained
by clicking on a primer of interest in the initial graphical output, in this case primer “PWNY-F 8×”.
This output shows the primer sequence (5′ to 3′), with the 5′ nondegenerate consensus region in
capital letters and the 3’ degenerate region in small letters, using the international code for ambiguous
nucleotides, i.e., “Y” (C,T), “R” (A,G), “N” (A,C,G,T), etc. The codons in the primer sequence are aligned
with the block of multiply aligned protein sequences. Amino acid positions showing conservation
above the chosen minimum are indicated with an asterisk. Amino acids within the multiple alignment
which are identical to the consensus sequence are indicated with a dot. The metadata for the chosen
primer design criteria are indicated, as is the primer location in amino acids and base pairs. A third
panel (not shown) provides a list of primers predicted from the current amino acid block to export.
The primer sequence and metadata can be exported in a “comma-separated values” (CSV) spreadsheet
format. The panels shown are high-resolution representations of program output.
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3.2. Sequence Characteristics

As the -omics revolution progresses, more and more researchers make use of sequence data
from the various databases and, increasingly, the data behind publication claims are not presented.
For example, a phylogenetic tree may be published without the MSA that was used to generate it.
Given that errors in sequence naming and annotation are common in the databases, it is important
that researchers check results if they are going to rely on them. Figure 3 shows a BBB Visual Summary

of 2 virus genomes (menu: Reports), which are almost identical except for four large indels and a
block of very poorly matching sequence. This type of visualization is a powerful tool for highlighting
inconsistencies in alignments. When we further investigated these sequences (BLAST [15] searches
and dotplots [16]), we found that the differences between the two genomes were entirely the result of
genome assembly errors.

 
Figure 3. Visual summary from BBB. Pink and pale blue boxes represent genes transcribed to the right
and left, respectively, for the genomes of two poxviruses. The centre tract indicates differences between
the two sequences: Dark blue lines are SNPs (the abruptly dense SNPs turns out to be falsely assembled
out-of-frame sequence from another virus) and green and red blocks show insertions and deletions
(erroneously transposed sequences).

Additionally, under the BBB Reports menu, the ability to display Sequence Similarity and
Sequence Difference graphs (useful for detecting recombination; not shown) has been supplemented
by the plotting of a Nucleotide Content Graph. The user has control over which nucleotides are
included in the analysis, as well as the size of the sliding window of nucleotides and the number of
nucleotides that is used to “step” across the sequence. The tool also allows the user to choose which
sequences from an MSA are included in these analyses. Importantly, the option to ignore gapped
columns in an MSA has been included.

Additional new Reports features that summarize characteristics of an MSA include: (1) Get

Counts, which counts the number of columns in the MSA with particular features, reporting the
number that have a gap, a single nucleotide, two nucleotides (consensus and second type),
three nucleotides, and four nucleotides; (2) Get Unique Positions, which lists the number of unique
positions that are not gaps for each sequence; and (3) Get SNP Counts, which examines the top two
sequences (sequences can be moved up or down within the MSA to enable sequence selection) and
reports the total number of SNPs and the number of each possible substitution.

3.3. Counting Nucleotides Associated with Specific Sequences in MSAs

As noted above, the data supporting a phylogenetic tree are not often provided in manuscripts.
Often, it would be useful to know the percent identity between sequences and the numbers of SNPs
that distinguish one branch on a tree from another. The ability to generate a nucleotide identity matrix
from an MSA is an older feature of BBB. However, now, from within the Advanced/Experimental

Tools menu, BBB also allows a researcher to query the MSA data that support (or don’t support) a
phylogenetic tree. The Find Differences tool can be used to count the number of SNPs that support a
particular branch; e.g., “find nucleotides that are identical in sequences A, B, and C, but different in all
other sequences”. Figure 4 shows the phylogenetic tree for the central relatively-conserved core (60 kb)
of 10 cowpox viruses. For these sequences, the viruses in the DNA sequence identity range from
98.2–99.4%. Counting the number of SNPs unique to each sequence (red numbers in Figure 4) shows
that for these cowpox sequences, the branch lengths created may not truly reflect the evolutionary
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distances. Instead, the lengths were likely compressed due to evidence of recombination shown in
Table 1, which artificially reduced distances between distant strains.

Figure 4. The contrast of unique SNPs found in the genomic core of 10 cowpox viruses (using the
BBB Find Differences feature) with that of a maximum-likelihood phylogenetic tree. Red numbers
denote the number of unique SNPs found for the virus that are not shared with any of the others.
The phylogenetic tree branch scale denotes the average number of nucleotide substitution per site.

Table 1. SNPs shared by CPXV-BR, CPXV-Nor1994MAN, and strain noted in the table; all other viruses
in Figure 4 have a different nucleotide. SNPs close together are grouped on a single line in the table.

+BeaBer04/1
22,518, 22,519, 22,583

31,870

+RatHei09/1
4677, 4679

4886, 4896, 4899, 4917
9401

16,480
19,731
31,573
35,003
40,781

+Ge 1980 EP4
1204

10,615, 10,618
10,731, 10,747

14,442, 14,457, 14,460, 14,553, 14,574, 14,664, 14,667
15,071, 15,072, 15,076, 15,138, 15,161, 15,163, 15,171

19,409
25,381

30,528, 30,534, 30,547, 30,549, 30,556
32,797, 32,799

35,713, 35,758, 35,812
36,217
41,120

+Ge 2002 MKY,
19,510
47,392
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An important feature of the Find Differences tool (menu: Advanced/Experimental Tools) is that
it can allow the matching to be fuzzy. We have termed this feature “tolerance” and it can be viewed
as the search “tolerating” one or more (specified by the user) sequences that do not fulfill the query.
For example, the query “find nucleotides that are identical in sequences A and B but different in all
other sequences, with tolerance = 1” allows any one of the sequences that should be different from A+B
to be the same; different sequences are “tolerated” at different positions in the alignment. The software
also: (1) Creates a list of all the positions in the alignment that satisfy the query and displays the
“tolerated sequence” name if there is one, and (2) displays the distribution of SNPs in the MSA.

These BBB features were created to characterize recombination events among the poxviruses
by highlighting the positions of shared SNPs. In any MSA, there will always be coincident SNPs
from random events. However, for these cowpox sequences, when “nucleotides that are identical
in sequences A, B, and C, but different in all other sequences” are located, some are, as expected,
associated with the closest related sequence, but others are from more distant relatives. In addition,
many of these coincident SNPs are found to be in nonrandom blocks, suggesting that the arrangements
result from recombination among the genomes. Table 1 shows SNPs present only in CPXV-BR and
CPXV-Nor1994MAN and one other sequence taken from the tree shown in Figure 4. In several instances,
the common SNPs are unexpectedly clustered (Table 1) and likely result from recombination events.
The results with CPXV-Ge1980EP4 and CPXV-Ge2002MKY (which are very similar (Figure 4)) as
the extra sequence are dramatic; despite their similarity, CPXV-Ge1980EP4 has many more SNPs in
common with the other two sequences (Table 1; 33 SNPs) than with CPXV-Ge2002MKY (Figure 4;
3 SNPs).

3.4. Manipulation of Sequences

As previously reported, BBB allows the addition or removal of sequences to an alignment and
the removal of columns in an MSA that contains all gap characters which are often generated when
removing sequences from an alignment. However, when visually inspecting the relationships between
the sequences, it can also be useful to simplify the variation by removing any column that contains a
gap character (menu: Tools/Delete Columns Containing Gap(s) and Export). Since this action will
modify the sequences in use, by deleting residues from some sequences, the program will export
the resulting sequence into a new BBB window and prompt the user to enter a new filename. If the
sequences in an MSA are very diverged, each will have a relatively large number of unique SNPs.
Since these can obscure patterns present among the SNPs shared by subsets of sequences, we also
created the SNIP feature (menu: Advanced/Experimental Tools) that modifies the sequences such
that the SNPs that are present only in a single sequence are changed to the consensus nucleotide.
Again, because this procedure modifies the actual sequences, users are asked to save the result in a
new alignment file.

When using large viral genomes and closely related viruses, SNPs may be relatively infrequent.
Therefore, we incorporated a feature into BBB that allows the user to remove any specified column
of nucleotides within an MSA. By removing the columns that only contain a single nucleotide,
the variation is compressed into a much smaller sequence space and is more easily visualized by
the user. First, the Find Differences tool (menu: Advanced/Experimental Tools) is used to find
the columns that are identical (i.e., have no SNPs), then the “Search Log” is used to “List SNP
Positions” only. Subsequently, these position values can then be used to delete specified columns
(menu: Tools/Delete Specified Columns and Export).

3.5. Alignment of Sequences

The options for aligning complete or selected regions of sequences have been updated. Clustal
Omega [17] has replaced the option to use ClustalW. Clustal Omega and MUSCLE [18] serve
as options to align protein and gene length nucleotide sequences. For the alignment of large
viral genomes, MAFFT [19] is the tool of choice. However, the growing number of complete
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genomes sequenced has translated into a more frequent need to generate larger MSAs, often to update
phylogenetic trees. Although MAFFT is available at various web resources and can be easily installed
on desktop computers, most users prefer to use MAFFT within BBB (menu: Tools/Align Selection).
Therefore, we have incorporated the MAFFT-add option into the BBB (menu: Advanced/Experimental

Tools) [20]. This feature allows users to align one or more new sequences to an existing alignment,
which significantly reduces the compute time. For example, the alignment of 10 cowpox virus genomes
takes approximately 8 min, whereas aligning one new sequence to an alignment of 9 takes a little over
1 min. The MAFFT-add function is also useful for scaffolding new contig sequences against a close
reference sequence in the process of genome assembly.

4. Discussion

BBB is a foundational program of the Viral Bioinformatics Resource Centre that allows both the
viewing and editing of MSAs. It has been developed over many years and serves as a platform for the
comparison of large viral genomes, but it is equally useful for small DNA and RNA viral genomes,
as well as gene and protein sequence alignments. The data visualization features that it provides are
key to its value. These include highlighting differences between sequences in an MSA, plotting graphs
of sequence similarity, adding user-comments or primers to sequence regions, and displaying forward
and reverse reading frames as well as results of various sequence searches. Importantly, while BBB
has provided a common interface to multiple analyses for users, it has also given programmers a
standardized data input process and a single visualization canvas. One of the key features of BBB is
the ability to read GenBank files so that it becomes aware of the complete set of annotations for the
genomes of large viruses, allowing it to display the complete set of annotations for any large virus
genome which is extremely useful for comparisons of gene features and single nucleotides.

Here, we have described a significant number of upgrades to BBB that increase the utility of
the tool when working with genes, proteins or genomes. The inclusion of j-CODEHOP maintains
a functioning version of the CODEHOP algorithm, which otherwise would have been lost to the
research community. CODEHOP is a natural fit for BBB, since it is often used to discover novel
members of viral families, but also since the generation of the protein MSAs that are used as input by
j-CODEHOP to generate CODEHOP primer sequences are already an integral part of BBB. The new
plots for similarity are useful for a user looking for recombination events and comparing how different
genes are conserved to different degrees. Fuzzy searches for MSA columns that support or fail to
support particular phylogenetic relationships bring a new process to the screening of viral genomes for
small regions that have been exchanged among viruses. Following the identification of particular MSA
nucleotide columns, new editing features in BBB now allow the user to manipulate these MSA columns,
thereby simplifying the visualization for the user.

A variety of other tools exist to manipulate and characterize MSAs, including Jalview [21]
(primarily for proteins), and IVisTMSA [22] and AliView [23] (primarily for large sequence sets).
However, BBB has multiple unique features, including those described here, which make it a valuable
multipurpose bioinformatics tool, especially for the comparison and characterization of viral genomes
and more.
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Abstract: Foot-and-mouth disease (FMD) is the most devastating disease of cloven-hoofed livestock,
with a crippling economic burden in endemic areas and immense costs associated with outbreaks
in free countries. Foot-and-mouth disease virus (FMDV), a picornavirus, will spread rapidly in
naïve populations, reaching morbidity rates of up to 100% in cattle. Even after recovery, over 50%
of cattle remain subclinically infected and infectious virus can be recovered from the nasopharynx.
The pathogen and host factors that contribute to FMDV persistence are currently not understood.
Using for the first time primary bovine soft palate multilayers in combination with proteogenomics,
we analyzed the transcriptional responses during acute and persistent FMDV infection. During the
acute phase viral RNA and protein was detectable in large quantities and in response hundreds of
interferon-stimulated genes (ISG) were overexpressed, mediating antiviral activity and apoptosis.
Although the number of pro-apoptotic ISGs and the extent of their regulation decreased during
persistence, some ISGs with antiviral activity were still highly expressed at that stage. This indicates
a long-lasting but ultimately ineffective stimulation of ISGs during FMDV persistence. Furthermore,
downregulation of relevant genes suggests an interference with the extracellular matrix that may
contribute to the skewed virus-host equilibrium in soft palate epithelial cells.

Keywords: foot-and-mouth disease virus (FMDV); bovine soft palate; nasopharynx; transcriptomics;
proteomics; bioinformatics; virus-host interaction; innate immune system; interferon-stimulated
genes (ISG)
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1. Introduction

Foot-and-mouth disease (FMD) is an acute and severe systemic vesicular disease of cloven-hoofed
animals (Artiodactyla) with tremendous economic impact. The last FMD epizootic in the European
Union in the United Kingdom, Ireland, France and the Netherlands in 2001 culminated in the slaughter
of more than 6.5 million animals and an economic toll of over €5 billion [1]. The etiological agent
is foot-and-mouth disease virus (FMDV), the type species of the genus Aphthovirus in the family
Picornaviridae [2]. FMDV particles comprise a non-enveloped icosahedral capsid that surrounds
a single-stranded positive-sense RNA genome with an approximate length of 8.4 kilobases [3].
FMD mainly affects livestock such as cattle, buffalo, pigs, goats, and sheep, but can also be transmitted
to deer and wild boar. It is endemic in wild buffalo in Southern Africa [4,5]. Although more than
70 species are known to be susceptible to FMDV, its primary host seem to be buffalo and cattle, in which
the disease causes very high morbidity, but only low mortality in adults [6]. During the onset of acute
infection, cattle are highly febrile and small vesicles develop on the mucosal membranes of the muzzle,
lips, and oral cavity, as well as on the coronary band and interdigital space, and the teats of the udder.

Usually, cattle clinically recover within 2–3 weeks if no secondary infection occurs. At this time,
many have completely cleared the virus, however, about 50% of animals may remain subclinically
infected for up to three years, depending on the species [7]. The World Organisation for Animal Health
(OIE) defines an animal from which infectious FMDV can be recovered by probang sampling later than
28 days post infection (dpi) as persistently infected or a so-called “carrier” [7]. The fear of contagion
from carrier animals has severe consequences for trade in live animals and animal products [8]. In vivo
studies have shown that in cattle more than 50% of animals will become persistently infected [9],
even if they had been vaccinated against FMDV and did not develop clinical disease [10–12]. The exact
anatomical sites of persistence are still debated, but different tissues of the upper respiratory tract
including the nasopharynx have been suggested. A recent study of the tissue-specific localization of
FMDV in persistently infected steers identified the contiguous epithelia of the dorsal soft palate (SP)
and the dorsal nasopharynx as the most likely sites of persistence [10]. Evidence for FMDV persistence
in lymph nodes and germinal centers was also put forward although no viral replication could be
detected [13].

The cellular factors that promote establishment of FMDV persistence and the viral strategies
of immune avoidance in the bovine nasopharynx remain currently poorly understood, making it
impossible to predict which animals will develop into carriers and which will clear the virus. Previous
in vitro work that aimed to decipher cellular responses during persistent FMDV infection hardly
reflected persistence in vivo as the used models were either based on immortalized non-bovine cell
lines, such as hamster kidney (BHK) cells [14], or bovine cell lines, e.g., bovine kidney (MDBK,
EBK) cells [15,16], that are not from the primary site of persistence. O’Donnell et al. [17] used a
persistently infected bovine pharynx cell line to examine the gene expression of selected cellular
cytokines by RT-qPCR, showing differences in the expression of key antiviral cytokines between acute
and persistent infection.

The rationale of this study was therefore to use a novel air–liquid interphase cell culture model
based on primary SP cells from cattle [18] that closely resembles the situation in vivo, together with an
proteogenomics approach that combined transcriptomics by high-throughput sequencing, RT-qPCR,
proteomics and bioinformatics. Our results provide detailed insights into the transcriptional responses
of the SP in reaction to acute FMDV infection and reveal long-lasting changes of gene activation
throughout persistence. The identified pathways and genes may give rise to further investigations
leading to early detection of persistence in cattle and novel vaccines that prevent the carrier state.

2. Materials and Methods

A schematic visualization of the sample processing and analysis workflow can be found in the
Supplementary Figure S1.
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2.1. Ethics Statement

The tissues used for the study were collected from animals slaughtered for food production.
The animals were being processed as part of the normal work of the abattoir, therefore no ethics
approval was required.

2.2. Bovine Epithelial Cultures from Soft Palate

Multilayers of bovine dorsal soft palate cells were propagated at the air–liquid interface for
5 weeks before FMDV infection, as described previously [18]. Briefly, bovine dorsal soft palate tissue,
collected immediately after slaughter, was dissected and digested at 4 ◦C overnight in incubation
medium supplemented with protease XIV (Sigma-Aldrich, St. Louis, MO, USA). Epithelial cells were
thereafter scraped off the underlying tissue, filtered, and incubated in cell culture flasks for 4 h at
37 ◦C and 5% CO2. Cells that did not adhere to the plastic were centrifuged at 200× g for 10 min at
room temperature, frozen, thawed, and propagated for three to five passages in cell culture flasks
before being seeded in 12 mm diameter Corning®Transwell-COL collagen-coated PTFE membrane
inserts with 3.0 μm pores (Sigma-Aldrich). The cell culture medium was removed from the upper
compartment after five days of culture and changed in the lower compartment every two or three
days. The average number of cells that constituted the upper layer of the multilayer was estimated
at 750,000.

2.3. Experimental Design and FMDV Infection

After 5 weeks of culture on inserts without passage, cells were infected with a twice-plaque-purified
viral clone (FMDV O Clone 2.2, “Cl 2.2”) derived from the O/FRA/1/2001 strain that was further
propagated on BHK-21 cells (four passages) [16], or negative cell lysate, as described previously [18].
Two experiments (experiment 1 and 2) were performed with SP cells that originated from two different
animals (a male and female, respectively) and that were infected at a multiplicity of infection (MOI) of
0.01 (compare Supplementary Table S1). Briefly, the inserts were incubated for one hour with 500 μL of
clarified cell lysate from infected or uninfected cell cultures. Following infection and thereafter at a
maximum interval of 3 days, the upper compartments were washed with 500 μL cell culture medium
containing 10% FCS and, similarly, but only from 2 dpi, the medium in the lower compartments
was changed. For each experiment, at days 0, 1 and 28, SP cells from 2 inserts were lysed with
750 μL of TRIzol Reagent (Life Technologies, Carlsbad, CA, USA) and frozen separately at −80 ◦C for
transcriptomic and proteomic analyses.

2.4. RNA and Protein Isolation

For isolation of high-quality total RNA and proteins, 150 μL of trichlormethane (Carl Roth,
Karlsruhe, Germany) was added to the lysed cells in 750 μL TRIzol Reagent and the mixture
was centrifuged in order to separate the RNA-containing aqueous phase from the DNA- and
protein-containing organic phase. The aqueous phase was then mixed with an equal amount of
100% ethanol (Carl Roth) and total RNA was extracted using the RNeasy Mini Kit (Qiagen, Hilden,
Germany) with on-column DNase digestion with the RNase-Free DNase Set (Qiagen), following the
manufacturer’s instructions. The quantity and quality of total RNA was subsequently analyzed using
a NanoDrop 1000 spectrophotometer (Peqlab, Erlangen, Germany) and RNA 6000 Pico chips on an
Agilent 2100 Bioanalyzer (Agilent Technologies, Böblingen, Germany). All samples were checked for
contamination using the 260/280 and 260/230 nm ratios, as well as for RNA degradation using the
RNA Integrity Number (RIN).

Polyadenylated mRNA was subsequently isolated from 1–3 μg of high-quality total RNA using the
Dynabeads mRNA DIRECT Micro kit (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s
instructions. Prior to isolation, the ERCC ExFold RNA Spike-In mix 1 (Invitrogen) was supplemented
and used as an internal control for all following steps. The quality of the mRNA and the extent
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of ribosomal RNA contamination was assessed using RNA 6000 Pico chips on the Agilent 2100
Bioanalyzer (Agilent Technologies).

Proteins were extracted from the organic TRIzol phase following the manufacturer’s instructions.
Briefly, 0.3 mL of 100% ethanol (Carl Roth) were added and DNA was pelleted by centrifugation.
To the supernatant, 1.5 mL of isopropanol (Carl Roth) were added and proteins were pelleted by
centrifugation. Protein pellets were washed three times with 0.3 M guanidine hydrochloride (Carl
Roth) in 95% ethanol (Carl Roth). After a final washing step using 95% ethanol, proteins were air-dried
and the pellet was resuspended in freshly prepared 1% SDS (Carl Roth) by ultrasonication. Quality
and quantity of the isolated proteins were checked using a 12% polyacrylamide gel (SDS-PAGE) and a
colorimetric bicinchoninic acid (BCA) assay.

2.5. Library Preparation and Sequencing

For preparation of whole-transcriptome libraries the Ion Total RNA-Seq Kit v2 (Life Technologies)
was used, following the manufacturer’s instructions. Briefly, between 1 and 100 ng of the mRNA
containing the ERCC spike-in control was treated with RNase III at 37 ◦C for 10 min. The fragmented
mRNA was subsequently purified using the Magnetic Bead Cleanup Module (Life Technologies)
and the resulting size distribution was assessed with the Agilent 2100 Bioanalyzer as described
above. After hybridization and ligation of appropriate adapters, the fragmented mRNA was reverse
transcribed into cDNA using SuperScript III enzyme. The cDNA was purified as described above and
amplified for 14 cycles using Platinum PCR SuperMix High Fidelity along with appropriate primers
for the generation of barcoded libraries. The resulting libraries were again purified using the method
described above and the size distribution was assessed using the Agilent 2100 Bioanalyzer together
with the DNA 7500 kit and chip (Agilent Technologies). All libraries were subsequently quantified
using the KAPA Library Quantification Kit Ion Torrent (Kapa Biosystems, Wilmington, MA, USA) on a
CFX96 Real-Time PCR Detection System (Bio-Rad Laboratories, München, Germany) and pooled at
an equimolar ratio. For sequencing an Ion S5XL sequencing system (Life Technologies) along with
the Ion 540 OT2 and Chip kit (Life Technologies) for the generation of up to 200 bp reads was used.
Each library was sequenced in at least two independent sequencing runs.

2.6. Statistical Analysis of Differential Gene Expression

In order to detect problems and biases during mRNA isolation and library preparation, we used
the ERCC_Analysis Plugin (version 5.8.0.1) provided in the Torrent Suite software (version 5.8.0).
Only forward strand reads were selected for mapping and the minimum transcript count was set to
50. The raw reads from each sequencing library were quality checked using FastQC (version 0.11.7;
Babraham Institute) with a focus on the read length distribution and adapter contamination. In order
to quantify the expression of known bovine transcripts in these datasets we used Salmon (version
0.9.1) that uses a lightweight alignment method (quasi-mapping) for rapid transcript abundance
estimation [19]. Briefly, we obtained the transcript reference of cattle (GCF000003055.6 Bos Taurus
UMD 3.1.1) from NCBI and selected only transcripts that were featured as mRNAs, non-coding RNAs
and miscellaneous RNAs (for details see Supplementary Table S2). A Salmon index was created
using the option for a perfect hash, rather than a dense hash. Each sequencing library was then
used as input for the major Salmon function “quant” using appropriate options for the library type
(stranded single-end protocol with reads coming from the forward strand) and the mean read length.
The number of bootstraps was set to 100 replicates. Subsequently a “tx2gene” table was prepared using
the accessions of each RNA transcript from the aforementioned reference in the first column and the
corresponding gene symbol in the second column (see also Supplementary Table S3). Using this table,
the transcript abundancy datasets from Salmon “quant” were imported into R workspace (version
3.4.1; [20]) using the “tximport” package (version 1.6.0; [21]) as implemented in the Bioconductor
library. For handling and manipulating R scripts, the software RStudio (version 1.0.153) was used.
Technical replicates of samples (multiple sequencing of the same library from a single sample) were
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combined and the datasets were pre-filtered using only genes were more than four samples had raw
gene counts greater than or equal to 100. In order to check the dataset for influence of treatment
(infection, time and animal) and repeatability (replicates of same treatment) a principal components
analysis (PCA) as well as a heatmap clustering was conducted using the regularized log transformed
(rlog) read counts. DESeq2 (version 1.18.1; [22]) was then used to identify differentially expressed
genes between the treatments based on the negative binomial distribution. The resulting p-values were
adjusted with the Benjamini–Hochberg procedure and only genes with an adjusted p-value below 0.001
and an absolute fold change of >1 were considered significant. The logarithmic fold changes were
further shrunken as recommended and described by Love et al. 2014 [22] in order to account for genes
with low read counts. Significant differently expressed genes were annotated using the AnnotationDbi
package (version 1.40.0) and used for further pathway enrichment analysis. Briefly, gene sets were
analyzed using the “enrichPathway” function of the ReactomePA package (version 1.22.0; [23]) and
the “enrichKEGG” function of the clusterProfiler package (version 3.6.0; [24]).

2.7. Quantitative Reverse Transcription PCR (RT-qPCR)

In order to confirm the results from the RNA sequencing experiment and to include samples from
additional time points, a subset of six target genes (ANKRD1, CASP7, IDO1, IFIH1, NCAM1, OAS2)
and two reference genes (ACTB, GAPDH) was selected for quantitative reverse transcription PCR
(RT-qPCR) analysis. For each gene, two intron-spanning primer sets were designed using Primer3
(version 0.4.0; [25]) (for primer sequences see Supplementary Table S4). For RT-qPCR the QuantiTect
Probe RT-PCR Kit (Qiagen) was used together with LightCycler 480 ResoLight Dye (Roche, Mannheim,
Germany) according to the manufacturers’ instructions. The following temperature profile was used on
a Bio-Rad CFX96: 50 ◦C for 30 min, 95 ◦C for 15 min and 45 cycles of 94 ◦C for 15 s and 60 ◦C for 1 min.
After each cycle, the fluorescence in the SYBR channel was detected and threshold cycle (Ct) values
were deduced after each run. For each newly designed primer set the PCR efficiency was determined
using an appropriate dilution series from an independent bovine RNA control. Using the ΔΔCt method,
Ct values of target genes were first normalized by subtracting the Ct value of references genes (ΔCt
= CtTarget − CtReference). Mean and standard deviation of ΔCt were calculated from two technical
and two biological replicates for each treatment group. Subsequently, the ΔΔCt was calculated by
subtracting the ΔCT of the control group from the ΔCt of the treatment group at different time points
(ΔΔCt = ΔCtControl − ΔCtTreatment) and used for calculation of the fold change of each gene (2−ΔΔCT).

2.8. Protein Identification and Quantification, and Statistical Analysis of Differential Protein Expression

Thirty μg of the extracted proteins were separated by SDS-PAGE, stained with Colloidal
Coomassie Brilliant Blue G-250 and afterwards lanes were cut into ten equidistant pieces. In-gel
digestion using trypsin and purification of tryptic peptides using Ziptips (C18, Millipore) prior to MS
analysis were done as described previously [26]. LC-MS/MS were conducted using an EASY-nLC II
coupled to a LTQ Orbitrap-Velos mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA).
Peptides were separated at a constant flow rate of 300 nL/min using a binary 76 min gradient from 5%
B to 75% B 99.9% ACN, 0.1% acetic acid). Survey scans in the Orbitrap were recorded with a resolution
of 60.000 in a m/z range of 300–1700. The 20 most intense peaks per scan cycle were selected for
CID fragmentation in the LTQ. Ions with unknown charge state, as well as singly charged ions were
excluded from fragmentation. Dynamic exclusion of precursor ions for 30 s was enabled. Internal
calibration (lock mass 445.120025) was enabled as well. For protein identification, resulting spectra
were searched against a database containing sequences of Bos taurus including reverse sequences
and common laboratory contaminants (44,376 entries). Database searches using Sorcerer-SEQUEST
(version v.27, rev.11; Sage-N Research, Inc., Milpitas, CA, USA) and Scaffold (version v.4.8.4; Proteome
Software, Portland, OR, USA) were done as described earlier [27].

In order to identify differentially expressed proteins we imported the raw NSAF values into R
workspace and created an ExpressionSet using the Biobase package (version 2.38.0; [28]). We then
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used the “Power Law Global Error Model” (PLGEM) as implemented in the “plgem” package (version
1.50.0; [29]) and first fitted it to the dataset using default settings and “FMDV infection” (samples from
24 h post infection (hpi) and 28 dpi) as fitting condition. After computation of observed and resampled
signal-to-noise ratios, p-values for each detected protein were calculated.

2.9. Data Availability

The raw sequencing data along with deduced Salmon read count tables and substantial metadata
are available at ArrayExpress (http://www.ebi.ac.uk/arrayexpress) under the accession number
E-MTAB-7605. The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium (http://www.proteomexchange.org) via the PRIDE [30] partner repository with the
dataset identifier PXD012242

3. Results

3.1. A Cell Culture Model for FMDV Persistence

The establishment and full characterization of the primary SP cell culture model are presented by
Hägglund et al. [18]. In summary, the primary SP cells formed into multilayers and showed typical
features of stratified squamous epithelia, such as tight junctions and impermeability to cell culture
media. The cultures were inoculated either with a viral clone derived from the O/FRA/1/2001 strain
or negative cell lysate for control. Infection with FMDV at low MOI resulted in limited cytopathic
effect, high viral loads and presence of detectable viral antigen. After 28 dpi, the multilayers were still
intact, but FMDV antigen and genome remained detectable at very low levels and viable virus could
be isolated—giving a clear indication of FMDV persistence.

3.2. RNA Sequencing and Exploratory Data Analysis

The polyadenylated RNA fraction from 21 primary bovine SP cell culture samples was sequenced.
From these, 10 and 11 samples originated from a female and male bovine, respectively. Cells for
analysis were harvested immediately before inoculation (0 hpi), 24 hpi and 28 dpi (Figure 1A). For each
time point (0 hpi, 24 hpi, 28 dpi) and treatment (FMDV, control), a minimum of four biological replicates
(two from each animal) was sequenced. The number of reads for each sample ranged from 21.8 to
28.0 million, with an average of 24.7 million. In total, 518.4 million reads were included in the analysis
(Supplementary Table S1).

These reads were assigned to a cattle transcript reference and the raw gene count data
was transformed with respect to library size and transcript length using an appropriate model
(Supplementary Figure S2). A principal components analysis (PCA) based on the normalized gene
counts revealed that the samples from non-infected cultures remained closely together independent
of the time in culture, while FMDV-infected samples showed a clear time-dependent grouping
(Figure 1B). Accordingly, the first principal component (50% of variance) was assumed to represent
the transcriptional differences between the samples caused by FMDV infection. Furthermore,
transcriptional differences between both animals were clearly visible and represented by principal
component 2 (29% of variance). The PCA showed no batch-to-batch effects and biological replicates
from the same animal were grouped tightly.

Unsupervised cluster analysis of the 45 most variable gene transcripts clearly separated the
FMDV-infected samples from the non-infected controls (Figure 1C). In detail, the infected samples
showed a strong positive deviation from the per gene mean count (Figure 1C, green and blue transcript
cluster). Interestingly, samples from the acute and persistent phases of infection were clearly separated,
because the activation of the aforementioned genes was reduced at 28 dpi (Figure 1C, blue cluster).
As in the PCA, the non-infected samples were divided by the differential expression of another set
of transcripts (Figure 1C, red transcript cluster) and grouped according to the donor animal they

36



Viruses 2019, 11, 53

originated from. In summary, the explorative data analysis showed that the FMDV infection has a
clear effect on gene expression that is distinct from the animal-dependent effects.

 

Figure 1. Experimental setup of RNA sequencing and exploratory data analysis. (A) Primary soft
palate (SP) cell cultures were obtained from two animals. Baseline samples for RNA sequencing were
collected immediately before inoculation (circle). Subsequently, the cell cultures were inoculated with
foot-and-mouth disease virus (FMDV) (orange symbols) or mock-infected for use as controls (blue
symbols). Cells were then harvested for sequencing at 24 h post infection (hpi) (triangles) or 28 days
post infection (dpi) (squares), representing acute and persistent infection, respectively. (B) Principal
components analysis based on normalized gene counts of the 1000 most variable genes. (C) The
variance of normalized gene counts was calculated for each gene and the 45 genes with the highest
variance were selected and visualized in a heat map. The color of the cells indicates the difference
from the mean normalized gene count of the corresponding gene. Samples and genes were clustered
according to these differences (trees). The transcript cluster highlighted in green is similarly activated
by acute and persistent FMDV infection, while the blue cluster highlights transcripts that are only
active during the acute phase of infection. The red cluster comprises transcripts whose abundance
differs between donor animals used in this experiment.

3.3. Differential Expression during Acute and Persistent FMDV Infection and associated Pathways

In order to confirm the trends from the explorative data analysis and to address the transcriptional
changes during acute and persistent infection in more detail, a differential expression analysis
was conducted. The transcriptional response of cells from bovine SP tissue to FMDV infection
was assessed at 24 hpi and 28 dpi, in contrast to non-infected controls from the same time points
(Figure 2). A total of 312 and 73 gene transcripts were differentially expressed at 24 hpi and 28 dpi,
respectively. With 305/312 (97.7%) for 24 hpi and 65/73 (89%) for 28 dpi, the majority of differentially
expressed transcripts were up-regulated, while only 8/312 (2.5%) and 8/73 (11%) were down-regulated
(Figure 2A,B). From a total of 324 differentially expressed transcripts at both time points, 249 and 10
transcripts were solely regulated during either acute or persistent phase, respectively. The expression
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of 63 transcripts was significantly up-regulated during both stages of infection (Figure 2C). The log2
fold change of these transcripts was much lower at 28 dpi when compared to 24 hpi (Figure 2D),
with highest differences observed for IFIT2, LOC101907799 and CMPK2. In contrast, the log2 fold
change for IFI27, PARP9, IFI6, and OAS1Z was comparable or nearly equal during both phases of
infection. PLAC8 was slightly stronger regulated at 28 dpi than at 24 hpi. A full list of differentially
expressed transcripts can be found in the supplementary material (Supplementary Table S5).

 

Figure 2. Differential gene expression of SP cells during FMDV infection. (A) Volcano plot showing
the log2 fold change (x-axis) and the adjusted p-value (y-axis) for all differentially expressed genes
during the acute (24 hpi, green) and persistent (28 dpi, orange) phase of FMDV infection. The log2 fold
change and adjusted p-value are calculated relative to a non-infected control from the same time point.
The grey dotted lines indicate the cutoff values: adjusted p-value < 0.001 and |log2 fold change| > 1.
(B) The histogram summarizes the number of genes that have a certain log2 fold change. (C) The total
number of differentially expressed genes is visualized in a Venn diagram. The overlap indicates the
63 genes that are differentially expressed during both phases of infection. (D) The log2 fold change of
these 63 genes is compared for acute and persistent infection.

The significantly differently expressed genes during acute and persistent infection were further
matched to specific metabolic and signaling pathways using the Reactome database [31] (Figure 3).
During both infection stages, most of the regulated genes are associated with interferon signaling,
in particular interferon α, β and γ signaling (Figure 3A and Table 1). The induction of these interferons
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appears to be mediated by the DDX58/IFIH1 pathway. Accordingly, a number of interferon-stimulated
genes (ISG), such as the ubiquitin-like family member ISG15, that induce strong antiviral mechanisms
of the innate immune system are highly activated. During acute infection, transcripts involved in
the interleukin-1 (IL1) and -10 signaling pathways as well as the programmed cell death (apoptosis)
pathway were enriched. However, it is of note that the IL1 and IL10 genes were not significantly
differently expressed. The MHC I antigen presentation pathway, a part of both the innate and adaptive
immune system, was also enriched at 24 hpi. During persistence, most of the genes belonging to
the interleukin-1, -10, apoptosis and MHC I antigen presentation pathways were not significantly
differentially expressed in comparison to control samples.

 

Figure 3. Pathway enrichment analyses of significantly differentially expressed genes during acute
and persistent FMDV infection of bovine soft palate cells. (A) The number of genes that contribute to
a significantly enriched Reactome pathway is shown for 24 hpi (blue dots) and 28 dpi (orange dots).
Black lines connect pathways that are enriched in both datasets and the size of the circles represents
the ratio of genes found for a certain pathway to the overall gene number. (B) The log2 fold change of
genes that contribute to selected enriched Reactome pathways are highlighted (24 hpi—blue dots) and
28 dpi—orange dots). The grey dotted lines indicate a |log2 fold change| > 1. The numbers on the
right correspond to the number of genes associated with each pathway.
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Table 1. Selected enriched pathways and corresponding genes during acute and persistent FMDV infection.

Metabolic Complex Pathway 24 hpi 28 dpi

Innate immune
system

DDX58/IFIH1-mediated
induction of
interferon-alpha/beta

DDX58, DHX58, HERC5, IFIH1, IFNB1, IRF1,
IRF3, IRF7, ISG15, NFKBIA, NFKBIB, NLRC5,
TNFAIP3, TRIM25, UBA7

DDX58, DHX58, HERC5,
IFIH1, IRF7, ISG15, UBA7

Cytokine signaling in
immune system

Interferon alpha, beta
signaling

ADAR, GBP2, IFI27, IFI35, IFI6, IFIT2, IFIT3,
IFITM1, IFITM2, IFNB1, IRF1, IRF3, IRF5, IRF7,
IRF9, ISG15, MX1, MX2, OAS2, PSMB8,
RNASEL, RSAD2, SOCS1, STAT2, USP18, XAF1

GBP2, IFI27, IFI35, IFI6,
IFIT2, IFITM1, IRF7, IRF9,
ISG15, MX1, MX2, OAS2,
RSAD2, USP18, XAF1

Interferon gamma signaling
GBP2, IFI27, IFI35, IFI6, IFIT2, IFITM1, IRF7,
IRF9, ISG15, MX1, MX2, OAS2, RSAD2, USP18,
XAF1

GBP2, GBP4, GBP5, IRF7,
IRF9, NCAM1, OAS2, SP100

Interleukin-1 family
signaling

IL18, IL18BP, MAP3K8, NFKBIA, NFKBIB,
PELI1, PSMB10, PSMB8, PSMB9, PSME2,
PSMF1

Interleukin-10 signaling CCL2, CCL5, CXCL10, CXCL2, CXCL8, IL18, IL6 CCL5

Antiviral mechanism by
IFN-stimulated genes/ISG15
antiviral mechanism

DDX58, EIF2AK2, HERC5, IRF3, ISG15, MX1,
MX2, TRIM25, UBA7, USP18

DDX58, HERC5, ISG15,
MX1, MX2, UBA7, USP18

Adaptive immune
system

Class I MHC mediated
antigen processing and
presentation

AREL1, CTSS, DTX3L, ERAP2, HECTD2,
HERC5, HERC6, PSMB10, PSMB8, PSMB9,
PSME2, PSMF1, RBCK1, RNF114, RNF19B,
SOCS1, TAP1, TRIM21, UBA7

DTX3L, HERC5, HERC6,
UBA7

Activation of NF-kappaB in
B cells

NFKBIA, NFKBIB, NFKBIE, PSMB10, PSMB8,
PSMB9, PSME2, PSMF1

Programmed cell
death Programmed cell death CASP7, CFLAR, PMAIP1, PSMB10, PSMB8,

PSMB9, PSME2, PSMF1, RIPK3, TNFSF10 TNFSF10

All of the genes contributing to the aforementioned pathways were up-regulated during the
acute and persistent phases of infection, with a single exception for the nuclear cell adhesion molecule
1 (NCAM1) that is related to interferon γ signaling and was down-regulated during persistence
(Figure 3B, and Table 2). In addition to NCAM1, other proteins that are associated with extracellular
membrane (ECM) pathways, such as type I and III collagens (COL1A1 and COL3A1) were also
down-regulated during persistence.

Table 2. Genes that are differentially expressed only during the persistent phase of FMDV infection.

Gene Description LFC† Adjusted
p-value

Enriched DAVID Terms

NCAM1 neural cell adhesion molecule 1 −4.48 3.35 × 10−4 signal peptide, secreted
ANKRD1 ankyrin repeat domain 1 −4.19 6.61 × 10−5 positive regulation of apoptotic process

SFRP2 secreted frizzled related protein 2 −4.16 3.31 × 10−5 signal peptide, secreted, positive
regulation of apoptotic process

COL1A1 collagen type I alpha 1 chain −3.50 4.16 × 10−4 signal peptide, secreted
COL3A1 collagen type III alpha 1 chain −3.28 3.23 × 10−4 signal peptide, secreted
MYLK myosin light chain kinase −3.26 9.61 × 10−7

HTRA3 HtrA serine peptidase 3 −3.21 2.93 × 10−7 signal peptide, secreted
ALDH1A2 aldehyde dehydrogenase 1 family member A2 −3.09 7.83 × 10−5 positive regulation of apoptotic process
LY6E lymphocyte antigen 6 family member E 3.45 2.59 × 10−6 signal peptide
FBP1 fructose-bisphosphatase 1 4.09 2.94 × 10−5

†: log2 fold change.

3.4. RT-qPCR and Quantitative Proteomics

Results from the differential gene expression analysis based on RNA sequencing were confirmed
using RT-qPCR. A panel of two reference (ACTB, GAPDH) and six target genes (OAS2, IFIH1,
NCAM1, ANKRD1, IDO1, CASP7) were selected for analysis. These genes were chosen according
to their apparent regulation: OAS2, IFIH1 and IDO1 were up-regulated during acute and persistent
infection, while NCAM1 and ANKRD1 were only down-regulated during persistence. CASP7 was
only up-regulated during the acute phase of FMDV infection. The selected genes were also involved
in relevant signaling pathways: IFIH1 is part of the interferon induction cascade, while OAS2 is an
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interferon-induced gene with antiviral activity. CASP7 plays a key role in apoptosis and IDO1 encodes
a metabolically active protein that supports the immune system. ANKRD1 and NCAM1 were chosen as
interesting target genes that were only regulated during persistence. The RT-qPCR analysis included
samples from additional time points (2, 24, and 48 hpi; 7 and 28 dpi) for which log2 fold changes were
then calculated using the delta-delta Ct method. For each time point and cell type four biological
replicates (two replicates per animal) were used for analysis with the exception for 48 hpi, from which
only two replicates derived from a single animal were available. The log2 fold-changes obtained by
RT-qPCR of SP cells at the time points 24 hpi and 28 dpi confirm the results of the RNA sequencing
(Figure 4A). All of the analyzed genes showed a time-dependent regulation during infection with
FMDV (Figure 4B). The genes IDO1, OAS2, and IFIH1 were strongly up-regulated from 2 to 24 hpi and
were still up-regulated after 28 dpi. In contrast, CASP7 was only up-regulated during acute infection.
ANKRD1 and NCAM1 were down regulated as early as 48 hpi and throughout 28 dpi.

 

Figure 4. Expression analysis for selected genes by RT-qPCR at different time points. (A) Gene
expression in FMDV infected soft palate cells compared to uninfected controls, at 24 hpi (blue panel)
and 28 dpi (orange panel). The change in gene expression was analyzed for six selected target genes
and two reference genes (not shown) using RT-qPCR. Log2 fold changes were calculated in comparison
to a non-infected control from the same time points. Grey and white bars indicate the log2 fold change
of gene expression using results from RT-qPCR and RNA sequencing (RNASeq), respectively. The grey
dotted lines indicate a |log2 fold change| > 1. (B) The gene expression of the six selected genes
was traced in a time course 2, 24, and 48 hpi; and 7 and 28 dpi. Statistically significant changes in
comparison to control samples are highlighted with asterisks (p-value < 0.05: *; p-value < 0.01: **).
Time points 24 hpi and 28 dpi are illustrated in blue and orange, respectively.

Additionally, a GeLC-MS/MS-based comparative proteome analysis was conducted to confirm
the results of the RNA sequencing on the protein level, using two biological replicates for each time
point and treatment from animal 2. Proteins with significantly different abundance in both experiments
were identified and quantified by spectral-counting (Table 3). At the given thresholds, 11 and 8 proteins
were differentially expressed when comparing FMDV-infected and control samples at 24 hpi and
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28 dpi, respectively. Of these, 6 were differentially expressed at both time points. The Normalized
Spectral Abundance Factor (NSAF), measured as the proportion of a single protein in relation to the
detected proteins overall revealed an accumulation of the proteins HERC6, IFI44, IFI44L, ISG15, MX1,
MX2, OAS1X, and OAS1Y in cells during persistent infection. In contrast, the proportion of ATAD1,
IFIT1, and IFIT2 to all other detected proteins was higher during acute than in persistent infection.
FMDV polyprotein, IFIT3 and RSAD2 were not detected at the protein level at 28 dpi.

Table 3. Proteins with significantly different abundance at 24 hpi or 28 dpi. Only proteins that were
also differentially expressed in the RNA sequencing experiment at the given time point are shown.

Protein Description
24 hpi

Mean NSAF
28 dpi

Mean NSAF

NSAF28 dpi/
NSAF24 hpi

ATAD1 ATPase Family, AAA Domain Containing 1 2.50 × 10−4 ** 1.56 × 10−4 0.6
CAG23917.14 FMDV polyprotein 3.16 × 10−4 ** 0 † n.a.

HERC6 HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase
Family Member 6 2.46 × 10−5 2.74 × 10−4 ** 11.2

IFI44 Interferon Induced Protein 44 1.12 × 10−4 * 4.58 × 10−4 ** 4.1
IFI44L Interferon Induced Protein 44 like 8.32 × 10−5 * 6.98 × 10−4 ** 8.4
IFIT1 Interferon-Induced Protein with Tetratricopeptide Repeats 1 5.41 × 10−4 ** 7.62 × 10−5 * 0.1
IFIT2 Interferon Induced Protein With Tetratricopeptide Repeats 2 2.31 × 10−4 ** 9.34 × 10−5 * 0.4
IFIT3 Interferon Induced Protein With Tetratricopeptide Repeats 3 3.78 × 10−4 ** 0 † n.a.
ISG15 ISG15 Ubiquitin-Like Modifier 3.53 × 10−3 ** 7.52 × 10−3 ** 2.1
MX1 MX Dynamin Like GTPase 1 8.42 × 10−4 ** 2.27 × 10−3 ** 2.7
MX2 MX Dynamin Like GTPase 2 2.44 × 10−4 ** 5.04 × 10−4 ** 2.1

OAS1X 2′-5′-Oligoadenylate Synthetase 1 X 2.47 × 10−4 ** 4.85 × 10−4 ** 2.0
OAS1Y 2′-5′-Oligoadenylate Synthetase 1 Y 2.31 × 10−4 ** 3.68 × 10−4 ** 1.6
RSAD2 Radical S-Adenosyl Methionine Domain Containing 2 5.69 × 10−4 ** 0 † n.a.

*: p-value < 0.01; **: p-value < 0.001; †: not significant; n.a. not applicable.

4. Discussion

The failure of the host response to clear virus from the nasopharynx is one of the most important
features of FMDV infection, and has been studied previously using monolayers of primary cells and
non-primary cell lines from hamsters (BHK-21) [14], swine (SK6) [32], and cattle (EBK, MDBK and
pharynx cells) [15–17]. These cells needed regular cell culture passage and were, except for the pharynx
cells, not from anatomical locations relevant to natural FMDV infection and persistence, which resulted
in a suboptimal reflection of the in vivo situation.

In this study we used multilayers of primary bovine dorsal soft palate (SP) epithelial cells in
an air–liquid interface cell culture model [18], as it has been shown that this tissue, along with the
dorsal nasopharynx, is the most likely site of primary FMDV infection and persistence in cattle [10,33].
This model mimics several properties of the squamous epithelium that are observed in vivo and allows
detailed studies of the target cells of primary FMDV infection. Specialized immune cells, such as B
cells, T cells, and natural killer cells, which contribute to host responses in vivo, were depleted by
the establishment of the cell culture in air [18], leading to improved standardization and a focus on
the primary target cell. In vivo, neutralizing antibodies secreted by B cells are essential for resolving
systemic FMDV infection, but have no effect on persistent infection in the nasopharynx [9]. Recent
studies of gene expression in nasopharyngeal tissues of cattle have suggested an important role of
cytotoxic T cells in the clearance of persistent FMDV infection [34,35]. The transcriptional changes
analyzed in the present study, however, are limited to the response of SP epithelial cells themselves to
infection with FMDV.

This response was analyzed using RNA sequencing, RT-qPCR and quantitative proteomics.
Based on the results from exploratory RNA sequencing alone, infection with FMDV resulted in
detectable changes in the transcriptome of the cells and the induced changes were distinct during the
acute and persistent phases of infection. Despite that only a small proportion of cells were persistently
infected, these influenced the transcriptome significantly. The non-infected controls did not show
any comparable, time-dependent changes, indicating stable culture conditions without extensive
cell differentiation or degradation. The observed changes induced by FMDV infection were also
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independent of the donor animals used for the preparation of the primary cell cultures, although
transcriptional differences between the animals were detectable, e.g., sex-associated differences in
XIST and keratin expression [36]. In summary, we observed genes that were highly regulated during
both stages of infection (Figure 1C, green cluster), genes exclusively regulated during acute infection
(Figure 1C, blue cluster) and animal-specific gene expression (Figure 1C, red cluster). During acute
and persistent infection, comparably low numbers of genes were significantly differentially expressed
and most of these were up-regulated. Interestingly, 63 genes were differentially expressed during
both infection phases, indicating that FMDV infection induces long-lasting changes in the soft palate
transcriptome. Furthermore, these genes were generally more up-regulated during acute infection.
The transcriptional changes observed by RNA sequencing were supported at the protein level using
quantitative proteomics. Although the number of detected differentially expressed proteins was much
lower, it was confirmed that overexpression of ISGs leads to detectable levels of these proteins in
the cells.

We found a strong activation of the innate immune response at 24 hpi that appears to be triggered
by sensing of viral dsRNA over the cytosolic RNA sensors IFIH1/MDA5 and RIG-I/DDX58, as the
expression of MDA5 and RIG-I was significantly increased during acute infection. While RIG-I is
sensing minus-strand RNA viruses by specific binding to 5′-triphosphate uncapped RNA genomes,
MDA5 specifically senses plus-strand RNA viruses, such as FMDV, by binding to their dsRNA
replication intermediates [37,38]. Although MDA5 is thought to be the main cellular detector of FMDV,
it has been shown that RIG-I transcription is also elevated during FMDV infection [39]. After specific
binding of MDA5 or RIG-I to their ligands they interact with TRIM25 and the mitochondrial protein
MAVS that activate the transcription factors IRF3/IRF7 [40] as well as NF-κB [41], which is in
accordance with the observed up-regulation of IRF3, IRF7, NFKBIA, NFKBIB and TRIM25 (Table 1).
Activated IRF3/IRF7 and NF-κB complexes thereafter induce the expression of type I/III interferons
(IFNs) and proinflammatory cytokines, respectively [42]. We found that during acute infection
especially IFN-β was expressed at elevated levels with significant overexpression of IFNB1, while IFN-α
and IFN-λ were only expressed at very low levels (Supplementary Figure S3). However, we observed
expression of several ISGs with antiviral activity, such as IRF1, ISG15, MX1/2, OAS1/2, and RSAD2
(see Table 1). This indicates that while IFN-α transcription may be limited, IFN-β alone is able to
induce a potent antiviral response in bovine SP cells. It is known that the viral leader proteinase Lpro

of FMDV can inhibit IFN-β transcription and protein translation, thereby blocking the cells innate
immune response [43]. However, at least in this model Lpro does not induce a full blocking of IFN-β
transcription. A specific blocking of IFN-α transcription has only been shown for swine dendritic
cell populations from blood and skin during acute FMDV infection [44]. The induction of IFN-β and
associated ISGs was furthermore coincident with high viral genome copy numbers and presence of
viral proteins (Table 3) as has been described before [45].

In contrast, no interferon expression was observed during the persistent phase of infection,
although the aforementioned virus sensors MDA5/RIG-I and their associated transcription factor IRF7
were still highly expressed (see IFIH1 in Figure 3B). A possible factor reducing the transcription of
interferons during persistence is the down-regulation of ANKRD1, as ANKRD1 is directly involved
in the signal transduction of IRF3 and IRF7 by binding IRF7/IRF3 complexes and thereby enhances
the expression of type I/III interferons [46]. ANKRD1 was initially observed in human dermal
endothelial cells, where it is induced by inflammatory cytokines [47] and is substantially involved in
the fibroblast mediated wound healing [48]. In agreement with our results, the expression of ANKRD1
has previously been shown to be down-regulated in vivo during persistent FMDV infection of bovine
nasopharyngeal tissue [35]. Gene silencing of ANKRD1 in cells infected with herpes simplex virus
resulted in increased viral load and reduced IFN-β (IFNB1) and IFN-λ (IL29) expression [46]. Therefore,
the strong downregulation of ANKRD1 as early as 48 hpi may be involved in the decrease of IFN-β
expression during persistence.
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Although no interferon expression was detectable at 28 dpi, the expression of many ISGs with
known antiviral activity, such as MX1/2 and OAS1/2, was significantly increased (see Figures 2D
and 3B). Furthermore, based on the proteome data, the translation of these genes was stable, as their
encoded proteins accumulated in the cells (Table 3). This indicates long-lasting induction of ISGs
during persistent infection, with viral protein below the detection limit and low FMDV genome copy
numbers. A comparable pattern of highly expressed ISGs as observed during FMDV persistence
(ISG15, MX1, OAS1/2, and USP18) has been identified in liver samples from chronic infections with
hepatitis C virus (HCV) [49,50]. Interestingly, the elevated expression of ISG15/USP18 during chronic
HCV infection, as we also observed during FMDV persistence, correlated with decreased responses
to IFN-α treatment. Furthermore, the strong expression of OAS1/2, MX1/2 and IRF7, but not of IRF3
at 28 dpi is in accordance with increased interferon receptor (IFNR) signaling [51,52]. Observations
from persistent lymphocytic choriomeningitis virus (LCMV) infections revealed that persistence is
driven by chronic IFNR signaling, characterized by similar ISG activation patterns as observed in
the present study [52]. The blockade of IFNR by antibodies abolished the expression of IL-10 and
PD-L1, two immunosuppressive T-cell exhaustion factors expressed by dendritic cells, and ultimately
led to clearance of persistent LCMV infection by activation of IFN-γ expressing CD4+ T cells [52].
In this study, we did not observe upregulation of IL-10 or PD-L1, as no dendritic cells were present
in the SP cultures; however, an overexpression of T-cell exhaustion factors was previously found
in nasopharyngeal tissues of FMDV carrier animals [35] and therefore may play a role in FMDV
persistence in vivo.

The immunosuppressive factors identified in that study also included transforming growth factor
β (TGF-β). While an overexpression of TGF-β itself was not evident in our data, lymphocyte antigen 6
family member E (LY6E) was one of the two genes that were up-regulated during the persistent phase
only. LY6E, an ISG, has been implicated in the TGF-β-mediated escape from immune surveillance in
many forms of cancer [53]. LY6E has been previously shown to promote viral infection [54] and it
is essential for clathrin-mediated endocytosis of virus particles [55], a pathway that is also used by
FMDV [56].

During acute infection, the interferon-mediated induction of ISGs appears to trigger apoptosis,
as indicated by pathway analysis. Interestingly, genes associated with apoptosis, such as CASP7,
were only expressed during acute infection and their expression waned with increasing time post
infection (Figure 3B). The apparent absence of apoptotic processes during persistent infection is in
accordance with recent findings that indicated an inhibition of apoptotic pathways in nasopharyngeal
tissues from FMDV carrier animals [34,35]. Furthermore, we observed a specific down-regulation of
pro-apoptotic genes during persistence, such as ALDH1A2, ANKRD1, and SFRP2 (Table 2). Similarly,
overexpression of fructose-bisphosphatase 1, the other gene that was only up-regulated during the
persistent phase, inhibits many forms of apoptosis by increasing total cellular glutathione [57].

Another interesting observation was the downregulation of NCAM1 (CD56), a member of the
immunoglobulin superfamily, as early as 48 hpi and its further decrease until 28 dpi. Besides its
role as a differentiation marker for natural killer cells, NCAM1 is involved in cell binding and
migration [58]. Downregulation of NCAM1 is associated with decreased cell adhesion capacity,
enhanced tumor cell invasiveness and is triggered in other viral infections [59]. The expression
of HTRA3, a serine protease involved in remodeling of the extracellular matrix (ECM), as well as the
expression of the ECM components COL1A1 and COL3A1 were significantly down-regulated during
persistent infection. The role of these changes during FMDV persistence is currently unknown
but lends itself to some speculation. The interaction of cells with the ECM plays a key role in
epithelial maturation [60], which in turn is critical for the life cycle of some persistent viruses such as
papillomaviruses [61]. Even though FMDV and papillomaviruses are biologically very different, certain
features of FMDV persistence in vivo are conspicuously similar to what is observed in papillomavirus
infection—particularly the difference between the distribution of viral genome, which is concentrated
in the basal stratum germinativum [62], and viral antigen, which is concentrated in the superficial
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layers of the soft palate epithelium [63]. This segregation helps papillomaviruses evade the immune
system as high levels of viral replication and protein synthesis occur only in terminally differentiated
cells that are not subject to immune surveillance [64]. Whether a similar mechanism is involved in
the maintenance of FMDV persistence remains to be investigated. However, it is difficult to faithfully
recreate the complex epithelial structure and ECM interactions in vitro and investigations of the role of
the ECM in persistent FMDV infection have to be performed with ex vivo tissue samples.

5. Conclusions

In conclusion, our study independently confirms earlier findings of a polygenic inhibition of
apoptosis during persistent FMDV infection, which has been put forward as one of the principal
mechanisms for the maintenance of persistence [34,35]. Another proposed mechanism, Th2 polarization
and T-cell exhaustion, was not directly represented in our data, because the SP culture model does
not include specialized immune cells. Nevertheless, we demonstrated the utility of state-of-the-art
proteogenomics for the analysis of transcriptional signatures of acute and persistent FMDV infection
in a near-natural in vitro system. We will proceed to apply this technology to tissue samples collected
from carrier animals to obtain the first comprehensive picture of the transcriptomic and proteomic
alterations associated with FMDV persistence in the natural host. Unraveling the cellular mechanisms
of FMDV persistence may ultimately give rise to improved diagnostics and prevention of the FMDV
carrier state.
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primers used for the RT-qPCR analysis, Table S5: Differentially expressed genes, File S1: Raw read counts for all
significantly differently expressed genes.
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Abstract: The human papillomavirus (HPV) 58 is considered to be the second most predominant
genotype in cervical cancer incidents in China. HPV type-restriction, non-targeted delivery, and the
highcost of existing vaccines necessitate continuing research on the HPV vaccine. We aimed to explore
the papillomaviral proteome in order to identify potential candidates for a chimeric vaccine against
cervix papilloma using computational immunology and structural vaccinology approaches. Two
overlapped epitope segments (23–36) and (29–42) from the N-terminal region of the HPV58 minor
capsid protein L2 are selected as capable of inducing both cellular and humoral immunity. In total,
318 amino acid lengths of the vaccine construct SGD58 contain adjuvants (Flagellin and RS09), two
Th epitopes, and linkers. SGD58 is a stable protein that is soluble, antigenic, and non-allergenic.
Homology modeling and the structural refinement of the best models of SGD58 and TLR5 found
96.8% and 93.9% favored regions in Rampage, respectively. The docking results demonstrated a
HADDOCK score of −62.5 ± 7.6, the binding energy (−30 kcal/mol) and 44 interacting amino acid
residues between SGD58-TLR5 complex. The docked complex are stable in 100 ns of simulation.
The coding sequences of SGD58 also show elevated gene expression in Escherichia coli with 1.0 codon
adaptation index and 59.92% glycine-cysteine content. We conclude that SGD58 may prompt the
creation a vaccine against cervix papilloma.

Keywords: cellular immunity; codon frequency distribution; HPV58; minor capsid protein;
TLR agonist; prophylaxis

1. Introduction

Currently, viral infection contributes to about 20% of the global burden of human cancer. Among
other virus types, the human papillomavirus (HPV) is reported in about 5% of all human cancers,
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specifically infection associated with the cervix with 250,000 mortalities every year [1]. HPV with its
double-stranded DNA contains a non-enveloped small virus, which infects a region of the cutaneous
epithelial membrane (skin or integumentary system), or the mucous membrane (i.e., coated as an
internal line in hollow spaced organs like the mouth, reproductive organ, urinary tract, or rectum)
in the host system [2]. The nomenclature of HPV is distinguished by the International Committee
on Taxonomy of Viruses (ICTV), and is based on the suggestion obtained from the study group
of papillomavirus [3]. ICTV follows the practice of naming species after a specific virus, such as
HPV16, while the related types, namely, the “type species,” are designated as strains within the
species [3,4]. For example, the frequently used term “HPV species alpha-9” is a synonym for the ICTV
term “HPV16 species”; it contains the HPV types 16, 31, 33, -35, 52, 58, and 67 strains, respectively.
According to ICTV, the species HPV16 belongs to the family of Papillomaviridae and the genus of
Alphapapillomavirus [3]. The genomic relationship between different cancer types has demonstrated
that more than 99% of cervical cancer patients are infected with 15 different types of α-clade HPV,
defined as “high-risk” or “oncogenic” genital HPVs. The α-clade HPV (6 and 11) causes genital
warts while the remaining strains of HPV are related to the risk of cervical cancer. HPV infection
is attributed to more than 50% of oropharyngeal and anogenital cancers [5]. Generally, the human
immune system can clear the pathogenic infection caused by HPV within 2 years, but this also depends
on the efficiency of an individual’s immune system and the invading type of HPV. However, in
the case of a very weak immune system, it fails to remove the invading high-risk HPVs (hrHPV)
that may lead to the development of cervical cancer [6,7]. hrHPV infections are responsible for
causing more than 99% of precancerous cervical intraepithelial neoplasias (CIN) and invasive cervical
cancers (ICC) [8–10]. In China, HPV-mediated cervical cancer is a substantial public health issue,
with 1 million new cervical cancer incidences and 30,000 moralities registered every year [11,12].
In 2018, clinical, epidemiological, and clinicopathological studies reported HPV58 to be the second or
third most predominant genotype in precancerous CIN I, II, III, and ICC lesions, a higher grade of
squamous intraepithelial or cell carcinoma, and adenocarcinoma of HPV positive patients in different
geographical regions of China [11]. Seven provinces of China have reported hrHPV-mediated cervical
cancer incidences, namely, Guangdong, Liaocheng, Shanghai, Wenzhou, Wuhan, Southwestern China,
and Western China [13–19]. Zhang et al. [20] reported that the HPV16 (6.4%) and HPV58 (5.3%)
genotypes were predominantly found in males who had recently been involved in sex, in Shanghai.

Cervarix®, Gardasil®, and Gardasil 9® are the three non-infectious prophylactic Food and Drug
Administration (FDA)-approved HPV licensed subunit vaccines in active usage. These vaccines were
developed from the major capsid L1 virus-like particles (VLPs) using recombinant DNA technology.
Cervarix is a bivalent vaccine based on Baculovirus fermentation and it provides ~70% protection
against HPV (16 and 18)-mediated cervical cancer but not against genital warts [21]. Gardasil is a
quadrivalent HPV (6, 11, 16, and 18) vaccine based on yeast fermentation technology. It is efficiently
used for the prevention of genital warts and gives ~70% protection for cervical cancer [22]. In 2009,
the FDA approved a nine-valent Gardasil 9® vaccine that provides protection to HPV types 6, 11,
16, 18, 31, 33, 45, 52, and 58. It has been used for both males and females in the age groups of 9–15
and 9–26 [23]. The new nine-valent vaccine exhibited a positive outcome in high-grade lesions in the
absence of HPV (18 and 16) infections [24]. In October 2018, the FDA extended the use of Gardasil 9
to the age group of 27–45 among both the sexes. In addition, the L1 VLP (absence of viral genomic
materials)-mediated vaccine production in the eukaryotic (ex. Baculovirus) host system is a complex
and tedious process [25,26]. The main limitations of currently available prophylactic vaccines are as
follows: they are strain specific, not therapeutic for patients already infected with HPV, they require
multiple dosages, and are expensive [27,28]. In addition, the effective straightforward delivery of HPV
vaccines can enhance the immunogenic potential against HPVs.

The implementation of the L2 minor capsid protein is a potential alternative in the HPV
prophylactic vaccine production. Since the N-terminal region of the L2 protein is highly conserved in
low-risk HPV (6 and 11) and 13 different hrHPVs, it is contrasted with the type-specific protection of
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L1 prophylactic VLPs [29]. The single copy of the L2 protein ~473 amino acids (AA) is present in each
L1 capsomere, resulting in 72 copies per virion [30]. Incidentally, the L2 protein plays a vital role in L1
assembly into the VLPs and enhances the encapsidation of the double-stranded ~8kb circular viral
genome [31]. Moreover, the full-length or polypeptides (1–8 or 11–200 AA in length) of the L2 protein
enhance the production of neutralizing antibodies in vaccinated experimental models including mice,
cattle, and rabbit [32–34]. To date, no L2 VLP-derived prophylactic vaccines have been approved in
clinical trials [26] due to their limitation of weak immunogenicity, which imitates the incapability of
multimerizing into VLPs.

With this information, in this study, we aimed to design the novel chimeric vaccine from the
N-terminal region of the L2 sequence of the HPV58 targets to hrHPVs. The immunomic tools
namely, the immune epitope database (IEDB) and NetMHCv4.0, Tepitool, CTLPred, PAComplex,
IFNepitope, ABCPred, AllerTOP, AllergenFPv 1.0, ANTIGENpro, program of protein information
resource (PIR), and epitopes conservancy were implemented to discover the overlapped epitope
segment that is required to induce B-cell and T-cell immunity. Then, the chimeric vaccine (SGD58) was
constructed using the overlapped epitope segments, Toll-like receptor (TLR) adjuvants, Th epitopes,
and amino acid linkers. The physiochemical and immunological properties of the chimeric vaccine
were validated using Protparam, SolPro, VaxiJen, and ANTIGENpro tools. In addition, homology
modeling using iterative threading ASSEmbly refinement (I-TASSER), the Robetta beta full chain
protein structure prediction server, structural refinement (GalaxyRefine and 3DRefine), and structural
validation (protein structure analysis [ProSA], Ramachandran plot, and ERRAT) were performed to
obtain the best three-dimensional (3D) model of the chimeric vaccine and the target TLR5 receptor.
Then, the interaction of the chimeric vaccine with TLR5 and stability of this complex were determined
through protein–protein (PP) docking and molecular dynamic (MD) simulation. Moreover, the virtual
cloning and gene expression of the chimeric vaccine in Escherichia coli (E. coli) were analyzed to obtain
a low-cost HPV vaccine.

2. Materials and Methods

2.1. Protein Sequences

The L2 protein of HPV58 (Accession No.: P26538), the Flagellin protein of Salmonella enterica
serovar Dublin (Accession No.: Q06971), and human TLR5 (Accession No.: O60602) sequences were
obtained from the Swiss-Prot reviewed universal protein knowledgebase (UniProt) database [35].
The designed chimeric vaccine was named SGD58, using the name of the first and principal authors
along with the strain number.

2.2. Immunomics Analysis

2.2.1. MHC-I Binding Epitope Segments Prediction

Two servers, IEDB and NetMHCv4.0, have been exploited for the identification of major
histocompatibility complex class I (MHC-I) binding epitopes from the N-terminal region of the L2
sequence. Specific human MHC-I alleles such as the human leukocyte antigen (HLA)-A* (01:01, 02:01,
02:07, 11:01, 24:01), HLA-B* (46:01, 58:01) and HLA-C* (07:02, 12:03) were abundantly diagnosed in
different regions of China, including Guizhou, Henan, Taihu River Basin, Tibetan, Yunnan, Wenzhou,
and Wuhan. These alleles were selected for epitope prediction [36–42]. IEDB [43] is a freely available
analysis resource with specified algorithms for the identification and determination of immunogenic
epitopes. A consensus method was implemented to predict the MHC-I binding epitopes and its
production pathway [44]. In this consensus method, three algorithms namely, the neural network
(artificial), matrix method (stabilized), and peptide libraries (combinatorial) were combined to predict
the promising CTL epitope segments. The epitopes involve proteasomal cleavage (pCle), a transporter
associated with antigen processing (TAP), and the MHC-I binding pathway. The lowest percentile rank
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(<10%) indicated the good binding efficiency of epitopes with the restricted alleles. NetMHCV4.0 [45] is
another potential tool implemented to find MHC-I binding peptides with the best Pearson’s correlation
coefficient (PCC) of 0.895, based on the combined neural network. The strong and weak binding
peptides were predicted based on the thresholds of <0.5 and <2, respectively.

2.2.2. CTL Epitope and TCR -Peptide/Peptide -MHC Interfaces Prediction

The CTLPred tool is a direct method for the prediction of CTL epitope segments instead of
MHC binders. The prominent combined approaches were implemented to find the epitopes, based
on both the artificial neural networks (ANN) trained by Stuttgart neural network simulator (SNNS)
and support vector machine (SVM) methods. The combined methods demonstrate a higher level of
accuracy (75.8 %) compared with other individual methods of prediction such as ANN (72.2%) and
SVM (75.4%). The default cutoff scores of 0.51 of ANN and 0.36 of SVM were used to find the epitopes
or non-epitopes at which the sensitivity and specificity of the predictions are almost similar [46]. A web
server PAComplex provides access to examine and visualize the TCR-peptide and peptide–MHC
interface (pMHC), respectively. For a given viral protein query sequence, the joint Z-value is obtained
with a threshold 2.5. Moreover, it allows the selection of only limited allotypes of MHC class I such
as HLA-A*(02:01), HLA-B*(08:01, 35:01, 35:08, 44:05), and HLA-E, respectively. The Z-value was
calculated using the following formula:

Jz = ZMHC × ZTCR (1)

where ZMHC and ZTCR are the score of a TCR-pMHC complex, calculated by (E-μ)/σ. E denotes the
interaction score, μ denotes the mean, and σ denotes the standard deviation from 10,000 random
interfaces [47].

2.2.3. MHC Class-II Binding Epitopes Prediction

MHC-II alleles include DQB1*(03:01, 03:03, 06:01), DRB1*(07, 09, 14:01:01, 15:01, 15:07:01),
and DPB1*(05:01,05:02:01), specific to the Henan, Taihu River Basin, Tibetan, Yunnan, Wenzhou,
and Wuhan provinces of China, which have been selected for epitope prediction [36–42].
The IEDB consensus approaches were used to predict MHC-II binding epitope segments using the
neural network-based alignment, stabilized matrix methods-based alignment, and combinatorial
library-based algorithms [48]. The peptides with the lowest percentile rank were considered to be of a
higher binding affinity. Tepitool [49] is a tool from IEDB analysis resources, which provides accession
to the prediction of both class I and II binders. The peptides which show the lowest percentile rank
(IC50< or = 500nM) are potentially considered as higher affinity binding peptides.

2.2.4. Interferon-Gamma (INF-γ) Inducing Epitope Prediction

IFNepitope (http://webs.iiitd.edu.in/raghava/ifnepitope/) that is a potential server useful for
the prediction and design of INF-γ inducing epitopes. INF-γ inducing epitopes were identified based
on motif-based SVM or hybrid algorithms. The hybrid method using residue or dipeptide composition
shows 81.39% accuracy [50].

2.2.5. Linear B-Cell Epitope Prediction

ABCPred is used to predict linear B-cell epitopes. It provides 65.93% of accuracy with the
involvement of the recurrent neural network (RNN) algorithm. It consists of 700 B-cell and non-B-cell
epitope segment datasets each with a length of 20 amino acids [51].

2.2.6. Allergenicity Prediction

AllerTOP is the first proper alignment-free allergenicity server. In this, five machine learning
methods such as partial least squares, logistic regression, decision tree, naive Bayes, or k nearest
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neighbors (kNN = 1) were implemented to find the allergen. It shows 88.7%, 90.7%, and 86.7%
accuracy, specificity, and sensitivity, respectively [52]. AllergenFPv 1.0 is another essential tool
for allergenicity prediction based on novel descriptor fingerprint approaches. Twenty naturally
existing amino acids in the protein sequences were classified into five descriptors (E) such as E1
(hydrophobicity), E2 (size), E3 (helix-forming propensity), E4 (relative abundance of amino acids),
and E5 (β-strand forming propensity). Based on this, the strings were transformed into normal vectors
by auto cross covariance (ACC) transformation to find the allergen protein. It exhibits accuracy (87%),
specificity (89%), and sensitivity (86%) [53].

2.2.7. Antigenicity

ANTIGENpro is the potential alignment-free and sequence-based antigenicity prediction server
with 79% accuracy and an area under curve (AUC) of 0.89. It shows results based on amino acid
composition and the random-forest algorithm. The datasets were trained using 5-fold cross-validation.
It consists of both protective antigen (193) and non-antigen (193) sequences. It predicts whether the
given query epitope segments are antigenic or non-antigenic with their respective probability [54].

2.2.8. Cross-Reactivity Analysis with Human Proteomes

The presence or absence of similarity in predicted epitope segments with the human proteome
was analyzed using the peptide-matching program of PIR [55].

2.2.9. Epitopes Conservancy Analysis

Epitopes conservancy (EC) and molecular evolutionary genetic analysis (MEGA) v7.0 tools were
used to perform conservancy analysis. The EC tool [56] was employed to find the degree of conservancy
of the epitope segments within the set of given hrHPV L2 protein sequences. The selected epitope
segments of HPV58 with 15 hrHPV (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 59, 68, 69, 73, and 82) strains
performed EC analysis. ClustalW-based multiple sequence alignment [57] was used to determine the
sequence conservation of the overlapped epitope segments with 15 other hrHPV (16, 18, 31, 33, 35, 39,
45, 51, 52, 56, 59, 68, 69, 73, and 82) strains.

2.3. Chimeric Vaccine Design (SGD58) and Validation

2.3.1. Assessment of the Physicochemical Properties of SGD58

The complete chimeric vaccine was designed by joining the optimized epitope segments (02), TLR
adjuvants (02), and Th epitopes (02) with suitable amino acid linkers. Moreover, it is required to find
the solubility of the designed chimeric vaccine on overexpression in E. coli. SOLpro is a useful tool to
find the solubility of protein based on the two-stage SVM algorithm. It achieves an overall accuracy
of 74%, which develops on standard evaluation metrics with 10-fold cross-validation. It predicts the
query protein to be soluble or insoluble at P ≥ 0.5 [58]. A range of physiochemical characteristics of
the designed chimeric vaccine was also determined through ProtParam [59].

2.3.2. Determination of Antigenicity

VaxiJen is the primary server used for the prediction of antigenicity of the input sequence against
different targets such as virus, bacteria, fungi, parasites, and tumors. Antigenicity was calculated based
on the physicochemical properties of the protein sequences. Every target organism dataset contained
100 antigens and non-antigens. Moreover, the model organisms were validated using leave-one-out
cross-validation (LOO-CV); it provides 89% accuracy and an AUC of 0.964 respectively, at the threshold
of 0.4 [60].
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2.3.3. Analysis of the Tertiary Structure

2.3.3.1. Homology Modeling

For homology modeling, I-TASSER and Robetta were the servers used to design the 3D structure
of SGD58 and TLR5. I-TASSER is a potential server that depends on the secondary-structure-mediated
program of “Profile-Profile threading alignment (PPA) and iterative implementation of the TASSER.”
It has predicted a number of protein structures on request basis from 35 countries worldwide. For the
query inputs, the user obtains the confidence score, TM score (topology similarity assessments of
the two various protein structures), root-mean-square deviation (RMSD), and cluster density values.
Nevertheless, the higher C-score (ranging from −5 to +2) determines the best model with a higher
confidence level. Moreover, the 3D structure of the modeled protein was visualized using UCSF
Chimera [61]. The Robetta beta server was used to predict the full chain protein structure. This
server (http://robetta.bakerlab.org) gives automated tools for the analysis and prediction of the
protein structure. Robetta provides both the ab initio and comparative models of protein domains.
The comparative models are built from structures detected and aligned by HHSEARCH, SPARKS,
and Raptor. The loop regions are assembled from fragments and optimized to fit the aligned template
structures. The de novo models are built using the Robetta de novo protocol. For structure prediction,
the submitted query sequences were analyzed minutely into putative domains. For domain prediction,
a hierarchical screening method called “Ginzu” was used [62]. Besides, due to the unavailability of the
crystal structure of TLR5, we have chosen TLR5 (PDB ID: 3J0A) as a template model to perform the
homology modeling.

2.3.3.2. 3D Modeled Structure Refinement

The high C-score model of the designed vaccine from the I-TASSER and model 3 from Robetta
beta was further refined using the GalaxyRefine and 3DRefine tools. The GalaxyRefine is a tool that is
accessible in the GalaxyWeb server: it is useful to refine the structure of a protein from the given query
sequences based on template-based modeling, and undergoes loop and terminus portion refinement
through the ab initio modeling method. The ninth critical assessment of techniques for protein structure
prediction (CASP9) optimizes refinement and produces consistent core structures [63]. Another tool is
3Drefine, which prompts iteration analysis for ~300 amino acid residues efficiently in less than 5 min.
It performs post-refinement model analysis with both or single MolProbity and random walk (RW)
plus methods. The results are visualized using JSmol [64]. The top five models of each tool were used
for further validation.

2.3.3.3. 3D Refined Structures Validation

The refined 3D models from the above steps were validated using three interactive services namely,
ProSA, Ramachandran plot analysis, and ERRAT. ProSA-web is a potential tool for the refinement,
validation, prediction, and modeling of protein structures. It indicates the difference in the protein
structures through the respective score and energy spot. It also facilitates the validation process
of the protein structure that is acquired from X-ray scanning, nuclear magnetic resonance (NMR)
spectroscopy analysis, and theoretical calculations. As an output, the Z-score corresponds to the
overall feature of the validated model [65]. RAMPAGE tool is used to validate the percentage (%)
of favored, allowed, and outlier region in the given query chimeric vaccine [66]. The statistics of
noncovalent interactions between carbon, nitrogen, and oxygen atoms in the input sequence with
best-resolution crystallographic structures were compared using the ERRAT tool. It implements an
empirical atom-based approach for verification of the protein structure and is more sensitive to errors
(1.5A) [67]. Similar steps were followed to validate the TLR5 model.
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2.4. Conformational B-Cell Epitopes Prediction

DiscoTope 2.0 is a potential tool used to analyze the conformational (discontinuous) B-cell epitopes
from the input sequence. It showed a highly significant prediction performance with an AUC of 0.824.
The default −3.7 threshold limit provides significant specificity (0.75) and sensitivity (0.47). It was
selected for the present analysis, and the final score was evaluated by the combined calculation of the
propensity score (PS) and contact numbers [68].

2.5. Investigation of the Interaction between SGD58 and TLR5

2.5.1. Protein–Protein (PP) Interaction of the SGD58 with TLR5

The PP interactions are the midpoint for all the biochemical pathways that are involved in the
biological functions. HADDOCK v2.2 is a server used for the docking of PP complexes [69]. The scoring
function was executed based on the weighted sum of the various energy terms (Van der Waals energy,
electrostatic energy, desolvation energy, restraints energy and buried surface area). In addition,
intermolecular contacts such as hydrogen bonds (HB) and those that are non-bonded were determined
by using the program for automatically plotting protein–protein interactions (LIGPLOT-DIMPLOT)
v 4.5.3 [70]. The validated best model of the vaccine construct (Robetta model 3) and TLR5 (Robetta
model 5) was chosen as a ligand and receptor, respectively.

2.5.2. MD Simulation

MD simulation determines the strength of the docked complex and the designed vaccine (SGD58).
The GROMACS 5.1.2 package, with the CHARMM force field was used to perform MD simulation.
The transferable intermolecular potential with three points (TIP3P) and simple point charge (SPC)
in the cubic cell of the water model was resolved with protein, and with the addition of appropriate
counter ions to satisfy electroneutrality. For the MD simulation, the system was implemented
with volume-based canonical (NVT) and pressure-based isothermal-isobaric (NPT) ensembles [71].
The energy minimization of the system was performed with the steepest descent method, which
facilitates 50,000 minimization steps and 1000 kJ mol−1 of tolerance. The Ewald method with a cutoff
for short-range neighbor distance (1.0 nm), and Coulomb (1.0 nm) was used to calculate van der Waals
(vdW) and electrostatic interactions [72]. SPC resolved the system and the final minimizations were
calculated for a realistic structure concerning the geometry: and solvent orientations were used in the
production of the MD simulation. SETTLE and LINCS algorithms were used to assist the geometry of
the water molecules and bond angles [72,73]. The pressure of the system (300 K, 1bar) was embraced
using the Parrinello–Rahman method and the temperature was regulated using the V-rescale method.
Temperature and pressure equilibrated systems were employed for production run (100 ns) and time
step (2 fs). The resulting structural coordinates were saved at every 2ps of an interval.

2.6. Analysis of Virtual Gene Expression and Cloning

EMBOSS Backtranseq v1.0 [74] is a suitable tool to uptake the query protein sequences, reverse
translate, and return the optimizing coding sequences. Furthermore, the properties of the obtained
coding sequences were analyzed to obtain the increased level of gene expression in the respective
host. It is well known that the codon plays a crucial role in the expression of the recombinant proteins
in various organisms (e.g., E. coli, Homo sapiens, Saccharomyces cerevisiae, Mus musculus, and Rattus
norvegicus). The GenScript rare codon analysis [75] is a prominent tool for codon usage and its
distribution analysis (codon adaptation index-CAI, glycine-cystine content-GC, and codon frequency
distribution-CFD) in the individual expression host organism is based on the optimum GeneTM

algorithm. The endonuclease NdeI (N-terminal) and BamHI (C-terminal) restriction enzyme sites were
added to the respective cloning sequences in the host (E. coli).
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3. Results

3.1. Analysis of Selected Sequences

The retrieved L2 of HPV58, the Flagellin protein of Salmonella enterica serovar Dublin,
and humanTLR5 contain 472, 505, and 858 amino acids residues, respectively. However, for the
potential epitope prediction, an N-terminal region of 12-114 AA residues (highly conserved and virus
surface exposed region) were selected from L2 protein sequences. In the case of the Flagellin protein,
the N terminal (5–143 amino acids) and C-terminal (419–504 amino acids) regions were selected for the
vaccine design.

3.2. Immunomics Analysis

3.2.1. MHC-I Binding Epitopes

The region-specific MHC-I alleles in the Chinese population, namely, the HLA-A* (01:01, 02:01,
02:07, 11:01, 24:01), HLA-B* (46:01, 58:01), and HLA-C* (07:02, 12:03) restricted epitopes, were obtained
using the IEDB consensus and NetMHC v.4.0 tools. The epitope segments from the N-terminal region
of HPV 58 were overlapped using two different tools as shown in Table S1.

3.2.2. CTL Epitopes and TCR-Peptide/Peptide-MHC Interfaces

The overlapped epitope segments obtained from the above MHC-I prediction were compared
with the results of both CTLPred [46] and PAComplex [47] servers. Furthermore, the shared epitope
segments obtained from the CTLPred and PAComplex were used for epitope selection, and vaccine
design as shown in Table S1.

3.2.3. MHC-II Binding and IFN-γ Producing Epitopes

The lowest percentile rank with strong binding affinity epitope segments with human
MHC-II alleles, namely, the DQB1*(03:01, 03:03, 06:01), DRB1*(07, 09, 14:01:01, 15:01, 15:07:01),
and DPB1*(05:01, 05:02:01) restricted epitopes were obtained using IEDB consensus and Tepitool
servers. The overlapping promiscuous epitope segments from the above prediction (Table S2) were
selected and evaluated for their INF-γ production ability. The overlapped INF-γ producing CD4+
(MHC-II) epitope segments are as given in Table S2. Therefore, the shared MHC-II epitope segments
could produce IFN-γ against viral infection. Interestingly, the above-obtained overlapped CD4+

epitopes shared the CD8+ epitope segments.

3.2.4. Continuous B-Cell Epitopes

ABCPred predicted the potential antigenic linear B-cell epitope segments. The overlapped B-cell
epitopes and their respective position are given in Table S2.

3.2.5. Selection of the Overlapped Epitope Segments

According to the above results (MHC-1, CTL, MHC-11, INF-γ), only four potential antigenic
epitope segments were selected from the HPV58 minor capsid protein. The epitope segments,
namely,23–36, 30–43, 10–23, and 29–42 from the N-terminal region of the HPV58 L2 protein have been
chosen for further studies (Table 1).
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3.2.6. Antigenicity, Allergenicity, and Cross-Reactivity of Selected Epitope Segments

The start and end positions, epitope segments, pro-inflammatory cytokines (INF-γ) productivity,
allergenicity, antigenicity, and cross-reactivity with human proteomes of the selected overlapped
HPV58 are given in Table 1. Among the four, only AllergenFP and AllerTOP declared segments (23–36
and 29–42) as non-allergen, respectively. AntigenPro shows the selected epitope segments having
antigenic potential. In addition, the cross-reactivity result of the epitope segments with the human
proteomes has a zero similarity level. It confirmed that there was no distinctive match of overlapped
epitope segments as found in Homo sapiens. It indicated that these epitope segments would not cause
or induce any autoimmune disease or disorders. Based on the above overall analysis, the 23–36 and
29–42 epitope segments were selected to design the vaccine construct.

3.2.7. Epitopes Conservancy

In epitopes-based vaccine design, the conserved epitope segments would be essential in order
to give wider cross-protection against various hrHPV strains. Supplementary Table S3 gives the
comprehensive analysis of overlapped EP (≥30%), positions, subsequences identity, and hrHPV.
The conservation of selected epitopes has cross-protection to the 15 hrHPV as shown in Supplementary
Figure S1a. The overlapped epitope segments KVEGTTIADQILRY23-36 and IADQILRYGSLGVF29-42

with 15-hrHPV strains are illustrated in supplementary Figure S1b,c.

3.3. Vaccine Engineering

3.3.1. Designing of Chimeric Vaccine SGD58

The complete vaccine construct consists of (1) two selected epitope sequences (23–36 and 29–42);
and (2) two different TLR adjuvants, Flagellin and RS09. Flagellin is recognized as the TLR5 agonist
that involves the activation of innate immunity. The head and tail of the vaccine construct contain
the N-terminal (5-143 amino acids) and C-terminal regions (419-504 amino acids) of the Flagellin.
In addition, RS09, a synthetic short peptide of the TLR4 ligand, is also used; (3) two different T helper
(Th) epitopes, namelyPADRE and TpD, are used in the construct. The pan HLA-DR-binding epitope
(PADRE) is frequently employed for synthetic or recombinant vaccine development and another
universal epitope, TpD, which has 31 amino acids, is also used; and (4) the seven different parts in the
vaccine construct were associated with the linkers GPGPG, AAY, and EAAAK. Finally, the designed
chimeric vaccine (SGD58) with 318 amino acid sequences was drawn using illustrator for biological
sequences (IBS) v1.0 as illustrated in Figure 1.

Figure 1. The designed vaccine construct 58 (SGD58). The SGD58 contains seven different segments,
namelytwo different adjuvants (N and C-terminal region of Flagellin-TLR5 agonist); two epitope
segments (23–36 and 29–42); adjuvant RS09 (TLR4 agonist) and two Th epitopes (PADRE and TpD).
All the segments were joined together by using the following linkers (GPGPG, AAY or EAAAK).
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3.3.2. Physiochemical and Immunological Properties of SGD58

The various physiochemical properties of the chimeric vaccine (molecular weight, theoretical pI,
the total number of negatively and positively charged residues, extinction coefficient, estimated
half-life, instability and aliphatic index, GRAVY, and solubility) are demonstrated in Table 2.
The designed chimeric vaccine from the L2 protein of HPV58 was highly stable with the computed
instability index of 35.88 (<40) and a molecular weight of 33.15 kDa. The highest amino acid
composition in the chimeric vaccine is alanine (12.1%), serine (12.1%), leucine (9.3%), asparagine
(8.4%), isoleucine (7.6%), glycine (7.0%), glutamine (6.5%), threonine (5.9%), aspartic acid (4.8%),
valine (4.5%), glutamic acid (3.7%), proline (3.7%), arginine (3.4%), lysine (3.1%), phenylalanine (2.2%),
tyrosine (2.2%), histidine (1.1%), methionine (1.4%), and cysteine (0.3%). The results of the SOLpro
analysis indicate that the chimeric vaccine was soluble (0.62) on overexpression in E. coli. The antigenic
score of the chimeric vaccine was demonstrated as 0.4301 (> threshold of 0.4) and 0.9438 using VaxiJen
and ANTIGENpro (Table 2).

Table 2. Evaluation of the various physiochemical and immunological properties of the chimeric
vaccine SGD58.

Properties Results/Values

Number of amino acids 318
Molecular weight 33,394.15

Theoretical pI 8.00
Total number of negatively charged residues (Asp + Glu) 24
Total number of positively charged residues (Arg + Lys) 25

Extinction coefficient M-1 cm-1 12,950

Half-life 20 h (Mammalian reticulocytes, in vitro),
30 min (yeast, in vivo) and >10h (E.coli, in vivo)

Instability index 35.88 (Indicates protein as stable)
Aliphatic index 94.62

Grand average of hydropathicity (GRAVY) −0.190
Solubility (SolPro) Soluble with probability 0.621085

Antigenicity (VaxiJen) 0.4301(Probable antigen)
Antigenicity (AntigenPro) 0.943820 (Probable antigen)

3.4. Structural Analysis

3.4.1. Homology Modeling

I-TASSER homology modeling indicated that model 3 of the chimeric vaccine (SGD58) has the
highest C-score of −0.39. In addition, the TM and RMSD scores of 0.66 and 7.2Å of model 3 represent
the standard similarity and accuracy of the modeled structures. Notably, there is no 3D structure
available for the TLR5 on the protein data bank. I-TASSER was used to model the 3D conformational
structure of TLR5. The C-score, TM, and RMSD scores of the best model 1 of TLR5 are −0.35, 0.82 and
6.8Å, respectively. Therefore, model 1 is suggested as the best model with a higher confidence level.
In addition, modeling with Robetta, we have obtained five different models for TLR5 and the chimeric
vaccine candidate. Models 1 and 4 are de novo models while models 2, 3, and 5 are ab initio models.
The Ginzu domain prediction confidence score for TLR5 is 0.9375, and for SGD58 is 0.6502. All the
models were selected for structural refinement analysis.

3.4.2. Structural Refinement

The acquired best-modeled 3D structures of SGD58 and TLR5 underwent structural refinement
using servers GalaxyWEB and 3D refine. The GalaxyRefine program gives five best-refined models for
the whole SGD58 and TLR5. In addition, the lowest 3Drefine score represents the good quality of the
refined model, based on the 3D refine force field. All the refined models (1–5) of both GalaxyWEB and
3D refine were used for further structural validation.

60



Viruses 2019, 11, 63

3.4.3. Structural Validation

The refined 3D structure obtained in the above section underwent quality improvement using
three potential tools: ProSA-web, RAMPAGE, and the ERRAT. The Z-score (ProSA), overall quality
factor (ERRAT), and the favored, allowed, and outlier region (RAMPAGE) of the validated 3D structure
of SGD58 are given in Table S4 and TLR5 in Table S5. Figure 2 illustrates the Z-score, overall quality
factor and the favored, allowed, and outlier region of the selected best SGD58 model. From overall
comparison of the obtained results, the Robetta model 3 of SGD58 (Figure S2a) and the Robetta model
5 of TLR5 (Figure S2b) using UCSF Chimera were selected for further analysis.

Figure 2. Validation outcome of the refined 3D structure of SGD58. (A)The ProSA Z-score of the
refined model is -6.65, which is shownby the dark black color spot. The values are presented in the
range of native protein conformation. The dark blue and light blue color region represents the Nuclear
magnetic resonance and X-ray spectroscopy determination of the experimental protein chains in the
protein database (PDB). The X- and Y-axis represent the number of amino acid residues and Z-scores
respectively; (B) In the Ramachandran plot of the refined model, we illustrated the favored in green
circle (96.8%), the allowed in triangle (2.8%) and the outlier in yellow shaded circle (0.3%) regions.
(C) The ERRAT Plot shows that the overall high quality factor of the refined SGD58 is 99.0033. * On
the error axis, two lines are drawn to indicate the confidence with which it is possible to reject regions
that exceed that error value. ** Expressed as the percentage of the protein for which the calculated
error value falls below the 95% rejection limit. Good high resolution structures generally produce
values around 95% or higher. For lower resolutions (2.5 to 3A), the average overall quality factor is
around 91%.
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3.5. Conformational B-Cell Epitopes

The results of the Discotope 2.0 analysis demonstrated that 18 potential B-cell epitopes were
obtained from 318 total residues. Table S6 explains the respective amino acid, residue with contact
number, propensity, and Discotope score of the predicted B-cell epitopes.

3.6. Investigation of the Interaction between SGD58 and TLR5

3.6.1. PP Docking Interaction

From the above findings, the best-refined model of SGD58 (Robetta model 3) and TLR5 (Robetta
model 5) was used to perform molecular docking using the HADDOCK server. The binding cavity of
TLR5 and Flagellin was obtained from a previous report [76,77]. The input TLR5 receptor contains
858 amino acids and SGD58 contains 2923 amino acids. The human TLR5 sequence contains 21 different
leucine-rich repeats (LRR) segments with 443 amino acids. Flagellin contains two D1/D0 TLR-binding
domains in the N and C terminals of the sequence.

The HADDOCK method directly permits the integration of biophysical information about
the protein–protein complex in order to constrain docking. In this study, we docked the target
receptor (TLR5) chimeric vaccine candidate (SGD58) to observe the interaction between the complexes.
The HADDOCK method clustered 116 structures into 12 clusters, which represents 58.0% of the
water-refined models that HADDOCK generated. The TLR5-SGD58 complex shows the highest
HADDOCK score of −62.5 ± 7.6, representing the good affinity level between the target and vaccine.
The buried surface area (BSA) of cluster 4 of the TLR5-SGD58 complex is 1914.4 ± 124.4, which indicates
close proximity and a less water-exposed protein surface. The desolvation energy (43.1 ± 7.9), restraints
violation energy (1192.9 ± 96.93), and BSA have a high-quality association with the docking score of
the complex. The HADDOCK score, interaction energy, Van der Waals energy, electrostatic energy,
desolvation energy, restraints violation energy, and BSA of the top tenclusters are given in Table S7.
In all, there are 44 hydrogen bonds between cluster 4 of the TLR5-SGD58 complex. The following
amino acids, namely, Lys 148, Asp258, Ser 145, Arg 62, Asn 65, Gln 96, Arg 122, Asn 150, Asn 266,
Tyr 120, Lys 177, Gly 76, Glu 80, Gln 72, Thr 73, Ser69, Asn 65, Gln 96, Arg 122, Thr 58, Asp 118,
Gly 119, Asp 93, Asn 65, Ser 69, Arg 122, Asn 123, Asp 258, Thr 73, Gln 72, Glu 80, Asn 83, Lys 125,
Gln 72, Ser 69, Asn 65, Arg 122, Ser 145, Gln 254, Gly 119, Glu 80, Asn 83, Thr 73, Arg 247, Glu 171,
Asp 118, and His 143 act as interacting residues present in the best four clusters of the TLR5-SGD58
complex(Figure 3). Thus, the TLR5-SGD58 complex docking analysis and the intermolecular hydrogen
bonding patterns confirm that the interaction of the chimeric vaccine candidate with the target TLR5
can induce both cellular and humoral immunity and inhibit HPV progression.

62



Viruses 2019, 11, 63

Figure 3. LIGPLOT prepared interacting residues in the TLR5_SGD58 complex. (A–D) represent the
best structures of the TLR5_SGD58 cluster. The color-coding represents the TLR5 in brown color and
the SGD58 in pink color. The dashed lines in green color denote hydrogen-bonding interactions.

3.6.2. MD Simulation

MD simulation demonstrated the stability of the TLR5_SGD58 docked complex in the active
site of TLR5. RMSD is the known parameter by which to determine the obtained structure from the
MD trajectory. This parameter was evaluated as a preliminary analysis of the backbone atoms of
TLR5. The structure and dynamic proprieties of TLR5 were determined using the backbone RMSDs
during the simulation period (Figure 4). The RMSD of TLR5 was gradually increased until 20 ns and a
nearly 8–100 ns period with 3–4 nm of deviation, and after 30–80 ns, it was stable. The RMSD curve
of SGD58 indicates an insignificant variation from 0–20 ns at 5.0 nm, and after 20 ns, it was stable.
SGD58 has more a stable RMSD value compared to TLR5 (Figure 4A). The flexibility of each residue
in the TLR5-SGD58 complex is calculated based on root mean square fluctuations (RMSF). Figure 4B
shows that TLR5 has an insignificant variation of residues, which indicates that this molecule was
stable during the MD simulation time of 100 ns. These residues have well-known interactions with
the vaccine candidate. The ND1b domain (100–200 residues) of the Flagellin fragments of SGD58
shows a low flexibility, which can be attributed to their interaction with the TLR5 protein (Figure 4C).
In addition, CD1 and CD0 domains have more fluctuations (200–250 residues). Figure 4D illustrates
hydrogen bond interactions throughout the simulation period, to understand the binding efficiency
of TLR5 with SGD58. The average number of hydrogen bond interactions was observed in 2.0 nm.
Figure S3 illustrates that the potential energy (PE), temperature, total energy (TE), and pressure of
SGD58 was stable during the simulation period. The average TE of SGD58 is −7207307343.324 with
a standard deviation of 4279.598082. In addition, the average PE of SGD58 is −8985342.697 with a
standard deviation of 3370.264894. PE and TE attained equilibrium at a temperature of 300K. The result
of the radius of gyration (Rg) analysis is shown in Figure S4. The simultaneous changes in the Rg plots
of the complex with TLR5 (Figure S4a) and SGD58 (Figure S4b) indicate that the substantial nature
of the complex frequently increases. The Rg plots compression of SGD58 with TLR5 is similar to the
RMSD parameter, which indicates the effort of SGD58 to reach internal configuration in TLR5.
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Figure 4. (A) The backbone root mean square deviation profile of TLR5 and SGD58 is depicted for the
entire 100 ns. (B) The root mean square fluctuation of TLR5. (C) The root mean square fluctuation
of SGD58. (D) The total number of intermolecular H bond interactions between SGD58 in complex
with TLR5.

3.6.3. Virtual Gene Expression and Cloning

For the given SGD58, the optimized reverse-translated coding sequences were obtained using
the EMBOSS Backtranseq tool. The maximal protein expression of this optimized coding sequence in
the host (E. coli) was analyzed by the GenScript’s OptimumGeneTM codon optimization tool. Figure
S5 illustrates the CAI, GC, and CFD of the gene transcript. The gene (reverse translated coding
sequence of the vaccine construct) having an ideal CAI value of 1.00 (>0.8) is more suitable for the
above expression (E. coli) in the host organism. Moreover, 59.92% of ideal GC content is presented
in the gene (between 30% and 70%). However, values outside of these peak ranges would severely
inhibit the transcriptional and translational efficiency of the gene products. The CFD value of the gene
is 100%, representing their highest codon frequency distribution in the preferred expression organism.

4. Discussion

Immunomics is an integrative area of computer science and experimental immunology and
plays a vital role in vaccine development. Immunomics tools and databases are used to forecast
the target epitope segments to enhance CTL or B-cell immunity in a cost-effective manner and less
experimental time [78–82]. The computational vaccine design involves the engineering of potential
non-pathogenic epitope segments with adjuvants to enhance the function of the human immune
system against dreadful diseases, including cervical cancer. Unlike conventional vaccines, peptide
or epitope vaccines have several advantages; they are synthetic (pathogen-free), have less unwanted
side effects, minimize accidental allergenic reactions, and design and predict peptides with self or
non-self antigen to elicit and balance the immune responses [83,84]. HPV58 is considered as the
most predominant genotype causing cervical cancer incidences in China. HPV has type-restriction,
non-targeted delivery, and a high-cost of existing vaccines, which makescontinuing research on HPV
vaccine development necessary. Therefore, this study aimed at the design of a chimeric vaccine via
targeting HPV through immunomics, PP docking, and MD simulation approaches.

Earlier reports suggest that the L2 protein is majorly buried or hidden under the surface of native
and matured virions [32,85,86]. The initial interactions between L1/L2 are hydrophobic with coverage
of small stretches of amino acid sequences. It exhibits potential effects during in vitro assembly [87].
However, the structural relation of L2 minor capsid protein to L1 in the virion particles is not clearly
known. In another study, Henio et al. [88] reported that the L1/L2 proteins of HPV have various
antigenic epitope segments such as 32–81, 212–231, 272–291, and 347–381 amino acids, and these could
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be accessible on the surface of L1/L2 virus-like particles. In particular, the N-terminal region of the L2
protein is highly conserved and has diverse functions: it mainly participates in the attachment of the
virus particle and its genome assembly in the host system. The N-terminal region 1–12 amino acids
are in the DNA binding domain, the 9–12 amino acids are in the furin-cleavage site, and the 22–45
amino acids are in the cyclophilin-B and β-actin-binding domain [89–91]. The L2 protein can act as the
prospective target to design the next-generation prophylactic vaccines for HPV [92]. This strategy is
prominently supported by the early evidence, such as the production of cross-neutralizing antibodies
RG1 [93], K4L2, and K18L2 [94] against the target sites (17–36 AA and 20–38 AA) of L2 in various
experimental models. The weak immunogenicity of L2 is a significant obstacles in epitope-based
vaccine development; to date, no L2-VLPs-based prophylactic vaccine has been approved for clinical
application [30]. Therefore, in this study, we selected the L2 protein to predict the potential epitope
candidate and enhance the immunogenicity using adjuvants to design a chimeric vaccine.

Adjuvants have different roles including up-regulation of the immune response, increased
action of neutralizing antibodies, processing of cytosolic MHC class-I restricted peptides and target
presentation to a specific receptor, acting as an immunogen, and application in the preparation
of a single dose [95]. To increase the immunogenicity of L2-derived peptides, the selection of a
suitable adjuvant plays a vital role in the vaccine design. Instead of mixing the appropriate adjuvant
directly, designing the peptide vaccine candidate using suitable linkers and adjuvants could be
highly effective. Alhydrogel® adjuvant 2%, known as “alum,” is frequently used as an adjuvant in
diphtheria-tetanus-pertussis (DTP), HPV, and hepatitis vaccination [96]. Although the alum adjuvants
induced the Th2-mediated immune response, they are ineffective to the pathogen, which is indeed
of the Th1 immunity. Later, the emulsion-based incomplete Freund’s adjuvant (IFA) was developed,
which induces potential Th2, and little Th1-mediated immune responses [97]. However, the application
of the emulsion-derived adjuvants is not supported well in the vaccination program due to the
induction of autoimmune disorders and an unclear mode of action [98]. To overcome these issues
TLR-based ligands were developed and achieved success in the generation of both Th1 and Th2
immune responses in the experimental models. Alphs et al. [99] achieved potential immunogenicity of
the synthetic lipo-peptide (HPV16 L2) vaccine through fusion with the Th epitope and TLR ligand.
Bacterial Flagellin is a potential TLR5 ligand, which can induce the production of both Th1 and Th2
immune responses.

It is frequently used as an adjuvant in the recombinant vaccine production when fusing with
antigenic particles [100,101]. Flagellin, a TLR5 ligand, binds to the particular domain (Toll/interleukin-1
receptor) of the TLR5 receptor in humans. Notably, another newly developed and licensed adjuvant
used for human vaccine development is the adjuvant system 04 (AS04). Moreover, AS04 was developed
by a combination of 3-O-desacyl-4′-monophosphoryl lipid A (MPL), which is a prominent TLR4 agonist
and aluminum salt. In the presence of Cervarix, the AS04 adjuvant induced the function of NF-kappa
and cytokine synthesis in cancer cells and animal model. It leads to the appearance of increased
antigen-loaded dendritic cells and monocytes followed by CD4+ and B-cells in the injection site [102].
Moreover, as a result of two-dose schedule trial in young girls (9–14 years), the HPV16/18 plus
AS04 adjuvant vaccine (Cervarix) was highly immunogenic and has been approved clinically for the
prevention of HPV infection, precancerous CIN (I/II/II), and cervical cancer [103]. In 18–25-year-old
Chinese women, AS04 adjuvant vaccines were reported as having immunogenicity and an acceptable
harmless profile from the randomized-controlled trial [104]. RS09 (short synthetic peptide segments
“APPHALS”), is a ligand to TLR4. RS09 does not contain any toxicological effects, and is devoid of skin
irritation, serious eye damage, and carcinogenic properties, etc. It successfully enhances the nuclear
factor of kappa-light-chain-enhancer of activated B cell (NF-κB) translocation pathways and enhances
the pro-inflammatory cytokine and antibody serum concentration in macrophage cells and animal
models [105]. TLR adjuvants play an advanced role in commercial vaccines [106]. Two universal
Th epitopes (PADRE and TpD) were added to the chimeric vaccine to resolve the deficiency of Th
responses. The pan HLA DR-binding epitope is known as “PADRE”. It has a binding affinity with
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more than 15 MHC class-II allotypes and induces proliferative CD4+ in peripheral blood mononuclear
cells (PBMC) from humans [107]. In this manner, it explains the issue raised by HLA polymorphism in
the human population [108]. It is extensively studied for synthetic peptide-based vaccine development
in C57BL/6 cervical cancer models and Phase I/II clinical trials [109–111]. TpD is another universal
memory T-cell helper peptide. The immunization of TpD produces a promising antibody and enhances
long-term CD4+ immune response in mice, Rhesus macaques, cynomolgus monkeys, and PBMC in
humans [112]. Therefore, we have chosen two different Th epitopes (PADRE and TpD) and two TLR
adjuvants (Flagellin and RS04) to enhance the immunogenicity in the chimeric vaccine.

A small flexible linker sequence was employed to join various segments of epitopes, the TLR
agonist, and the Th epitopes in the vaccine construct. In this study, GGS linker was used to join the
various segments in the vaccine design. The GGS linker facilitates the natural rotation or movement of
the epitope segments and adjuvants and ameliorates their free identification by the surface receptor
molecules [113,114]. GGS linkers contain nonpolar glycine (Gly) and polar serine (Ser) amino acid
residues, which prohibit unnecessary complex formations between the linked partners and retain the
function of the chimeric vaccine. A GGS spacer was presented in both natural and artificial linkers,
to either increase the stability of the binding domain partners or stabilize the PP complex [115].

The targeted delivery of a vaccine can improve the efficiency and achieve a better outcome.
In this study, weselected TLR5 as the target for the chimeric vaccine. Innate immunity-inducing
TLR5 are mainly expressed on antigen presenting monocytes and dendritic cells while they encounter
the entry of pathogenic microbes [116]. Moreover, TLRs are a well-categorized pattern recognition
receptor (PPR) family, which involves the sensing of invading virulent pathogens entry into the
host [117]. Horseshoe-shaped LRR are present in each TLRs conserved fold for binding to their
respective legends [118]. Numerous studies report that after the binding of TLR5 to the specific
ligand, it induces the myeloid differentiation gene 88 (MYD88), which triggers activation of the
tumor downstream signaling pathways including NF-κB, mitogen-associated protein kinase (MAPK),
and interferon regulatory factors (IRFs) [119]. Once the TLRs recognize their ligand, they become
active and induces the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF),
interleukins (IL), and INFs [117,118]. In this manner, the host cell increases the capacity to eliminate
the invading pathogens. Kim et al. [120] reported that TLR5 is a potential biomarker for the malignant
transformation of cervical squamous cells. Therefore, in this study, we selected TLR5 as a target for the
chimeric vaccine and its efficiency was determined using PP docking and MD simulation.

TLR5 is an excellent receptor for Flagellin, which is the major component of the bacterial
Flagella [116]. Flagellin adjuvant has been extensively used in experimental HPV vaccination.
Interestingly, when the host cell responds to Flagellin, TLR5 induces B-cell differentiation into the
plasma producing B-cells. Earlier reports demonstrate the significance of Flagellin fused L2-multimer
vaccines in experimental rabbits and mice [121,122]. Flagellin is madeup of four important domains: D0,
D1, D2, and D3. The D0 and D1 domains are composed of highly conserved N-terminal (1 to 200 amino
acids) and C-terminal (405–494 amino acids) regions, which is important for TLR5 agonist action.
In addition, the centered hypervariable D2 and D3 regions show the vast differences, by their size and
composition, among the various bacterial microorganisms [123–125]. Owing to the higher antigenicity
and toxicity caused by the central D2/D3 domain, this antigenic part is removed or replaced by the
optimized epitope segments or different adjuvants in the vaccine design. D2/D3 antigen replacement
in Flagellin enhances mucosa-immunoglobulin productions in the experimental animal models through
intranasal immunization [126]. Therefore, we selected the N and C-terminal regions of Flagellin in the
design of the chimeric vaccine. Forstneric et al. [125] reported the appropriate identification of Flagellin
by the homology modeled hTLR5 and mTLR5. The crystallographic complex structure of zebra fish
TLR5 with the domains (D1, D2 or D3) of Salmonella sp. were also studied [77]. However, there was
a lack of availability of the crystal structure of TLR5 until now. Therefore, in this study, homology
modeling, structural refinement, and validation were performed and found using the Robetta model 5
of TLR5 obtained using the Robetta, 3DGalaxyRefine, ProSA-web, RAMPAGE, and ERRAT. Moreover,
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TLR5 is greatly presented in vertebrates [77,125,127]. It facilitates the PP interaction analysis of TLR5
with Flagellin using HADDOCK, as shown in Figure 4b. It shows the interacting residues of this
complex observed between the LRR region of TLR5 and the D0/D1 domain of Flagellin. This finding is
significantly supported by earlier reports [125,127] concerning TLR5 recognition of the D0 of Flagellin
by the inflammasome receptor, for preventing the immune escape of invading pathogenic strains.
The MD simulation results depict a constant and stable interaction between SGD58 and TLR5. During
the MD simulation study, TLR5 was stable after 15 ns, whereas SGD58 exhibited insignificant variations
and was then stable after 10 ns. The structural changes were observed to have gained the optimal
sustainability of SGD58 and TLR5. In addition, very slight changes were noticed in the D0/D1 domain
regions of SGD58. Finally, the results of the codon optimization and virtual cloning confirms the
translated chimeric vaccine sequence in E. coli to be capable of regulating the higher level of gene
expression. The successful expression of the designed virus-like particles of HPV in E. coli is reported
in earlier studies [128,129], which can enhance the production of the vaccine at a cheaper cost.

From this report, the new chimeric vaccine candidate was engineered using various immunomics
tools, PP docking, and MD simulation, which can reduce the experimental cost and time. The designed
chimeric vaccine SGD58, has appropriate structurally refined, physiochemical, and immunological
properties that can produce humoral and cellular immune responses against HPV. The designed
chimeric vaccine has cross-production with the 15 different hrHPV strains. Further experimental
investigation is planned to determine the efficiency of the chimeric vaccine, especially allele-specific
for the Chinese population.
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Abstract: Counting labeled cells, after immunofluorescence or expression of a genetically fluorescent
reporter protein, is frequently used to quantify viral infection. However, this can be very tedious
without a high content screening apparatus. For this reason, we have developed QuantIF, an ImageJ
macro that automatically determines the total number of cells and the number of labeled cells
from two images of the same field, using DAPI- and specific-stainings, respectively. QuantIF can
automatically analyze hundreds of images, taking approximately one second for each field. It is
freely available as supplementary data online at MDPI.com and has been developed using ImageJ,
a free image processing program that can run on any computer with a Java virtual machine, which is
distributed for Windows, Mac, and Linux. It is routinely used in our labs to quantify viral infections
in vitro, but can easily be used for other applications that require quantification of labeled cells.

Keywords: virus; infection; fluorescent reporter protein; image quantification; Hepatitis C virus;
Yellow Fever Virus; polyomavirus; Coxsackievirus B4

1. Introduction

When evaluating viral infections in vitro, fluorescence microscopy is commonly used to monitor
the expression of a viral protein following immunostaining. However, this method requires a high
content screening apparatus to count large numbers of fluorescent cells. Manual evaluation is feasible
when analyzing few images, but it can result in subjective evaluation by the researcher. Furthermore,
it is very time-consuming when working with hundreds of images, containing thousands of cells
per image.

ImageJ is a free image-processing program that was developed 20 years ago by Wayne S. Rasband
at the National Institute of Health, and has become a valuable tool for researchers [1,2]. It is a Java-based
software that can run on any computer using a Java virtual machine. It is thus available for Windows,
Mac, and Linux. ImageJ can convert images into numerical values that can be exported and further
processed with other software for statistical analysis. Furthermore, a major strength of ImageJ is the
possibility to record macros that enable the automatization of image analysis.

In this technical note, we present QuantIF, an ImageJ macro for determining the percentage of
fluorescent cells following immunofluorescence staining. QuantIF can be used when the specific
staining in the cytoplasm and/or nucleus of a cell is diffuse. The macro automatically determines the
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total number of cells and fluorescently labeled cells for a series of images corresponding to different
conditions. For each condition, two pictures of the same field must be taken, the first one corresponding
to the specific staining and the second one corresponding to the DAPI staining. In this way, the series
of images to be analyzed are placed in the same folder, with images corresponding to the specific
staining in odd rank and images of DAPI staining in even rank. When the macro is run, it automatically
processes all images in the folder, taking around one second to analyze both images of each field.
Ultimately, all results are saved as a “.xls” file that can be processed for statistical analysis.

2. Macro Description

QuantIF was developed using ImageJ version 1.52e and Java version 8. It is freely available
as supplementary data online at MDPI.com. In order to use the QuantiIF macro, it is necessary
to save the QuantIF.ijm file in the “Plugins” folder of ImageJ. The macro will then appear in the
“Plugins” menu. When QuantIF is launched, the folder containing the images for analysis must be
selected. Then, parameter values should be entered in a dialog box (Figure 1a), (i) the type/name of
the specific staining, (ii) the staining threshold, and (iii) the size limits of nuclei. Once the parameters
have been entered, the macro starts analyzing the images. They are first converted to 8-bit images,
displaying 256 gray levels. Indeed, we recommend directly exporting images as 8-bit TIFF files, from
the microscope software. The background of the images is then removed by running the efficient
“Subtract Background” ImageJ command.

QuantIF relies on the “Analyze Particles” tool of ImageJ, which requires binary, black and white,
images. For this reason, images are converted to binary masks by implementing the Huang’s fuzzy
thresholding method [3]. An automatic threshold is set for DAPI staining images since strong and
contrasted signals are expected for all these images (Figure 1b,c). In contrast, for immunostaining
images, the automatic threshold is generally not applicable since some images may show no signal
(in negative controls for instance). For this reason, a manual thresholding is implemented with the
staining threshold value entered in the parameter’s dialog box (Figure 1a). The threshold value must
range between 0 and 255; pixels with values under and above the threshold are converted to white and
black, respectively (Figure 1d,e). The “Watershed” command is also applied to the DAPI staining mask
in order to separate nearby nuclei [4]. However, it is important to avoid cell overconfluence to obtain
interpretable results (see below). Furthermore, the commands “Dilate”, “Close”, and “Fill Holes” are
applied to the mask of the specific staining in order to completely include the area corresponding to
the nuclei. To analyze similar particles in the DAPI- and specific-staining masks and avoid counting
autofluorescent debris, a new mask corresponding to the nuclei of immunostained cells is created. This
is performed by executing the “Image Calculator” command and the “AND” operator using the DAPI-
and specific-staining masks (Figure 1f). Finally, the total number of DAPI-stained and immunostained
cells’ nuclei are counted by implementing the “Analyze Particles” tool to the DAPI staining mask
(Figure 1g) and the immunostained cells’ nuclei mask (Figure 1h), respectively. The size limits for the
nuclei entered in the parameters dialog box correspond to the minimum and maximum pixel area
sizes that are taken into account to exclude anything that is not an object of interest. Additionally,
to help exclude unwanted objects, roundness values have been set between 0.7 and 1.0.

After processing, the numbers of DAPI-stained nuclei and immunostained cells’ nuclei for each
condition are saved as a “.xls” file in the folder that has been analyzed (Figure 1i). In addition, “Total
Area”, “Average Size”, and “%Area” values are saved in the file. While “Total Area” values are not
useful, the “Average Size” values can help in choosing the size limits for the nuclei that must be entered
in the parameters dialog box. Furthermore, “%Area” values of the DAPI staining masks give an idea
on cell confluence, which should not typically exceed 30% for optimal results. To help researchers
find the best parameters for their analyses, the different masks can be saved in the folder that is being
analyzed. To do so, the “//” symbols preceding the “saveAs” line commands must be deleted in the
QuantIF.ijm file.
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Figure 1. Description of the QuantIF macro. After entering the parameters into the dialog box (a), two
images of each field are analyzed. The DAPI staining image (b) is converted to a DAPI staining mask
(c), and the specific staining image (d) is converted to a specific staining mask (e), by implementing the
Huang’s fuzzy thresholding method. A third mask corresponding to the nuclei of the immunostained
cells is created using the “Image Calculator” command and the “AND” operator (f). Finally, DAPI
stained nuclei and immunostained cell nuclei are counted using the “Analyze Particles” tool (g,h).
After processing, the numbers of DAPI-stained nuclei and immunostained cell nuclei for each condition
are saved as a “.xls” file in the folder that has been analyzed (i). A merge of the DAPI and specific
staining images is shown for informational purposes (j).

3. Discussion and Conclusions

QuantIF is a free, simple, and robust automated tool to estimate the proportion of virally infected
cells after immunofluorescence. It is routinely used in our labs to quantify Hepatitis C Viral infections
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following detection of the E1 envelope glycoprotein that localizes predominantly to the endoplasmic
reticulum in HCV-infected cells [5,6]. Similarly, we use it to evaluate Yellow Fever Virus infections
using anti-E staining [5]. QuantIF is also used to quantify BKPyV and SV40 infections after detection
of the VP1 or AgT proteins that show cytoplasmic and/or nuclear staining patterns (Figure 1d), as
well as Coxsackievirus B4 infections using anti-VP1 staining [5]. QuantIF can also be used to quantify
infection when using recombinant viruses expressing fluorescent reporter proteins [5]. Furthermore,
it can serve many researchers for other applications that require counting labeled cells.

Supplementary Materials: The following is available online at http://www.mdpi.com/1999-4915/11/2/165/s1,
File S1: QuantIF.ijm.
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Abstract: Bivalve mollusks thrive in environments rich in microorganisms, such as estuarine and
coastal waters, and they tend to accumulate various particles, including viruses. However, the current
knowledge on mollusk viruses is mainly centered on few pathogenic viruses, whereas a general view
of bivalve-associated viromes is lacking. This study was designed to explore the viral abundance
and diversity in bivalve mollusks using transcriptomic datasets. From analyzing RNA-seq data
of 58 bivalve species, we have reconstructed 26 nearly complete and over 413 partial RNA virus
genomes. Although 96.4% of the predicted viral proteins refer to new viruses, some sequences
belong to viruses associated with bivalve species or other marine invertebrates. We considered short
non-coding RNAs (sncRNA) and post-transcriptional modifications occurring specifically on viral
RNAs as tools for virus host-assignment. We could not identify virus-derived small RNAs in sncRNA
reads obtained from the oyster sample richest in viral reads. Single Nucleotide Polymorphism (SNP)
analysis revealed 938 A-to-G substitutions occurring on the 26 identified RNA viruses, preferentially
impacting the AA di-nucleotide motif. Under-representation analysis revealed that the AA motif is
under-represented in these bivalve-associated viruses. These findings improve our understanding
of bivalve viromes, and set the stage for targeted investigations on the specificity and dynamics of
identified viruses.

Keywords: bivalve; virome; RNA-seq; RNA viruses; sncRNA; ADAR; RNAi

1. Introduction

Viruses are the most abundant biological entity on the Earth, likely outnumbering bacteria and
eukaryotic cells [1], with the oceans being the most likely richest reservoir of virus biodiversity [2].
The only constraint that viruses have is the need for a host for their replication, either to take
advantage of the host replication machinery, or to hijack the genome to freely replicate as selfish genetic
elements [3]. The evolutionary success of viruses is supported by highly dynamic genomes, which
can undergo punctual changes or integration events that enable the circumvention of host immune
defenses, the capture of new genes, and even host switching, among other events [4,5]. The frequent
exchange of genetic material is evident in the highly variable sizes of viral genomes. While RNA
viruses seem to have a ~32 kb size constraint [6], the genomes of DNA viruses can be uncommonly
large, with the giant Mimiviruses genomes being in the order of megabases and far exceeding the few
kilobases of circular single stranded DNA genomes of cress viruses [7,8]. The presence of an antiviral
system in every living organism further supports the global distribution of viruses [9], although their
biological roles go beyond pathogenicity [10]. In fact, viruses are responsible for selective pressures
causing evolutionary transitions [11] as they drive the dynamics of host populations and interfere with
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biological invasions [12]. The gene flux from viruses to eukaryotic organisms is suggested to drive
the long-term evolution of host genomes [13]. Conversely, the evolutionary pressure of host antiviral
defenses shapes viral genomes in a never-ending arms race [14–17]. According to the sequence data
currently available, the viruses identified so far represent a numerically insignificant portion of viral
biodiversity, possibly no more than 1% of the extant viruses [1,18]. Thanks to an unprecedented level
of sensitivity and accuracy, high-throughput sequencing (HTS) has become the gold standard for viral
discovery and for advancements in the characterization of viral metagenomes [19,20], although most of
the so-generated viral sequences remain “unclassified” due to uncertainty about authentic virus hosts.
As viruses are mostly hidden in the host nucleic acids, and an unusually high sequencing coverage
would be necessary to allow their detection, the current representations of the extant virosphere
are fragmentary, and they crucially depend on sample preparation strategy, sequencing technology,
and sequencing depth [21]. Nevertheless, DNA and RNA sequencing datasets often contain viral
sequences, and committed analyses can provide snapshots of the viromes associated with a given
organism [5,22].

Although it is steadily expanding, virus discovery and the study of antiviral immunity in
invertebrates is biased towards a few model organisms and arthropods of economic and medical
importance [23]. In this respect, highly speciose and ecologically important groups like mollusks,
and the Lophotrochozoa more widely, remain largely unstudied, leaving huge taxonomic gaps in
our knowledge. Since their initial diversification in the early Cambrian (Paleozoic Era), bivalves
successfully colonized a variety of aquatic environments, from cold-water seas, to freshwater basins
and deep anoxic vents, with some species showing an invasive behavior [24–27]. A number of bivalve
species have been investigated for their peculiar adaptation strategies [28], innate immune systems [29],
and bio-inspired applications [30] as well as for their use as models for human health [31]. Today,
few bivalve genome drafts are available, whereas more than 2,100 transcriptomic datasets have been
deposited in public databases (NCBI SRA archive, accessed in November 2018). So far, very few
viruses of bivalve mollusks have been described, mainly those that have major negative economic
impacts on farmed species. In particular, a herpesvirus (Ostreid herpesvirus-1, OsHV-1) associated
with temperature-related oyster mortalities [32] has become a pressing issue for the production sector,
and today, OsHV-1 and its variants are described in numerous studies [33–38]. Viruses belonging
to the Papovaviridae and Iridoviridae families have been associated with bivalve diseases, whereas
a few members of the Togaviridae, Reoviridae, Birnaviridae, and Picornaviridae virus families have
been reported without evidence of associated disease [39,40]. Until the advent of HTS technologies,
the identification of these viruses was mainly based on electron microscopy, and seldom validated by
molecular studies [41].

Virome discovery through RNA HTS is challenging when applied to bivalve samples. According
to the ability to detect minute quantities of viral nucleic acids, HTS also catches sequences that
possibly derive from tissue surface contamination, or from the simple transit of another virus host
in bivalve tissues [42,43]. The identification of giant viruses and human viruses in bivalve samples
mainly accumulated in the gills and gut by filter-feeding [44–46], and the presence of an algal virus
(Heterosigma akashiwo RNA virus-1) in the gills of both Crassostrea gigas and Mytilus galloprovincialis
growing up in association [47], exemplify the importance of developing new approaches for assigning
a virus to its authentic host. Ecological role and economic importance, peculiar genome features,
differential susceptibility to pathogens, as well as their tendency to accumulate microbes highlights
filter-feeding bivalves as fascinating models for virus–host interaction studies. The objective of this
work was to explore the diversity and distribution of bivalve RNA viruses through the analysis of
available RNA-seq samples. To do so, we performed an extensive analysis of the HTS transcriptome
data of bivalves, we recovered bivalve-associated RNA viruses, and we traced their distribution
over many bivalve RNA-seq samples. Moreover, we investigated how different RNA selection
methods applied during library preparation can affect the performance of viral-oriented HTS analysis.
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Finally, we tested two different in silico approaches for assigning bivalve-associated viruses to their
genuine hosts.

2. Materials and Methods

The overall analysis pipeline is summarized in Figure 1, and it is detailed through the following
paragraphs. The analyses are based either on the available RNA-seq datasets, or on newly produced
data that we submitted to the NCBI SRA archive (the corresponding IDs are cited in the text and tables).

 
Figure 1. Summary of the analysis pipeline. The graph summarizes all of the steps that were used to
extract viral sequences from bivalve RNA-seq datasets. Additional details are reported in corresponding
sections of Materials and Methods.

2.1. Data Retrieval

Public sequence datasets were retrieved from NCBI databases in April 2017. A total of 7125
viral genomes, including 3008 RNA viruses, were downloaded from the NCBI Genome database.
Additionally 1102 invertebrate-associated RNA virus genomes were downloaded from the NCBI
nucleotide database [43,47] for a total of 4110 genomes of RNA viruses. RNA-seq samples referring to
58 bivalve species and four pooled bivalve or gastropod meta-transcriptomic samples were obtained
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from NCBI SRA archives. Genome drafts of five bivalve species (Bathymodiolus platifrons, C. virginica,
Mizuhopecten yessoensi, Modiolus philippinarum, and M. galloprovincialis) were downloaded from the
NCBI WGS database, while C. gigas and Pinctada fucata genomes were obtained from EnsembleMetazoa
release35 and from [48], respectively. Supplementary Table S1 summarizes the sequence datasets
used in this work. Cytochrome C Oxidase Subunit I (COI) sequences were downloaded from the NCBI
nucleotide archive, and their redundancies were reduced using cd-hit-est [49], applying a cut-off of 95%
similarity. In order to compare two RNA selection methods for their aptitudes of viral read recovery,
we retrieved two RNA-seq datasets obtained from a single C. gigas sample (described elsewhere,
SRR8237210 and SRR7636587 for polyA and ribo-depleted data, respectively).

2.2. Transcriptome de novo Assembly, ORF Prediction, and Protein Domain Mapping

RNA-seq reads were trimmed for the presence of adaptor sequences, and for quality, using
TrimGalore! [50], allowing for a maximum of two ambiguous bases and a quality threshold of
PHRED20. Trimmed reads were de novo assembled using CLC Genomic Workbench v.10 (Qiagen,
Hilden, Germany), setting automatic word and bubble sizes, and a minimal contig length of 200 bp.
The resulting contigs were subjected to open reading frame (ORF) prediction, using the transdecoder
tool included in the Trinity suite [51], applying a minimal ORF length of 100 codons. HMMer v.3.1 [52]
was used to identify the presence of conserved protein domains (Pfam-A models, v.29 [53], applying a
cut-off E-value of 10−5.

2.3. Identification of Viral Sequences

A redundant BLAST database [54] was built, using the predicted proteins obtained from all of
the transcriptomic assemblies of bivalve species. All the annotated ORFs encoded by 4110 RNA virus
genomes were translated into amino acids, and the resulting 9376 protein sequences were used as blast
queries against the bivalve database (blastp, cut-off E-value 10−50). Moreover, all the bivalve-derived
protein sequences encoding a viral RNA-dependent RNA-polymerase (vRdRp) domain were selected.
A vRdRp was identified by using six different PFAM Hidden Markov Models, corresponding to IDs:
PF00680, PF00978, PF00998, PF02123, PF07925, and PF04197. Bivalve genome scaffolds were used to
compose a genomic database to discriminate between host-encoded and viral sequences. Sequences
identified from the redundant protein database, and from the search of the vRdRp domains, and
showing no matches against bivalve genomes, were further processed to reduce the redundancy,
applying a cut-off of 90% of similarity (cd-hit). The resulting protein sequences were used to recover the
corresponding nucleotidic contigs from the initial transcriptome assemblies and they were considered
as complete or partial genomes of RNA viruses. For the purposes of this paper, a viral genome was
considered to be “nearly complete” if it was composed of a unique contig that was longer than 5 kb
and encoding at least one complete ORF.

2.4. Distribution of Viruses among RNA-Seq Samples, Expression Analysis, and SNP Calling

The amount of reads mapping to the “nearly complete” viral genomes in selected RNA-seq
samples was determined by stringent mapping of the trimmed reads on the viral genome sequences
(0.9 both for length and similarity fraction, CLC mapper tool). For a selection of informative RNA-seq
samples, the total read counts were used to calculate the percentage of reads mapping to each
virus over the total numbers of reads of the sample, thus providing a comparison of the amount
of viral RNA between RNA-seq samples that was not biased by different sequencing depths or read
layouts. To obtain the expression profiles of selected oyster RNAi-related genes, 183 RNA-seq datasets
(Supplementary Table S1) were mapped onto C. gigas gene models [55] and used to compute expression
values such as transcripts per million (TPM) [56]. RNA-seq data were also used to call single-nucleotide
variations (single-nucleotide polymorphisms, SNPs) across viral genomes. Specifically, to detect
genuine SNPs, the trimmed reads were mapped onto the “nearly complete” viral genomes, setting 0.5
and 0.8 for the length and similarity fractions, respectively. A SNP was called if it was present in at
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least 1% of the locally aligned reads after using the following parameters: minimum average quality of
the five surrounding bases, PHRED30; minimum required coverage, 50×; minimum required count, 5.
The SNPs were annotated according to the neighbor base.

2.5. Estimation of the Contamination Levels of RNA-Seq Samples

To provide an estimation of the fraction of reads that were not related to the declared biological
sample (as indicated in the SRA details), we mapped the RNA-seq reads onto a collection of 205,357
non-redundant COI sequences. Reads were mapped applying a similarity fraction of 0.8, over 0.8 of
the read length (CLC mapper tool) and the TPM values were computed. Similarly, to estimate the
presence of known viruses among the RNA-seq datasets, the amount of reads mapping to the 7125
virus genomes obtained from NCBI was also computed (in this case, by applying 0.9 and 0.9 for the
length and similarity fractions, respectively).

2.6. Small RNA Sequencing and Reads Analysis

The fraction of small RNAs (<200 bp) of the C. gigas sample that was used to prepare the paired
polyA and ribo-depleted libraries were extracted using the Mirvana kit (Thermofisher, Waltham, MA,
USA). RNA was quantified by using a Qubit fluorimeter instrument, and the RNA size profile was
determined with an Agilent small RNA chip (Agilent, Santa Clara, CA, USA). Library preparation and
sequencing (PE150) was outsourced and carried out on an HiSeq Illumina platform (Admera Health,
New York, NY, USA), and submitted to the NCBI SRA archive, under the accession ID SRR8587800.
The paired reads were trimmed for quality, and for the presence of adaptors, as described for mRNA
reads, and the correctly paired reads were joined into fragments. The resulting clean fragments, in a
length range of 15–50 nt, were used for the detection of viral-derived small RNAs (vsRNAs) by direct
mapping on the identified viral contigs or by using the VirusDetect pipeline [57]. To discriminate
between genuine vsRNAs versus RNA degradation products, we correlated the number of mapped
sRNA reads with the viral expression levels.

2.7. Analysis of Viral Genome Editing

The genomes of the RNA viruses retrieved from NCBI were analyzed for the distribution of the
frequency of di-nucleotides as hallmarks of the virus genome fitness (i.e., adaptive genome changes).
To look for these adaptive genome changes, we used the cytidine deaminase under-representation
reporter (CDUR) [58]. Given the user-defined motifs and an input coding sequence, CDUR effectively
utilizes a permutation test to determine whether the given motif is significantly depleted in the input
sequence than one would expect by chance (details below). The two main metrics that are analyzed are:
1. the “below” metric, which determines whether the number of occurrences of a motif is significantly
fewer than expected, and 2. the “repTrFrac” metric, which determines the ratio of motifs that would
incur a non-synonymous transition mutation, against the total number of those motifs in the sequence,
which is significantly fewer than expected. Both of these metrics are determined by shuffling the
coding sequence at the third position of each codons, so that the underlying amino acid sequence
is unchanged. We chose this method of shuffling as it also preserves the GC content of the input
sequence, as changing the GC content has been reported to yield biased results [14]. This shuffling
is repeated 1000 times; in each shuffled sequence, we counted the number of user-defined motifs
(“below” metric), as well as the ratio of nonsynonymous transition mutations that occur at those motifs,
compared to the number of motifs (“repTrFrac” metric). In both cases, we determined the percentage
of shuffled sequences with fewer motif counts and repTrFrac counts than that of the input, to yield a
statistical p-value. A sequence with a p-value of <0.05 is said to be under-represented in that motif
metric, whereas a p-value of >0.95 is said to be over-represented in that motif metric (see Figure 2
in [58]).

A particularly interesting case is when, for a given motif, a sequence is under-represented in the
“below” metric, and is over-represented in the “repTrFrac” metric for that motif. This suggests that
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this sequence has maximally tried to reduce the number of occurrences of that motif, as any further
reduction would result in amino acid changes, which may negatively impact that coding sequence.
Recent studies have shown that certain gammaherpesvirus may be under such pressures [59]. In this
case, the sequence is considered to have attained maximal under-representation. We performed CDUR
analysis on 3872 RNA viral genomes with a known host obtained from NCBI (Supplementary Table
S1), as well as on the newly recovered “nearly complete viral genomes” presented in this paper.

2.8. Phylogenetic Analysis

Protein sequences referring to vRdRP domains were aligned using MUSCLE [60], and trees were
generated with MEGA 6 [61], using neighbor-joining clustering methods with 100 bootstrap replicates.
The phylogenetic tree was uploaded to the iTOL server for easier visualization [62].

3. Results

We produced transcriptomic assemblies of 58 bivalve species, and we used all of the predicted
proteins to produce a redundant BLAST database, including more than 3 million entries (hereinafter
called biv_aa). To identify the putative virus sequences associated with the analyzed RNA-seq samples
from different bivalve species, we queried biv_aa with 9376 protein sequences belonging to 4110 known
RNA virus genomes (Supplementary Table S1). We extracted additional viral sequences from the same
database by searching all six available PFAM domains of viral RNA-dependent RNA polymerase (vRdRp).
In the absence of a conserved viral gene, we used these domains to identify RNA viruses, since
vRdRp is needed for the transcription of the viral genome during productive virus replication [63,64].
For the BLAST searches, we applied a conservative E-value of 10−50, and to further limit false positive
results, we discharged the BLAST matches with less than five hits. Moreover, we screened all of the
positive hits against a database composed of available genomic scaffolds of bivalve species, to remove
genomically encoded sequences (Supplementary Table S1). As a result, 708 biv_aa entries showed a
genuine similarity to viral sequences, and the conserved domains included in these proteins further
sustained their viral origin, since we found 253 vRdRp, 80 CRPV capsid protein like, 73 RNA helicase,
78 Dicistroviridae minor capsid protein, and 69 Picornavirus capsid protein domains (Supplementary Table
S2). The removal of similar sequences (>90% of similarity) resulted in 413 unique sequences. Most of
the redundant sequences were found in transcriptomes of the same bivalve species, either in RNA-seq
samples originating from the same geographical location, as in the case of M. galloprovincialis or C. gigas
samples from Goro (Italy), or obtained from geographically unrelated samples of the same species,
although few exceptions are present, and they are discussed below. Despite most sequences being
retrieved by BLAST searches using viral sequences as queries, they showed a limited similarity to
known viruses (Supplementary Table S2). We could confidently assign only 15 sequences (3.6% of the
total) to 11 known viruses (BLASTn with an E-value lower than 10−100 and identity >95%), namely, six
bivalve-associated RNA viruses from the lagoon of Goro (Italy), two viruses associated with marine
invertebrates from China, plus three other RNA viruses, the algal Heterosigma akashiwo RNA virus, the
plant virus Zygocactus virus X, and the Sacbrood virus (Supplementary Table S2).

3.1. Effect of RNA-Seq Library Preparation Protocols on the Detection of Viral Sequences

In order to evaluate the effect of the RNA selection method applied during library preparation on
the recovery of viral reads, we analyzed two different datasets, each of them derived from a single
biological sample by using alternative RNA selection approaches: polyA RNA selection or ribosomal
RNA depletion. The first dataset was prepared specifically for viral meta-transcriptomic analysis,
starting from two biological samples (named “mix of bivalves”, sample ID: SAMN04625952 and “mix
of gastropods”, sample ID: SAMN04625958 [43]). We analyzed a second dataset obtained from a single
C. gigas specimen naturally infected with OsHV-1, using the same two RNA selection methods (sample
ID: SAMN09760011). The analysis of the four meta-transcriptomic samples showed that, despite a
considerable variability in the numbers of raw reads, the assembled contigs, as well as the number
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of predicted proteins yielded somewhat comparable values, except for SRR3401755, for which only
few proteins could be predicted. For these datasets, polyA-selection allowed for the recovery of a
higher ratio of viral to total proteins, particularly for the bivalve samples (Table 1). On the contrary,
the analysis of the oyster dataset clearly showed the opposite trend in terms of viral read recovery,
since we identified 46 contigs encoding a vRdRP domain in the ribo-depleted sample, compared to
10 in the polyA selected one. Although five out of the 10 polyA viral contigs were also found in the
ribo-depleted dataset, the longer contig was always generated from the ribo-depleted dataset.

Table 1. Assembly statistics of four viral-metagenomic samples. SRA and sample IDs, RNA selection
methods, number of reads in million, and the number of assembled contigs and predicted proteins are
reported. The number of viral RNA-dependent-RNA-polymerase (vRdRp) domains, the ratio of viral
protein to total proteins, as well as the number of complete viral genomes, are also indicated.

SRA ID Sample ID
RNA

Selection
Method

No. of
Reads

(M)

No. Of
Assembled

Contig

No. of
Predicted
Protein

No. of
vRdRp

Ratio of
Viral

Proteins

No. of
Complete

Genomes *

SRR3401648
SAMN04625952

Ribo-depletion 99.7 96,102 45,343 30 0.00007 2
SRR3401653 polyA-selection 58.3 120,399 38,498 129 0.00034 9

SRR3401753
SAMN04625958

Ribo-depletion 47.9 180,272 48,687 43 0.00009 6
SRR3401755 polyA-selection 60.3 105,611 14,661 54 0.00037 4

SRR7637587
SAMN09760011

Ribo-depletion 54.1 156,166 41,785 46 0.00011 5
SRR8237210 polyA-selection 52.0 93,172 40,301 10 0.00002 0

* additional details on the complete viral genomes are reported in Table 2.

3.2. Identification of “Nearly Complete” Viral Genomes

As mentioned above, we putatively identified 413 viral protein sequences in 364 nucleotidic
contigs, indicating that some contigs included more than one viral ORF. Theoretically, each contig
can be considered as a viral genome, but if we compare their average length (1.39 kb) with the
median lengths of the known RNA virus genomes (4.8 kb), a realistic assumption is that most of
these represent incomplete genomes. For the purpose of this paper, we considered “nearly full-length
viral genomes” as only being contigs that are longer than 5 kb and encoding at least one complete
ORF. Therefore, we identified 26 contigs ranging in length between 5.4 and 9.7 kb as being “nearly
complete viral genomes”, with 12 contigs encoding two ORFs corresponding to one replicative and
one structural protein, while the other contigs (14) encoded a single ORF. These “nearly complete”
viruses were named according to the species from which they were assembled (for instance, viruses
identified in RNA-seq samples rich in viral sequences and referring to C. gigas, M. galloprovincialis,
Ruditapes philippinarum, and M. edulis), whereas the unique viral contig found in the Elliptio complanata
transcriptome (Table 2) was a complete viral genome (Elicom_virus1, 7106 nt). Notably, five nearly
complete viral genomes sequences were identified in our ribo-depleted C. gigas RNA-seq sample.
A total of 10 nearly complete viral genomes sequences could be assigned to a known virus, while other
eight other sequences displayed an intermediate/low similarity to known viral sequences, and eight
other different sequences referred to completely unknown viruses (the latter being associated with
RNA-seq samples of C. gigas (4), E. complanata (1), M. galloprovincialis (1), Mizuhopecten yessoensis (1)
and R. philippinarum (1)). In three viral genomes (Bivalve RNA virus G1, Rudphi virus 4, and Heterosigma
akashiwo RNA virus-1) we could identify a polyA tail at the 3’ end of the sequence (Supplementary
Figure S1). New sequences or sequences not fully matching the known viral genomes have been
deposited in the NCBI database, and the accession IDs are reported in Table 2.
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Subsequently, we evaluated the distribution of these 26 viruses in 226 RNA-seq samples, referring
to their putative host species. Since the initial removal of redundant viral proteins suggested that
some of these viruses are distributed over RNA-seq samples of multiple species, or they originated
from samples that were possibly contaminated by pathogen-associated (e.g., Perkinsus spp.) RNAs,
we included additional 24 RNA-seq samples in the distribution analysis, for a total of 250 datasets
(Supplementary Table S3).

More than eight million reads were mapped onto the 26 viral genomes, with 862,949 and 7,092,869
reads that matched the Rudphi_virus3 and Rudphi_virus4 genomes, respectively. Twenty-two viral
genomes were covered by at least 1000 reads, and 82 out of 250 RNA-seq samples included more than
1000 viral reads, and for this reason, they were selected for further consideration (Supplementary
Table S3). In these 82 samples, the fraction of viral reads over the total ones per single virus
usually did not exceed 1‰, except for Rudphi_virus4, which was covered by 30‰ of total reads
for a larval R. philippinarum RNA-seq sample, and Rudphi_virus3, which reached 6‰ in one gastropod
meta-transcriptomic sample (Table 2, and Supplementary Table S3). Few viruses showed a distribution
over samples of different bivalves, e.g., Rudphi_virus4 (present in R. decussatus, R. philippinarum,
C. cortenzinesis, C. gigas, and M. edulis samples) and Bivalve RNA virus G4 (present in C. gigas, M.
galloprovincialis, and Atrina pectinata, Figure 2). Moreover, the occurrences of Rudphi_virus4 and
Rudphi_virus3 go beyond bivalve species, since we traced them both in metagenomic gastropod
samples. Since Rudphi_virus3 originated from a Perkinsus-infected sample of R. philippinarum, and
it was traced in 12 clam datasets, we further investigated the presence of this virus in the publicly
available Perkinsus transcriptome data (11 RNA-seq samples, Supplementary Table S1). As a result,
some reads (3.9‰) of a sample of Perkinsus olseni trophozoites exposed to clam plasma (SRR2094558)
were mapped to this virus, whereas, only 22 viral reads (<0.00001‰) were detected in the paired
control (Supplementary Table S3). In contrast, other viruses were associated to the unique RNA sample,
for instance, Elicom_virus1, Rudphi_virus5, and Mytedu_virus1 (Figure 2 and Supplementary Table S3).

 
Figure 2. Coverage heat map for the 26 bivalve-associated viruses over 82 RNA-seq samples with
at least 1000 viral reads. Data are reported as log10, as depicted in the colored scale. Raw data are
reported in Supplementary Table S3.
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3.3. Evaluation of Contaminant RNAs in RNA-Seq Samples

We mapped the reads of 16 selected RNA-seq samples to a collection of COI gene sequences,
namely, C. gigas S15 (Ribo-0 and polyA), a “mix of gastropods” (Ribo-0 and polyA), one P. olseni, four
R. decussatus, and seven R. philippinarum samples, since they included reads of multi-host viruses
(Figure 2). We calculated the fraction of reads mapping to each COI entry over the total reads that
mapped onto the whole COI dataset, and we used it as a tool to evaluate the contribution of biological
contaminants in each RNA-seq dataset. As result, 159 COI entries showed at least 0.01% of mapped
reads (Supplementary Table S4). Obviously, the first COI entry of each sample corresponded to the
sequenced biological sample, thus confirming that the gastropod mix samples were composed of
multiple species. For some samples, we observed additional COI entries with lower percentages, as
in the two R. philippinarum samples with the highest numbers of viral reads (SRR391718-19), where
we detected several contaminant species (56 and 57 COI entries with at least 1% of mapped reads,
respectively). We noted the presence of a known bivalve-associated tunicate (Diplosoma listerianum)
in 10 of the tested RNA-seq samples. Although the D. listerianum COI value is equal to 100% in
the P. olseni sample, due to the absence of the Alveolata entries in the COI dataset, our analysis
confirmed the absence of clam RNAs in the Perkinsus samples, including a high level of Rudphi_virus3.
Intriguingly, both the Ribo-0 and polyA S15 datasets showed a low contamination of Lacconectus
peguensis (Coleoptera).

3.4. Tools for the Host-Assignment of Bivalve-Associated Viruses

Our analysis further demonstrated that most of the transcriptome-derived viruses could be only
tentatively assigned to a specific host, due to their occurrence in samples of even phylogenetically
distant species. Under this context, the application of coverage cut-offs appeared to be an unreliable
approach for host-assignment. Therefore, we investigated the feasibility of two alternative approaches
for the host-assignment of bivalve-associated viruses obtained from transcriptomic data, as follows.

The first approach investigates the presence of virus-derived RNAi products (vsRNAs), and it is
used to reconstruct full-length genomes of viruses infecting arthropods [65–67]. Since the antiviral role
of the RNAi system of bivalves has never been demonstrated, we firstly investigated the expression
patterns of selected RNAi-related genes (DICER, DROSHA, ARGONAUTE, PIWI, and RNA-dependent
RNA polymerase) in 184 C. gigas RNA-seq samples, including some samples that were very rich in viral
reads (Supplementary Table S1), to correlate the gene expression values with the presence of actively
transcribing RNA and DNA viruses (Supplementary Table S5). We showed that RNAi-related genes
are mostly expressed in the early developmental stages of oyster, when two PIWI and one Argonaute
transcript showed remarkable expression levels (Supplementary Table S5, panel A), and PIWI1 was
preferentially expressed in gonads (Supplementary Table S5, panel C). Apart from these samples, we
reported a considerable expression of PIWI1 in three oyster gill samples, and in an additional sample
referring to adductor muscles (SRR334286). While the latter result is difficult to explain, the expression
of PIWI1 in the oyster gill samples from Goro (Italy) correlated with the presence of RNA viruses (see
Figure 2, Supplementary Tables S3 and S5). Although at lower expression levels we reported that one
RNA-dependent RNA polymerase transcript (EKC38952), belonging to a gene family typically expressed
in the digestive gland, showed considerable expression levels in a few other samples, namely two
out of three biological replicates of oysters infected with OsHV-1 (12 hours after infection, gills) and a
spat sample highly infected by the same virus (Supplementary Table S5, panel B; sample G1). Taken
together, these results provide limited evidence for an active role of some components of the RNAi
pathway during viral infections in oyster. To further investigate the functionality of RNAi as antiviral
system, we sequenced the fraction of small RNAs of the C. gigas sample used for library comparison,
and found a high number of viral reads belonging both to DNA and RNA viruses (see Figure 2). Small
non-coding RNA (sncRNA) sequencing yielded 10.1 million clean fragments in a length range of 15–50
nt. A total of 22,587 sncRNA reads matched the viral contigs identified in this sample, plus the OsHV-1
genome. However, we observed a positive correlation between the expressions of viral genes (using
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both Ribo-0 and polyA datasets) and the number of sncRNA reads that matched these ORFs (r2 of 0.994
and 0.996, respectively), suggesting that the reads mostly originated from RNA degradation products,
instead of being genuine vsRNAs. We further analyzed the coverage of the sncRNA reads along the
five “nearly complete viral genomes” originating from the S15 oyster ribo-depleted data. To do this,
we mapped to the viral genomes the sncRNA reads that did not match to the oyster genome (1.436 M
reads), and we calculated the size profiles of each of the mapped subsets (Figure 3). Notably, comparing
the size profile of the whole sncRNA library with the profile of the sncRNA reads that did not match to
the oyster genome, we showed that C. gigas sncRNA reads peaked at 21 nt (microRNAs), whereas the
unmapped sncRNA reads peaked at 30 nt, indicative of their Piwi-interacting RNA (piRNA) nature.
However, only 199 sncRNA reads mapped to one of the five viral genomes reconstructed by using the
paired Ribo-depleted RNA-seq reads, and the size profiles showed a low enrichment of 29–30 nt reads
with a distribution over the whole viral genome (Figure 3).

Moreover, we subjected the sncRNA reads to VirusDetect, a bioinformatics pipeline that is
designed for the identification and reconstruction of viral genomes starting from short reads [57].
Although 169,970 sncRNA reads could be aligned to the viral reference database, and the tool could
assemble 40 contigs, the 20–22 nt enrichment fraction was always low, and it did not support their
vsRNA nature. According to the presence of numerous OsHV-1 reads in the paired RNA-seq data (the
polyA and Ribo-0 datasets), VirusDetect identified several matches to the OsHV-1 genomes, but again,
with a low 20–22 nt enrichment fraction.

The second approach that we tested leveraged on the identification of single-nucleotide
modifications (SNPs) occurring specifically on viral transcripts produced by the action of host enzymes
acting as antiviral defenses. Therefore, we attempted to select and count the subset of total SNPs
generated by the host double-stranded RNA (dsRNA) editor enzyme adenosine deaminase acting on
dsRNA (ADAR), which is assumed to specifically modify viral dsRNAs through A-to-I editing [68].
For each of the 26 viruses, we selected the RNA-seq sample with the higher number of reads, and we
called these low-frequency SNPs; among the identified SNPs, we selected the ADAR-compatible ones
(A-to-G). We identified 7569 SNPs located on viral coding sequences, and we classified 938 of them as
being ADAR-compatible. Considering the 5’ position, we showed that 31% of the selected SNPs had
an adenine at the flanking position, while 42% had a thymine (Figure 4a). Also, we searched for the
evolutionary footprint of the action of ADAR on viral genomes in parallel. To do this, we used the
CDUR tool [58] (see Materials and Methods) to determine under- or over-representation of a motif in a
given sequence. Firstly, we used a training set of 3872 genomes of RNA viruses with a known host
(Figure 4b and Supplementary Table S1). By analyzing the WA (W = A/T), AA, CA, GA, and TA motifs,
the CDUR analysis showed that the TA motif is under-represented in 62.7% of the analyzed ORFs,
while the AA, GA, and CA motifs are under-represented in 32.9, 8.1, and 1.5% of ORFs, respectively.
Intriguingly, 4% of TA-under-represented ORFs maximized this under-representation, since additional
variations will cause non-synonymous SNPs. Although we have to take into consideration that the viral
representatives of each of the host classes are variable (Figure 4b), by linking the under-representation
values with the viral host, we showed that most (>70%) of the algae, invertebrate, and vertebrate viruses
reduced the TA motifs in their coding regions, while we observed moderate percentages (50–60%)
for fungal and plant viruses, and lower percentages for bacterial and protozoa viruses (Figure 4c).
Accordingly, the sequences with a maximization of the TA reduction were only a small fraction of
the ones for fungal, plant, invertebrate, protozoa and vertebrate viruses (Figure 4c). Subsequently,
we used the CDUR package to investigate the under-representation of the motif in the ORFs of the
nearly complete RNA virus genomes described in this paper (Figure 4d). Consistent with the previous
results, only the TA and AA motifs were statistically significantly under-represented. However, we
did not observe ORFs with maximized TA reductions, while eight out of 11 ORFs showing AA being
under-represented, significantly maximized the AA motif reduction (Figure 4d).
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Figure 3. Small non-coding RNA (sncRNA) reads analysis. The RNA-seq and sncRNA read distribution
for each of the five “nearly complete viral genomes” reconstructed from the ribo-depleted oyster
RNA-seq data are shown. The open reading frames (ORFs) for each virus are shown in green, while
the number of mapped reads are reported on the left. The histograms on the right represent the
size distributions of the mapped sncRNA reads (in the range of 15–31 nt). The bottom histograms
show the size distribution for the whole library (left), and for the reads that did not match the oyster
genome (right).
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Figure 4. Analysis of virus editing. (a). Distribution of the flanking base of ADAR-compatible SNPs.
(b). Host distribution of the 3872 viral genomes used as a training set. (c). Percentage of viral sequences
(N = 3872) showing statistically significant TA under-representation (<0.05) and maximization (>0.95),
divided per host class. (d). Percentage of TA and AA under-representation (<0.05) and maximization
(>0.95), measured on the coding sequences of the nearly complete viral genomes reported in this paper.

To better contextualize our results, and to assign the 26 “nearly complete viral genomes” to
a viral group, we attempted a phylogenetic analysis based on the regions corresponding to the
vRdRP domains (the phylogenetic tree can be visualized at [69], or as Supplementary Data S1). The
phylogenetic tree obtained by the comparison of 2019 sequences of viral origins showed poor bootstrap
support for most of the nodes, due to the high heterogenicity of the vRdDP sequences. Several of
the sequences of the 26 viruses reported herein clustered with picoRNA-like viruses obtained from
meta-transcriptomic surveys of mollusk species [43]. These viruses included Mytedu virus1, Myzyes
virus1, Cragig virus1, Cragig virus2, Cragig virus3, Cragig virus6, Rudphi virus4, Rudphi virus5, and Bivalve
RNA virus G3. Cragig virus 10 showed similarities with Bivalve hepelivirus G (herpes-like viral family, as
defined by [43]). Although Cragig virus7 also clustered in a group of picoRNA-like viruses, it appeared
to be separated from the other marine picoRNA-like sequences. Similarly, Cragig virus8 and Cragig
virus9 formed a cluster including picoRNA-like viruses and one diatom virus (Chaetoceros socialis f.
radians RNA virus1). None of our viruses grouped in clusters were characterized by the presence
of abundant vertebrate viruses, while Mytcor virus1 was grouped with plant viruses, supporting its
BLASY similarity to Pitaya virus X.
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4. Discussion

Viruses can infect almost every living organism, and viral nucleic acids, either DNA or RNA, are
often found when the host sequences are analyzed, making host RNA-seq samples suitable targets for
viral discovery [21,70]. In this study, we analyzed bivalve RNA-seq data, and recovered both partial
and complete RNA virus genomes, exploiting them to investigate the limits of meta-transcriptomics
approaches oriented to viral discovery in bivalves. We identified 413 unique sequences of viral origin,
most of them showing a limited similarity with known viruses, demonstrating that bivalve RNA
sequencing allows for the identification of viral sequences. These included 26 nearly complete viral
genomes. Although the factors that mostly influence the number of viral reads in an RNA-seq sample
seem to be the strategies used for sample collection (e.g., the inclusion of water present in the shell
cavity), we showed that the RNA selection method used during library preparation also contributed
to the recovery of viral reads. For the samples prepared specifically for viral meta-transcriptomics, it
was demonstrated that it is possible to recover multiple RNA virus genomes from single samples [43],
while analyzing RNA-seq data (polyA-selected) originally designed for host expression analysis, we
could identify at most, one complete viral genome per sample, over multiple (partial) viral genomes.
Analyzing available meta-transcriptomic data, we found that polyA-enrichment is somewhat more
effective than ribosomal-depletion in term of viral read recovery. However, we demonstrated that
ribo-depletion is capable of higher performance, since we could reconstruct five nearly complete viral
genomes from a RNA sample prepared for oyster expression survey. Arguably, polyA-selection would
bias the virus sequence identification in the case of polyadenylated viral genomes (e.g., Picornavirales),
although we could find evidence of the presence of polyA-tails only in three out of 26 viruses. Overall,
our result strongly enforced the use of ribo-depletion for the preparation of RNA-seq libraries targeting
viral discovery.

In agreement with a recent study reporting a wide host distribution of invertebrate viruses [43],
we traced six out of 26 viruses in RNA-seq samples of different bivalve species, and we reported
three bivalve-associated viruses that were very similar to viruses identified from gastropod or sponge
meta-transcriptomics data [70,71]. The presence of identical viruses in different bivalve species, or even
in phylogenetically distant invertebrates has two possible explanations: either these viruses infect a
broad-range of animals, or the species hosting these viruses is shared by different (marine) animals. In
support of the first hypothesis, even if invertebrates (arthropods in particular) are rich in viruses [72],
strong evidence for host–virus co-evolution was rarely reported [17], and host jumping seems to be
common for invertebrate viruses [5]. These attributes are in agreement with the new concepts of RNA
virus phylogenesis that are inferred by viral metagenomics, suggesting extensive horizontal virus
transfer events and a broad host range for protostome viruses [73]. The second hypothesis, i.e., that
these viruses are hosted by an organism that is common in the marine environment, may be the easiest
explanation for the presence of identical viruses in samples of different species, and can be further
supported by the filter-feeding activity of bivalves. In fact, given the functions that are exerted by
the gut and gills (the latter tissue is commonly used for RNA-seq experiments), contamination by
RNA originating from waterborne bacteria, fungi, microalgae, or even microeukaryotes, is common
in bivalve RNA-seq samples. This situation is well-depicted by one of the complete genomes that
we recovered, the algal virus Heterosigma akashiwo RNA virus, which we traced in RNA-seq samples
of co-cultured C. gigas and M. galloprovincialis, and even in an unrelated R. philippinarum sample. In
this study, we exploited the COI reads to identify possible co-occurring organisms of the RNA-seq
samples rich in viral reads. Although COI is not a universal gene marker, such an analysis can provide
an immediate view of the purity of the samples [71]. In our study, the COI analysis did not identify
a contaminant organism that completely matched the distributions of multi-species viruses. The
contamination with D. listerianum RNA present in several bivalve RNA-seq samples confirmed the
wide distribution of this fouling tunicate, but it could represent only a partial explanation for the
multi-species distribution of Rudphi_virus3. The R. philippinarum sample, including 3% of Rudphi_virus4
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reads was shown to be heavily contaminated by this tunicate, and by other non-bivalve species, but
none of these species correlated with the distribution of this virus.

The determination of the host of meta-transcriptomics-derived viruses is likely one of the main
challenges of viromics based on high-throughput data [23]. At the tissue level, both Transmission
Electron Microscope (TEM) imaging of viral particles and in situ hybridization techniques are suitable
to confirm host assignment only if infection intensity is sufficiently high, but they are unfeasible in
the case of a very large number of samples, or for already-sequenced RNA-seq samples, such as
the ones that we analyzed. Therefore, we investigated the feasibility of two alternative approaches
that, exploiting the same RNA-seq samples used for viral discovery, can provide evidence that is
useful for host-assigning bivalve-associated viruses. RNAi is used as an antiviral defense in plants,
insects and nematodes, where efficient RNAi processing of viral genomes into virus-derived small
RNAs (vsRNAs) perfectly matching to the original genome activates the RNA-induced silencing
complex (RISC), which in turn catalytically marks viral sequences for degradation [74]. Differently
from immuno-recognition mechanisms based on antibodies, RNAi is not impacted by viral mutations,
and in C. elegans, it functions at nano-molar concentrations thanks to the amplification of vsRNA
signals using RNA-dependent RNA polymerase [75]. Recently, an RdRP-independent mode of RNAi
amplification has been reported in Drosophila, although the underpinning genetic mechanism is still
unknown [76]. At least in worms, RNAi-based antiviral immunity can be generationally transmitted,
and provide a kind of epigenetic immune-memory [77] that recalls the prokaryotic CRISPR-Cas-based
adaptive immunity [78]. Recently, the identification of vsRNAs in a molluscan gastropod (Nucella
lapillus) opens intriguing questions about the phylogenetic distribution of the antiviral defense system,
and about the mechanism itself [71]. In insects, the analysis of the fraction of vsRNAs among sncRNA
datasets allowed for an unbiased reconstruction of pathogenic viruses [65–67] but, although bivalve
antiviral immunity partially resembles that of arthropods [79], the antiviral role of RNAi has never
been directly demonstrated [80]. Our analysis suggested that RNAi exerted limited importance in
antiviral defense in bivalves, since even if we showed that C. gigas PIWI1 is induced in RNA-seq
samples containing RNA viruses and a more limited induction of one oyster RDR gene was consistent
with the active transcription of OsHV-1, we were not able to clearly identify vsRNAs among sncRNA
reads obtained from the same oyster sample, including abundant reads of RNA viruses and of OsHV-1
(dsDNA virus). Considering all of the viral contigs obtained from this RNA-seq dataset, our analyses
strongly suggest that the sncRNA reads that mapped on these viral contigs are due to RNA degradation.
Differently, looking only at the five complete viral genomes, we could not exclude that weak RNAi
activity generated few vsRNAs. Improving the power of our analysis by increasing the coverage or by
using chemical treatments to specifically enrich the sncRNA fraction [71], it would be possible to detect
genuine vsRNAs, even in bivalves. In particular, the size profiles that we reported for the putative
vsRNAs seemed to be biased through a non-Dicer production mechanism [65,71].

In vertebrates, the antiviral role of RNAi is superseded by the interferon pathway, which through
the activation of interferon-stimulated genes (ISGs), promotes the recognition of viral-derived products
and inhibits viral propagation. Among ISGs, powerful sequence editors like ADAR and apolipoprotein
B mRNA editing enzyme, catalytic polypeptide-like (APOBEC), enzymatically mutate viral transcripts
and genomes [81,82] by acting on target sites that are highly conserved throughout the metazoan
evolution [14,83–85]. To counteract these host-mediated editing mechanisms, some viral genomes
have evolved to reduce the frequency of sites that are more vulnerable to targeting by the host immune
system [58,86,87]. Surprisingly, we demonstrated a diffuse under-representation of the “TA” motif
in most of the known RNA viruses, although only few of them maximized this reduction, and we
could not link this result to a specific class of hosts. A similar trend of TA under-representation was
also present in the 26 viruses described herein, but for these viruses, we showed that there was a
tendency to maximize the reduction of the AA motif. Similar to the 26 viruses reported herein, a
similar trend characterizes, among others, the Antarctic picorna-like virus 1 and 3, Acute bee paralysis
virus and Aphid lethal paralysis virus, which represented Picornavirales with a phylogenetic vicinity
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with some bivalve-derived viruses [47]. SNP analysis did not highlight a predominant fraction of
ADAR-compatible variations over the total SNPs in the 26 viruses. Arguably, CDUR analysis only
determined under-/over-representation, and the possible role of ADAR as source of these shifts should
be confirmed by dedicated experiments.

Overall, This study underlines the heterogeneity and variability of RNA viruses that are associated
with marine mollusks, and the limited data that is available on environmental RNA viruses. While the
simultaneous analysis of viral products, antiviral host defense processes, and products in the RNA-seq
samples could support host assignment, this alone is not enough when dealing with suspension-feeders
that are able to accumulate environmental microbes, and their viral symbionts. Given the growing
body of knowledge on the role of viruses in host fitness, targeted investigations aimed at unraveling
the diversity of “genuine” bivalve viruses are needed for a better understanding of factors affecting
the health and well-being of these ecologically- and economically-important species.

Data availability: Short RNA-sequencing reads have been deposited in the NCBI SRA archive with accession ID
SRR8587800, as part of the SRA project PRJNA484109.
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Abstract: Marek’s disease virus (MDV) is an oncogenic alphaherpesvirus that infects chickens and
poses a serious threat to poultry health. In infected animals, MDV efficiently replicates in B cells in
various lymphoid organs. Despite many years of research, the viral transcriptome in primary target
cells of MDV remained unknown. In this study, we uncovered the transcriptional landscape of the
very virulent RB1B strain and the attenuated CVI988/Rispens vaccine strain in primary chicken B
cells using high-throughput RNA-sequencing. Our data confirmed the expression of known genes,
but also identified a novel spliced MDV gene in the unique short region of the genome. Furthermore,
de novo transcriptome assembly revealed extensive splicing of viral genes resulting in coding and
non-coding RNA transcripts. A novel splicing isoform of MDV UL15 could also be confirmed by
mass spectrometry and RT-PCR. In addition, we could demonstrate that the associated transcriptional
motifs are highly conserved and closely resembled those of the host transcriptional machinery.
Taken together, our data allow a comprehensive re-annotation of the MDV genome with novel genes
and splice variants that could be targeted in further research on MDV replication and tumorigenesis.

Keywords: Marek’s disease virus (MDV); RNA-seq; transcriptome; splicing; polycistronic viral
transcripts; primary B cells; RB1B; CVI988/Rispens; ICP0

1. Introduction

Marek’s disease virus (MDV), also known as Gallid alphaherpesvirus 2, causes a deadly
lymphoproliferative disease in chickens. Typical clinical symptoms include immunosuppression,
paralysis and polyneuritis, acute brain edema, and lymphoma that develop as early as 3 weeks
post infection [1,2]. MDV has a big economic impact on the poultry industry worldwide due to
animal losses, reduced growth, decreased egg production, and cost of vaccination [3]. Vaccines are
crucial for the protection against MDV, as very virulent strains can cause mortalities of up to 100%
in susceptible unvaccinated chickens [4]. Live attenuated MDV vaccines such as the gold standard
Rispens strain (CVI988) are highly effective in preventing tumor formation [3,5], but do not provide
sterilizing immunity.
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MDV infection is initiated by the inhalation of the virus from a contaminated environment.
Macrophages and other phagocytic cells are thought to take up the virus and transfer it to lymphatic
tissues, where B and T cells are infected [6]. B cells are efficiently infected during the initial lytic virus
replication, whereas T cell subsets play key roles in MDV pathogenesis [7–11]. MDV establishes latency
predominantly in CD4+ T cells, which can also transport the virus to the feather follicle epithelium.
These cells efficiently produce the infectious virus and shed it into the environment [3]. Latently
infected T cells can also be transformed, resulting in deadly lymphomas.

MDV has a 180 kilo base pairs class E genome consisting of a unique long (UL) and a unique
short (US) sequence that are flanked by terminal (TRL and TRS) and internal (IRL and IRS) inverted
repeat regions [12,13]. MDV encodes about 100 proteins that orchestrate the virus life cycle and/or
contribute to pathogenesis [12,14]. Until now, analyses of the viral transcriptome has been limited
to chicken fibroblasts that are not infected in chickens, ex vivo samples [15,16] and tumor cells [17];
however, the mRNA expression in the primary target cells of lytic replication in vivo remained elusive.
This is mainly due to the short lifespan of B and T cells in culture and the low quantity of infected cells
in lymphoid organs of chickens [7,18]. To overcome this obstacle, we recently developed an in vitro
infection system for primary B and T cells that allows for a prolonged survival and efficient infection of
these cells [19]. We used this system to analyze the MDV transcriptome in the most frequent lytically
infected cell type in vivo, the B cells.

In this study, we performed next generation RNA-sequencing and protein profiling in primary B
cells infected with the very virulent RB1B strain or the vaccine strain CVI988. Our data reveal that
the coding capacity of the MDV genome is larger than expected. We identified novel MDV genes and
splice variants, and confirmed them either on the protein level or by RT-PCR. This comprehensive
approach provides novel insights into the transcriptome of MDV in the natural target cells and supply
a basis for future research on MDV pathogenesis.

2. Materials and Methods

2.1. Ethics Statement

Valo specific-pathogen-free (SPF) chickens (VALO BioMedia GmbH, Osterholz-Scharmbeck,
Germany) were housed for 6 to 11 weeks of age and humanely euthanized prior to the isolation of the
bursa of Fabricius. The animal work was approved by the governmental agency, the Landesamt für
Gesundheit und Soziales (LAGeSo) in Berlin, Germany (approval number T0245/14, approval date
23 October 2014).

2.2. Cells

Embryonated SPF Valo chicken eggs (VALO BioMedia GmbH,) were used for the preparation of
chicken embryo cells (CEC). CEC were maintained in minimal essential medium (MEM, PAN Biotech;
Aidenbach, Germany) supplemented with 1-10% fetal bovine serum (FBS) and penicillin/streptomycin
as previously described [20]. B cells were obtained from the bursa of Fabricius by dissociation of
the organ and subsequent isolation of the cells by density gradient centrifugation as previously
described [21]. Briefly, the bursa of Fabricius was homogenized through a 40 μm cell filter to obtain
a uniform single cell suspension. Suspension cells were carefully applied on a Biocoll separating
solution (Biochrom; Berlin, Germany), centrifuged for 12 min at 650 × g with slow acceleration, and
deactivated deceleration. Lymphocytes at the interphase were carefully transferred to a new tube,
washed with PBS, and maintained in RPMI 1640 (PAN Biotech) supplemented with 10% FBS and
penicillin [100 U/mL]/streptomycin [100 μg/mL] at 41 ◦C under a 5% CO2 atmosphere. B cells
were activated using recombinant soluble chicken CD40 ligand (chCD40L) [22], which was expressed
in HEK293 cells and purified using a Vivacell 250 ultrafiltration concentrator (Sartorius; Göttingen,
Germany).
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2.3. Viruses

All viruses were reconstituted by calcium phosphate transfection of CEC with purified bacterial
artificial chromosome (BAC) DNA as previously described [23]. The very virulent RB1B strain and the
vaccine strain CVI988 both express a green fluorescent protein (GFP) under the control of the early
thymidine kinase promotor. The viruses were propagated on CEC for up to six passages, and infected
cells were stored in liquid nitrogen until further use. All virus stocks were titrated on fresh CEC.

2.4. Infection of Primary Chicken B Cells

Primary chicken B cells were infected by co-cultivation with infected CEC due to the strictly
cell-associated nature of MDV. One million CEC were infected with 30,000 plaque-forming units
(PFU) of CVI988, RB1B, or mock infected. After 4 days, one million B cells were seeded on the
infected 6-well-plates in the presence of CD40L for 16 h at 41 ◦C. All B cells were then carefully
removed from the CEC monolayer, washed with phosphate buffered saline (PBS), and prepared for
fluorescence-activated cell sorting.

2.5. Flow Cytometry

Viable bursal B cells were detected using the eFluor780 fixable viability dye at a dilution of 1:1000
(Affymetrix eBioscience; San Diego, CA, USA) as previously described [19]. Cells were sorted using a
FACS Aria III sorter and the FACSDiva software (Becton Dickinson; Franklin Lakes, NJ, USA). For each
sample, approximately 105 to 106 infected B cells were sorted at 4 ◦C and stored at −80 ◦C until further
analysis. The purity of GFP+ sorted fractions was determined by FACS reanalysis and yielded 99.73%
(±0.46 SD) for mock-infected cells, 95.33% (±1.29 SD) for RB1B infected cells and 97.47% (±1.33 SD)
for CVI988 infected cells.

2.6. High-Throughput RNA-Sequencing

RNA was isolated from three independent experiments of CVI988 or RB1B infected chicken B
cell cultures and sequenced as described [24]. Briefly, total RNA was extracted using TRIzol reagent
(Life Technologies; Carlsbad, CA, USA) in combination with the RNeasy Mini Kit (Qiagen; Hilden,
Germany) following the manufacturer’s instructions. Additionally, RNA was treated with DNase using
the RNase-Free DNase Set (Qiagen). Subsequently, ERCC ExFold RNA Spike-In mix 1 (Invitrogen;
Carlsbad, CA, USA) was added to the total RNA as an internal control and the polyadenylated
(poly(A)) RNA fraction was extracted using the Dynabeads mRNA DIRECT Micro kit (Invitrogen).
Whole transcriptome libraries were prepared using the Ion Total RNA-Seq Kit v2 (Life Technologies)
following the manufacturer’s instructions. Quality and quantity of the nucleic acids was controlled
at each step using the NanoDrop 1000 spectrophotometer (Peqlab) or Agilent 2100 Bioanalyzer
(Agilent Technologies; Böblingen, Germany) in combination with appropriate chips, respectively.
The resulting libraries were finally quantified using the KAPA Library Quantification Kit for Ion
Torrent (Kapa Biosystems; Wilmington, MA, USA) on a CFX96 Real-Time PCR Detection System
(BioRad Laboratories) and sequenced on an Ion S5XL system (Life Technologies) using the Ion 540
OT2 and Chip kit (Life Technologies).

2.7. Sequence and Bioinformatic Analyses

Reads from separate sequencing runs (technical replicates) of the same library (biological
replicates) were combined and quality-trimmed using the 454 Sequencing System Software (v. 3.0;
Roche; Mannheim, Germany) along with appropriate Ion Torrent specific adapter sequences. Each
quality-trimmed data set was then mapped to a non-redundant version of the MDV reference
NC_002229.3 [12] (only segments UL-IRL-IRS-US) using STAR (version 2.6.1a; [25]), running in basic
two-pass mode. In this manuscript, the MDV genes were designated according to the current
gene nomenclature used for the prototype alphaherpesvirus herpes simplex virus 1 (HSV-1) [26,27].
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As the mRNA libraries were amplified for several rounds, the sequence duplicates were removed
prior to de-novo assembly and coverage analysis. Therefore, the duplicated reads were marked and
removed in each mapped dataset using Picard (version 2.18.20; http://broadinstitute.github.io/picard).
Subsequently, the unique aligned reads were directionally sorted using samtools (version 1.9; [28]) and
the sequence depth was deduced from each dataset using bedtools (version 2.15.0; [29]) and samtools.
The directionally sorted reads were then used for de-novo assembly using the 454 Sequencing System
Software (v. 3.0; Roche) running in “-cdna” mode. Assembly was done for each biological replicate
separately and with the combined read data from all replicates. Deduplicated and directionally sorted
reads were also used as basis for the coverage plots. In order to receive high quality splice junctions,
all assembled “isotigs” (transcript variants) were then re-mapped to the non-redundant version of MDV
reference NC_002229.3 [12] using STARlong (version 2.6.1a; [25]) in basic two-pass mode. Options
were set to allow a single mapping isotig to yield a splice junction with a maximum intron length of
10,000 bp. Only positions corresponding to the high-quality splice junctions were then selected from
the splice junctions of the initial mapping approach for further analysis. The frequency of spliced reads
was calculated by dividing the number of reads with splice junction by the total number of reads at
the respective donor site. The overall splice frequency at a single donor site for CVI988 and RB1B was
then averaged from the individual splice frequencies in the replicates. Based on the deduced splice
junctions, the positions up- and downstream of these were extracted and visualized using the R (version
3.4.1; [30]) package “ggseqlogo” (version 0.1; [31]) in combination with RStudio (version 1.0.153) in
order to receive information on donor and acceptor motif sequences. Polyadenylation cleavage clusters
were determined with ContextMap (version 2.7.9; [32]) in combination with bowtie2 (version 2.2.9; [33])
using the complete trimmed dataset as input and the “–polyA” parameter. The resulting poly(A)
cleavage sites were then combined into clusters, as the exact position of mRNA cleavage downstream
of a cleavage signal can be heterogeneous [34]. Starting with the first poly(A) cleavage site, all other
sites on the same strand within a window of the next 30 nt were combined into a single cluster. The
window was then moved to the next cleavage site that was not within the last cluster. This was repeated
for all cleavage sites. To scan for enriched regulatory motifs within the three prime untranslated region
(3′-UTR) of MDV transcripts, the sequences 50 nt up- and 20 nt downstream of the start position of each
identified poly(A) cleavage cluster were extracted and analyzed using DREME as part of the MEME
suite (version 4.9.0; [35]) using default settings. Subsequently, the identified enriched motif (AWTAAA)
was searched in the non-redundant version of MDV reference NC_002229.3 [12] using FIMO (version
4.9.0; [36]) with default settings. Poly(A) cleavage clusters and regulatory motifs were then grouped
into relevant pairs based on the FIMO p-value and the their distance, allowing a maximum distance
of 50 nt. Differential gene expression between RB1B and the vaccine strain CVI988 was conducted
using Salmon (version 0.12.0; [37]) in combination with DESeq2 (version 1.18.1; [38]) as described
earlier [24]. All relevant MDV CDS sequences were used as transcript reference and genes with an
adjusted p-value > 0.01 were considered significant. Potential phosphorylation sites in novel protein
SORF6 were predicted using the NetPhos 3.1 Server [39] and its DNA-protein binding probability
using the DNABIND server [40].

2.8. LC-MALDI TOF/TOF Mass Spectrometry

Infected FACS sorted primary chicken B cells and mock infected primary chicken B cells were lysed
in batches of 1.5 × 106 cells using 150 μl of a lysis buffer containing 0.1 M DL-Dithothreitol (DTT) and
2% SDS in 0.1 M Tris-HCl (pH 8.0) at 99 ◦C for 5 min. Protein contents were determined by densitometry
of Coomassie stained SDS gels [41,42]. After cell lysis, 20 μg aliquots were digested using the FASP
protocol as described [43]. Samples were differentially labeled by dimethylation [44] using unlabeled
and 13C-labeled formaldehyde, respectively, and subjected to nano-LC MALDI-TOF/TOF mass
spectrometry as described previously [45]. Briefly, peptides were separated by nano reversed-phase
liquid chromatography (EASY-nLC II, Bruker; Bremen, Germany), spotted to a MALDI target
(Proteineer fcII, Bruker), and analyzed with an UltrafleXtreme MALDI-TOF/TOF mass spectrometer
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(Bruker) as described previously [46]. Peptide spectra were acquired in the m/z range 700 to
3.500 Da with a minimum signal-to-noise (S/N) ratio of 7. Proteins were identified with a Mascot
server (version 2.4.1; Matrix Science Ltd; London, UK) and analyzed using ProteinScape software
(version 3; Bruker). Oxidation of methionine, acetylation of protein N-termini, and dimethylation
of lysine and peptide N-termini with either isotopomer were set as variable modifications, whereas
the carbamydomethylation of cysteine residues was set as a fixed modification. Two independent
experiments were performed with inverted labeling. As database for the protein identification with
the MASCOT search engine (Matrix Science Ltd), the Gallus gallus proteome was downloaded from the
ENSEMBL website [47] and the viral sequences were added to the FASTA file. Viral protein content was
calculated in mol% using the exponentially modified protein abundance index (emPAI) [48]. To identify
peptides covering the potential new splicing sites discovered by RNA-sequencing, a database with
sequence fragments covering a 67 amino acid region centered on the splicing site was constructed and
used for the database search with MASCOT.

2.9. Reverse Transcription and PCR over Splice Junctions

RNA was isolated as described above. cDNA was synthesized after DNAse treatment (Promega;
Fitchburg, WI, USA) with the Applied Biosystems High-Capacity cDNA Reverse Transcription Kit
(Thermo Fischer; Waltham, MA, USA). Conventional Taq-PCR was performed with primers specific
to the respective viral gene (Table S2). Amplification of BAC DNA was used as a positive control.
Mock-infected cells and samples without reverse transcriptase to exclude a contamination with
genomic DNA were included as negative controls.

2.10. Data Availability

The RNA-seq raw data were deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.
uk/arrayexpress) under accession number E-MTAB-7772. A supplementary GFF file for the reference
sequence NC_002229.3 containing annotations for all detected introns, poly(A) cleavage sites and
associated motifs, as well as the novel CDS for SORF6 can be found in the Supplementary File S1.

3. Results and Discussion

3.1. The MDV Transcriptional Landscape

To assess the transcriptional landscape of MDV in the primary target cells of lytic replication
in vivo, we used a previously established in vitro infection system for primary chicken B cells [19].
B cells were infected for 16 h with the very virulent MDV strain RB1B and the vaccine strain CVI988
and analyzed by high-throughput RNA sequencing.

The overall RNA-seq dataset consisted of 82.6 million reads from three biological replicates of
CVI988 (48.2 million reads) and two biological replicates of RB1B (34.4 million reads). A third replicate
of RB1B did not yield sufficient amount of reads and was therefore excluded from our analysis.
An average of 10.5% and 11.2% of the CVI and RB1B datasets respectively could be mapped to the
MDV reference sequence (see Table S3).

The position and direction of mapped reads fitted very well to the previously annotated MDV
genes (Figure 1A). Highly abundant genes like the immediate early gene SORF1 (ICP4) or the UL49
tegument protein (VP22) correlate well with previously published data [49]. Surprisingly, only minor
differences were detected between the transcriptome of CVI988 and RB1B. Comparing the 94 detected
MDV genes, two variants of MDV075 encoding the 14-kDa polypeptides (pp14), were significantly
higher expressed in RB1B infected primary B cells (Figure 1B). These phosphorylated cytoplasmic
proteins arise from splice variants of the same gene and are thought to be involved in transcriptional
regulation and increased neurovirulence [50–52]. Furthermore, the hypothetical gene MDV082 [53]
that is located on the same transcript as the ICP4 gene, was significantly higher expressed in CVI988
infected B cells. However, the transcriptome of RB1B and CVI988 only shows subtle differences in
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primary chicken B cells, suggesting that the differences in their pathogenesis might be due to sequence
changes on the protein level and/or functional differences of virulence factors. Similarly, we only
detected marginal quantitative differences between the expression levels of viral proteins in a proteome
analysis using LC-MALDI TOF/TOF mass spectrometry (Figure S1 and Table S1). Taken together,
our data indicate that there are only minor differences in the mRNA and protein expression levels after
B cell infections with the very virulent RB1B or the CVI988 vaccine strain.

 

Figure 1. The Marek’s disease virus (MDV) transcriptome and proteome in in vitro infected primary
chicken B cells. (A) Visualization of the deduplicated and strand-specific RNA-seq read coverage
of plus (+) and minus (-) strand-encoded genes across the MDV genome. Orange curves indicate
CVI988 reads and grey curves indicate reads for RB1B (with the respective annotated genes as grey
arrow bars). Red bars depict proteins identified by MS. The two unique regions, unique long (UL)
and short (US) are flanked by terminal (TRL and TRS) and internal (IRL and IRS) inverted repeat
regions. Nucleotide position numbers are derived from [12]. (B) Gene expression scatterplot comparing
normalized expression levels (rlog) in RB1B and CVI988 infected primary chicken B cells. Red dots
indicate significantly differentially expressed genes.

3.2. Splicing of Polycistronic MDV Transcripts

In addition to the transcriptional profile, we could readily identify 71 introns that were represented
by at least one de novo transcript (Figure 2A). Some of the introns and associated spliced genes have
been previously described such as the viral lipase (vLIP) [54], LORF2 (MDV012) [55], UL15 [12], UL44
(glycoprotein C) [56], vIL8 [57] and pp14 [51]. However, analysis of the MDV transcriptome revealed a
number of novel splice forms (Table S4). These results are in line with previous RNA-seq analysis for
other alphaherpesviruses [58] that also revealed a plethora of novel splice products. The detected splice
variants could contribute to viral proteomic diversity and could prevent viral mRNA degradation
through the virion host shutoff UL41 endoribonuclease [59]. For HSV-1 it has been shown that UL41 not
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only targets many cellular but also viral mRNAs. Spliced mRNAs are protected from UL41-mediated
degradation by bound exon junction complexes (EJCs) [60].

 

Figure 2. Overview of Marek’s disease virus (MDV) mRNA splicing and poly(A) cleavage.
(A) Visualization of the cumulative CVI988 and RB1B RNA-seq coverage of plus (+) and minus
(-) strand-encoded genes across the MDV genome. Black arrow bars indicate introns and dashed
lines indicate poly(A) cleavage sites. More detailed information is shown in Table S4 and Table S5.
(B) Nucleotide frequency maps (sequence logo) of splice donor sites in MDV-encoded mRNAs. The
relative heights of letters correspond to frequencies of bases at each position. (C) Sequence logo
of splice acceptor sites in MDV-encoded mRNAs. (D) Sequence logo of polyadenylation signals
in MDV-encoded three prime untranslated regions (3′-UTR). (E) Histogram depicting MDV intron
length distributions. (F) Histogram depicting the distance from AWTAAA-like motifs to the poly(A)
cleavage site.

The identified splice site sequences mostly represent canonical splicing motifs, containing the
GT at the donor and AG at the acceptor sites (Figure 2B,C). The intron length varied between 70 and
8651 nt (Figure 2E). Intriguingly, the intron frequencies differed between RB1B and CVI988 in infected
primary chicken B cells (Figures 3–5). By matching the intron positions with our MS data, we identified
a peptide that spans the exon-exon junction of UL15 (Figure S2).

The analysis of poly(A) cleavage signals within the RNA-seq data revealed abundant bicistronic
and polycistronic MDV transcripts (Table S5). These transcripts encode for two or more proteins and
were characterized as regions of high coverage that were not separated by a poly(A) cleavage site.
Here we found that the canonical AATAAA motif is the most frequent and functional polyadenylation
signal in MDV, followed by ATTAAA (Figure 2D). Interestingly, we also found evidence for alternative
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non-canonical polyadenylation signals in MDV mRNA 3′ UTRs (Figure 2 and Table S5). The distances
between the detected AWTAAA polyadenylation signal motif and the actual poly(A) cleavage site
was 13.8 nt (±4.4 SD) and confirmed that not only the polyadenylation signal sequence, but also its
distance from the poly(A) is highly conserved (Figure 2D,F) [61,62].

3.3. The Transcriptional Makeup of the MDV Unique Long Region (UL).

The MDV unique regions mainly harbor genes that are conserved among alphaherpesviruses and
are involved in DNA replication and production of progeny virus [26]. The UL spans over roughly
113,000 base pairs and harbors the majority of the MDV-encoded genes [26]. Within the UL, we could
detect high transcription rates of nearly all annotated genes. Splicing was identified in multiple genes
including RLORF14 (pp24), vLIP [63], and LORF2 (MDV012) [55] and in a transcript antisense to
UL5 (MDV017) (Figure 3). Only minor differences were observed in the intron frequencies between
RB1B and CVI988. To confirm the splice events and frequencies detected by RNA-seq, we performed
RT-PCR analyses on several randomly selected genes (Figure 3C, Figure 4B, Figure 5C, Figures S2
and S3). All analyzed genes showed a comparable splice pattern in both RNA-seq and RT-PCR. In
addition, we confirmed a novel splice site of UL15 by MS and RT-PCR (Figure S2). UL15 encodes
the tripartite terminase subunit that is involved in DNA packaging into the viral capsid. Splicing of
UL15 mRNA has already been observed in herpes simplex virus type 1 (HSV-1) [64] and duck enteritis
virus (DEV) [65]. However, the observed UL15 isoforms in MDV are to our knowledge unknown and
expand the number of potential proteins encoded by UL15 to at least five.

Figure 3. The Marek’s disease virus (MDV) unique long (UL) region. (A) Visualization of RNA-Seq
coverage across parts of the MDV UL region with respective introns in black. Green and red arrows
indicate the polyadenylation signal and the poly(A) cleavage site respectively. Underlying black arrows
suggest unspliced (mono-, bi-, or polycistronic) mRNAs. (B) Comparison of intron frequencies in RB1B
and CVI988 infected primary chicken B cells. I1: pp24, I2: vLIP, I3: LORF2 (MDV012), I4: transcript
antisense to UL5 (MDV017). (C) RT-PCR was performed to validate the splicing event. PCR products
were derived using forward/reverse primers to amplify the respective intron-flanking regions. The
representative gel images illustrate the results of RT-PCR analysis. The black arrows indicate the spliced
form of the respective gene.

We could also confirm known splice sites in UL44 (gC) in our analysis (Figure 4) [56]. These splice
variants lead to a gC protein that lacks the transmembrane domain and is secreted into the
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supernatant [56]. Beyond that, we also confirmed novel splice sites like in RLORF14a (pp38) (Figure
S3). Several capsid and tegument protein-encoding genes encoded in the UL and US regions, like UL18
(triplex capsid protein 2), UL19 (VP5), UL49 (VP22), UL49.5 (gN), US7 (gI) and US8 (gE) also undergo
different splicing events (Table S4), contradicting the long-standing paradigm that splicing is a rare
phenomenon throughout the alphaherpesvirus family [13].

Figure 4. Glycoprotein C (gC) splicing. (A) Visualization of RNA-seq coverage across the Marek’s
disease virus (MDV) gC gene UL44 with respective introns in black. The green and red arrow indicate
the canonical ATTAAA polyadenylation signal and the poly(A) cleavage site respectively. (B) RT-PCR
was performed to validate gC splicing. PCR products were derived using forward/reverse primers to
amplify the respective intron-flanking regions. (C) Comparison of the gC intron frequencies in RB1B
and CVI988 infected primary chicken B cells.

Some identified splice variants would result in proteins with an altered membrane topology
(TMHMM Server, v. 2.0). This is for example the case for splice variants of pp24 and of pp38,
which results in changes of the previously assessed hydrophobic anchor domains of both proteins [66].
While pp38 seems to exist as splice variants with and without a membrane anchor, splicing of pp28
could retain its membrane association while altering its function (Figure S5).

3.4. The Transcriptional Makeup of the MDV Unique Short Region (US).

The MDV US region contains many genes that play important roles in the viral life cycle.
Intriguingly, we detected splice variants of several envelope glycoproteins as described above.
In addition, we identified a hitherto uncharacterized spliced transcript of a gene located downstream
of SORF2A, termed SORF6 (Figure 5). This novel gene possesses an upstream TATA box in the
transcriptional regulatory region, an intron and exon with respective donor and acceptor site and
a downstream polyadenylation signal with the poly(A) cleavage cluster (as described in Figure 2).
Furthermore, the resulting protein is predicted to be 85 amino acids in size, shows several predicted
phosphorylation sites (Figure S6) and may act as a DNA-binding protein (DNABIND server [40]).
The region containing this novel gene (Figure 5) has previously been associated with the virulence
of the virus [67]. However, more work needs to be done to understand the contribution of this novel
gene and the region in MDV virulence.
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Figure 5. The Marek’s disease virus (MDV) unique short (US) region. (A) Visualization of RNA-seq
coverage across the MDV US region with respective introns in black. (B) Zoom into the far-right
region of the MDV US with depiction of the novel US gene SORF6. Green and red arrows indicate the
polyadenylation signals and the poly(A) cleavage sites, respectively. (C) RT-PCR was performed to
validate the splicing event in the novel gene SORF6. PCR products were derived using forward/reverse
primers to amplify the respective intron-flanking regions as full-length (upper band) and spliced (lower
band). (D) Comparison of the novel US gene (SORF6) intron frequencies in RB1B and CVI988 infected
primary chicken B cells.

3.5. The Transcriptional Makeup of the MDV Repeat Regions

The repeat regions mostly contain MDV-specific genes encoding for proteins or RNA that play
a role in the cell tropism, MDV pathogenesis, latency, and transformation [14]. Here, we observed
excessive splicing antisense to ICP4. These transcripts are part of the latency associated transcript
(LAT) region, have a complex splice pattern, and their functions remain largely unknown [68,69].
Some of these RNAs function as MDV-encoded micro RNAs and are described elsewhere [70,71].

Only moderate RLORF7 (Meq) and vIL8 splicing was detected in infected primary B cells 16
hpi although more extensive splicing activity has been observed in this region of the MDV genome
in vitro and in vivo [72–74]. These splice variants are likely higher expressed in latently infected and
transformed cells. The splice variants of the neurovirulence factor pp14 encoded by MDV075 were
efficiently detected as published previously [15,44].

In the RNA-seq data, we did not detect any reads complementary to vTR. However, this region
is annotated as a hypothetical MDV gene termed RLORF1 (an arginine-rich protein/ICP0-like
protein) [75]. RLORF1 is discussed as a potential positional orthologue of alphaherpesviral ICP0
proteins; however, it does not contain typical ICP0 features such as a C3HC4 zinc RING finger at
the N-terminus or a nuclear localization signal (NLS). To assess if ICP0 protein is expressed and
if it plays a role in replication, we generated recombinant MDV mutants harboring an HA-tagged
ICP0 (RB1B_ICP0-HA) or an ICP0 knockout (RB1B_ΔMetICP0). The knockout did not affect MDV
replication and cell to cell spread in vitro (Method S1 and Figure S4A) and no ICP0 was detected by
western blotting (Method S1 and Figure S4B), suggesting that ICP0 is not expressed and therefore does
not play a role in the virus life cycle.
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Furthermore, we detected several poly(A) cleavage sites in combination with appropriate motifs
within the MDV repeat regions, that are to our knowledge undescribed. The presence of these
transcriptional signals in combination with sufficient read coverage suggest the existence of hitherto
hypothetical protein coding regions, including RLORF11 and MDV082.

3.6. MDV Noncoding RNAs

Although we enriched for poly(A) mRNA, some newly identified introns do not lie in annotated
MDV coding sequences and some splice donor and acceptor sites do not give rise to conclusive
protein-encoding mRNAs. Such sequences could be easily regarded as ‘nonsense’ transcripts
that are rapidly degraded. However, the importance of noncoding RNAs (ncRNAs) in MDV
infections is expanding. Several viral ncRNAs were found to be expressed by MDV [75–78] but the
multitude of functions played by viral ncRNAs, and especially by long ncRNAs (lncRNAs) and stable
intronic sequence RNAs (sisRNAs), have not been thoroughly investigated yet and the unexpected
transcriptomic complexity may have been overlooked in MDV research so far. Of note is, that antisense
transcription was also observed in related alphaherpesviruses like HSV-1 or pseudorabies virus (PRV),
and in human herpesvirus 6 (HHV-6) RNA-seq data [79–81].

Taken together, our MDV RNA-seq data provide novel insights into the transcriptional profile of
the RB1B and CVI988 strains. Despite stark differences in their pathogenicity, the two viruses show a
similar transcriptomic profile in primary chicken B cells.

4. Conclusions

B cells are a major target for lytic MDV replication in vivo [8,10]; however, it remained impossible
to assess the MDV transcriptome in primary B cells, due to the short-lived nature of these cell.
The aim of this study was to evaluate the gene expression profiles of the very virulent RB1B strain
and the commercial MDV vaccine CVI988 in primary chicken B cells by RNA-seq using our recently
established in vitro infection system [19]. We developed a bioinformatics pipeline that can be easily
transferred to other herpesviruses or large DNA viruses to identify unknown transcript isoforms and
associated motifs.

The RNA-seq revealed the expression of 94 MDV transcripts and the presence of 71 introns that
lead to mostly novel splice forms and antisense transcripts. In addition, we could identify a novel
gene in the US region of the MDV genome that we will characterize in future studies. While some of
the detected splice sites were previously published, we identified several novel splice variants and
confirmed some of them by RT-PCR and/or MS. However, more work is certainly required to dissect
their relevance in the MDV life cycle.

We found that MDV produces bicistronic and polycistronic transcripts as a mechanism to
maximize its coding capacities. Poly(A) cleavage after the upstream AATAAA motif seems to be
the most frequent and functional polyadenylation signal in MDV. The identification of possible
alternative transcript termination (ATT) needs further experimental evidence (Figure 2 and Table
S5). ATT is a strong regulatory factor in eukaryotes [82], but there is only limited data for ATT in
herpesvirus transcription.

The comparison of the transcriptome between the very virulent RB1B strain and the CVI988
vaccine revealed differences in only a few transcripts (Figure 1). However, more work needs to be
done to unravel significant differences that could possibly point towards a mechanism of attenuation
or provide valuable information for the development of diagnostic tools.

In summary, our data demonstrate that the MDV genome is more complex than previously
assumed. It provides a source of reference for MDV transcripts expressed in primary chicken B cells
and lays the foundation for future research on MDV-encoded gene products and splice variants.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/3/264/s1:
Method S1: Generation and in vitro characterization of RB1BΔMetICP0, Figure S1: Protein concentration (mol%)
scatterplot comparing levels of detected viral proteins in RB1B and CVI988 infected primary chicken B cells,
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Figure S2: Detected splice variants of UL15, Figure S3: RT-PCR confirmation of splicing events in pp38, Figure S4:
Plaques size assay and western blot analysis for the ICP0 mutant RB1BΔMetICP0, Figure S5: Transmembrane
helix prediction for spliced and unspliced pp24 and pp38, Figure S6: Prediction of serine, threonine or tyrosine
phosphorylation sites in the hypothetical MDV protein SORF6 encoded on the US segment, Table S1: Marek’s
disease virus (MDV) proteins detected by mass spectrometry, Table S2: Primers used in this study, Table S3:
Summary of RNA-seq read mapping, Table S4: Introns identified from RNA-seq data, Table S5: Poly(A) cleavage
sites, polyadenylation signals and polycistronic transcripts identified in MDV transcriptomes, Supplementary File
S1: Annotations for NC_002229.3 in GFF format.
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Abstract: The detailed mechanisms of replication initiation, termination and segregation events
were not yet known in Acanthamoeba polyphaga mimivirus (APMV). Here, we show detailed
bioinformatics-based analyses of chromosomal replication in APMV from initiation to termination
mediated by proteins bound to specific DNA sequences. Using GC/AT skew and coding sequence
skew analysis, we estimated that the replication origin is located at 382 kb in the APMV genome. We
performed homology-modeling analysis of the gamma domain of APMV-FtsK (DNA translocase
coordinating chromosome segregation) related to FtsK-orienting polar sequences (KOPS) binding,
suggesting that there was an insertion in the gamma domain which maintains the structure of
the DNA binding motif. Furthermore, UvrD/Rep-like helicase in APMV was homologous to
Bacillus subtilis AddA, while the chi-like quartet sequence 5′-CCGC-3′ was frequently found in
the estimated ori region, suggesting that chromosomal replication of APMV is initiated via chi-like
sequence recognition by UvrD/Rep-like helicase. Therefore, the replication initiation, termination
and segregation of APMV are presumably mediated by DNA repair machineries derived from
gram-positive bacteria. Moreover, the other frequently observed quartet sequence 5′-CGGC-3′ in
the ori region was homologous to the mitochondrial signal sequence of replication initiation, while
the comparison of quartet sequence composition in APMV/Rickettsia-genome showed significantly
similar values, suggesting that APMV also conserves the mitochondrial replication system acquired
from an ancestral genome of mitochondria during eukaryogenesis.

Keywords: DNA replication; ori; mitochondria; Rickettsia; gram-positive bacteria; APMV; Mimivirus;
giant virus; eukaryogenesis

1. Introduction

Understanding the mechanism of genomic replication for all organisms, including the “giant
viruses”, is an important scientific endeavor. Mimivirus, the first giant virus to be discovered, has a
750-nm-long virion and a 1.2 Mb linear dsDNA genome [1,2]. The method of replication termination
for Acanthamoeba polyphaga mimivirus (APMV) has been previously hypothesized [3]. The first
model suggested that the replication of the lagging strand of APMV’s linear genome is mediated by
homologous recombination of approximately 617 bp located on both ends of the viral chromosome,
similar to T4 phage replication, and is processed with Mimivirus R555 recombinase (Mre11/Rad50
fusion protein) [3,4]. Recently, the second model of replication termination and segregation of APMV
was proposed [5]. In this model, the FtsK-like protein (also called packaging ATPase), binds FtsK
orienting polar sequences (KOPS) and is localized to both ends of the nucleosome, resulting in
chromosome segregation by the recombination of dif sequences [5]. The KOPS is the recognition sites
of FtsK protein, and this protein controls the chromosome segregation in bacteria [6]. The second
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model reinforces the first model regarding homologous recombination between chromosomal ends.
However, it should be noted that the bacteria do not perfectly conserve KOPS among species [6–8],
suggesting that APMV could have KOPS of its own, which might be similar to bacterial KOPS.

The initiation of DNA replication of bacteria is mainly driven by DnaA-DnaA box interaction,
which subsequently unwinds dsDNA via DnaB [9]. Rep protein, related DNA helicase such as DnaB,
initiates plasmid replication [10]. The Rep protein relates not only to plasmids but also to chromosome
replication in Escherichia coli [11]. The homologues of these helicases in gram-positive bacteria are
PcrA and AddAB; both are involved in DNA repair, and the former is involved in rolling-circle
replication [12–14]. Especially, AddAB mediates the homologous recombination with recognizing
the five-nucleotide sequence called chi [12], so the recombination is sequence specific. The sequence
chi is known as a site-specific recombination site that is catalyzed by the RecBCD pathway in E. coli,
and RecB is a homologous helicase to AddA [15,16]. Chi sequence varies among bacterial species:
E. coli: 5′-GCTGGTGG-3′; Bacillus subtilis: 5′-AGCGG-3′; Lactococcus lactis: 5′-GCGCGTG-3′ [12,15–17].
Based on the model of replication termination in APMV [5], the DNA replication initiation mechanism
might also be homologous to that of bacteria. If so, the pair of bacteria-like DNA sequences and their
recognition proteins which are related to the DNA replication initiation and segregation could be found
in APMV. Plotting the nucleotide composition bias called genomic GC skew is a tool for visualizing the
bias of the nucleotide composition on the genome, which is able to determine the origin of replication
since the values of GC skew switch across the replication origin and its terminus [18], and which
has been determined in bacteria with some improvements of the technique [19–21]. This nucleotide
composition bias shaping the genomic polarity is thought to have results of the mutation and selection
pressure against the different replication mechanism of leading/lagging strand [22,23]. Although
the origin of replication remains putative in Mimivirus, the GC skew analysis against the Mimivirus
genome with high resolution may facilitate the detection of the signal sequence of DNA replication
initiation. Therefore, using bioinformatics, we analyzed the APMV genome to determine the DNA
replication initiation/termination segregation mechanism in detail, starting with the GC skew analysis.

2. Materials and Methods

2.1. GC/AT, Coding Sequence (CDS) Skew Analysis

GC and AT skew of the APMV genome (AY653733.1) was analyzed using a method described
previously [20,21]. Each index was calculated using the following formulas: GC skew = [G-C]/[G+C];
AT skew = [A-T]/[A+T] (window size: 10,001 bp; step size: 1000 bp), and the GC/AT skew and
cumulative graph of these were plotted. To calculate coding sequence (CDS) skew, we indexed the
CDS direction on the APMV genome (direction of the gene (D): positive: +1; negative: -1) and the CDS
length (L). Subsequently, the CDS skew index was calculated against every CDS using the following
formula: CDS skew = [D] × [L] (Figure 2b). The CDS skew and cumulative CDS skew were plotted
with the CDS start positions.

2.2. Correlation Analysis of the CDS Length of Left/Right Side from the Estimated Ori Region

The CDS length of the left or right sides from the estimated origin (380,698 bp), and the CDS
length of the positive or negative direction against the APMV genome (AY653733.1), were plotted
using a box plot. The statistical differences between each of two groups were calculated by two-sample
Kolmogorov–Smirnov (KS) test using “lawstat package” of R software (https://www.r-project.org)
with default options.

2.3. Paralogous Gene Localization Analysis

We confirmed the three kinds of paralogous gene locations found on the two GC skew shift
points (296,000 bp and 882,000 bp): ankyrin repeat, serine/threonine protein kinase, and collagen triple helix
repeat containing protein. First, we made a gene list of the CDS information annotated as “ankyrin
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containing protein”, “serine/threonine protein kinase”, or “collagen triple helix repeat containing
protein” in the APMV genome (AY653733.1), containing the data of locus tags, start/end physical
positions, gene length and gene direction and GC content (Supplementary Data). Every pair of
each of the three genes was listed and the distance between these pairs from the start position was
calculated. This pair of directions on the physical position of the APMV genome was plotted using
the Circos v0.69-6 software [24]. The pair of gene direction was also labeled (matched direction:
forward-forward/reverse-reverse; mismatched direction: forward-reverse/reverse-forward). When
drawing the graph with Circos, color coding was used to display the three kinds of genes, and states
of matched/mismatched gene directions were displayed with shades of colors (ankyrin containing
protein: blue; serine/threonine protein kinase: green; collagen triple helix repeat containing protein:
red; matched: light; mismatched: shade). The columns of id, gene1_start_pos, gene2_start_pos,
line_colour, and line_thickness in the Supplementary Data without header (Supplementary Data; the
pane “Paralogous gene direction”) can be used for loading the data to Circos. The distance between
every two CDSs in each of the three genes was plotted by the CDS direction-matching patterns on the
APMV genome (“match” or “mismatch”). The statistical differences between the two groups were
calculated by two-sample KS test using the “lawstat package” in the R software with default options.

2.4. Sequence Alignment Analysis Neighbor-Net Network Analysis

The accessions of analyzed FtsK with positions of motor (ATPase) domain and gamma domain
were as follows: APMV: AAV50705.1, 5-215 aa, 216-284 aa; E. coli: NP_415410.1, 868-1242 aa, 1268-1324
aa; L. lactis: NP_267812.1, 312-668 aa, 695-749 aa; Pseudomonas aeruginosa: Q9I0M3, 343-716 aa,
749-803 aa; B. subtilis: WP_003231869.1, 346-703 aa, 582-723 aa. The accession numbers of analyzed
UvrD/Rep-like helicase were as follows: APMV: AKI80299.1; E. coli: YP_026251.1 (Rep), AAA67609.1
(UvrD), NP_417297.1 (RecB); L. lactis: WP_003132060.1 (PcrA), WP_010905024.1 (AddA); B. subtilis:
WP_003233919.1 (PcrA), WP_003233100.1 (AddA). The dataset without the APMV sequence was
used for alignment. Poor-quality sequences were masked using Prequal software [25], and sequence
alignment analyses was performed using the MAFFT v7.222 software with “—auto” option [26].
Subsequently, the APMV sequence was added and realigned with MAFFT. To determine the alignment
of the chi-binding site of AddA with APMV, two sequences of AddA from L. lactis and B. subtilis
(WP_010905024.1 and WP_003233100.1) were recursively added with the APMV sequence. For the
Neighbor-Net network analysis, alignment data containing APMV sequence were trimmed using
trimAl 1.2rev59 software with “-strictplus” option [27], and the numbers of aligned residues used
were: FtsK ATPase domain: 322 aa; FtsK gamma domain: 49 aa; UvrD/Rep-like helicase: 483
aa. The Neighbor-Net network tree was drawn by SplitTree4 (version 4.14.8) with 1000 bootstrap
replicates [28,29].

2.5. KOPS Distribution in the Genome

The bacterial KOPS distributions on APMV and the bacterial genomes were plotted using the
following genome data: APMV: AY653733.1; L. lactis Il1403: NC_002662.1; E. coli MG1655: NC_000913.3;
B. subtilis 168: NC_000964.3. The information on the ori and ter positions of these bacteria was provided
by Genome projector website (http://www.g-language.org/g3/) [30]. KOPS of each bacteria were listed
as follows: L. lactis: 5′-GAGAAG-3′; B. subtilis: 5′-GAGAAGGG-3′; E. coli: 5′-GGGNAGGG-3′ [6–8].

2.6. Quartet Sequence Composition Analysis

Every quartet sequence compositions on APMV and the bacterial genomes were confirmed
with the compseq program of the EMBOSS 6.6.0.0 software [31] with the “-word 4 ” option, using the
following genome data: APMV: AY653733.1; L. lactis Il1403: NC_002662.1; E. coli MG1655: NC_000913.3;
B. subtilis 168: NC_000964.3; Rickettsia prowazekii: NC_000963.1; Homo sapiens mitochondria (MT):
CM001971.1. To compare the compositions between the estimated ori region and the whole genome of
APMV, sequence composition was also confirmed on the 375–385 kb region, and the ratio of ori region
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per whole genome (quartet nucleotide composition ratio) was calculated as follows: quartet nucleotide
composition ratio = [ori observed/expected frequency]/[all genome observed/expected frequency].
The Grubbs test was performed on this data to detect the highly observed sequence on the ori region
with the “outliers” package of the R software (options: type = 11; opposite = TRUE; two.sided = TRUE).
The mutual observed frequency of quartet sequence among APMV, APMV ori region, and bacteria
were plotted, while statistical differences were confirmed by two-sample KS test using the “lawstat
package” of the R software with default options.

2.7. Homology Modeling Analysis

Homology modeling analyses of the gamma domain of packaging ATPase (FtsK-like protein,
216-284 aa region of AAV50705.1) were performed using the I-TASSER server [32]. Template structures
of P. aeruginosa (2J5O and 2VE9) were used for modeling [33,34].

3. Results

3.1. GC/AT Skew and CDS Skew Analyses

The GC skew plot showed the two highest and lowest peaks at the symmetrical position point of
the genome (296 kb and 882 kb), and the plot was able to separate the three regions by these positions
(Figure 1a). Both end regions (<296 kb, >882 kb) were increasing; however, the former value was
negative and the latter value was positive, indicating that the 5‘ end contained a C nucleotide rather
than G nucleotide, and the 3′ end contained a G nucleotide rather than a C nucleotide. The middle
region of the graph (from 296 kb to 882 kb) was almost flat (Figure 1b), and the cumulative GC skew
plot of this region was increasing (Figure 1b), indicating that the number of G and C nucleotides in
this region was slightly skewed to the G nucleotide. The AT skew graph showed the shift point of
the value, which corresponded to the peak of the valley of the cumulative AT skew graph at 382,000
± 5000 bp region, suggesting that the origin of DNA replication is located in this region (Figure 1).
However, the cumulative AC skew did not show any peaks (Figure S1).

CDS skew analysis showed that the shift point and cumulative CDS skew analysis exhibited a
V-shaped graph, similar to the AT skew/cumulative AT skew (Figure 2a). Furthermore, the valley of
this cumulative CDS skew graph was located at 382,698 bp, and the gene direction faced outward from
this peak. Therefore, we concluded that the estimated ori region is located at the 382 kb position of
APMV genome. The location of the estimated ori region is biased toward the 5′ end from the center
of the genome; however, there were no significant differences in CDS length between the right and
left sides of the estimated ori region and between the positive and negative strands (Figure S2). We
found the same paralogous genes on the GC skew shift points (296,000 bp, 882,000 bp): ankyrin repeat,
serine/threonine protein kinase, and collagen triple helix repeat containing protein. Paralogues of
these genes were located on the line of symmetry position in the genome, especially collagen triple helix
repeat containing protein gene, which exhibited the exact positions of the GC skew shift points with
opposite gene direction, suggesting that the nucleotide compositions of these paralogues formed the
shift points (Figure 3a). Additionally, we analyzed the gene-to-gene distances between each pair of
paralogues for each of the three genes, indicating that the distance between the gene direction matched
pair was shorter than that between the mismatched pair (fold change: 2.6, p < 0.05, Figure 3b). Thus,
APMV forms the double-folding structure and is the cause of paralogue generation by homologous
recombination (Figure S3).
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Figure 1. Analyses of the GC/AT skew in the Acanthamoeba polyphaga mimivirus (APMV) genome. (a)
GC and AT skew plot of APMV genome (AY653733.1, step size: 1000 bp; window size: 10,001 bp). Red
arrows on the GC skew plot indicate the highest/lowest peaks, which are located at the symmetrical
position of the genome (GC skew: 0.488234 at 296,000 bp; -0.472989 at 882,000 bp). (b) Cumulative GC
and AT skew plots corresponding to the graphs on the panel (a). The green arrow on the graph on the
cumulative AT skew plot shows the lowest valley point on this graph, which was estimated in the
genomic region as an origin of replication (382,000 ± 5000 bp).

 
Figure 2. Analyses of the coding sequence (CDS) skew of the APMV genome. (a) CDS skew plot
(left) and cumulative CDS skew plot (right) of the APMV genome (AY653733.1). The green arrow on
the graph on the cumulative CDS skew plot shows the lowest valley point, which was estimated to
be genomic region of the origin of 382,698 bp. (b) Calculation of the CDS skew index. D: Direction
values of the CDS against the APMV genome (AY653733.1); L: CDS length (bp). Pink and green arrows
indicate the positive and negative CDS direction on the APMV genome, respectively.
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Figure 3. Paralogous gene localization found at the GC skew shift point. (a) The three genes found
on the GC skew shift point were plotted (ankyrin repeat, serine/threonine kinase, and collagen triple
helix repeat containing protein). Four dif sites (dif 1-4) were described previously (see text). Each of
the three genes were separately categorized as matching or mismatching the coding sequence (CDS)
direction on the Acanthamoeba polyphaga mimivirus (APMV) genome (AY653733.1) with shades of colors
(light: matched direction; dark: mismatched direction). (b) Distances between each pair of CDSs in
each of the three genes were plotted by the CDS direction matching patterns on the APMV genome
(“match” or “mismatch”). Labels above the box plots indicate the fold change between the two values
with the resulting p-value from KS-tests.

3.2. Initiation of DNA Replication

3.2.1. Sequence Analysis of UvrD/Rep-Like Helicase

Since the replication initiation mechanism had not yet been analyzed in APMV, we sought
to determine the protein that participated in the initiation of DNA replication. In doing so, we
discovered a similar sequence to Rep helicase that was related to the both chromosome and plasmid
replication [10,35]. This protein has already been annotated as “UvrD/REP helicase family protein”,
suggesting that this protein is possibly an initiator of DNA replication in APMV (accession ID of
NCBI protein database: AKI80299.1). We aligned the UvrD/REP helicase family protein of APMV
(AKI80299.1) with the bacterial homologues: Rep, UvrD, and RecB of E. coli; PcrA and AddA
of B. subtilis; and L. lactis [10,12,13]. The alignment and phylogenetic analysis showed that the
UvrD/Rep-like helicase of APMV is a close relative to the AddA rather than Rep (Figure 4a,c). Seven
regions that were known to be conserved among AddA and other helicases [36] were also highly
conserved in the UvrD/Rep-like helicase (Figure 4a). AddA forms a heterodimer with AddB, which
recognizes the chi sequence of B. subtilis [37]. Therefore, we compared the homologous region of
the chi binding site of AddA with UvrD/Rep-like helicase of APMV. The results showed that there
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were three regions containing chi binding sites in UvrD/Rep-like helicase of APMV, and two out of
seven sites were conserved: Q1115 and I1157 of Bacillus-AddA corresponded to the Q922 and I924 of
UvrD/Rep-like helicase of APMV; and Y1204 of Bacillus-AddA presumably corresponded to the Y973
of UvrD/Rep-like helicase of APMV, which was shifted one amino acid residue to the C-terminus from
the homologous site against Y1204 in B. subtilis (Figure 4b). Although we have aligned the other region
containing four DNA-binding residues between the 1012–1019 aa region of Bacillus-AddA with the
610–617 aa region of UvrD/Rep-like helicase, both of which are constructed with polar amino acids,
we could not find any conserved sequences of DNA binding sites (K1013, S1015, V1016, and S1017 in
Bacillus AddA, Figure 4b). These four residues in Bacillus-AddA bind the phosphate at the 3′ end of the
chi sequence [37], so that the content of polar amino acids in this region, rather than the exact amino
acid sequence, is important for Bacillus-AddA to bind to the chi sequence. Therefore, we estimated that
the 610–617 aa region of UvrD/Rep-like helicase of APMV could also bind the 3′ end of the chi-like
sequence in the APMV genome. Altogether, the UvrD/Rep-like helicase of APMV was similar to the
AddA of gram-positive bacteria, and thus this protein would presumably recognize the chi sequence.

 
Figure 4. Sequence analyses of UvrD/Rep-like helicase of APMV. (a) Sequence alignment of seven
conserved regions among APMV and three bacteria. Character “X” on the alignment indicates the
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residues masked by the prequel program [25]. Accession number and species name are labeled on the
left side of the alignments. Grey colored numbers, which are located on both sides of the alignments,
indicate the physical positions of each sequence. (b) Sequence alignment of chi sequence binding sites.
Accession number and species name are labeled on the left side of the alignment. Grey colored numbers,
which are located on both sides of the alignments, indicate the physical positions of each sequence.
Labels above/under the alignment indicate the amino acids related to the chi sequence binding sites
determined using B. subtilis-AddA [37]. (c) Neighbor-Net network tree of the UvrD/Rep-like helicase.
Accession number and species name corresponding to the sequence alignment are labeled at the end of
the branch. Numbers on nearby branches indicate bootstrap test values with 1000 replicates. Scale bar:
number of substitutions per site.

3.2.2. Signal Sequence of the Initiation of DNA Replication

Subsequently, we sought to find the sequence that was related to the origin of recognition on the
probable ori region. To accomplish this, we first calculated the quartet nucleotide composition ratio of
the ori-containing region per total genome (Figure 5). For details of the calculation of the ratio, see
Materials and Methods. The four types of sequences that had a ratio greater than 2 contained 75–100%
of GC nucleotides, and two of four sequences, CGGC and CCGC, exhibited significantly different
ratios from the other sequences (p < 0.05, Figure 5a). Furthermore, two sequences (CCGC and GCGG)
were complementary to each other (Figure 5a). This pair of sequences was identical to four out of
five nucleotides on the chi sequence, which was recognized by B. subtilis-AddA (5′-AGCGG-3′) [12].
Additionally, the sequence CGGC is known to be a part of a complementary sequence that is known
as a replication signal sequence of mitochondrial genome in humans, 3′-GGCCG-5′ [38]. Therefore,
we analyzed the distribution of these quartet sequence in the APMV genome. The sequence densities
of CCGC and GCGG in the APMV genome showed that both sequences had two peaks, and one of
each peak was located on the ori-containing region, while the others were on the axial symmetric
position (about 800,000 bp, Figure 5b). Similar to this, those of CGGC and GCCG exhibited two peaks
and the peak on the 5′ side in GCCG located on the ori-containing region, although that of the CGGC
slightly skewed from the ori-containing region to the 5′ end of the genome (Figure 5c). Each type of
quartet sequence composition frequencies was calculated in APMV, four kinds of bacteria (B. subtilis, L.
lactis and E. coli, and R. prowazekii), and human mitochondrial genome (H. sapiens MT). R. prowazekii
is considered as an ancestor of mitochondria [39], while the mitogenome sequence similarity against
the Mimivirus genome has been reported recently [40]. These frequencies were then plotted in every
pair of bacteria, mitochondria, APMV, and the ori-containing region of APMV (375–385k) (Figure 6).
Every pair without APMV-APMV-ori and APMV-R.prowazekii exhibited a significant difference of
sequence composition (p<0.05, Figure 6). R. prowazekii possesses the most similar sequence composition
compared with APMV (p = 0.2528). The composition similarity of the R. prowazekii-APMV pair was
higher than those of the R. prowazekii-H. sapiens MT and APMV-H. sapiens MT pairs (R. prowazekii-H.
sapiens MT: p = 0.04685; APMV-H. sapiens MT: p = 0.00146), suggesting that the APMV conserves the
sequence derived from an ancestor of mitochondria rather than from highly evolved mitochondria
in humans. Interestingly, the composition of human mitochondria and L. lactis also showed a high
similarity (p = 0.3552) rather than the R. prowazekii-H. sapiens MT pair, suggesting that the mitochondrial
genome still conserves a remnant of bacterial characteristics.
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Figure 5. Comparative analysis of the quartet nucleotide composition ratio between the ori-containing
region and the total genome of APMV. (a) Frequency distribution of fold-changes (= [ori-containing
region]/[whole genome], ori-containing region: 375–385 kb of AY653733.1). Red arrows indicate that the
fold-changes of the bins are greater than two. Sequences and fold-changes greater than two are listed
on the top right of the figure. Asterisks indicate significant outliers from the population calculated by
Grubbs test (p<0.05). (b,c) Density graph of the 5′-CCGC-3′/5′-GCGG-3′ and 5′-CGGC-3′/5′-GCCG-3′

on the APMV genome (AY653733.1). Red arrowhead on the scale indicate the estimated location of the
ori region (382,000 ± 5000 bp).

 

Figure 6. Comparative analysis of quartet nucleotide composition frequencies among APMV, human
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mitochondria (H. sapiens MT), and four bacterial genomes (Escherichia Coli, Bacillus subtilis, Lactococcus
lactis, Rickettsia prowazekii). Pairs of every frequency between two species were plotted with an
approximate line. “APMV ori” indicates the frequencies of sequence compositions in the estimated
location of the ori region (375–385 kb region of AY653733.1). p-values in each top left corner of the
graphs are the significant differences calculated between two groups as determined by KS test.

3.3. Termination of DNA Replication and Chromosome Segregation

3.3.1. Sequence Analysis of FtsK-Like Protein in APMV

FtsK mainly conserves the motor domain (alpha/beta domain) and gamma domain, the latter
of which is our main target, and recognizes KOPS [5,26]. The DNA binding sites of FtsK has been
determined in P. aeruginosa [34,41]. We aligned the gamma domain of APMV with P. aeruginosa and
other bacteria (L. lactis, B. subtilis, and E. coli), revealing that the DNA binding sites determined in P.
aeruginosa were conserved to almost the same degree among APMV and bacteria. The phylogenetic
analysis of FtsK-gamma domain among these species indicated that the sequence of L. lactis was
most closely related to the APMV-FtsK gamma domain (Figure 7b). However, in APMV, there was
a 10 aa insertion in the region where the DNA binding sites were localized (Figure 7a), suggesting
that DNA-binding activities of APMV-FtsK had possibly collapsed. Therefore, we confirmed the
three-dimensional structure via homology modeling of the gamma domain in APMV-FtsK, using two
models from P. aeruginosa as templates [34,41]. As a result, the DNA binding sites of APMV-FtsK were
thought to be topologically reconstructed and conserved by this insertion (Figure 8). Estimated DNA
binding sites against the DNA backbone were K242, K243, K253, and K256, which corresponded with
R770, K771, R778, and R781 in P. aeruginosa, respectively, and the binding site for KOPS specifically was
N246 at APMV-FtsK, which corresponded to N777 in P. aeruginosa. K242, K243, and N246 were placed
on the insertion (Figure 7a, Figure 8a) [33]. These four basic amino acids localize in two helix motifs,
which bind to the KOPS region and support the recognition of KOPS by asparagine between the two
helix motifs (Figure 8a,b) [33]. Next, we confirmed the conservation of the ATP binding sites on the
FtsK in APMV. The FtsK conserves the Walker A motif (the ATPase active site), and in P. aeruginosa,
substitution of amino acid residue in this motif leads to the deactivation of ATPase (K472N) [41].
The sequence alignment showed that the motor domain of APMV conserved lysine on the Walker
A motif (K32) as well as other three bacteria (Figure 9a). The other ATP binding sites found in P.
aeruginosa [41] were partially conserved in the APMV-FtsK (Figure 9a). However, some amino acids
were not conserved, even in bacteria (R418 and H675 of P. aeruginosa-FtsK, Figure 9a), suggesting
that these amino acid residues in binding sites could be replaced with other amino acid residues.
Phylogenetic analyses of these motor domains indicated that the sequence of APMV was distinct from
bacteria (Figure 9b). Therefore, APMV-FtsK might have speciated from its bacterial group prior to the
emergence of bacterial FtsK.
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Figure 7. Sequence analyses of APMV-FtsK gamma domain. (a) Sequence alignment of FtsK-like
protein gamma domain. Accession number and species name are labeled on the left side of each
alignment. Grey numbers located on both sides of the alignments indicate the exact positions of each
sequence. Amino acids labeled under the alignment indicate the amino acid residues responsible for
DNA binding sites of Pseudomonas aeruginosa [25]. (b) Neighbor-Net network tree of FtsK gamma
domains. Accession number and species name corresponding to the sequence alignment are labeled at
the end of the branch. Numbers on nearby branches indicate bootstrap test values with 1000 replicates.
Scale bar: number of substitutions per site.

Figure 8. Homology modeling analysis of APMV-FtsK gamma domain. (a) Estimated structures of
FtsK gamma domain using two different templates of P. aeruginosa-FtsK (PDBID; middle: 2J5O; right:
2VE9). The left model is the gamma domain of P. aeruginosa-FtsK (PDBID: 2VE9). Side chains on the
left model are directly bound to FtsK orienting polar sequences (KOPS), while the other two models
are estimated amino acids, which are functionally homologous to 2VE9. Blue arrows indicate two helix
motifs harboring KOPS binding residues. (b) Model of the gamma domain of APMV-FtsK against
KOPS. Four basic amino acids and Asn (N) correspond to the side chain in every model on panel (a).
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Figure 9. Sequence analyses of APMV-FtsK ATPase domain. (a) Motor domain of FtsK-like protein
sequence alignment. Accession number and species name are labeled on the left side of alignments.
Grey numbers located on both sides of the alignments indicate the exact positions of each sequence.
Labels under the alignment indicate the amino acids related to ATPase activities determined in P.
aeruginosa [41]. (b) Neighbor-Net network tree of the gamma domains. Accession number and species
name correspond to the sequence alignment labeled at the end of the branch. Numbers on nearby
branches indicate bootstrap test values with 1000 replicates. Scale bar: number of substitutions per site.

3.3.2. Distribution Pattern of KOPS on APMV Genome

The most frequently observed type of KOPS sequence was from L. lactis, whereas those of B. subtilis
and E. coli were hardly encountered (L. lactis, 5′-GAGAAG-3′: 225; B. subtilis, 5′-GAGAAGGG-3′: 5;
E. coli, 5′-GGGNAGGG-3′: 9; Figure 10a). This KOPS distribution pattern was different between the
positive and negative strand, and the density graphs showed that these two patterns crossed at the
estimated ori position (Figure 10b). These KOPS distribution patterns were analyzed in each bacterial
genome, and the results suggested that the density of KOPS on the positive/negative strand switched
on the exact points of the ori/ter region (Figure 10c). This is similar to the distribution pattern of L.
lactis-derived KOPS in the APMV genome and to KOPS in the bacterial genomes, indicating that L.
lactis KOPS could be one of the commonly used termination sequences in DNA replication in APMV.
It should be noted that we did not have evidence that the other two KOPS, 5′-GAGAAGGG-3′ and
5′-GGGNAGGG-3′, found in APMV, were inactive (Figure 10a).
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Figure 10. Bacterial KOPS distribution on APMV. (a) Frequency distribution of bacterial
KOPS distribution in the APMV genome (AY653733.1, L. lactis; 5′-GAAGAAG-3′, B. subtilis:
5′-GAGAAGGG-3′, E. coli: 5′-GGGNAGGG-3′). Complementary sequences were also counted. (b)
Density graph of the L. lactis type KOPS in the APMV genome (AY653733.1). KOPS on the positive
and negative strand of the APMV genome were plotted separately. Red arrow: estimated ori region;
dark gray arrows: dif sequence positions (c) Bacterial KOPS distributions in bacterial genomes (L. lactis
Il1403: NC_002662.1, E. coli MG1655: NC_000913.3, B. subtilis 168: NC_000964.3). Red and black arrows
indicate the ori and ter positions, respectively.

4. Discussion

The GC/AT skew bias is the result of replication bias in bacteria [19], and the
replication-transcription conflict causes a high mutation rate in genes, causing genetic transcription and
DNA replication to be co-directional [42]. We determined the estimated ori region using high-resolution
cumulative skew graphs of AT nucleotides and CDSs (382 kb, Figures 1 and 2), which suggests that the
transcription and DNA replication of the APMV genome are co-directional. This characteristic is not
unique to cellular organisms but is the same in APMV. Both bacteria and viruses replicate faster than
eukaryotes. APMV has a 1.2 Mb genome, a size which is similar to that of bacteria. Therefore, its large
genomic structure would likely be constructed while facing the selection pressure of DNA replication.

The negative and positive values on both ends of the GC skew plot suggest that the G/C nucleotide
composition switches between the 5′ region (<296 kb) and the 3′ region (>882 kb). Both end regions have
dif sequences, which have been previously estimated [5], suggesting that this nucleotide composition
bias is perhaps a key factor for replication termination with directional homologous recombination
(Figure S3). Indeed, both regions harbor paralogous genes of ankyrin repeats in opposite directions,
indicating that recombination between the 5′ and 3′ ends frequently occurs (Figure 3a). Moreover,
the ankyrin repeats are symmetrically placed between dif 2 and dif 3; thus, these two dif sequences
might often be used for termination and segregation (Figure 3a). A model for the termination of
DNA replication in APMV has been previously described, hypothesizing that the genomic DNA bent
symmetrically during DNA replication of the 3′ end [3]. The symmetrical distribution of the sequences
and genes in APMV suggest that homologous recombination and/or sequence insertions would occur
prior to chromosome segregation. Furthermore, the large, symmetrical inversion between APMV and
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Megavirus chillensis (lineage C of Mimiviridae) [43] indicates that the topology of the genomic DNA
during replication led to the diversification of the viral family Mimiviridae.

In bacteria, the dnaA box sequence on the ori region is recognized by DnaA when DNA
replication is initiated [9], and the Rep protein is used when plasmid replication is initiated [44].
Rep is also involved in chromosomal replication, and a lack of Rep function can cause delay in
chromosomal replication [11]. In E. coli, RecB, which is a homologous helicase to Rep, acts in the
reconstruction of a stalled replication fork in the RecBCD pathway, while recognizing chi sequences
(5′-GCTGGTGG-3′) [15,16]. The gram-positive bacteria B. subtilis encodes the homolog of the RecB,
AddA, and recognizes the chi sequence 5′-AGCGG-3′ [12]. Based on our results, UvrD/Rep-like
helicase of APMV is more similar to AddA than it is to Rep, and a portion of the gram-positive chi-like
sequence (5′-CCGC-3′) is frequently found in the estimated ori region of the APMV genome (Figures 4
and 5) This suggests that the initiation of DNA replication is presumably mediated by the interaction
between the UvrD/Rep-like helicase and chi-like sequences in APMV. In B. subtilis, AddA, Q1155,
and I1157, homologous residues of Q922 and I924 in UvrD/Rep-like helicase of APMV are known
to recognize the fourth and fifth G nucleotides of the chi sequence (5′-AGCGG-3′) [37]. Therefore,
these conservations are appropriate for binding APMV helicase to the GCGG sequence, of which the
complementary sequence is frequently found in the estimated ori region of the APMV genome (Figures
4b and 5). However, S1015, V1016, S1017, and Y1204 in B. subtilis AddA bind phosphate at the 3′ end
of the chi sequence [37], suggesting that these residues are not involved in the recognition of a specific
chi sequence. Phosphate binding sites were not conserved in UvrD/Rep-like helicase of APMV at the
sequence level, however these regions contain polar amino acids similar to B. subtilis AddA (Figure 4b),
which indicates that the UvrD/Rep-like helicase of APMV could also bind phosphate at the 3′ end
of the chi sequence. Furthermore, the other quartet sequence, 5′-CGGC-3′, which was detected on
the estimated ori region of APMV (Figure 5a,c), is reported to be a part of the DNA replication signal
sequence of mitochondria (3′-GGCCG-5′) [38], indicating that the DNA replication of APMV is also
initiated by host replication machineries involved in the replication of mitochondrial DNA.

KOPS and FtsK determine the region of DNA replication termination, and FtsK mediates DNA
segregation process in bacteria [7,8]. KOPS are different among bacteria [6–8], in that the KOPS
recognition mechanism is thought to be defined by the structure of FtsK and the sequence of KOPS
itself. Our results showed that, in the APMV genome, the distribution pattern of L. lactis-KOPS was
similar to those of bacteria (Figure 10b,c). The sequence analysis of the FtsK gamma domain, which
interacts with KOPS, also showed a high similarity between L. Lactis and APMV (Figure 7), suggesting
that the pair of KOPS and the FtsK-gamma domain structure in APMV might be homologous to that
of L. lactis. Furthermore, we found that there was an insertion in the gamma domain of APMV-FtsK.
Interestingly, the three-dimensional structure estimated by homology modeling revealed that this
insertion was reconstructed and conserved in the DNA-binding domain (Figure 8). We also showed
that the Walker A motif was conserved in the FtsK-motor domain of APMV (Figure 9a). These results
suggest that APMV-FtsK might be functionally homologous to that of bacteria. The phylogeny of
APMV-FtsK (gamma domain) was also found to be similar to that of L. lactis (Figure 7b). Therefore, the
mechanisms of interaction between these proteins and specific sequences are presumably homologous
between APMV and bacteria such as L. lactis, although further molecular biological studies and
structural analyses are required to certify this model.

The phylogenetic relations between Rickettsia and mitochondria and between mitochondria
and Mimivirus were described previously [39,40]. Interestingly, the genome size and GC content
of Rickettsia are 1.1 Mb and 29%, respectively [39], which is highly similar to APMV (1.2Mb, 28%).
Furthermore, the backbone of the Mimivirus genome is reported to be derived from the ancestor
of mitochondria [40]. Considering the quartet sequence similarities (Figure 6) and the phylogenetic
relation between Rickettsia and mitochondria, the ancestor of Mimivirus infected the ancestor of
eukaryotic cells (last archaeal common ancestor, LACA) before the endosymbiosis of mitochondrial
ancestor to the first eukaryotic common ancestor (FECA), while the ancestor of mitochondria and
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Rickettsia also infected to the ancestor of eukaryotic cells. This ancestral virus presumably harbored
shorter genomic DNA than the present-day Mimivirus, and it acquired the long genome from ancestor
of mitochondria by genomic fusion. The sequence 5′-CGGC-3′ found in the APMV ori region might
also have been acquired from the ancestor of mitochondria, and is still conserved as a DNA replication
signal sequence (3′-GGCCG-5′) in the mitochondrial genome [38]. It has been reported that the
comparison between mitochondrial genes and the Rickettsia genome shows much higher similarities
than that between mitochondrial genes and megaviral genome (poxvirus), while the synteny of these
three species are significantly conserved [45]. Thus, according to our results, the genomic remnants of
the ancestor of mitochondria may be still conserved in the Mimivirus genome to a greater extent than in
the poxvirus genome. Moreover, the co-infection (or preying on) of the LACA cells might have occurred
not only in ancestor of mitochondria and Mimivirus but also in other bacteria, and therefore APMV
conserves the bacteria-like machineries such as UvrD/Rep-like helicase and APMV-FtsK derived from
the co-infected ancestor of gram-positive bacteria by horizontal gene transfer.

5. Conclusions

Here, we presented a proposed model of the initiation and termination of DNA replication and
chromosome segregation for APMV. The estimated ori region exists at the 382 kb position in the
genome, which contains the chi-like sequence recognized by B. subtilis AddA, which is homologous
to the UvrD/Rep-like helicase of APMV. The other sequence has a homology of a DNA replication
signal sequence of mitochondria, indicating that the DNA replication of APMV may initiate with
the replication machineries of mitochondria. The KOPS distribution pattern and the structure of
APMV-FtsK indicate that the KOPS recognition system by APMV-FtsK is similar to that of L. lactis.
Consequently, replication initiation, termination and segregation systems of APMV are presumably
mediated by DNA repair machineries, similar to that of gram-positive bacteria, such as L. lactis.
Furthermore, the comparison of quartet sequence compositions shows the similarity between APMV
and Rickettsia, which may have the closest common ancestor of mitochondria, indicating that Mimivirus
has acquired a large bacteria-like genome and its DNA replication machineries from ancestor of
mitochondria during the co-infection to the LACA cells. The evolutionary history of APMV remains
unclear; however, the further analyses of such a chimeric genome of APMV may illustrate the early
stage of evolution of eukaryotic cells and Mimivirus.
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Abstract: Untranslated regions (UTRs) of flaviviruses contain a large number of RNA structural
elements involved in mediating the viral life cycle, including cyclisation, replication, and
encapsidation. Here we report on a comparative genomics approach to characterize evolutionarily
conserved RNAs in the 3′UTR of tick-borne, insect-specific and no-known-vector flaviviruses in silico.
Our data support the wide distribution of previously experimentally characterized exoribonuclease
resistant RNAs (xrRNAs) within tick-borne and no-known-vector flaviviruses and provide evidence
for the existence of a cascade of duplicated RNA structures within insect-specific flaviviruses.
On a broader scale, our findings indicate that viral 3′UTRs represent a flexible scaffold for evolution
to come up with novel xrRNAs.

Keywords: flavivirus; non-coding RNA; secondary structure

1. Introduction

Flaviviruses are small, single-stranded positive-sense RNA viruses that are typically transmitted
between arthropod vectors and vertebrate hosts. They are endemic in tropic and sub-tropic regions
and represent a global health threat, although humans are considered dead end hosts in many cases.

The genus Flavivirus within the Flaviviridae family comprises more than 70 species, which are
organized into four groups, each with a specific host association: Mosquito-borne flaviviruses (MBFVs)
and tick-borne flaviviruses (TBFVs) spread between vertebrate (mammals and birds) and invertebrate
(mosquitoes and ticks) hosts, whereas insect-specific flaviviruses (ISFVs) replicate specifically in
mosquitoes and no-known-vector flaviviruses (NKVs) have only been found in rodents and bats,
respectively. This natural host-range-based classification is in good agreement with sequence-based
phylogenetic clustering, mainly because all flaviviruses share a common genome organization [1].
Conversely, epidemiology, disease association [2] and transmission cycles [3] are fundamentally
different among different flavivirus groups.

Emerging and re-emerging MBFVs such as Dengue virus (DENV), Japanese encephalitis virus
(JEV), West Nile virus (WNV), Yellow fever virus (YFV) or Zika virus (ZIKV) are the causative agents
of large-scale outbreaks that result in millions of human and veterinary infections every year [4].
Likewise, tick-borne encephalitis virus (TBEV), Powassan virus (POWV) and other members of the
tick-borne serocomplex are neuropathogenic agents that cause a large number of infections every year,
resulting in a massive incidence increase since the 1970ies [5]. Consequently, much research effort has
gone into studying MBFV and TBFV biology, biochemistry and phylogeny [6]. The two remaining
groups, ISFVs and NKVs, however, have received limited attention in the research community, mainly
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because they are generally not associated with human or veterinary disease and therefore are still
underrepresented in the literature. The phylogenetic relationship among the four ecological flavivirus
groups is shown in Figure 1. Table A1 lists all viral species considered in the present study.
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Figure 1. Maximum-likelihood phylogenetic tree of the genus Flavivirus, highlighting the major groups
ISFVs (blue), dISFVs(orange), TBFVs (green), and NKVs (magenta). The MBFV Yellow Fever virus
group (YFG) and the main MBFV branch were not covered in this study and are both collapsed.
The tree has been computed from a MAFFT alignment of complete polyprotein amino acid sequences
with iq-tree. Figure rendered with FigTree.

TBFVs form a monophyletic group consisting of a single serocomplex, although pathology and
clinical manifestations vary among different viruses. They comprise more than a dozen of recognized
species and separate into three groups: Mammalian tick-borne flaviviruses (M-TBFV), seabird
tick-borne flaviviruses (S-TBFV) and the Kadam virus group. See [7] for a comprehensive review.

ISFVs naturally infect hematophagous Diptera and are typically divided into two groups [8]:
Classical insect-specific flaviviruses (cISFVs) naturally infect mosquitoes and excursively replicate
in mosquito cells in vitro. They form a phylogenetically distinct clade among known flaviviruses,
appearing at the root of the MBFV, TBFV and NKV branches. The cISFV group separates into two clades,
one associated with Aedes spp. mosquitoes and the other associated with Culex spp. mosquitoes,
respectively [9]. They lack the ability to infect vertebrates and to replicate in vertebrate cell lines
and have not been in the research spotlight until very recently. The second group is comprised
of arbovirus-related or dual-host affiliated insect-specific flaviviruses (dISFVs), which represent
a non-monophyletic group which is phylogenetically and antigenically related to mosquito/vertebrate
flaviviruses, although they do not appear to infect vertebrate cells [10]. Insect-specific viruses play
a crucial role in the mosquito microbiome and have been shown to modulate the replication of other
arboviruses [11]. In this line, they are currently considered as biological control agents and vaccine
platforms [12].
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NKVs represent an ecologically and phylogenetically diverse set of viruses which have been
isolated exclusively from vertebrates (mainly bats and rodents), without evidence for transmission
by arthropod vectors. They form a non-monophyletic group among flaviviruses and are typically
divided into bat- (B-NKV) and rodent-associated (R-NKV) groups, see Table A1. B-NKVs can be
further separated into Entebbe virus group, which is phylogenetically closer to MBFVs, and Rio Bravo
virus group, which is a sister clade to TBFVs. Species in the R-NKV group form the Modoc virus
group, which is phylogenetically close to the B-NKV Rio Bravo group [13]. While NKVs are poorly
characterized they represent a valuable resource to study evolutionary traits related to host-switch
capacity mediated by conserved genomic elements.

Conserved RNA Structures Mediate Pathogenesis

Conserved RNA structures in the untranslated regions (UTRs) of RNA viruses are of particular
interest because they mediate the viral life cycle by promoting or enhancing replication, as proposed
for elements in both 5′UTRs [14] and 3′UTRs [15–18]. Mosquito/vertebrate viruses must operate
efficiently in vectors and hosts, phylogenetically distinct organisms with different cellular machineries.
This requires a high level of flexibility of viral regulatory elements to evade various antiviral response
strategies while assuring proper replication conditions required for maintaining a stable quasispecies
population. To achieve this resilience in host adaptation, RNA duplication strategies have been
proposed as an evolutionary trait for MBFVs [19]. Tandem RNA structures within DENV 3′UTR
are under different selective pressures in alternating hosts, suggesting the idea that duplicated RNA
structures differentially evolved to accommodate specific functions in the two hosts [20]. Likewise,
there is evidence for evolutionary pressure on maintaining the primary sequence of parts of duplicated
RNA elements, as recently shown for flaviviral dumbbell (DB) elements in the context of finding a
biophysical model for explaining a possible route for ZIKV-induced neurotropism [21].

Viral RNA genomes are different from procaryotic and eucaryotic mRNA. In addition to coding
for and regulating the viral machinery, viral genomic RNA (gRNA) exhibits functional regions
that act upon different stages of the viral life cycle. The 10-12kB flaviviral gRNA is capped, but
non-polyadenylated and encodes a single open reading frame (ORF). Upon translation, a polyprotein
is produced, which is then cleaved by viral and cellular enzymes into structural and non-structural
proteins [22]. The ORF is flanked by highly structured untranslated regions (UTRs), which contain
evolutionary conserved RNA elements that are crucially related to regulation of the viral life cycle,
thereby inducing processes such as genome circularization, viral replication and packaging [23–25].

Upon flavivirus infection, accumulation of both gRNA as well as viral long non-coding RNAs
(lncRNAs) is observed. These lncRNAs, which have been referred to as subgenomic flaviviral RNAs
(sfRNAs) [26] are stable decay intermediates produced by exploiting the host’s mRNA degradation
machinery [27] and are associated with viral replication, pathogenesis and cytopathicity [28,29].
The production of sfRNA is induced by partial degradation of viral gRNA by the 5′-3′ exoribonuclease
Xrn1, an enzyme associated with the cell’s RNA turnover machinery [30,31]. Mechanistically, sfRNAs
are generated by stalling Xrn1 at conserved structural elements in the viral 3′UTR, termed xrRNA
(exoribonuclease-resistant RNA elements). These structures efficiently stall Xrn1 from progressing
through from the 5′ direction, thus protecting the downstream RNA from degradation, while
pass-through in the 3′-5′ direction, as required for viral RNA-dependent RNA-polymerase is still
possible [32]. In particular, different types of stem-loop (SL) and dumbbell (DB) elements found in
many MBFVs and TBFVs have been related to quantitative protection of downstream virus RNA
against exoribonuclease degradation [33].

Xrn1 stalling results in dysregulation of cellular function with the aim of promoting viral infections.
In this regard, functions of sfRNA in modulating cellular mRNA decay and RNAi pathways [34] as
well as modulating anti-viral interferon response [35,36] have been reported.

The genomic architecture of flaviviruses has been extensively studied to understand the molecular
principles required for sfRNA production. Chemical and enzymatic probing methods [37], together
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with x-ray crystallography revealed the 3′UTR structure of the MBFVs WNV [38], YFV [39], DENV [40],
Murray Valley encephalitis virus (MVEV) [41], ZIKV [42] and recently different species of the TBFV
and NKV groups [33], highlighting the possibility that exoribonuclease resistance might be a pervasive
mechanism of the viral world. Interestingly, several conserved RNA structural elements in viral
3′UTRs have been predicted in our group [43–47], some of which have later been attributed to xrRNA
functionality [26]. To further expand the set of potential xrRNAs, we report here on a comparative
genomics survey aimed at characterization of evolutionary conserved RNA structures in flavivirus
3′UTRs, focusing on TBFVs and the hitherto understudied groups of ISFVs and NKVs. A detailed
study on the evolutionary traits of conserved RNAs in MBFV 3′UTRs will be published elsewhere.

2. Materials and Methods

Viral genome data for the present study were obtained from the public National Center for
Biotechnology Information (NCBI) refseq (https://www.ncbi.nlm.nih.gov/refseq/) and genbank

(https://www.ncbi.nlm.nih.gov/genbank/) databases on 28 May 2018. We downloaded all complete
viral genomes under taxonomy ID 11051 (genus Flavivirus) and filtered for TBFV, ISFV and NKV
species listed in Table A1. Whenever refseq annotation was not available for a species, we selected
the longest complete genome from the genbank set as representative sequence. In total, the data set
is comprised of 86 ISFV, 275 TBFV and 27 NKV isolates, respectively. The number of isolates with
available 3′UTR sequence data per species varies between 1 and 167.

2.1. Phylogeny Reconstruction

The polyprotein/coding sequence (CDS) regions of most flaviviruses can be aligned consistently,
however, UTRs typically show large variance both in length and sequence composition, rendering them
ill-suited for phylogeny reconstruction. A phylogeny of all members of the genus Flavivirus (Figure 1)
was therefore reconstructed via a multiple sequence alignment (MSA) of the nucleotide sequences of
the CDS regions only. The MSA was computed with MAFFT[48] and subsequent maximum-likelihood
tree reconstruction was performed using iq-tree [49] using the GTR+F+R7 substitution model.

2.2. Structural Homology Search with Covariance Models

The present study is centered around structural homology of RNA elements among
phylogenetically narrow subgroups. A straightforward approach to finding novel homologous RNA
structures is to search RNA sequence databases with Covariance Models (CMs), i.e., statistical models
of RNA structure that extend classic Hidden-Markov-Models (HMMs) to simultaneously represent
sequence and secondary structure. CMs, as implemented in the infernal package [50] allow for
rapid screening of large RNA sequence databases to find even weakly conserved sequence-only or
structurally homologous RNAs. We have recently applied this approach to identify novel telomerase
RNAs in Saccharomycetes [51].

Here, structural multiple sequence alignments of the viral 3′UTR sequences were generated with
locARNA [52] and CMs were built for known or experimentally verified xrRNAs [33]. All 3′UTR
sequences were then screened and novel candidate sequences were added to perform iterative
refinement until convergence. Weak sequence conservation of putative xrRNA elements resulted
in initially fragile results, indicating that infernal default parameters are typically not optimal.
Adjusting parameters, in particular disabling both heuristic filtering and local end detection, however,
allowed our CMs to find homologs with strongly conserved secondary structures in presence of large
sequence deviation from the original sequence the CM was built from. Likewise, cmsearch E-values
turned out unsuitable for assessing hit quality in case of major sequence divergence. We therefore
employed a cutoff approach, requiring a hit to form at least 75% of all base pairs listed in the CM in
order to be considered significant.
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2.3. De novo Discovery of Conserved RNA Elements

Beside characterization of RNAs with homology to known structurally conserved elements,
we aimed at identifying novel elements, considering both thermodynamic stability and sequence
covariation as evolutionary traits. In this line, locARNA-generated structural alignments of full
UTR sequences were cut manually into blocks corresponding to conserved secondary structures.
Alternatively, we employed RNALalifold from the ViennaRNA package [53] to compute locally stable
secondary structures for aligned UTR sequences. A CM was built for each structure and searched
against all flavivirus 3′UTRs, keeping only CMs that scored well multiple times per UTR. The rationale
here is that the occurrence of multiple copies hints towards a possible functional role of a structural
element, given that the ability of two or more independently evolving sequences to form a common
structure is unlikely.

The above approach is implemented as a set of custom Perl and Python scripts for semi-automatic
characterization and annotation of conserved RNAs in viral UTR sequences. Internally, these
scripts build on the ViennaRNA scripting language interface for thermodynamics calculations, the
ViennaNGS [54] suite for extraction of genomic loci, the RNAaliSplit package [55] for splitting
alignments into subparts with common consensus structures (i.e., common structures formed by
all individual sequences), R2R [56] for visualization, and the ETE3 framework [57] for tree annotation
and visualization.

3. Results

Several flaviviruses have previously been studied in great detail, yielding a varied landscape
of repeated RNA sequence and structure elements within the 3′UTRs of these viruses, which are
likely to have evolved from numerous duplications [19,58,59]. Many of these studies relied on single
sequence predictions, which resulted in a good understanding of both structure and genomic position
of conserved elements in individual species. A unified picture of homologous RNAs within the 3′UTRs
of flaviviruses, however, has not been available.

The comparative approach applied in the present study outperforms single sequence predictions
by considering consensus structures formed by all sequences. This allows us not only to confirm
previously described RNA structures but also to elucidate hitherto unrecognized tandem repeats in
many species. In this line our results can help in understanding the complex evolution of flavivirus
3′UTRs.

3.1. Construction of Seed Alignments

Based on recent experimental evidence for the existence of xrRNAs in TBFVs, ISFVs and NKVs,
and previously characterized conserved RNA elements in flaviviral 3′UTRs, we built seed alignments
for initial CMs, which were then refined iteratively, i.e., subjected to multiple rounds of screening and
incorporation of best hits into the CM. Likewise, candidate structures from RNALalifold calculations
were used as seeds for identification of conserved RNA structures. Figure 2 shows an overview of
refined consensus structures for each ecologic group of flaviviruses analyzed here.

The four ecologic groups of flaviviruses show a varied 3′UTR architecture, however, the terminal
3′ stem-loop structure (3′SL, also referred to as 3′ long stable hairpin, 3′LSH) has been shown to be
associated with panhandle-formation during virus replication and is therefore present in the terminal
region of all flaviviruses [14]. The element is listed in Rfam as RF00185 (Flavivirus 3′UTR cis-acting
replication element, Flavi_CRE) and we could use it to consistently identify terminal regions within
3′UTRs. Absence of this element from a UTR sequence is indicative of incomplete or truncated
sequence data. The underlying sequences generally form a stable stem-loop structure upon structural
alignment and single sequence folding. We built individual 3′SL seed alignments and CMs for each
ecologic group, termed T.3SL, N.3SL and I.3SL, respectively.
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Figure 2. Overview of consensus structures of all CMs used for the annotation of flavivirus 3′UTRs.
TBFV, ISFV, and NKV elements were refined from published experimental data (T.xrRNA1/2,
I.xrRNA1/2, N.xrRNA) or identified computationally (T.SL6, I.Ra, I.Rb as well as all 3′-terminal
stem-loop structures). MBFV elements were obtained from Rfam. Throughout this paper, all CMs are
referred to by the name written in bold. References to xrRNA-like structures refer to the generalized
xrRNA CM (Section 3.6).

3.2. Tick-Borne Flaviviruses

MacFadden et al. [33] suggested two different exoribonuclease-resistant structures in TBFV
3′UTRs. We used the proposed sequences from TBEV, POWV, Karshi virus (KSIV), Langat virus
(LGTV), Louping ill virus (LIV), Omsk hemorrhagic fever virus (OHFV) and Alkhumra hemorrhagic
fever virus (ALKV) as templates for a set of initial structural alignments and CMs. These models
were then employed to search for high confidence hits within all TBFV 3′UTRs to construct seed
alignments of the two exoribonuclease resistant structures in TBFVs, termed T.xrRNA1 and T.xrRNA2.
These models allowed us to construct highly specific CMs for both TBFV xrRNAs, which were
subsequently used to annotate xrRNA instances in already studied and previously unstudied TBFV
species (Figure 3a).

The full structural alignment of the 3′UTRs of selected tick-borne species moreover suggests a
short stem-loop element in several species, which is characterized by high sequence heterogeneity but
heavily conserved structure supported by multiple covariations. Evidence for this element, termed
stem-loop 6 (SL6), has been reported earlier for at least TBEV, LGTV and OHFV [58,59]. We kept this
nomenclature and identified the exact position in each TBFV 3′UTR (Figure 3d).

Our data further shows that both TBFV xrRNA CMs (Figure 2a), as well as NKV xrRNA
CMs (Figure 2b and Section 3.5) consistently yield plausible hits with a high degree of structure
conservation immediately upstream of the strongly conserved terminal stem-loop element. Existence
of a Y-shaped element (termed Y1) and putative similarity to NKVs has been proposed earlier
based on single sequence structure predictions [58]. Structural locARNA alignment and subsequent
RNAalifold consensus structure prediction indicates strong secondary structure conservation with
frequent structure-conserving sequence covariations. Taken together, this suggests good evidence
that respective regions in TBFVs harbor a putatively structured and functional xrRNA-like RNA (Y1,
Figure 3d).
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Figure 3. (a) Annotated 3′UTRs of TBFVs. The phylogenetic tree on the left has been computed from
complete coding sequence nucleotide alignments and corresponds to the TBFV subtree in Figure 1.
For each species with available 3′UTR sequence a sketch of the 3′UTR is drawn to scale next to the
leaves of the tree. Colored boxes represent conserved RNA structural elements. Identifiers within the
boxes indicate the CM which was used to infer homology at this position. Asterisks indicate incomplete
3′UTR sequences. Species without available 3′UTR are not shown. (b) Consensus structure plots of
CM hits as calculated by mlocarna. (c) Schematic depiction of the common structural architecture of
TBFV 3′UTRs. (d,e) Structural alignments of elements SL6 and Y1. (f) RNAalifold coloring scheme for
paired columns in alignments. Colors indicate the number of basepair combinations found in pair of
columns. Fainter colors indicate that some sequences cannot form a base pair.

Despite the differences in length and sequence composition, the 3′UTRs of most species in the
TBFV group share a common architecture. Similar to MBFV SL-elements [19], two copies of xrRNAs
are found in almost every species of this ecologic group, generally succeeded by one instance of SL6
and Y1. Likewise, the terminal 3′ stem loop is conserved in all TBFVs and can be reliably annotated
by both our CM, T.3SL, and the Rfam Flavi_CRE model, which is used in Figure 3. Among all
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investigated species, only ALKV, OHFV and Kyasanur forest disease virus (KFDV) do not have a copy
of xrRNA1, indicating that these viruses may have previously lost this element. Conversely, the two
seabird-associated TBFVs with available 3′UTR data, Tyuleniy virus (TYUV) and Kama virus (KAMV)
do not fit into this general scheme. Likewise, we were not able to annotate additional homologous or
conserved structures with any CM used in this screen in the variable region of the 3′UTR of TBEV [5],
despite the substantially longer UTR (+300 nts).

3.3. Classic Insect-Specific Flaviviruses

Classic insect-specific flaviviruses present diverged 3′UTR architectures, which likely result from
the association of different species to Aedes spp. and Culex spp. vectors, respectively, which are also
reflected by clade separation in the ISFV phylogenetic tree. Previous studies employed single sequence
predictions to propose a varied set of homologous RNA structures in combination with an unusually
large number of duplicated sequence signals [59]. Recent experimental evidence, however, suggests
the presence of xrRNAs that have a similar fold to those known from MBFVs in cISFVs. Consequently,
we set out to independently characterize conserved RNA elements for different subclades.

3.3.1. Exoribonuclease-Resistant RNAs in Aedes-Associated cISFVs

MacFadden et al. [33] used SHAPE structure probing to report the presence of two
exoribonuclease-resistant RNAs in Cell fusing agent virus (CFAV), and provided evidence for
a duplicated set of homologous structures in Aedes flavivirus (AEFV) and Kamiti river virus (KRV).
We constructed initial alignments from the reported sequences in this clade in Aedes spp. associated
viruses, resulting in two seed alignments, termed I.xrRNA1 and I.xrRNA2 (Figure 2c). For both
elements, seed CMs were iteratively built from structural locARNA alignments. Minor manual
adjustments to the alignments were required here, since the predicted consensus structures diverged
slightly from the published SHAPE-guided prediction. Both models were then employed to search for
additional high confidence hits within other isolates of CFAV, AEFV and KRV which were subsequently
added to the seed alignments.

Screening the entire set of flavivirus 3′UTRs revealed that both ISFV xrRNA elements, I.xrRNA1
and I.xrRNA2, are only found in CFAV, AEFV and KRV, i.e., species initially used for the construction
of the respective CMs. Furthermore, also in terms of pure structural conservation, no reliable hits in
any other ISFV species could be obtained with any of these CMs (Figure 4a). This suggests that both
ISFV xrRNAs may represent a specialized class of xrRNA elements only present in CFAV, AEFV and
KRV. The 3′UTR of KRV is unique among all known flaviviruses because it harbors an additional copy
of the terminal 3′ stem-loop element 600 nts upstream of the actual 3′-terminus, supporting previous
reports that the KRV 3′UTR has undergone a full duplication during its evolution [60].

3.3.2. Conserved Structures in Culex-Associated cISFVs

The second distinct clade of cISFVs includes Culex flavivirus (CxFV), Quang Binh virus (QBV),
Mosquito flavivirus (MSFV), Palm Creek virus (PCV), Culex theileri flavivirus (CTFV) as well as a
few other species with only partial genome sequence availability [9] and is associated with Culex spp.
vectors. An interesting observation in this clade is that no other CM from any of the four ecologic
flavivirus groups shows a hit, not even with remote sequence or structure conservation. We therefore
set out to produce a a high quality structural alignment of the complete 3′UTRs of CxFV, QBV and
MSFV. Consensus structure folding of the full alignment revealed each species to harbor 3–4 repeats of
two highly conserved elements supported by multiple co-varying base pairs (Figure 4b,c). We termed
these “Repeat element a/b”, respectively (Ra and Rb). Both elements, while strongly conserving
their folds, show highly variable loop regions as well as weak sequence conservation in the case of
the Ra element. Structure conservation and occurrence in multiple copies, as typically seen with
other exoribonuclease-stalling elements, hints towards possible functional importance. These results
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complement earlier reports of sequence repeats in the 3′UTR of CxFV [61] with the identification of
a quadruplicated pair of conserved structures.
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141



Viruses 2019, 11, 298

3.3.3. Diverged 3′UTR Architecture in Many cISFVs

Interestingly, a screen of all available CMs in Parramatta River virus (PaRV) revealed five
xrRNA-like elements (Figure 4a), with elements 1–3 sharing sequence and structure properties with
NKV xrRNAs (Section 3.5), while elements 4 and 5 only conserve N.xrRNAs structure. All five hits
can be structurally aligned into a consistent consensus structure (Figure 4d), despite the overall weak
sequence consensus.

Conversely, the 3′UTRs of Calbertado virus (CLBOV) and Mercadeo virus (MECDV) appear
structurally different from the other cISFVs. A general lack of characteristic CM hits lets these species
appear more like an outgroup among cISFVs. In particular, we could only find significant hits for the
omnipresent terminal 3′stem-loop structure, a putative xrRNA-like element in CLBOV and a single
instance of a structure homologous to the Rfam model RF00465 (Japanese encephalitis virus hairpin
structure) in MECDV. Still, limited availability of 3′UTR sequence data renders the characterization of
conserved elements and interpretation difficult here.

Our data suggests that the 3′UTRs of cISFVs, in contrast to TBFVs (Section 3.2 and dISFVs
(Section 3.4), do not appear to have a consistent architectural organization. In agreement with the
cISFV phylogenetic subtree (Figure 1) we constitute three diverged groups with common 3′UTR
organization that conform to their respective sub-clades: (i) CFAV-AEFV-KRV, each with two instances
of xrRNAs, (ii) CxFV-QBV-MSFV with 3–4 copies of I.Ra/I.Rb elements and (iii) PaRV with 4–5 copies
of xrRNA-like structures. Although no full 3′UTR sequences are available for the phylogenetically
closest relatives of PaRV, HANV and OCFVPT, an xrRNA-like element in the small available fragment
(syntenic to PaRV UTR) of OCFVPT 3′UTR suggests that both viruses might be organized in a similar
manner, as supported by earlier reports that these viruses should be classified within the same
species [1]. For CLBOV and MECDV, no clear pattern of conserved elements can be identified with
our CMs. Both viruses either employ an entirely different class of elements or might not require
capability for exoribonuclease stalling at all. The only element shared universally among all cISFVs is
the 3′-terminal stem-loop, although cISFVs seem to diverge from other flaviviruses here, indicated by
the inability of Rfam model RF00185 (Flavivirus CRE) to reliably annotate any cISFV 3′UTR.

3.4. Dual-Host Affiliated Insect-Specific Flaviviruses

Isolated almost exclusively from mosquitoes, dISFVs do not seem to infect vertebrate cells, despite
their phylogenetic proximity to MBFVs (Figure 1). This association is reflected by good hits of the Rfam
covariance models RF00525 (Flavivirus DB element) and RF00465 (Japanese encephalitis virus hairpin
structure) in all dISFV isolates studied here (Figure 5). Interestingly, we could not find evidence for
any sequences or structures homologous to tick-borne or other insect-specific flaviviruses. In this line,
our data is in good agreement with the phylogenetic location of these viruses, which share ancestral
roots with MBFVs [10].

An unusual species within this group is Ecuador Paraiso Escondido virus (EPEV), which has
been isolated from New World sandflies and has been classified as insect-specific virus. EPEV
phylogenetically appears at the root of the Entebbe bat virus group (ENTVG), a clade comprised
of the three NKVs Entebbe bat virus (ENTV), Sokoluk virus (SOKV) and Yokose virus (YOKV). While
all of these viruses contain homologs of conserved stem-loop (SL) and dumbbell (DB) elements found
in MBFVs, ENTVG species may have lost their vector dependence [1].
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Figure 5. (a) Annotated Tree of dISFV 3′UTRs. Asterisks denote incomplete 3′UTR sequences. Species
without available 3′UTR are not shown. (b) Schematic Architecture of the dISFV 3′UTR. (c) Structural
alignments and consensus structure plots of dISFV elements.

3.5. No-Known-Vector Flaviviruses

Rather than forming a monophyletic group, the no-known-vector flaviviruses can be separated
into two distinct lineages, which are closely related to either TBFVs or MBFVs, respectively (Figure 1).
Two additional NKVs, Tamana bat virus (TABV) and Cyclopterus lumpus virus (CLuV), are
phylogenetically distant and serve as an outgroup to all flaviviruses. In analogy to the procedure
outlined above for TBFVs (Section 3.2) and ISFVs (Section 3.3), we built a CM for experimentally
verified xrRNAs in tick-borne related NKVs, termed N.xrRNA.

We found multiple hits of this CM at various loci within the 3′UTRs of tick-borne related NKVs,
indicating that these species, in contrast to TBFVs, do not conserve a common 3′UTR architecture
(Figure 6a). Surprisingly, we could identify several high-quality hits of the Rfam model RF00525
(Flavivirus DB element), an element typically found in MBFVs, in Rio Bravo virus (RBV), Montana
myotis leukoencephalitis virus (MMLV) and Modoc virus (MODV). This is in so far remarkable as
there is no evidence for conservation of this element in TBFVs, which phylogenetically cluster with
this clade of NKVs. This element might have been introduced by an ancestral recombination event.
Alternatively, conservation of an MBFV element in NKVs might be indicative of an association with an
unknown vector, in agreement with the hypothesis that vector specificity is mediated by characteristic
3′UTR elements [19].
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Conversely, there seems to be no generally conserved 3′UTR architecture among members of the
mosquito-borne related NKVs (Figure 6c). While sequence data has not been available for Sokoluk
virus (SOKV), we could annotate typical MBFV elements in the next relatives Entebbe bat virus (ENTV)
and Yokose virus (YOKV), as proposed previously [32].
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Figure 6. (a,c) Annotated 3′UTRs of NKVs. Asterisks denote incomplete 3′UTR sequences.
(b) Schematic of TBFV-associated NKV-FV UTR architecture with consensus structures of NKV structure
elements.

3.6. A Generalized xrRNA Structure

Earlier work suggested that xrRNAs from TBFVs and tick-borne related NKVs fall into a more
general structural class of xrRNAs [33]. Following this line of reasoning, we investigated whether all
high confidence hits obtained with our TBFV and NKV CMs could be assembled into one coherent
CM that conserves the xrRNA-typical fold. A further advantage of a generalized CM would be
higher sensitivity, allowing for identification of common features and eventually lead to annotation of
previously unannotated xrRNAs.

Structural alignment and consensus structure prediction revealed all high confidence hits to
fold into a common secondary structure (Figure 7a,b). While most of the consensus structure is
characterized by low sequence conservation, stem 3 (S3) and loop 1 (L1) show medium to high degree
of sequence conservation. The length of all stems is well conserved, although both major loop regions
L2 and L3 show large fluctuations, with the length of L3 being de facto constant and L2 showing a
high degree of flexibility.

We further investigated whether any high confidence hits from I.xrRNA1/2 in cISFVs could
be aligned to the generalized xrRNA model. Although both cISFV xrRNAs (Figure 2c) bear some
similarity to the generalized model, in particular to S3 and L3, we were not able to build a common
alignment or consensus structure. Despite seemingly similar shape, our data also suggests that cISFV
xrRNAs form a separate xrRNA subclass, unrelated to MBFV xrRNAs. In particular, we could not
obtain hits of Rfam CMs (which can be seen as representatives of MBFV elements) in cISFVs, nor could
we confirm any hits of cISFV-specific elements in MBFVs.

In addition to learning xrRNA features, a more generalized CM enabled us to detect xrRNA-like
structures (indicated as such in all annotation plots) that could not be found previously.
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Figure 7. Generalized structure of all high confidence (cmsearch evalue < 10−5) hits of T.xrRNA1,
T.xrRNA2 and N.xrRNA. (a) Consensus structure prediction and (b) structural alignment of all high
confidence hits. (c–e) Neighbor-joining tree of all high confidence hits of N.xrRNA (c), T.xrRNA1
(d), and T.xrRNA2 (e). Leaves are grouped and colored by the CM used for annotation, coordinates
correspond to the position in the respective 3′UTR. For each group a separate structural alignment was
computed, the consensus structures are shown.

4. Discussion

Mediated gRNA decay in the form of exoribonuclease resistance seems to be a pervasive strategy
employed by viruses to circumvent host immune responses. Evidence of sfRNA production following
incomplete Xrn1 degradation has not only been observed in different members of the Flavivirus
genus [62], but also in other species of the Flaviviridae family, however, with major differences in xrRNA
structure and sfRNA characteristics. While MBFV produce a 300-500nt sfRNA that corresponds to
degradation products of the gRNA 3′UTR, hepaciviruses and pestiviruses produce a long subgenomic
RNA whose 5′ end is located within the first 130nt of the viral gRNA [63].

Moreover, recent studies have identified xrRNA functionality in several phylogenetically distant
RNA viruses, such as animal-infecting, segmented viruses of the Bunyaviridae and Arenavividae [64]
families, as well as plant-infecting viruses of the Tombusuviridae and Luteoviridae families [65,66].
The interesting question whether exoribonucleases other than Xrn1 would be blocked as well has
recently been answered. MacFadden et al. [33] could show that both RNAse J1 and Dxo1 are stalled
by MBFV xrRNAs, thereby demonstrating the general nature of this structure-induced blocking
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mechanism. These novel findings, together with previous knowledge of Xrn1 stalling in segmented
plant viruses [67,68] provide evidence for a convergent evolution scenario where xrRNAs depend on a
specific folded RNA structure and form a distinct class of functional RNAs.

Repeated RNA elements appear to be a hallmark of flavivirus 3′UTR architecture. While there
seems to be a plethora of conserved structure classes, our data emphasizes the consistent trend that
these elements typically do not occur as single copies. Rather, duplicate or even multiple occurrences
of these elements hint towards functional relevance. This is further underlined by the evolutionary
conservation of both patterns and elements among different species. Since, exoribonuclease stalling is
presumably never perfect, it makes sense that viruses might employ multiple copies of such elements.

In this contribution we set out to identify homologs of known exoribonuclease stalling elements
and novel conserved structures. To this end, we computationally characterized homologs of
experimentally verified xrRNA in tick-borne and no-known vector viruses that seem to form a coherent
class of RNA structures with capability to stall exoribonucleases (T.xrRNA1/2, N.xrRNA). Likewise,
we identified another class of xrRNAs in classic insect-specific flaviviruses (I.xrRNA1/2) which appears
to be only distantly related to the former class. In the same line, we predicted a set of novel conserved
elements in cISFVs that appear in quadruples and do not coincide with other insect-specific elements
(I.Ra,I.Rb).

While we did not focus on studying the evolutionary history of these groups of elements in detail,
our data suggests that many elements share ancestral roots. This is supported by the observation that
at least the tick-borne, no-known-vector and Aedes spp. associated xrRNAs fold into a similar Y-shaped
substructure, although the exact fold varies significantly among individual species.

We compiled a set of covariance models that can be used for rapid screening assays in the
identification and characterization of novel flaviviruses. All models are available from GitHub via
https://github.com/mtw/ITNFV-Data.

A major problem is the limited availability of diverse 3′UTR sequence data for many viruses
analyzed here, particularly within cISFVs. Many novel ISFVs have previously been discovered, but
3′UTR sequences were only available for a subset of them. Future studies are required to shed more
light on the evolutionary history of 3′UTR evolution in flaviviruses.
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Appendix A. Data Set Analyzed in This Study

Table A1. Viral genomes considered in this study. Flaviviruses are categorized into the groups
tick-borne flaviviruses (TBFV), insect-specific flaviviruses (ISFV) and no-known-vector flaviviruses
(NKV). The length of the 3′UTR is listed for each isolate. † Representative accession number from the
refseq database. Whenever a refseq genome was not available, the isolate with the longest 3′UTR was
selected as representative species. a Mammalian TBFVs. b Seabird TBFVs. c Classic ISFVs. d Dual-host
affiliated ISFVs. e Rodent-associated NKVs. f Bat-associated NKVs. N/A 3′UTR partial or not available
in the refseq data set.

Group Accession Number † Acronym Scientific Name 3′UTR Length (nt) Isolates

ISFV c NC_012932.1 AEFV Aedes flavivirus 942 3
ISFV c NC_001564.2 CFAV Cell fusing agent virus 553 3
ISFV c KX669689.1 CLBOV Calbertado virus 546 8
ISFV c MF153378.1 CTFV Culex theileri flavivirus 112 1
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Table A1. Cont.

Group Accession Number † Acronym Scientific Name 3′UTR Length (nt) Isolates

ISFV c NC_008604.2 CxFV Culex flavivirus 654 13
ISFV c NC_030401.1 HANV Hanko virus N/A N/A

ISFV c NC_005064.1 KRV Kamiti River virus 1208 3
ISFV c NC_027819.1 MECDV Mercadeo virus 638 3
ISFV c NC_021069.1 MSFV Mosquito flavivirus 674 6
ISFV c NC_034242.1 OCFVPT Ochlerotatus caspius flavivirus 148 2
ISFV c NC_027817.1 PaRV Parramatta River virus 629 2
ISFV c NC_033694.1 PCV Palm Creek virus N/A N/A

ISFV c NC_012671.1 QBV Quang Binh virus 673 2
ISFV d MG214905.1 BJV Barkedji virus 335 1
ISFV d NC_017086.1 CHAOV Chaoyang virus 326 2
ISFV d NC_016997.1 DONV Donggang virus 343 2
ISFV d NC_027999.1 EPEV Paraiso Escondido virus 316 2
ISFV d NC_024805.1 ILV Ilomantsi virus N/A N/A

ISFV d KY320648.1 KPKV Kampung Karu virus N/A N/A

ISFV d FJ606789.2 LAMV Lammi virus 326 1
ISFV d KY290249.1 LPKV Long Pine Key virus N/A N/A

ISFV d KY320649.1 LTNV La Tina virus N/A N/A

ISFV d MF139576.1 MMV Marisma mosquito virus 376 1
ISFV d MF139575.1 NANV Nanay virus 399 1
ISFV d NC_024017.1 NHUV Nhumirim virus 451 1
ISFV d NC_033715.1 NOUV Nounane virus 347 3
NKV e NC_003676.1 APOIV Apoi virus 576 1
NKV KJ469370.1 BCV Batu Cave virus N/A N/A

NKV MF776369.1 CLuV Cyclopterus lumpus virus 601 1
NKV f NC_008718.1 ENTV Entebbe bat virus 308 3
NKV e NC_026620.1 JUTV Jutiapa virus N/A N/A

NKV f NC_004119.1 MMLV Montana myotis leukoencephalitis virus 460 1
NKV e NC_003635.1 MODV Modoc virus 366 1
NKV f NC_034007.1 PPBV Phnom Penh bat virus N/A N/A

NKV f NC_003675.1 RBV Rio Bravo virus 486 2
NKV f NC_026624.1 SOKV Sokoluk virus N/A N/A

NKV NC_003996.1 TABV Tamana bat virus 241 1
NKV f NC_005039.1 YOKV Yokose virus 429 1
TBFV a NC_004355.1 ALKV Alkhumra hemorrhagic fever virus 393 21
TBFV a AF311056.1 DTV Deer tick virus 459 1
TBFV a NC_033723.1 GGV Gadgets Gully virus N/A N/A

TBFV NC_033724.1 KADV Kadam virus N/A N/A

TBFV b NC_023439.1 KAMV Kama virus 282 2
TBFV a HM055369.1 KFDV Kyasanur forest disease virus 392 6
TBFV a NC_006947.1 KSIV Karshi virus 381 3
TBFV a NC_003690.1 LGTV Langat virus 568 5
TBFV a NC_001809.1 LIV Louping ill virus 500 5
TBFV b NC_033721.1 MEAV Meaban virus N/A N/A

TBFV a KT224355.1 NEGV Negishi virus 266 1
TBFV a NC_005062.1 OHFV Omsk hemorrhagic fever virus 410 4
TBFV a NC_003687.1 POWV Powassan virus 480 23
TBFV DQ235149.1 RFV Royal Farm virus N/A N/A

TBFV a NC_027709.1 SGEV Spanish goat encephalitis virus 493 2
TBFV b NC_033726.1 SREV Saumarez Reef virus N/A N/A

TBFV a NC_001672.1 TBEV Tick-borne encephalitis virus 764 167
TBFV b NC_023424.1 TYUV Tyuleniy virus 591 3
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Abstract: It has been believed for a long time that the transfer and fixation of genetic material from
RNA viruses to eukaryote genomes is very unlikely. However, during the last decade, there have
been several cases in which “virus-to-host” gene transfer from various viral families into various
eukaryotic phyla have been described. These transfers have been identified by sequence similarity,
which may disappear very quickly, especially in the case of RNA viruses. However, compared to
sequences, protein structure is known to be more conserved. Applying protein structure-guided
protein domain-specific Hidden Markov Models, we detected homologues of the Virgaviridae capsid
protein in Schizophora flies. Further data analysis supported “virus-to-host” transfer into Schizophora
ancestors as a single transfer event. This transfer was not identifiable by BLAST or by other methods
we applied. Our data show that structure-guided Hidden Markov Models should be used to detect
ancestral virus-to-host transfers.

Keywords: endogenous viral elements; bioinformatics; horizontal gene transfer; virus-to-host gene
transfer; HMM; tobacco mosaic virus; Drosophila; capsid protein

1. Introduction

Viruses are one of the most abundant and prevalent biological entities on Earth and thus are
an important and integral part of the biosphere (for viral importance in environments, see [1–4]).
The importance of viruses for humans and the biosphere is illustrated by the fact that, in our bodies,
there are 10 times more bacteria than human cells (~1013 cells), and the number of viruses is even
higher than the number of bacteria by an order of magnitude [5]. The same prevalence also applies to
viruses in other biotopes; for example, there are approximately 108 viruses in one litre of water [6] and
approximately 106–107 viruses per m3 in the atmosphere [7]. In most biotopes, the number of viruses
exceeds the number of prokaryotes by an order of magnitude [4]. The overall virus–host interaction
is an important aspect driving viral evolution and the role of viruses in evolution. These roles are
not restricted to the host–parasite arms race. It has been known for a long time that bacteriophages
mediate transduction in bacteria. It is also known that retroviruses integrate into their hosts’ genomes
and thus can affect the genomic organisation of the vertebrate’s cells [8]. However, Retroviridae is one
viral family among approximately one hundred viral families that infect eukaryotes, and vertebrates
constitute only a small fraction of eukaryotes. What is less known is that other, non-retroviral viruses
are able to do the same, i.e., integrate viral genes into the chromosomes of infected cells, both in
vertebrates and in other eukaryotic cells, of course not in such direct way as retroviruses. [9,10].
The viral genome elements that have integrated into eukaryotic genomes and have become fixed
are called endogenous viral elements (EVEs) [9]. It has been shown that both cytoplasm- and
nucleus-replicating non-retroviral viruses with different replication strategies ((+)ssRNA, (−)ssRNA,
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dsRNA, ssDNA and dsDNA viruses) can integrate into animal [11,12], plant [13] and fungal [14]
genomes (for a thorough review, see [15]). Thus, the integration of viral genes into eukaryotic genomes
is quite widespread. In contrast, the function and expression of retroviral EVEs have only been
thoroughly researched in model organisms [16], and for non-retroviral EVEs, additional analyses
of EVE function and expression have been performed only for human and squirrel endogenous
bornavirus-like nucleoprotein (EBLN) elements [17–19] and tobacco plant geminivirus-related DNA
sequences (GRDs) [9,20]. The exact pathway by which viral genes integrate and become fixed in
eukaryotic organisms is not clear. However, to be effectively spread over the population, EVEs
must also benefit the organism (although spreading via genetic drift, founder effects and population
bottlenecks cannot be excluded).

The main strategy for detecting EVEs in organisms was formalised by Kondo et al. [21].
The detection protocol for EVEs consists of three main stages: (a) EVE detection with bioinformatics
tools, mostly with BLAST searches in different databases; (b) EVE detection and confirmation in
experiments, mostly with PCR and DNA sequencing to confirm integration; and (c) EVE phylogeny
construction combined with viral sequences to identify EVEs closest relatives and to evaluate the
integration time.

Following this protocol, scientists have discovered a large amount of viral-like sequences in
different eukaryotic genomes. However, there is a problem with detecting distant homologues, which
was noted by Brenner et al.; BLAST does not work well with sequences under 30% of identity [22].
Park et al. [23] showed that Intermediate Sequence Search (ISS) method, Hidden Markov Models
(HMMs) and PSI-BLAST work considerably more effectively than pairwise sequence comparison
methods (e.g., BLAST), especially when the sequences have changed greatly over time. Profile-HMMs
are probabilistic models that can be used to describe the patterns shared by sets of protein/domain
sequences (HMMs are generated from constructed multiple sequence alignments (MSAs), and the
generated model covers both the diversity and conservation within the input MSA). It is possible
to search for a sequence that is the most similar to the model, which is especially important when
dealing with viral sequences because the virus mutation speed is much higher, especially in RNA
viruses (approximately 10−2 to 10−7 substitutions per position per year compared to about 10−9

substitutions per position per year in mammals [24–26]), and confident pairwise similarity between
homologous sequences may disappear. Thus, profile-HMMs should detect distant homologous
sequences more efficiently.

Advantages of other methods in comparison with BLAST in the case of viruses have been
shown in practise. Kuchibhatla et al. started from the assumptions above and used sequence-profile
comparisons (such as HMMER3) and profile–profile comparisons (HHpred) in addition to BLAST
analyses [27]. They showed that sequences that were previously classified as “ORFans” (more
accurately “taxonomically restricted to only one taxon”) according to BLAST analyses, had distant
homologues in various viruses and that this approach could also be applied to organisms. Thus,
considering the fast evolution of viruses, profile-based algorithms that can detect distant homologues
should be more suitable for detecting (distant) homologues of viral proteins [28,29].

It is also known that protein structure is more conserved than sequence [30,31]. Therefore,
the protein structure is also important to consider when detecting distant homologous sequences.
When dealing with the identification of similarities between evolutionarily distant, but homologous
sequences, taking protein structure-based information into account may improve the results. Challis
and Schmidler showed that, when including structural information, the phylogenetic inference for
distant relationships improves [32]. Additionally, Herman et al. showed that structure contains
more information that can be obtained from sequences; hence, it vastly reduces the alignment and
phylogenetic tree topology uncertainty [33]. This finding is especially important in the case of viruses,
which lose sequence similarity within a relatively short time, especially compared to organisms. Thus,
structural information should be included when studying deep evolutionary relationships.
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In this study, we tested whether a complex method, such as profile-HMM together with protein
structure-guided information, is a suitable and effective first step in EVE detection and whether it
should be implemented in the EVE-detection protocol. To complete this aim, a comparison between
BLAST and profile-HMM search results was made with the objective of finding whether profile-HMMs
could detect more distant EVEs and how many more EVEs are identified when implementing a
structure-guided profile-HMM search. This work shows that using profile-HMMs with additional
structure-guided information enables the detection of more distant homologous sequences; in this case,
endogenous Tobamovirus (family Virgaviridae; +ssRNA viruses) coat protein-like (eTCPL) elements in
different fly genomes that have not been detected previously by using pairwise sequence comparison
method BLAST.

2. Materials and Methods

2.1. EVE Detection Using BLAST Analysis

To detect eukaryotic endogenous Tobamovirus coat protein-like (eTCPL) elements, the BLAST
method was used (Figure 1). Different Tobamovirus (family Virgaviridae, +ssRNA viruses), Hordeivirus
(family Virgaviridae, +ssRNA viruses), Tobravirus (family Virgaviridae, +ssRNA viruses) and Pecluvirus
(family Virgaviridae, +ssRNA viruses) coat proteins (CPs) were used as queries (the sequences used are
shown in Table S1) in NCBI BLASTp and tBLASTn (protein sequence against the nucleotide database
translated into 6 reading frames) (BLAST+ 2.2.30+, updated 6.10.2014; using the NCBI BLAST server
http://blast.ncbi.nlm.nih.gov/ [34]) searches in eukaryotes (NCBI Taxonomy ID 2759). The search was
performed against nucleotide collection (nt/nr), Transcriptome Shotgun Assembly (TSA), expressed
sequence tag (Est) and whole-genome shotgun contig (WGS) databases using default parameters with
an additional implemented E-value threshold of 1 × 10−5 (May 2017) (results in Table S2). additionally,
BLASTp (protein sequence against protein database) was run using the same query sequences and
search parameters (including an E-value threshold of 1 × 10−5) against a non-redundant protein
database (“nr”, which also includes most of the UniProtKB sequences). Searches and databases used
are visualised in Figure 1.

2.2. EVE Detection Using the Profile-HMM Method

As an alternative method, searches were also performed with the HMMER3 package (Figure 1)
(version 1.8; using the web server http://www.ebi.ac.uk/Tools/hmmer/ [35]). The searches were
performed using the same Tobamovirus, Hordeivirus, Tobravirus and Pecluvirus CP sequences as described
above for BLAST analyses with taxonomic restriction to Eukaryotes (NCBI Taxonomy ID 2759) using
the default parameters with an additional E-value threshold of 1 × 10−7.

In the “phmmer” search type (protein sequence against protein sequence database), the databases
used were UniProtKB (version v.2017_05), Swiss-Prot (version v.2017_05), Ensemble All (version v.88)
and Ensemble Genomes (version v.35) because no other databases were available during the analyses
(May 2017) (results in Table S3).

In “hmmscan” (protein sequence against the profile-HMM database), viral sequences were used to
search against protein families in the Pfam-A [36] and SUPERFAMILY [37] databases (April 2017). Both
resources contain protein domain-specific HMM profiles and assign these profiles to available protein
sequences in different databases. The “hmmscan” search results give the protein domain-specific
HMM profile ID. Further, it is also possible to analyse these HMM profiles and the sequences that are
assigned to the profile. Eukaryotic sequences assigned to these profiles can be analysed as possible
eTCPLs. The E-value threshold for belonging to the respective domain family was set to 1 × 10−7

(results in Table S4).
For the “hmmsearch” search (protein alignment/profile-HMM against protein sequence database),

the Tobamovirus CP MSA and the Tobamovirus-Pecluvirus-Tobravirus-Hordeivirus CP MSA were
constructed using the MUSCLE algorithm (with default parameters) within MEGA (version 7.0.20; [38]).
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The search was performed in the UniProtKB and Swiss-Prot databases (April 2017) (results in Table S5).
Next, “hmmsearch” was performed using previous “hmmscan” results (predefined protein family
models from the Pfam-A/SUPERFAMILY databases) as queries (May 2017) (results in Table S6).

2.3. Testing for False Positive Hits with Alternative Methods

As stated by Pearson, “When a scientifically unexpected alignment appears to be statistically
significant, investigators should consider alternate strategies for estimating statistical significance” [39];
we applied alternative methods to confirm the homology of high scoring hits (Figure 2). First, to
test for annotation artefacts, database annotations of sequence’s scaffold/contig/chromosome (their
origin), overall length, sequence location and surrounding area were scanned. Data confirmation was
needed to exclude the possibility of sample contamination that could have occurred during cloning or
sequence assembly and/or a misannotation of the protein itself (for example, nucleic acid is isolated
from tissues infected with a virus, but all sequences are still annotated as host sequences).

Second, to exclude false positive hits (sequences that are more similar to other sequences or
domains), a reciprocal sequence similarity search was performed with default parameters using
tBLASTn for protein sequences (against the NCBI nr/nt database) and BLASTn (nucleotide sequence
against the nucleotide database) for nucleotide sequences (against the NCBI nr/nt database). When
the reciprocal search gives the most significant hit to primary query sequences or their close relatives
(in viruses in the same viral genus or family), it is noted as such in all of the tables and in other cases,
the best hit is described; additionally, “no hits” are marked with “−”. Other viral hits that were not
closely related to Virgaviridae viruses were classified as false positives for eTCPL but will remain
possible positive hits for other EVEs and will be analysed in the future. Additionally, a “hmmscan”
(protein sequence against the profile-HMM database) search was performed on the HMMER webpage
to test whether the sequence belongs to another protein domain family with much higher confidence.

Third, to determine possible false positive results with alternative methods, protein structure
prediction was performed with the LOMETS [40] meta-server for all remaining positive hits from both
the BLAST and HMMER3 analyses. Additionally, this step was important for the positive hits (both
eukaryotic and viral hits) obtained from the SUPERFAMILY and Pfam-A databases to confirm that
profile-HMM models have not falsely assigned sequences to the models. The LOMETS meta-server
simultaneously uses many different algorithms to predict possible protein structures from sequences
using the protein threading method. If the sequence is a real homologue, the server should recognise
the tobamoviral coat protein or its structural relatives in SCOP, i.e., the protein domains with “SCOP
concise classification string” (SCCS) (also named “SCOP superfamily identifier”) staring with “a.24.5”
as a template for high-confidence models. Additionally, the confidence score, the alignment length and
the template coverage should be high, and at least one algorithm not based on HMMs should give a
high confidence score. In addition, the Z-score was considered, for which a higher score is considered
to be better than a lower score. All possible eTCPL hits that were not classified as false positives or
non-determined (ND) were used in the phylogenetic analyses.

In general, all the sequences that reciprocal BLAST classified as similar to tobamoviruses or other
Virgaviridae but only had RNA data available were classified as ND because we cannot distinguish
between actual viral sequences and new EVEs.

2.4. Phylogenetic Analysis for eTCPL

For the phylogenetic analysis, a joint list of viral coat protein sequences and eukaryotic EVE
sequences were used. Viral sequences were taken from the NCBI full genomes database, belonging to
tobamoviruses, pecluviruses, hordeiviruses, tobraviruses and goraviruses (Table S1).

The eukaryotic sequences used in this study are from two datasets. The first dataset consists of
eukaryotic sequences from the SUPERFAMILY database that have been assigned to eTCPL elements
(Table S7). Sequences that were included in the phylogeny were those that remained after the
false positives were excluded. For these sequences, only the eTCPL region that was assigned to
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the SUPERFAMILY HMM model was used. The second dataset (search results) consists of the
HMMER analysis results (Table S5) that were obtained when using Virgaviridae viral MSAs as queries.
One additional sequence (Lasioglossum albipes; NCBI accession ID: ANOB01025386.1), which was
the one positive hit from the tBLASTn analyses using the viral sequence as a query, was added to
the second dataset. All phylogenetic analyses were performed using the protein domain part of the
sequences (Drosophila melanogaster, FlyBase gene ID FBgn0029799, UniProt ID Q9W483, protein region
122–259). To determine the domain part of the sequences (where the domain part was not previously
designated), the two datasets were merged and aligned within MEGA using ClustalW and were
edited using the first eukaryotic dataset as a baseline to cut out the regions that were outside of the
eTCPL protein domain. Additionally, Jalview [41] was used to remove identical sequences (remove
redundancy threshold of 100%).

All the results were additionally filtered to ensure data quality because most of the partial domains
in proteins are alignment and/or annotation artefacts [42]. Protein sequences shorter than 130 AA were
removed and not used in the MSA. All sequences were aligned using the Mafft alignment algorithm
(version 7) with the default parameters [43]. To select the best model for phylogeny construction, the
ProtTest server was used [44]. The best model was selected using the Akaike information criterion
framework: LG + I + G + F. The phylogenetic tree was constructed using the MEGA program package
with maximum likelihood methods using LG with frequencies (+F) model along with the gamma
distribution with invariant sites (G + I). The number of discrete gamma categories was 5. Gaps and
missing data were dealt with via partial deletion using a site coverage cut-off of 95%. The initial tree
was performed automatically (using the NJ/BioNJ method). For the phylogeny test, the bootstrap
method (500 replications) was used.

2.5. Additional BLAST Analysis to Broaden the Search to Databases that Are not Accessible in HMMER3

For the final step in detecting EVEs, an additional BLAST analysis was performed to identify
potential EVEs not yet annotated as proteins (Figure 1). This analysis was done because the HMMER3
web server has few directly connected databases, none of which are nucleotide databases. Hence,
performing an additional BLAST analysis enables us to broaden the phylogenomic coverage to
incomplete genomes and/or nonannotated proteins. Eukaryotic sequences (Table S8), obtained
through protein domain databases (SUPERFAMILY), were used as queries to search for eukaryotes
(NCBI Taxonomy ID 2759) using tBLASTn with the same parameters described previously and with
E-value 1 × 10−7.

2.6. eTCPL Synteny in Complete Fly Genomes

To determine the possible integration events in further detail, completely sequenced and annotated
genomes that harbour potential eTCPLs were explored in more detail. From all the results, only
Drosophila species were fully sequenced; thus, they were used in the synteny analysis. All the work
was performed using the FlyBase database [45] and its genome browser (June 2017). eTCPL genes in
corresponding fly genomes were determined, and the gene regions surrounding it on both sides were
analysed. Additionally, the copy number of the eTCPLs, the localisation of the surrounding genes and
the mobile element existing near the eTCPL site were included in the analysis.

3. Results

3.1. Searching for EVEs Using “Sequence versus Sequence” Search Algorithms (BLAST and “Phmmer”)

First, to identify potential homologues of Tobamovirus coat proteins (tobamo-CPs) from eukaryotic
genomes, a BLAST analysis [34], as a standard protocol for detecting EVEs, was used. In general, the
viral protein sequences were used as queries in BLAST analyses (a list of viral sequences used can
be found in Table S1), but the analyses gave no informative Tobamovirus-related eukaryotic results
(Figure 1 and Table S2). In BLASTp (protein vs. protein search), one result (UniProt ID: P93362_TOBAC)
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had a significant E-value and bit-score; however, closer examination of the annotation showed that its
viral sequences have been annotated as a part of the Nicotiana tabacum plant genome.

 
Figure 1. Workflow of the identification of new EVEs. The first step is the search against eukaryotic
sequences from different databases (the Swiss-Prot database results are left out because this database
gave no hits) using viral sequences as a query. All the search inputs (sequences and models) are
indicated in blue script. All the hits are then examined to determine false positives and mis-annotations.
All the numbers after the databases (written in red) indicate the distinct hit IDs that were collected
from the databases. The second number (written in green) indicates (after all the noted sequence
authenticity controls) how many possible EVEs were identified from the databases. The “*” denotes
one recombinant sequence that was found in the analyses. “vl MSA1” denotes Tobamovirus-specific
MSA, “vl MSA2” denotes Tobamovirus-Hordeivirus-Pecluvirus-Tobravirus specific MSA and “fly MSA”
denotes an MSA that was constructed using 13 Drosophila fly sequences from the SUPERFAMILY
database. Abbreviations: UniProtKB, UP; Ensembl All, EA; Ensembl Genomes, EG; SUPERFAMILY, SF.
Note that “nr” database in BLASTp search include also UniProtKB. The sequence authenticity control
workflow is described in detail in Figure 2.
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We extended our search to tBLASTn (protein sequence as a query against nucleotide database
translated into 6 reading frames) to find EVEs not yet annotated or not coding a protein. Using
tobamo-CP as a query in tBLASTn against the nr/nt database, no true positives were found. However,
against WGS (Whole Genome Sequence) database, four significant hits were obtained (Figure 1 and
Table S2). In reciprocal BLAST analyses, one sequence was highly similar to Polydnaviridae, and
two of the sequences seemed to be relatives of the tobamo-CP. However, since the contig length of
the DNA was similar or shorter than the known Tobamovirus genome length, these sequences were
classified as ND (non-determined because of a lack of information to confidently classify this sequence
as part of the eukaryotic genome). One of these, Lasioglossum albipes (bee) sequence ANOB01025384.1
(NCBI accession ID) in the WGS database, however, did have a DNA scaffold over 40 Mbp (40,000 bp)
in length. Protein structure prediction of the region that harbours the potential EVE indicated that
the tobamoviral coat protein was the best match. However, the database annotations also state that
DNA was extracted from the whole body; hence, it is currently not possible to determine whether the
scaffold is part of the actual bee genome or is from some other organism found in the bee’s holobiont.

We also performed a similar tBLASTn search against the TSA (Transcription Shotgun Assembly)
and Est (Expressed Sequenced Tags) databases. No true positive hits were obtained because, while
sequencing the whole-body RNA, no evidence was given that the RNA was transcribed from the
eukaryotic genome (Figure 1 and Table S2).

To determine whether using a more complex method (while still using the protein sequence as a
query) can give us more information than a pairwise comparison method, additional analyses were
performed. Hidden Markov Models have been shown to identify distant homologous sequences more
successfully than BLAST. HMMER3 [35] was used for this purpose because it has been shown to be
more sensitive while not losing computational speed. When using the same Tobamovirus coat protein
sequences as queries in HMMER3 “phmmer” search against the protein sequence databases, no new
significant results were found (Table S3), but this result may be due to the small number of databases
that can be searched against (UniProt, SwissProt and Ensemble). None of the 18 primary hits from this
analysis met the other criteria described in the Materials and Methods Section.

Thus, sequence versus sequence searches gave one possible true hit (Lasioglossum albipes; NCBI
accession ID: ANOB01025384.1). Despite expanding the search queries to include Hordeivirus (family
Virgaviridae; +ssRNA viruses), Pecluvirus (family Virgaviridae; +ssRNA viruses) and Tobravirus (family
Virgaviridae; +ssRNA viruses) capsid proteins (sequences listed in Table S1), no additional EVEs
were found.

3.2. Searching for EVEs Using “MSA versus Sequence” search Algorithms (“hmmsearch”)

As noted above, it has been known for a long time that profile-based methods work better than
sequence-based methods, especially in distant homologous sequence detection. We used Tobamovirus
and Tobamovirus-Hordeivirus-Pecluvirus-Tobravirus capsid proteins (sequences listed in Table S1) to
generate MSAs and the corresponding profiles, and then we searched the sequence databases using
these profiles. All these analyses gave hits (Table S5) that had been previously classified as false
positives, whether by viral contamination or by belonging to other protein domains. Hence, the “MSA
versus sequence” search did not result in any new EVEs (Figure 1).

3.3. Identification of EVEs Using Profile-HMMs from the Pfam-A Database

Additionally, when searching single sequences against databases that use protein domain
profile-HMMs (e.g., Pfam-A, TIGRFAM, and SUPERFAMILY), HMMER3 “hmmscan” gave highly
reliable results when using the tobamo-CP as a query (Table S4). The Pfam-A database gave the
result of protein family “Virus coat protein (TMV like)” (Pfam-A code PF00721.20). This Pfam-A
family consists of sequences of Tobamovirus, Hordeivirus, Pecluvirus, Tobravirus (Virgaviridae, +ssRNA
virus), Furovirus (Virgaviridae, +ssRNA virus), Pomovirus (Virgaviridae, +ssRNA virus) and Benyvirus
(Benyviridae, +ssRNA virus) coat proteins. However, this Pfam-A family does not contain any
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eukaryotic sequences (neither in Pfam-A version 28 nor in versions 29, 30 and 31), except for one
Nicotiana tabacum protein (UniProt accession ID: P93362_TOBAC) that has previously identified as a
viral sequence. Pfam-A version 31 is based on UniProt release 2016_10 and does not include sequences
deposited after October 2016. To overcome this limitation, we used Pfam-A’s own profile-HMM
model as a search query against the UniProt database (“hmmsearch”) on the HMMER webpage
(https://www.ebi.ac.uk/Tools/hmmer/), which uses a monthly updated version of the UniProt.
However, no new results were found (Table S6).

3.4. Searching for EVEs Using Structure Guided Profile-HMMs from the SUPERFAMILY Database

SUPERFAMILY is the other profile-HMM database, where the protein domain family is presented
as a profile-HMM [37]. It identified “TMV-like viral coat proteins” (SUPERFAMILY accession ID:
47195 or SF_47195) as a positive hit (Table S4). SUPERFAMILY is a resource of genomic assignment of
protein structural domains. This database constructs profile-HMMs for protein structural domains
at the SCOP [46] superfamily level (throughout this article, we used term “superfamily” as it is
defined in SCOP) and then uses completely sequenced and annotated genomes to identify distant
homologous sequences that belong to the same structural superfamily. According to the SCOP authors,
a superfamily level groups protein domains with a common ancestor.

According to the SCOP classification, the superfamily “TMV-like viral coat protein” (SCOP concise
classification string “sccs” a.24.5) is composed of four Tobamovirus coat protein structures (PDB ID:
1EI7, 1VTM, 1RMV, 1CGM). Obviously, the Tobamovirus capsid sequences (22 genomes) are assigned to
HMM models of this superfamily. Additionally, the capsid sequences of tobraviruses (three genomes),
hordeiviruses (one genome) and pecluviruses (two genomes) are assigned to the “TMV-like viral coat
protein” superfamily. Additionally, three sequences from Bymoviruses (Potyviridae, +ssRNA virus),
each from different genomes, gave highly significant hits. However, these sequences are not capsid
proteins but are from a RNA2-encoded polyprotein (P2). Recall that SUPERFAMILY resources use
non-redundant, complete viral genomes from NCBI as a source for viral sequences.

In addition to viruses, thirteen Drosophila fly species are also assigned to “TMV-like viral coat
protein” superfamily (Table S7). All thirteen Drosophila species were assigned with very high confidence
(an E-value less than 1 × 10−33) and with an almost full alignment length. Thus, these sequences
are most likely homologous to tobamo-CPs. Although this database uses completely sequenced
and annotated genomes and the profile-HMMs are trained to be highly specific, false positives
classifications should not be overlooked; hence, protein structure prediction was performed to confirm
the SUPERFAMILY database results. Additionally, when using HMM models of the SF_47195 SCOP
classification from the SUPERFAMILY database as queries in the “hmmsearch” on the HMMER
webpage with up-to-date databases, several hits were found (Table S6). Most of these species belonged
to different Drosophila species, and others belonged to different fly species from the Schizophora section
(Bactrocera species, Ceratitis capitata, Lucilia cuprina, Musca domestica, Stomoxys calcitrans and Glossina
species). Similar results were also observed when using the SUPERFAMILY Drosophila sequence
(protein domain part)-based MSA as the “hmmsearch” query (Table S5).

3.5. Confirming SUPERFAMILY Hits as True Homologues to TMV-CP

To exclude false positives, the LOMETS metaserver [40] was chosen for protein structure
prediction (Figure 2). This program uses protein threading, which attempts to fit the given sequence to
previously identified protein structures, aligns each amino acid accordingly, and then it evaluates how
well the target fits the template. The results of the LOMETS metaserver for these Drosophila sequences
show that the best modelling templates, according to several different prediction algorithms (including
those that do not use HMMs), belong to tobamo-CP structures. This result confirms that Drosophila
fly sequences are highly likely to have structures very similar to tobamo-CPs and thus have a high
likelihood of being real homologues.
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Figure 2. A detailed sequence authenticity control workflow. Each step describes what kind of results
can be obtained from each step and what results can be used in further analyses. The programs used in
the analyses are underlined with blue line and the results of the analyses are underlined with green line.
The green dot shows that we cannot distinguish between viruses and EVEs when only RNA-seq data are
available. Similarly, the blue dot shows that, even when protein structure prediction may indicate that the
sequence is homologous to a certain virus, this sequence may have a close relative whose structure is not
yet solved. However, the protein structure prediction still indicates that the potential EVE sequence most
likely belongs to the respective structural superfamily (in terms of the SCOP).

When looking at the surrounding region of the eTCPL in Drosophila (and in other true positive hits
for SUPERFAMILY HMMs) in more detail (i.e., when analysing contig length and the presence of other
viral domains), no other indication of a misannotated viral origin was found. Thus, the Drosophila
eTCPL is coded by the real part of the genome and not by viral sequences accidently annotated as
a part of the genome. The eTCPL is found in several Drosophila species, which significantly reduces
the probability of sequencing artefacts. In conclusion, the SUPERFAMILY HMMs found several true
positives among Diptera.

3.6. Phylogenetic Analysis of Virgaviridae CP and Diptera eTCPLs

The above analysis shows that Drosophila and other flies contain the eTCPL domain. This result
by itself does not address transfer direction. To evaluate the phylogenetic relationship of eTCPLs
and exogenous viruses, we performed a comprehensive phylogenetic analysis using CP sequences
of corresponding Virgaviridae viruses (tobamoviruses, tobraviruses, pecluviruses, hordeiviruses and
goraviruses) (Table S1); and the integrated eTCPLs in eukaryotes (only high-confidence eTCPLs were used).

As shown in the phylogenetic tree in Figure 3, all viral genera (tobamoviruses, hordeiviruses,
pecluviruses and tobraviruses) have been clearly separated according to their known phylogeny.
The overall distribution of viral genera is very similar to the known divergence of these viruses, with
hordeiviruses and pecluviruses being very closely related, as determined based on both replication
proteins and capsid protein phylogenies of Virgaviridae [47]. These data show that the phylogenetic
analysis is biologically significant and meaningful.

160



Viruses 2019, 11, 320

Figure 3. Phylogeny of eTCPLs and the corresponding viral sequences. The tree was constructed using
the maximum likelihood method (LG + I + G + F model) using the MEGA program package [48]. All viral
genera are monophyletically grouped according to their phylogeny. All the eukaryotic sequences are
also grouped, and the pattern follows known fly phylogeny. The Acalyptratae-Calyptratae divergence
from other flies [49–52] and Tobamovirus divergence from other Virgaviridae [53,54] have been noted.

All flies are distributed to two main groups based on the two subsections of Schizophora flies:
Acalyptratae and Calyptratae. All the eTCPLs from different flies cluster together with very high
confidence and form a sister clade with extant viruses. The phylogenetic pattern inside the eTCPL
clade is consistent with the divergence of flies in the Calyptratae and Acalyptratae subsections and
resembles the phylogeny of the flies itself [55].
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It has been shown that the Acalyptratae-Calyptratae split occurred approximately 63–68 MYA
according to three independent studies [49–51]. A more focused and through study showed that the
split occurred approximately 48 MYA [52]. On the other hand, the ancestral split of Tobamovirus from
other Virgaviridae has been shown to have occurred approximately 115 MYA [53,54]. Overall, when
the phylogenetic tree is supplemented with available divergence dates, it provides strong support for
the virus-to-host transfer.

3.7. eTCPL Synteny in Completely Sequenced Fly Genomes

In this work, eTCPLs have been found in many different fly genomes. Of these, only a few
genomes have been fully sequenced, assembled and deposited into the FlyBase database [45]. All of
them are from Drosophila species (Table S7). Using their assembled genomes, the eTCPLs and the
surrounding region were analysed. All the eTCPLs are present in a single copy, and the protein domain
itself is coded by a single exon (in Drosophila willistoni and Drosophila ananassae, the respective genes
have two exons, but the eTCPL domain is coded by a single exon). The genes surrounding Drosophila
melanogaster eTCPL are IntS6, CG4078, CG15771 and lin-52 (the eTCPL gene overlaps with the last gene
but not in the coding sequence). The same trend is apparent in all of the Drosophila species (Figure 4).
However, some changes have occurred in either Drosophila or the Sophophora subgenus. For Drosophila
virilis and Drosophila grimshawi, the genes IntS6 and CG4078 are located further away and are located
in different scaffolds for Drosophila mojavensis. Additionally, Drosophila sechellia acquired a new gene
(GM19534) that has no known orthologues. Henceforth, a possible viral gene could have integrated in
this locus before the Drosophila fly split.

 
Figure 4. eTCPL gene synteny comparisons on fully sequenced genomes from Drosophila flies.
The eTCPL is noted in dark green and was taken as an observation centre. Drosophila melanogaster,
the most well-researched fly, was taken as a baseline and two to three genes surrounding the eTCPL
were also considered. All data were collected from the FlyBase database [45], including the tree picture.
In some flies whose genes surrounding the eTCPL were different, previously noted genes (IntS6 and
CH4078) were also located for this analysis.

3.8. EVE Detection from Incompletely Sequenced Genomes

True positive eukaryotic hits of the SF_47195 from the SUPERFAMILY database (which uses the
complete genomes and UniProt) indicated flies are hosts to eTCPLs. The next step in the analysis was
an additional BLAST analysis to evaluate their phylogenomic distribution in uncomplete genomes,
whose proteins may not yet be annotated.

In our approach, HMMs can recognise deeper evolutionary relationships, and BLAST will give
a better phylogenomic coverage since the HMM search was limited to a few protein databases and
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BLAST has a much wider possible database usage range and allows searching against nucleotide
databases (including subsets that do not have annotated translations). Using the fly eTCPLs as
queries, 76 different species (including 13 species from SUPERFAMILY) were identified as containing
true positive eTCPLs in their genome (Table S8). The results mostly consist of both Acalyptratae
and Calyptratae species (65 species belonging to the Schizophora section) covering both of their
phylogenies as best as possible with the data available.

Most of the species (in the Schizophora group) also have the same genes surrounding the eTCPLs
as in Drosophila melanogaster (genes IntS6, CG15771 and CG4078 located on the same contig as the
eTCPL) with the exception of a few species (data not shown), most likely because those species are
not sequenced as fully as others. This also indicates that eTCPLs’ synteny shown for Drosophilidae
(Figure 4) is also extended to Calyptratae and thus for all Schizophora.

We can use protein structure-guided profile-HMM analyses with an additional tBLASTn search to
cover the un-annotated coding sequences. With this approach, it is possible to detect eTCPL sequences
in a large number of eukaryotic genomes, which was not possible when using only a BLAST search.

4. Discussion

During the last decade, many EVEs have been detected in eukaryotes. According to the
published literature, the number of viral families that have donated EVEs to eukaryotes is at
least 34 for identified nucleic acid transfers, including at least 21 viral families where the coding
potential of integrated viral sequences have remained (data collected from the literature by H. Kirsip).
The recipient eukaryotic organisms have been fungi, plants, vertebrates, arthropods and others. Even
when using sequence-based EVE search strategies, the impact of non-retroviral viruses in cellular
genomes/proteomes is (and has been) significant. Currently applied methods do not take into account
that viruses have very fast evolutionary rates, and thus, sequence similarity may not be detectable
using pairwise sequence comparison methods.

The data presented in this study show that, as expected from the literature, there exist methods
that are more sensitive than BLAST to detect “virus-to-host” transfers of genetic material. It should
be noted that the same method could also be applied to the “host-to-virus” approach. According
to the literature, HMM-based searches should be more sensitive than BLAST, and structure-guided
HMMs should be even more sensitive than sequence-based HMM searches in the detection of remote
homologues. In our case, BLAST found one possible homologue in eukaryotes for Tobamovirus
capsid proteins. Additionally, using different HMMER3 search capabilities (“phmmer” and the viral
MSA-based “hmmsearch”, both based on HMMs) did not give any new reliable results. At the same
time, structure-guided HMMs from SUPERFAMILY found distant homologues of tobamoviral proteins
in eukaryotes. Our data show that, as a “proof of principle”, structure-guided HMMs can be used to
detect V2H transfers that are not detectable by other methods.

In modern high throughput times, the annotations of the data in different databases vary,
particularly from the point of view that relevant aspects of annotations vary for different researchers
(and for their scientific questions). In our case, the authenticity of sequences (their origin) must be
carefully tested because very often the taxonomic annotations of the origin of a nucleic acid correspond
to major species in holobionts and not to their real origin. This phenomenon has also been used by
scientists in a positive way, extracting, for example, the viruses (real viruses, not EVEs) infecting
insects from the data with taxonomic annotation to insects [56]. If the sequence data are not linked to
publications (or if the methods of how the probe was isolated and prepared have not been properly
described), it is very hard to evaluate the real origin of a sequenced nucleic acid. Some types of data,
by definition, do not allow us to distinguish between viruses and EVEs (for example, RNA-seq data).
Curated datasets such as complete proteomes or complete genomes seem to have fewer un-authentic
sequences compared to WGS. However, using WGS and similar databases are very useful for acquiring
taxonomic coverage that is as wide as possible. Of course, every method may have false positive hits;
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therefore, we analysed all the search hits with multiple alternative methods to obtain more confidence
results. Unfortunately, these methods are also not as “high throughput”.

Structure-guided HMMs help to detect remote homology; however, detecting homology is not
enough to classify the sequence as an EVE. In addition to vertical inheritance from primordial worlds,
there are two processes that may lead to homologous proteins in viruses and organisms: “virus-to-host”
transfer and “host-to-virus” transfer. To detect EVEs, the transfer direction of homologues found
in viruses and cells must be determined. Determination of the transfer direction for more ancestral
transfers is not as trivial as in the case of more recent events. In the latest case, it is possible to use the
highly confident outgroup sequences to root the phylogenetic tree and polarised it on time. At the same
time, when dealing with more older events, determining a good outgroup is a challenge. Studying
the evolutionary history of a single viral protein (or a protein domain) selection of outgroups is
complicated by rampant horizontal gene transfer between viruses. Even such an unlikely event as gene
transfer between ssDNA viruses and RNA viruses has been reported [10,57,58]. Known divergence
times of cellular and viral taxa would also help to polarise the phylogenetic tree. Unfortunately, very
few virus group divergence times have been determined. Therefore, to determine the transfer direction,
different independent approaches should be used.

To determine the transfer direction of proteins under study, we combined several approaches. First,
we tested the synteny of eTCPLs in well-annotated species in the FlyBase database. The eTCPL and its
surrounding area in fully sequenced genomes were analysed. The data in Figure 4 show the synteny of
the eTCPL in these species. In different Drosophila fly genomes, the eTCPL is in the same locus, is coded
by a single exon, and the surrounding genes are similar. The exception is between Drosophila and the
Sophophora subgenus, where some gene region reorganisation has occurred in one of them. Respective
species (where the eTCPL has the same location according to FlyBase) diverged approximately 48
MYA (the known divergence time for Drosophila species) [52], and at least for these species, the eTCPL
shows a clear monophyletic origin with a single transfer event according to the proposed phylogeny
of the Drosophila/Sophophora common ancestor. We also reconstitute the phylogenetic tree of viral
tobamo-CP and cellular eTCPL sequences together. This tree (and several other trees with different
alignment and tree building algorithms [59]) shows very strong bootstrap confidence intervals for viral
genera as well as for the Calyptratae/Acalyptratae split (from an alignment with a length of ~130 AA),
indicating the biological significance of the tree. Seeing as both Schizophora subsections (Acalyptratae
and Calyptratae) have eTCPL in their genomes and the eTCPL phylogeny is consistent with known
fly phylogeny [55], it can be concluded that the integration of viral elements occurred before these
two groups diverged. One group of flies, Aschiza, diverged before the Acalyptratae/Calyptratae
divergence and are closest relatives of Schizophora. In this group of flies, there are three organisms
with fully sequenced genomes (according to the NCBI Genomes database): Megaselia abdita, Megaselia
scalaris and Eristalis dimidiata. None of the organisms could be identified as carrying the eTCPL gene;
however, the neighbouring genes of eTCPL were detected using BLAST [59]. Therefore, it could be
concluded that the main integration of the tobamo-CP gene was into the ancestor of the Schizophora
flies. Supplementing the phylogenomic tree with known divergence times of tobamoviruses, the
Calyptratae/Acalyptratae split, and synteny analysis, tobamoviruses are much older than eTCPLs in
Schizophora. Therefore, taking all this information into account, the most likely single transfer event
took place between 115 and 48 MYA with a direction from viruses to insects.

The presence of plant virus genes in insect genomes may seem very unlikely, but we must take
into account that insects are common plant virus vectors and otherwise have very intimate contact
with plants. According to that, the described transfer is no longer unexpected. Additionally, single
V2H transfer events in one organism must be somehow beneficial for hosts to be fixed and to spread
in populations and maintained over millions of years. The detected EVE seems to be biologically
active, as the respective mRNA has been observed in several fly species (Table S8). In Drosophila
melanogaster, the expression is observed in different developmental stages and different tissues (our in
silico analysis of preexisting data deposited in different databanks, data not shown). In addition, the
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peptide corresponding to amino acids 229–246 in UniProt Q9W483 (a product of gene CD15772, i.e.,
The D. melanogaster eTCPL) have been observed in adult Drosophila melanogaster heads according to a
search in the PeptideAtlas database (www.peptideatlas.org).

However, more detailed experiments need to be performed to determine the full function of the
eTCPLs in flies.

5. Conclusions

This work showed that fast evolving viral protein homologues can be identified in eukaryotic
genomes using structure-guided HMM searches, even when the integration event itself is very ancient.
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Abstract: Using deep sequencing technologies such as Illumina’s platform, it is possible to obtain
reads from the viral RNA population revealing the viral genome diversity within a single host.
A range of software tools and pipelines can transform raw deep sequencing reads into Sequence
Alignment Mapping (SAM) files. We propose that interpretation tools should process these SAM files,
directly translating individual reads to amino acids in order to extract statistics of interest such as the
proportion of different amino acid residues at specific sites. This preserves per-read linkage between
nucleotide variants at different positions within a codon location. The samReporter is a subsystem
of the GLUE software toolkit which follows this direct read translation approach in its processing
of SAM files. We test samReporter on a deep sequencing dataset obtained from a cohort of 241 UK
HCV patients for whom prior treatment with direct-acting antivirals has failed; deep sequencing
and resistance testing have been suggested to be of clinical use in this context. We compared the
polymorphism interpretation results of the samReporter against an approach that does not preserve
per-read linkage. We found that the samReporter was able to properly interpret the sequence data
at resistance-associated locations in nine patients where the alternative approach was equivocal.
In three cases, the samReporter confirmed that resistance or an atypical substitution was present at
NS5A position 30. In three further cases, it confirmed that the sofosbuvir-resistant NS5B substitution
S282T was absent. This suggests the direct read translation approach implemented is of value for
interpreting viral deep sequencing data.

Keywords: deep sequencing; virus genomics; hepatitis C virus; variant calling; sequence interpretation;
drug resistance; bioinformatics

1. Introduction

For some virus species, their highly error-prone replication mechanism produces a population of
related genomic variants of the virus within a single infected host individual [1]. Sequencing systems
such as Illumina’s platform produce short, relatively accurate nucleotide sections of viral genome,
often generating thousands of reads for a given genomic location from a single sample [2]. Such deep
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sequencing technologies therefore offer methods for understanding the nature of viral intra-host
diversity. Whole genome and deep sequencing of virus genomes has been widely applied in basic
virology research but has also found applications in clinical contexts such as the detection of drug
resistance [3].

Various bioinformatics stages must be applied in the interpretation of viral deep sequencing
data. Reads unrelated to the virus genome are removed and low-quality reads removed or trimmed.
Following this, we must then construct an alignment: how the reads are arranged relative to each
other within the virus genome, accounting for sequence homology. Reference-based alignment or
mapping methods such as Bowtie 2 [4], BWA [5], MOSAIK [6], Stampy [7] or Tanoti [8] use one or more
reference sequences to guide the alignment of reads. In contrast, de novo assembly approaches such as
SPAdes [9] and VICUNA [10] use associations derived purely from the read data itself to propose large
genome fragments, avoiding the biases arising from the choice of reference sequence. A drawback
of de novo methods is that they may not accurately capture the full genomic structure or diversity,
thus, for well-known viruses with high levels of genomic diversity, combinations of de novo assembly
and reference-based alignment methods, such as shiver [11], are often used. One aspect common
to almost all recent methods in this area is that they output their results in the form of a sequence
alignment mapping (SAM) file. The SAM format [12] integrates nucleotide, read quality and alignment
data in a single file. It was standardised at an early point in the adoption of deep sequencing, allowing
diverse methods to be compared with each other and integrated into processing pipelines for a broad
set of applications.

A range of variant-calling methods have been developed to analyse genomic heterogeneity
within deep sequencing data. Error rates in short read technologies such as Illumina are low but
it can be challenging to distinguish errors from real single nucleotide variants (SNVs) occurring at
frequencies comparable to the error rate. Therefore, variant-calling methods such as LoFreq [13]
and V-Phaser [14,15] apply statistical techniques to the aligned read data to identify probable SNVs
occurring even at very low frequency in the presence of sequencing errors. The focus on low frequency
SNVs is critical in applications such as cancer genomics where somatic deviations from the consensus
are both rare and of high consequence [16]. However, virus bioinformatics has distinct priorities from
fields focused on eukaryote or bacterial organisms with higher replication fidelity [17]. Since viruses
typically have a low replication fidelity, there is a higher level of diversity within an infected host and
the viral population can be expected to contain many variants.

For reasons of clarity within the research community, virus genome locations can be defined in
terms of a standard virus strain with a well-established “master reference” genome. In hepatitis C
virus (HCV) for example, codons within viral proteins are numbered relative to the H77 strain [18].
Polymorphisms at these standardised locations are reported with phenotypic associations established
experimentally or in clinical trials. The advent of deep sequencing data prompts questions such
as: What are the relative proportions of different amino acid residues at a given genome location?
What proportion of reads support the presence of a certain sequence motif? What proportion of reads
indicate a deletion? However, it is challenging to answer these questions within deep sequencing data,
since read alignments do not in general use the reference coordinate space, and a mapping between
the two spaces must be established and applied.

The genomes of the virus population may contain multiple nucleotide base variants at different
positions within a single codon location. Both Verbist et al. [19] and Döring et al. [20] pointed out that
linkage between nucleotide positions is lost when variants are called as SNVs. This linkage must be
retained within datasets in order to accurately predict the amino acid residues arising from protein
translation. Suppose for example we observe significant levels of both adenine (A) and thymine
(T) at the first position of a particular codon location. At the second position, we observe cytosine
(C) and guanine (G). With cytosine at the third position, what amino acids are the genomes in the
virus population coding for? Without retaining linkage, these observations are consistent with a mix
of Threonine (codon ACC) and Cysteine (TGC), or alternatively with purely Serine (AGC/TCC),
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or with any combination of these amino acids. By retaining linkage, we can accurately select between
these interpretations. Haplotype reconstruction methods aim to determine linkage by associating
sub-populations of reads as haplotypes. Schirmer et al. [21] found that this was exceptionally unreliable
for viral deep sequencing data. However, full haplotype reconstruction may not be necessary for
practical applications where the variants of interest are linked within the span of a single read or
read pair.

We present a subsystem of the GLUE software package [22] called samReporter, focused on the
analysis of aligned deep sequencing viral genome data. It directly processes the SAM file format
produced by most methods, and can also process the more compact Binary Alignment Map (BAM)
format. The samReporter can be instantiated within an existing GLUE project containing reference
sequences and alignments for a given virus. This allows the software to establish a reading frame for
coding region reads within a SAM file, and map between the read alignment coordinate space and
standardised genome locations. In turn, this facilitates the scanning of reads directly for different classes
of sequence pattern such as codons, amino acid residues, indels and motifs. This approach of scanning
reads directly has the advantage of retaining linkage and we can report how often combinations of
variations appear together on the same viral RNA, certainly within a codon location but also further,
at least as far as paired-end read data allows.

We demonstrate the benefits of applying the GLUE samReporter to hepatitis C virus (HCV)
deep sequencing data. HCV is a positive-sense single-stranded RNA virus of the family Flaviviridae.
Its genome of about 9000 bases codes for a single polyprotein that produces 10 mature viral proteins.
HCV affects over 100 million people worldwide and can cause liver disease and cirrhosis. The infection
can be treated with a range of direct-acting antiviral (DAA) drugs which inhibit three of the mature
proteins: NS3, NS5A and NS5B. Such therapies produce a sustained virological response (SVR) in
the vast majority of patients, clearing the virus in around 95% of cases [23]. Notwithstanding this
therapeutic success, HCV is proving difficult to treat in certain categories of patients, including
“retreatment” patients: those for whom prior DAA treatment has failed. It has been shown both in vitro
and in vivo that certain resistance-associated substitutions (RASs) in the viral genome confer resistance
to DAA drugs [24].

Vermehren et al. suggested that retreatment patients have RASs in multiple drug target genes
and that therefore “genomic resistance testing may be useful to select the optimal combination and
treatment duration” for subsequent rounds of drug therapy [23]. Recent guidance suggests that, if deep
sequencing is used, observing a RAS in 15% of the virus population may be clinically relevant [25].
Tools aimed at HCV resistance testing such as geno2pheno[ngs-freq] [20] suggest frequencies of 2%, 10%
and 15%. Thus, while HCV RAS testing can benefit from deep sequencing methods, moderately-low
rather than ultra-low frequencies are of most interest. RAS testing for retreatment patients therefore
provides a good case study for a deep sequencing data interpretation system.

2. Results

We analysed viral genome diversity within a group of 241 HCV retreatment patients sampled
within the United Kingdom. A range of genotypes were represented: Gt1 n = 115, Gt2 n = 5, Gt3 n = 104,
Gt4 n = 14 and Gt6 n = 3. The five most frequent subtypes: were 1a n = 98, 1b n = 13, 3a n = 95, 3b n = 6
and 4r n = 6. Fourteen other subtypes were represented each by three or fewer patients. In three cases,
a subtype could not be assigned.

The samReporter scans aligned reads directly, retaining linkage within reads with the intention of
more accurate detection of specific variants. To test the benefits of this approach, we also contrived an
alternative method that attempts to capture within-host diversity without retaining linkage.

Besides the four concrete bases A, C, G and T/U, IUPAC notation for nucleic acids, used in the
FASTA sequence file format, contains 11 ambiguity codes, covering all possible combinations of more
than one base [26]. For example, code S can represent a combination of C and G. Any method which
calls SNVs can encode these variants within a FASTA file. This aspect of the encoding is used to
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capture minor nucleotide variants. Web-based HCV drug resistance interpretation systems such as
HCV-GLUE [27] and geno2pheno[hcv] [28] do attempt to interpret ambiguity codes if they appear in
the input data. We produced FASTA files with ambiguity codes for each sample using the samReporter
nucleotide-consensus command, which produces one IUPAC code for each nucleotide position
in the SAM reference coordinate space. Read bases with a Phred quality score of less than 25 were
excluded. A “concrete” base (A, C, G or T) was encoded at a given position if it appeared both in at
least five individual reads and in 5% of the quality-filtered reads at that location. IUPAC ambiguity
codes are then used if multiple concrete bases are to be encoded. We found that FASTA files for all
but two samples contained at least one ambiguity code. On average, files contained ambiguity codes
which represent two bases at 1.02% of nucleotide positions (std. dev. 1.3%) and codes which represent
three bases at 0.0161% of nucleotide positions (std. dev. 0.0475%).

A triplet of concrete bases, i.e. a codon, specifies a single amino acid. If ambiguity codes occur
within nucleotide data for a given codon location, multiple distinct codons are present in the underlying
data at that location; the precise composition is unknown. For a given ambiguous triplet (possibly
containing ambiguity codes), there is set of “possible” amino acids comprising any residues coded by
one or more of the possible codons. For example, for the ambiguous triplet YTM, the set of possible
amino acids is Leucine (L) and Phenylalanine (F) because the set of codons and their corresponding
amino acids are CTA (L), CTC (L), TTA (L) and TTC (F). Additionally, there is a (possibly empty) subset
of “definite” amino acid residues, i.e. those that must be coded by at least some of the underlying
codons, whatever the composition, under reasonable assumptions. For the ambiguous triplet YTM,
every combination of codons which produces the ambiguity codes contains at least some codons
for Leucine (L); this is the single definite amino acid. In general, if there is a single ambiguity code
encoding two bases within the triplet, there will be one or two definite amino acids, and these will also
be the only possible amino acids.

The FASTA files were analysed for “ambiguous” codon locations where the definite and possible
amino acid sets were different. This typically occurs when there are two ambiguity codes within
a triplet. Such locations present a challenge for drug resistance interpretation systems based on FASTA
file inputs. Whereas amino acid residues in the definite set can be inferred to be present in the virus
population, the status of amino acids in the possible set but not the definite set cannot be established
clearly from FASTA data. We excluded from the analysis degenerate locations i.e. those where the
possible set, excluding stops, contained more than five amino acids or where the read depth for the
whole codon location was less than 10.

In total, 435 ambiguous locations were found in patients, within all ten viral proteins: Core n = 62,
E1 n = 24, E2 n = 205, p7 n = 5, NS2 n = 14, NS3 n = 30, NS4A n = 1, NS4B n = 9, NS5A n = 38 and
NS5B n = 47. The full set of ambiguous locations is given in the Supplementary Materials. Scaling by
the length of each region, this implies that the E2 and Core proteins had a higher rate of ambiguous
locations. The drug target proteins NS3, NS5A and NS5B have rates in the lower part of the range.

The current version of HCV-GLUE [27] documents 44 locations associated in the literature with
resistance to six DAA drugs in current use: 18 in NS3, 15 in NS5A and 11 in NS5B. These are listed in
the Supplementary Materials. Within the FASTA data, we found 10 ambiguous resistance-associated
locations in nine patients, six in NS5A and four in NS5B. We resolved these locations using the GLUE
samReporter, calculating the frequencies of codons and amino acids by directly analysing reads.
Codons were excluded if any Phred base quality was below 25. Amino acid residues were deemed to
be present if 5% or more of filtered read codons at the location coded for the residue. The 10 locations
are shown in Table 1. HCV-GLUE classifies an amino acid as typical at a location for a given subtype if
10% or more of the GenBank sequences of that subtype contain the residue, these are also shown in the
table. In all cases except one (R25, NS5B position 159) the definite residues set (not shown) was empty.
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Table 1. Ambiguous resistance-associated locations resolved using GLUE samReporter.

Sequencing Sample
Subtype

Virus Codon Ambiguous Typical Possible Confirmed
Facility ID Protein Location Triplet Residue (s) Residues Set Residues Set

Glasgow HCV294 3b NS5B 282 WSY S CST S
Glasgow HCV300 3a NS5A 30 RMG A AEKT AK
PHE R127 1a NS5A 24 RSG K AGRT GT
PHE R164 3a NS5A 30 RMG A AEKT AK
PHE R25 4r NS5B 159 YTM L FL L
PHE R25 4r NS5B 282 WSC S CST S
PHE R36 4r NS5B 282 WSC S CST S
PHE R67 1a NS5A 30 YAW Q HQY QY
PHE R91 1a NS5A 28 RYG M AMTV MV
Oxford 7444 3a NS5A 62 SYA ST ALPV AL

In the cases shown in Table 1, samReporter was able to eliminate many possible residues. Whereas
the possible set contained up to four residues, samReporter confirmed that only one or two were
actually present at the 5% level. Two resistance locations occur three times each and merit a discussion.
For NS5A position 30, in subtype 1a the typical residue is Glutamine (Q). In sample R67, samReporter
found Tyrosine (Y) at around 74%, which has not been documented as a RAS but is atypical for the
subtype. In samples HCV300 and R164 (subtype 3a) the typical residue is Alanine (A); samReporter
found Lysine (K), a well-documented RAS, at levels of 92% and 82% respectively. Thus, in these three
cases samReporter confirmed the presence of a RAS or atypical substitution. Substitutions at NS5B
position 282 have been strongly associated with resistance to sofosbuvir, particularly the substitution
of the typical Serine (S) with Threonine (T). In contrast with NS5A position 30, samReporter was
able to eliminate this resistant residue and the other possible atypical residue Cysteine (C); in these
three ambiguous cases, only Serine is present, but is actually coded by significantly distinct codons
in each case. For sample HCV294, the codons were TCT at 54%, AGT at 25% and AGC at 20%, for
sample R25, AGC at 85% and TCC at 15%, and, for sample R36, TCC at 92% and AGC at 7%. The effect
of the presence of these diverse codons is to create ambiguity at the nucleotide level. One possible
explanation for the codon diversity is that Threonine codons became frequent in the viral population
during sofosbuvir treatment, and that following the end of the treatment course the descendants of
these virions reverted to Serine, but now coded using diverse alternative codons.

The HCV296 sample is typical in the sense that the size of the BAM file (24.6 MB) was closest to
the mean for this dataset, it contains ≈282,000 paired-end reads with an average depth across the HCV
polyprotein of ≈3700. To evaluate performance, we ran some samReporter commands on this file
using a 2014 MacBook Pro with a 2.5 GHz Intel Core i7 processor and 16 GB of RAM. The samReporter
was configured to use up to four CPU cores. The amino-acid command was run to translate reads for
the whole polyprotein, producing amino acid residue frequencies at each codon location, without any
read filters. Using the auto-align feature with a known target reference sequence, this command took
7.5 s. Using the max-likelihood-placer feature, the command took 29.2 s, with most of the extra time
spent in the RAxML-EPA step. See Section 3.2 for details of the samReporter design.

3. Materials and Methods

3.1. Sequencing Data

Deep whole genome HCV sequencing data was derived from blood samples collected from
241 patients resident in the United Kingdom, who had not achieved virological clearance after
previous courses of antiviral therapy. Sequencing was performed using target enrichment on Illumina
sequencers at three different institutes: the MRC-University of Glasgow Centre for Virus Research
(n = 56), the University of Oxford Nuffield Department of Medicine (n = 25) and the Virus Reference
Department at Public Health England (PHE) (n = 160).

The Glasgow library preparation protocol was as follows. RNA was isolated from 200 μL of
plasma using the RNAdvance Blood extraction kit (Beckman Coulter, Brea, CA, United States) and
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collected in 27 μL of water. Following conversion of RNA to double-stranded DNA, libraries were
prepared for Illumina sequencing using the KAPA DNA LTP Library Preparation Kit (Roche, Basel,
Switzerland), and NEBNext Multiplex Oligos for Illumina (New England Biolabs, Ipswich, MA,
United States). Libraries were quantified using Qubit dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA,
United States) and size distribution assessed using Agilent TapeStation with D1K High Sensitivity
Kit (Agilent, Santa Clara, CA, United States); libraries were normalised according to viral load and
mass. A 500 ng aliquot of the pooled library was enriched using SeqCap EZ Developer Probes (Roche),
following the manufacturer’s protocol. Following a 14 cycle post-enrichment PCR, the cleaned pool
was sequenced with 151-base paired-end reads on a NextSeq cartridge (Illumina, San Diego, CA,
United States).

The Oxford libraries were prepared for Illumina sequencing using the NEBNext Ultra Directional
RNA Library Prep Kit (New England Biolabs) with 8 μL of RNA extracted from plasma using
NUCLISENS easyMAG (bioMérieux, Marcy-l’Étoile, France) and previously published modifications
of the manufacturer’s guidelines (v2.0) [29]: omission of heat fragmentation, omission of Actinomycin
D at first-strand reverse transcription, library amplification for 15 PCR cycles using custom indexed
primers [30], and post-PCR clean-up with 0.85x volume Ampure XP (Beckman Coulter). Libraries were
quantified using Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen) and size distribution analysed
using Agilent TapeStation D1K High Sensitivity kit. A 500 ng aliquot of the pooled libraries (96 plex)
was enriched using the xGen Lockdown protocol (Rapid Protocol for DNA Probe Hybridization and
Target Capture Using an Illumina TruSeq or Ion Torrent Library v1.0, Integrated DNA Technologies,
Coralville, IA, United States) with equimolar-pooled 120 nt DNA oligonucleotide probes (Integrated
DNA Technologies) followed by a 12-cycle on-bead post-enrichment PCR. The cleaned post-enrichment
ve-Seq library was quantified by qPCR with the KAPA SYBR FAST qPCR Kit (Roche) and sequenced
with 150b paired-end reads on a single run of the Illumina MiSeq.

The PHE library preparation protocol is the laboratory component of a pipeline aimed at clinical
use; a manuscript describing the full pipeline is in preparation. RNA was extracted from 350 μL of
plasma using the NUCLISENS easyMAG system (bioMérieux). Total eluates were subjected to Turbo
DNAse treatment (Thermo Fisher, Waltham, MA, United States) followed by library preparation
using KAPA RNA HyperPrep kit (Roche). Libraries were pooled based upon DNA concentration
and HCV quantity, assessed using the Quant-iT kit on the Glomax platform (Promega, Madison, WI,
United States) and the Qiagen QuantiTect kit with primers and probes from Davalieva et al. [31].
Pools were enriched by hybridisation to a biotinylated probe set (Integrated DNA Technologies,
described by Bonsall et al. [32]) followed by further PCR cycles depending upon HCV quantity.
The two pools were pooled, again by concentration and HCV quantity. The final pool was quantified
using the KAPA SYBR FASTA qPCR kit (Roche) on a PRISM 7500 (Applied BioSystems, Foster City,
CA, United States) before being sequenced on a MiSeq using Reagent kit v2 (Illumina).

The Illumina read data were processed into SAM files using different bioinformatics pipelines at
the different institutions. At Glasgow, reads were trimmed and filtered using TrimGalore [33] with
quality threshold 30 and minimum read length 75. The most appropriate HCV reference sequence
was identified via a k-mer-based approach, using k-mers unique to each genotype [34]. SAM files
were generated by mapping against the best-matching HCV reference using Tanoti [8]. At Oxford,
de-multiplexed sequence read-pairs were trimmed of low-quality bases using QUASR v7.01 [35] and
adapter sequences with CutAdapt version 1.7.1 [36] and subsequently discarded if either read had
fewer than 50 bases in its remaining sequence or if both reads matched the human reference sequence
using Bowtie version 2.2.4 [4]. Remaining reads were mapped using BWA mem [5] and Stampy [7]
against a database of reference sequences, both to choose an appropriate reference and to select those
reads which formed a majority population for de novo assembly using VICUNA [10] and finishing
with V-FAT [37]. The reads were then mapped back to this assembly using MOSAIK [6]. At PHE,
human reads were filtered out from trimmed FASTQ files using SMALT [38], remaining reads were
then assembled using VICUNA de novo assembly [10]. Contigs were matched to HCV reference
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genomes using BLAST [39] and gaps filled using LASTZ [40] to generate a draft assembly. Reads were
then mapped to the draft assembly with BWA [5].

The deep sequencing data used in this study has been deposited in the NCBI Sequence Read
Archive (http://www.ncbi.nlm.nih.gov/sra), under BioProject accession number PRJNA527067 and
experiment accession numbers SRX5528430 to SRX5528670.

3.2. GLUE samReporter Design

The GLUE samReporter aims to provide a convenient tool for interpreting viral deep sequencing
data. As part of the wider GLUE system [22], it can be used interactively in the command line
interpreter or within bioinformatics scripts. Instantiated within a GLUE project for a specific category
of viruses such as HCV-GLUE, it can take advantage of certain data objects within that project.

When interpreting viral deep sequencing data, one obstacle is mapping the SAM file coordinate
space to a standard codon numbering system. Within the HCV-GLUE project the H77 strain
(RefSeq accession NC_004102) is defined as the “master” reference sequence object. The precursor
polyprotein and the 10 mature proteins are defined as coding features and their locations are specified
on the H77 sequence. A wider set of reference sequence objects is also defined within HCV-GLUE;
there are currently over 200 of these, based on the ICTV HCV resource [41]. HCV-GLUE then specifies
an unconstrained “master” alignment object containing all these reference sequences, which is used to
map their locations to those on the H77 sequence. HCV-GLUE also contains a reference phylogeny of
the same set of sequences, computed using RAxML [42].

SAM files for HCV typically map each read to a single coordinate space. To interpret individual
reads the samReporter must infer sequence homology (i.e., pairwise alignment) between this SAM file
coordinate space and one of the reference sequences defined within GLUE—the “target” reference.
The simplest method, to specify that the SAM file coordinate space is identical to that of a specific target
reference sequence, is appropriate if one of the project’s reference sequences was used for the SAM
file coordinate space. A more flexible “auto-align" method allows GLUE to generate a codon-aware
pairwise alignment between the consensus of the SAM file and a selected target reference, using
techniques based on BLAST+ [39]. This is appropriate if the SAM virus strain is closely related to
the target reference, but importantly, it allows the method producing the SAM file, which may have
a de novo element, to construct a coordinate space appropriate for the viral reads. The final and most
general and robust method is “max-likelihood-placer”. This allows GLUE to select the target reference
itself, by feeding the consensus of the SAM file into the first two stages of the GLUE genotyping
pipeline. This consists of incorporating it into the master alignment using MAFFT [43], placing it in the
reference phylogeny using RAxML-EPA [42] and selecting as the target the reference sequence with
the lowest patristic distance from the SAM consensus. The auto-align method is then used to generate
the homology. The master alignment will also typically act as the “linking” alignment, providing
a mapping between the target reference and the master reference. The result of this process is then
a chain of pairwise homology relationships, as shown in Figure 1, from each individual read to the
SAM file coordinate space, to the target reference sequence and finally, via the linking alignment, to
the master reference sequence.

The samReporter offers a range of GLUE commands for interpreting SAM files (Table 2).
These each accept similar arguments for specifying the coordinate homology and genome region.
The “variation scan” command scans each read for the presence or absence of sequence patterns
defined by GLUE Variation objects [22]. If paired-end read data are supplied, the reads in each pair are
processed together. Variation objects can encapsulate insertions, deletions, regular expressions and
combinations at the nucleotide or amino acid level. In HCV drug resistance this capability may become
important. For example, the Magellan-1 trial of the drug pibrentasvir found that the combination of
a Methionine at NS5A position 28 with the deletion of the residue at NS5A position 32 was associated
with resistance to the drug for HCV subtype 1b [44]. It remains to be seen whether such deletions and
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combinations occurring as minority variants are clinically relevant but if so, the samReporter offers
a means of detecting these.

AATCGCTCCCCTACT

AATCGCTCCTCTACT

AATCGCTCA---ACT

SAM / BAM file
coordinate space

target reference
sequence

master
reference sequence

pairwise homology generated
by auto-align

linking alignment

AATC

CTCC

GCTCCC

CGCTCC

CTACT

SAM / BAM file
read alignment

individual reads

Figure 1. The chain of pairwise homology relationships between reads and the master reference
sequence (H77 for HCV), established during the operation of GLUE samReporter.

Table 2. GLUE samReporter commands.

Command Description

nucleotide Generate a table of nucleotide frequencies within a specific genome region.

depth Generate a table of read depths within a specific genome region.

nucleotide-consensus Generate a FASTA consensus file, optionally using ambiguity codes.

amino-acid Generate a table of amino acid residue frequencies within a specific
protein-coding region.

codon-triplets Generate a table of codon frequencies within a specific protein-coding
region.

variation scan Scan for the presence or absence of GLUE Variations within reads.

export nucleotide-alignment Export a specific part of the SAM alignment as a FASTA file.

The commands also allow simple, optional filtering based on Phred base qualities, MAPQ
mapping quality and depth. In command outputs, codon numbering is based on the system proposed
by Kuiken et al. [18]; nucleotide coordinates both within the SAM file and the mapped location on
the master reference are also given. Individual input files may be processed more quickly using
parallelisation of command operations across multiple processors. Finally, for paired-end read data,
regions where paired reads overlap are not counted twice in command outputs. As part of the GLUE
engine, the SAM reporter is implemented in Java, using the Htsjdk library [45] to interpret the
SAM format.

The samReporter is delivered as part of the GLUE software package. This study used GLUE
version 1.1.33, HCV-GLUE project version 0.1.51 with PHE-HCV-DRUG-RESISTANCE extension
version 0.1.21. GLUE is licensed under the open source GNU Affero General Public License version
3.0. and may be installed on Mac OSX, Windows or Linux systems. Documentation specific to the
samReporter may be found at: http://tools.glue.cvr.ac.uk/#/deepSequencingData. Documentation
for other aspects of GLUE and links to the source code repository can be found on other pages within
the same web site.
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4. Discussion

The results show that, within virus genomes of HCV retreatment patients, linkage between
nucleotide variants within a codon location is not a purely theoretical issue. In a small number of cases
among UK retreatment patients, such linkage did occur at sites critical for drug resistance. Approaches
that do not preserve linkage, such as those encoding variants as ambiguity codes, cannot correctly
resolve these cases. How would such a system deal with amino acid residues in the possible set but not
in the definite set? If the system is configured not to report such residues, the result is false negative
detection of a substitution at NS5A position 30 in three patients, obscuring A30K RAS in two cases.
Conversely, if the system reports these residues, the result is false positive detection of the NS5B RAS
S282T in three other patients. As far as we are aware, the current study is novel in terms of quantifying
the effect of such linkage on resistance detection in real HCV patient data.

The current HCV-GLUE database [27] documents many RASs that combine substitutions at
locations within the span of a typical Illumina read. The samReporter can report the presence or
absence of these on any read (or read pair for paired-end data) that covers the relevant locations.
Future work might consider whether detection of these “combination” RASs at a minority level are of
clinical relevance. It would also be of interest to incorporate existing low frequency variant-calling
mechanisms from the literature into GLUE. The samReporter and GLUE generally are intended to be
useful in both research and clinical contexts. However, even once a SAM file has been generated from
a sample, the samReporter only represents one part of the process in terms of drug resistance analysis.
The HCV-GLUE system is currently being developed to provide a comprehensive drug resistance
report, using samReporter to interpret a SAM file.

Other software, for example the VirVarSeq system [19], calls variants at the codon level but is
focused on very low frequency variants. DiversiTools [46] provides frequencies of amino acids on a per
read basis but does not link to a standardised coordinate system as is available in the GLUE framework.
The geno2pheno[ngs-freq] system [20] directly interprets drug resistance in deep sequencing data.
Users must transform their data into a table of nucleotide or codon frequencies and a web-based system
then performs interpretation on this table, using a user-defined frequency threshold. In comparison
with samReporter, this design facilitates fast transfer over a network since the frequency table is much
more compact than a typical SAM or BAM file. However, some information is necessarily lost in the
processing, for example the codon frequency table cannot encode linkage beyond a codon location
which would be required for example to detect combination RASs.

While the current study applied samReporter to HCV, it can also be used to analyse deep
sequencing data for other viruses. In many simple cases, the prerequisites would simply be a nucleotide
alignment of alternative target reference sequences and a master reference sequence with coding region
annotations. In more complex cases, for example where virus genomes contain ambisense genomes or
RNA editing, GLUE and samReporter would need to take account of this. The GLUE samReporter
shows that a simple, pragmatic software design can conveniently answer some common questions
concerning within-host variation in viral deep sequencing data.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/4/323/
s1. The complete set of “ambiguous” codon locations that were found is supplied in a tab-delimited supplementary
data file unclearCodonLocations.txt. Resistance associated locations are supplied in a tab-delimited
supplementary data file resistanceAssociatedLocations.txt.
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Abbreviations

The following abbreviations are used in this manuscript:

BAM Binary alignment mapping
DAA Direct-acting Antiviral
DNA Deoxyribonucleic Acid
ICTV International Committee for the Taxonomy of Viruses
HCV Hepatitis C virus
RAS Resistance-associated Substitution
RNA Ribonucleic Acid
SAM Sequence alignment mapping
SNV Single nucleotide variant
SVR Sustained virological response
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Abstract: Advances in DNA sequencing technology are facilitating genomic analyses of unprecedented
scope and scale, widening the gap between our abilities to generate and fully exploit biological
sequence data. Comparable analytical challenges are encountered in other data-intensive fields
involving sequential data, such as signal processing, in which dimensionality reduction (i.e.,
compression) methods are routinely used to lessen the computational burden of analyses. In this
work, we explored the application of dimensionality reduction methods to numerically represent
high-throughput sequence data for three important biological applications of virus sequence data:
reference-based mapping, short sequence classification and de novo assembly. Leveraging highly
compressed sequence transformations to accelerate sequence comparison, our approach yielded
comparable accuracy to existing approaches, further demonstrating its suitability for sequences
originating from diverse virus populations. We assessed the application of our methodology using
both synthetic and real viral pathogen sequences. Our results show that the use of highly compressed
sequence approximations can provide accurate results, with analytical performance retained and
even enhanced through appropriate dimensionality reduction of sequence data.

Keywords: alignment; assembly; taxonomic classification; time series; data transformation; DWT;
DFT; PAA; data compression; compressive genomics

1. Introduction

Next-generation sequencing (NGS) enables massively parallel determination of nucleotide order
within genetic material, making it possible to rapidly sequence the genomes of individuals, populations
and metagenomic samples [1–5]. However, the sequences generated by these instruments are almost
always considerably shorter in length than the genomic regions studied. Genomic analyses often begin
with the process of sequence assembly, where sequence fragments (reads) are reconstructed into the
larger sequences from which they originated. Computational methods play a vital role in the assembly
of short reads, and a variety of assemblers and related tools have been developed in tandem with
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emerging sequencing platforms [6]. All subsequent analyses and investigations depend upon the
quality, accuracy and speed of this crucial sequence assembly process.

There are many computational methods to generate consensus sequences representing the
genomes of species in a sample. Such approaches include seed-and-extend alignment methods using
suffix array derivatives, such as the Burrows-Wheeler Transform (BWT) for aligning short reads
informed by a known reference sequence [7,8], graph-based methods employing Overlap Layout
Consensus (OLC) [9,10] and de Bruijn graphs of k-mers [11–13] for reference-free de novo sequence
assembly. However, for sequencing projects to characterise genetic variation within populations
(deep sequencing), metagenomics and pathogen discovery, the effectiveness of the aforementioned
approaches varies considerably [14].

Samples with mixed viral infections, especially those comprising divergent variants, present a
number of analytical and computational problems. The use of a reference sequence, even the use of
a data specific generated sequence, can lead to valuable read information being discarded during
the alignment process [15]. On the other hand, while de novo approaches require little a priori
knowledge of target sequence composition, the methods are computationally intensive, and their
performance scales poorly with datasets of increasing size [9]. Aggressive heuristics must be employed,
to traverse graphs and deal with mismatches, reduce the running time of de novo assemblers, which,
in turn, can compromise assembly quality. Indexing structures such as the BWT and its relatives are
widely used to reduce the burden of pairwise sequence comparison, for both reference-based mapping
and de novo assembly. However, they cannot process mismatches within reads, necessitating the
use of computationally expensive heuristics to establish relationships between divergent sequences.
Increasing sequence length further affects the performance of these approaches [16].

A major challenge in working with NGS data from metagenomic studies is the high levels of diversity
present, particularly for the virus genetic material. Also, the number of sequences generated challenge
many computational systems for a feasible working solution in terms of time and the computational
resources typically available in biological laboratories. For biologists working on outbreak responses
or pathogen discovery, both the accuracy of the assembly results and the speed of sequence analyses
(e.g., assembly, alignment and pathogen classification) are crucial for crisis response and management.
The ability to run analyses in the field on portable computer systems without internet connectivity is also
important. Here, we explore the utility of data transform methods to extract major features from viral NGS
sequence data and use the features to analyse data in a lower dimensional space.

Similar analytical challenges involving high dimensional sequential data are encountered
in other data-intensive fields, such as signal and image processing, and time series analysis,
where data transforms and approximation techniques are used for data dimensionality reduction.
Data transform/approximation techniques include the discrete Fourier transform (DFT) [17], the discrete
wavelet transform (DWT) [18,19] and piece-wise aggregate approximation (PAA) [20,21]. The DFT or
DWT are used to transform data to their frequency domains, allowing feature extraction [22], and PAA is
used as a data approximation approach. In data-intensive fields, data transformations/approximations
are commonly used as dimensionality reduction approaches for obtaining fast approximate solutions for
a given problem. Due to the ordered nature of genetic data, many of these transformation approaches
can be applied to sequences of nucleotides [23] or amino acids [24]. An example of a successful
implementation of a Fourier transform in computational biology is the multiple sequence alignment
based on fast Fourier transform alignment algorithm MAFFT [25] where the physiochemical properties
of amino acids are used to represent sequences for fast matching of homologous sequence regions for
alignment. Since most transformation approaches are suitable only for numerical sequences, the strings
of letters representing genetic sequences must be mapped into numerical space using a numerical
sequence representation method [26].

In addition to the DFT, the DWT and PAA, suitable methods for measuring the pairwise similarity
of sequential data or transformations include the Lp-norms [27], dynamic time warping (DTW) [28],
longest common subsequence (LCS) [29], and alignment approaches, such as the Needleman-Wunsch and
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Smith-Waterman algorithms. Euclidean distance is arguably the most widely used Lp-norm method for
sequential data comparison but can only be used on sequences of the same length. Furthermore, Lp-norm
methods do not accommodate shifts in the x-axis (time or position) and are thus limited in their ability
to identify similar features within offset data. Elastic similarity/dissimilarity methods, such as LCS,
unbounded DTW and various alignment algorithms, permit comparison of data with different dimensions
and tolerate shifts in the x-axis. These properties of elastic similarity methods can be very useful in the
analysis of speech signals, for example, but can be computationally expensive [30]. Several approaches
have been proposed to permit fast searching with DTW, including the introduction of global constraints
(wrapping path) or the use of lower bounding techniques, such as LB_keogh [28].

While pairwise comparison methods may be used for clustering, classification and similarity
searches, they are very time consuming for large datasets (O(n2) time complexity). Indexing structures,
such as the R*-tree, KD-tree, VP-tree and MVP-tree have significantly lower time complexity (O(n
log(n))) for similarity search [31] and are more appropriate for efficient analysis of large datasets.
The R*-tree [32,33] and KD-tree [34] indexing structures are very accurate for low dimensional datasets.
However, their performance deteriorates significantly in high dimensional space [31], a phenomenon
known as the ‘curse of dimensionality’ [35,36]. Metric trees, such as the VP-tree [37] and MVP-tree [38],
are less prone to this limitation. Metric space indexing structures make use of geometric properties
for partitioning data and work efficiently on both low and high dimensional data [39]. The curse of
dimensionality can be further mitigated using data approximations, such as the DFT, the DWT and the
PAA, to partition a dataset in an approximated space without loss of generality [21].

Here, we investigate the performance of three established dimensionality reduction techniques on
three common analysis tasks involving viral short read sequence data: classification, reference-based
mapping/alignment and de novo assembly. We benchmarked the accuracy of our proposed methodology
against existing tools, and demonstrate the applicability of time series and signal processing data
mining techniques for the analysis of viral NGS data.

2. Materials and Methods

2.1. Symbolic to Numeric Sequence Representations

Various numeric sequence representation methods can be used for symbolising a nucleotide
sequence to a numerical space (see 51). Depending on the chosen numerical representation, each
nucleotide is associated with a specific numerical value or vector. The specific values are assigned
to the position of each nucleotide indicating the presence of a nucleotide at each sequence position
(Equation 1). Ri is the indicator for a specific nucleotide in the ith position of the sequence S with
a length of n nucleotides. Values v1 . . . v5 correspond to the numerical value or numerical vector
associated with each nucleotide.

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 i f i = A
v2 i f i = T
v3 i f i = C
v4 i f i = G
v5 otherwise

∀i ∈ S (1)

Methods, such as the electron-ion interaction pseudopotentials (EIIP) [40] and the atomic representation
approach [41], aim to mimic the biochemical properties of nucleic acids but introduce some mathematical
bias that does not exist in reality [26]. Other methods, like the Voss indicator [42] and the Tetrahedron
approach, do not introduce internucleotide mathematical bias, meaning the pairwise distances between
each non-identical transformed nucleotide are the same (for example, the distance between A and T is equal
to the distances between A and C as well as A and G). Furthermore, the cumulative sum of a numerical
representation R can be used to indicate the trajectory of a sequence in nucleotide space. Table 1 indicates
the values used for different representation methods [26].
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Table 1. Numerical nucleotide sequence representation methods.

Method Numerical Representation

Integer number A = 1, C = −1, G = 2, T = −2, N = 0

Real number A = −1.5, C = 0.5, G = −0.5, T = 1.5, N = 0.0

EIIP A = 0.1260, C = 0.1340, G = 0.0806, T = 0.1335, N = 0

Atomic A = 70, C = 58, G = 78, T = 66, N = 0

Pair A or T = 1, C or G = −1, N = 0

Complex number A = 1 + 1i, C = −1 + 1i, G = −1− 1i, T = 1− 1i, N = 0 + 0i

DNA Walk A = [1, 0], C = [0, 1], G = [0,−1], T = [−1, 0], N = [0, 0]

Tetrahedron
A = [0, 0, 1], C =

[
−
√

2
3 ,−

√
6

3 , 1
3

]
,

G =
[
−
√

2
3 , −

√
6

3 , − 1
3

]
, T =

[
2×

√
2

3 , 0,− 1
3

]
, N = [0, 0, 0]

Voss indicator A = [0, 0, 1, 0], C = [1, 0, 0, 0], G = [0, 1, 0, 0], T = [0, 0, 0, 1], N = [0, 0, 0, 0]

2.2. Sequence Transformation

Effective methods for transforming/approximating sequential data should: (i) accurately
transform/approximate data without loss of useful information, (ii) have low computational overheads,
(iii) facilitate rapid comparison of data and (iv) provide lower bounding—where the distance between
data representations is always less than or equal to that of the original data—precluding false negative
results [43]. The lower bounding property guarantees that if two data points are nearby in their original
space, they will remain so in their transformed/approximate space. We employ the DFT and the DWT
transformation methods and the PAA approximation method as they satisfy the above requirements,
and these are widely used for analysing discrete signals [44] and can be used to transform/approximate
nucleotide sequence numerical representations to different levels of resolution, permitting reduced
dimensionality sequence analysis.

Figure 1A illustrates an example of the DFT and DWT transformations and PAA approximation
of a short nucleotide sequence. The DFT and the fast Fourier transform (FFT) convert data from
their original domain into the frequency domain. In principle, the DFT decomposes a numerically
represented nucleotide sequence with n positions (dimensions) into a series of n frequency components
ordered by their frequency. A subset of the resulting Fourier frequencies are used to approximate the
original sequence in a lower dimensional space [17], and the tradeoff between analytical speed and
accuracy can be varied according to the number of frequencies considered [45].

The DWT transforms data into the time-frequency domain, capturing both frequency and temporal
location information [18,46,47], in contrast to DFT, which only provides frequency information. DWT is
a set of averaging and differencing functions that may be used recursively to represent sequential
data at different resolutions, and each resolution can be used as an approximation of the original data.
Figure 1B depicts DWT transformations of a short nucleotide sequence.

In PAA, a numerical sequence is divided into n equally sized windows, the mean values of
which together form a compressed sequence representation [20,21]. The selection of n determines
the resolution of the compressed or approximate representation. While PAA is faster and easier to
implement than the DFT and the DWT, unlike these two methods, PAA is irreversible, meaning that
the original sequence cannot be recovered from the approximation. Figure 1C depicts an example of
the PAA transformations of a short nucleotide sequence.
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Figure 1. A numerically represented DNA sequence transformed at various levels of spatial resolution
using the discrete Fourier transform (DFT) of the whole sequence (A), the Haar discrete wavelet
transform (DWT) (B) and piecewise aggregate approximation (PAA) (C). A 30 nucleotide sequence
(x-axis) is represented as a numerical sequence (black lines) using the real number representation
method (y-axis where T = 1.5, C = 0.5, G = −0.5 and A = −1.5) for DFT approximations of the sequence
with 5 (red), 3 (blue) and 1 (green) Fourier frequencies (A); DWT approximations of the same sequence
with 8 level wavelets (red), 4 level wavelets (blue) and 2 level wavelets (green) (B); PAA approximations
of the same sequence with 8 (red), 5 (blue) and 3 (green) coefficients (C).

2.3. Similarity Search Approaches for Sequential Data

Here, we adopt the Euclidian distance and VP-tree index to perform a fast k-nearest neighbour
(k-NN) similarity search for aligning the reads to a reference genome.

In a VP-tree indexing structure, data is segregated using the distance between data points, thus
implementing data partitioning in a metric space. A data point to use as a vantage point is selected
(either randomly or by applying some heuristic to find and use the furthest point in the dataset [37]),
and the rest of the data points are partitioned into two nodes based on their distance to that point.
Data found to be closer to the vantage point than a given threshold (the median distance between all
the data points and the vantage point) are assigned to the same node, and the rest of the data points to
a different node. This function is repeated recursively in order to complete the partitioning process.
The resulting indexing structure can then be used for fast identification of a k-nearest neighbour (k-NN)
search. A k-NN-search returns the data points that are closest to a query q. Initially, the distance
between the query q and the vantage point in the top node is calculated. If the distance between q
and the vantage point satisfies a set of given conditions (the distance is smaller or larger than a given
threshold – this threshold being the median distance between the vantage point and other data points
within the node), a decision is made to visit either one or both of the child nodes. This process is
repeated until the entire tree has been traversed. The k data points—in this case, reads—found closest
to our query are the k-nearest neighbours to the query q.

2.4. Proposed Short Reads Processing Methodology

Our methodology for taxonomic classification, reference-based mapping and de novo assembly of short
reads used time series and digital signal processing data transformation techniques. Figure 2 illustrates the
fundamental concept of our approach. The short reads and reference genomes are mapped to a numerical
space using an appropriate method from Table 1. Subsequently, lower dimensional approximations were
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generated for all data using the appropriate data transformation method, such as DFT, DWT and PAA.
A VP-tree was constructed to allow fast data comparison. Depending on the application, the VP-tree was
constructed either by using k-mer transformations obtained from the reference genomes or by using the
short reads’ transformations. Consequently, the best matches for our short reads’ transformations were
identified using a k-NN search approach on the VP-tree. As a final step, the results obtained from the k-NN
search were re-evaluated in the original space to remove potential false positive results.

 
Figure 2. Overview of our proposed methodology using time series transformation/approximation
methods: (i) Creation of numerical representations of input sequences. (ii) Application of an appropriate
signal decomposition method to transform sequences into their feature space. (iii) Use of approximated
transformations to perform rapid data analysis in lower dimensional space. (iv) Validation of inferences
against original, full-resolution input sequences. In the case of reference-based alignment and taxonomic
classification, approximated read transformations were compared with a reference sequence. In our
de novo implementation, pairwise comparisons were performed between all of the approximated
read transformations.

2.5. Data

The implementations of our proposed methodologies were assessed with both simulated and
real virus datasets. The simulated datasets were generated using CuReSim [48] and WGSIM
(https://github.com/lh3/wgsim). Simulated data included information, such as the reference genome
used, the alignment position and alignment direction, for each read, enabling rigorous evaluation of the
proposed techniques. We used two simulators to examine our approach in a variety of use cases. CuReSim is

185



Viruses 2019, 11, 394

highly customisable, allowing the user to control the type of variation (insertion, deletion and substitution)
to simulate. WGSIM can simulate genomes with uniform insertion, deletion and substitution variation.

CuReSim was used to generate 16 HIV-1 HXB2 simulated datasets with different levels and types
of variation. WGSIM was used to generate 4 mixed virus datasets with different levels of variation.
Each simulation contained 200,000 reads generated using 5 Norovirus, 5 Ebola virus and 5 Respiratory
syncytial virus (RSV) genomes, with various types and extents of simulated variation. HXB2 and
simulated mixed virus datasets and corresponding reference genomes used to simulate them are
deposited on GitHub (https://github.com/Avramis/Supporting-data/tree/master/Simulated%20Data).
Table 2 contains detailed information about the simulated datasets.

Table 2. Simulated read data. Each row contains details for each simulated dataset (i.e., virus family,
virus, GenBank ID, variation type, variation level, number of reads and simulator used to generate
data). Abbreviations: Ins, insertions; Del, deletions and Sub, substitutions.

Family Virus GenBank Genome ID
Variation Type (%)

Reads Simulator
Ins Del Sub

HIV HXB2 K03455 0.0 0.0 0.0 2133 CuReSim

HIV HXB2 K03455 0.0 0.0 1.0 2133 CuReSim

HIV HXB2 K03455 0.0 0.0 2.0 2133 CuReSim

HIV HXB2 K03455 0.0 0.0 3.0 2133 CuReSim

HIV HXB2 K03455 0.0 0.0 4.0 2133 CuReSim

HIV HXB2 K03455 0.0 0.0 5.0 2133 CuReSim

HIV HXB2 K03455 0.5 0.5 0.0 2133 CuReSim

HIV HXB2 K03455 1.0 1.0 0.0 2133 CuReSim

HIV HXB2 K03455 1.5 1.5 0.0 2133 CuReSim

HIV HXB2 K03455 2.0 2.0 0.0 2133 CuReSim

HIV HXB2 K03455 2.5 2.5 0.0 2133 CuReSim

HIV HXB2 K03455 0.5 0.5 1.0 2133 CuReSim

HIV HXB2 K03455 1.0 1.0 2.0 2133 CuReSim

HIV HXB2 K03455 1.5 1.5 3.0 2133 CuReSim

HIV HXB2 K03455 2.0 2.0 4.0 2133 CuReSim

HIV HXB2 K03455 2.5 2.5 5.0 2133 CuReSim

Mixed Viruses:
Caliciviridae,
Filoviridae,

Pneumoviridae

Norovirus,
Ebola

virus, RSV

KM198529, KM198528, KM198511,
KM198500, KM198486, KU296608,
KU296553, KU296549, KU296528,
KU296416, KP317952, KP317946,
KP317934, KP317923, KP317922

0.0 0.0 0.0 200,000 WGSIM

Mixed Viruses:
Caliciviridae,
Filoviridae,

Pneumoviridae

Norovirus,
Ebola

virus, RSV

KM198529, KM198528, KM198511,
KM198500, KM198486, KU296608,
KU296553, KU296549, KU296528,
KU296416, KP317952, KP317946,
KP317934, KP317923, KP317922

1.0 1.0 1.0 200,000 WGSIM

Mixed Viruses,
Caliciviridae,
Filoviridae,

Pneumoviridae

Norovirus,
Ebola

virus, RSV

KM198529, KM198528, KM198511,
KM198500, KM198486, KU296608,
KU296553, KU296549, KU296528,
KU296416, KP317952, KP317946,
KP317934, KP317923, KP317922

3.33 3.33 3.33 100,000 WGSIM

Mixed Viruses,
Caliciviridae,
Filoviridae,

Pneumoviridae

Norovirus,
Ebola

virus, RSV

KM198529, KM198528, KM198511,
KM198500, KM198486, KU296608,
KU296553, KU296549, KU296528,
KU296416, KP317952, KP317946,
KP317934, KP317923, KP317922

6.66 6.66 6.66 200,000 WGSIM

Furthermore, 15 publicly available real virus datasets were used for the evaluation of our
methodology. The real datasets comprise 5 Norovirus, 5 Ebola virus and 5 human respiratory syncytial
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virus (RSV) short read datasets. Norovirus NGS datasets (ERR225628, ERR225629, ERR225631,
ERR225632, ERR225633) were generated from diarrhoeal patients in Vietnam [49]. Group A rotavirus
datasets were obtained from human and pig samples from Vietnam [50]. Human coronavirus
NL63 datasets were obtained from Kenya [51]. The Ebola virus datasets (SRR3107337, SRR3107338,
SRR3107340, SRR3107342, SRR3107343) were retrieved from the bioproject PRJNA309162, generated
during the outbreaks in West Africa in 2013–2016 [52]. The human respiratory syncytial virus (RSV)
datasets (ERR303259, ERR303260, ERR303261, ERR303262, ERR303263) [53] were generated from
humans in Kenya. All 15 datasets are publicly available. The accession numbers of Sequence Read
Archive (SRA) and European Nucleotide Archive (ENA) can be found in Table 3.

Table 3. Real short reads data. Rows contain information for each real reads’ dataset (i.e., virus family,
virus, genome strain GenBank ID, SRA project ID, number of reads and technology used to sequence
data). SRA: Sequence Read Archive; ENA: European Nucleotide Archive.

Family Virus
Amplicon/Random

Primer
GenBank

Genome ID
ENA/SRA_ID Reads

Sequencing
Technology

Caliciviridae Norovirus Amplicon KM198486 ERR225628 2126502 Illumina MiSeq

Caliciviridae Norovirus Amplicon KM198500 ERR225629 3037674 Illumina MiSeq

Caliciviridae Norovirus Amplicon KM198511 ERR225631 3285078 Illumina MiSeq

Caliciviridae Norovirus Amplicon KM198528 ERR225632 4361884 Illumina MiSeq

Caliciviridae Norovirus Amplicon KM198529 ERR225633 5187234 Illumina MiSeq

Filoviridae Ebola virus Amplicon KU296608 SRR3107337 522968 Ion Torrent PGM

Filoviridae Ebola virus Amplicon KU296549 SRR3107338 771031 Ion Torrent PGM

Filoviridae Ebola virus Amplicon KU296416 SRR3107340 186657 Ion Torrent PGM

Filoviridae Ebola virus Amplicon KU296553 SRR3107342 478346 Ion Torrent PGM

Filoviridae Ebola virus Amplicon KU296528 SRR3107343 42410 Ion Torrent PGM

Pneumoviridae RSV Amplicon KP317934 ERR303259 7275032 Illumina MiSeq

Pneumoviridae RSV Amplicon KP317922 ERR303260 9278070 Illumina MiSeq

Pneumoviridae RSV Amplicon KP317946 ERR303261 11111114 Illumina MiSeq

Pneumoviridae RSV Amplicon KP317923 ERR303262 13293226 Illumina MiSeq

Pneumoviridae RSV Amplicon KP317952 ERR303263 15237848 Illumina MiSeq

The HIV-1 HXB2 genome (K03455) was used as a reference index to align and/or run the taxonomic
classification analysis for the HXB2 simulated dataset. The Norovirus genome KM198509, the Ebola
virus genome KM034562 and the RSV genome KP317934 were used as a reference index to align
and/or run the taxonomic classification analysis for the mixed virus datasets. The Norovirus genome
KM198509 was used to run the taxonomic classification analysis on the real Norovirus datasets,
the Ebola virus genome KM034562 was used to run the taxonomic classification analysis on the real
Ebola datasets and the RSV genome KP317934 was used to perform the taxonomic classification
analysis on the real RSV datasets. All reference genomes used in this study are available from the
NCBI (https://www.ncbi.nlm.nih.gov/genome), and accession numbers can be found in Table 4.

Table 4. Reference genomes used during classification and reference-based alignment.

Family Virus GenBank ID: Length (nt)

Retroviridae Human immunodeficiency virus 1 (HXB2) K03455 9179

Caliciviridae Norovirus KM198509.1 7425

Filoviridae Zaire ebolavirus KM034562.1 18957

Pneumoviridae Human orthopneumovirus (Respiratory Syncytial Virus) KP317934.1 15233
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2.6. Classification and Alignment Evaluation

The accuracy of a classification and an alignment tool can be quantified in terms of the
F-measure [48], a balanced measure of precision and recall, with precision = true positive/true
positive + false positive, recall = true positive/true positive + false negative and the F-measure = 2 ×
(precision x recall)/(precision + recall) [48]. In the case of simulated data, information concerning the
position of the read on the reference and alignment direction can be used to establish the correctness of
alignment, and thereby provide a more informative F-measure score. Unclassified reads are considered
a false negative result. Any reported match to the correct region of the genome in the correct direction
is considered a true positive result. However, if the alignment position or direction information is
unavailable, the F-measure can be calculated from the number of hits reported for a read, or the
absence of a hit. Again, unclassified reads are considered false negative results, and classified reads
are considered true positive results. In the case of mixed genome data, the F-measure score can be
calculated by taking into consideration the number of hits that are reported for a read, as well as if a
read is assigned to a reference genome from the same family. If a read is assigned to a genome from a
different virus family, it is considered a false positive result, while unclassified reads are considered a
false negative result.

3. Results

3.1. Classification by Numbers (CBN)

For the taxonomic classification analysis, a classification tool was implemented in C++ (https:
//github.com/Avramis/ClassificationByNumbers). The implementation was developed to evaluate
our methodology but was not optimised for speed. Users might specify parameters, such as the
representation method, transformation method, search stringency and the k-mer length. A VP-tree
indexing structure classified reads using a given set of genomic references. VP-tree construction began
with the extraction of all unique k-mers, of a user-specified length k, from the set of supplied reference
genomes. Each unique k-mer was represented in numerical sequence and then transformed into a lower
dimensional space. The transformed data were then used to generate the VP-tree indexing structure.
Subsequently, each short read from a query set was converted into numerical space, transformed
to a lower dimensional space and evaluated against the VP-tree. The approximate solution arising
from this was then evaluated using the original data to identify false positive matches. The CBN
algorithm generated two output files. The first output was a text file providing detailed information
on all of the classification matches generated for each read, including the reference name, the direction
in which the query read was aligned to the reference, the start and end position of the query on the
reference, the alignment score, the CIGAR string describing how the read aligns with the reference
and the actual alignment of the query read on the reference genome. The second tabular output file
provided a brief overview of the alignment. Each line contained the name of the read, the number of
classifications generated for that particular read, the highest classification score obtained, the name of
the reference, which provided the highest classification score, the alignment direction and starting
position on the reference.

The CBN tool was evaluated against NCBI-BLAST 2.8.1 BLASTn [54] and Kaiju 1.6.3 [55] classifier
tools. BLASTn performs the analysis in nucleotide space, whereas Kaiju translates nucleotide sequences
from every possible reading frame and performs the analysis in protein sequence space. Figures 3–5
illustrate the results of the classification evaluation process. Both BLASTn and Kaiju were evaluated
using their default parameters. CBN was evaluated using k-mers of 100, 150, 200, 250 and 300 for the
HXB2 simulated reads and 50, 100 and 150 for the mixed virus and real datasets. For the DFT and PAA
methods, we evaluated the use of transformation/approximations with 2, 4, 6, 8, 10 and 12 Fourier
frequencies or PAA coefficients, respectively. For the DWT variant, we tested the cases of 2, 4, 8, 16 and
32 wavelets.
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Figure 3. Accuracy of our prototype classification implementation and two established tools on
HIV-1 HXB2 simulated datasets. All plots illustrate the F-measures obtained on the 16 different HIV
datasets. The y-axis indicates the F-measure score, and the x-axis depicts the reads data files. Plot 3-i
depicts the F-measures obtained for each classifier on the simulations with 0% to 5% of substitution
variation rate. Plot 3-ii illustrates the F-measures obtained for each classifier on the simulations with
0% to 5% uniform insertion/deletion variation, and plot 3-iii illustrates the F-measures obtained for
each tool on simulations of uniform 0% to 10% insertion/deletion and substitution variation.

 
Figure 4. Accuracy of our prototype classification implementation and two established tools on
mixed viruses simulated datasets. The y-axis indicates the F-measure score, and the x-axis depicts
the reads data files. The plot depicts the F-measures obtained for each classifier on the mixed virus
simulations. DFT: discrete Fourier transform; DWT: discrete wavelet transform; PAA: piece-wise
aggregate approximation.
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Figure 5. Accuracy of our prototype classification implementation and two established tools on
real sequences. The y-axis indicates the F-measure score, and the x-axis depicts the reads data files.
Plot 5-i depicts the F-measures obtained for each classifier on the Norovirus sequences data. Plot 5-ii
illustrates the F-measures obtained for each classifier on the Ebola sequence data. Plot 5-iii illustrates
the F-measures obtained for each tool on Respiratory syncytial virus (RSV) sequence data. DFT: discrete
Fourier transform; DWT: discrete wavelet transform; PAA: piece-wise aggregate approximation.

Figure 3 shows the results obtained from the classification process on HIV- 1 HXB2 data. Figure 4
illustrates the results of the mixed virus datasets. Figure 5 illustrates the results obtained from the
real data. For taxonomic classification of HIV-1 HXB2 simulated reads, where the short reads were
classified against the genome used to generate them, Kaiju reported the highest accuracy scores.
CBN outperformed BLASTn in most cases, falling behind in terms of accuracy only on datasets with
high variation rates. For the mixed virus simulated datasets, where reads were classified against
species strains related to those used to generate reads, BLASTn correctly assigned the most species,
followed closely by CBN and finally Kaiju. In the evaluation of the tools on the real data, where reads
were classified using a publicly available species-specific reference sequence, CBN generated more
accurate results than other tools, followed by Kaiju and BLASTn.

3.2. Alignment by Numbers (ALBN)

To test the applicability of sequential data transformations and feature selection for read alignment,
we implemented a prototype k-NN read aligner (Figure 6) in C++ (available at https://github.com/
Avramis/Alignment_by_numbers). As with the CBN classification analysis, the ALBN code was not
optimised for speed. Users might specify parameters, such as the representation method, transformation
method, search stringency and the k-mer length used for seeding alignments. The algorithm’s output
was used to construct gapped alignments in the widely used Sequence Alignment/Map (SAM)
file format.
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1) Represent short reads and reference genome as numerical sequences. 
2) Select a k-mer length. 
3) Create transformations of each reference sequence k-mer, build VP-tree, and create 
transformations of the initial k-mer of each short read. 
4) Identify candidate alignments using data transformations. 
for each read i 
   candidate_alignments[i] = VPtree.k-NNSearch(query i) 
end 
5) Align approximate results with original data using the Smith-Waterman (SW) 
algorithm: 
for each read i 
   best_score = null 
  best_aln = [] 
   for each k neighbour in candidate_alignments[i] 
      if SW_score(k neighbour, read i) 
         best_score = SW_score(k neighbour, read i) 
         best_aln = SW_aln(k neighbour, read i) 
      end 
   end 
end 
6) Output alignment in Sequence Alignment/Map (SAM) format. 

Figure 6. Pseudocode for the alignment procedure.

The ALBN tool was evaluated against a set of well-established, widely used, state-of-the-art tools,
such as Bowtie2 (version 2.3.1) [56], BWA-MEM (version 0.7.16) [7], GraphMap (version 0.5.2) [57]
and Segmehl (version 0.3.4) [58]. Existing state-of-the-art tools were evaluated with default settings.
ALBN was evaluated using k-mer lengths of 100, 150, 200, 250 and 300 for the HXB2 simulated reads
and 50, 100 and 150 for the mixed virus and real datasets. For the DFT and PAA variants, we evaluated
the use of transformation/approximations with 2, 4, 6, 8, 10 and 12 frequencies and PAA coefficients
accordingly. For the DWT variant, we tested the cases of 2, 4, 8, 16 and 32 wavelets.

Each aligner’s accuracy was quantified in terms of the F-measure [48]. CuReSim provides
information, such as the simulated read’s origin on the reference genome and its alignment direction,
enabling evaluation of each aligner’s output and calculation of alignment accuracy in terms of the
F-measure. For mixed virus datasets, tool performance was evaluated in terms of ability to match and
align reads to the appropriate virus reference genome. For the real data, F-measures were calculated
according to the number of reads aligned to the given genome or otherwise.

Figures 7–9 illustrate the F-measures obtained by evaluating alignments from each aligner.
Figure 7 illustrates alignment performance for each of the 16 datasets simulated using the
K03455 HIV-1 HXB2 reference genome. Figure 8 illustrates the alignment performance for virus
reads simulated with Norovirus genome KM198509.1, Ebola genome KM034562.1 and the RSV genome
KP317934.1. Figure 9i–iii illustrate alignment performance (F-measure) for alignments of real Norovirus,
Ebola virus and RSV sequences against the same reference genomes as those used for simulation.

ALBN provided accurate results in all scenarios tested. Regarding the HIV-1 HXB2 data, where
short reads were aligned to the genome used to generate them, ALBN provided the most accurate results
in all 16 cases, followed by Bowtie2. This was also the case for the mixed virus datasets, where reads
were aligned to reference strains related to those used to generate the dataset. In both cases, GraphMap
and BWA-MEM were third and fourth in terms of accuracy, respectively. ALBN also generated
the most accurate alignment results using real data, where reads were aligned to species-specific
reference genomes.
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Figure 7. Accuracy of our prototype reference alignment implementation and four established tools on
HIV-1 HXB2 simulated datasets. This Figure illustrates the F-measures obtained on the 16 different
HIV datasets. Plot 6-(i) depicts the F-measures obtained for each aligner on the simulations with 0%
to 5% of substitution variation rate. Plot 6-(ii) illustrates the F-measures obtained for each aligner
on the simulations with 0% to 5% uniform insertion/deletion variation, and plot 6-(iii) illustrates
the F-measures obtained for each tool on simulations of uniform 0% to 10% insertion/deletion and
substitution variation. DFT: discrete Fourier transform; DWT: discrete wavelet transform; PAA:
piece-wise aggregate approximation.
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Figure 8. Accuracy of our prototype aligner implementation and four established tools on mixed viruses
simulated datasets. The y-axis indicates the F-measure score, and the x-axis depicts the reads data files.
The plot depicts the F-measures obtained for each aligner on the mixed virus simulations. DFT: discrete
Fourier transform; DWT: discrete wavelet transform; PAA: piece-wise aggregate approximation.
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Figure 9. Accuracy of our prototype aligner implementation and four established tools on real
sequences datasets. The y-axis indicates the F-measure score, and the x-axis depicts the reads data files.
Plot 8-(i) depicts the F-measures obtained for each aligner on the Norovirus sequences data. Plot 8-(ii)
illustrates the F-measures obtained for each aligner on the Ebola sequences data. Plot 8-(iii) illustrates
the F-measures obtained for each tool on the Respiratory syncytial virus (RSV) sequences data. DFT:
discrete Fourier transform; DWT: discrete wavelet transform; PAA: piece-wise aggregate approximation.

3.3. De novo Assembly by Numbers

Lastly, to test the applicability of this approach to the de novo assembly of short reads, we implemented
assembly by numbers (ASBN), a prototype algorithm for all-against-all k-mer comparison, using data
transformations/approximation. Note, preliminary results have been presented as a conference paper [59].
Figure 10 illustrates the main concept of our de novo assembly approach. For the ASBN tool, reads are
represented as numerical sequences using an appropriate numerical representation method (Table 1).
Here, we used the tetrahedron numerical representation. Every k-mer of each numerically represented
read was identified and transformed to lower dimensional space using the chosen transformation
method. All k-mers’ transformations were used to build a VP-tree, to allow for fast data comparison.
Afterwards, all k-mers were compared to the rest of the data using the VP-tree index. Information from the
data comparison was used to construct a weighted graph similar to that shown in Figure 10A. The shortest
path on the weighted graph was identified with a breadth-first search (BFS) (Figure 10B). Reads overlaps
were used to generate an OLC alignment of short reads (Figure 10C).
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Figure 10. A de novo assembly methodology for numerically represented nucleotide reads.
All-against-all sequence comparison (A) enables the construction of a read graph with weighted
edges. The weight assigned to each edge is the smallest pairwise distance obtained between every
possible k-mer representation of the two reads. In this example, a 5-mer was used. The smallest distance
between every possible k-mer can be obtained by either using a sliding window approach or break
reads every possible subsequence with length k. (B) The shortest path in the graph is identified with a
breadth-first search algorithm (red coloured edges) thereby (C) enabling read alignment. A DNA walk
representation of the overlapped reads (D) may subsequently be used as a three-dimensional graphical
portrayal of the reads, illustrating alignment characteristics.

The ASBN assembler was compared with Megahit (version 1.1.3) [60] and SPAdes (version
3.13.0) [61] de novo assemblers on the HIV-1 HXB2, and mixed virus simulated datasets accordingly.
Megahit, SPAdes, BLASTn and Kaiju were evaluated using default parameters. ASBN was evaluated
using k-mer lengths 100, 150, 200, 250 and 300 for the HXB2 simulated reads and 50, 100 and
150 for the mixed virus datasets. For the DFT and PAA variants, we evaluated the use of
transformation/approximations with 2, 4, 6, 8, 10 and 12 frequencies and PAA coefficients accordingly.
For the DWT variant, we tested the cases of 2, 4, 8, 16 and 32 wavelets.

The derived contigs from each assembler were evaluated against the reference genomes used
to generate the data simulations with BLASTn [54]. From the BLASTn output, information about
the contigs’ alignment position on the genome and the length of the alignment were obtained.
Subsequently, a measure of assembly contiguity and the sum of gaps/mismatches were calculated and
plotted on an X-Y matrix (similar to Figures 11 and 12) with x being the total coverage of the genomes
generated and y being the total number of gaps in the coverage. A perfect assembly would have x =
full genome length and y = 0, indicating that the contig is identical to the genome in terms of length
and nucleotide composition. For the HIV-1 HXB2 datasets, the contigs were evaluated against the
K03455 genome, and the contigs obtained from the mixed virus datasets were evaluated against the
15 different genomes: KM198529, KM198528, KM198511, KM198500, KM198486, KU296608, KU296553,
KU296549, KU296528, KU296416, KP317952, KP317946, KP317934, KP317923 and KP317922.

194



Viruses 2019, 11, 394

 

0

10
15
20
25

with 2% sub. var.

5

iii)

0 80002000 60004000

HXB2 simulated reads with 0% variation

0
100
200
300
400
500

0 80002000 60004000

i)

0.0

2.0
1.5

3.0
2.5

1.0
0.5

with 1% sub var.

0 2000 4000 6000 8000

ii)

0 2000 4000 6000 8000

400
600
800

1000

0
200

with 1% indel var.vii)

0 2000 4000 6000 8000

700

0
100
200
300
400
500
600

with 2% com. var.xii)

0
200
400
600
800

1000
1200
with 4% com. var.xiii)

0 80002000 60004000
0

200
400
600
800

1000
1200
1400
with 2% indel var.viii)

0 80002000 60004000

0
5

10
15
20
25
30

with 3% sub. var.iv)

0 80002000 60004000

0
20
40
60
80
100
120
with 4% sub. var.v)

0 80002000 60004000

0
50
100
150
200
with 5% sub. var.vi)

HXB2 genom e coverage
0 80002000 60004000

400
800

2000

1200
1600

with 3% indel var.ix)

0 80002000 60004000

2400

800

2000

1200
1600

with 4% indel var.x)

0 80002000 60004000

500
1000
1500
2000
2500
3000
with 5% indel var.xi)

HXB2 genom e coverage
0 80002000 60004000

0
500
1000
1500
2000
2500

0 80002000 60004000

with 6% com.var.xiv)

0
1000
2000
3000
4000
5000
6000
with 8% com.var.xv)

0 80002000 60004000

0
2000
4000
6000
8000

10000
12000

with 10% com. var.xvi)

HXB2 genom e coverage
0 80002000 60004000

DFT DW T PAA
M egahitSpades

G
ap

s/
N
s/

M
is
m
at
ch

es
G
ap

s/
N
s/

M
ism

at
ch

es
G
ap

s/
N
s/

M
ism

at
ch

es
G
ap

s/
N
s/

M
is
m
at
ch

es

G
ap

s/
N
s/

M
is
m
at
ch

es

G
ap

s/
N
s/

M
ism

at
ch

es

Figure 11. Accuracy of our prototype de novo assembly implementation and two established tools
on HIV-1 HXB2 simulated datasets. The contigs obtained for each assembler were evaluated against
the reference genome used to generate the simulated data. BLASTn was used to align all contigs to
an HIV-1 HXB2 reference genome and determine genome coverage. The y-axis indicates the number
of gaps and mismatches that exist in the contigs obtained for each tool, and the x-axis depicts the
length of the genome the reported contigs cover. The contigs obtained from the assembly of the
HIV-1 HXB2 simulated short read data were evaluated against the K03455 reference genome. Plot 10-i
illustrates results obtained from all assemblers on variation-free data. Plots 10-ii to 10-vi illustrate
results obtained from all assemblers on data with different levels of substitution variation. Plots 10-vii

to 10-xi illustrate results obtained from all assemblers on data with different levels of insertion/deletion
variation. Plots 10-xii to 10-xvi illustrate results obtained from all assemblers on data with different
levels of combined insertion/deletion and substitution variation.
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Figure 12. Accuracy of our prototype de novo assembly implementation and two established tools on
mixed viruses simulated datasets. The contigs obtained for each assembler were evaluated against the
reference genome that was used to generate the simulated data. BLASTn was used to align all contigs
to an HIV-1 HXB2 reference genome and determine how much of the particular genome they cover.
The y-axis indicates the number of gaps and mismatches that exist in the contigs obtained for each
tool, and the x-axis depicts the length of the genome the reported contigs cover. The contigs obtained
from the mixed virus simulated dataset were evaluated against the KM198529, KM198528, KM198511,
KM198500, KM198486, KU296608, KU296553, KU296549, KU296528, KU296416, KP317952, KP317946,
KP317934, KP317923 and KP317922 references genomes. Plots 11-i to 11-iv illustrate results obtained
from all assemblers on data with 0%, 3%, 10% and 20% variation levels accordingly.

Figure 11 illustrates the assembly results of SPAdes, Megahit and all three variants of ASBN
on the 16 simulated HIV-1 HXB2 datasets. Figure 12 illustrates the assembly results on the mixed
virus simulated databases. Although ASBN processes data and assembles short reads in a lower
dimensional space, it nevertheless generated contigs that collectively cover the expected genome length
and provided comparable results to both existing state of the art de novo assemblers tested in this
experiment (Figures 11 and 12). In all cases, ASBN generated contigs spanning the whole genomes of
their respective viral species.

4. Discussion

Although well-established data compression methods for reversible compression of
one-dimensional and multivariate signals, images, text and binary exist [62–64], there are very
few examples of their application to biological sequence data. We have developed algorithms
incorporating signal compression methods for three common biological sequence analysis problems:
classification, alignment and de novo assembly of NGS short read virus data. Our results in
Figures 3–12 show that this approach permits accurate classification of de novo assembly and reference
alignment in spite of high rates of sequence variation or the use of a divergent reference genome.
Data approximation/summarisation techniques, such as the DFT, the DWT and the PAA, can be used
to extract major features of sequence data and to suppress noise or low-level variation. This allows
sequence comparison exploiting the major characteristics of the data, thus enabling the identification
of similarities that might otherwise be concealed by minor variation or sequencing error/noise.

Collectively, our results demonstrate that complete nucleotide-level sequence resolution is not
a prerequisite of accurate sequence analysis and that analytical performance can be preserved and
even enhanced through appropriate dimensionality reduction (compression) of sequences. While our
implementations use k-mers, the nature of the transformation/compression methods used shows
that optimal k-mer length selection is far less important than the conventional exact k-mer matching
methods. The inherent error tolerance of the approach also permits the use of longer k-mers than
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typically used in conventional sequence comparison algorithms, reducing the computational burden
of pairwise comparison, and thus, in de novo assembly specifically, the complexity of building and
searching an assembly graph.

Efficient mining of terabase-scale biological sequence datasets requires looking beyond
substring-indexing algorithms [65] towards more versatile methods of compression for both data
storage and analysis. The use of probabilistic data structures can considerably reduce the computer
memory required for in-memory sequence lookups at the expense of a few false positives, and Bloom
filters and related data structures have seen broad application in k-mer centric tasks, such as error
correction [66], in silico read normalisation [67] and de novo assembly [68,69]. However, while
these hash-based approaches perform well on datasets with high sequence redundancy, for large
datasets with many distinct k-mers, large amounts of memory are still necessary [67]. Lower bounding
transformations and approximation methods (such as the DFT, the DWT and PAA) can exhibit the
same attractive one-sided error offered by these probabilistic data structures, but instead of hash tables,
use concrete and reusable sequence representations.

Furthermore, transformations allow compression of standalone sequence composition, enabling
flexible reduction of sequence resolution according to analytical requirements, so that redundant
sequence precision need not hinder analysis. While the problem of read alignment to a known reference
sequence is largely considered solved, assembly of large genomes remains a formidable problem in
computing. Moreover, consideration of the metagenomic composition of mixed biological samples,
as demonstrated, further extends the scope and scale of the assembly problem beyond what is tractable
using conventional sequence comparison approaches. By implementing a reference-based aligner and
de novo assembler, we have demonstrated that using compressed numerical representations offers a
versatile approach for reconstructing genomes and metagenomes sequenced with short reads.

Emerging long read sequencing technologies bring new challenges for sequence data analysis.
Whilst the error rate of Oxford Nanopore sequencing platform, for example, has decreased considerably
since the technology’s introduction [70,71], the relatively high error rate still limits the scope of
downstream analyses [72]. Efficient algorithmic approaches are needed to (1) identify sequence
identity/infer homology in spite of abundant insertion/deletion errors associated with the platform,
which are problematic for approaches dependent on exact subsequence matching and (2) to overcome
issues relating to high data dimensionality and the curse of dimensionality [73]. Both in terms of the
raw electric current traces generated by DNA translocation through a nanopore and the corresponding
base-called sequences, the resemblance between long reads and time series data from other fields
is striking, such that the various transformations/approximations we have implemented will be
directly applicable.

In conclusion, nucleotide sequences may be effectively represented as numerical series, enabling
the application of existing analytical methods from a variety of mathematical and engineering fields
for the purposes of sequence alignment and assembly. By applying established signal decomposition
methods, compressed representations of nucleotide sequences can be created, permitting reductions in
the spatiotemporal complexity of their analysis, without necessarily compromising analytical accuracy.
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Abstract: Deformed wing virus (DWV) is the most abundant viral pathogen of honey bees and has
been associated with large-scale colony losses. DWV and other bee-associated RNA viruses are
generalists capable of infecting diverse hosts. Here, we used RNAseq analysis to test the hypothesis
that due to the frequency of interactions, a range of apiary pest species would become infected with
DWV and/or other honey bee-associated viruses. We confirmed that DWV-A was the most prevalent
virus in the apiary, with genetically similar sequences circulating in the apiary pests, suggesting
frequent inter-species transmission. In addition, different proportions of the three DWV master
variants as indicated by BLAST analysis and genome coverage plots revealed interesting DWV-species
groupings. We also observed that new genomic recombinants were formed by the DWV master
variants, which are likely adapted to replicate in different host species. Species groupings also
applied when considering other viruses, many of which were widespread in the apiaries. In social
wasps, samples were grouped further by site, which potentially also influenced viral load. Thus, the
apiary invertebrate community has the potential to act as reservoirs of honey bee-associated viruses,
highlighting the importance of considering the wider community in the apiary when considering
honey bee health.

Keywords: RNAseq; honey bees; deformed wing virus; quasispecies; apiary pests; recombination

1. Introduction

Across the globe, emerging infectious diseases (EIDs) pose a significant threat to biodiversity and
health [1]. This has been clearly demonstrated in recent years both by the recent catastrophic decline of
amphibians caused by pathogenic fungi [2] and by the cases of large-scale honey bee colony losses, a
major factor in which is the spread of pathogenic viruses [3].

EIDs often occur as a consequence of human-mediated translocations of infected hosts and/or
parasites and due to the close proximity of wild and domesticated hosts [1]. As such the honey bee,
which over the last century has been spread across the globe by humans for honey production and
pollination services [4] and shares complex communities with a wide range of insect taxa [5–8], is a
prime candidate to facilitate the spread of EIDs into new insect hosts. Pollinators and other insects
with which they share environments are of particular interest due to their value in terms of economy
(including pollination services) and biodiversity and are currently already experiencing a number of
pressures, e.g., from habitat loss and pesticides [9–11]. The combination of multiple pressures can
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have the additional effect of decreasing immunity and thus potentially increasing susceptibility to
pathogens [12], although further studies are needed in this area [13].

Most host switching results in a dead end or a limited low-level outbreak; however, on rare
occasions the transmission can result in sustained outbreaks or major epidemics. This can happen
when there is sufficient increased exposure or the evolution of new variants in the original or new
host allows successful replication and efficient spread between members of the new host species [14].
RNA viruses with their high mutation rates, diverse sequences, and often very high population
sizes [15] are thus prime candidates for emergence or re-emergence in novel hosts. This is of particular
concern when considering honey bee populations, which host abundant and diverse RNA viruses, are
frequently transported en masse, and come into frequent contact with other arthropods both in the
hive and when foraging.

Deformed wing virus (DWV) is now well known to be one of the major factors responsible for
honey bee colony losses across the world [3,4,16]. This single virus has come to dominate the virome of
honey bee populations due to its spread and amplification in the host being aided by the ectoparasitic
mite Varroa destructor (referred to as varroa from now on) [17,18]. Additionally, the new mite–bee
transmission route serves to reduce viral genotypic diversity and select for the amplification of virulent
strains [16,17]. Although initially described as a honey bee virus, it has since become apparent that
DWV is a generalist insect virus capable of infecting 64 species from eight orders of arthropods [19].
However, the extent of the generality and capacity for emergence in new hosts is still the subject of
contention [20]. Worryingly, recent studies have found that viral pathogens circulating in managed
pollinators may be driving infections in wild species [21,22], and in the Hawaiian system, it has recently
been shown using RT-PCR-based studies that the presence of varroa in honey bee populations has
resulted in a dramatic increase in the prevalence of DWV in species of wasps (Polistes sp.) and solitary
bees (Ceratina smaragdula) [23]. Furthermore, in the yellowjacket wasp (Vespula pensylvanica) on the Big
Island, Hawaii, DWV prevalence has increased along with a decrease in strain diversity [24], mirroring
the situation seen in honey bees [17].

Although gene targeted RT-PCR and RT-qPCR have provided very useful insights into the virome
of insect communities, RNAseq allows entire genomes of RNA viruses to be sequenced easily and thus
provides much deeper anaylsis. More specifically, using oligo dT-derived RNAseq on field collected
samples in Hawaiian honey bee apiaries in which varroa is established, we aimed to identify the extent
to which +ssRNA viruses (the overwhelming majority of viruses found associated with honey bees
are +ss polyadenylated RNA viruses [10]) were present in the wider arthropod community and to
characterize any DWV master variant genomes present in the different species. Common pest species
were targeted as they would have the most frequent contact with honey bees that are known to harbor
high DWV loads in the study locations [17,25]. We hypothesized that the frequency of interactions
would result in common DWV genotypes circling in the apiary environment due to repeated viral
transmission events between species. Furthermore, we aimed to determine whether other viruses
commonly found in honey bees are also found in apiary pests, and if so, whether certain viruses are
associated with particular hosts. The pest species investigated were varroa mites (Varroa destuctor),
small hive beetles (Aethina tumida) yellowjacket wasps (Vespula pensylvanica), and two species of ant, big
headed ants (Pheidole megacephala) and ghost ants (Tapinoma melanocephalum)—all widely distributed
invasive pests known to interact directly with honey bees in Hawaii.

2. Materials and Methods

2.1. Site and Species Selection

In November and December 2012, opportunistic sampling was carried out in managed apiaries
on the islands of Oahu and the Big Island, Hawaii (Figure 1), and where found, common apiary
pests (yellowjacket wasps, small hive beetles, big headed ants, and ghost ants) were collected from
within brood boxes or at hive entrances. Additionally, reference samples of asymptomatic honey bees
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(50–100 individuals per hive) were also collected. Varroa populations had been established for at
least 3–5 years at all locations sampled, and honey bee populations were known to harbor high DWV
levels [17,25]. All samples were kept on ice for transportation to the laboratory, where they were stored
at –80 ◦C. Additional samples of small hive beetles had been collected in the same way earlier in the
year from colonies in an advanced stage of collapse, i.e., “slime out phase”.

2.2. RNA Extraction and Next Generation Sequencing

Pools of 30 asymptomatic honey bees were taken and checked for the presence of varroa mites,
which, where found, were removed and stored separately. The pools of whole bees were then ground
in liquid nitrogen using a sterile pestle and mortar to produce a fine homogenous powder, 30 mg of
which was used for RNA extraction. Varroa mites that had been removed from bees were homogenized
in pools of 10 using a mini pestle in a 1.5 mL eppendorf tube. Small hive beetles were homogenized
either individually or in pools of six. Yellowjacket wasps were homogenized individually, and all ants
were crushed in pools of 20–40 due to their small size. RNA extractions proceeded for all samples
in the same way using the RNeasy mini kit (Qiagen, Manchetser, UK) following the manufacturers’
instructions, eluting in 30 μL nuclease free water followed by DNase treatment using DNase I (Promega,
Southampton, UK). Initial screening for the presence of DWV was then carried out using RT-PCR as
per [17,26]. A selection of positive samples was then chosen to be analyzed in greater depth using
total RNA sequencing (RNAseq). The list of samples used for RNAseq analysis along with the species
name, site from which they were sampled, and symbol used to denote them in subsequent figures is
given in Table S1. These samples were transported to The BBSRC Earlham Institute (Norwich), where
cDNA libraries were prepared using oligo (dT) priming. Resulting libraries were then run on the
HiSeq 2000 (The Earlham Institute, Norwich). Raw data were deposited in the National Centre for
Biotechnology Information (NCBI) Sequence Read Archive (SRA) under BioProject accession number:
PRJNA531527. Sample V_des_2 was previously deposited in the European Nucleotide Archive (ENA)
as sample “V_S48” under the Study Accession PRJEB8112.

2.3. Bioinformatic Analysis

Initially, quality control of generated reads was performed using FASTQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Then, a pipeline initially described by [25] was
applied to identify DWV-like reads in individual samples. Briefly, this involved taking all reads that
passed QC and performing a nucleotide BLAST against a custom database (E value of 10−5) containing
DWV types A, B. and C (type A: NC_004830.2 and NC_005876.1 (Kakugo virus), type B: AY251269.2
(VDV-1), and type C: CEND01000001.1). Custom perl, sed, and awk scripts were used to parse the data,
take the top BLAST hit, remove empty lines, and remove reads which did not map to the database.
BLAST top hit analysis was then used to quantify the numbers of reads belonging to each of the three
master variants by identifying which of the reference genomes each read matched to most closely. This
was used to produce pie charts showing the proportions of DWV type A, B, and C reads in each sample.

To assemble contigs representing the full diversity of DWV sequences present in each sample,
DWV-like reads were identified by BLAST (read1 files for each sample in fasta format), and the
corresponding read 2 files were selected. These were then used to generate de novo assemblies using
VICUNA, an assembler specifically designed to accommodate the highly variable sequence data typical
of RNA viruses [27].

To investigate DWV diversity within the apiary insect community, all VICUNA-generated contigs
>300 bp for each sample were imported into Geneious (Version 7.04, Biomatters), and the map to
reference tool was then used with a MUSCLE alignment to competitively map contigs to the DWV-A
(NC_004830.2), -B (AY251269.2), and -C (CEND01000001.1) reference genomes (mapping ambiguous
reads to all). The resulting alignments containing all the DWV contigs were then trimmed to use
a 507 bp region of the RdRp gene (nucleotide positions 8016–8522 on NC_004830.2, 7989–8495 on
AY251269.2, and 7999–8505 on CEND01000001.1 [4]). Alignments were visually inspected, and contigs
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showing recombination breakpoints were removed so as to comply with the assumptions of the
phylogenetic construction, and a Baysian phylogenetic analysis was constructed using the MrBayes
v3.2.6 plugin in Geneious. [28], using a GTR substitution model with gamma rate variation. We ran
four chains for 1.1 × 106 MCMC generations, sampling trees every 200 generations, and a consensus
tree was then created using a 10% burn in and 50% support threshold.

Furthermore, to understand the diversity of DWV-A in Hawaiian apiaries in a global context, a
second phylogeny was generated using a 410 bp region of the RdRp gene, as used by [4] in their global
DWV-A phylogeny along with 10 of their DWV-A sequences of geographically diverse origins from
both honey bees and varroa mites (Table S2). DWV-A contigs generated in this study were aligned with
the 410 bp sequences from [4] in Geneious (MUSCLE alignment), and this time, no recombinant contigs
were observed in the alignment. A Bayesian phylogeny was then created using the same parameters
as described above. The corresponding region of the DWV-C reference genome (CEND01000001.1)
was used as the outgroup.

To determine whether recombinants were dominating in the samples, competitive alignment
plots were created to look at the DWV reference genomes to which reads preferentially mapped
across the length of the genome. This used all reads passing QC (read 1, in fasta format) and the
“Map to Reference” tool in Geneious, using DWV types A, B and C (NC_004830.2, AY251269.2 and
CEND01000001.1) reference genomes, discarding all ambiguous reads. Recombinants were observed
to be present if preferential coverage switched from one master variant to another along the length
of the genome. To provide additional evidence for the presence of recombinants, two samples were
chosen for which competitive alignment plots had revealed recombinants to be present (V_pen_8
and A_tum_5), and their de novo assembled DWV contigs were aligned using MUSCLE and visually
inspected to identify recombinant contigs.

Finally, to investigate whether other honey bee-associated viruses were circulating in the apiary
community, a custom BLAST database was created using DWV types A, B, and C along with seven
common honey bee-associated viruses and an additional two viruses (Moku and Milolii viruses [29,30])
previously identified from RNAseq data generated from Hawaiian apiary insects (data from individual
insects were also used in this study) (Table S3), and BLASTn was used to identify reads belonging to
each virus (E value 10−5). Read counts were expressed as reads per kilobase million (RPKM).
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Figure 1. Cont.
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Figure 1. Proportions of deformed wing virus (DWV)-like reads in individual samples from each
species mapping to DWV type A (red), type B (blue), and type C (green) along with the site from
which they were collected. (a) Results using BLAST top hit analysis only (read numbers provided in
Table S4); (b) where results were amended after considering additional Geneious mapping analysis
(Figure S1). Green and red stripes represent that DWV-A/DWV-C recombinants were present (rather
that true full-length DWV-C,), red and blue stripes denote a DWV-A/DWV-B recombinant (no full-length
DWV-B), and the asterisk represents an additional sample identified as containing recombinant(s).
Results for all other samples remain unchanged. Insect images are from BioRender [23,31].

2.4. Statistical Analysis

Redundancy analysis (RDA) was carried out in R (version 3.3.2) to investigate whether the
response variables of read count data (RPKM) for each virus were associated with explanatory variables
of insect species and site. Dummy variables were randomly assigned as varroa for the species category
and B4 for site.

3. Results

3.1. Deformed Wing Virus

RNAseq data was generated from samples of honey bees (A_mel_1-A_mel_4), small hive beetles
(A_tum_1-A_tum_5), yellowjacket wasps (V_pen_1-V_pen_8), big headed ants (P_meg_1 and P_meg_2)
and ghost ants (T_mel_1 and T_mel_2). As expected from our previous work [17,25], BLAST top
hit analysis revealed DWV to dominate sequence reads in all honey bee and varroa mite samples,
reaching as high as 91.25% of total reads in the varroa sample V_des_2 from apiary O1. DWV was
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ubiquitous, being detected in all ant, wasp and beetle samples, although read counts were highly
variable (Table S4). The proportions of DWV-types A, B and C present also differed considerably and
appeared to group by species (Figure 1). Of the DWV reads, DWV-A reads dominated the majority of
honey bee, varroa and ant samples; however the small hive beetle samples were all dominated by type
C and the wasps usually contained relatively similar proportions of types A and B. Interestingly, the
wasp samples showed further separation by location.

DWV genome coverage plots were generated for each sample, and all alignments showed the
typical 3’ bias resulting from the oligo (dT) priming method of cDNA synthesis in library preparation [32].
Similarly, the samples containing type C all showed a spike in the Helicase region caused by the
presence of a poly-(A) region of the genome, irrespective of location (Figure 2; Figure S1). Plots showed
that the majority of samples were dominated by either full-length DWV-A or DWV-B sequences (or
both), as demonstrated by the consistent coverage depth across the genome, and were consistent with
the results of the BLAST top hit analysis (Figure 1a). Again, the yellowjacket wasp data appeared to
separate by site, with samples V_pen_1–V_pen_5 from site B4 all showing identical coverage plots,
with coverage being restricted to the 3’ end indicative of low virus levels in the samples and showing
almost identical coverage for DWV-A and DWV-B. The samples V_pens_6 to V_pen_8 from site B3,
however, were more variable and contained greater coverage depths, again, in keeping with the BLAST
top hit analysis.

Although the majority of samples were dominated by full-length genomes, recombinants were
detected in this study as evidenced by the competitive alignment plots (Figure 2) and associated
alignments of assembled contigs (Figure S1). The dominant master variants present were the same
using both BLASTn and mapping to DWV reference genomes (Geneious). However, the mapping
(competitive alignment plots) revealed additional information regarding the presence of recombinants.
These additional data were therefore used to create amended pie charts showing variant proportions
(Figure 1b) for samples where recombinants were detected. Interestingly all beetles were dominated
by a DWV-A/DWV-C recombinant (Figure 1b, Figure 2b, Figures S1 and S2) with a breakpoint in the 5’
UTR immediately upstream of the open reading frame, albeit at low levels, irrespective of location.
These beetles also contained lower level full-length DWV-A, as evidenced by type A coverage across the
whole genome. The same recombinant was also present in the honey bee sample A_mel_4 (Figure S1),
which was collected from a different location from any of the beetles, although the recombinant did
not dominate in the honey bee sample, which was instead dominated by full-length DWV-A. Finally,
one yellowjacket wasp sample, V_pen_8, showed a distinct coverage pattern not seen in any other
sample in this study (Figure 2c). This sample showed three recombination breakpoints—one in the 5’
UTR and one at either end of the helicase gene—and showed coverage of both DWV-A and DWV-B
across the full length of the genome. As such, these data cannot confirm the makeup or proportions of
recombinant(s) and full-length genomes in this sample.

A Bayesian phylogeny created using a 507 bp fragment of the RdRp gene assembled from all
samples showed sequences to cluster according to master variant (DWV-A, B, and C), as expected
(Figure 3). The origin of all the DWV-C sequences came from a single DWV-C variant, as all the
sequences obtained from this region were almost identical to one another and to the reference genome.
Within the DWV-A and DWV-B clades, samples did not cluster by either species or location and showed
often very similar sequences, indicating that common variants are circling in the apiary.
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Figure 2. DWV genome coverage plots showing read depth of DWV-A (red), DWV-B (blue), and
DWV-C (green), across the length of the genome, along with representations of VICUNA-assembled
contigs showing recombination breakpoints; (a) genome organization with the structural region in green
and the non-structural region in orange, showing nucleotide positions below (adapted from [33,34]);
(b) small hive beetle sample A_tum_5; (c) yellowjacket wasp sample V_pen_8. Plots for all samples are
shown in Figure S1, and nucleotide alignments showing the recombinant contigs for samples A_tum_5
and V_pens_8 are shown in Figure S2.
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Figure 3. A Bayesian phylogeny of a 507 bp region of the DWV RdRp gene using trimmed contigs
assembled for each sample individually using VICUNA, along with the corresponding regions from
the DWV-A, B, and C reference genomes (NC_004830.2, AY251269.2, and CEND01000001.1). Colored
diamonds represent the sample collection location: O1 = green, O2 = red, B1 = orange, B2 = dark
blue, B3 = yellow, and B4 = light blue. Sample name suffixes represent the contig name. The bar
represents the number of nucleotide substitutions per site, and the consensus support (%) is shown for
selected branches.

To investigate how the DWV-A sequences in the Hawaiian apiary insects compared with DWV-A
sequences on a broader scale, we constructed a phylogeny using the same 410 bp RdRp region used
by [4] in their global phylogeny, along with some of their samples (Figure 4). This revealed that all
samples in the current study fell within those detected elsewhere and clustered together with little
sequence variation in this region of the genome.
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Figure 4. A Bayesian phylogeny of a 410 bp region of the DWV-A RdRp gene using trimmed contigs
assembled for each sample individually using VICUNA, along with 10 additional sequences, as featured
in the global DWV-A phylogeny of [4] (shown in blue text). Colored diamonds represent the site
from which the sample was collected as follows: O1 = green, O2 = red, B1 = orange, B2 = dark blue,
B3 = yellow, and B4 = light blue. Sample name suffixes represent the contig name. DWV-C is used
as the outgroup, and the bar represents the number of nucleotide substitutions per site. Consensus
support values (%) are shown.

3.2. Other Honey Bee-Associated Viruses

In addition to generally grouping in terms of DWV types A, B, and C proportions and coverage,
geographical and taxa groupings were also observed when considering the other honey bee-associated
viruses they harbored. BLASTn was used to identify reads belonging to eight of the most common
honey bee viruses and two additional viruses known from our previous work to be prevalent in
Hawaiian insects. As expected, honey bees (with the exception of sample A_mel_3) and varroa were
dominated by DWV reads, as were big headed ants. We found ghost ants to be dominated by Milolii
virus, yellowjacket wasps to be dominated by Moku virus, and small hive beetles to contain relatively
few virus reads (Figure 5). The wasp samples further separated into two groups, with samples
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V_pen_1–V_pen_5 (from site B4) containing high numbers of Moku virus reads and also consistent
amounts of SBPV, whereas V_pen_6–V_pen_8 (from site B3) showed increased DWV, more variable
Moku virus, and no notable SBPV. The honey bees were the only samples to contain any notable BQCV.

Figure 5. Histograms represent numbers of reads mapping to each of 10 commonly found insect viruses
(slow bee paralysis virus: SBPV, sacbrood virus; SBV, Lake Sinai virus; LSV, Kashmir bee virus; KBV,
Israeli acute paralysis virus; IAPV, black queen cell virus; BQCV, acute bee paralysis virus; ABPV, Milolii
virus, Moku virus and deformed wing virus; DWV) as determined using BLASTn. Read numbers
are expressed as reads per kilobase million (RPKM) and are shown on a log-10 scale starting 1 × 102.
The samples are positioned according to taxa: ghost ants (T_mel_1–2), big headed ants (P_meg_1–2),
small hive beetles (A_tum_1–5), yellowjacket wasps (V_pens_1–8), honey bees (A_mel_1–4), and varroa
(V_des_1–2). Apiary locations from where the samples were taken are given after each sample name.

Redundancy analysis was conducted (p < 0.001) to further investigate the variation in viral read
count data (log-10) for each sample in the context of species and site explanatory variables. RDA1 and
RDA2 together explained 54.8% of the variation, and all variables (sites and species) were significantly
different from the dummy variables (p < 0.05) (Figure 6). The RDA plot shows groupings by site
(colors), as well as demonstrating separation by species, especially “honey bee”, “small hive beetle”,
and “yellowjacket wasp”.
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Figure 6. Redundancy Analysis (RDA) plot showing the variation in virus read count data (RPKM
log-10) for each sample correlated with environmental variables: site and species. Dummy variables
were randomly assigned to varroa (species) and B4 (site). Sites are colored: O1 = green, O2 = red,
B1 = orange, B2 = dark blue, B3 = yellow, and B4 = light blue.

4. Discussion

This study revealed that common apiary pests have the potential to act as reservoirs for, or could
be impacted by, a number of honey bee-associated viruses. Although recent studies have highlighted
the ability of a number of viruses initially described as honey bee pathogens to infect a range of taxa
and in some cases cause pathogenic effects (reviewed by [19]), this is the first study to assess the viral
burden of taxonomically diverse common apiary pests.

Of 10 common +ssRNA viruses surveyed, DWV was the most common virus in honey bees and
varroa, as expected, because it is the most prevalent virus in honey bees across the world [19] and
was the most prevalent virus in the apiary with full-genome coverage achieved from samples of each
species. DWV-A was the most common variant detected, although DWV-B was also widespread,
correlating with the recent finding by [35] that DWV-B dominance is replacing DWV-A on the mainland
United States of America (USA). Although the BLAST top hit analysis was reliable when considering
full-length virus genomes, such as when detecting a number of different viruses (Figure 5), or when
only full length master variants are present, e.g., considering DWV diversity in all ant samples (Figure 1
and Figure S2), methods that identify all reads independently, irrespective of genome location, mean
that it is impossible to discriminate between full genomes and recombinant forms. This is evidenced
by the beetle data that BLAST top hit analysis suggested was dominated by DWV-C; however closer
inspection using competitive alignments revealed this to, in fact, be a DWV-A/DWV-C recombinant.
Thus, the two analyses (BLAST top hit results and competitive alignment plots) gave consistent results
when only full-length genomes were present but differed when recombinants were detected.

Interestingly, beetles sampled from across two locations were the only ones to be dominated by a
DWV-A/DWV-C recombinant. These all had very low read counts but were very consistent. All beetle
samples were collected earlier in the year from collapsing honey bee colonies suffering from extremely
heavy small hive beetle infestations (slime out conditions), and unfortunately, no corresponding bee
samples were taken at this time. As such it may be possible that the same recombinant was present
at high levels in the dying bees at that time, and the high amounts of virus in the hives resulted in
passive contamination of the beetles, which would explain why DWV is only very rarely detected in
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beetles [36]. In this case, contamination during library preparation or during the Illumina run cannot be
ruled out, because it is a particular issue for RNAseq analysis. This can occur with invertebrate viruses
due to the extreme dominance of viral reads in heavily infected samples. These beetle samples had
previously tested positive for DWV using RT-PCR prior to selection for RNAseq analysis and a recent
RT-PCR-based study showed that stingless bees (Melipona subnitida) from Brazil also harbored DWV-C
but at higher viral levels [37], confirming this DWV variant also has the ability to infect diverse hosts.

Investigating viral reads generated by oligo (dT), RNAseq is not the only method to assess whether
samples are harboring true infections [38,39]. Nonetheless, this method will reveal high read counts,
full-genome coverage, and assembled full genomes, suggesting that DWV is replicating in at least
some samples from each species. Furthermore, the unique dominance of recombinant(s) in the wasp
sample V_pens_8 that was not seen in any other sample provides further evidence that there are
specific DWV variants/recombinants present in the quasispecies that are able to successfully replicate
in different species.

Considering both the phylogenies together, it appears that common DWV variants are circling in
the apiary insect community, suggesting frequent interspecies transmission events. The nature of these
transmission events remains unclear, with trophylaxis (between small hive beetles) [20], fecal–oral
routes and predation on bees, and consumption of contaminated hive materials, pollen, and nectar all
being implicated as routes by which viruses can spread both between and within species [40].

The DWV-A phylogeny, which in the original publication by [4] only contained honey bee- and
varroa-derived sequences (Figure 5) showed all sequences from this study to fall within the greater
diversity and all cluster within one clade. When considering the phylogeny of DWV sequences from
the current study only (Figure 4), again all DWV-A clustered together as was also true of DWV-B
sequences. The limitations both in terms of sampling and in using only one gene region means that is
not possible to draw strong conclusions on the evolutionary history of these sequences. Furthermore,
when considering the read count data and genome coverage plots for wasps only, they appear to
separate by location with samples V_pen_1–5 from B4 all showing almost identical results in terms
of their DWV variant composition, whereas V_pen_6–8 are very different (Figure 1 and Figure S1).
These findings are in keeping with the results of [24] who found, using RT-PCR and Sanger sequencing,
that DWV sequences in yellowjacket wasps (also from Hawaii) tracked strain changes observed in the
honey bees [17] on which they were feeding, i.e., DWV diversity decreased in honey bees as varroa
became established on Oahu and then on the Big Island, and this change was detected in yellowjackets
on the Big Island. Although the current study is limited to eight individuals across two locations, it is
clear that DWV is present in the wasp samples, that sequences are diverse, and that the presence and
potential level of DWV variants are affected by location.

This is the first study of arthropods in the wider apiary community to consider the newly
described Moku [29] and Milolii [30] viruses. Although these viruses only dominated in the samples
in which they were first described, low numbers of reads were also found in other varroa, beetle, wasp,
and ant samples. The wider +ssRNA virus detection study revealed that all of the common honey
bee-associated viruses tested for were present at some level in the Hawaiian apiary insects, although
IAPV, KBV, ABPV, and LSV were only present in very low levels (as detected through BLAST), and
therefore, true infections cannot be confirmed in any sample. It is interesting to note that, similar to
the findings of the DWV data, when considering the other honey bee-associated virus data, species
and location groupings were seen. In the case of species groupings, this may be related to different
species having different virus susceptibilities and, in the case of site groupings, may be more related to
variation in particular virus levels at different sites.

5. Conclusions

Although this pilot study has limitations, namely unbalanced sampling design, we have shown that
several common honey bee-associated +ssRNA viruses are common in taxonomically diverse apiary
pests. We showed that DWV was the most prevalent virus and that DWV infections grouped between
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species in terms of dominant variants and recombinants, but that common variants (predominantly
type A) were circling between all species, suggesting repeated transmission events between species.
Within the wasps, DWV was further separated by location. Species also grouped in terms of which
other honey bee-associated viruses they harbored, i.e., particular viruses are associated with particular
hosts. Therefore, this study highlights the need to consider the wider arthropod community as potential
reservoirs of viral pathogens in the apiary.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/5/397/s1,
Figure S1: DWV genome coverage plots for individual samples created using Geneious. Read depths are shown
on a log-10 scale and represent DWV-A (red), -B (blue), and -C(yellow) along the ~10.1 kb genomes. Figure
S2: DWV alignments (MUSCLE) created using Geneious showing de novo assembled contigs from samples
A_tum-5 and V_pens-8, which contain recombination breakpoints. (a) Contig A_tum-5-a aligned with DWV-A
(NC_004830.2) and DWV-C (CEND01000001.1) reference genomes, (b) contig V_pen_8-b aligned with DWV-A
(NC_004830.2) and DWV-B (AY251269.2), and (c) a second contig from sample V_pen_8; V_pen_8-t also aligned
with DWV-A (NC_004830.2) and DWV-B (AY251269.2). All alignments show disagreements with the assembled
contigs highlighted in black, and recombinant contigs are shaded red where they map most closely to DWV-A,
blue to DWV-B, and green to DWV-C. Table S1: Samples used in this study. Sample names are given along with
the site from which they were sampled, species name, and the symbol used to denote them in Figures 1 and 5.
Table S2: DWV-A RdRp sequences originally from [4] and used in this study in the construction of the DWV-A
phylogeny in Figure 5. Table S3: Viruses commonly found in bees used for BLAST analysis along with accession
numbers. Table S4: Numbers of reads mapping to DWV types A, B, and C using Blast top hit analysis for each
sample, along with total numbers of reads passing QC (read1.fasta).
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Abstract: RNA secondary structure in untranslated and protein coding regions has been shown
to play an important role in regulatory processes and the viral replication cycle. While structures
in non-coding regions have been investigated extensively, a thorough overview of the structural
repertoire of protein coding mRNAs, especially for viruses, is lacking. Secondary structure prediction
of large molecules, such as long mRNAs remains a challenging task, as the contingent of structures
a sequence can theoretically fold into grows exponentially with sequence length. We applied a
structure prediction pipeline to Viral Orthologous Groups that first identifies the local boundaries
of potentially structured regions and subsequently predicts their functional importance. Using this
procedure, the orthologous groups were split into structurally homogenous subgroups, which we
call subVOGs. This is the first compilation of potentially functional conserved RNA structures in
viral coding regions, covering the complete RefSeq viral database. We were able to recover structural
elements from previous studies and discovered a variety of novel structured regions. The subVOGs
are available through our web resource RNASIV (RNA structure in viruses).

Keywords: mRNA structure; structure database; secondary structure; viral mRNA; subVOG;
structurally related; RNA structure; structurally homogenous; structurally related; mRNA families

1. Introduction

Secondary structures formed in single-stranded mRNA molecules through complementary
self-interactions, both in the untranslated (UTR) and coding (CDS) regions of mRNAs, have been
implicated in a variety of regulatory functions [1]. For example, riboswitches modulate gene expression
through conformational changes in response to various stimuli [2]. Translation initiation, elongation,
and termination as well as translation efficiency depend on higher order mRNA secondary structures
in non-coding regions [3,4]. CDS hairpins have also been suggested to play a role in the regulation of
translation [5], in particular by causing ribosomal stalling and modulating translational efficiency [6].
The relationship between mRNA structure in the CDS and gene expression has been demonstrated
both computationally and experimentally [7–11]. In particular, reduced mRNA stability near the start
codon has been observed in a wide range of species, probably as a mechanism to facilitate ribosome
binding or start codon recognition by initiator-tRNA [12]. Structured elements within CDS directly
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influence mRNA abundance [13]. Computational studies show that native mRNAs have lower folding
energies and are thus more stable than codon-randomized ones [5]. The three mRNA functional
domains—5′UTR, CDS, and 3′UTR—form largely independent folding units, while base pairing
across domain borders is rare [14]. The ability of viruses to persist in their host in a genus-specific
manner is influenced by the interplay between local structural motifs and genome-scale ordered RNA
structures (GORS) [15], which impose additional restraints on the RNA sequence space. Evolutionarily
conserved local secondary structures have been identified in CDSs [16] and shown to be functional [17].
An indirect indication of the global importance of RNA structures in the coding regions comes from
the recent study of Fricke et al. who identified selection favoring specific pairing patterns between
synonymous codons within RNA hairpins [18].

Increasing evidence suggests that secondary structural elements in the CDSs of viral RNAs also
constitute a previously underappreciated, evolutionarily conserved level of functional organization of
viruses. A large number of conserved secondary structural motifs were computationally identified
in the Flavivirus genomes [19–21], predicted to restrain sequence variability [22] and experimentally
shown to regulate important biological processes, such as replication and infection [21]. Multiple
secondary structures were described in the coding regions of the (+) sense RNA of the Influenza A
virus [23]. Another example is a secondary structural element within the coding region of the Dengue
virus type 2, which is essential for its replication [24]. More recently, using a comparative genomics
approach, Goz and Tuller identified a large number of potentially functionally important regions in the
coding regions of Dengue viruses, in which the RNA folding strength is conserved independently of
sequence conservation and compositional bias [25]. Specific regions in the HIV structural genes were
reported to be under strong selection for stable secondary structures [26]. Recent research shows that
mechanisms of translational control by RNA structures can be shared between viruses and cellular
organisms [27].

Given the important role played by RNA structures in shaping the evolutionary dynamics of
viruses and modulating their interaction with the host, a large-scale investigation of RNA motifs in
viruses would be warranted. However, there are two major challenges that need to be addressed before
embarking on such an investigation. First, accurate structure prediction for long RNA molecules,
such as mRNAs, is generally out of reach for the existing computational methods. Second, conserved
stem-loop structures can only be derived from a collection of high-quality alignments of orthologous
viral transcripts, which are difficult to obtain, given the rapid pace of viral evolution and the ensuing
poor sequence conservation, even between closely related species.

Here, we propose a computational approach to explore the RNA structurome of the viral
coding regions, in which local structure predictions are applied to VOG (Viral Orthologous Groups,
http://vogdb.org), the first comprehensive collection of orthologous groups derived for all viral
proteins contained in the RefSeq [28] database. We utilize RNALalifold [29] to scan long input
sequences for locally optimal secondary structures. The identified structural boundaries are more
accurate than those derived from using a sliding window of fixed length. Functional importance of
structured regions is assessed by RNAz [30]. We present a novel database, RNASIV (RNA structure
in viruses; http://rnasiv.bio.wzw.tum.de), which contains the largest currently available collection of
predicted RNA structures in viruses. It provides access to 201,708 viral mRNA sequences clustered
into 42,293 structurally homogenous groups and is intended to become a useful tool for exploring
structure–function relationships in virus families.

2. Materials and Methods

2.1. Viral Orthologous Groups (VOGs)

All genome sequences and their annotations were retrieved from the RefSeq viral database release
79 [31] and grouped into phages and non-phages, based on the available taxonomic information.
Assemblies containing inconsistently annotated or completely unannotated polyproteins were identified
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based on the manually curated information provided by ViralZone [32] and excluded from consideration.
Phage and non-phage protein sequences were clustered into phage and non-phage preVOGs, using the
NCBI’s COG software package with all default settings.

For all phage and non-phage preVOGs, multiple sequence alignments were constructed with
Clustal Omega v1.2.4 [33] and used to build HMM-profiles using HMMer 3 [34]. The profiles were
subsequently aligned against each other, using HHalign from the HHsuite toolkit [35]. The number
of aligned HMM columns was used as an alignment score. All scores for alignments with HHalign
probability >85, HHalign e-Value < 10−5, and more than 70% of aligned columns between the query and
the match HMM were stored as an all-against-all matrix. This matrix was clustered into 21,200 VOGs,
using the MCL (Markov Clustering) method [36]. Based on the manual inspection of the homogeneity
of the protein function descriptions in the resulting clusters, we selected the inflation value of 2.0 for
the MCL clustering. For all VOG member proteins, we determined the closest homolog in the UniProt
database [37] from BLAST [38] hits with E-values better than 10−5 and a minimal query coverage of
90%. Functional descriptions of VOGs were automatically derived based on the most frequent protein
description found in the UniProt entries or, if not available, in the RefSeq annotation [31]. The complete
VOG dataset, which was used in this study, and supplementary files are available for download at
http://vogdb.org.

2.2. Mapping VOG Sequences to Specific Hosts

We used Virus-Host DB [39] to assign host information to VOG proteins. For 20757 VOGs,
we were able to map all contained sequences to a specific host, while 428 VOGs contain proteins from
at least one viral species for which we could not find host annotation. Most VOGs include viruses
infecting hosts from only one domain of life, i.e., bacteria (~72%), eukaryotes (~22%), or archaea
(4%), while only 2% of VOGs are taxonomically mixed (Figure 1). Only 12 VOGs contain viruses
that infect hosts from all three domains of life. The VOG sizes range from 15 proteins of 12 distinct
species, up to 265 proteins belonging to 261 different species (on average, 104 proteins from 95 different
species). These VOGs mostly harbor highly conserved core enzymes of double-stranded DNA viruses,
such as kinases, ligases, methylases, helicases, hydrolases, and synthases [40]. The other two VOGs
additionally contain proteins from viruses belonging to the order of Caudovirales, which belong to
the bacteriophages, which are not classified as double-stranded DNA viruses, according to the NCBI
taxonomy. We excluded from consideration 15 VOGs containing satellite viruses infecting other viruses.

Figure 1. Venn diagram showing the taxonomy of the host organisms within all viral orthologous
groups (VOGs). Only those VOGs are included for which host annotation for all viruses is available in
the Virus-Host DB.
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2.3. Distance Trees of VOG Proteins

Expectedly, we found that RNA structure conservation within VOGs decreases with increasing
VOG size. Most VOGs (66%) consist of at least three sequences (size distribution shown in Figure 2) and
can therefore potentially be split into smaller groups containing structures that are not conserved across
the entire VOG. We therefore utilized distance trees derived by the neighbor-joining algorithm [41] to
identify structurally homogeneous subsets of VOGs (subVOGs). All-against-all pairwise alignments
of protein sequences were calculated using Clustal Omega and then converted to the nucleotide
alphabet. The distance matrices were derived from pairwise sequence identity values, and the trees
were created from the matrices using neighbor joining, as implemented in the BioPerl toolkit [42].
The inner nodes of the sequence trees represent possible subVOG candidates, potentially containing
structurally homogenous sequences.

Figure 2. Distribution of VOG sizes.

2.4. Structure Prediction and subVOG Assignment

In order to assess the amount of structural RNA conservation present in subVOG candidates,
multiple sequence alignments (MSAs) of proteins were calculated for each inner node of the distance
trees and converted to the nucleotide alphabet. The RefSeq nucleotide and protein sequences were
obtained from the VOGDB. We then employed RNALalifold from the ViennaRNA package [29],
with default parameters, to determine the boundaries of locally stable structures within each MSA,
and realigned these local regions using mLocARNA [43]. MLocARNA produces structure-guided
multiple sequence alignments, using an adapted version of the Sankoff algorithm. The significance
and conservation of the found structures was assessed with RNAz [30]. This procedure is simpler
and arguably more accurate than the usual approach of applying RNAz to the entire MSA within a
sliding window. RNAz classifies fragments of an MSA pre-selected by RNALalifold as containing
or not containing a functional RNA secondary structural element. Realignment with mLocARNA
significantly increases the precision of RNAz [30]. As no sequence of a potential subVOG can be
regarded as a reference sequence, the option “no reference” was used for the subsequent RNAz
analysis. The RNAz method uses the RNAfold algorithm from the ViennaRNA package to calculate
secondary structures and the corresponding minimum free energy (MFE) for each individual RNA
sequence in the alignment. In addition, for each aligned sequence set, RNAz calculates a consensus
secondary structure and its MFE using the RNAalifold algorithm. RNAz assumes that conserved
and thermodynamically stable structures are functional, in which case it outputs “RNA”. Otherwise,
it outputs “OTHER”. For this purpose, a class probability value, combining all information on an
input alignment is calculated. We used a stringent threshold of 0.9 (default 0.5) for the class probability
value, which is recommended for finding high confidence structures [30]. Subsequently, the trees
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were scanned for subtrees containing at least one conserved structural element, that is, predicted
to be functional, and the largest subtrees were designated as structurally homogenous subVOGs.
We found that sequences that are only distantly related according to the neighbor-joining tree may
still share conserved RNA structures. In order to account for structure-level relationships between
sequences, we built covariance models for all conserved structures found within subVOGs, using the
tool cmbuild from the infernal package [44], and used them to search against all sequences in the entire
VOG database.

2.5. mRNA Stability

Following Tuller et al. [45] and Faure et al. [46], we employed RNAfold to calculate the folding
energy of the most and the least stable 30-nucleotide segment of mRNAs (ΔGmin and ΔGmax,
respectively), as well as the average folding energy of all possible 30 nucleotide segments (ΔGmean).
Faure et al. investigated the effect of mRNA stability on the translation rate and protein folding.
During translation, the ribosome sequentially unfolds parts of the mRNA. These parts are typically
30 nucleotides long, which explains the choice of segment length in Faure et al. As this procedure does
not take into account the actual boundaries of local structures, but rather limits all structures to the size
of 30 nucleotides, we additionally calculated the three energy values for all local optimal structures
found with RNALfold.

2.6. mRNA Structures and Protein Function

We investigated the relationship between protein function, described in terms of gene ontology
(GO) annotation [47], and mRNA structures. Instead of using the global folding energy for classifying
mRNAs as highly or lowly structured [48], we considered structural coverage—the portion of an mRNA
covered by functional and conserved structures. GO terms for all VOG proteins were downloaded
using QuickGO [49], where available. Based on the Evidence & Conclusion Ontology (ECO) evidence
codes [50], two separate datasets were created: (i) Proteins annotated by manually or experimentally
derived GO terms (ECO evidence codes: ECO:0000352, ECO:0000269), and (ii) proteins annotated by
GO terms with any evidence codes. To find out whether mRNAs of proteins with certain functions
tend to harbor more or fewer structures, we pooled together functionally similar GO terms with the
average structural coverage of their corresponding mRNAs, using Revigo [51]. Revigo uses a semantic
similarity measure to group similar GO terms together, which results in a concise list of distinct
functions. To perform this analysis, we calculated the average structural coverage of all subVOG
mRNAs with available GO annotation. For the experimental dataset we allowed a coverage value to be
associated with a GO term if more than 50% of the sequences in a particular subVOG were annotated
with this term. Within the dataset based on all evidence codes, we only allowed GO terms shared by all
sequences of a subVOG. We only used mRNAs that were clustered into a subVOG. For sequences that
were not part of any subVOG, we did not find conserved structures, although this does not necessarily
mean that the mRNA did not contain functional structures. The distributions of standard deviations
of the structural coverage values were compared within the actual and randomly generated Revigo
clusters. Randomization was performed 1000 times by preserving the size of the clusters and filling
them with randomly chosen GO terms.

3. Results

3.1. Overview of the Study

A graphical overview of the study is given in Figure 3. In a first step, we created distance trees
for all protein sequences contained in each VOG, using the neighbor joining method, as described in
Materials and Methods. All sequences of the inner nodes of each tree, representing potential subVOGs,
were multiply aligned, converted to the nucleotide alphabet and processed with RNALalifold to obtain
all potentially conserved local optimal structures. Each part of the alignment covering a potential
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structure was then realigned with the structure-guided alignment method mLocARNA and checked
for functionality using RNAz. The use of structure-guided alignments as input for RNAz improves the
performance, compared to pure sequence-based alignments [30]. The tree nodes containing the most
sequences that yielded conserved structures were taken as final subVOGs. For all obtained subVOG
structures, we computed covariance models that could be used to search for similar structures in
future research.

 
Figure 3. Overview of the analysis of conserved RNA structures in VOGs.

3.2. Structure Conservation in VOGs

The current release of the VOG database, derived from the RefSeq release 77, contains 21,200
VOGs, composed of 251,796 proteins from 6252 phages and eukaryotic viruses (Figure S1). Protein
sequences in each VOG were aligned by Clustal Omega, converted to the nucleotide alphabet, and used
as input for RNA structure prediction by RNALalifold. As seen in Figure 4, the number of local optimal
structures conserved within entire VOGs decreases quickly with the number of aligned sequences,
which may in part be the consequence of poor multiple alignment quality in large sets of sequences.
Indeed, we found that proteins in smaller VOGs tend to be more closely related (Figure S2). To exclude
structures found due to sequence conservation only, the potential functionality of structures was
verified with RNAz. However, even those VOGs that only consist of a few sequences do not always
contain conserved structures. There are 7232 VOGs with exactly two sequences, and for 1237 of these,
we could not find any conserved structures. The remaining 5995 VOGs of size two had an average
structural coverage of approximately 25% (Figure 5a). Out of the 13,968 VOGs with more than two
sequences, 7238 VOGs were predicted to contain RNA structures conserved across the entire VOG,
with an average structural coverage of approximately 18% (Figure 5b). These contain between 3
and 96 sequences, with an average of 6. On average, VOGs contain sequences from three different
genera, mostly belonging to the same taxonomic family and thus also to the same order (Figure 6a–c).
The 25 most diverse VOGs contain sequences from three different orders and up to 19 taxonomic
families. On average, a VOG contains mRNAs from viruses that infect hosts from four different
genera, belonging to three different taxonomic families and two orders. The VOG with the highest
host diversity corresponds to 209 different host genera from 114 families and 64 orders.
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Figure 4. Number of local RNA structures as a function of VOG size.

(a) 

Figure 5. Cont.

224



Viruses 2019, 11, 401

(b) 

(c) 

Figure 5. Coverage of VOG alignments by local optimal RNA structures. (a) VOGs with two sequences.
(b) VOGs with more than two sequences, in which structures are conserved across all sequences.
(c) subVOGs. VOGs that did not contain conserved structures, even after splitting into subVOGs,
are not shown.
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Figure 6. Taxonomic distribution of proteins in VOGs (with more than two sequences) and subVOGs.

3.3. Structure Conservation in subVOGs

We attempted to subdivide 6730 VOGs with more than two sequences and without conserved
structures into structurally homogeneous subsets, which we call subVOGs, using phylogenetic trees
derived by the neighbor-joining method. This procedure resulted in 17,678 subVOGs with an average
structural coverage of approximately 13% (Figure 5c). The average number of genera per subVOG
is 2 and the most diverse of them contains sequences from three orders and 14 families. A subVOG
contains on average sequences that infect two different host genera, and the most diverse subVOG
infects hosts of 42 different genera, belonging to 33 families and 20 different orders (Figure 7a–c). Thus,
unsurprisingly, subVOGs, which constitute subsets of full VOGs with increased structural homogeneity,
exhibit a reduced taxonomic spread, both of the viruses they contain and their hosts. A large fraction of
subVOGs (63%) contains sequences from more than one genus and 21% contain sequences from more
than one family. The structural coverage of subVOGs, i.e., the fraction of alignment positions that are
located within conserved RNA structures, decreases with increasing taxonomic diversity of the viruses
and their hosts (Figure 8). An example that demonstrates the reduction of taxonomic spread between
a VOG and its corresponding subVOGs is given in Figure 9. Here, the VOG 00052, which contains
20 proteins from 12 different virus species belonging to 4 different taxonomic families, was split into
four structurally homogenous subVOGs. Two of the four subVOGs consist of mRNAs belonging to
the genus Avipoxvirus from the family Poxviridae, the third subVOG contains sequences from the
family Mimiviridae, and the fourth subVOG consists of two mRNAs belonging to viruses from two
different taxonomic families, the Ascoviridae and the Iridoviridae. For two mRNAs, we could not find
structures conserved in any of the other VOG members and they are therefore not part of any subVOG.
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Figure 7. Taxonomic distribution of hosts in VOGs (with more than two sequences) and subVOGs.

Figure 8. Structural coverage as a function of the taxonomic variety of subVOGs and their host
organisms.
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Figure 9. Example of a VOG split into structurally homogenous subVOGs. Shown is the VOG 00052
containing 20 mRNAs, encoding for Kila-N domain proteins, from 12 virus species. On the left,
the neighbor-joining tree based on the pairwise sequence identity between the protein sequences is
shown. Colored boxes indicate subVOGs, within which conserved structures were predicted. The tree
nodes outside colored boxes did not yield any conserved structures. On the right, the structure
conservation index (SCI) (black line for each subVOG alignment) is plotted against the alignment
position on the percentage scale. Plots are ordered according to the subVOG position in the tree.

As an example, Figure 10 shows the subVOG 1 of VOG11160, which contains two mRNAs
encoding the matrix protein 1 from the Influenza A virus (H3N2) and the Influenza B virus. There are
three RNA structural motifs described in the literature for the Influenza A mRNA. Nucleotides 105
to 192 form either a multibranch structure, according to Moss et al. [23] and Jiang et al. [52], or a
double hairpin structure, proposed by Jiang et al. [52]. Two consecutive stem-loop structures are
formed from position 682 to 744, according to Moss et al. [23]. Despite the sequences’ dissimilarity
between Influenza A and B, both motifs are partly conserved, according to our RNAz analysis of
the corresponding subVOG (Figure 10). Our analysis supports the second hairpin loop from the
double hairpin structure, described by Jiang et al. (Figure 10a–c). From the second motif, proposed
by Moss et al., we also found that the second hairpin structure was partly conserved (Figure 10d–e).
The consensus structure of the first motif has a high structure conservation index (SCI) of 0.78, although
the part of the alignment covering the structure has a low pairwise identity of 29%. The second motif
has an SCI of 0.58 and a pairwise identity of 32%. Our analysis also revealed three further conserved
stem-loop structures—position 346 to 369, 438 to 483, and 654 to 674, with SCIs and mPIDs of 0.81 and
29%, 0.66 and 48%, and 0.65 and 33%, respectively.
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A recent study of secondary structures in alphaviruses by Kutchko et al. revealed that Sindbis
virus mRNAs harbor many functional structures, but they are poorly conserved in the closely related
Venezuelan equine encephalitis virus [53]. The corresponding subVOG containing mRNAs coding for
the non-structural protein 1 includes orthologous mRNAs from 12 further alphaviruses. We identified
three short structures that are conserved in all of the contained species and overlap with the functional
structures described by Kutchko et al., while all other structures reported by Kutchko et al. are indeed
poorly conserved in further Alphavirus species.

An example of a subVOG in which structures are conserved across mRNAs from different
taxonomic families is given in Figure 11. Shown is a subVOG containing proteins from two
mosaic viruses (Maracuja mosaic virus, Tobacco mosaic virus), the Bell pepper mottle virus, and the
Odontoglossum ringspot virus (Figure 11a,b). The proteins are classified as replicases and RNA
polymerases. The subVOG contains overall 15 locally conserved structured regions. Figure 11 shows
the region covering alignment positions 4766 to 4815. The alignment covering this structure has an
mPID of 72% and the structures are conserved with an SCI of 0.9.

Overall, we subdivided 21,200 VOGs containing, on average, 11 proteins (233,380 in total) into a
total of 42,293 subVOGs, containing, on average, five mRNAs (201,708 in total) and three structured
regions (147,087 in total). The VOGs with more than two sequences that had to be split up contain,
on average, four subVOGs.

Figure 10. Structures found in Influenza A and B mRNAs encoding the matrix protein (VOG11160).
Colors in MSA pictures encode compensatory mutations supporting the consensus structure. Red marks
pairs with no sequence variation; ochre, green, turquoise, blue, and violet mark pairs with 2, 3, 4, 5,
and 6 different types of pairs, respectively. (a) The second of the two consecutive stem loops of the
structure proposed by Jiang et al. [52], covering positions 147–192, visualized with R2R [54]; (b) The
predicted conserved consensus structure for nucleotides 148–188 supports the second hairpin loop
of the model of Jiang et al., shown in (a). Colors encode the positional entropy; (c) Structure-guided
alignment and dot bracket structure notation for the consensus structure shown in (a). The upper
sequence corresponds to Influenza A and the lower sequence to Influenza B; (d) Shown are two
consecutive hairpin loops for nucleotide positions 682 to 744, proposed by Moss et al. [23], visualized
with R2R; (e) The predicted conserved structure for nucleotides 697–758 partly supports the model
shown in (e). Colors encode the positional entropy; (f) Structure-guided alignment and dot bracket
notation for the consensus structure shown in (e). The upper sequence corresponds to Influenza A and
the lower sequence to Influenza B.
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Figure 11. Example structures that were identified within subVOGs. (a) Structural annotation of
the subVOG 30, belonging to VOG00029, which contains six mRNAs encoding a replicase protein
of different Tobamovirus species. Consensus structure visualized by RNAalifold. Colors encode
the positional entropy; (b) Structure-guided MSA and consensus structure in dot bracket notation
corresponding to consensus structure shown in (a). Colors encode compensatory mutations supporting
the consensus structure. Red marks pairs with no sequence variation; ochre, green, turquoise, blue,
and violet mark pairs with 2, 3, 4, 5, and 6 different types of pairs, respectively; (c) Consensus structure
of subVOG 64 from VOG00003, which contains four mRNAs coding for a p28-like protein of different
alphabaculoviruses; (d) Structure found in a Heliothis virescens ascovirus 3e, by covariance model
search of the structure shown in (c), using cmsearch in the entire sequence space of all VOGs.

3.4. subVOG Covariance Models

We built covariance models for all structures found within subVOGs and, using cmsearch, found
that in many cases, structures are conserved between different subVOGs and even between different
VOGs. In most cases, this was due to a shared sequence domain. For example, the subVOG 64 from
VOG00003 harbors four mRNA sequences from different nucleopolyhedroviruses, belonging to the
family Baculoviridae. This subVOG was predicted to contain four conserved structures. One of these
structures is a highly conserved stem-loop structure (Figure 11c). This structure can also be found
in an mRNA of Heliothis virescens ascovirus 3e, belonging to the family Ascoviridae, which is part
of VOG01276 (Figure 11d). The two structures are highly conserved with an SCI close to 1, although
they are part of different VOGs and belong to mRNAs of different virus families. The alignment of
the corresponding proteins revealed that these sequences share a common domain, but the sequence
similarity is below the inclusion threshold of the VOG pipeline (Figure S3).

3.5. mRNA Stability and Length

It was shown for a number of eukaryotic and prokaryotic organisms that longer mRNAs exhibit
more stable RNA structures, which allows for more efficient control of co-translational protein
folding [45,46]. In our dataset of viral mRNA sequences, we also found a correlation between the free
energy of the most stable 30-nucleotide segment of an mRNA (ΔGmin) and mRNA length (Pearson
correlation coefficient −0.27; from here on referred to as Pearson’s r), but no correlation between
the average energy of all possible 30-nucleotide windows (ΔGmean) and mRNA length (Table 1,
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Figure 12a). We additionally calculated the free energy of the most and least stable local optimal
segment found by RNALalifold as well as the mean energy of all found RNALalifold segments,
and obtained Pearson’s r values of −0.25, −0.07, and 0.29 respectively. The Pearson’s r of folding
energy and GC content lies between −0.5 for ΔGmax and −0.94 for ΔGmean (Table 1, Figure 12b).
The number of bases that are within functional structures is positively correlated with the alignment
length of subVOGS (Pearson’s r 0.40, p-value < 2.2−16), while this correlation becomes negative when
considering the percentage of bases within structures (structural coverage) instead of the absolute
value (Pearson’s r −0.27, p-value < 2.2−16) (Figure 13). In other words, longer mRNAs harbor more or
longer structured regions, but at the same time, the percentage of positions in functional structures
decreases with increasing length. The only explanation for this effect that we can think of is that there is
a certain number of structured elements needed for regulatory functions, which is largely independent
of the mRNA length. As expected (see Figure 8), there is a weak but significant negative correlation
(Pearson’s r −0.23, p-value < 2.2−16) between structural coverage and the number of sequences in the
MSA, with more taxonomically diverse alignments containing fewer conserved structures.

Table 1. Pearson correlation between alignment length or GC-content and the minimum (ΔGmin),
maximum (ΔGmax), or mean (ΔGmean) folding energy of either all possible 30-nucleotide long-sequence
windows or all local optimal structures found with RNALfold, of all mRNAs in our data set. P-values
are given in parentheses.

Type of ΔG
Pearson Correlation Coefficient

ΔG vs. Sequence Length ΔG vs. GC-Content

ΔGmin −0.27 (<2.2−16) −0.73 (<2.2−16)

ΔGmean 0.004 (0.1655) −0.94 (<2.2−16)

ΔGmax 0.17 (<2.2−16) −0.50 (<2.2−16)

ΔGmin (RNALfold) −0.24 (<2.2−16) −0.86 (<2.2−16)

ΔGmean (RNALfold) −0.16 (<2.2−16) −0.86 (<2.2−16)

ΔGmax (RNALfold) 0.29 (<2.2−16) −0.07 (<2.2−16)
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Δ
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Figure 13. MRNA structure as a function of length. The graph shows the dependence of (a) the number
of nucleotides within structures predicted to be functional, and (b) the structural coverage of the
mRNAs in %, from the total length of mRNAs. Each point corresponds to one subVOG.

3.6. mRNA Structures and Protein Function

We analyzed the relationship between protein function and mRNA structure in viral subVOGs
by comparing RNA structural coverage with gene ontology (GO) annotation. Using the QuickGO
database, we identified a total of 814 VOG proteins that are manually or experimentally annotated
(according to ECO evidence codes, as described in Materials and Methods) with GO terms, of which
727 are part of a subVOG, and thus harbor conserved structures according to our analysis. (For the sake
of completeness, we also performed the same analysis for all GO annotated proteins, without regard
for the annotation evidence codes, see Table S2). For each individual GO term, we only considered the
structural coverage of mRNA sequences if that term was assigned to more than 50% of the proteins
in a given subVOG. This resulted in 106 GO terms from the biological process sub-ontology and
17 terms from the molecular function sub-ontology. Note that no GO terms from the cellular component
sub-ontology satisfied the criteria explained above.
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Using Revigo, we derived 70 functionally similar groups of GO terms, with 57 belonging to the
biological process ontology and 13 to the function sub-ontology (Table S1). The resulting GO term
groups were subdivided into three categories, according to the average structural coverage of the
corresponding subVOGs: Low structural coverage (up to 10%), medium structural coverage (up to
20%), and high structural coverage (more than 20%). We found that the standard deviation of the
structural coverage values within the Revigo clusters was significantly smaller (Wilcoxon test p-value
1.068−10), compared to randomized clusters (Figure 14). In other words, our findings suggest that
mRNAs encoding the proteins with coherent functions tend to exhibit a similar structural coverage.

These findings are in line with the previous study by Vandivier et al. who found that transcripts
in Arabidopsis thaliana with similar levels of secondary structure in their untranslated and coding
regions tend to encode functionally similar proteins [48]. Likewise, Wang et al. also identified GO
terms associated with highly or lowly folded mRNAs in yeast [55]. Four of the GO terms associated
with highly structured mRNAs, according to Wang et al. (regulation of translation, posttranscriptional
regulation of gene expression, regulation of cellular protein metabolic process, and cellular nitrogen
compound biosynthetic process), correspond to highly structured viral mRNAs in our data. At the
same time, none of the GO terms corresponding to lowly structured yeast mRNAs according to Wang
et al. were enriched in our results. On the other hand, Fan Li et al. found that Arabidopsis thaliana
mRNAs related to “regulation of transcription” were structurally unstable [56], while we found that
mRNAs encoding the proteins related to “viral transcription” do harbor conserved RNA structures.
We also found virus-specific trends not previously observed for cellular proteins, such as the high
structure of viral mRNAs coding for proteins that regulate replication and transcription, suppression
by viruses of host translation, or modulation by viruses of host process (Table S1). It has been reported
that mRNA folding strength influences the efficiency of gene expression and that mRNAs encoding
abundant proteins generally tend to be more structured [57]. In the future, once RNA-seq data for
a sufficient number of viral genes becomes available, it will be interesting to investigate whether
functional coherence between mRNAs with similar structural coverage is, at least in part, caused by
similar expression levels.

Figure 14. Distribution of standard deviations of mRNA structural coverage, mapped to GO-terms:
Clustered with Revigo (solid line); randomized Revigo clusters (dashed line); not clustered (dotted
line); vertical lines represent the mean of the corresponding dataset.
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3.7. subVOG Online Resource

Structurally homogenous subVOGs can be accessed online (http://rnasiv.bio.wzw.tum.de) through
two entry points: “Browse by VOG” and “Browse by taxonomy”. The first option is a list of all VOGs,
together with the consensus description of their constituent proteins. The list can be filtered with a
keyword search and links to the corresponding subVOGs of each VOG are provided. The second
option is an expandable taxonomic tree, based on the NCBI taxonomy [58], which allows navigation to
the viral species of interest. For each species, mRNA sequences are provided, if available, interlinked
to the corresponding subVOGs. Tree nodes containing only mRNAs that are not part of any subVOG
are colored grey. Each subVOG contains at least two sequences that share at least one structural
element predicted to be functional. If a species of interest is not contained in the subVOG database,
the taxonomy tree makes it possible to find the taxonomically closest species. Web pages describing
individual subVOGs contain four parts:

(i) General information, i.e., number of mRNAs in the subVOG, the number of proteins and species
in the parent VOG, as well as a consensus functional description;

(ii) Information on conserved structures among the subVOG sequences. A plot outlining the SCI
for each column of the subVOG MSA gives a brief overview over the structure of the subVOG
members. Also provided is a table that shows a list of all structures found, including the
corresponding values of SCI, mPID, and the GC content. The consensus structure can also be
visualized by Forna, and a covariance model is provided, which can be used to search for similar
structures. Additionally, the RNAz results for each individual structured region can be accessed,
including structure visualization, dot plots, and the local structure-guided alignments;

(iii) The global MSA for the subVOG sequences. Alignment columns colored in blue correspond to
the structured regions described in the previous section. The alignment is visualized with the
javascript library MSAviewer [59], which is based on Jalview [60];

(iv) The list of subVOG members, including protein names, descriptions, and taxonomy. For each
protein, a link to the RefSEQ entry is provided, as well as the amino acid and nucleotide sequences.
The leftmost column of the list contains a checkbox for each subVOG member, which can be used
to build a subset of members and analyze the RNA structures shared by these.

4. Discussion

In this work we set out to create a possibly complete census of conserved RNA secondary
structures in the coding regions of viruses and to shed light on their biological role. Using sequence
comparison and structure prediction methods, we derived structurally homogenous groups of viral
mRNAs from subsets of viral orthologous groups (VOGs), which we call subVOGs. We identified
a total of 147,087 conserved structures in 42,293 subVOGs, which we make accessible through our
database RNASIV (RNA Structures in Viruses). On average, subVOGs contain three structured regions
and their structural homogeneity decreases with increasing taxonomic diversity of the viruses and their
hosts. We found that 63% of all subVOGs contain mRNAs from at least two genera and 21% from more
than one taxonomic family. In line with the previous studies on cellular organisms, we confirm that, in
viruses, longer mRNAs tend to contain more stable structures. However, the number of structures
grows only slowly with length, which implies that there is a certain minimum amount of structures
required to maintain regulatory functions and control protein folding. MRNAs annotated with similar
GO terms tend to have a similar structural coverage, hinting at possible commonalities in the regulatory
mechanisms of functionally related proteins. It is hoped that RNASIV will be a useful resource for
exploring the structure–function relationships in viral mRNAs.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/5/401/s1:
Figure S1: Virus lineages included in the VOGs; Figure S2: Mean pairwise sequence identity of VOG alignments
as a function of VOG size; Figure S3: Sequence Alignment of a protein from Heliothis virescens ascovirus 3e and
proteins belonging to the mRNAs of subVOG 64 of VOG00003; Table S1: Clustering of GO terms of subVOG
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proteins and the average structural coverage of their corresponding mRNAs; Table S2: Clustering of GO terms of
subVOG proteins and the average structural coverage of their corresponding mRNAs (regardless of GO evidence
codes).
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Abstract: Viruses are the most prevalent infectious agents, populating almost every ecosystem on
earth. Most viruses carry only a handful of genes supporting their replication and the production
of capsids. It came as a great surprise in 2003 when the first giant virus was discovered and found
to have a >1 Mbp genome encoding almost a thousand proteins. Following this first discovery,
dozens of giant virus strains across several viral families have been reported. Here, we provide an
updated quantitative and qualitative view on giant viruses and elaborate on their shared and variable
features. We review the complexity of giant viral proteomes, which include functions traditionally
associated only with cellular organisms. These unprecedented functions include components of
the translation machinery, DNA maintenance, and metabolic enzymes. We discuss the possible
underlying evolutionary processes and mechanisms that might have shaped the diversity of giant
viruses and their genomes, highlighting their remarkable capacity to hijack genes and genomic
sequences from their hosts and environments. This leads us to examine prominent theories regarding
the origin of giant viruses. Finally, we present the emerging ecological view of giant viruses, found
across widespread habitats and ecological systems, with respect to the environment and human health.

Keywords: Amebae viruses; viral evolution; protein domains; mimivirus; dsdna viruses; translation
machinery; pandoravirus; NCLDV

1. Giant Viruses and the Viral World

Viruses are cell infecting agents present in almost every ecosystem. Questions the regarding viral
origin and early evolution alongside all living organisms (bacteria, archaea and eukarya) are still wide
open, and relevant theories remain speculative [1–5]. As viruses are exceptionally diverse and undergo
rapid changes, it is impossible to construct an ancestral lineage tree for the viral world [6–10]. Instead,
virus families are categorized according to the nature of their genetic material, mode of replication,
pathogenicity, and structural properties [11].

At present, the viral world is represented by over 8,000 reference genomes [12]. The International
Committee on Taxonomy of Viruses (ICTV) provides a universal virus taxonomical classification
proposal that covers ~150 families and ~850 genera, with many viruses yet unclassified [13]. This
collection provides a comprehensive, compact set of virus representatives.

Inspection of viral genomes reveals that most known viruses have genomes encoding only a few
proteins. Actually, 69% of all known viruses have less than 10 proteins encoded in their genomes
(Figure 1). It is a common assumption that viruses demonstrate near-optimal genome packing and
information compression, presumably in order to maximize their replication rate, number of progenies,
and other parameters that increase infectivity [14,15]. However, a debate is still ongoing over the
generality of these phenomena [16], and there is a non-negligible percentage of larger viruses (Figure 1).
On the far end of the distribution, there are viruses with hundreds of genes, most of them are considered
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giant viruses. While only 0.3% of the known viral proteomes contain 500 or more proteins, they encode
as much as 7.5% of the total number of viral proteins (Figure 1B).

Figure 1. Number of proteins encoded by viruses. (A) The number of encoded proteins (y-axis) in all
7,959 viral representatives, ranked in descending order. (B) Partitioning of the 7959 viral proteomes
by the number of encoded proteins. The 0.3% viral proteomes with the highest number of proteins
(over 500) encode 7.5% of the total number of viral proteins.

2. The Discovery of Giant Viruses

The first giant virus, Acanthamoeba polyphaga mimivirus (APMV), was discovered in 2003 [17].
Its size was unprecedented, being on the scale of small bacteria or archaea cells [18]. Unlike any
previously identified virus, APMV could be seen with a light microscope [19,20]. Initially it was
mistaken for a bacterium and recognized as a virus only ten years after its isolation [21]. Up to this
day, most of its proteins remain uncharacterized [22,23]. Notably, even more than a decade after the
discovery of APMV, the identification of giant viruses still sometimes involves confusion, as illustrated
in the discovery of the Pandoravirus inopinatum [24], which was initially described as an endoparasitic
organism, and Pithovirus sibericum [25], which was also misinterpreted as an archaeal endosymbiont
(see discussion in References [21,26]).

In the following years after the initial discovery of APMV, many additional giant viral species
have been identified and their genomes fully sequenced. Most giant viral genomes have been obtained
from large-scale metagenomic sequencing projects covering aquatic ecosystems (e.g., oceans, pools,
lakes and cooling wastewater units) [27,28]; others have been sequenced from samples extracted
from underexplored geographical and ecological niches (e.g., the Amazon River, deep seas and
forest soils) [29–32]. Despite the accumulation of many more giant virus representatives, the fraction
of uncharacterized proteins in their proteomes remains exceptionally high [33]. Many of these
uncharacterized proteins were also considered orphan genes (ORFans), i.e., no significant match to
any other sequence was identified. For example, 93% of the Pandoravirus salinus proteins, the first
representative of this family [34] were reported as ORFans.
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At present, there are over a hundred giant virus isolates, which reveal fascinating and unexpected
characteristics. These extreme instances on the viral landscape challenge the current theories on
genome size and compactness in viruses, and provide a new perspective on the very concept of a virus
and viral origin [4,20,28,35–37].

3. Definition of Giant Viruses

Attempts to distinguish giant viruses from other large viruses remain somewhat fuzzy [38,39].
Any definition for giant viruses would necessarily involve some arbitrary threshold, as virus size,
whether physical, genomic or proteomic, is clearly a continuum (Figure 2). Giant viruses were initially
defined by their physical size as allowing visibility by a light microscope [33]. In this report, we prefer
a proteomic definition, even if somewhat arbitrary. We consider giant viruses as eukaryote-infecting
viruses with at least 500 protein-coding genes (Figure 2). Of the 7,959 curated viral genomes (extracted
from NCBI Taxonomy complete genomes), 24 represented genomes meet this threshold. Of these, we
consider the 19 eukaryote-infecting viruses to be the giant virus representatives (Table 1), excluding
the five bacteria-infecting viruses.

Recall that reported proteome sizes are primarily based on automatic bioinformatics tools, which
may differ from the experimental expression measurements (e.g., mimivirus APMV [40]). Moreover,
physical dimensions are not in perfect correlation with the number of proteins or genome size.
For example, Pithovirus sibericum, which was recovered from a 30,000-year-old permafrost sample [25],
is one of the largest viruses by its physical dimensions (1.5 μm in length and 0.5 μm in diameter).
However, it is excluded from this report, as its genome encodes only 467 proteins.

Figure 2. Distribution of viral proteome and genome sizes, colored by host taxonomy. There are
24 represented genomes that meet the threshold of ≥500 proteins (dashed red line), comprising five
bacteria-infecting and 19 eukaryote-infecting viruses.
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Table 1. Giant viruses.

Genome a Accession
Genome

Length (kb)
# of

Proteins
Host b Year c

Mi-Acanthamoeba polyphaga mimivirus NC_014649 1181.5 979 Pz, Ver 2010
Mi-Acanthamoeba polyphaga moumouvirus NC_020104 1021.3 894 Pz, Ver 2013
Ph-Acanthocystis turfacea chlorella virus 1 NC_008724 288.0 860 Algae 2006
Mi-Cafeteria roenbergensis virus BV-PW1 NC_014637 617.5 544 Pz 2010
Pi-Cedratvirus A11 NC_032108 589.1 574 Pz 2016
Ph-Chrysochromulina ericina virus NC_028094 473.6 512 Algae 2015
Mi-Megavirus chiliensis NC_016072 1259.2 1120 Pz, Ver 2011
UC-Mollivirus sibericum NC_027867 651.5 523 Pz 2015
Ph-Orpheovirus IHUMI-LCC2 NC_036594 1473.6 1199 Algae 2017
Pa-Pandoravirus dulcis NC_021858 1908.5 1070 Pz 2013
Pa-Pandoravirus inopinatum NC_026440 2243.1 1839 Pz 2015
Pa-Pandoravirus macleodensis NC_037665 1838.3 926 Pz 2018
Pa-Pandoravirus neocaledonia NC_037666 2003.2 1081 Pz 2018
Pa-Pandoravirus quercus NC_037667 2077.3 1185 Pz 2018
Pa-Pandoravirus salinus NC_022098 2473.9 1430 Pz 2013
Ph-Paramecium bursaria Chlorella virus 1 NC_000852 330.6 802 Algae 1995
Ph-Paramecium bursaria Chlorella virus AR158 NC_009899 344.7 814 Algae 2007
Ph-Paramecium bursaria Chlorella virus FR483 NC_008603 321.2 849 Algae 2006
Ph-Paramecium bursaria Chlorella virus NY2A NC_009898 368.7 886 Algae 2007

a Families: Mi, Mimiviridae; Ph, Phycodnaviridae; Pi, Pithoviridae; Pa, Pandoraviridae; UC, uncharacterized; b Pz,
protozoa; Ver, vertebrates; c Year of genome submission to NCBI.

4. Classification of Giant Viruses and the Question of Origin

All giant viruses belong to the superfamily of nucleocytoplasmic large DNA viruses (NCLDV),
which was substantially expanded following the discoveries of giant viruses [41,42]. The NCLDV
superfamily had traditionally been comprised of the following families: Phycodnaviridae, Iridoviridae,
Poxviridae, Asfarviridae and Ascoviridae [43,44], for which a common ancestor had been proposed [45,46].
Following the inclusion of additional giant virus taxonomy groups (Mimiviradae, Pandoravirus and
Marseillevirus) into the NCLDV superfamily, there remained only a handful of genes shared by the
entire superfamily. Additional disparities in virion shapes and replication modes among NCLDV has
led to the conclusion that the superfamily is not necessarily a taxonomic group, and that NCLDV
families are more likely to have evolved separately [47–49].

Two models have been proposed for the evolution of giant viruses. According to the reductive
model, an ancestral cellular genome became reduced in size, leading to the dependence of the resulting
genome on host cells. The presence of genes carrying cellular functions in almost any giant virus
(e.g., translation components) [50] is consistent with this model. An alternative and more accepted
theory argues for an expansion model. According to this model, current giant viruses originated from
smaller ancestral viruses carrying only a few dozens of genes, and through gene duplications and
horizontal gene transfer (HGT), have rapidly expanded and diversified [48,51–53]. This model agrees
with metagenomic studies and the wave of giant virus discoveries in recent years, suggesting massive
gene exchange between giant viruses and a variety of organisms sharing the same ecosystems (e.g.,
Reference [32]).

Of special interest is the degree of similarity between giant viruses and their hosts. The amebae
host in particular is often described as a melting pot for DNA exchange [54] that leads to chimeric
genomes. The majority of genes in giant viruses and specifically Mimiviridae, have originated from
the cells they parasitize (mostly amoeba and bacteria). Based on phylogenetic trees, it is likely that
extensive HGT events have led to their chimeric genomes. It was also suggested that the spectrum of
viral hosts may be larger than anticipated, including yet unknown species [55]. Therefore, comparative
genomics of giant viruses infecting the same host is unlikely to unambiguously resolve questions of
gene origin, namely, whether shared genes have originated from a common viral ancestor. Thus, the
degree of similarity among giant viruses infecting different hosts is of special interest. For example,
the phyletic relationship between Mimiviridae (which infect Acanthamoeba) and Phycodnaviridae (which
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infect algae) was investigated, and it was found that the algae-infecting Chrysochromulina ericina virus
(CeV, Table 1) showed moderate resemblance to the amebae-infecting mimivirus [56]. As a result,
suggestions were made to reclassify CeV as a new clade of Mimiviridae, rather than Phycodnaviridae.
However, a later discovery of another algae-infecting Phycodnaviridae virus (Heterosigma akashiwo virus,
HaV53) has provided a coherent phyletic relationship among Phycodnaviridae, thereby questioning this
reclassification [52].

In summary, the taxonomy of giant viruses, like all viruses, is still unstable, and rapidly updated
with new discoveries [31,57]. The origin and ancestry of giant viruses have remained controversial
with questions of origin also unresolved [39]. Many newly discovered giant viruses are not compatible
with the notion of a single common ancestor, as some giant viruses remain taxonomically isolated [4].

5. Common Features

Despite the ongoing debate on their origin, giant viruses still share some important features.
All giant viruses belong to the dsDNA group, as do all NCLDV families. The total genome size of all the
giant viruses listed in Table 1 is at least 288 Kbp (Figure 2). These giant viruses are classified into several
families: Mimiviridae, Pithoviridae, Pandoraviridae, Phycodnaviridae and the Mollivirus genus [21,25].

All amoebae-infecting giant viruses rely on the non-specific phagocytosis by the amoebae host [55].
Interestingly, a necessary condition for phagocytosis is a minimal particle size (~0.6 μm [58]), as
amebae (and related protozoa) naturally feed on bacteria. It is likely that this minimal size for inducing
phagocytosis has become an evolutionary driving force for giant viruses. This fact, together with the
largely uncharacterized genomic content of giant viruses, may suggest that much of the content in the
genomes of giant viruses serves only for volume filling to increase their physical size.

Giant viruses share not only the cell entry process. When they exit the host cells during lysis, as
many as 1000 virions are released from each lysed host via membrane fusion and active exocytosis [59],
which are relatively rare exit mechanisms in viruses.

Other than these genomic and cell-biology similarities, other features of giant viruses are mostly
family-specific. For example, virion shapes and symmetries, nuclear involvement, duration of the
infection cycle, and the stages of virion assembly—all substantially vary among giant viruses from
different families [21,60,61].

6. Proteome Complexity and Functional Diversity

The majority of the giant virus proteomes remain with no known function (Figure 3). Actually, the
fraction of uncharacterized proteins reaches 65–85% of all reported proteins in giant viral proteomes,
many of them are ORFans. However, when proteomes of closely related species are considered, the
fraction of ORFans obviously drops (by definition). For example, 93% of the proteins were reported as
ORFans for the first representative of the Pandoraviridae family (P. salinus) [34]. But later, following
the completion of five additional Pandoravirus proteomes (of the species inopinatum, macleodensis,
neocaledonia, dulcis, and quercus), the number of P. salinus ORFans dropped to 29% (i.e., 71% of its genes
now had a significant similarity to at least one other Pandoravirus protein sequence). Still, the vast
majority of Pandoravirus proteins remain uncharacterized.

The most striking finding regarding the proteomes of giant viruses is the presence of protein
functions that are among the hallmarks of cellular organisms, and are never detected in other viruses.
To exemplify the complexity of proteome functions in giant viruses, we examined the proteome of
the Cafeteria roenbergensis virus (CroV), which infects the marine plankton community in the Gulf
of Mexico. CroV was sequenced in 2010 as the first algae-infecting virus in the Mimiviridae family.
Unexpectedly, despite its affiliation with a recognized viral family, the majority of its proteins showed
no significant similarity to any other known protein sequence. Of the remaining proteins that show
significant basic local alignment search tool (BLAST) hits to other proteins from all domains of life, 45%
are eukaryotic sequences, 22% are from bacteria, and the rest are mostly from other viruses, including
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other mimivirus strains. A similar partition of protein origin applies across other members of the
Mimiviridae family [33].

The CroV proteome includes a rich set of genes involved in protein translation [62]. These genes
include multiple translation factors, a dozen of ribosomal proteins, tRNA synthetases, and 22 sequences
encoding five different tRNAs [62]. As a lack of translation potential is considered a hallmark of the
virosphere, the presence of translation machinery components raised a debate on the very definition
of viruses [63,64]. Similar findings were replicated in two other giant virus strains of the Tupanvirus
genus in the same Mimiviridae family, which were recently isolated in Brazil [65]. The two strains have
20 open reading frames (ORFs) related to tRNA aminoacylation (aaRS), ~70 tRNA sequences decoding
the majority of the codons, eight translation initiation factors, and elongation and release factors. The
theory that translation optimization is an evolutionary driving force in viruses [66] may in part explain
the curious presence of translation machinery in giant viruses.

In addition to translation, numerous CroV proteins are associated with the transcription machinery.
Specifically, the CroV proteome contains several subunits of the DNA-dependent RNA polymerase II,
initiation, elongation, and termination factors, the mRNA capping enzyme, and a poly(A) polymerase.
Presumably, the virus can activate its own transcription in the viral factory foci in the cytoplasm of its
host cell [47].

Another unexpected function detected in CroV is DNA repair, specifically of UV radiation
damage and base-excision repair. Other DNA-maintenance functions found in CroV include helicase
and topoisomerases (type I and II), suggesting regulation of DNA replication, recombination and
chromatin remodeling.

Another rich set of functions related to protein maintenance include chaperons [67] and the
ubiquitin-proteasome system [68]. Interestingly, some of these genes seem to be acquired from bacteria
(e.g., a homolog of the Escherichia coli heat-shock chaperon). In addition, a rich collection of sugar-,
lipid- and amino acid-related metabolic enzymes were also found [18,69], which occupy 13% of the
CroV proteome (Figure 3).

It appears that the CroV proteome covers most functions traditionally attributed to cellular
organisms, including: Protein translation, RNA maturation, DNA maintenance, proteostasis and
metabolism. Although CroV exemplifies many widespread functions in giant viruses, each strain has
its own unique functional composition. For example, the most abundant group of giant viruses in
ocean metagenomes, the Bodo saltans virus (BsV), was recently identified and classified into the same
microzooplankton-infecting Mimiviridae family [70]. Unlike the other family members, BsV does not
have an elaborate translation apparatus or tRNA genes, but it carries proteins active in cell membrane
trafficking and phagocytosis, yet more unprecedented functions discovered in viruses.

Figure 3. Protein function categories in six giant virus representatives from three families: Mimiviridae
(Mi), Pandoviridae (Pa) and Phycodnaviridae (Ph). In all proteomes, the majority of proteins are
uncharacterized. Short repeated domains such as ankyrin, F-box and MORM repeats are abundant in
the proteomes of amebae-infecting giant viruses [71].
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7. Virophages and Defense Mechanism in Giant Viruses

Additional important players of genome dynamics in giant viruses are the virophages [72]. These
are small double-stranded DNA (dsDNA) viruses that hitchhike the replication system of giant viruses
following coinfection of the host, and are considered parasites of the coinfecting giant viruses [73].
Virophages (e.g., Sputnik 1–3, Zamilion) are associated with Mimiviridae representatives and their
specific viral strain infectivity [21,74]. Additionally, short mobile genetic agents, called transpovirions
(combining features of a transposon and a virion) [73], together with other mobile elements display
complex ecological interactions with their hosts. Indeed, similar to eukaryotic transposons and
endogenous viruses, sequences of a virophage (Mavirus) of Cafeteria roenbergensis virus (CroV), that
were integrated to the genome of the protozoan host, serves an antiviral defense mechanism, which is
activated by giant virus infection [75].

An even more unexpected finding is the discovery of a nucleic acid-based immunity in mimiviruses,
resembling the adaptive (clustered regularly interspaced short palindromic repeats) CRISPR-Cas
system in bacteria and archaea. Despite the differences to the canonical CRISPR-Cas system, an
operon-like cluster of sequences derived from the Zamilion virophage was identified in mimivirus and
experimentally validated to govern virophage coinfection. This cluster, coined MIMIVIRE, acts as a
mimivirus virophage resistance element system with an exonuclease, helicase and RNase III identified
in its vicinity [76]. The homology between the MIMIVIRE-associated exonuclease to the bacterial Cas-4
exonuclease was revealed by 3D protein structure analysis [77]. This CRISPR-Cas related function in
mimiviruses are assumed to degrade foreign DNA, thereby constituting an antiviral innate immune
system. It is likely that the CRISPR-Cas immune system in mimiviruses contributes to its sequence
diversification as well by removing unessential host sequences. Alternative mechanisms that govern
viral-host infection specificity and immunity may be discovered as our knowledge on virophages and
other mobile elements is expending [72,78].

Altogether, a rich network of mobile genetic elements contributes to the host-virus coevolution
and interviral gene transfer [78]. Virophages and other mobile elements could facilitate gene transfer,
thereby having the potential to shape the genomes of giant viruses and impact their diversity [21,79,80].

8. The Emerging Ecological View

Viruses are the most abundant entities in nature. In marine and fresh water habitats, there are
millions of viruses in each milliliter of water [81]. However, the collection of virus isolates is often
sporadic, especially for those without clinical or agricultural relevance. The accelerated pace in the
discovery of giant viruses reflects the increasing number of sequencing projects of exotic environments,
including metagenomic projects [32,82].

Giant viruses have been isolated from numerous environmental niches and distant geographic
locations, revealing their global distribution and diversity. Current evidence suggests that the
representation of giant viruses is underexplored, especially in soil ecosystems [31] and unique
ecological niches [83,84]. In fact, ~60% of the giant viral genomes were completed after 2013 (Table 1).
Many more virus–host systems, most of them reported in the last five years, still await isolation,
characterization and classification [84,85].

The hosts of contemporary isolates include mainly protozoa, specifically amoeba (Table 1).
However, the prevalence of amoeba as hosts may in part be attributed to sampling bias, specifically to
the widespread use of amoebal coculture methods for testing ecological environments [28,85].

Despite their prevalence, the impact of giant viruses on human health deserves further
investigation [22]. Some initial reports show that APMV giant virus is able to replicate in human
peripheral blood cells and to induce the interferon system [86]. Sequences of numerous giant viruses
were identified as part of large-scale human gut microbiome sequencing projects [87], but their
abundance, compositions and ecological roles are yet to be determined [88]. Reports are accumulating
on the presence of giant viral sequences in human blood, as well as antibodies against giant viral
proteins. Some reports associate mimirus and marseillevirus with a broad collection of human diseases
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(e.g., rheumatoid arthritis, adenitis, unexplained pneumonia, lymphoma), yet causal relationship is
mostly missing [89]. The presence of giant viruses in almost any environment, including extreme
niches and manmade sites (e.g., sewage and wastewater plants), suggests that the ecological role of
these fascinating entities and their impact on human health are yet to be fully explored.
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Abstract: Influenza A virus is recognized today as one of the most challenging viruses that threatens
both human and animal health worldwide. Understanding the control mechanisms of influenza
infection and dynamics is crucial and could result in effective future treatment strategies. Many kinetic
models based on differential equations have been developed in recent decades to capture viral
dynamics within a host. These models differ in their complexity in terms of number of species
elements and number of reactions. Here, we present a new approach to understanding the overall
structure of twelve influenza A virus infection models and their relationship to each other. To this
end, we apply chemical organization theory to obtain a hierarchical decomposition of the models into
chemical organizations. The decomposition is based on the model structure (reaction rules) but is
independent of kinetic details such as rate constants. We found different types of model structures
ranging from two to eight organizations. Furthermore, the model’s organizations imply a partial
order among models entailing a hierarchy of model, revealing a high model diversity with respect to
their long-term behavior. Our methods and results can be helpful in model development and model
integration, also beyond the influenza area.

Keywords: chemical organization theory; influenza A; virus dynamics modeling; complex
networks analysis

1. Introduction

Influenza is an infectious respiratory disease, annually infecting 5–15% of the human population
and causing epidemics that result in 3–5 million severe cases with 300,000–500,000 deaths each year [1].
The annual recurrence of epidemics is caused by the continuous alteration of seasonal influenza
viruses, which enables them to efficiently escape the immune system even due to previous infections or
vaccinations [2]. The major burden of disease in humans is caused by seasonal influenza A (IAV) and
influenza B viruses, causing symptoms varying from mild respiratory disease characterized by fever,
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sore throat, headache and muscle pain to severe and in some cases lethal pneumonia and secondary
bacterial infections [3].

The long-term spread of influenza viruses in the human population and the acute nature of
influenza virus epidemics is driven by the global movement of these viruses. Differences in seasonal
epidemics caused by influenza viruses are mainly driven by differences in the rates of virus evolution.
The single-stranded RNA segments of influenza viruses, which are located inside the virus particle
(or virion), evolve rapidly and thus can escape the host’s immune response very efficiently.

Several ordinary differential equations (ODEs) models have been developed to provide insight
into within-host dynamics of influenza A virus infections (for reviews, see [4–8]). These models
work in a time scale of days and describe the concentration dynamics of target cells, immune
system components, viral load, and sometimes co-infecting pathogens. The models differ in terms
of complexity and state space dimensions, which are between 3 and 15 for the models examined
here. While the low-dimensional models can be analyzed completely and in a straightforward way
(e.g., by calculating their fixed points and stability analysis), the characterization of the entire behavioral
spectrum of complex models is more difficult (see for example [9]).

Here, we present an approach to understand the overall structure of these models that allows
them to be related to each other in a simple way. To this end, we apply chemical organization
theory [10,11] to obtain a hierarchical decomposition of each model into chemical organizations.
A chemical organization is a sub-set of species (i.e., dimensions or model components, like, uninfected
cells or viruses) that cannot generate any other species (property of closure) and that can self-maintain
its own species, i.e., any species consumed by a process within the organization can be regenerated
by a process within the organization. The organizations of an ODE model are rigorously related to
its long-term dynamics in the following way: Given a stationary state of the ODE model, the set of
species with strictly positive concentrations must be an organization [10]. The same is true for all
practically relevant periodic and chaotic attractors [12]. Note that the advantage of this approach is
that decomposition into organizations is based solely on the model structure (i.e., reaction rules) and
thus is independent of kinetic details, like rate constants. The relation between measured data, ODE
model, and organizations is depicted in Figure 1.
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By applying the method to twelve models of influenza A virus infection, we found different types
of model structures ranging from two to eight organizations. Furthermore, the models’ organizations
imply a partial order among models. The resulting hierarchy of models can help to select a suitable
model for certain data or serve as a framework for further model development.

We provide reaction network files for all models and a software tool for computing their
organizations (https://github.com/stephanpeter/orgsflu).

2. Materials and Methods: Procedure for the Organizational Analysis

To illustrate our method, we follow a basic ODE model of influenza dynamics, namely the target
cell limited model by Baccam et al. [13], called Baccam Model in the following. Note that we refer
throughout this paper to a model by the first author’s name of the respective publication.

The Baccam Model is based on in vivo experimental data and contains three variables: the number
of susceptible and uninfected target (epithelial) cells T, the number of infected cells I, and the number
of infectious-viral titer V. The dynamical behavior of the variables is given by the ODEs shown
in Figure 2a. That is, target cells become infected and thus converted to infected cells at a rate
βTV, infected cells die spontaneously at rate δI, virus proliferates at a rate pI and dies at a rate cV.
The parameters β, δ, p and c are, as usual, positive real numbers (cf. [13] for actual values).

Ṫ = −βTV

İ = βTV − δI

V̇ = pI − cV

(a) ODEs model

R1 : T + V → I + V
R2 : I → ∅
R3 : I → I + V
R4 : V → ∅

(b) Reaction network (c) Network picture

OBa1
2 = {T}

OBa1
1 = {}

(d) Organizations

Figure 2. The Baccam Model [13] with three variables: uninfected (susceptible) target cells (T), infected
cells (I) and infectious-viral titer (V).

Throughout this paper, the following coloring scheme for particular classes of species is used to
improve readability:

• Uninfected (target) cells or those resistant/refractory to infection are marked in blue, e.g., T.
• Infected cells, partially or latently infected cells, and viruses are marked in magenta, e.g., I and V.
• Species belonging to the active immune response are marked in green. It is worth noting that the

first two models analyzed in this paper [13,14] do not explicitly have immune system components.
• Bacterial co-infection species are marked in orange. These species are only occurring in Smith’s

model [15].
• Text referring to any other species is marked in black, e.g., transient target cell states, passive

immune system, or dead cells.

For simplicity, the models’ variable names also denote the related species. For example, V
denominates not only the number of viruses in the ODE model (Figure 2a), but also the virus itself
(e.g., Figure 2b).

2.1. Deriving the Reaction Network from the ODE System

In a first step, we need to obtain the reaction network underlying the ODE model. A reaction
represents, for example, a cell infection by a virus, the generation of new viruses from an infected cell or
the spontaneous death of a cell. The reaction rules can be derived from the ODEs in a straightforward
way [16]. This step can also be performed by an online tool presented by Soliman and colleagues [16].
Note that in modeling one first creates the network and then derives the ODEs. For our analysis, we
have to take the other direction.
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For this purpose, we have to investigate the kinetic terms (kinetic laws) of the ODE (Figure 2a):

• The term βTV represents the reaction R1 : T + V → I + V, which in turn denotes the
transformation of an uninfected target cell T to an infected cell I catalysed by the virus V.

• The terms −δI and −cV represent reactions R2 : I → ∅ and R4 : V → ∅ which are the outflow
of infected cells I resp. virus V.

• The term pI represents the reaction R3 : I → I +V which is the production of viruses V catalysed
by infected cells I.

The set of species S = {T, I, V} together with the set of reactions R = {R1, R2, R3, R4} constitute the
so-called reaction network (S ,R) associated with the model. The set of reactions together with their
kinetic parameters are depicted in Figure 2c. Note that for clarity we use different types of underlining
to highlight certain recurring kinetic terms in the ODE:

• Single underline for the transformation of uninfected cells into infected ones by the action of
viruses.

• Double underline for kinetic terms involving interferon.

We call the species on the left-hand side (LHS) of a reaction R support of R and write supp(R), e.g.,
supp(R1) = {T, V} (see Figure 2d). Analogously, we call the set of species occurring on the right-hand
side (RHS) of a reaction R products of R and denominate this set by prod(R), e.g., prod(R1) = {I, V}.

Furthermore, let us recall the stoichiometric matrix N = (nij) of a reaction network [17]. The
element nij in the i-th line and j-th column of N denotes the net-production of the i-th species in
reaction Rj. The net-production nij is the difference between the number of occurrences (stoichiometric
coefficient) of species i in the RHS of reaction Rj minus the number of occurrences of species i in the
LHS of reaction Rj. For example, n21 = 1 − 0 = 1 because the second species (I) appears in the first R1

once as a reactant in the support of R1 (LHS) but does not appear in R1 as a product (RHS). For our
example in Figure 2, the stoichiometric matrix becomes:

N =

⎛
⎜⎝−1 0 0 0

1 −1 0 0
0 0 1 −1

⎞
⎟⎠ . (1)

2.2. Computing the Organizations from the Reaction Network

From the reaction network, we can compute the (chemical) organizations of the model. Each
organization is a subset of species that is closed and self-maintaining [10,18]. In the following, let
S ⊆ S be a subset of species and n be the total number of reactions of the reaction network (n = 4 in
our example).

We call S closed if and only if all reactions R ∈ R with supp(R) ⊆ S fulfill prod(R) ⊆ S too [10,18].
This means that the products of a reaction R with support in S are also in S. In other words, no species
outside of S can be produced by the reactions “running on” S. As an example, we assume S = {T, I}.
The reactions with support in S are R2 and R3. However, R3 produces species V, which is not in S.
Thus, S is not closed.

We call a vector v ∈ R
n flux vector for S if and only if it fulfills

vj

{
> 0, if supp(Rj) ⊆ S,

= 0, if supp(Rj) 
⊆ S.
(2)

Thus, all flux vectors for S have in common that those components are strictly positive which
correspond to reactions that can run on S, while all other entries are zero. As an example, consider
SExample = {T, I} again. We know that the reactions R2 and R3 can "run on" it, i.e., they have support
in SExample. Thus, v1 = (0, 1, 3, 0)T or v2 = (0, 5, 2, 0)T are example flux vectors for SExample.

255



Viruses 2019, 11, 449

We call S self-maintaining if and only if there exists (at least one) flux vector v ∈ R
n for S

that fulfills

N · v ≥ 0, (3)

i.e., (N · v)i ≥ 0 for all i = 1, . . . , n, where n is again the total number of reactions [10,19–21]. Roughly
speaking, if S is self-maintaining, it has the potential to sustain the amount of its species above a
certain level. Our example set SExample is not self-maintaining because (N · v)2 < 0 for all flux vectors
for SExample. That is, species number 2 (the infected cells I) can not be maintained by this set.

As mentioned in the beginning of this section, we call S an organization if and only if it is
both closed and self-maintaining. Clearly SExample is not an organization, as it has neither of these
properties. In Figure 2d, the so-called Hasse diagram of organizations of this model can be seen.
In it, two organizations are linked by a line if the lower one is a subset of the upper one and there
is no organization in between. The Hasse diagram for the Baccam Model contains only the two
organizations OB

1 = ∅ and OB
2 = {T} (see Figure 2d). The superscript “B” stands for Baccam Model

and with the subscripts we refer to the organizations within a model. The organization OB
2 represents

an organism without any influenza A virus infection. Note that there is no organization with all
species, i.e., representing the infected body.

2.3. The Role Organizations Play in the Dynamics

Given a fixed point x of an ODE describing a reaction system, the set of species with strictly
positive concentrations in x is an organization. This is shown in [10]. This in turn means that, if a subset
of species is not an organization, then the system does not have a fixed point with exactly the chosen
subset of species. This is not only true for fixed points but also for other attractors [12]. Attractors are
those states that a system approaches in the long-run and once reached never leaves anymore. Besides
converging towards a fixed point, the long-term behavior can be also periodic oscillations or chaotic
trajectories. In particular, it was shown that the long-term behavior of the system always tends at least
to one organization [12]. Thus, organizations rule the long-term behavior of such dynamical reaction
system. Note that the case of a system tending towards a fixed point is included in this statement as a
special case. For example, the simulation results of the Baccam model (Figure 2a and Ref. [13]) suggest
that after about two to three days the species begin to decay to finally arrive in an organization namely
the empty set.

3. Results and Discussion

In the literature, there exist several mathematical models of IAV dynamics that are derived from
experimental data, reviewed in Refs. [4–7]). These models differ in their complexity, e.g., the number of
reactions and the number of species, depending on the available experimental data used for parameter
fitting and questions to be answered. For example, models can include eclipse phases, an innate
immune response, or an adaptive immune response.

After having exemplified our method in Section 2 by an analysis of the basic target cell limited
model by Baccam et al. [13], we present now the full analysis for eleven additional more detailed
influenza models of IAV dynamics, with up to 15 variables (species) and 45 reactions (cf. Table 1
for an overview at the end). Note that for our analysis we abstract from kinetic details, that is, the
organizations are independent of particular settings of parameter values.

3.1. Target Cell Limited Model by Miao et al. (Miao Model, M, 2010)

The models by Miao et al. [14] are designed to fit experimental in vivo data from mice [6,7].
The first one ([14], Equation (1)) depends on measured time-series. The second one ([14], Equation (2))
is a simplified version of the first one, neglecting the terms depending on those time-series and still
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leading to a good fit within the first five days after infection [14]. Thus, we analyze this second model
(Miao Model).

Compared to the basic Baccam Model, the Miao Model (Figure 3a) has the same three variables
(named differently) and one additional reaction, EP → 2EP. This reaction represents the self-replication
of target cells EP taking place at a rate ρEEP. The full set of reactions can be found in the Appendix A
(Figure A2).

In the Hasse diagram of organizations (Figure 3b), a new “full” organization OM
3 appears, which

contains all three species. Thus, organization OM
3 reflects the slight difference between the two models:

in the Baccam Model, uninfected target cells T are only the susceptible ones and can not increase in
number, but in the Miao Model uninfected cells EP are reproduced repeatedly by the organism. Thus,
in the Baccam Model, infection is limited inherently by the limited number of uninfected target cells,
while in the Miao Model the limitation of an infection in time and number of infected cells and viruses
depends on other mechanisms:

ĖP = ρEEP − βαEPV

Ė∗
P = βαEPV − δE∗E∗

P

V̇ = παE∗
P − cVV

(a) ODE model

OM
3 = {all species} = {EP, E∗

P, V}

OM
2 = {EP}

OM
1 = {}

(b) Hasse diagram of organizations

Figure 3. The Miao Model [14] with three variables: uninfected target cells (EP), productively infected
cells (E∗

P) and free infectious influenza viruses (V).

3.2. Target Cell Limited Model with Delayed Virus Production (Baccam II Model, Ba2, 2006)

The Baccam II Model [13,22] contains one more species than the Baccam Model presented in the
methods section above. That is, there are now two types of infected cells: those which do not yet produce
viruses I1 and those which actively produce viruses I2. In addition, there is only one new reaction,
which transforms infected cells of type I1 into type I2 at rate kI1 (Figure 4a). However, the Hasse
diagram of organizations remains the same when compared with the basic Baccam Model [13].

Ṫ = −βTV

İ1 = βTV − kI1

İ2 = kI1 − δI2

V̇ = pI2 − cV

(a) ODE model

OBa2
2 = {T}

OBa2
1 = {}

(b) Hasse diagram of organizations

Figure 4. The Baccam II Model [13] with delayed virus production and four variables: uninfected
(susceptible) target cells (T), infected cells not yet producing virus (I1), infected cells actively producing
virus (I2) and infectious-viral titer (V).

3.3. Innate and (Simple) Adaptive Immune Response (Pawelek Model, P, 2012)

The Pawelek Model [23] contains 11 parameters and was designed to fit in vivo experimental
data of horses [6,7]. The model has five variables and nine reactions. Like the basic Baccam Model,
it contains uninfected target cells (T), infected cells (I), and viruses (V). Furthermore, there are two
new species: interferon (F) and uninfected cells that are refractory to infections (R) because of the
antiviral effect induced by interferons.
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Investigating the reaction network (Figure A4 in the Appendix A) derived from the differential
equations (Figure 5a), we can see that, like in the basic Baccam Model, self-replication of uninfected
cells T is missing. However, due to the two new species R and F, we have five new reactions, which are
neither included in the Baccam Model nor in the Miao Model. One of these five reactions is the
spontaneous decay of interferon F at a rate dF. The other four new reactions describe interactions
between different species:

• The rate term φFT represents the transformation of uninfected target cells to refractory cells
catalysed by interferon.

• The reverse shift back from refractory to simple uninfected cells is represented by the term ρR.
• Furthermore, infected cells are deleted by the action of interferon at a rate κ IF.
• Interferon is produced in the presence of infected cells at a rate qI.

Even though we have more species and more reactions, we get the same small pattern of
organizations as in the basic Baccam Model (Figure 5b). Both models have in common that there
is no self-replication of target cells. This might be one reason for the missing of other and bigger
organizations which could contain species related to infection and/or immune response. This in turn
means that, like the Baccam Model, this model implicitly treats infections and immune responses as
phenomena that can only appear in a limited (transient) time span. The Hasse diagram of organizations
(Figure 5b) tells us that the system necessarily tends towards a state of healthiness, which is represented
by the organizations OP

1 = {} and OP
2 = {T}, showing absence of infection and immune response.

Ṫ = −βVT − φFT + ρR

İ = βVT − δI − κIF

Ṙ = φFT − ρR

V̇ = pI − cV

Ḟ = qI − dF

(a) ODE model

OP
2 = {T}

OP
1 = {}

(b) Hasse diagram of organizations

Figure 5. The Pawelek Model [23] with five variables: (uninfected) target cells (T), productively
infected cells (I), uninfected cells refractory to infections (R), free viruses (V) and interferon (F).

3.4. A Model Including Bacterial Co-Infection (Smith Model, Sm, 2016)

The Smith Model [15] contains 15 parameters and compared to experimental in vivo data from
mice. It has five variables and 12 reactions. Like in the previous models, we have susceptible target
cells (T) and viruses (V). Note that T is only consumed in this model but not produced. Contrarily to
previous models, we have two kinds of infected cells (I1 and I2) here as well as bacteria (P). Bacteria P
represent bacterial co-infection during or after virus infection. Infection is modeled as a transformation
of susceptible target cells T into infected cells I1 catalyzed by viruses V (see underlined terms in
Figure 6a). Infected cells I1 in turn spontaneously transform into I2 at rate kI1. Only infected cells I2

produce viruses V at a rate pI2. Furthermore, infected cells I2 produce viruses V together with bacteria
P. Bacteria P are self-replicating (rate term rP). Viruses V are the only species influencing bacteria P.

Figure 6b shows the Hasse diagram of organizations. The smallest one is the empty set.
The biggest one is OSm

4 , which contains susceptible target cells T and bacteria P. It represents an
organism without viral but with bacterial infection. Between those two extreme organizations, we find
OSm

2 = {T} and OSm
3 = {P}. Thus, OSm

2 represents the healthy organism without any infection.
OSm

3 = {P} could mark the state after a viral-bacterial co-infection: after viral infection and because of
the death of all target cells as well as all viruses only bacteria remain.
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Ṫ = −βTV

İ1 = βTV − kI1 − μPI1

İ2 = kI1 − δI2 − μPI2

V̇ = pI2(1 + PZ)− cV

Ṗ = rP(1 − P

KP(1 + ψV)
)

− γMA n2 MA

P2 + n2MA
M∗

AP(1 − φV

KPV + V
)

(a) ODE model

OSm
4 = {T, P}

OSm
3 = {P}OSm

2 = {T}

OSm
1 = {}

(b) Hasse diagram of organizations

Figure 6. The Smith Model [15] with five variables: susceptible target cells (T), two classes of infected
cells (I1 and I2), free viruses (V), and bacteria (P).

3.5. Innate and Adaptive Immune Response (Handel Model, Ha, 2009)

The Handel Model [24] contains eight parameters and was designed to fit experimental in vivo
data from mice [6,7,25]. It has seven variables (see Figure 7) and only 12 reactions (see Figure 7a):

• Infection is catalyzed by viruses V and transforms uninfected cells U to latently infected cells
E and viruses V are consumed thereby. Latently infected cells E transform into infected cells
I autonomously, which in turn transform into dead cells D autonomously too. Finally, the
transformation of dead cells D into non-infected cells U closes the circle.

• The remaining three species V, F and X form an almost totally separate subsystem since the only
interaction with the four species from the "circle" mentioned above is the catalysis of the infection
by viruses V.

• The interactions within the subsystem {V, F, X} consisting of viruses V and immune responses F
and X are as follows:

– Viruses V catalyze the proliferation of F and X. In the Hernandez model, proliferation of
interferon F is catalyzed by infected cells instead of viruses.

– There is no direct interaction between innate immune response F and adaptive immune
response X.

– The adaptive immune response X deletes viruses directly. Innate immune response F inhibits
the self-replication of the viruses which is represented by the denominator of the fraction

pI

1 + κF
. We ignore the inhibition because whether the rate is zero or not is independent of F.

The Hasse diagram Figure 7b shows five organizations. For the first time, it contains the empty set as
well as the set of all species at the same time. Between these extremes, we find OHa

2 = {U} representing
the healthy organism. The Baccam, Miao, and Pawelek models exhibit the same organization.
Structurally, the Hasse diagram of the Handel Model is very similar to that of the Smith Model
(Figure 6b). The first reveals an autonomy of the adaptive immune response X, whereas the latter does
this same for bacteria P.
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U̇ = λD − bUV

Ė = bUV − gE

İ = gE − dI

Ḋ = dI − λD

V̇ =
pI

1 + κF
− cV − γbUV − kVX

Ḟ = wV − δF

Ẋ = f V + rX

(a) ODE model

OHa
5 =

{all species} =
{U,E, I, D,V, F,X}

OHa
4 = {U,X}

OHa
2 = {U} OHa

3 = {X}

OHa
1 = {}

ad
di

ng
 v

iru
s

(b) Hasse diagram of organizations

Figure 7. The Handel model [24] with seven variables: uninfected cells (U), latently infected cells
(E), productively infected cells (I), dead cells (D), free viruses (V), innate immune response (F) and
adaptive immune response (X). The dotted arrows denote the projection of the dynamics shown in
Figure 8.

Temporal Dynamics

For the Handel Model, we perform dynamical simulation in order to show how the organizational
hierarchy helps also to understand transient short-term behavior. We start at t = −20d with an
uninfected state, i.e., 7 × 109 uninfected cells. After 20 days, at t = 0, we add 104 virus particles.
The resulting seven-dimensional trajectory in state space is shown in Figure 8. Projecting this trajectory
to organizations results in a more abstract view of the dynamics, shown as a dashed curved arrow in
Figure 7b. The system starts in organization OHa

2 (uninfected organization), moves after adding virus
particles at t = 0 into organization OHa

5 (infected organization with immune response), and drops after
37 days into organization OHa

4 (immune response active, virus absent).
The projection of a state x to an organization O follows the procedure suggested by Dittrich and

Speroni d.F. [10]: First, we generate a set S of those species whose concentration is greater than a
particular threshold (here: 100 = 1). Then, we generate the closure of this set by adding all species
that can be produced from the set. Finally, we take the largest organization O that is a subset of that
closure. For example: At t = 0 by adding viruses to the system, we have S = {U, V}, whose closure
is the set of all species, which is also an organization, here; thus, the state at t = 0 is projected to
organization OHa

5 . At t = 60d, we have S = {U, X, D}, whose closure is again {U, X, D} and the
largest organization contained is OHa

4 = {U, X}. Thus, as can be seen in Figure 8, the system state is
projected to organization OHa

4 , in which it stays for t > 37d.
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Figure 8. Temporal dynamics of the Handel model. By projecting the seven-dimensional trajectory to
organizations (dotted arrows in Figure 7b) we find three phases: (Phase 1) Until day number 0, there are
solely 7 × 109 uninfected cells U in the system represented by the organization OHa

2 = {U}. (Phase 2)
At day 0, infection is simulated by adding V(0) = 104 virus particles to the system. The resulting state
{U, V} is projected to organization OHa

5 (all species). (Phase 3) Lastly, at day t = 37d past infection the
system settles in the final organization, namely OHa

4 = {U, X}, which is generated by the set {U, X, D}
(see text). The values of the model parameters are (from [24]): λ = 0.25, b = 2.1 × 10−7, g = 4, d = 2,
p = 5 × 10−2, κ = 1.8 × 10−2, c = 10, γ = 7.5 × 10−4, k = 1.8, w = 1, δ = 0.4, f = 2.7 × 10−6, and
r = 0.3. Note that the number of uninfected cells U is not constant after infection as it may seem
from the figure. In fact, after infection, the number of uninfected cells first decreases and than rises
again [24].

3.6. Innate Immune Response and Resistance to Infection (Hernandez Model, He, 2012)

The 13 parameters of the Hernandez Model [26] were fitted to data from many different sources.
The model contains seven variables and 16 reactions (see Figure 9). The species refer to viruses
(V), interferon (F) and natural killer cells (K) as well as four types of respiratory tract epithelial
cells: healthy/uninfected (UH), partially infected (UE), infected (UI) and resistant to infection (UR).
Compared to the Pawelek Model, there are two qualitatively new species: partially infected cells UE
and killers K.

Next, we state some remarks about the reactions:

• There is an infection reaction catalyzed by viruses like in all previous models but with one
difference: during infection, healthy cells UH first transform to partially infected cells UE and only
after that they transform spontaneously to infected cells UI at a rate keUE.

• Interferon catalyzes the transformation of healthy cells to resistant cells UR, like in the Pawelek
Model. However, in the Pawelek Model, interferon removes infected cells. Here, interferon’s
production is catalyzed by infected cells UI at a rate aIUI . There is no further influence of
interferon on any other species.
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• Infected cells are removed by natural killers K, which also delete partially infected cells in this
model. The production of killers K is catalyzed by infected cells UI at a rate ΦKUI .

• Note that here we have an constant inflow of healthy cells UH at a rate SH (first differential equation).
Thus, healthy cells cannot converge to zero.

The Hasse diagram of organizations consists only of two organizations (Figure 9b). For the first time,
the empty set is not an organization because the empty set is not closed due to a constant inflow
of healthy cells UH and killers K, represented by the reaction ∅ → UH and ∅ → K, respectively.
The smallest organization OHe

1 = {UH , K} can be regarded as a state of healthiness. Contrarily, the
second organization OHe

2 contains all species (as in the Miao Model) and therefore can be interpreted
as the infected organism exhibiting immune response to infection.

U̇H = SH − kIUHV − kRUHF − δHUH

U̇E = kIUHV − kEUE − qKUEK

U̇I = kEUE − δIUI − qKUIK

U̇R = kRUHF − δRUR

V̇ = ρVUI − δVV

Ḟ = aIUI − δFF

K̇ = SK + ΦKUI − δKK

(a) ODE model

OHe
2 =

{all species} =
{UH, UE, UI, UR, V, F, K}

OHe
1 = {UH, K}

(b) Hasse diagram of organizations

Figure 9. The Hernandez Model [26] with seven variables: healthy cells (UH), partially infected cell
(UE), infected cells (UI), cells resistant to infection (UR), virus particles (V), interferon (F) and natural
killers (K).

3.7. A Model with More Detailed Immune Response (Cao Model, C, 2015)

The Cao Model [27] consists of 20 parameters and has been derived by referring to experimental
data from ferrets. The model has seven variables and 26 reactions. Like in most of the previous models,
we have (uninfected) target cells (T), infected cells (I), viruses (V), resistant cells (R), and interferon (F).
Furthermore, there are B cells B and antibodies A.

According to the ODE shown in Figure 10a, B cells are only influenced by viruses: viruses support
the production of B cells (rate term m1V), but the more B cells that are present, the more of them are
destroyed by viruses again (term: m1VB). B cells influence only one other species, namely antibodies
B, which they produce. Antibodies A influence only one other species, namely viruses, which are
destroyed by this reaction at rate μVA. Antibodies in turn are influenced by B cells positively and by
viruses negatively.

There are three organizations in this model (Figure 10b): the empty set, the healthy organism
without any infection and without any immune response (OC

2 = {T}) and the organization OC
3

containing all species.

262



Viruses 2019, 11, 449

Ṫ = g(T + R)(1 − T + R + I

Ct
)− β′VT + ρR − φFT

İ = β′VT − δI − κIF

V̇ =
pI

1 + sF
− cV − μVA − βVT

Ṙ = φFT − ρR − ξR

Ḟ = qI − dF

Ḃ = m1V(1 − B)− m2B

Ȧ = m3B − rA − μ′VA

(a) ODE model

OC
3 = {all species} =

{T, I, V, R, F, B, A}

OC
2 = {T}

OC
1 = {}

(b) Hasse diagram of organizations

Figure 10. The Cao Model [27] with seven variables: target cells (T), infected cells (I), viruses (V),
resistant cells (R), interferon (F), B cells (B), and antibodies (A).

3.8. Innate Immune Response and Eclipse Phase (Saenz Model, Sa, 2010)

The Saenz Model [28] requires 12 parameters and was designed to fit experimental in vivo data from
horses [6,7]. The model contains eight variables and 12 reactions (Figure 11a). There are no adaptive
immune response, no dead cells, and no natural killer cells. However, the model contains viruses V
and interferon F. There is an eclipse phase (E1 and E2) here as well as prerefractory and refractory cells.
In particular, epithelial cells are represented by six species: susceptible (T), eclipse phases (E1 and E2),
infectious (I), prerefractory (W), and refractory (R). Thus, the new features are the inclusion of two eclipse
phases and three steps for the transformation of uninfected cells to refractory cells.

Ṫ = −βVT − φFT

Ė1 = βVT − k1E1

Ẇ = φFT − mβVW − aW

Ė2 = mβVW − k2E2

Ṙ = aW

İ = k1E1 + k2E2 − δI

V̇ = pI − cV

Ḟ = nqE2 + qI − dF

(a) ODE model

OSa
4 = {T, R}

OSa
3 = {R}OSa

2 = {T}

OSa
1 = {}

(b) Hasse diagram of organizations

Figure 11. The Saenz Model [28] with eight variables: Epithelial cells in one of the states: susceptible
(T), eclipse phase (E1 and E2), prerefractory (W), refractory (R) and infectious (I). The further variables
are: virus cells (V) and interferon (F).

The Hasse diagram of organizations is composed by four organizations: OSa
1 = {}: the empty set;

OSa
2 = {T}: representing a healthy organism; OSa

3 = {R}: there is no consuming reaction for refractory
cells R; OSa

4 = {T, R}: also representing a healthy organism that contains refractory cells maybe as the
remains of a previous infection.

The Hasse diagram is very similar to that from of the Handel Model. There are only two differences:

• The “full” organization is missing here. For sure, one of the reasons is that there is no reaction
producing susceptible cells T. Thus, when viruses V or interferon F are present susceptible cells T
can not survive and the “full” organization neither.
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• Adaptive immune response is replaced by refractory cells in the organizations here.

3.9. Focusing on Innate and Adaptive Immunity (Hancioglu Model, Hcg, 2007)

The Hancioglu Model [29] contains 28 parameters, 10 variables, and 44 reactions. It has not been
mathematically fitted to data but has been designed to meet specific general criteria [6,7]. The ODEs
(Figure 12a) describe the dynamics of the following 10 species: viruses (V), healthy cells (H), infected
cells (I), interferon (F) and resistant cells (R). The remaining species are new: antigen presenting cells
(M), effector cells (E), plasma cells (P) antibodies (A) and antigenic distance (S). There are no species
for an eclipse phase in this model.

Looking at the reaction network (Figure A8), we can see again a reaction for infection,
i.e., the transformation of healthy cells H into infected cells I catalyzed by viruses V at a rate γHVVH
(single underlined in Figure 12a). Furthermore, interferon F is produced catalytically by antigen
presenting M and infected cells I, decays spontaneously at a rate aFF, and is additionally removed
when converting healthy cells H into resistant cells R by the reaction H + F → R at rate bHFFH (double
underlined in Figure 12a).

The Hancioglu Model has three organizations (Figure 12b):

• The smallest one is OHcg
1 , which contains all the species responsible for the immune response.

• OHcg
1 is a subset of OHcg

2 , which additionally contains species H and R, representing the healthy
organism without infection but with the immune response turned on.

• OHcg
3 is the “full” organization containing all the species of the models and thus representing the

organism with infection and immune response.

Thus, all the organizations represent meaningful states of the organism. However, there is no
organization that only consists of healthy cells without any infection and immune response. Note that
almost all the previous models except for Hernandez have such an organization.

Ḣ = bHD(1 − H − R − I)(H + R) + aRR − γHVVH − bHFFH

İ = γHVVH − bIEEI − aII

V̇ = γVI − γVASAV − γVHHV − αVV − aV1V

1 + aV2V

Ṙ = bHFFH − aRR

Ṁ = (bMD(1 − H − R − I) + bMVV)(1 − M)− aM M

Ḟ = bF M + cFI − bFHHF − aFF

Ė = bEM ME − bEIIE + aE(1 − E)

Ṗ = bPM MP + aP(1 − P)

Ȧ = bAP − γAVSAV − aAA

Ṡ = rP(1 − S)
(a) ODE model

OHcg
3 =

{all species} =
{H, I, V, R, M, F, E, P, A, S}

OHcg
2 = {H, M, F, R, E, P, A, S}

OHcg
1 = {M, F, E, P, A, S}

(b) Hasse diagram of organizations

Figure 12. The Hancioglu Model [29] with 10 variables: viral load (V), healthy cells (H), infected cells
(I), antigen presenting cells (M), interferon (F), resistant cells (R), effector cells (E), plasma cells (P),
antibodies (A) and antigenic distance (S).

3.10. Model with Delay Differential Equations (Bocharov Model, Bo, 1994)

The Bocharov Model [30] contains 49 parameters and was designed to fit experimental in vivo
data from humans [6,7]. It includes 10 variables and 51 reactions (Figure A9). Only here and in the Lee
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Model (below) we have differential equations with delay, i.e., some rates depend on variable values
from the past (Figure 13a). Because the delay does not matter in a steady-state, we can also neglect the
delay when analyzing the chemical organizations of a delay differential equation model.

V̇f = νC + nbCECE − γVFVfF − γVMVf − γVCVfU

Ċ = σVfU − bCECE − bmC

ṁ = bCECE + bmC − αmm

ṀV = γMV M∗Vf − αMMV

ḢE = bE
H [(1 − m

C∗ )ρ
E
HMV(t − τE

H)HE(t − τE
H)− MVHE]− bHE

P MVHEE + αE
H(H∗

E − HE)

ḢB = bB
H [(1 − m

C∗ )ρ
B
HMV(t − τB

H)HB(t − τB
H)− MVHB]− bHB

P MHBB + αB
H(H∗

B − HB)

Ė = bE
P [(1 −

m
C∗ )ρEMV((t − τE))HE(t − τE)E(t − τE)− MVHEE]− bECCVE + αE(E∗ − E)

Ḃ = bB
P [(1 −

m
C∗ )ρBMV(t − τB)HB(t − τB)B(t − τB)− MVHBB] + αE(B∗ − B)

Ṗ = bP
P(1 −

m
C∗ )ρPMV(t − τP)HB(t − τP)B(t − τP) + αP(P∗ − P)

Ḟ = ρFP − γFVFVf − αFF

U̇ =
d
dt
(C∗ − C − m) = −σVfU + αmm

(a) ODE model

OBo
2 = {U, HE, HB, E, B, P, F}

OBo
1 = {HE, HB, E, B, P, F}

(b) Hasse diagram of organizations

Figure 13. The Bocharov Model [30] with 10 variables: infective IAV particles (Vf), IAV-infected cells
(C), destroyed epithelial cells (m), stimulated macrophages (MV), activated helper T cells providing
proliferation of cytotoxic T cells (HE), activated helper T cells providing proliferation and differentiation
of B cells B (HB), activated CTL (E), B cells (B), plasma cells (P), antibodies to IAV (F), and uninfected
epithelial cells (U). Note that, for clarity, we have added U as a state variable, which is only implicitly
represented as U = C∗ − C − m in the original model by Bocharov et al.

Note that this is by far the oldest model analyzed here. The names of the variables are a bit particular
when compared to those of the previously analyzed models. As in all the other models, we have viruses
Vf and infected cells C. Furthermore, there are destroyed epithelial cells m as in the Handel Model. All
other species belong to the immune response. Note that only in this model there is no state variable for
uninfected, healthy cells. Bocharov et al. represent these healthy cells implicitly by subtracting the amounts
of infected-cells C and destroyed epithelial cells m from the initial total amount of target epithelial cells C∗.
Since all the other models analyzed here have a related variable, we inserted the variable U = C∗ −C − m
for uninfected cells together with its ODE to make the model comparable to the others.

Due to the fact that the majority of the species belongs to the immune response, this is the case for
most of the reactions too. These species of the immune response form exactly the organization OBo

1 ,
only macrophages MV are missing.

Similarly to the Hancioglus model, the smallest organization OBo
1 is an organization with immune

response but without infection (C, Vf ). There is only one further organization that contains only one
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more species than OBo
1 , namely uninfected cells U. This organization we already found in three of the

previous models. However, for the first time, there is no bigger organization in this model. Thus, virus
infection is necessarily transient.

3.11. Complex Dual-Compartment Model (Lee Model, L, 2009)

The Lee Model [9] is the most complex model considered here. It contains 48 parameters and was
designed with respect to experimental in vivo data from mice [6,7]. It has 15 variables and 37 reactions
(Figure A10). Like in the Bocharov Model, Lee et al. apply delay differential equations.

Note that this model is the only one analyzed here that distinguishes between lung compartment
and lymphatic compartment. There is one species representing uninfected (healthy) cells Ep and three
species for modelling infection: E∗

P, D∗ and viruses V. The remaining species belong to the immune
response, colored black when naive to infection, while colored green when activated for infection.

Note that we write a species in the organizations in Figure 14b in bold text, if it is “new”, that is,
not contained in neither of its subset organizations. The Hasse diagram contains eight organizations.
The smallest one is OL

1 = {EP, D, HN , TN , BN} and contains exactly the uninfected cells as well as the
naive part of the immune response. The biggest organization contains all species. Between these two
“extreme” organizations are six further organizations containing different parts of the activated part of
the immune response.

ĖP = δE(E0 − EP)− βEEPV

Ė∗
P = βEEPV − kEE∗

PγTE(t − τT)− δE∗E∗
P

V̇ = πVE∗
P − cVV − kVVA(t)

Ḋ = δD(D0 − D)− βDDV

Ḋ∗ = βDDV − δD∗D∗

˙DM = kDD∗(t − τD)− δDM DM

ḢN = δHN (HN0 − HN)− πH1
DM

DM + πH2
HN

ḢE = πH1
DM

DM + πH2
HN + ρH1

DM

DM + ρH2
HE − δH1

DM

DM + δH2
HE

ṪN = δTN (TN0 − TN)− πT1
DM

DM + πT2
TN

ṪE = πT1
DM

DM + πT2
HN + ρT1

DM

DM + ρT2
TE − δT1

DM

DM + δT2
TE

˙BN = δB(BN0 − BN)− πB1
DM

DM + πB2
BN

ḂA = πB1
DM

DM + πB2
BN + ρB1

DM + hHE

DM + hHE + ρB2
BA − δBA BA − πSBA − πLHEBA

ṖS = πSBA − δSPS

ṖL = πLHEBA − δLPL

Ȧ = πASPS + π − ALPL − δAA

(a) ODE model

Figure 14. Cont.
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OL
8 = {all species}={EP, E∗

P, V, D, D∗, DM, HN , HE, TN , TE, BN , BA, PS, PL, A}

OL
7 = {EP, D, D∗, DM, HN , HE, TN , TE, BN , BA, PS, PL, A}

OL
6 = {EP, D, HN , HE, TN , TE, BN , BA, PS, PL, A}

OL
5 = {EP, D, HN , HE, TN , BN , BA, PS, PL, A}

OL
4 = {EP, D, HN , HE, TN , TE, BN}

OL
3 = {EP, D, HN , TN , TE, BN}OL

2 = {EP, D, HN , HE, TN , BN}

OL
1 = {EP, D, HN , TN , BN}

(b) Hasse diagram of organizations

Figure 14. The Lee model [9] which contains 15 variables: uninfected epithelial cells (EP), infected
epithelial cells (E∗

P), virus titer (EID50/ml) (V), immature dendritic cells (D), virus-loaded dendritic
cells (D∗), mature dendritic cells (DM), naive CD4+ T cells (HN), effector CD4+ T cells (HE), naive CD8+
T cells (TN), effector CD8+ T cells (TE), naive B cells (BN), activated B cells (BA), short-lived plasma
(antibody-secreting) B cells (PS), long-lived plasma (antibody-secreting) B cells (PL) and antiviral
antibody titer (A). Note that here we have colored green only those species representing the immune
system when activated.

3.12. Hierarchy of Influenza A Virus Models

In order to construct a hierarchical map of all investigated models, we characterize a model by
a signature of organizations, which is a set of organization types. For example, the signature of the
Handel Model (Figure 7b) is the set {∅, X, X, XX, XXX}. An organization type like XX means that
there is at least one organization that contains uninfected (target) cells (X) and species of the active
immune response (X). The deviation of the signatures for all models is shown in Table 1. Note that we
ignore species colored black. We include the empty set ∅ because this distinguishes models without
any inflow from those that possess an inflow of some species.

Now, we can obtain a partial order among models by defining that a model A is smaller or equal to
another model B (A ≤ B), if the signature of A is a subset of the signature of model B. For example, the
Hernandez Model is smaller than the Lee Model because {XX, XXX} ⊆ {X, XX, XXX}. This partial
order among models leads to a hierarchical map of models, which is visualized by a Hasse-diagram
in Figure 15. Note that a model A that is smaller than a model B according to this partial order can
possess more species and reactions than B.

In Figure 15, we can see that all models have organizations with uninfected, healthy cells (X). There
are models that furthermore have infection (X) and/or immune response (X) in their organizations.
There are exactly two models (Hancioglu and Hernandez Model) with immune response in all their
organizations which means that these models implicitly assume immune response to be active all the
time. Among the models neglecting immune response are those which have infection (Miao Model)
or bacteria (X) (Smith Model) in their organizations and also those that do not (Baccam and Baccam
II Model). For models involving immune response, the situation is more complex. There are those
that only have healthy cells in their organizations (Pawelek and Saenz Models). This means that these
models implicitly exclude infection and immune response from the long run and thus treat them as
transient phenomena a priori. The Bocharov Model is the only one that exhibits only healthy cells and
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immune response in its organizations but no infection. The remaining five models include all kinds of
species (except for bacteria of course) in their organizations.

Table 1. Overview of all models and organization types contained. An organization type like XX

denotes the type of species contained in an organization, according to our coloring scheme. The set of
organization types of a model is called its signature.

Model
Number of
Variables

Number of
Reactions

Number of
Organizations

Organizations & Signature

Baccam [13]
2006

3 4 2 OBa1
1 = ∅

OBa1
2

X

Miao [14]
2010

3 5 3 OM
1 = ∅

OM
2

OM
3

X

X X

Baccam II [13]
2006

4 5 2 OBa2
1 = ∅

OBa2
2 X

Pawelek [23]
2012

5 9 2 OP
1 = ∅

OP
2 X

Smith [15]
2016

5 12 4 OSm
1 = ∅

OSm
2

OSm
3

OSm
4

X

X

X X

Handel [24]
2010

7 12 5 OHa
1 = ∅

OHa
2

OHa
3

OHa
4

OHa
5 = {all}

X

X

X

X

X

X X

Hernandez [26]
2012

7 16 2 OHe
1

OHe
2 = {all}

X

X

X

X X

Cao [27]
2015

7 26 3 OC
1 = ∅

OC
2

OC
3 = {all}

X

X X X

Saenz [28]
2010

8 12 4 OSa
1 = ∅

OSa
2 , OSa

3 , OSa
4 X

Hancioglu [29]
2007

10 44 3 OHcg
1

OHcg
2

OHcg
3 = {all}

X

X

X

X

X X

Bocharov [30]
1994

10 45 2 OBo
1

OBo
2

X

X X

Lee [9]
2009

15 37 8 OL
1

OL
2 , OL

3 , OL
4 , OL

5 , OL
6

OL
7 , OL

8 = {all}

X

X

X

X

X X

By looking at the hierarchy of models, it becomes evident that there is space for more models.
Above the Smith and Handel Model, there could be one in which virus infection as well as bacterial
coinfection can be simultaneously persistent (“fully persistent models” denote such hypothetical
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models in Figure 15). Another extreme case would be a “fully-transient model” in which we have only
transient dynamics and all species would finally tend to zero. Such a model would be the smallest one
in our partial order of models (Figure 15).

The derived hierarchical map of models might be used to choose the most appropriate model for
a particular domain and data set: The model should contain at least one organization for each set of
species that were experimentally observed to survive in the long run. If there are several models with
such organizations, the one with the smallest organizations might be chosen to provide maximum
efficiency in modeling. Table 1 as well as Figure 15 might guide the selection process, complementing
established quantitative selection methods, such as those using the area under the viral load curve [31].

"Fully-persistent models"
∅, . . . , XXXX

Handel(7)
∅, X, X, XX, XXX

Smith(5)
∅, X, X, XX

Hancioglu(10)
X, XX, XXX

Lee(15)
X, XX, XXX

Cao(7)
∅, X, XXX

Miao(3)
∅, X, XX

Bocharov(10)
X, XX

Hernandez(7)
XX, XXX

Baccam(3) Pawelek(5)
Baccam(4) Saenz(8)

∅, X

"Fully-transient
models" ∅

Models without
immune response Models including immune response

Figure 15. Hasse-diagram of the hierarchy of IAV models with respect to their long-term behaviour.
In brackets (), we added the number of species of each model. Underneath (marked by colors) the kinds
of species contained in the organizations belonging to each model. The meaning of the four colors is
as follows: Species belonging to the healthy state of the organism are colored blue, those belonging
to the immune response are colored green, those belonging to infection like infected cells and viruses
are colored magenta, and bacteria from bacterial co-infection are colored orange. Horizontally, the
diagram consists of four lines. The models in the lowest line contain organizations with exactly two
different kinds of species (colors) (including the empty set). In the second line above, there are three
different combinations of species (colors) to be found in each model. There is only one model in each of
the highest two lines: The Smith model [4] is the only one with bacteria and contains four different
combinations of colors. In the Handel Model, there are even five different combinations of colors out of
24 = 16 possible combinations.
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4. Conclusions

By analyzing twelve published IAV immune system models, we have shown that we can compute,
independently of quantitative kinetic data like rate constants or kinetic laws, all chemical organizations
of a typical IAV model, which provides a hierarchical decomposition of the model and an overview of
its potential long-term behavior.

It turned out that the derived organizations are meaningful with respect to the model’s domain.
That is, the composition of species inside an organization can be related to a particular state of the
organism, like “healthy”, “infected”, or “virus controlled by active immune response”, and it is possible
to annotate organizations accordingly.

By deriving an organizational signature from a model’s organizations, we obtained a novel
classification scheme and a hierarchy of models with respect to their qualitative long-term behavior.
Although the classification via organizational signature is quite coarse-grained, the analysis revealed
still a high diversity of models. That is, the models have different potentiality with respect to which
variables persist in the long turn and which vanish. Furthermore, the hierarchy map of models contains
various empty territories, suggesting space for potential future models.

We envision as a practical use that our method and results can help to select the right model
for a particular situation, to relate other models to the present ones, to obtain an overview of the
potential long-term dynamics of complex models, and to support model development, for example, by
providing a rapid consistency check. Note that measured long-term as well as transient data can be
explained with respect to organizations, by defining a projection from a system state to an organization,
as demonstrated for the Handel model (Figures 7 and 8).

In addition, our approach is not limited to IAV models, but can be directly applied to other viruses
in the same way since their dynamics are similarly modeled by ODEs [32]. Furthermore, our approach
is open to include other dynamically relevant components like treatment and vaccination strategies.
Another task for future work would be to study the transient virus immune system in more detail, for
example, by mapping the basin of attraction of each organization or by systematically analyzing the
transition dynamics in-between organizations [33,34].
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Appendix A

Here you find the sets of reactions for all example models presented in this paper. Written in
brackets behind each reaction is its corresponding term from the differential equations:

R1 : T + V → I + V (βTV)

R2 : I → ∅ (δI)
R3 : I → I + V (pI)
R4 : V → ∅ (cV)

Figure A1. Reactions of Baccam model [13].
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R1 : EP → 2EP (ρEEP)

R2 : EP + V → E∗
P + V (βαEPV)

R3 : E∗
P → ∅ (δE∗E∗

P)

R4 : E∗
P → E∗

P + V (παE∗
P)

R5 : V → ∅ (cVV)

Figure A2. Reactions of Miao model [14].

R1 : T + V → I1 + V (βTV)

R2 : I1 → I2 (kI1)

R3 : I2 → ∅ (δI2)

R4 : I2 → I2 + V (pI2)

R5 : V → ∅ (cV)

Figure A3. Reactions of Baccam model [14] with delayed virus production.

R1 : T + V → I + V (βVT)
R2 : F + T → F + R (φFT)
R3 : R → T (ρR)
R4 : I → ∅ (δI)
R5 : I + F → F (κ IF)
R6 : I → I + V (pI)
R7 : V → ∅ (cV)

R8 : I → I + F (qI)
R9 : F → ∅ (dF)

Figure A4. Reactions of Pawelek model [23].

R1 : D → U (λD)

R2 : U + V → E + V (bUV)

R3 : E → I (gE)
R4 : I → D (dI)

R5 : I → I + V (
pI

1 + κF
)

R6 : V → ∅ (cV)

R7 : U + V → U (γbUV)

R8 : V + X → X (kVX)

R9 : V → V + F (wV)

R10 : F → ∅ (δF)
R11 : V → V + X ( f V)

R12 : X → 2X (rX)

Figure A5. Reactions of Handel model [24].
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R1 : ∅ → UH (SH)

R2 : UH + V → UE + V (kIUHV)

R3 : UH + F → UR + F (kRUH F)
R4 : UH → ∅ (δHUH)

R5 : UE → UI (kEUE)

R6 : UE + K → K (qKUEK)
R7 : UI → ∅ (δIUI)

R8 : UI + K → K (qKUIK)
R9 : UR → ∅ (δRUR)

R10 : UI → UI + V (ρVUI)

R11 : V → ∅ (δVV)

R12 : UI → UI + F (aIUI)

R13 : F → ∅ (δFF)
R14 : ∅ → K (SK)

R15 : UI → UI + K (ΦKUI)

R16 : K → ∅ (δKK)

Figure A6. Reactions of Hernandez model [26].

R1 : V + T → V + E1 (βVT)
R2 : F + T → F + W (φFT)
R3 : E1 → I (k1E1)

R4 : V + W → V + E2 (mβVW)

R5 : W → R (aW)

R6 : E2 → I (k2E2)

R7 : I → ∅ (δI)
R8 : I → I + V (pI)
R9 : V → ∅ (cV)

R10 : E2 → E2 + F (nqE2)

R11 : I → I + F (qI)
R12 : F → ∅ (dF)

Figure A7. Reactions of Saenz model [28].
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R1 : I → I + V (γV I)
R2 : S + A + V → S + A (γVASAV)

R3 : H + V → H (γVH HV)

R4 : V → ∅ (αVV)

R5 : V → ∅ (
aV1V

1 + aV2V
)

R6 : H → 2H (bHD H)

R7 : R → R + H (bHDR)

R8 : H → ∅ (−bHD H2)

R9 : R + H → R (−2bHD HR)

R10 : R + H → R (−bHDR2)

R11 : I + H → I (−bHD IH)

R12 : I + R + H → I + R (−bHD IR)
R13 : R → H (aRR)
R14 : V + H → V + I (γHVVH)

R15 : F + H → F + R (bHFFH)

R16 : E + I → E (bIEEI)
R17 : I → ∅ (aI I)
R18 : ∅ → M (bMD)

R19 : M → ∅ (−bMD M)

R20 : H + M → H (−bMD H)

R21 : H + M → H + 2M (bMD HM)

R22 : R + M → R (−bMDR)
R23 : R + M → R + 2M (bMDRM)

R24 : I + M → I (−bMD I)
R25 : I + M → I + 2M (bMD IM)

R26 : V → V + M (bMVV)

R27 : V + M → V (−bMVVM)

R28 : M → ∅ (aM M)

R29 : M → M + F (bF M)

R30 : I → I + F (cF I)
R31 : H + F → H (bFH HF)
R32 : F → ∅ (aFF)
R33 : M + E → M + 2E (bEM ME)
R34 : I + E → I (bEI IE)
R35 : ∅ → E (aE)

R36 : E → ∅ (−aEE)
R37 : M + P → M + 2P (bPM MP)
R38 : ∅ → P (aP)

R39 : P → ∅ (−aPP)
R40 : P → P + A (bAP)
R41 : S + A + V → S + V (γAVSAV)

R42 : A → ∅ (aA A)

R43 : P → P + S (rP)
R44 : P + S → P (−rPS)

Figure A8. Reactions of Hancioglu model [29].
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R1 : C → C + Vf ()

R2 : C + E → C + E + Vf ()

R3 : Vf + F → F ()

R4 : Vf → ∅ ()

R5 : Vf → ∅ ()

R6 : Vf + C → 2Vf + C ()

R7 : m + Vf → m + 2Vf ()

R8 : Vf + U → Vf + C ()

R9 : Vf + C → Vf + U ()

R10 : m + Vf + C → m + Vf + U ()

R11 : C + E → E + m ()

R12 : C → MV ()

R13 : m → U∅ ()

R14 : Vf → Vf + MV ()

R15 : MV → ∅ ()

R16 : MV + HE → MV + 2HE ()

R17 : m + MV + HE → m + MV ()

R18 : MV + HE → MV ()

R19 : MV + HE + E → MV + E ()

R20 : ∅ → HE ()

R21 : HE → ∅ ()

R22 : MV + HB → MV + 2HB ()

R23 : m + MV + HB → m + MV ()

R24 : MV + HB → MV ()

R25 : MV + HB + B → MV + B ()

R26 : ∅ → HB ()

R27 : HB → ∅ ()

R28 : MV + HE + E → MV + HE + 2E ()

R29 : m + MV + HE + E → m + MV + HE ()

R30 : MV + HE + E → MV + HE ()

R31 : C + E → C ()

R32 : ∅ → E ()

R33 : E → ∅ ()

R34 : MV + HB + B → MV + HB + 2B ()

R35 : m + MV + HB + B → m + MV + HB ()

R36 : MV + HB + B → MV + HB ()

R37 : ∅ → B ()

R38 : B → ∅ ()

R39 : MV + HB + B → MV + HB + B + P ()

R40 : m + MV + HB + B + P → m + MV + HB + B ()

R41 : ∅ → P ()

R42 : P → ∅ ()

R43 : P → P + F ()

R44 : Vf + F → Vf ()

R45 : F → ∅ ()

Figure A9. Reactions of Bocharov model [30].
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R1 : ∅ → E ()

R2 : E → ∅ ()

R3 : E + V → V + E∗
p ()

R4 : E∗
p + TE → TE ()

R5 : E∗
p → ∅ ()

R6 : E∗
p → E∗

p + V ()

R7 : V → ∅ ()

R8 : V + A → A ()

R9 : ∅ → D ()

R10 : D → ∅ ()

R11 : D + V → V + D∗ ()

R12 : D∗ → D∗ + DM ()

R13 : D∗ + DM → D∗ ()

R14 : DM → ∅ ()

R15 : ∅ → HN ()

R16 : HN → ∅ ()

R17 : DM + HN → DM + HE ()

R18 : DM + HE → DM + 2HE ()

R19 : DM + HE → DM ()

R20 : ∅ → TN ()

R21 : TN → ∅ ()

R22 : DM + TN → DM + TE ()

R23 : DM + TE → DM + 2TE ()

R24 : DM + TE → DM ()

R25 : ∅ → BN ()

R26 : BN → ∅ ()

R27 : DM + BN → DM + BA ()

R28 : DM + BA → DM + 2BA ()

R29 : HE + BA → HE + 2BA ()

R30 : BA → ∅ ()

R31 : BA → PS ()

R32 : HE + BA → HE + PL ()

R33 : PS → ∅ ()

R34 : PL → ∅ ()

R35 : PS → PS + A ()

R36 : PL → PL + A ()

R37 : A → ∅ ()

Figure A10. Reactions of Lee model [9].
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Abstract: Viral ecology of terrestrial habitats is yet-to be extensively explored, in particular the
terrestrial subsurface. One problem in obtaining viral sequences from groundwater aquifer samples
is the relatively low amount of virus particles. As a result, the amount of extracted DNA may not be
sufficient for direct sequencing of such samples. Here we compared three DNA amplification methods
to enrich viral DNA from three pristine limestone aquifer assemblages of the Hainich Critical Zone
Exploratory to evaluate potential bias created by the different amplification methods as determined
by viral metagenomics. Linker amplification shotgun libraries resulted in lowest redundancy among
the sequencing reads and showed the highest diversity, while multiple displacement amplification
produced the highest number of contigs with the longest average contig size, suggesting a combination
of these two methods is suitable for the successful enrichment of viral DNA from pristine groundwater
samples. In total, we identified 27,173, 5,886 and 32,613 viral contigs from the three samples from
which 11.92 to 18.65% could be assigned to taxonomy using blast. Among these, members of the
Caudovirales order were the most abundant group (52.20 to 69.12%) dominated by Myoviridae and
Siphoviridae. Those, and the high number of unknown viral sequences, substantially expand the
known virosphere.

Keywords: viral metagenome; groundwater; aquifer; AquaDiva; sequencing library preparation

1. Introduction

Groundwater systems are important compartments of the global hydrological cycle. They donate
about 30% of all freshwater sources [1] and provide important ecosystem services. For example,
purification and storage of water, active biodegradation of anthropogenic contaminants and nutrient
recycling [2]. Many of these services are directly linked to the presence of microorganisms [2,3]. Studies
in particular in marine systems have significantly contributed to a better understanding of viruses and
their impacts on the mortality, diversity and genetic landscape of their microbial hosts [4–6]. However,
only recently, and only in a limited number of surveys, has the potential role of viruses been explored
in terrestrial subsurface systems [7–11].
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In theory, metagenomics enables the identification and genomic characterisation of all
(micro)organisms present in a sample, including viruses [12]. However, the proportion of viral
sequences within a metagenome is usually far lower than for other organisms, leading to limitations
in their detection. Especially, pristine aquifers are characterised by low microbial biomass and
low abundances of virus particles [9,13,14], which might make their detection even more difficult.
Size filtration or density-based enrichment methods are therefore widely used to concentrate virus
particles from environmental samples [15,16]. However, a significant obstacle in applying metagenomics
for pristine aquifers is the still too low amount of DNA required for the direct sequencing of such
samples, making amplification techniques mandatory to further enrich viral nucleic acids. It is however
widely known that DNA amplification is a source of bias that may lead to inaccurate conclusions after
sequence analysis [17]. Three amplification techniques are commonly used to enrich low amounts of
DNA [17,18], i.e., (i) linker amplification shotgun libraries (LASL) [19,20]; (ii) sequence-independent,
single-primer amplification (SISPA) [21,22]; and (iii) multiple displacement amplification (MDA) [23,24].
Each method has its own potential source of bias. LASL relies on DNA fragmentation and subsequent
linker ligation to blunt-end repaired DNA molecules prior to amplification, using primer oligos that
bind to the linker sequences [19,25]. Linker ligation efficiency might be one source of bias, especially
for very low amounts of DNA [26]. However, previous studies demonstrated that as little as a few pg
to ng of DNA is sufficient for low amplification biases [26,27]. LASL may, in addition, be inefficient in
recovering ssDNA viruses due to the double-stranded nature of linker DNA molecules [28] though
this has recently been overcome with an adapted LASL protocol [29]. SISPA is built upon the use of
pseudo-degenerated primer oligonucleotides, containing a stretch of random nucleotides at their 3’-end
and a defined sequence at their 5’-end [21], and has successfully been applied to recover both RNA
and DNA virus sequences [22,30]. It has, however, been reported that SISPA has a strong amplification
bias resulting in an uneven sequencing read distribution and hence overrepresentation of some
genome parts while other parts were completely uncovered. In addition, SISPA negatively affects the
detection of low abundant genomes [31]. MDA works under isothermal conditions [32] with very low
amounts of input DNA, random hexamer primer oligonucleotides and high fidelity as well as strand
displacement functions of the phi29 polymerase [23]. Several sources of bias have been identified
for phi29 amplification, including chimera formation [33], discontinuous amplification of linear
DNA molecules [34] and preferential amplification of circular ssDNA molecules [35]. Recent studies
evaluated different library preparation protocols using low input-DNA to assess the reconstruction
of microbial communities from metagenomes [36,37]. Similar studies have been performed for the
identification of virus sequences from, for example, seawater and human samples [17,35]. Despite
these advances, to our knowledge no study has to date assessed and benchmarked sequence library
preparation protocols for the identification of viral sequences from pristine aquifer groundwaters.

The Hainich Critical Zone Exploratory (Hainich CZE) in central Germany is an infrastructure
designed to, among others, investigate the diversity, identity and abundance of microorganisms in the
Hainich aquifers. In addition, analysis of metabolic potential and activities of microorganisms will be
linked to physico-chemical parameters in spatial and temporal scales [38]. Here we sampled three
carbonate-rock aquifer assemblages of the Hainich CZE, which represent a pristine and uncontaminated
aquifer [38]. One problem in obtaining viral sequences from groundwater samples is the low amount
of DNA (usually a pico- to few nanograms) that was extracted from isolated virus particles. The aim of
this project is therefore two-fold. The first aim is to evaluate different DNA amplification techniques
that may offer a sufficient amount of DNA for high-throughput sequencing. In addition, these methods
should have a low amplification bias to reflect the natural diversity of the analysed samples. The second
aim consisted of evaluating different viral sequence recovery tools to provide first insights on which
viruses are present in the Hainich CZE groundwater aquifers.
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2. Materials and Methods

2.1. Sample Collection

Groundwater samples were taken from three Hainich CZE aquifer wells in Thuringia, Germany,
within the framework of the Collaborative Research Centre AquaDiva (http://www.aquadiva.uni-jena.
de) (CRC 1076) [38]. The sampling site was located in the agriculturally used midslope and footslope
regions of the Hainich low-mountain range. The three wells were drilled to depths of 50 m (H53), 65 m
(H52) and 88 m (H51). H53 and H52 reflect anoxic conditions while oxic conditions prevailed for H51.
A detailed description of hydrochemical and geostructural parameters can be found elsewhere [39,40].

Ten liters of groundwater (with approximately 2.3 × 105 (SD: 1.2 × 104) viral particles per milliliter)
were collected from each well during a sampling campaign in May 2015. Water was filtered through
200 nm pore filters using a cross-flow system (Sartorius, Göttingen, Germany). Samples were then
enriched for viral particles by filtration through 35 kDa filters using the same system. Approximately
60 mL were retained and further concentrated by ultracentrifugation at 22,000× g for 2 h and 4 ◦C. The viral
particle containing pellet was resuspended in 500 μL TM buffer (50 mM Tris HCl, 10 mM Magnesium
sulfate at pH 7.5). One volume of chloroform was given to the samples to remove microsized prokaryotes.
The upper phase, intended for DNA extraction, was treated with DNase I to remove free DNA.

2.2. DNA Extraction, Library Construction and Sequencing

Viral DNA was extracted as described previously [20]. Viral DNA concentration was determined
using the Qubit® dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) resulting in
total DNA amounts of 31.8 ng (H51), 5.4 ng (H52) and 25.9 ng (H53). DNA was divided into four
parts to prepare four libraries for each sample. Non-amplified shotgun libraries (NASL): using a
Covaris ultrasonicator, DNA was sheared to approx. 350 bp fragments and libraries were prepared
with a TruSeq DNA PCR-Free Library Prep Kit (Illumina, San Diego, CA, USA) according to the
manufacturer’s instructions. Linker amplification shotgun libraries (LASL): DNA was sheared to
approx. 350 bp fragments as mentioned above and LASL was performed with a NEBNext Ultra
DNA Lib Prep Kit (New England Biolabs, Ipswich, MA, USA) as recommended by the manufacturer
including 12 PCR cycles to enrich adaptor-ligated DNA. Single-primer amplification (SISPA): PCR was
performed by ten cycles using random octamer primers that were linked to a specific primer sequence
followed by amplification using a 1:9 mixture of random octamers and a primer targeting the specific
primer sequence as described previously [41]. Multiple displacement amplification (MDA): DNA was
subjected to phi29 amplification at 25 ◦C for 8 h using the illustra GenomiPhi V2 DNA Amplification
Kit (Thermo Fisher Scientific) as described in the manual. PCR amplicons for the latter two libraries
were purified using the Sureclean reagent (Bioline, Luckenwalde, Germany), fragmented as described
above and libraries were prepared as described for NASL. Sequencing was performed on one lane of
an Illumina HiSeq 2500 system to generate 100-bp paired-end reads.

2.3. Sequencing Read Processing and Assembly

PhiX contaminants were removed, SISPA primer sequences were clipped and raw sequencing
reads were quality checked using Trimmomatic [42] and low-quality bases were trimmed from both
ends. Reads were screened with a 4-base wide sliding window until the remaining sequences had a
Phred-score of at least 15 and a minimum length of 36 nt. Sequencing read redundancy was identified
by clustering at 90% sequencing read identity using CD-hit v.4.6 [43,44].

Sequencing reads were independently assembled for each sampling site and library preparation
using metaSPAdes [45,46] and SOAPdenovo-Trans [47]. In addition, cross-assemblies were performed
for each sampling site including all reads from LASL, SISPA and MDA libraries. We used the
transcriptome assembler SOAPdenovo-Trans in addition to SPAdes because recent analyses revealed
this assembly tool as very efficient for the assembly of RNA virus genomes [48]. Further analyses
suggested this might be also true for the assembly of DNA virus genomes.
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2.4. Viral Contig Recovery

Three viral sequence identification tools were used to recover viral contigs, i.e., VirSorter [49],
VirFinder [50] and VrAP (https://www.rna.uni-jena.de/research/software/vrap-viral-assembly-pipeline/).
VirSorter is based on the identification of viral hallmark genes, enrichment in hypothetical proteins and
other viral signatures [49]. Only contigs identified as VirSorter categories 1 and 2 (higher confidence
predictions) were retained for further analysis. VirFinder is a kmer based tool for the identification of
viral contigs from metagenomes with improvements especially for the detection of short viral contigs [50].
Contigs with a p-value < 0.01 were used for further analysis. These two detection tools were completed
by using VrAP, a novel de novo genome assembly pipeline especially designed for viruses. The pipeline is
able to assemble complete genomes of viruses representing new strains and species, as well as prototypes
of new genera and families. VrAP is based on the genome assembler SPAdes [45] combined with an
additional read correction [51,52] and several filter steps. The pipeline classifies the contigs to distinguish
host from viral sequences by annotation and open reading frame (ORF) density scores. By applying the
ORF density method we were able to identify potential novel viruses without any sequence homology to
known references (manuscript in preparation).

2.5. Virome Diversity Measures and Comparison of Library Preparation Methods

Nonpareil [53–55] was used with default settings to estimate diversity and coverage of virome
datasets. Viral reads present in one or more datasets reflecting LASL, SISPA and MDA per sampling
site were identified as follows. Redundancy was removed for each dataset by CD-hit-est clustering at
95% identity. A database was created containing all viral contigs and, using Bowtie2 [56], read cluster
per library preparation method and sampling site were mapped to the database. Mapped clusters were
extracted, counted and overlapping information were generated using SAMtools [57]. Viral contigs were
compared between sites by an all-versus-all clustering approach (95% identity) with CD-hit-est-2D [44].

Venn diagrams were computed in R [58] using the package “venneuler” (https://cran.r-project.
org/web/packages/venneuler/index.html).

2.6. Viral Taxonomic Assignment

All viral contigs per sampling site, i.e., contigs identified from all virus identification tools and
library preparation methods, were combined (resulting in three datasets) and redundancies were
removed by clustering with CD-hit-est at 95% nt identity. Open reading frames (ORFs) were translated
from these contigs using prodigal [59] and aligned to a viral RefSeq protein database (February 2019)
using DELTA-BLAST [60] with an e-value cut off of 10−3. Hits were sorted by e-value and bit score and
ORFs with most significant hits were aligned to the respective contigs using an in-house python script
(Supplementary Information), resulting in one hit per contig. Gene sharing networks based on shared
protein clusters (PCs) between viral genomes were calculated with vConTACT2 [61,62] on the iVirus
platform [63] and were displayed with Cytoscape [64]. DNA contamination from cellular organisms
was determined using EMIRGE [65].

2.7. Data Availability

Sequence read raw data have been made available at Sequence Read Archive accession:
PRJNA530103.

3. Results

3.1. Raw Sequencing Output Statistics

The first aim of this study was to evaluate different DNA amplification techniques that may result
in a sufficient amount of viral DNA for high throughput sequencing. We therefore compared three
DNA amplification methods, i.e., LASL, SISPA and MDA. NASL was used as control.

281



Viruses 2019, 11, 484

MDA produced highest (quality trimmed) sequencing read numbers followed by SISPA and
LASL as compared to NASL that exhibited lowest read numbers (Table S1). Significant differences
(ANOVA) in quality-trimmed sequencing output were observed between NASL-MDA, NASL-SISPA
and SISPA-MDA (Table 1).

Table 1. P-values of analysis of variance (ANOVA) of raw sequencing read and read cluster numbers
between the different library preparation methods.

Number of Raw Reads

Library
Preparation NASL LASL SISPA MDA

NASL n/a >0.05 0.008 0.002
LASL n/a >0.05 0.023
SISPA n/a >0.05
MDA n/a

Clusters at 90% Read Identity

Relative proportion Number of clusters
Library

Preparation NASL LASL SISPA MDA NASL LASL SISPA MDA

NASL n/a <0.001 >0.05 >0.05 n/a 0.018 >0.05 0.008
LASL n/a <0.001 <0.001 n/a >0.05 >0.05
SISPA n/a >0.05 n/a >0.05
MDA n/a n/a

NASL: non-amplified shotgun library; LASL: linker amplification shotgun libraries; SISPA: single-primer
amplification; MDA: multiple displacement amplification.

Read quality of all libraries was >97% except for libraries H51 LASL and H52 LASL for which
33.78% and 28.13% of the reads were discarded after quality trimming. However, no significant
differences (ANOVA) in quality between any of the library preparation methods was observed.

PCR amplification bias may influence the evenness among sequencing reads. For example,
GC-rich primers and primers with GC-stretches at their 3’-end, both present in a random primer mix,
may anneal more efficiently to a target sequence than AT-rich primer oligos do. As a result, amplicons
amplified from such target sequences may be favored during the amplification process what in turn
leads to high numbers of identical or related DNA molecules. We therefore clustered all quality-trimmed
sequencing reads with a 90% cut-off to remove this redundancy. LASL libraries produced the lowest
redundancy (41.7 to 60.7% relative proportion of clusters to sequencing read numbers), with significant
differences not only to non-amplified libraries (10.8 to 21.3 relative proportion of clusters to sequencing
read numbers) but MDA libraries (9.1 to 17.0% relative proportion of clusters to sequencing read
numbers) and SISPA libraries (5.9 to 7.4 relative proportion of clusters to sequencing read numbers)
(Table 1). These data suggest an amplification bias during PCR with random primer oligomers.
However, MDA libraries (together with LASL libraries) still resulted highest average numbers of read
clusters (Table S1). The presence of many repetitive and homopolymeric sequencing reads (possibly
sequencing artefacts) may explain the low proportion of clustered reads in NASL libraries.

3.2. Data Set Comparison

We used Nonpareil, i.e., a kmer based approach that examines the degree of overlap among
individual sequence reads, to determine redundancy [53–55] among the individual reads to further
assess the average coverage created from the different library data sets. NASL, SISPA and MDA libraries
seem to reach a nearly full coverage while LASL libraries vary between ~20 to 80% coverage (Figure 1).
However, diversity among libraries increased from NASL to SISPA, MDA and LASL, the latter being
the most diverse libraries (Figure 1). These results strongly indicate the target discrimination of SISPA
and MDA during PCR that results in uneven coverage of the viral metagenomes and in addition,
may fail to target low abundant sequences. NASL sequencing reads dominantly consisted of repetitive
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and homopolymeric sequences (see also below), with most likely too low an input of DNA explaining
the observed Nonpareil curve for these libraries.

Figure 1. Comparison of Hainich groundwater viromes diversity and coverage as function of sequencing
effort using Nonpareil curves [53–55]. Estimated coverage is shown as dotted lines, true coverage as
solid lines. Estimated diversity is shown with arrows on the x-axis. Horizontal dotted line shows
95% coverage. Viral metagenome coverage, actual sequencing effort, required sequencing effort and
kmer-based diversity for each library are shown in the right panel.

We were further interested in both, the number of viral reads that were exclusively detected by
one of the library preparation methods and those reads that were identified from more than one library
preparation method. For this, redundancy removed reads (i.e., reads that clustered at 90% identity) of
LASL, SISPA and MDA libraries were independently mapped to viral contigs per individual sampling
site (i.e., all viral contigs that were identified by the three virus identification tools and cross-assemblies)
and counted. MDA libraries produced most reads (average: 350 k) followed by LASL (average: 143 k).
Least reads were identified from SISPA libraries (average: 64 k). Overlapping information (reads found
in more than one library) was rather low with 0.27 to 4.64% of reads present in all three libraries while
0.07 to 14.77% of reads were identified by two libraries (Figure 2). These data indicate target sequence
discrimination between each of the library preparation methods.
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Figure 2. Overlap of sequencing read cluster (90% identity) information identified by library preparation
methods, independently shown for each sampling site. Non amplified sequencing libraries (NASL)
were not included in the analysis due to the homopolymeric and repetitive nature of sequences obtained
from these libraries.
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3.3. Assembly Statistics and Evaluation of Viral Identification Tools

Using both, SPAdes and SOAPdenovo-Trans, assemblies from non-amplified libraries completely
failed due to repetitive and homopolymeric sequences. We therefore excluded these datasets from
further analysis. Contig numbers tend to be higher for LASL and MDA libraries than for SISPA libraries
(LASL-SISPA: p = 0.062, SISPA-MDA: p = 0.087; statistical test: one-way ANOVA) when assembled
with SPAdes. Similar results were observed for SOAPdenovo-Trans assemblies (LASL-SISPA: p = 0.052,
SISPA-MDA: p = 0.028; statistical test: one-way ANOVA). In addition, MDA library assemblies
produced longer contigs (N50) when compared to LASL and SISPA (p = 0.001 (SPAdes), p < 0.001
(SOAPdenovo-Trans); statistical test: one-way ANOVA) (Figure 3, Table S2). A comparison (student’s
t-test) of the two assembly tools showed that SOAPdenovo-Trans may tend to produce longer contigs
(p = 0.084), while there is no significant difference in the average contig size (N50) (p = 0.2972).

Figure 3. Number of contigs (A) and N50 (B) produced by sequence library preparation
methods and assembly tools. Differences between library preparation methods were tested using
analysis of variance (ANOVA). SOAPd: SOAPdenovo-Trans, NASL: non-amplified shotgun library,
LASL: linker amplification shotgun libraries, SISPA: single-primer amplification, MDA: multiple
displacement amplification.

Viral contigs (as identified by VirSorter, VirFinder and VrAP obtained from cross-assemblies) were
clustered at 95% identity to determine a core set of sequences among the sampling sites. Only 37 contigs
(0.5%) were shared by the three viromes indicating there is at least a minor common core set in the
groundwater aquifers. The amount of shared contigs increased from 0.85% (H51 and H52) and 1.04%
(H52 and H53) to 2.85% (H51 and H53) when two viromes were compared. However, the majority of
viral contigs is exclusive for the respective virome (Figure 4). The overall viral contig number from
H52 is rather low compared to H51 and H53, most likely due to the lower amount of DNA extracted
from this sample. This might explain the lower contig overlap of H52 with H51 and H53, respectively,
than the overlap of H51 and H53.

We used three different viral sequence identification tools that are based on the detection of viral
hallmark genes (VirSorter), kmer distribution (VirFinder) and orf density (VrAP) (see more detailed
description in the Materials and Methods section). VirFinder and VrAP significantly identified a
higher number of viral contigs than VirSorter (One-way ANOVA p < 0.001). The size of viral contigs
obtained by VirSorter and VirFinder were in contrast significantly higher than for VrAP (one-way
ANOVA p < 0.05). However, each tool identified viral contigs that were not recognized by the other
two revealing an advantage in the use of several identification tools for the recovery of viral sequences.
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Figure 4. The venn diagram presents numbers of unique and shared viral contigs among the different
viromes. Cross-assembled viral contigs (as identified by VirSorter, VirFinder and VrAP) were compared
between sites by an all-versus-all clustering approach (95% identity) with CD-hit-est-2D [44].

3.4. First Insights into Viral Taxonomic Composition of Hainich Groundwater

Using cross-assembled contigs (assemblies including sequencing reads from LASL, SISPA and
MDA per sampling site) and a set of three viral sequence recovery tools, we identified 27,173 (H51),
5,886 (H52) and 32,613 (H53) viral contigs from the Hainich groundwater samples (Figure 3; Table S3).
These contigs were assembled from 31.19% (H51), 52.08% (H52) and 28.41% (H53) of the quality
trimmed sequence reads. Among these reads we identified 19 Small subunit ribosomal ribonucleic
acid sequences (8 bacterial 16S, 11 unclassified) demonstrating a low contamination with DNA from
cellular organisms. Only 14.81% (H51), 18,65% (H52) and 11.92% (H53) of the viral populations
could be assigned to taxonomy using delta-blast (Figure 5A). Most of them were assigned to dsDNA
viruses dominated by the order Caudovirales (H51: 69.12%, H52: 58.20%, H53: 62.40%). Within
the Caudovirales, members of the Myoviridae (40 to 46.5%) and Siphoviridae (40.7 to 41.9%) families
were most abundant (Figure 5B, Figure S1). These findings are not surprising since Caudovirales have
previously been presented as the most abundant group of viruses in environmental ecosystems [8,66,67].
Other identified dsDNA virus sequences belonged, for example, to the amoeba infecting giant virus
families Marseilleviridae and Mimiviridae, to the algae infecting Phycodnaviridae family whose hosts has
been shown to be present in groundwater [68], and invertebrate-infecting viruses such as Iridoviridae
and Poxviridae (Figure 5B). Surprisingly, we identified only a small number of circular ssDNA viruses
(Figure 5B). These viruses have been revealed as an abundant group in other environments [69,70].
We used Phi29 polymerase in MDA that preferentially amplifies circular ssDNA [35] and one could
expect a bias towards overrepresentation of circular ssDNA genomes. Although this study is only a
first snapshot into the Hainich groundwater virome we speculate that circular ssDNA viruses are rare
in this environment. A small fraction of these DNA viromes was assigned to RNA viruses, most likely
due to PCR errors and incomplete/erroneous virus reference databases.
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Figure 5. Taxonomic assignment of viral contigs identified from cross-assemblies. (A) pie charts present
relative and absolute abundance of viral contigs after blastp analysis. (B) Taxonomic profile of viral
contigs as classified by blastp (viral contigs with blast hits in figure A). Data were visualized with
Pavian [71].

However, a high number of blast-based taxonomy assigned contigs could not be affiliated to
deeper taxonomic levels but have similarity to unclassified viruses present in the viral RefSeq database
(Figure 5B). These findings, together with the huge number of unknown viral contigs (without any blast
hit) reveal substantial genomic and taxonomic diversity in Hainich groundwater viromes, as observed
also in other environments [66,72]. To further investigate the similarity of Hainich groundwater
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viromes to viral RefSeq database, we used a genome-based network analysis of their shared protein
content (Figure 6) [61,62]. This analysis groups viral contigs at the approximately genus level into viral
clusters [61,62,73]. In total, 539 viral clusters were identified. Of those, Hainich viral contigs were
found in 191 clusters, 183 of them were exclusive to Hainich viromes, among those 95 clusters exclusive
to H51, 8 clusters to H52 and 23 clusters to H53. In addition, approximately 34% (H51), 64% (H52) and
63% (H53) of viral protein clusters were present in at least one other Hainich groundwater sample,
suggesting some sequence conservation across these samples.

 

Figure 6. A network analysis of shared predicted protein content between viral RefSeq database and
Hainich viral populations. Nodes (circles) indicate contigs and shared edges (lines) indicate shared
protein content. Data were analysed using vConTACT2 [61,62] and displayed with cytoscape [64].
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4. Discussion

Viruses play a key role in ecosystems, with most of them infecting microbes. They directly
affect their hosts by lysis and horizontal gene transfer, and hence are responsible for changes in
microbial community structure and composition what in turn has consequences on biogeochemical
cycles and food web structures [4–6,74]. Viral metagenomics has been increasingly used to unravel
viral community composition and interactions with their hosts from different ecosystems, such as
marine environments and soil [66,67,72]. The terrestrial subsurface including groundwater ecosystems
is at present yet underexplored [7,8,10,11,75]. A common problem is the relatively low biomass
present in these difficult to obtain samples, which in return, results in only low amounts of DNA not
sufficient for standard preparation of metagenome sequencing libraries [9,13,14]. Efforts have been
undertaken to overcome this problem, including DNA enrichment using different DNA amplification
techniques [17–19,22]. Each of these methods has its own advantages and limitations making it difficult
to provide a standard protocol. Benchmark tests should therefore be performed when investigating
new sample types.

Sampling procedure, virus particle isolation and nucleic acid extraction protocols are potential
sources of bias [17] that have to be considered prior to sampling. Here, we focused on non-enveloped
DNA viruses that passed a pore size of 200 nm after filtration and performed a benchmark study to
find a method of choice to enrich viral DNA that is sufficient for sequencing. We furthermore intended
to get a first snapshot of the viruses present in Hainich groundwater aquifers.

We used three DNA amplification methods, i.e., LASL, SISPA and MDA to compare one another
and with NASL, using three groundwater samples. Although NASL resulted in some sequencing
output none of the reads could be used for further analysis (assembly, virus sequence identification)
due to their repetitive and homopolymeric nature; demonstrating that direct sequencing of NASL
is not feasible with low DNA amounts. According to the Nonpareil curves, LASL was the method
with the lowest amplification bias since the curves were located rightward in the plots indicating a
higher diversity than for SISPA and MDA (Figure 1). Nonpareil curves for SISPA and MDA simulate a
nearly full sequence coverage that emerge from redundant sequence information (Table 1, Table S1).
False sequence coverage interpretation could be a result when data analysis exclusively rely on these
library preparation methods. In addition, LASL resulted in the highest number of unique sequencing
reads as compared to SISPA and MDA. MDA on the other hand outperformed LASL and SISPA in
terms of viral contig numbers and their average contig size. In addition, MDA performed (at least in
two samples) much better for taxonomic assignments in the case of Caudovirales families, which were
dominant among the viral contigs with taxonomic affiliation (Figure S1). Considering the amount
of unique viral reads per method and their low overlap (Figure 2), together with the results from
cross-assemblies, it became apparent that none of the here tested DNA enrichments methods could
completely detect viral sequences from pristine groundwater. However, SISPA even underperformed
in terms of sequencing output, diversity and assembly statistics. Metagenomic benchmark studies
using both, microbial mock communities and marine samples demonstrated the use of Mondrian and
Illumina Nextera XT technologies produced high quality metagenomes from even femtogram-input
DNA libraries [36,37]. These library preparation methods are comparable with the LASL protocol
used in this study because all these methods use linker ligation on fragmented or tagmented DNA
prior to amplification for generation of sequencing libraries. The low bias introduced by LASL on
virus enriched groundwater samples from our work is consistent with these previous studies on
prokaryotic metagenomes. In addition, other studies on viromes from marine and human samples
showed substantial differences with respect to diversity, assembly output, types and ratio of viral
sequences between LASL and MDA [18] and an outperformance of MDA over SISPA [17]. However,
these studies observed an overrepresentation of circular sequences in MDA libraries as compared to
LASL and SISPA. In contrast, our data identified only a few contigs that belong to circular ssDNA
viruses (see also discussion below). We therefore suggest the combined use of LASL and MDA for
future analysis of viral communities from pristine groundwater aquifers.
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SOAPdenovo-Trans produced more contigs than SPAdes. However, average contig size was similar
(Figure 3, Table S2). A combination of the assembly output seems to produce most comprehensive
results but might also introduce unnecessary redundancy. Assembly for metagenomic data is already
difficult, but appear to be more complex for viruses with their possibly more uneven genome coverage.
Specialized tools are needed for the (de novo) assembly of viral sequences from metagenomic data [76].
The lower number of contigs for H52 could be a result of the lower amount of DNA extracted from this
sample as compared to H51 and H53. Future studies will reveal whether there is a correlation between
input DNA amount and contig numbers, including replicates and different yields of DNA input.

There is a high number of virus identification tools available, with all of them having their
limitations [77]. We decided to use VirSorter [49], VirFinder [50] and VrAP. The latter two do not rely
on database matches, increasing the chance to detect novel viruses not related to those present in
public databases. Using our dataset, each tool exclusively identified some viral contigs demonstrating
a combination of different virus identification tools increases the number of recovered viral contigs
as also suggested previously [59,78]. However, the number of viral contigs was lower than the total
number of contigs (compare Table S2 and Table S3). The experimental procedure included several
steps to enrich virus particles, i.e., size filtration, chloroform treatment to remove most small-sized
bacteria and digestion of free DNA that is not protected by a protein shell. Although some non-viral
sequences might still be present after such methodology, one could assume the majority of the dataset
consists of viral sequences and consequently includes a high number of viral contigs not recovered by
one of the detection tools. Efforts should be undertaken, e.g., using machine learning, to overcome
these likely limitations [78,79].

Like in many environmental studies, the taxonomy of most viral contigs remained unknown
as demonstrated by blast and network analysis (Figure 5, Figure 6) [8,10,66]. Members of the
order Caudovirales were dominating among viral contigs with taxonomic assignment. This group of
tailed viruses infects a wide variety of bacteria and has been shown as one major group present in
environmental ecosystems [8,66,72,80,81]. Another group of commonly highly abundant viruses, i.e.,
circular ssDNA viruses of the families Microviridae and Circoviridae [69,70,82], were almost entirely
absent in our dataset. This is in contrast to previous results from groundwater aquifers where these
viruses even dominated over dsDNA viruses among the classified sequences [10]. A technical bias
seems to be unlikely since MDA is known for preferential amplification of these target sequences [35].
Future analyses including spatial and temporal variation will reveal whether these viruses are rare in
pristine groundwater. We further identified viruses infecting algae, invertebrates and microeukaryotes,
among the latter, contigs similar to giant viruses from the Mimiviridae family. These viruses should,
by default, not be detected after 200 nm pore size filtration. A possible explanation could be sequence
similarity of conserved mimivirus orfs, such as polymerases, to yet unknown viruses [83,84].

We show viral metagenome libraries can be produced from pristine aquifer groundwaters and
suggest a combination of LASL and MDA to enrich viral DNA from these samples and to diminish an
amplification bias that may occur during enrichment. We further identified new viral sequences that
will help to understand the role of viruses in pristine groundwaters.
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library., Table S2: Assembly statistics for LASL, SISPA and MDA libraries per sampling site., Table S3: Overview
of identified viral contigs as per virus identification tool, assembly software, sequencing library and sampling site.,
Supplementary information: Python script to assign orfs to contigs.
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Abstract: Emerging virus diseases present a global threat to public health. To detect viral pathogens
in time-critical scenarios, accurate and fast diagnostic assays are required. Such assays can now be
established using mass spectrometry-based targeted proteomics, by which viral proteins can be rapidly
detected from complex samples down to the strain-level with high sensitivity and reproducibility.
Developing such targeted assays involves tedious steps of peptide candidate selection, peptide
synthesis, and assay optimization. Peptide selection requires extensive preprocessing by comparing
candidate peptides against a large search space of background proteins. Here we present Purple
(Picking unique relevant peptides for viral experiments), a software tool for selecting target-specific
peptide candidates directly from given proteome sequence data. It comes with an intuitive graphical
user interface, various parameter options and a threshold-based filtering strategy for homologous
sequences. Purple enables peptide candidate selection across various taxonomic levels and filtering
against backgrounds of varying complexity. Its functionality is demonstrated using data from different
virus species and strains. Our software enables to build taxon-specific targeted assays and paves the
way to time-efficient and robust viral diagnostics using targeted proteomics.

Keywords: virus proteomics; mass spectrometry; virus diagnostics; data analysis; targeted proteomics;
peptide selection; parallel reaction monitoring

1. Introduction

Virus infections present serious health threats to millions of individuals worldwide. For public
health, the accurate detection of pathogenic viruses is time-critical because reducing the time for
diagnosis and treatment lowers the risk of disease transmission and patient mortality. Fast and robust
diagnostic assays are therefore required to rapidly detect re-emerging and newly emerging viruses
(e.g., Influenza, Ebola, Zika, or Hepatitis C virus). These diagnostic methods need to cover a broad
spectrum of potentially disease-causing viral agents.

Classical diagnostic strategies for detecting viral infection can be divided into two different
categories: on the one hand, virus detection can be established by targeted methods, such as
agent-specific polymerase chain reaction (PCR) or immunological techniques. On the other hand,

Viruses 2019, 11, 536; doi:10.3390/v11060536 www.mdpi.com/journal/viruses296



Viruses 2019, 11, 536

detection approaches exist that provide an open view, such as electron microscopy or next-generation
sequencing (NGS). Besides their unbiased view, the latter methods have the advantage of identifying
multiple pathogens in a single experimental run. Due to its specificity (hybridization and sequencing)
and sensitivity (qPCR), the detection of nucleic acids is the gold standard in diagnostics. Conversely,
the detection of viral proteins is used less frequently in diagnostic settings and is usually based on
interaction with affine binding molecules such as antibodies or aptamers. However, producing these
binding molecules is generally time-consuming and laborious, as is the validation of their specificity.

While in clinical microbiology the analysis of subproteomes (<12 kDa) using matrix assisted laser
desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a standard
method for the identification of bacteria and fungi, no comparable proteomic approach exists in
virology for technical reasons [1]. In recent years, MS-based targeted proteomics has evolved into
a technique for detecting proteins in complex samples with high sensitivity, quantitative accuracy,
and reproducibility [2,3]. Targeted proteomics is commonly used to test hypotheses on a subset of
proteins of interest, in contrast to discovery shotgun proteomics. The latter provides global proteome
profiling of thousands of proteins in a sample, however, at the expense of sensitivity and reproducibility.
Unlike discovery methods, targeted methods of selected/multiple reaction monitoring (SRM/MRM) [4]
and parallel reaction monitoring (PRM) [5] nowadays allow for detecting and analyzing preselected
proteins and peptides in sensitive, specific, and time-efficient manner. Furthermore, the development
of targeted proteomics assays has become easier in the past few years, owing to the advances of
analytical methods, instrumental capabilities, and computational workflows [6].

Targeted MS-based proteomics assay development typically involves (i) peptide candidate
selection, (ii) peptide synthesis, and (iii) assay optimization. This procedure now enables the transfer of
a process highly similar to the design of multiplex PCRs to the proteome level for detecting pathogens.
While MS-based targeted assays have not been used for detecting viruses in any diagnostic setting yet,
promising findings could already be achieved for identifying and quantifying pathogenic bacterial
species. For example, targeted proteomics methods were successfully used in previous studies on
Streptococcus pyogenes [7] and Mycobacterium tuberculosis [8].

Although targeted proteomics has gained much popularity with many use cases in experimental
research by now, relatively few research-oriented algorithms and software tools have been developed
that support the user-defined selection of peptides for designing targeted SRM or PRM assays. In
this context, Skyline [9] is a powerful and widely used software for designing targeted proteomics
assays. Besides its wide applicability to different targeted methods and its intuitive use, it also has
some internal limitations: first, Skyline is dependent on the operating system Windows, and can
therefore not be used under a Linux cluster server environment, and second, it does perform only exact
string matching during the peptide selection process without considering any homologies between
related organisms. PeptidePicker [10] is a web-based workflow to select peptides by providing,
amongst further options, the protein accession number and was designed for human and mouse
proteomes. PeptideManager [11] is a tool developed to select peptide candidates as protein surrogates
from a defined proteome. It was optimized for the use case of xenografts, i.e., human tumors
orthotopically implanted into a different species. While this software allows for constructing a peptide
database from any species-specific proteome, sequence homologies, and multiple taxonomic levels are
disregarded. Picky [12]—a web-based method designer for targeted assays—only provides support
for human and mouse sequences, while it relies on synthetic peptide data from the human-focused
ProteomeTools project [13,14]. In the context of targeted metaproteomics, the Unique Peptide Finder
of the UniPept web application [15] was developed to select unique peptides for user-defined taxa.
Furthermore, various computational tools have been developed to predict proteotypic peptides for
targeted proteomics experiments [16–18]. These methods often make use of machine learning training
setups that incorporate the probability of observing a peptide in a standard proteomics analysis,
referred to as peptide detectability [19] or observability [20], and commonly involve physicochemical
properties of the proteins to select high-responding peptides [21]. To our best knowledge, however,
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no software tool is currently available to select taxon-specific peptides for targeted proteomics assays
that also accounts for sequence homologies between different species or strain proteomes. Effectively
considering homologies is crucial for accurate taxon-specific diagnostics, because proteins measured
in virus samples frequently have a high sequence similarity either in closely related strains or due to
highly conserved functional domains.

Here we present Purple (Picking unique relevant peptides for viral experiments),
a platform-independent software that returns a set of taxon-specific peptides, after the user has
specified the viral target (i.e., a particular virus species or genus), as candidates for targeted proteomics
experiments. Equipped with a user-friendly graphical user interface and a threshold-based filtering
strategy for homologous sequences, it simplifies the design of MS-based targeted proteomics assays
for the end user. Purple enables peptide candidate selection and considers background sequence
information, i.e., proteins that are not related to a specific virus target, at various taxonomic levels.
Thus, all peptide candidates are validated against a user-defined database of virus proteomes. While
the design of MS-based targeted assays requires further steps, our software greatly facilitates the
cumbersome, yet important task of peptide selection and thereby paves the way to time-efficient
and robust pathogen screening and viral diagnostics. Purple is open source software available at
https://gitlab.com/rki_bioinformatics/Purple.

2. Materials and Methods

2.1. Purple Workflow

Purple is implemented in Python (version 3.6) and makes use of additional Python libraries such
as tqdm (https://github.com/tqdm/tqdm) for process bar calculation and Biopython [22] to calculate the
molecular weight of peptides. Purple is available as portable standalone version that already includes
all required libraries or Purple can be installed using pip or conda, which are managing dependencies.
The workflow of Purple is depicted in an overview diagram (Figure 1). Purple requires the input of
protein sequence databases and a configuration file. The databases are automatically rearranged into
a target and a background database. The “exact matching” step is used to remove exact sequence
matches with the background from the target peptide set. The remaining target peptides are used to
detect and remove homologous peptides. A result file containing the final unique peptides is created
together with various intermediate result files. These are outputs of all Purple processing tasks, namely
(i) digested peptides, (ii) exact matching peptides, (iii) non-homologous matching peptides and (iv)
background shared peptides.
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Figure 1. Overview of the Purple workflow. A configuration file and a directory path to the location of
FASTA databases serve as input (blue). In the database preprocessing step, the databases are separated
into target and background (orange). Any target peptides exactly matching to the background database
are removed. In the homologous matching step, any target peptides that have similar sequences are
filtered out (orange). All intermediate and final results are exported automatically to a user-defined
output folder (green).

2.1.1. Preprocessing (Target Selection)

The selection of a target virus proteome is handled by input and preprocessing routines in Purple.
For target selection, protein sequence databases in FASTA format serve as main input and are required
to be provided in UniProt format. To select the database input, a directory needs to be specified by
the user and multiple FASTA files can be considered for the processing. Two options of database
specification are available in Purple: the first option is to explicitly define target species names as a list,
which leads to the merging of all provided input databases. Each protein entry that contains one of
the defined target species names in the protein header is considered as a target protein. The protein
sequences not matching the defined target species are used as background database. The second option
is to select a specific FASTA file in the database directory as target database. All remaining databases
in the directory are then automatically merged to a single background database. As the background
database may still consist of proteins originating from one of the target species, each protein in the
background database is checked once more: if a protein header matches any species in the specified
target database file, the protein entry is removed from further processing accordingly.

Both options result in two types of databases, namely a target and a background database. In the
following, each protein sequence in these databases is in silico-digested using the enzymatic rule of
trypsin with optional proline digestion. The in silico digest step results in multiple peptides for each
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protein entry, and peptide sequences beyond the user-defined length boundaries are filtered out. In
addition, preprocessing includes the option of removing protein fragments and also allows replacing
each isoleucine by leucine: this option was implemented because these amino acids share identical
molecular masses and are therefore commonly not distinguishable in mass spectrometry. When the
preprocessing is completed, both a target and a background database are provided for further analysis,
which in this stage consist of peptides instead of proteins.

2.1.2. Exact Matching

Exact matching presents the first actual processing step in Purple: here, each of the previously in
silico-digested target peptides is compared against the provided background database (see previous
paragraph). In this procedure, target and background peptides of identical length are compared and
only those target peptides that are not contained in the background are considered further; thus,
peptide sequences with one or more exact sequence matches in the background database are filtered out
at this stage, because they are not unique to the user-defined taxa of the target space. This procedure is
performed iteratively until all in silico-digested peptides have been evaluated. The remaining peptides
that have not been filtered out are stored as unique peptide candidates for further processing and are
exported as intermediate result of the exact matching step.

2.1.3. Homologous Matching

Homologous matching is performed subsequently to the exact matching step. The goal is
to evaluate each of the unique peptide candidates concerning its potential sequence consensus to
homologous proteins in the background. The rationale behind this approach is that the more similar a
target peptide is to the background, the less appropriate it is as candidate for a taxon-specific targeted
assay. To assess the similarity of each peptide to the background proteomes, a sequence background
consensus metric is introduced (see next paragraph). The target peptides that are discarded either
during the exact or the homologous matching step are exported as so-called “shared” peptides. Shared
peptides have either an exact sequence match with the background or have background consensus
value above a user-defined threshold. To keep track of all processed data, target peptides with a
background consensus below the threshold are exported as well.

2.1.4. Background Consensus Metric and Threshold Generation

Owing to mutational effects on conserved viral proteins, peptides can often be shared within a
virus genus or family with minor sequence variations between them. This is problematic for targeted
assays because such peptide candidates are not specific for species- or strain-level identification. To
remove such taxon-unspecific peptides from the final sequence set, the background consensus metric
f (A, B) is used in Purple as the essential part of the homologous matching. Basically, the background
consensus presents the Hamming distance of a target peptide A and background peptide B of the same
length in relation to the length of the peptide n (Equation (2)). An amino acid is shared if the same
amino acid (d(x, y)) is at the same position in A and B (Equation (1)).

d(x, y) =
{

1, i f x = y
0, i f x � y

(1)

In other words, the background consensus is the sum of shared amino acids at a specific position i
divided by the number of amino acids in both (target and background) peptides. Even though the
Hamming distance is a simple metric, it provides a proof-of-concept and validation of Purple, as
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adding more sophisticated methods should only slightly improve the homologous matching while
increasing the computational effort and complexity.

For A = {a1, a2, . . . , an} and B = A = {b1, b2, . . . , bn} and n = |A| = |B| :
f (A, B) =

∑n
i=1 d(ai,bi)

n , f or ai ∈ A and bi ∈ B
(2)

This metric is applied to each of the target peptides that are compared to all background peptides
of the same length. For each target peptide, the maximum consensus is stored when being below a
user-defined background consensus threshold. A target peptide with a high background consensus is
likely to originate from a homologous protein or common protein domain. Therefore, the consensus
metric evaluates the conservation of peptides in the target and background database. A low background
consensus marks target peptides that are unique in sequence in the target species. All peptides with a
high background consensus below the previously chosen threshold are exported into the final results
file and the remaining shared peptides are exported as part of the intermediate output. The results
are supplemented with the peptide weight, the number of occurrences in the target database, as well
as species and proteins names. This enables the user to conduct further analysis with the previously
retrieved unique peptides. The Purple documentation is available for a complete description of all
output files and more details about the data interpretation.

2.2. Graphical User Interface

A graphical user interface (GUI) was developed for using Purple (Figure 2). This interface allows
researchers with less expertise in handling bioinformatics methods on the command line to use Purple
in a efficient and user-friendly manner. The Purple GUI makes software configuration and execution
straightforward and complex tasks can be rapidly accomplished. Any parameter can be adjusted in
the GUI, and the background consensus threshold can be set by the user. Furthermore, the processing
status can be inspected in a logging panel and a file menu provides options for saving and loading
configuration files. Note that configuration files are optional in Purple and a default configuration
is provided; thus, only system-specific parameters must be set in the GUI. Using configuration files
makes each task reproducible and the GUI-integrated configuration file choice allows for switching
between multiple settings easily. Figure 3 shows the final output in the tab separated values (TSV)
format that can be further processed and visualized using common spreadsheet software.
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Figure 2. The graphical user interface of Purple. In the top file menu, configurations files can be loaded
and saved. The top menu also includes a link to the documentation and manual. The listed GitLab page
provides direct user support from the developers via an issue tracking system. The upper panel shows
default parameters and allows modifying the configuration settings and processing start. The lower
panel displays the current processing status with logging information on the current run, configuration,
and progress of the analysis.
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Figure 3. Graphical representation of the Purple output. The tabular TSV output of Purple can be
imported into various spreadsheet software tools. This exemplary table shows the peptide sequence, the
calculated theoretical mass weight (Da), the highest background consensus, and the number of peptide
occurrences in the target proteome. The species, protein name and full description of the associated
protein are stored in a list for further analysis. In addition, the number of proteins and FASTA entries
are listed separately, because they can diverge, e.g., when a protein has multiple sequence variants.

2.3. Data

2.3.1. Target Virus Databases

To evaluate the performance of Purple, selected target virus species from sequence databases
were used. This section provides an overview on the virus species used with respect to database
composition and further background information on the virus type. The virus species were selected
based on their relevance for current or upcoming diagnostic settings.

Arenaviruses

Arenaviruses are enveloped RNA viruses with an average diameter of 120 nanometers that
have a bisegmented negative-strand RNA genome. The Latin term “arena” refers to the grainy
ribosomal particles acquired from the virus-host cells that can be viewed in cross-section with electron
microscopy imaging. Arenaviridae is a virus family whose members are generally associated with
causing chronic infections in rodents and zoonotically acquired severe diseases, such as lymphocytic
choriomeningitis or hemorrhagic fever, in humans. In this work, nine disease-causing Old and New
World arenavirus species are taken as targets for evaluating the performance of Purple (Table 1). Besides
Lymphocytic choriomeningitis virus, strain members of which cause aseptic meningitis, encephalitis,
or meningoencephalitis, all listed arenaviruses are causative agents for viral hemorrhagic fever (VHF).
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Table 1. Alphabetically ordered list of arenavirus species used for the performance benchmarking. The
reader is referred to [23] for further details on these arenaviruses.

Virus Species Abbreviation NW/OW 2 NW - Clade 3 No. Proteins No. Peptides 1

Chapare mammarenavirus CHAV NW B 4 252
Guanarito

mammarenavirus GTOV NW B 4 244

Junin mammarenavirus JUNV NW B 4 246
Lassa virus LASV OW - 4 242

Lujo mammarenavirus LUJV OW 4 - 4 250
Lymphocytic

choriomeningitis virus LCMV OW - 4 245

Machupo virus MACV NW B 4 237
Sabia mammarenavirus SABV NW B 4 248

Whitewater Arroyo
mammarenavirus WWAV NW A/rec 4 240

1 Number of in silico-digested peptide sequences, 2 New World (NW)/ Old World (OW), 3 New World clade 4 Based
on genome sequence clustering, Lujo mammaarenavirus shows its own cluster [23].

Cowpox virus

Cowpox virus (CPXV) is a large double-stranded DNA virus with a proteome of over
200 proteins [24] that belongs to the genus Orthopoxvirus (OPV) of the Poxviridae family. CPXV has
been described as the source of the first vaccine used by Edward Jenner, who was the first to scientifically
describe the vaccination process against the smallpox-causing variola virus. Recent findings based on
a conducted analysis on the smallpox vaccine gave evidence of the suspected role of horsepox (instead
of cowpox) in the origin of the vaccine [25,26]. Since the pathogenicity and zoonotic potential of CPXV
are investigated at the Robert Koch Institute, detailed data acquired from MS measurements were
available (see Section 2.3.3). For performance evaluations, CPXV is further beneficial because this virus
species has several close relatives. In addition to the cowpox strains Brighton Red and Grishak-90, four
very close relatives with high sequence similarity are given: a genome comparison performed with
BLAST [27] showed that variola virus, monkeypox virus, horsepox virus, and vaccinia virus share
sequence identities of up to 98% (Supplementary Table S1).

Vaccinia virus (VACV Copenhagen and VACV Western Reserve)

Vaccinia virus is a member of the Orthopoxvirus (OPV) genus [28] and has been used for
vaccination against smallpox since the 19th century. Due to the high sequence similarity of members of
the OPV genus, it is possible to provide cross-protection vaccination by one member of the OPV genus.
Hence, the classification can be an issue, because it can be challenging to find peptides to reliably
classify a species or a strain. In this work, we investigate whether it is possible to distinguish between
the two strains VACV Copenhagen and VACV Western Reserve by finding strain-specific peptides
using Purple. Similar to CPXV, experimental data was publically available (see Section 2.3.3).

2.3.2. Background Virus Databases

The target databases mentioned above are species-specific and therefore cannot represent all
available virus proteomes. From the target databases, Purple only yields to species-specific unique
peptides. To extend this space to all virus proteomes and subsequently be able to find unique
peptides in that relation, we added a database that consists of all reviewed virus proteins available
on UniProt/Swiss-Prot [29]. In contrast to the target databases, this database is used exclusively as
a background database. At the time of writing, UniProt/Swiss-Prot contains 16,846 reviewed viral
proteins, which results in 301,387 in silico-digested tryptic peptides. In this work, we evaluate Purple
with and without the use of the larger background database.
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2.3.3. Background Human Databases

To account for samples mixed with human proteins we added a human database to the background.
This database originates from UniProt/Swiss-Prot [29] and enables Purple to discard human peptides.
Subsequently, this reduces false positives in experiments using virus-infected human samples. The
database consists of 20,428 proteins and was used exclusively for the CPXV analysis in this work.

2.3.4. Experimental Data

The MS/MS datasets used for the benchmarking of Purple originate from a previous study
published by Doellinger et al. in 2015 [24] (PRIDE project accession: PXD003013). In this work, a subset
of the data available was used including three CPXV Brighton Red, three VACV Copenhagen, and
three VACV Western Reserve MS/MS raw files. These raw files were acquired by an LTQ Orbitrap in
data-dependent manner. Further experimental details are listed and described in the above-mentioned
publication. Subsequently, three CPXV Brighton Red raw files were converted into MGF files using
the MSConvert function of ProteoWizard [30] with the peak picking parameter of MS-level two and
with zero sampling removal activated. Table 2 shows the number of MS/MS spectra for each virus
strain (CPXV Brighton Red, VACV Copenhagen and VACV Western Reserve). For peptide and protein
identification, these spectra were searched against proteome databases using the MS-GF+ [31] (version
v20181015) database search engine. The database search was performed with eight threads, an activated
decoy search, a chosen precursor with mass tolerance of five ppm, optimized for Orbitrap instruments,
and trypsin was selected as digestion enzyme. The sequence databases used for protein identification
are described in detail in Section 2.3.1. The database searches produced mzid output files that were
converted into TSV files using the build-in MS-GF+ conversion tool. Afterwards, the results were
filtered by applying a 1% false discovery rate (FDR) threshold at the PSM-level.

Table 2. This table shows the number of spectra from each sample replicate for CPXV Brighton Red,
VACV Copenhagen, and VACV Western Reserve virus species/strains.

Species/Strain
No. Spectra in

Replicate 1
No. Spectra in

Replicate 2
No. Spectra in

Replicate 3
No. Total
Spectra

CPXV Brighton Red 19,396 19,352 18,920 57,668
VACV Copenhagen 19,740 19,265 19,170 58,175

VACV Western Reserve 19,421 19,453 19,076 57,950

3. Results

We here present three different use cases to illustrate the possibilities of targeted proteomics
using Purple in viral diagnostic settings. The first analysis focuses on the species-level resolution
for arenaviruses, the second evaluates the taxonomic classification using cowpox data from shotgun
proteomics measurements, and the third tests the capabilities of strain-level differentiation using
experimental data from two closely related vaccinia virus strains.

3.1. Analysis of Species-Level Resolution using Nine Arenavirus Species

In the first analysis, we aimed to evaluate the species-level resolution of our diagnostic approach
using sequence data from the Arenaviridae family. For this purpose, we investigated the resolution
of Purple by evaluating different viral species as target organisms against a proteome background
of similar species and viruses in general. We used nine arenavirus species (MACV, JUNV, SABV,
CHAV, GTOV, LASV, LCMV, WWAV, and LUJV; see Table 1) with proteomes containing four proteins,
namely (1) RNA-directed RNA polymerase L, (2) nucleoprotein N, (3) pre-glycoprotein polyprotein
GP complex and (4) RING finger protein Z. As background proteomes, we added all reviewed virus
proteins available on UniProt/Swiss-Prot to remove frequently occurring peptides (e.g., from conserved
sequences of functional domains). The removal of target peptides from similar virus proteomes intends
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to eliminate false positive detections (i.e., to increase the specificity). Since the protein sequences differ
strongly between the arenavirus species, we expected to retrieve sufficient unique peptides for each
species that serve as candidates for designing a targeted assay. For a benchmarking, we examined the
relative amount of taxon-specific target peptides for each of the arenavirus species using both exact and
homologous matching mode (Tables 3 and 4). The homologous matching was performed to evaluate
the impact of sequence homologies for the arenaviruses and between these and all other virus species.

Table 3. This table shows the number of taxon-specific peptides from nine arenavirus species after
(i) in silico digest, (ii) exact matching, and (iii) homologous matching (80% background consensus
threshold). Each target species was compared against the background of eight remaining arenavirus
species proteomes. The second column provides the number of nonspecific peptides, i.e., the ones
being shared with the background.

Species
No. Digested

Peptides
No. Background

Shared
No. Exact
Matching

No. Homologous
Matching

MACV 237 119 178 118

SABV 248 127 191 121

LUJV 250 24 241 226

CHAV 252 121 197 131

GTOV 244 75 205 169

JUNV 246 123 187 123

LASV 242 35 227 207

LCMV 245 31 232 214

WWAV 240 31 226 209

Table 4. This table shows the number of taxon-specific peptides from nine arenavirus species after
(i) in silico digest, (ii) exact matching, and (iii) homologous matching (80% background consensus
threshold). Each target species was compared against the background of eight remaining arenavirus
species proteomes and additionally against all reviewed virus proteomes (from UniProt/Swiss-Prot).
The second column provides the number of nonspecific peptides, i.e., the ones being shared with
the background.

Species
No. Digested

Peptides
No. Background

Shared
No. Exact
Matching

No. Homologous
Matching

MACV 237 143 162 94

SABV 248 144 183 104

LUJV 250 52 229 198

CHAV 252 137 190 115

GTOV 244 118 189 126

JUNV 246 139 171 107

LASV 242 126 171 116

LCMV 245 110 187 135

WWAV 240 130 181 110

First, we investigated the ratios of taxon-specific unique peptides and in silico-digested peptides
with a background database consisting of the four arenavirus proteins, as mentioned above. The exact
matching yielded to taxon-specific peptide ratios between 75.1% (MACV) and 96.4% (LUJV) (Figure 4).
This can be explained by the high sequence diversity between the nine arenavirus species: when
generating multiple sequence alignments (MSA) of these species for their four proteins, overall, a low
consensus of the sequences was found (Supplementary Data S1–S4). When applying a background
consensus threshold of 80%, significantly fewer taxon-specific peptides were obtained with relative
numbers between 48.8% and 90.4% for SABV and LUJV, respectively (Figure 4). Overall, the mean
decrease in the ratio of all species is 16.6% and the strongest ratio decrease can be found for MACV
(25.3%), SABV (28.2%), CHAV (26.2%), and JUNV (26.0%). These four species are all New World
arenaviruses and part of the clade B (see Table 2). The close relationship of these four virus species (as
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shown in the phylogenetic tree in Figure 5) causes high numbers of shared peptides which explains the
decline in taxon-specific peptides. The Old World arenavirus LUJV shows the highest taxon-specific
peptide ratio after homologous matching (90.4%) and even after homologous analysis against all
virus proteomes (79.2%). This illustrates that LUJV has the lowest sequence similarity with the other
arenaviruses. The low similarity can be explained by the isolated geographical distribution of LUJV in
Southern Africa [32]. In 2008, an outbreak of LUJV led to a high case fatality rate of 80% (4/5 cases), and
a follow-up analysis of its genome confirmed that LUJV is a novel virus species being only distantly
related to known arenaviruses and groups genetically closer to Old World viruses not associated with
VHF [33].

Figure 4. Relative amount of taxon-specific target peptides from nine arenavirus species proteomes.
The ratio of unique to in silico-digested peptides is shown for exact (lighter colors) and homologous
(darker colors) matching mode with a background consensus threshold of 80%. Orange bars show
the results for the database consisting of four virus proteins for each arenavirus species. Purple bars
indicate results that were generated when adding protein sequences from all reviewed virus proteomes
(from UniProt/Swiss-Prot) as additional background.

Next, we assessed the protein sequence coverage on the basis of Purple-selected unique peptides
for all four arenavirus proteins (RNA-directed RNA polymerase L; Nucleoprotein N; Pre-glycoprotein
polyprotein GP complex GLYC; RING finger protein Z). We evaluated two different backgrounds here:
(i) a small background with the arenavirus proteomes (containing the four proteins) of the remaining
eight non-target species and (ii) a large background containing all arenavirus proteomes combined
with all reviewed virus proteomes from UniProt/Swiss-Prot (see Section 2.3.2).

The analysis of the protein sequence coverage shows that L, GLYC and Z are relatively well
covered by the taxon-specific peptides across all nine species for the small background (Figure 6).
Nucleoprotein NCAP has the highest variability in protein coverage with an interquartile range (IQR)
of 35.22% on the small background, suggesting that NCAP is the best-conserved protein among the
considered arenavirus species. When taking a closer look at the results of the larger background
analysis with all reviewed virus proteins, it can be found that the coverage decreases for all four
proteins. The NCAP protein shows the lowest median in protein coverage (20.18%). This shows
that NCAP has the lowest sequence consensus of taxon-specific peptides with other virus proteomes,
indicating that it is the best-conserved of the four proteins. Indeed, the other three proteins (L, GLYC,
and Z) have above 40% sequence coverage, thus more taxon-specific peptides can be obtained from
these proteins. This analysis shows that, depending on the use case, it may make sense to investigate
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individual proteins instead of whole proteomes. For example, proteins with low sequence coverage
based on taxon-specific peptides may be excluded.

Figure 5. Phylogenetic tree of the pre-glycoprotein polyprotein GP complex (GLYC) of nine arenaviruses.
The Whitewater strain is the only New World clade A/rec arenavirus (green). Lujo (LUJV), Lassa
(LASV), and Lymphocytic choriomeningitis (LCV) are geographical Old World arenaviruses (red).
Junin (JUNV), Machupo (MACV), Guanarito (GTOV), Chapare (CHAV), and Sabia (SABV) are members
of the New World arenaviruses clade B (blue). The neighbor-joining tree without distance corrections
was created using CLUSTAL Omega [34] for the multiple sequence alignment and the tree visualization
software FigTree (http://tree.bio.ed.ac.uk/software/figtree/).

Figure 6. Protein sequence coverage of taxon-specific peptides selected by Purple on proteins for nine
arenavirus species proteomes. The four proteins of the arenavirus proteomes are RNA-directed RNA
polymerase L (L), nucleoprotein N (NCAP), pre-glycoprotein polyprotein GP complex (GLYC), and
RING finger protein Z (Z). The coverage of selected peptides is displayed for homologous matching
when applying a background consensus threshold of 80%.
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3.2. Evaluating Species-Level Classification Based on Detected Peptides from Viral Shotgun
Proteomics Measurements

To evaluate the peptide selection method in Purple on experimental data, we used representative
MS/MS datasets derived from human cowpox virus (CPXV) samples. The main goal was to test
whether peptides identified in a typical shotgun proteomics experiment can be used for differentiating
viruses at the species level. We also aimed for estimating the expected accuracy gain for taxonomic
classification when using a targeted proteomics assay on the basis of peptides suggested by Purple.

In a pre-analysis, we performed a Purple run using CPXV as target proteome to select
species-specific peptides. For the peptide selection process, 18 reviewed (from UniProt/Swiss-Prot) and
208 unreviewed (from UniProt/TrEMBL) CPXV-specific protein sequences were used as target database,
which is part of the PRIDE project (see Section 2.3.4). We used this combined database consisting
of reviewed and unreviewed protein sequences because the available reviewed protein sequences
for the Brighton Red strain yielded to a very limited number of peptide identifications during the
database search (Supplementary Table S2). All available virus proteomes (a total of 16,846 sequences)
and all reviewed human proteins were taken as background. These proteomes were obtained from
UniProt/Swiss-Prot (see Section 2.3 for database details).

The Purple run resulted in 1509 in silico-digested peptides after exact matching and 885 peptides
after homologous matching (using a background consensus threshold of 80%). The distribution of the
homologous background consensus shows a normal distribution below 50% (Supplementary Figure S2).
3986 peptides were discarded, because they were shared with other (i.e., non-CPXV) viral proteomes or
the human proteome. The remaining 885 CPXV-specific peptides have a mean background consensus
of 53.9%, which means that on average around half of the amino acids of each peptide are equal to
residues of peptides in the background.

Next, we searched experimental MS/MS spectra from CPXV samples using the search algorithm
MS-GF+ [31] against a CPXV and human sequence database for peptide identification (see Section 2.3).
In this analysis, CPXV datasets from MS measurements of three technical replicates, each with ~19,000
MS/MS spectra, were evaluated. The database search resulted in 4028, 4125, and 3967 identified
peptides per sample replicate with sequence duplicates removed. More than twice the amount of
CPXV peptides were identified as human peptides in this sample before applying a FDR filtering.
After applying an FDR threshold of 1%, 1067, 1028, and 1004 CPXV peptides were identified (Table 5).
Subsequently, the identified peptides (below 1% FDR threshold) were compared against the set of
taxon-specific CPXV peptides suggested by Purple using both exact and homologous matching mode.
Between 83 and 94 peptides selected by Purple were detected in the MS/MS experiments (without
applying any FDR threshold). When filtered by 1% FDR, the peptides decreased to numbers between
78 and 84. Consequently, this analysis demonstrates that it would be possible to reliably identify CPXV
for these three sample replicates.
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Table 5. This table shows the number of peptides from the cowpox virus (CPXV) Brighton Red strain
after (i) database search with duplicates removed (CPXV); (ii) database search with duplicates removed
(human); (iii) intersection of peptides obtained from Purple and peptide identifications from database
search; (iv) database search, duplicates removed and filtered by 1% FDR threshold; and (iiv) intersection
of peptides suggested by Purple and peptide identifications from FDR-filtered database search. The
CPXV Brighton Red strain was compared against the background of all reviewed virus proteomes and
the reviewed human proteome. In addition, the second column specifies the sample replicate data that
was used for the database search.

Strain Replicate
No. Database

Search (CPXV)

No. Database
Search

(HUMAN)

No.
Intersection

No. Database
Search Filtered

No.
Intersection

Filtered

Brighton Red 1 4028 10319 94 1067 84

Brighton Red 2 4125 10286 83 1028 78

Brighton Red 3 3967 10068 92 1004 84

When considering the results of all three replicates, it can be observed that 61 CPXV-specific
peptides were detected without any applied FDR threshold (Figure 7A). Filtered by 1% FDR, 56 peptides
across all replicates can be used to specifically identify the species within the sample as a member of
CPXV (Figure 7B).

Figure 7. Intersection of detectable peptides of CPXV sample replicates. These Venn diagrams show the
intersection of the detectable peptides in replicates 1–3. The subfigures depict the number of peptides
without applying any false discovery rate (FDR) threshold (A) and filtered by 1% FDR (B).

When examining the peptides shared by the target and background proteomes, it can be found
that the Cowpox virus shares ~3000 peptide sequences per strain with the Vaccinia virus strains and
Variola virus strains (Figure 8). Other Orthopoxviruses were found as well, although the number of
peptides is low, due to fewer proteins of these strains in the background database. The CPXV Brighton
Red strain-specific peptides are small in number because most matches originate from the Cowpox
virus species proteome without giving any details about a particular strain. Around 500 peptides were
shared with the human proteome and were consequently discarded.
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Figure 8. Number of shared CPXV peptides by species/strain assigned. This plot shows the number of
shared peptides that Purple detected in the background for a species/species after the CPXV Brighton
Red target analysis. All species that contribute less than 0.5% to the total amount of shared peptides
were removed.

3.3. Comparison of Strain vs. Strain and Strain vs. All Virus Level Resolution

Next, we conducted a performance evaluation using two different, yet highly similar Vaccinia
virus strains, namely VACV Copenhagen and VACV Western Reserve. The objective was to test
whether Purple can retrieve strain-specific peptides that are then used in the targeted proteomics
assay for accurate taxonomic classification. In this analysis, the target database contained sequences
from one of the two VACV virus strains (either Copenhagen or Western reserve). Consequently, the
background database contained the remaining VACV strain and all reviewed virus proteins available
on UniProt. This procedure was repeated with the remaining VACV strains as target. The goal was to
find strain-specific peptides to accurately detect the virus strain. We used a background consensus
threshold of 80% to filter out homologous peptides. Afterwards, experimental data (see Section 2.3.3)
was used to validate the results and to show if the selected strain-specific peptides are found in the
acquired tandem mass spectrometry (MS/MS) data. For peptide identification, we used the software
MS-GF+ [31] with an 1% FDR threshold (see Section 2.3.3).
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In the case of VACV Copenhagen, Purple discarded 3848 peptides because a perfect sequence
match was present in the background with a peptide of another strain or virus (Table 6). Equally,
3971 VACV Western Reserve peptides are marked as shared with the background and discarded. After
exact matching, 498 and 341 strain-specific peptides could be obtained for VACV Copenhagen and
VACV Western Reserve, respectively. The homologous matching removed additional 157 (VACV
Copenhagen) and 172 (VACV Western Reserve) peptides from the set of unique peptides. The remaining
352 (VACV Copenhagen) and 169 (VACV Western Reserve) peptides can be used to uniquely identify
the strain in a mixture of all reviewed virus proteins available on UniProt/Swiss-Prot.

Table 6. This table shows the number of taxon-specific peptides from the VACV Copenhagen and
VACV Western Reserve strain after (i) in silico digest, (ii) exact matching, and (iii) homologous matching
(80% background consensus threshold). Each target strain was compared against the background of the
other strain and all reviewed virus proteomes. The second column provides the number of nonspecific
peptides, i.e., the ones being shared with the background.

Species
No. Digested

Peptides
No. Background

Shared
No. Exact
Matching

No. Homologous
Matching

Copenhagen 4200 3848 498 352

Western Reserve 4140 3971 341 169

In addition, we categorized the shared peptides by virus species to check for close relationships
in the background. For VACV Copenhagen, it can be observed that most peptide matches are found
in the Vaccinia species (Figure 9), owing to a high protein sequence similarity of involved Vaccinia
strains. Other contributing species are Camelpox virus, Cowpox virus, Monkeypox virus, Rabbitpox
virus, and Ectromelia virus. All these viruses are, as expected, members of the orthopoxvirus genus.
Similar findings could be observed for the results of the VACV Western Reserve strain (Supplementary
Figure S1). Note here that Figure 9 shows the number of peptides and if a species is underrepresented
in the databases, it will affect the outcome concerning the number of peptides that contribute to the
shared peptides.

To evaluate the detectability of taxon-specific peptides for the given DDA experiments, we
performed database searches for peptide identification using three different technical replicates of
VACV Copenhagen. Without any FDR cut-off, we could identify between 60 and 66 strain-specific
peptides selected by Purple (Table 7). However, when filtered by an FDR of 1% the number of peptides
decreased drastically and only one or two taxon-specific peptides were confirmed in the shotgun
proteomics data. It was possible to identify Replicate 1 and 2 as VACV Copenhagen by using the
peptide sequence ILFWPYIEDELR. The number of peptides can be increased by switching to a targeted
proteomics approach and by considering PTMs or by an improved homologous matching. The three
technical replicates of the VACV Western Reserve strain resulted in fewer peptides in the intersection
with the database search results (between 32 and 42), but when filtered by 1% FDR, the number of
peptides was increased up to 11-fold (with nine to 11 peptides) in comparison to the VACV Copenhagen
replicates. Six peptides were detected, and their sequences were identical among all three replicates.
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Figure 9. Number of shared peptides by species. This plot shows the number of shared peptides that
Purple detected in the background for a species after the VACV Copenhagen analysis. All species that
contribute less than 0.5% to the total amount of shared peptides were removed here.
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Table 7. This table shows the number of peptides from VACV Copenhagen and VACV Western Reserve
strain after (i) database search with duplicates removed; (ii) intersection of peptides obtained by Purple
and database search; (iii) database search, duplicates removed and filtering by FDR; and (iv) intersection
of peptides obtained by Purple and filtered database search. Each target strain was compared against
the background of the other strain and all reviewed virus proteomes. The second column specifies the
replicate data that was used for the database search.

Strain Replicate
No. Database

Search
No.

Intersection
No. Database

Search Filtered
No. Intersection

Filtered

Copenhagen 1 3585 66 825 2

Copenhagen 2 3507 62 800 1

Copenhagen 3 3525 60 828 1

Western
Reserve 1 3636 35 841 9

Western
Reserve 2 3736 42 800 11

Western
Reserve 3 3507 32 809 9

In conclusion, we were able to identify every strain in each sample with an applied FDR of 1%.
For VACV Western Reserve, the number of peptides was higher than for the VACV Copenhagen
strain. The number of detectable peptides could be increased by improving scoring and filtering or by
switching from shotgun to targeted proteomics methods or by considering PTMs.

Figure 10 reveals a normal distributed homologous consensus in the interval from 10% to 50%.
This is caused by random matches with background peptides and these peptides should be unique
for the strain. We could not observe a distinct distribution above 50%. This could be improved by
moving from identity to a similarity-based matching, as this would differentiate peptides with the
same amount of matching consensus residuals.

Figure 10. Histogram and density plot of homologous consensus. This histogram shows the distribution
of the homologous consensus for the VACV Copenhagen (blue) and Western Reserve (green) strains.
Additionally, the kernel density was calculated utilizing the Epanechnikov kernel and a Silverman
bandwidth estimation.
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4. Discussion

The main goal of our developed Purple software is to provide taxon-specific peptides for a
targeted proteomics assay. These targeted assays can be used in a diagnostic setting to identify a virus
species/strain or even a whole virus family in a sample in sensitive and time-efficient manner. In this
work, we validated the software in three different benchmarking experiments.

Purple enabled us to retrieve taxon-specific peptides to distinguish between arenavirus species
proteomes that are very similar in their sequences (see Section 3.1). Accordingly, we observed a
comparable decrease in the ratio of unique to in silico-digested peptides for New and Old World
arenaviruses based on differences between their proteomes (Figure 4). This effect could also be
recognized also on the clade level for the New World viruses.

The data analysis of CPXV (see Section 3.2) resulted in 56 taxon-specific peptides (Figure 7).
These peptides were present in each MS/MS sample replicate and can be used to uniquely identify
CPXV in a mixed biological sample, although its proteome is very similar to other Orthopoxvirus
species and strains (Figure 8). By changing to a Brighton Red strain-specific target database, a reliable
determination of the strain would be possible as well. This underlines that Purple relies on a correct
and complete database to yield to the best possible results. Missing or incorrectly assigned protein
sequences could result in incorrect selected unique peptides or discarded ones. Furthermore, although
many spectra in the shotgun proteomics experiment were assigned to human peptides, this does not
present a limitation for the targeted proteomics approach, because unique virus peptides selected by
Purple can be detected using a targeted (e.g., PRM-based) assay in specific and sensitive manner; for
example, in a recently published study [35], a PRM-based assay was used to identify dengue virus
species directly from clinical serum samples. Nevertheless, to validate the resulting set of peptides, it
would be recommended to test them on other CPXV samples and to check if the peptides are detectable
in these samples likewise. In addition, the selected background database might be incomplete, e.g.,
when proteome references were missed to be included for the Purple analysis. In this case, it is
useful to validate Purple-selected peptides using secondary tools such as Unipept [36] for resolving
the taxonomic origin of any tryptic peptide based on the complete UniProt database. Furthermore,
false negatives may result from issues during sample preparation or poor instrument performance.
Therefore, these parameters need to be controlled in diagnostic PRM assays, e.g., by using internal
standards and running further quality control samples.

It can be crucial in virus infection scenarios to accurately distinguish between specific strains. To
cover these cases, we examined the strain-level resolution of our tool using data of VACV Copenhagen
and VACV Western Reserve strains (see Section 3.3). Purple was able to find a reliable amount of
strain-specific peptides (Table 7). The intersection between the Purple-selected peptides and the
peptide identification from the database search showed that it is possible to detect these peptides. In
general, strain-level identification was possible even for an applied FDR threshold of 1%, however, it
became apparent that the shotgun proteomics approach becomes limited due to the spurious numbers
of identified peptides. The number of peptides could be increased by adjusting the FDR filtering or by
using a targeted proteomics approach with higher sensitivity.

In comparison to other tools, Purple offers several advantages, such as cross-platform compatibility
on multiple operating systems. Purple allows a homology-based analysis of multiple proteome
databases at once and produces an aggregated and summarized export on various levels. In
addition, Purple is not limited to specific organisms, but can be used with general UniProt databases,
also including eukaryotic and bacterial databases. High sequence similarity between strains and
horizontal gene transfer may complicate taxon-specific classification for bacterial samples. However,
Purple could help to overcome complications and can be helpful for creating targeted assays for
bacterial detection as well. The graphical user interface and compatibility with all UniProt databases
enables researchers without bioinformatics background to find taxon-specific peptides in an easy and
straightforward manner.
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A potential improvement to the software would be to move from a sequence identity-based metric
based on the Hamming distance to similarity-based matching for the homologous matching mode. In
this case, amino acid substitutions are not weighted equally, for example by using a PAM or BLOSUM
matrix [37]. This similarity-based metric might allow a more accurate homologous matching in Purple.
For example, an approach based on a structural alignment as introduced by Ogata et al. [38] might be
useful. Further potential improvements with useful features in Purple include adding plots for better
data exploration and a tabular view for inspecting the results (that are currently exportable as text files
to spreadsheet software).

In summary, the most promising application of Purple is to select taxon-specific peptides for
creating tailored SRM or PRM assays with high sensitivity and specificity. This application will allow
for new time- and cost-efficient diagnostic methods in healthcare and further biological applications.
It could even be used to identify multiple organisms in a single sample in the context of targeted
metaproteomics [39].

Purple is available for download on our GitLab website (https://gitlab.com/rki_bioinformatics),
by using the Python package manager pip (https://pypi.org/project/purple-bio/) or via the Bioconda
channel (https://anaconda.org/bioconda/purple-bio) [40]. The software is available as graphical user
interface version, Python package and command line version for Windows, Linux, and MacOS. In
addition, user support, tutorials, and the documentation manual can be found on the GitLab webpages.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/6/536/s1,
Table S1: Genome sequence similarities of cowpox virus; Table S2: Number of peptides from CPXV Brighton
Red strain processing; Figure S1: Number of shared peptides by species for VACV Western Reserve; Figure S2:
Histogram and density plot of homologous consensus—CPXV; Data S1: MSA of the pre-glycoprotein polyprotein
GP complex (GPC gene); Data S2: MSA of nucleocapsid protein (N gene); Data S3: MSA of RNA-directed RNA
polymerase L (L gene); Data S4: MSA of RING finger protein Z (Z gene).
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