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Preface to “Electrocatalysis in Fuel Cells” 
Low temperature fuel cells are expected to come into widespread commercial 

use in the areas of transportation and stationary and portable power generation, 
and will therefore help solve energy shortage and environmental issues. Despite 
their great promise, commercialization has been hindered by lower-than-predicted 
efficiencies and the high cost of the electrocatalysts in the electrodes. The sluggish 
kinetics of the oxygen reduction reaction (ORR) is one of the main reasons for the 
high overpotential in a hydrogen proton exchange membrane fuel cell (PEMFC). 
The introduction of Mirai, the first mass-produced fuel cell vehicles (FCVs), by 
Toyota in Japan in 2014, and in North America in the following year, has 
accelerated the development of FCVs by other automotive companies. For 
instance, Honda and Hyundai announced the mass production of their own FCVs 
in 2016 and 2017, respectively. The current sale price of a new Mirai is about  
USD 57,000. One of the main reasons for the high sale price is the high Pt loading 
in the fuel cell stacks, especially at the cathode electrode, where the ORR occurs. 
The Pt loading at the anode, where the hydrogen oxidation reaction (HOR) occurs, 
can be reduced to as low as 0.05 mg cm−2 due to the extremely high reaction rate 
on Pt surfaces, while a much higher Pt loading (≥0.2 mg cm−2) at the cathode is 
required, using Pt or Pt alloys as the ORR electrocatalysts, in order to achieve a 
desirable cell performance. Pt is a costly and scarce metal. Thus, reducing its 
loading or even completely replacing it with abundant and cheap materials would 
be advantageous to lower the cost of FCVs. Recent research efforts have been 
focused on developing advanced Pt alloys, core–shell structures, shape-controlled 
nanocrystals and non-precious-metal (NPM) catalysts.  

In addition to ORR activity, one must also consider the durability of the 
electrode during fuel cell operation in the harsh environment. The life of a fuel cell 
stack in a FCV has to last at least 10 years in order to compete with the 
conventional combustion engine. It has been confirmed that the fuel cell 
performance gradually declined during operation. The main reasons for the 
degradation of the catalyst layer are the dissolution of the Pt and the corrosion of 
the carbon support. As a consequence, both catalysts and supports that are more 
stable than Pt nanoparticles and carbon black may be needed to meet the 
durability requirements. Promising supports include alternative carbon supports, 
carbides and oxides. 

In other types of low temperature fuel cells, for instance direct alcohol fuel cells 
(DAFCs), the slow fuel oxidation reactions and fast performance decay, caused by 
poisonous CO species adsorbed on catalyst surfaces, are the other major 
contributions to their low performances. Thus, the development of more active 
catalysts with higher tolerance to CO poisoning is required for high-performance 
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and long-life DAFCs. The most promising DAFCs include DMFC, DEFC and 
DFAFC which use methanol, ethanol and formic acid as fuel, respectively.  

This Special Issue aims to cover recent progress and trends in designing, 
synthesizing, characterizing and evaluating advanced electrocatalysts and 
supports for both ORR and small organic molecule oxidation reactions, as well as 
theoretical understanding in fuel cell reactions. I am honored to be the Guest 
Editor for this Issue, which includes 34 high quality papers. The nine reviews 
together with 25 original research papers cover a very broad spectrum of 
electrocatalysis in fuel cells.  

It is obvious that the ORR is still the most important topic in fuel cell 
electrocatalysis. There are 16 papers that cover some important developments in 
ORR electrocatalysts including NPM, core-shell and Pt alloy catalysts. A 
significant effort is focused on completely replacing Pt in the ORR catalysts by 
developing novel NPM materials. Wei et al. summarized the recent progress in 
design and synthesis of metal-free nitrogen-doped carbon materials, including 
nitrogen-doped carbon nanotubes (NCNTs) and nitrogen-doped graphene (NG) 
for ORR in both acidic and alkaline media. Liu et al. reviewed the progress made 
in the past five years in the areas of Fe–N–C electrocatalysts for ORR and 
understanding the possible active sites in this type of catalyst. The Fe–N–Cs 
prepared from Fe-doped zeolitic imidazolate frameworks (ZIFs) are among the most 
active ones in catalyzing the ORR. Barkholtz et al. optimized the synthesis and post-
treatment protocols of ZIF-based Fe–N–C nanocomposites, as well as the membrane 
electrode assembly (MEA) fabrication process, and achieved an impressive fuel cell 
performance of 221.9 mA cm−2 at 0.8 V. Armel et al. emphasized the importance of the 
morphology control of Fe–N–C on ORR activity by adjusting the crystal size of ZIF-8, 
milling speed and heating mode. With the smallest ZIF-8 crystal size (100 nm), the 
best H2/O2 fuel cell performance of 900 mA cm−2 at 0.5 V was obtained, which was 
double the value obtained with previous synthesis protocol. Zhang and Chen 
developed a novel method to prepare Fe–N–C catalysts by using a cationic 
surfactant cetyltrimethylammonium bromide (CTAB) as the template and the 
negatively charged persulfate ions as the oxidative agent to stimulate the aniline 
polymerization, resulting in a unique one-dimensional (1D) semi-tubular structure of 
PANI. On the other hand, SBA-15 was used as the template by Wan et al. in the 
synthesis of nitrogen-doped ordered mesoporous carbon. Qiao et al. found that P, N 
dual-doped reduced graphene oxide synthesized by pyrolyzing a mixture of graphite 
oxide and diammonium hydrogen phosphate was very active for ORR. Non-noble 
metal oxides and chalcogenides are also promising catalysts for ORR. Some interesting 
works on the synthesis and evaluation of Ti-Nb oxides, CoS and FeSe2 were also 
included in this Special Issue.  

Core–shell structures consisting of a cheaper core and an atomic thin Pt shell 
have attracted great attention due to their extremely high Pt utilization and 
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activity enhancement from the core materials. Hu et al. designed a core-shell 
catalyst with a nitride (PdNiN) alloy core and a Pt monolayer. Its stability was 
dramatically enhanced compared with that of the previously reported structure 
with a pure Pd core. Inoue et al. developed a new method without using any 
surfactant to synthesize clean Pd nanoparticles as the core for Pt monolayer 
deposition. On the other hand, Caballero-Manrique et al. used Cu nanoparticles as 
the sacrificing template to prepare core-shell catalysts consisting of Pt and Pt–Ru 
shells. Amra et al. tried to explain the strain and ligand effects from the Pd1−xCux 
alloy core on the Pt monolayer, based on the first principles density functional 
theory (DFT) calculations. 

Since the discovery of Pt alloys as superior ORR catalysts for fuel cells in the 
1980s, they have been considered as the second generation fuel cell catalysts after 
pure Pt. Pt alloys not only significantly reduce the Pt loading, but also enhance the 
catalytic activity and stability in comparison with Pt. Shen et al. gave a nice review 
on some of the recent approaches in developing Pt alloy electrocatalysts for the 
ORR. The particle size effect of Pt alloys on the fuel cell performance and decay 
rate is very important and has not been systematically studied. Gummalla et al. 
compared the initial performances and decay trends of Pt3Co/C cathodes in 
PEMFCs with three different particle sizes (4.9 nm, 8.1 nm, and 14.8 nm), but with 
the identical Pt loading. The initial mass activity of the 4.9 nm Pt3Co-based 
electrode was the highest, as well as the performance decay rate. The impact of 
PEMFC operating conditions, including upper potential, relative humidity,  
and temperature, on the alloy catalyst decay trends were also carefully studied for 
the first time. 

Some non-carbon-based materials have been explored as alternative supports 
for ORR catalysts. Lori and Elbaz summarized the latest studies on ceramic supports 
including carbides, oxides, nitrides, borides, and some composite materials. 
Alternative carbon supports including carbon nanotubes, ordered mesoporous 
carbon, and colloid imprinted carbon were reviewed by Banham et al. The 
importance of carbon wall thickness was highlighted. Functionalized graphitic 
supports with pyrene carboxylic acid also showed superior durability. 

The performance of fuel cell catalysts is certainly dependent on the preparation 
methods. Holade et al. and Job et al. summarized the recent advances in the 
preparation of carbon-supported nanocatalysts based on colloidal methods. The 
correlation between the structure of the catalysts and their activities and the 
effects from the synthesis methods were discussed. In addition, the fuel cell 
performance is also strongly influenced by the composition and fabrication 
protocols of MEA. A semi-empirical model was developed by Myles et al. to 
understand the performance of the cell as a function of the ratio of Nafion 
ionomer to carbon support (I/C ratio) in high temperature PEMFCs. 
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There are three papers in this issue focusing on Pt-based nanocomposites  
for the methanol oxidation reaction (MOR). Pt/C–MnxO1+x and H3PMo12O40–Pt/reduced 
graphene oxide were found to have better performance than Pt/C and PtRu/C due 
to the synergetic effects between Pt nanoparticles and hybrid supports. Wu et al. 
synthesized a conductive copolymer based on indole-6-carboxylic acid and 3,4-
ethylenedioxythiophene (EDOT) as the support for Pt particles. This 
nanocomposite also showed good activity for MOR. Chen et al. prepared a multi-
component nanoporous PtRuCuW electrocatalyst by chemical and mechanical 
dealloying. The unique ligament/channel nanoporous structure showed an 
enhanced activity for MOR compared to PtRu/C.  

The advances in the study of reaction mechanisms and electrocatalytic materials 
(mainly Pt- and Pd-based catalysts) for the ethanol oxidation reaction (EOR) were 
reviewed by Wang et al. PdW alloys and hollow PdCu nanocubes, as well as PtMn 
alloys, showed some improvement over pure Pd or Pt toward EOR.  

Meng et al. presented a comprehensive review on the Pd-based electrocataysts’ 
formic acid oxidation reaction (FAOR), MOR, EOR and ORR. The high activity of 
Pd-based materials toward FAOR was also supported by a couple of original 
research papers included in this issue.  

Finally, I would like to thank Keith Hohn, Editor-in-Chief, Mary Fan, 
Managing Editor, and the staff of the Catalysts Editorial Office for their great 
support during the preparation of this Special Issue. I also thank all the authors 
for their great contributions and referees for their time reviewing the manuscripts. 
I believe these excellent papers collected in this Special Issue will make significant 
contributions to the electrocatalysis’ community.  
 

Minhua Shao 
Guest Editor 







Nitrogen-Doped Carbon Nanotube and
Graphene Materials for Oxygen
Reduction Reactions
Qiliang Wei, Xin Tong, Gaixia Zhang, Qiaojuan Gong and Shuhui Sun

Abstract: Nitrogen-doped carbon materials, including nitrogen-doped carbon
nanotubes (NCNTs) and nitrogen-doped graphene (NG), have attracted increasing
attention for oxygen reduction reaction (ORR) in metal-air batteries and fuel
cell applications, due to their optimal properties including excellent electronic
conductivity, 4e´ transfer and superb mechanical properties. Here, the recent
progress of NCNTs- and NG-based catalysts for ORR is reviewed. Firstly, the
general preparation routes of these two N-doped carbon-allotropes are introduced
briefly, and then a special emphasis is placed on the developments of both NCNTs
and NG as promising metal-free catalysts and/or catalyst support materials for
ORR. All these efficient ORR electrocatalysts feature a low cost, high durability and
excellent performance, and are thus the key factors in accelerating the widespread
commercialization of metal-air battery and fuel cell technologies.

Reprinted from Catalysts. Cite as: Wei, Q.; Tong, X.; Zhang, G.; Qiao, J.; Gong, Q.;
Sun, S. Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen
Reduction Reactions. Catalysts 2015, 5, 1574–1602.

1. Introduction

Developing highly efficient electrocatalysts to facilitate sluggish cathodic oxygen
reduction reaction (ORR) is a key issue in metal-air batteries and fuel cells [1–5]. The
ORR mechanism includes two different pathways: (i) a four-electron (4e´) process
to produce water directly though the reaction of oxygen, electrons and protons, and
(ii) a two-electron (2e´) process to create the intermediate compound (hydrogen
peroxide) [6]. The 4e´ process is more attractive for cathode catalysts in fuel cells.
Although the platinum-based materials are the better choices for the desired 4e´

pathway, the use of very expensive and rare platinum is a major impediment to the
development and widespread commercialization of fuel cells. Thus, exploring the
substitutes for platinum catalysts by employing non-precious metal catalysts is a
very promising direction [7]. In this regard, one-dimensional (1D) carbon nanotubes
(CNTs) and two-dimensional (2D) graphene (Figure 1) have attracted a great deal of
attention for ORR due to their excellent electronic conductivity, huge specific surface
area (SSA), as well as excellent thermal and mechanical properties [8]. Interestingly,
when the heteroatoms are incorporated in the carbonaceous skeleton, the ORR
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performance can be greatly enhanced by effectively modulating the chemisorption
energy of O2, catalytic sites, and the reaction mechanism (2e´/4e´) of catalysts [9].
Among various possible dopants, N-doped carbon materials are attracting much
more attention because of their excellent electrocatalytic performance, low cost,
excellent stability, and environmental friendliness, thus setting up a new generation
of the metal-free catalysts for ORR. Furthermore, when the nitrogen with excessive
valence is introduced to the graphitic plane, more π-electrons can be obtained [10].
This feature, together with the significant difference in the electronegativity of N
and C, leads to many unique properties to graphitic carbons, including increased
n-type carrier concentration, high surface energy, reduced work-function, as well as
tunable polarization [11–14]. As schematically illustrated in Figure 2, three common
bonding configurations of N atoms in graphene are demonstrated, including pyrrolic,
pyridinic, and graphitic (or quaternary) N [15]. Pyridinic N atoms are located at the
edges of graphene planes, and each N atom is bonded to two C atoms and donates
one π-electron to the π system. In the case of pyrrolic N atoms, they are incorporated
into the heterocyclic rings and each N atom is bonded to two C atoms, contributing
two π-electrons to the π system. Graphitic (or quaternary) N refers to the N atoms
that replace the carbon atoms in the graphene plane. Such doped N atoms can change
the local density state around the Fermi level of N-doped graphitic carbons, which
may play a vital role in tailoring the electronic properties and improving their ORR
performance [14,16].

On the other hand, metal oxides are also good candidates for ORR catalysts,
although they normally suffer from low conductivity, as well as dissolution, sintering,
and agglomeration during operation. Consequently, the electrocatalysts show poor
electrochemical properties, restricting their applications. NCNTs or NG could
effectively buffer the catalyst nanoparticle agglomeration and enhance the electronic
conductivity by virtue of their intrinsic excellent conductivity and huge SSA.
Therefore, NCNTs and NG can be used as both excellent metal-free electrocatalysts
and perfect catalyst support for ORR.

The basic principles and mechanisms behind N doping effectively tailoring the
electrical and surface properties of graphitic carbons have been reviewed in some
excellent papers [14,17,18]. Here in this review, we place emphasis on the synthesis
of NCNTs and NG, and their applications for ORR.
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Figure 2. Schematic representation of different types of N atoms (graphitic,
pyridinic and pyrrolic N) in NG and NCNTs. Modified with permission from
Ref. [20]. Copyright © 2009, American Chemical Society.

2. Synthesis of Nitrogen-Doped Carbon

Nitrogen (N) is a neighboring element of carbon in the periodic table, and
its electronegativity (3.04) is larger than that of C (2.55). The incorporation of N
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atom into a graphene lattice plane could modulate the local electronic properties,
as it could form strong bonds with carbon atoms because of its comparable atomic
size with carbon. Subsequently, it could generate a delocalized conjugated system
between the graphene π-system and the lone pair of electrons from N atom. The
introduction of N into carbon nanomaterials could improve both reactivity and
electrocatalytic performance. As a result, the N-doped carbon materials have been
intensively studied among all the available heteroatoms for doping.

2.1. N-Doped Carbon Nanotubes

NCNTs have become a focus as ORR catalysts due to their high activity and
excellent stability. In principle, the N-doping methods can be classified to two
categories: in situ doping and post-treatment doping [17].

2.1.1. In Situ Doping

In situ doping involves the direct incorporation of N heteroatoms into carbon
matrix during the preparation process, and it is often used for the preparation
of NCNTs. The typical in situ doping techniques include high-temperature
arc-discharge [21,22], chemical vapor deposition (CVD) [23–27], chemically
solvothermal procedures (ca. 230–300 ˝C), [28] and laser ablation methods [29,30].
Thus far, a wide range of N-containing precursors have been used to incorporate N
into C matrix with great success. Moreover, the final amount and functionality of
N in NCNTs are much more critical for practical applications but could essentially
be derived from many different precursors by tuning the synthesis parameters
such as temperature of pyrolysis. Among various techniques, CVD is the most
promising method to synthesize NCNTs with a different C source (such as methane,
acetylene, ethylene, benzene, etc.) [31–34] and N source (such as ethylene diamine,
dimethylformamide, imidazole, Fe-Phthalocyanine, benzylamine, etc.) [34–38]. For
instance, recently, by using a co-pyrolysis route of Fe-Phthalocyanine loaded
and PEO20-PPO70-PEO20 (P123) retained in mesoporous silica, Wang et al. [34]
synthesized NCNTs with well-defined morphology and graphitic structure, which
exhibited good performance for ORR. Based on CVD, She et al. fabricated N-doped
1D macroporous carbonaceous nanotube arrays in anodic alumina oxide (AAO)
template, which also showed high performance for ORR [27]. In addition to the
precursors and pyrolysis temperatures, for each method, other factors, such as time,
gas flow rate, catalysts, also have significant influence on the nitrogen contents and
the accurately controlled doping sites [17,28,39,40].

2.1.2. Post-Treatment

NCNTs have also been prepared by various post-treatment methods [41,42].
For instance, Nagaiah et al. [41] synthesized NCNTs by post-thermal treating
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oxidized CNTs with ammonia and used the resultant NCNTs as efficient catalysts
for ORR in alkaline medium. However, the post-synthesis treatments [43] normally
require high temperature (800´1200 ˝C) and toxic N precursors (NH3 or pyridine)
which limit their practical application. Moreover, some structural degradation and
morphological defects often appear in the materials due to the high temperature
treatment [44].

In general, the in situ doping tends to form pyrrolic- and/or pyridinic-N atoms,
while the graphitic-N in carbon frameworks is normally generated after a high
temperature post-treatment [45]. Yet, to obtain an accurate N content and doping
sites controllably in these materials is still a challenging problem [17].

2.2. N-Doped Graphene

Compared to doping N into CNTs, the N atom can be more easily introduced
into the graphene due to the more open structure in graphene. The N atom could
be incorporated into graphene directly during the synthesis of graphene or through
post-treatment of graphene oxide (GO) (or graphene). Among numerous methods to
produce graphene, CVD, solvothermal fabrication and arc-discharge are normally
chosen for in situ growth of NG. Compared with the in situ synthesis, post-treatment
methods which include thermal annealing, plasma or irradiation treatment, or
solution treatment are simpler and likely closer to commercialization [46].

2.2.1. In Situ Doping

CVD is one of the important methods to prepare NG [20]. In Liu’s group,
they used Cu/Si as the catalyst, CH4 as the C source and NH3 as the N source to
produce few-layers NG under 800 ˝C for the first time (single-layer graphene can be
occasionally detected). On the other hand, by using the sole source that contains both
C and N (e.g., acetonitrile [47] and pyridine [48]), N atoms can be simultaneously
introduced into the graphene lattice during CVD growth of graphene films. The
doping amount of N can be adjusted in the range of 1.2–16 at.% by controlling the
gas flow rate and the C source to N source ratio [20,49].

A solvothermal process to obtain NG through the reaction between
tetrachloromethane and lithium nitride was also developed by Deng et al. [50]. It is a
one-pot direct synthesis with just placing the reaction reagent in an autoclave and
keeping under N2 and below 350 ˝C. It allows scalable synthesis and the nitrogen
species can be introduced into the graphene structure with 4.5–16.4 at.% of N.

With the presence of pyridine vapor or NH3, the arc-discharge technique which
is commonly used for preparing carbon-based nanomaterials is also employed to
fabricate NG. Rao et al. [51–53] successfully produced NG with the N content around
0.5–1.5 at.%. However, this process requires complicated purification steps with low
yield due to the excessive by-products.

5



2.2.2. Post-Treatment

Thermal treatment in ammonia atmosphere is an easy and commonly used
method to obtain NG by post-modification. Since the N incorporation reactions occur
mostly at the defect sites and the edges of graphene, a low N level (e.g., 2.8 at.% in
ref.) in graphene is normally obtained in previous reports [54]. In order to get higher
N doping, researchers turned their attention to GO which contains a range of reactive
oxygen functional groups and more defects to provide more active deposition. In
Dai’s group [55,56], through thermal annealing of GO under NH3 atmosphere, the
GO nanosheets were reduced and decorated with N simultaneously. At 300 ˝C, the
N-doping process started, while the highest doping level of ~5 at.% N was achieved
at 500 ˝C. The melamine was also used as the N source to synthesize NG and the
atomic percentage of N can reach up to 10.1 at.% [57].

Since the chemical defects in graphene play a critical role in the production of
NG, some physically based methods such as plasma treatment or ion implantation are
used to induce chemical defects [58]. Furthermore, by changing the plasma density
or exposure time, the N content can be easily controlled (up to 8.5 at.% N) [59]. For
example, Guo et al. used N+-ion irradiation to introduce defects into the plane of the
graphene, and then followed by annealing under NH3 atmosphere to get NG [60].
The level of N doping can also be adjusted by changing the experimental parameters.

In liquid phase environment, the reduction of GO and N doping can be realized
simultaneously under the hydrothermal reaction by using N-containing reducing
agent such as hydrazine hydrate [61] or urea [62]. At a pH of 10 and temperature of
80 ˝C, in the presence of hydrazine and ammonia, slightly wrinkled and folded NG
sheets (up to 5 at.% N) were obtained. Also, the N-enriched urea could play a key
role in the formation of the NG with high N-doping level (10.13 at.%). During the
hydrothermal process, NH3 will release and react with the oxygen-containing groups
on GO; meanwhile, the N atoms can dope into a graphene skeleton. Researchers can
control the N-doping level through adjusting the experimental parameters, e.g., the
mass ratio between GO and the reducing agent, or the reaction temperature.

3. Nitrogen-Doped Carbon Nanotubes (NCNTs) for Oxygen Reduction
Reaction (ORR)

3.1. NCNTs as a Metal-Free Catalyst for ORR

The pioneering work of NCNTs as highly efficient electrocatalysts for ORR
in alkaline fuel cells was reported by Gong et al. in 2009 [6]. A steady-state
output potential of ´80 mV and a current density of 4.1 mA/cm2 at ´0.22 V were
observed in their study, which is superior to that of ´85 mV and 1.1 mA/cm2 at
´0.20 V for a Pt/C electrode. Quantum mechanics calculations show that the carbon
atoms adjacent to N dopants have very high positive charge density in order to
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counterbalance the strong electronic affinity of the N atom. Coupled with aligning
the NCNTs, the vertically aligned (VA)-NCNTs show an excellent performance of a
4e´ pathway for ORR. Following this important study, plenty of research has been
conducted to fabricate NCNTs [37,41,62,63] and to investigate their electrocatalytic
activity from both mechanistic and experimental perspectives [23,38,64–68]. For
example, based on B3LYP (a trustworthy calculation for nanomaterials) [69–71],
Hu et al. [69] investigated the adsorption and activation of triplet O2 on the surface
of NCNTs with different diameters and lengths by density functional theory (DFT).
The results showed that N doping sufficiently improved the adsorption ability of
O2 on CNTs [69]. Changing the diameter and length of NCNTs has a large effect on
the binding energy between O2 and NCNT and bond length of O2, and this result
further proves that NCNTs are very promising metal-free catalysts for ORR from a
theoretical perspective.

From an experimental perspective, in 2009, Y. Tang et al. [72] synthesized NCNTs
via the CVD method using acetonitrile or ethanol as precursors and Ar/H2 as carrier
gases. TEM images indicate that the NCNTs are composed of individual nanocups
stacked together (Figure 3). Their results indicated that the stacked NCNTs exhibited
similar catalytic activity with Pt/CNTs in ORR and they can also be used in the
electrochemical detection of H2O2 and glucose. Using the CVD method, several
other research groups also tried to synthesize NCNTs with different N precursors.
Experiments indicate that carbon and N precursors have a significant impact on the
morphology and performance of NCNTs. For instance, when ferrocene (catalyst
precursor) and imidazole (C and N precursor) were used, the as-synthesized NCNTs
had a high N content of 8.54 at.% and a bamboo-like structure [23]; by annealing
CNTs and tripyrrolyl[1,3,5]triazine (TPT) mixture in N, the NCNTs annealing at
900 ˝C exhibited excellent electrochemical performance towards ORR in alkaline
medium [73].

In another group, Kundu et al. fabricated NCNTs via the pyrolysis of acetonitrile
with cobalt as catalyst at different temperatures in order to control the nitrogen
content [63]. The results indicated that NCNTs prepared at lower temperatures had
a higher amount of pyridinic groups with more exposed edge planes. Furthermore,
they proved that the NCNTs with a higher amount of pyridinic groups possess better
catalytic properties for ORR. Later, they synthesized NCNTs using a new approach,
i.e., by treating oxidized CNTs with ammonia at 800 ˝C; the obtained NCNTs
exhibited a favorable positive onset potential for ORR, increased reduction current,
and excellent stability, demonstrating a very promising cathode catalyst for ORR in
alkaline medium [41]. Almost at the same time, Chen and co-workers synthesized
NCNTs using various N precursors and/or catalysts [74–77]. It was concluded from
their studies that higher N content and more defects in NCNTs lead to higher ORR
performance. Similar conclusions were also drawn by Geng et al. [78]. However,
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others have found that there is no direct correlation between total N content and
the ORR performance; for example, a recent study reported, through post-treatment
of few-walled carbon nanotubes (FWCNTs) with polyaniline, a much lower N
content (~0.5 at.%). Interestingly, the low N-containing FWCNTs exhibited excellent
electrocatalytic activity for ORR as well as higher methanol tolerance properties [79].
Therefore, the exact role of N doping in NCNTs for the ORR activity is still under
debate. Until recently, Wågberg et al. [45] investigated how a thermal post-treatment
on the N-doped MWCNTs can result in the transformation of pyrrolic and pyridinic N
sites into quaternary N sites (N-Qs), leading to the improvement of ORR performance.
They reached the conclusion that the quaternary N valley sites (N-Qvalley) are
the most active sites in NCNTs for ORR; hence, a 4e´ reduction pathway occurs
generally on the N edge defects. Based on this fundamental concept, the chemical
functionalization becomes an alternative and effective approach to introducing N into
complex carbon nanostructures [80]. Accordingly, Tuci et al. reported a systematic
study on the synthesis, characterization, and electrocatalytic property of MWCNTs
functionalized with a series of well-defined pyridine groups [81]. They also discussed
the role of the electronic charge density distribution at the chemically grafted N
heterocycles on the ORR performance. This study therein introduced a deep level of
complexity to the understanding of the ultimate role of the pyridine groups on ORR
in NCNTs.

All these findings introduced above have significant impacts on catalysis and
fuel cell domains. However, most of the CNTs used in these reports were synthesized
by the pyrolysis of a nitrogen-containing precursor, and the residual catalyst particles
of Fe or Co were removed by the electrochemical method. Though great attention
has been paid to the purification process, the effects of metal contaminates in NCNTs
on the ORR performance are still controversial, unless NCNTs could be obtained by
a metal-free synthetic process. In this regard, by employing water-plasma etching
SiO2/Si wafers, Dai’s group reported a simple but effective approach for the growth
of densely packed N-doped single-walled CNTs [82]. Figure 4a shows the schematic
illustration of the NCNT fabrication process. Typically, the water-plasma was used
to etch the SiO2 coating (30 nm) on the top of the SiO2/Si wafer to produce uniform
SiO2 nanoparticles, which will act as the catalysts for NCNT growth during the CVD
synthesis. As shown in Figure 4b–e, the produced metal-free NCNTs showed superb
electrocatalytic activity and excellent durability toward ORR in acidic medium. For
the similar purpose of excluding the possible contribution of metal impurities to
ORR catalysis, Wang et al. [64] discovered that, without metal-containing catalysts,
N atoms alone show strong promotion for the self-assembly of NCNTs from gaseous
carbons. Based on this new discovery, pure metal-free CNTs with a high level of N
doping (20 at.%) can be directly synthesized by using melamine as both the carbon
and nitrogen precursor, without any post-treatment. More importantly, such intact
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samples can be used to investigate the intrinsic catalytic activity of NCNTs more
clearly; the results indicated that NCNTs indeed performed very well. Furthermore,
Li et al. reported that the concentration of KOH electrolyte also had a large impact on
the ORR performance of the NCNTs [65]. Higher concentration of KOH electrolyte
leads to more negative onset potential and lower current densities. For example,
when the concentration of KOH increased from 0.1 M to 12 M, the diffusion-limiting
current decreased over 100 times. This could be attributed to the very low oxygen
solubility in highly concentrated KOH electrolytes. In addition, in 3 M and 6 M KOH
electrolytes, NCNTs showed competitive activity with commercial Pt/C catalyst for
ORR in alkaline media, and much better activity than the Ag/C catalyst [65].
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Figure 3. (a,b) TEM image of stacked NCNTs and commercial Pt-CNTs. Inset in
(a) is the scheme illustration of the nanocups in stacked NCNTs. (c) CV curves of
stacked NCNTs and commercial Pt-CNTs in 0.1 M KOH aqueous solution saturated
with O2. Reprinted with permission from Ref. [72] Copyright © 2009, American
Chemical Society.
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Figure 4. (a) Water-plasma-assisted CVD growth of NCNTs for the ORR; (b) CVs
of the NCNTs, 50 mV/s in 0.5 M H2SO4 solution saturated with N2 or O2; (c) RDE
curves of the NCNTs and CNTs in oxygen-saturated 0.5 M H2SO4; (d) RDE curves
of the NCNT in oxygen-saturated 0.5 M H2SO4, inset: Koutecky-Levich plots of the
NCNT derived from RDE measurements; (e) The two-day stability measurements
of the NCNT by using continuous CV in oxygen-saturated 0.5 M H2SO4. Reprinted
with permission from [82]. Copyright © 2010, American Chemical Society.

3.2. NCNTs as Catalyst Support Material for ORR

Using CNTs as catalyst supports have attracted significant interest because of
their high surface area and excellent electrical conductivity. The N doping creates
defects on the surface of pristine CNTs and breaks out its chemical inertness, while
preserving its electrical conductivity [83]; moreover, NCNTs contain nitrogenized
sites that are electrochemically active. Therefore, NCNTs were also used as excellent
supports for catalyst nanoparticles. For instance, Vijayaraghavan et al. demonstrated
that Pt nanoparticles/NCNTs exhibited enhanced catalytic activity and stability
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along with N-dopant contents [84]. Later, Sun’s group demonstrated that uniform
Pt nanoparticles with smaller size and better ORR activity than pure CNTs were
obtained from NCNTs [85,86] (Figure 5). The authors also demonstrated that the
catalyst stability increased with the increase of N contents in NCNTs [87]. To
further take the merits of both carbon and ceramic-based supports for ORR, the
Sun group employed the composite nanostructures of NCNTs coated with TiSi2Ox

as Pt catalyst supports, and the results indicated that this composite showed better
ORR performance than Pt/NCNT catalysts, thereby illustrating its promise as a
catalyst for fuel cells [88]. Chen’s group concluded that the NCNTs synthesized from
an N-rich precursor solution (ethylenediamine) exhibited superior catalytic activity
toward ORR compared with NCNTs grown from a precursor solution with relatively
low N content pyridine [89].
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(scale bars are 20 nm); (c) CVs of Pt/CNTs an Pt/CNx 0.5 M H2SO4 with saturated
Ar at 50 mV/s; (d) RRDE results of Pt/CNTs and Pt/CNx in 0.5 M H2SO4 saturated
with O2 at 5 mV/s at the rotation speed of 1600 rpm at room temperature. Reprinted
with permission from [85]. Copyright © 2011, American Chemical Society.

4. Nitrogen-Doped Graphene (NG) for ORR

As discussed above, NCNTs could act as efficient and effective metal-free
catalysts for ORR. Carbon atoms adjacent to nitrogen dopants could create a net
positive charge density in order to counterbalance the strong electronic affinity of
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the N atom [6]. Hence the doping of the N atom could readily attract electrons to
facilitate the ORR. Similar to NCNTs, coupled with the recent popularity of graphene,
NG is also considered an appealing candidate for the applications in ORR where the
NCNTs have already been exploited significantly.

4.1. NG as a Metal-Free Catalyst for ORR

Compared with NCNTs, NG has a large surface area and outstanding electrical
conductivity; moreover, it also has the unique graphitic basal plane structure that
could further facilitate electron transport and supply more active sites.

In 2010, Qu et al. first reported the application of NG as catalysts for the ORR [90].
As shown in Figure 6, a free-standing NG film of 4 cm2 in size consisting of only a
few layer sheets was obtained by the CVD method, using gas mixtures of NH3, CH4,
H2 and Ar on the Ni catalyst surface. The N content in the as-synthesized NG was
ca. 4 at.%. The RRDE voltammograms measurements were conducted, in alkaline
electrolyte, to investigate the catalytic properties of NG, graphene and Pt/C for ORR.
From Figure 6b, it can be seen that the graphene electrode showed a 2 e´ process
for ORR with an onset potential of around ´0.45 V. After doping with N, the NG
electrode exhibited a one-step, 4 e´ pathway for ORR.
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Figure 6. (a) An optical photograph of NG film floating on water; (b) LV curves
in 0.1 M KOH saturated with air of different samples. Reprinted with permission
from [90]. Copyright © 2010, American Chemical Society.

Calculated by the Koutecky-Levich equation, the transferred electron number
per O2 molecule of the NG was 3.6–4. It was found that the steady-state catalytic
current density of the NG electrode was three times higher than the commercial
Pt/C electrode. Similar to NCNTs, NG has excellent durability and good selectivity

12



for ORR. The accelerated degradation test (ADT), which was carried out by CV in
O2-saturated electrolyte, is used to estimate the stability of the catalyst. In previous
work, the graphene showed obviously more stable catalytic performance than Pt/C.
Almost no significant loss in the voltammetric charge was observed after even a
100,000-cycle stability test [91]. Another advantage of NG compared to Pt for ORR
is that ORR on NG is not greatly affected by methanol [59,90] and CO [90,92]. For
instance, a 40% decrease was observed at the Pt/C electrode on the introduction of
2% (w/w) methanol [90], whereas the NG electrode remained unaffected under the
identical condition. The high selectivity of NG toward ORR makes it very attractive
for implementation in different kinds of fuel cells.

Based on these results, numerous research studies have been conducted on
NG for ORR. Some of the typical works are summarized in Table 1. It is notable
that the half-wave potential and onset potential for ORR are important criteria for
evaluating the activity of an electrocatalyst, and the number of the electron transfer
is determined from RRDE measurements to show that whether the electron transfer
mechanism is a 2e´ dominated process or 4e´ dominated process.
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Table 1. Summary of some typical work dedicated to NG as a metal-free catalyst
for ORR.

Synthesis Method and
Reactants N-Content (at.%) Electrocatalytic Performance Electron Transfer

Number Ref.

Thermal treatment of
glucose and urea 33

NG (25 at.%) shows competitive
ORR activities with Pt/C and

much better crossover resistance
and excellent stability

3.2–3.7 [19]

CVD (C source, ethylene;
N source, ammonia; Cu) up to 16 Higher onset potential as

compared to Pt/C close to 2 [49]

Thermal treatment of GO
using melamine 10.1 Much higher ORR activity

than grapheme 3.4–3.6 [57]

N plasma treatment
on graphene 8.5

Higher ORR activity than
graphene, and higher durability

and selectivity than Pt/C
- [59]

CVD (C source, methane;
N source, ammonia, Cu) 4 Higher activity, better stability and

tolerance to crossover than Pt 3.6–4 [90]

Detonation technique with
cyanuric chloride
and trinitrophenol

12.5 Comparable to that of Pt, more
stable and less expensive 3.69 [91]

A resin-based
methodology with

N-containing resin and
metal ions

1.8

The onset potential on the NG
electrode is close to that of Pt/C.

The current is almost the same for
both the Pt/C and NG

2.1–3.9 [92]

Hydrothermal reaction of
GO with urea 6.05–7.65

The performance of these NG
materials towards ORR is still not
as good as that of Pt/C in terms of

the half-wave potential and
current density

~3 [93]

Covalent functionalize GO
using organic molecules
and thermal treatment

0.72–4.3

The NG nanosheet exhibited a
good electrocatalytic activity
through an efficient one-step,

4e´ pathway

3.63 [94]

CVD of N-containing
aromatic

precursor molecules
2.0–2.7

The N dopants in the graphene
reduce the ORR overpotential,

thereby enhancing the
catalytic activity

3.5–4.0 [95]

GO treatment by ammonia
hydroxide, heating under

ammonia gas, and reaction
with melamine

6.0–6.8 Pyridinic N plays a vital
role in ORR 3.2–3.7 [96]

Annealing of GO with
ammonia and

N-containing polymers
2.91–7.56 The higher limiting current density

compared to Pt 2.85–3.65 [97]

Thermal reaction between
GO and NH3

2.4–4.6 The onset potential is close to that
of Pt/C ~3.8 [98]

Hydrothermal reaction
with GO and melamine 26.08 It shows lower ORR activity than

Pt/C 40 wt.% 3.2–4.0 [99]

Hydrothermal process
using urea and holey GO 8.6 Superb ORR with 4e´ pathway

and excellent durability 3.85 [100]

Thermally annealing GO
with melamine 8.05

The nG-900 exhibits lower activity
and onset potential than Pt/C,
albeit higher than graphene;

excellent stability

3.3–3.7 [101]

Pyrolyzing GO with urea 7.86
The NG showed a much-higher
activity than glassy carbon (GC)

and graphene
3.6–4.0 [102]

Redox GO with pyrrole
then thermal treatment 6 Shows comparable onset

potentials with 40 wt.% Pt/C 3.3 [103]

GO and
dicyandiamide under

hydrothermal condition
7.78 The onset potentials at rGO-N was

lower than that at Pt/C 2.6 [104]

Pyrolysis of graphene
oxide and polyaniline 2.4

High activity toward ORR with a
superior long-term stability and
tolerance to methanol crossover

3.8–3.9 [105]

14



Table 1. Cont.

Synthesis Method and
Reactants N-Content (at.%) Electrocatalytic Performance Electron Transfer

Number Ref.

Thermally annealing GO
5-aminotetrazole monohydrate 10.6

Higher current density than Pt/C.
Lower onset potential of ORR than

that of the commercial Pt/C
3.7 [106]

Pyrolysis of sugar in the
presence of urea 3.02–11.2

The NG1000 has comparable ORR
half-wave potential to 20 wt.%

Pt/C
3.2–3.8 [107]

Hydrothermal reaction of
GO with urea 5.8–6.2

NG has higher ORR activity than
grapheme, but is not yet

comparable to the Pt
3.0–4.0 [108]

Pyrolysis of GO and
polydopamine 2.78–3.79

Much more enhanced ORR
activities with positive onset
potential and larger current

density than graphene

3.89 [109]

Pyrolyzing GO with
Melamine, urea and

dicyandiamide
5

Compared to Pt/C, the half-wave
potential of ORR on this NG

catalyst was close, wheras the n
values are slightly lower

3.5–4 [110]

PANI acting as a N source
were deposited on the
surface of GNRs via a

layer-by-layer approach

4.1–8.3 Very good electrocatalytic
activity and stability 3.91 [111]

NG is synthesized by
pyrolyzing ion exchange

with resin and glycine
0.98–1.65

Doping N in graphene is good to
improve the activity for ORR, but

still lower than Pt/C catalyst
- [112]

Microwave heating of
graphene under NH3 flow 4.05–5.47

The doping of graphite N
enhanced the activity of the

catalysts in the ORR in
alkaline solution

3.03–3.3 [113]

Facile hydrothermal
method 2.8 Competitive with the commercial

Pt/C catalysts in alkaline medium 3.66–3.92 [114]

Gas-phase oxidation
strategy using a nitric

acid vapor
0.52

The onset potential is (0.755 V vs.
RHE), comparable to the value of
chemically synthesized NG, and
the current densities are higher

than those demonstrated for NG.

3.2–3.9 [115]

CVD growth of graphene
and post-doping with a

solid N precursor of
graphitic C3N4

6.5
Excellent activity, high stability,

and very good crossover resistance
for ORR in alkaline medium.

3.96-4.05 [116]

A hard
templating approach 5.07 Outstanding ORR performance in

both acidic and alkaline solutions. 3.9 [117]

In spite of extensive studies, the explanations on the exact catalytic mechanisms
of NG (e.g., wherein the N configuration (pyridinic N or graphitic N) is more
important for the ORR activity) or even the active sites are still controversial [94,118].
In Sun et al.’s research [55], they found that NG containing 0.3892% quaternary N (the
highest N content in three samples) showed the best ORR activity and the relationship
between ORR activity and graphitic N contents matched very well. It revealed that
graphitic type N plays the vital role for ORR activity. Luo et al. [49] synthesized
the graphene layers doped with nearly 100% pyridinic N through the pyrolysis of
methane (CH4) and NH3 on Cu substrate, and the as-synthesized pyridinic N-doped
graphene mainly exhibited a 2e´ transfer process for ORR, indicating that pyridinic
N may not, as previously expected, effectively promote the 4e´ ORR performance of
carbon materials.
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On the contrary, in the work of Sheng [57], the NG mainly containing
pyridine-like N atoms was obtained by the heat-treatment of GO in the presence of
melamine. Since the electrocatalytic activity of the NGs toward ORR is independent
of N-doping level, it may indicate that the pyridine-like N in NGs determines its
ORR activity. Pyridinic N, which has a lone electron pair in the plane of the carbon
matrix, could donate the electron to the π-bond, attract electrons, and therefore be
catalytically active. Some results were shown in many previous works [94–96].

In the research of Ruoff’s group [97], NG with different N-doping formats
was prepared by annealing GO together with different N-containing precursors,
such as ammonia and N-containing polymers. It was prone to generate graphitic
N and pyridinic N when annealing GO with ammonia, while it tended to form
pyridinic and pyrrolic N species when annealing GO with polyaniline or polypyrrole.
They found that the total atomic content of N rarely affects the ORR activity under
alkaline conditions. Actually, the graphitic N-dominated catalysts exhibit higher
catalytic activity and larger limiting current density than that of pyrrolic or pyridinic
N-dominated catalysts. However, the pyridinic N could enhance the ORR onset
potential and gradually convert the 2e´ dominated pass-way to the 4e´ dominated
process. Also, some researchers [119–122] used the periodic DFT to simulate the ORR
at the edge of NG. For example, by taking into account the experimental conditions,
i.e., the surface coverage, the water effect, the bias effect and pH, Yu et al. [119]
presented a systematic theoretical study on the full reaction path of ORR on NG.
They concluded that the rate-determining step is the O(ads) removal from the NG
surface. From another perspective, by calculating energy variations during each
reaction step using DFT, Zhang and Xia [120] demonstrated that the electrocatalytic
activity of NG is related to the atomic charge density distribution and electron spin
density The reasons for why NG has catalytic capability (while pristine graphene
does not) have also been discussed. From Kim et al.’s results, [121] doping of N
in graphene could promote the oxygen adsorption, the first electron transfer, and
the selectivity toward the 4e´ reduction pathway. More specifically, they suggested
that the outermost graphitic N sites are the main active sites. Meanwhile, they also
proposed that the graphitic N site which involves a ring-opening of the cyclic C-N
bond at the edge of graphene could result in the pyridinic N, thus, the inter-converts
conversion mechanism between pyridinic and graphitic types during the catalytic
cycle may reconcile the experimental controversy about what types of N are the ORR
active sites for N-doped carbon materials [121].

Besides the doped N species, the morphology of NG also plays a significant
role for the ORR properties. During the doping process of graphene, the
stacking of graphene sheets is inclined to increase the diffusion resistance of
reactants/electrolytes, reduce the specific area, and the exposed active sites. It
is thus worth controlling the structure of NG to get more ORR activity. In this regard,
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there is a great deal of work on the production of N-doped holey graphene [99,100].
For instance, a 3D porous nanostructure which has N-doped holes on individual
graphene sheets was synthesized through a hydrothermal process using urea and
holey GO by Yu et al. [100]. Benefiting from the 3D porous nanostructure, abundant
exposed sites, and high-level N doping, the as-prepared material exhibited excellent
ORR performance, such as the high limiting current, strong resistance to the methanol
crossover, which are competitive with the commercial 20 wt.% Pt/C catalysts.

4.2. NG as Support Material for ORR

The incorporation of N atoms within graphene sheets could contribute more
functional groups, higher electron-mobility, and more active sites for catalytic
reactions. Also, it is beneficial for facilitating the distribution and uniformity of
metal nanoparticles. Moreover, when NG acts as the support, it could enhance the
catalytic properties due to the interaction between graphene and metal nanoparticles.
Consequently, NG materials have been regarded as one very promising metal catalyst
support [123–126].

Typically, NG is proposed to be able to stabilize the noble metal nanoparticles,
and improve the durability of the catalysts. Moreover, nitrogen doping could
introduce active sites for catalytic reactions and also act as anchoring sites for
metal nanoparticle deposition. Yang et al. fabricated a composite of Pt-Au alloy
nanoparticles on NG sheets by a wet-chemistry method [127]. As shown in Figure 7,
the NG was synthesized by thermal treatment of GO powder and melamine. Then
the solutions of H2PtCl6, HAuCl4, NG in DMF and water underwent the microwave
irradiation. The as-prepared Pt3Au-NPs were found to be well dispersed on the NG
sheets (Figure 7b) and the HRTEM image in Figure 7c revealed the lattice fringes of
the NPs have an interplanar spacing of 0.232 nm. The fast Fourier transforms (FFTs)
shown in Figure 7d indicated the single crystallite nature of the Pt3Au/NG on (111)
plane. Figure 7e,f showed that the corresponding potential for Pt3Au/NG was much
lower than the other two samples at a given oxidation current density. Improved
electrocatalytict activity was observed due to the small size, uniform dispersion and
a high electrochemical active surface area of the nanocomposites. Recently, more
studies on NG- or N-rGO-supported Pt electrocatalysts have also been reported; all
these results demonstrate the significant function of N doping in producing highly
efficient ORR electrocatalysts [128–130].

Additionally, it was predicted that non-precious-metal-NG hybrid materials
would also lead to enhanced catalytic properties. For instance, Chen et al. reported
a strategy to synthesize ZnSe/NG nanocomposites (NG-ZnSe) [131]. As shown
in Figure 8, [ZnSe](DETA)0.5 nanobelts were gradually put into the GO solution,
and then the sediments were processed by hydrothermal treatment. As shown
in Figure 8b, ZnSe nanorods, which were composed of ZnSe nanoparticles, were
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grown on a graphene surface. It can be seen from Figure 8c that the NG-ZnSe
electrode exhibited higher positive onset potential and larger current for ORR. The
improved performance can be attributed to the synergetic effects between NG and
alloy nanostructures. There are also a number of similar reports using non-precious
metal to produce metal/NG composites, showing potential applications [132–136].Catalysts 2015, 5 1589 

 

 

 

Figure 7. (a) Fabrication of the Pt-Au alloy NPs on the NG sheets; (b) TEM of Pt3Au/N-G; 

(c) HRTEM and (d) FFTs of a single Pt3Au NP on NG; (e) CVs and (f) LSV of Pt/C  

(a, black), Pt3Au/G(b, red) and Pt3Au/N-G catalysts (c, green). Reprinted with permission 

from [127]. Copyright © 2012, Royal Society of Chemistry. 

Figure 7. (a) Fabrication of the Pt-Au alloy NPs on the NG sheets; (b) TEM
of Pt3Au/N-G; (c) HRTEM and (d) FFTs of a single Pt3Au NP on NG; (e) CVs
and (f) LSV of Pt/C (a, black), Pt3Au/G(b, red) and Pt3Au/N-G catalysts (c,
green). Reprinted with permission from [127]. Copyright © 2012, Royal Society
of Chemistry.
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electrodes. Reprinted with permission from Ref. [131]. Copyright © 2012, American 

Chemical Society. Note: in the original paper, the authors refer to “nitrogen-doped 

graphene” as “GN”; here in this review, for consistency, we named it “NG.” 

5. The Composites of NCNTs and NG for ORR 

As a two-dimensional layer structure of sp2-hybridized carbon, graphene has strong direction-dependent 

transport properties and is easily agglomerated and restacked to graphite; therefore, when used as a 

catalyst, it may result in declined activity. A combination of CNT and graphene may be an effective 

way to solve this problem [137,138]. Dai’s group has demonstrated that CNT-graphene complexes can 

exhibit excellent activity and stability towards ORR in both acidic and basic electrolytes [139]. 

Furthermore, based on the STEM-HAADF and EELS mapping results, they speculated that the 

impurities of nitrogen and iron might be the reason for the excellent ORR properties. While, as 

illustrated in the previous sections, NCNTs and NG have shown excellent electrocatalytic performance 

for the ORR compared with pure CNTs or graphene. Therefore, , there have recently been efforts to 

hybridize these two carbon structures (NCNTs and NG) to obtain a synergy effect to further improve 

their catalytic performance [138,140]. For example, Ma et al. fabricated the 3D NCNTs/graphene 

composite through the pyrolysis of pyridine over the Ni catalyst supported on graphene sheet [140]. 

The N content in the NCNTs/NG composite was about 6.6 at.%, compared with the undoped CNTs/G; 

Figure 8. (a) Schematic preparation of NG-ZnSe nanocomposites (blue
rods-[ZnSe](DETA)0.5 nanobelts; orange rods-ZnSe nanorods; purple balls-N; gray
balls-C); (b) SEM photograph of ZnSe/NG; (c) LV curves in 1.0 M KOH solution
with saturated O2 of different electrodes. Reprinted with permission from Ref. [131].
Copyright © 2012, American Chemical Society. Note: in the original paper, the
authors refer to “nitrogen-doped graphene” as “GN”; here in this review, for
consistency, we named it “NG.”

5. The Composites of NCNTs and NG for ORR

As a two-dimensional layer structure of sp2-hybridized carbon, graphene has
strong direction-dependent transport properties and is easily agglomerated and
restacked to graphite; therefore, when used as a catalyst, it may result in declined
activity. A combination of CNT and graphene may be an effective way to solve this
problem [137,138]. Dai’s group has demonstrated that CNT-graphene complexes
can exhibit excellent activity and stability towards ORR in both acidic and basic
electrolytes [139]. Furthermore, based on the STEM-HAADF and EELS mapping
results, they speculated that the impurities of nitrogen and iron might be the reason
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for the excellent ORR properties. While, as illustrated in the previous sections,
NCNTs and NG have shown excellent electrocatalytic performance for the ORR
compared with pure CNTs or graphene. Therefore, , there have recently been efforts
to hybridize these two carbon structures (NCNTs and NG) to obtain a synergy effect
to further improve their catalytic performance [138,140]. For example, Ma et al.
fabricated the 3D NCNTs/graphene composite through the pyrolysis of pyridine
over the Ni catalyst supported on graphene sheet [140]. The N content in the
NCNTs/NG composite was about 6.6 at.%, compared with the undoped CNTs/G;
the doped sample showed higher catalytic activity and selectivity for ORR in the
alkaline electrolyte. Another example of highly active N-doped G/CNT composite
electrocatalyst for ORR is demonstrated by Ratso and coworkers [141]. N-doped
few-layer G/CNT composite was fabricated by the pyrolysis of GO/MWCNT with
urea and dicyandiamide. Based on the XPS and RDE results, they concluded that
the enhanced electrocatalytic activity is due to a higher content of pyridinic N in the
samples, and the higher limiting currents of oxygen reduction can be ascribed by
the quaternary N. These results are attractive for alkaline fuel cells. However, these
methods require high temperature pyrolysis, during which the morphological defects
and structural degradation are probably shown up in the final products [17]. In this
regard, Chen et al. synthesized NG-NCNT nanocomposite through a hydrothermal
process at a much lower temperature (i.e., 180 ˝C) (Figure 9a) [44]. The diameters
of the nanotubes are in the range of 9´15 nm, and the atomic percentages of
N content are 3.2 at.% and 1.3 at.% for graphene and CNTs, respectively, which
confirm the existence of the N element in both graphene and CNTs. This NG-NCNT
displayed a 4e´ pathway for ORR with more positive onset potential, large peak
current, and good durability (Figure 9b–g). Very recently, however, a hybrid of
NCNT and graphene prepared by plasma-enhanced CVD showed inferior ORR
activity, [142] which is contradictory to the above-mentioned results. The reason for
this discrepancy is still not clear, thus extensive and careful research in this area is
still needed.
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Figure 9. (a) Schematic preparation of the NG-NCNT nanocomposites; (b) LV
curves in 0.1 M KOH solution with the rotation speed of 1600 rpm and sweep rate
of 20 mV¨ s´1 in oxygen of different samples; (c) LV curves of NG-NCNT with
different rotation speeds (sweep rate 20 mV¨ s´1); (d) K-L plots (i´1 vs. ω´1/2) at
different potentials (vs. Hg/Hg2Cl2); (e) CVs of GN-CNT after 8000 cycles with the
sweep rate of 150 mV¨ s´1; (f–g) Impedance data of different samples in 0.1 M KOH
solution with saturated N2 and O2, respectively; (h–k) SEM and STEM images of
the typical NG-NCNT nanocomposite; (m,n) Elemental analysis image of the NG
and NG-NCNT (the area marked with 1 and 2 in Figure (k) respectively. Reprinted
with permission from [44]. Copyright © 2013 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim.

6. Conclusion and Perspectives

ORR plays an essential role in energy-related areas, such as metal-air batteries
and fuel cells, and traditionally, the Pt-based catalysts are regarded as the best choice
for 4e´ ORR. Due to the prohibitive price and scarcity of Pt, the development of
high performance and inexpensive metal-free and non-noble metal catalysts, to
replace Pt, are highly desired, and it plays an important role in promoting the
large-scale practical applications of these energy devices. Due to their outstanding
properties, such as ultrahigh charge carrier mobility, gigantic thermal conductivity,
extremely large surface area, exceptional mechanical strength and flexibility, CNTs
and graphene have been extensively explored for ORR. The pristine CNTs and
graphene mainly exhibit 2e´ pathway for ORR, while N doping has been proved
to be a promising way to tailor their properties to promote 4e´ ORR which is much
more meaningful for energy applications. For N doping in CNTs or graphene, there
are mainly two strategies: the first method is the in situ doping where nitrogen can
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be doped into CNTs or graphene nanosheets during the growing process with the
addition of proper carbon and nitrogen sources. The second one is the post-treatment
process; in this method, CNTs or GO were firstly synthesized, then annealed at
high temperatures together with the nitrogen-containing precursors. Despite much
progress, it is still not easy to precisely control the N-doping sites and concentration.
All of these characteristics affect the ORR properties of NCNTs and NG in the catalytic
applications. Therefore, the development of new and more controllable doping
methods is still highly desired. Through N doping, various properties, including
the surface energy, work function, carrier concentration, and surface polarization, of
CNTs and graphene could be tuned, so that NCNTs and NG have become the most
promising metal-free catalysts toward 4e´ ORR. In general, three common bonding
configurations, including graphitic, pyridinic, and pyrrolic N, are normally achieved
when doping nitrogen into CNTs and graphene. Different doping strategies would
significantly affect the N-doping levels and N types in NCNTs and NG. For example,
the in situ doping normally generates pyridinic- and/or pyrrolic-N species, while
the post-treatment doping is prone to form graphitic-N in carbon frameworks.

In the applications for ORR, from both theoretical and experimental perspectives,
researchers have demonstrated that NCNTs and NG show remarkable electrocatalytic
performance. In a theoretical context, through DFT simulations, it was shown that
in NCNTs and NG, the carbon atoms with higher spin density usually possess
more active sites. Through investigating the reaction mechanisms, it was proved
that the removal of O(ads) on the surface of nitrogen-doped carbon determines the
reaction rate. In the experimental part, the developments of both NCNTs and
NG as metal-free ORR catalysts and as the metal catalyst support for ORR are
summarized in detail in this review. All the N-doped carbon materials (NCNTs, NG)
exhibit higher catalytic performance compared to their pristine counterparts (CNTs,
graphene), indicating a great beneficial effect of N doping on the ORR performance.
Moreover, the progresses on NCNTs- and NG-based composites for ORR have also
been discussed in this review, demonstrating that it is also a very promising research
direction for next-generation non-noble metal or metal-free ORR catalysts. Although
much progress has been achieved in the area of NCNTs and NG for ORR catalysts,
challenges still exist: (i) New and greener methods are required for the large-scale
production of NCNTs and NG; (ii) The control of N doping at specific positions in
CNTs and graphene is still lacking; (iii) A careful controlling of nitrogen sites, types
and concentration is still highly desired; (iv) The deep understanding of oxygen
adsorption and reduction on these NCNTs- and NG-based catalysts is still lacking,
and therefore, systematic theoretical simulations are also needed, which may boost
the developments of N-doping carbon materials for ORR in the future.
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Recent Progress on Fe/N/C Electrocatalysts
for the Oxygen Reduction Reaction in
Fuel Cells
Jing Liu, Erling Li, Mingbo Ruan, Ping Song and Weilin Xu

Abstract: In order to reduce the overall system cost, the development of inexpensive,
high-performance and durable oxygen reduction reaction (ORR)N, Fe-codoped
carbon-based (Fe/N/C) electrocatalysts to replace currently used Pt-based catalysts
has become one of the major topics in research on fuel cells. This review paper
lays the emphasis on introducing the progress made over the recent five years with
a detailed discussion of recent work in the area of Fe/N/C electrocatalysts for
ORR and the possible Fe-based active sites. Fe-based materials prepared by simple
pyrolysis of transition metal salt, carbon support, and nitrogen-rich small molecule or
polymeric compound are mainly reviewed due to their low cost, high performance,
long stability and because they are the most promising for replacing currently used
Pt-based catalysts in the progress of fuel cell commercialization. Additionally, Fe-base
catalysts with small amount of Fe or new structure of Fe/Fe3C encased in carbon
layers are presented to analyze the effect of loading and existence form of Fe on the
ORR catalytic activity in Fe-base catalyst. The proposed catalytically Fe-centered
active sites and reaction mechanisms from various authors are also discussed in
detail, which may be useful for the rational design of high-performance, inexpensive,
and practical Fe-base ORR catalysts in future development of fuel cells.

Reprinted from Catalysts. Cite as: Liu, J.; Li, E.; Ruan, M.; Song, P.; Xu, W. Recent
Progress on Fe/N/C Electrocatalysts for the Oxygen Reduction Reaction in Fuel Cells.
Catalysts 2015, 5, 1167–1192.

1. Introduction

To meet the increased demand for energy in the world, one of the biggest
challenges is the development of technologies that provide inexpensive, readily
available, and sustainable energy. Fuel cells are among the most promising
candidates for reliable and efficient conversion of alcohols into electric power in
automotive and portable electronic applications on a large scale [1,2]. However,
the scarcity, high cost, and poor long-term stability of Pt-Based ORR catalysts, the
most widely used catalysts for the oxygen reduction reaction (ORR) in fuel cells,
are main obstacles for large-scale commercialization of fuel cell technology [3,4].
Since Jasinski reported cobalt phthalocyanine as the ORR electrocatalyst in alkaline
electrolytes in 1964 [5], a new era of carbon-supported non-precious metal (Co,
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Fe, etc.) and metal-free catalyst to replace the expensive Pt-based electrode in
fuel cells started [6–12]. Among non-precious metal catalysts, N, Fe-codoped
carbon-based (Fe/N/C) electrocatalysts (Fe-based catalysts) are the most promising
candidates because some of them exhibit high ORR activity in both acidic and alkaline
medium [13–15]. Fe-based catalysts can be obtained through high-temperature
pyrolysis of either iron N4 chelate complexes [16–21], or simple precursors of iron
salts, nitrogen-containing components (aromatic [22–24] and aliphatic ligands [25–29]
or other nitrogen-rich small molecules [30–36]) on carbon supports. Thus far, the
state-of-the art Fe-Based catalysts exhibit much higher ORR activity and durability
than those of Pt-Based catalysts in alkaline electrolytes [15,36–40] and comparable
ORR activity in acidic media [7,34,41–43].

Along with the achievement of the excellent ORR activity of diverse Fe-based
catalysts, the ORR mechanisms on Fe-based catalysts were also widely studied by
many groups due to its importance in research and development of high-performance
Fe-based ORR catalysts [21,41,44–48]. However, due to different preparation
protocols used for Fe-based catalysts, there is still an ongoing debate about the
active sites of these materials [45,48–50]. Therefore, there is still a long way to go
in order to reach the practical usage and understanding of Fe-Based catalysts in
fuel cells applications. This review addresses the current development of Fe-based
ORR catalysts with a variety of different structure and properties, along with the
proposed catalytically active sites and reaction mechanisms from various authors.
By examining the most recent progress and research trends in both theoretical and
experimental studies of Fe-based catalysts, this review provides a systematic and
comprehensive discussion of the factors influencing catalyst performance as well as
the future improvement strategies.

2. Fe-Based Catalysts

Iron, an element of the transition metal group, entered into the world of ORR
catalysts in company with nitrogen in 1964 [51]. After that, Fe-based catalysts have
gained increasing attention due to their promising catalytic activity for ORR, along
with the utilization of abundant, low-cost precursor materials [14]. Research in
Fe-based catalysts covers the non-pyrolyzed Fe-based macrocycle compounds [52–55]
and pyrolyzed Fe-based macrocycle compounds [18,19,56] or some proper Fe- and
N-containing precursor materials [22,57,58]. The former are important in this field of
scientific research for fundamental understanding due to their preserved well-defined
structure during synthesis procedures, and the latter shows a higher ORR catalytic
activity because of the introduction of high temperature heat treatment procedures
(~400 to 1000 ˝C) to the catalyst synthesis process [13]. The structures of active sites
on these Fe-based catalysts have been proposed by different groups including the
structure of in-plane coordination of an iron atom and four pyridinic or pyrrolic type
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of nitrogen atoms embedded in a graphene-type matrix (Fe–N4/C [16,17,56,59,60] or
Fe–N2+2/C [61]), the structure of coordination of an iron atom iron and two pyridinic
type of nitrogen atoms embedded in a graphene-type matrix (Fe–N2/C) [60] and
N-doped carbon-based structure (N–C) [62,63]. The factors of influence on ORR
catalytic activity and stability of Fe-based catalysts have also been studied such as
ring substituent group of non-pyrolyzed Fe-based macrocycle compounds [64,65],
heat-treatment conditions [64,66,67], Fe content [68] and carbon support properties
including surface nitrogen content and microporosity [31,57,69,70]. In order to
produce highly active and stable Fe-based catalysts, ample approaches have been
used with significant emphasis on introducing the exact effect of synthesis conditions
and the nature of the catalytically active sites. Progress in this field of recent research
will be divided into three sections and discussed: (1) preparation of Fe-based
materials toward ORR; (2) research on structure of Fe-centered ORR active sites
and ORR mechanism; and (3) stability of Fe-based ORR catalysts.

2.1. Preparation of Fe-Based Materials toward ORR

In 2011, Chen et al. [13] reviewed Fe-based catalysts in detail, so we will lay an
emphasis on introducing the development of Fe-based catalysts over the most recent
five years. Interestingly, it is worth pointing out that the best performing Fe-based
ORR catalyst mentioned by Chen et al. [13] was synthesized by Dodelet et al. [71],
which had a volumetric current density of 99 A cm´3 at an iR-corrected voltage
of 0.8 V, approaching the DOE 2010 target of 130 A cm´3. In fact, soon after that,
a more exciting result was reported in August 2011 in a Nature Communication by
the same group [72]. By using a metal-organic framework consisting of zeolitic
Zn (II) imidazolate as the host for Fe and N precursors (iron (II) acetate and 1,
10-phenanthroline (Phen)), they prepared a Fe/Phen/ZIF-8 catalyst with a volumetric
activity of 230 A cm´3 at 0.8 V (iR-free) (Figure 1), a higher catalytic activity compared
with that (99 A cm´3) reported in Science [71].

In the last five years, Fe-based materials are mainly prepared by the simple
pyrolysis of transition metal salt (FeCl3 [34,36,39,41,47,73–80], Fe(NO3)3 [81–84],
FeAc [24,74,85–88], and FeC2O4 [42]), carbon support, and nitrogen-rich small
molecule [34,36,78,79,85,87–89] or polymeric compound [7,39–41,90]. An important
breakthrough was made by Zelenay et al. [7] who successfully synthesized Fe/N/C
catalysts (PANI–Fe–C) via heat-treatment of polyaniline (PANI), FeCl3 and carbon
black (Ketjenblack EC-300J). As displayed in Figure 2a, the PANI–Fe–C catalyst
shows a very high ORR onset potential (~0.93 V vs. RHE) in 0.5 M H2SO4, and
very low H2O2 yield (<1%) at all potentials. They also carried out a research into
effect of heat treatment on catalytic activity of PANI-derived Fe-based catalysts in the
range of 400 ˝C to 1000 ˝C (Figure 2b). The activity, as measured by the ORR onset
and half-wave potential (E1/2) in the rotating disk electrode (RDE) polarization
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plots, increases to the maximum at 900 ˝C with a very low H2O2 yield (<1%)
over the potential range from 0.1 to 0.8 V versus RHE, signaling virtually complete
reduction of O2 to H2O in a four-electron process. Although the best-performing
catalyst in fuel cell testing is the more active of the two FeCo mixed-metal materials,
PANI–FeCo–C, we cannot deny the fact that the ORR onset potential of PANI–Fe–C
was the highest at that time [7], marking great progress in Fe-based catalysts. Before
long, a new kind of Fe-based catalyst, three-dimensional (3D) N-doped graphene
aerogel (N-GA)-supported Fe3O4 nanoparticles (Fe3O4/N-GAs), is prepared by
Wu et al. [86]. In studying the effects of carbon support (carbon black, graphene) on
the Fe3O4 nanoparticles ORR catalysts, they maintained, Fe3O4/N-GAs exhibit a
more positive onset potential (´0.19 V vs. Ag/AgCl), higher cathodic density, lower
H2O2 yield, and higher electron transfer number for ORR in alkaline media than
Fe3O4 nanoparticles supported on N-doped carbon black (Fe3O4/N-CB) or N-doped
graphene sheets (Fe3O4/N-GSs), which further verified that choosing a proper carbon
support is vital for synthesizing a high-performance ORR catalysts [86]. Recently,
Sun et al. [34] fabricated a Fe/N/C catalysts with a ORR half-wave potential of 0.75 V
(vs. RHE) in 0.1 M HClO4 and a low H2O2 yield of 2.6% at 0.4 V by pyrolyzing a
composite of carbon-supported Fe-doped graphitic carbon nitride (Fe–g–C3N4@C)
in the optimum conditions of Fe salt/dicyandiamide mass ratio of 1:10 and the
pyrolyzed temperature at 750 ˝C.
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Figure 1. Volumetric current density of the best non-Pt catalysts in H2/air fuel cell tests at 
80 °C and 100% relative humidity for cathodes [71,72] and the U.S. DOE volumetric 
activity target at 0.8 V (iR-free). Red circles: most active iron-based catalyst from previous 
studies, dashed red line: extrapolation of the linear range to 0.8 V, blue stars: most active 
iron-based catalyst from the present study, dashed blue line: extrapolation of the linear 
range to 0.8 V. (Reproduce with permission from Ref. [72]. Copyright © Nature 
Publishing Group, London, UK, 2011). 
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Figure 2. (a) Steady-state ORR polarization plots (bottom) and H2O2 yield plots (top) 
measured with different PANI-derived catalysts and reference materials: 1, as-received 
carbon black (Ketjenblack EC-300J); 2, heat-treated carbon black; 3, heat-treated PANI-C; 
4, PANI-Co-C; 5, PANI-FeCo-C(1); 6, PANI-FeCo-C(2); 7, PANIFe-C; and 8, E-TEK 
Pt/C (20 μgPt cm−2). Electrolyte: O2-saturated 0.5 M H2SO4 (0.1 M HClO4 in experiment 
involving Pt catalysts (dashed line)); temperature, 25 °C. RRDE experiments were carried 
out at a constant ring potential of 1.2 V versus RHE; RDE/RRDE rotating speed, 900 rpm; 
and non-precious metal catalyst loading, 0.6 mg cm−2. (b) Steady-state ORR polarization 
plots (bottom) and H2O2 yield plots (top) measured with a PANI–Fe–C catalyst in 0.5 M 
H2SO4 electrolyte as a function of the heat treatment temperature: 1, 400 °C; 2, 600 °C;  
3, 850 °C; 4, 900 °C; 5, 950 °C; and 6, 1000 °C. (Reproduce with permission from  
Ref. [7]. Copyright © American Association for the Advancement of Science, Washington, 
DC, USA, 2011). 

Sun et al. [41] continued their work in synthesizing a Fe/N/C catalyst through high-temperature 
pyrolysis of the precursor containing poly-m-phenylenediamine (PmPDA) coated carbon black and 
FeCl3 in which the Fe/N/C catalyst was denoted as PmPDA–Fe–Nx/C. As depicted in Figure 3a,b,  
the PmPDA–Fe–Nx/C catalysts pyrolyzed at 950 °C possess the highest ORR activity (11.5 A g−1 at 
0.80 V vs. RHE) and the lowest H2O2 yield in 0.5 M H2SO4. They also carried out preliminary fuel cell 
test by employing the PmPDA–Fe–Nx/C (950 °C) as cathode catalyst. The maximal power density 
reached 350 mW cm−2 at cell voltage of 0.44 V, current density of 800 mA cm−2 and the current density at 
0.8 V is about 90 mA cm−2 (Figure 3c,d) without back pressure applied during the fuel cell test. 
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Figure 3. (a) ORR polarization curves and H2O2 yield plots of PmPDA–Fe–Nx/C catalyst 
prepared at different pyrolysis temperature, measured in O2-saturated 0.1 M H2SO4.  
Catalyst loading: 0.6 mg cm−2; Scan rate: 10 mV s−1; and Rotating speed: 900 rpm.  
(b) Variety of ORR mass activity at 0.80 V with pyrolysis temperature. (c) Polarization 
and power density plots for H2O2 single fuel cell with PmPDA–Fe–Nx/C as cathode 
catalyst at 80 °C. MEA active area: 2.0 cm2; Nafion 211 membrane; cathode catalyst 
loading: 4 mg cm−2; Anode catalyst: Pt/C (60 wt. %, JM) with Pt loading of 0.5 mg cm−2. 
No back pressure was applied. (d) Plot of iR-free cell voltage versus the logarithm of 
current density. (Reproduce with permission from Ref. [41]. Copyright © American 
Chemical Society, Washington, DC, USA, 2014). 
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synthesized Fe-based macrocycle compounds have also attracted widely public attention in recent  
years [15,38,47,55,77,91,92]. Among all the FePc-based catalysts (FePc/SWCNT, FePc/DWCNT, and 
FePc/MWCNT), synthesized by Morozan et al. [55], dispersing iron(II) phthalocyanine on different 
types of carbon nanotubes (SWCNTs, DWCNTs, MWCNTs), FePc/MWCNT catalysts exhibit the best 
ORR performance in alkaline electrolyte close to the Pt/C reference. In 2012, by reacting  
the pyridine-functionalized graphene with iron-porphyrin, a graphene-metalloporphyrin metal organic 
framework (MOF) with enhanced catalytic activity for ORR was synthesized by Jahan et al. [77].  
The authors claimed that the addition of pyridine-functionalized graphene changes the crystallization 
process of iron-porphyrin in the MOF, increase its porosity, and enhances the electrochemical charge 
transfer rate of iron-porphyrin, and therefore, enhance the ORR catalytic activity of these Fe-based 
catalysts [77]. After that, an exciting result was reported in Nature Communication by the Cho  
group [91]. A composite of FePc and SWCNTs (FePc–Py–CNTs) from covalent functionalization of 
SWCNTs, taking advantage of the diazonium reaction, was synthesized by anchoring pyridyl (Py) 
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Compared to pyrolysis of simple Fe salt, the Fe-based catalysts
prepared via heat-treatment iron phthalocyanines (Pc)/porphyrins and their
derivatives supported on carbon materials or some synthesized Fe-based
macrocycle compounds have also attracted widely public attention in recent
years [15,38,47,55,77,91,92]. Among all the FePc-based catalysts (FePc/SWCNT,
FePc/DWCNT, and FePc/MWCNT), synthesized by Morozan et al. [55],
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dispersing iron(II) phthalocyanine on different types of carbon nanotubes
(SWCNTs, DWCNTs, MWCNTs), FePc/MWCNT catalysts exhibit the best
ORR performance in alkaline electrolyte close to the Pt/C reference. In 2012,
by reacting the pyridine-functionalized graphene with iron-porphyrin, a
graphene-metalloporphyrin metal organic framework (MOF) with enhanced
catalytic activity for ORR was synthesized by Jahan et al. [77]. The authors claimed
that the addition of pyridine-functionalized graphene changes the crystallization
process of iron-porphyrin in the MOF, increase its porosity, and enhances the
electrochemical charge transfer rate of iron-porphyrin, and therefore, enhance the
ORR catalytic activity of these Fe-based catalysts [77]. After that, an exciting result
was reported in Nature Communication by the Cho group [91]. A composite of FePc
and SWCNTs (FePc–Py–CNTs) from covalent functionalization of SWCNTs, taking
advantage of the diazonium reaction, was synthesized by anchoring pyridyl (Py)
groups on the walls of CNTs, prior to FePc coordinated to Py–CNTs through the bond
formed between nitrogen atom in pyridine and iron center in FePc (Figure 4a) [91].
The as-synthesized composites show a higher ORR catalytic activity with a half-wave
potential (E1/2) at 0.915 V (vs. RHE) than that of the state-of-the-art Pt/C with E1/2
value at 0.88 V (Figure 4b). Theoretical calculations made by the authors suggest
that the rehybridization of Fe 3d orbitals with the ligand orbitals coordinated
from the axial direction results in a significant change in electronic and geometric
structure, which greatly increases the ORR catalytic activity of catalysts [91]. Differ
from the CNTs used as carbon support of FePc by Cho et al., using chemically
reduced graphene as the carbon support of FePc, Chen et al. [38] successfully
synthesized a g-FePc catalyst through forceful π´π interaction. The results of
electrochemical measurements suggest that g-FePc catalyst possesses prominent
ORR catalytic activity, which is comparable with commercial Pt/C in both onset
potential and current density in 0.1 M KOH [38]. Furtermore, Liu’s group [92,93]
and Dai’s group [15] also devote themselves to synthesize highly active Fe-based
catalysts started from preparation of N-containing Fe-porphyrin complex or the
solid-state synthesis of zeoliticimidazolate frameworks. Although the Fe-based
catalysts prepared via heat-treatment iron phthalocyanines (Pc)/porphyrins and
their derivatives supported on carbon materials or some synthesized Fe-based
macrocycle compounds seems to be a little complicated or high-cost relative to
pyrolysis of transition metal salt carbon support, and nitrogen-rich small molecule,
still plays an important role in the preparation of ORR catalysts and research of ORR
active sites.
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It is not a unique instance, a new kind of highly active material, N-doped Fe or
Fe3C encapsulated in carbon support (CNTs or Graphitic layers), has been reported
by many groups [39,67,87,94–97]. In 2012, Chen et al. [94] reported a synthetic
strategy that enables synthesis of nitrogen-enriched core-shell structured catalysts
with iron-based composite (Fe/Fe3C) nanorods as the core and graphite carbon
as the shell (N–Fe/Fe3C@C) (Figure 5a). The N–Fe/Fe3C@C shows significantly
improved activities and advanced kinetics for ORR in neutral phosphate buffer
solution (PBS) compared with the commercial Pt/C catalysts (Pt 10%). The authors
proposed that the doped N and core-Fe3C in the N–Fe/Fe3C@C play key roles in
improving the catalytic performance for ORR [94]. Soon after that, Lee et al. [94] found
that the Fe/Fe3C-functionalized melamine foam exhibited good ORR activities in
alkaline media. Referring to the possibly important role of the Fe3C phase in the ORR,
Hu et al. [94] synthesized a Fe-based catalyst in the form of hollow spheres comprising
uniform Fe3C nanoparticles encased by a graphitic layer (Fe3C/C) (Figure 5b) via
high-pressure pyrolysis. The results of rotating disk electrode and rotating ring
disk electrode measurement suggested that Fe3C/C catalyst exhibited a high ORR
activity and stability in both acidic and alkaline media partly due to the activation
of the surrounding graphitic layers by the encased carbide nanoparticles, and
making the outer surface of carbon layer active towards the ORR [97]. Recently,
Xing et al. [39] synthesized a Fe-based catalyst with iron carbide encapsulated
in N-doped graphitic layers (Fe3C/NG) (Figure 5c), which also possesses high
ORR activity and stability and further affirmed the importance of the structure of
Fe/Fe3C encased in carbon layers. In fact, Fe encapsulated within carbon nanotubes
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(Figure 5d,e) as ORR catalysts has also been reported by both the Zelenay group [87]
and the Bao group [95]. So we can excitedly find a fact that Fe element will play
an important role in the ORR wherever it locates on the surface of N-doped carbon
materials bonded with N or is encased by carbon layers.
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It is recognized widely that Fe-doping would enhance the performance of
N-doped catalyst. Among the transition metals (Mn, Fe, Co, Ni, and Cu), Fe,
N-codoped catalysts exhibits the highest ORR activity [98], which fully displays
the importance of Fe-base catalysts for ORR. Interestingly, Dai et al. [43] synthesized
nanotubes-graphene (NT-G) complexed, few-walled carbon nanotubes with the outer
wall partially unzipped by harsh oxidation in KMnO4/H2SO4, which exhibit a high
activity, excellent tolerance to methanol and superior stability in both acidic and
alkaline solutions. The authors claimed that the NT-G contains small amount of irons
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(1.10 wt. %) originated from nanotube growth seeds, and nitrogen impurities, which
facilitate the formation of catalytic sites and boost the activity of the catalyst, and the
role of iron in forming active ORR catalytic sites in the NT-G complex is proved by
CN´ Poisoning experiments [43]. The role of extremely small amount of iron in ORR
was further verified by Xu’s group [36]. The authors synthesized a series of Fe-based
catalysts by tuning the Fe content and codoping with nitrogen on cheap carbon black
(CB) over a wide range from 0.02 to 20 wt. % (Figure 6a) and found that the optimal
catalyst with a trace Fe content (0.05 wt. %) showed a superior high performance
compared with commercial Pt/C in 0.1 M KOH (Figure 6b). Then after Xu, Pumera’s
group [99] demonstrated that residual manganese-based metallic impurities in
graphene also play an extremely active role in the electrocatalysts of ORR on
supposedly metal-free graphene electrode, which indirectly affirmed the role of
a small amount of iron in other carbon-based ORR catalysts. Recently, Chen et al. [40]
fabricated a series of self-supported N-doped mesoporous carbons with a trace
amount of Fe (Fe–N/C). Electrochemical measurements revealed that Fe–N/C with
an iron content of 0.24 at. % prepared at 800 ˝C was the best catalysts (Fe–N/C-800),
with a more positive onset potential (0.98 V vs. RHE), higher diffusion-limited
current, higher selectivity, higher stability, and stronger tolerance against methanol
crossover than commercial Pt/C catalysts in 0.1 M KOH [38]. Interestingly, the
results of cyanide poisoning and hot H2SO4 leaching for Fe–N/C-800 suggested that
ORR was primarily due to iron-free active sites that arose most likely from nitrogen
doping and the contributions of Fe-base active sites was small [40]. From all of the
above, we can suggest that whether the small amount of iron will form active ORR
catalytic sites or not is greatly dependent on the conditions for the preparation of
Fe-based catalyst.
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Table 1. Electrocatalytic performance (onset potential (Eo/V vs. RHE) and
half-wave potential (E1/2/V vs. RHE)) of recently reported Fe-based catalysts
for ORR and the corresponding test results (T/˝C, test temperature; OCV/V,
open-circuit voltage; MPD/mW cm´2, and maximum power density) of fuel cell
(H2-O2 fuel cell, acid/alkaline direct methanol fuel cell (DMFC) or Zn-air fuel cell).

Catalysts Acid or
Alkaline

EO (V vs.
RHE)

E1/2 (V vs.
RHE)

Cell tests, T(˝C),
OCV (V) and

MPD (mW cm´2)

Reference
(Year)

PANI–Fe–C 0.1 M HClO4 ~0.93 / H2-O2, 80, ~0.9,
<550 Ref. [7] (2011)

C–COP–P–Fe
0.1 M KOH ca. 0.98 / / Ref. [15] (2014)0.1 M HClO4 ca. 0.89 / /

BP–NFe
0.1 M KOH 0.045 vs. SCE ´0.089 vs. SCE DMFC, 60, 0.8,

16.6 Ref. [36] (2013)

0.5 M H2SO4 0.6 vs. SCE / /

g-FePc 0.1 M KOH 0.98 0.88 / Ref. [38] (2013)

F3C/NG-800 0.1 M KOH 1.03 0.86 DMFC, 60, 0.75,
31 Ref. [39] (2015)

0.1 M HClO4 0.92 0.77 DMFC, 60, 0.87,
19

Fe–N/C-800
0.1 M KOH 0.98 / / Ref. [40] (2015)0.1 M HClO4 0.77 / /

PmPDA–Fe–Nx/C 0.1 M H2SO4 ~0.93 / H2-O2, 80, ~0.9,
350 Ref. [41] (2014)

NT-G
0.1 M KOH >1.05 0.87 / Ref. [43] (2012)0.1 M HClO4 ~0.89 0.76 /

Fe3O4/N-GAs 0.1 M KOH ´0.19 vs.
Ag/AgCl / / Ref. [86] (2012)

N–Fe–CNT/CNP 0.1 M NaOH >1.05 0.93 / Ref. [87] (2013)

FePc–Py–CNTs 0.1 M KOH >1.05 0.915 / Ref. [91] (2013)

Zn(mlm)2TPIP 0.1 M HClO4 0.902 0.76 H2-O2, 80, ~0.95,
620 Ref. [92] (2014)

PFeTTPP-1000 0.1 M HClO4 0.93 0.76 H2-O2, 80, 0.9, 730 Ref. [93] (2013)

N–Fe/Fe3C@C 0.1 M PBS 0.21 vs.
Ag/AgCl / / Ref. [94] (2012)

Pod-Fe 0.1 M H2SO4
0.5 vs.

Ag/AgCl
0.3 vs.

Ag/AgCl H2-O2, 70, 0.7, / Ref. [95] (2013)

Ar-800 0.1 M KOH ~0.05 vs.
Hg/HgO / Zn-air, 1.2, 200 Ref. [96] (2013)

Fe3C/C-800 0.1 M KOH 1.05 0.83 / Ref. [97] (2014)
0.1 M HClO4 ca. 0.90 ca. 0.73 /

Table 1 shows the representational results of electrocatalytic ORR performance
and fuel cell tests of recently reported Fe-based catalysts in both acid medium and
alkaline medium. Although the ORR performance of Fe-based catalysts in alkaline
medium has outperformed that of commercial Pt/C, its ORR performance in acid
media is still inferior to that commercial Pt/C. The ORR onset potential of Fe-based
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catalysts in alkaline has reached the value of 1.05 V (vs. RHE) [43,87,91], while
the highest value of ORR onset potential to date in acid medium is just close to
0.93 V (vs. RHE) [7,39,41,93]. The reason why the Fe-based catalysts own the lower
ORR catalytic activity in acid than that of in alkaline medium will be discussed in
Section 2.2. In addition, considering the practicality of Fe-based catalysts for ORR
in fuel cell, the best performing Fe-based ORR catalysts in acid condition reported
to date is synthesized by Liu’s group [92,93], who made H2-O2 fuel cell tests by
using the as-prepared Fe-based materials as cathode catalysts and commercial Pt/C
as anode catalysts and get a highly maximum power density of fuel cell tests of
730 mW cm´2 [93] and 620 mW cm´2 [92] in 2013 and 2014, respectively. However,
regarding the ORR activity of Fe-based catalysts in acid, the actual volumetric activity
of even the most active Fe-based catalysts needs to be improved. Regarding the ORR
stability of Fe-based catalysts in both alkaline media and acid media, the stability
tests are generally run at low current density or low power level, which are not real
conditions for fuel cell operation. Hence, there is still a long way to go in order to
reach the practical usage and understanding of Fe-based catalysts in fuel cells for
commercial applications.

In summary, Fe-based catalysts represent a promising family of non-precious
metal ORR catalyst candidates. It is obvious that the preparation conditions
of Fe-based catalyst have a direct influence on the resulting Fe-based ORR
electrocatalyst materials. A proper N-doped carbon support or N-enriched precursor
selected for Fe-based catalyst is also vital for the final ORR catalytic activity. Of course,
Fe is thus an already profoundly studied dopant for N-doped ORR electrocatalysts
and will play a significant role in the further ongoing process within this field.

2.2. Research on Structure of Fe-Centered ORR Active Sites and ORR Mechanism

Considering the most recent progress of Fe-based catalysts, insight into
formation mechanisms and structures of ORR active sites is also an ongoing task
in the research and development of Fe-based catalysts for fuel cell applications.
The current proposed active sites, containing edge plane FeN2/C and FeN4/C [60]
species as well as basal plane macrocyclic FeN4/C [19,20] species, are mainly
speculated by data obtained from X-ray photoelectron spectroscopy (XPS) [19,100],
time-of-flight secondary ion mass spectroscopy (TOF-SIMS) [45,60], X-ray absorption
fine structure [18,60], and Mossbauer spectroscopy [17,19]. In 2008, Dodelet’s
group [61] claimed that the majority of active sites consist of a Fe-N4/C (labeled by
the authors as FeN2+2/C) configuration bridging two adjacent graphene crystallites.
Recently, Dodelet et al. [73] continue their work to clarify the origin of the enhanced
PEM fuel cell performance of catalysts prepared by the procedures described in
Science [71] and Nature Communication [72]. Among all the Fe–N4-like species they
reported, ORR activity is only attributed to Fe–N4/C and N–Fe–N2+2/C, which are
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the structure of coordination of nitrogen atoms and the iron atoms of Fe–N4/C [73].
The former is a well-known site typically found in heat-treated carbon supported or
unsupported porphyrins, and the latter is a very new kind of active composite
N–Fe–N2+2–NH+ site, which is the high activity state of N–Fe–N2+2/C. More
importantly, Fe–N4/C and N–Fe–N2+2/C are more available in catalysts pyrolyzed
in Ar + NH3 atmosphere than in only Ar or NH3 [73]. After the Dodelet’s report in
2008 [61], Kramm et al. [59] firstly attributed improved ORR kinetics of these Fe–N4

centers to Fe ion centers with higher electron densities. The authors made a further
study on the structure of catalytic site in Fe-based catalysts for ORR via analyzing
the Fe-species existed in the Fe-based catalysts prepared by impregnation of iron
acetate on carbon black followed by heat-treatment in NH3 at 950 ˝C [44]. Five
different Fe-species were detected in the Fe-based catalysts containing 0.03 to 1.55
wt. % Fe: three doublets assigned to molecular FeN4-like sites with their ferrous
ions in a low (D1), intermediate (D2) or high (D3) spin state (Figure 7), and two
other doublets assigned to a single Fe-species (D4 and D5) consisting of surface
oxidized nitride nanoparticles [44]. Among the five Fe-species identified by 57Fe
Mossbauer spectroscopy in these catalysts, the authors maintained, only D1 and D3
display catalytic activity for the ORR in acid medium, with D3 featuring a composite
structure with a protonated neighbor basic nitrogen and being far from the most
active species [44]. These findings reveal that when focusing on the development
of Fe-based catalysts with improved active site densities, it is possible to tune the
electronic and structure properties of these active site structures, or develop Fe-based
catalysts with higher ORR-activity by developing ways to make a larger fraction of
the available Fe-atoms form more of the most ORR-active composite N–FeN2+2 . . .
Nprot/C (D3) sites.

Recently, Chen et al. [45] proposed two possible formation mechanisms
for the catalytically active sites occurring during high-temperature pyrolysis
treatments through CN´ ions poisoning experiments, dependent on the specific
type of precursor and synthesis methods utilized. The proposed structures of
high-temperature-treated Fe-based catalysts are depicted in Scheme 1. These active
sites include 1,10-phenanthroline (phen)-like iron complexes (A and C) [35,60], single
pyridine-like iron complexes (B and E), and macrocyclic-like iron complexes (D
and F) [20,45]. The authors claimed that utilizing aromatic iron complex ligands in
inert atmospheres, catalytically active sites (C and D) will be formed in the layers of
material deposition and will build up on the surface of the carbon support, which will
decrease the porosity of surface layer and results in the majority of actives sites being
inaccessible, entrapped in the subsurface layers, and such that leading to inhibited
reactant and product mass transfer to and from the catalytically active sites. On the
contrary, Fe-based catalysts prepared by pyrolyzing nonarmatic ligands, such as
NH3, and aliphatic diamines can result in the simultaneous production of the second
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active sites (A, B, and E) and well-connected channels [45]. The research provides
valuable insight toward the development of Fe-based catalysts with improved ORR
activity and stability. In 2013, Kattelet al. [50] performed first-principles density
functional theory (DFT) calculations to investigate the reaction pathway of ORR
on Fe-N4 catalytic clusters formed between pores in graphene supports. The DFT
results indicate that formation of Fe-N4 clusters at the edges of graphitic pores is
energetically feasible and ORR would be proceed on the assuming a pathway that
follows the chemical reactions: (1) O2 Ñ *O2 (adsorption); (2) *O2 + (H+ + e´) Ñ
*OOH; (3) *OOH + (H+ + e´) Ñ 2*OH; and (4) 2*OH + 2(H+ + e´) Ñ 2H2O. The
authors predicted that Fe–N4 clusters near graphitic pores could promote the 4e´

ORR with a single active site contain central Fe atom and four surrounding N atoms
due to the split of O–O bond in the reactant O2 during the interaction of intermediate
HOOH with the Fe–N4 clusters in the above ORR pathway [50]. The theoretical
study provides an explanation to the experimentally observed 4e´ ORR on heat
treated Fe/N/C electrocatalysts and certified the Fe-centered active sites of these
Fe/N/C electrocatalysts. More recently, the highly Fe-centered active sites was also
verified by Ozkan’s group [46] via H2S poisoning experiments, which suggested that
Fe plays a critical role in catalyzing ORR for Fe/N/C catalysts. Interestingly, except
the above experimental work mentioned in Section 2.1, in combination with the XRD
and XPS results of the pyrolyzed Fe/N/C catalysts, Sun et al. [34] propose that the
ORR active sites are closely related to Fe3N and both pyridinic N (which may bond
to FeIII to form Fe3N) and quaternary N in the pyrolyzed Fe/N/C composites are
conductive to catalyze the ORR and can serve as catalytically active sites for oxygen
reduction in acid media. Through systematic of the effects of a series of inorganic
molecules and ions (Cl´, F´, Br´, SCN´, SO2 and H2S) on the ORR activity, they
further maintained, the active site of the Fe/N/C in acidic solutions contain Fe
element and its valence state is mainly FeIII since this catalyst is not sensitive to CO
and NOx but distinctly sensitive to F´ ion. The new insight into the active site nature
of the Fe/N/C through molecule/ion probe is of very useful in rational design of
high performance Fe-based catalysts for ORR in acid media [41].
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Fe–N4/C and N–Fe–N2+2/C are more available in catalysts pyrolyzed in Ar + NH3 atmosphere than in 
only Ar or NH3 [73]. After the Dodelet’s report in 2008 [61], Kramm et al. [59] firstly attributed 
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(Figure 7), and two other doublets assigned to a single Fe-species (D4 and D5) consisting of surface 
oxidized nitride nanoparticles [44]. Among the five Fe-species identified by 57Fe Mossbauer 
spectroscopy in these catalysts, the authors maintained, only D1 and D3 display catalytic activity for 
the ORR in acid medium, with D3 featuring a composite structure with a protonated neighbor basic 
nitrogen and being far from the most active species [44]. These findings reveal that when focusing on 
the development of Fe-based catalysts with improved active site densities, it is possible to tune  
the electronic and structure properties of these active site structures, or develop Fe-based catalysts with 
higher ORR-activity by developing ways to make a larger fraction of the available Fe-atoms form more 
of the most ORR-active composite N–FeN2+2…Nprot/C (D3) sites. 

 

Figure 7. Side views and top views of the proposed structures of: (a) the FeN4/C catalytic 
site in heat-treated, macrocycle-based catalysts assigned to Mossbauer doublet D1;  
(b) the FeN2+2-like micropore-hosted site found in the catalyst prepared with iron acetate 
and heat-treated in ammonia assigned to doublet D2; and (c) the N–FeN2+2-like composite 
site, where N–FeN2+2 is assigned to doublet D3. In all side views, graphene planes are 
drawn as lines. (Reproduce with permission from Ref. [44]. Copyright © Royal Society of 
Chemistry, London, UK, 2012). 
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N–FeN2+2-like composite site, where N–FeN2+2 is assigned to doublet D3. In all
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Ref. [44]. Copyright © Royal Society of Chemistry, London, UK, 2012).

Additionally, the ORR catalytic activity of Fe-based catalysts prepared by
Mukerjee et al. [101] in 2011 through a pyrolysis in NH3 is mostly imparted
by acid-resistant Fe–N4 sites whose turnover frequency for O2 reduction can be
regulated by fine chemical changes of the catalyst surface. The authors claimed
that surface N-groups could be protonated at pH 1 and subsequently bind anions,
resulting in decreased activity for theO2 reduction, and the anions can be removed
chemically or thermally to restore the activity of acid-resistant Fe–N4 sites [101]. The
implications of the findings reported in this work suggested that optimizing the
catalyst/electrolyte interface to prevent anion binding is required to combine high
activity and durability of Fe-based catalysts. In fact, Mayer et al. [21,102,103] has
also investigated the selectivity for four-electron reduction to H2O or two-electron
reduction to H2O2 of Fe-based catalysts in iron-porphyrin complexes. Using
Iron(III) meso-tera(2-carboxyphenyl)-porphine chloride and its isomer as ORR
electrocatalysts, the authors found that the Fe-based catalysts containing proton
relays closed to the redox center in the second coordination sphere of iron-porphyrin
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complexes have a high selectivity for four-electron reduction to H2O, which
suggested the importance of catalyst design for selectivity in Fe-based catalysts [102].
Recently, however, the authors verified that the nature of the catalyst film on a carbon
electrode has an effect as large as changing the structure of the molecular catalyst
itself [21].
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in alkaline medium and identified an activity descriptor based on principles of surface science and 
coordination chemistry. Using iron(III) meso-tetraphenylporphine chloride (FeTPPCl) as a model 
system, the authors elucidate inner- vs. outer-sphere ORR mechanisms and active-site structure 
evolution on pyrolyzed Fe-based catalysts. As depicted in Figure 8a, in alkaline media, taking platinum 
surface as a starting point of illustration, the well-known electrocatalytic inner-sphere electron transfer 
(ISET) mechanism (Figure 8a, inset i) involves chemisorptions of desolvated O2 on an oxide-free Pt-site 
(Figure 8a, when M is represented as Pt) leading to a direct/series 4e− ORR pathway without desorption 
of reaction intermediates and the coexistence of an outer-sphere electron transfer (OSET) mechanism 
(Figure 8a, inset ii), wherein the noncovalent hydrogen bonding forces between specifically adsorbed 
hydroxyl species (OHads acting as an outer-sphere bridge) and solvated O2 (localized in  
outer-Helmholtz plane) promote a 2e− reduction pathway forming HO2− anion [104]. Therefore,  
the goal of promotion of an electrocatalytic inner-sphere reaction mechanism for a complete 4e− ORR 
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Mukerjee et al. [104] continued their research on ORR mechanism of pyrolyzed
Fe-based catalysts in alkaline medium and identified an activity descriptor based
on principles of surface science and coordination chemistry. Using iron(III)
meso-tetraphenylporphine chloride (FeTPPCl) as a model system, the authors
elucidate inner- vs. outer-sphere ORR mechanisms and active-site structure
evolution on pyrolyzed Fe-based catalysts. As depicted in Figure 8a, in alkaline
media, taking platinum surface as a starting point of illustration, the well-known
electrocatalytic inner-sphere electron transfer (ISET) mechanism (Figure 8a, inset
i) involves chemisorptions of desolvated O2 on an oxide-free Pt-site (Figure 8a,
when M is represented as Pt) leading to a direct/series 4e´ ORR pathway without
desorption of reaction intermediates and the coexistence of an outer-sphere electron
transfer (OSET) mechanism (Figure 8a, inset ii), wherein the noncovalent hydrogen
bonding forces between specifically adsorbed hydroxyl species (OHads acting as
an outer-sphere bridge) and solvated O2 (localized in outer-Helmholtz plane)
promote a 2e´ reduction pathway forming HO2

´ anion [104]. Therefore, the goal
of promotion of an electrocatalytic inner-sphere reaction mechanism for a complete
4e´ ORR process in alkaline electrolytes can be achieved via facilitation of direct
adsorption of desolvated O2 on OHads-free active sites and avoiding the precipitous
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outer-sphere reaction of solvated O2 with OHads covered active sites [104]. In the
system of Fe–N4/C active sites, the 4e´ electrocatalytic inner-sphere electron transfer
mechanism in dilute alkaline media is shown in Figure 8b, wherein O2 displaces the
OH´ species and chemisorbs directly on the Fe2+ active site [104]. The lability of the
axial OH´ anion is due to the redox mechanism of ORR that ensures the reduction of
pentacoordinated (H)O–Fe3+–N4 to the square-planarFe2+–N4 active site where axial
ligation is available for direct O2 chemisorption. This ensures that the precipitous
OSET mechanism is avoided on Fe–N4/C active sites leading to direct chemisorption
of O2 on the metal center via aninner-sphere mechanism. Once molecular O2 adsorbs
on the Fe2+ active site, via the superoxo and the ferric-hydroperoxyl states, the
reaction proceeds to the ferrous-hydroperoxyl adduct, which is very critical since
its stability determines the product distribution and ORR electrocatalytic activity.
For pH > 12, the Lewis basic nature of the anionic hydrogen peroxide intermediate
(HO2

´, pKa « 11.6) leads to its apparent stabilization on Lewis acidic Fe2+ active
sites via the formation of stabilized Lewis acid-base adduct, which ensures that the
catalytic cycle in alkaline media undergoes complete 4e´ transfer (Figure 8b) to
regenerate the active site via the formation of ferric-hydroxyl species. However, in
acidic media the analogous ferrous-hydroperoxyl adduct is FeII–(OHOH), wherein
the protonated nature of the hydrogen peroxide intermediate (H2O2) negates its
Lewis basic character and leads to its apparent destabilization on Fe2+–N4/C active
site, which hence leads to higher overpotential for ORR in acidic media necessitating
secondary sites to further reduce or disproportionate H2O2. Therefore, the author
claimed that Fe–N4/C active sites are more active for ORR in alkaline media than that
of in acid media [104]. In additional, Fe–N4/C active sites, the authors maintained,
which was covalently integrated into the π-conjugated carbon basal plane during
the pyrolysis step, could cause a dramatic anodic shift of ~600–900 mV in the metal
ion’s redox potential. Since the carbon basal plane constitutes an integral part
of the active site due to the electron-donating/withdrawing capability of carbon
support, the authors further claimed that tuning electron donating/withdrawing
capability of the carbon basal plane, conferred upon it by the delocalized π-electrons,
(i) causes a downshift of eg-orbitals (dz

2), thereby anodically shifting the metal ion’s
redox potential, and (ii) optimizes the bond strength between the metal ion and
adsorbed reaction intermediates thereby maximizing oxygen-reduction activity [104].
The report makes it being possible to tune the catalytic activity of the class of
pyrolyzed Fe-based catalysts by experimentally controlling the degree of π-electron
delocalization of the carbonaceous surface and open the door to the development of
more active and stable electrocatalysts based on Fe-centered active sites on novel π
surfaces. Recently, Mukerjee et al. [48] made a further study on the various structural
and functional forms of the active centers in pyrolyzed Fe-based catalysts in both
ranges of pH and confirmed the single site 2e´ ˆ 2e´ mechanism in alkaline media
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on the primary Fe2+–N4 centers and the dual-site 2e´ ˆ 2e´mechanism in acid media
with the significant role of the surface bound coexisting Fe/FexOy nanoparticles (NPs)
as the secondary active sites by employing a combination of in situ X-ray spectroscopy
and electrochemical methods. From what has been discussed above, we can draw the
conclusion that Fe3+ is mainly the active sites for ORR in acid media [34,41], while
Fe3+ and Fe2+ are both play vital role for ORR in alkaline [48,104]. On the contrary,
surface N-groups protonation is not beneficial for ORR activity [101,102].Catalysts 2015, 5 1182 

 

 

Figure 8. Proposed ORR mechanism. (a) Schematic illustration of inner-sphere (inset i) 
and outer-sphere (inset ii) electron transfer mechanisms during ORR in alkaline media.  
(b) Catalyst cycle showing the redox mechanism involved in ORR on pyrolyzed Fe–N4/C 
active sites in dilute alkaline medium; (IHP, inner Helmholtz plane; OHP, outer Helmholtz 
plane) (Reproduce with permission from Ref. [104]. Copyright © American Chemical 
Society, 2013). 

2.3. Stability of Fe-Based ORR Catalysts 

Although Fe-based catalysts with Fe–N4 sites initially exhibit a highly catalytic activity in acidic 
medium, their durability is still insufficient [105]. Therefore, bridging the gap between the attributes 
responsible for high activity and high durability has become the main challenge facing Fe-based 
catalysts. In recent years, the stability of Fe-based ORR catalysts in alkaline medium has shown to be 
better than that of in acid medium [105]. Xu’s group [36] has found the ORR performance in alkaline 
medium of their Fe-based catalysts containing extremely small amount of iron tend to be improved 
with larger diffusion-limiting current when the catalysts ink was re-tested after 30 days. The authors 
attributed the increase of diffusion-limiting current to the increase of oxygen diffusion coefficient in 
the microenvironment of the catalyst layer or the exposure of more active sites [36]. Compared to  
the higher stability in alkaline media, the reason for the degradation of Fe-based catalysts in the acidic 
environment during the ORR process has been attributed to the corrosion/oxidation of the active center 
and carbon support, attack by hydrogen peroxide of both the Fe and N sites, and the oxidation of  
the pyridinic active sites [106]. In fact, before the results reported by Xu’s group [36], Zelenay’s  
group [7,87] had already reported a phenomenon about the Fe-based catalysts durability, in which  
the authors make a cycling durability test in O2-staturated solution in 0.1 M NaOH for their Fe-based 
ORR catalysts and found that the ORR performance of these catalysts not only did not become poor 
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2.3. Stability of Fe-Based ORR Catalysts

Although Fe-based catalysts with Fe–N4 sites initially exhibit a highly catalytic
activity in acidic medium, their durability is still insufficient [105]. Therefore,
bridging the gap between the attributes responsible for high activity and high
durability has become the main challenge facing Fe-based catalysts. In recent
years, the stability of Fe-based ORR catalysts in alkaline medium has shown to
be better than that of in acid medium [105]. Xu’s group [36] has found the ORR
performance in alkaline medium of their Fe-based catalysts containing extremely

50



small amount of iron tend to be improved with larger diffusion-limiting current
when the catalysts ink was re-tested after 30 days. The authors attributed the increase
of diffusion-limiting current to the increase of oxygen diffusion coefficient in the
microenvironment of the catalyst layer or the exposure of more active sites [36].
Compared to the higher stability in alkaline media, the reason for the degradation
of Fe-based catalysts in the acidic environment during the ORR process has been
attributed to the corrosion/oxidation of the active center and carbon support, attack
by hydrogen peroxide of both the Fe and N sites, and the oxidation of the pyridinic
active sites [106]. In fact, before the results reported by Xu’s group [36], Zelenay’s
group [7,87] had already reported a phenomenon about the Fe-based catalysts
durability, in which the authors make a cycling durability test in O2-staturated
solution in 0.1 M NaOH for their Fe-based ORR catalysts and found that the
ORR performance of these catalysts not only did not become poor but shows a
positive shift in the E1/2 value [87], which is similar to their previous report about
the potential shift with cycling observed with non-precious metal ORR catalysts
at high current densities in acid medium in proton conducting fuel cells [7]. At
that time, the authors attributed this to improved mass transport properties of the
catalyst layer due to the loss of inactive species [7]. In order to deeply understand
this phenomenon, which is different from the phenomenon of the instability of
Fe-based catalysts in acid media reported in previous work [106], they performed
further research on the stability of iron species in heat-treated Fe-based catalysts
by combining the X-ray absorption near-edge structure (XANES) spectra edge-step
analysis and inductively-coupled mass spectrometry measurement with the results
of electrochemical measurement [105]. The results obtained by the authors show
that Fe was lost from the Fe-based catalyst into the electrochemical environment
during the ORR process in acid medium and the kinetic losses of ORR catalytic
activity may be attribute to the oxidation of active sites and/or loss of pyridinic-like
and pyrrolic-like Fe coordination (Fe–N2 and Fe–N4), as well as the mass transport
improvement due to the removal of inactive Fe species, predominantly sulfides (FeS
and FeS2), while the durability of this Fe-based catalysts is depend on the stability of
the porphyrazin-like Fe coordination [105]. This report elucidates a clear relationship
between the electrocatalytic ORR activity and stability of Fe-based catalysts and the
Fe species, which has a major significance for designing and preparing the highly
stable Fe-base ORR catalysts.

In this section, we may safely draw the conclusion that great progress has
been made in exploration of ORR active sites formation mechanisms, structure and
stability. Fe-centered active sites possess a unique structure and exhibit very high
catalytic activity for ORR, and will show an important role in the development of
high-performance Fe-based catalysts. It is worth notice that the Fe-based catalysts
synthesized by ACTA S. P. A (An Italy-based company engaged in the development,
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production and marketing of clean technology products for fuel cells and other
hydrogen applications) show outstanding electrochemical ORR performance in
alkaline media with a maximum power density of 120 mW cm´2 during the direct
methanol fuel cell test, which show an important progress in the commercialization
of fuel cell and attracting significant interest from several groups with alkaline fuel
cell chemistry [107,108]. A long way, however, is still needed in order to reach the
practical usage of Fe-based catalysts in the acid system of fuel cells applications. The
exact role of the iron-ion center regarding the ORR active site as well as the structures
of the active site should be investigated in detail in order to provide further insight
into this topic.

3. Conclusions and Perspectives

The current Pt and Pt-based alloy electron catalysts, although they exhibit
good ORR activities, suffer from many application challenges, such as high cost
and weak durability. Meanwhile, a great advantage of recently developed Fe/N/C
electrocatalysts (Fe-based catalysts) is their competitive ORR performance compared
with Pt-based materials. Based on the previous report by Zhang et al., this review
paper focuses on the progress in this research field over the recent five years.
Compared to high-temperature pyrolysis of iron N4 chelate complexes, Fe-based
materials prepared by the simple pyrolysis of transition metal salt carbon support,
and nitrogen-rich small molecule polymeric compound are mainly reviewed due
to their low cost, high performance, long stability and most promising for replace
currently used Pt-based catalysts in the progress of fuel cell commercialization.
Additionally, Fe-base catalysts are presented to analyze the effect of Fe loading
and existence form on the ORR catalytic activity in Fe-base catalyst. The
proposed Fe-centered active sites and reaction mechanisms from various authors
are also discussed in detail, which may be of importance for rational designing
of high-performance, inexpensive, and practical Fe-base ORR catalysts in future
development of fuel cells.

Numerous types of Fe-based ORR catalysts have been developed with ORR
catalytic activity comparable with or better than Pt; however, almost all of them
only show high catalytic activity in alkaline medium rather than in acidic condition.
Due to the limitations of alkaline fuel cells, the acidic fuel cells are more popular.
So, in the future research directions, developing of Fe-based catalysts with catalytic
activity as highly as that of Pt in acidic condition is more urgent. In order to solve
this problem, further study on the catalytic mechanism and kinetics is still needed
in order to design and develop rationally carbon-based, Fe-based catalysts with a
desirable activity and durability, especially in acidic conditions.
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For the final industrial or commercial application, it is also essential to develop
simple and cost-efficient methods for the large-scale production of Fe-based catalysts
with excellent ORR electrocatalytic activity and long-term operation stability.
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Nanoscale Alloying in Electrocatalysts
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Abstract: In electrochemical energy conversion and storage, existing catalysts often
contain a high percentage of noble metals such as Pt and Pd. In order to develop
low-cost electrocatalysts, one of the effective strategies involves alloying noble metals
with other transition metals. This strategy promises not only significant reduction of
noble metals but also the tunability for enhanced catalytic activity and stability in
comparison with conventional catalysts. In this report, some of the recent approaches
to developing alloy catalysts for electrocatalytic oxygen reduction reaction in fuel
cells will be highlighted. Selected examples will be also discussed to highlight
insights into the structural and electrocatalytic properties of nanoalloy catalysts,
which have implications for the design of low-cost, active, and durable catalysts for
electrochemical energy production and conversion reactions.

Reprinted from Catalysts. Cite as: Shan, S.; Wu, J.; Kang, N.; Cronk, H.; Zhao, Y.;
Zhao, W.; Skeete, Z.; Joseph, P.; Trimm, B.; Luo, J.; Zhong, C.-J. Nanoscale Alloying
in Electrocatalysts. Catalysts 2015, 5, 1465–1478.

1. Introduction

The design of active, stable and low-cost catalysts is essential for many
reactions in electrochemical energy production, conversion and storage. Metal
nanoparticles, especially alloy nanoparticles, have attracted a great deal of interest in
both experimental and theoretical studies [1–3]. It is the nanoscale size range over
which metal nanoparticles undergo a transition from metallic to atomic properties
which leads to unique electronic and catalytic properties different from their bulk
counterparts. Significant advances have been made in harnessing the nanoscale
catalytic properties in energy and environmental fronts [3]. However, challenges
remain, especially in preparation and characterization of active, robust, low-cost
nanocatalysts with controllable sizes, shapes, compositions and structures.

An alloy is a mixture of two or more metallic species, which can exist either
in a complete solid solution state exhibiting a single phase characteristics or in a
partial or phase-segregated solid solution state with multiple phases. Nanoalloy
(NA) differs from bulk alloys in several significant aspects in terms of mixing patterns
and geometric shapes. There are different types of mixing patterns, two of which
include completely phase segregated NAs where the different phases share either an
extended mixed interface or a very limited number of hetero-nuclear metal bonds,
and mixed NAs with chemically ordered/disordered structures. The degree of
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segregation, mixing and atomic ordering depends on a number of factors, including
relative strengths of differences in atomic sizes, surface energies of the component
element, homoatomic vs. heteroatomic bonds, charge transfer between the different
atomic species, and strength of binding to surface ligands or support materials. The
observed atomic arrangement for a particular alloy depends critically on the balance
of the preparation and usage conditions. By alloying, changes including atomic
structure, physical and optical properties, and chemical properties could lead to
two major effects: (i) ensemble effect where hetero-nuclear metals geometrically
arranged in the favor of certain properties (e.g., catalytic process); (ii) ligand
effect where electronic charge transfer between hetero-nuclear metals induces the
change of functionality of metals (e.g., molecule adsorption properties) [4]. It is
noted that the change of geometric arrangement by varying alloy composition
or structural ordering/disordering cannot be done without changing electronic
atmosphere. In catalysis, alloying hetero-nuclear metals plays a role in several
different aspects, including (i) activation of the main components for enhanced
activity; (ii) activation of successive reaction for the enhancement of overall reactions;
(iii) removal of poisonous intermediates to facilitate the reactions; (iv) inhibition of
certain intermediates and byproducts; and (v) reactants storage. [5] In addition, the
surface structures of NAs could be very complex due to the enrichment of certain
element in the core or shell. In the case of metal dissolution (“dealloying”) in the
presence of acidic electrolytes, often referred to as Pt-skin structure formation [6,7],
the details of the noble metal skin could be influenced strongly by the structural
types of the NAs, the understanding of which in terms of structural evolution, noble
metal skin or d-band center shift has attracted increasing interests in electrocatalysis.

Supported metal nanoparticles from traditional preparative methods have been
well demonstrated for various catalytic reactions [2,3,8]. In the last decade, new
approaches to the synthesis of molecularly capped metal nanoparticles for the
preparation of catalysts have been rapidly emerging (see Figure 1). While some of the
catalysts exploit the functional groups from the capping shell of the nanoparticles,
most others explore the surface active sites over the metal nanoparticles either
after removing the capping layers [9] or through open channels of the capping
layers [10]. In addition, the nanoscale facet is an important factor in catalysis. For
noble metal (e.g., Pt, Pd) alloyed with other transitions metals (e.g., Ni, Cu, Co, etc.),
a volcano curve has been observed for certain metal ratios (e.g., 1:1, 1:3, or 3:1) in
binary nanocatalysts [2]. Besides various nanostructural design parameters [11], the
understanding of how these factors play an important role on catalytic properties is
increasingly important.

In this article, some of the recent findings in the exploration of nanoscale alloying
degree for the preparation of the supported nanoalloy catalysts for catalytic and
electrocatalytic reactions [12–17] will be highlighted. One important focus is the
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understanding of the structural correlation of nanoscale alloying properties with the
electrocatalytic properties.
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Figure 1. Illustration of the synthesis, assembly, and activation of nanoalloy particles for the 

preparation of the supported electrocatalysts. 
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Figure 1. Illustration of the synthesis, assembly, and activation of nanoalloy
particles for the preparation of the supported electrocatalysts.

2. Synthesis and Preparation

The synthesis of molecularly-capped metal nanoparticles as building blocks
for engineering the nanoscale catalytic materials takes advantage of diverse
attributes, including monodispersity, processability, and stability in terms of size,
shape, composition, phase and surface properties in comparison with traditional
approaches [18]. One important approach involves core-shell type synthesis [19].
The core and shell are from different matters in close interaction, including
inorganic/organic and inorganic/inorganic combinations [20,21]. The synthesis of
metal nanoparticles in the presence of organic capping agents to form encapsulated
metal nanoparticles has demonstrated promises for preparing nanocatalysts [20,21].
The coupling of molecularly-mediated synthesis of nanoparticles and post-synthesis
thermochemical processing under controlled temperatures and atmospheres have
demonstrated effectiveness in the preparation of nanocatalysts. In comparison with
other methods such as plasmatic cleaning or chemical cleaning [22], thermochemical
processing strategy is not only effective in removing the encapsulation, but also
in refining the nanostructural parameters. The combination of the molecular
encapsulation based synthesis and thermochemical processing strategies typically
involves a sequence of steps for the preparation of nanoalloy catalysts: (1) chemical
synthesis of the metal nanocrystal cores capped with ligands, (2) assembly of the
encapsulated nanoparticles on supporting materials (e.g., carbon powders, TiO2 or
SiO2), and (3) thermal treatment of the supported nanoparticles [12–17]. The size
and composition of the nanoparticles produced by thermochemical processing are
controllable. As shown for a series of binary and ternary alloy nanoparticle systems in
Table 1 [12–17,23–35], the catalysts prepared by the molecularly-mediated synthesis
and thermochemical processing methods have demonstrated enhanced catalytic and
electrocatalytic properties for oxygen reduction reaction (ORR), methanol oxidation
reaction (MOR), and ethanol oxidation reaction (EOR), etc.
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Table 1. Examples of alloy nanoparticles and catalysts prepared by
molecularly-mediated synthesis and thermochemical processing methods.

Catalysts Synthesis method Catalytic
reactions Refs

Bimetallic nanoalloys

PtNi NPs (2–8 nm)/C,
TiO2, or SiO2

Precursor: Pt(acac)2, Ni(acac)2;
ORR, CO
oxidation

[12,23]Capping agent: oleic acid (OA), oleylamine (OAM);
Reducing agent: 1,2-hexadecanediol (HDD);

Solvent: octyl ether (OE)

PtCo NPs (2–8 nm)/C,
TiO2 or SiO2

Precursor: Pt(acac)2, Co2(CO)8;
ORR, CO
oxidation

[12,23]Capping agent: oleic acid and oleylamine;
Reducing agent: 1,2-hexadecanediol;

Solvent: octyl ether

PtRu (~5 nm)/C

Precursor: Pt(acac)2, Ru(acac)2;
EOR, CO
oxidation

[24]Capping agent: oleic acid and oleylamine;
Reducing agent: 1,2-hexadecanediol;

Solvent: octyl ether

AuCu (~5 nm)/C,
SiO2

Precursor: HAuCl4, CuCl2;

CO
oxidation

[14]
Capping agent: 1-decanethiol (DT);

Tetraoctylammonium bromide (TOABr);
Reducing agent: NaBH4;

Solvent: H2O and Toluene

AuCu (4–8 nm)/C

Precursor: Au NPs and Cu NPs;
CO

oxidation
[14]Capping agent: 1-decanethiol (DT);

Tetraoctylammonium bromide (TOABr);
Method: Thermally aggregated growth

PdNi (7–10 nm)/C

Precursor: Pd(acac)2, Ni(acac)2;
ORR, CO
oxidation

[25]Capping agent: oleic acid and oleylamine;
Reducing agent: 1,2-hexadecanediol;
Solvent: octyl ether or benzyl ether

PdCu (7–10 nm)/C

Precursor: Pd(acac)2, Cu(acac)2;
EOR, CO
oxidation

[26]Capping agent: oleic acid and oleylamine;
Reducing agent: 1,2-hexadecanediol;
Solvent: octyl ether or benzyl ether

AuPt (~4–5 nm)/C

Precursor: HAuCl4, HPtCl4;
ORR,
MOR

[13,27,28]Capping agent: DT, OAM/OA;
Reducing agent: NaBH4;

Solvent: H2O and Toluene;

Trimetallic Nanoalloys

PtNiCo (3–5 nm)/C,
TiO2, and SiO2

Precursor: Pt(acac)2, Ni(acac)2, Co(acac)3;
ORR, CO
oxidation

[12,29,30]Capping agent: oleic acid and oleylamine;
Reducing agent: 1,2-hexadecanediol;

Solvent: octyl ether

PtVCo (3–5 nm)/C

Precursor: Pt(acac)2, VO(acac)2, Co(acac)3;
ORR, CO
oxidation

[17,31]Capping agent: oleic acid and oleylamine;
Reducing agent: 1,2-hexadecanediol;

Solvent: octyl ether

PtNiFe (3–5 nm)/C

Precursor: Pt(acac)2, Ni(acac)2, Fe(CO)5;
ORR, CO
oxidation

[32,33]Capping agent: oleic acid and oleylamine;
Reducing agent: 1,2-hexadecanediol;

Solvent: octyl ether

PtIrCo (3–5 nm)/C

Precursor: Pt(acac)2, Ir4(CO)12, Co(acac)2;
ORR, CO
oxidation

[15,17,34]Capping agent: oleic acid and oleylamine;
Reducing agent: 1,2-hexadecanediol;

Solvent: octyl ether

PtVFe (3–5 nm)/C

Precursor: Pt(acac)2, VO(acac)2, Fe(CO)5;

ORR, [35,36]Capping agent: oleic acid and oleylamine;
Reducing agent: 1,2-hexadecanediol;

Solvent: octyl ether
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3. Examples of Nanoalloy Electrocatalysts

Pt- or Pd-based nanoalloys have been extensively explored as electrocatalysts for
electrocatalytic ORR, which is an important reaction in proton exchange membrane
fuel cell (PEMFC), an electrochemical energy conversion device that converts
hydrogen at the anode and oxygen at the cathode through a membrane electrode
assembly (MEA) into water and produce electricity. The desired reaction pathway
in the cathode of a PEMFC is 4e´ reduction reaction of oxygen. During PEMFC
reaction process, the voltage is the summation of the thermodynamic potential ENernst,
the activation overpotential ηact (from both anode and cathode overpotentials, i.e.,
ηact(cathode) ´ ηact(anode)), and the ohmic overpotential ηohmic. The thermodynamic
potential is governed by Nernst equation in terms of the E0 (1.23 V) and the operating
concentrations (P(H2) and P(O2)), the activation overpotential is dependent on
the electrode kinetics in terms of current flow, and the overpotential associated
with catalyst activity (ηact(catalyst)). The overpotential ηact(catalyst) is large mainly
attributed to the sluggish activity of ORR. The adsorption of O2 over Pt surface
could produce Pt–O or Pt–OH in a dissociative adsorption, which constitutes
a four-electron reduction pathway forming water, or Pt–O2

´ or Pt–O2H in an
associative adsorption which often proceeds in a two-electron reduction pathway
forming hydrogen peroxide. Although the understandings based on Pt skin on
an alloy or dealloyed surface can explain partially some of the experimental facts,
the exploration of how Pt–O or –OH intermediate species would influence the
overall ORR by varying their binding strength and the formation and removal of
Pt–O/Pt–OH species are known to play a key role in the overall electrocatalytic ORR
over Pt-alloy catalysts [37]. The rational design of Pt-alloys involving transition
metals (M/M1) could create a bifunctional (or multifunctional) synergy for the
formation and removal of Pt–O or Pt–OH species. For ternary catalysts, the
introduction of a second M1 into Pt-M alloy may further lead to a manipulation of the
surface oxophilicity by maneuvering –O/–OH species over M and M1 sites through
structural or compositional manipulation [12,15,17,28–34]. The understanding of
how Pt–OH and Pt–O binding energies can be tuned by the M/M1 oxophilicity would
aid the design of the alloying metals for synergistic formation and removal of Pt–OH
species in correlation with the structural and chemical complexity of the nanoalloys.

3.1. Bimetallic Nanoalloy Catalysts

Bimetallic nanoalloy catalysts derived from combinations of two heterometals
often exhibit unique bifunctional or other physical and chemical properties. A strong
correlation between the size, structure and catalytic activities was revealed over
several interesting systems, e.g., PtNi, PtCo and AuPt [12,13,23,27,28]. Gold-platinum
(AuPt) nanoalloys serve as an intriguing system in terms of the unique synergistic
properties [12,27,28]. In contrast to the bulk counterpart which displays a miscibility
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gap at 20%–90% Au, nanoscale AuPt particles synthesized by wet chemical
methods has shown alloy properties. The morphology and alloy structures
are controllable, as shown by the example of Au22Pt78 nanoparticles on carbon
support (Figure 2A). The observation of the indicated lattice fringes, 0.235 nm,
corresponding to 111 planes, indicates that the carbon-supported nanoparticles
are highly crystalline. Carbon-supported AuPt nanoparticles have been shown to
exhibit alloying characteristics and possess a uniform distribution of the two metals
across the entire nanoparticles. The subtle increase of the particle sizes for the
thermochemcally-treated carbon-supported Au22Pt78 nanoparticles was due to the
thermal sintering of the nanoparticles.
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Figure 2. (A) HRTEM (a) and EDS (b) composition mapping for Au22Pt78/C
(red: Pt, Blue: Au) nanoparticles; (B) Cross sections of 5.1 nm Pt-Au particles
(about 5000 atoms) with random alloy structure: (a) Pt77Au33; (b) Pt51Au49 and (c)
Pt40Au60.Pt atoms are in gray, Au in yellow. ((B) reproduced from reference [13]
with permission. Copyright 2012, American Chemical Society; (A) reproduced from
reference [27] with permission. Copyright 2010, American Chemical Society).

The detailed nanoscale alloying characteristics is recently evidenced by studies
using element-specific resonant high energy X-ray diffraction coupled to pair
distribution function analysis (HE-XRD/PDF) [12]. This technique, aided by Reverse
Monte Carlo simulation (RMC) modeling, has provided an atomic-scale insight into
the alloy structures of AuPt nanoparticles (Figure 2B). Pure Au and Pt nanoparticles
are used to produce model configurations for AunPt100´n nanoparticles (n = 40, 51, 77)
where Au and Pt atoms show various patterns of chemical order-disorder effects.
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From the modeling, it was found that the alloying of Pt and Au occurs not only
within a wide range of Pt-Au concentrations but is also stable in nanoparticles of
different sizes.

The electrocatalytic ORR activities of AuPt nanoalloys have been assessed by
rotating disk electrode (RDE) measurements [27]. As shown by RDE curves in
Figure 3 for Au22Pt78/C and Au49Pt51/C catalysts, there are clear differences of
the reduction currents in the kinetic region (0.8–0.9 V vs. NHE). These differences
demonstrated that both the bimetallic composition and the phase structures had
profound effects on the electrocatalytic activity. It is evident that the mass activity
depends on both thermal treatment temperature and condition (Figure 3 insert). The
data for Au22Pt78/C showed an increase of mass activity to a maximum at 400 ˝C
and further decrease with increasing temperature. The decrease of the activity with
temperature is consistent with the findings of the increased phase segregation and
the Pt core-Au shell formation by experimental HRXRD/PDF data. The temperature
for the maximum activity was also found to depend on the bimetallic composition, as
supported by the observations of a maximum activity at 400 ˝C for Au22Pt78/C and a
maximum activity at 600–700 ˝C for Au49Pt51/C. A combination of lattice parameter
and surface structural effects as a result of the differences in composition and
treatment conditions is believed to be operative. The observed differences between
Au22Pt78/C and Au49Pt51/C catalysts indicate that there exists an optimized surface
structure with an appropriate Pt–O bonding strength for achieving the enhanced
electrocatalytic activity.
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Figure 3. RDE curves for ORR for Au22Pt78/C (A) and Au49Pt51/C (B) catalysts
treated under H2 for 30 min (normalized for comparison) at 400 (a), 600 (b), and
800 ˝C (c). (Glassy carbon electrode (0.196 cm2); 0.5 M H2SO4 saturated with O2;
catalyst loading: 10 µg; scan rate: 10 mV/s; speed: 1600 rpm). (reproduced from
reference [27] with permission. Copyright 2010, American Chemical Society).

3.2. Trimetallic Nanoalloy Catalysts

In comparison with bimetallic systems, ternary nanoalloy catalysts provide
an increased degree of structural tunability. In addition to the obvious tunability
in nanoscale alloying, the manipulation of surface oxophilicity is demonstrated by
the introduction of a second metal M1 into Pt-M alloys. In many cases, ternary
PtMM1 catalysts, where M, M1 = Ni, Co, Fe, V, Ir, etc., have demonstrated enhanced
electrocatalytic activities and stabilities in comparison with commercial Pt/C and
their binary counterparts [12,15,17,29–36]. These aspects can be illustrated by studies
of the ternary nanoalloy of PtIrCo in comparison with its binary counterparts [15,34].
As an example, the Pt25Ir20Co55 nanoalloys prepared by the molecularly-mediated
synthesis display a size of 2.5 ˘ 0.2 nm (Figure 4A). Based on HE-XRD/PDF
characterization of PtIrCo/C and its binary counterparts (PtIr/C and PtCo/C) treated
under H2 at 400 and 800 ˝C, the detailed structural ordering and atomic configuration
in the nanoparticles can modelled by RMC simulation (Figure 4B). Each of the
configurations have the real stoichiometry and size of the nanoalloy and atomic PDFs
computed from the configurations match the experimental PDF data very well.

Pt45Ir55 catalyst treated at 400 ˝C is a random alloy of Pt and Ir whereas that
at 800 ˝C tends to segregate into a Ir-core and Pt-surface-enriched structure. This
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finding is qualitatively in agreement with the XPS based analysis of the relative
surface composition, which showed a 16% increase in Pt upon treatment at 800 ˝C.
Pt73Co27 catalyst treated at 400 ˝C features an alloy where Co atoms show some
preference to the center of the nanoparticles whereas that at 800 ˝C, features an alloy
with Co atoms being somewhat closer to the surface of the particle. In comparison, the
Pt25Ir20Co55 catalyst treated at 400 ˝C features an alloy where Co and Ir species tend
to occupy the inner part of the nanoparticles while Pt atoms show some preference to
the surface of the nanoparticles. The ternary catalyst treated at 800 ˝C features a rather
random type of alloy where Co, Pt and Ir atoms are almost uniformly distributed
across the nanoparticles, a finding that was qualitatively in agreement with the small
changes derived from the XPS analysis of the relative surface composition. These
results reveal that the atomic distribution across the nanoparticles depends strongly
on the binary/ternary composition and the thermochemical treatment temperature.

The electrocatalytic activities of PtIrCo catalysts with different compositions
for ORR were measured using the RDE method (e.g., Pt65Ir11Co24/C(a),
Pt40Ir28Co32/C(b), and Pt25Ir20Co55/C(c)). In comparison with the mass activity for
Pt/C catalysts, the mass activity was increased by a factor of 2–4 for these catalysts.
There is a clear trend showing the increase of the mass activity with the increase of
Co% and the decrease of Pt% in the nanoparticles. In comparison with the specific
activity for Pt/C catalysts, the specific activity was increased by a factor of ~3 for
the ternary catalysts. In comparison with its binary counterparts (PtCo and PtIr),
the mass activity for Pt25Ir20Co55/C nanocatalyst showed an increase by factor of
~2 (Figure 5A) [15]. Based on the detailed atomic structural data, the substantially
shorter metal-metal distances in the ternary nanocatalysts are believed to be one of
the key factors responsible for the improved catalytic properties. The increase in
SA from lower to higher temperature (e.g., from 400 ˝C to 800 ˝C) for the ternary
nanoalloys is also likely due to the further decrease in the metal-metal distances and
the changes in coordination numbers. In addition to a favorable change in Co-Pt
first coordination number, there are also changes in Co-Ir, Pt-Ir and Ir-Ir coordination
numbers indicating an increased degree of alloying. Moreover, the introduction of
Ir in PtCo to form a ternary system was indeed shown to increase stability of the
electrocatalytic activity indicating the important role of the addition of Ir. The mass
activity is the highest for the ternary catalyst among the three catalysts (see Figure 5A
insert). The 2ˆ increase of specific activity for the ternary catalyst in comparison
with the relatively small increase for PtIr indicates the importance of adding a third
metal with greater oxophilicity to the alloy. The marked enhancement of the activity
ternary nanoparticles is believed to be linked to the decrease in the 1st Metal-Metal
distances and the formation of alloy featuring either an Co-Ir core with Pt rich surface
or a uniform distribution of Co, Pt and Ir species across the entire nanoparticle.
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using the RDE method (e.g., Pt65Ir11Co24/C(a), Pt40Ir28Co32/C(b), and Pt25Ir20Co55/C(c)). In comparison 

Figure 4. (A) HR-TEM for Pt25Ir20Co55 and (B) RMC constructed models for
Pt45Ir55, Pt73Co27, and Pt25Ir20Co55 processed at 400 ˝C (a, c, e, respectively) and
800 ˝C (b, d, f, respectively). (Pt atoms: green, Ir atoms: orange, and Co atoms:
blue). Note that the sizes of atoms are drawn not to scale to fit in the picture frame.
((A) reproduced from reference [15] with permission. Copyright 2013, American
Chemical Society, (B) reproduced from reference [34] with permission. Copyright
2012, American Chemical Society).
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Figure 5. Electrocatalytic activities for ORR in O2-saturated 0.1 M HClO4: (A) RDE curves 

for 400 °C (solid bar) and 800 °C (dash bar) treated catalysts: Pt45Ir55/C (a), Pt73Co27/C (b), 
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Figure 5. Electrocatalytic activities for ORR in O2-saturated 0.1 M HClO4: (A) RDE
curves for 400 ˝C (solid bar) and 800 ˝C (dash bar) treated catalysts: Pt45Ir55/C (a),
Pt73Co27/C (b), and Pt25Ir20Co55/C (c). Insert: Mass activities extracted from RDE
curves for the same catalysts. (B) Durability plots of normalized mass activities
as a function of the number of potential cycles (ranging from 0 to 20,000 cycles)
for different catalysts upon potential cycling ((A) reproduced from reference [15]
with permission. Copyright 2013, American Chemical Society, (B) reproduced from
reference [34] with permission. Copyright 2012, American Chemical Society).

The durability of the PtIrCo catalysts was also found to show an improvement
in comparison with its binary counterparts. This is substantiated by the durability
data for the catalysts in the O2-saturated 0.1 M HClO4 as a function of square-wave
potential cycling protocol [34]. Most of the mass activity loss for all the samples
occurred during the initial 5000 cycles (Figure 5B). In comparison with those for
the commercial catalysts, the rate of the mass activity loss of Pt65Ir11Co24/C was
comparable to that of Pt/C and slightly lower than that of Pt3Co/C. After 20,000
cycles, the mass activity of Pt65Ir11Co24/C is found to be higher than that of
Pt3Co/C. The ternary nanoalloy catalyst synthesized by the molecularly-mediated
synthesis and thermochemical processing method has durability comparable to that
of commercial catalysts upon the severe potential cycling.

4. Summary and Perspectives

In summary, the ability to control the nanoscale alloying structures is essential
for understanding the enhanced electrocatalytic activities of Pt or Pd based
nanoalloys. It is the unique nanoscale phenomena in terms of atomic-scale alloying,
interatomic distances, metal coordination structures, structural/chemical ordering,
and phase states that operate synergistically in activating oxygen and maneuvering
surface oxygenated species. Understanding this synergy is important for the design
of catalysts with high activity with a significantly-reduced use of noble metals [38,39].
In addition to studies aimed at further lowering the noble metal content in the
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nanoalloy catalysts, future work is needed in the area of theoretical computation
and modelling to understand how the structural-catalytic synergy are influenced
by the binary or ternary metal composition. This understanding will also guide
the development of the ability to enhance the stability of metal components in the
nanoalloy catalysts under the electrocatalytic operation conditions. In addition, in
situ experiments will be very useful to probe the structural evolution processes such
as the de-alloying process in the electrolyte and atomic-scale rearrangements leading
to changes in size, shape, or surface energy. With recent advents in using synchrotron
X-ray based techniques for the study of various catalyst systems, new insights are
expected for elucidating the detailed factors controlling the activity and stability
of nanoalloy catalysts, which will further advance the endeavor of electrochemical
energy conversion and storage.
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Recent Advances in Carbon Supported
Metal Nanoparticles Preparation for Oxygen
Reduction Reaction in Low Temperature
Fuel Cells
Yaovi Holade, Nihat Ege Sahin, Karine Servat, Teko W. Napporn and
Kouakou B. Kokoh

Abstract: The oxygen reduction reaction (ORR) is the oldest studied and most
challenging of the electrochemical reactions. Due to its sluggish kinetics, ORR
became the major contemporary technological hurdle for electrochemists, as it
hampers the commercialization of fuel cell (FC) technologies. Downsizing the
metal particles to nanoscale introduces unexpected fundamental modifications
compared to the corresponding bulk state. To address these fundamental issues,
various synthetic routes have been developed in order to provide more versatile
carbon-supported low platinum catalysts. Consequently, the approach of using
nanocatalysts may overcome the drawbacks encountered in massive materials for
energy conversion. This review paper aims at summarizing the recent important
advances in carbon-supported metal nanoparticles preparation from colloidal
methods (microemulsion, polyol, impregnation, Bromide Anion Exchange . . . )
as cathode material in low temperature FCs. Special attention is devoted to the
correlation of the structure of the nanoparticles and their catalytic properties. The
influence of the synthesis method on the electrochemical properties of the resulting
catalysts is also discussed. Emphasis on analyzing data from theoretical models
to address the intrinsic and specific electrocatalytic properties, depending on the
synthetic method, is incorporated throughout. The synthesis process-nanomaterials
structure-catalytic activity relationships highlighted herein, provide ample new
rational, convenient and straightforward strategies and guidelines toward more
effective nanomaterials design for energy conversion.

Reprinted from Catalysts. Cite as: Holade, Y.; Sahin, N.E.; Servat, K.; Napporn, T.W.;
Kokoh, K.B. Recent Advances in Carbon Supported Metal Nanoparticles Preparation
for Oxygen Reduction Reaction in Low Temperature Fuel Cells. Catalysts 2015, 5,
310–348.

1. Introduction

Formerly, electrocatalysis was practiced with metals in the bulk state.
Electrochemists became aware very early of a number of obstacles and/or limitations
of fundamental and economic order. On a fundamental level, it is difficult to tune
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the activity and selectivity of the electrodes enabling the design of advanced energy
converters. Since catalysis is a surface science [1–3], the use of a bare electrode has
a huge economical impact. The recent advances in nanomaterial science enable
the control of the nanoparticle growth steps for rational and effective preparation
of nanostructures with different shapes and sizes. Seminal papers from different
research groups have shown that the electrocatalytic properties of the metals depend
quasi-exclusively on their crystallographic structures [2,4]. As electrochemical
reactions involve the surface of the electrode, the bulk material is only of fundamental
interest and thus serves as a model electrode for reaction testing. Concerning the
oxygen reduction reaction, ORR, recently fundamental investigations have effectively
and definitively demonstrated that its kinetics strongly depends on the particle size
correlated with the corresponding aftermath [5–8]. Especially, Shao and coworkers
unexpectedly found that the optimum particle size window for Pt is roughly 2.2 nm
during ORR tests in perchloric acid, while the activity decreases drastically for ultra
small particles [6].

Nanomaterials have different and unique physicochemical properties compared
to the bulk metals from which they result. There are undoubtedly corollaries of
their sizes and shapes. They exhibit special optical, magnetic, electronic, and
catalytic properties. Consequently, they can be used in various applications
either ranging from physics to chemistry or from bionanotechnology to medicine.
Plainly speaking about ORR considered as the major contemporary technological
hurdle, electrochemists are wondering how to reduce electrode cost without losing
performance or durability and, to reduce cathode loadings under 0.1 mgPGM cm´2

(United States Department of Energy (DOE) 2015 & 2017 targets [9]), while keeping
the same activities. The approaches mostly emerging, focus on the catalytic
nanoparticles’ surface structure and composition to achieve such gates (Figure 1).
For this objective, new nanocatalyst preparation protocols have been introduced.
Amongst these synthetic routes, featuring colloidal methods, high-surface area and
conducting, carbon-based materials are employed to ultra-disperse platinum group
metal (PGM) nanoparticles [10–14]. Figure 1 shows the kinetic activities of Pt-based
electrocatalysts prepared from the major chemical synthetic approaches. The catalytic
ability of an electrode material toward ORR is performed either by rotating disc
electrode (RDE) or in membrane electrode assembly (MEA); it is currently expressed
using the real electrochemical active surface (ECSA), the kinetic current density,
jk, (mA cm´2

PGM) or the metal content (mA µg´1
PGM) (Figure 1a). When ECSA

increases, jk decreases for the same activity expressed in mA µg´1
PGM, as can be seen

in Figure 1b. The DOE’s 2015 target is 0.7 mA cm´2
PGM. Currently, the state-of-the-art

commercial pure Pt/C catalysts (2–4 nm) have specific activities of 0.15–0.20 mA
cm´2

PGM and 0.10–0.12 mA µg´1
PGM measured in MEAs [9].
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Figure 1. Kinetic activities of the main Pt-based electrocatalyst systems at 0.9 V vs. 
Reversible Hydrogen Electrode (RHE): (a) Activities are measured by rotating disc 
electrode (RDE) and (b) Activities are measured in membrane electrode assemblies 
(MEAs) at 80 °C and 150 kPa saturated O2. Reprinted with permission from Ref. [9]. 
Copyright 2012, Nature Publishing Group. 

In gas-phase heterogeneous catalysis, the metal loading on the support typically ranges from  
0.1–1 wt%. Conversely to these kind of catalysts, the metal content in the electrocatalysts must be at least 
10 wt%, due to the reduced mass-transport rates of the reactant molecules in the liquid phase versus the gas 
phase [15]. The most used support material for electrocatalyst preparation is carbon black. It should be 
emphasized that other carbon-based materials are used as supports e.g., carbon nanotubes [16,17], 
single/multi-walled carbon nanotubes [18,19], buckypaper [16], carbon nanofibers [20,21]; depending on 
the synthesis protocols. The exceptional electrical, physical, and thermal properties of these advanced 
carbon-based nanocomposites make them a preferential choice in electronics [17,22], 
bionanotechnology [16,17,20], energy conversion and storage [17,23,24]. However, even now, carbon 
black powder (Vulcan XC 72 or XC 72R) is the preferred support for low temperature FCs 
applications. In addition to the high metal loading, its relatively inert character implies that the 
widespread used method in gas-phase heterogeneous catalysts preparation such as ion exchange [25] is 
not effective and suitable in the electrocatalyst’s case. To overcome this, the electrocatalyst synthesis 
is based on chemical/colloidal methods. In this context, various processes have been developed. 
Basically, these routes can be classified into two categories: physical and chemical techniques [2,26]. 
The main advantage of the chemical routes is the facility of controlling and handling the primary 
structures of metal nanoparticles, such as size, shape and composition (in the case of multimetallic 
nanomaterials) as well as to achieve large-scale production. For the physical methods, all these crucial 
operations are more difficult. 
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onto carbon-based substrates for low temperature FCs applications. These kinds of electrode materials 
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In gas-phase heterogeneous catalysis, the metal loading on the support typically
ranges from 0.1–1 wt%. Conversely to these kind of catalysts, the metal content
in the electrocatalysts must be at least 10 wt%, due to the reduced mass-transport
rates of the reactant molecules in the liquid phase versus the gas phase [15]. The
most used support material for electrocatalyst preparation is carbon black. It
should be emphasized that other carbon-based materials are used as supports
e.g., carbon nanotubes [16,17], single/multi-walled carbon nanotubes [18,19],
buckypaper [16], carbon nanofibers [20,21]; depending on the synthesis protocols.
The exceptional electrical, physical, and thermal properties of these advanced
carbon-based nanocomposites make them a preferential choice in electronics [17,22],
bionanotechnology [16,17,20], energy conversion and storage [17,23,24]. However,
even now, carbon black powder (Vulcan XC 72 or XC 72R) is the preferred support
for low temperature FCs applications. In addition to the high metal loading, its
relatively inert character implies that the widespread used method in gas-phase
heterogeneous catalysts preparation such as ion exchange [25] is not effective and
suitable in the electrocatalyst’s case. To overcome this, the electrocatalyst synthesis is
based on chemical/colloidal methods. In this context, various processes have been
developed. Basically, these routes can be classified into two categories: physical and
chemical techniques [2,26]. The main advantage of the chemical routes is the facility
of controlling and handling the primary structures of metal nanoparticles, such as
size, shape and composition (in the case of multimetallic nanomaterials) as well as to
achieve large-scale production. For the physical methods, all these crucial operations
are more difficult.
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This review aims to discuss the recent advances in the preparation of
highly dispersed nanoparticles onto carbon-based substrates for low temperature
FCs applications. These kinds of electrode materials enable increasing of the
surface-to-volume ratio and thus the electrochemical reaction rates [5,27,28]. We focus
on the recent developments regarding nanocatalysts preparation from water-in-oil
microemulsion [29–34], polyol-based [35], impregnation-reduction and Bromide
Anion Exchange synthetic routes [36–38].

2. Strategies to Synthesize Carbon Supported Nanocatalysts

2.1. Heterogeneous Catalysis: The Major Emergency for Supported Nanomaterials Design

Various synthetic routes have been successfully developed over the last twenty
years for carbon supported nanoparticle preparation to be used in electrocatalysis,
and particularly in ORR science. It is interesting to know why a support is needed
during catalyst preparation. In catalysis, it is reported that the direct immobilization
of metal nanoparticles onto carbon-based substrates induces a high improvement
in the nanoparticles’ catalytic performances [2,21,39]. This enhancement has been
attributed to the strong interaction between nanoparticles and the support. Free
nanoparticles in solution are used in electrocatalysis to find out the intrinsic
activity of the electrocatalysts, especially the structure sensitivity [2]. While it is
difficult to control, distinguish, and separate the intrinsic activity of the different
crystallographic facets, the single crystal (bulk) as well as the shape-controlled
nanoparticles constituted cornerstones for the fundamental understanding of
electrocatalytic activity. Even if many examples can be found in the literature about
the use of these kinds of electrocatalysts toward ORR and related reactions, they are
not still yet proven as of any significant interest in FC sciences. Indeed, a support is
needed to boost the current density when the catalyst is immobilized for the tests
of the FCs. Their preparation and long-term storage processes are less competitive
than supported nanoparticles. Besides, it is more difficult to produce these types of
materials for large-scale applications such as for FCs.

2.2. Water-in-Oil (w/o) Microemulsion Method

The preparation of metal nanoparticles from the “water-in-oil” microemulsion
(w/o) method was initiated by Boutonnet et al. [30] in 1982 when they reported the
successful preparation of Pt, Pd, Rh and Ir nanoparticles with a size ranging from
3–5 nm. After this stage of initiation, it is worthy of note that the preparation of
nanoparticles from this method was successful, particularly in the field of catalysis.
It should be noted that the term “microemulsion” was introduced by the English
chemist, J. H. Schuman [29,31,40,41]. According to Clausse and co-workers, it can be
assumed to be “a macroscopically monophasic fluid transparent compound made up
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by mixing water and hydrocarbon in the presence of suitable surface active agents
(surfactants)” [42]. Similar definitions can be found in the literature [30,31,43]. It
should be mentioned that this solution is optically isotropic and thermodynamically
stable [44]. From a macroscopic point of view, the internal structure of the
microemulsion appears to be homogeneous, but at the nanoscale, it is heterogeneous,
consisting either of nano-spherical monosized droplets or a bi-continuous phase
(10–40 nm) [41,44]. Obtaining this droplet is very crucial in order to control the size
of the nanoparticles during their preparation.

The microscopic structure of the microemulsion is precisely determined at
a given temperature by the ratio of its different constituents, as illustrated in
Figure 2. Two systems can be clearly identified in this figure: the water-rich phase
and the oil-rich one, determined by the water and oil contents. The water-rich
phase is obtained for a high concentration of water where the internal structure
of the microemulsion consists of small oil droplets in a continuous water phase
(micelles or direct micelles) and is known as “oil-in-water, o/w” microemulsion
(ratio o/w ! 1). Indeed, to stabilize the system, the hydrophilic portion of the
surfactant molecules must be oriented toward the aqueous phase (water), while
the hydrophobic tail is directed toward the organic phase (oil) to form oil droplets.
In nanoparticles’ preparation from colloidal methods, it is important to keep in
mind that the droplet size is the key parameter for size, shape and control of other
factors. Consequently, the system o/w is unusable for nanoparticles preparation
because the metal ion (always in the aqueous phase) will be outside the droplet.
Indeed, most metal precursors are inorganic salts and are soluble in water, not in
oil [32]. At a high oil concentration, the system consists of small water droplets
in a continuous oil phase (reversed micelles), also known as a “water-in-oil, w/o”
microemulsion (ratio w/o! 1). For the solution stabilization, the hydrophilic portion
of the surfactant molecules oriented toward the aqueous phase (water) and the
hydrophobic tail directed toward the organic phase (oil) form together a water
droplet: reversed micelles which are water-in-oil droplets stabilized by a surfactant
are obtained. Therefore, the system w/o (emulsions with low water concentration
and high oil concentration) is used almost exclusively for nanoparticles’ preparation
because the metal ion will be inside the droplet. It is a necessary condition for
nanoparticles’ preparation from metal precursors. Furthermore, between these
extreme situations, there is a bicontinuous phase without any clearly defined shape.

Obviously, at fixed water content, the volume of the surfactant plays crucial role
for the size of the formed micelles. Basically, their size is inversely proportional to
the amount of surfactant present in the microemulsion [32,44–46]. The surfactant
can be ionic or non-ionic; its presence is very important for the stability of the
microemulsion [31,44,45]. Moreover, the structure of micelles must be flexible to
allow the penetration of the reducing agent and the interactions/exchanges between
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micelles during the collision step. In addition, when the ionic surfactants are used,
they can form strong bonds with the surface of the nanoparticles. Thereby, it becomes
particularly difficult to remove them during the cleaning step. This is the case of
sodium bis(2-ethylhexyl)sulphosuccinate, AOT, which can form thiol bonds with
the metal surface, making it more complicated to remove. In order to minimize
this kind of phenomenon, the most used non-ionic surfactant is a polyethylene
glycoldodecylether known as Brij® 30 [47–50].
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from Ref. [31]: Copyright 1995, American Chemical Society. 
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formed micelles. Basically, their size is inversely proportional to the amount of surfactant present in 
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the penetration of the reducing agent and the interactions/exchanges between micelles during the collision 
step. In addition, when the ionic surfactants are used, they can form strong bonds with the surface of the 
nanoparticles. Thereby, it becomes particularly difficult to remove them during the cleaning step. This is 

 

Figure 2. Scheme of the microscopic structure of a microemulsion at a given
concentration of surfactant as function of temperature and water concentration,
showing the different systems. Reprinted, adapted with permission from
Ref. [44]: Copyright 2004, Elsevier and from Ref. [31]: Copyright 1995, American
Chemical Society.

Concerning the nanoparticles’ preparation, there are currently two main ways:
either by preparing a second microemulsion (having the same composition as
that containing the metal ions), which contains a reducing agent, or by direct
addition of the reducing agent to the microemulsion that already contains metal salt
precursors [44,51]. Figure 3 illustrates the formation of nanoparticles following the
first procedure. Here, two microemulsions are mixed together, one containing the
precursor and the other, the reducing agent. Due to the physical and chemical
properties of its different constituents, the colloidal solution is very sensitive
to temperature and the synthesis is currently performed at room temperature
(20–25 ˝C) [34,49,50,52–56]. Current reducing agents are sodium borohydride
(NaBH4), hydrazine (N2H4), gas hydrogen (H2) etc. The organic solvent (oil) can
be hexane, n-heptane, cyclohexane or isooctane [44,47,55,56]. The formation of
particles occurs in two steps known as the nucleation process inside the droplet and the
aggregation process to form the final particle [44]. The major role of the surfactant is to
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control the growth via steric effect in order to have well-dispersed and homogeneous
particles with a good size distribution.

Catalysts 2015, 5 315 
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Figure 3. Proposed mechanism for the formation of metal particles from the 
microemulsion method using the two microemulsions protocol. Reprinted with permission 
from Ref. [45]. Copyright 2004, Elsevier. 

Summarizing, the optimization of this method over more than twenty years has led to the following 
experimental parameters: 

• molar ratio n(water)/n(surfactant), ω: 3.8 [47,48,52,56], 
• volume of organic solvent (n-heptane) per synthesis reactor: 27.35 mL [50], 

 

Figure 3. Proposed mechanism for the formation of metal particles from the
microemulsion method using the two microemulsions protocol. Reprinted with
permission from Ref. [45]. Copyright 2004, Elsevier.

Summarizing, the optimization of this method over more than twenty years has
led to the following experimental parameters:

‚ molar ratio n(water)/n(surfactant),ω: 3.8 [47,48,52,56],
‚ volume of organic solvent (n-heptane) per synthesis reactor: 27.35 mL [50],
‚ total metal salt concentration in the aqueous solution: 0.1–0.2 mol L´1 [47,48,50],
‚ volume percentage of Brij® 30 in the microemulsion: 16.5% [47,48,52,56],
‚ molar ratio between the reducing agent and the metal salt: 15 [49,50,52,56],
‚ synthesis conducted at room temperature [34,49,50,52–56].

In order to have a good dispersion of nanoparticles, conducting and high
surface area (BET surface) carbon substrates are currently used. The main roles
of the support are to improve nanoparticles dissemination, to reduce the metal
content (generally noble metals are used) and to provide good nanoparticles-support
interactions [53,54,57]. Vulcan XC 72 and Vulcan XC 72R carbons are the most
used substrates for electrocatalytic applications and the metal content rises from
20–40 wt.%. For this purpose, Vulcan carbon is thermally pre-treated (see
Section 2.4) to remove the potential undesired contaminants coming from its
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industrial manufacture such as sulfur [53,54,57,58]. Very recently, it has been shown
that this thermal activation highly improved the physicochemical and electrocatalytic
properties of Vulcan [57]. We will briefly describe herein a typical synthesis as
currently carried out in our research group, from two microemulsions: one containing
the dissolved metal(s) precursor(s) and the other one, the reducing agent, NaBH4.
Typically, microemulsions I and II (as shown in Figure 3) are mixed in a synthesis
reactor thermostatted at 25 ˝C for about 30 min under magnetic stirring: the
mixture gradually darkens, reflecting the formation of metal nanoparticles. Then,
an appropriate amount of the Vulcan XC 72 or Vulcan XC 72R carbon is added
after the solution has been transferred into an ultrasonic bath for homogenization
(15–20 min), followed by additional vigorous stirring for 2 h. Finally the carbon
supported metal nanoparticles are thoroughly filtered and washed to remove organic
solvent and surfactant using three different solvents, acetone, ethanol and water.
The filtration occurs under a vacuum system (Buchner) using a Millipore filter
type GV 0.22 µm (also known as GVWP 0.22 µm). The washing steps are carried
out strictly in the following order: addition of acetone, then ethanol and finally
a mixture of 50 vol% acetone-water. It is strongly recommended to repeat this
procedure at least three times. The material is rinsed thoroughly with Milli-Q®

Millipore water (18.2 MΩ cm at 20 ˝C), and finally the filter containing the catalyst
is removed and dried in an oven for at least 12 h at 75 ˝C. Figure 4 shows the low
and high resolution TEM images of the bimetallic 40 wt% AuPt/C. From these
physicochemical and electrochemical characterizations, Habrioux and co-workers
found that the obtained bimetallic nanomaterials exhibit two different behaviors.
For high Au-content, the Au-Pt particles exhibited alloy properties, and at low
Au-content, atom rearrangement leads to an enrichment of the electrode surface
with those of Pt. It should be mentioned that the AuPd/C bimetallic nanomaterials
synthesized from w/o by Simões et al. [34] are unalloyed for Au ě 50 at%, leading
to two phases: Au islets + AuPd alloy. Various studies have shown that ORR is a
structure-sensitive reaction. This means that the crystallographic orientations (hkl)
play a major role, more especially the low-index ones [2,4]. The seminal papers on
the single crystal revealed that (111) and (110) are the most active facets toward ORR
in aqueous media. Particularly, for Pt(hkl), the activity toward ORR increases in the
order (100) < (110) « (111) in HClO4; (100) < (110) < (111) in KOH and (111) ! (100)
< (110) in H2SO4 [2]. As highlighted in Figure 4b, the presence of (111) face on the
nanoparticles prepared from the w/o approach allows better ORR efficiency to be
expected on these catalysts.

Notwithstanding the diversity of applications, this method remains questionable
due to the surfactant Brij® 30 that is not completely removed from the surface
of the metal nanoparticles [59,60]. The remaining molecules undoubtedly block
some catalytic sites, therefore affecting the catalytic performances of the obtained
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catalysts. In conclusion, the nature of the surfactant (Brij® 30 or others) and its strong
adsorption onto the metal nanoparticles’ surface constitute the main drawback of the
water-in-oil microemulsion method.
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Figure 4. (a) TEM images of: (1) Pt/C, (2) Au30Pt70/C, (3) Au70Pt30/C, (4) Au80Pt20/C, (5) 
Au. Particle agglomerates are shown in (6) and (7) for Au30Pt70/C and Au70Pt30/C, 
respectively. (b) HRTEM images of (i and ii) Pt, (iii) Au30Pt70/C, (iv) Au70Pt30/C and (v) 
Au/C highlighting the facets, steps (S), twins (T) and stacking faults (SF). Note that the 
metal loading was 40 wt%. Reproduced and adapted in part from Ref. [54] with permission 
of the PCCP Owner Societies. Copyright 2009, Royal Society of Chemistry. 

 

Figure 4. (a) TEM images of: (1) Pt/C, (2) Au30Pt70/C, (3) Au70Pt30/C, (4)
Au80Pt20/C, (5) Au. Particle agglomerates are shown in (6) and (7) for Au30Pt70/C
and Au70Pt30/C, respectively. (b) HRTEM images of (i and ii) Pt, (iii) Au30Pt70/C,
(iv) Au70Pt30/C and (v) Au/C highlighting the facets, steps (S), twins (T) and
stacking faults (SF). Note that the metal loading was 40 wt%. Reproduced and
adapted in part from Ref. [54] with permission of the PCCP Owner Societies.
Copyright 2009, Royal Society of Chemistry.
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2.3. Polyol Method

The polyol process refers to a polyalcohol that acts both as a solvent and a
reducing agent. It has spread for its self-seeding mechanism and lack of required
hard or soft templating materials, making it an ideal process for potential industrial
scale-up due to the low cost and simplicity of processing. The main superiority
of the polyol synthesis is the use of high-boiling alcohols such as ethylene glycol
(197 ˝C), propylene glycol (188 ˝C), butylene glycol (207 ˝C), diethylene glycol
(244 ˝C), glycerol (290 ˝C), tetraethylene glycol (327 ˝C), benzyl alcohol (205 ˝C)
etc., as a solvent and stabilizing agent for controlling particle nucleation and growth.
Each polyol solvent has different oxidation potentials that along with the metal
reagent, define the temperature at which particle formation takes place. Especially,
ethylene glycol is one of the most widely used solvents for the polyol process owing
to its strong reducing capability, relatively high boiling point and high dielectric
constant, which increases the solubility of inorganic salts. Therefore, ethylene glycol
is more convenient to act as reducing agent for the metal nanoparticles. In the
polyol process, a metallic precursor in the form of chlorides, acetates, nitrates,
hydroxides, oxides is dissolved in polyol solvent, and then the experimental
conditions are optimized to complete the reduction of metallic precursor. To control
the shape, size, and distribution of metallic particles, each metal precursor requires
modified-experimental conditions.

To identify the mechanism and comprehend the influence of polyol solvents
on nucleation and growth kinetics, several studies were reported. Fievet et al. [61]
focused on the general mechanism of reduction of Ni(OH)2 and Co(OH)2 in ethylene
glycol, shown in Scheme 1. They proposed that acetaldehyde is the possible reductant
for the synthesis strategies of preparing metal nanoparticles. It is necessary that
the precursors require high solubility in polyol solvents to actualize the reaction
described in Scheme 1 by steps (1) and (2).
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Scheme 1. General mechanism of reduction of M(OH)2 in ethylene glycol. 

According to the mechanism proposed by Fievet et al. [61], diacetyl appears to be the main 
oxidation product, which may be explained by a duplicative oxidation of acetaldehyde previously 
produced by dehydration of ethylene glycol. The metal is generated in the liquid phase and when the 
super-saturation is high enough, nucleation and the growth steps occur. For better understanding of the 
metallic reduction mechanism in polyol solvent, some significant researches were undertaken. One of 
them was based on redox phenomena related to the reduction potential of metal precursor and the 
oxidation potential of ethylene glycol [62]. The researchers proposed that chemical reduction of noble 
metal species by ethylene glycol is thermodynamically unfavorable. For this reason, to get a 
completely reduced metal species, an energy barrier must be overcome by heating the polyol solvent. 

Another study on reaction mechanism was proposed by Bock et al. [63] for reduction of the metals 
by the oxidation of ethylene glycol to aldehydes, carboxylic acids, and CO2, as shown by Scheme 2. 

 

Scheme 1. General mechanism of reduction of M(OH)2 in ethylene glycol.

According to the mechanism proposed by Fievet et al. [61], diacetyl appears to
be the main oxidation product, which may be explained by a duplicative oxidation
of acetaldehyde previously produced by dehydration of ethylene glycol. The metal
is generated in the liquid phase and when the super-saturation is high enough,
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nucleation and the growth steps occur. For better understanding of the metallic
reduction mechanism in polyol solvent, some significant researches were undertaken.
One of them was based on redox phenomena related to the reduction potential of
metal precursor and the oxidation potential of ethylene glycol [62]. The researchers
proposed that chemical reduction of noble metal species by ethylene glycol is
thermodynamically unfavorable. For this reason, to get a completely reduced metal
species, an energy barrier must be overcome by heating the polyol solvent.

Another study on reaction mechanism was proposed by Bock et al. [63] for
reduction of the metals by the oxidation of ethylene glycol to aldehydes, carboxylic
acids, and CO2, as shown by Scheme 2.Catalysts 2015, 5 319 

 

 

Scheme 2. Ethylene glycol (A) oxidation pathways to aldehydes (B, C), glycolic acid (D), 
oxalic acid (E) and further CO2 and carbonate in alkaline medium owing to interaction of 
–OH groups of ethylene glycol with metal-ion sites. 

The oxidation of the ethylene glycol gives glycolate or glycolic acid (depending on the pH) which 
acts as a stabilizer for the metal species; the size of the noble metal colloids is thereby controlled 
through the pH value of the synthesis solution. Oxidation products resulting from the ethylene glycol 
oxidation reaction interact with the noble metal colloids and hence act as their stabilizers. Additionally, 
Skrabalak et al. [64] reported how metal ions are reduced by the ethylene glycol oxidation to 
glycolaldehyde, using a spectrophotometric method. They proposed an alternative pathway related to 
the reduction of metal precursor depending on the reaction atmosphere. For example, heating ethylene 
glycol between 140 and 160 °C in air, Equation (1), may generate glycolaldehyde as a reductant for the 
many metal precursors  
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It was found out from spectroscopic data that glycolaldehyde is the main reductant depending on 
reaction temperature, atmosphere, and experimental setup [64]. Numerous studies have been reported on 
synthesizing metal nanoparticles with controlled-size, shape and morphology, and satisfactory stability, 
as well as high product yield and low environmental contamination [65–67]. Physical properties of 
nanoparticles can influence catalytic activity [68,69], selectivity [70,71] and durability [72].  
Biacchi et al. [73] demonstrated that proper selection of the polyol solvent can be used to manipulate the 
metal nanoparticles morphology. They reported that the kinetics and thermodynamics of nanoparticles 
synthesis is critically important for controlling the shape and size when using different polyol solvents 
such as ethylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol. In recent years, 
methodological development of the synthesis of the highly active electrocatalysts has been one of the 
major topics in energy converting systems [74–79]. Joseyphus and co-workers [80] investigated the 
reaction rate of the polyol method using cobalt and its alloys. The reduction limit of polyol solution 
depends mainly on the concentration of hydroxyl ions (OH−) for the reduction of metal ions. Although 
the presence of OH− ions in the metal ion-polyol system acts as a catalyst in accelerating the formation of 
precursor complexes, it may decrease the reaction rate by forming metal hydroxide compounds which 
are not easily reduced. Therefore, it is important to control the degree of complex or hydroxide forms in 
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Scheme 2. Ethylene glycol (A) oxidation pathways to aldehydes (B, C), glycolic
acid (D), oxalic acid (E) and further CO2 and carbonate in alkaline medium owing
to interaction of –OH groups of ethylene glycol with metal-ion sites.

The oxidation of the ethylene glycol gives glycolate or glycolic acid (depending
on the pH) which acts as a stabilizer for the metal species; the size of the noble
metal colloids is thereby controlled through the pH value of the synthesis solution.
Oxidation products resulting from the ethylene glycol oxidation reaction interact
with the noble metal colloids and hence act as their stabilizers. Additionally,
Skrabalak et al. [64] reported how metal ions are reduced by the ethylene glycol
oxidation to glycolaldehyde, using a spectrophotometric method. They proposed
an alternative pathway related to the reduction of metal precursor depending on
the reaction atmosphere. For example, heating ethylene glycol between 140 and
160 ˝C in air, Equation (1), may generate glycolaldehyde as a reductant for the many
metal precursors

2HO´CH2 ´CH2 ´CH2 ´OH`O2 Ñ 2HO´CH2 ´CH2 ´CHO` 2H2O (1)
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It was found out from spectroscopic data that glycolaldehyde is the main
reductant depending on reaction temperature, atmosphere, and experimental
setup [64]. Numerous studies have been reported on synthesizing metal
nanoparticles with controlled-size, shape and morphology, and satisfactory stability,
as well as high product yield and low environmental contamination [65–67]. Physical
properties of nanoparticles can influence catalytic activity [68,69], selectivity [70,71]
and durability [72]. Biacchi et al. [73] demonstrated that proper selection of the
polyol solvent can be used to manipulate the metal nanoparticles morphology.
They reported that the kinetics and thermodynamics of nanoparticles synthesis
is critically important for controlling the shape and size when using different
polyol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, and
tetraethylene glycol. In recent years, methodological development of the synthesis of
the highly active electrocatalysts has been one of the major topics in energy converting
systems [74–79]. Joseyphus and co-workers [80] investigated the reaction rate of the
polyol method using cobalt and its alloys. The reduction limit of polyol solution
depends mainly on the concentration of hydroxyl ions (OH´) for the reduction of
metal ions. Although the presence of OH´ ions in the metal ion-polyol system acts as
a catalyst in accelerating the formation of precursor complexes, it may decrease the
reaction rate by forming metal hydroxide compounds which are not easily reduced.
Therefore, it is important to control the degree of complex or hydroxide forms
in the presence of OH´ ions by using UV-Visible spectroscopy. Susut and Tong
demonstrated that the particle shape could be controlled in the presence of AgNO3

with different concentrations in the reaction mixture before the addition of PVP
(poly-vinylpyrrolidone) and Pt precursor solutions [81]. Gonzalez-Quinjano et al. [82]
also reported the synthesis of Pt-Sn/C electrocatalysts by using ethylene glycol
containing ethanol and water in different ratios. They noticed that the chemical
composition, lattice parameter, and degree of alloying depended on the solution
ratio between ethylene glycol, ethanol, and water. The average particle size was
observed as between 1.8 and 4.7 nm, the smaller particle sizes were reported in the
absence of water. Furthermore, Jiang et al. [83] prepared Pt/C and Pt-Sn/C catalysts
by slightly modifying the polyol method. In brief, they prepared a tin complex in
ethylene glycol at 190 ˝C for 30 min and then added the required chloroplatinic acid
and finally, the mixture was maintained at 130 ˝C for 2 h under argon gas to remove
the oxygen and organic by-products. Lee et al. [84] prepared in ethylene glycol,
acid pre-treated carbon supported Pt and Pt-Ni electrocatalysts, which exhibited
significantly improved electrocatalytic activity.

In the polyol process, polyalcohols are currently used as both solvent and
reducing agent. Alternatively, poly-vinylpyrrolidone (PVP) can be added as
surfactant or capping agent [85,86] in association with a variety of reducing agents
such as sodium borohydride (NaBH4) [87,88], and formaldehyde (H-CHO) [88]
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for controlling surface reactivity. These properties significantly influence the
electrochemical performance. During their synthesis, metal particles tend to
aggregate, particularly in the liquid phase, because of their very high surface energy
in the nano level. Therefore, nanoparticles have a natural tendency to be attracted
to each other through Van der Waals forces leading to agglomeration. In order to
neutralize the Van der Waals interaction, the required repulsive forces have to be
improved. As a result, a stabilization procedure is required to ensure the quality of
the nanomaterial products. The stability relation of the nanoparticles can be mainly
controlled by two kinds of effects in the dispersing medium. One is an electrostatic
stabilization (Figure 5a) for developing surface charges to repulse (high positive ET)
aggregated particles, which can be evaluated by zeta potential measurements and
the other is a steric stabilization (Figure 5b) for controlling the protective layer, using
organic ligands and polymer [89].
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Figure 5. Stabilization of nanoparticles in a dispersing medium; (a) electrostatic 
stabilization and (b) steric stabilization of metal. Reprinted with permission from Ref. [89]. 
Copyright 2004, Elsevier. 
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2.4. Impregnation-Reduction Process

The impregnation-reduction method is one of the simple and straightforward
techniques in material science for supported nanocatalysts preparation. It is
still widely used in the field of gas-phase heterogeneous catalysis to prepare
nanostructured catalysts. Compared to the w/o method, the impregnation technique
is one of the green class methods to prepare nanocatalysts due to its environmental
friendly solvents versus organics ones. The synthesis takes place either at low or
room temperatures, thus minimizing energy consumption [32,51]. For a long time,
this chemical approach was devoted to Pt-Ru catalyst preparation [90–92]. Basically,
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it involves two steps: impregnation and reduction. During the impregnation, the
support (mainly carbon) is immersed in the aqueous solution containing the desired
metal precursors. Then, metal ions are reduced to their metallic state by the addition
of an aqueous solution of reducing agent such as Na2S2O3, NaBH4, Na4S2O5, N2H4,
H-CHO, or H2 [51,91,93,94]. It should be noted that the impregnation duration step
strongly depends on the nature of the precursors, the targeted metal loading, as well
as the nature of the support. Recently, Knani et al. [93,95] optimized an experimental
approach for synthesizing methanol tolerant ORR nanocatalysts (10 wt% Pt-Co-Sn/C)
preparation using NaBH4 and Vulcan XC 72R carbon as reducing agent and support,
respectively. Typically, the mixture made of metal precursors and the support is
ultrasonically homogenized for 30 min followed by additional stirring for 2 h before
the reduction step at 80 ˝C. Then, the filtered solid composite is washed several times
with ultra pure water and dried in an oven at 110 ˝C for about 4 h [95]. Miller et al. [96],
reported the preparation of noble metal free electrocatalysts based on iron(II) and
silver(I) phthalocyanines using an impregnation-reduction method. During this
procedure the Ketjenblack EC-600JD used as support was impregnated with the
metal precursors by stirring (30 min) and sonicating (30 min) ethanol suspensions
(200 mL) of the metal phthalocyanine complexes with the carbon material at room
temperature. The obtained mixture was stirred afterwards for 24 h (to improve
the impregnation process with the support surface) at room temperature and then
sonicated for 30 min again. After these steps, the solvent was removed under reduced
pressure to yield a solid residue which was dried under high vacuum. Then, the
resulting powder annealed at high temperature (250–800 ˝C) for 2 h was cooled to
room temperature under continued argon flow prior to use. These nanostructures
have shown good electrochemical performances toward ORR in alkaline medium.
Others impregnation-reduction processes have been reported for the successful
preparation of PtRhM/C (M = W, Pd, or Mo) [97]; PtRh/C [98]; PtNi/C [99].

Different metal precursors can be used; chloride, sulfite, nitrate, carbonyl
complexes. It should be emphasized that the metal carbonyl complexes are especially
interesting since the second step is not required in some cases [32,100]. As any
process, many experimental parameters affect the electrochemical activity of the
obtained catalysts by controlling their composition, morphology, and dispersion onto
the support. From the experimental view, it has been suggested that, the control of
the nanoparticles size and as yet the particle distribution are more difficult by the
impregnation method, which thus constitutes its major drawback [32,51].

2.5. Bromide Anion Exchange (BAE) Method

Obviously, electrocatalysis is one of the disciplines that requires maximum
cleanness. Indeed, from catalyst preparation to initiating chemical reactions, the
cleanliness is mandatory throughout the chain. Any impurity can drastically alter
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the catalytic activity/selectivity through the control of active sites. Thus, taking
into account the fact that the reactions involved in electrocatalysis are surface
reactions, the electrocatalyst surface state (cleanness) is the key parameter for the best
electroactivity. Thereby, the surface of the nanomaterial must be free from impurities
such as surfactant molecules and other capping ones. In this way, the development of
an advanced synthetic method must limit the use of strong organic molecules, which
have an affinity with the nanoparticles surface. To this end, the research group of Prof.
B. Kokoh has recently initiated a new clean, easy, and accessible synthetic route called
“Bromide Anion Exchange, BAE” [36,38,101]. Most of the metal salts (precursors)
used in nanomaterials synthesis are chlorinated. The bromide ion (r(Br´) = 195 nm)
is larger than its counterpart chloride (r(Cl´) = 181 nm). Thus, the partial or
total substitution of Cl´ by bromide anions must accentuate steric hindrance
around the metal cation, which will further play a crucial role during the seed’s
growth. This advanced method has been successfully used to synthesize Au-based
nanocatalysts for glucose electro-oxidation [38,57], Pd-based electrocatalysts for
glycerol electro-oxidation [36,37,101] and hybrid/abiotic electrodes for biofuel cell
application [102,103].

This convenient and straightforward synthesis approach is an environmentally
friendly method and is based on the use of bromide ion as a capping agent, the major
gate in the BAE process. It has been reported that halide ions (chloride, bromide, and
iodide) could serve as coordination ligands and thus, play the role of capping agent
for shape and size control of nanocrystals [67,104–107]. Figure 6 summarizes the
different steps for preparing nanocatalysts with the BAE route. The main feature of
BAE lies in the simplicity undertaken. By using no organic compounds as surfactants
or capping agents, clean, small, and well-dispersed nanoparticles with highly
improved catalytic properties are currently obtained. The effects of the different
parameters such as the metal salt concentration, the amount of bromide anion and
the temperature of the synthesis reactor were scrutinized recently. From these reports,
the molar ratio between KBr and total metal(s): ϕ = n(KBr)/n(metal(s)) is 1.46; the
total molar concentration of metal salts is 1 mM and the reactor temperature is 25 and
40 ˝C (meaning 25 ˝C before the addition of the reducing agent and 40 ˝C after) [108].

Typically, the metal precursor salts are dissolved in a reactor containing
ultrapure water thermostatted at 25 ˝C under magnetic stirring. Then, an appropriate
amount of KBr via the parameter ϕ is added under vigorous stirring. A suitable
amount of carbon support (Vulcan or Ketjenblack) is then added under constant
ultrasonic homogenization for 45 min, followed by the drop wise addition of the
reducing agent, under vigorous stirring. Afterwards, the reactor temperature is
elevated tot 40 ˝C (to improve the reaction kinetics) for a 2 h period. Finally, the
carbon supported nanomaterials are filtered, washed several times with ultra pure
water and dried in an oven at 40 ˝C for 12 h. In the whole BAE procedure, the
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Vulcan or Ketjenblack supports were thermally pretreated at 400 ˝C under nitrogen
atmosphere for 4 h, in order to improve their physical properties and remove any
contaminant coming from their industrial manufacture [57]. Holade et al. [57] found
surprisingly that the BET surface area of the support was enhanced, being 322 and
1631 m2 g´1 instead of 262 and 1102 m2 g´1 for the as-received Vulcan XC 72R (C)
and Ketjenblack EC-600JD (KB) materials, respectively. They also found that Pt/C
and Pt/KB exhibited a highly improved specific electrochemical surface area (SECSA).
It is worthy of note that all catalysts were prepared with a high chemical synthesis
yield ($ > 90 %), defined as the percentage of the ratio between the experimental
mass and the theoretical one based on the initial reactor mixture [102,103]. It should
be emphasized that it is the first time that such a synthesis yield has been reported.
Indeed, for electrocatalysts preparation, neither the microemulsion method [30,109]
nor any of the others [14,35,110,111] yielded this important result, indicating that the
BAE method is suitable for nanomaterials preparation.
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complex by Br−. For the Pd salt, the aqueous solution goes from a clear yellow to a deep yellow, 
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changes its appearance. According to the literature, the absorption wavenumber associated with the 
complex [PdCl4]2− in aqueous solution may be 425 nm [115] or 415 nm [116]. This value depends 
undoubtedly on the complex ion concentration in the solution and could be affected by the presence of 
other species. The metal salt solution without KBr presents a band at ca. 300 nm and a shoulder at 
ca. 400 nm. With KBr, in addition to the band at 325 nm, two shoulders at 400 nm and 510 nm can be 
observed. The slight shift of the peak position and the appearance of the band around 510 nm indicate 
clearly the insertion of the Br− ions in the complex [PdCl4]2−. Herein, the ratio n(Br−)/n(Pd2+) is 1.5 
versus 4 for the complex ion [PdBr4]2−. Thus, there is no complete substitution of chloride by bromide. 

 

Figure 6. The experimental setup of the Bromide Anion Exchange (BAE) route
for nanoscale materials synthesis. Reproduced with permission from Ref. [37]
Copyright 2014, The Electrochemical Society.

During the synthesis (before the reduction step), change of the initial solution
color was observed after the addition of KBr (see Figure 6: before and after step 2).
Color changes can be seen in Figure 7a,c,e. To gain further insights on the origin
of this phenomenon, UV-Vis measurements were performed. As can be seen in
Figure 7b,d,f, there is a change in the UV-Vis spectra on the addition of KBr. In the
case of the Pt salt, the addition of KBr shifts the band at 287 nm toward 298 nm with
an intense shoulder around 411 nm. The absorption band due to a ligand-to-metal
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charge transfer transition of the [PtCl6]2´ ion complex is found to be at 263 nm [112]
or 260 nm [46,113,114]. Thus, the shift and intensity of the present bands indicate
partial substitution of Cl´ in the [PtCl6]2´ ion complex by Br´. For the Pd salt,
the aqueous solution goes from a clear yellow to a deep yellow, depending on the
metal salt concentration. Furthermore, the addition of KBr to this solution drastically
changes its appearance. According to the literature, the absorption wavenumber
associated with the complex [PdCl4]2´ in aqueous solution may be 425 nm [115] or
415 nm [116]. This value depends undoubtedly on the complex ion concentration in
the solution and could be affected by the presence of other species. The metal salt
solution without KBr presents a band at ca. 300 nm and a shoulder at ca. 400 nm.
With KBr, in addition to the band at 325 nm, two shoulders at 400 nm and 510 nm
can be observed. The slight shift of the peak position and the appearance of the
band around 510 nm indicate clearly the insertion of the Br´ ions in the complex
[PdCl4]2´. Herein, the ratio n(Br´)/n(Pd2+) is 1.5 versus 4 for the complex ion
[PdBr4]2´. Thus, there is no complete substitution of chloride by bromide. The
change of the color, substantiated with the UV-Vis observations is attributed to the
complex ion [PdCl4´xBrx]2´, 0 ď x ď 4. Klotz et al. [117] reported that, in aqueous
media, [PdI4]2´ is 108.1 times more stable than [PdBr4]2´ which is 104.1 times more
stable than [PdCl4]2´. Consequently, the complex ions that control the particles
size/shape growth after reduction is [PdCl4´xBrx]2´. The latter species provides
a more steric environment than [PdCl4]2´. This hypothesis was confirmed when
nanoparticles were synthesized without and with different amounts of KBr [108].

Figure 8a,b show the TEM micrographs (with their HRTEM images in the inset)
of 20 wt% AuPt nanomaterials and their corresponding particle size distribution
when using Vulcan XC 72R or Ketjenblack EC-600JD as supports, respectively.
Particles are well dispersed onto the support with a mean particle size between
3–6 nm. The HRTEM images highlight an octahedron-like shape. It has been observed
that for Au-based bimetallics, the particle size increases with increasing Au content,
which is a well-known phenomenon, coming from the difference in the reduction
kinetics of the metal salts. Trimetallics AuPtPd supported on both Vulcan and
Ketjenblack were also successfully prepared from BAE [102,103].
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Figure 7. (a), (c) and (e) From left to right in each photograph, images of water containing: 
no substance, 1.5 mM KBr, 1.0 mM metal salt and 1.5 mM KBr + 1.0 mM metal salt. (b), 
(d) and (f) Their corresponding UV-Vis absorption spectra of water containing  
1.5 mM KBr (black), 1.0 mM H2PtCl6 6H2O (red) and 1.5 mM KBr + 1.0 mM H2PtCl6 
6H2O (blue). Note: (a–b) for platinum; (c–d) for gold and (e–f) for palladium. 

 

Figure 7. (a), (c) and (e) From left to right in each photograph, images of water
containing: no substance, 1.5 mM KBr, 1.0 mM metal salt and 1.5 mM KBr + 1.0
mM metal salt. (b), (d) and (f) Their corresponding UV-Vis absorption spectra of
water containing 1.5 mM KBr (black), 1.0 mM H2PtCl6 6H2O (red) and 1.5 mM KBr
+ 1.0 mM H2PtCl6 6H2O (blue). Note: (a–b) for platinum; (c–d) for gold and (e–f)
for palladium.
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Figure 8. TEM-HRTEM micrographs and their corresponding particle size distribution 
(histograms were fitted using the log-normal function) of the nanostructured AuPt  
(20 wt%) supported on (a) Vulcan XC 72R and (b) Ketjenblack EC-600JD. (a) Reprinted 
and adapted with permission from Ref. [103]. Copyright 2014, John Wiley & Sons, Inc. (b) 
Reprinted and adapted with permission from Ref. [102]. Copyright 2014, John Wiley & 
Sons, Inc. 

 

Figure 8. TEM-HRTEM micrographs and their corresponding particle size
distribution (histograms were fitted using the log-normal function) of the
nanostructured AuPt (20 wt%) supported on (a) Vulcan XC 72R and (b) Ketjenblack
EC-600JD. (a) Reprinted and adapted with permission from Ref. [103]. Copyright
2014, John Wiley & Sons, Inc. (b) Reprinted and adapted with permission from
Ref. [102]. Copyright 2014, John Wiley & Sons, Inc.

2.6. Other Synthetic Routes

From chemical to physical approaches, a huge number of metal nanoparticles
preparation methods have been initiated over the last twenty years. Formerly
reserved for the application in physics and related fields [26,39], nanomaterials
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prepared from physical routes are becoming unavoidable targets for electrocatalysis.
Free nanoparticles prepared in solution from radiolysis [118] or laser ablation
processes have been successfully tested in electrocatalysis [119]. Up till now, no
test has been performed using carbon as support for application in electrocatalysis.
The other chemical methods are the historical methods developed by Bönnemann
and co-workers [94,120,121]. They have been adapted for electrocatalysts
preparation [58,94]. In such a method, the reducing agent is a tetra-alkylammonium
triethylborohydride, which acts also as a surfactant after reducing the metal salt in a
tetrahydrofuran medium. After addition of the support, e.g., Vulcan XC 72 carbon,
the filtered powder is calcined under air at 300 ˝C. Small nanoparticles about 2–5 nm
are currently obtained. However, because of the use of some organic molecules as
reducing agents, their removal from the nanoparticles surface is not always effective.
Thus, their catalytic performance can be affected.

3. Application of Carbon-Supported Nanocatalysts toward the ORR

3.1. ORR Activity on Various Carbon Supported Nanoparticles Prepared from w/o Method

Because of its natural abundance (20.95 vol%; 23.20 wt% of the earth's
atmosphere and roughly 21% in air), dioxygen is the first choice of oxidant used at
the cathode in FCs. Already known as an oxidant in the propulsion system, H2O2

can supply O2 as in the case of submarines. From this perspective, FCs were already
developed [122,123]. This section will focus on the electrocatalytic performances
of carbon-based substrates supporting metal nanoparticles toward the ORR. An
emphasis on analyzing data from theoretical models to address the intrinsic and
specific electrocatalytic properties depending on the synthetic method is incorporated
throughout. The issue of the ORR is as old as that of FCs. Obviously; it is certainly
one of the most widely studied processes due to its important applications in the
field of clean energy conversion and storage systems. The ORR involves several
basic steps. To date, two plausible mechanisms have been proposed in the literature
(Figure 9) [124–126]. According to Acre et al. [125], the direct O2 reduction to H2O
(path A) is the result of O2 adsorption parallel to the catalytic surface plane. This
requires the presence of active sites side by side. The other pathway (path B) proceeds
by an initial adsorption of O2 perpendicularly to the electrode surface (by a single
atom). However, it should be noted that the second step (reduction of H2O2) has a
high activation energy, which increases the overpotential.
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Figure 9. Schematic representation of the oxygen reduction reaction (ORR) mechanism by 
direct pathway (A: adsorption parallel to the surface) and indirect pathway (B: adsorption 
perpendicular to the surface). Reprinted and adapted with permission from Ref. [125]. 
Copyright 1997, Elsevier. 

In the early 2000s, most of the catalytic applications of nanomaterials prepared from the water-in-oil 
method (developed more than 10 years ago) were oxidation of organic molecules in heterogeneous 
catalysis ranging from batch reactor to electrocatalysis. Tuning the experimental factors that affect the 
w/o method will be crucial for designing more active low temperature FCs cathodes. In 2008, 
Demarconnay and co-workers reported the use of the w/o route to prepare various Pt-Bi bimetallic 
nanomaterials dispersed onto Vulcan XC 72 carbon (metal loading: 50 wt%) [33] for the oxygen 
reduction reaction in alkaline medium. It is worth mentioning that this metal loading is too high to 
achieve the condition for commercialization of FCs which is limited to 8 g of platinum group metals 
(PGM) per vehicle, meaning less than 100 µgPGM cm−2 at the cathode [9]. However, it can be helpful to 
understand the ORR electrocatalysis before thinking about the required three major criteria for FCs 
MEAs: cost, performance, and durability. In this preliminary ORR investigation using electrocatalyst 
from the w/o method, the RRDE technique to find out the fundamental data was used. It is worthy of 
note that, after the preparation of a carbon black catalyst, a black powder is obtained. Before using this 
powder for electrochemical tests, a catalytic ink is prepared. To this end, different approaches are 
currently used and are based on the initial method proposed at the beginning of the 1990s using 
Nafion® suspension [101,127–129]. Figure 10 shows the polarization curves at 5 mV s−1 (2500 rpm) at 
the disc for Pt/C, Vulcan XC 72R and different bimetallic catalysts in 0.2 M NaOH. The reaction starts 
at ca. 1.05 V vs. RHE on PtBi/C and 0.87 V vs. RHE on Vulcan XC 72R. An onset circuit potential 
(OCP) of 1.05 V vs. RHE reflects the ORR sluggishness because it must be roughly 1.19 V vs. RHE. 
As can be seen in the activation–diffusion mixed region (from 1.0–0.7 V vs. RHE) the bimetallics 
Pt90Bi10/C and Pt80Bi20/C are more active than Pt/C and Pt70Bi30/C. This means that the optimum 
window is obtained when at %Bi < 70 in the PtBi alloy system. The Pt/C catalyst synthesized by this 
method did not produce any peroxide, yielding roughly 4 as the number of exchanged moles of 
electron per mole of oxygen as on bulk Pt [130]. The evaluated kinetic current density at 0.95 V vs. 
RHE was 0.60, 1.05, 1.14, and 0.49 mA cm−2 on Pt/C, Pt90Bi10/C, Pt80Bi20/C, and Pt70Bi30/C, 
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In the early 2000s, most of the catalytic applications of nanomaterials prepared
from the water-in-oil method (developed more than 10 years ago) were oxidation
of organic molecules in heterogeneous catalysis ranging from batch reactor to
electrocatalysis. Tuning the experimental factors that affect the w/o method
will be crucial for designing more active low temperature FCs cathodes. In
2008, Demarconnay and co-workers reported the use of the w/o route to prepare
various Pt-Bi bimetallic nanomaterials dispersed onto Vulcan XC 72 carbon (metal
loading: 50 wt%) [33] for the oxygen reduction reaction in alkaline medium. It is
worth mentioning that this metal loading is too high to achieve the condition for
commercialization of FCs which is limited to 8 g of platinum group metals (PGM)
per vehicle, meaning less than 100 µgPGM cm´2 at the cathode [9]. However, it
can be helpful to understand the ORR electrocatalysis before thinking about the
required three major criteria for FCs MEAs: cost, performance, and durability. In
this preliminary ORR investigation using electrocatalyst from the w/o method, the
RRDE technique to find out the fundamental data was used. It is worthy of note that,
after the preparation of a carbon black catalyst, a black powder is obtained. Before
using this powder for electrochemical tests, a catalytic ink is prepared. To this end,
different approaches are currently used and are based on the initial method proposed
at the beginning of the 1990s using Nafion® suspension [101,127–129]. Figure 10
shows the polarization curves at 5 mV s´1 (2500 rpm) at the disc for Pt/C, Vulcan
XC 72R and different bimetallic catalysts in 0.2 M NaOH. The reaction starts at ca.
1.05 V vs. RHE on PtBi/C and 0.87 V vs. RHE on Vulcan XC 72R. An onset circuit
potential (OCP) of 1.05 V vs. RHE reflects the ORR sluggishness because it must be
roughly 1.19 V vs. RHE. As can be seen in the activation–diffusion mixed region

97



(from 1.0–0.7 V vs. RHE) the bimetallics Pt90Bi10/C and Pt80Bi20/C are more active
than Pt/C and Pt70Bi30/C. This means that the optimum window is obtained when
at %Bi < 70 in the PtBi alloy system. The Pt/C catalyst synthesized by this method
did not produce any peroxide, yielding roughly 4 as the number of exchanged moles
of electron per mole of oxygen as on bulk Pt [130]. The evaluated kinetic current
density at 0.95 V vs. RHE was 0.60, 1.05, 1.14, and 0.49 mA cm´2 on Pt/C, Pt90Bi10/C,
Pt80Bi20/C, and Pt70Bi30/C, respectively. Unfortunately, it was not always mentioned
whether this kinetic current density, which is free from mass transport, was evaluated
using geometrical or active surface area. Therefore, it is difficult to compare it with
other values found in the literature. Based on these values, Pt80Bi20/C shows the best
kinetic activity. The value of exchange current density (j0) at the high overpotential
region on this electrode material is 23.2 10´3 mA cm´2, which is higher than 16.8
and 5.6 10´3 mA cm´2 on Pt/C and Pt70Bi30/C, respectively. Typically the exchange
current density is 5.4 10´5 mA cm´2 on the bulk Pt [130]. The low value of the Tafel
slope on Pt70Bi30/C at high overpotential (99 mV dec´1) contrary to theoretical value
of 120 mV dec´1 has been explained by the presence of bismuth oxides. Table 1
shows the influence of the synthesis method and catalyst composition on the kinetic
parameters. More importantly, the authors found that Pt80Bi20/C exhibits a high
tolerance for ORR in the presence of 0.1 M ethylene glycol from 1.0–0.9 V vs. RHE.
Indeed, they investigated the tolerance properties of the catalysts towards the ORR in
the presence of ethylene glycol as fuel. The platinum substitution by bismuth up to
20 at% improves the catalyst tolerance by shifting the reduction wave towards higher
potentials. These kinds of fuel tolerant cathode materials are promising electrodes for
the development of advanced electrocatalysts for direct alcohol fuel cells in which the
fuel can crossover the membrane to be mixed with O2 in the cathodic compartment.
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Figure 10. ORR polarization curves recorded in an O2-saturated 0.2 M NaOH solution at 
50 wt.% PtBi/C catalysts prepared from w/o method: (1) Pt/C, (2) Pt90Bi10/C, (3) Pt80Bi20/C, 
(4) Pt70Bi30/C and (5) Vulcan XC 72 carbon (5 mV s−1, 2500 rpm, 20 °C). Metal loading on the 
electrode: 177 µg cm−2. Reprinted with permission from Ref. [33]. Copyright 2004, Elsevier. 

Until the early 2000s, it was difficult to decrease the metal content in the electrocatalysts without 
losing significant catalytic activity. This poses a considerable challenge to the material science 
community, particularly when considering that for most catalyst systems, durability and high current 
density work together with the PGM content. Habrioux and co-workers used the same w/o method to 
design platinum-gold nanoalloys with improved electrocatalytic properties [52]. They managed to 
reduce the metal charge up to 40 wt% without a significant loss in catalytic activities. Au is known to 
improve the Pt electrode durability by modifying the Pt–OH bond strength [52]. O2 reduction starts at 
ca. 0.7 V vs. RHE on Vulcan, 0.9 V vs. RHE on Au/C and 0.95 V vs. RHE on Au70Pt30/C, Au20Pt80/C, 
and Pt/C. The peroxide production increases when the Pt content decreases in the electrode materials. 

 

Figure 10. ORR polarization curves recorded in an O2-saturated 0.2 M NaOH
solution at 50 wt.% PtBi/C catalysts prepared from w/o method: (1) Pt/C, (2)
Pt90Bi10/C, (3) Pt80Bi20/C, (4) Pt70Bi30/C and (5) Vulcan XC 72 carbon (5 mV s´1,
2500 rpm, 20 ˝C). Metal loading on the electrode: 177 µg cm´2. Reprinted with
permission from Ref. [33]. Copyright 2004, Elsevier.
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Until the early 2000s, it was difficult to decrease the metal content in the
electrocatalysts without losing significant catalytic activity. This poses a considerable
challenge to the material science community, particularly when considering that for
most catalyst systems, durability and high current density work together with the
PGM content. Habrioux and co-workers used the same w/o method to design
platinum-gold nanoalloys with improved electrocatalytic properties [52]. They
managed to reduce the metal charge up to 40 wt% without a significant loss in
catalytic activities. Au is known to improve the Pt electrode durability by modifying
the Pt–OH bond strength [52]. O2 reduction starts at ca. 0.7 V vs. RHE on Vulcan,
0.9 V vs. RHE on Au/C and 0.95 V vs. RHE on Au70Pt30/C, Au20Pt80/C, and
Pt/C. The peroxide production increases when the Pt content decreases in the
electrode materials. From the kinetic parameter, Au70Pt30/C has the best exchange
current density: j0 = 300, 300, 700, 100 and 400 µA cm´2 for Pt/C, Au20Pt80/C,
Au70Pt30/C Au/C, and Vulcan carbon, respectively. In order to reduce the cost of
the electrocatalysts, while keeping the same reaction kinetics, Pd-based electrodes
have been recognized to be excellent candidates. Precisely, the addition of Ni or Ag
boots the electroactivity of Pd either for oxidation of organic molecules [36,101,108]
or ORR [56,131] in both acid and alkaline media. The synthesis of 2–5 nm of PdAg/C
and PdNi/C (20 wt%) from the w/o method using the reversed micelles approach
has been reported [56]. The polarization curves for ORR on Pd/C, Pd70Ni30/C,
and Pd70Ag30/C electrode materials are represented in Figure 11. In the activation
region (0.95–0.85 V vs. RHE), the addition of the second metal to Pd does not
induce any benefit in terms of activity. The electrodes’ efficiency in terms of oxygen
reduction current follows the order Pd/C > Pd70Ni30/C > Pd70Ag30/C. This is
supported by the value of the exchange current density (j0), which is 11.1, 7.4 and
1.6 µA cm´2 for Pd/C, Pd70Ni30/C, and Pd70Ag30/C, respectively [56]. In the
mixed activation-diffusion limiting control domain (0.85–0.65 V vs. RHE, Figure 11),
the presence of Ag or Ni increases slightly the limiting current, which is roughly
6.9 mA cm´2 (Pd/C), 7.1 mA cm´2 (Pd70Ag30/C), and 8.0 mA cm´2 (Pd70Ni30/C).
The determined number of exchanged electrons, from Koutecky-Levich plots, is close
to 4 for all the catalysts. This shows that O2 reduction is a four-electron transfer
process for the electrode potential centered at ca. 0.85 V vs. RHE. But, the careful
analysis of the two behaviors in the polarization curves (on the disc) in 0.9–0.8 V vs.
RHE and 0.75–0.6 V vs. RHE indicates a 2 + 2 electrons process.
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From the kinetic parameter, Au70Pt30/C has the best exchange current density: j0 = 300, 300, 700, 100 
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Figure 11. Disc (bottom) and ring (top) current-potential curves for ORR on (a) Pd/C, (b) 
Pd70Ni30/C and (c) Pd70Ag30/C electrocatalysts prepared from w/o method (20 wt%), in 
O2-saturated 1 M NaOH at 5 mV s−1. Metal loading on the electrode ca. 100 µg cm−2. 
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3.2. ORR Activity on Various Carbon Supported Nanoparticles Prepared from the
Polyol Method

Examination of the oxygen reduction reaction on various metals, including
Pt, Pd, Rh, Ir, and Au began in the 1960s. Over the past decade the polyol
process has been used to synthesize metallic nanoparticles such as Pt [132,133],
Pd [88,134], Au [135], Fe [136], Ni [137,138], Co [139], Ag [140,141], Cu [142,143],
Sn [144], and Rh [73]. Platinum is one of the most active metal catalysts toward
many electrochemical reactions, such as oxidation of small molecules and reduction
of molecular oxygen in PEMFC. Compared to other transition metals, Pt adsorbs
oxygen with an intermediate bond strength. That is, Pt adsorbs oxygen strongly
enough to be reduced, but not so strongly that the surface oxidizes. Additionally,
the transition metals, for instance Ni, Co, Cr and Fe, adsorb oxygen so strongly
that the surface may fully oxidize, while Au adsorbs oxygen so weakly that it does
not stick to the surface. As platinum exhibits the highest catalytic activity for the
oxygen reduction reaction [145], carbon supported platinum-based bimetallic alloys
have been investigated as electrocatalysts to reduce the voltage losses associated
with the cathode performance. Platinum-based bimetallic catalysts provide high
oxygen reduction activity on the basis of d-band modification by the addition of a
second metal. Toda et al. [146] reported that oxygen adsorption increases in the case
of changing of the electronic structure of Pt induced by a transition metal, and then
the O-O bond is weakened. For this purpose, various platinum-based bimetallic
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catalysts, such as Pt-Ni [147,148], Pt-Co [149,150], Pt-Fe [151,152], Pt-Cr [153,154],
Pt-Cu [155,156], Pt-V [157,158], Pt-Mn [159], Pt-Bi [35], Pt-Te [160] have been reported.
It can be clearly emphasized that modified-platinum catalysts display 1.5–3 times
higher catalytic activity than that of pure platinum catalyst. Alvarez et al. [88]
reported oxygen reduction activity on carbon supported palladium prepared by
using ethylene glycol, sodium borohydride, and formaldehyde. They showed
that reduction of the palladium precursor salt in alkaline medium led to small
palladium nanoparticles around 5.7 nm at pH 11. It is clearly displayed that
the peak position for palladium oxide reduction depends on the nanoparticles
size. Indeed, this peak is centered at 0.70 V vs. RHE on Pd/C-ETEK; 0.72 V vs.
RHE on Pd/C-CH2O, 0.74 V vs. RHE on Pd/C-NaBH4 and 0.74 V vs. RHE on
Pd/C-EG. Rao et al. [152] reported Pt and Pt-M (M: Fe, Co, Cr) alloy catalysts
prepared by the polyol method in 1,2-hexadecanediol in the presence of nonanoic
acid and nonylamine as protecting agents. The results of linear sweep voltammetry
indicated that the Pt alloy catalysts exhibited 1.5–1.7 times higher oxygen reduction
activity than that of the as-synthesized and commercial Pt catalyst. Additionally,
electrocatalytic activity and stability on graphene supported Pt3-Co and Pt3-Cr alloy
catalysts were reported by Rao et al. [150] for the oxygen reduction reaction. The fuel
cell performance of the catalysts was evaluated with 0.4 mgPt cm´2 catalyst loading
on the cathode and at 353 K and 1 atm. The power densities of 790, 875, 985 mW cm´2

were observed for graphene supported Pt, Pt3-Co, and Pt3-Cr catalysts, respectively.
The stability of the so-called catalysts were investigated by using continuous potential
cyclic voltammetry swept for 500 cycles in O2-saturated 0.5 M H2SO4 and then linear
scan voltammetry recorded at 1600 rpm and 5 mV s´1. No obvious decrease in the
oxygen reduction activity was observed for graphene supported catalysts after a
continuous 500 cycles. Santiago et al. [149] prepared homogeneously dispersed Pt-Co
bimetallic catalysts with 1.9 nm particle size, which have a high degree of alloying
without thermal treatment. H2/O2 PEM fuel cell polarization curves for oxygen
reduction were recorded at 80 ˝C with a 0.4 mg cm´2 total metal loading. The single
cell polarization response related to the as-prepared catalysts exhibited superior
mass activity compared to commercial Pt/C catalyst. As reported by Chen and
co-workers [161], shape controlled Pt-Ni bimetallic nanocrystals exhibit enhanced
oxygen reduction activity. Pt3-Ni nanoframe catalysts exhibited in mass activity
a factor of 22 and in specific activity a factor of 36, for the enhancement for the
oxygen reduction reaction. In addition to the high intrinsic and mass activities, Pt3-Ni
nanoframe catalysts showed considerable durability for a duration of 10,000 potential
cycles at different scan rates from 2–200 mV s´1. Kumar et al. [162] prepared
carbon supported palladium catalysts by using the polyol process for the oxygen
reduction reaction. They reported that pretreatment of Vulcan XC-72R carbon support
influenced Pd nanoparticle morphology and its activity towards the oxygen reduction
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reaction in acidic solution. The mass activities, measured at 0.7 V vs. RHE, for Pd at
0.07 M H3PO4, 10% H2O2 and 0.2 M KOH treated carbon supports were superior to
that of E-TEK 20% Pd/C. They observed less than 4% H2O2 formation on different
Pd/C catalysts in the kinetic potential regions. The Tafel slopes of the oxygen
reduction reaction on different Pd/C catalysts showed two different regions with
two different slopes. These Tafel slope values are about 60 and 120 mV dec´1, at
the low current and high current density regions, suggesting different adsorption
isotherms of oxygenated species such as Temkin and Langmuir isotherms [163,164],
respectively. Carbon supported Pt-Cu bimetallic catalysts were prepared by the
polyol process for the oxygen reduction reaction by Tseng et al. [155]. The prepared
catalysts were exposed under 300, 600, 900 ˝C for 1 h in a flowing mixture of 90%
Ar–10% H2. They reported that the Pt-Cu/C catalyst treated at 300 ˝C exhibited
superior catalytic activity in terms of mass activity and specific activity than that
of Pt/C in 0.1 M HClO4. From the experimental data recorded at 1600 rpm and
5 mV s´1, it was reported that Pt-Cu/C-300 showed the highest mass activity of
651 mA mg´1, and the highest specific activity of 1.33 mA cm´2. In the case of
Pt-Cu/C-600 and Pt-Cu/C-900, lower mass and specific activities were observed
than that of the unheated Pt-Cu/C catalyst.

As a conclusion, the polyol reduction process permits the preparation of size
and shape controlled metal nanoparticles by improving the synthesis parameters
for electrochemical applications. Parameters such as reaction duration, reaction
temperature, and the pH value of the electrolyte assist to a remarkable extent the
reduction kinetics [63,80].

3.3. ORR Activity on Pt/C Electrocatalyst Synthesized from BAE Method

Recently introduced in nanoscale material science, the BAE method enables
the preparation of nanoscale electrocatalysts without using organic molecules.
Materials from this advanced synthetic route have been primary used as anode
materials for organics electro-oxidation [36,38,101] and have been successfully
utilized as anode-based electrodes in the glucose hybrid biofuel cell for
bionanotechnology applications. More importantly, it has been demonstrated
that Au-Pt catalysts prepared with the BAE method exhibit unexpected cathode
selectivity-tolerance-durability in mixed reactants and in a poisoning environment,
and physiological medium [102]. Indeed, Au60Pt40 bimetallic (3.2 nm) supported
onto carbon Ketjenblack EC 600-JD was able to selectively reduce oxygen in a
membraneless biomedical implantable glucose fuel cell at pH 7.7 in human serum to
activate a pacemaker, which constitutes a real application [102]. To some extent, BAE
allows the development of advanced low temperature FCs electrocatalysts. In order
to check these exceptional behaviors and compare them with the existing methods in
acidic and alkaline media using the RRDE technique, we conducted ORR at 20 wt%
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Pt/C, as prepared from BAE as a state-of-art catalytic material [9,28,165,166]. In
both media, several metal loadings were studied ranging from 6–100 µgPt cm´2.
Durability tests were performed by cycling the electrode potential from 0.05–1.10 V vs.
RHE for 1000 cyclic voltammograms (CVs). Figure 12a shows the ORR polarization
curves recorded in O2-saturated 0.1 M HClO4. Before recording these curves, the
RRDE setups were calibrated as illustrated in Figure 9. Then, the electrode was
scanned from 0.05–1.1 V vs. RHE at 50 mV s´1 twenty times followed by 2 CVs at
5 mV s´1. Finally ORR was performed by scanning the disc (glassy carbon, 0.196 cm2)
from 1.1–0.2 V vs. RHE at 5 mV s´1, while that of the potential of the ring (platinum,
0.11 cm2) was fixed at 1.2 V vs. RHE to oxidize any peroxide intermediate. The
oxygen reduction at the disc starts earlier than 1 V vs. RHE, with negligible H2O2

in the whole scanned potential range. As a first qualitative observation, the catalyst
displays good kinetics because of the sharp current behavior in the potential range of
1.0–0.8 V vs. RHE reaching a half-potential (E1/2) of 0.90 and 0.85 vs. RHE for 400 and
900 rpm, respectively. Almost the same value of the OCP and E1/2 were reached in
0.1 M NaOH. The important diffusion current density obtained herein and compared
to that resulting in the w/o method can be assigned to the synthetic method, whereas
the magnitude of the metal loading is almost two times lower [33,52]. One of the
recurring themes in the FCs performance loss is the decrease of the ORR activity due
to the active electrochemical surface area (ECSA) loss over the cycles [9,58,167–170].
The durability test was performed as depicted in Figure 12b. It provides evidence that
the BAE method delivers prototype catalyst with impressive durability performances
where the ORR curve is superimposed with the initial polarization curve, even if the
catalyst loses 12% on its maximum ECSA. Indeed, compared to the current carbon
supported nanoparticles, in such a situation, the catalyst is expected to lose more
than 50% [58,171,172].

The kinetic parameters of the catalyst were analyzed. Figure 13a shows the
Koutecky-Levich plots, highlighting a linear dependence at all potentials. This
linearity combined with the parallelism is not surprising and clearly indicates that
the oxygen reduction reaction is first-order kinetics with respect to oxygen. The type
of plot is crucial for determining the apparent kinetic current density at each potential.
Then, all these values are plotted as in Figure 13b to give the limiting current density
(jL). In 0.1 M HClO4, jL = 150 and 140 mA cm´2 for the initial Pt/C and Pt/C after
1000 CVs, respectively. These values are found to be 105 and 97 mA cm´2 in 0.1 M
NaOH. Considering the likely impact of the electrolyte on the ORR performances
at the nanoparticles, Nesselberger et al. [5] found in 2011 that the absolute reaction
rates decrease in the order HClO4 > KOH > H2SO4. They explained it by the anionic
adsorption strength increase (acid solutions), whereas the lower activity of KOH
compared to HClO4 might be due to the noncovalent interactions between hydrated
K+ and adsorbed OH– [5,173]. Because of the ORR improved durability and activity
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in HClO4, this solution is the electrolyte of choice for the electrochemical tests in a
three-electrode cell [11,14,173–175].
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Figure 12. ORR polarization curves recorded in a O2-saturated 0.1 M HClO4 solution at 20 
wt% Pt/C catalyst prepared from the BAE method: (a) Ring (top) and disc (bottom) current 
density; (b) Electrochemical durability (top) and the ORR polarization after 1000 CVs 
(bottom). ORR performed at 5 mV s−1, 1600 rpm, and room temperature. Insets show the 
SECSA decay over the 1000 cycles from 0.05–1.1 V vs. RHE at 50 mV s−1. Metal loading on 
the electrode: 100 µgPt cm−2. 

 

Figure 12. ORR polarization curves recorded in a O2-saturated 0.1 M HClO4

solution at 20 wt% Pt/C catalyst prepared from the BAE method: (a) Ring (top)
and disc (bottom) current density; (b) Electrochemical durability (top) and the
ORR polarization after 1000 CVs (bottom). ORR performed at 5 mV s´1, 1600 rpm,
and room temperature. Insets show the SECSA decay over the 1000 cycles from
0.05–1.1 V vs. RHE at 50 mV s´1. Metal loading on the electrode: 100 µgPt cm´2.

Two Tafel slopes (inset in Figure 13b) were determined: 125 mV dec´1 at
low overpotential (PtOx region) and 63 mV dec´1 at high overpotential (Pt free
region). On the fresh Pt/C electrode, these values were 130 and 67, respectively.
Besides, 126 and 69 mV dec´1 were evaluated with the fresh catalyst. Then, 140
and 71 mV dec´1 were obtained after the durability test in 0.1 M NaOH. All these
determined Tafel slopes are close to the theoretical ones, which are 120 mV dec´1

(low η) and 60 mV dec´1 (high η) [126]. It should be emphasized that these values
are in agreement with those reported both for Temkin adsorption isotherms of
oxygenated species (low η), or Langmuir ones for high η (where Pt surface is free of
PtOx species) [176,177].
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Figure 13. (a) Koutecky–Levich and (b) jk−1 plot for the determination of jL. Inset in (b) 
shows the Tafel plots: data are extracted from ORR after the durability test in 0.1 M 
HClO4. (c) Comparison of jk at 0.9 V vs. RHE in 0.1 M HClO4 and 0.1 M NaOH. 

Figure 13c gathers the kinetic current (extracted from Figure 13a) normalized either with ECSA 
mass (mA cm−2Pt) or Pt mass (mA µg−1Pt) at 0.9 V vs. RHE. Initially, jk = 0.45 mA cm−2Pt 
(0.15 mA µg−1Pt) in 0.1 M HClO4 and jk = 0.31 mA cm−2Pt (0.12 mA µg−1Pt) in 0.1 M NaOH. After the 
durability test, they became jk = 0.40 mA cm−2Pt (0.15 mA µg−1Pt) in 0.1 M HClO4and jk = 0.14 mA cm−2Pt  
(0.05 mA µg−1Pt) in 0.1 M NaOH, meaning a good stability in acid medium and a performance loss in the 
alkaline medium. The stability could be improved by the addition of second metals like palladium or 
gold to platinum. Table 1 summarizes the different parameters. It can be seen that j0 is 179 10−3 mA cm−2 
(and 153 10−3 mA cm−2 after stability) in HClO4, and 122 10−3 mA cm−2 (and 114 10−3 mA cm−2 after 
stability) in NaOH, respectively. These values of j0 are more important than those reported by 
Demarconnay et al. [33] (16.8 mA cm−2) and Habrioux et al. [52] (0.3 10−3 mA cm−2) on Pt/C 
synthesized from the w/o method, reflecting an enhanced ORR kinetics at these electrode materials. 

Table 1 gathers the experimental data concerning the ORR on carbon-supported nanomaterials 
prepared from the colloidal method. It would be interesting to discuss each point depending on the 
used method. Unfortunately, there is missing information in the literature. The ORR occurs with high 
OCP close to 1 V vs. RHE and suitable half-potential (E1/2) roughly at 0.85 V vs. RHE, as on the most 
active and advanced Vulcan supported PtCo [3,14], PtNi [3,11] or PtNiCo [13] nanoparticles as well as 
on the free nanoparticles in solution (unsupported catalysts) [10,65]. The other interesting result from 
this table concerns the number of exchanged electrons. This value is close to 4, which means that the 
reaction does not produce any significant peroxide, maximizing the Faradaic yield. Conversely, it is 
difficult to compare the kinetic activity with jk due to the fact that some authors did not clearly indicate 
whether the current was normalized with the geometric or active surface area. For this, we recommend 
further papers include full information concerning their materials for better comparison. 
  

 

Figure 13. (a) Koutecky–Levich and (b) jk´1 plot for the determination of jL. Inset
in (b) shows the Tafel plots: data are extracted from ORR after the durability test
in 0.1 M HClO4. (c) Comparison of jk at 0.9 V vs. RHE in 0.1 M HClO4 and
0.1 M NaOH.

Figure 13c gathers the kinetic current (extracted from Figure 13a) normalized
either with ECSA mass (mA cm´2

Pt) or Pt mass (mA µg´1
Pt) at 0.9 V vs.

RHE. Initially, jk = 0.45 mA cm´2
Pt (0.15 mA µg´1

Pt) in 0.1 M HClO4 and
jk = 0.31 mA cm´2

Pt (0.12 mA µg´1
Pt) in 0.1 M NaOH. After the durability

test, they became jk = 0.40 mA cm´2
Pt (0.15 mA µg´1

Pt) in 0.1 M HClO4 and
jk = 0.14 mA cm´2

Pt (0.05 mA µg´1
Pt) in 0.1 M NaOH, meaning a good stability in

acid medium and a performance loss in the alkaline medium. The stability could be
improved by the addition of second metals like palladium or gold to platinum. Table 1
summarizes the different parameters. It can be seen that j0 is 179 10´3 mA cm´2
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more important than those reported by Demarconnay et al. [33] (16.8 mA cm´2) and
Habrioux et al. [52] (0.3 10´3 mA cm´2) on Pt/C synthesized from the w/o method,
reflecting an enhanced ORR kinetics at these electrode materials.

Table 1 gathers the experimental data concerning the ORR on carbon-supported
nanomaterials prepared from the colloidal method. It would be interesting to
discuss each point depending on the used method. Unfortunately, there is missing
information in the literature. The ORR occurs with high OCP close to 1 V vs. RHE
and suitable half-potential (E1/2) roughly at 0.85 V vs. RHE, as on the most active and
advanced Vulcan supported PtCo [3,14], PtNi [3,11] or PtNiCo [13] nanoparticles as
well as on the free nanoparticles in solution (unsupported catalysts) [10,65]. The other
interesting result from this table concerns the number of exchanged electrons. This
value is close to 4, which means that the reaction does not produce any significant
peroxide, maximizing the Faradaic yield. Conversely, it is difficult to compare the
kinetic activity with jk due to the fact that some authors did not clearly indicate
whether the current was normalized with the geometric or active surface area.
For this, we recommend further papers include full information concerning their
materials for better comparison.

Table 1. Comparative performances of oxygen reduction reaction (ORR) results
from RRDE experiments on various catalysts prepared from colloidal methods.
E1/2 was graphically determined at 1600 rpm (potential at i = ID/2). Note: OCP,
“w/o” and “BAE” refer to open circuit potential, water-in-oil and bromide anion
exchange methods, respectively. Empty box (–) means that the original article does
not provide such data.

Catalyst Electrolyte OCP E1/2
jk (mA cm´2

Pt) Tafel slope
(mV dec´1)

j0 (ˆ 10´3 mA
cm´2) nex

Method
And
Ref.At (V vs. RHE)

V vs. RHE 0.90 0.85 Low High Low High
50 wt%
Pt/C 0.2 M

NaOH
1.05 0.85 0.60 - 81 126 1.2 16.8 4 w/o

[33]
50 wt%

Pt80Bi20/C 1.05 0.87 1.14 - 62 127 0.3 23.2 4

20 wt%
Pd/C 1 M

NaOH
0.95 0.83 - 0.07 89 162 - 11.1 3.9 w/o

[56]
20 wt%

Pd70Ni30/C 0.95 0.85 - 0.06 76 133 - 1.63 3.8

20 wt%
Pd/C

0.5 M
H2SO4

0.80 0.70 - - 60 120 - - 4 Polyol
[162]

20 wt%
Pt/C 0.925 0.84 - - - - - - 4 Polyol

[152]

20 wt%
Pt-Co/C 0.980 0.85 - - - - - - 4 Polyol

[152]

20 wt%
Pt-Cr/C 0.985 0.85 - - - - - - 4 Polyol

[152]
20 wt%
Ag/C

0.1 M
NaOH 0.95 0.80 - - - 6.3 - 157 3.9 w/o

[178]

20 wt%
Pt/C

0.1 M
HClO4

1.09 0.85 0.45 1.01 67 130 0.45 179 4.0 BAE
Here0.1 M

NaOH 1.08 0.85 0.31 0.77 69 126 0.64 122 4.0
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4. Summary and Perspectives

This review paper focused on the preparation and application of carbon
supported nanoparticles in electrocatalysis, and especially on the oxygen reduction
reaction (ORR) in low temperature fuel cells (FCs). We examined the recent
developments in nanocatalysts preparation science in order to better understand
and correlate their catalytic performances toward the ORR. From this survey,
we found that the catalytic properties can be precisely and effectively tuned by
changing the experimental conditions. Definitively, among the developed methods
for carbon-supported nanoparticles, the colloidal ones are the most used in ORR
electrochemistry. The state-of-the-art Pt/C electrocatalyst shows poor long-term
stability and different co-atoms (Co, Ni, Bi, Ag, Au) have been proposed to improve
its performances. The reaction on Pt-based electrodes starts at ca. 1.1 V vs. RHE,
which represents only 100 mV difference compared to the theoretical value (close
to 1.2 V vs. RHE). More importantly, most of the optimized systems, display sharp
behavior between 0.8–0.9 V vs. RHE in the potential-current ORR polarization
curves, for the range of interest for FCs applications. From the different results,
it can be concluded that the oxygen reduction reaction at the metal nanoparticles
depends strongly on the electrolyte medium as well as the particle size. Fundamental
studies at the laboratory scale reveal that the reaction kinetics decreases in the order
HClO4 > NaOH (or KOH) > H2SO4. For the particles size effect, the optimum
window is 2–3 nm, where the active sites on the corners and edges are more available.
Unfortunately, basic but fundamental data are missing in research papers about the
kinetic parameters to enable better comparison. In this review paper, we were not
able to compare the specific kinetics of the different electrode materials derived from
the various preparation methods due to lack of information. Future studies are urged
to provide clear and full in depth information on their ORR tests.

These recent advances in low temperature FCs electrocatalysts preparation
indicate that the standard and quality of fundamental research in this area needs to
continue unabated. Water-in-oil has been the method of choice for heterogeneous
catalysis. The inability to clean the nanoparticles surface from the organic molecules
used as surfactant affects the catalytic performance of the obtained catalysts.
The recent initiated “Bromide Anion Exchange, BAE” method leads to various
surfactant-free nanoparticles. Undoubtedly, the performance of such materials
in the long term is expected to be of particular importance in fuel cell science.
Even catalysts from colloidal methods (water-in-oil, polyol, Bönnemann, BAE) have
demonstrated excellent ability toward the ORR; they have not been widely tested
in the Membrane-Electrode-Assembly, MEA. Future works in this area should first
focus on the performances of carbon supported metal nanoparticles in MEAs for the
in situ oxygen reduction reaction as well as the FC results. Furthermore, in order to
reduce the electrode cost and thus the FC system, incorporating non-noble metals
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is needed to reduce the amount of precious metals in the electrode materials. The
experimental tools provided herein will be useful for early career researchers in FCs
and could help in finding suitable ORR methodology.
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Design of Pt/Carbon Xerogel Catalysts for
PEM Fuel Cells
Nathalie Job, Stéphanie D. Lambert, Anthony Zubiaur, Chongjiang Cao and
Jean-Paul Pirard

Abstract: The design of efficient catalytic layers of proton exchange membrane
fuel cells (PEMFCs) requires the preparation of highly-loaded and highly-dispersed
Pt/C catalysts. During the last few years, our work focused on the preparation of
Pt/carbon xerogel electrocatalysts, starting from simple impregnation techniques
that were further optimized via the strong electrostatic adsorption (SEA) method
to reach high dispersion and a high metal weight fraction. The SEA method, which
consists of the optimization of the precursor/support electrostatic impregnation
through an adequate choice of the impregnation pH with regard to the support
surface chemistry, leads to very well-dispersed Pt/C samples with a maximum
8 wt.% Pt after drying and reduction under H2. To increase the metal loading, the
impregnation-drying-reduction cycle of the SEA method can be repeated several
times, either with fresh Pt precursor solution or with the solution recycled from the
previous cycle. In each case, a high dispersion (Pt particle size ~3 nm) is obtained.
Finally, the procedure can be simplified by combination of the SEA technique with
dry impregnation, leading to no Pt loss during the procedure.

Reprinted from Catalysts. Cite as: Job, N.; Lambert, S.D.; Zubiaur, A.; Cao, C.;
Pirard, J.-P. Design of Pt/Carbon Xerogel Catalysts for PEM Fuel Cells. Catalysts
2015, 5, 40–57.

1. Introduction

Pt supported on a high surface area carbon support is commonly used in
low-temperature proton exchange membrane fuel cells (PEMFCs) to catalyze the
oxidation of H2 at the anode and the reduction of O2 at the cathode [1]. The former
is fast, thus allowing small Pt loading to be used at the anode. However, due to
the sluggish O2 reduction kinetics, high Pt loading is required at the cathode. In
addition, the thickness of both the cathode and the anode should be as small as
possible to avoid diffusional limitations; this means that electrocatalysts with a high
Pt mass fraction are required. In commercial Pt/carbon black catalysts, the Pt mass
fraction may be increased up to 60 wt.% to cope with these limitations. However,
the electrode structure does not guarantee that each Pt particle is active: indeed,
to be electrochemically active, the Pt particles must be in contact with both the
electrically-conductive carbon support and the membrane, which can be achieved
only by reconstructing an ionomer network (Nafion®) within the porosity of the
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catalytic layer. In addition, mass transport of reactants and products within the
catalytic layers should be easy: (i) the Pt particles must be accessible to the gas
reactant, through the porous structure of the catalytic layer; (ii) protons have to
circulate in the ionomer network and reach the membrane; (iii) electrons must be
collected by the catalyst support and be driven to the current collector. In most cases,
a non-negligible fraction of the Pt particles does not meet all of these requirements,
which results in undesirable Pt waste.

To produce efficient electrocatalysts and, thus, decrease the mass of Pt used,
significant efforts have been directed towards the synthesis. First, the size of the
Pt particles should be appropriate: ~3-nm particles lead to the most active catalyst
per mass unit of Pt [2]. Second, mass transport limitations can be decreased by
using carbon supports with an appropriate pore texture. This is why research turns
towards nanostructured carbons [3]. Finally, the distribution of the electron and
the ion components (Pt/C and Nafion®) depends on the processing, which must be
optimized. This optimization strongly depends on the support chosen and especially
on its pore texture and surface chemistry.

For several years now, our group has been working on the development of
new Pt/C electrocatalysts with high specific activity and a support nanostructure
that allows for optimal mass transport. The supports studied are carbon xerogels,
i.e., texture-controlled synthetic carbon materials prepared by drying and pyrolysis
of resorcinol-formaldehyde aqueous gels [4]. Indeed, these supports proved to
be excellent materials for heterogeneous catalysis in gas phase reactions [5]: since
their pore texture can easily be tuned, from nm- to µm-sized pores, one can design
the catalyst support in order to decrease the mass-transport limitations. The same
idea was then applied to other catalytic systems, i.e., PEMFCs [6–8]. Since the pore
texture and surface chemistry are fully adjustable, one can design the support in
order to: (i) improve Pt dispersion; (ii) improve mass transport in the operating
conditions; and (iii) improve the Pt-Nafion contact, so as to reach 100% Pt particle
utilization, i.e., a configuration in which each Pt particle is electroactive for the oxygen
reduction reaction.

One of the objectives of our studies is to rationalize the synthesis procedure,
so as to keep it as simple and inexpensive as possible. The metal deposition
was first performed by simple wet impregnation, followed by reduction under
hydrogen [9]. However, the excellent metal dispersion (particle size ~2 nm) obtained
at low Pt loading could not be maintained at a high metal weight percentage [6].
The impregnation was thus studied in depth, with attention paid to the metal
precursor-support interactions, to design new procedures allowing for high Pt
dispersion and high Pt weight percentage. The synthesis techniques had to remain
as simple as possible to: (i) make their industrial scale-up possible; and (ii) avoid
metal losses during preparation. The present article consists thus of a review of the
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different procedures investigated during the last few years in our research group. Its
aim is to clearly depict the reasoning leading to optimized procedures and to sum up
the results obtained at each step. The properties of the catalysts, as well as the pros
and cons of each synthesis technique are described and compared. Finally, the goal
of this paper is to open new synthesis routes that will allow for the easy production
of new supported metal catalysts with high loading and high dispersion.

2. Synthesis Techniques

2.1. Carbon Support

In all cases, the support was a carbon xerogel prepared following a well-known
method [4]. In the present work, the carbon xerogel chosen was a material with
a specific surface area of ~600 m2/g and a total pore volume of ~2.1 cm3/g
(micropore volume ~0.23 cm3/g), and the average meso-macropore size was ~70 nm
(Figure 1). These properties were measured by coupling nitrogen adsorption to
mercury porosimetry, following a method fully described elsewhere [4].
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Figure 1. Cumulative pore volume vs. pore size of the carbon xerogel support
(micropores excluded) calculated from Hg porosimetry data.

Briefly, the gel was obtained by polycondensation of resorcinol with
formaldehyde in water. The resorcinol/formaldehyde molar ratio, R/F, was fixed
at 0.5; the resorcinol/sodium carbonate molar ratio, R/C, was chosen to be equal to
1000; and the dilution ratio, D, i.e., the solvent/(resorcinol and formaldehyde) molar
ratio, was set at 5.7. The resorcinol, formaldehyde, sodium carbonate and water
amounts can be found in [4]. The sealed flask was put in an oven at 358 K for gelling
and aging for 72 h, then the obtained gel was dried under vacuum, first at 333 K
under decreasing pressure (stepwise, from atmospheric pressure down to 103 Pa,
8 h), second at 423 K and 103 Pa for 12 h. When the sample was dry, it was pyrolyzed
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at 1073 K under nitrogen flow following a procedure described in another study [4].
After pyrolysis, the xerogel was crushed into a fine powder.

2.2. Wet Impregnation

Pt/carbon xerogel catalysts can be obtained by simple wet impregnation (WI) [9].
One catalyst was prepared by soaking the solid in an H2PtCl6 aqueous solution with
the appropriate concentration, calculated with regard to the target Pt loading; in this
case, one supposes: (i) that all of the metal entering the support porosity remains
trapped after drying; and (ii) that no interaction exists between the support and the
Pt precursor. Therefore, with the total pore volume equal to 2.1 cm3/g, one calculates
that, to obtain a 1-wt.% Pt/C catalyst, the impregnation suspension should contain,
for 1 g of carbon support, 0.64 cm3 of H2PtCl6¨ 6H2O solution (100 g/L) and 4.36 mL
of deionized water [9]. The nominal Pt weight percentage, Ptth, i.e., the Pt mass
fraction calculated from the two above-mentioned assumptions, is equal to 1 wt.%.
The maximum Pt weight percentage, Ptmax, i.e., the value reached should all the Pt
present in the solution be deposited on the carbon support, equals 2.4 wt.% [9]. The
carbon support was simply soaked in the precursor aqueous solution under magnetic
stirring for 1 h, at ambient temperature. After impregnation, the excess of solution
was removed by filtration. The catalyst was dried under ambient air for 24 h, then
under vacuum (103 Pa), at 333 K, for another 12 h. The sample was finally reduced
under hydrogen flow (0.025 mmol/s) for 3 h at 623 K (heating rate: 350 K/h).

The sample prepared by the wet impregnation technique described in the
present section is labelled “WI” (for “wet impregnation”).

2.3. Wet Impregnation Coupled to Liquid Phase Reduction

To reach much higher Pt weight percentages, which is undoubtedly necessary
for PEMFC applications, one option is to use a precursor solution with high Pt
precursor concentration and to reduce the metal directly on the solid by the addition
of a reductant in the liquid phase (e.g., NaBH4) [6]. In this case, all of the Pt present
in the solution is supposed to be reduced on the support.

The nominal Pt weight percentage, Ptth, was chosen equal to 35 wt.% Pt.
The ground carbon xerogel (1 g) was suspended in an H2PtCl6 aqueous solution
(0.6 gPt/L) for 1 h, at ambient temperature, under magnetic stirring. At the beginning
of the impregnation, the pH of the solution was always about 2.2, due to the acidity
of H2PtCl6. After 24 h of magnetic stirring, NaBH4 was added to reduce the Pt
ionic precursor into metallic Pt. A very large excess of NaBH4 (several times the
stoichiometric quantity required to reduce the total amount of Pt salt) was used for
this; indeed, under these conditions, water is reduced into H2, and this side-reaction
competes with the Pt reduction process. The catalyst sample was washed thoroughly
with boiling water. After filtration, the samples was dried in open air at 333 K during
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12 h. Finally, the catalyst was reduced in flowing H2 (0.025 mmol/s) during 3 h at
623 K to ensure the transformation of the last platinum ions into the metallic Pt.

The sample obtained by this technique is labeled “WI-R” (for “wet
impregnation-reduction”).

2.4. Strong Electrostatic Adsorption

The study of the WI technique shows that interactions exist between the support
and the precursor: the amount of Pt deposited on the carbon xerogel is higher than
expected [9]. This is due to the electrostatic attraction between the support and the
precursor. This effect can be exploited to reach a high Pt weight percentage. Indeed,
the electrostatic interactions can be emphasized by choosing an adequate pH of
impregnation. This is the principle of the strong electrostatic adsorption technique,
inspired from the early work of Brunelle et al. [10], who postulated that the adsorption
of noble metal complexes onto common oxide supports was essentially Coulombic in
nature. Rational synthesis techniques were then developed by Regalbuto et al. [11,12],
initially to deposit Pt and Pd nanoparticles on inorganic supports. The technique
is, however, quite versatile: it was adapted to various supports, like silica [13,14],
alumina [15] and carbon [16,17], and can be extended to other metals and to bimetallic
nanoparticles [18,19].

The point of zero charge (PZC) of a support corresponds to the pH value at
which the electric charge density on the support surface is zero (neutral surface). At
a pH lower than its PZC, the support charges positively and adsorbs preferentially
anions (e.g., PtCl62´). On the contrary, at a pH higher than the PZC of the support,
the adsorption of cations (e.g., [Pt(NH3)4]2+) is enhanced. This property can be
exploited by the so-called “strong electrostatic adsorption” (SEA) method [11,20],
which consists of maximizing the electrostatic interactions, so as to adsorb the
maximum amount of Pt at the support surface. The PZC of the support can be
measured by the method of Park and Regalbuto (equilibrium pH at high loading,
EpHL) [11]. Briefly, the porous solid was soaked in water solutions of various initial
pH, and after stabilization, the pH was measured again. The PZC value corresponds
to a plateau in a pHfinal vs. initial pHinitial plot. For all measurements, the surface
loading (SL), i.e., the total carbon surface in solution, was fixed at 104 m2¨L´1.
Figure 2a shows that the PZC of the carbon xerogel, i.e., the pHfinal value of the
plateau, equals 9.3.

Afterwards, the precursor adsorption curve vs. pH was determined. Since the
PZC of the carbon xerogels equals 9.3, the adsorption of PtCl62´ anions is favored for
a pH lower than this value. The adsorption curve was measured by contacting 0.042 g
of carbon xerogel with 25 mL of H2PtCl6 (5.1 ˆ 10´3 mol/L) aqueous solution, the
pH of which was adjusted from 1 to 10 with HCl or NaOH. The mass of carbon was
chosen so as to fix the surface loading, i.e., the total material surface area in solution,
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at 103 m2/L. This variable is indeed a key point in both the PZC measurement and
the SEA technique, but is kept higher in the former case to enhance the buffering
effect of the carbon. Contacted slurries were then placed on a rotary shaker for 1 h,
after which the final pHs of these slurries were measured again. Three to 4 mL of
the contacted slurries were withdrawn and filtered. The remaining concentration
of Pt in the solution was determined by inductively-coupled plasma (ICP) with a
Perkin–Elmer (Waltham, MA, USA) Optima 2000 ICP instrument. Platinum uptakes
from pH 1.5 to 10 were determined from the difference in Pt concentration between
the pre-contacted and post-contacted solutions. The adsorption curve was then
reported as the Pt surface density (µmolPt/m2) vs. the final pH of the solution
(Figure 2b). The adsorption curve shows that the maximum Pt uptake (0.9 µmolPt/m2,
which corresponds to ~8 wt.%) is obtained for a final pH equal to 2.3 (initial pH = 2.5).
Note that the Pt uptake is constant for initial H2PtCl6 concentrations higher than
~4 ˆ 10´3 mmol/L.

The SEA catalyst was then prepared by adjusting the final impregnation pH
to this value. One gram of carbon xerogel was soaked in 0.6 L of H2PtCl6 solution
(4.1 mmol/L), the pH of which was adjusted to 2.5 with HNO3 prior to carbon
addition. Therefore, the surface loading (SL) was again fixed at 103 m2/L. After 1 h
under magnetic stirring at ambient temperature, the slurry was filtrated, and the
recovered solid was dried in air at 333 K for 12 h. The catalyst obtained was then
reduced under flowing H2 (0.025 mmol/s) at 473 K for 1 h.

The sample produced by this technique is labeled “SEA” (for “strong
electrostatic adsorption”).Catalysts 2015, 5 45 

 

 

Figure 2. (a) pH equilibrium (point of zero charge (PZC) measurement) for the carbon 
support at maximum surface loading (SL = 104 m2/L); and (b) final metal precursor uptake 
vs. pH for the adsorption of PtCl62− over carbon xerogel (SL = 103 m2/L,  
[H2PtCl6] = 5.1 × 10−3 mol/L). The results are adapted from [20].  
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impregnation-drying-reduction cycle can be repeated several times, using at each step a fresh precursor 
solution [21]. Therefore, the procedure detailed in Section 2.3 was simply performed several times on 
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with 0.6 L of fresh H2PtCl6 solution (4.1 mmol/L, pH adjusted to 2.5 with HNO3), filtered and dried in 
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the same sample was also reduced at 723 K for 5 h. 

The SEA technique requires the use of large amounts of Pt precursor solution (~0.6 L per gram of 
carbon), and only a small fraction of the Pt is deposited on the support. This obviously induces 
inacceptable metal losses during the synthesis process, and the SEA technique, although quite elegant in 
scientific studies, cannot be applied as presented in industrial production. Alternatively, one can, of 
course, thus imagine re-using the residual solution by re-adjusting its pH and concentration at the 
required values [22]. Indeed, as long as the concentration of the H2PtCl6 solution remains higher than  
~4 mmol/L, the Pt uptake remains constant [20]. Therefore, another catalyst was prepared by multiple 
SEA (M-SEA), but the concentration of the initial impregnation solution was higher, then re-used several 
times. One gram of carbon xerogel powder was mixed with 567 mL of an H2PtCl6 solution at  
8.97 mmol/L (i.e., 1.75 gPt/L) with an initial pH of 2.5. The surface loading (SL) was equal to 103 m2/L. 
the mixture was mechanically stirred for 1 h, then filtered; the filtrate was stored for re-use in the 
following impregnation step. The solid was dried in an oven at 333 K during 12 h and reduced at  
473 K under H2 flow (0.04 mmol/s) during 1 h. The “impregnation-drying-reduction” steps were 
performed two times on the same support. After the second impregnation, the catalyst was reduced under 
H2 (0.04 mmol/s), either at 473 K during 1 h or at 723 K during 5 h. 

The samples obtained by this techniques are labelled “M-SEA”, followed by the temperature of the 
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Figure 2. (a) pH equilibrium (point of zero charge (PZC) measurement) for
the carbon support at maximum surface loading (SL = 104 m2/L); and (b) final
metal precursor uptake vs. pH for the adsorption of PtCl62´ over carbon xerogel
(SL = 103 m2/L, [H2PtCl6] = 5.1 ˆ 10´3 mol/L). The results are adapted from [20].
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2.5. Multiple Strong Electrostatic Adsorption

As mentioned previously, the maximum Pt uptake obtained by maximizing the
precursor-support interaction is ~8 wt.% in the case of the H2PtCl6/carbon xerogel
pair. However, this metal weight fraction is too low for PEMFC applications. To
increase the Pt weight fraction, the impregnation-drying-reduction cycle can be
repeated several times, using at each step a fresh precursor solution [21]. Therefore,
the procedure detailed in Section 2.3 was simply performed several times on the same
sample. After reduction under hydrogen flow, the obtained sample was contacted
again for 1 h with 0.6 L of fresh H2PtCl6 solution (4.1 mmol/L, pH adjusted to
2.5 with HNO3), filtered and dried in air at 333 K for 12 h before reduction under
flowing H2 (0.025 mmol/s) at 473 K for 1 h. A fraction of the same sample was also
reduced at 723 K for 5 h.

The SEA technique requires the use of large amounts of Pt precursor solution
(~0.6 L per gram of carbon), and only a small fraction of the Pt is deposited on
the support. This obviously induces inacceptable metal losses during the synthesis
process, and the SEA technique, although quite elegant in scientific studies, cannot be
applied as presented in industrial production. Alternatively, one can, of course, thus
imagine re-using the residual solution by re-adjusting its pH and concentration at
the required values [22]. Indeed, as long as the concentration of the H2PtCl6 solution
remains higher than ~4 mmol/L, the Pt uptake remains constant [20]. Therefore,
another catalyst was prepared by multiple SEA (M-SEA), but the concentration
of the initial impregnation solution was higher, then re-used several times. One
gram of carbon xerogel powder was mixed with 567 mL of an H2PtCl6 solution at
8.97 mmol/L (i.e., 1.75 gPt/L) with an initial pH of 2.5. The surface loading (SL) was
equal to 103 m2/L. the mixture was mechanically stirred for 1 h, then filtered; the
filtrate was stored for re-use in the following impregnation step. The solid was dried
in an oven at 333 K during 12 h and reduced at 473 K under H2 flow (0.04 mmol/s)
during 1 h. The “impregnation-drying-reduction” steps were performed two times
on the same support. After the second impregnation, the catalyst was reduced under
H2 (0.04 mmol/s), either at 473 K during 1 h or at 723 K during 5 h.

The samples obtained by this techniques are labelled “M-SEA”, followed by the
temperature of the last reduction treatment (samples M-SEA-473 and M-SEA-723).
In the case that the impregnation solution is re-used, an “r” is added at the end of
the sample name (M-SEA-r). In the case of this specific sample, the last reduction
treatment was performed at 723 K (5 h).

2.6. Charge-Enhanced Dry Impregnation

Another option, which is certainly much more efficient, is to combine the
principles of SEA with dry impregnation (i.e., the volume of impregnating solution
is equal to the pore volume of the support) [23]. Therefore, after determining
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the optimal pH conditions for an impregnation slurry, which must be performed
for every support-precursor pair, one can use the exact volume of solution
(corresponding to the pore volume) in which the maximum amount of Pt ion that
can be deposited on the support under those optimal conditions is dissolved.

In a typical synthesis, the mass of metal precursor (H2PtCl6) corresponding to
the maximum metal uptake of the solid support, first determined by the SEA method,
was dissolved in a volume of deionized water corresponding exactly to the amount
necessary to wet the solid. Prior to impregnation, the latter volume was measured by
dropping deionized water (50 µL at a time) on the carbon until it was just wet. Three
mL of H2PtCl6 solution with a concentration of 28.7 mol/L were prepared, and the
initial pH was adjusted to 2.5 with dilute HNO3, according to the optimal initial pH
of the support/complex pair determined by SEA; this precursor solution was slowly
added, 50 µL at a time, to 1 g of carbon xerogel. The sample was then directly dried
in air at 298 K for 48 h and reduced in H2 flow (0.04 mmol/s) at 523 or 723 K for 1 h.

This technique, called the “charge-enhanced dry impregnation” (CEDI) method,
was first developed by Zhu et al. [24], who recently combined the SEA method with
the classical dry impregnation technique to synthesize 2-wt.% Pt catalysts supported
on oxidized active carbon or γ-alumina. The samples obtained by this method are
labelled “CEDI”, followed by the reduction temperature (i.e., CEDI-523 or CEDI-723).

2.7. Characterization

Several physico-chemical techniques were used to characterize the catalysts. The
pore texture of the raw support, as well as that of the final catalysts were measured
by a combination of nitrogen adsorption and mercury porosimetry [4,25]. This is
necessary, because nitrogen adsorption is limited to pores smaller than 50 nm, while
mercury porosimetry gives access to pores larger than 7.5 nm [25]. The particle size
distribution was determined by image analysis of transmission electron microscopy
(TEM) micrographs obtained with a Jeol (Tokyo, Japan) 2010 microscope (200 kV, LaB6

filament) or from scanning transmission electron microscopy (STEM) micrographs
(Jeol, Tokyo, Japan, JEM-2010F). The image analysis method used is fully described
in [21]. The samples were also analyzed by X-ray diffraction (XRD) with a Siemens
(Karlsruhe, Germany) D5000 goniometer using the Cu-Kα line (Ni filter). The average
crystallite size, dXRD, was estimated using Scherrer’s equation [26]. Note that in the
case of well-dispersed Pt particles, the good agreement between dXRD and the particle
diameter calculated from TEM images allows us to conclude that the particles are
monocrystalline and that dXRD also corresponds to the diameter of the Pt particles.
The metal dispersion and surface availability were determined by CO chemisorption
using a Fisons (Ipswich, UK) Sorptomatic 1990 equipped with a turbomolecular
vacuum pump that allows the reaching of a high vacuum of 10´3 Pa. The entire
procedure, from the sample preparation to the adsorption measurement, is fully

127



described elsewhere [6]. This technique allowed calculating the accessible Pt surface,
SCO-chem, and the corresponding Pt particle diameter, dCO, assuming that all of the
particles are spheres of equal size.

Samples were also investigated by electrochemical techniques, except the WI
catalyst, due to its too low Pt content (see Section 3). The reaction used was the
electrooxidation of carbon monoxide adsorbed (COads) at the surface of the Pt
particles. This reaction, called “CO stripping”, allows for the determination of
the electrochemically-active Pt surface, SCO-strip, which can be compared to the Pt
surface detected by CO chemisorption. COads stripping was performed in liquid
electrolyte (sulfuric acid 1 M, Suprapur-Merck, Overijse, Belgium), at 298 K, using an
Autolab-PGSTAT20 potentiostat (Metrohm, Antwerp, Belgium) with a three-electrode
cell and a saturated calomel electrode (SCE) as the reference (+0.245 V vs. normal
hydrogen electrode, NHE). However, all of the potentials are expressed on the
NHE scale hereafter. The procedures, from sample preparation to measurements,
are completely described in [21]. Globally, a thin layer of the catalyst was fixed
using Nafion® on a rotating disk electrode (EDT 101 Tacussel from Materials Mates,
Sarcenas, France). In the case of COads stripping measurements, the surface of the
Pt nanoparticles was saturated with CO (N47, Alphagaz, Paris, France) by bubbling
for 6 min in the solution. Then, the non-adsorbed CO was purged from the cell
by Ar bubbling for 39 min. During these two steps, the electrode potential was
held at +0.095 V vs. NHE. Voltammetric cycles were recorded between +0.045 and
+1.245 V vs. NHE at 0.02 V/s. The active area of platinum, SCO-strip, was calculated
assuming that the electrooxidation of a full monolayer of adsorbed CO requires
420 ˆ 10´6 C/cm2

Pt [27].

3. Results and Discussion

For all samples, the pore texture analysis was performed and compared to that of
the raw support. We do not report detailed results here, but globally, the only effect of
metal deposition on the pore texture of the carbon xerogel is a decrease of the specific
surface area, SBET, certainly due to a partial blocking of the micropores by nm-sized
Pt particles. Depending on the loading, the loss of specific surface area, reported per
mass of carbon, ranges from 100 to 200 m2/g [20,21]. The meso-macropores remain
unchanged, both in terms of pore size and pore volume, compared to the pristine
carbon xerogel support.

Table 1 regroups the characterization results issued from physico-chemical
techniques. The table displays the theoretical and the measured Pt weight percentage
of the catalysts, i.e., Ptth and PtICP, respectively. From the TEM images, the average
particle size, dTEM, and its standard deviation, σ, were calculated. The surface
weighted average diameter, ds, and the volume weighted average diameter, dv, were
also calculated for comparison with Pt particle diameters obtained from surface or
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volume measurements, respectively. Indeed, since XRD is sensitive to the volume of
the particles, the diameter estimated from Scherrer’s equation, dXRD, corresponds to
a volume weighted average diameter, dv =

ř

nid4
i {nid3

i [26]; since CO chemisorption
and CO stripping are surface phenomena, the diameters calculated by these methods
should be compared to a surface weighted average diameter ds =

ř

nid3
i {nid2

i . In
both cases, ni is the number of particles of diameter di as observed on TEM or STEM
micrographs. Table 1 also shows the particle diameter calculated from XRD patterns
using Scherrer’s equation, dXRD, and parameters issued from CO chemisorption:
ns,m is the amount of CO needed to form a chemisorbed monolayer on surface Pt
atoms (mmol/gPt), DPt is the Pt dispersion, i.e., the proportion of metal located at
the surface of the Pt particles, dCO is the particle diameter leading to a metal surface
equivalent to that detected by chemisorption and SCO-chem is the total surface of the
Pt particles. The last three parameters are calculated from ns,m (mmol/gPt ) using the
following equations [26]:

DPt “ ns,mMPtXPt-COˆ10-3 (1)

dCO “
6 pvm{amq

DPt
(2)

SCO´chem “ 6
VPt

dCOmPt
“ 6

1
dCOρPt

(3)

where MPt is the atomic weight of Pt (195.09 g/mol), XPt-CO represents the
chemisorption mean stoichiometry, i.e., the average number of Pt atoms on which
one CO molecule is adsorbed, vm is the mean volume occupied by a metal atom in
the bulk of a metal particle (for Pt: vm = 0.0151 nm3), am is the mean surface area
occupied by a surface metal atom (for Pt: am = 0.0807 nm2) and ρPt (21.09 g/cm3) is
the density of Pt. Note that XPt-CO was chosen equal to 1.61 for samples containing
small Pt particles (<5 nm) and equal to 1.00 for samples containing large particles
(>5 nm), according to the conclusions of Rodríguez-Reinoso et al. [28] about the effect
of the Pt particle size on the CO adsorption stoichiometry. The values of XPt-CO for
each sample are mentioned in Table 1 (see the notes below the table). Finally, the
electroactive Pt surface detected by CO stripping, SCO-strip, is also mentioned. All of
these data are discussed below.

TEM images of several catalysts prepared using the above-mentioned methods
are presented in Figure 3. In each case, the support is a raw carbon xerogel (PZC ~9),
with a pore size of around 70 nm, and the Pt precursor is H2PtCl6, but it is worth
noticing that very similar results were found with carbon xerogels oxidized in
HNO3 as the support and [Pt(NH3)4](NO3)2 as the precursor [20,23]; in that case,
since the PZC of the oxidized carbon xerogel was equal to 2.4, impregnation was
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performed under basic conditions (initial pH = 12.5, i.e., optimized conditions for
the [Pt(NH3)4](NO3)2/oxidized carbon xerogel pair).

The simple wet impregnation (WI) leads to the obtaining of very well-dispersed
catalysts (Figure 3a). In addition, the amount of Pt deposited is higher than expected
(Table 1): in the case of sample WI, the target value, Ptth, was 1.0 wt.%, while the
measured Pt weight fraction was 1.9 wt.% (to be compared with the maximum
possible amount of Pt calculated from the total amount of Pt in the impregnation
solution, i.e., 2.4 wt.%). This can be explained by the existence of electrostatic
interactions between the support and the chloroplatinic ion (PtCl62´). Indeed, the
PZC of a raw carbon xerogel is around 9.0, which means that it charges positively
at pH lower than this value. In the case of a carbon xerogel soaked in an H2PtCl6
solution, the pH is acidic, the support charges positively and electrostatic interactions
cause the precursor to adsorb on the carbon surface. This property was further used
to develop the SEA method. TEM and XRD data are in good agreement, since dXRD

compares well to dv (1.8 and 2.0 nm, respectively). CO chemisorption is in good
agreement with TEM, too: dCO and ds are identical (1.9 nm). The Pt specific surface
area obtained from CO chemisorption being very high (153 m2/gPt). This type of
catalyst shows thus very nice properties, but the Pt loading is obviously far too low
for PEMFC catalytic layers.Catalysts 2015, 5 50 
 

 

Figure 3. TEM and STEM images of Pt/C catalysts: (a) WI (1.9 wt.%); (b) WI-R (31.0 wt.%), 
(b') magnified inset of WI-R; (c) SEA (7.5 wt.%), (d) M-SEA-723 (double SEA, 15.0 wt.%); 
(e) M-SEA-r (double SEA with recycling, 14.7 wt.%); and (f) CEDI-473 (10 wt.%),  
STEM image. 

When trying to deposit 35 wt.% in one step via the WI-R method, i.e., by direct reduction of the 
precursor in the aqueous phase by NaBH4, one obtains a mix of large and small Pt particles (Figure 3b): 
the precursor is partly adsorbed, which leads to small particles (~2 nm), but a large fraction of PtCl62− 
anions remains in excess. These are directly reduced in the liquid phase, in the pore texture or outside 
the carbon particles, which leads to the deposition of large Pt particles (~10–30 nm). The Pt particle 
distribution is clearly bimodal: this is why two values of dTEM (4.1 and 17.7 nm) are mentioned in  
Table 1. dXRD (22 nm) corresponds to the average size of the large particles. The amount of CO 
chemisorbed is much lower than in the case of WI, which translates into an equivalent particle diameter, 
dCO, of 6.9 nm and a lower Pt specific surface area (41 m2/gPt). dCO represents an average between the 
two populations, and the accessible Pt surface decreases due to the presence of large Pt particles. The 
WI-R technique is efficient to deposit high amounts of Pt in one step, but the Pt particles are badly 
dispersed, which leads to an inacceptable loss of active surface area. Note, however, that this technique 
can be improved. Very recently, Alegre et al. [29] obtained well-dispersed Pt particles (around 4 nm in 
diameter) supported on a mesoporous carbon xerogel by impregnation with H2PtCl6 followed by 
reduction with either NaBH4 or formic acid. The loading was 20 wt.%, and the TEM pictures do not 
show any large particles or aggregates. The main differences between their technique and the WI-R 
method presented here are: (i) the target loading (20 wt.% instead of 35 wt.%); and (ii) the pH adjustment 
at a value of 5 with NaOH before NaBH4 addition. Additional investigations could lead to optimal 
Pt/carbon xerogel catalysts in one or two impregnation steps. 

 

Figure 3. TEM and STEM images of Pt/C catalysts: (a) WI (1.9 wt.%); (b) WI-R
(31.0 wt.%), (b') magnified inset of WI-R; (c) SEA (7.5 wt.%), (d) M-SEA-723 (double
SEA, 15.0 wt.%); (e) M-SEA-r (double SEA with recycling, 14.7 wt.%); and (f)
CEDI-473 (10 wt.%), STEM image.
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When trying to deposit 35 wt.% in one step via the WI-R method, i.e., by direct
reduction of the precursor in the aqueous phase by NaBH4, one obtains a mix of
large and small Pt particles (Figure 3b): the precursor is partly adsorbed, which leads
to small particles (~2 nm), but a large fraction of PtCl62´ anions remains in excess.
These are directly reduced in the liquid phase, in the pore texture or outside the
carbon particles, which leads to the deposition of large Pt particles (~10–30 nm). The
Pt particle distribution is clearly bimodal: this is why two values of dTEM (4.1 and
17.7 nm) are mentioned in Table 1. dXRD (22 nm) corresponds to the average size of
the large particles. The amount of CO chemisorbed is much lower than in the case
of WI, which translates into an equivalent particle diameter, dCO, of 6.9 nm and a
lower Pt specific surface area (41 m2/gPt). dCO represents an average between the
two populations, and the accessible Pt surface decreases due to the presence of large
Pt particles. The WI-R technique is efficient to deposit high amounts of Pt in one step,
but the Pt particles are badly dispersed, which leads to an inacceptable loss of active
surface area. Note, however, that this technique can be improved. Very recently,
Alegre et al. [29] obtained well-dispersed Pt particles (around 4 nm in diameter)
supported on a mesoporous carbon xerogel by impregnation with H2PtCl6 followed
by reduction with either NaBH4 or formic acid. The loading was 20 wt.%, and the
TEM pictures do not show any large particles or aggregates. The main differences
between their technique and the WI-R method presented here are: (i) the target
loading (20 wt.% instead of 35 wt.%); and (ii) the pH adjustment at a value of 5
with NaOH before NaBH4 addition. Additional investigations could lead to optimal
Pt/carbon xerogel catalysts in one or two impregnation steps.

In the SEA technique, the pH is adjusted, so as to maximize the electrostatic
interaction and, thus, to adsorb the maximum quantity of Pt precursor at the surface
of the support; as a result, the Pt weight percentage increases with regard to the WI
technique, but remains limited to max. 8–10 wt.%. Contrary to the WI-R method,
the dispersion after drying and reduction remains excellent (Figure 3c). Since the
amount of Pt deposited by the SEA method is the maximum quantity that can be
adsorbed at the carbon surface, it is clear that trying to obtain 35.0 wt.% in one single
impregnation step (WI-R technique) cannot lead to one single Pt particle population.
Comparison between the two approaches (WI-R and SEA) clearly confirms that,
in WI-R, two phenomena occur during the impregnation-reduction in the liquid
phase: (i) adsorption of PtCl62´ on the carbon support, leading after reduction to
very small Pt particles (~2 nm); and (ii) direct reduction in the liquid phase, leading
to large Pt particles (~10–30 nm). One may notice, however, some discrepancies in
terms of the Pt surface detected by CO chemisorption and CO stripping. Indeed,
SCO-chem is lower for the SEA sample than in the case of WI (92 and 153 m2/gPt,
respectively). The value obtained by COads stripping for the SEA sample is even
lower (34 m2/gPt). From Equation (3), one finds that a sample containing Pt particles
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2.0 nm in diameter should display a Pt surface area close to 140 m2/gPt. The low
value obtained for the SEA sample, which was reduced at 473 K, was attributed to Cl
poisoning of the Pt surface [30]. Indeed, XPS measurements demonstrated that, for
too low reduction temperatures, the Pt surface was still partly covered with Cl issued
from the decomposition of the Pt precursor (PtCl62´), which leads to a decrease
of the Pt surface detected, both by CO chemisorption and COads stripping. CO,
which strongly adsorbs onto Pt atoms [31], slowly displaces Cl. This explains why
measurements obtained from COads stripping (34 m2/gPt) and CO chemisorption
(92 m2/gPt) are not in agreement. In CO chemisorption, the device waits for a
pseudo-equilibrium to be reached, the next point being taken when the pressure
seems stable; on the contrary, COads stripping is always performed according to the
same time schedule, without taking into account possible very slow reactions. As a
result, the Cl displacement by CO is more complete in the case of CO chemisorption
than in the case of COads stripping, leading to different values. In any case, this
shows that the reduction temperature should be higher than 473 K to clean the Pt
surface: 723 K (5 h) leads to almost Cl-free Pt nanoparticles [30]. It also shows that
CO chemisorption overestimates the real accessible Pt surface due to the Cl removal.
Clearly, for PEMFC applications, the true Pt electroactive surface would be that
left free by the Cl species and not the surface calculated from CO chemisorption,
after Cl displacement by CO. This is why our further studies rely on CO stripping
measurements and not on CO chemisorption to determine the Pt electroactive surface
area: M-SEA-r and CEDI samples were not investigated by CO chemisorption.

In order to increase the Pt content of the catalysts, the impregnation-
drying-reduction cycle of the SEA method can be performed several times. Figure 3d
and Table 1 show that samples M-SEA-473 and M-SEA-723 display very small Pt
particles (dTEM = 2.0 and 1.9 nm, respectively). No Pt large particles or agglomerates
are visible, which is confirmed by the good agreement between TEM and XRD.
Increasing the reduction temperature has thus no effect on the particle size. However,
these two samples show significant differences when comparing the Pt specific
surface area. SCO-chem is higher in the case of M-SEA-723 (122 m2/gPt vs. 89 m2/gPt

in the case of M-SEA-473). The difference is even more pronounced for SCO-strip

(127 m2/gPt vs. 37 m2/gPt, respectively). Good agreement between dCO and ds is
found only for sample M-SEA-723 (2.3 and 2.5 nm, respectively). This result shows
again that, at 473 K, the Pt surface is not fully accessible. Again, one can show
through XPS characterization that this phenomenon is due to the partial blocking of
the Pt surface by Cl [30]; high reduction temperatures only can efficiently clean the
Pt surface.

The recycling of the solution (re-use in further impregnation step) does not alter
at all the Pt dispersion (Figure 3e). Results obtained for sample M-SEA-r are identical
to those of sample M-SEA-723, except for the Pt surface measured by COads stripping
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which is slightly lower for the former sample (M-SEA-r: 93 m2/gPt; M-SEA-723:
127 m2/gPt). This could again be due to an incomplete Pt cleaning, even after 5 h
at 723 K.

Finally, the CEDI technique fully preserves the optimal metal dispersion
(Figure 3f, Table 1) and allows avoiding any Pt losses during the synthesis. Results
show again the importance of the reduction temperature on the final electroactive
surface area, since the latter increases from 77 to 95 m2/gPt when increasing the
temperature from 523 (1 h) to 723 K (1 h). It is worth noting that, in principle, the CEDI
technique can be developed in multi-steps. For example, double-CEDI impregnation
of oxidized carbon xerogels with [Pt(NH3)4](NO3)2 as the precursor was already
performed [23]: the effect was to double the Pt weight percentage without affecting
the size, surface or electrochemical properties of the Pt nanoparticles. One CEDI
step with the [Pt(NH3)4](NO3)2/oxidized carbon xerogel pair leads to ~5 wt.% Pt/C
catalysts; so 10 wt.% samples were obtained by double impregnation. Though the
number of impregnation-drying-reduction cycles will obviously be higher in that
case, the advantage is the absence of Cl, leading to quite clean Pt nanoparticles.

The shape of the COads stripping voltammograms are also in good agreement
with the above conclusions. Indeed, COads stripping voltammetry provides us
with information about the electroactive surface area (SCO-strip) and with information
about the Pt particle size distribution [32–34] and the presence of poisons at its surface.
Figure 4 shows the curves obtained for samples WI-R, M-SEA-473, M-SEA-723
and M-SEA-r. The surface of the electrooxidation peak(s) is obviously directly
proportional to the Pt electroactive area.
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Figure 4. COads stripping voltammogram in H2SO4 (1 M) at 298 K; sweep rate of
0.020 V/s. (4) WI-R; (#) M-SEA-473; (˝) M-SEA-723; (3) M-SEA-r.
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First, one can note that WI-R displays three COads oxidation peaks centered at
about +0.73, +0.81 and +0.92 V vs. NHE. The electrooxidation of a COads monolayer
is a structure-sensitive reaction and provides a wealth of information on the particle
size distribution and the presence/absence of particle agglomeration [32–34]. In
particular, the position of the COads stripping peak strongly depends on the average
particle size and is shifted toward positive potential with decreasing of the Pt particle
size. Taking into account a sweep rate dependence of 0.080 V dec´1 [34], one can
consider that the highest oxidation peak (at ca. 0.92 V vs. NHE) corresponds to COads
electrooxidation at small nanoparticles (d < 1.9 nm) and the lowest oxidation peak at
ca. 0.81 V vs. NHE to the COads electrooxidation at large particles (d > 3.3 nm) [32].
Finally, the peak located at +0.73 V vs. NHE highlights the presence of Pt particle
aggregates [33,34]. These observations remarkably parallel the TEM analysis of
sample WI-R.

Second, all of the other samples (M-SEA-473, M-SEA-723 and M-SEA-r) display
one single peak corresponding to small Pt particles (~2 nm). In some case, a pre-peak
at ca. 0.81 V vs. NHE appears [22], but its intensity always remains low for
samples prepared using the SEA method (multiple or not). The position of the
peak, however, shifts towards lower potentials when the reduction temperature
increases. This reflects the presence of Cl species at the surface of the Pt particles,
for instance in the case of sample M-SEA. Indeed, COads electrooxidation proceeds
via a Langmuir–Hinshelwood mechanism on Pt, which includes water dissociation
into oxygen-containing species and recombination of the former species with CO,
yielding CO2 [32,34–36]. The shift towards higher potential values of the peak
corresponding to small particles suggests that water and chloride species compete at
the Pt catalytic sites.

The COads stripping curves obtained by the CEDI method follow exactly the
same tendencies: (i) in general, one single peak corresponding to small particles
(~2 nm) is visible; (ii) sometimes, a second peak, small in intensity, corresponding to
larger Pt particles (>3 nm) appears; (iii) the position of the main electrooxidation peak
(small Pt particles) shifts towards lower potentials when the reduction temperature
increases. In all cases, the latter effect is not due to any modification in the Pt particle
size, but is in our case attributed to the removal of Cl species from the Pt surface as
the reduction temperature and duration increase.

Finally, it is worth noticing that samples prepared either by SEA (multiple or
not, with fresh or recycled impregnation solution) and CEDI display no difference
in terms of electrocatalytic activity towards the oxygen reduction reaction (ORR).
The electrocatalytic activity was measured in a three-electrode cell filled with liquid
electrolyte (H2SO4 aqueous solution), using a rotating disk electrode to eliminate
the effect of external diffusion. Since all of the electrocatalytic results obtained in
the same conditions were identical and because the present paper is clearly focused
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on catalyst preparation, the complete data are not fully reproduced here. However,
details can be found in [21–23].

4. Conclusions

The synthesis of Pt/C catalysts was rationalized in order to evolve towards
catalysts with high metal dispersion and a high Pt weight fraction. The wet
impregnation of a carbon xerogel with an H2PtCl6 solution, followed by drying
and reduction under H2 flow, leads to small Pt particles (~2 nm) well distributed on
the support. However, when trying to deposit directly 35 wt.% Pt, by combining
impregnation with reduction in the liquid phase, two populations of Pt particles
(centered at ~4 and 20 nm) are obtained, which strongly decrease the reactive Pt
surface. The impregnation technique can be optimized by the strong electrostatic
adsorption method, which consists of maximizing the electrostatic interactions
between the Pt precursor and the carbon support via an adequate choice of the
impregnation pH. In this case, the Pt weight fraction obtained is the maximum
possible value without affecting the excellent Pt dispersion obtained by impregnation.
With the PtCl62´-carbon xerogel pair, one impregnation-drying-reduction cycle leads
to the obtaining of 8 wt.% Pt/C catalysts with a narrow particle size distribution
centered at ca. 2 nm; this Pt weight percentage is too low for PEMFC applications.
This cycle can however be repeated several times in order to increase the metal
loading; up to now, it was possible to reach 25 wt.% without decreasing the Pt
dispersion [21,22]. In order to lower the Pt losses during the impregnation, the Pt
precursor solution can be recycled from one cycle to another without any problem.

Finally, the dry impregnation and SEA techniques can be combined to develop
a new method, called the “charge-enhanced dry impregnation” (CEDI); the latter
is efficient and avoids any metal losses, since only the amount of Pt precursor that
the support is able to fix by electrostatic interactions is present in the impregnation
solution. Again, the Pt dispersion is excellent (particles ca. 2 nm in size). One must,
however, notice that the use of a chlorinated Pt compound as the precursor leads to
Cl-covered Pt particles if the reduction temperature is not high enough. Our work
now turns towards the use of non-chlorinated Pt complexes to avoid this problem.

To conclude, the work summarized in the present paper shows how the
synthesis of a supported metal catalyst can be rationalized in order to fulfil the
various criteria from both the economic and performance point of view. The studied
case is very specific (Pt nanoparticles supported on carbon), but since the synthesis
methods developed are based on very general principles, the same reasoning can
be applied to many systems, especially when a relatively high loading of expensive
metal is required.
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Advances in Ceramic Supports for Polymer
Electrolyte Fuel Cells
Oran Lori and Lior Elbaz

Abstract: Durability of catalyst supports is a technical barrier for both stationary
and transportation applications of polymer-electrolyte-membrane fuel cells. New
classes of non-carbon-based materials were developed in order to overcome the
current limitations of the state-of-the-art carbon supports. Some of these materials
are designed and tested to exceed the US DOE lifetime goals of 5000 or 40,000 hrs for
transportation and stationary applications, respectively. In addition to their increased
durability, the interactions between some new support materials and metal catalysts
such as Pt result in increased catalyst activity. In this review, we will cover the latest
studies conducted with ceramic supports based on carbides, oxides, nitrides, borides,
and some composite materials.

Reprinted from Catalysts. Cite as: Lori, O.; Elbaz, L. Advances in Ceramic Supports
for Polymer Electrolyte Fuel Cells. Catalysts 2015, 5, 1445–1464.

1. Introduction

The need for advanced alternative energy technologies for transportation,
backup-, and main-power applications is undisputable. Of the three available
technologies, batteries, solar cells, and fuel cells (FCs), the latter is considered to be
the most promising option for such applications due to its low footprint, high energy
density, and low maintenance costs. In addition, fuel cells do not require a complex
logistical effort and can be easily deployed in any terrain and weather (e.g., fuel
cells as backup power for cellular antennas in remote locations). Hence, there is a
growing use of fuel cells across industries (e.g., server farms, forklifts, buses, cellular
antennas, and cars).

One of the significant hurdles in the mass deployment and commercialization of
this technology is the lifetime of the fuel cell, which is mostly limited by the stability
and durability of the catalyst support. Further understanding and improvement of
this technology is expected to increase fuel cells' lifetime and reliability, and lower
their cost.

Carbon is the most common and preferred catalyst support material for polymer
electrolyte membrane fuel cells (PEMFCs) and alkaline fuel cells (AFCs). It possesses
most of the primary required features: it is abundant, and it has a high surface
area and good electrical conductivity. However, the use of carbon is problematic
due to its low resistance to corrosion. The electrode integrity and durability is
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currently a technical barrier [1] in PEMFCs and AFCs, especially for applications that
demand high power. This is mainly due to the loss of the fuel cell performance as a
consequence of the use of carbon supports. More specifically, the degradation and
corrosion of carbon-based electrodes lead to losses in the overall activity of FCs, and
this is usually attributed to catalyst dissolution and agglomeration, as illustrated in
Figure 1. The complete oxidation of carbon by water, which leads to its corrosion, is
a four-electron process with the production of four protons, as follows:

Cpsq ` 2H2OÑCO2 ` 4H+ ` 4e- (1)

E0 “ 0.207 vs. NHE
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Figure 1. Relationship of carbon corrosion and activity loss in fuel cells (a) and
illustration of catalyst detachment from corroded carbon (b) [2].

This is the potential of most power devices including batteries, solar cells, and
fuel cells. When the pH increases, such as in AFCs, the proton activity is lowered.
Consequently, the equilibrium shifts to the right in the above reaction and the rate of
the carbon corrosion increases. The standard potential for complete oxidation was
previously calculated by Pourbaix [3] as follows:

E0 pVq “ 0.207 ´ 0.0591ˆpH ` 0.0148 log PCO2 (2)

The conditions in PEMFCs and AFCs are oxidizing, especially at the cathode [4–6].
As discussed above, these conditions are detrimental to the carbon electrodes and
can significantly shorten the lifetime of the fuel cell [7,8].

Gruver et al. [7] showed that as the carbon support corrodes and turns into
CO and CO2, the catalyst will either wash out or migrate and aggregate. Figure 2
presents images of a pre- and post-mortem sample from a fuel cell, where the loss of
carbon (bright material) was observed and the platinum nanoparticles (dark material)
have agglomerated (a significant increased in size was observed when compared
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to the particles in the Figure 2a). The result of both wash-out or aggregation of
the catalyst is manifested in a decrease in the catalyst ECSA (Electro-Chemical
Surface Area) in the case of precious group metal catalysts (PGMCs), or leaching
and dissolution in the case of non-precious group metal catalysts (NPGMCs). One
way to improve the stability of electrodes from corrosion in FCs is by the use of
graphitic, nano-structured carbon materials, such as graphene nano-sheets, carbon
nanotubes, and carbon nanofibers as catalyst supports [9–12]. The high degree of
graphitized structures of these compounds provides a higher resistance to chemical
and electrochemical oxidation. Another way is to use ceramic materials as catalyst
supports [8].
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Figure 2. PEM fuel cell catalyst layer with support before (a) and after (b) use.
Darker dots are Pt nanoparticles and the brighter material is carbon. [7] (Adapted
from this reference with the permission of the Journal of Electrochemical Society).

Many ceramic supports were developed in order to increase the durability
of fuel cells. Supports such as titanium-oxides [13,14], molybdenum-nitride [15],
tungsten-oxide [16], and others were synthesized. Most of these possess some of the
qualities needed for a good FC electrode (mechanical properties, thermal stability,
chemical corrosion resistance), but lack others, such as good electrical conductivity
and high surface area.

In this manuscript, we will review the recent advances in ceramic supports
for polymer electrolyte fuel cells with a focus on five categories: carbides, oxides,
nitrides, borides, and composites.

2. Carbides

The interest in metal carbides in recent years mostly rose from their possible use
as catalytic materials. Some similarities between the catalytic behavior of tungsten
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carbide and platinum was found by Levy and Bourdart [17]. Others have shown
studies on the catalytic activity of molybdenum and tungsten carbides as catalysts
for methane reforming [18]. The attractiveness of these ceramic materials as catalysts
was attributed to their high activity [19–21], lower price when compared to precious
metals [22], unique structure [23], and stability [24] in acidic and alkaline mediums.
In order for these materials to be good supports for electro-catalysts, they need to
have high surface area (equivalent to 300 m2/g of carbon; with ceramic supports,
this surface area may be much lower due to the atomic weight of the metals and
comparisons should be made carefully) and good electrical conductivity (circa
4 S/cm) [25]. These requirements narrowed the possible candidates to a handful.

One of the most studied carbide supports is tungsten carbide. Ticianelli et al. [26]
recently reported a composite of tungsten carbide/carbon (WC/C) synthesized using
a chemical vapor deposition (CVD), and used it as a support for Pt in PEMFC anodes.
They showed enhanced corrosion resistance when compared with Vulcan XC-72.
Roman-Leshkov et al. [23] developed a removable ceramic coating method for the
synthesis of WC. Using this technique, they were able to produce high-surface-area,
electronically conductive WC, which also exhibited superior stability on the anode
when compared to Vulcan XC-72. The electronic interaction between Pt and WC and
its effect on the catalysis of the oxygen reduction reaction were also studied. It was
concluded that the Pt is strongly attached to the support and that the interaction
between the two promoted a favorable catalytic activity for the oxygen reduction
reaction (ORR) [27]. Although very interesting, in these studies and others that
showed similar trends [28], the WC was not exposed to harsh oxidizing conditions
and was only studied at the anode where carbon corrosion is less of an issue [29].
Hence, so far, there is not enough information regarding the WC stability under
oxidizing conditions.

A different carbide support was recently proposed by Elbaz et al. [30], who
used the polymer-assisted deposition (PAD) method developed for the synthesis of
nanoparticles by Jia et al. [31], for the synthesis of molybdenum carbide. They were
able to form a Mo2C/C composite which, similarly to the WC, showed enhanced
catalytic activity to ORR. Although their composite material was not completely
resistant to corrosion, it did perform better than XC-72. They tied the loss of
Pt electrochemical surface area (ECSA) on the Mo2C/C during their accelerated
stress tests (ASTs) to the presence of excess amorphous carbon. In a more recent
publication [32], the authors synthesized amorphous carbon-free Pt/Mo2C, which
was found to be very resistant to corrosion, as shown in Figure 3 (less than 10%
loss of ECSA vs. 90% with Pt/XC-72). In this case the Pt was added to the support
during its synthesis and formed non-crystalline small atomic clusters (3–6 atoms of
Pt), which the authors called Nano Rafts. This new system exhibited remarkable
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ORR activity with a 50% higher mass activity and a higher onset potential, attributed
to the electronic interaction between the Pt and the support.

Titanium carbide has previously been tested as a support material of Ir
for hydrogen evolution [33] and as a support of Pt for the electro-oxidation of
methanol [34], both in acidic media, and showed promising results electrochemically
and even in alleviating CO poisoning.

Recently, some studies were published also showing better durability of Pt
supported on TiC than Pt/CB under ADTs (0.6–1.2V in 0.1M HClO4 solution) [35] and
Pt3Pd/TiC@TiO2 support [36], which even exceeds that of Pt/TiC (under 0.4–1.2V),
attributed to the corrosion resistance of the supports.
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Figure 3. Normalized activity of Pt/C (black), Pt/Mo2C/C (blue), and Pt/Mo2C
(red) as a function of the number of accelerated test cycles and carbon content.

3. Oxides

Metal Oxides are inorganic compounds that possess several compatible
properties for FC applications. Exhibiting properties such as corrosion resistance and
mechanical and thermal stability, they show a lot of potential for FCs, although some
of them are only semi-conductors or even poor electrical conductors and require
certain modifications in order to make sufficient FC materials.

3.1. Titanium Oxide

Titanium oxides received extensive interest in recent years and can be roughly
divided into two groups: semi- or non-conducting systems (such as TiO2) and
systems that show high electrical conductivity (TinO2n´1 group).
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TinO2n´1 (where n is between 4 and 10) is widely used in photo-catalysis [37–39],
water splitting [40], and gas sensing [41] and has attracted much attention in the FC
field as a possible catalyst support due to its relatively good conductivity. Recently,
TinO2n´1 has shown promising effects on the durability and catalytic activity of
fuel cell catalysts because of its good mechanical resistance and stability in acidic
and oxidative environments. Among this series of distinct oxides, Ti4O7 (titanium
sub-oxide, TSO) exhibits the highest electrical conductivity, exceeding 1000 S/cm at
25 ˝C [41].

In a recent study, Wu et al. [42] prepared TinO2n´1 (magneli-phase TSO) and
XC-72 to support Pt electro-catalysts for comparison purposes, both loaded with
20%wt Pt. Even though the TSO-based catalyst showed low conductivity (~10-3 S/cm
vs. 4.78 S/cm for XC-72 at 12 MPa), lower ECSA value (13 m2/g vs. 30 m2/g), and
minimally lower onset potential (∆E = 0.02 V) compared to Pt/XC-72, their ADT
procedure (cycling between ´0.5 and 2.0V vs. Saturated Calomel Electrode, SCE)
was found to cause no change in the onset potential and minimal loss in ECSA (about
12% vs. twice as much for Pt/XC-72) after 8000 cycles. TEM images proved that
after 8000 cycles the Pt/XC-72 went through considerable Pt aggregation whereas
the morphology of Pt/TSO remained intact. Ioroi et al. also studied Pt/TSO-based
electrodes for PEMFC [43–45]. Although promising, one of the most significant issues
that still remains unsolved with the sub-stoichiometric titanium oxide is its relatively
low surface area which translates to lower current densities.

In this study, the synthesis, structure, and morphology of Pt/TSO using a
laser-irradiated TSO support were investigated, as well as the electrochemical activity
for ORR and its stability under high potential conditions for Pt/TSO. They found
that the Pt/TSO catalyst had shown a specific activity for the oxygen reduction
reaction (ORR) very similar to those of commercial Pt/C catalysts, and much better
oxidation resistance under high potential conditions as well. It was also shown that
the conductivity of TSO-supported catalysts increased with an increase in Pt loading:
20 wt. % Pt on TSO showed conductivity of ca. 8 S/cm at 50 MPa, which was about
one-quarter of that of 40 wt. % Pt on XC-72 (30 S/cm) under the same conditions.
On the other hand, the calculated ECSA of Pt/TSO was rather small compared to
that of Pt/XC-72 (values of 22 and 16 m2/g for 10 wt. % and 20 wt. % vs. 44 m2/g
for Pt/XC-72), indicating a larger diameter of deposited Pt particles, which was
consistent with the results of SEM and TEM observations: the Pt particle diameter
was between 10 and 20 nm, which is much larger than the common Pt/C catalysts.
The performance of the Pt/Ti4O7 cathode was evidently low compared to that of
20% Pt/XC72, mainly due to the smaller ECSA.

Non-stoichiometric mixtures of several titanium oxide phases, mainly Ti4O7

and Ti5O9, known as magneli-phase and by the registered name Ebonex, were
investigated as well [46]. Ebonex is considered to be electrochemically stable with a
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tendency for ORR in acid and base solutions, possesses a high electrical conductivity
of 1000 S/cm, and could be a good alternative catalyst support material [41,47]. The
Pt/Ebonex catalytic activity was reported to be as much as 10 times higher than that of
pure Pt. This was attributed to the increase of active Pt surface area by the reduction
of Pt particles sized even below 1 nm and the increase of the number of active sites
for oxygen reduction through simple geometric effects, as well as change of oxygen
adsorption conditions through the change of the electronic structure of the catalyst
caused by the electronic interactions between platinum and the Ebonex. These
interactions were rationalized by the Ebonex’s hypo-d-electron character which has
the ability to interact with Pt that has the hyper-d-electron character. This synergetic
effect was explained through the increase of the 5d vacancy of Pt and the decrease of
the Pt-Pt bond distances as a result of the interaction with Ebonex, which inhibits the
chemisorption of OH´. It also shifts the PtOH formation to more positive potentials,
facilitating the interaction of oxygen with Pt, hence increasing the activity of the
catalyst for the oxygen reduction reaction.

Another titanium oxide which was studied as a possible catalyst support for
FCs is TiO2. It is a wide band gap semiconductor and its conductivity is insufficient
for a support material without modification such as doping [48–51]. In spite of that,
it was widely studied as a ceramic support promoting ORR in PEMFC. In a recent
study [13], the synthesis of high surface area TiO2 and TiO composite materials in
a single step was presented. The high surface area conductive titanium oxide was
successfully synthesized using the polymer-assisted deposition technique [31]. The
TiO2 and TiO nano-crystalline materials were formed with an average crystallite size
on the order of 4 and 8 nm and a BET surface area of 286 and 200 m2/g for TiO and
TiO2, respectively. Pt was added to the supports, and the calculated ECSA value also
showed promise with approximately 60 m2/g for both phases. This system exhibited
better ORR activity when compared to Pt/XC-72. This was again, as in the case of the
sub-stoichiometric titanium oxides, attributed to the electronic interaction between
the support and the Pt catalyst.

Shanmugam et al. [14] synthesized mesoporous TiO2 using the sono-chemical
method. This synthesis resulted in a spherical globular morphology of the TiO2

particles, and a size range of 100–200 nm with pores of 4–7 nm which were around
the size of the Pt particles deposited. This Pt/TiO2 was compared to Pt/C. The
onset potential of the oxide formation on the Pt/TiO2 was shifted toward a higher
potential, indicating a better resistance nature of Pt/TiO2 for Pt-OH formation. The
Pt/TiO2 also exhibited superior results towards ORR electro-catalysis than Pt/C.
This enhanced activity is attributed to several factors, such as high dispersion, better
stabilization, and the modification of the electronic structure of Pt nanoparticles
by interaction with the oxide interface, which results in a change in the adsorption
characteristics of Pt nanoparticles on TiO2. They also studied the stability examined
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by chronoamperometry at an applied voltage of 0.55V and found that the current
decay rate was higher for Pt/C than for Pt/TiO2 when only 13% decay was detected
after 1 h (80% for conventional Pt/C). Several more studies were conducted with
titanium oxide supports and showed very similar results [52–55].

3.2. Tungsten Oxide

Tungsten oxide is an n-type semiconductor with a band gap of a few eVs.
Tungsten, which has several oxidation states (usually 2 to 6), appears in many forms,
making it compatible with various applications. The conductivity of tungsten oxide
comes from its non-stoichiometric composition, causing a donor level formed by
oxygen-vacancy defects in the lattice.

Tungsten oxides (predominantly WO3) were studied for quite a long time
as a catalyst for DMFC and showed high catalytic activity toward methanol
oxidation reaction, possibly due to the formation of tungsten bronzes favoring the
dehydrogenation of methanol, and a synergistic effect leading to CO tolerance [56–58].
Park et al. [59] showed excellent performance for the use of porous tungsten oxide
in thin film fuel cells and also showed good stability in sulfuric acid. In another
study [60], Pt was added to commercially available tungsten oxide. The performance
of this system was compared to Pt/XC-72 and showed very high stability in
acidic conditions.

Nano-sized WO3 was also studied as a possible support material for monolayer
Pt ORR electro-catalysts in acid electrolyte [61]. Pt/WO3 exhibited good activity for
ORR and superior electron transfer capability compared to conventional Pt/C and Pt.
However, a thorough examination of the WO3 support revealed that it can easily turn
to water-soluble hydrogen tungsten bronze (HxWO3), facilitating the detachment of
Pt nanoparticles as also been discussed elsewhere [62].

Recently, Lu et al. [63] studied the electrochemistry, structure, and interaction
of nano-sheets of Pd on tungsten oxide (Pd/W18O49), comparing it to three other
systems: Pt/C, Pd/C (both obtained commercially), and support-less Pd NPs. The
Pd/W18O49 was found to have considerably higher electrical conductivity than the
support devoid of Pd and had a higher surface area (40 vs. 30 m2/g). Electrochemical
studies of ORR catalysis and accelerated life tests in alkaline media showed fairly
remarkable results of the tungsten-based catalyst support, outperforming the other
examined systems in almost every aspect (ECSA = 48 m2/g, E1/2 = 0.875V vs.
Reversible Hydrogen Electrode) and mass activity at 0.9 V–0.216 A/mgpt) and with
very high stability of the W18O49 nano-sheets system.

Theoretical and experimental studies also revealed that oxygen has a higher
affinity for Pd than Pt when on W18O49 [64], making O2 adsorb better on Pd, enabling
the O=O bonds to break more easily. This causes a decrease in the electron density of
Pd, which weakens the Pd-O bond and could significantly increase the dissociation
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of O2. In fact, introducing W18O49, which substantially alters the electronic structure
of Pd, and the excess of oxygen vacancies present that might increase the electronic
conductivity of W18O49 translated into enhanced electro-catalytic activity.

3.3. Tin Oxide

Tin oxide (SnO2) is a post-transition metal dioxide with a structure resembling
rutile TiO2, and is often referred to as an oxygen-deficient n-type semiconductor that
has been studied in the fields of chemical sensors [65] and electronic devices [66].

Pt and Pd supported on SnO2 were investigated as catalyst systems for various
chemical reactions, such as the low temperature oxidation of CO and methane [67],
the reduction of NOxs [68], and the electro-oxidation of alcoholic fuels [69,70]. Indeed,
pure tin dioxide is a wide band gap semiconductor with electrical conductivity
varying from 0.1 to 10´6 S/cm. Therefore, if considered as a catalyst support for
fuel cells, it must have higher conductivity and, hence, certain modifications such as
doping [71–78] or distinct synthesis routes are required.

Various forms of tin oxide were reported, such as SnO2 nanowires [79] (TONW)
synthesized by the thermal evaporation method and meso-porous tin oxide (MPTO)
by the neutral-surfactant template-assisted method [80], having high BET surface
area (205 m2/g for the MPTO, very close to the value of XC-72, ca. 230 m2/g) and low
particle size (20 nm diameter for TONWs and 6 nm for MPTO). After the addition
of Pt to both supports, their ORR activity was compared with that of Pt on carbon
and was found to be superior. In terms of durability and stability, the MPTO support
outperformed commercial Pt/C during potential cycling, including two steps: the
first at a constant potential of 1.2V vs. RHE and the second between 0.6 and 1.2 V vs.
RHE in 0.5M sulfuric acid.

Other metal oxides that are still under investigation are Pt/MnO2 [81] and
Pd/Mn2O3 [82], which have shown better catalytic activity than Pt/C even with very
low noble metal content, and SiO2 [83] and NbO2 [84], which were reported as ORR
catalysts in fuel cells and have shown promising and interesting results.

4. Nitrides

Like metal oxides, metal nitrides have also attracted much attention owing to
their excellent thermal and chemical stabilities. Recently, some of them were found
to have catalytic properties similar to those of noble metals like Pd and Pt [85,86].
However, in terms of fuel cell applications, there have not been many publications
dealing with metal nitrides as catalyst supports thus far.

Among these nitrides, TiN is the most studied since it seems to show the most
promise. It has a high electrical conductivity of ~4000 S/m [87,88] and is considered
to have good corrosion resistance, usually attributed to the oxy-nitride layer, caused
by the formation on the surface oxide due to atmospheric oxidation and/or acidic

148



media, which prevents further oxygen diffusion to the bulk [89], in turn making it
relatively chemically inert.

However, corrosion still might occur under fuel cell conditions (relatively high
temperature, acidic environment, oxygen presence, high water content, and high
potential applications), turning TiN into oxide form which leads to catalyst particle
growth and significantly lowers the conductivity [89]. Some have tried to use this to
their advantage by making oxy-nitride supports [90], employing the high corrosion
stability of TiO2 and the electrical conductivity of TiN. These supports with Pt
deposited on them have shown to have an ECSA more than three times higher than
the conventional Pt/C catalyst and the activity under prolonged operations (denoted
by ECSA) exceeded 50% even after 1000 cycles (close to 0% for Pt/C under the same
conditions). Another study on TiON [91] substantiated this increased stability and
even showed an improved result of only 20% loss in ECSA after 1000 cycles (80%
loss for Pt/C).

More complex morphologies of TiN were also synthesized in order to increase
the surface area and lower the TiN content and overall weight. For example,
Pan et al. [92] synthesized hollow TiN nanotubes (NTs) by two-step synthesis. The
TiN hollow NTs showed better electrochemical activity and stabilty than comercial
Pt/C after an accelerated life test.

Since nitrides do not show any significant catalytic activity, a catalyst is usually
added to the support. The interaction of the catalyst, in most cases -Pt, with
the support is of extreme interest, since the support may change the Pt-Pt bond
length and the electron density on the Pt, hence changing its catalytic activity.
Zhang et al. [93] investigated the thermodynamics of a single-atom Pt catalyst
bonding to the TiN surface and found that Pt atoms prefer to be embedded on
the surface of the TiN, at the N vacancy sites, instead of forming Pt clusters.
Therefore, under typical PEM fuel cell operation, TiN surface vacancies come into
play, anchoring the Pt atom for better catalytic function as illustrated in Figure 4.
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on an N-vacancy site [93] (adapted from this reference with the permission of
RSC publishing).
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Although showing good stability when compared to carbon supports, TiNs
show degradation under fuel cell operating conditions. This was studied by
Avasarala et al. [89,94], who investigated the degradation mechanism of the Pt/TiN
catalyst under fuel cell conditions using their accelerated stress test (AST) protocols.
They found that out of the three main degradation mechanisms taken into account
under these conditions, (1) support oxidation, (2) catalyst agglomeration, and
(3) catalyst dissolution, Pt catalyst agglomeration and coalescence were the most
dominant. Furthermore, during potential cycling, the oxy-nitride formed on the
outer layer tends to dissolve to Ti (IV) hydroxide ions, leading to further passivation
of the surface.

Among the other less-studied nitride supports, vanadium nitride (VN) has
also been shown to have properties that might be suitable for fuel cells, such as
reasonable surface area (55.4 m2/g) and good electrical conductivity (72 S/cm).
It was studied as a support for Pd for formic acid fuel cells and has shown to
be efficiently prepared by solid-solid phase separation. Higher catalytic activity
promoting formic acid oxidation, dehydrogenation path, and diminished Pd catalyst
CO poisoning was also demonstrated [95]. In addition, pure VN showed some
catalytic activity for ORR [86], and was also suggested as a promising electrode
material for electrochemical super-capacitors [96].

Another interesting nitride support is Mo2N, which was reported both as
a catalyst substitute for Pt on carbon [85,97] and as a catalyst support [15]. In
these studies, Mo2N supports were prepared by polymer-assisted deposition, and
subsequently, Pt nanoparticles were grown on it. The ECSA of the Pt was 20.8 m2/g,
lower than commercial Pt/C. Although not much work has been conducted with it,
it has shown some initial potential and requires further research and improvement.

Other non-metal ceramics such as carbo-nitrides were also studied as combined
catalyst-support arrays with noble and non-noble metals [98,99]. Xu et al. [100]
reported the synthesis of graphitic C3N4 support by the direct heating of
dicyandiamide for the deposition of Ag nanoparticles as the catalyst, forming
Ag/g-C3N4. They came to the conclusion that this system showed fair ORR catalytic
activity that remained almost unchanged after 200 cycles in oxygen atmosphere.
C3N4 was also examined for durability and showed inconclusive results.

5. Composites/Hybrides

Some ceramic supports possess good resistance to electrochemical oxidation
and stability in acidic environments, which leads to the consideration of them as
alternative catalyst supports. However, the low electrical conductivity of some of
them may prevent their extensive application in fuel cells.
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5.1. Carbon-Based Ceramic Composites

Carbon has high electrical conductivity and surface area, therefore it has been
introduced into ceramic supports physically and/or synthetically in order to improve
supports that are lacking some or both of these critical properties. However, adding
carbon may also lower the composite materials’ corrosion resistance and enhance
the supports’ degradation in fuel cells. Therefore, ceramics that contain carbon
might possess both carbon-like and ceramic-like properties, improving the support’s
compatibility for fuel cells but causing it to be more susceptible to corrosion.

Pd catalyst on iron-molybdenum-carbon (Fe2MoC) composite was synthesized
and then compared electrochemically to conventional Pt/C, Pd/C, and Pd/MoC
catalysts [101]. The ORR onset potential of the Pd on the composite support was
much higher when compared to Pd/C and Pd/MoC, but it did not demonstrate
much improvement when compared to Pt/C. However, the calculated mass activity
did show detectable improvement for the Pd/Fe2MoC compared to the Pt/C (146.4
and 124.3 mA/mgcat, respectively), in spite of a smaller catalyst loading ratio (37.6%
and 47.6%, respectively). In addition, it showed better stability when compared
to Pt/C.

Some other carbon-based composite ceramics that were synthesized and
examined for ORR performance are Co3W3C [102] and Co6Mo6C2 [103]. Loaded
with catalysts (Pd for the tungsten-based hybrid and Pt for the molybdenum-based),
they were electrochemically characterized, and while the tungsten-based support
exhibited only slightly better electrochemical characteristics such as onset potential,
mass activity, and stability under prolonged exposure to an oxidizing environment
compared with conventional Pt/C, the molybdenum-based support demonstrated
substantial improvement in mass activity (more than twice the value of Pt/C) and
showed a detectable improved stability with no detectable degradation during the
AST (1000 CV cycles between 0.6–1.2V and 0.05–1.1V vs. RHE, respectively, in
O2-saturated 0.1 M HClO4 solution).

Tungsten carbide and carbon nanotubes (CNTs) have exhibited ORR catalytic
activity with a noble metal catalyst separately [9,10,12,104]. Considering that a hybrid
tungsten carbideCNTs was synthesized and tested by Liang et al. [105], even with
half the Pt loading, the Pt/WC-CNT electro-catalyst had a higher onset potential
compared to the Pt/CNT, indicating a synergistic effect between Pt, WC, and the
CNTs. Different composites of WC/C were reported. Garcia & Ticianelli [106] mixed
tungsten hexacarbonyl with Vulcan XC-72. They tested different samples of the
support for ORR activity. The supports were distinguished by the WC to C ratio
in the presence of W2C. They found that all samples had better catalytic activity
(denoted by onset potentials and specific activity) compared to Pt/C due to an
increase of the Pt 5d-band occupancy, which led to a weaker Pt-OH interaction,
resulting in a lower Pt-oxide coverage and thus increasing the kinetics of ORR.
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The electrochemical properties and application of tungstate salts such as SrWO4

and CaWO4 mixed with graphite were investigated as well [107,108]. Both catalysts
exhibited better electrochemical activity for oxygen reduction reaction in H2SO4

solution compared to Pt/graphite, denoted by the onset potential for SrWO4 (0.65V
vs. 0.55V for Pt/graphite) and the half-wave potential for CaWO4 (0.51 V vs.0.45 V
for Pt/graphite).

5.2. Other Ceramic Composites

Other composites that do not contain carbon and are usually based on more
than one metal were reported as well. An interesting cesium- and tungsten-based
composite that has formerly been reported as an electrolyte for fuel cells [109] due
to their good proton conductivity and stability was examined in PEMFC [110]. The
Cs2.5H0.5PW12O40 was shown to have a relatively high surface area (136 m2/g)
diminished to 35–50 m2/g after the addition of Pt, suggesting Pt saturation of the low
dimension pores. The composite also showed better catalytic activity and stability
in acidic media than conventional Pt/XC-72, which was attributed to the pores
preventing Pt agglomeration.

The widely use dindium tin oxide (ITO) is an n-type semiconductor with a wide
band gap, which is produced by replacing In3+ by Sn4+ in the cubic structure of
indium oxide. This replacement produces free electrons enhancing its conductivity
and, thus, influences the optical and electrical properties of the ITO film [111]. ITO is
a commercially available material often used as a transparent conducting oxide (TCO)
for smart windows. Chhina et al. [112] fabricated a Pt/ITO catalyst as a potential
non-carbon catalyst support and investigated the thermal and electrochemical
stability. The Pt on ITO had an average crystallite size of 13 nm. Electrochemical
measurements indicated that this catalyst was much more stable than those of both
commercially available Hispec 4000 and Pt/XC-72R. In a different study [113], Pt
clusters were deposited on the ITO NPs through the galvanic displacement of Cu
by Pt. The specific ECSA of Pt/ITO (83.1 m2/g) was found to be three times that of
Pt/C (27.3 m2/g) and, after 1000 cycles, changes in the Pt ECSA and electrocatalytic
activity proved the stability of the Pt/ITO catalyst was far superior to that of Pt/C
when Pt/ITO showed no recordable loss of Pt ECSA. However, for Pt/C, only „65%
of the original ECSA remained after potential cycling. However, TEM pictures taken
after the stability tests detected several small holes on the ITO surface due to the
corrosion and dissolution of the surface Sn.

6. Titanium Diboride

TiB2 is a relatively novel titanium-based support that has been considered
as a base material for a range of different applications. It exhibits good electrical
(~105 S/cm) and high thermal conductivity (~65 W/mK), excellent thermal stability
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and corrosion resistance in acidic medium [114], and might be considered a promising
candidate for PEMFC catalyst ceramic support.

TiB2 was first reported in the context of fuel cells by Yin et al. [115,116], who
deposited Pt particles on TiB2 support by colloidal route. Before then, it was reported
that smaller particle size leads to the agglomeration of particles and the loss of
ECSA due to a higher specific surface energy. Using their synthesis route, the highly
dispersed Pt nanoparticles on the ceramic support were dispersed and stabilized by
Nafion in order to prevent agglomeration and particle growth. Indeed, the ceramic
boride showed similar catalytic activity (similar onset potential) in addition to better
durability when compared to conventional Pt/C after 6000 cycles of CVs in 0.5 M
sulfuric acid. About 60% loss of ECSA was exhibited while about 80% loss was
detected for Pt/C after 5000 cycles.

The electrochemical stability of the Pt/TiB2 catalyst was approximately four
times higher than that of the commercial Pt/C catalyst after cycling between 0 and
1.2 V in 0.5 M H2SO4, due to the support characteristics and also possibly from the
Nafion stabilization effects, which enhanced both the metal support interaction and
the steric hindrance effect of the surface Pt nanoparticles. In several other studies,
Pt/TiB2 was obtained not only by colloidal route [115–117] but also by carbo-thermal
reduction [118,119].

Huang et al. [117] investigated the effect of several kinds of pretreatments
applied to the support (mostly exposing it to acidic or alkaline media), in an attempt
to reduce the influence of TiB2 particle size on the electrochemical performance
of the system. The study showed that among the investigated pretreatments, the
hydrogen peroxide pretreatment demonstrated the best results, producing a catalyst
with about twice the ECSA compared to other pretreated samples, possibly due
to the presence of TiO2. However, Roth et al. [118] deposited Pt particles on TiB2

prepared via the carbo-thermal reduction method [116], and showed that although
TiB2 exhibited good stability under normal cycling, its performance, denoted by
power density, reduced much more rapidly (it showed less than half the power
density after only 100 cycles) under actual fuel cell conditions (oxygen presence
and an elevated temperature of 80 ˝C), claimed to be due to oxide formation which
probably led to reduced conductivity.

7. Conclusions

Corrosion is a serious issue in fuel cell technology as it can dramatically reduce
the electrode life time, and thus the overall performance of the cell. In order to try to
increase the lifetime of the electrodes, various materials have been proposed, the most
promising of which are the ceramic materials. In most cases, carbides, oxides, nitrides,
borides, and composite materials have shown better stability and durability when
compared to the commercially available standard, Pt/XC-72. Unfortunately, due to

153



the lack of standard protocols for the assessment of these parameters, it is impossible
to compare between supports and tell which is best under certain conditions.

One very interesting outcome, which most of the researchers in the field seem
to agree upon, is that the move from carbon to other supports opens up a wide array
of possibilities when it comes to catalyst activity. In fact, in many of the studies
surveyed in this review, enhancement of the catalytic properties was shown and was
attributed to the favorable interaction of the catalysts, in most cases -Pt, with the
support. When choosing ceramic supports for fuel cells, one must consider their
conductivity, which in some cases is very low when compared to carbon supports,
and the surface area of the support. The latter is an issue that most studies do not
tackle yet, but may impact the overall performance significantly.
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Recent Development of Pd-Based
Electrocatalysts for Proton Exchange
Membrane Fuel Cells
Hui Meng, Dongrong Zeng and Fangyan Xie

Abstract: This review selectively summarizes the latest developments in the
Pd-based cataysts for low temperature proton exchange membrane fuel cells,
especially in the application of formic acid oxidation, alcohol oxidation and oxygen
reduction reaction. The advantages and shortcomings of the Pd-based catalysts for
electrocatalysis are analyzed. The influence of the structure and morphology of the
Pd materials on the performance of the Pd-based catalysts were described. Finally,
the perspectives of future trends on Pd-based catalysts for different applications
were considered.

Reprinted from Catalysts. Cite as: Meng, H.; Zeng, D.; Xie, F. Recent Development of
Pd-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells. Catalysts 2015,
5, 1221–1274.

1. Introduction

Fuel cells convert chemical energy directly into electrical current without
combustion. The first article illustrating such a device was published at the end of the
1830s [1], and the interest in this field has been growing since the 1950s [2]. Among
various types of the low-temperature fuel cells, proton exchange membrane fuel
cells (PEMFCs) are attractive power sources for portable, automotive and stationary
applications due to their high energy density, high efficiency and low operating
temperature. Comparing with H2 as fuel, the liquid fuels such as formic acid and
ethanol have special advantage in storage and transport, which can find better
applications in portable devices and make use of current gasoline system. The direct
formic acid fuel cells (DFAFCs) have an open circuit potential of 1.190 V and energy
density of 2086 Wh L´1. The formic acid is non-toxic and has small crossover flux.
The shortcoming of DFAFCs is their relatively low energy density. Compared with
formic acid, ethanol has much higher energy density of 8030 Wh kg´1. However,
ethanol suffers from the sluggish reaction kinetics.

The electrochemical oxidation of fuels requires the use of a catalyst to achieve
the high current densities for practical applications. Platinum (Pt) is the mostly
used catalyst in the PEMFCs. However, the vast commercialization of fuel cell is
hindered by the high cost and low reserve of Pt. The kinetics of the oxygen reduction
reaction (ORR), which is the cathode reaction of a fuel cell is slow on Pt. Moreover,
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Pt is easy to be poisoned without recovery by the intermediates of the reaction of
the impurities from the fuel or oxidant. Particularly in some types of PEMFCs, Pt
is not the best choice. For example, in direct formic acid fuel cells (DFAFCs), the
oxidation of formic acid is quite low due to the poisoning of the Pt by the CO-like
intermediates during the reaction. In direct ethanol fuel cells (DEFCs), the poor
utilization and the poisoning of Pt catalyst particularly in alkaline solution also
limite its applications. The electrocatalytic activities of the ethanol oxidation reaction
could be significantly improved in alkaline media on Pd-based catalyst which have
comparable or even better electrocatalytic activity than that of Pt-based catalyst. The
ORR is one of the key reactions in fuel cells with the higher overpotential compared
with the anode reactions. Pt group metal based catalysts are currently used for
PEMFCs to reduce the large ORR overpotential. Unfortunately, even on the active Pt
surface, the overpotential is over 200 mV at open circuit voltage (OCV). Pd is another
active metal for the ORR. Binary Pd-base metal systems have been identified as
promising PEMFC cathode catalyst with the enhanced activity for ORR and stability
compared with Pd alone [3].

Pd has an electronic configuration identical to Pt and forms a not very strong
bond to most absorbates. The key differences are that the d bands of Pd are closer to
the cores than that of Pt. There are less d electron densities available for bonding. This
leads to weaker interactions with d bonds, which allows unique chemistry to occur.
Pd has higher oxidation potential than Pt and the Pd oxides are more stable. Weak
inter-atomic bonds between Pd atoms compared with Pt lead to easier formation of
the subsurface species. Also, Pd has a very similar lattice constant to that of Pt. The
electrocatalysis of formic acid on a Pd single crystal surface could be significantly
enhanced as the d-band centre of Pd shifted down with an appropriate value due
to the modest lattice compressive strain. All these electronic properties make Pd a
promising alternative to Pt or even better than Pt in many situations.

From the recent 5-year price change of the Pd, its price has changed from one
forth to two fifth of the Pt [4]. However, Pd still has some advantages considering
the reservation and price. As one of the most studied materials, Pd has attracted
considerable interest for its applications in many fields. Similar to Pt, most of
the Pd is used in the automotive industry for catalytic converters to reduce the
toxicity of emissions from a combustion engine. Pd also has vast applications in
electronic, dental and jewelry. Only a small percentage of Pd is used in chemistry.
In electrochemistry, Pd nanoparticles are very important catalyst, especially for the
oxidation of formic acid, ehanol oxidation in alkaline solution, hydrogen oxidation
and the ORR. Pd-based catalyst for alcohol oxidation have been reviewed in 2009 [5].
Another review paper in 2009 reviewed the application of Pd in fuel cell anode and
cathode [6]. However, the Pd-based fuel cells are still very hot in recent years. We
have surveyed the 270 published papers on the Pd-based catalysts in recent four
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years from 2009 to 2014 and the distribution of the papers was as shown in Figure 1.
Seven review papers were published after 2009. Two review papers published in 2010
partly concerned the application of Pd in fuel cells [7,8]. Morozan et al., rediewed the
application of Pd in fuel cells [9]. Recently Shao reviewed Pd as catalyst for hydrogen
oxidation and oxygen reduction reaction [3]. Zhao et al., reviewed the catalysts
for direct methanol fuel cells including the application of Pd [10]. Adams and
Chen’s review paper focused on the application of Pd in hydrogen storage [11]. The
nano-structure of Pd for catalysis and hydrogen storage was also reviewed recently by
Zhou in Chem. Soc. Rev. [12]. Analyzing recent review papers on Pd-based catalysts, it
was found that there was no comprehensive review paper concerning the application
of Pd in fuel cells. This review analyzed the latest four years’ publications on Pd
catalyst for proton exchange membrane fuel cells and provides a comprehensive
review on the recent development of the Pd-based catalysts for formic acid oxidation,
alcohol oxidation and oxygen reduction reaction.

Catalysts 2015, 5 1223 
 
the 270 published papers on the Pd-based catalysts in recent four years from 2009 to 2014 and  
the distribution of the papers was as shown in Figure 1. Seven review papers were published after 2009. 
Two review papers published in 2010 partly concerned the application of Pd in fuel cells [7,8].  
Morozan et al., rediewed the application of Pd in fuel cells [9]. Recently Shao reviewed Pd as catalyst 
for hydrogen oxidation and oxygen reduction reaction [3]. Zhao et al., reviewed the catalysts for direct 
methanol fuel cells including the application of Pd [10]. Adams and Chen’s review paper focused on  
the application of Pd in hydrogen storage [11]. The nano-structure of Pd for catalysis and hydrogen 
storage was also reviewed recently by Zhou in Chem. Soc. Rev. [12]. Analyzing recent review papers on 
Pd-based catalysts, it was found that there was no comprehensive review paper concerning  
the application of Pd in fuel cells. This review analyzed the latest four years’ publications on Pd catalyst 
for proton exchange membrane fuel cells and provides a comprehensive review on the recent 
development of the Pd-based catalysts for formic acid oxidation, alcohol oxidation and oxygen 
reduction reaction. 

0

10

20

30

40

 

 

 

Pe
rc

en
ta

ge
 / 

%

formic acid oxidation
alcohol oxidation

oxygen reduction 
reaction

others

 

Figure 1. The distribution of Pd in recent four years in fuel cell technologies. 

Based on our survey, in all the published papers on Pd-based catalysts, 35.12% is for the the formic 
acid oxidation, 30.99% for alcohol oxidation and 19.42% for ORR as shown in Figure 1. Therefore, this 
review article mainly focuses on the recent development of the Pd-based catalysts, particularly, on these 
three most important reactions. This survey result also shows the possible areas where Pd can compete 
with or replace Pt in PEMFCs. Besides above aspects, the control of the morphology and crystallography 
of Pd and the corresponding effect on catalysis are also reviewed. 

2. Pd Nanostructures 

The development of nanotechnology makes it possible to control the morphology and crystallography 
of Pd nanosturctures, which has been proven to affect the catalytic activity. Crystalline surfaces with  
a high density of low-coordinated atoms are generally superior in catalytic activity and stability to flat 
planes that are composed of closely packed surface atoms. This makes nanoparticle possible to show 
high activity and stability at very small Pd loadings if the nanoparticles are controllably synthesized as 
an open-structured surfaces with high density of low-coordinated atoms. The availability of  

 

Figure 1. The distribution of Pd in recent four years in fuel cell technologies.

Based on our survey, in all the published papers on Pd-based catalysts, 35.12%
is for the the formic acid oxidation, 30.99% for alcohol oxidation and 19.42% for ORR
as shown in Figure 1. Therefore, this review article mainly focuses on the recent
development of the Pd-based catalysts, particularly, on these three most important
reactions. This survey result also shows the possible areas where Pd can compete
with or replace Pt in PEMFCs. Besides above aspects, the control of the morphology
and crystallography of Pd and the corresponding effect on catalysis are also reviewed.

2. Pd Nanostructures

The development of nanotechnology makes it possible to control the
morphology and crystallography of Pd nanosturctures, which has been proven
to affect the catalytic activity. Crystalline surfaces with a high density of
low-coordinated atoms are generally superior in catalytic activity and stability
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to flat planes that are composed of closely packed surface atoms. This makes
nanoparticle possible to show high activity and stability at very small Pd loadings if
the nanoparticles are controllably synthesized as an open-structured surfaces with
high density of low-coordinated atoms. The availability of the open-structured
surfaces comes from the morphology of the material, so the shape control of the
nanocrystals has become one of the crucial challenges.

2.1. The 0-D Pd Strucutres

Zero-dimensional (0-D) Pd structures include nano-particles, quantum dots,
atomic cluster and nanoclusters and so on. The nano-particles are the most often
used structure for fuel cell applications, Pd can be prepared into nano-particles which
are usually called “Pd black” or Pd nano-particles loaded on support materials. Both
Pd black and the supported Pd nano-particles are widely used as fuel cell catalysts.
Other than the common ball-like particles, the particles with multifacets attracted
much attention since their unique crystallographic and morphologic structures,
which greatly improved the activity and stability when used as fuel cell catalysts.
With a square-wave potential method Tian et al. [13] electrodeposited tetrahexahedral
Pd nanocrystals with {730} high-index facets. With similar technique, Zhou et al. [14]
prepared the Pd NCs not limited to the tetrahexahedral crystals. Shen et al. [15] used
a sonoelectrochemical method to prepare Pd spherical nanoparticles, multitwinned
particles, and spherical spongelike particles. Ding et al. [16] prepared single
crystalline Pd nanocubes with the polyol method. Porous Pd nanoflowers were
prepared by a liquid phase approach [17]. The above Pd particles all show improved
mass activity or specific activity in fuel cell reactions, for example the tetrahexahedral
Pd shows 4-6 times enhancement of specific activity and 1.5–3 times enhancement
of mass activity in ethanol oxidation compared with commercial Pd particles on
carbon [13].

The morphology of the crystal is determined by the internal features of a crystal,
but the relationship between the crystalline structure and crystalline shape is still an
unresolved problem. It still needs a correlation between crystallographic structure,
morphological evolution and resultant shape of the nanocrystals. Zhou et al. [14]
proposed the correlation between crystalline planes and nanocrystalline shape. There
is a triangle relationship between the unit stereographic of fcc single-crystal and the
surface atomic arrangement. There is also an intrinsic triangle that coordinates the
crystalline surface index and the shape of the metal, which is shown in Figure 2.

2.2. The 1-D Pd Structures

Compared with nanoparticess, one-dimensional (1-D) materials such as the
nanowires, nanothorns and nanotubes offer unique benefits including (1) anisotropic
morphology; (2) thin metal catalyst layer which leads to higher mass transport of the
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reactants; (3) high aspect ratio which is immune to surface energy driven coalescence
via crystal migration; (4) less vulnerable to dissolution, Ostwald ripening and
aggregation during the electrocatalytic process due to their micrometer-sized length;
(5) high electrochemical active areas. Therefore, the 1-D structures are also intensively
studied. Meng et al. [18,19] synthesized Pd single-crystal nanothorns along the <220>
direction with a square wave electrochemical reduction method as shown in Figure 3.
The nanothorn was made by a succession of epitaxic dodecahedrons of decreasing
sizes aligned in the direction of the (111) plane and the growth of the thorn occurs
along the (220) plane. Tian et al. [20] obtained five fold twinned Pd nanorods with
high-index facets of {hkk} or {hk0}. Patra et al. [21] prepared Pd dendrite branches
growing along the <110> directions. According to the mechanism proposed by
different authors, the Pd thorns obtained from different methods might share similar
mechanism in the crystal growth [21]. It has been proposed that the breaking of
symmetry leads to the formation of one-dimensional nanostructure, which facilitates
the formation of one specific facet as the bounding side facet in the nanostructure.
The formation of a tapered structure implies that the specific facet has a high surface
step density to accommodate the change in diameter.
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Figure 2. Unit stereographic triangle of polyhedral nanocrystals bounded by different 
crystal planes. Reproduced with permission from reference [14]. 

 

Figure 2. Unit stereographic triangle of polyhedral nanocrystals bounded by
different crystal planes. Reproduced with permission from reference [14].

Besides the preparation of nanothorns without templates or sufactants, other
1-D structures such as the nanorods, nanotube and nanowires can be prepared
based on the templates such as anodic aluminum oxide (AAO) [22]. Du et al. [23]
prepared porous Pd-based alloy nanowires with AAO. Lee et al. [24] prepared Pd
nanotubes with ZnO nanowires as sacrificial templates. The nanotube structures
have large surface areas and it is expected to show enhanced catalytic efficiencies.
Wen et al. [25] used Te NWs as sacrificial template to prepare ultrathin Pd nanowires.
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The Pd nanowire or nanotube forms nanoporous metallic structure with high surface
area, unique chemical properties and interconnected structures that do not require
any support to avoid the corrosion and detachment problems common for carbon
supported catalysts.
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Compared with nanoparticess, one-dimensional (1-D) materials such as the nanowires, nanothorns 
and nanotubes offer unique benefits including (1) anisotropic morphology; (2) thin metal catalyst layer 
which leads to higher mass transport of the reactants; (3) high aspect ratio which is immune to surface 
energy driven coalescence via crystal migration; (4) less vulnerable to dissolution, Ostwald ripening and 
aggregation during the electrocatalytic process due to their micrometer-sized length; (5) high 
electrochemical active areas. Therefore, the 1-D structures are also intensively studied. Meng et al. [18,19] 
synthesized Pd single-crystal nanothorns along the <220> direction with a square wave electrochemical 
reduction method as shown in Figure 3. The nanothorn was made by a succession of epitaxic 
dodecahedrons of decreasing sizes aligned in the direction of the (111) plane and the growth of the thorn 
occurs along the (220) plane. Tian et al. [20] obtained five fold twinned Pd nanorods with high-index 
facets of {hkk} or {hk0}. Patra et al. [21] prepared Pd dendrite branches growing along the <110> 
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Figure 3. SEM micrographs of pure Pd thorn clusters (a,b) and the mixture of Pd thorns and 
Pd particles (c,d). Reproduced with permission from reference [19]. 
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Figure 3. SEM micrographs of pure Pd thorn clusters (a,b) and the mixture of Pd
thorns and Pd particles (c,d). Reproduced with permission from reference [19].

2.3. The 3-D Pd Structures

Compared with two-dimensional (2-D) structure, the three-dimensional (3-D)
structure often has high porosity which will lead to higher surface area, especially
higher electrochemical active surface area. Usually, the 2-D structure is very few
used in the fuel cell application. Jena et al. [26] explored the synthesis of 3-D porous
Pd nanostructures with a various shapes and morphologies. These structures have
high surface roughness and surface steps which can contribute to the increased
accessibility of reactant species and are more attractive for enhancing catalytic
application. Zhou et al. [27] and Yu et al. [28] produced dendritic structures by
electrochemical deposition. The authors concluded that the morphology of the
electrochemically deposited nanostructured Pd could be solely controlled by tuning
the depositing potentials. Fang et al. [29] reported an electrochemical route to
synthesize Pd nanourchins. Li et al. [30] synthesized Pd/Au hollow cone-like
microstructures by electrodeposition. Ye et al. [31,32] fabricated a three-dimensional
mesoporous Pd networks by a simple reduction method in solution using a
face centered cubic silica super crystal as template. From above analysis, it is
concluded that the electrochemical synthesis is a useful tool in the preparation
of Pd nanostructures without templates or surfactants. Many structures such as the
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high index facets enclosed nanoparticles, nanothorns and dendritic structures were
prepared by the electrodeposition.

2.4. Hollow or Core-Shell Structures

The hollow nanomaterials have big potentials for further reducing the cost.
Moreover, they have distinguished chemical and physical properties resulting from
their special shape and composition [33,34]. Liu et al. [35] and Bai et al. [36] prepared
raspberry hollow Pd nanospheres by a galvanic replacement reaction involving
Co nanoparticles as sacrificial template. The raspberry surface might be helpful
in increasing the surface area for catalysis. The core-shell structure is effective to
reduce cost by reducing the amount of Pd used in the catalyst. Fang et al. [37]
prepared the Au@Pd@Pt structure with a gold core, a Pd shell and Pt clusters
on the shell as shown in Figure 4. The optimized structure had only two atomic
layers of Pd and a half-monolayer equivalent of Pt. The activity was critically
dependent upon the Pd-shell thickness and the Pt-cluster coverage. The high
activity originated from the synergistic effect existing between the three different
nanostructure components (sphere, shell and islands). Ksar et al. [38–40] synthesized
bimetallic Pd-Au nanostructures with a core rich in gold and a Pd porous shell. This
structure greatly reduced the loading of Pd. The addition of Au to Pd catalysts
was not only improved the catalytic activity and selectivity but also enhanced the
resistance to poisoning.Catalysts 2015, 5 1227 

 

 

Figure 4. The procedure used to prepare an Au@Pd@Pt NP film on a glass carbon (GC) 
electrode. Reproduced with permission from reference [37]. 

2.5. Conclusions and Perspective Discussions 

With the development of nanotechnology, researchers are able to control the morphology of Pd in 
nanoscale. Different morphologies such as particles with multi-facets, cubes, twinned particles, 
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have high performance in fuel cell half cell characterization, which is caused by the unique 
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the development of nano-synthesis technology there will be more mophologies with unique advantages 
prepared, emphasis should be put on the controlled synthesis and application in fuel cell membrane 
electrode assembly application. 
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The direct formic acid fuel cells (DFAFCs) have a high theoretical open circuit potential of 1.450 V 
compared with 1.229 V for H2 proton exchange membrane fuel cells (PEMFCs) and 1.190 V for direct 
methanol fuel cells (DMFCs) at room temperature. The formic acid is a non-toxic liquid fuel and lower 
crossover fiux than methanol and ethanol. Although the net energy density of formic acid (2086 Wh L−1) 
is lower than that of methanol (4690 Wh L−1), high concentrated formic acid can be used as fuel,  
e.g., 20 M (70 wt. %), compared with lower methanol concentration, e.g., 1–2 M. Therefore, formic acid 
carries more energy per volume than methanol. The formic acid itself is an electrolyte and can facilitate 
proton transport within anode compartment [41]. 

It was reported that Pd/C exhibited much better activity compared with Pt/C, however, the activity 
was not satisfactory and more importantly the durability of Pd/C catalyst was in urgent needed for 
further improvement. Generally, formic acid oxidation on Pd or Pt surface follows a dual pathway 
mechanism, namely, a dehydration pathway [42–44]: 

 

Figure 4. The procedure used to prepare an Au@Pd@Pt NP film on a glass carbon
(GC) electrode. Reproduced with permission from reference [37].

2.5. Conclusions and Perspective Discussions

With the development of nanotechnology, researchers are able to control the
morphology of Pd in nanoscale. Different morphologies such as particles with
multi-facets, cubes, twinned particles, assembled particles, nanorods, nanothorns,
nanowires, nanotubes, dendritic structure, networks and hollow/core-shell
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structures and so on have been successfully prepared. Most of the Pd nanomaterials
have high performance in fuel cell half cell characterization, which is caused by
the unique crystallography and morphology of the material. Both the activity and
stability of the electrochemical reaction could be improved when catalyzed by the
Pd nanomaterials to significantly reduce the usage of Pt in fuel cells. However, the
research on Pd nanostructures is still in the fundermental stage and great effortsl
need to be done to apply these nanomaterials into the real fuel cell applications. With
the development of nano-synthesis technology there will be more mophologies with
unique advantages prepared, emphasis should be put on the controlled synthesis
and application in fuel cell membrane electrode assembly application.

3. Pd-Based Catalysts for the Direct Formic Acid Fuel Cells (DFAFCs)

The direct formic acid fuel cells (DFAFCs) have a high theoretical open circuit
potential of 1.450 V compared with 1.229 V for H2 proton exchange membrane
fuel cells (PEMFCs) and 1.190 V for direct methanol fuel cells (DMFCs) at room
temperature. The formic acid is a non-toxic liquid fuel and lower crossover fiux than
methanol and ethanol. Although the net energy density of formic acid (2086 Wh L´1)
is lower than that of methanol (4690 Wh L´1), high concentrated formic acid can be
used as fuel, e.g., 20 M (70 wt. %), compared with lower methanol concentration, e.g.,
1–2 M. Therefore, formic acid carries more energy per volume than methanol. The
formic acid itself is an electrolyte and can facilitate proton transport within anode
compartment [41].

It was reported that Pd/C exhibited much better activity compared with Pt/C,
however, the activity was not satisfactory and more importantly the durability of
Pd/C catalyst was in urgent needed for further improvement. Generally, formic
acid oxidation on Pd or Pt surface follows a dual pathway mechanism, namely, a
dehydration pathway [42–44]:

HCOOHÑCOads ` H2O (1)

COads ` H2OÑCO2 ` 2H+ ` 2e´ (2)

and a dehydrogenation one:

HCOOHÑCO2 ` 2H+ ` 2e´ (3)

On Pt catalyst, formic acid oxidation also took place via the third pathway with
bridge bonded adsorbed formate intermediate being in equilibrium with the solution
formats [36–38].

HCOOHÑHCOO ads ` H+ ` e´ (4)

HCOOadsÑCO2 ` H+ ` e´ (5)
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Pd has a propensity to break only the O–H bonds of the HCOOH molecule in
the entire potential region, while, Pt has a propensity to break the C–O and/or
C–H bond (at low overpotential) and the O–H bond (at high overpotential).
Consequently, formic acid oxidation on Pd surfaces proceeds exclusively through
the dehydrogenation reaction step, whereas, on Pt surfaces the dehydration pathway
is predominant at low potentials. It should be noted that one of the major problems
in formic acid oxidation is that the intermediary species formed during the oxidation
of HCOOH cause catalyst poisoning. These intermediate species could be mostly
CO, which strongly interacts with the active sites on the electrode surface and
requires a higher overpotential for oxidation to CO2. On a Pt catalyst, formic acid
decomposition proceeds mainly via a dehydration pathway where the strongly
adsorbed CO greatly hinders the catalytic activity. On pure Pt surfaces, CO poisoning
due to the dehydration of formic acid on at least two or more contiguous Pt atoms
hinders the direct dehydrogenation oxidation of formic acid at lower overpotentials.
In contrast, formic acid decomposition on a Pd catalyst mainly proceeds in a
dehydrogenation pathway. The generation of minor CO on the surfaces of Pd
nanoparticles leads to the rapid decay of the catalytic activity. Hence, it is of
great importance to design a Pd catalyst with excellent CO tolerance. For HCOOH
oxidation, Pd shows superior initial performance compared with Pt. However, the
high performance cannot be sustained, as Pd dissolves in acidic solutions and is
vulnerable towards intermediate species. Modification of Pd with foreign metal has
been considered as an effective method to enhance the activity and durability towards
HCOOH oxidation. Studies have shown that the Pd oxidation activity for formic
acid is also strongly influenced by the morphology and size of the Pd nanoparticles.

Table 1 listed the available data of the formic acid oxidation on Pd-based catalyst
described in the literature. Three factors were compared: the electrochemical active
surface area (EASA), the peak potential of formic acid oxidation and the peak current
density of formic acid oxidation. According to the results provided by different
authors, the EASA varied from the minimum of 15.7 m2 g´1 to the maximum of
208.2 m2 g´1. The peak current density varied from 3900 to 56.5 mA mg´1

Pd, or
from 159 to 12.4 mA cm´2. The peak potential analysis showed that the alloying of
the Pd with other metals could reduce the overpotential for formic acid oxidation as
evidenced by the negative shift of the peak potential on the alloys. Alloying with
other metals can modify the electronic structure and induce tensile strain of the Pd
clusters, and finally influence their catalytic activities. The highest peak current
density observed on Pd0.9Pt0.1/C is nearly twice as high as that on Pd/C and six
times as that on the commercial Pt/C [45]. The anodic peak current density obtained
by using PdCo/MWCNTs as catalyst is 3 and 4.3 times higher than Pd/MWCNTs
and Pd/XC-72 [46]. PdNi2 alloy had almost three times the activity of Pd, even if the
molar Pd content in PdNi2 alloy was only one third of pure Pd [47].
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Table 1. Details of the half cell performance of the Pd-based catalysts.

Catalysts EASA/m2 g´1
Peak

Potential/V
RHE

Peak Current
Density/mA mg´1

Pd

Conditions H2SO4/Formic
Acid/Scan Rate References

Pt@Pd/C 156.5 0.277 3900 0.5 M/2 M/10 mV s´1 [48]
Pt/C 198 0.687 / 0.5 M/2 M/10 mV s´1 [48]
Pd/C 208.2 0.417 1200 0.5 M/2 M/10 mV s´1 [48]

butylphenyl-stabilized
Pd 122 0.38 3390 0.1 M/0.1 M/100 mV s´1 [49]

Pd black 33.6 0.46 750 0.1 M/0.1 M/100 mV s´1 [49]
butylphenyl-stabilized

Pd 122 0.38 3390 0.1 M/0.1 M/100 mV s´1 [49]

PdPt/C 49 / 2500 0.5 M/0.5 M/50 mV s´1 [50]
Pd/C / / 2400 0.1 M/0.5 M/20 mV s´1 [51]
Pd/C 107.2 / 1426.5 0.5 M/0.5 M/50 mV s´1 [52]

PdSn/C / / 1420 0.5 M/0.5 M/20 mV s´1 [53]
Pd/C / / 610 0.5 M/0.5 M/20 mV s´1 [53]

Pd/CMRT 67.27 / 1140 at 0.44 V * 0.5 M/0.5 M/50 mV s´1 [54]
Pd/RT 41.47 / 670 at 0.44 V * 0.5 M/0.5 M/50 mV s´1 [54]
Pd/C 63.72 / 440 at 0.44 V * 0.5 M/0.5 M/50 mV s´1 [54]

Pd/HPMo-PDDA-MWCNT / / 945 0.5 M/0.5 M/20 mV s´1 [55]
Pd/AO-MWCNTs / / 554 0.5 M/0.5 M/20 mV s´1 [55]

Pd/C / / 373 0.5 M/0.5 M/20 mV s´1 [55]
Pd57Ni43 / / 830 0.5 M/0.5 M/50 mV s´1 [23]

Pd/C / / 700 0.5 M/0.5 M/50 mV s´1 [23]
Pd-PANI / / 822 0.5 M/0.2 M/100 mV s´1 [56]

PdAu 90 / 800 0.5 M/0.5 M/20 mV s´1 [57]
Pd/C 43 / 250 0.5 M/0.5 M/20 mV s´1 [57]

Pd/graphene 72.72 / 446.3 0.5 M/0.5 M/50 mV s´1 [58]
Pd/C 31.85 / 191.9 0.5 M/0.5 M/50 mV s´1 [58]

Pd/graphene / 0.39 300 0.5 M/0.5 M/50 mV s´1 [59]
Pd/C / / 193 0.5 M/0.5 M/50 mV s´1 [59]

Pd networks / / 275.4 0.5 M/0.5 M/50 mV s´1 [31]
Nanoporous Pd 23 / 262 0.5 M/0.5 M/10 mV s´1 [60]

Pd/CNT / 0.44 200 at 0.27 V * 0.5 M/0.5 M/50 mV s´1 [61]
Pt/CNT / 0.92 30 at 0.27 V * 0.5 M/0.5 M/50 mV s´1 [61]

Pt Pd/CNT / 0.64 50 at 0.27 V * 0.5 M/0.5 M/50 mV s´1 [61]
Pt1Pd3/CNT / 0.64 125 at 0.27 V * 0.5 M/0.5 M/50 mV s´1 [61]

PdSn/C 64.7 / 170.2 0.5 M/1 M/10 mV s´1 [62]
Pd/C 39.8 / 102.3 0.5 M/1 M/10 mV s´1 [62]

Pd black / / 56.5 0.5 M/0.5 M/50 mV s´1 [31]

Pd/untreated-MWCNT 46.2 0.517 159 mA cm´2 0.5 M/0.5 M/50 mV s´1

with glutamate [63]

Pd/acid-oxidized
MWCNT 35.7 / 108 mA cm´2 0.5 M/0.5 M/50 mV s´1 [63]

Pd/untreated-MWCNT 21.4 / 72 mA cm´2 0.5 M/0.5 M/50 mV s´1

without glutamate [63]

PdNi/C / 0.247 105.1 mA cm´2 0.5 M/1 M/10 mV s´1 [64]
Pd/C / 0.287 72.9 mA cm´2 0.5 M/1 M/10 mV s´1 [64]

PdCo/MWCNTs / 0.28 107 mA cm´2 0.5 M/0.1 M/20 mV s´1 [46]
Pd/MWCNTs / 0.32 35.6 mA cm´2 0.5 M/0.1 M/20 mV s´1 [46]

Pd/XC-72 / 0.38 24.8 mA cm´2 0.5 M/0.1 M/20 mV s´1 [46]
Pd0.9Pt0.1/C 83 0.35 87.5 mA cm´2 0.5 M/0.5 M/50 mV s´1 [45]

Pt/C 85.6 0.52 15.1 mA cm´2 0.5 M/0.5 M/50 mV s´1 [45]
Pd/C 89.7 0.48 42.5 mA cm´2 0.5 M/0.5 M/50 mV s´1 [45]

Pd-B/C 87.6 / 65.4 mA cm´2 0.5 M/0.5 M/50 mV s´1 [65]
Pd/C 90 / 36.0 mA cm´2 0.5 M/0.5 M/50 mV s´1 [65]

Pd–Au/C / 0.37 18.6 mA cm´2 0.5 M/0.5 M [66]
Pd/C / 0.48 12.4 mA cm´2 0.5 M/0.5 M [66]

Pd/phen-MWCNTs 37.6 / / 0.5 M/1 M/50 mV s´1 [67]
Pd/AO-MWCNTs 15.7 / / 0.5 M/1 M/50 mV s´1 [67]

Pd/graphene 44 0.367 / 1 M/1 M/10 mV s´1 [68]
Pd/Vulcan C 35 0.377 / 1 M/1 M/10 mV s´1 [68]

* The potentials were vs. RHE.
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3.1. Pd Supported on Carbon Materials

3.1.1. Pd on Carbon Powders

An active catalyst should be dispersed on a convenient support to stabilize
the catalytic nanoparticles, to obtain optimum catalyst utilization and to reduce
the amount of precious metal used, reducing the catalyst cost. In DFAFCs, highly
conductive carbon materials such as Vulcan XC-72 carbon (Cabot, Boston, MA,
USA) provide a high dispersion of metal nanoparticles to facilitate electron transfer,
resulting in better catalytic activity. The supported electrocatalyst is a practical means
to achieve high utilization of expensive noble metals and to maintain good life-time.
Other carbon materials such as the carbon fiber are also studied as support material
for palladium [69–71].

There are still aspects to improve in the Pd/C as catalyst in fuel cell applications.
The works usually focus on the Pd particle size control via novel synthesis techniques
to achieve high electrochemical active surface area and improve the utilization
efficiency of the Pd catalyst. Cheng et al. [72] prepared highly dispersed Pd/C
catalyst through an ambient aqueous way instead of the traditional high temperature
polyol process in ethylene glycol. The Pd/C catalyst without stabilizer had a
higher oxidation activity toward formic acid compared with that of a traditionally
prepared Pd/C catalyst. Liang et al. [52] synthesized a highly dispersed and
ultrafine carbon-supported Pd nanoparticle catalyst which exhibited significantly
high electrochemical active surface area and high electrocatalytic performance for
formic acid oxidation with four times larger formic acid oxidation current compared
with that prepared by general NaBH4 reduction method. The large electrochemical
specific surface may be due to the high dispersion and small particle size of Pd/C
catalyst. Suo et al. [73] used a simple and stabilizer-free ethylene glycol reduction
method to prepare Pd/C catalyst. Size-dependent electrochemical property was
observed and electrochemical evaluation showed that Pd/C with a particle size of
6.1 nm performed the highest activity for formic acid oxidation. The performance
of the Pd/C catalyst for the oxidation of formic acid could be greatly promoted
with 3.19 times enhancement in catalytic stability and 1.57 times improvement in the
catalytic activity by simply introducing vanadium ions in very low concentration to
the electrolyte [51]. The improvement in the catalytic performance may be attributed
to the facilitating of formic acid oxidation due to the existence of VO2+/V3+ redox
pair and the ensemble effect induced by the adsorption of vanadium ions onto the
surface of Pd.

3.1.2. Pd alloys on Carbon Powders

Pd displays an initial high activity for the oxidation of HCOOH. However, its
long term performance is poor. Deactivation of Pd activity has been assigned to
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catalyst poisoning by CO, although, other poisoning species such as anions from
the electrolyte can also effective. Alloying Pd with the second metal to change the
surface electronic state, an ensemble effect could occur, which could possibly reduce
the catalyst poisoning and increase the activity and lifetime of the catalyst.

(1) PdPt alloys

It was found Pd0.9Pt0.1/C was the optimum catalyst for the desired formic acid
oxidation reaction [45]. The highest peak current density observed on Pd0.9Pt0.1/C
was nearly twice as high as that on Pd/C and six times as that on the commercial
Pt/C, which is superior to any reported carbon black-supported Pt/C, Pd/C, and
PtxPd1´x/C catalysts. There is also a large negative shift (up to 0.21 V) in peak
potential for a PdxPt1´x/C versus that for Pd/C. The high performance of the
Pd0.9Pt0.1 nanoalloy can be ascribed to the effectively inhibited CO poisoning at
largely separated Pt sites and appropriately lowered d-band centre of Pd sites. The
addition of Pt to Pd considerably improved the steady-state activity of Pd [74–76].
Chronoamperometric measurements showed that the most active catalyst was
Pd0.5Pt0.5 with the particle size of 4 nm. Wu et al. [48] prepared a Pd decorated
Pt/C catalyst, Pt@Pd/C, with a small amount of Pt as core. It was found that the
catalyst showed excellent activity toward anodic oxidation of formic acid at room
temperature and its activity was 60% higher than that of Pd/C. It is speculated that
the high performance of Pt@Pd/C may result from the unique core-shell structure
and synergistic effect of Pt and Pd at the interface. Wang et al. [50] decorated Pd/C
with Pt nanoparticles where the amount of three neighbouring Pt or Pd atoms
markedly decreased. As a result, discontinuous Pd and Pt atoms suppressed CO
formation and exhibited unprecedented catalytic activity and stability toward formic
acid oxidation.

(2) PdSn alloys

Liu et al. [77] prepared Pd and PdSn nanoparticles supported on Vulcan XC-72
carbon by a microwave-assisted polyol process. It was found that the addition of Sn
to Pd could increase the lattice parameter of the Pd (fcc) crystal. The PdSn/C catalysts
have higher electrocatalytic activity for formic acid oxidation than a comparative
Pd/C catalyst. The Pd2Sn1/C catalyst exhibited higher current density and enhanced
electrocatalytic stability compared with Pd/C. There was also a negative shift of the
peak potential on Pd2Sn1/C than that of Pd/C. Zhang et al. [53] synthesised PdSn/C
catalysts with different atomic ratios of Pd to Sn. The alloy catalysts exhibited
significantly higher catalytic activity and stability for formic acid oxidation than that
of Pd/C catalyst. Pd was modified by Sn through an electronic effect which could
decrease the adsorption strength of the poisonous intermediates on Pd and thus
promote the formic acid oxidation. Tu et al. [62] prepared a carbon-supported PdSn
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(PdSn/C) catalyst with greatly improved performance for formic acid oxidation
compared with that of Pd/C. Adding Sn as a small ratio into the carbon-supported
Pd catalyst could largely increase the current density of the formic acid oxidation and
shift the onset potential toward the negative compared with that of Pd/C. The reason
for the improvement of the catalyst was likely attributed to the high dispersion of
the Pd and due to the change in the electronic properties of the Pd.

(3) Other alloys

Zhang et al. [66] prepared carbon-supported PdAu catalysts with different
alloying degree. The electrocatalytic activity of PdAu/C catalyst for the formic acid
oxidation was strongly dependent on the alloying degree of Pd-Au nanoparticles.
The PdAu/C catalyst with higher alloying degree showed a higher electrocatalytic
activity and stability for the formic acid oxidation compared with the PdAu/C
catalyst at lower alloying degree, which can be ascribed to the enhancement of CO
tolerance and possible suppression of the dehydration pathway in the course of
formic acid oxidation. The catalytic activity of the PdAu/C catalyst was also found
to be affected by the nature of the supporting materials [78–81]. Gao et al. [64,82,83]
synthesized carbon-supported PdNi catalyst by sodium borohydride reduction
reaction. The performance of the PdNi/C catalyst for formic acid oxidation was
significantly improved compared with that of Pd/C. The potential of the main
anodic peak of formic acid at PdNi/C catalyst electrode was about 40 mV more
negative than that at Pd/C catalyst electrode. The onset potential of formic acid
oxidation at PdNi/C catalyst electrode was 30 mV more negative than that at
Pd/C catalyst electrode. The reason for the promotion effect may be due to
that Ni can contribute to the adsorption of oxygen-containing species, which is
conducive to the oxidation of formic acid and a change in electronic properties
of Pd. Yu et al. [84] prepared carbon supported bimetallic PdPb catalysts which
were found to be more resistant to deactivation in the DFAFC than Pd/C and
to consistently show better long-term performance. The addition of Pb to Pd
stabilized it significantly to deactivation during formic acid oxidation. Wang et al. [65]
synthesized highly dispersed boron-doped Pd nanoparticles supported on carbon
black with high Pd loadings (ca. 40 wt. % Pd) by using NaBH4 as the reductant. The
as-prepared Pd-B/C catalyst showed extraordinary high activity toward formic acid
oxidation compared with that of a commercially available Pd/C catalyst. Thermal
treatment further enhanced the durability of the oxidation current on Pd-B/C. The
superior performance of the Pd-B/C catalyst may arise from uniformly dispersed
nanoparticles within optimal size ranges, the increase in surface-active sites, and
the electronic modification effect of boron species. The Pd–Co, PdCeOx/C [85] and
PtRu/C [86–88] catalyst also exhibited excellent catalytic activity and stability in the
oxidation of formic acid.
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3.1.3. Pd Supported on Carbon Nanotubes

It remains a chanllege to load Pd nanoparticels on the surface of carbon
nanotubes because of the graphitization of carbon nanotubes. However, due to
the advantages of carbon nanotubes especially in the contribution to stability of the
catalyst, many works are devoted to the deposition of Pd on carbon nanotubes [89,90].
Hu et al. [63] synthesized Pd nanoparticles supported on untreated multiwalled
carbon nanotubes (MWCNTs). The Pd/MWCNT catalyst displayed superior
electrocatalytic activity and stability in formic acid oxidation. Chakraborty et al. [91]
synthesized nanosized Pd particles supported on MWCNTs. Bai et al. [67,92]
functionalized MWCNTs with 1,10-phenanthroline (phen-MWCNTs) as a catalyst
support for Pd nanoparticles. It was found that Pd nanoparticles were evenly
deposited without obvious agglomeration, and the average particle size of the Pd
nanoparticles was only as small as 2.3 nm. The as-prepared Pd/phen-MWCNTs
catalyst had a better electrocatalytic activity and stability for the oxidation of formic
acid than Pd catalyst on acid treated MWCNTs. Phen made a strong impact on
the electrocatalytic activity of the catalyst through the functionalization of the
MWCNTs and the formation of the active Pd-N sites. Therefore, the dispersivity
and the ESA of the Pd nanoparticles were obviously enhanced in the presence of
phen, resulting in better electrocatalytic activity and utilization efficiency of the
catalyst. Cui et al. [55] loaded Pd nanopartilces on phosphomolybdic (HPMo) acid
functionalized multiwalled carbon nanotubes supports. The catalysts exhibited a
much higher electrocatalytic activity and stability for formic acid oxidation reaction
as compared with that on traditional Pd/C. The high electrocatalytic activities were
most likely related to highly dispersed and fine Pd nanoparticles as well as synergistic
effect between Pd and HPMo immobilized on functionalized MWCNTs.

3.1.4. Pd Alloys Supported on Carbon Nanotubes

(1) PdPt alloys

Selvaraj et al. [93,94] prepared PtPd nanoparticles supported on purified
singlewalled carbon nanotubes. The modified electrode exhibited significantly
high electrocatalytic activity toward formic acid oxidation due to the uniform
dispersion of nanoparticles on SWCNTs and the efficacy of Pd species in Pt-Pd
system. Winjobi et al. [61] prepared Pt, Pd and PtxPdy alloy nanoparticles supported
on carbon nanotubes with high and uniform dispersion. With increasing Pd amount
of the catalysts, the mass activity of formic acid oxidation reaction on the CNT
supported catalysts increased. A direct oxidation pathway of formic acid oxidation
occurred on the Pd surface, while, the formic acid oxidation was through COads
intermediate pathway on the Pt surface. The Pd/CNT demonstrated 7 times better
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mass activity than that of Pt/CNT at an applied potential of 0.27 V (vs. RHE) in the
chronoamperometry test.

(2) PdAu alloys

Chen et al. [95] prepared PdAu/multiwalled carbon nanotubes
(Pd–Au/MWCNTs) to increase the stability and performance of the Pd-based
catalysts in DFAFCs. The catalyst was highly active in formic acid oxidation, due
to the hydrogen treated catalysts have smaller metal particles and better contact
with MWCNTs support. When Pd was alloyed with Au the leaching of Pd was
considerably slower, which may be caused by much slower Pd leaching from
Pd-Au alloy than from Pd. The Pd-Au/MWCNTs had higher current and lower
onset potential for formic acid oxidation than Pd/MWCNTs. Chen et al. [96]
prepared multiwalled carbon nanotubes (MWCNTs) supported Pd–Au catalyst for
oxidation of formic acid and compared with a similarly prepared Pd/MWCNTs and
a commercial Pt-Ru/C catalyst. Both the Pd-Au/MWCNTs and the Pd/MWCNTs
catalysts used were more active than that of a commercial Pt-Ru/C catalyst. The
specific activity of Pd in the novel Au-Pd/MWCNTs catalyst was over two times
higher than that on the Pd/MWCNTs catalyst. Mikolajczuk et al. [97] found that the
Pd-Au/MWCNTs catalyst exhibited higher activity and more stable in oxidation
reaction of formic acid. The higher initial catalytic activity of Pd-Au/MWCNTs
catalyst than Pd/MWCNTs catalyst in formic acid oxidation reaction was attributed
to the electronic effect of gold in Pd-Au alloy [98,99].

(3) Other alloys

Morales-Acosta et al. [46,100] compared the Pd-Co and Pd catalysts prepared
by the impregnation synthesis method on MWCNTs. The current density achieved
with the PdCo/MWCNTs catalyst was 3 times higher than that of the Pd/MWCNTs
catalyst. The onset potential for formic acid oxidation on PdCo/MWCNTs catalyst
showed a negative shift ca. 50 mV compared with Pd/MWCNTs. The anodic peak
current density obtained by using PdCo/MWCNTs was 3 and 4.3 times higher than
Pd/MWCNTs and Pd/C, respectively. The PdCo/MWCNTs exhibited good stability
in acidic media, higher current density and more negative anodic potential associated
to this reaction than that of Pd/MWCNTs and Pd/C catalysts. The difference could
be attributed to a better dispersion of the metallic nanoparticles with a lower particle
size achieved with the MWCNTs-supported materials. Specific surface area obtained
from PdCo and Pd supported on MWCNTs was higher than that obtained on Pd
supported on Vulcan XC-72 carbon.
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3.1.5. Pd Supported on Graphene

Graphene is a rapidly rising star on the horizon of the materials science and
technology which has attracted tremendous attention and holds great promise for
advanced fields. Especially in fuel cells, the emergence of graphene has opened
a new avenue for utilizing two-dimensional planer carbon material as a catalytic
support owing to its high conductivity, unique graphitized basal plane structure.
This is propitious to not only maximize the availability of nanosized electrocatalyst
surface area for electron transfer but also provide better mass transport of reactants to
the electro-catalyst [101]. Fu et al. [59] developed an effective surfactant-free strategy
for the small-sized Pd particles deposited on graphen. The Pd/GN catalyst exhibited
excellent catalytic activity and stability toward formic acid oxidation compared with
the Pd/C catalysts [102]. The enhanced performance of the Pd/GN catalyst was
contributed to the small size and high dispersion of Pd NPs and the stabilizing effect
of the graphene support. While the group has also fabricated the Pd/graphene hybrid
via sacrifice template route [58]. Bong et al. [68] synthesized high loadings of 80 wt%
Pd on graphene catalysts which showed significantly enhanced electrocatalytic
activity and stability for formic acid oxidation compared with Pd/C catalysts.

3.2. Pd Supported on Oxides

As alternatives to improve the catalytic activity and stability of the Pd-based
catalysts, the carbon support materials were modified with semiconducting oxides,
such as TiO2, MoOx and SnO2 [103–105]. The influence of TiO2 support on the
electronic effect and the bifunctional mechanism can be summarized as follows.
(1) TiO2 support imposes an electronic effect in which the hypo-d-electronic titanium
ions promote the electrocatalytic properties of hyper-d-electronic noble metal surface
atoms, thus lowering the adsorption energy of CO intermediates and increasing the
mobility of the CO group on Pd nanostructures; (2) Adsorption of OH species (OHad)
on TiO2 can facilitate the conversion of the catalytically poisonous CO intermediates
into CO2, thereby improving the durability of Pd catalysts. Additionally, TiO2 can
facilitate the dispersion of noble metal nanoparticles to anchor them. Based on the
theory that TiO2 nanoparticles in the catalyst can adsorb OHads species and promote
the oxidation reaction on the electrode, Xu et al. [44] prepared highly dispersed
carbon supported Pd-TiO2 catalyst with intermittent microwave irradiation. The
activity of Pd-TiO2/C catalyst for the oxidation of formic acid was higher than that
of the Pd/C catalyst [106]. Wang et al. [54] investigated Pd nanoparticles supported
on carbon-modified rutile TiO2 (CMRT) as catalyst for formic acid oxidation. The
Pd/CMRT showed three times the catalytic activity of Pd/C, as well as better catalytic
stability toward formic acid oxidation. The enhanced catalytic property of Pd/CMRT
mainly arised from the improved electronic conductivity of the carbon-modified
rutile TiO2, the dilated lattice constant of Pd nanoparticles, an increasing of surface
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steps and kinks in the microstructure of Pd nanoparticles and slightly better tolerance
to the adsorption of poisonous intermediates [107]. Wang et al. [108] investigated the
influence of the crystal structure of TiO2 supporting material on formic acid oxidation.
TiO2 with the rutile structure improved the catalytic activity of Pd nanoparticles
toward formic acid oxidation. The enhancement of Pd/TiO2 (rutile) catalytic activity
arose from uniform dispersion of Pd nanoparticles, an increase in surface-active sites,
and good tolerance to the adsorption of poisonous intermediates (such as COad,
COOHad and so on). This study proved that rutile TiO2 was a better supporting
material than anatase TiO2 or composites.

3.3. Pd Supported on other Supporting Materials

At present, carbon nanotubes (CNTs) and Vulcan XC-72 carbon are the most
often used supporting materials to load Pd nanoparticles. However, the rate of
formic acid oxidation is lower partly due to lower Pd utilization on such conventional
carbon supports, which is related to the lower electrochemically accessible surface
area for the deposition of Pd particles. Tremendous efforts have been devoted to
search for new catalyst supports to achieve good dispersion, utilization, activity and
stability [109]. Bai et al. [110] supported Pd nanoparticles on polypyrrole-modified
fullerene and the Pd/ppy-C60 catalyst showed a good electrocatalytic activity and
stability for the oxidation of formic acid. Pd on polyaniline (Pd-PANI) nanofiber
film [56], on polypyrrole (PPy) film [111] and PMo12 [112] showed excellent catalytic
activity in the oxidation reaction of formic acid in acidic media. Qin et al. [113]
synthesized highly dispersed and active Pd/carbon nanofiber (Pd/CNF) catalyst
which exhibited good catalytic activity and stability for the oxidation of formic
acid. Cheng et al. [114] loaded Pd nanoparticles on the carbon nanoparticle-chitosan
host, the chitosan matrix was shown to be beneficial in making nanosized catalyst
convenient, effective, and reproducible. The Pd on carbon nanoparticle-chitosan host
catalysts was highly active for the oxidation of formic acid.

3.4. Unsupported Pd

Based on the pratical application of Pd based catalysts in fuel cells, Pd is usually
supported on other materials. However, since the nanotechnology provides the
possibility to control the morphology of Pd material, and the intrinsic properties of
the nanostructured material can be dramatically enhanced by shape and structural
variations, there are also some research on the preparation of unsupported Pd
materials for fuel cell application [115–117]. The one-dimensional Pd nanostructures
like nanowires, nanobelts and nanotubes have attracted significant interest due to
their exotic technological applications. Wang et al. [60] and Ye et al. [31] fabricated
unsupported nanoporous Pd networks which exhibited high electrochemical active
specific surface area, and high catalytic activity for oxidation of formic acid. Pd
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hollow nanostructures is an effeicient way to reduce the cost of catalsyt, for example
Pd/Au hollow cone-like microstructures [30] and Pd clusters on highly dispersed
Au nanoparticles [57] are found to show superior performance at much lower
cost. Alloyed nanowires such as PdNi2 [47] and Pd57Ni43 [23] alloy nanowires
also shows improved performance. The size and nature of surface structures, such
as crystalline planes and surface ligands is one key issue to improve the mass
activity. Zhou et al. [49] synthesized monodispersed butylphenyl-functionalized
Pd (Pd-BP) nanoparticles with unique surface functionalization and a high specific
electrochemical surface area (122 m2 g´1), the Pd–BP nanoparticles exhibited a mass
activity of 4.5 times as that of commercial Pd black for HCOOH oxidation as shown
in Figure 5. The Pd-BP catalyst shows obvious improvement in both activity and
stability compared with commercial Pd-black.
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Figure 5. Cyclic voltammograms of butylphenyl-functionalized Pd (Pd-BP)
nanoparticles and commer-cial Pd black in 0.1 M H2SO4, with the currents
normalized (a) by the mass loadings of Pd and (b) by the effective electrochemical
surface areas at a potential scan rate of 100 mV s´1; Panels (c) and (d) depict the
cyclic voltammograms and current-time curves acquired at 0.0 V for HCOOH
oxidation, respectively, at the Pd-BP nanoparticles and Pd black-modified electrode
in 0.1 M HCOOH + 0.1 M H2SO4 at room temperature. Reproduced with permission
from reference [49].
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3.5. Single Fuel Cell Characterization

3.5.1. Single Fuel Cell Performance

The aim of the study on the Pd based catalyst is to realize its pratical application
in fuel cells. However, because of the difference in the preparation technique of
the membrane electrode assembly (MEA) it is relatively difficult to compare the
performance of a catalyst. The single fuel cell performance of the different catalysts
was selectively summarized in Figure 6. Meng et al. [118] designed a novel MEA
structure for DFAFCs where Pd nanothorns were directly electrodeposited onto the
carbon paper to form the anode catalyst layer. The novel MEA provided 2.4 times
higher peak power density than that of the conventional MEA. The increase in the
performance was due to the improved mass transport of the formic acid in the catalyst
and diffusion layers, better Pd utilization and higher electroactivity of the Pd single
crystal nanothorns. Cheng et al. [119] electrodeposited Pd on graphite felt (GF) and
the resulting catalyst was compared with Pt-Ru/GF for the oxidation of formic acid.
The Pd/GF anode reached 852 W m´2 compared to 392 W m´2 with a commercial
Pd catalyst-coated membrane (CCM). Mikołajczuk et al. [42] prepared a new carbon
black supported Pd catalyst for DFAFC applications. The maximum power density
of the novel 10 wt. % Pd catalyst was only 23% lower than that of the commercial
20 wt. % Pd/C. Pd-Au on multiwalled carbon nanotubes (MWCNTs) exhibited higher
power density and better stability in DFAFC than that of the similar Pd/MWCNTs
catalyst [79]. The 17.8 wt. % Pd/MWCNTs catalyst reached three times of the peak
power density compared with that of a 20 wt. % Pt-Ru/C catalyst [120]. A MEA of
the Pd/MWCNTs catalyst showed a power density of 3.3 mW cm´2 with 50% less Pd
loadings than that of commercial Pd/C [121]. The addition of Pb and Sb into the Pd
black catalyst caused a strong promotion for the formic acid oxidation in a cell [43].
Yu et al. [122] systematically evaluated and compared a number of carbon-supported
Pt-based and Pd-based catalysts with commercial Pd/C, PtRu/C, and Pt/C catalysts
in a multi-anode DFAFC. It is found that the PdBi/C provided higher stability than
that of the commercial Pd/C catalyst, while both of the PdMo/C and PdV/C catalysts
provided poor cell performances. The results provided strong evidence that both Mo
and V poison Pd through electronic and/or chemical effects. Based on above analysis
and Figure 6 it can be concluded that alloying with another metal is an efficient way
to improve the performance of Pd based catalyst in direct formic acid fuel cell full
cell performance, as is evidenced by the PdSn or Pd Sb alloy [98,123]. Next to the
alloy is the Pd black with lower performance than the alloy. Pd nanothorns prepared
by a novel electrodeposition technique shows higher performance than most Pd
black, showing the effect of morphology control on catalytic activity. However
the unexpected conclusion is Pd or Pd alloy supported on novel carbon supports
such as graphene and carbon nanotube does not show much improvement in the
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performance. The conclusion points out futher aspects to be explored in this field:
try to realize the morphology or crystallography control of Pd nanostructure aiming
at high activity and stability, try to load the novel nanostructure on carbon support
material aiming at reduce the loading amount of Pd, finally reducing the cost.Catalysts 2015, 5 1238 
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Figure 6. Comparison of the power density of the single fuel cell performance with  
selected catalysts. 

3.5.2. Deactivation Mechanism and Reactivation 

The limited durability of Pd-based anode for DFAFCs has seriously restricted their practical 
application. The mechanistic clarification on how to remove the poisoning species and to reactivate  
the Pd-based anode still remains a big challenge. The major factors causing performance degradation in 
the DFAFCs are an increment in the anode charge-transfer resistance and a growth in the particle size of 
the Pd anode catalyst [124]. The anode charge-transfer resistance, confirmed by EIS, increases with  
the operation time due to poisoning of the catalyst surface. The performance loss caused by surface 
poisoning could be completely recovered by the reactivation process. However, the increase in  
the catalyst size induces a reduction in active surface area and the performance loss caused by the growth 
in catalyst size cannot be recovered by the reactivation process. The deactivation of Pd/C increases 
sharply with increasing the formic acid concentration but only depends on the potential at high cell 
voltages. Reactivation can be achieved by driving the cell voltage to a reverse polarity of −0.2 V or 
higher. Although the reason for the activity loss is still unclear, it has been found that almost full activity 
can be recovered by applying an anodic potential of ca. 1.0 V vs. RHE or more. Ren et al. [125] found 
that the Pd oxides/hydrous oxides (POHOs) play a crucial role in promoting better performance and 
minimizing performance degradation of the Pd-based DFAFCs. The intrinsic presence or introduction of 
Pd oxides/hydrous oxides during catalysis of formic acid oxidation was found to promote elimination of 
poisoning species, thereby leading to a better performance of DFAFCs. Zhou et al. [126] found that Pd 
catalyst poisoned at the anode of a DFAFC under constant current discharging could be fully regenerated 
by a non-electrochemical method, i.e., just switching pure water to DFAFC for 1 h. The voltage variation 
during the regeneration showed that one platform of 0.35 V was formed by the intermediate species of 
formic acid oxidation, which is proven to be critical for cell performance regeneration. The results 
indicated that the absorption of poisoning species on Pd was the main reason for the decaying of cell 
performance. Yu et al. [127] systematically studied the deactivation and electrochemical reactivation of 
a carbon supported Pd catalyst. The reactivation can be accomplished within a matter of seconds  
at ≥1.0 V vs. DHE (cell voltage ≤ −0.3 V). However, reactivation at a cell voltage of 0 V or higher is 
required from a practical perspective. Analyzing above results it is concluded that the decaying of  
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3.5.2. Deactivation Mechanism and Reactivation

The limited durability of Pd-based anode for DFAFCs has seriously restricted
their practical application. The mechanistic clarification on how to remove the
poisoning species and to reactivate the Pd-based anode still remains a big challenge.
The major factors causing performance degradation in the DFAFCs are an increment
in the anode charge-transfer resistance and a growth in the particle size of the
Pd anode catalyst [124]. The anode charge-transfer resistance, confirmed by EIS,
increases with the operation time due to poisoning of the catalyst surface. The
performance loss caused by surface poisoning could be completely recovered by the
reactivation process. However, the increase in the catalyst size induces a reduction
in active surface area and the performance loss caused by the growth in catalyst
size cannot be recovered by the reactivation process. The deactivation of Pd/C
increases sharply with increasing the formic acid concentration but only depends on
the potential at high cell voltages. Reactivation can be achieved by driving the cell
voltage to a reverse polarity of ´0.2 V or higher. Although the reason for the activity
loss is still unclear, it has been found that almost full activity can be recovered by
applying an anodic potential of ca. 1.0 V vs. RHE or more. Ren et al. [125] found
that the Pd oxides/hydrous oxides (POHOs) play a crucial role in promoting better
performance and minimizing performance degradation of the Pd-based DFAFCs.
The intrinsic presence or introduction of Pd oxides/hydrous oxides during catalysis
of formic acid oxidation was found to promote elimination of poisoning species,
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thereby leading to a better performance of DFAFCs. Zhou et al. [126] found that
Pd catalyst poisoned at the anode of a DFAFC under constant current discharging
could be fully regenerated by a non-electrochemical method, i.e., just switching pure
water to DFAFC for 1 h. The voltage variation during the regeneration showed
that one platform of 0.35 V was formed by the intermediate species of formic acid
oxidation, which is proven to be critical for cell performance regeneration. The results
indicated that the absorption of poisoning species on Pd was the main reason for the
decaying of cell performance. Yu et al. [127] systematically studied the deactivation
and electrochemical reactivation of a carbon supported Pd catalyst. The reactivation
can be accomplished within a matter of seconds at ě1.0 V vs. DHE (cell voltage ď
´0.3 V). However, reactivation at a cell voltage of 0 V or higher is required from
a practical perspective. Analyzing above results it is concluded that the decaying
of the cell performance is mainly caused by two factors: one is the growth of Pd
particle size and the other is the absorption of poisoning species on Pd surface. The
performance loss caused by surface poisoning could be recovered by the reactivation
process, while the loss caused by particle growth can not be recovered. So how to
limit the growth of particle size becomes one crucial problem in the stability study of
the Pd based catalyst.

4. Pd-Based Catalysts for the Direct Ethanol Fuel Cells (DEFCs)

Among the alcohols, methanol and ethanol are the two most commonly
used fuels for direct alcohol fuel cells (DAFCs). Direct ethanol fuel cell (DEFC)
has attracted significant attention since ethanol is non-toxic, naturally available,
renewable, and higher power density comparing to methanol (8030 Wh kg´1 for
ethanol and 6100 Wh kg´1 for methanol). However, the sluggish reaction kinetics
of ethanol oxidation is still a challenge to the commercialization of DEFC. There are
many difficulties associated with ethanol oxidation and consequently in its use in
fuel cell. Complete oxidation of ethanol to CO2 involves 12 electrons and the process
involves the scission of a C–C bond thus demanding high activation energies to be
overcome. Many of the intermediates (mainly CO and –CHO) produced during
the oxidation reaction poison the anode catalyst and in turn reduce the catalytic
efficiency. Pt-based catalysts are recognized as the best catalysts for low temperature
fuel cells. However, the high cost and limited resource of Pt limited its use as
catalysts. At the same time, the poor utilization and the poisoning of Pt catalyst
particularly in alkaline solution also limited its applications. A great deal of interest
has recently been focused on the cheaper materials than platinum and the use of
non-noble transition metals in alkaline media, in particular, the performance of alloys
of Pd with non-noble metals for the oxidation of ethanol. In acidic environment, the
complete oxidation of ethanol is difficult and the catalytic activities of the catalysts for
ethanol oxidation reaction (EOR) could be significantly improved in alkaline media,
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where Pd-based catalyst has comparable or even better catalytic activity compared
with Pt-based catalysts for ethanol oxidation [128,129]. This is why that the Pd-based
materials are intensively studied for the oxidation of ethanol.

Table 2 summerized the key factors of the EOR including the specific activity,
the mass activity, the onset potential and the peak potential. It was found that the
mass activity of Pd for ethanol oxidation could reach as high as 2200 A g´1

Pd [130].
Such high activity originated from the higher utilization of Pd and at the same time
the reduced metal content. The mass activity could be even higher for the alloys if the
current was only account by the mass of Pd. Alloying with other metals, especially,
Ni could improve the kinetics of the ethanol oxidation as revealed by the negatively
shifted onset potential and peak potential [131–133]. The construction of the
core-shell structure was found to be an effective way to reduce the overpoential [38].
It is found that the Ru@PtPd/C [134] and Pd–Ni–Zn/C [135] show highest mass
activity in the EOR, implying the advantages of multi-alloy and core-shell structure.
Two components alloying of Pd with other metals have been intensively studied,
while the multi-alloying still needs to be put more attention, and the muli-alloying
also provides vast variations in the choice and combination of different metals. Novel
nanostructure of Pd is still a popular topic in this field [136–141].

Table 2. Details of the ethanol oxidation on Pd catalysts. (SA: Specific Activity; MA:
Mass Activity; OP: Onset Potential and PP: Peak Potential).

Catalysts SA1/mA cm´2 MA2/A g´1
Pd OP3/V RHE PP4/V RHE Conditions

Ethanol/KOH/Scan Rate References

Dendritic Pd 17 / ´0.353 ´0.003 1 M/1 M/20 mV s´1 [28]
Pd/CNTs / 800 ´0.353 0.007 0.5 M/0.5 M/50 mV s´1 [35]

Pd shell/Au core 0.890 / ´0.582 ´0.15 1 M/1 M/50 mV s´1 [38]
Pd/HCHs 42 2200 ´0.352 ´0.072 2 M/1 M/50 mV s´1 [130]

PdNPs/CFCNT 16 / ´0.24 0.14 1 M/1 M/60 mV s´1 [136]
Pd–In2O3/CNTs 61 / ´0.347 ´0.022 1 M/0.5 M/50 mV s´1 [137]

Pd/CNFs 74.5 / ´0.541 ´0.021 1 M/1 M/50 mV s´1 [138]
Pd/CNFs 66.1 1187 ´0.511 ´0.057 1 M/1 M/50 mV s´1 [139]
Pd/CNFs 80 1400 ´0.46 ´0.04 1 M/1 M/50 mV s´1 [140]

Pd-Ni/CNFs 200 / ´0.602 ´0.072 1 M/1 M/10 mV s´1 [141]
Pd/SnO2-GNS 46.1 / ´0.403 0.227 0.25 M/0.25 M/50 mV s´1 [142]

Pd-PANI / 1300 ´0.46 0.07 1 M/0.5 M/100 mV s´1 [56]
Pd/polyamide 6 70 / / ´0.072 0.5 M/1.5 M/50 mV s´1 [143]
Pd/Nickel foam 107.7 / ´0.442 0.078 1 M/1 M/50 mV s´1 [144]

Pd-TiN 2.87 59.2 ´0.474 0.022 0.5 M/1 M/20 mV s´1 [145]
Pd-NiO/MgO@C 69.3 / ´0.602 ´0.052 1 M/1 M/10 mV s´1 [146]

Ru@PtPd/C / 3600 ´0.402 ´0.052 1 M/1 M/30 mV s´1 [134]
Pd particles 151 / ´0.548 / 1 M/1 M/50 mV s´1 [147]

Nanoporous Pd 90.64 227.7 ´0.403 0 0.5 M/1 M/10 mV s´1 [148]
Pd NWs / 7.96 * / ´0.01 0.5 M/1 M/50 mV s´1 [149]
Pd NWs / 2.16 * ´0.566 ´0.068 1 M/1 M/50 mV s´1 [150]

Pd/Au NWA 199 / ´0.402 0.138 1 M/1 M/50 mV s´1 [151]
PdPt 34 478 ´0.523 0.077 1 M/1 M/50 mV s´1 [152]

Pd-Sn/C 121.59 ´0.46 0.135 3 M/0.5 M/50 mV s´1 [153]
Pd-Ru-Sn/C 65 / ´0.536 0.097 3 M/0.5 M/50 mV s´1 [153]
Pd91Sn9/C 130 / ´0.205 0.347 1 M/1 M/50 mV s´1 [154]
Pd7 Ir/C 103 / ´0.584 0.008 1 M/1 M/50 mV s´1 [155]

Pd-Ni 6 / / ´0.03 0.5 M/1 M/50mV s´1 [156]
Pd40 Ni60 180 / ´0.712 0.098 1 M/1 M/50mV s´1 [157]

Pd-Ni/CNF 199.8 / ´0.602 ´0.0.072 1 M/1 M/10mV s´1 [131]
Pd-Ni-Zn/C 78.5 3600 ´0.423 0.057 10 wt%/2 M/50mV s´1 [135]
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Table 2. Cont.

Catalysts SA1/mA cm´2 MA2/A g´1
Pd OP3/V RHE PP4/V RHE Conditions

Ethanol/KOH/Scan Rate References

Pd-Ni-Zn-P/C 108.7 3030 ´0.373 0.097 10wt%/2 M/50 mV s´1 [135]
Pd- Ag/C 3.7** / ´0.602 0.018 1 M/1 M/50mV s´1 [158]
Pd-Ag film 5 ** / 0.02 1 M/1 M/20 mV s´1 [159]
Pd–Pb/C 4.25 ** / ´0.452 ´0.0.012 1 M/1 M/20 mV s´1 [160]
PdAu/C 165 / ´0.402 0.0273 1 M/1 M/50 mV s´1 [132]
Pd4Au/C / / 0.5 0.88 1 M/0.25 M/10 mV s´1 [161]
Pd2.5Sn/C / / 0.55 0.86 1 M/0.25 M/10 mV s´1 [161]

PdAu nanowire 83.7 / ´0.472 ´0.001 1 M/1 M/50 mV s´1 [133]
Pd@Au/C / 800 ´0.41 0.04 1 M/1 M/50 mV s´1 [162]

* Unit: A¨ cm´2¨ mg´1; ** This value was divided by the EASA.

4.1. Pd Supported on Carbon Materials

To improve the utilization efficiency of Pd, the commonly used catalysts are
Pd nanoparticles loaded on supports. Various carbon materials such as carbon
nanotubes, carbon nanospheres, carbon nanowires, carbon nanofibers, porous carbon,
fullerene and graphene have been used as the support. The supporting materials are
required to have high surface area, low density, high chemical stability and excellent
electrical conductivity.

4.1.1. Pd Supported on Carbon Spheres

In a series of work, Yan et al. [163–165] synthesized hollow carbon
spheres/hemispheres and used them as catalyst support. The hollow carbon
hemispheres (HCHs) provided high surface area (up to 1095.59 m2 g´1) at reduced
volume to improve the dispersion of the nanoparticles of the noble metal. At the same
time, the hemispherical structure with hollow shell resulted in the improvement
in the mass transfer, which leads to greatly improved stability. The peak current
density of the ethanol oxidation on the Pd/carbon spheres catalyst reached almost
four times higher than that of Pd/C catalyst. Figure 7 shows the typical results of the
materials for the alcohol oxidation in alkaline solution. The catalyst showed the best
performance for ethanol oxidation. It was revealed that on the same carbon support,
the morphology of Pd greatly influenced the activity of ethanol oxidation, the Pd
nanobars on carbon have much negative oxidation peak of ethanol than Pd particle
on carbon [166].
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Figure 7. SEM microgram (a) and TEM image (b) of the HCHs with the mass ratio of  
PSs to glucose of 1:2 and the cyclic voltammograms of (c) different alcohol oxidation on 
Pd/HCH electrodes in 1.0 mol dm−3 KOH/1.0 mol dm−3 alcohol solution at 303 K, scan rate: 
50 mV s−1 and (d) ethanol oxidation on Pd/HCH and Pd/C electrodes in 1.0 mol dm−3 
KOH/1.0 mol dm−3 ethanol solution at 303 K, scan rate: 50 mV s−1. The inset in Figure 7d is 
the cyclic voltammograms of Pd/HCH and Pd/C in 1.0 mol dm−3 KOH solution at 303 K, 
scan rate: 50 mV s−1. Reproduced with permission from reference [130]. 

 

Figure 7. SEM microgram (a) and TEM image (b) of the HCHs with the mass
ratio of PSs to glucose of 1:2 and the cyclic voltammograms of (c) different alcohol
oxidation on Pd/HCH electrodes in 1.0 mol dm´3 KOH/1.0 mol dm´3 alcohol
solution at 303 K, scan rate: 50 mV s´1 and (d) ethanol oxidation on Pd/HCH
and Pd/C electrodes in 1.0 mol dm´3 KOH/1.0 mol dm´3 ethanol solution at
303 K, scan rate: 50 mV s´1. The inset in Figure 7d is the cyclic voltammograms of
Pd/HCH and Pd/C in 1.0 mol dm´3 KOH solution at 303 K, scan rate: 50 mV s´1.
Reproduced with permission from reference [130].

4.1.2. Pd Supported on Carbon Nanotubes

Carbon nanotubes (CNTs) can work as ideal substrate to modify the electrode
surface used in electrochemistry. Immobilizing metal nanoparticles on CNTs has
turned into an interesting field mainly due to the key role of CNTs and metal
nanoparticles in the field of electrocatalysis. There are three typical methods for
generating Pd nanoparticles on a CNTs surface: chemical reduction reaction, thermal
decomposition and electrochemical reduction reaction. Chen et al. [136] synthesized
Pd nanoparticles-carboxylic functional carbon nanotubes without surfactant. The
material revealed high electrochemical activity and excellent catalytic characteristic
for alcohol oxidation. Ding et al. [167,168] prepared Pd nanoparticles supported on
multiwalled carbon nanotubes. Chu et al. [169] prepared Pd-In2O3/CNTs composite
catalysts. The results showed that the addition of nanoparticles of In2O3 into Pd
catalysts could significantly promote the catalytic activity for ethanol oxidation.
Carbon nanotubes have higher graphitization degree than amorphous carbon which
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leads to higher stability in electrical environment, but higher graphitization also
brings a drawback: it is not easy to load Pd nanoparticles on the surface of carbon
nanotube evenly. The resolve of the dilemma will greatly accelerate the application
of carbon naotube as catalyst support material in fuel cell.

4.1.3. Pd Supported on Carbon Nanofibers

Carbon nanofibers (CNFs) as a novel carbon material offered an ideal
opportunity as catalyst support due to their superior electronic conductivity,
anti-corrosion ability, and high surface area. Qin et al. [170–172] prepared Pd catalyst
supported on carbon nanofibers (CNFs). The structure of the CNFs significantly
affected the catalytic activity of the catalyst because the CNFs had high ratio of edge
atoms to basal atoms and correspondingly faster electrode kinetics and stronger
Pd-CNFs interaction. Maiyalagan et al. [131] prepared carbon nanofibers (CNF)
supported Pd–Ni nanoparticles. The onset potential was 200 mV lower and the peak
current density four times higher for ethanol oxidation for Pd–Ni/CNF compared
to that for Pd/C. Cabon fibers prepared with novel nanotechnology can take the
advantage of carbon nanotubes such as high graphitization and high surface area,
at the same time it is also possible to construct functional groups on the surface of
carbon fibers which is beneficial of the deposition of Pd nanoparticles, so carbon
fiber will be a potential candidate as support material of Pd.

4.1.4. Pd Supported on Graphene

The combination of the high specific surface area (theoretical value of
2600 m2 g´1), excellent electronic conductivity, high chemical stability, unique
graphitized basal plane structure and potentially low manufacturing cost, graphene
nanosheets (GNS) can thus be exploited as an alternative material for catalyst
support in fuel cells. Recently, graphene has received great attention as the catalyst
support for fuel cell application. Wen et al. [173] prepared Tin oxide (SnO2)/GNS
composite as the catalyst support for direct ethanol fuel cells. Compared with
Pd/GNS, the Pd/SnO2-GNS catalyst showed superior electrocatalytic activity for
ethanol oxidation. Chen et al. [174] prepared ultrafine Pd nanoparticles on graphene
oxide (GO) surfaces. The as-made catalyst expressed high electrocatalytic ability
in ethanol oxidation relative to a commercial Pd/C catalyst. Singh et al. [142] used
graphene nanosheets (GNS) as a catalyst support of palladium nanoparticles for
the electrooxidation of ethanol. The Pd nanoparticles dispersed on GNS were more
active compared to those dispersed on nanocarbon particles (NC) or multiwall carbon
nanotubes (MWCNTs) for electrooxidation under similar experimental conditions.
The enhanced electrochemical activity of Pd/GNS toward alcohol oxidation can
be ascribed to the greatly enhanced electrochemical active surface area of Pd
nanoparticles on the GNS support.
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4.2. Pd Supported on Non-Carbon Supports

Conventional carbon supports are prone to undergo corrosion in aggressive
electrolytes that are very often encountered in fuel cells. The corroded carbon
support cannot hold the catalyst on its surface, leading to aggregation or sintering
of noble metal particles (reduces electrochemical active surface area) and often
resulting in oxidation and subsequent leaching of the catalyst. Corrosion of the
support/catalyst happens mainly because they are exposed to aggressive electrolytes,
high temperature and pressure, and high humidity. Carbon is known to undergo
corrosion even at open circuit voltages of the fuel cell. So there are some attempts on
the application of other materials other than carbon to use as support material of Pd.

4.2.1. Pd Supported on Conducting Polymers

Polyaniline (PANI) is one of the most important conducting polymers
remarkable for its high stability, solution processability and tunable electrical
conductivity, which can be controlled by simple doping of the polymer.
Pandey et al. [56] deposited a porous Pd-polyaniline (Pd-PANI) nanofiber film on
conducting surfaces and the Pd-PANI showed excellent electrocatalytic activity
towards the oxidation of ethanol. Su et al. [143] prepared Pd/polyamide 6 (Pd/PA6)
nanofibers with high surface area using a simple electroless plating method. The
Pd/PA6 showed excellent mechanical property, good conductivity, and high porosity.
The large surface area and reduced diffusion resistance of the free-standing Pd/PA6
nanofibers led to a superior catalytic property.

4.2.2. Pd Supported on Zeolite

Zeolite has a large specific area with strongly organized microporous channel
systems in which both a regular and high dispersion of metal nanoparticles can
be obtained. El-Shafei et al. [175] prepared Pd-zeolite graphite (Pd-ZG) electrodes
for ethanol oxidation. The Pd-ZG electrodes showed a better activity as well as
poisoning tolerance during ethanol oxidation in alkaline medium in comparison
with Pd electrode.

4.2.3. Pd Supported on Metal Supports

Nickel foam has the advantages of extinguished electronic conductivity, low
weight, and 3-D cross-linked grid structure which provids high porosity and surface
area. It can be used as an ideal support of catalyst. The nickel foam would
not only reduce the diffusion resistance of the electrolyte but also enhance the
facility of ion transportation and maintain the very smooth electron pathways in
the rapid electrochemical reactions. Wang et al. [144] fabricated a three-dimensional,
hierarchically structured Pd electrode by direct electrodepositing. The improved
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electrocatalytic activity and excellent stability of the Pd/Nickel foam electrode make
it a favorable platform for direct ethanol fuel cell applications.

Metal nanowire or nanotube array architecture can be a potential substrate to
improve noble metal utilization efficiency [176]. Besides it can act as a template,
which means that no stabilizer is required, it also serves as an excellent current
collector. Cherevko et al. [151] prepared highly ordered Pd decorated Au nanowire
arrays (Pd/Au NWA). The maximum current densities were several times higher
on the modified electrodes than on the unmodified Pd NWA. The highly active
electrode showed almost 4-fold increase in the peak current for ethanol oxidation. The
synergistic effect between substrate and deposited materials was a most important
factor infecting such unusually high activity.

4.2.4. Pd Supported on Nitrides

Titanium nitride (TiN) is a very hard, conducting ceramic material used as
an abrasive coating for engineering components. It possesses metal-like electronic
conductivity with a very reproducible surface for electron transfer. Thotiyl et al. [145]
studied the excellent metal-support interaction between Pd and TiN and found the
efficient ethanol oxidation coupled with excellent stability of the Pd-TiN catalyst.

4.3. Performance of Pd Novel Nano Structures

4.3.1. Core-Shell Structure

Hybrid nanomaterials, particularly, the core-shell structured hybrid
nanomaterials are promising due to their multi-functional and designable properties.
The core/shell structured nanomaterials has the ability to improve the stability and
surface chemistry of the core materials. It is possible to obtain unique structures
and properties for applications via a combination of the different characteristics of
the components that are not available with their single-component counterparts.
The carbon-coated nanomaterials are of great interest due to their stability toward
oxidation and degradation [177]. The creation of the core/shell nanostructures
containing bi-metal oxides greatly enhanced the catalytic efficiency of these structures
over pure single metal oxide particles [178]. Mahendiran et al. [146] synthesized
carbon coated NiO/MgO in a core/shell nanostructure. The results indicated that
the Pd-NiO/MgO@C catalyst has excellent electrocatalytic activity and stability.
Gao et al. [134] synthesized a core-shell structured Ru@PtPd/C catalyst, with PtPd
on the surface and a Ru as core. The ethanol oxidation activities of the Ru@PtPd/C
catalysts were 1.3, 3, 1.4 and 2.0 times as high as that of PtPd/C, PtRu/C, Pd/C and
Pt/C with same PtPd loadings, respectively. The stability of the Ru@PtPd/C was
higher than that of Pt/C and PtPd/C. Ksar et al. [38] synthesized bimetallic Pd-Au
nanostructures with a core rich in gold and a Pd porous shell. The Pd shell-Au
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core nanostructures synthesized in mesophases were promising for application in
direct ethanol fuel cells as they exhibited a very good electrocatalytic activity and
a high stability. The core-shell structure has some essential advantages such as the
synergistic effect between the core material and the shell which can improve the
kinetics of the reaction, the porous structure which greatly improves the mass transfer
in the electrode and the reduced cost because of the less use of the noble metal. So
vast efforts have been devoted to this field, but the core-shell structure is limited by
the preparation technique and its application in the membrane electrode assembly of
fuel cell is still a chanllenge.

4.3.2. Other Structures

Yu et al. [28] prepared dendritic Pd nanostructures, which exhibited high
catalytic activity toward ethanol oxidation in alkaline media. Yin et al. [147] prepared
Pd nanoparticles and the ethanol oxidation on the Pd catalysts took place at a
more negative anodic potential, implying a reduced overpotential. Wang et al. [148]
fabricated nanoporous Pd composites through chemical dealloying of the Al70Pd30

alloy. The nanoporous Pd composites had high electrochemical active surface areas
and exhibited remarkable catalytic activities toward ethanol oxidation in alkaline
media. Liu et al. [149] synthesized Pd nanowires with high catalytic activity and
long-term stability toward the oxidation of alcohols. Ksar et al. [150] synthesized Pd
nanowires with length of a few tens of nanometers. The Pd nanowires exhibited both
a very important catalytic activity for ethanol oxidation and a very high stability.
Liu et al. [31] prepared raspberry hollow Pd nanospheres (HPNs)-decorated carbon
nanotube (CNT) for the oxidation of ethanol in alkaline media. The catalyst was
fabricated by attaching HPNs onto the surface of the functionalized CNT. The
hybrid nanostructure exhibited higher mass activity toward ethanol oxidation which
increased the utilization of Pd. Pd dentric structure, Pd nanowires, hollow raspberry
spheres, hollow spheres [179], nanoparticles and nanomembrane [180] are prepared
and all showed superior catalytic activity in ehthanol oxidation, but they share the
same problem with the core-shell structure: how to a material with high half-cell
performance into a material with high full cell performance, which still needs great
efforts in the preparation technique.

4.4. Pd Alloys

Pd is well known to be very active for ethanol oxidation in alkaline. Alloying
Pd with another metal M (M = Au, Sn, Ru, Ag, Ni, Pb and Cu) is expected to increase
the activity and at the same time the stability of the catalyst for the EOR in alkaline
media [181].
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4.4.1. PdNi Alloys

Qiu et al. [156] prepared bimetallic Pd-Ni thin film on glass carbon electrodes
(GCEs). The high catalytic activity and the low cost of the Pd-Ni films enable
them to be promising catalyst for the oxidation of methanol and ethanol in alkaline
media. Qi et al. [157] fabricated Pd40Ni60 alloy catalyst with an enhanced catalytic
performance toward ethanol oxidation in alkaline media comoared with nanoporous
Pd. Maiyalagan et al. [131] prepared carbon nanofibers (CNF) supported Pd–Ni
nanoparticles. The onset potential was 200 mV lower and the peak current density
was four times higher for ethanol oxidation on Pd–Ni/CNF compared with that
of Pd/C. Shen et al. [182] synthesized carbon-supported PdNi catalysts for the
ethanol oxidation reaction in alkaline direct ethanol fuel cells. The Pd2Ni3/C catalyst
exhibited higher activity and stability for the EOR in an alkaline medium than that on
Pd/C catalyst. Bambagioni et al. [135] prepared Pd–(Ni–Zn)/C and Pd–(Ni–Zn–P)/C
catalysts which provided excellent results in terms of the specific current and onset
potential at room temperature.

4.4.2. PdAu Alloys

Xu et al. [132] prepare Pd-Au alloy catalyst for the EOR in an alkaline medium.
The catalyst samples were in sequence of Pd/C > Pd3Au/C > Pd7Au/C > PdAu/C
in terms of the peak current density. However, the stability tests demonstrated
that the catalyst samples were in sequence of PdAu/C > Pd3Au/C > Pd7Au/C >
Pd/C. Cheng et al. [133] prepared highly ordered PdAu nanowire arrays (NWAs).
The onset potential of ethanol oxidation on the PdAuNWAs electrode was 123 mV
more negative compared with that on the Pd NWAs due to the synergistic effect
of Pd-Au bimetallic alloy. He et al. [161] prepared carbon-supported Pd4Au and
Pd2.5Sn-alloyed nanoparticles, the results suggested that the Pd-based alloy catalysts
represented promising candidates for the oxidation of ethanol. The Pd4Au/C
displayed the best catalytic activity among the series for the ethanol oxidation in
alkaline media. Zhu et al. [162] decorated carbon-supported gold nanoparticles with
mono- or sub-monolayer Pd atoms, the Pd@Au/C had higher specific activities than
that of Pd/C for the oxidation of ethanol in alkaline media. This suggested that
the Pd utilization was improved with such a surface-alloyed nanostructure. Several
other alloys such as the PdPt alloy [152,183–185],

PdSn alloy [153,186], PdIr alloy [155,187], PdAg alloy [158,159,188], PdTi
alloy [189] and PdPb alloy [160] were also studied as the catalysts for the EOR.

4.5. Single Fuel Cell Characterizations

Although there were quite a lot reports about the Pd-based catalysts for ethanol
oxidation, especially, in alkaline media, the performance of a direct ethanol fuel
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cell operating in alkaline membrane was rarely reported. The reason is that the
anion-exchange membrane is not commercially available. The Tokuyama company
in Japan is one of the pioneers in the anion-exchange membrane and most reported
work were using their membranes. In recent years, Zhao’s group [132,182,190,191]
has done most of the work on the anion-exchange membrane direct ethanol fuel
cells (AEMDEFCs). Other researchers such as Antolini [192] and Bambagioni [193]
also tested the performance of the AEMDEFC, the results of these groups were
compared in Figure 8. It is found that the PdNi alloy had the highest activity which
was in accordance with the half cell testing. Among all catalysts, the Pd/C had
the lowest activity. The change of carbon powders to carbon nanotubes improved
the performance. A promising way was to alloy Pd with other metals, especially,
with Ni. The highest activity of the PdNi alloy catalyst reached more than 3 times
higher than that of Pd/C catalyst. The conclusion is similar with the half-cell results:
alloying with other metals will improve the performance, attention should be put to
multi-alloys. Another conclusion reached is the advantage of carbon nanotube versus
carbon powder with enhanced performance.Catalysts 2015, 5 1247 
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5. Pd-Based Catalysts for the Oxygen Reduction Reaction (ORR)

Oxygen reduction reaction (ORR) is one of the important catalytic reactions
due to its role in metal corrosion and electrochemical energy converters and, in
particularly, fuel cells. Pt group metal based catalysts were currently used for
PEMFCs to reduce the large ORR overpotential. Unfortunately, even on the most
active Pt surface, the overpotential was over 250 mV at open circuit voltage (OCV).
The thermodynamic efficiency droped from 83% (1.229 V) to 66% at an OCV value
of 0.98 V under standard conditions. Since the exchange current density of the
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ORR is several orders of magnitude slower than that of the hydrogen oxidation
reaction (HOR) (10´9 A cm´2 vs. 10´3 A cm´2), the operating voltage must be
largely reduced to about 0.65 V at a reasonable current density, making the electronic
efficiency of the PEMFCs only at 44% [194]. Pt is widely used as the catalyst for ORR
due to its high activity and excellent chemical stability. However, Pt is expensive and
the limited supply of Pt poses serious problems to widespread commercialization
of the fuel cell technology. Thus, research efforts in the development of cathode
catalyst have been focused on decreasing the Pt content or replacing it with less
expensive materials while maintaining high ORR activity. An alternative approach
is to replace Pt with less expensive, catalytically active, and relatively stable noble
metals and to alloy the noble metals with base metals to enhance their stability
and activity via electronic modification. Pd is the second most active metal for the
ORR. Pd possesses a similar valence electronic configuration and lattice constant to
Pt and highly methanol-tolerant ability. However its mass activity for the ORR is
approximately five times lower than that of Pt. In an acidic electrolyte, the exchange
current density of Pd for ORR is 10´10 A cm´2, which is one magnitude lower than
that of Pt (10´9 A cm´2). Binary Pd-base metal (BM) (where BM = Co, Ni, Fe, Cu,
W and Mo) systems have been identified as promising PEFC cathode catalyst with
enhanced activity for ORR and stability compared to Pd alone. The origin of the
enhanced activity has been linked to the modification of the electronic structure
of Pd upon bonding with the alloying metal. In addition to enhancing activity,
the dissolution potentials of the noble metals may be shifted to higher potentials,
stabilizing the catalyst against dissolution in acidic medium.

With the rapid development of alkaline anion exchange membranes for
substituting the conventional aqueous alkaline electrolyte, attention has been drawn
to the study of ORR catalysts in alkaline media. More ORR catalysts are available for
operation in alkaline than in acidic media due to the excessive corrosion in acidic
solutions. In alkaline solution, Pd-based alloys are suitable alternative of Pt not only
due to its lower costs and more abundance but also to the lower activity for the
adsorption and oxidation of methanol in direct methanol fuel cells which tends to
crossover to the cathode compartment and inhibits ORR. Recent reports have shown
that ORR activity on the Pd alloys is comparable or slightly better than that on Pt/C.

Table 3 summarized the performance of Pd and Pd alloys as catalysts for ORR.
In acidic solution, the most positive onset potential on Pd catalyst was only 0.87 V
vs. RHE which was almost 0.2 V negative compared with Pt catalyst. In alkaline
solution, the onset potential on Pd catalyst was comparable to that of Pt catalyst. The
onset potential could be improved to 1.05 V when alloyed with Pt, the highest record
for alloying with non-noble metal was 0.96 V in half cell testing. Fuel cell testing
gave similar conclusions. The performance of Pd catalyst could not surpass that of
Pt catalyst in both PEMFC and direct alcohol fuel cells, but when Pd was alloyed
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the performance could be slightly better than or comparable to the commercial
Pt catalyst.

Table 3. Comparison of the onset potential and mass activity of Pd for oxygen
reduction reaction (ORR).

Catalysts Mass Activity/mA
mg´1

Pd

Onset Potential/V
vs. RHE

Conditions Solution
**/Scan Rate/Rotating

Speed
References

Pd/C / 0.87 A/5 mV s´1/1600 rpm [195]
Pt/C (JM) / 1.05 A/5 mV s´1/1600 rpm [195]
Pd–PPy/C / 0.82 (NHE) A/5 mV s´1/1600 rpm [196]

40% E-TEK Pt/C / 0.98 (NHE) A/5 mV s´1/1600 rpm [196]
Pd/Vulcan XC-72R 47 at 0.7 V * 0.82 A/5 mV s´1/1600 rpm [197]

20% E-TEK Pt/C 0.92 A/5 mV s´1/1600 rpm [197]
E-Tek 20% Pd/C 23 at 0.7 V * 0.77 A/5 mV s´1/1600 rpm [197]

PdFe-WC/C / 0.91 A/10 mV s´1/1600 rpm [198]
Pt50Au50/CexC 4.1 at 0.7 V * / A/5 mV s´1/1600 rpm [180]

PdCoMo/CDX975 4.1 at 0.7 V * 0.915 A/5 mV s´1/1600 rpm [199]
Pd/CDX975 1.6 at 0.7 V * 0.84 A/5 mV s´1/1600 rpm [199]
Pd100´xWx / 0.85 A/5 mV s´1/1600 rpm [200]

Pd / 0.7 A/5 mV s´1/1600 rpm [200]
PdPt/C / 0.98 A/5 mV s´1/1600 rpm [201]

Pt rich-core Pd rich-shell 9 at 0.85 V * (catalyst) / A/5 mV s´1/1600 rpm [202]
JM20 Pt/C 5.8 at 0.85 V * (catalyst) / A/5 mV s´1/1600 rpm [202]

Pd/Au
0.34 at 0.8 V * / A/10 mV s´1 [203]
1.1 at 0.8 V * / B/10 mV s´1 [203]

Pd/MWCNTs / 0.76 (SHE) B/10 mV s´1 [91]
PdCu/C 23 at 0.9 V * 0.96 B/10 mV s´1/1600 rpm [204]

Pd–Cu film / 0.86 B/5 mV s´1/1000 rpm [205]
Pd–Co/C 3.6 at 0.7 V * / B/5 mV s´1/1600 rpm [206]
Pt–Pd/C / 0.92 B/5 mV s´1/1600 rpm [207]
Pt–Pd/C 114.87 at 0.9 V * (Pt) 1.05 B/5 mV s´1/1600 rpm [208]

Pt/C 73.87 at 0.9 V * (Pt) 1.0 B/5 mV s´1/1600 rpm [208]

PdFe@PdPt/C
1.92 at 0.8 V * (Pt) / B/20 mV s´1/1600 rpm [209]
1.2 at 0.8 V * (Pt) / B/20 mV s´1/1600 rpm [209]

PdCo@PdPt/C 65 at 0.9 V * (Pt) / B/20 mV s´1/1600 rpm [210]
Pt/C 14 at 0.9 V * (Pt) / B/20 mV s´1/1600 rpm [210]

PdFe Nanorods 284 at 0.85 V * / B/10 mV s´1/1600 rpm [211]
Pt/C 265 at 0.85 V * (Pt) / B/10 mV s´1/1600 rpm [211]

Pt/Pd/Pd3Fe 1.8 at 0.9 V * / B/20 mV s´1/1600 rpm [212]
Pt(111) 0.8 at 0.9 V * / B/20 mV s´1/1600 rpm [212]

Pd/SnO2–KB 0.75 at 0.8 V * 0.88 B/5 mV s´1/900 rpm [64]
Pd/KB 0.28 at 0.8 V * 0.86 B/5 mV s´1/900 rpm [213]

Tanaka Pt/C / 0.95 B/5 mV s´1/900 rpm [213]
Pd/GNS 280 at 0.9 V * 1.06 C/10 mV s´1/1600 rpm [188]
Pt/GNS 110 at 0.9 V * 1.0 C/10 mV s´1/1600 rpm [188]

Pd@MnO2/C 450 at 0.9 V * 1.02 D/10 mV s´1/2500 rpm [214]
Pd black 180 at 0.9 V * 1.07 D/10 mV s´1/2500 rpm [214]

* The potentials were vs. RHE; **solution A: 0.5 M H2SO4, solution B: 0.1 M HClO4,
solution C: 0.1 M NaOH and solution D: 0.1 M KOH.

5.1. Pd Supported on Carbon Materials

5.1.1. Pd on Carbon Powder

Although Pd is the second most active metal for the ORR, its mass activity
is approximately five times lower than that of Pt since the ORR exchange current
density is one magnitude lower than that of Pt. Tang et al. [195] synthesized a carbon
supported Pd/C catalyst which showed high activity for the ORR. However, the
performance of the Pd/C was still much poorer than that of the commercial Pt/C.
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There was a big difference in onset potential for the ORR in acidic solution. Single
cell with Pd/C as the cathode displayed a maximum power density of 508 mW cm´2,
which was almost half of that of the commercial Pt/C catalyst. Different supporting
materials such as highly ordered pyrolytic graphite and modified carbon was
studied [215]. Jeyabharathi et al. [196] synthesized carbon-supported Pd-polypyrrole
(Pd-PPy/C) nanocomposite. The introduction of Pd in the conducting PPy/C matrix
gave higher catalytic activity toward ORR with resistance to methanol oxidation.
The performance of the Pd-PPy/C catalyst was still inferior to the Pt/C catalyst.
Kumar et al. [197] studied the influence of the chemical pretreatment of carbon
support for ORR on Pd nanoparticles in acidic electrolyte. They found that the
chemical treatment significantly changed the surface chemical properties and surface
area of the carbon support. The kinetics of ORR on these catalysts predominantly
involved a four-electron step. The performance of the Pd on pretreated carbon
support was found to be much higher than the commercial E-Tek 20% Pd/C catalyst
with the mass activity of 47 mA mg´1

Pd at 0.7 V RHE compared to 23 mA mg´1
Pd of

E-Tek catalyst. It is concluded that limited by the intrinsic kinetic of ORR on different
metals, the performance of the most popular Pd/C catalyst is much less than the
Pt/C catalyst. However, considering the difference in the cost, it is still meaningful to
study the Pd/C catalyst, but new material or structure should be put more attention.

5.1.2. Pd Supported on Carbon Nanotubes

Chakraborty et al. [91] synthesized nanosized Pd particles supported on
multiwalled carbon nanotubes (MWCNTs). The authors concluded that the catalytic
reduction of the oxygen followed a four electron pathway on Pd-based catalysts.
Jukk et al. [216] found enhanced electrocatalytic activity of PdNP/MWCNT modified
GC electrodes and the oxygen electroreduction kinetics were higher compared with
those of bulk palladium electrodes. The number of electrons transferred per oxygen
molecule was calculated to be 4. Kim et al. [217] studied the influence of counter ions
on the oxygen reduction of Pd catalyst on functionalized carbon nanotube and found
that the electrocatalytic activity is affected by the nature of anion of imidazolium salt.
As is known the activity of Pd on carbon powder is less than Pt/C, not too much
work is done on the attempts of loading Pd on carbon nanotubes for ORR application.
However if carbon nanotubes can be helpful in the stability there will be new interest
in this field.

5.1.3. Pd Supported on Graphene

Graphene is found to have vast applications in many fields where carbon
powder or carbon nanotubes are used, for example as catalyst support in
electrocatalysis. There was no report to prove that the activity of Pd catalyst for the
ORR could surpass that of Pt catalyst in acidic solution. However, it is possible for
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the Pd catalyst to perform better than that of the Pt catalyst for the ORR in alkaline
solution when supported on graphene. Seo et al. [218] studied graphene supported Pd
catalyst in alkaline media. The graphene-supported Pd catalyst (Pd/GNS) showed
significantly high catalytic activity for the ORR with higher mass activity and surface
area for ORR in an alkaline solution. The catalyst was more favorable for ORR than
that of the Pt/GNS catalyst at high metal loadings. The mass activity at 0.85 V vs.
RHE of the Pd/GNS reached 0.84 mA µg´1

Pd, while, the value was 0.35 mA µg´1
Pd

for the Pt/GNS. Pd metal decorated graphene oxide was found to have high ORR
activity via the direct four electron pathway [219]. Gotoh et al. [220,221] also proved
that Pd supported on graphene oxide showed better performance in ORR than Pt.

5.2. Pd Supported on Oxides

Oxides such as manganese dioxide was used as support to form Pd@MnO2

catalyst [214]. The ORR onset potential on the Pd@MnO2 catalyst positively shifted
for more than 250 mV compared with the MnO2 catalyst without Pd. Both the ORR
onset potential and the limit current density obtained by the rotating disk electrode
(RDE) measurements on the Pd@MnO2 catalyst were close to those on the Pd black
catalyst. The mass activity of the Pd@MnO2 catalysts (normalized by Pd mass) was
2.5 times higher than that of the Pd black catalyst. The PtPd/TiO2 electrocatalyst
with a proper ratio of Pt/Pd showed activity comparable to that of a commercial
Pt/C catalyst [222]. The interaction between Pd and highly dispersed TiO2 is proven
to improve the catalytic activity of Pd supported on TiO2-modified carbons [223].

5.3. Pd Alloys

The intrinsic catalytic activity of Pd for the ORR is lower than that of Pt
and the long-term stability at high potentials is also not as good as that of Pt. It
has been proven that the ORR takes place on Pd in the same manner as that on
Pt. As like Pt, the oxygen intermediate species will be covered on Pd surface at
technically relevant potentials regioning from 0.7 to 0.9 V vs. NHE and hinders
oxygen reduction. So the development of the Pd alloy catalysts that inhibit the
adsorption of oxy/hydroxy species and enhance the ORR activity has been of interest.
Bimetallic catalysts often exhibit notably different catalytic and chemical properties
than their corresponding monometallic component. Bimetallic systems often provide
enhanced selectivity, stability, and/or activity [224,225]. Several mechanisms to
explain the catalytic properties of bimetallic catalysts have been proposed including
geometric or ensemble effects, formation of bifunctional surfaces and electronic
modification of the surface sites [226].
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5.3.1. PdFe Alloys

Yin et al. [198] synthesized a PdFe-WC/C cathodic catalyst for ORR. The ORR
activity of the PdFe–WC/C catalyst in acidic solution was found to be comparable
to that of Pt/C catalyst. It was believed that the high catalytic activity as a
Pt-free catalyst originated from the synergistic effect between PdFe and WC. The
alcohol-tolerance and selectivity of the PdFe-WC/C catalyst are favorable for the
ORR. Tungsten-based materials as novel supports have been intensively studied
due to their chemical and/or electrochemical activities for various reactions as they
exhibit a synergistic effect in many reactions. The use of WC as the catalyst support
for PEMFCs and DMFCs has also been reported [227–231] PdFe/C catalyst was also
found to have better performance in ORR than Pd/C catalyst [232,233].

5.3.2. PdCu Alloys

Gobal et al. [234,235] prepared CuPd alloys with different compositions on nickel.
The number of transferred electrons involved in the ORR on Pd-Cu alloys is four,
which is the same as Pt. A 60 mV/dec Tafel slope for the ORR was found for all the
PdCu alloys. The enhancement of the activity of the alloy toward ORR was attributed
to the change in geometric and electronic structures of Pd caused by the insertion of
Cu. Kariuki et al. [204] prepared monodispersed PdCu alloy nanoparticles, which
showed high ORR activity in acidic electrolyte. Fouda-Onana et al. [205] found
Pd50Cu50 exhibited the high activity in ORR. The enhancement was attributed to an
optimal d-band property that made the OOH dissociative adsorption easier, which
was considered as chemical rate determining step (RDS) for the ORR [236,237].

5.3.3. PdAg Alloys

Ag catalysts have lower activity in ORR than those of Pt catalysts because of
their weak interaction for binding O2. However, the inexpensive Ag nanoparticles
have been shown to have higher stability than pure Pt cathodes during long-term
operation. Lee et al. [238] supported AgPd alloy on multiwalled carbon nanotubes
and found that the ORR proceeded through a two-electron pathway, while according
to other authors the ORR on AgPd alloy was a four-electron process [239,240]. In
alkaline medium the electrode reaction kinetics is higher than that in the acidic
medium, enabling the use of Pt-free catalysts. Oliveira et al. [159] evaluated PdAg
alloys toward the ORR in alkaline medium and found that alloying Pd with Ag
leaded to an increase in the ORR kinetics relative to Pd.

5.3.4. PdAu Alloys

Gold has been used as support material for studying the catalytic behaviour
of Pd. Sarapuu et al. [203] evaluated the influence of the Pd film thickness and
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Au substrate to the ORR activity of Pd. The ORR proceeded through 4-electron
pathway on all PdAu electrodes. The specific activity of ORR was lower in H2SO4

solution and decreased slightly with decreasing the Pd film thickness. In HClO4,
the specific activity was higher and was not significantly dependent on the film
thickness. Xu et al. [241] found Au-modified Pd catalyst exhibited increased catalytic
activity for ORR in alkaline media, which was 1.4 times higher than that with the
mono-Pd catalyst.

5.3.5. PdCo Alloys

There was an in-depth understanding of the various factors that ifluence the
catalytic activity of the PdCo nanoalloys [242–244]. It was found that a mild annealing
of the alloys at moderate temperatures (350 ˝C) was desirable to clean the surface
and maximize the catalytic activity and durability [245–247]. Tominaka et al. [248]
synthesized a mesoporous PdCo sponge-like nanostructure with a most desirable
lattice contraction into a Pd catalyst for the ORR. The mesoporous PdCo catalyst had
a higher specific activity than that of the Pt catalyst. Wei et al. [206] obtained PdCo/C
alloy catalysts with an atomic ratio of 3:1. They found the well-formed PdCo alloy
showed excellent ORR activity. Serov et al. [249] investigated PdCo catalysts for ORR
in a direct methanol fuel cell. Such a non-Pt catalyst showed comparable power
density with a commercial MEA prepared using Pt cathode. Rao et al. [199] prepared
PdCoMo alloy nanoparticles with better catalytic activity compared with Pd.

5.3.6. PdPt Alloys

The nanosized Pd supported on carbon black will gradually grow larger during
long-term operation, thus reducing the electrochemical active surface area and
resulting in irreversible performance loss. Many works had been tried to improve the
performance and durability of the catalyst, alloying with other metal is one important
method. Lots of works had been done on the alloys of Pd with other noble metal,
for example Pt [250–252]. Pd and Pt had a face-centered cubic (fcc) phase with a unit
length of 3.92 Å for Pt and 3.89 Å for Pd. The small lattice mismatch meant that the
epitaxial growth should be favored. Figure 9 shows a typical result of PdPt alloy for
the ORR. The PdPt nanodendrites were two and a half times more active than the
state-of-the-art Pt/C catalyst [253–255].

The PtPd/C showed a comparable performance and better durability than that
of the Pt/C [201]. Thanasilp et al. [256] demonstrated that the different Pt:Pd atomic
ratios had a significant effect on the catalyst activity. Decreasing the Pt:Pd atomic
ratio led to an increase in the particle size and decrease in the electrochemical activity.
Fıçıcılar et al. [257] found that when the particle size of Pd increased with the content
and a lower Pd content exhibited a considerable activity and increased stability
Chang et al. [202] found that the Pt3Pd1/C nanocatalyst has a 50% enhancement
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in ORR due to the synergistic effect. Ohashi et al. [207] prepared various PtPd/C
bimetallic catalysts with a higher tolerance to ripening induced by potential cycling.
Peng et al. [208] designed a Pt particle-on-Pd structure to address both the activity and
stability issues. Other alloys of Pd–W, [200] Pd–V, [258] Pd–Ni [259,260], Pd–Sn [261,262]
and Pt–Ir–Re [263] were also studied as catalysts for the ORR.
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Figure 9. Comparison of the catalytic properties of the Pd-Pt nanodendrites, Pt/C catalyst 
(E-Tek), and Pt black (Aldrich). (A) The CV curves recorded at room temperature in  
an Ar-purged 0.1 M HClO4 solution with a sweep rate of 50 mV s−1; (B) specific ECSAs 
(electrochemical active surface area) for the Pd-Pt nanodendrites, Pt/C catalyst, and Pt 
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recorded at room temperature and 60 °C in an O2-saturated 0.1 M HClO4 solution with  
a sweep rate of 10 mV s−1 and a rotation rate of 1600 rpm and (D) mass activity at  
0.9 V versus RHE (reversible hydrogen electrode) for these three catalysts. Reproduced 
with permission from reference [253]. 
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Figure 9. Comparison of the catalytic properties of the Pd-Pt nanodendrites,
Pt/C catalyst (E-Tek), and Pt black (Aldrich). (A) The CV curves recorded at
room temperature in an Ar-purged 0.1 M HClO4 solution with a sweep rate of
50 mV s´1; (B) specific ECSAs (electrochemical active surface area) for the Pd-Pt
nanodendrites, Pt/C catalyst, and Pt black; (C) ORR polarization curves for the
Pd-Pt nanodendrites, Pt/C catalyst and Pt black recorded at room temperature and
60 ˝C in an O2-saturated 0.1 M HClO4 solution with a sweep rate of 10 mV s´1 and
a rotation rate of 1600 rpm and (D) mass activity at 0.9 V versus RHE (reversible
hydrogen electrode) for these three catalysts. Reproduced with permission from
reference [253].
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5.4. Novel Nanostructures

Recent attention has been drawn to the strong dependence of the catalytic
properties of Pd on their surface morphologies. For example, the specific activity
of the Pd nanorods prepared by electrodeposition was found to be close to that
of Pt in acidic solution and was 10 times higher than that of electrodeposited Pd
nanoparticles [264]. The higher activity was attributed to the exposure of Pd (110)
surface facet. The activity of the Pd with low index planes increased in the following
order: Pd(110) < Pd(111) < Pd(100) [265–267]. The Pd(100) single crystal plane was
even more active than Pt(110) in 0.1 M HClO4. The low indexed Pd became favorable
in the electrochemical reaction, controlling the morphology is one of the commonly
used methods to get low indexed metal.

5.4.1. Core-Shell Structures

The heterogeneous core shell structure has many advantages. First of all, the
core-shell structure can greatly reduce the cost of the catalyst. Second, the strain
caused by the lattice mismatch between the surface and core components may be
used to modify the electronic properties of the surface metal atoms, most notably
their d-band centres, which affect the rates of one or more elementary steps in the
overall catalytic reaction [268–270].

Lim et al. [253] synthesized PdPt bimetallic nanodendrites consisting of Pt
branches as shell and Pd as core, the nanodendrites were two and half times more
active for the ORR than the state-of-the-art Pt/C catalyst. Peng et al. [208] also
found improved stability for ORR with a Pt-on-Pd core-shell nanostructure. It was
calculated that the optimal coverage of Pt on Pd (111) surface was on the order of two
monolayers [271]. Yang et al. [209] prepared a core-shell structure with a PdFe core
and a PdPt shell, which showed four times ORR activity compared with a commercial
Pt/C catalyst. Yang et al. [210] constructed a PdPt shell on a PdCo core with six fold
increases in the activity and with much higher stability. Sasaki et al. [272] illustrated a
core/shell catalyst with Pd and Pd9Au1 alloy as core and Pt monolayer as shell with
high activity and very high stability. The origin of the improved activity and stability
of the core-shell catalyst was studied. The Pd core not only assured the long-term
stability of the monolayer Pt shell, but increased the activity of Pt by causing it to
contract slightly, lowering its d-band centre energy and reducing the bond strength
of the adsorbed oxygen intermediates. These effects decreased the bonding of OH
and O to Pt that inhibited the ORR kinetics and also stabilize Pt against oxidation
and dissolution.
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5.4.2. Unsupported Pd

Besides the most frequently used supported Pd catalysts, the application of
nano-structured Pd as catalyst for the ORR has also been studied. For example,
PdFe nanorods [211], PdCoxCNy [273], Pt monolayer supported on Pd/Pd3Fe [212]
and Pd/SnO2 [213] demonstrated significantly increased ORR activity. The catalytic
activity of Pd could become comparable to that of Pt upon appropriate modification of
its electronic structure. The surface specific activity of Pd nanorods (Pd-NRs) toward
the ORR was found to be not only 10-fold higher than that of Pd nanoparticles
(Pd-NPs), but also comparable to that of Pt at operating potentials of fuel cell
cathodes [264]. Zhang et al. [194] prepared PdFe-nanoleaves with Pd-rich nanowires
surrounded by Fe-rich sheets. The structure demonstrated three times increased
specific activity and 2.7 times increased mass activity compared witha commercial
Pt/C catalyst.5.5. Singal Fuel Cell Characterizations

Two kinds of fuel cells, the PEMFC feeding with H2/O2 and direct alcohol
(ethanol of methanol) fuel cells, were studied by using above mentioned catalysts.
In PEMFC applications, Tang et al. [195] proved the performance of Pd/C was
much less than that of the commercial Pt/C. Single cell with Pd/C as the cathode
displayed a maximum power density of 508 mW cm´2 which was almost half of
that of commercial Pt/C catalyst. This result was the same with the half cell test, that
is, the performance of Pd/C catalyst was much inferior to that of the Pt/C catalyst
for the ORR. Thanasilp et al. [256] studied the influence of Pt:Pd atomic ratios on
a carbon supported upon its suitability as a cathode for a PEMFC. Although the
different Pt:Pd atomic ratios had a significant effect on the performance in a H2/O2

fuel cell, the performance of the PdPt alloy was still much lower than that of Pt/C
catalyst. Rosa et al. [274] directly sprayed Pd ink on carbon paper to form a novel
oxygen diffusion electrode for the PEMFC, but the utilization efficiency of Pd was not
satisfactory. With the help of nanotechnology, the performance of Pd catalyst with
novel nano-structures as the PEMFC cathode was greatly improved. Li et al. [211]
synthesized PdFe nanorods with tunable length which showed a better PEMFC
performance than that of the commercial Pt/C due to their high intrinsic activity to
ORR at reduced cell inner resistance and improved mass transport.

In direct alcohol fuel cells, Xu et al. [241] studied Au-modified Pd catalysts on
carbon nanotubes which yielded a peak power density of 1.4 times higher than that
with the mono-Pd cathode but was still less than Pt cathode. Pd alloys such as
PdCoMo alloy [199] and PdCo alloy [199] showed comparable performance with
that of commercial Pt/C, the PdNi alloy showed much higher performance than of
Pd/C but still inferior to that of Pt/C catalyst [260]. It turns out that alloying Pd with
other metals like Fe, Co and Ni is possible to improve the performance, reduce the
cost and improve the stability of fuel cell.
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6. Conclusions and Future Perspective

This article reviewed the latest advances in Pd-based catalysts for fuel cells. The
review focused on Pd nanostructure, Pd catalysts for formic acid oxidation, alcohol
oxidation and oxygen reduction reaction.

Different Pd morphologies were prepared. Due to the intrinsic advantages
in crystallography and morphology, most of the Pd nanomaterials have high
performance in fuel cell half cell characterization. Both the activity and stability
of the catalysts could be improved, which would significantly reduce the usage
of Pd in fuel cells. But the nano-structured Pd could not be vast applied in fuel
cell, because of the limited yield and the difficulty in the MEA preparation. Futhure
studies should be conducted to realize the mass production and find ways for efficient
MEA preparing techniques.

As fuel cell catalysts for formic acid oxidation, methanol oxidation and oxyren
reduction, Pd was loaded on carbon powders or other novel supports such as
graphene and carbon nanotubes to achieve high electrochemical active surface area
and improve the utilization efficiency of the Pd catalyst. The nature of the support
materials also had great influence on the activity of Pd catalyst. Supported Pd
nano-strucutures often had better performance than particles. Alloying with other
metals could modify the electronic structure and induce tensile strain of the Pd
clusters and finally infiuence their catalytic activities. There was great potential in
the development of Pd alloy catalysts especially with non-noble metals to perform
improved performance and stability and at the same time the reduced cost.

Considering the cost and comparable activity with Pt, the Pd-based catalysts
are potential candidates as main catalysts for fuel cells to reduce the use of Pt and
the cost for commercialization.
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Recent Advances on Electro-Oxidation of
Ethanol on Pt- and Pd-Based Catalysts: From
Reaction Mechanisms to Catalytic Materials
Ye Wang and Wen-Bin Cai

Abstract: The ethanol oxidation reaction (EOR) has drawn increasing interest in
electrocatalysis and fuel cells by considering that ethanol as a biomass fuel has
advantages of low toxicity, renewability, and a high theoretical energy density
compared to methanol. Since EOR is a complex multiple-electron process involving
various intermediates and products, the mechanistic investigation as well as the
rational design of electrocatalysts are challenging yet essential for the desired
complete oxidation to CO2. This mini review is aimed at presenting an overview
of the advances in the study of reaction mechanisms and electrocatalytic materials
for EOR over the past two decades with a focus on Pt- and Pd-based catalysts.
We start with discussion on the mechanistic understanding of EOR on Pt and Pd
surfaces using selected publications as examples. Consensuses from the mechanistic
studies are that sufficient active surface sites to facilitate the cleavage of the C–C
bond and the adsorption of water or its residue are critical for obtaining a higher
electro-oxidation activity. We then show how this understanding has been applied
to achieve improved performance on various Pt- and Pd-based catalysts through
optimizing electronic and bifunctional effects, as well as by tuning their surface
composition and structure. Finally we point out the remaining key problems in the
development of anode electrocatalysts for EOR.

Reprinted from Catalysts. Cite as: Wang, Y.; Zou, S.; Cai, W.-B. Recent Advances
on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction
Mechanisms to Catalytic Materials. Catalysts 2015, 5, 1507–1534.

1. Introduction

Rising demands for energy coupled with concerns over ecosystem damage
and growing consumption of non-regenerative fossil energy pose a great need
for clean and efficient power sources [1–4]. Fuel cells are widely considered as
sustainable energy conversion devices. Low-temperature fuel cells are undergoing
rapid development for mobile applications and in particular for the transport sector.
Among different fuels that have been used for fuel cells, hydrogen, methanol, and
ethanol have been the most explored and each has its advantages and disadvantages.
The choice of the fuel depends on the applications. Proton exchange membrane fuel
cells (PEMFCs) using hydrogen as the fuel have the advantages of low operating
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temperature, sustained operation at high current densities, low weight, compactness,
and suitability for discontinuous operation, but face challenges in the production,
storage and transport of hydrogen. As an alternative fuel, ethanol which can be
produced on a massive scale from biomass feed stocks originating from agriculture
(first-generation bioethanol), forestry, and urban residues (second-generation
bioethanol), is attracting increasing interest [5–8]. Compared to another common
fuel, methanol, ethanol complements the shortcomings of methanol owing to its
non-toxicity, higher boiling point, and most importantly, renewability. In addition,
ethanol has a high specific energy of 8.01 kWh¨ kg´1, which is comparable to that of
gasoline [9,10]. Nevertheless, the relatively sluggish kinetics for the ethanol oxidation
reaction (EOR) presents a major roadblock for the development of direct ethanol
fuel cells (DEFCs) [3,7]. Higher performance catalysts are needed to overcome this
bottleneck. A detailed understanding of the reaction mechanism and in particular of
the rate-limiting step(s) in EOR under continuous reaction conditions is of critical
importance for the design of highly active catalysts [11,12]. Although numerous
experimental studies using Fourier transform infrared spectroscopy (FTIR) [13–26] or
differential electrochemical mass spectrometry (DEMS) [27–37], as well as theoretical
studies [38–45] have been conducted to understand the EOR process, a detailed
mechanism of EOR remains unclear or even contradictory. Nevertheless, a so-called
dual-pathway (C1 and C2) mechanism has been largely agreed upon: the C1 pathway
proceeds via adsorbed carbon monoxide (COads) intermediate to form CO2 (or
carbonate in alkaline solutions) by delivering 12 electrons, and the C2 pathway
mainly leads to the formation of acetic acid (or acetate in alkaline solutions) by
delivering four electrons and/or acetaldehyde by delivering two electrons. Though
a higher electro-efficiency can be achieved by the C1 pathway, the C2 pathway is
generally dominant in the overall EOR [46–49]. Therefore selectively enhancing the
C1 pathway by rational design of high performance catalysts is an effective way to
increase the DEFC efficiency.

Pt is the most commonly used catalytic metal in the anode of DEFCs because
of its excellent properties in the adsorption and dissociation of ethanol. However,
the cost of Pt is a major impediment in the commercialization of fuel cell technology,
because it alone accounts for approximately 54% of the total fuel cell stack cost [3].
On the other hand, Pd has similar catalytic properties to Pt (in the same group of
the periodic table, having the same face centered cubic (fcc) crystal structure and a
similar atomic size) [12], but is much lower in material cost. Moreover, the abundance
of Pd on the Earth’s crust is 200 times higher than that of Pt (0.6 part per billion (ppb)
vs. 0.003 ppb), making it very attractive for long-term industrial applications [3].
Though Pt and Pd show relatively good activity, a complete oxidation of ethanol
in both acidic and/or basic media remains virtually impossible. A large number of
studies have reported the enhancement of the electrocatalytic performance of Pt-M
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and Pd-M binary or ternary catalysts by adding additional elements such as metallic
elements Ru, Sn, Ir, Bi, Rh, Mo, Fe, Co, Cu, Ni, Au, Ag and nonmetallic elements,
oxides etc. Yet, there are many unanswered questions regarding the role of these
foreign materials in improving the electrocatalytic activities. To rationally design
Pt- or Pd-based materials as anode catalysts and to develop DEFC technology, a
better understanding of the structure-electrocatalytic activity relationships in the
EOR is a pre-requisite.

In this review, by discussing selected publications on mechanism studies and the
development of advanced catalysts, we present an overview of how the achievements
in mechanism studies have been used to guide the rational design of catalysts. Recent
advancements in fundamental studies as well as in developing promising new anode
EOR catalysts are briefly surveyed. Finally, we summarize the key problems in the
investigation on catalysts for EOR and provide outlooks for their future development.
Because EOR is under active research, it is impossible to cover every aspect of the
new developments. We therefore focus our discussion on Pt- and Pd-based catalysts.
Selected examples are only used to facilitate the discussion and inevitably we may
have omitted other significant contributions in the field.

2. Reaction Mechanism of EOR

Activity, selectivity, and stability are critical issues that need to be addressed
for any catalysts. Comprehensive fundamental studies of EOR form the basis of
design rules for high efficiency catalysts [2,21,26,47,50]. A great deal of work on the
mechanisms of Pt- or Pd-based catalysts have been devoted to solve the long-standing
puzzle concerning the intermediates and the products from EOR. The pioneering
work on the mechanism of EOR can be traced back to the 1950s [51] and now has been
evolved into a commonly accepted dual-pathway mechanism on Pt- or Pd-based
catalysts in either acidic or alkaline media as shown in Figure 1. [44,47,52–55].
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Figure 1. Schematic representation of the parallel pathways for ethanol oxidation
on Pt electrodes in acidic media.

The C1 pathway is the complete oxidation of ethanol to CO2 or carbonates via
COads intermediate by delivering 12 electrons and the C2 pathway is the partial
oxidation of ethanol to acetate by delivering four electrons or to acetaldehyde by
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delivering two electrons without the breaking of the C–C bond as shown in the
following equations:

C1 pathway:
CH3 ´CH2OH ` 3H2OÑ2CO2 ` 12H+ ` 12e- (1)

CH3 ´CH2OH ` 5H2OÑ2HCO3
- ` 14H+ ` 12e- (2)

CH3 ´CH2OH ` 5H2OÑ2CO3
2- ` 16H+ ` 12e- (3)

C2 pathway:

CH3 ´CH2OH ` H2OÑCH3 ´COOH ` 4H+ ` 4e- (4)

CH3 ´CH2OHÑCH3 ´CHO ` 2H+ ` 2e- (5)

Adsorbed CO, C1 and C2 hydrocarbon residues have been identified as the
major adsorbed intermediates on Pt- or Pd-based catalysts, while acetaldehyde and
acetic acid have been detected as the main by-products using techniques such as
infrared spectroscopy [13–26], online DEMS [27–37], ion chromatography [56,57],
and liquid chromatography [14]. However, EOR has been shown to occur via a
series of complex reactions involving a number of sequential and parallel reaction
steps, thus resulting in more than 40 possible volatile and adsorbed intermediates or
oxidative derivatives [43]. Previous studies agree that CO is a dominant adsorbed
species formed during EOR, however, they disagree on details such as the adsorbed
state of other intermediates and on the question of the rate limiting steps: the
adsorption of intermediate or the cleavage of C–C bond or the formation of OH or
oxides [20,23,26,31,38,45,47,54]. In the following we summarize EOR mechanisms
developed in the last two decades from experimental as well as DFT calculation
studies and discuss the unsolved issues in understanding the EOR mechanism.

2.1. Experimental Detection and Quantification of Reaction Intermediates and Products

As mentioned above, the reaction mechanism is complex involving several
adsorbed intermediates and numerous products and by-products. Determining
product distribution and identifying reactive intermediates are the keys for solving
the EOR mechanism puzzle and therefore are always hot topics under active debate.
To address these two issues, many efforts have been made to combine traditional
electrochemical methods (cyclic voltammetry, chronoamperometry, rotating disc
electrodes, etc.) with other physicochemical methods, such as in situ FTIR [9,13–24],
broadband sum-frequency generation (BB-SFG) spectroscopy [58], DEMS [16,27–36],
HPLC [56,57], GC [14], electrochemical quartz crystal microbalance (EQCM) [59] and
in situ NMR [60] to probe the adsorbed intermediates and/or quantify the reaction
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products and by-products [56]. We devote the following section to summarize and
discuss how these techniques were used for product quantification as well as the
clarification of intermediates, starting with FTIR studies and followed by mass
spectrometric results.

In the early days Weaver and co-workers [25,61,62] adopted real-time FTIR
spectroscopy to study EOR on Pt surfaces in acidic media, and found that the final
reaction products included acetic acid, acetaldehyde along with a smaller amount
of CO2. Their work was the first quantification of specific oxidation products, and
provides values of the effective absorption coefficient, εeff of CO2, acetic acid, and
acetaldehyde which are 3.5 ˆ 104, 5.8 ˆ 103, and 2.2 ˆ 103 M´1¨ cm´2, respectively.
The yields of oxidation products were calculated using respective integrated band
intensities (Ai), and the amount of a given species Q (mol¨ cm´2) trapped inside
the thin layer between the electrode surface and the optical window followed
the relationship:

Q “
Ai

εeff
(6)

To better compare the selectivity and activity of EOR on catalysts, Adzic’s [9]
group applied in situ infrared reflection-absorption spectroscopy (in situ IRRAS) to
quantify the ratio of C1 pathway to C2 pathway on the ternary Pd–Rh–SnO2/C
electrocatalysts using the following Equation (7):

CCO2

CCH3COOH ` CCH3CHO
“

6ˆ QCO2

4ˆQCH3COOH ` 2ˆQCH3CHO
(7)

where CCO2 and CCH3COOH + CCH3CHO represent the charges associated with the
total oxidation pathway (C1) and the partial oxidation pathway (C2), respectively.

As can be seen from reactions 1–5, water, or its adsorption residue (adsorbed
OH) is involved in EOR and therefore the product distribution strongly depends
on the nature of the electrolyte, such as the concentration of ethanol, pH, or the
anion [18,63,64]. Camara and Iwasita [55] systematically investigated the effects of
ethanol concentration on the product distribution on polycrystalline Pt by FTIR. They
found that the C1 pathway is more pronounced at low ethanol concentration (below
0.1 M) with negligible acetaldehyde. When the ethanol concentration was higher
than 0.2 M, the formation of CO2 and acetic acid was inhibited and acetaldehyde
was the main product.

Recently the fast development of anion exchange membranes has renewed the
interest in the development of alkaline polymer electrolyte fuel cells. In alkaline
media, a facile EOR can be achieved less costly with relatively abundant non-Pt metal
catalysts. However, it is not clear whether or to what extent the mechanism proposed
for EOR on Pt in acidic media can be extended to basic media. By combining
electrochemical and spectroscopic techniques (SERS and in situ FTIR), Koper’s
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group [18,54,65] showed that the activity of the reaction on Pt electrodes increases
significantly when the pH of the electrolyte was higher than 10. Detailed mechanisms
were proposed for EOR at low electrolyte pH (<6) and at high electrolyte pH (>11) as
shown in Figure 2:
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Figure 2. Proposed reaction mechanism for electro-oxidation of ethanol on Pt electrodes. 
Solid arrows denote the mechanism at low electrolyte pH, while dashed arrows denote the 
mechanism at high electrolyte pH. Adapted from Reference [18]. 

Figure 2. Proposed reaction mechanism for electro-oxidation of ethanol on Pt
electrodes. Solid arrows denote the mechanism at low electrolyte pH, while dashed
arrows denote the mechanism at high electrolyte pH. Adapted from Reference [18].

On the other hand, based on their in situ FTIR spectroscopic results in studying
EOR on Pt in alkaline media, Christensen and his co-workers [20] proposed that in
contrast to the acidic solutions, under alkaline conditions, the intermediates interact
with the surface through O rather than C as shown in Figure 3. Pts–CH2–C(=O)–O–Pts

was speculated as a new intermediate, and the solution acetate species was the
predominant product.
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Figure 3. The mechanism of ethanol oxidation at polycrystalline Pt in alkaline solutions 
proposed by Christensen. Reproduced with permission from Reference [20] Copyright 2012, 
American Chemical Society. 

Pd exhibits a much higher electrocatalytic activity in alkaline media compared to Pt due to its 
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Figure 3. The mechanism of ethanol oxidation at polycrystalline Pt in
alkaline solutions proposed by Christensen. Reproduced with permission from
Reference [20] Copyright 2012, American Chemical Society.

227



Pd exhibits a much higher electrocatalytic activity in alkaline media compared
to Pt due to its higher oxophilicity and relatively inert nature [17,47,66]. Ethanol
oxidation on Pd is dramatically affected by the pH of the solution: virtually no
reaction occurs in acidic solutions, while the reaction is fast in alkaline solutions.
Through IRRAS studies [19], it was demonstrated that the oxidation of ethanol
is incomplete on Pd electrodes and the main product is acetate. In addition, a
quantitative FTIR study showed the selectivity for ethanol oxidation to CO2 is less
than 2.5% on Pd in the potential region of ´0.60 to 0 V [67], but it is still slightly
higher than that of Pt in alkaline media.

Though the external infrared reflection absorption spectroscopy with a thin-layer
configuration enables the evaluation of the selectivity of the reaction products (i.e.,
CO2, acetate, and acetaldehyde) as a function of the applied potential, it is not
sufficiently sensitive to probe low-coverage or weakly adsorbed intermediates and
therefore may not provide complete information for understanding the reaction
mechanism [68]. In addition the limited mass transport to and from the thin
layer can skew or even alter the product distribution [20]. In contrast, attenuated
total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS)
provides high surface sensitivity and unobstructed mass transport and thus is
promising for the complete disclosure of the EOR mechanism [26,69]. Yang et al. [23]
recently investigated the surface reaction of ethanol on Pd in alkaline media using
ATR-SEIRAS and H–D isotope replacement on α-C to shed new light on the
self-dissociation and oxidation processes. As illustrated in Figure 4, ethanol may
undergo dehydrogenation at α-C to form adsorbed acetyl rather than acetaldehyde,
followed by successive decomposition to form C1 species, including COad and CHx

at open circuit potential or lower potentials. Moreover, ATR-FTIR was also adopted
to clarify the rate limiting steps on Pd thin film electrodes. It was found that at higher
potential the subsequent dissociation (C–C bond breaking) of the adsorbed acetyl
species is the rate limiting step rather than the formation of adsorbed acetyl [70].
Thus, despite controversy over the details, the reaction pathways for EOR with Pd
electrodes in alkaline media are more or less similar to that with Pt electrodes in basic
and acidic media.
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structure is not reproducible from experiment to experiment. Second, product accumulation and 
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conjunction with IR spectroscopy. Studies using DEMS [28–37], electrochemical thermal desorption 
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(MPEMS) [29] have drawn the conclusion that all mono- or bi-aliphatic alcohols, except tertiary ones, 
yield minor amounts of CO2 with the corresponding aldehydes or keto-compounds as major products 
during their electro-oxidation. Typically, on-line DEMS, especially under well-defined transport and 
diffusion conditions, has the ability to quantitatively determine kinetic parameters (reaction orders, 
activation energies, steady-state rates) for the overall EOR, and also for the partial reactions leading to 
the individual reaction products such as CO2, acetic acid, and acetaldehyde [16,30–33,35,72]. 

By combining cyclic voltammetry and potential step measurements of the reaction transients  
with DEMS, Behm and co-workers performed a thorough investigation on the EOR products on a 
carbon-supported Pt nanoparticle catalyst at reaction temperature (23–60 °C) [30], and on PtRu and 
Pt3Sn catalysts [33]. Absolute rates for CO2 and acetaldehyde formation were determined via the 
doubly ionized carbon dioxide at m/z = 22 and the CHO+ fragment at m/z = 29 from the calibrated 
mass spectrometric currents, whereas acetic acid yields were determined indirectly by calculating the 
difference between the measured Faradaic current and the partial currents of ethanol oxidation to CO2 
and acetaldehyde. More importantly, they convincingly showed that Pt-based catalysts exhibit 
selectivity towards CO2 ranging from 0.5%–7.5%, which is far below the selectivity needed for 
economic implementation of the DEFC technology. They further explored the reaction in a wider 
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Figure 4. Reaction pathways for interfacial CH3CH2OH at Pd electrodes in
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2014, American Chemical Society.

Despite the fact that external IRRAS has been frequently used in identifying
reaction intermediates and products, the thin-layer configuration limits its capability
for quantification. First, the thin layer structure is not reproducible from experiment
to experiment. Second, product accumulation and diffusion out of the thin layer
take place at the same time with species-dependent rates, i.e., the diffusion rate
varies with different species in the thin layer. CO2 is the most volatile among
the three major products and diffuses out faster than CH3COOH and CH3CHO,
resulting in its lower estimation. Complimentary to IR spectroscopy, on-line DEMS
can provide accurate quantitative information on ethanol oxidation products. In
fact, mass spectrometry has often been used to study EOR in conjunction with IR
spectroscopy. Studies using DEMS [28–37], electrochemical thermal desorption mass
spectroscopy (ECTDMS) [71], and multipurpose electrochemical mass spectrometry
studies (MPEMS) [29] have drawn the conclusion that all mono- or bi-aliphatic
alcohols, except tertiary ones, yield minor amounts of CO2 with the corresponding
aldehydes or keto-compounds as major products during their electro-oxidation.
Typically, on-line DEMS, especially under well-defined transport and diffusion
conditions, has the ability to quantitatively determine kinetic parameters (reaction
orders, activation energies, steady-state rates) for the overall EOR, and also for the
partial reactions leading to the individual reaction products such as CO2, acetic acid,
and acetaldehyde [16,30–33,35,72].

By combining cyclic voltammetry and potential step measurements of the
reaction transients with DEMS, Behm and co-workers performed a thorough
investigation on the EOR products on a carbon-supported Pt nanoparticle catalyst
at reaction temperature (23–60 ˝C) [30], and on PtRu and Pt3Sn catalysts [33].
Absolute rates for CO2 and acetaldehyde formation were determined via the doubly
ionized carbon dioxide at m/z = 22 and the CHO+ fragment at m/z = 29 from the
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calibrated mass spectrometric currents, whereas acetic acid yields were determined
indirectly by calculating the difference between the measured Faradaic current and
the partial currents of ethanol oxidation to CO2 and acetaldehyde. More importantly,
they convincingly showed that Pt-based catalysts exhibit selectivity towards CO2

ranging from 0.5%–7.5%, which is far below the selectivity needed for economic
implementation of the DEFC technology. They further explored the reaction in
a wider temperature range (up to 100 ˝C) and found that the current efficiency
for CO2 formation increased significantly with the temperature while it decreased
with increasing potential [37]. The latter observation suggests that the rate limiting
step was changed from COad oxidation at lower potential to C–C bond breaking at
higher potentials. This transition is reasonable because the cleavage of the C–C bond
becomes vital when the surface has the ability to easily remove poison species at
higher potentials.

2.2. Theoretical Studies

Over the past decade the theoretical description of surface reactions has
undergone a radical development [38,39]. Advances in density functional theory
make it now possible to describe catalytic reactions on surfaces with the detail and
accuracy required, so that computational results compare favorably with experiments.
Simulations and theoretical studies have helped to advance our understanding of
the EOR including predictions of vital intermediates, the preferable pathway, or
the underlying electron transport process [40–42]. Some of these theoretical works
corroborate with works that have been proposed by experimentalists, including the
confirmation of some adsorbed intermediates in the step-wise mechanism, which are
not detectable, probably due to the limited time resolution of the current experimental
techniques. Therefore, theoretical studies may help to reconcile controversies and to
understand variations in catalytic activity from one catalyst to another [73].

A higher percentage of C1 pathway is desirable for high efficiency DEFCs,
but the production of CO2 can be as low as 0.5% as shown by DEMS [31]. DFT
was used to elucidate the reasons for the low efficiency of EOR on Pt [38] and the
study found that a higher percentage of C1-pathway requires a careful control of
oxidant surface coverage to allow facile C–C bond cleavage. Ethanol oxidation shows
significant structure sensitivity in that the defect sites activate both the O–H and
the C–C bonds [74]. The presence of OH or O species will considerably increase the
energy barrier of the C–C bond cleavage as shown by DFT calculations, therefore the
C1 pathway will be largely reduced compared to the corresponding clean surface.
On a clean Pt surface with defects at low applied potentials, and thus low oxidant
coverages, the formation of acetic acid and CO/CO2 are energetically favorable
and, interestingly, comparable. This finding is consistent with the experimental
observations [18,20,23,66] that CO formation is indeed reasonably facile at low
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applied potentials on clean Pt surfaces. Increasing the applied potential, results
in increasing oxidant surface coverage and leads to a large reduction in the rate of
C–C bond cleavage. However, surface oxidants are required for conversion of CO to
CO2. These two competing processes explain the inability of pure platinum catalysts
to act as efficient DEFC catalysts.

There has been some debate over whether C–C bond breaking is the rate limiting
step in EOR. Very recently Anderson’s group calculated the reversible potentials
for the reaction intermediates of EOR on Pt (111) [45] using DFT. They found that
surface potentials for the path to CO2 were low and close to the calculated 0.004 V
reversible potential for the 12 electron oxidation of ethanol. The main activation
energy in the total oxidation of ethanol to CO2 comes from the formation of OHads
from H2O with a reversible potential of 0.49 V, the highest potential as shown in
Figure 5. The favorable path to CO2 takes the right hand branch to OCCH3 and then
to OCCHads [45]. OHads is essential for the oxidation of COads and CHads, which
leaves OHads formation to be the rate limiting step. Accordingly, an ideal catalyst
would have the ability to adsorb most intermediates weakly but OH more strongly.
This conclusion agrees with the observation that the maximum rate of adsorbed
acetyl decomposition into COads and CHx, ads appeared at 0.3–0.4 V vs. RHE [70],
which is significantly lower than the onset potential of OHads formation (~0.5 V) [75].

The role of water and hydroxyls during EOR on Pd electrodes in alkaline
media was further investigated by Lin’s group [39] by acquiring first principle
calculations. The possible pathways for the formation of acetate from acetaldehyde
were evaluated by comparing the reaction barriers (Ea) as well as thermodynamic
(∆E) and structural parameters. Their results suggested that acetaldehyde is first
hydrated in water to form germinal diol, and then the dehydrogenation of germinal
diol produces acetate. According to this study, the OH´ anion acts as the center in
the concerted-like dehydrogenation path as shown in Figure 6 confirming what has
been found in experiments.

The total oxidation current at lower potentials was found to be rather structure
sensitive where the presence of steps enhances the rupture of the C–C bond and the
complete oxidation to CO2 [74]. Theoretical studies have identified the platinum
monoatomic steps as the most likely sites for full ethanol oxidation and concluded
that the close-packed surfaces are unsuitable [76]. Liu’s group [43,44] clarified
the location of the transition state and saddle points for most surface reactions
during EOR on different Pt surfaces based on gradient-corrected DFT as shown
in Figure 7. Their results suggest the EOR is a structure-sensitive reaction that is
influenced by two key reaction steps: (i) the initial dehydrogenation of ethanol and
(ii) the oxidation of acetyl (CH3CO). By simulating three typical Pt surfaces, namely
close-packed Pt (111), monatomic stepped Pt (211), and open Pt (100), these authors
demonstrated for the first time that the selectivity of ethanol oxidation on Pt is highly
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structure sensitive among which Pt (100) is the best surface to fully oxidize ethanol
to CO2 at low coverages. It shows that CO2 and acetic acid originate from the same
surface intermediate i.e., CH3CO as experimentally evidenced by our group [23], but
acetaldehyde is from ethanol directly. The cleavage of the C–C bond occurs through
the strongly chemisorbed precursor CH2CO or CHCO only at low-coordinated
surface sites, not from CH3CO as proposed by FTIR study [13,14]. Acetaldehyde
is produced via the one-step concerted dehydrogenation of ethanol, which occurs
mainly on close-packed (111), and is enhanced by increased CHx coverage. Acetic
acid is the dominant oxidation product on Pt(111) at oxidative conditions, but its
formation is significantly inhibited by the monoatomic steps.
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Figure 6. General scheme describing the ethanol oxidation reaction on Pd electrodes in the 
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with permission from Reference [39]. Copyright 2014, American Chemical Society. 
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Figure 6. General scheme describing the ethanol oxidation reaction on Pd electrodes
in the presence of an electrical double layer proposed by first principle calculations.
Reproduced with permission from Reference [39]. Copyright 2014, American
Chemical Society.

In summary, EOR is a very complex reaction that can proceed via different
pathways. The product distribution and the dominant reaction pathway depend
on many factors including temperature, catalyst material and structure, applied
potential, ethanol concentration, reaction media, etc. [20,30–32,37,45–47]. The
interplay of these factors affects EOR greatly. Typically, the adsorption of hydroxyl
is vital in both acidic and alkaline media [18,39,40,45–47]. In acidic media, at
low potentials C–C bond cleavage occurs readily to form CO [30,43]. Owing to
the unavailability of oxidants to remove COads, the surface is poisoned and CO2

production is limited. At higher potentials, there are abundant oxidants, but C–C
bond cleavage is inhibited by the high coverage of oxidants, thus leading again
to small CO/CO2 production [45]. Similarly in alkaline media, the dissociative
adsorption of ethanol proceeds rather quickly and the rate-determining step
is the removal of the adsorbed species, which varies among literature, by the
adsorbed hydroxyl. At higher potentials the kinetics is not only affected by the
electro-adsorption of OH´ ions, but also by the formation of the inactive surface oxide
layer [20,23,39]. Therefore EOR on Pt- or Pd-based catalysts proceeds predominantly
with the C2 pathway and acetic acid or acetate is the main product. Carbon dioxide
or carbonate is relatively low in the product distribution [3,30,37,57]. In general
EOR proceeds through similar reaction pathways but some differences have been
discussed. In acidic media, the initial bond breaking step is dehydrogenation at
α-carbon, while in strong alkaline media it is the O–H bond cleavage [18,20,43,45].
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Utilizing these design guidelines, researchers have developed many new catalysts with higher 
selectivity and activity, and longer durability as demonstrated in the following studies. 
  

Figure 7. Calculated reaction network and reaction barriers (units, eV) for ethanol
oxidation (A) on Pt (111) and acetyl oxidation (B) on Pt (211) (data on the left) and
Pt (100) (data on the right). Reprinted and adapted with permission from Ref. [43].
Copyright 2008, American Chemical Society.

Despite the diverse reaction mechanisms for EOR presented in the literature,
some characteristics of a highly efficient catalyst for complete oxidation of ethanol
to CO2 have emerged. The rationally designed catalysts would have: (i) suitable
surface sites for C–C bond breaking; (ii) a suitable surface composition to increase
selectivity for CO2 formation; (iii) a bifunctional effect to facilitate the adsorption and
activation of water to form OHads for the removal of CO and -CHx species [45,76].
Utilizing these design guidelines, researchers have developed many new catalysts
with higher selectivity and activity, and longer durability as demonstrated in the
following studies.

3. Catalytic Role of the Electrode Materials

As discussed above, both experimental and theoretical studies suggest that the
lower electro-efficiency C2 pathway is the dominant for EOR on Pt and Pd surfaces.
Therefore a good tactic to obtain a better electrocatalytic performance is to increase
the ratio of C1 to C2 pathway to achieve a more complete ethanol oxidation, which
as shown above requires active surface sites for C–C bond breaking, CO and –CHx

species removal together with a suitable surface structure to increase selectivity for
CO2 formation [77]. Moreover, C1 pathway always involves the participation of
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water or its adsorption residue, a good electrocatalyst must be able to activate both
ethanol and water adsorption, which can be achieved by varying the composition
and structure of the rationally designed catalysts. In the following we first summarize
some design principles and then use selected examples to elucidate the applications
of these principles to obtain high performance catalysts.

3.1. Principles in Rational Design

Electronic effect: when Pt or Pd is alloyed or modified with another metal, the
electronic interaction between Pt or Pd and the other metal results in the changes
in their valence electronic structure through ligand effect and strain effect which
can be described as the shift in the d-band center (εd) as proposed by Norskov
and co-workers [50,73,78,79] and reviewed by Demirci [10]. The d-band center
directly relates to the binding energy of surface poison or reactive intermediates.
A higher-lying εd suggests a more reactive surface that tends to bind adsorbates
more strongly while a surface with a lower-lying εd tends to bind adsorbates more
weakly and facilitates the formation of bonds among them. In the EOR mechanism
mentioned above, a suitable εd with a moderate binding energy of CO, CHx, and
acetyl or acetaldehyde, but higher energy for OH binding is needed by adjusting the
electronic effect.

A bifunctional effect originates from Pt-Ru alloys and is extended to Pt/Sn and
Pt/SnOx [1]. In this mechanism, the presence of Ru, Sn, or SnOx aids in the activation
of water dissociation to form surface hydroxides, which can more readily oxidize CO
and CHx intermediates and therefore exhibit relatively higher EOR performance [80].
These alloys also tend to promote the partial oxidation of acetaldehyde to acetic acid.
However, catalysts with a bifunctional effect do not particularly enhance C–C bond
cleavage during EOR [81].

Surface-structure effect is another important parameter that significantly
changes the activity of catalysts. EOR is a surface sensitive reaction and its efficiency
largely depends on the crystal orientation of the catalyst surface [48]. In alkaline
media Pt(111) electrodes display the highest current and lowest onset oxidation
potential, however with little CO2 production. On the other hand, Pt(100) electrodes
are considered to be more active in the breaking of C–C bond and the formation of
CO [43,48] no matter whether acidic or alkaline media. Construction of Pt or Pd
based catalysts with well-defined morphology and a tunable surface is therefore
another way to gain higher electrocatalytic performance catalysts.
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3.2. Pt and Pd Based Electrocatalysts

3.2.1. Pt Based Catalysts

Previous studies have shown a monometallic catalyst such as Pt exhibits a
selectivity of oxidation of ethanol to CO2 of 0.5%–7.5% in acidic media [30], which
falls short for the commercialization of DEFCs. Pure Pt can easily be poisoned by
intermediates (including CO) generated during EOR. Regardless of the media, Pt-based
materials represent the benchmark catalysts for ethanol oxidation. Elements such
as Ru [32,33,35,60,82,83], Sn [15,32,33,35,80,84–86], Pb [21,87–91], Bi [36,89,90,92,93],
Re [86], Sb [93], Ir [94], Au [95], Ce [96], Rh [81,97], Pd [81,98,99], Fe [100], Ni [95,101],
P [102], Mo [83,103] have been widely employed to enhance the activity and
selectivity. In addition, metal oxides, such as MgO, CeO2, ZrO2, SnOx [76,94,104]
RuO2, PbOx [88] have also been investigated for facilitating the removal of CO.
The enhancement has been attributed to the steric hindrance of the surface, or
electronic and/or bifunctional effects when the adatoms are directly involved in the
catalytic process.

Up to now, PtRu [32,33,35,60,82,83] and PtSn [15,32,33,35,80,84–86] have been
regarded as some of the most efficient catalysts for EOR according to the bifunctional
effects. The distribution of products is well-studied by FTIR [35] and DEMS [33,35,55].
The addition of Sn or Ru, though beneficial for the overall activity of EOR, and the
partial oxidation of acetaldehyde to acetic acid, does not enhance the activity for
C–C breaking [35]. The higher current is mainly contributed from the higher yields
of C2 products. These alloys aid in the oxidation of CO but actually lower the total
conversion to CO2 because they slow down the breaking of the C–C bond. Because
Pt is the active metal for C–C bond activation, alloying decreases the amount of Pt
and its ability to activate the C–C bond.

To further promote selectivity and activity of EOR, Adzic’s group developed
Pt monolayer (PtML) electrocatalysts comprising a one atom thick layer of
Pt placed on selected extended or nanoparticle surfaces. They observed a
correlation between substrate-induced lateral strains in the Pt monolayer and its
activity/selectivity towards EOR. In agreement with previous theories [10,73], a
positive- or tensile-surface strain in the metal overlayer tends to upshift εd and
therefore facilitates OHads formation resulting in an enhanced EOR as shown
in Figure 8. The IRRAS spectra showed that acetic acid is the predominant
product [105]. This work demonstrates nicely the importance of electronic effect in
tuning electrocatalytic activity.
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five different substrates in 0.1 M HClO4 containing 0.5 M ethanol; (B) In situ
infrared reflection-absorption spectroscopy (IRRAS) spectra recorded during EOR
on the PtML/Au(111) electrode in 0.1 M HClO4 containing 0.5 M ethanol. Inserted
are models of pseudomorphic monolayers of Pt on two different substrates of
Au(111) and Pd(111). Reprinted and adapted with permission from Reference [105].
Copyright 2012, American Chemical Society.

Along this line, various Pt-Au alloys have been proposed and have shown
relatively high EOR performance [41,106]. Recently Pt-Au hetero-nanostructures
were synthesized by varying the reduction kinetics of a gold precursor to obtain
dimer Pt-Au or core-satellite (Pt@Au) structures. These catalysts show high
selectivity and improved efficiency in alkaline media compared to their monometallic
counterparts [107].

Ternary nanoalloys incorporating suitable metal and metalloid components are
expected to exhibit more flexibility in tuning the geometric and electronic properties
of Pt surfaces, thus are promising to achieve a higher electrocatalytic performance.
Adzic’s group found the ternary-electrocatalysts, Pt-Rh-SnO2/C [9,76] can effectively
split the C–C bond in ethanol at room temperature in acidic solutions and the highest
activity was obtained with a composition of Pt:Rh:Sn = 3:1:4 [9]. As shown in Figure 9,
the integrated band intensities of CO2 (2343 cm´1), CH3CHO (933 cm´1), and
CH3COOH (1280 cm´1) for both Pt–Rh–SnO2/C and Pt–SnO2/C samples proved
the enhanced cleavage of the C–C bond in ethanol and all three constituents Pt, Rh,
and SnO2 are needed to gain the synergistic effect in facilitating the total oxidation
of ethanol.
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Figure 9. Integrated band intensities of CO2, CH3CHO and CH3COOH in IRRAS spectra 
from (a). Pt–SnO2/C with the atomic ratio Pt:Sn = 3:4; (b). Pt–Rh–SnO2/C with the atomic 
ratio Pt:Rh:Sn = 3:1:4; (c) The charge ratio of the total oxidation pathway (CCO2) over the 
partial oxidation pathway (CCH3COOH + CCH3CHO) as a function of electrode potential for both 
electrocatalysts in 0.1 M HClO4 and 0.1 M ethanol. Reprinted and adapted with permission 
from Reference [9]. Copyright 2010, Elsevier. 

Electrode arrays of 91 combinations of Pt–Sn–M (M = Fe, Ni, Pd, and Ru) were prepared and 
screened by a fluorescence assay (Figure 10) to optimize the catalysts with the highest electrocatalytic 
activity by Abruña and co-workers [101]. They found that Fe-containing catalysts exhibited the highest 

Figure 9. Integrated band intensities of CO2, CH3CHO and CH3COOH in IRRAS
spectra from (a). Pt–SnO2/C with the atomic ratio Pt:Sn = 3:4; (b). Pt–Rh–SnO2/C
with the atomic ratio Pt:Rh:Sn = 3:1:4; (c) The charge ratio of the total oxidation
pathway (CCO2 ) over the partial oxidation pathway (CCH3COOH + CCH3CHO) as a
function of electrode potential for both electrocatalysts in 0.1 M HClO4 and 0.1 M
ethanol. Reprinted and adapted with permission from Reference [9]. Copyright
2010, Elsevier.

Electrode arrays of 91 combinations of Pt–Sn–M (M = Fe, Ni, Pd, and Ru) were
prepared and screened by a fluorescence assay (Figure 10) to optimize the catalysts
with the highest electrocatalytic activity by Abruña and co-workers [101]. They
found that Fe-containing catalysts exhibited the highest activity followed by Ni- and
Pd-containing materials with similar results. This work shows that the variation and
combination of different components can exert better electro-activity performance
with different electronic effects.

EOR strongly depends on the electronic and surface structures of the catalysts.
The different EOR activities observed on Pt surfaces with different crystallographic
orientations offer the possibility of optimizing activities of nanoscale practical
catalysts by controlling the particle shape [48,49,74]. By using cubic Pt nanoparticles,
on which (100) surface sites are predominant, the performance of DEFCs can
be increased from 14–24 mW per mg of Pt when compared with cuboctahedral
nanoparticles. Moreover, the open circuit potential shifts about 50 mV toward more
positive potentials [108]. Pt nanoparticles with 24 high-index facets such as (730),
(210), and/or (520) surfaces were synthesized and showed enhancement on EOR
compared with commercial Pt/C as well as a higher selectivity for the cleavage of
the C–C bond [109].
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Figure 10. Combinatorial array and screening results by fluorescence imaging of PtSnM 
electrode arrays in 6.0 M ethanol and quinine fluorescent indicator. Active compositions for 
ethanol electro-oxidation are shown as bright spots: fluorescence image at (A) lower 
overpotential (~0.27V vs. RHE); (B) intermediate overpotential (~0.46 V vs. RHE) and  
(C) high overpotential (~0.93 V vs. RHE); (D) Fluorescence onset potential for ethanol  
electro-oxidation on PtM and PtSnM library. Reproduced with permission from  
Reference [101]. Copyright 2015, Elsevier. 

Bimetallic or ternary nanocrystals have also been studied to explore the optimal combination of 
higher activity surface facets and electronic effect. The composition-varied (100)-terminated Pt–Pd–Rh 
nanocubes (NCs) and (111)-terminated Pt–Pd–Rh nanotruncated-oxtahedrons (NTOs) were 
synthesized with the help of halides [81]. Owing to the synergistic effects resulted from appropriate 
surface composition and exposed facets, the Pt–Pd–Rh NTOs exhibited the highest selectivity to CO2 
and PtPdRh NCs possessed the best durability. With the help of in situ FTIR and DFT calculations, the 

Figure 10. Combinatorial array and screening results by fluorescence imaging of
PtSnM electrode arrays in 6.0 M ethanol and quinine fluorescent indicator. Active
compositions for ethanol electro-oxidation are shown as bright spots: fluorescence
image at (A) lower overpotential (~0.27V vs. RHE); (B) intermediate overpotential
(~0.46 V vs. RHE) and (C) high overpotential (~0.93 V vs. RHE); (D) Fluorescence
onset potential for ethanol electro-oxidation on PtM and PtSnM library. Reproduced
with permission from Reference [101]. Copyright 2015, Elsevier.

Bimetallic or ternary nanocrystals have also been studied to explore
the optimal combination of higher activity surface facets and electronic
effect. The composition-varied (100)-terminated Pt–Pd–Rh nanocubes (NCs) and
(111)-terminated Pt–Pd–Rh nanotruncated-oxtahedrons (NTOs) were synthesized
with the help of halides [81]. Owing to the synergistic effects resulted from
appropriate surface composition and exposed facets, the Pt–Pd–Rh NTOs exhibited
the highest selectivity to CO2 and PtPdRh NCs possessed the best durability. With
the help of in situ FTIR and DFT calculations, the influence of the exposed facet and
surface composition on the capability of C–C bond cleavage was examined. It was
found that (100)-bounded surface is favorable to the cleavage of C–C bond while
(111)-bounded surface tends to oxidize CO more easily.

3.2.2. Pd Based Catalysts

There has been a surge of interest in developing Pd-based catalysts mainly
because facile EOR kinetics are expected in alkaline media on the less costly
and more abundant Pd [17,47,66]. However, Pd itself cannot meet the practical
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demand because of shortage of activity and durability. In particular, a great deal
of interest has been focused on the use of Pd-based alloy catalysts as an alternative
for EOR where the catalytic activity may be further increased by the addition of
a second metal or metal oxide promoters through the effects mentioned above.
Various Pd-based catalysts have been synthesized with the addition of one or
more elements including Ni [110,111], Ag [112,113], Au [114–116], P [117], Co [118],
Sn [80,110,119,120], Ru [53], Zn [121] as well as metal oxides like SnO2, CeOx, Co3O4,
Mn3O4, NiO [102,122–125] or on various substrates like graphene [126], carbon
microspheres [127], nanowire [128], carbon fiber [118], etc.

Sn can promote the catalytic activity of Pd toward EOR by providing
oxygen-containing species at more negative potentials due to the bifunctional effect
and electronic effects, and has therefore been widely studied [80,119,120]. Teng’s
group synthesized carbon supported Pd–Sn electrocatalysts with different amounts
of Sn, and determined that the optimum Sn content in Pd–Sn for EOR was 14%.
The promotional effect of Sn on EOR activity was confirmed by kinetic study and
DFT calculations [80]. The reaction energies of the initial steps of EOR (H removal)
were studied with several catalysts using DFT (a Pd surface, a Pd–Sn1, and a Pd–Sn5

surface) in this work. As shown in Figure 11, Pd–Sn alloy structures resulted in lower
reaction energies for the dehydrogenation of ethanol compared to pure Pd. Despite
that the DFT calculations in reference [80] only involve the initial steps of EOR, their
experimental results support the premise that Pd-Sn may be a better catalyst than
Pd for EOR.
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Figure 11. Surface cluster models of (a) Pd–Sn1 and (b) Pd–Sn5 used for modeling ethanol 
dehydrogenation, and reaction energies for H removal from ethanol over (c) Pd (111);  
(d) Pd–Sn1, (e) Pd–Sn5 surfaces. Reproduced with permission from Reference [80]. 
Copyright 2012, American Chemical Society. 

Figure 11. Surface cluster models of (a) Pd–Sn1 and (b) Pd–Sn5 used for modeling
ethanol dehydrogenation, and reaction energies for H removal from ethanol over
(c) Pd (111); (d) Pd–Sn1, (e) Pd–Sn5 surfaces. Reproduced with permission from
Reference [80]. Copyright 2012, American Chemical Society.
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Au is another promising candidate for promoting EOR on Pd catalysts. Zhao’s
group [114] synthesized a monolayer or a sub-monolayer of Pd adatoms decorated
on Au/C with different Pd:Au atomic ratios in the precursors via a chemical epitaxial
growth method and found Pd1Au4 shows the highest specific activity due to the
electronic effect between the Au support and the Pd decoration, and the enhanced
poison resistance. To further tune the electronic and geometric effect of the catalysts,
ternary catalysts PdNiAu [116] were synthesized which possessed a peak power
density about three times that of the monometallic Pd catalyst, and twice that of the
bimetallic PdNi catalyst. A relatively preferable C2 pathway on the Pd–Au–Ni
catalyst compared to its single and binary counterparts in alkaline media was
estimated by ion chromatography.

Doping of various oxides to Pd catalysts is another strategy to enhance the
efficiency of EOR. Xu et al. [124] demonstrated that the addition of oxides such
as CeO2, NiO, Co3O4, and Mn3O4 significantly promoted catalytic activity and
stability. Most importantly these oxides have the ability to lower the onset potential
for EOR. A recent study showed a maximum energy efficiency of about 7% from
room temperature air breathing DEFCs with Pd on a mixed CeO2–C support as the
anode catalysts [125]. The use of a mixed carbon-CeO2 support extends the stability
of the Pd catalyst under working conditions by promoting ethanol electro-oxidation
at lower anode potentials.

Nonmetal component can also play a role in the rational design of catalysts [129–132].
Recently, our group discovered that Pd–Ni–P/C ternary nanocatalysts showed
a remarkable enhancement towards EOR compared to Pd–Ni/C, Pd–P/C and
Pd/C [117]. After a careful analysis of the structure and oxidation state of the
catalysts, we found apparently opposite effects of alloying the elements P and Ni.
P expands the Pd lattice with the incorporation of P atoms in the interstice of Pd
lattice, while alloying with Ni partially replaced Pd sites with smaller Ni atoms,
resulting in a contraction of the Pd lattice. In addition, P accepts electrons from
the surrounding Pd atoms while Ni donates, resulting in a slight downshift of
the Pd d-band center. Alloying Pd with Ni and P creates appropriate electronic
and geometric modifications to Pd, leading to a modestly weakened adsorption of
intermediates on Pd sites. In addition, the oxophilic nature of Ni provides OHads at
lower potentials which facilitates the removal of surface poisons. (Figure 12).

241



Catalysts 2015, 5 1523 
 

Au is another promising candidate for promoting EOR on Pd catalysts. Zhao’s group [114] 
synthesized a monolayer or a sub-monolayer of Pd adatoms decorated on Au/C with different Pd:Au 
atomic ratios in the precursors via a chemical epitaxial growth method and found Pd1Au4 shows the 
highest specific activity due to the electronic effect between the Au support and the Pd decoration, and 
the enhanced poison resistance. To further tune the electronic and geometric effect of the catalysts, 
ternary catalysts PdNiAu [116] were synthesized which possessed a peak power density about three 
times that of the monometallic Pd catalyst, and twice that of the bimetallic PdNi catalyst. A relatively 
preferable C2 pathway on the Pd–Au–Ni catalyst compared to its single and binary counterparts in 
alkaline media was estimated by ion chromatography. 

Doping of various oxides to Pd catalysts is another strategy to enhance the efficiency of EOR.  
Xu et al. [124] demonstrated that the addition of oxides such as CeO2, NiO, Co3O4, and Mn3O4 
significantly promoted catalytic activity and stability. Most importantly these oxides have the ability to 
lower the onset potential for EOR. A recent study showed a maximum energy efficiency of about 7% 
from room temperature air breathing DEFCs with Pd on a mixed CeO2–C support as the anode  
catalysts [125]. The use of a mixed carbon-CeO2 support extends the stability of the Pd catalyst under 
working conditions by promoting ethanol electro-oxidation at lower anode potentials. 

 

Figure 12. (A) XRD patterns of the Pd–P/C (curve a), Pd–Ni–P/C (curve b), Pd–Ni/C  
(curve c) and Pd/C (curve d). (B) Cyclic voltammograms for Pd-based catalysts in 0.5 M 
NaOH and 1 M C2H5OH at 50 mV·s−1; (C) Scheme of Pd–Ni–P atomic arrangement. The 
asterisks at 33.5° and 59.2° mark the peaks from Ni(OH)2 (100) and (110) facets. Reprinted 
and adapted with permission from Reference [117]. Copyright 2013, Elsevier. 
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Figure 12. (A) XRD patterns of the Pd–P/C (curve a), Pd–Ni–P/C (curve b),
Pd–Ni/C (curve c) and Pd/C (curve d). (B) Cyclic voltammograms for Pd-based
catalysts in 0.5 M NaOH and 1 M C2H5OH at 50 mV¨ s´1; (C) Scheme of Pd–Ni–P
atomic arrangement. The asterisks at 33.5˝ and 59.2˝ mark the peaks from Ni(OH)2

(100) and (110) facets. Reprinted and adapted with permission from Reference [117].
Copyright 2013, Elsevier.

Furthermore, by de-alloying some of the Ni and P in an electrodeposited
Pd–Ni–P film, we investigated the de-alloying effect on EOR performance in alkaline
media. We found that the enhancement of electrocatalytic activity does not simply
originate from the increase of active surface area, but is due to the variation of relative
contributions of the two pathways as evidenced by in situ infrared spectroscopic
results shown in Figure 13 [24]. CO and acetate band intensities (Figure 13B,D) can be
used to approximate the relative contributions of the C1 and C2 pathways. Notably,
the more pronounced COad and acetate bands observed on the de-alloyed Pd–Ni–P
film provide molecular spectral evidence supporting the assumption that suitable
de-alloying can enhance both C–C cleavage in the C1 pathway with CO formation
and production of acetate in the C2 pathway, correlating well with the observed
higher EOR current on the de-alloyed film. Furthermore, the relative intensities of
the CO bands versus the acetate bands appeared to be much higher on the de-alloyed
film as compared to those on the as-deposited film, indicating that the C1 pathway is
relatively more favorable after the de-alloying treatment.
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Figure 13. Potentiodynamic ATR-SEIRAS spectra on the as-deposited Pd–Ni–P film (A) 
and the de-alloyed film (C) in 0.1 M NaOH + 0.5 M ethanol; Potential-dependent band 
intensities for ν(COad) (blue) and νs(OCO) of adsorbed acetate (green) with corresponding CVs 
recorded at 5 mV·s−1 on the as-deposited Pd–Ni–P film (B) and the de-alloyed film (D)  
in 0.1 M NaOH + 0.5 M ethanol. Reproduced with permission from Reference [24].  
Copyright 2014, Elsevier. 
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(A) and the de-alloyed film (C) in 0.1 M NaOH + 0.5 M ethanol; Potential-dependent
band intensities for ν(COad) (blue) and νs(OCO) of adsorbed acetate (green) with
corresponding CVs recorded at 5 mV¨ s´1 on the as-deposited Pd–Ni–P film (B)
and the de-alloyed film (D) in 0.1 M NaOH + 0.5 M ethanol. Reproduced with
permission from Reference [24]. Copyright 2014, Elsevier.

4. Conclusions and Outlook

From the survey of experimental and theoretical studies, some basic principles
for rational design of high performance EOR catalysts can be obtained. The catalysts
should have (i) active surface sites for C–C bond breaking; (ii) a suitable surface
composition to increase selectivity for CO2 formation; (iii) the ability to facilitate the
adsorption and activation of water for the removal of CO and –CHx species. Utilizing
these design guidelines, researchers have developed many new catalysts with
higher selectivity, activity, and longer durability. These advances have significantly
propelled the development of DEFCs.

Despite this progress, several fundamental and practical issues of catalysts
remain to be addressed. From a fundamental point of view, the EOR mechanism is
far from solidified. Some key aspects need to be clarified. These include finding the
key factors in determining whether EOR goes through the C1 pathway or the C2
pathway; identifying intermediates during the C–C cleavage step in the C1 pathway;
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and understanding the nature of the intermediates, especially their adsorption mode
on Pt and Pd surfaces. Until these issues are satisfactorily addressed, the rational
design of high performance catalysts for DEFCs will remain in its infancy. From
a practical point of view, the reported methods for synthesizing high performance
catalysts are not suitable for large scale commercial production. We believe efforts
in these directions are essential for the further development and deployment of
commercially viable DEFCs.
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Highly Active Non-PGM Catalysts Prepared
from Metal Organic Frameworks
Heather M. Barkholtz, Lina Chong, Zachary B. Kaiser, Tao Xu and Di-Jia Liu

Abstract: Finding inexpensive alternatives to platinum group metals (PGMs) is
essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs).
Numerous materials have been investigated as potential replacements of Pt, of which
the transition metal and nitrogen-doped carbon composites (TM/Nx/C) prepared
from iron doped zeolitic imidazolate frameworks (ZIFs) are among the most active
ones in catalyzing the oxygen reduction reaction based on recent studies. In this
report, we demonstrate that the catalytic activity of ZIF-based TM/Nx/C composites
can be substantially improved through optimization of synthesis and post-treatment
processing conditions. Ultimately, oxygen reduction reaction (ORR) electrocatalytic
activity must be demonstrated in membrane-electrode assemblies (MEAs) of fuel cells.
The process of preparing MEAs using ZIF-based non-PGM electrocatalysts involves
many additional factors which may influence the overall catalytic activity at the fuel
cell level. Evaluation of parameters such as catalyst loading and perfluorosulfonic
acid ionomer to catalyst ratio were optimized. Our overall efforts to optimize both
the catalyst and MEA construction process have yielded impressive ORR activity
when tested in a fuel cell system.

Reprinted from Catalysts. Cite as: Barkholtz, H.M.; Chong, L.; Kaiser, Z.B.;
Xu, T.; Liu, D.-J. Highly Active Non-PGM Catalysts Prepared from Metal Organic
Frameworks. Catalysts 2015, 5, 955–965.

1. Introduction

Polymer electrolyte membrane fuel cells are the future powertrain for
automotive applications due to their high power density, relatively quick start-up,
high efficiency, and emission of only water from the vehicle [1–5]. However, the
cathodic oxygen reduction reaction (ORR) kinetics are significantly slower than the
anodic hydrogen oxidation reaction [6] therefore requiring more catalyst. To date,
the preferred electrocatalysts are platinum or platinum group metals (PGMs), which
contribute a significant fraction to the overall fuel cell stack cost [5]. In order for
widespread commercialization to take place, technological advancements in cathode
catalysts are required, including decreased cost while increasing performance
and durability.

The discovery of ORR activity in cobalt phthalocyanine [7] nearly 50 years ago
inspired the search for non-PGM ORR electrocatalysts using nitrogen group chelated
transition metal complexes, such as metallated phthalocyanines, porphyrins and

253



their analogues, as the precursors of preparing transition metal/nitrogen/carbon
(TM/Nx/C) catalysts activated via pyrolysis. These precursors typically have
square-planar configuration and frequently require high surface area substrates
such as amorphous carbons onto which they are supported and dispersed. Using
an inert support dilutes the volumetric and gravimetric densities of the possible
active sites, limiting the potential of producing highly efficient catalyst. At Argonne
National Laboratory, we pioneered the use of zeolitic imidazolate frameworks (ZIFs),
a subclass of metal-organic frameworks (MOFs), as precursor templates to prepare
ORR electroactive catalysts [8]. MOFs are porous materials comprised organic
ligands coordinated to transition metal ions [9,10]. Recently, research surrounding
the chemistry and diverse applications of MOF-based materials has experienced
tremendous growth [11–14]. For instance, Proietti et al. demonstrated that the
addition of iron precursors with a Zn-ZIF can give superior fuel cell performance [15].
Since then, several binary ZIF or transition metal doped ZIF systems have
been explored as precursors for highly active ORR electrocatalysts [16–19]. For
example, we reported an all solid-state one-pot synthesis technique to prepare ZIF
based electrocatalysts that demonstrated impressive ORR activity measured by
both rotating disk electrode (RDE) and membrane electrode assembly (MEA) in
a fuel cell [17].

Our recent study suggests that the catalytic performance of ZIF-based catalysts
is very sensitive to the synthesis and processing conditions. In this report, we
describe the impact of electrocatalyst processing and MEA fabrication conditions on
the overall ORR activity when tested in a single cell fuel cell. We will also discuss
how different iron additives could change the fuel cell performance while keeping
all other processing parameters the same. Additionally, the influence to fuel cell
performance by the addition of small amount of carbon black at different steps of
the electrocatalyst synthesis process was investigated. Finally, the weight ratio of
Nafion® ionomer to catalyst was optimized in the MEA fabrication process. Overall,
an impressive current density of 221.9 mA cm´2 at 0.8 V was achieved.

2. Results and Discussion

2.1. Influence of Catalyst Activity by Fe Complex in Precursor

The general procedures for “one-pot” synthesis have been published previously
in detail [17]. As a continuation of this study, we investigated the influence
of iron precursor and its chelating chemistry to the solid state synthesis and
the resulting catalyst performance. In this report, three combinations of iron
complexes and organic ligand were applied. They were iron (II) acetate (Fe(Ac)2),
tris-1,10-phenanthroline iron (II) perchlorate (TPI) and a combination of iron (II)
acetate and 1,10-phenanthroline (Phen) with molar ratio 1:6 (Fe(Ac)2(Phen)6). For
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ZIF-8, we used its molecular formula as Zn(mIm)2. The catalyst samples were
labeled based on their iron complex and ligand combinations in the Zn(mIm)2

precursor synthesis before the thermal activation. For example, Zn(mIm)2Fe(Ac)2,
represents adding iron acetate directly into mixture for solid state synthesis for
Zn(mIm)2. Similarly, Zn(mIm)2TPI and Zn(mIm)2Fe(Ac)2(Phen)6 represent adding
TPI and Fe(Ac)2/Phen at 1/6 in the mixtures for solid state synthesis for Zn(mIm)2,
respectively. All electrocatalysts underwent normal thermal activation and were
fabricated into the cathode of MEAs. The current-voltage polarization and power
density curves of the fuel cell tests are shown in Figure 1a,b, respectively. Several
key catalyst performance parameters in MEA/fuel cell tests are given by Table 1.
It is easily seen that the addition of TPI gave the best overall fuel cell performance.
Replacing TPI with Fe(Ac)2 resulted in a 2.5 fold decrease in power density as well
as a 3.4 fold decrease in the current density at 0.8 V. Adding in 1,10-phenanthroline
as well as iron (II) acetate improved the performance from Fe(Ac)2 but was not
equivalent to TPI.

Table 1. Brunauer-Emmett-Teller (BET) Surface area and Activity with Different
Iron Additives. BET surface area reported on autoclaved samples before any further
processing was performed. Fuel cell data is reported for all three samples, including
current density at 0.8 ViR-free, limiting current, and maximum power density. Fuel
cell conditions: PO2 “ PH2 “ 1 bar (back pressure = 7.3 psig) fully humidified;
T = 80 ˝C; N211 membrane; 5 cm2 membrane-electrode assemblies (MEA); cathode
catalyst = 3.5–4 mg/cm2, anode catalyst = 0.4 mgPt/cm2.

Sample BET Surface Area
(m2 g´1)

Current Density at
0.8 V (mA cm´2)

Limiting Current
(A cm´2)

Power Density
(mW cm´2)

Zn(mIm)2Fe(Ac)2 264.8 64.7 0.883 241.5
Zn(mIm)2Fe(Ac)2(Phen)6 702.2 136.9 1.57 441.9

Zn(mIm)2TPI 859.3 221.9 1.86 603.3

We speculate that the Fe-ligand coordination strength plays a very important
role in overall electrocatalytic performance. If the iron precursor is able to undergo
metal ion exchange with ZIF-8, previous studies have shown that there will be a
decrease in fuel cell performance [20]. During the one-pot synthesis, Fe(Ac)2 could be
readily dissolved into the liquefied imidazole and water (produced through reaction
with zinc oxide) into Fe2+ and Ac´. The ionic iron(II) could be incorporated into
ZIF framework in the place of Zn2+. On the other hand, Fe2+ is tightly chelated
by six nitrogens from three phenanthroline in an octahedral direction to form a
propeller-shaped configuration and will not readily undergo ion exchange with
Zn in Zn(mIm)2 [20]. With significant amounts of Phen present in the iron acetate,
imidazole and zinc oxide mixture, it is possible that a certain fraction of Fe2+ could
ligate with Phen through iron (II)–N bond, as suggested by the previous study [15]. It
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is difficult, however, to expect that Fe2+ will react exclusively with Phen in the
presence of excessive amount of imidazole. The consumption of a fraction of
available iron (II) to form a Fe-Phen intermediate while the other Fe2+ ions chelate
with imidazoles as part of ZIF framework may explain the trend seen in Figure 1.
Additionally, it is generally accepted that the surface area is an important factor
determining fuel cell performance [21]. The Brunauer-Emmett-Teller (BET) surface
areas of all three autoclaved catalyst precursors are also given in Table 1. As is shown
by the Table, there is a direct correlation between the surface area of the starting
material and the overall fuel cell performance. Iron additives in the form of Fe(Ac)2

produced the lowest surface area electrocatalysts therefore the lowest activity, among
all three catalysts studied. When Phen was added in addition to Fe(Ac)2, there was a
62.3% increase in precursor surface area, corresponding to a 52.7% increase in the
current density at 0.8 ViR-free.
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and Zn(mIm)2TPI = 603.3 mW cm−2. Conditions: 2 2O H 1 barP P= =   
(back pressure = 7.3 psig) fully humidified; T = 80 °C; N211 membrane; 5 cm2 MEA; 
cathode catalyst = 3.5–4 mg/cm2, anode catalyst = 0.4 mgPt/cm2. 

2.2. Influence of Adding Carbon Black to MEA Performance 

High temperature activation of the ZIF-based precursor converts individual imidazole molecules to 
graphitic carbon. Such a process often generates incomplete conversion [22], resulting in low  
electro-conductance of the catalyst and subsequent MEA formed [22]. Mixing a small quantity of 
carbon black into the heat-activated catalyst could potentially mitigate such an impedance issue. On 
the other hand, addition of catalytically inert carbon will dilute the ZIF-based catalyst density and 
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The current densities at 0.8 ViR-free for Zn(mIm)2Fe(Ac)2 = 64.7 mA cm´2,
Zn(mIm)2Fe(Ac)2(Phen)6 = 136.9 mA cm´2, and Zn(mIm)2TPI = 221.9 mA cm´2.
(b) Power density curves corresponding to polarization curves shown in
(a). Maximum power density for Zn(mIm)2Fe(Ac)2 = 241.5 mW cm´2,
Zn(mIm)2Fe(Ac)2(Phen)6 = 441.9 mW cm´2, and Zn(mIm)2TPI = 603.3 mW cm´2.
Conditions: PO2 “ PH2 “ 1 bar (back pressure = 7.3 psig) fully humidified;
T = 80 ˝C; N211 membrane; 5 cm2 MEA; cathode catalyst = 3.5–4 mg/cm2, anode
catalyst = 0.4 mgPt/cm2.

2.2. Influence of Adding Carbon Black to MEA Performance

High temperature activation of the ZIF-based precursor converts individual
imidazole molecules to graphitic carbon. Such a process often generates incomplete
conversion [22], resulting in low electro-conductance of the catalyst and subsequent
MEA formed [22]. Mixing a small quantity of carbon black into the heat-activated
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catalyst could potentially mitigate such an impedance issue. On the other hand,
addition of catalytically inert carbon will dilute the ZIF-based catalyst density
and therefore could cause a loss of volumetric and areal specific activities. In this
experiment, we selected Ketjen Black as the carbon additive, which is a frequently
used carbon support for fuel cell catalysts [23–26]. Two samples were prepared with
10 wt % Ketjen Black EC-300J added at different steps of the electrocatalyst synthesis
process. For the first sample, Ketjen Black was added during the ball milling step
before thermal activation had occurred. The sample was labeled Zn(mIm)2TPI-10-BM.
The second sample was prepared wherein Ketjen Black was added after the thermal
activation and acid wash. The sample was labeled Zn(mIm)2TPI-10-AW.
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Figure 2a shows the iR-free current-voltage polarizations of MEAs with
Zn(mIm)2TPI-10-BM and Zn(mIm)2TPI-10-AW as the cathode catalysts, and a MEA
without Ketjen Black additive as a benchmark; measured values (without impedance
correction) are displayed in Figure 2b. As expected, the cell impedance was reduced
by about ~20% for both catalysts containing Ketjen Black additive compared to the
benchmark, as is shown in Figure 2c, with Zn(mIm)2TPI-10-AW having the lowest
overall impedance. However, the internal impedance corrected (iR-free) polarizations
(Figure 2a) show that Zn(mIm)2TPI has the highest fuel cell specific current density
among all the samples, suggesting that addition of Ketjen Black causes the dilution of
the active sites thereby reducing the overall activity even at a mere 10 wt % loading.
Between Zn(mIm)2TPI-10-BM and Zn(mIm)2TPI-10-AW, the latter demonstrates
better specific current density at any given cell voltage. Even though both samples
contain same amount of Ketjen Black, the amorphous carbon in Zn(mIm)2TPI-10-BM
had been subjected to a heat treatment at >1000 ˝C. Under such temperature, the
carbon black would undergo the phase transformation from amorphous to graphitic
carbon, accompanied by loss of porosity, volume, and surface area. In contrast,
Ketjen Black in Zn(mIm)2TPI-10-AW was added after the high temperature treatment
but before the ammonia treatment at 750 ˝C. The carbon black was still highly
porous and more reactive with NH3 for additional active site formation compared
to that in Zn(mIm)2TPI-10-BM. Higher catalytic activity is therefore expected. For
practical application, the current-voltage polarization without impedance correction
represents actual fuel cell performance. Such polarization embodies the balance
between the electrode catalyst activity and electron/proton conductivities. To this
point, the fuel cell with Zn(mIm)2TPI-10-AW at the cathode offers slightly less
desirable performance than Zn(mIm)2TPI at V > 0.6 V and slightly better current
density at V < 0.6 V, see Figure 2b. The cell with Zn(mIm)2TPI-10-BM, however, was
inferior over the entire operating region.

2.3. MEA Fabrication Optimization

Although the rotating disk electrode (RDE) is the most commonly used method
for activity measurements, the electrode catalyst ultimately needs to be measured at
MEA/single fuel cell levels since they mostly resemble the operating conditions in a
commercial fuel cell stack. Some of the crucial catalyst performance attributes,
such as available catalyst area, mass/charge transport efficiencies, triple-phase
boundary exposure, etc., will not be properly measured by RDE even though they
play extremely important roles in controlling the fuel cell current and power densities.
One of the key process parameters for MEA fabrication is the weight ratio between the
Nafion® ionomer and the catalyst. Correct balance between the use and intermixing
of ionomer and catalyst could result in optimal exposure of the catalytic active sites
and effective proton/electron transfers as well as oxygen and water transports to and
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from the catalytic sites. This is, in fact, particularly important for our ZIF-derived
non-PGM catalysts since their active sites are believed to be uniformly decorated
throughout the catalyst surface. We have conducted a series of experiments in
MEA optimization by preparing the catalytic ink containing different amount of
ionomer and catalyst. The preparation of a cathode catalyst ink includes mixing 5
wt % Nafion®, isopropyl alcohol, water, and thermally activated catalyst. In this
experiment, three dry weight ratios between ionomer to the catalyst were applied,
from 0.5:1 to 0.9:1.

When optimizing ionomer to catalyst ratios for the ink, it was demonstrated
by Figure 3 that 0.7:1 was the optimal ratio to producing the best performing MEA
tested in fuel cell. Also noted is that when the ionomer to catalyst ratio was decreased
below 0.7:1 to 0.5:1, there was a more discernible drop of cell voltage in both ohmic
and limiting-current regions, presumably due to the lack of ion transport caused by
insufficient Nafion®. When the ionomer to catalyst ratio was increased to 0.9:1, there
was also an 18.4% decrease in single cell performance at 0.8 ViR-free. This decrease
in fuel cell performance may be attributed to excess Nafion® present, clogging the
electrocatalyst pores and the electrochemically active surface area, preventing the
access of the gas phase oxygen.
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3. Experimental Section

3.1. Materials and Methods

Commercially available reagents were used as received without further
purification. Ball milling was carried out with a Retsch PM 100 planetary ball mill
(Haan, Germany). Fuel cell test stand measurements were carried out on a Scribner
850e fuel cell test stand station (Southern Pines, NC, USA) using a Poco graphite
blocks single cell with serpentine flow channels and a geometric electrode surface
area of 5 cm2 (Fuel Cell Technology, Albuquerque, NM, USA). The single cell test
conditions are given individually under each figure.

3.2. One-Pot Synthesis of ZIF-Based Electrocatalyst Precursor

The one-pot synthesis of the ZIF-based electrocatalyst precursor was carried out
according to previously reported procedures [17,27]. Preparation of Zn(mIm)2TPI
was carried out by adding 2-methylimidazole (668.2 mg, 8 mmol, Aldrich, St. Louis,
MO, USA), ZnO (323.5 mg, 4 mmol, Aldrich), and 0.022 mol % iron in the form
of 1,10-phenanthroline iron (II) perchlorate (70.5 mg, 0.09 mmol, Aldrich) together,
grinding, and sealing in an autoclave under an Ar atmosphere. The autoclave was
heated to 180 ˝C and held for 18 h. A pink powder was obtained and used as
described below.

When performing the comparative study, the iron precursor was changed while
keeping all other reagents the same as well as the molar percentage of iron added.
Two other catalysts were prepared, Zn(mIm)2Fe(Ac)2, and Zn(mIm)2Fe(Ac)2(Phen)6.
Using Zn(mIm)2Fe(Ac)2(Phen)6 as an example, the catalyst was prepared by adding
2-methylimidazole (668.2 mg, 8 mmol, Aldrich), ZnO (323.5 mg, 4 mmol, Aldrich),
iron (II) acetate (15.6 mg, 0.09 mmol, Aldrich), and 1, 10-phenanthroline (97.3 mg,
0.05 mmol, Aldrich) together, grinding, and sealing in an autoclave under Ar
atmosphere. Heating profiles were not changed from what is described above.

3.3. Preparation of Electrocatalyst

Pyrolysis of ZIF-based electrocatalyst precursor was carried out by placing about
250 mg of ball milled Zn(mIm)2TPI into a ceramic boat and inserting it into a quartz
tube (2 inch diameter). The tube was sealed and purged with Ar for one hour before
it was heated to 1050 ˝C and held for one hour under flowing Ar atmosphere. The
pyrolyzed sample was then acid washed in 0.5 M H2SO4 via sonication for 30 min
then continuously agitated for 16 h at room temperature. The sample was then
washed with water until neutral and dried in a vacuum oven at 40 ˝C. The sample
was then pyrolyzed again at 750 ˝C for 30 min under flowing NH3 atmosphere to
give the final product.
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When electrocatalysts with Ketjen Black additive were prepared, 10 wt % Ketjen
Black was added during either at the ball mill step or after the acid wash and
before NH3 thermal activation. As an example, the preparation is given below for
Zn(mIm)2TPI-10-AW, where Ketjen Black (4 mg, EC-300J, Azko Nobel, Willowbrook,
IL, USA) was added to the electrocatalyst (33.1 mg) after acid wash but before NH3

thermal activation. The sample was dispersed in isopropyl alcohol via sonication for
30 min the dried in a vacuum oven. Once dry, the prepared Zn(mIm)2TPI-10-AW
sample was thermally activated at 750 ˝C for 30 min under NH3 flow per usual.

3.4. Single Fuel Cell Test

3.4.1. Preparation of Cathode

An ink solution was prepared for the molar ratio of 0.7:1 ionomer to catalyst by
combining Zn(mIm)2TPI (25 mg) with Nafion® (350 mg, 5 wt. % solution, Aldrich),
isopropyl alcohol (890 µL), and water (350 µL). The ink solution was sonicated for
30 min and constantly agitated for 16 h at room temperature before it was painted
onto carbon paper (5 cm2, Fuel Cells Etc., Sigracet 25 BC, College Station, TX, USA)
to create the cathode, which was dried in a vacuum oven at 40 ˝C for two hours. The
catalyst loading for all the tests was approximately 3.5–4.0 mg cm´2.

3.4.2. Preparation of Anode

An ink solution was prepared by combining Pt/C (10 mg, 40 wt. % of Pt, E-TEK,
Somerset, NJ, USA), Nafion® (80 mg, 5 wt. % solution, Aldrich), isopropyl alcohol
(205 µL), and water (80 µL). This ink solution was solicited for 30 min and constantly
agitated for 16 h at room temperature before it was painted onto carbon paper (5 cm2,
Fuel Cells Etc., Sigracet 25 BC) to create the anode, which was dried in a vacuum
oven at 40 ˝C for 2 h. The Pt loading for all tests was approximately 0.4 mgPt/cm2.

3.4.3. Preparation of Membrane Electrode Assembly

The prepared cathode and anode were hot pressed on either side of a Nafion®

N211 membrane (DuPont, New Castle, DE, USA) at 120 ˝C for 30 s using a pressure
of 5.4 ˆ 106 Pa, the pressure was then increased to 1.1 ˆ 107 Pa and held for an
additional 30 s. Pressure values were calculated assuming that the load is evenly
applied to the 5 cm2 electrode.

3.4.4. Fuel Cell Activity Test

Fuel cell activity tests were carried out by placing the prepared MEA into a
single cell. Data was gathered by a Scribner 850e fuel cell test stand. A polarization
curve was recorded by scanning from open circuit potential (OCV) to 750 mV at
10 mA s´1 then from 750 mV to 200 mV at 50 mV s´1. The area current density,
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IA, was recorded directly from the polarization measurement. Cell impedance was
measured by the current interrupt method installed in the fuel cell test stand.

4. Conclusions

Our study shows that significant improvements in cathodic electrocatalyst
performance can be achieved when synthesis, processing, and fabrication parameters
are optimized. We found that iron complex with six-N coordination such as
1,10-phenanthroline iron (II) perchlorate could provide excellent catalytic activity
and overall single cell performance. Amorphous carbon such as Ketjen Black was
also added at different steps of catalyst preparation to reduce the cell impedance.
However, such addition also dilutes the catalytically active sites and thereby reduced
the fuel cell performance. Finally, different Nafion® to catalyst ratios were used to
improve the cathode ink formulation before MEA fabrication was performed. These
improvements at both catalyst and MEA levels have yielded impressive ORR activity
when tested in a fuel cell system, moving towards the performance targets set by the
U.S. DOE for the automotive application.
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Effect of ZIF-8 Crystal Size on the O2
Electro-Reduction Performance of Pyrolyzed
Fe–N–C Catalysts
Vanessa Armel, Julien Hannauer and Frédéric Jaouen

Abstract: The effect of ZIF-8 crystal size on the morphology and performance of
Fe–N–C catalysts synthesized via the pyrolysis of a ferrous salt, phenanthroline and
the metal-organic framework ZIF-8 is investigated in detail. Various ZIF-8 samples
with average crystal size ranging from 100 to 1600 nm were prepared. The process
parameters allowing a templating effect after argon pyrolysis were investigated.
It is shown that the milling speed, used to prepare catalyst precursors, and the
heating mode, used for pyrolysis, are critical factors for templating nano-ZIFs into
nano-sized Fe–N–C particles with open porosity. Templating could be achieved when
combining a reduced milling speed with a ramped heating mode. For templated
Fe–N–C materials, the performance and activity improved with decreased ZIF-8
crystal size. With the Fe–N–C catalyst templated from the smallest ZIF-8 crystals,
the current densities in H2/O2 polymer electrolyte fuel cell at 0.5 V reached ca.
900 mA cm´2, compared to only ca. 450 mA cm´2 with our previous approach. This
templating process opens the path to a morphological control of Fe–N–C catalysts
derived from metal-organic frameworks which, when combined with the versatility
of the coordination chemistry of such materials, offers a platform for the rational
design of optimized Metal–N–C catalysts.

Reprinted from Catalysts. Cite as: Armel, V.; Hannauer, J.; Jaouen, F. Effect of ZIF-8
Crystal Size on the O2 Electro-Reduction Performance of Pyrolyzed Fe–N–C Catalysts.
Catalysts 2015, 5, 1333–1351.

1. Introduction

Fuel cells offer a combination of efficiency and power density that meets
the requests of the most demanding applications, and, in particular, those of
the transportation sector [1,2]. Among the fuel cells allowing fast start-up and
shut-down operation, an imperative criterion for the automotive industry, the
polymer electrolyte membrane fuel cell (PEMFC) is today the most advanced
technology due to the existence of proton conductive polymer membranes [3,4].
While PEMFCs have reached the commercialisation level for materials handling
vehicles and, since recently, for personal automobiles that are being released in Japan
and California, its long term success is bound to cost and sustainability. These two
aspects are intimately linked to the usage of platinum for catalyzing the anodic and
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cathodic reactions. Ultimately, the accessibility to enough platinum is questionable if
the PEMFC technology is to replace internal combustion engines. Since 80%–90% of
platinum in a PEMFC is needed to catalyze the sluggish oxygen reduction reaction
(ORR) [5], reducing the Pt content at the cathode or replacing Pt-based catalysts
by catalysts based on Earth-abundant elements is a topic of intense research since
2003 [6].

Catalysts based on iron, cobalt, nitrogen and carbon that feature Metal–NxCy

moieties covalently integrated in N-doped carbons have emerged as a promising
alternative to Pt-based catalysts [6–12]. Rational approaches for the selection of
metal, nitrogen and carbon precursors, for the synthetic conditions and for more
durable Metal–N–C catalysts, are, however, still needed. In 2011, the use of metal
organic frameworks (MOFs) as sacrificial N and C precursors for the synthesis
of Co– and Fe–N–C catalysts was first reported [8,13]. In the approach by Liu’s
group, the cobalt ions were engaged in the MOF structure and therefore ideally
dispersed and coordinated to nitrogen atoms [13]. The inherent disadvantage is
the high content of cobalt in Co-based MOFs, 30–40 wt. %. This is well above the
optimum content for Me–N–C catalyst precursors before pyrolysis, typically below
2–3 wt. % [7,14–16]. Too large Fe or Co contents lead to the formation of highly
graphitized carbon structures during pyrolysis [13,17]. In such graphitized structures,
the number of MeNxCy active sites is low, which leads to a low ORR activity [18,19].
In order to maximize the activity, it is necessary to reach a high specific area, and
especially a high microporous area [7,20–22]. In the approach by Dodelet’s group, a
Zn-based MOF was combined with Fe(II) and phenanthroline in order to prepare a
catalyst precursor which, after pyrolysis in Ar and then NH3, resulted in a Fe–N–C
catalyst with unprecedented initial power performance in PEMFC [8]. The Zn-based
MOF used in 2011 by Dodelet’s group was ZIF-8, a well-known zeolitic imidazolate
framework (ZIF) [23,24], commercially available under the trade name Basolite®

Z1200 (produced by BASF, purchased from Sigma Aldrich, St. Louis, MO, USA),
referred to hereafter as Basolite®. ZIF-8 has a sodalite topology and is entirely
microporous with a BET area of ca. 1600 m2 g´1 [23]. Fe–N–C catalysts derived with
various approaches from Fe(II) acetate, 1,10-phenanthroline and ZIF-8 but sharing
a common pyrolytic step in NH3, still represent the state-of-the-art in terms of
initial power performance in PEMFC [8,10,25–27]. They however suffer from a poor
durability, with ca. halved power performance after 50 h of operation, characteristic
for NH3-pyrolyzed catalysts [8,10,28]. In contrast, Fe–N–C catalysts derived from
Fe(II), 1,10-phenanthroline and ZIF-8 but pyrolyzed in Argon are initially less active
but more stable [8,29,30]. Other Fe– and Fe–Co–N–C catalysts pyrolyzed in inert
atmosphere have resulted in a constant current density at 0.4–0.5 V over several
hundred hours of operation in PEMFC, a promising achievement toward more
durable Me–N–C catalysts [9,31].
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Since the first reports on the synthesis of Metal–N–C materials via the sacrificial
pyrolysis of microporous ZIFs [8,13], modifications of the preparation of the catalyst
precursor from Fe(II) acetate, N-ligands and ZIF-8 have minimized the formation of
undesired iron particles during pyrolysis. Low energy milling of the dry precursor
powders has been shown to optimise the dispersion of ferrous ions and to favour the
formation of FeNxCy moieties during pyrolysis [25,32]. The replacement of Fe(II) and
1,10-phenanthroline (phen) by an iron porphyrin was also shown to preferentially
result in the formation of FeNxCy moieties after pyrolysis [33]. Alternative Zn-based
ZIFs have also started being investigated, using a one-pot synthesis approach [10,26].
The impregnation of ZIF-8 with furfuryl alcohol introduced mesoporosity in the
resulting Fe–N–C catalysts [34]. However, the increased mesoporous volume did not
increase the fuel cell performance.

To a large extent, the transport properties of Metal–N–C cathodes today limit
the fuel cell performance at high load [6]. Identifying rational approaches to optimize
transport properties without negatively affecting the ORR activity of the most active
or most stable Me–N–C catalysts reported to date is therefore important. Hence,
controlling the size of ZIF crystals before pyrolysis and controlling all process
parameters in order to template nanosized ZIF crystals into nano-sized catalytic
Me–N–C particles is a promising approach. It could significantly reduce the average
diffusion length for O2 molecules from the electrode macropores to the active FeN4

sites located in intra-particle pores. In the commercial ZIF-8, Basolite®, the crystal
size ranges from 200 to 500 nm, which is not optimum [8].

Hitherto, the size effect of ZIF crystals on the activity and accessibility of ORR
active sites in Me–N–C catalysts derived from the pyrolysis of ZIFs has not been
investigated in depth. Recent attempts include Co–N–C catalysts derived from ZIF-67
and metal-free N–C catalysts derived from ZIF-8 [35,36]. ZIF-67, a ZIF comprising
Co(II) ion ligated with 2-MeIm organised in sodalite topology, was synthesized in
three average sizes of 300, 800 and 1700 nm. ZIF-67 powders were then pyrolyzed
in Ar at 600–900 ˝C to form Co–N–C catalysts. The Co–N–C catalyst derived from
ZIF-67 with the smallest crystal size of 300 nm showed a higher activity in rotating
disk electrode measurements in 0.1 M HClO4 [35]. SEM and TEM images showed a
remarkable templating of the rhombic dodecahedron shape of ZIF-67 nanocrystals
into Co–N–C catalytic particles with similar size. The second study reported the
synthesis of ZIF-8 crystals with average size of 60 nm [36]. ZIF-8 was pyrolyzed in
N2 at 700–1000 ˝C. A templating effect was similarly observed, even after pyrolysis
at 1000 ˝C. A high ORR activity of the resulting N-doped carbons was measured in
0.1 M KOH. The effect of smaller catalytic Fe(Co)–N–C particles has however not
yet been demonstrated in fuel cell measurements at high current density, where a
short diffusion path for O2 is expected to be most beneficial. The restricted current
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densities of a few mA¨ cm´2 in rotating disk electrode measurements cannot inform
whether such templated catalysts perform better in a fuel cell.

The development of synthetic methods to control the size of MOF or ZIF crystals
is relatively recent by itself [37–43]. Of particular interest, the rapid crystallization at
room temperature of Zn(II) and 2-MeIm into ZIF-8 in either methanol or aqueous
solution is now well established [36,42,44,45]. Control of the size of ZIF-8 crystals has
been gained with the approaches of (i) modulating-ligand [38,44] (ii) surfactants [40]
and (iii) excess-ligands [37,42,45]. The first approach relies on the competition
for Zn(II) ions between 2-MeIm and a second modulating ligand added in the
reagent solution. For example, large ZIF-8 crystals of ca. 1 µm were obtained from
Zn(II) and 2-MeIm in the presence of the modulating ligand 1-MeIm [44]. In the
absence of 1-MeIm, ZIF-8 crystals of 60–70 nm were obtained. In the presence of
another modulating ligand, n-butylamine, ultra small ZIF-8 crystals of 9–10 nm
could be obtained. The effects were rationalized on the basis of the ability of the
modulating ligand to deprotonate 2-MeIm during the nucleation of ZIF-8. The second
approach relies on the use of surfactants that stabilize nanosized ZIF-8 crystals [40].
With surfactants, phase pure ZIF-8 crystals of sub-100 nm size could be obtained
at nearly stoichiometric ratio 2:1 for 2-MeIm:Zn(II). The third approach relies on
overstoichiometric ratios of 2-MeIm:Zn(II) in the reagent solution. The excess of
2-MeIm results in a high density of nucleation sites for the crystallization of ZIF-8,
and hence in smaller crystals [37,42,45]. Molar ratios of 2-MeIm to Zn(II) from four
to 200 have been investigated resulting in ZIF-8 crystals with size ranging from 1900
to 250 nm, respectively [42].

In the present work, we synthesized ZIF-8 materials with a wide range of
crystal size through the ligand-excess approach. These materials were then milled
with Fe(II) acetate and 1,10-phenanthroline to form catalyst precursors. The latter
were pyrolyzed in Ar at 1050 ˝C, with a heating either in ramp or flash mode, to
form Fe–N–C electrocatalysts. The structure and morphology of ZIF-8 powders,
catalyst precursors and catalysts were investigated with SEM, X-ray diffraction and
N2 sorption while the Fe–N–C catalysts were electrochemically characterized in a
single cell PEMFC.

2. Results and Discussion

2.1. Morphology and Size of ZIF-8 Nanocrystals

Figure 1 shows the SEM images for the five synthetic conditions of ZIF-8
(labelled hereafter as Z8) with ratios of 2-MeIm to Zn(II) (denoted as X hereafter)
varying from 40 to 140 in the initial reagent solution. It is seen that the morphology
of these Z8-X samples did not change with the molar ratio X, but the crystal size
drastically decreased with increasing molar ratio. Crystals 1200–1800 nm in size are
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seen for Z8-40, 250–700 nm for Z8-60, 160–400 nm for Z8-80, 100–280 nm for Z8-100,
and 80–200 nm for Z8-140. This agrees with the results reported by Kida et al. [42]. The
vast majority of the crystals show a well-defined truncated rhombic dodecahedron
morphology [42,44]. As a comparison, Figure 1 also shows a typical SEM image
for Basolite®. A large dispersion size from 280–640 nm is observed, but most of the
crystals are larger than 400 nm. The average size observed with Basolite® is similar
to that of Z8-60 (Figure 1). Hence, the set of Z8 materials synthesized here forms an
interesting basis to investigate the size effect of Z8 on the activity and performance
of Fe–N–C catalysts that will be derived from them. Figure S1 shows the powder
XRD patterns of the various Z8-X materials. All materials are well crystallized,
even at the highest ratio of 2-MeIm to Zn(II) corresponding to the smallest crystals.
All diffraction lines can be assigned to the sodalite topology of ZIF-8. Kida et al.,
observed XRD peaks assigned to zinc hydroxides by-products at ratios of 2-MeIm
to Zn(II) ď 20, peaks that were absent at molar ratios ě40 [42]. In this work, we
restricted ourselves to ratios ě40 and the materials are thus phase-pure Z8 crystals.
The accessibility of the cavities in these materials was then investigated with N2

sorption (Figure S2). No hysteresis is observed and the isotherms have a type I
shape, characteristic for microporous materials. The specific surface area slightly
decreases with decreasing Z8 crystal size (Table 1, 2nd column). For the smallest
crystals (Z8-100 and 140), the isotherms show a sharp rise at high P/P0, assigned to
the filling of mesopores existing between ZIF crystals [42].

2.2. Characterization of Fe–N–C Catalysts Obtained from Various ZIF-8 Materials
without Templating

A first series of Fe–N–C catalysts was synthesized via flash pyrolysis in Ar
of catalyst precursors prepared from Fe(II) acetate, phen and Z8-X materials. All
catalyst precursors discussed in this sub-section were prepared by planetary milling
the dry precursor powders at 400 rpm (see Section 3.2). These process parameters are
those used by us previously [8,46]. An example of a catalyst label is Z8-40-400 rpm-F,
indicating that Z8-40 was used, the milling speed was 400 rpm and the pyrolysis was
carried out in flash mode. The SEM images of this first series of Fe–N–C catalysts
are shown in Figure 2. Clearly, the morphology and size of the Fe–N–C catalytic
particles are totally different from those of the starting Z8-X crystals. Even when
starting from the largest Z8 crystals (Z8-40), most particles in Z8-40-400-F lost their
original size (Figures 1 and 2). The visual impression is that the pristine Z8 batches
with different average crystal size (100–1600 nm) resulted after milling at 400 rpm
and flash pyrolysis in Fe–N–C agglomerates with a common size of ca. 300–600
nm, independent of the initial Z8 crystal size. It therefore seems that the largest Z8
crystals (Z8-40) are transformed into catalytic particles of a smaller size, while the
smallest Z8 crystals (Z8-140) are transformed into larger catalytic particles.
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Table 1. BET specific areas of non-pyrolyzed and pyrolyzed materials.

Z8 Material
BET Specific Area/m2 g´1

as-synthesized Z8-X Z8-X-400 rpm-F Z8-X-100 rpm-F Z8-X-100 rpm-R

Z8-40 1798 412 - 726
Z8-60 1767 372 - 745
Z8-80 1654 439 - 738
Z8-100 1543 412 367 673
Z8-140 1524 292 - 722

Basolite® 1618 357 - 719
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Figure 2. SEM micrographs of Fe–N–C catalysts derived from Fe(II), phen and Z8-X
powders or Basolite®, ballmilled at 400 rpm and pyrolyzed at 1050 ˝C in Ar in flash
mode. The scale bar is 1.20 µm for all SEM micrographs.

Figure S3 shows the N2 isotherms for this series of catalysts, and Table 1 (3rd
column) reports their BET areas. No clear trend is observed for the BET area. Figure 3
shows the PEMFC polarization curves recorded for a cathode loading of 4 mg cm´2

for this series of Fe–N–C catalysts. As seen in the inset of Figure 3, the ORR activity
at 0.9 V iR-free is similar for all Z8-X-400 rpm-F samples (0.4–0.8 mA cm´2) but
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lower than that of the Fe–N–C catalyst derived from Basolite® (1.5 mA cm´2). The
similar ORR activities and fuel cell performance obtained within this series agree
with their similar morphology and specific surface area. The higher ORR activity
obtained with Basolite® is possibly assigned to the presence of 100 ppm of iron
atomically-dispersed in Basolite®. We will report on this in the near future.

In view of this first set of morphological and electrochemical results, we then
investigated the effect of two process parameters that might explain the lack of
templating observed on this first series of Fe–N–C catalysts. Those parameters are (i)
the rotation rate applied during the ball milling of Fe(II), phen and Z8-X, and (ii) the
heating mode. Previous works have recently reported on the templating of nano-ZIFs
after pyrolysis in inert gas, but the heating mode was a ramp at 5 ˝C min´1 [35,36].
Our flash pyrolysis mode is unusual but was found to be crucial in order to precisely
control the pyrolysis duration, which is in turn important when pyrolyzing in reactive
NH3 atmosphere [7,20]. Precisely controlling the pyrolysis duration is however less
important when the pyrolysis is carried out in inert gas since no continuous chemical
reaction occurs between the formed carbonaceous material and inert gas.
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Figure 3. Non iR-corrected PEMFC polarization curves with cathodes comprising  

4 mg cm−2 of Fe–N–C catalysts. Ballmilling was carried out at 400 rpm for forming catalyst 

precursors from Fe(II) acetate, phen and Z8-X powders. The catalyst precursors were 

subsequently pyrolyzed in flash mode. Inset: Tafel plots at high potential of the iR-corrected 

polarization curves. 

2.3. Effects of Milling Speed and Heating Mode on the Morphology & Performance of Fe–N–C Catalysts 

In this section, we selected Z8-100 to investigate the effects of milling speed (400 or 100 rpm) and 

heating mode (flash or ramp) on the morphology of Fe–N–C catalysts. Z8-100 was selected because its 

average crystal size is smaller than that of Basolite® and smaller than that of the agglomerates in  

the first series of Fe–N–C catalysts. The morphological changes of the materials were investigated 

with SEM at different stages of the synthesis. Fixing the milling speed at 400 rpm, the SEM images of 

(a) Z8-100, (b) the corresponding catalyst precursor ballmilled at 400 rpm and (c,d) the corresponding 

Fe–N–C catalysts after pyrolysis in flash or ramp mode are shown in Figure 4. Milling at 400 rpm 

leads to the formation of agglomerates that are larger than the pristine Z8-100 crystals (Figure 4b) and 

also leads to an amorphization of the catalyst precursor, as shown by XRD (Figure S4). 

Following the milling step, the pyrolysis does not significantly modify the macroscopic morphology 

of those materials, regardless of whether the pyrolysis is carried out in flash or ramp mode  

(Figure 4c,d). 

  

Figure 3. Non iR-corrected PEMFC polarization curves with cathodes comprising
4 mg cm´2 of Fe–N–C catalysts. Ballmilling was carried out at 400 rpm for forming
catalyst precursors from Fe(II) acetate, phen and Z8-X powders. The catalyst
precursors were subsequently pyrolyzed in flash mode. Inset: Tafel plots at high
potential of the iR-corrected polarization curves.

2.3. Effects of Milling Speed and Heating Mode on the Morphology & Performance of
Fe–N–C Catalysts

In this section, we selected Z8-100 to investigate the effects of milling speed
(400 or 100 rpm) and heating mode (flash or ramp) on the morphology of Fe–N–C
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catalysts. Z8-100 was selected because its average crystal size is smaller than that
of Basolite® and smaller than that of the agglomerates in the first series of Fe–N–C
catalysts. The morphological changes of the materials were investigated with SEM at
different stages of the synthesis. Fixing the milling speed at 400 rpm, the SEM images
of (a) Z8-100, (b) the corresponding catalyst precursor ballmilled at 400 rpm and (c,d)
the corresponding Fe–N–C catalysts after pyrolysis in flash or ramp mode are shown
in Figure 4. Milling at 400 rpm leads to the formation of agglomerates that are larger
than the pristine Z8-100 crystals (Figure 4b) and also leads to an amorphization of
the catalyst precursor, as shown by XRD (Figure S4).

Following the milling step, the pyrolysis does not significantly modify the
macroscopic morphology of those materials, regardless of whether the pyrolysis is
carried out in flash or ramp mode (Figure 4c,d).Catalysts 2015, 5 1341 
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The same investigation of morphological changes at different stages of synthesis was then carried 

out with a lowered milling speed of 100 rpm (Figure 5). The lowered milling speed not only preserved 

the original shape of Z8-100 crystals in the catalyst precursor but also prevented the formation of 
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speed resulted in an X-ray diffractogram now superimposed with that of Z8-100 (Figure S4). It 

therefore seems that a correlation exists between crystallographic amorphization at high milling speed 

(XRD pattern) and the agglomeration observed on the SEM images of catalyst precursors. For various 

ZIFs and MOFs, it can thus be expected that the milling speed should be minimized to avoid 

amorphization during the milling stage. The threshold milling speed at which amorphization starts will 

likely depend on the mechanical properties of each specific MOF structure. Following the milling 

stage at 100 rpm, the macroscopic morphology of Z8-100 crystals is also maintained in the Fe–N–C 

catalyst after pyrolysis in flash or ramp mode (Figure 5c,d). With the latter pyrolysis mode,  

a well dispersed structure with spherical entities is observed, while in the case of the flash pyrolysis 

mode, the Fe–N–C catalytic particles seem to be elongated and slightly more interconnected or fused 

together (Figure 5c). Higher resolution SEM images better highlight such microscopic morphological 

and surface-roughness differences between Z8-100-100 rpm-F and Z8-100-100 rpm-R (Figure S5). 

Figure 4. SEM micrographs of (a) Z8-100 crystals; (b) the catalyst precursor derived
from Fe(II), phen and Z8-100 mixed via ballmilling at 400 rpm, and (c,d) Fe–N–C
catalysts obtained by pyrolyzing that catalyst precursor at 1050 ˝C in Argon, either
in flash (c) or ramp mode (d). The scale bar is 1.20 µm for all SEM micrographs.

The same investigation of morphological changes at different stages of synthesis
was then carried out with a lowered milling speed of 100 rpm (Figure 5). The lowered
milling speed not only preserved the original shape of Z8-100 crystals in the catalyst
precursor but also prevented the formation of aggregates (Figure 5a,b). Moreover,
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powder X-ray diffraction confirmed that the lowered milling speed resulted in an
X-ray diffractogram now superimposed with that of Z8-100 (Figure S4). It therefore
seems that a correlation exists between crystallographic amorphization at high
milling speed (XRD pattern) and the agglomeration observed on the SEM images
of catalyst precursors. For various ZIFs and MOFs, it can thus be expected that the
milling speed should be minimized to avoid amorphization during the milling stage.
The threshold milling speed at which amorphization starts will likely depend on the
mechanical properties of each specific MOF structure. Following the milling stage
at 100 rpm, the macroscopic morphology of Z8-100 crystals is also maintained in
the Fe–N–C catalyst after pyrolysis in flash or ramp mode (Figure 5c,d). With the
latter pyrolysis mode, a well dispersed structure with spherical entities is observed,
while in the case of the flash pyrolysis mode, the Fe–N–C catalytic particles seem
to be elongated and slightly more interconnected or fused together (Figure 5c).
Higher resolution SEM images better highlight such microscopic morphological and
surface-roughness differences between Z8-100-100 rpm-F and Z8-100-100 rpm-R
(Figure S5).Catalysts 2015, 5 1342 
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microporous surface area after a ramp pyrolysis (Figure S6). This major difference is interpreted as  

an increased accessibility of the intra-particular pores after a ramp pyrolysis, compared to the case with 

flash pyrolysis. It is proposed that the flash mode, implying a high gasification rate of Z8 (about 66% 

of the initial Z8 mass is gasified, probably during the first minute of pyrolysis), not only leads to  

the deformation of the templating Z8 crystals but also to the formation of closed pores within 

carbonized crystals. If the outer surface of Z8 crystals fuses or becomes less porous before  

the carbonization is completed in the depth of the crystals, this will impede or slow down  

the outgassing of volatile products formed within the crystals. Pressure increase within Z8 crystals 

under carbonization at the initial stage of a flash pyrolysis may also ensue, distorting the shape of  

the crystals and modifying the interconnections between the pores of the final pyrolysis product. 

Figure 6 shows the PEMFC polarization curves recorded with a cathode loading of 4 mg cm−2 for  

the four Fe–N–C catalysts derived from Z8-100, and ballmilled at 400 or 100 rpm and pyrolyzed  

either in flash or ramp mode. As observed previously, the ORR activity at 0.9 V iR-free is low for  

the Fe–N–C catalyst prepared via milling at 400 rpm and pyrolyzed in flash mode, when compared to 

that of the catalyst derived from Basolite® (insets of Figures 3 and 6). 

Figure 5. SEM micrographs of (a) Z8-100 crystals; (b) the catalyst precursor derived
from Fe(II), phen and Z8-100 mixed via ballmilling at 100 rpm, and (c,d) Fe–N–C
catalysts obtained by pyrolyzing that catalyst precursor at 1050 ˝C in Argon, either
in flash (c) or ramp mode (d). The scale bar is 1.20 µm for all SEM micrographs.
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A much more obvious difference is however observed in the BET areas of the
two materials, 367 and 673 m2 g´1 for Z8-100-100 rpm-F and Z8-100-100 rpm-R,
respectively (Table 1). The twice higher uptake of N2 at the initial stage of the
isotherm (P/P0 < 0.02) also indicates a much higher microporous surface area after
a ramp pyrolysis (Figure S6). This major difference is interpreted as an increased
accessibility of the intra-particular pores after a ramp pyrolysis, compared to the
case with flash pyrolysis. It is proposed that the flash mode, implying a high
gasification rate of Z8 (about 66% of the initial Z8 mass is gasified, probably during
the first minute of pyrolysis), not only leads to the deformation of the templating Z8
crystals but also to the formation of closed pores within carbonized crystals. If the
outer surface of Z8 crystals fuses or becomes less porous before the carbonization is
completed in the depth of the crystals, this will impede or slow down the outgassing
of volatile products formed within the crystals. Pressure increase within Z8 crystals
under carbonization at the initial stage of a flash pyrolysis may also ensue, distorting
the shape of the crystals and modifying the interconnections between the pores of
the final pyrolysis product.

Figure 6 shows the PEMFC polarization curves recorded with a cathode loading
of 4 mg cm´2 for the four Fe–N–C catalysts derived from Z8-100, and ballmilled at
400 or 100 rpm and pyrolyzed either in flash or ramp mode. As observed previously,
the ORR activity at 0.9 V iR-free is low for the Fe–N–C catalyst prepared via milling at
400 rpm and pyrolyzed in flash mode, when compared to that of the catalyst derived
from Basolite® (insets of Figures 3 and 6).Catalysts 2015, 5 1343 
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Figure 6. PEMFC polarization curves with cathodes comprising 4 mg cm−2 of Fe–N–C 

catalysts. Ballmilling was carried out at 400 or 100 rpm for forming catalyst precursors 

from Fe(II) acetate, phen and Z8-100, catalyst precursors that were subsequently pyrolyzed 

in flash (F) or ramp mode (R). Inset: Tafel plots at high potential of the iR-corrected 

polarization curves. 

The ORR activity at 0.9 V iR-free is however enhanced by a factor of seven when the heating mode 

is switched to ramp (magenta solid to magenta dotted curve in the inset of Figure 6).  

The corresponding enhancement of the current density at 0.5 V is however minor (magenta curves in 

Figure 6), probably due to the formation of large agglomerates during the milling at 400 rpm. Even 

higher ORR activities are observed for the two Fe–N–C catalysts derived from Z8-100 and prepared 

via milling at 100 rpm, then pyrolyzed in flash or ramp mode (inset of Figure 6, brown curves).  

The ORR activities at 0.9 V iR-free of those two catalysts are now significantly higher than that 

observed with the Fe–N–C catalyst derived from Basolite® via 400 rpm milling and flash pyrolysis 

(3.7 and 5.3 mA cm−2 vs. 1.5 mA cm−2). Even more interesting, the combined low milling speed of  

100 rpm with the ramped pyrolysis mode results in a much improved performance at lower cell 

voltage, reaching 910 mA cm−2 at 0.5 V (Figure 6), instead of 374–515 mA cm−2 for the first series of 

Fe–N–C catalysts synthesized with 400 rpm milling speed and flash pyrolysis (Figure 3).  

The beneficial effect of a combined low milling speed (100 rpm) with a ramp pyrolysis mode is 

obvious at 0.5 V, compared to the 100 rpm milling speed combined with a flash pyrolysis  

(910 vs. 585 mA cm−2, brown curves in Figure 6). The high ORR activity at 0.9 V but medium 

performance at 0.5 V of Z8-100-100 rpm-F was reproducible. Hence, the catalytic sites are more 

accessible by O2 in Z8-100-100 rpm-R and this can be correlated to its higher BET area. While  

Z8-100-100 rpm-F shows a particle size similar to that in Z8-100-100 rpm-R (Figure 5c,d),  

the intra-particle pore network is less developed (lower BET area, Table 1) and less microporous 

(Figure S6). 

  

Figure 6. PEMFC polarization curves with cathodes comprising 4 mg cm´2 of
Fe–N–C catalysts. Ballmilling was carried out at 400 or 100 rpm for forming catalyst
precursors from Fe(II) acetate, phen and Z8-100, catalyst precursors that were
subsequently pyrolyzed in flash (F) or ramp mode (R). Inset: Tafel plots at high
potential of the iR-corrected polarization curves.
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The ORR activity at 0.9 V iR-free is however enhanced by a factor of seven when
the heating mode is switched to ramp (magenta solid to magenta dotted curve in the
inset of Figure 6). The corresponding enhancement of the current density at 0.5 V is
however minor (magenta curves in Figure 6), probably due to the formation of large
agglomerates during the milling at 400 rpm. Even higher ORR activities are observed
for the two Fe–N–C catalysts derived from Z8-100 and prepared via milling at 100
rpm, then pyrolyzed in flash or ramp mode (inset of Figure 6, brown curves). The
ORR activities at 0.9 V iR-free of those two catalysts are now significantly higher than
that observed with the Fe–N–C catalyst derived from Basolite® via 400 rpm milling
and flash pyrolysis (3.7 and 5.3 mA cm´2 vs. 1.5 mA cm´2). Even more interesting,
the combined low milling speed of 100 rpm with the ramped pyrolysis mode results
in a much improved performance at lower cell voltage, reaching 910 mA cm´2 at
0.5 V (Figure 6), instead of 374–515 mA cm´2 for the first series of Fe–N–C catalysts
synthesized with 400 rpm milling speed and flash pyrolysis (Figure 3). The beneficial
effect of a combined low milling speed (100 rpm) with a ramp pyrolysis mode is
obvious at 0.5 V, compared to the 100 rpm milling speed combined with a flash
pyrolysis (910 vs. 585 mA cm´2, brown curves in Figure 6). The high ORR activity
at 0.9 V but medium performance at 0.5 V of Z8-100-100 rpm-F was reproducible.
Hence, the catalytic sites are more accessible by O2 in Z8-100-100 rpm-R and this can
be correlated to its higher BET area. While Z8-100-100 rpm-F shows a particle size
similar to that in Z8-100-100 rpm-R (Figure 5c,d), the intra-particle pore network is
less developed (lower BET area, Table 1) and less microporous (Figure S6).

2.4. Characterization of Fe–N–C Catalysts Templated from Various ZIF-8 Materials

In view of the templating effect and positive electrochemical result obtained
with Z8-100-100 rpm-R, the synthesis parameters were then fixed (milling speed
100 rpm and ramp pyrolysis) and the investigation of the templating effect for the
different Z8 materials shown in Figure 1 is now possible. The BET areas for this
second series of Fe–N–C materials are reported in Table 1 (5th column). In this second
series of catalysts, all BET areas are significantly higher than those measured for the
first series of Fe–N–C catalysts (Table 1, 3rd column). High BET and microporous area
is required for reaching a high ORR activity at high potential. This is demonstrated by
the high ORR activity observed for all materials within this second series of Fe–N–C
catalysts (inset of Figure 7).
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Figure 7. Non-iR corrected PEMFC polarization curves with cathodes comprising  

4 mg cm−2 of Fe–N–C catalysts. Ballmilling was carried out at 100 rpm for forming 

catalyst precursors from Fe(II) acetate, phen and Z8-X powders. The catalyst precursors 

were heated in ramp mode. Inset: Tafel plots at high potential of iR-free polarization 

curves (the green curve is superimposed below the blue and magenta curves). 

Beyond the fact that the average BET areas of these two series of catalysts differ, the N2 sorption 

isotherms also reveal the presence of a hysteresis for the materials pyrolyzed with flash mode, but little 

or no hysteresis for the materials pyrolyzed with ramp mode (Figures S7 and S8). This is interpreted as 

a less tortuous path and the absence of bottlenecks in the intra-particle pore network of materials 

pyrolyzed in ramp mode. The ORR activity at 0.9 V iR-free is high and quite homogeneous within this 

second series of Fe–N–C catalysts (3.2–5.3 mA cm−2, see inset of Figure 7), in agreement with their 

similar BET areas and N2 isotherms (Table 1, Figure S7). Hence, the size of Z8 crystals before 

pyrolysis does not play a major role regarding the ORR activity after pyrolysis. However, the effect of 

Z8 particle size (and thus of Fe–N–C catalytic particle size after pyrolysis, due to the templating 

observed earlier for Z8-100) is obviously demonstrated in the linear E vs. I plots, showing a continuous 

Figure 7. Non-iR corrected PEMFC polarization curves with cathodes comprising
4 mg cm´2 of Fe–N–C catalysts. Ballmilling was carried out at 100 rpm for forming
catalyst precursors from Fe(II) acetate, phen and Z8-X powders. The catalyst
precursors were heated in ramp mode. Inset: Tafel plots at high potential of
iR-free polarization curves (the green curve is superimposed below the blue and
magenta curves).

Beyond the fact that the average BET areas of these two series of catalysts differ,
the N2 sorption isotherms also reveal the presence of a hysteresis for the materials
pyrolyzed with flash mode, but little or no hysteresis for the materials pyrolyzed
with ramp mode (Figures S7 and S8). This is interpreted as a less tortuous path and
the absence of bottlenecks in the intra-particle pore network of materials pyrolyzed
in ramp mode. The ORR activity at 0.9 V iR-free is high and quite homogeneous
within this second series of Fe–N–C catalysts (3.2–5.3 mA cm´2, see inset of Figure 7),
in agreement with their similar BET areas and N2 isotherms (Table 1, Figure S7).
Hence, the size of Z8 crystals before pyrolysis does not play a major role regarding
the ORR activity after pyrolysis. However, the effect of Z8 particle size (and thus
of Fe–N–C catalytic particle size after pyrolysis, due to the templating observed
earlier for Z8-100) is obviously demonstrated in the linear E vs. I plots, showing a
continuous increase of the current density at e.g., 0.5 V with decreased Z8 particle
size (Figure 7). The clear assignment of the increased performance at 0.5 V to the
reduced catalytic particle size is made possible due to the very similar ORR activities
observed at 0.9 V for this second series of catalysts. This synthesis approach therefore
allows a control of the particle size and quality of the intra-particle porous network
in Fe–N–C catalysts derived from the pyrolysis of metal-organic frameworks.
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Figure 8. (a) Current density at 0.9 V iR-free and 0.5 V against the ligand-to-Zn(II) ratio 

used for the synthesis of Z8 samples. The catalysts were synthesized with 400 rpm milling 

and flash pyrolysis; (b) the same figure for catalysts synthesized with 100 rpm milling and 

ramp pyrolysis. Basolite® is artificially positioned at a ligand-to-Zn(II) ratio of 60. 

Figure 8 summarizes the ORR activity at 0.9 V iR-free cell voltage (left handside Y-axis) and 

current density at 0.5 V uncorrected voltage (right handside Y-axis) for the two series of Fe–N–C 

catalysts. The X-axis reports the ligand to Zn(II) ratio used for synthesizing Z8 materials, and is thus 

inversely correlated with the average crystal size of Z8 materials. In this figure, the results obtained 

with Basolite® are also shown. In order to do this, Basolite® was artificially attributed a ratio of  

ligand-to-Zn(II) of 60, on the basis of similar Z8 crystals size observed for Z8-60 and Basolite® (Figure 1). 

For Z8-100-100 rpm-R, the reproducibility of the results was verified on three different MEAs  

(Figure 8B). The best MEA reached 910 mA cm−2 at 0.5 V cell voltage and a peak power density of  

500 mW cm−2 at 0.39 V (Figure 6, brown dotted curve). This result surpasses by a factor of two  

the current density at 0.5 V previously obtained with Basolite® and with our typical process parameters 

(400 rpm, flash pyrolysis in Ar, Figure 8A) [46]. The initial peak power density of 500 mW cm−2 is 

among the highest reported for Fe–N–C catalysts, including those pyrolyzed in  

NH3 [8–10,12,26,27,30,47]. This is particularly interesting since such Fe–N–C catalysts pyrolyzed in 

inert gas are intrinsically more stable than NH3-pyrolyzed Fe–N–C catalysts [8]. While the crystal size 

of ZIF-8 may be further decreased, this might not necessarily lead to further increased performance 

Figure 8. (a) Current density at 0.9 V iR-free and 0.5 V against the ligand-to-Zn(II)
ratio used for the synthesis of Z8 samples. The catalysts were synthesized with
400 rpm milling and flash pyrolysis; (b) the same figure for catalysts synthesized
with 100 rpm milling and ramp pyrolysis. Basolite® is artificially positioned at a
ligand-to-Zn(II) ratio of 60.

Figure 8 summarizes the ORR activity at 0.9 V iR-free cell voltage (left handside
Y-axis) and current density at 0.5 V uncorrected voltage (right handside Y-axis) for the
two series of Fe–N–C catalysts. The X-axis reports the ligand to Zn(II) ratio used for
synthesizing Z8 materials, and is thus inversely correlated with the average crystal
size of Z8 materials. In this figure, the results obtained with Basolite® are also shown.
In order to do this, Basolite® was artificially attributed a ratio of ligand-to-Zn(II) of 60,
on the basis of similar Z8 crystals size observed for Z8-60 and Basolite® (Figure 1). For
Z8-100-100 rpm-R, the reproducibility of the results was verified on three different
MEAs (Figure 8B). The best MEA reached 910 mA cm´2 at 0.5 V cell voltage and
a peak power density of 500 mW cm´2 at 0.39 V (Figure 6, brown dotted curve).
This result surpasses by a factor of two the current density at 0.5 V previously
obtained with Basolite® and with our typical process parameters (400 rpm, flash
pyrolysis in Ar, Figure 8A) [46]. The initial peak power density of 500 mW cm´2

is among the highest reported for Fe–N–C catalysts, including those pyrolyzed in
NH3 [8–10,12,26,27,30,47]. This is particularly interesting since such Fe–N–C catalysts
pyrolyzed in inert gas are intrinsically more stable than NH3-pyrolyzed Fe–N–C
catalysts [8]. While the crystal size of ZIF-8 may be further decreased, this might not
necessarily lead to further increased performance since other transport phenomena
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may then become limiting (proton conduction and O2 diffusion across the cathode
layer, rather than O2 diffusion in single catalytic particles). The present work also
clearly demonstrates that the desired pore network for a well-performing Fe–N–C
catalyst is highly microporous, and with no hysteresis attributed to small mesopores
or bottlenecks (Figure S8). The durability of such templated Ar-pyrolyzed Fe–N–C
catalysts with improved initial performance will be investigated in the near future.
The effect of even higher pyrolysis temperature in inert gas (1080–1150 ˝C) will also
be investigated with this approach, since a beneficial effect on the durability was
recently reported for non-templated Fe–N–C catalysts derived from Basolite® [30].

3. Experimental Section

3.1. Synthesis of Nanosized ZIF-8 Crystals

Phase pure ZIF-8 crystals were synthesized at room temperature in aqueous
solution according to the report by Kida and coworkers [42]. The size of ZIF-8
crystals was controlled with the molar ratio of 2-methylimidazole to Zn(II) nitrate
hexahydrate. For example, to reach a ratio of 60, a mass of 0.744 g of Zn(II) nitrate
hexahydrate (2.5 mmol) was dissolved in 10 mL of deionized water and added to a
solution consisting of 12.3 g of 2-MeIm (150 mmol) previously dissolved in 90 mL of
deionized water. The final molar composition of this reagent solution is 1:60:2228
for Zn(II):2-MeIm:water. The solution was constantly stirred and quickly turned
cloudy and a suspension was obtained. Twenty-four hours later, the suspension was
centrifuged at 11,000 rpm for 15 min, washed with methanol and re-dispersed with
ultrasounds. The centrifugation and re-dispersion step was repeated three times. The
product was then vacuum-dried for 24 h at 80 ˝C. In order to obtain ZIF-8 crystals
with different sizes, the ratio 2-MeIm:Zn was adjusted to different values (40, 60, 80,
100, 140) by adjusting the amount of 2-MeIm while keeping the amount of the Zinc
salt and of water constant. The resulting ZIF-8 materials are labelled Z8-X, with X
being the ratio of 2-MeIm:Zn.

3.2. Synthesis of Fe–N–C Catalysts

All catalyst precursors were prepared via the dry ballmilling of ZIF-8
nanocrystals, Fe(II) acetate and 1,10-phenanthroline [32]. Then, 32.45 mg Fe(II)Ac,
100 mg of 1,10-phenanthroline and 800 mg of ZIF-8 were weighed and poured into
a ZrO2 crucible. This corresponds to 1 wt. % Fe in the catalyst precursor before
pyrolysis. Hundred zirconium-oxide balls of 5 mm diameter were then added. The
ZrO2 crucible was then sealed under air and placed in a planetary ball-miller (Fritsch
Pulverisette 7 Premium, Fritsch, Idar-Oberstein, Germany). The powders were
milled during 4 cycles of 30 min, at either 400 or 100 rpm milling speed. The catalyst
precursors resulting from the milling were pyrolyzed at 1050 ˝C in flowing Ar for
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1 h, via either a heat-chock procedure previously described by us [20], or via a ramp
mode with a heating rate of 5 ˝C min´1. For the latter, the catalyst dwell time at
1050 ˝C in Ar was also 1 h. Last, the obtained powders were ground in an agate
mortar. The mass loss during pyrolysis due to Zn, C and N volatile compounds from
ZIF-8 and phenanthroline was ca. 60–65 wt. %, leading to Fe contents of 2.5–2.9 wt.
% in the final catalysts. The catalysts are labelled Z8-X-Yrpm-Z, where X is the ratio
of ligand to Zn(II) used during ZIF-8 synthesis, Y is the rotation rate during milling
of the catalyst precursor (100 or 400 rpm) and Z is the heating mode (F for flash
pyrolysis and R for ramp mode). For example, Z8-60-400 rpm-F corresponds to a
catalyst precursor made from Fe, phen and Z8-60, milled at 400 rpm, and pyrolyzed
in argon for 1 h with flash mode.

3.3. Material Characterization

The crystalline structure of ZIF-8 materials was investigated with X-ray
diffraction using a PANanalytical X’Pert Pro powder X-ray diffractometer (Almelo,
The Netherlands). The Brunauer–Emmett–Teller (BET) surface area and pore volume
were measured with N2 sorption at liquid nitrogen temperature (77 K) using a
Micromeritics ASAP 2020 instrument (Norcross, GA, USA). Samples were degassed at
200 ˝C for 5 h in flowing nitrogen prior to measurements to remove guest molecules.
The microstructure of ZIF-8 and Fe–N–C materials was investigated with SEM
(Hitachi S-4800, Hitachi, Tokyo, Japan) after gold metallization.

3.4. Electrochemical Characterization

Electrochemical activity towards the ORR and initial power performance of
the catalysts was determined in a single-cell laboratory fuel cell. The inks for the
cathode electrode were prepared using the formulation of 20 mg of catalyst, 652 µL
of an alcohol-based 5 wt. % Nafion® solution that also contains 15%–20% water,
326 µL of ethanol and 272 µL of de-ionized water. The inks were first sonicated,
then agitated with a vortex mixer. These sonication-agitation steps were repeated
every 15 min for a total duration of 1 h. Then, three aliquots of 405 µL of the cathode
catalyst ink were deposited on the microporous layer of a commercial gas diffusion
layer (Sigracet S10-BC, 4.48 cm2, SGL Group The Carbon Company, Wiesbaden,
Germany). The gas diffusion layer was heated on a heating plate to facilitate solvent
evaporation, and the second and third aliquots were deposited only when the first
and second aliquots had dried, respectively, in order to avoid layer cracking. This
resulted in a total cathode catalyst loading of 4 mg cm´2. The remaining solvents and
water were then completely evaporated at 80 ˝C. The anode was a 0.5 mgPt¨ cm´2

electrode pre-deposited on Sigracet S10-BC. Membrane-electrode-assemblies were
fabricated by hot-pressing the anode and cathode with geometric areas of 4.84 cm2

against a Nafion® NRE-211 membrane at 135 ˝C for 2 min. The membrane
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electrode assemblies were installed in a single-cell PEMFC with serpentine flow
fields (Fuel Cell Technologies Inc., Albuquerque, NM, USA). The fuel cell bench
was an in-house bench connected to a Biologic Potentiostat with a 50 amperes
booster. The experiments were controlled with the EC-Lab software (Bio-Logic
Science Instruments, Claix, France). For all fuel cell tests reported in the present
work, the cell temperature was 80 ˝C, the humidifier’s temperature was 85 ˝C, and
the inlet gas pressures were 1 bar gauge at both the anode and the cathode. The
humidified H2 and O2 flow rates were ca. 50–70 sccm, as controlled downstream of
the fuel cell. The fuel cell polarization curves were recorded with EC lab software
using the cycling voltammetry experiment and scanning the cell at 0.5 mV¨ s´1.

4. Conclusions

The templating of nano-sized ZIF-8 crystals into catalytic Fe–N–C particles with
open porosity is shown to result in improved power performance at high current
density in PEM fuel cells. In order to achieve a templating effect in the pyrolyzed
catalysts, the milling speed used to mix the iron salt, phenanthroline and ZIF-8
precursors before pyrolysis is lowered to avoid agglomeration. In a second stage, the
heating mode used to pyrolyze the catalyst precursors under inert gas is crucial in
order to reach high BET and microporous areas and an intra-particle pore-network
free of bottlenecks. A flash pyrolysis mode (room temperature to 1050 ˝C in circa
1.5 min) resulted in a low BET area and large hysteresis in the N2 sorption isotherms
while a ramp heating mode at 5 ˝C min´1 resulted in a high BET area and little
or no hysteresis in the N2 sorption isotherms. The use of ZIF-8 nanocrystals of
average size 100 nm combined with a low milling speed for preparing the catalyst
precursor that was subsequently pyrolyzed in argon in ramp mode resulted in a much
improved ORR activity at high potential and also improved power performance
at 0.5 V. The synthesis of Fe–N–C catalysts pyrolyzed in inert atmosphere and
demonstrating improved power performance is important due to their known better
durability in PEM fuel cells compared to NH3-pyrolyzed Fe–N–C catalysts. The
templating and open porosity effects resulting in improved power performance
reported here for ZIF-8 will most likely be applicable to other MOFs as well and also
open the door to the design of advanced composite materials comprising MOFs and
corrosion-resistant supports such as carbon nanotubes or fibers.
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Surfactant-Template Preparation of
Polyaniline Semi-Tubes for
Oxygen Reduction
Shiming Zhang and Shengli Chen

Abstract: Nitrogen and metal doped nanocarbons derived from polyaniline (PANI)
have been widely explored as electrocatalysts for the oxygen reduction reaction
(ORR) in fuel cells. In this work, we report surfactant-template synthesis of PANI
nanostructures and the ORR electrocatalysts derived from them. By using cationic
surfactant such as the cetyl trimethyl ammonium bromide (CTAB) as the template
and the negatively charged persulfate ions as the oxidative agent to stimulate the
aniline polymerization in the micelles of CTAB, PANI with a unique 1-D semi-tubular
structure can be obtained. The semi-tubular structure can be maintained even after
high-temperature treatment at 900 ˝C, which yields materials exhibiting promising
ORR activity.

Reprinted from Catalysts. Cite as: Zhang, S.; Chen, S. Surfactant-Template Preparation
of Polyaniline Semi-Tubes for Oxygen Reduction. Catalysts 2015, 5, 1202–1210.

1. Introduction

Seeking the highly-active electrocatalysts for oxygen reduction reaction (ORR)
has become the one of the urgent demands for fuel cells, which would take a key role
in the “hydrogen energy economy” [1]. In recent years, non-precious metal and/or
metal-free materials based on nitrogen (N)-doped nanocarbons have shown great
promise in substituting Pt and its alloys for catalyzing the ORR [2,3].

Polyaniline (PANI), a low-cost and easy-making conjugate conducting polymer
containing rich content of nitrogen, has received extensive research interest [4–6].
Very recently, a variety of N-doped carbon catalysts based on PANI have been
constructed which showed superior electrocatalytic activities for the ORR [7–12].
The multi-technique characterization have suggested that the enviable performance
should be ascribed to the formation of metal-N complexion structures as well as
the carbon nanostructures such as thin graphene sheets and nanofibers [10–12]. It
has been generally accepted that the formation of uniform and ordered carbon
nanostructures is very important in enhancing the catalytic activity [10–19].

Up to now, doped carbon electrocatalysts of different morphologies, such
as nanoparticles [20], nanowires [21], nanotubes [22], nanorods [23], hollow
nanospheres [24] and amorphous carbons [25], have been constructed by using
various methods. The soft-template synthesis through self-assembly processes is
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among the most straightforward methods for nanostructure formation. In this
work, we use assembly architectures of a variety of surfactants as the soft-templates
to synthesize PANI nanostructures. In particular, PANI semi-tubes with uniform
diameters of ~80 nm are obtained by using cationic surfactant. The electrocatalysts
derived from these PANI semi-tubes show good ORR catalytic activity in alkaline.

2. Results and Discussion

Figure 1 shows the morphologies of PANI materials obtained by using CTAB
(80 mM) as the template and APS as the oxidative agent. It can be seen that uniform
1-D nanostructures with diameters of ~80 nm and lengths of a few micrometers
were obtained under this condition. Careful inspection revealed that these 1-D
nanostructures possessed semi-cannular structures. As seen from the TEM images
(Figure 1b and its insert), the walls of the individual tubes were highly rugged
and full of cone-shaped protuberances of ~10 nm lengths, exhibiting centipede-like
morphologies. We denoted this sample as PANIs-tubes.
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Figure 1. (a) SEM and (b) TEM images for polyaniline (PANI) obtained by using
cetyl trimethyl ammonium bromide (CTAB) as template and ammonium persulfate
(APS) as oxidative agent.

In the case when the preparation was conducted using the same procedure as
that giving PANIs-tubes but the CTAB was absent, highly agglomerated PANI particles
were obtained (Figure 2a). When the FeCl3 was used to replace APS as the oxidative
agent to stimulate the polymerization of aniline in CTAB solution, irregular PANI
nanosheets were obtained (Figure 2b). These results indicated that the semi-cannular
structured PANIs can be uniquely formed through the oxidative polymerization of
anilines by APS in the assemblies of CTAB.
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Figure 2. Morphologies of PANI materials obtained when (a) the CTAB was absent,
or (b) FeCl3 instead of APS was used as the oxidative reagent. The other conditions
are the same as that for Figure 1.

We have also explored the effects of the surfactant types on the morphologies
of the formed PANI materials. For anionic surfactants, e.g., SDBS, and non-ionic
surfactants, e.g., X-100 and Span 40, mixtures of PANI nanoparticles and nanorods
were obtained (Figure 3), which indicated the uniqueness of CTAB in producing the
tubular structures of PANI.
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Figure 3. Morphologies of PANI materials obtained when the CTAB was replaced
by (a) sodium dodecyl benzene sulfonate (SDBS), (b) Triton X-100 or, (c) Span 40.
The other conditions are the same as that for Figure 1.

We believed that the formation of the PANI semi-tubes was related to the
rod-like CTAB micelles and the opposite charges between the oxidative persulfate
ions and the protonated aniline. Scheme 1 depicts the possible growth mechanism.
The aniline molecules should be dissolved into the rod-like CTAB micelles. In the
presence of HCl, the aniline molecules should be protonated. Therefore, they would
be mainly located in the outer region of the micelles. The electrostatic attraction made
the negatively charged persulfate ions approach the outer surface of micelles and
oxidize the aniline molecules, which stimulate the polymerization in the outer region
of cylindrical micelles. The formation of half instead of full PANI tubes was probably
due to that there were only limited amounts of aniline molecules dissolved in the
micelles. When the CTAB micelles were present or positively charged Fe(III) ions
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were used as oxidative agent, the mechanism shown in Scheme 1 could be altered. A
deeper understanding of the effects of the oxidants and surfactants on the resultant
PANI morphologies requires much more detailed investigation.

Catalysts 2015, 5 1205 
 
understanding of the effects of the oxidants and surfactants on the resultant PANI morphologies requires 
much more detailed investigation. 

 

Scheme 1. The possible growth process of 1-D PANIs-tubes by CTAB micelle as the soft-template. 

The obtained PANI samples were converted into N-doped carbon materials by heat-treating at  
900 °C under Ar atmosphere. As shown in Figure 4, semi-tubular morphologies were maintained after  
the heat-treatment. 

 

Figure 4. Comparison between the morphologies of PANIs-tubes (a) before and (b) after  
heat-treatment at 900 °C. 

We investigated the physical properties and chemical composition of the PANIs-tubes materials before 
and after the heat-treatment. It was found that the heat-treatment resulted in materials exhibiting BET 
surface area (ca. 351.8 m2/g) and pore volume (0.45 m3/g) which were much higher than that before 
heat-treatment (ca. 54.8 m2/g and 0.29 m3/g respectively). This was probably due to the volatilizing 
release of some components during the heat-treatment, making the resulted materials more porous. XPS 
characterization results indicated that the contents of N and O decreased significantly after  
heat-treatment (Table 1), which confirmed the volatilization of some components. 

Scheme 1. The possible growth process of 1-D PANIs-tubes by CTAB micelle as the
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The obtained PANI samples were converted into N-doped carbon materials by
heat-treating at 900 ˝C under Ar atmosphere. As shown in Figure 4, semi-tubular
morphologies were maintained after the heat-treatment.
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Figure 4. Comparison between the morphologies of PANIs-tubes (a) before and (b)
after heat-treatment at 900 ˝C.

We investigated the physical properties and chemical composition of the
PANIs-tubes materials before and after the heat-treatment. It was found that the
heat-treatment resulted in materials exhibiting BET surface area (ca. 351.8 m2/g) and
pore volume (0.45 m3/g) which were much higher than that before heat-treatment
(ca. 54.8 m2/g and 0.29 m3/g respectively). This was probably due to the volatilizing
release of some components during the heat-treatment, making the resulted materials
more porous. XPS characterization results indicated that the contents of N and
O decreased significantly after heat-treatment (Table 1), which confirmed the
volatilization of some components.
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Table 1. The content values of C, N and O estimated from XPS results for PANIs-tubes

before and after heat-treatment.

PANIs-tubes C (at. %) N (at. %) O (at. %)

After Heat-Treatment 88.96 5.79 5.25
Before

Heat-Treatment 78.85 10.88 10.27

Figure 5 compares the ORR polarization curves of the materials obtained
through heat-treating the PANI prepared without using surfactant (see Figure 2a), the
PANIs-tubes prepared by using CTAB micelles as templates, and the PANIs-tubes/GS
composite. For comparison, the ORR polarization curve for the pure GS is also given.
It can be seen that the heat-treated PANIs-tubes exhibited significantly enhanced
ORR activity as compared with the material derived from the PANI that was
prepared without using surfactant template. This should be due to the open
semi-tubular structure, which gave higher specific surface areas. As compared
with the heat-treated PANIs-tubes, the GS exhibited slightly more positive ORR onset
potential, but slower current rising rate and lower limiting current. The heat-treated
PANIs-tubes/GS composite showed much higher ORR activity than that exhibited by
the heat-treated PANIs-tubes and the GS alone.
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Figure 5. ORR polarization curves for different catalyst samples in O2-saturated
0.1 M KOH at an electrode rotation speed of 1600 rpm. The PANI refers to the
sample obtained by heat-treatment of PANI prepared without using surfactant;
the PANIs-tubes/GS refers to the sample obtained by heat-treatment of PANIs-tubes

and graphene sheets together. The catalyst loadings were 0.3 mg cm´2 for the
non-precious metal catalysts and 0.1 mg cm´2 for Pt/C (20 µg cm´2 for Pt).

Since the ORR polarization curves in Figure 5 were obtained with same total
mass loading of 0.3 mg cm´2 for the heat-treated PANIs-tubes, GS and PANIs-tubes/GS,
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one may expect that the ORR activity of the heat-treated PANIs-tubes/GS composite is
between that of the heat-treated PANIs-tubes and GS. The actually higher ORR activity
of the composite thus indicated that there were synergetic interaction between
PANIs-tubes and GS. The introduction of GS may increase the electrical conductivity
of the composite. On the other hand, the formation of composite between the
2-D GS and the 1-D PANIs-tubes would prevent the GS and PANIs-tubes from
agglomerating and stacking during the heat treatment and electrode preparation.
There have been numerous studies showing that the electrochemical performance
of nanomaterials can be enhanced by forming composites with GS, due to the good
electric conductivity of GS and the capability of GS to improve the dispersion of the
electroactive materials [26,27].

It can be seen that the limiting current of the composite was very similar to that
of the Pt/C electrocatalyst. The value of the limited current is directly related to the
electron transfer number of the reaction. It is known that the Pt-based electrocatalysts
catalyze the ORR through a 4-electron pathway. Therefore, we have reason to believe
that ORR proceeded on the heat-treated composite mainly through a 4-electron
process. It is noted that the present PANIs-tubes materials were still less efficient for
the ORR than the Pt/C catalyst. Further optimization on the material preparation is
necessary to promote the electrocatalytic activity.

3. Experimental Section

3.1. Chemicals and Materials

Various surfactants, such as cetyl trimethyl ammonium bromide (CTAB),
sodium dodecyl benzene sulfonate (SDBS), and octoxinol (Triton X-10), and sorbitan
monopalmitate (Span 40), and other chemicals were purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). The 20 wt. % Pt/C from Johnson
Matthey (JM, London, UK) was used as reference catalyst.

3.2. Materials Synthesis

In a typical synthesis, a desired amount of CTAB was mixed with 15 mL of
ultrapure water under ultrasonication for more than 30 min. After fully dissolution
of CTAB, 200 µL of aniline (AN) and 20 mL of 1 M HCl were successively added
under ultrasonication for another 30 min and then the solution was allow to stay for
24 h. 5 mL of 0.4 M ammonium persulfate (APS) solution was then added into the
solution to stimulate the polymerization of aniline in the CTAB assemblies. Different
CTAB concentrations (10–80 mM) were explored and no substantial difference in
the morphology was seen for the obtained PANI. During the reaction progress, the
color gradually changed to blue and cloudy precipitates were formed, which were
collected through ultrafiltration and then alternately washed by ethanol and water
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followed by freeze-drying. Finally, dark blue product was obtained. For comparison,
the preparation was also conducted by replacing CTAB with other surfactants.

We also prepared the composite of PANIs with graphene nanosheets (GS) that
were prepared by high temperature thermal reduction of graphene oxide [17,18]. In
this case, 30 mg of GS were added into the CTAB solution to prepare the PANI, which
corresponded to a PANI/GS ratio of 1/8. Different PANI/GS ratios were explored
and the 1/8 was found to be the most optimized value. To obtain electrocatalysts
from the obtained nanostructured PANI, they were pyrolyzed under a flow of Ar at
900 ˝C for 1 h.

3.3. Characterization

Scanning electron microscopy (SEM) images were obtained by Hitachi S-4800
Scanning Electron Microsope (Tokyo, Japan). Transmission electron microscope
(TEM) images were obtained at JEM-2100F (JEOL Ltd., Tokyo, Japan). The values
of Brunner-Emmet-Teller (BET) surface area and total pore volume (TPV) were
from N2 adsorption isotherms using an ASAP2020 Surface Area and Porosity
Analyzer (Micromeritics, Atlanta, GA, USA). X-ray photoelectron spectroscopy (XPS)
measurements were carried out using a Kratos Ltd. XSAM-800 spectrometer (Kratos
Analytical Ltd., Manchester, UK) with Mg Kα radiator. The data were fitted by using
Gaussian/Lorentzian fitting in the software XPSPEAK41 (Kratos Analytical Ltd.,
Manchester, UK) with Shirley function as baseline.

3.4. Electrochemical Measurement

The three-electrode configuration were used for electrochemical measurements
using Pt foil counter electrode and saturated calomel reference electrode. To prepare
the working electrodes, catalyst samples as a thin film were coated onto a glass
carbon (GC) RDE substrate (diameter: 5 mm) with Nafion as the binding agent. For
the PANI nanostructures, 5 mg catalysts were dispersed in 1 mL Nafion solution
(0.5 wt. % Nafion in isopropyl alcohol) to form the catalyst inks and 12 µL ink
suspension was pipetted onto the GC RDE. For the Pt/C catalyst, 5 mg catalyst was
dispersed ultrasonically in 1 mL Nafion-isopropyl alcohol solution and 4 µL of the
resulted suspension was then pipetted onto the GC RDE. The catalyst loadings were
respectively 0.3 mg cm´2 for the non-precious metal catalysts and 0.1 mg cm´2 for
the Pt/C (20 µg cm´2 for Pt).

4. Conclusions

In this work, a unique 1-D semi-tubular structure of PANI has been obtained
by using self-assemblies of CTAB molecules as soft-templates and APS as oxidative
agent in aqueous solution. The obtained PANI nanostructure can be maintained
in the course of high-temperature treatment. The materials derived from
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heat-treating the composite of PANI semi-tubes and GS show significantly enhanced
ORR performance.
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Polyaniline-Derived Ordered Mesoporous
Carbon as an Efficient Electrocatalyst for
Oxygen Reduction Reaction
Kai Wan, Zhi-Peng Yu and Zhen-Xing Liang

Abstract: Nitrogen-doped ordered mesoporous carbon was synthesized by using
polyaniline as the carbon source and SBA-15 as the template. The microstructure,
composition and electrochemical behavior were extensively investigated by the
nitrogen sorption isotherm, X-ray photoelectron spectroscopy, cyclic voltammetry
and rotating ring-disk electrode. It is found that the pyrolysis temperature
yielded a considerable effect on the pore structure, elemental composition and
chemical configuration. The pyrolysis temperature from 800 to 1100 ˝C yielded
a volcano-shape relationship with both the specific surface area and the content of
the nitrogen-activated carbon. Electrochemical tests showed that the electrocatalytic
activity followed a similar volcano-shape relationship, and the carbon catalyst
synthesized at 1000 ˝C yielded the best performance. The post-treatment in NH3 was
found to further increase the specific surface area and to enhance the nitrogen doping,
especially the edge-type nitrogen, which favored the oxygen reduction reaction in
both acid and alkaline media. The above findings shed light on electrocatalysis and
offer more strategies for the controllable synthesis of the doped carbon catalyst.

Reprinted from Catalysts. Cite as: Wan, K.; Yu, Z.-P.; Liang, Z.-X.
Polyaniline-Derived Ordered Mesoporous Carbon as an Efficient Electrocatalyst
for Oxygen Reduction Reaction. Catalysts 2015, 5, 1034–1045.

1. Introduction

The oxygen reduction reaction (ORR) is one key electrochemical process for the
energy conversion devices, like fuel cells and metal-air batteries. Pt-based materials
have been so far acknowledged to be the most effective catalysts for the ORR at low
temperatures [1,2]; however, the source scarcity and high cost pose great challenges
to the large-scale applications to fuel cells [3–5]. Hence, enormous effort has been
devoted to search for greater efficiency, durability and less cost [6,7].

In recent years, nanostructured carbon materials have attracted increasing
attention as the Pt-alternative electrocatalysts. Dai [8] synthesized 1D nitrogen-doped
carbon nanotubes by the chemical vapor deposition (CVD) method with iron
(II) phthalocyanine as the precursor, which featured high charge transfer and,
thus, facilitated the ORR. Feng [9] synthesized 2D graphene-based carbon nitride
nanosheets, of which the high specific surface favored the dense assembling of
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the active sites on the surface. Lu [10] synthesized 3D hierarchically porous
nitrogen-doped carbons with a hieratical porous structure, which enabled low mass
transfer resistance and improved accessibility of catalytic sites for the ORR.

Among them, nitrogen-doped ordered mesoporous carbon (NOMC) features
high specific surface area and a uniform pore structure, which respectively facilitate
the reaction kinetics and mass transfer to the electrode [11,12]. The hard-template
method is a universal strategy to synthesize such materials, and SBA-15 is one of
the most often used templates to synthesize NOMCs. Asefa [13] synthesized NOMC
catalysts by pyrolyzing polyaniline in the framework of SBA-15. It was found that
the NOMC catalyst pyrolyzed at 800 ˝C showed the best ORR performance. Guo [14]
synthesized a series of NOMC catalysts with honey as the precursor, which showed a
high specific surface area ranging from 1050 to 1273 m2¨ g´1. Mullen [15] synthesized
high-performance NOMC catalysts by pyrolyzing ionic liquid within SBA-15. All of
the above-mentioned catalysts showed a decent electrocatalytic activity to the ORR in
alkaline media. Other mesoporous silicas have been also used for the synthesis. For
example, Popov [16] synthesized nitrogen-doped ordered porous carbon with the aid
of SBA-12, which also showed a superior activity for the ORR. Joo [17] synthesized a
series of carbon catalysts by using various templates, like SBA-15, MSU-F, KIT-6 and
fumed Carb-O-sil M-5. It was found that the template SBA-15 yielded an extremely
high surface area of 1500 m2¨g´1 and the best electrocatalytic activity.

Beside the template, the carbon precursor has a considerable effect on the
microstructure and composition of the final carbon materials. A variety of
nitrogen-containing organic chemicals, like phthalocyanine [18], porphyrin [19,20]
and ionic liquid [21,22], have been used as the carbon precursor to synthesize
the nitrogen-doped carbon catalyst. Polyaniline represents an aromatic ring
connected via nitrogen-containing groups and, thus, facilitates the incorporation of
nitrogen-containing active sites into the carbon matrix during the heat treatment [23].
Zelenay [23] found that the polyaniline-derived carbon electrocatalyst showed a
superior performance to the ORR, which exhibited the highest maximum power
density of 0.55 W¨ cm´2 at 0.38 V.

It has been well acknowledged that the template, carbon precursor and pyrolysis
conditions have significant and complicated effects on the composition, structure and
electrocatalytic activity of the ORR. In our previous work, we developed a method to
synthesize the nitrogen-doped ordered mesoporous carbon featuring a high specific
surface area [24,25]. Additionally, the active sites for the ORR were claimed to be the
nitrogen-activated carbon atoms, on which the ORR proceeded by a surface-confined
redox-mediation mechanism in both acid and alkaline media [24,26]. In this work,
we will use polyaniline as the carbon source to synthesize the NOMC catalysts and to
optimize the pyrolysis conditions. In order to improve the electrocatalytic activity, the
as-prepared catalyst is further subjected to the NH3-activation at high temperatures.
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Then, the nitrogen sorption isotherm, electron microscopy and X-ray photoelectron
spectroscopy are used to study the microstructure and composition. The cyclic
voltammetry and rotating-ring-disk electrode methods are used to investigate the
electrochemical behavior for the ORR.

2. Results and Discussion

Figure 1 shows the nitrogen sorption isotherm of the as-synthesized carbon
materials. It is seen that all curves show a similar shape of the typical Type-IV
isotherm, which indicates the mesoporous nature of the synthesized carbon (see
Figure S1). Pore parameters are then extracted from the isotherms and listed in
Table 1. It is seen that the specific surface area increases from 470 to 629 m2¨ g´1 with
increasing the pyrolysis temperature from 800 to 1000 ˝C, which can be ascribed to
the deepened decomposition in this course. Then, a further increase in the pyrolysis
temperature to 1100 ˝C results in a decrease in the specific surface area, which may
be linked to the collapse of the carbon framework. A similar trend is also seen
in the specific pore volume, which reaches the highest value of 0.81 cm´3¨g´1 at
1000 ˝C. It is noted that the post-treatment in NH3 yields a dramatic increase in the
specific surface area (1312 m2¨g´1), which can be attributed to the gasification of
amorphous carbon and the consequent formation of micro-/meso-pores in the active
atmosphere [27–29].

Table 1. Pore features of the synthesized carbon materials.

Samples ABET/m2¨ g´1 AMP/m2¨ g´1 DBJH/nm V/cm3¨ g´1

C-PA-800 470 67 5.4 0.58
C-PA-900 569 41 5.9 0.80

C-PA-1000 629 132 6.1 0.81
C-PA-1100 517 61 5.9 0.67

C-PA-1000-NH3 1312 229 5.9 1.73

The surface composition is characterized by XPS, for which the survey spectra
are shown in Figure S2. The content of the main elements are qualified and listed
in Table 2. It is found that both the pyrolysis temperature and NH3-activation yield
a significant effect on the nitrogen content. First, the nitrogen content shows a
monotonic decrease from 5.07 to 1.25 at. % with increasing the pyrolysis temperature
from 800 to 1100 ˝C, which should be attributed to the enhanced decomposition of the
nitrogen-containing functional groups at higher temperatures. Second, the nitrogen
content is 2.20 at. % for C-PA-1000 and 3.15 at. % for C-PA-1000-NH3, indicating
that the nitrogen doping can be enhanced by the pyrolysis in the nitrogen-containing
active gases. The change in the surface composition is expected to yield effects on
the electrocatalysis, as discussed below.
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Figure 2 shows the high-resolution XPS spectra of N 1s. These spectra can be
deconvoluted to three peaks based on the binding energy: 398.4˘ 0.2, 401.0˘ 0.1 and
401.5–404 eV, which respectively correspond to pyridinic-nitrogen, graphitic-nitrogen
and nitrogen-oxide [30,31]. Then, the content of each species is seen in Table 3. It is
seen that the graphitic nitrogen is the predominant component among the three
species, of which the content slightly increases with the pyrolysis temperature.
In comparison, the content of the pyridinic-nitrogen decreases from 31.88% to
17.90% with increasing the pyrolysis temperature from 800 to 1100 ˝C. These results
are consistent with the previous findings that the graphitic nitrogen is the most
stable nitrogen species at high temperatures [32,33]. Finally, C-PA-1000-NH3 shows
an extraordinarily high content of pyridinic-nitrogen (40.31%), which should be
attributed to the nitrogen doping at the edge of the graphite plane during the
NH3-etching process. It seems that the content of the graphitic nitrogen decreases
to 49.88% in the etching process; however, it should be noted that the “absolute”
content of this species remains unchanged, as compared with the un-etched one, by
considering the total nitrogen content (see Table 2).
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Table 3. Content of each nitrogen component (%) of the synthesized
carbon materials.

Samples Pyridinic-N Graphitic-N O-N

C-PA-800 31.88 59.10 9.02
C-PA-900 26.42 59.55 14.04
C-PA-1000 20.90 60.62 18.48
C-PA-1100 17.90 64.72 17.38

C-PA-1000-NH3 40.31 49.88 9.81

In our previous work, the relationship has been well established between the
content of the nitrogen-activated carbon and the electrocatalytic activity for ORR [24].
In line with this understanding, the curve fitting of high-resolution C1s peak is
performed (see Figure S3), and the results are listed in Table 4. It is found that the
content of the nitrogen-activated carbon slightly increases with increasing pyrolysis
temperature from 800 to 1000 ˝C and then decreases at 1100 ˝C. Additionally,
C-PA-1000-NH3 shows the highest content of nitrogen-activated carbon among
all of the carbon materials. The ORR performance is expected to follow this change
in content, as seen below.

Table 4. Content of each carbon component (%) of the synthesized carbon materials.

Samples C–C=C C–N C–O/C=N C=O COOH

C-PA-800 65.58 13.19 14.39 5.52 1.33
C-PA-900 68.29 15.60 8.81 5.46 1.84
C-PA-1000 68.84 18.51 7.53 3.85 1.28
C-PA-1100 73.60 15.11 6.10 3.71 1.48

C-PA-1000-NH3 67.98 20.49 7.84 1.65 2.04

Figure 3 shows the CV curves in Ar-saturated 0.10 M KOH. It is seen
that all of the curves are similar in shape with large capacitance currents, and
broad symmetrical redox peaks are found in the potential range of 0 to 0.9 V.
It is understandable that a large capacitance current should result from the
high specific surface area, and the pseudocapacitance current is associated with
the chemical adsorption of OH´ onto the enriched redox couples. Basically,
the capacitance current shows a volcano-shape relationship with the pyrolysis
temperature, which first increases and then dramatically decreases at temperatures
of 1100 ˝C. Notably, C-PA-1000-NH3 shows the largest capacitance current.
Such a change can be rationalized as a result of the specific surface area
(vide supra). In comparison, the pseudocapacitance current shows a monotonic
decrease with increasing pyrolysis temperature. Additionally, this result should
be associated with the deepened decomposition of the electrochemically-active
functional groups (like nitrogen-containing species) on the surface at higher
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temperatures. In line with the above analysis, C-PA-1000-NH3 should yield the
largest pseudocapacitance/capacitance currents due to its extraordinarily high
specific surface area and nitrogen content. However, the increase in the capacitance
current is not that large, and the pseudocapacitance current does not increase. This
seeming contradiction may be understandable by considering the pore structure.
The NH3 post-treatment can effectively gasify/etch the amorphous carbon, leaving
enriched micropores in the bulk. Additionally, these pores may not be fully utilized
due to the lack of contact with the liquid electrolyte.Catalysts 2015, 5 1040 
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Figure 4 shows the polarization curves of the carbon materials in O2-saturated
0.10 M KOH and 0.10 M HClO4 solutions. Figure 4a shows that in alkaline media, the
electrocatalytic activity shows a volcano-shape relationship, which increases with the
pyrolysis temperature from 800 to 1000 ˝C and then decreases at 1100 ˝C. The same
trend is further seen in the change of the yield of hydrogen peroxide and electron
transfer number (see Figure S4a). Increasing the pyrolysis temperature lowers the
yield of hydrogen peroxide, and thereby, selectively favors the 4-e reduction of
oxygen. Such a trend in the electrocatalytic activity and selectivity correlates well
with the change in the content of nitrogen-activated carbon and the specific surface
area (vide supra). These findings further confirm that the active sites for the ORR
should be the nitrogen-activated carbon atoms [24,26]. In acid media, the change in
the electrocatalytic activity is similar to that in alkaline media (Figure 4b), revealing
that the active site should remain substantially the same in a wide range of pH.
Finally, it is noted that for C-PA-1000-NH3, both the activity and the selectivity are
considerably improved upon NH3-activation. This result quantitatively agrees with
the change in the specific surface area and the content of nitrogen-activated carbon, as
discussed above. However, it seems irrational to directly correlate the small increase
in the nitrogen-activated carbon (Table 4) with the extremely high activity and low
H2O2 yield. The mechanism has not been fully understood yet, but the reason may
be associated with high content of the pyridinic-nitrogen after the NH3 treatment.

3. Experimental Section

3.1. Materials Preparation

Nitrogen-doped ordered mesoporous carbon (NOMC) was synthesized by a
modified nanocasting method [24]. The process is briefly described as follows.
(i) Synthesis of the template SBA-15 [34]: An aqueous mixture, consisting of
Pluronic P123, HCl and tetraethoxysilane, was stirred for 20 h at 35 ˝C and then
hydrothermally treated at 100 ˝C for 24 h. The resultant powders were calcined
in air at 550 ˝C for 6 h, and SBA-15 was finally obtained. (ii) Impregnation of the
carbon precursor: Aniline was impregnated into SBA-15 by the vaporization-capillary
condensation method [24]. Then, the monomer was polymerized upon adding FeCl3
to form polyaniline (PA). (iii) Pyrolysis and template removal: The resultant powders
were then subjected to the pyrolysis at high temperatures (800, 900, 1000, 1100 ˝C)
for 3 h in argon, respectively. Finally, the carbon catalyst was obtained by removing
the silicate template by boiling in 10 M NaOH solution for 24 h. The samples were
referred to as C-PA-X. Here, X refers to the pyrolysis temperature, viz. 800, 900, 1000
and 1100. In addition, the sample C-PA-1000 was heat-treated again at 1000 ˝C in
ammonia for 30 min, which was labeled as C-PA-1000-NH3.
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3.2. Physical Characterizations

X-ray photoelectron spectroscopy (XPS, Physical Electronics PHI 5600,
Chanhassen, MN, USA) measurement was carried out with a multi-technique system
using an Al monochromatic X-ray at a power of 350 W. Transmission electron
microscopy (TEM) was performed on an FEI Tecnai G2 F20 S-TWIN (Hillsboro, OR,
USA) operated at 200 kV. Nitrogen adsorption/desorption isotherms were measured
at 77 K using a Micromeritics TriStar II 3020 analyzer (Norcross, GA, USA). The
total surface area was analyzed with the well-established Brunauer–Emmett–Teller
(BET) method; the microporous surface area was obtained with the MP (micropore)
method (t-plot method); and the pore size distribution was analyzed by the
Barrett–Joyner–Halenda (BJH) method.

3.3. Electrochemical Characterization

The electrochemical behavior of the catalyst was characterized by the cyclic
voltammetry (CV) and linear sweeping voltammetry (LSV) using a three-electrode
cell with an electrochemical work station Zennium (Zahner, Germany) at room
temperature (25 ˝C). A platinum wire and a double-junction Ag/AgCl reference
electrode were used as the counter and reference electrodes, respectively. The
working electrode was a rotating ring-disk electrode (RRDE, glassy carbon disk:
5.0 mm in diameter; platinum ring: 6.5 mm inner diameter and 7.5 mm outer
diameter). The thin-film electrode on the disk was prepared as follows. Ten
milligrams of the catalyst were dispersed in 1.0 mL Nafion/ethanol (0.84 wt. %
Nafion) by sonication for 120 min. Then, 10 µL of the dispersion were transferred
onto the glassy carbon disk by using a pipette, yielding the catalyst loading of
0.50 mg¨ cm´2. The ORR activity of the Pt/C catalyst (HiSPEC4000, Johnson Matthey,
London, UK) with the metal loading of 20 µg¨ cm´2 was collected for comparison.

The electrolyte solution, 0.10 M KOH, was first bubbled with argon for 60 min.
Then, a CV test was conducted at 20 mV¨ s´1 in the potential range between 0 and
1.23 V (vs. reversible hydrogen electrode, RHE) for 20 cycles. If not specified, the LSV
curve was collected by scanning the disk potential from 1.2 down to 0 V at 5 mV¨ s´1

in the oxygen-saturated electrolyte solution under 1600 rpm, from which the ORR
polarization curve was extracted by subtracting the capacitive current. During the
collection, the potential of the ring was set to be 0.5 V (vs. RHE) to determine the
yield of hydrogen peroxide.
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The electron-transfer number (n) and hydrogen peroxide yield (H2O2%) in the
ORR were calculated from the following equations:

n “
4 |id|

|id| ` ir{N
(1)

H2O2 p%q “
2ir{N

|id| ` ir{N
ˆ 100 (2)

where id is the disk current, ir is the ring current and N is the collection
efficiency (=20.50%).

4. Conclusions

Nitrogen-doped ordered mesoporous carbon was synthesized by the modified
nanocasting method with high electrocatalytic activities to the ORR in both acid
and alkaline media. The results revealed that both the pyrolysis temperature and
the NH3-activation yielded significant effects on the specific surface area, nitrogen
doping and, thus, the electrocatalytic activity, as well. First, the pyrolysis temperature
yielded a volcano-shape relationship with the specific surface area and the content of
the nitrogen-activated carbon. Additionally, it was found that such a change could
be correlated with the electrocatalytic activity to the ORR, revealing the importance
of the specific surface area and the chemical nature of the active sites. Second, the
post-treatment in NH3 could further increase the specific surface and enhance the
nitrogen doping, which thereby improved the electrocatalytic activity and selectivity
to the ORR. Additionally, the C-PA-1000-NH3 catalyst outperformed the Pt/C one in
both acid and alkaline media, which make it promising to be applied in fuel cells.
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Phosphorus and Nitrogen Dual Doped and
Simultaneously Reduced Graphene Oxide
with High Surface Area as Efficient
Metal-Free Electrocatalyst for
Oxygen Reduction
Xiaochang Qiao, Shijun Liao, Chenghang You and Rong Chen

Abstract: A P, N dual doped reduced graphene oxide (PN-rGO) catalyst with
high surface area (376.20 m2¨ g´1), relatively high P-doping level (1.02 at. %)
and a trace amount of N (0.35 at. %) was successfully prepared using a one-step
method by directly pyrolyzing a homogenous mixture of graphite oxide (GO) and
diammonium hydrogen phosphate ((NH4)2HPO4) in an argon atmosphere, during
which the thermal expansion, deoxidization of GO and P, N co-doping were realized
simultaneously. The catalyst exhibited enhanced catalytic performances for oxygen
reduction reaction (ORR) via a dominated four-electron reduction pathway, as well
as superior long-term stability, better tolerance to methanol crossover than that of
commercial Pt/C catalyst in an alkaline solution.

Reprinted from Catalysts. Cite as: Qiao, X.; Liao, S.; You, C.; Chen, R. Phosphorus
and Nitrogen Dual Doped and Simultaneously Reduced Graphene Oxide with High
Surface Area as Efficient Metal-Free Electrocatalyst for Oxygen Reduction. Catalysts
2015, 5, 981–991.

1. Introduction

A crucial component of a fuel cell is the electrocatalyst for the cathodic oxygen
reduction reaction (ORR) [1]. Pt-based precious metals are regarded as the most
effective ORR electrocatalysts developed to date. However, they suffer from a
number of drawbacks including the scarcity and consequent high cost of Pt, as well
as their poor durability and low tolerance to methanol crossover [2]. Accordingly,
considerable effort has been devoted to developing nonprecious-metal [3–10]
and metal-free [11–14] ORR catalysts. Among such candidates, carbon materials
doped with heteroatoms have attracted a great deal of attention due to their
relative cost-effectiveness, good long-term durability, and excellent tolerance to
methanol crossover.

Graphene, a two-dimensional monolayer of sp2-hybridized carbon atoms
packed in a honeycomb lattice, has recently become an attractive candidate, due
to its superior electrical conductivity, high surface area and excellent mechanical
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properties. Both theoretical calculations and experimental studies reveal that
incorporating foreign atoms into the graphene structure can effectively tailor the
material’s electronic and chemical properties [15–17]. Recently, graphene doped
with heteroatoms such as nitrogen, sulfur, boron, and iodine has yielded metal-free
ORR electrocatalysts with enhanced electrochemical performance [13,18–22]. This
performance boost is attributed to the heteroatoms, because their electronegativity
(N: 3.04; S: 2.58; B: 2.04; I: 2.66) differs from that of carbon (2.55), they break
carbon’s electroneutrality, creating charged sites and consequently favoring O2

adsorption during the ORR process. Since phosphorus has a lower electronegativity
(2.19) than carbon, it is well worth exploring the unique properties of P-doped
graphene. Liu et al. prepared P-doped graphene by pyrolyzing graphene oxide with
1-butyl-3-methlylimidazolium hexafluorophosphate, and achieved, in an alkaline
solution, an ORR catalytic performance comparable to that of commercial Pt/C [23].
Zhang et al. synthesized P-doped graphene by thermally annealing a mixture of
graphite oxide (GO) and triphenylphosphine (TPP), and the resultant catalyst showed
remarkable catalytic activity toward the ORR [24]. However, while exciting results
have been obtained with P-doped graphene, just a few investigations into this type
of catalyst have been reported to date. Furthermore, it has been reported that the
co-doping of P and N can further improve the carbon materials’ ORR catalytic activity,
due to the synergistic effect [25].

Herein, we propose a one-step method for preparing a P, N dual-doped
reduced graphene oxide (PN-rGO) catalyst, using diammonium hydrogen phosphate
((NH4)2HPO4) as both phosphorus and nitrogen sources. In an alkaline medium,
the as-prepared PN-rGO exhibited enhanced ORR electrocatalytic activity, good
long-term stability, high tolerance to methanol crossover, and high selectivity for the
four-electron reduction pathway.

2. Results and Discussion

Figure 1 shows typical SEM and TEM images of the PN-rGO catalyst. As can be
seen in Figure 1a,b ultrathin, crumpled PN-rGO nanosheets are randomly arranged
and overlapped with each other, these could easily have formed a slit-shaped porous
structure, and indeed, such a structure was confirmed by Brunauer-Emmett-Teller
(BET) testing (Figure 3). In Figure 1c, the PN-rGO nanosheets are transparent
and wrinkled, like wavy silk veils. The high-resolution TEM image (Figure 1d)
shows well-defined graphitic lattice fringes, indicating the good crystallization of
the PN-rGO nanosheets. Actually, the morphology of our product is quite consistent
with those reported previously [18,19].

Figure 2a shows the X-ray diffraction (XRD) patterns of GO, rGO and PN-rGO.
GO exhibited a peak at 2θ = 11˝ with an interlayer distance of 0.8 nm, which is larger
than the interlayer distance of graphite (0.34 nm), revealing that many different
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oxygen-containing groups were intercalated within the interlayer space. The peak at
11˝ completely disappeared after annealing, replaced by a broad peak at 2θ = 22˝ for
rGO and PN-rGO, with a d-spacing of 0.4 nm, implying that the successful reduction
of GO to reduced graphene oxide.
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Further structural information about PN-rGO was obtained from Raman
spectroscopy. As shown in Figure 2b, similar to all sp2-carbons, two distinct peaks
appeared near 1350 cm´1 and 1580 cm´1, corresponding to the D band and G band,
respectively. The D band is resulting from the disordered carbon atoms, whereas the
G band from sp2-hybridized graphitic carbon atoms. The intensity ratio of ID/IG

generally provides a gauge for the lever of disorder. Evidently, the ID/IG value of
PN-rGO (1.15) was relatively higher than that of rGO (0.94) due to the incorporated
phosphorus atoms.

The N2 adsorption-desorption isotherms and the corresponding pore size
distribution curves of PN-rGO and rGO are shown in Figure 3. According to
the International Union of Pure and Applied Chemistry classification, the N2

adsorption-desorption isotherms of the two samples were type IV, with hysteresis
loops type H3. A type IV adsorption-desorption isotherm indicates the presence of
mesopores, while a type H3 hysteresis loop of is correlated with slit-shaped pores,
possibly between parallel layers. This result is consistent with the SEM observations.
Surface area and pore volume for PN-rGO were 376.2 m2¨ g´1 and 1.50 cm3¨ g´1, and
for rGO 260.2 m2¨ g´1 and 1.17 cm3¨ g´1, respectively. The greatly increased BET
surface area and pore volume of PN-rGO may have been due to the activation effect
of (NH4)2HPO4 on carbon [26,27]. The high surface area and large pore volume of
PN-rGO could have (i) exposed more active sites and (ii) favored the mass transport
of reactants and products.
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Figure 3. Nitrogen adsorption-desorption isotherms (a) and the corresponding
pore size distribution curve of PN-rGO and rGO (b).

To further investigate the elemental composition of PN-rGO, we carried out XPS
measurement. As shown in Figure 4a, the XPS survey spectrum of PN-rGO presented
a dominant C1s peak (~284.5 eV), a O1s peak (~532.0 eV), a P2p peak (~132.8 eV),
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and a N1s peak (~400.0 eV), confirming successful P and N co-doping [28]; the
corresponding atomic percentages were 92.47, 6.02, 1.16, and 0.35 at. %, respectively.

High-resolution spectra were then obtained to gain more insight into the
phosphorus and nitrogen doping.

As shown in Figure 4b, the high-resolution P2p spectrum can be deconvoluted
into two main component peaks located at 131.7 and 133.1 eV, corresponding to
P–C and P–O bonding, respectively [23]. In addition, the peak area ratio of P–C to
P–O is close to 2:3. Doping phosphorus atoms into the carbon lattice (forming a
P–C covalent bond) can induce negatively delocalized C atoms adjacent to P atoms;
meanwhile, in P–O bonding (where an oxygen bridge is formed between C and P),
the oxygen atoms can enhance electron poverty in the carbon atoms. These two kinds
of structure have been reported to be advantageous for the ORR [29]. It should be
pointed out that, there is always the debate if P can access to the honeycomb crystal
lattice of graphene like what N or B atom does, due to the big difference of carbon
and phosphorous in radius [30].
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The deconvolution results of the high-resolution N1s spectrum were shown in
Figure 4c. It’s shown the prepared PN-rGO catalyst had four types of N species,
corresponding to oxidized N (~403.3 eV), graphitic N (~401.4 eV), pyrrolic N
(~399.6 eV), and pyridinic N (~398.3 eV) [31,32], with compositions of 31.0, 32.3,
20.8, and 15.9 at. %, respectively [33]. The total amount of active N species (graphitic
N, pyrrolic N, and pyridinic N) reached 69.0 at. % [34].

To explore the electrocatalytic activity of PN-rGO for the ORR, cyclic
voltammetry (CV) experiments were carried out in an O2-saturated 0.1 M KOH
solution. The CV curves of a bare GCE and rGO were also measured for comparison.
As shown in Figure 5a, for all the electrodes, the CV curves displayed distinct oxygen
reduction cathodic peaks. The ORR peak potential positively shifted from ´0.39 V
for the GCE to ´0.26 V for rGO and ´0.21 V for PN-rGO. In addition, the PN-rGO
had the highest peak current density, at ´0.96 mA cm´2, which was about four
times higher than that of the GCE. The most positive ORR peak potential and the
highest peak current density of PN-rGO, suggest that phosphorus and trace nitrogen
co-doping can greatly enhance the ORR catalytic activity of graphene. The CV area
of the PN-rGO was also much greater than that of the rGO, indicating the former
had a much greater electroactive area, as CV area is closely related to a sample’s
capacitance, which is proportional to its specific surface area. This result is in good
agreement with the BET results.

To gain further insight into the role of P, N co-doping in the ORR, the linear
sweep voltammetry (LSV) curve of PN-rGO was recorded in an O2-saturated 0.1 M
KOH solution; for comparison, analogous LSV curves were also obtained for GCE,
rGO, and commercial 20 wt. % Pt/C. As can be seen in Figure 5b, PN-rGO had a
much more positive ORR onset potential and a much higher limiting current density
than GCE or rGO, indicating that doping graphene with phosphorus and trace
nitrogen can facilitate the ORR. The LSV results are consistent with the CV results.

To gain more information on the ORR kinetics of the PN-rGO catalyst, we
recorded LSV curves in an O2-saturated 0.1 M KOH solution at various rotation rates,
from 1600 to 3600 rpm (Figure 5c). The diffusion current density increased rapidly as
the rotation rate increased. In addition, the K-L plots at different electrode potentials
displayed good linearity, We used the K-L equation to calculate the electron transfer
number (n) of PN-rGO in the potential range of ´0.40 to ´0.60 V and obtained
an average n value of 3.66, indicating that the ORR proceeded via a dominated
four-electron pathway.
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curves at 1600 rpm (b) for different samples, LSV curves at different rotation rates
(c) and the corresponding K-L plots (d) of PN-rGO.

For practical application in fuel cells, the fuel crossover effect should be
considered because fuel molecules (e.g., methanol) may pass from anode to cathode
through the membrane and poison the cathode catalyst. Thus, we recorded the
chronoamperometric responses of PN-rGO and Pt/C upon the addition of 3 M
methanol (Figure 6a). After the methanol was introduced into an O2-saturated
0.1 M KOH solution at about 200 s, no noticeable change was observed in the
ORR current for PN-rGO; in contrast, Pt/C showed a significant drop in ORR
current. These results indicated that PN-rGO possessed a high immunity to
methanol crossover.

As durability is also of great importance in practical applications of fuel-cell
technology, the chronoamperometric durabilities of PN-rGO and Pt/C were
measured at ´0.3 V for 20,000 s in an O2-saturated 0.1 M KOH solution. As can
be seen in Figure 6b, slight performance attenuation with high current retention
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(96%) was achieved with our PN-rGO catalyst. However, commercial Pt/C suffered
a current loss of 12% under the same conditions, indicating that the PN-rGO
electrocatalyst was much more stable in an alkaline medium.
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3. Experimental Section

3.1. Catalysts Preparation

Graphite oxide (GO) was prepared from 10,000 mesh graphite powder using a
modified Hummers’ Method. PN-rGO was synthesized by the thermal annealing of
GO and (NH4)2HPO4. In a typical procedure, 50 mg of GO was mixed with 15 mg of
(NH4)2HPO4 in 50 mL of deionized water, at room temperature, under stirring in
an open beaker. After the water was completely removed using a rotary evaporator
at 50 ˝C, the resulting mixture was transferred into a quartz boat in the center of a
tube furnace and annealed at 900 ˝C for 1 h, with high-purity argon as the protective
atmosphere. For comparison, reduced graphene oxide without P, N doping (rGO)
was also prepared using the same procedure but in the absence of (NH4)2HPO4.

3.2. Physical Characterization

Scanning electron microscopy (SEM) was performed on a Nova Nano 430 field
emission scanning electron microscope (FEI, Hillsboro, OR, USA). Transmission
electron microscopy (TEM) images were recorded on JEM-2100HR transmission
electron microscope (JEOL, Tokyo, Japan). X-ray diffraction (XRD) patterns were
conducted on a TD-3500 powder diffractometer (Tongda, Liaoning, China). Raman
spectroscopy measurements were carried out on a Lab RAM Aramis Raman
spectrometer (HORIBA Jobin Yvon, Edison, NJ, USA) with a laser wave length
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of 632.8 nm. Surface area and pore characteristics were determined by recording
nitrogen adsorption-desorption isotherms using a Tristar II 3020 gas adsorption
analyzer (Micromeritics, Norcross, GA, USA). X-ray photoelectron spectroscopy
(XPS) was performed with an ESCALAB 250 X-ray photoelectron spectrometer
(Thermo-VG Scientific, Waltham, MA, USA).

3.3. Electrochemical Measurements

Electrochemical measurements were carried out on an electrochemical
workstation (Ivium, Eindhoven, The Netherlands) with a standard three-electrode
system at room temperature. A glassy carbon rotating disk electrode (GC-RDE)
(5 mm diameter, 0.196 cm2 geometric area) was used as the working electrode, while
a Pt wire and an Ag/AgCl (3 M NaCl) electrode were the counter and reference
electrodes, respectively. The electrolyte was 0.1 M aqueous KOH solution. For each
sample, a catalyst ink was prepared by dispersing 5 mg of the corresponding catalyst
in 1 mL Nafion ethanol solution (0.25¨ wt. %). Then 20 µL of the dispersed catalyst
ink was pipetted onto the GC-RDE and dried under an infrared lamp. The mass
loading of the catalyst was 0.5 mg¨ cm´2. Before testing, the electrolyte solution
was purged with high-purity nitrogen or oxygen gas for at least 30 min. Unless
otherwise specified, the scanning rate was 10 mV¨ s´1. The electron transfer number
(n) per oxygen molecule involved was calculated on the basis of the Koutecky-Levich
(K-L) equation:

J´1 “ J´1
L ` J´1

K “ B´1ω´1{2 ` J´1
K

B “ 0.62nFC0D2{3
0 γ´1{6

JK “ nFκC0

(1)

where J is the measured current density; JK and JL are the kinetic current density and
the diffusion limiting current density, respectively;ω is the angular velocity of the
disk (ω = 2 π N, where N is the linear rotation rate); n is the number of electrons
transferred for the ORR; F is the Faraday constant (F = 96485 C¨ mol´1); C0 is the
bulk concentration of O2 (1.2 ˆ 10´3 mol¨ L´1); D0 is the diffusion coefficient of
O2 in 0.1 M KOH (1.9 ˆ 10´5 cm2¨ s´1); γ is the kinetic viscosity of the electrolyte
(0.01 cm2¨ s´1); and κ is the electron transfer rate constant.

4. Conclusions

A metal-free phosphorus and nitrogen dual-doped reduced graphene oxide
(PN-rGO) catalyst was successfully synthesized using a one-step thermal annealing
method by directly pyrolyzing a homogenous mixture of graphite oxide (GO) and
diammonium hydrogen phosphate ((NH4)2HPO4). The specific surface area of
PN-rGO, 376.2 m2¨ g´1, was much higher than that of rGO (260.2 m2¨ g´1). The
catalyst exhibited enhanced ORR activity via a dominant four-electron reduction
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pathway and showed outstanding selectivity and stability in an alkaline solution.
Certainly, the details of the ORR mechanism and active sites of this new catalyst
require further investigation.
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Titanium-Niobium Oxides as Non-Noble
Metal Cathodes for Polymer Electrolyte
Fuel Cells
Akimitsu Ishihara, Yuko Tamura, Mitsuharu Chisaka, Yoshiro Ohgi, Yuji Kohno,
Koichi Matsuzawa, Shigenori Mitsushima and Ken-ichiro Ota

Abstract: In order to develop noble-metal- and carbon-free cathodes,
titanium-niobium oxides were prepared as active materials for oxide-based
cathodes and the factors affecting the oxygen reduction reaction (ORR) activity were
evaluated. The high concentration sol-gel method was employed to prepare the
precursor. Heat treatment in Ar containing 4% H2 at 700–900 ˝C was effective for
conferring ORR activity to the oxide. Notably, the onset potential for the ORR of
the catalyst prepared at 700 ˝C was approximately 1.0 V vs. RHE, resulting in high
quality active sites for the ORR. X-ray (diffraction and photoelectron spectroscopic)
analyses and ionization potential measurements suggested that localized electronic
energy levels were produced via heat treatment under reductive atmosphere.
Adsorption of oxygen molecules on the oxide may be governed by the localized
electronic energy levels produced by the valence changes induced by substitutional
metal ions and/or oxygen vacancies.

Reprinted from Catalysts. Cite as: Ishihara, A.; Tamura, Y.; Chisaka, M.; Ohgi, Y.;
Kohno, Y.; Matsuzawa, K.; Mitsushima, S.; Ota, K.-I. Titanium-Niobium Oxides as
Non-Noble Metal Cathodes for Polymer Electrolyte Fuel Cells. Catalysts 2015, 5,
1289–1303.

1. Introduction

Polymer electrolyte fuel cells (PEFCs) offer many advantages, including
high power density, high energy conversion efficiency, and lower operating
temperatures. PEFCs are therefore suitable as power sources for vehicles and
residential co-generation power systems. However, the use of Pt as a cathode
electrocatalyst for PEFCs is problematic due to the high cost and limited availability of
Pt, and insufficient stability of these catalysts. To successfully commercialize PEFCs,
low-cost non-platinum cathode catalysts with high stability must be developed.

Since Jasinski discovered the oxygen reduction reaction (ORR) activity of cobalt
phthalocyanine [1], the search for promising non-platinum ORR catalysts has led to
the development of several cobalt- and iron-containing catalysts [2,3]. Approaches to
enhance the activity of these catalysts include the use and optimization of carbon
supports and heat treatment conditions. Heat treatment of iron salts adsorbed
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on carbon supports under ammonia gas is a recent breakthrough that produces
catalysts with high ORR activities comparable to that of platinum-based catalysts [4].
Despite significant improvement of the ORR activity of non-platinum catalysts, issues
regarding their long-term durability remain unresolved.

Based on the high stability of Group 4 and 5 metal oxide-based compounds
in acidic media, low cost, [5,6] and lower solubility in acid solution compared
to platinum-based catalysts, these compounds have piqued our interest as they
are expected to be stable even under the conditions encountered at the PEFC
cathode. Recently, we successfully synthesized oxide-based nanoparticles using
oxy-metal phthalocyanines (MeOPc; Me = Ta, Zr, and Ti) as the starting material
and multi-walled carbon nanotubes (MWCNTs) as the support as well as the
electro-conductive material [7,8]. However, carbon materials are easily oxidized
at high potentials with a consequent decrease of the ORR activity due to degradation
of the electron conduction paths [8]. Thus, carbon-free electrocatalysts are required
to achieve high durability of the oxide-based cathodes. To prepare noble-metal- and
carbon-free cathodes, the basic approach is to combine electro-conductive oxides
with oxides that possess ORR active sites.

Previously, we prepared noble-metal- and carbon-free cathodes comprising
niobium-titanium oxides with active sites and titanium oxides with magneli phase
Ti4O7 as the electro-conductive material (i.e., TixNbyOz + Ti4O7) [9]. The highest
onset potential of TixNbyOz + Ti4O7 was ca. 1.1 V versus the reversible hydrogen
electrode (RHE). No degradation of the ORR performance of TixNbyOz + Ti4O7 was
observed during the start-stop and load cycle tests in 0.1 mol¨ dm´3 H2SO4 at 80 ˝C,
where these conditions are close to the operating conditions of the existing PEFC [10].
Therefore, we successfully demonstrated superior durability of noble-metal- and
carbon-free oxide-based cathodes under the cathode conditions of the PEFC.

However, the ORR activities of the TixNbyOz + Ti4O7 catalysts were still low
because these catalysts were prepared under argon containing 4% hydrogen at
high temperature, 1050 ˝C, where Ti4O7 was generated by the reduction of TiO2.
That is, the preparation conditions encouraged the formation of Ti4O7 but were not
optimal for the formation of niobium-titanium oxides with active sites. Domen et al.
demonstrated that Nb-doped TiO2 synthesized by the oxidation of Nb-doped TiN
nanoparticles exhibited definite ORR activity and high long-term stability in acidic
solutions [11]. However, these catalysts contained carbon residues that functioned
to improve the conductivity between the particle aggregates. The preparation
conditions used in that study were thus not suitable for the formation of ORR active
titanium-niobium oxides without carbon. Consequently, it is necessary to separately
optimize the conditions for the formation of titanium-niobium oxides with active
sites and the formation of electro-conductive oxides. In this study, we focus on the
formation of active sites on titanium-niobium oxides using a high concentration
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sol-gel method. The factors that influence the ORR activity in the absence of
a carbon support are evaluated. However, it is necessary to obtain sufficient
electro-conductivity to evaluate the ORR activity of the titanium-niobium oxides.
Even a glassy carbon (GC) rod is heat-treated in air, an insulating oxide film is not
formed on the surface. Therefore, the GC rod is superior to use as a substrate for the
working electrode. The present strategy utilizes pre-heat-treatment (600 ˝C in air for
10 min) to achieve sufficient electrical contact between the titanium-niobium oxides
and the GC substrate. It is necessary to secure the sufficient electro-conductivity
between oxide-based catalysts and conductive oxide support when carbon-free
cathodes are prepared. For example, the electro-conductive oxide network is made
preparations in advance. Then, after oxide-based precursor is supported on the
network it is heat-treated to create the ORR active sites and to obtain sufficient
electro-conductivity. In this study, the effects of the preparation conditions, such
as the gas atmosphere and heat treatment temperatures, on the ORR activity of the
titanium-niobium oxides employing a GC rod are evaluated.

2. Results and Discussion

2.1. Characterization of Catalysts

We prepared the titanium-niobium oxide samples with the charged total
composition of Ti0.841Nb0.126O2. Figure 1 shows the X-ray diffraction (XRD) patterns
of the titanium-niobium oxide samples prepared at 600, 700, 800, 900, and 1050 ˝C
(a) in air and (b) in Ar containing 4% H2. The crystalline phase of the catalysts
prepared by heat treatment in air at temperatures between 600 and 900 ˝C was
identified as anatase TiO2 (JCPDS no. 00-021-1272), indicating that the niobium
atoms were incorporated into the TiO2 anatase structure. According to phase diagram
of TiO2–Nb2O5 [12], Nb(V) ions dissolve into TiO2 rutile structure only below ca.
10 atomic % in this temperature range. On the other hand, quasi-stable phase, TiO2

anatase structure, can dissolve more Nb(V) ions. The phase transition from anatase
to rutile occurred at temperatures above 900 ˝C. For samples prepared at higher
temperatures, peaks corresponding to the rutile TiO2 (JCPDS no. 00-021-1276) and
TiNb2O7 (JCPDS no. 1001270) phases were observed. This is because the Nb(V)
ions that cannot dissolve in the TiO2 rutile structure forms complex oxides TiNb2O7

that is solid solution of TiO2 and Nb2O5. Simultaneously, Nb-containing phases
such as TiNb2O7 appeared at 1050 ˝C. These results are consistent with previous
observations [13].
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Figure 1. XRD patterns of titanium-niobium oxides prepared at 600, 700, 800, 900,
and 1050 ˝C (a) in air and (b) in Ar containing 4% H2.

The crystalline phase of the samples subjected to heat treatment at 600 and
700 ˝C in Ar containing 4% H2 could be indexed to the TiO2 anatase structure.
However, the samples prepared at temperatures above 800 ˝C under this reductive
atmosphere could be indexed to rutile TiO2 with no Nb2O5 peaks. The shift of
the XRD peaks to lower angles (Figure S1) with increasing treatment temperature
suggested that the catalysts are substitutional solid solutions in which the niobium
ions substitute titanium ions in the rutile TiO2 lattice. Compared to formation of the
rutile phase above 900 ˝C for the samples heat-treated in air, the rutile was phase
formed at 800 ˝C under reductive atmosphere. Thus, the transformation from the
anatase to rutile phase occurred at lower temperature under reductive atmosphere.
In addition, the substitutional solid solution (rutile phase) was stable up to 1050 ˝C
under reductive atmosphere. The XRD analysis clearly demonstrated that the TiO2

rutile-based structure was more stable under reductive atmosphere than in air. This
stabilization of the TiO2 rutile-based structure is not predicted from the viewpoint of
thermochemistry. The role of heat-treatment under reductive atmosphere and doped
niobium ions must be elucidated.

Figure 2 and Figure S2 show scanning electron microscopy (SEM) images of the
titanium-niobium oxides prepared at 600 ˝C in air, and 600, 700, 800, 900, and 1050 ˝C
in Ar containing 4% H2. The SEM images demonstrate that the surface morphology of
the titanium-niobium oxides depends on the heat treatment temperature. Very little
difference in the surface morphology was observed for the samples prepared by heat
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treatment at 600 ˝C under different atmospheres. The particle size of the catalysts
prepared at 600 ˝C was ca. several tens of nanometers. A significant change in the
morphologies of the catalysts was observed with treatment at 800 ˝C, indicative of
particle aggregation above 800 ˝C. Aggregation became progressive with increasing
heat treatment temperatures. Thus, the surface area of the catalysts decreased with
temperature, especially above 800 ˝C.Catalysts 2015, 5 1293 
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Figure 2. SEM images of the titanium-niobium oxides prepared at 600 ˝C in air,
and 600, 700, 800, 900, and 1050 ˝C in Ar containing 4% H2.

Figure 3 shows photographs of the catalysts prepared at 600 ˝C in air, and 600,
700, 800, 900, and 1050 ˝C in Ar containing 4% H2. The powder heat-treated at
600 ˝C was white, as expected from the wide bandgap of TiO2 (all samples treated
in air were white). On the other hand, the samples heat-treated at 600 ˝C under
reductive atmosphere had a light-blue color and the color deepened with increasing
temperature. This color change suggests that there is some difference in the electronic
energy levels of the samples prepared under reductive atmosphere relative to those
prepared in air. Namely, the difference between the highest occupied and lowest
unoccupied electronic energy levels decreases with increasing temperature. This
color change suggests the development of a localized energy level of electrons in the
bandgap of TiO2.
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Figure 3. Photographs of the catalysts prepared at 600 ˝C in air, and 600, 700, 800,
900, and 1050 ˝C in Ar containing 4% H2.

Figure 4a shows the Ti 2p XPS spectra of the catalysts prepared at 800 ˝C in
air and in Ar containing 4% H2. As anticipated, the Ti 2p XPS spectra revealed
that Ti adopted the tetravalent state for the specimen heat-treated in air based on
the 2p3/2 peak (TiO2; 458.8 eV [14]). On the other hand, a low valence state, i.e.,
Ti3+ (Ti2O3; 456.8 eV [15]), was observed for the catalyst heat-treated at 800 ˝C
under reductive atmosphere. The ratios of Ti3+/Ti4+ calculated from areas of the
XPS spectra of the specimens heat-treated at 800 ˝C in air and in Ar containing 4%
H2 were 5.0% and 10%, respectively. The ratio of the specimen prepared under
reductive atmosphere was twice as large as that prepared in air. In addition, the
total atomic ratio of Nb/Ti is 0.15 according to the charged total composition of
Ti0.841Nb0.126O2. The atomic ratios of Nb/Ti calculated from areas of the XPS spectra
of the specimens heat-treated at 800 ˝C in air and in Ar containing 4% H2 were 0.43
and 0.23, respectively. Both ratios are larger than the total atomic ratio, suggested
that the niobium ions accumulate the surface of the oxide particles. In particular,
the Nb/Ti ratio of the specimen heat-treated in air was about three times larger
than the total atomic ratio. As mentioned in XRD patterns, because the rutile TiO2

phase cannot dissolve the Nb(V) ions, the dissolved Nb(V) ions in the anatase TiO2

phase began to accumulate near the surface of the particles at higher temperature
heat treatment.

Figure 4b shows the Ti 2p XPS spectra of the catalysts prepared at 600, 700, 800,
900, and 1050 ˝C in Ar containing 4% H2. Low valence states of Ti were observed for
the catalyst heat-treated at 600 ˝C under reductive atmosphere, suggesting that the
oxides underwent little reduction at 600 ˝C in Ar containing 4% H2 upon treatment
for 10 min. Heat-treatment above 700 ˝C under reductive atmosphere resulted in the
formation of low valence state Ti as shown in Figure 4.
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Figure 4. Ti 2p XPS spectra of the catalysts prepared at 800 ˝C in air and in
Ar containing 4% H2 (a) and prepared at 600, 700, 800, 900, and 1050 ˝C in Ar
containing 4% H2 (b).

Figure 5a shows the dependence of the ratios of Ti3+/Ti4+ (expressed as
STi(III)/STi(IV)) calculated from areas of the XPS spectra of the specimens heat-treated
under reductive atmosphere on the temperature. The ratio of Ti3+/Ti4+ of the
specimen prepared at 600 ˝C is 6.7%. Ti3+ ions are produced by the substitution
of the Nb5+ ions with Ti4+ ions of the TiO2 lattice. Figure 5b shows the Nb 3d XPS
spectra of the catalysts prepared at 600, 700, 800, 900, and 1050 ˝C in Ar containing
4% H2. The peak in the Nb 3d spectra shifted to higher binding energy (NbO2;
205.3 eV [16], Nb2O5; 207.1 eV [17]) with increasing heat treatment temperatures, in
contrast with the Ti 2p peak. Therefore, the Nb 3d XPS spectra revealed that most
of Nb ions were highest oxidation state, 5+. Thus, the state of the specimens can be
expressed as Ti(IV)1´2xTi(III)xNb(V)xO2. If all Nb ions substitute Ti4+ ions of the TiO2

lattice as Nb(V) ions, the composition is Ti(IV)0.74Ti(III)0.13Nb(V)0.13O2. Therefore,
in that case, the ratio of Ti3+/Ti4+ is calculated to be ca. 18%. The ratio of Ti3+/Ti4+

at 600 ˝C, ca. 6.7%, was smaller than 18%, indicating that the Nb(V) ions did not
sufficiently incorporate into the TiO2 lattice at 600 ˝C. As shown in Figure 5a, the
ratio of Ti3+/Ti4+ increased with increasing temperature from 600 ˝C to 700 ˝C and
saturated around 10%. These results deduced that reductive heat-treatment above
700 ˝C induced the formation of low valence state Ti.
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Figure 6 shows the dependence of the atomic ratio of Nb/Ti calculated from XPS spectra of  
the specimens prepared under reductive atmosphere on the heat treatment temperature. The atomic 
ratio of Nb/Ti decreased with increasing temperature above 700 °C and approached the bulk value at 
1050 °C. The XRD patterns revealed that the bulk phase transition occurred between 700 and 800 °C 
under reductive atmosphere. The XPS spectra indicated that the titanium ions near the surface were 
reduced and the Nb(V) ions near the surface incorporated into the TiO2 lattice at ca. 700 °C. Therefore, 
the phase transition was probably caused by a change in the valence of titanium. We previously 
demonstrated that tantalum and zirconium oxide-based catalysts had some oxygen vacancies that acted 
as active sites for the ORR [6]. In case of the titanium-niobium oxide system, the low valence state of 
the metal ions does not always indicate the presence of oxygen vacancies. The low valence state of  
the metal ions can be achieved even in the absence of oxygen vacancies because the highest valence 
states of titanium and niobium are different. The relationship between the presence of oxygen 
vacancies and the active sites remains a topic for further study. 
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Figure 5. (a) Dependence of the ratios of Ti3+/Ti4+, STi(III)/STi(IV), calculated from
areas of the XPS spectra of the specimens heat-treated under reductive atmosphere
on the temperature. (b) Nb 3d XPS spectra of the catalysts prepared at 600, 700, 800,
900, and 1050 ˝C in Ar containing 4% H2.

Figure 6 shows the dependence of the atomic ratio of Nb/Ti calculated from XPS
spectra of the specimens prepared under reductive atmosphere on the heat treatment
temperature. The atomic ratio of Nb/Ti decreased with increasing temperature above
700 ˝C and approached the bulk value at 1050 ˝C. The XRD patterns revealed that the
bulk phase transition occurred between 700 and 800 ˝C under reductive atmosphere.
The XPS spectra indicated that the titanium ions near the surface were reduced
and the Nb(V) ions near the surface incorporated into the TiO2 lattice at ca. 700 ˝C.
Therefore, the phase transition was probably caused by a change in the valence of
titanium. We previously demonstrated that tantalum and zirconium oxide-based
catalysts had some oxygen vacancies that acted as active sites for the ORR [6]. In
case of the titanium-niobium oxide system, the low valence state of the metal ions
does not always indicate the presence of oxygen vacancies. The low valence state
of the metal ions can be achieved even in the absence of oxygen vacancies because
the highest valence states of titanium and niobium are different. The relationship
between the presence of oxygen vacancies and the active sites remains a topic for
further study.
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Figure 6. Dependence of the atomic ratio of Nb/Ti calculated from XPS spectra of  
the specimens prepared under reductive atmosphere on the heat treatment temperature. 

It was difficult to evaluate the differences in the electronic state of the catalysts heat-treated under 
reductive atmosphere at temperatures between 700 and 1050 °C based on the XPS spectra, as shown in 
Figures 4b and 5a. Thus, the ionization potential of the specimens was used as a parameter to evaluate 
these differences. The ionization potentials of the specimens were measured using a photoelectron 
spectrometer surface analyzer in order to investigate the differences in the surfaces of the specimens 
heat-treated in reductive atmosphere at different temperatures. Figure 7a shows the relationship 
between the square root of the photoelectric quantum yield and the photon energy (that is,  
the photoelectron spectra of the specimens heat-treated at 800 °C in air or in Ar containing 4% H2). 
The square root of the photoelectric quantum yield increased linearly with an increase in the photon 
energy applied to each specimen. The slope of the straight line reflects the tendency of the photoelectron 
emission of the specimens, that is, the density of state of the electrons near the Fermi level. Fewer 
photoelectrons were emitted in the case of the catalyst prepared in air. The slope of the straight line for 
the specimen heat-treated in air, where TiO2 was identified on the sample surface by XPS, was 
apparently lower than that of the congener prepared under reductive atmosphere. It is remarkable that the 
slope of this plot was steeper for the specimen prepared in Ar containing 4% H2. The intersection 
between the straight line and the background line in the photoelectron spectra provides the threshold 
energy corresponding to the photoelectric ionization potential. The photoelectric ionization potential 
corresponds to the highest energy level of the electrons in the materials. The ionization potential  
is directly affected by the localized electronic levels of the lattice defects and impurities in  
the metal oxides, such as valence changes due to substitutional metal ions, oxygen vacancies, and  
donor impurities. 
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Figure 6. Dependence of the atomic ratio of Nb/Ti calculated from XPS
spectra of the specimens prepared under reductive atmosphere on the heat
treatment temperature.

It was difficult to evaluate the differences in the electronic state of the catalysts
heat-treated under reductive atmosphere at temperatures between 700 and 1050 ˝C
based on the XPS spectra, as shown in Figures 4b and 5a. Thus, the ionization
potential of the specimens was used as a parameter to evaluate these differences.
The ionization potentials of the specimens were measured using a photoelectron
spectrometer surface analyzer in order to investigate the differences in the surfaces
of the specimens heat-treated in reductive atmosphere at different temperatures.
Figure 7a shows the relationship between the square root of the photoelectric
quantum yield and the photon energy (that is, the photoelectron spectra of the
specimens heat-treated at 800 ˝C in air or in Ar containing 4% H2). The square
root of the photoelectric quantum yield increased linearly with an increase in the
photon energy applied to each specimen. The slope of the straight line reflects the
tendency of the photoelectron emission of the specimens, that is, the density of state
of the electrons near the Fermi level. Fewer photoelectrons were emitted in the
case of the catalyst prepared in air. The slope of the straight line for the specimen
heat-treated in air, where TiO2 was identified on the sample surface by XPS, was
apparently lower than that of the congener prepared under reductive atmosphere. It
is remarkable that the slope of this plot was steeper for the specimen prepared in Ar
containing 4% H2. The intersection between the straight line and the background
line in the photoelectron spectra provides the threshold energy corresponding to the
photoelectric ionization potential. The photoelectric ionization potential corresponds
to the highest energy level of the electrons in the materials. The ionization potential is
directly affected by the localized electronic levels of the lattice defects and impurities
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in the metal oxides, such as valence changes due to substitutional metal ions, oxygen
vacancies, and donor impurities.

Figure 7b shows the dependence of the ionization potential of the catalysts
prepared at 600, 800, and 1050 ˝C in air, and 600, 700, 800, 900, and 1050 ˝C in Ar
containing 4% H2 on the heat treatment temperature, θ. The ionization potential of
commercial rutile and anatase TiO2 is 5.8 eV. The ionization potential was the same
(i.e., ca. 5.8 eV) for the catalysts prepared at 600, 800, and 1050 ˝C in air, suggesting
that the surface of the catalysts prepared in air had few localized electronic levels
from lattice defects and impurities in the metal oxides, similar to commercial TiO2.
On the other hand, the ionization potentials of the catalysts prepared under reductive
atmosphere decreased with increasing temperature. The decrease in the ionization
potential reflects an increase in the localized electronic levels. In other words, the
valence changes due to substitutional metal ions, oxygen vacancies, and donor
impurities increase with increasing temperature.
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2.2. Oxygen Reduction Activity in Acidic Media 

Figure 8a shows the potential-iORR curves for the catalysts prepared at 600, 700, and 1050 °C in Ar 
containing 4% H2. The heat treatment temperature apparently affected the ORR activity. We focused 
on the ORR activity in the higher potential region. Figure 8b shows the potential-iORR curves for  
the catalysts prepared at 600, 700, 800, 900, and 1050 °C in Ar containing 4% H2. All samples 
prepared in air had a low ORR current in the potential range above 0.6 V, indicating that these 
catalysts have low ORR activity. On the other hand, although the ORR current was low, the catalysts 
prepared under reductive atmosphere exhibited some ORR activity. In particular, the onset potential of 
the ORR for the catalyst prepared at 700 °C was approximately 1.0 V vs. RHE. This high onset potential 
indicates the good suitability of the active sites for the ORR. Therefore, high quality active sites were 
created by heat treatment at 700 °C under reductive atmosphere.  
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Figure 7. (a) Relationship between the square root of the photoelectric quantum
yield (Y1/2) and the photon energy of the specimens heat-treated at 800 ˝C in air or
in Ar containing 4% H2. (b) Dependence of the ionization potential of the catalysts
prepared at 600, 800, and 1050 ˝C in air, and 600, 700, 800, 900, and 1050 ˝C in Ar
containing 4% H2 on the heat treatment temperature, θ.

2.2. Oxygen Reduction Activity in Acidic Media

Figure 8a shows the potential-iORR curves for the catalysts prepared at 600, 700,
and 1050 ˝C in Ar containing 4% H2. The heat treatment temperature apparently
affected the ORR activity. We focused on the ORR activity in the higher potential
region. Figure 8b shows the potential-iORR curves for the catalysts prepared at 600,
700, 800, 900, and 1050 ˝C in Ar containing 4% H2. All samples prepared in air had a
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low ORR current in the potential range above 0.6 V, indicating that these catalysts
have low ORR activity. On the other hand, although the ORR current was low, the
catalysts prepared under reductive atmosphere exhibited some ORR activity. In
particular, the onset potential of the ORR for the catalyst prepared at 700 ˝C was
approximately 1.0 V vs. RHE. This high onset potential indicates the good suitability
of the active sites for the ORR. Therefore, high quality active sites were created by
heat treatment at 700 ˝C under reductive atmosphere.Catalysts 2015, 5 1298 

 

  

Figure 8. (a) Potential-iORR curves for the catalysts prepared 600, 700, and 1050 °C in Ar 
containing 4% H2 and (b) potential-iORR curves in the higher potential region for  
the catalysts prepared 600, 700, 800, 900, and 1050 °C in Ar containing 4% H2. 

Figure 9 shows the dependence of the iORR @ 0.7 V on the heat-treatment temperature for  
the samples prepared under reductive atmosphere. The iORR @ 0.7 V reached a maximum around  
700 °C. The iORR presented in Figure 9 is based on the mass of the catalysts loaded on the GC rod. As 
shown in Figures 2 and S2, the surface area of the catalysts declined precipitously above 800 °C. Thus, 
the decrease in the iORR @ 0.7 V above 800 °C seems to be due to the decrease in the surface area. To 
evaluate the specific activity (i.e., the ORR current density based on surface area) the actual surface 
area of the oxides must be estimated. However, it is difficult to estimate the surface area of the oxides 
because neither hydrogen nor CO is adsorbed by the oxides. Therefore, the electrical charges of  
the double layer of the catalysts calculated from the cyclic voltammogram (CV) in N2 atmosphere were 
used to evaluate the apparent specific activity of the catalysts. Figure S3 shows the cyclic 
voltammograms of the GC rod only and of titanium-niobium oxide supported on the GC rod 
(TixNbyOz/GC) heat-treated at 800 °C under reductive atmosphere. Because the amount of oxide 
catalyst loaded on the rod was small (ca. 1 mg), the charge/discharge current was mainly derived from 
that due to the GC substrate. The electrical charge due to the oxide was estimated from the difference 
between the CV of TixNbyOz/GC and that of GC only. Figure S4 shows the dependence of  
the electrical charge of the double layer of the oxides on the catalyst loading. The SEM images showed 
that the surface area of the catalysts decreased above 800 °C due to aggregation of the particles. 
However, a linear relationship was obtained, suggesting that the electrical charge was determined not by 
the heat treatment temperature but by the catalyst loading. Therefore, the trend in the apparent specific 
activity (ORR current density based on electrical charge) is similar to that of the mass activity. It is 
anomalous that the electrical charge is independent of the heat treatment temperature. The surface area 
estimated using the electrical charge may be different from that predicted from the SEM images. 
Because the electrical conductivity of even the catalysts prepared under reductive atmosphere is low, 
the surface area of the electrochemical active region in contact with the GC rod might be small. Thus, 
a more accurate estimation of the actual surface area of the catalysts is necessary. 
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Figure 8. (a) Potential-iORR curves for the catalysts prepared 600, 700, and 1050 ˝C
in Ar containing 4% H2 and (b) potential-iORR curves in the higher potential region
for the catalysts prepared 600, 700, 800, 900, and 1050 ˝C in Ar containing 4% H2.

Figure 9 shows the dependence of the iORR @ 0.7 V on the heat-treatment
temperature for the samples prepared under reductive atmosphere. The iORR @ 0.7 V
reached a maximum around 700 ˝C. The iORR presented in Figure 9 is based on
the mass of the catalysts loaded on the GC rod. As shown in Figure 2 and Figure
S2, the surface area of the catalysts declined precipitously above 800 ˝C. Thus, the
decrease in the iORR @ 0.7 V above 800 ˝C seems to be due to the decrease in the
surface area. To evaluate the specific activity (i.e., the ORR current density based on
surface area) the actual surface area of the oxides must be estimated. However, it
is difficult to estimate the surface area of the oxides because neither hydrogen nor
CO is adsorbed by the oxides. Therefore, the electrical charges of the double layer of
the catalysts calculated from the cyclic voltammogram (CV) in N2 atmosphere were
used to evaluate the apparent specific activity of the catalysts. Figure S3 shows the
cyclic voltammograms of the GC rod only and of titanium-niobium oxide supported
on the GC rod (TixNbyOz/GC) heat-treated at 800 ˝C under reductive atmosphere.
Because the amount of oxide catalyst loaded on the rod was small (ca. 1 mg), the
charge/discharge current was mainly derived from that due to the GC substrate.
The electrical charge due to the oxide was estimated from the difference between
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the CV of TixNbyOz/GC and that of GC only. Figure S4 shows the dependence of
the electrical charge of the double layer of the oxides on the catalyst loading. The
SEM images showed that the surface area of the catalysts decreased above 800 ˝C
due to aggregation of the particles. However, a linear relationship was obtained,
suggesting that the electrical charge was determined not by the heat treatment
temperature but by the catalyst loading. Therefore, the trend in the apparent specific
activity (ORR current density based on electrical charge) is similar to that of the mass
activity. It is anomalous that the electrical charge is independent of the heat treatment
temperature. The surface area estimated using the electrical charge may be different
from that predicted from the SEM images. Because the electrical conductivity of even
the catalysts prepared under reductive atmosphere is low, the surface area of the
electrochemical active region in contact with the GC rod might be small. Thus, a
more accurate estimation of the actual surface area of the catalysts is necessary.Catalysts 2015, 5 1299 

 

 

Figure 9. Dependence of iORR @ 0.7 V on temperature used for heat-treatment of  
the samples under reductive atmosphere. 

2.3. Relationship between ORR Activity and Physico-Chemical Properties 

The ORR activity was enhanced by reductive heat treatment in the region of 700 to 900 °C.  
The XRD patterns indicated that the crystalline structure of the catalysts prepared under reductive 
atmosphere changed from anatase to rutile TiO2 around 800 °C. On the other hand, the XPS spectra 
revealed that low valence state Ti is generated by heat treatment above 700 °C under reductive 
atmosphere. Therefore, reduction of the sample surface occurs around 700 °C. The ionization potential 
is more sensitive to the surface state as shown in Figure 7b. Henrich et al. found that the work function 
(i.e., ionization potential in this study) of TiO2 decreased as the density of oxygen vacancies  
increased [18]. Therefore, the low ionization potential suggested that the catalysts heat-treated under 
reductive atmosphere at higher temperature had more surface defects. In this study, the oxygen 
vacancies as well as the valence changes induced by substitutional metal ions were found to produce 
localized electronic energy levels in the bandgap. 

Figure 10 shows the relationship between the ionization potential and the iORR @ 0.7 V of  
the catalysts prepared under reductive atmosphere. A “volcano plot” with a maximum at 5.4 eV was 
obtained, suggesting that the electronic state of the sample surface is suitable for the ORR. 

Adsorption of oxygen molecules on the surface is required as the first step for the ORR to proceed. 
Many studies have demonstrated that surface defect sites are required for adsorption of oxygen molecules 
on the surface of the oxides [19]. Therefore, a larger number of surface defects furnishes more sites for 
adsorption of oxygen molecules. In addition, the interaction of oxygen with the catalyst surface is essential 
because adsorption of oxygen and desorption of water from the surface are both necessary for robust 
progress of the ORR. When the interaction of oxygen with the catalyst surface is strong, desorption of 
water does not proceed readily. On the other hand, when the interaction of oxygen with the catalyst 
surface is weak, less adsorption of oxygen molecules occurs. Therefore, there is an optimal strength for 
the interaction between oxygen and the catalyst surface. Metallic Ti adsorbs oxygen strongly because 
of the large adsorption energy of oxygen (759 kJ·mol−1) and the strong energy of the Ti-oxygen bonds 
(calculated: 625 kJ·mol−1) [20]. In the case of Pt, the energy for adsorption of oxygen and  
the calculated Pt-oxygen bond energy are 272 kJ·mol−1 and 385 kJ·mol−1, respectively [20]. Therefore, 
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Figure 9. Dependence of iORR @ 0.7 V on temperature used for heat-treatment of
the samples under reductive atmosphere.

2.3. Relationship between ORR Activity and Physico-Chemical Properties

The ORR activity was enhanced by reductive heat treatment in the region of 700
to 900 ˝C. The XRD patterns indicated that the crystalline structure of the catalysts
prepared under reductive atmosphere changed from anatase to rutile TiO2 around
800 ˝C. On the other hand, the XPS spectra revealed that low valence state Ti is
generated by heat treatment above 700 ˝C under reductive atmosphere. Therefore,
reduction of the sample surface occurs around 700 ˝C. The ionization potential is
more sensitive to the surface state as shown in Figure 7b. Henrich et al. found
that the work function (i.e., ionization potential in this study) of TiO2 decreased
as the density of oxygen vacancies increased [18]. Therefore, the low ionization
potential suggested that the catalysts heat-treated under reductive atmosphere at
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higher temperature had more surface defects. In this study, the oxygen vacancies
as well as the valence changes induced by substitutional metal ions were found to
produce localized electronic energy levels in the bandgap.

Figure 10 shows the relationship between the ionization potential and the iORR

@ 0.7 V of the catalysts prepared under reductive atmosphere. A “volcano plot” with
a maximum at 5.4 eV was obtained, suggesting that the electronic state of the sample
surface is suitable for the ORR.

Adsorption of oxygen molecules on the surface is required as the first step
for the ORR to proceed. Many studies have demonstrated that surface defect sites
are required for adsorption of oxygen molecules on the surface of the oxides [19].
Therefore, a larger number of surface defects furnishes more sites for adsorption of
oxygen molecules. In addition, the interaction of oxygen with the catalyst surface
is essential because adsorption of oxygen and desorption of water from the surface
are both necessary for robust progress of the ORR. When the interaction of oxygen
with the catalyst surface is strong, desorption of water does not proceed readily. On
the other hand, when the interaction of oxygen with the catalyst surface is weak,
less adsorption of oxygen molecules occurs. Therefore, there is an optimal strength
for the interaction between oxygen and the catalyst surface. Metallic Ti adsorbs
oxygen strongly because of the large adsorption energy of oxygen (759 kJ¨ mol´1)
and the strong energy of the Ti-oxygen bonds (calculated: 625 kJ¨ mol´1) [20]. In
the case of Pt, the energy for adsorption of oxygen and the calculated Pt-oxygen
bond energy are 272 kJ¨ mol´1 and 385 kJ¨ mol´1, respectively [20]. Therefore, the
corresponding values for Ti are much larger than those of Pt. As the degree of
oxidization of metallic Ti increases, the interaction of oxygen with Ti on the catalyst
surface is weakened because the oxide ions attract the electrons in the highest
occupied molecular orbital of Ti thereby conferring a positive charge on Ti, i.e.,
higher valence state. Because the ionization potential is related to the strength of the
interaction between the surface of the specimen and oxygen, the volcano plot shown
in Figure 10 suggests that there is a suitable interaction between the surface of the
specimen and oxygen. Consequently, the strength of the interaction between oxygen
and the oxide surface could be manipulated by controlling the local energy level of
the electrons, i.e., by controlling the valence changes induced by the substitutional
ions and/or oxygen vacancies.
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Figure 10. Relationship between the ionization potential and the iORR @ 0.7 V of
the catalysts prepared under reductive atmosphere.

3. Experimental Section

The high concentration sol-gel method [21,22] was used for preparation of the
precursor. A 30 cm3 aliquot of titanium(IV) tetraisopropoxide (C12H28O4Ti, 99.99%,
Sigma-Aldrich Japan Co. LLC, Tokyo, Japan) and 4 cm3 of niobium(V) ethoxide
(C10H25NbO5, 99.95%, Aldrich) were dissolved in 200 cm3 of 2-methoxyethanol with
a TiO2:Nb2O5 weight ratio of 8:2. The mixed solution was maintained at ´50 ˝C, and
15 cm3 of 2-methoxyethanol in 15 cm3 of pure water was added to the mixed solution
dropwise. The temperature of the solution was raised to 80 ˝C and maintained for
3 weeks as an aging treatment, resulting in the formation of nano-sized complex
oxides. The precipitates were dispersed in 2-methoxyethanol to obtain a dispersion
of nano-sized titanium-niobium oxide.

A 3-mm3 aliquot of the dispersion was dropped onto a GC rod (ϕ = 5.0 mm;
TOKAI CARBON CO., LTD., Tokyo, Japan) followed by drying at room temperature.
The coated rod was heat-treated at 600 ˝C for 10 min in air as a pre-heat-treatment
step to remove organic species and carbon residue and to provide sufficient electrical
contact between the titanium-niobium oxide and the GC substrate. Subsequently,
samples of titanium-niobium oxide supported on the GC rods were heat-treated at
600, 700, 800, 900, and 1050 ˝C in air or in Ar containing 4% H2 to prepare the working
electrodes. For the powder XRD and ionization potential measurements, 3 cm3 of
the dispersion of nano-sized titanium-niobium oxide was dried on a hot plate at
160 ˝C to obtain the powder samples. The powders were then heat-treated at 600 ˝C
for 10 min in air to remove organic species and carbon residue. The powders were
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subsequently heat-treated at 600, 700, 800, 900, or 1050 ˝C in air or in Ar containing
4% H2 for powder XRD and ionization potential measurements.

The morphologies, crystalline structures, and chemical states of the synthesized
catalysts were investigated by transmission electron microscopy (TEM; JEOL Ltd.,
JEM-2100F, Akishima, Japan, X-ray diffraction (XRD; Rigaku Corporation, Ultima IV,
X-ray source: Cu-Kα, Akishima, Japan) and X-ray photoelectron spectroscopy (XPS;
ULVAC-PHI, Inc. Quantum-2000, X-ray source: monochromated Al-Kα radiation,
Chigasaki, Japan). The peak of the C–C bond attributed to free carbon at 284.6 eV in
the C 1s spectrum was used to compensate for surface charging.

The ionization potential of the specimens was measured using a photoelectron
spectrometer surface analyzer (Model AC-2, RIKEN KEIKI Co., Ltd., Tokyo,
Japan) [23,24].

All electrochemical measurements were performed in 0.1 mol¨ dm´3 H2SO4 at
30 ˝C with a 3-electrode cell. A reversible hydrogen electrode (RHE) and a glassy
carbon plate were used as the reference and counter electrodes, respectively. As a
pre-treatment, 300 CV cycles were performed in O2 atmosphere in the range of 0.05
to 1.2 V with respect to the RHE at a scan rate of 150 mV¨ s´1. Slow scan voltammetry
was performed under O2 and N2 atmosphere in the range of 0.2 to 1.2 V with respect
to RHE at a scan rate of 5 mV¨ s´1. The ORR current density, iORR, based on the mass
of the catalyst (mass activity), was determined by calculating the difference between
the current density under O2 and N2 atmosphere.

4. Conclusions

In order to develop noble-metal- and carbon-free cathodes, titanium-niobium
oxides were prepared for use as oxide-based cathodes and the factors affecting the
ORR activity and active sites were evaluated. The high concentration sol-gel method
was employed for preparation of the precursor. Secure adhesion between the oxide
catalysts and the substrate was achieved by heating the precursor supported GC rod
at 600 ˝C in air to maintain the electrical contact as a pretreatment step. To create ORR
active sites, the precursor supported GC rod was heat-treated in the temperature
range of 600 to 1050 ˝C in air or in Ar containing 4% H2. Heat treatment in reductive
atmosphere at 700–900 ˝C was effective for conferring ORR activity to the catalysts.
Notably, the onset potential for the ORR was approximately 1.0 V vs. RHE for the
catalyst prepared at 700 ˝C. This high onset potential indicates the high quality
of the active sites for the ORR. XRD, XPS and ionization potential measurements
suggested that localized electronic energy levels were produced by heat treatment
under reductive atmosphere. The electronic energy levels produced by the valence
changes of Ti induced by substitutional metal ions and/or oxygen vacancies might
govern adsorption of the oxygen molecules. Therefore, the strength of the interaction
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between oxygen and the oxide surface can be manipulated by controlling the valence
changes induced by the substitutional ions and/or oxygen vacancies.
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Positive Effect of Heat Treatment on
Carbon-Supported CoS Nanocatalysts for
Oxygen Reduction Reaction
Haihong Zhong, Jingmin Xi, Pinggui Tang, Dianqing Li and Yongjun Feng

Abstract: It is of increasing interest and an important challenge to develop highly
efficient less-expensive cathode catalysts for anion-exchange membrane fuel cells
(AEMFCs). In this work, we have directly prepared a carbon-supported CoS
nanocatalyst in a solvothermal route and investigated the effect of heat-treatment
on electrocatalytic activity and long-term stability using rotating ring-disk electrode
(RRDE). The results show that the heat-treatment below 400 ˝C under nitrogen
atmosphere significantly enhanced the electrocatalytic performance of CoS catalyst
as a function of annealed temperature in terms of the cathodic current density, the
half-wave potential, the HO2

´ product and the number of electrons transferred. The
CoS catalyst that annealed at 400 ˝C (CoS-400) has exhibited a promising performance
with the half-wave potential of 0.71 V vs. RHE (the highest one for non-precious
metal chalcogenides), the minimum HO2

´ product of 4.3% at 0.60 V vs. RHE and
close to the 4-electron pathway during the oxygen reduction reaction in 0.1 M KOH.
Also, the CoS-400 catalyst has comparable durability to the Pt/C catalyst.

Reprinted from Catalysts. Cite as: Zhong, H.; Xi, J.; Tang, P.; Li, D.; Feng, Y. Positive
Effect of Heat Treatment on Carbon-Supported CoS Nanocatalysts for Oxygen
Reduction Reaction. Catalysts 2015, 5, 1211–1220.

1. Introduction

The polymer electrolyte membrane fuel cells system is one of the best alternative
candidates to fossil power systems because of high power density, high efficiency
and near zero emission [1–3]. Compared with proton-exchange membrane fuel
cells (PEMFCs), anion-exchange membrane fuel cells (AEMFCs) are attracting more
interest because cathode electrocatalysts have higher oxygen reduction kinetics,
longer durability and more choices among non-Pt metals in alkaline media [4].
However, it still remains a big challenge and it is of great interest to develop
highly efficient less-expensive electrocatalysts for oxygen reduction reaction (ORR)
in alkaline media [5–8].

Recently, non-precious metal chalcogenides, e.g., MS2 {M = Fe [9], Co and
(Co, Ni) [10]} thin film, CoS2 [11], CoSe2 [12,13], Co1´xS [14] nanoparticles have
attracted extensive attention due to promising catalytic activity for ORR, low cost
and abundant reserve in the earth’s crust. In Ref. [13,14], one notes that heat treatment
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plays an important role to produce electrocatalysts with high performance. However,
Dai and his coauthors did not explain the reason for annealing treatment in Ref. [14].
As reviewed by Zhang et al. [15], heat treatment can significantly affect the ORR
catalytic activity and stability of the supported catalysts. However, few researchers
have focused on the effect of heat treatment on the ORR electrocatalytic performance
of non-precious metal chalcogenides [16,17].

In this work, we directly prepared the carbon-supported CoS nanocatalyst as
one of the non-precious metal cathodic catalysts in a solvothermal route and specially
investigated the effect of heat-treatment temperature on electrocatalytic performance
of the prepared nanocatalysts towards ORR in alkaline medium.

2. Results and Discussion

2.1. Structure and Morphology

Figure 1 shows powder X-ray diffraction (XRD) patterns of five prepared
20 wt. % CoS/C samples: those that were as-prepared and those that were annealed
at 250, 300, 400 and 450 ˝C under nitrogen atmosphere, respectively. Compared with
the ICDD-PDF2-2004 card of CoS No. 75-0605 in space group P63/mmc (No. 194), the
first four samples exhibit four characteristic Bragg reflection peaks of CoS phase, i.e.,
(100), (101), (102) and (110) as marked in the graph while CoS-450 reveals reflections
from another phase as denoted with an asterisk besides CoS phase. After careful
comparison and analysis, the impurity is possibly attributed to Co9S8 (PDF No.
86-2273) with two typical characterization peaks (2θ) located at 29.84˝/311 and
53.10˝/440. Furthermore, the corresponding crystallite size was evaluated based on
the Scherrer equation: Dhkl = Kλ/β¨cosθ, where Dhkl, K, λ, β and θ are the crystallite
size in the hkl direction (nm), the shape factor (K = 1.0), the X-ray wavelength
(λ = 0.15406 nm), the full-width at half maximum (rad) and the Bragg reflection angle
(˝), respectively. Based on (100), (101) and (102) Bragg reflection peaks, the average
crystallite size was individually 6.6 nm, 8.5 nm, 10.1 nm, 11.6 nm and 12.7 nm for
the five samples with an increase in the annealed temperature. These results suggest
that this mild synthesis route is available for CoS nanoparticles when the S/Co
molar ratio in the initial reaction solution is equal to 3.0. Furthermore, the thermal
stability of the prepared CoS nanoparticles is below 450 ˝C, which is similar to that of
CoSe2 nanoparticles [13], and lower than that of Co1´xS [14]. In this work, therefore,
our following investigation will mainly concentrate on four samples: as-prepared,
CoS-250, -300 and -400.
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and 2.75 for CoS-250, -300, -400, and -450, respectively. The corresponding La value was obtained to 
be 0.60, 0.63, 0.56, and 0.63 nm, which are little different. These results suggest that the disordered 
degree almost has no change during the annealed process. 

Figure 3 demonstrates TEM images of four samples: as-prepared (a), CoS-250 (b), CoS-300 (c), and 
CoS-400 (d). It is difficult to distinguish the CoS nanoparticles because of very little color contrast 
between CoS and carbon. Also, the magnetic property of the Co-containing samples obviously reduces 
the clarity of the TEM images, although the samples were pretreated by degaussing. The average 
particle size was approximately evaluated in the range of 5–20 nm. With an increase in the annealed 
temperature, the nanoparticles were aggregated to form hierarchical structure (Figure 3d). 

In order to further confirm the CoS phase, the XPS spectra from the Co and S regions of the CoS/C 
samples were determined as presented in Figure 4. The Co2p spectrum in Figure 4A has two peaks:  
one located at 778.1 eV for Co2p2/3, and the other one at 793.0 eV for Co2p1/2, which are attributed  
to Co–S. Besides, a small emission peak at ca. 781.0 eV could result from Co–O due to the strong 
affinity between cobalt ions and atmospheric oxygen. The peak at 162.1 eV in Figure 4B corresponds 
to the binding energy of Co–S [19]. In comparison, the intensities of Co2p and S2p peaks increase 
with the increase of the annealed temperature and no position shift is detected. 

Figure 1. Powder X-ray diffraction patterns of the as-prepared 20 wt. % CoS/C
sample and four annealed samples at four different temperatures: CoS-250, -300,
-400 and -450, respectively. Vertical dot-dashed lines represent the ICDD-PDF2-2004
card of CoS No.75-0605.

In order to further investigate the influence of CoS nanoparticles on carbon
substrate during the annealed process, the Raman spectra of the prepared CoS/C at
different temperatures were examined as shown in Figure 2. Raman spectroscopy as
one of non-destructive techniques is a powerful tool to detect ordered and disordered
crystal structures of carbon materials [18]. The intensity of the D band centered at ca.
1350 cm´1 and the G band centered at ca. 1600 cm´1 is generally used to characterize
the degree of disorder structure based on R = ID/IG = 4.4 La (nm), where La is the
microcrystalline planar size in products. The R value was calculated to be 2.62, 2.76,
2.46, and 2.75 for CoS-250, -300, -400, and -450, respectively. The corresponding
La value was obtained to be 0.60, 0.63, 0.56, and 0.63 nm, which are little different.
These results suggest that the disordered degree almost has no change during the
annealed process.

Figure 3 demonstrates TEM images of four samples: as-prepared (a), CoS-250
(b), CoS-300 (c), and CoS-400 (d). It is difficult to distinguish the CoS nanoparticles
because of very little color contrast between CoS and carbon. Also, the magnetic
property of the Co-containing samples obviously reduces the clarity of the TEM
images, although the samples were pretreated by degaussing. The average particle
size was approximately evaluated in the range of 5–20 nm. With an increase in
the annealed temperature, the nanoparticles were aggregated to form hierarchical
structure (Figure 3d).

In order to further confirm the CoS phase, the XPS spectra from the Co and
S regions of the CoS/C samples were determined as presented in Figure 4. The
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Co2p spectrum in Figure 4A has two peaks: one located at 778.1 eV for Co2p2/3,
and the other one at 793.0 eV for Co2p1/2, which are attributed to Co–S. Besides, a
small emission peak at ca. 781.0 eV could result from Co–O due to the strong affinity
between cobalt ions and atmospheric oxygen. The peak at 162.1 eV in Figure 4B
corresponds to the binding energy of Co–S [19]. In comparison, the intensities of
Co2p and S2p peaks increase with the increase of the annealed temperature and no
position shift is detected.Catalysts 2015, 5 1214 
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Figure 4. X-ray Photoelectron Spectroscopy (XPS) spectra of (A) Co2p and (B) S2p
for CoS samples obtained at different annealed temperatures from 250 to 400 ˝C.

2.2. Influence of Heat-Treatment on Electrocatalytic Activity towards ORR

Figure 5 demonstrates the effect of heat-treatment temperature on the ORR
activity of 20 wt. % CoS/C nanoparticles in O2-saturated 0.1 M KOH at a rotating
speed of 2500 rpm as measured by the RRDE technique. The mass loading of CoS
catalyst is 80 µg¨ cm´2 on the working disk. In the disk current density (jD) curves
(down), the heat-treatment remarkably improves the ORR activity of 20 wt. % CoS/C
nanoparticles in terms of the current density and the half-wave potential (E1/2, see
the inset). The disk current density at 0.70 V is increased from 0.60 mA¨ cm´2 for
the as-prepared sample to 2.22 mA¨ cm´2 for CoS-400 whereas only 0.33 mA¨ cm´2

is observed for CoS-450. The CoS-400 shows the plateau-like current density of
5.0 mA¨ cm´2 at a potential of lower than 0.52 V, which is close to the diffusion-limited
current density expected for 4-electron pathway in 0.1 M KOH [14]. The half-wave
potential is also enhanced from 0.64 V for the as-prepared sample to 0.71 V for
CoS-400, and then reduced to 0.51 V for CoS-450. The value of 0.71 V is the highest
value among non-precious metal chalcogenides [3,11] and very close to 0.77 V for
RuSex/C [20]. At 2500 rpm, in comparison, jR (HO2

´ oxidation) is much smaller than
jD (oxygen reduction), meaning that H2O was the main product of ORR catalyzed
by the prepared catalysts. Additionally, the ring current density (jR) is decreased
with increase of the annealing temperature, further suggesting the positive effect
of the heat-treatment on the electrocatalytic activity of CoS/C catalyst under the
investigated conditions.
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KOH at 25 °C with a sweep rate of 5 mV s−1 at a rotating speed of 2500 rpm. Inset shows 
the half-wave potential (E1/2) as a function of the annealing temperature. The CoS mass 
loading on the disk electrode is 80 μg·cm−2. 

Furthermore, the electrocatalytic activity towards ORR has been further evaluated based on  
the RRDE measurements: the electron reduction pathway and the percentage of H2O− product as  
a function of annealing temperature, see Figure 6. The HO2−% and the number of electrons transferred 
(n) was calculated by the following two equations: 
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Figure 5. Ring (top) and disk (down) current density from RRDE measurements of
20 wt. % CoS/C samples after annealing at different temperature in O2-saturated
0.1 M KOH at 25 ˝C with a sweep rate of 5 mV s´1 at a rotating speed of 2500
rpm. Inset shows the half-wave potential (E1/2) as a function of the annealing
temperature. The CoS mass loading on the disk electrode is 80 µg¨ cm´2.

Furthermore, the electrocatalytic activity towards ORR has been further
evaluated based on the RRDE measurements: the electron reduction pathway and the
percentage of H2O´ product as a function of annealing temperature, see Figure 6. The
HO2

´% and the number of electrons transferred (n) was calculated by the following
two equations:

HO2
´% “ 200ˆ

IR{N
ID ` IR{N

(1)

n “ 4ˆ
ID

ID ` IR{N
(2)

where ID, IR and N is disk current, ring current and collection efficiency (0.26),
respectively. With increase of the annealing temperature from room temperature
to 400 ˝C, the H2O´ product is decreased from 11.0% to 4.3% at the potential of
0.60 V with a mass loading of 80 µg¨ cm´2. The H2O´ product of 4.3% for CoS-400
at 0.60 V is much less than that of ca. 8% for Co3O4/rmGO and comparable with
Co3O4/N-rmGO with a mass loading of 100 µg¨ cm´2 [21]. Also, the number of
electrons transferred is increased from 3.5 for the as-prepared sample to 3.9 for
CoS-400 in the range from 0.10 V to 0.72 V, which is comparable with that for
Co3O4/rmGo and Co3O4/N-rmGO [21]. The results suggest that CoS-400 has
promising electrocatalytic activity for ORR in 0.1 M KOH.
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a fixed potential E. In our case, the potential value of 0.66 V was chosen for the accelerated stability 
test based on Dai’s work [14,21]. After 18,000 s of continuous operation, the decrease in activity is 
observed, e.g., 60% for the as-prepared sample and 35% for CoS-400, suggesting that the annealed 
treatment markedly improves the electrocatalytic stability of CoS/C catalyst. The decrease value in 
current for CoS-400 is very close to that of 30% for Pt/C as reported in Ref. [21], where a 20%–48% 
decrease in current for Pt/C was determined in 0.1–6 M KOH with a high mass loading of  
240 μg·cm−2. 

Figure 6. Molar fraction of HO2
´ formation and electron transfer number n at

different potentials calculated from rotating ring-disk electrode (RRDE) curves in
Figure 3. The fraction of HO2

´ formation was calculated according to Equation
(1) and the electron transfer number (n) was evaluated from Equation (2). The
collection efficiency N of 0.26 was used for all the calculations.

2.3. Electrocatalytic Stability

The long-term stability is the other important parameter for non-precious metal
catalysts. Commercial 20 wt. % Pt/C (E-TEK) is usually used as the reference
to evaluate the catalytic activity and durability of non-Pt catalysts in alkaline
medium [4,8,21–23]. Figure 7 depicts the effect of the annealing temperature on the
electrocatalytic stability of 20 wt. % CoS/C. The normalized current (I/I0%) means a
percentage of the determined current (I) at operating time over the initial current (I0)
at a fixed potential E. In our case, the potential value of 0.66 V was chosen for the
accelerated stability test based on Dai’s work [14,21]. After 18,000 s of continuous
operation, the decrease in activity is observed, e.g., 60% for the as-prepared sample
and 35% for CoS-400, suggesting that the annealed treatment markedly improves the
electrocatalytic stability of CoS/C catalyst. The decrease value in current for CoS-400
is very close to that of 30% for Pt/C as reported in Ref. [21], where a 20%–48%
decrease in current for Pt/C was determined in 0.1–6 M KOH with a high mass
loading of 240 µg¨ cm´2.
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Figure 7. Chronoamperometric response (percentage of current retained vs. operation time) 
of 20 wt. % CoS/C after annealed at different temperature and 20 wt. % Pt/C (E-TEK) on  
a glassy carbon electrode kept at 0.66 V vs. RHE in O2-saturated 0.1 M KOH at 25 °C.  
Mass loading on the disk electrode is 80 μg·cm−2 for CoS and Pt. 

3. Materials and Methods 

3.1. Chemicals 

All the chemicals with analytical grade were used as received without further purification. Vulcan 
XC-72R carbon, received from CABOT Co. (Shanghai, China), was activated at 400 °C under a high 
purity nitrogen atmosphere for 4 h before use. 

3.2. Synthesis of Carbon-Supported CoS Nanocatalyst 

Carbon-supported CoS nanocatalyst was directly synthesized in a solvothermal route using cobalt 
nitrate (Co(NO3)2·6H2O) and thiourea (CH4N2S) as the source of Co and S, which followed  
the similar procedure for CoS2 nanoparticles as described in [24]. For 20 wt. % CoS/C, typically,  
0.8 mmol Co(NO3)2·6H2O, 2.4 mmol CH4N2S, and 0.3 g carbon (Vulcan XC-72R) were mixed in 
80 mL absolute ethanol and then removed into 100 mL Teflon-lined stainless steel autoclave.  
The sealed autoclave was kept at 200 °C for 24 h and then cooled down to room temperature.  
The final product was collected after six cycles of centrifugation and resuspension with distilled 
water and ethanol and drying at 60 °C for 6 h. Finally, the obtained sample was further annealed 
at 250, 300, 400 and 450 °C for 3 h under high purity nitrogen atmosphere and denoted as 
as-prepared, CoS-250, -300, -400 and -450, respectively. 

3.3. Structural Characterization and Electrochemical Measurements 

Powder X-ray diffraction (XRD) patterns were recorded on a Shimadzu XRD-6000 X-ray 
diffractometer (Kyoto, Japan) (Cu Kα radiation, λ = 0.15406 nm) at tube current of 30 mA and tube 
potential of 40 kV from 10° to 60°/2θ with a scan speed of 2°·min−1. 

Figure 7. Chronoamperometric response (percentage of current retained vs.
operation time) of 20 wt. % CoS/C after annealed at different temperature and
20 wt. % Pt/C (E-TEK) on a glassy carbon electrode kept at 0.66 V vs. RHE in
O2-saturated 0.1 M KOH at 25 ˝C. Mass loading on the disk electrode is 80 µg¨ cm´2

for CoS and Pt.

3. Materials and Methods

3.1. Chemicals

All the chemicals with analytical grade were used as received without further
purification. Vulcan XC-72R carbon, received from CABOT Co. (Shanghai, China),
was activated at 400 ˝C under a high purity nitrogen atmosphere for 4 h before use.

3.2. Synthesis of Carbon-Supported CoS Nanocatalyst

Carbon-supported CoS nanocatalyst was directly synthesized in a solvothermal
route using cobalt nitrate (Co(NO3)2¨ 6H2O) and thiourea (CH4N2S) as the source of
Co and S, which followed the similar procedure for CoS2 nanoparticles as described
in [24]. For 20 wt. % CoS/C, typically, 0.8 mmol Co(NO3)2¨ 6H2O, 2.4 mmol CH4N2S,
and 0.3 g carbon (Vulcan XC-72R) were mixed in 80 mL absolute ethanol and then
removed into 100 mL Teflon-lined stainless steel autoclave. The sealed autoclave was
kept at 200 ˝C for 24 h and then cooled down to room temperature. The final product
was collected after six cycles of centrifugation and resuspension with distilled water
and ethanol and drying at 60 ˝C for 6 h. Finally, the obtained sample was further
annealed at 250, 300, 400 and 450 ˝C for 3 h under high purity nitrogen atmosphere
and denoted as as-prepared, CoS-250, -300, -400 and -450, respectively.
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3.3. Structural Characterization and Electrochemical Measurements

Powder X-ray diffraction (XRD) patterns were recorded on a Shimadzu
XRD-6000 X-ray diffractometer (Kyoto, Japan) (Cu Kα radiation, λ = 0.15406 nm) at
tube current of 30 mA and tube potential of 40 kV from 10˝ to 60˝/2θ with a scan
speed of 2˝¨min´1.

Transmission electron microscopy (TEM) and high-resolution transmission
electron microscopy (a resolution of 0.19 nm) were carried out on a JEOL JEM-2010
electron microscope (Tokyo, Japan) at 200 kV.

The rotating ring-disk electrode (RRDE) measurements were carried out at
25 ˝C using an interchangeable Pine ring-disk electrodes with a bi-potentiostat
(CHI760C, ChenHua Instruments Co., Shanghai, China) and a rotation control system
(Pine Instruments, Grove, PA, USA). The Pt ring electrode with a geometric area of
0.152 cm2 was potentiostated at 1.2 V, where the detection of peroxide is diffusion
limited. The disk electrode was glassy carbon with a geometric area of 0.162 cm2.
The counter and the reference electrodes were a Pt ring and a saturated calomel
electrode. All potentials reported in this paper are referred to a reference hydrogen
electrode (RHE). The current density on the disk and the ring was calculated based
on the corresponding geometric area, respectively. Before use, the glassy carbon disk
electrode was polished with a 5 A alumina powder, and washed in water and ethanol
by ultrasound. The working electrode was prepared by depositing homogeneous
catalyst ink on the glassy carbon disk, which was formed by dispersing 9.0 mg 20 wt.
% CoS/C powder in a mixture solvent of 250 mL Nafion® solution (5 wt. %, DuPont,
Shanghai, China) and 1250 mL water in an ultrasonic bath for 2 h. Newly prepared
0.1 M KOH solution (pH = 12.97) was used as the electrolyte. Prior to linear-sweep
voltammograms (LSV), the electrode was subjected to 50 cycles of cyclic voltammetry
under high purity argon atmosphere to clean the surface. After this cleaning, the
LSVs under saturated oxygen were recorded by scanning the disk potential vs. RHE
at 5 mV¨ s´1 at the rotating speed of 2500 rpm.

4. Conclusions

In summary, carbon-supported CoS electrocatalyst, as one of non-precious
metal chalcogenides, has been directly prepared in a facile solvothermal route.
The annealed treatment has significantly improved the electrocatalytic activity and
long-term stability of CoS catalyst towards ORR in alkaline medium with increase of
annealed temperature from room temperature to 400 ˝C. The CoS catalyst that
annealed at 400 ˝C has the maximum electrocatalytic performance among the
annealed CoS samples and shows promising applications for alkaline fuel cells
as one of non-precious metal cathodes.
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Microwave Synthesis of High Activity
FeSe2/C Catalyst toward Oxygen
Reduction Reaction
Qiaoling Zheng, Xuan Cheng and Hengyi Li

Abstract: The carbon supported iron selenide catalysts (FeSe2/C) were prepared
with various selenium to iron ratios (Se/Fe), namely, Se/Fe = 2.0, 2.5, 3.0, 3.5
and 4.0, through facile microwave route by using ferrous oxalate (FeC2O4¨ 2H2O)
and selenium dioxide (SeO2) as precursors. Accordingly, effects of Se/Fe ratio
on the crystal structure, crystallite size, microstructure, surface composition and
electrocatalytic activity for oxygen reduction reaction (ORR) of FeSe2/C in an alkaline
medium were systematically investigated. The results revealed that all the FeSe2/C
catalysts obtained with the Se/Fe ratios of 2.0–4.0 exhibited almost pure orthogonal
FeSe2 structure with the estimated mean crystallite sizes of 32.9–36.2 nm. The
electrocatalytic activities in potassium hydroxide solutions were higher than those in
perchloric acid solutions, and two peak potentials or two plateaus responded to ORR
were observed from cyclic voltammograms and polarization curves, respectively.
The ORR potentials of 0.781–0.814 V with the electron transfer numbers of 3.3–3.9
at 0.3 V could be achieved as the Se/Fe ratios varied from 2.0 to 4.0. The Fe and
Se were presented at the surface of FeSe2/C upon further reduction on FeSe2. The
Se/Fe ratios slightly influenced the degree of graphitization in carbon support and
the amount of active sites for ORR.

Reprinted from Catalysts. Cite as: Zheng, Q.; Cheng, X.; Li, H. Microwave Synthesis
of High Activity FeSe2/C Catalyst toward Oxygen Reduction Reaction. Catalysts
2015, 5, 1079–1091.

1. Introduction

Alkaline fuel cells have been attracting extensive attention due to their great
advantages in cathode dynamics and with the reduction of ohmic polarization [1].
Oxygen reduction reaction (ORR) is an important process in an electrochemical
energy conversion and a four-electron reaction is desirable to take place for a given
catalyst in order to achieve good electrocatalytic performance. In recent years, the
transition metals such as Mn [2], Fe [3,4], Co [5], Ni [6], Cu [7] and the heteroatom
dopants B [8], N [9,10], P [11,12], S [13,14], Se [15] have been reported to modify the
catalytic properties of various carbon materials including amorphous carbon, carbon
nanotubes, and graphene, which arouse a great deal of interest for the research and
development of non-noble catalysts.
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Chalcogenides are promising for the potential replacement Pt based cathode
catalysts because of their good electrocatalytic activity and high selectivity toward
ORR in both acidic and basic media. The onset potential of 0.823 V for ORR could be
attained in H2SO4 solutions with CoSe/C synthesized through microwave assisted
routes [16], while the ORR potentials of 0.6–0.7 V and the electron transfer numbers
of 3.1 Oxygen reduction reaction 4.0 could be obtained for CoSe2/C prepared with
the Se/Co ratios of 2.5–4.0 [17]. In addition, CoSe2 nanoparticles showed a higher
ORR activity in KOH than in H2SO4 solutions and a higher tolerance to methanol
as compared with a commercial 20 wt % Pt/C catalyst [18]. The tetragonal and
cubic Cu2Se nanowires were found to have the four-electron mechanism, while
the cubic nanowires were a dual-path mode in KOH solution [7]. Although FeSe
and FeSe2 have been reported for the applications in superconductors or magnetic
semiconductors [19–21], their ORR activities have not been investigated so far.

In this work, a series of carbon supported FeSe2 nanoparticles were
synthesized using the microwave method with different molar ratios of Se/Fe.
The crystal phases, microstructures, chemical compositions and electrocatalytic
activities of the as-prepared FeSe2/C catalysts were explored by X-ray diffraction
(XRD), transmission electron microscopy (TEM), selected area electron diffraction
(SAED), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDS), X-ray
photoelectron spectroscopy (XPS), cyclic voltammetry and rotating disk electrode
(RDE) techniques. The effect of Se/Fe ratio on ORR activity in an alkaline medium is
discussed in terms of ORR active site and carbon graphitization.

2. Results and Discussion

Typical powder XRD patterns of FeSe2/C catalysts prepared with different
Se/Fe ratios are shown in Figure 1. Compared with the standard lines of
orthogonal FeSe2 phase (PDF#65-2570) included in the bottom of Figure 1a, the major
characteristic diffraction peaks appeared at 2θ « 35.0˝, 36.4˝ and 48.4˝ belonged to
(111), (120) and (211) planes, while a pair of twin peaks near 31˝ and 50˝ to (101)/(020)
and (031)/(130) planes. A closer examination in the range of 25˝–50˝ revealed that
the diffraction peak corresponded to (120) shifted to smaller Bragg angles as evident
in Figure 1b. Despite this, the formation of orthogonal FeSe2 structure is strongly
indicated. The average crystallite sizes were evaluated using Scherrer equation
described below:

d “
Kλ

βcosθ
(1)

where d is the mean crystallite size; K is a dimensionless shape factor and has a typical
value of 0.89, λ is the X-ray wavelength, λ = 0.1546 nm; β is the full width at half
maximum (FWHM); θ is the Bragg scattering angle. The results are given in Table 1.
Apparently, the Se/Fe ratios did not significantly influence the average crystallite

349



sizes of the as-prepared FeSe2/C catalysts, which ranged 36.2–32.9 nm with Se/Fe
ratios of 2.0–4.0. The empirical Se/Fe ratios, also included in Table 1, were roughly
evaluated from EDS data and agreed reasonably well with those nominal ones.
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Figure 1. Typical powder XRD patterns of FeSe2/C prepared with different Se/Fe ratios. 
The standard lines of orthogonal FeSe2 phase are included for comparison. (a) Full range in 
10°–90°; (b) Enlarged in 25°–50°. 

Table 1. Parameters of iron selenide catalysts (FeSe2/C) prepared with different Se/Fe ratios. 

Parameter Se/Fe ratio 
Nominal 2.0 2.5 3.0 3.5 4.0 

Evaluated by EDS 2.1 2.5 3.3 3.6 4.2 
Crystallite Size (nm) 36.2 35.6 32.9 33.1 35.4 
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Figure 1. Typical powder XRD patterns of FeSe2/C prepared with different Se/Fe
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Table 1. Parameters of iron selenide catalysts (FeSe2/C) prepared with different
Se/Fe ratios.

Parameter Se/Fe ratio

Nominal 2.0 2.5 3.0 3.5 4.0
Evaluated by EDS 2.1 2.5 3.3 3.6 4.2

Crystallite Size (nm) 36.2 35.6 32.9 33.1 35.4
EP (V, vs.

RHE)
(I) 0.733 0.704 0.733 0.699 0.727
(II) 0.511 0.514 0.509 0.499 0.478

n at 0.3 V (vs. RHE) 3.7 3.9 3.5 3.3 3.6
EORR (V, vs. RHE) 0.814 0.781 0.809 0.795 0.814

ID/IG 1.64 1.71 1.76 1.90 1.74
Asp

3/Asp
2 0.37 0.48 0.44 0.51 0.46

The electrocatalytic activities of FeSe2/C prepared with different Se/Fe ratios
toward ORR were studied in both acidic and alkaline media. Figure 2 presents the
cyclic voltammograms obtained in N2 (dashed lines) and O2 (solid lines) saturated
0.1 mol¨ L´1 HClO4 solutions at 50 mV¨ s´1. No apparent peaks were observed in
N2 atmosphere, while one or two reduction peaks in O2 atmosphere. Two peak
potentials of 0.211 V, ´0.045 V and 0.204 V, ´0.028 V were obtained only for FeSe2/C
prepared with Se/Fe = 2.5 and Se/Fe = 4.0. Obviously, the ORR activity of FeSe2/C in
an acidic medium was poor. The cyclic voltammograms and RDE polarization curves
for FeSe2/C prepared with different Se/Fe ratios measured in N2 (dashed lines) and
O2 (solid lines) saturated 0.1 mol¨ L´1 KOH solutions are illustrated in Figure 3. A
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large reduction peak I was observed near 0.7 V, and followed by a small reduction
peak II around 0.5 V in O2 saturated KOH solutions (solid lines in Figure 3a). This
phenomenon was also observed for vertically aligned carbon nanotubes in a KOH
solution [22]. The peak potentials (EP) could be obtained from Figure 3a and are
also summarized in Table 1. The EP values ranged from 0.699–0.773 V for Peak I
and 0.499–0.514 V for Peak II, suggesting an enhanced ORR activity in an alkaline
medium. As can be seen in Figure 3b, the plateaus observed for FeSe2/C were not
well defined in KOH solutions, which significantly differed from those observed
for CoSe2/C in H2SO4 solutions [17]. Similarly, the electron transfer numbers (n) of
FeSe2/C prepared for different Se/Fe ratios could be determined from the slops of
Koutecky-Levich plots at 0.3 V as shown in Figure 4a. The dashed lines indicated
the slopes corresponding to two-electron and four-electron reactions. The calculated
results are also included in Table 1. The n values varied from 3.3–3.9 at 0.3 V in KOH
solutions for FeSe2/C prepared with Se/Fe ratios of 2.0–4.0, while they were 3.1–4.0
in H2SO4 solutions for CoSe2/C prepared with Se/Co ratios of 2.0–4.0 [17].
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Figure 2. Cyclic voltammograms of FeSe2/C prepared with different Se/Fe ratios
in N2 (dashed lines) and O2 (solid lines) saturated 0.1 mol¨ L´1 HClO4 solutions
at 50 mV¨ s´1.

The polarization curves of FeSe2/C prepared with different Se/Fe ratios at
1600 rpm are compared with that of a commercial 20% Pt/C in Figure 4b. The
potential at the current density of ´0.5 mA¨ cm´2 is defined as EORR (the inset in
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Figure 4b) and the values are also provided in Table 1. The EORR value for 20% Pt/C
was 0.992 V, while those for FeSe2/C ranged 0.781–0.814 V with the Se/Fe ratios
varying 2.0–4.0. However, two platforms observed with FeSe2/C resulted in slightly
larger limiting current densities than 20% Pt/C.
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Figure 4. (a) Koutecky-Levich plots at 0.3 V; (b) RDE polarization curves of Pt/C
(dashed line) and FeSe2/C (solid lines) prepared with different Se/Fe ratios in O2

saturated 0.1 mol¨ L´1 KOH solutions at 1600 rpm. The inset in (b) illustrates the
potential corresponding to ORR at the current density of ´0.5 mA¨ cm´2 (EORR).

The information in surface species and carbon support could be further studied
by obtaining Raman spectra using Ar ion laser excitation of 532 nm as shown in
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Figure 5. The presences of Fe–Se near 219 cm´1, 284 cm´1 and 597 cm´1, as well
as Fe–O at 400 cm´1 [23,24] are identified in Figure 5a for all the Se/Fe ratios. In
Figure 5b, the Raman bands appeared at 1336 cm´1 and 1593 cm´1 corresponded
to D-band of sp2 type carbon ascribed to the finite-sized crystals of graphite due to
the reduction in symmetry and G-band of all sp2 bonds in an ideal graphitic layer,
respectively. Figure 5c illustrates the curve fitting plots for the Raman data given
in Figure 5b. Two additional weak bands at 1191 cm´1 and 1499 cm´1 belonged
to sp3 type carbon. The relative intensity of the D band over G band (ID/IG) and
the relative ratio under the areas of sp3 and sp2 types of carbon (Asp

3/Asp
2) were

calculated, and the results are compared in Table 1. The ID/IG and Asp
3/Asp

2

values ranged 1.64–1.90 and 0.37–0.51, respectively, for the Se/Fe ratios of 2.0–4.0.
The small difference of ID/IG valves might mean that the carbon surface was
partially oxygenated without significant structural deformation [25]. The least ID/IG

and Asp
3/Asp

2 values were obtained for the FeSe2/C prepared with Se/Fe = 2.0,
implying the presence of less defect and higher degree graphitization in carbon
support. Contrarily, FeSe2/C prepared with Se/Fe = 3.5 showed the largest ID/IG

and Asp
3/Asp

2 values, and resulted in more defect and lower degree graphitization.
Similar ID/IG and Asp

3/Asp
2 values were observed for FeSe2/C prepared with

Se/Fe = 2.5, 3.0 and 4.0 as evident in Table 1.
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The high resolution TEM images and SAED patterns of FeSe2/C prepared
with different Se/Fe ratios are supplied in Figures 6 and 7 respectively. The
particles sized about 3–12 nm were observed in Figure 6, which are much smaller
than those calculated from XRD data (32.9–36.2 nm in T – 1) because XRD gives
volume-weighted measurements that tend to overestimate the geometric particle
size [26]. The formation of orthogonal FeSe2 nanoparticles by microwave synthesis
was verified by combining both TEM and SAED data, which is consistent with the
XRD results in Figure 1.
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Table 2. Surface compositions of FeSe2/C determined based on XPS analyses.

Parameter Fe/Se ratio

Nominal 2.0 2.5 3.0 3.5 4.0
Calculated 2.0 2.5 3.0 3.5 4.0

Species EB
(eV)

R.A.
(%)

EB
(eV)

R.A.
(%).

EB
(eV)

R.A.
(%).

EB
(eV)

R.A.
(%)

EB
(eV)

R.A.
(%)

C1s

C=C 284.6 31.8 284.6 39.8 284.6 47.1 284.6 41.2 284.6 31.3
C–C 285.0 29.5 285.0 34.3 285.0 22.3 285.0 28.6 285.0 28.7
C–O 286.0 24.3 286.0 22.4 286.0 21.3 286.0 26.5 286.0 31.0
C=O 289.6 14.4 289.6 3.5 289.6 9.3 289.6 3.7 289.6 9.0

O1s

Fe–O 530.0 5.9 530.0 6.4 530.1 6.5 530.0 3.7 530.0 5.1
C=O 531.1 11.2 531.1 13.0 531.1 13.2 531.1 8.3 531.1 15.8
Se–O 532.0 30.0 532.0 28.2 532.0 20.9 532.0 16.5 532.0 27.9
C–O 532.9 33.8 532.9 30.6 532.9 37.8 532.9 44.8 532.9 35.5

H–O–H 533.8 19.0 533.8 21.7 533.8 21.5 533.8 26.6 533.8 15.7

Fe2p
Fe˝ 707.0 3.7 706.9 3.3 707.0 1.5 707.0 1.4 707.0 5.3
Fe2+ 711.5 96.3 711.5 96.7 711.6 98.5 711.6 98.6 711.4 94.7

Satellite 716.0 / 715.9 / 716.0 / 716.0 / 716.0 /

Se3d

Fe–Se 54.5 8.8 54.5 5.1 54.6 6.4 54.5 2.7 54.5 4.5
Se–Fe–Se 55.5 38.4 55.5 32.0 55.6 40.7 55.5 35.5 55.5 43.7

Se–Se 56.4 38.4 56.4 53.5 56.5 38.5 56.4 57.0 56.4 43.4
Se–O 59.1 14.3 59.1 9.3 59.1 14.4 59.2 4.8 59.1 8.4

High resolution XPS spectra of C1s, O1s, Fe2p and Se3d were obtained for
FeSe2/C prepared with different Se/Fe ratios and are presented in Figure 8. The
surface compositions could be evaluated by performing multi-peak fitting analysis
of every spectrum, and the deconvoluted XPS spectra are also illustrated in Figure 8.
The C1 peaks in Figure 8A were fitted with four components centered at 284.6, 285.0,
286.0 and 290.5 eV, which were attributed to C=C, C–C, C–O and C=O, respectively.
The surfaces of carbon support (BP2000) consisted of C=C (sp2 type) and C–C (sp3

type) bonding. The origins of C=O and C–O might possibly be from oxygenation of
the carbon surface during the preparation [27]. The O1s spectra in Figure 8B were
deconvoluted into oxide oxygen species mainly associated with Fe oxide (Fe–O)
at 530.0 eV and Se oxide (Se–O) at 532.0 eV, as well as C=O at 531.1 eV, C–O at
532.9 eV, and adsorbed water molecule (H–O–H) at 533.8 eV. The presence of Fe–O
was also indicated by Raman spectra in Figure 5a, and the Se–O mainly came from
the non-reacted raw material. The Fe2p spectra in Figure 8C suggested the existences
of Fe2+ related to the formation of major compound of FeSe2 with possible formations
of FeSe and Fe oxide (Fe–O). Possible formation of Fe0 could be resulted from further
reduction in FeSe2 (or FeSe) during the microwave preparation. Furthermore, the
surface of FeSe2 might become oxidized during the preparation and characterization,
which was clearly indicated as Fe–O in Raman spectra (Figure 5a). However, the
Fe2p spectra in Figure 8C could not directly differentiated the Fe3O4 (Fe2+ and
Fe3+), Fe2O3 (Fe3+) and FeSe, because the binding energies of Fe3O4 (711.4 eV),
Fe2O3 (711.0 eV) and FeSe (711.5 eV) are very close. Similarly, they could not be
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readily differentiated in O1s based on the binding energy O–Fe–O (530.1 eV) and
Fe–O (530.0 eV). The formation of FeSe2 (Se–Fe–Se) could be accompanied by over
reduction of FeSe2 since the strong reducing environment was created by using
ethylene glycol and glycerol during microwave preparation. Further reduction on
FeSe2 occurred for all the Se/Fe ratios at the surface of FeSe2 and led to formations of
FeSe, Fe and Se. In addition, other species such as FeSe4 could also exist for the excess
Se, but the exact verification required more detailed study. It has been found that the
appropriate excess amounts of SeO2 could prevent the CoSe2/C nanoparticles from
agglomeration and dissolution, which contributed to the improved ORR activity and
good stability [17]. The Se3d peaks in Figure 8D indicated the presences of Fe–Se,
Se–Fe–Se, Se–Se and Se–O. The relative amounts (R. A.) of surface species could be
obtained by multi-peak fitting the XPS data and are summarized in Table 2. The FeSe2

and FeSe were ORR active sites, and the total amounts of FeSe2 and FeSe were 47.2%,
37.1%, 47.1%, 38.2% and 48.2% for Se/Fe = 2.0, 2.5, 3.0, 3.5, and 4.0, respectively,
which were consistent with the ORR activities indicated by EORR values in Table 1.
The FeSe2/C catalysts prepared with Se/Fe = 2.5 and Se/Fe = 3.5 showed relatively
smaller EORR values, while those with Se/Fe = 2.0, Se/Fe = 3.0, and Se/Fe = 4.0 had
larger EORR values.

3. Experimental Section

3.1. Materials

The chemical reagents of ferrous oxalate (FeC2O4¨ 2H2O), selenium dioxide
(SeO2), ethylene glycol and glycerol of analytic grade were purchased from
Sinopharm Chemical Reagent Co. Ltd. in China. The carbon support material
of Black Pearls 2000 (BP2000) was purchased from Cabot Co. The mean grain
size and specific surface area (Brunauer–Emmet–Teller, BET) were 12 nm and
1500 m2¨ g´1, respectively.

3.2. Catalyst Synthesis

The amounts of 40.0 mg FeC2O4¨ 2H2O were dissolved in 2 mL ethylene glycol
and a certain amount of 0.161 mmol/mL SeO2 aqueous solution with the different
molar ratios of Se/Fe, namely, 2.0, 2.5, 3.0, 3.5, 4.0. Then, a certain amount of glycerol
was added, and the mixed solution was agitated with a glass rod and homogenized
in an ultrasonic bath for 30 min. The BP2000 was continually added during the
ultrasonic processing. The loading amount of FeSe2 on carbon was about 36%
according to the weight ratio at the start of the feeding. The homogeneous solution
was placed in a microwave oven by using 800 W for 180 s while the solution cooled to
room temperature, which was sonicated and stirred for 4 h. The product was finally
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centrifuged, washed with ethanol and deionized water, and dried in a vacuum oven
at 338 K for 12 h.

3.3. Electrochemical Characterization

The electrochemical measurements were carried out by using the
electrochemical test station (Autolab-PGSTAT30) with rotation disc electrode
(RDE) system (Pine Research Instrument) in a conventional three-electrode cell. A
glassy carbon RDE was a working electrode, a Pt mesh (2 cm ˆ 2 cm) a counter
electrode and a Ag/AgCl a reference electrode. Catalyst ink was prepared by
homogeneously dispersing 2 mg of the as-prepared FeSe2/C powder ultrasonically
in a solution mixture containing 0.5 mL isopropanol and 10 µL 5 wt. % Nafion
solution. Then, 10 µL of the mixture was transferred onto the 0.196 cm´2 polished
glassy carbon electrode surface and dried at room temperature. The catalyst loadings
on the electrodes were evaluated to be 0.2 mg¨ cm´2 (including the support).

The cyclic voltammetry (CV) and RDE measurements were done at 20 ˝C in
either nitrogen purged or oxygen saturated 0.1 mol¨ L´1 HClO4 and 0.1 mol¨ L´1

KOH solutions. Prior to the measurement, the electrolyte was deaerated by nitrogen
or oxygen throughout the 30 min. The scanning potentials started from -0.160 V
to 1.034 V in HClO4 or 0.413 V to 1.410 V in KOH at a sweep rate of 50 mV¨ s´1.
The linear sweep voltammetry (LSV) curves were recorded in the potential range of
0.107–1.105 V with 5 mV¨ s´1 over a rotation rate of 0–2000 rpm in oxygen saturated
electrolyte. All the potentials in this work were reported with respect to reversible
hydrogen electrode (RHE).

3.4. Physicochemical Characterization

XRD analysis of the catalyst nanoparticles was performed with a powder
diffractometer (Rigaku Ultima IV XRD) using Cu Kα radiation (λ = 0.1546 nm).
Raman spectra were acquired using the 532 nm laser on a Princeton TriVista
CRS557 Raman spectrometer. A high resolution transmission electron microscope
(TEM) (JEOL JEM-2100), field emission scanning electron microscope (SEM) with
built-in energy dispersive X-ray spectroscope (EDS) (Zeiss Sigma SEM) and X-ray
photoelectron spectroscope (XPS) (PHI Quantum 2000) using Al Kα radiation were
used to examine the microstructures and chemical compositions of the as-prepared
catalyst nanoparticles, respectively.

4. Conclusions

The FeSe2/C catalysts could be rapidly prepared through a simple microwave
method by using various Se/Fe ratios. The formation of the orthogonal FeSe2

structure was confirmed by XRD, TEM and SAED analyses. The estimated average
crystallite sizes were 32.9–36.2 nm for the Se/Fe ratios of 2.0–4.0. The catalysts
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exhibited the enhanced ORR activities in alkaline media rather than in acidic media.
The ORR potentials of 0.781–0.814 V with the electron transfer numbers of 3.3–3.9 at
0.3 V could be achieved in KOH solutions as the Se/Fe ratios varied from 2.0 to 4.0.
The Se/Fe ratios slightly influenced the amounts of ORR active sites and the defects
of carbon support, as well as the degrees of graphitization, which together affected
the ORR activities.
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Pt Monolayer Shell on Nitrided Alloy
Core—A Path to Highly Stable Oxygen
Reduction Catalyst
Jue Hu, Kurian A. Kuttiyiel, Kotaro Sasaki, Dong Su, Tae-Hyun Yang,
Gu-Gon Park, Chengxu Zhang, Guangyu Chen and Radoslav R. Adzic

Abstract: The inadequate activity and stability of Pt as a cathode catalyst under the
severe operation conditions are the critical problems facing the application of the
proton exchange membrane fuel cell (PEMFC). Here we report on a novel route
to synthesize highly active and stable oxygen reduction catalysts by depositing
Pt monolayer on a nitrided alloy core. The prepared PtMLPdNiN/C catalyst
retains 89% of the initial electrochemical surface area after 50,000 cycles between
potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray
absorption spectroscopy analyses with electrochemical measurements, we found that
the significant improvement of stability of the PtMLPdNiN/C catalyst is caused by
nitrogen doping while reducing the total precious metal loading.

Reprinted from Catalysts. Cite as: Hu, J.; Kuttiyiel, K.A.; Sasaki, K.; Su, D.; Yang, T.-H.;
Park, G.-G.; Zhang, C.; Chen, G.; Adzic, R.R. Pt Monolayer Shell on Nitrided
Alloy Core—A Path to Highly Stable Oxygen Reduction Catalyst. Catalysts 2015, 5,
1321–1332.

1. Introduction

Proton exchange membrane fuel cell (PEMFC) is expected to be an alternative
power-generation for vehicles, stationary, and portable power applications because
of its high energy density, low operation temperature, low air pollution and the use
of renewable fuels, such as hydrogen and some alcohol [1,2]. Although the PEMFC
power source technique has been really influent in the last decade, the slow kinetics
of the oxygen reduction reaction (ORR) is still one of the main obstacles hampering
the large scale applications of PEMFC [3]. Platinum (Pt) as the most effective catalyst
for ORR has been the general choice. However, high Pt loading at the cathode as
well as inadequate activity and stability of Pt under severe operation conditions
are still unresolved problems facing the PEMFC [4,5]. To overcome these problems,
it is essential to decrease the Pt amount in electrocatalysts, and at the same time,
improve the performance of the Pt-based cathode catalyst both in terms of activity
and stability. To this end, one of the strategies is to develop the metal@Pt core-shell
structure catalysts in which a non-Pt core is employed and covered by atomically

362



thin layers of Pt. This core-shell structure allows efficient use of Pt, and thereby can
reduce the demands on Pt while enhancing the catalyst performance [6–9].

Significant progress has been made through the combination of experimental
and theoretical studies [10,11]. We developed a new class of catalysts consisting
of a Pt monolayer on different metals and alloy supporting cores, including Pd,
Ru, Ir, Rh, Au, PdAu, IrNi, IrRe, and AuNiFe [12–18]. The ORR activity of Pt
monolayer on different metal surfaces shows a volcano-type dependence on the
d-band center of Pt [18]. The strain-induced d-band center shifts and electronic
ligand effects between the substrate and the overlayer are the two main factors
determining the activity of these core-shell catalysts [6]. Nevertheless, the improving
the electrocatalytic activity and stability of Pt-based cathode catalysts simultaneously
is still a challenge. Great efforts have been made to modify the Pt surface with
other elements such as Au [19]. The oxidation of Pt on Au-modified Pt surfaces
requires much higher potentials than that on unmodified Pt surface, resulting in the
enhancement of the catalyst stability [19]. Another strategy is to modify the metal
core. Gong et al. synthesized highly stable PtMLAuNi0.5Fe catalysts and found that
the Au shell in the core precluded the exposure of NiFe to the electrolyte leading to
the high electrochemical stability [20]. Kuttiyiel et al. also developed a highly stable
ORR catalyst by Au-stabilized PdNi [21]. More recently, we have reported a new
approach to develop Pt-M (Ni, Co, and Fe) core-shell catalysts with high stability
and activity by nitriding core metals [22,23]. The synchrotron XRD analysis proved
the generation of the highly stable Fe4N, Co4N, and Ni4N nitride cores. Since the Pt
monolayer on Pd core catalyst is on the top of the volcano plot as mentioned above,
and also the price of Pd is considerably lower than that of Pt [24], we selected Pt
monolayer on nitride stabilized PdNi core (PtMLPdNiN) for studying its synthesis
and structure in detail with the possibility to simultaneously improve its stability
and activity, while reducing the PGM metal content.

2. Results and Discussion

PdNi alloy nanoparticles were first synthesized by chemical reduction (see
experimental section), followed by thermal annealing in N2 at 250 ˝C for 1 h, and
subsequent annealing at 510 ˝C for 2 h in NH3 as the nitrogen precursor. As
illustrated in Figure 1, the PdNiN nanoparticles have a core-shell structure with
Ni in the core and Pd on the surface. Figure 1a shows a high angle annular
dark field scanning transmission electron microscope (HAADF-STEM) image of
a representative single PdNiN nanoparticle. Elementary characterization of the
PdNiN nanoparticle was performed by the electron energy-loss spectroscopy (EELS)
mapping for Pd (M-edge, 2122 eV) and Ni (L-edge, 855 eV) from the nanoparticle
shown in Figure 1a. As shown in Figure 1b, overlapping the mapping of Pd and
Ni EELS signal validates an obvious Ni-core and Pd-shell structure. However, the
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outside of the particle is decorated by a trace amount of Ni/Ni oxides. The Ni/Ni
oxides would not affect the electrocatalytic activity of these particles because they
quickly dissolve in acid conditions during the Pt monolayer deposition. Figure 1c and
Figure S1 (Supplementary Information) shows a line profile analysis by STEM-EELS
illustrating the distribution of the Pd and Ni components in a single representative
nanoparticle. It is evident that the Pd atoms are distributed uniformly over the
Ni; the Pd shell thickness is determined to be around 0.6–1.5 nm by examining a
number of particles. From the TEM images, the average particle size of the PdNiN
nanoparticles was determined to be around 11 nm (Figure S2).
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To verify the formation of NiNx core in PdNiN nanoparticles we carried out X-ray absorption 
spectroscopy (XAS) measurements and compared the obtained spectra with those of reference metal 
foils, as shown in Figure 2. X-ray absorption near-edge structure (XANES) of Ni K edge from PdNiN 
nanoparticles shows that the electronic state of Ni has been changed due to the presence of N forming 
NiNx species. The Fourier transform (FT) magnitudes of the extended x-ray absorption fine structure 
(EXAFS) data for Ni-K edge (Figure 2c) for PdNiN presents a decrease in Ni bonding distance due to 

 

Figure 1. (a) HAADF-STEM image of PdNiN core-shell nanoparticle; (b) Two
dimensional EELS mapping of Ni L signal (red) and Pd M signal (green) from a
single nanoparticle; (c) EELS line scan profile for Pd M-edge and Ni L-edge along
the scanned line indicated in (a).

To verify the formation of NiNx core in PdNiN nanoparticles we carried out
X-ray absorption spectroscopy (XAS) measurements and compared the obtained
spectra with those of reference metal foils, as shown in Figure 2. X-ray absorption
near-edge structure (XANES) of Ni K edge from PdNiN nanoparticles shows that
the electronic state of Ni has been changed due to the presence of N forming NiNx

species. The Fourier transform (FT) magnitudes of the extended x-ray absorption
fine structure (EXAFS) data for Ni-K edge (Figure 2c) for PdNiN presents a decrease
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in Ni bonding distance due to the formation of Ni nitrides. Also previous studies
have shown that EXAFS for NiO or Ni(OH)2 species demonstrate a peak at 1.6 Å
corresponding to the Ni–O bond, accompanied by small peak at around 2.4 Å
corresponding to the Ni–Ni bond [25]. The absence of these peaks along with
the changes in the bonding distance compared to Ni metal verifies the presences of
Nx species in the PdNiN. The alloying effect of PdNiNx has changed the electronic
states of Pd as well, and these distinctions are clearly observed in the XANES and
EXAFS regions when compared to those from a Pd foil (Figure 2b,d). The appearance
of a peak around 2.0 Å in FT EXAFS of Pd K edge for PdNiN is likely caused by
Pd–Ni bond. Although the exact species of NiNx could not be determined, the
XAS results along with the STEM-EELS analysis indicate that Ni in the core-shell
structured PdNiN nanoparticles is nitrided. Our previous studies on nitrided Pt–M
(M = Ni, Fe or Co) core-shell nanoparticles have indicated the presences of M4N
species [22,23]. As the synthesis parameters are similar to the previous study we
presume the presence of Ni4N species in our PdNiN core-shell nanoparticles.
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Figure 2. (a,b) Normalized XANES spectra for Ni and Pd K edges respectively
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respectively along with their reference foils.
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The cyclic voltammetry (CV) curves obtained on the PdNiN/C and
PtMLPdNiN/C catalysts in Ar-saturated 0.1 M HClO4 solution are shown in Figure 3a.
It is observed that the curves in the hydrogen adsorption/desorption region of
the PtMLPdNiN/C resembled those of a typical Pt/C surface although the peaks
from (110) and (100) planes are suppressed due to the interaction of the substrate
materials. Moreover, after a PtML depositing on the PdNiN/C surface, the oxide
adsorption/desorption potentials shift more positively. The surface area of i-E plot
associated with the hydrogen desorption can be used to estimate the electrochemical
surface area (ECSA) of Pt catalysts. The ECSA of catalyst can be calculated according
to Equation (1) [26]:

SECSA “
QH

LPt ˆ 0.21
(1)

in which LPt represents the Pt loading (1.13 µg¨ cm–2 derived from the Cu
under-potential deposition charge), QH (mC¨ cm–2) is the charge exchanged during
the electro-desorption of hydrogen on Pt surface and 0.21 (mC¨ cm–2) is the charge
required to oxidize a monolayer of hydrogen on a smooth Pt [27]. The ECSA
value of the catalyst is 90 m2¨g–1

Pt. Comparison of CVs from the commercial Pt/C
(E-TEK, 10 wt. %), PtML deposited commercial Pd/C (E-TEK, 10 wt. %, 3.5 nm
Pd particle size) and PtMLPdNiN/C catalysts (Figure 3b) showed that the oxide
adsorption/desorption wave of PtMLPdNiN/C occurred 37 mV and 60 mV positive
compared to the PtMLPd/C and commercial Pt/C catalyst, respectively. The elevation
of Pt oxidation potential on the PtMLPdNiN/C catalyst indicates stabilization of the
PtML on the PdNiN/C substrate [19].
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Figure 3. Cyclic voltammograms for (a) obtained PdNiN/C and PtMLPdNiN/C;
and (b) commercial Pt/C, PtMLPd/C and PtMLPdNiN/C nanoparticles in 0.1 M
HClO4 solution at a scan rate of 20 mV¨ s´1.

Figure 4a shows rotating disk electrode (RDE) measurements of the ORR on
the PtMLPdNiN/C catalyst in O2 saturated 0.1 M HClO4 solution at a sweep rate of
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10 mV¨ s´1 and the rotation speeds from 100 to 3025 rpm. The high onset potential
(ca. 1.0 V) and half-wave potential (850 mV at the rotation rate of 1600 rpm) of O2

reduction at an ultra-low Pt loading (1.13 µg¨ cm´2) indicate a good ORR activity of
a PtMLPdNiN/C catalyst. The kinetic current density jk was calculated from these
ORR polarization curves (Figure 4a) using the Koutecky-Levich equation [22]:

1
j
“

1
jk
`

1
Bω1{2

(2)

where j is the measured current density, B and ω are the constant and rotation rate,
respectively. As can be seen from the Koutecky-Levich plot (1{j plotted as a function
of ω´1{2), shown in Figure 4b, the linearity and parallelism of the plots at 0.8 V, 0.85 V,
and 0.9 V indicate the first-order kinetics with respect to molecular oxygen [28]. The
intercept with the y-axis gives the inverse kinetic current density. The specific activity
was determined from the normalization of kinetic current density to the ECSA while
the kinetic current density was normalized to the loading of Pt or platinum group
metal (PGM) to calculate the mass activity. The specific activity of the PtMLPdNiN/C
catalyst is 1.17 mA¨ cm´2 at 0.9 V, which is more than four times higher than that
of commercial Pt/C catalyst (0.24 mA¨ cm´2), and 2.5 times higher than that of
the commercial Pd/C with Pt monolayer (0.42 mA¨ cm´2). However, higher ORR
activities for commercial Pt/C catalyst were observed in some literature [29,30]. The
Pt mass activity of PtMLPdNiN/C catalyst (1.05 A¨mg´1) is more than five times
higher than the commercial Pt/C catalyst (0.2 A¨mg´1) and is also greater than the
PtMLPd/C catalyst (0.95 A¨mg´1) [21].

In addition to the high electrochemical activities, the PtMLPdNiN/C catalyst
also exhibited excellent stability. The stability of the electrocatalyst was evaluated
by an accelerated durability test involving potential cycling between 0.6 V and
1.0 V at the sweep rate of 50 mV¨ s´1 using a RDE in an air-saturated 0.1 M HClO4

solution at room temperature. Figure 5a shows the ORR polarization curves of the
PtMLPdNiN/C catalyst at 1600 rpm before and after 30,000 and 50,000 potential
cycles. After 30,000 cycles, the half-wave potential of the ORR polarization curve
remained at almost the initial value. After 50,000 cycles, the ORR measurements
showed only 10 mV loss in the half-wave potential. This observation is similar to
the previous results of PtMLPd/C nanoparticles that retained their ORR activity even
after losing their electrochemical surface area (ECSA) [31]. This can be explained by
the concept that the Pd dissolution in the catalyst induces contraction to the Pt bonds
and thereby increases the ORR activity [12,32]. Such a mechanism may be operative
in the present system. However, as shown below, the loss in ECSA of PtMLPdNiN/C
is much smaller than that of PtMLPd/C, presumably because the presence of nitride
phase retards the dissolution rate.

367



Catalysts 2015, 5 1326 
 
respect to molecular oxygen [28]. The intercept with the y-axis gives the inverse kinetic current density. 
The specific activity was determined from the normalization of kinetic current density to the ECSA 
while the kinetic current density was normalized to the loading of Pt or platinum group metal (PGM) to 
calculate the mass activity. The specific activity of the PtMLPdNiN/C catalyst is 1.17 mA·cm−2 at 0.9 V, 
which is more than four times higher than that of commercial Pt/C catalyst (0.24 mA·cm−2), and  
2.5 times higher than that of the commercial Pd/C with Pt monolayer (0.42 mA·cm−2). However, higher 
ORR activities for commercial Pt/C catalyst were observed in some literature [29,30]. The Pt mass 
activity of PtMLPdNiN/C catalyst (1.05 A·mg−1) is more than five times higher than the commercial Pt/C 
catalyst (0.2 A·mg−1) and is also greater than the PtMLPd/C catalyst (0.95 A·mg−1) [21]. 

 

Figure 4. ORR polarization curves for the PtMLPdNiN/C nanoparticles in 0.1 M HClO4 
solution at a scan rate of 10 mV·s−1 at various rpm. (b) The Koutechy-Levich plots at 0.8 V, 
0.85 V and 0.9 V obtained from the ORR polarization curves as shown in (a). (c) Specific 
and mass activities for the commercial Pt/C, PtMLPd/C and PtMLPdNiN/C catalysts at 0.9 V. 

In addition to the high electrochemical activities, the PtMLPdNiN/C catalyst also exhibited excellent 
stability. The stability of the electrocatalyst was evaluated by an accelerated durability test involving 
potential cycling between 0.6 V and 1.0 V at the sweep rate of 50 mV·s−1 using a RDE in an air-saturated 
0.1 M HClO4 solution at room temperature. Figure 5a shows the ORR polarization curves of the 
PtMLPdNiN/C catalyst at 1600 rpm before and after 30,000 and 50,000 potential cycles. After 30,000 cycles, 
the half-wave potential of the ORR polarization curve remained at almost the initial value. After  

 

Figure 4. ORR polarization curves for the PtMLPdNiN/C nanoparticles in
0.1 M HClO4 solution at a scan rate of 10 mV¨ s´1 at various rpm. (b) The
Koutechy-Levich plots at 0.8 V, 0.85 V and 0.9 V obtained from the ORR polarization
curves as shown in (a). (c) Specific and mass activities for the commercial Pt/C,
PtMLPd/C and PtMLPdNiN/C catalysts at 0.9 V.

Figure 5b shows the CV curves of the PtMLPdNiN/C catalyst in 0.1 M HClO4

solution before and after cycling indicating a negligible loss of Pt surface area.
The ECSA losses of the PtMLPdNiN/C catalyst after different cycles are shown
in Figure 5c. As reported in our previous paper, the PtMLPd/C catalyst exhibited a
drastic decrease in ECSA after electrochemical cycling (27% after 5000 cycles and 34%
after 15,000 cycles) due to the dissolution of Pd from the core [21]. Incorporation of
Ni in the Pd core can slow down the Pd dissolution and as a result decrease the ECSA
loss to 11.5% after 5000 cycles. But further cycling of the PdNi core leads to an ECSA
loss of 28% after 15,000 cycles. Nitriding the PdNi core restrains the dissolution
process, the ECSA loss of the PtMLPdNiN/C catalyst, as shown in Figure 5c, is only
11% after 50,000 cycles. By further comparing to the commercial Pt/C catalyst which
only retains 55% of its initial ECSA after 30,000 cycles, the less ECSA loss of the
obtained PtMLPdNiN/C catalyst indicates that stabilization in the metal core by
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nitrogen modification exhibits a significant improvement in Pt stability [19]. ORR
activities of the PtMLPdNiN/C catalyst before and after an accelerated durability test
are listed in Table 1.
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Table 1. Catalytic activities of the PtMLPdNiN/C catalyst before and after the
accelerated durability test.

PtMLPdNiN/C ECSA (m2¨g´1Pt) E1/2 (mV) Specific activity
(mA¨ cm´2)

Pt mass activity
(A¨mg´1)

Initial 90 850 1.17 1.05
After 30,000

cycles 84 854 1.35 1.13

After 50,000
cycles 80 840 0.84 0.67
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3. Experimental Section

3.1. Preparation of PdNiN/C Nanoparticles

PdNi nanoparticles were synthesized by mixing a 1:1 molar ratio of
Pd(NO3)2¨H2O (Sigma-Aldrich, St. Louis, MO, USA) and Ni(HCO2)2¨ 2H2O
(Sigma-Aldrich) salts with high area Vulcan XC-72R carbon black in MiliQ UV-plus
water (Millipore corporation, Billerica, MA, USA) to obtain a total metal loading of
20 wt %. After sonicating the mixture for an hour under continuous Ar flow, NaBH4

(Sigma-Aldrich) was added into the mixture and was then kept under sonication
for 1 h. The mixture was filtered and rinsed with MilliQ UV-plus water (Millipore
corporation), and then dried. The obtained PdNi/C nanoparticles were annealed
in N2 at 250 ˝C for 1 h followed by annealing at 510 ˝C for 2 h using NH3 as the
nitrogen precursor to get the PdNiN/C nanoparticles.

3.2. Characterization

The microstructure of the synthesized PdNiN/C nanoparticles was
characterized by HD-2700C aberration-corrected STEM (Hitachi, Clarksburg, MD,
USA) using a 1.4 Å electron probe with probe current ~50 pA and an energy resolution
of 0.35 eV, at the Center for Functional Nanomaterials (CFN), Brookhaven National
Laboratory (BNL). Elementary sensitive EELS line scan and mapping were carried
out for Pd M-edge (2122 eV), Ni L-edge (855 eV) across various single PdNiN/C
nanoparticle. The XAS measurements were undertaken at the National Synchrotron
Light Source, BNL (Upton, NY, USA) using Beam Line X19A. The content of Pd
and Ni in the PdNiN/C, measured by inductively coupled plasma-optical emission
spectrometry (ICP-OES), were 8.2 wt % and 7.0 wt % respectively.

3.3. Electrochemical Measurements

Electrochemical testing was carried out in a three-electrode test cell by using a
potentiostat (CHI 700B, CH Instruments, Austin, TX, USA). Before testing, catalyst
ink was prepared by ultrasonic mixing of 5 mg of catalyst with 5 mL Millipore
water until a dark and uniform aqueous dispersion was achieved. A thin film of
the catalyst was prepared on a glassy carbon RDE with the area of 0.196 cm2 by
placing 10–15 µL of the obtained dispersion and then covered by a 10 µL dilute
Nafion solution (2 µg¨µL´1). We deposited Pt monolayer both on the prepared
PdNiN/C nanoparticle and commercial Pd/C nanoparticle surfaces using the
galvanic displacement of Cu monolayer formed by Cu under-potential deposition
(UPD) [6,16]. The Pt loadings on the RDE for the PtMLPdNiN/C and PtMLPd/C
catalysts were 1.13 and 3.75 µg¨ cm´2 respectively whereas their Pd loadings were
0.82 and 2.0 µg¨ cm´2 respectively. However, we note that a catalyst with higher
loadings would be required for MEA preparation (future work) to replicate the ORR
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activity as that of RDE. The Pt loading on RDE for the commercial Pt/C catalyst
was 7.65 µg¨ cm´2. The electrochemical measurements were all performed at room
temperature, and the potentials were referenced to that of the reversible hydrogen
electrode (RHE).

4. Conclusions

We described a promising route to develop nitride-stabilized substrates for Pt
monolayer catalyst with substantial reduction in platinum group metal loading while
retaining high ORR activity and stability. Using STEM-EELS mapping techniques
we have investigated the core-shell structure of the catalyst while XAS measurement
emphasized the NiNx species in the core of the nanoparticles providing a stable
support for Pt monolayer electrocatalysts.
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Simple Preparation of Pd Core
Nanoparticles for Pd Core/Pt Shell Catalyst
and Evaluation of Activity and Durability
for Oxygen Reduction Reaction
Hiroshi Inoue, Ryotaro Sakai, Taiki Kuwahara, Masanobu Chiku and
Eiji Higuchi

Abstract: Pd core nanoparticles less than 5 nm in mean size were prepared on
carbon black (CB) without any stabilizer by using palladium acetate as a precursor
and CO as a reducing agent, and then used for preparing Pd core/Pt shell
nanoparticles-loaded CB (Pt/Pd/CB). The mean size of Pd nanoparticles could
be controlled by the concentration of palladium acetate and the CO bubbling time.
The cyclic voltammograms of two Pd nanoparticles-loaded CB (Pd4.2/CB, Pd3.3/CB)
electrodes whose mean size was 4.2 and 3.3 nm, respectively, had characteristics
similar to a Pt electrode after the formation of a Pt monolayer shell, suggesting
that the Pd core nanoparticles were almost covered with the Pt monolayer shell.
The oxygen reduction reaction (ORR) on both Pt/Pd/CB proceeded in 4-electron
reduction mechanism. Both Pt/Pd/CB electrodes was ca. 1.5 times higher in
ORR activity per electrochemical surface area of Pt (specific activity, SA) than the
commercial Pt nanoparticles-loaded CB (Tanaka Kikinzoku Kogyo, Pt/CB-TKK)
electrode, and the Pt/Pd3.3/CB electrode had higher SA than the Pt/Pd4.2/CB
electrode. The ORR activity per unit mass of Pt for both Pt/Pd/CB electrodes
was 5.0 and 5.5 times as high as that for the Pt/CB-TKK electrode, respectively. The
durability of both Pt/Pd/CB electrodes was comparable to that of Pt/CB-TKK.

Reprinted from Catalysts. Cite as: Inoue, H.; Sakai, R.; Kuwahara, T.; Chiku, M.;
Higuchi, E. Simple Preparation of Pd Core Nanoparticles for Pd Core/Pt Shell
Catalyst and Evaluation of Activity and Durability for Oxygen Reduction Reaction.
Catalysts 2015, 5, 1375–1387.

1. Introduction

Polymer electrolyte fuel cells (PEFCs) attract great attention as a clean power
source for habitations and electric vehicles due to their high energy conversion
efficiency, low emission of pollutants and low operating temperature. However, a
serious issue for their practical use is high price of Pt, which has the highest activity
for oxygen reduction reaction (ORR) at the cathode, so reducing the consumption of
Pt is an urgent mission. For this purpose, various strategies including the preparation
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of nanoparticles of various Pt-based alloys and bimetals have been attempted
so far [1–8].

It is well-known that only a few surface atomic layers of catalyst participate in
heterogeneous catalysis, suggesting that covering foreign metal core nanoparticles
with a Pt monolayer shell is the most effective way to reduce the Pt consumption
with keeping the ORR activity because the Pt utilization is ultimately enhanced. This
can be another desirable strategy. For realizing the formation of a Pt monolayer
shell on Pd core nanoparticles, a Cu monolayer was formed on Pd core particles
by underpotential deposition (upd), followed by galvanic displacement with Pt to
prepare Pd core/Pt shell nanoparticles-loaded carbon black (Pt/Pd/CB) catalysts [9].
The prepared Pt/Pd/CB exhibited high ORR activity per unit mass of Pt (mass
activity, MA) [9–11], suggesting that the Pt consumption was highly reduced.

To prepare Pd nanoparticles, various stabilizers like polyvinylpyrrolidone,
tetra(n-octylammonium) bromide, cetyltrimethylammonium bromide, sodium
citrate, oleylamine etc. [12–15], have been used so far. However, the removal of
the stabilizers is so tiresome that the preparation of Pd nanoparticles without any
stabilizer is desirable in terms of low cost and low environmental load. Quite recently,
the specific preparation method of Pt/Pd nanoparticles without any stabilizer has
been reported although they were not loaded on CB [16]. Recently, we have
succeeded in the simple preparation of Pt and Au nanoparticle-loaded CB with
relatively narrow size distribution by using CO as a reducing agent [17,18]. In
this study, we applied this method to the synthesis of Pd core nanoparticle-loaded
CB (Pd/CB), and, consequently, we successfully prepared CB loaded Pd core
nanoparticles less than 5 nm in mean size without any stabilizer by bubbling CO in
acetonitrile solutions containing palladium acetate. Moreover, after a Pt monolayer
shell was formed on the Pd core nanoparticles by upd of Cu and the following
galvanic displacement with Pt, the ORR activity was greatly enhanced.

2. Results and Discussion

2.1. Structural Properties of Pd/CB and Pt Monolayer-Modified Pd/CB

Figure 1 shows X-ray diffraction (XRD) patterns of Pd/CB prepared under
different conditions. When the concentrations of palladium acetate in acetonitrile
was changed from 0.05 to 1.0 mM, CO bubbling time was fixed to 5 min. On the other
hand, when CO was bubbled for 3–60 min, the concentration of palladium acetate
in acetonitrile was fixed to 1 mM. In all XRD patterns of Figure 1 a broad reflection
peak assigned to Pd(111) was distinctly observed at 2θ = ca. 40˝, suggesting the
production of Pd nanoparticles [19], while there were not any peaks assigned to Pd
oxides. Figure 2 shows a Pd3d core level spectrum of Pd/CB as the concentration
of palladium acetate in acetonitrile was 1 mM and the CO bubbling time was 5 min.
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The spectrum indicates that only metallic Pd was produced, supporting the XRD
data. In Figure 1a, the intensity of the (111) peak was significantly increased as
the concentration of palladium acetate in acetonitrile was increased, suggesting the
increase in the amount of produced Pd nanoparticles. In contrast, the increase in the
CO bubbling time did not contribute to the increase in the peak intensity, as shown
in Figure 1b.
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The mean size of Pd nanoparticles in the Pd/CB prepared with a variety of
the concentration of palladium acetate in acetonitrile and CO bubbling time was
estimated by applying the Scherrer’s Equation to the (111) peak in each XRD pattern.
The results are summarized in Figure 3. In Figure 3a, when the concentrations of
palladium acetate in acetonitrile was 0.1 mM or less, the mean size of the prepared
Pd nanoparticles was around 3.1 nm, while at more than 0.1 mM it was increased
with the concentration of palladium acetate in acetonitrile. This can be ascribed to
the growth of the Pd nanoparticles due to the progress of Pd deposition. In Figure 3b,
when the CO bubbling time was 10 min or less, the mean particle size was maintained
at ca. 4.2 nm, while at more than 10 min it was increased with the CO bubbling time.
This can be ascribed to the agglomeration of Pd nanoparticles before loading on the
CB powder. From these results, it is concluded that the mean size of Pd nanoparticles
can be controlled by the concentration of palladium acetate in acetonitrile and the
CO bubbling time, and the former is effective in the preparation of smaller particles.
The Pd/CB catalysts prepared by bubbling CO in acetonitrile solutions containing
1.0 and 0.25 mM palladium acetate for 5 min are used hereafter, which are named
Pd4.2/CB and Pd3.3/CB, respectively.
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Figure 3. Crystalline size of Pd nanoparticles as a function of (a) the concentration
of palladium acetate in acetonitrile and (b) the CO bubbling time.

Figure 4 shows TEM images and the histograms of the size of the Pd
nanoparticles in Pd4.2/CB and Pd3.3/CB. The TEM images exhibited that in both
cases the Pd nanoparticles were well dispersed on CB. The mean size and standard
deviation of the Pd nanoparticles were evaluated to be 3.5 ˘ 0.9 nm and 4.2 ˘ 0.7 nm
for Pd3.3/CB and Pd4.2/CB, respectively. In the former, the particles less than 2.5 nm
in diameter were included. This seems to be because smaller nuclei are formed at
lower precursor concentrations and their growth rate is slow. In both cases the mean
size of the Pd nanoparticles evaluated from XRD and TEM was almost equivalent to
each other. In this way, we succeeded in preparing Pd nanoparticles less than 5 nm
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in diameter without any stabilizer by a simple method in which palladium acetate
and CO was used as a precursor and a reducing agent, respectively.
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Figure 4. TEM images and histograms of size of Pd nanoparticles loaded on CB
prepared by bubbling CO in acetonitrile containing (a) 0.25 mM and (b) 1 mM
palladium acetate for 5 min.

Figure 5 shows the Pt4f and Pd3d core level spectra for the Pt/Pd4.2/CB catalyst.
Both spectra clearly indicate that both Pd and Pt have the metallic state. With the peak
area for Pd and Pt in both spectra, atomic ratio of Pd and Pt (Pd:Pt) was estimated
as 0.80:0.20. If a Pd core nanoparticle with the size of 4.2 nm is covered with a Pt
monolayer, Pd:Pt = 0.69:0.31. However, since the Pd core nanoparticles are loaded on
CB, the contact surface of Pd with CB is dead space, so the fraction of the exposed
Pt surface should be less than 0.31. The utilization of Pd for the Pd4.2/CB, which
is defined by the ratio of electrochemical surface area of 4.2 nm Pd nanoparticles
evaluated by CO stripping to the calculated surface area of the same Pd nanoparticles
which are assumed to be spherical, was evaluated as 63%. So the ratio of the exposed
Pt is estimated as 0.31 ˆ 0.63 = 0.20, and Pd:Pt = 0.80:0.20, which is equivalent
to the experimental value. Moreover, the atomic ratio was also equivalent to that
evaluated from inductively coupled plasma spectroscopy. This suggests that the Pt
shell monolayer almost covered the Pd core nanoparticles.

378



Catalysts 2015, 5 1379 

 

 

concentrations and their growth rate is slow. In both cases the mean size of the Pd nanoparticles evaluated 

from XRD and TEM was almost equivalent to each other. In this way, we succeeded in preparing Pd 

nanoparticles less than 5 nm in diameter without any stabilizer by a simple method in which palladium 

acetate and CO was used as a precursor and a reducing agent, respectively. 

Figure 5 shows the Pt4f and Pd3d core level spectra for the Pt/Pd4.2/CB catalyst. Both spectra clearly 

indicate that both Pd and Pt have the metallic state. With the peak area for Pd and Pt in both spectra, 

atomic ratio of Pd and Pt (Pd:Pt) was estimated as 0.80:0.20. If a Pd core nanoparticle with the size of 

4.2 nm is covered with a Pt monolayer, Pd:Pt = 0.69:0.31. However, since the Pd core nanoparticles are 

loaded on CB, the contact surface of Pd with CB is dead space, so the fraction of the exposed Pt surface 

should be less than 0.31. The utilization of Pd for the Pd4.2/CB, which is defined by the ratio of 

electrochemical surface area of 4.2 nm Pd nanoparticles evaluated by CO stripping to the calculated 

surface area of the same Pd nanoparticles which are assumed to be spherical, was evaluated as 63%. So 

the ratio of the exposed Pt is estimated as 0.31 × 0.63 = 0.20, and Pd:Pt = 0.80:0.20, which is equivalent 

to the experimental value. Moreover, the atomic ratio was also equivalent to that evaluated from 

inductively coupled plasma spectroscopy. This suggests that the Pt shell monolayer almost covered the 

Pd core nanoparticles. 

 

Figure 5. (a) Pt4f and (b) Pd3d core level spectra for Pt/Pd4.2/CB. 

 

Figure 6. (a) A transmission electron micrograph of a Pt4.2 core/Pt shell nanoparticle loaded 

on CB and (b) EDX line scan spectra of Pd and Pt. 

Figure 6 shows a transmission electron micrograph and its EDX line profile for a 4.2 nm Pd core/Pt 

shell nanoparticle loaded on CB. Figure 6b exhibited that Pd and Pt were observed over the whole 

nanoparticle. In particular, the intensity of Pd was high in the center of the nanoparticle, whereas that of 

Figure 5. (a) Pt4f and (b) Pd3d core level spectra for Pt/Pd4.2/CB.

Catalysts 2015, 5 1379 

 

 

concentrations and their growth rate is slow. In both cases the mean size of the Pd nanoparticles evaluated 

from XRD and TEM was almost equivalent to each other. In this way, we succeeded in preparing Pd 

nanoparticles less than 5 nm in diameter without any stabilizer by a simple method in which palladium 

acetate and CO was used as a precursor and a reducing agent, respectively. 

Figure 5 shows the Pt4f and Pd3d core level spectra for the Pt/Pd4.2/CB catalyst. Both spectra clearly 

indicate that both Pd and Pt have the metallic state. With the peak area for Pd and Pt in both spectra, 

atomic ratio of Pd and Pt (Pd:Pt) was estimated as 0.80:0.20. If a Pd core nanoparticle with the size of 

4.2 nm is covered with a Pt monolayer, Pd:Pt = 0.69:0.31. However, since the Pd core nanoparticles are 

loaded on CB, the contact surface of Pd with CB is dead space, so the fraction of the exposed Pt surface 

should be less than 0.31. The utilization of Pd for the Pd4.2/CB, which is defined by the ratio of 

electrochemical surface area of 4.2 nm Pd nanoparticles evaluated by CO stripping to the calculated 

surface area of the same Pd nanoparticles which are assumed to be spherical, was evaluated as 63%. So 

the ratio of the exposed Pt is estimated as 0.31 × 0.63 = 0.20, and Pd:Pt = 0.80:0.20, which is equivalent 

to the experimental value. Moreover, the atomic ratio was also equivalent to that evaluated from 

inductively coupled plasma spectroscopy. This suggests that the Pt shell monolayer almost covered the 

Pd core nanoparticles. 

 

Figure 5. (a) Pt4f and (b) Pd3d core level spectra for Pt/Pd4.2/CB. 

 

Figure 6. (a) A transmission electron micrograph of a Pt4.2 core/Pt shell nanoparticle loaded 

on CB and (b) EDX line scan spectra of Pd and Pt. 

Figure 6 shows a transmission electron micrograph and its EDX line profile for a 4.2 nm Pd core/Pt 

shell nanoparticle loaded on CB. Figure 6b exhibited that Pd and Pt were observed over the whole 

nanoparticle. In particular, the intensity of Pd was high in the center of the nanoparticle, whereas that of 

Figure 6. (a) A transmission electron micrograph of a Pt4.2 core/Pt shell
nanoparticle loaded on CB and (b) EDX line scan spectra of Pd and Pt.

Figure 6 shows a transmission electron micrograph and its EDX line profile for a
4.2 nm Pd core/Pt shell nanoparticle loaded on CB. Figure 6b exhibited that Pd and
Pt were observed over the whole nanoparticle. In particular, the intensity of Pd was
high in the center of the nanoparticle, whereas that of Pt was high at both edges of
the nanoparticle, suggesting that the Pd core nanoparticle was covered with Pt.

2.2. Electrochemical Properties of Pt/Pd/CB Electrodes

Figure 7 shows cyclic voltammograms (CVs) of the Pt monolayer-modified
Pd4.2/CB (Pt/Pd4.2/CB), Pt monolayer-modified Pd3.3/CB (Pt/Pd3.3/CB), Pd4.2/CB
and Pd3.3/CB electrodes in an Ar-saturated 0.1 M HClO4 aqueous solution. The
CVs of the Pd4.2/CB and Pd3.3/CB electrodes had two pairs of redox peaks in
the potential range less than 0.4 V in addition to a distinct reduction peak of
palladium oxide at ca. 0.75 V, which agrees with CVs of the Pd thin layers and
Pd nanoparticles [9,20,21]. A couple of large peaks at ca. 0.1 V can be assigned to
the hydrogen absorption/desorption process in the Pd nanoparticles, while the two
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small peaks at ca. 0.27 V are assigned to the hydrogen adsorption/desorption on the
Pd nanoparticles [20].
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Figure 7. Cyclic voltammograms of (a) Ptx/Pd4.2/CB (x = 0, 1) and (b)
Ptx/Pd3.3/CB (x = 0, 1) electrodes in Ar-saturated 0.1 M HClO4 aqueous solution.
Scan rate: 20 mV s´1.

For the Pt/Pd4.2/CB and Pt/Pd3.3/CB electrodes, two pairs of peaks in the
potential range less than 0.4 V almost disappeared, and the peaks assigned to the
hydrogen adsorption/desorption (ca. 0.2 V) and hydrogen evolution/oxidation (ca.
0.05 V) appeared instead. Moreover, the potential of the reduction peak of oxide was
shifted more positively [9]. These modifications are ascribable to the phenomena on
Pt, suggesting that the Pd nanoparticles were almost covered with a Pt monolayer.
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Figure 8 shows CO stripping voltammograms of the Ptx/Pd4.2/CB (x = 0, 1) and
Ptx/Pd3.3/CB (x = 0, 1) electrodes in Ar-saturated 0.1 M HClO4 aqueous solution.
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For the Pd4.2/CB and Pd3.3/CB electrodes, the CO stripping peak was observed at
ca. 0.92 V. Irrespective of the size of Pd nanoparticles, after the deposition of a Pt
monolayer, the CO stripping peak significantly shifted in the negative direction, and
its potential was quite close to that of Pt. These results also strongly suggest that the
Pt monolayer shell almost covers the Pd core nanoparticles.

2.3. Activity and Durability for ORR of Pt/Pd4.2/CB and Pt/Pd3.3/CB Electrodes

Figure 9 shows hydrodynamic voltammograms at various rotating speeds and
the Koutecky-Levich plots at various potentials for the Pt/Pd4.2/CB and Pt/Pd3.3/CB
electrodes in O2-saturated 0.1 M HClO4 aqueous solution. As shown in Figure 9b,d,
in both cases, there was a linear relationship between the reciprocal of square root
of rotating speed (ω´1/2) and the reciprocal of measured current density (i´1)
irrespective of potential. With a slope of each straight line and the following
Equation (1) [4], the number of electrons in the ORR was evaluated.

i-1 “ ik´1 ` p0.62nFcO2DO2
2/3ν´1/6q´1ω´1/2 (1)

where ik is the kinetic current density in mA cm´2, n is the number of electrons
in the ORR, F is the Faraday constant, cO2 is the dissolved O2 concentration
(1.18ˆ 10´3 mol L´1 [4]), DO2 is the diffusion coefficient of O2 (1.9ˆ 10´5 cm2 s´1 [4])
and ν is the viscosity of the solution (0.0893 ˆ 10´2 cm2 s´1 [4]). In both cases the
number of electrons in ORR was evaluated to be ca. 4 irrespective of potential,
indicating that direct 4-electron reduction reaction to water proceeded on these
electrodes, which was the same as the Pt electrode. Moreover, the mechanism of
ORR was not influenced by the size of Pd core nanoparticles.

ik can be evaluated using the following Equation (2) [4].

ik “ il i{pil ´ iq (2)

where il is the diffusion-limited current density and can be determined from
Figure 9a,c. Using hydrodynamic voltammograms at 1600 rpm, the log ik—electrode
potential (E) plot or Tafel plot for the Pt/Pd4.2/CB and Pt/Pd3.3/CB electrodes was
made, as shown in Figure 10. The Tafel slopes at the higher (E > 0.85 V) and lower
(E < 0.85 V) potential regions was ´61 and ´120 mV dec´1 for the Pt/Pd4.2/CB
electrode and ´63 and ´119 mV dec´1 for the Pt/Pd3.3/CB electrode. The Tafel
slope for polycrystalline Pt electrodes was ca. ´60 and ca. ´120 mV dec´1 at higher
and lower potential regions due to the ORR on a Pt surface covered with oxides
and a clean Pt surface, respectively [22,23]. Therefore, the ORR mechanism on both
Pt/Pd/CB catalysts is the same as that on Pt, and, in particular, the rate-determining
step in the lower potential region was the first one-electron reduction reaction of O2

molecules adsorbed on the Pt surface [22,23].
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Figure 9. Hydrodynamic voltammograms at various rotating speeds and the
Koutecky-Levich plots at various potentials for (a,b) Pt/Pd4.2/CB and (c,d)
Pt/Pd3.3/CB electrodes in O2-saturated 0.1 M HClO4 aqueous solution. Scan
rate: 10 mV s´1.
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Figure 11 summarizes the ORR activity per electrochemical surface area of
Pt (specific activity, SA) and MA, ORR current per unit mass of Pt at 0.90 V
for the Pt/Pd4.2/CB, Pt/Pd3.3/CB and commercial Pt/CB (TEC10E50E, Tanaka
Kikinzoku Kogyo, Oshu-city, Iwate, Japan; Pt/CB-TKK) electrodes. For SA, both
Pt/Pd/CB electrodes was about 1.5 times as high as the Pt/CB-TKK electrode, and
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the Pt/Pd3.3/CB electrode whose Pd core size was smaller had higher SA than
the Pt/Pd4.2/CB electrode. These results can be ascribed to the compressive strain
effect of Pd core nanoparticles, which depends on core size and shape, leading to
the compression of Pt-Pt distance of the Pt monolayer shell [24–26]. The strain
effect induced d-band shift regulates the adsorption properties of rate-determining
intermediates in catalytic processes, so the maximal compression of the Pt-Pt distance
must give the highest SA [24–26]. For MA, the Pt/Pd4.2/CB and Pt/Pd3.3/CB
electrodes was 5.0 and 5.5 times as high as the Pt/CB-TKK electrode, respectively.
Since the specific surface areas of both Pt/Pd/CB electrodes were similar to each
other, the increase in MA is ascribable to the increase in SA.
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Pt/CB-TKK electrodes.
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The Pd/CB-modified GC disk electrode was immersed in a 0.5 M H2SO4 aqueous solution containing  
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Figure 12. Change in normalized electrochemical surface area of Pt with cycle
number for the Pt/Pd4.2/CB, Pt/Pd3.3/CB and Pt/CB-TKK electrodes.

Figure 12 shows time courses of the normalized ECSA during durability tests at
60 ˝C for the Pt/Pd4.2/CB, Pt/Pd3.3/CB and Pt/CB-TKK electrodes. The durability of
the Pt/Pd4.2/CB and Pt/Pd3.3/CB electrodes was comparable to that of Pt/CB-TKK,
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suggesting that the surface of Pd core nanoparticles was almost covered by Pt atoms
for both Pt/Pd/CB electrodes.

3. Experimental Section

3.1. Preparation and Characterization of Pd/CB

The Pd/CB without stabilizer was prepared as follows; CO was bubbled in
acetonitrile solutions containing 0.050–1.0 M palladium acetate at 4 ˝C for 3–60 min,
followed by adding Ketjen Black powder and sonicating for 30 min. Then the Pd/CB
powder was separated by suction filtration. The loading of Pd on CB was evaluated
to be 28 wt% from the mass of the residue by thermogravimetry.

Crystal structure and valence state of Pd/CB were analyzed with an X-ray
diffractometer (Shimadzu, Kyoto, Japan; 50 kV, 30 mA) using CuKα radiation and
X-ray photoelectron spectroscope (8 kV, 30 mA) using MgKα radiation (1253.6 eV).
The mean size and its distribution of Pd nanoparticles in Pd/CB were evaluated
with a field-emission transmission electron microscope (FE-TEM; Hitachi, Tokyo,
Japan). The size distribution profiles were obtained by measuring more than
300 nanoparticles randomly chosen from TEM images.

3.2. Modification of Pd Core Nanoparticles Loaded on CB with Pt Shell

The Pd/CB (Amount of CB: 3.1 µg) was cast on a glassy carbon (GC) disk
electrode (5 mmφ). The Pd/CB-modified GC disk electrode was immersed in a 0.5 M
H2SO4 aqueous solution containing 2 mM CuSO4 with a Pt plate counter electrode
and a reversible hydrogen electrode (RHE). The disk electrode was polarized at
0.30 V for 10 min to deposit a Cu adlayer on the Pd nanoparticles, followed by
being immersed in 5.0 mM K2PtCl4 aqueous solution in Ar atmosphere for 30 min.
Consequently, a Pt monolayer shell was formed by galvanic displacement of the Cu
adlayer atoms with Pt atoms [9]. Each Pd/CB or Pt/Pd/CB electrode was covered
with a thin Nafion film by dropping 20 µL of 0.05 wt% Nafion ethanol solution and
then drying.

3.3. Electrochemical Measurements

The ORR activity of the Pt/Pd/CB electrodes was measured by hydrodynamic
voltammetry using the rotating disk electrode (RDE) technique. The commercial
Pt/CB (TEC10E50E, Tanaka Kikinzoku Kogyo, Japan; Pt/CB-TKK) electrode was
used for comparison. The counter and reference electrodes were a Pt plate and an
RHE, respectively. The electrolyte solution was 0.1 M HClO4. Cyclic voltammograms
were recorded at a scan rate of 20 mV s´1 in an Ar atmosphere at 25 ˝C. The
hydrodynamic voltammograms were measured at rotating speeds of 3600, 2500,
1600, 900, and 400 rpm in an O2-saturated 0.l M HClO4 aqueous solution at 25 ˝C.
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The potential of the GC disk was swept at 10 mV s´1 from 0.05 to 1.2 V. The SA
and MA for ORR were evaluated from the kinetic current at 0.90 V vs. RHE of each
hydrodynamic voltammogram at 1600 rpm, respectively. The mass of Pt deposited
on the Pd core nanoparticles for each catalyst was evaluated by integrating the
electric charge of the amount of Cu-upd in the stripping voltammogram of the Cu
adlayer, assuming that all the Cu adlayer atoms were completely displaced by Pt
atoms as follows:

Cu ` PtCl42´ÑPt ` Cu2+ ` 4Cl´ (3)

CO stripping voltammograms were recorded at 20 mV s´1 in the positive
direction from 0.05 V vs. RHE after CO was adsorbed on each electrode at 0.05 V vs.
RHE in a CO-saturated 0.1 M HClO4 aqueous solution for 15 min.

The durability of Pt/Pd/CB and Pt/CB electrodes was investigated by repeating
square-wave potential cycling between 0.6 V for 3 s and 1.0 V for 3 s in an Ar-saturated
0.l M HClO4 aqueous solution at 60 ˝C [18]. The ECSA of Pt was periodically
measured during each durability test, and the loss of the ECSA was used as a
measure of degradation.

4. Conclusions

Pd core nanoparticles less than 5 nm in size were successfully prepared without
any stabilizer by using palladium acetate as a precursor and CO as a reducing
agent. The mean size of Pd nanoparticles was controllable by the concentration
of palladium acetate and the CO bubbling time, and the former was superior
to the latter in the preparation of smaller particles. The CVs of the Pd/CB
electrodes had two pairs of redox peaks in the hydrogen region in addition to a
reduction peak of palladium oxide at ca. 0.75 V. The deposition of a Pt monolayer
shell on CB-loaded Pd core nanoparticles led to the disappearance of the peaks
and the appearance of peaks assigned to Pt. The ORR on the Pt/Pd4.2/CB and
Pt/Pd3.3/CB proceeded in 4-electron reduction mechanism like the Pt/CB electrode.
The Pt/Pd4.2/CB and Pt/Pd3.3/CB electrodes was ca. 1.5 times higher in SA than
the Pt/CB-TKK electrode, and the Pt/Pd3.3/CB electrode had higher SA than
the Pt/Pd4.2/CB electrode. The increase in SA was ascribed to the compression
strain effect of the Pd core nanoparticles to tune a Pt-Pt distance which influenced
the adsorption properties of rate-determining intermediates. The MA for the
Pt/Pd4.2/CB and Pt/Pd3.3/CB electrodes was 5.0 and 5.5 times as high as that
for the Pt/CB-TKK electrode, respectively. The durability of the Pt/Pd4.2/CB and
Pt/Pd3.3/CB electrodes was comparable to that of Pt/CB-TKK, suggesting that
the surface of Pd core nanoparticles was almost covered by Pt atoms for both
Pt/Pd/CB electrodes.
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Electrochemical Oxidation of the Carbon
Support to Synthesize Pt(Cu) and Pt-Ru(Cu)
Core-Shell Electrocatalysts for
Low-Temperature Fuel Cells
Griselda Caballero-Manrique, Enric Brillas, Francesc Centellas,
José Antonio Garrido, Rosa María Rodríguez and Pere-Lluís Cabot

Abstract: The synthesis of core-shell Pt(Cu) and Pt-Ru(Cu) electrocatalysts allows for
a reduction in the amount of precious metal and, as was previously shown, a better
CO oxidation performance can be achieved when compared to the nanoparticulated
Pt and Pt-Ru ones. In this paper, the carbon black used as the support was previously
submitted to electrochemical oxidation and characterized by XPS. The new catalysts
thus prepared were characterized by HRTEM, FFT, EDX, and electrochemical
techniques. Cu nanoparticles were generated by electrodeposition and were further
transformed into Pt(Cu) and Pt-Ru(Cu) core-shell nanoparticles by successive
galvanic exchange with Pt and spontaneous deposition of Ru species, the smallest
ones being 3.3 nm in mean size. The onset potential for CO oxidation was as good as
that obtained for the untreated carbon, with CO stripping peak potentials about 0.1
and 0.2 V more negative than those corresponding to Pt/C and Ru-decorated Pt/C,
respectively. Carbon oxidation yielded an additional improvement in the catalyst
performance, because the ECSA values for hydrogen adsorption/desorption were
much higher than those obtained for the non-oxidized carbon. This suggested a
higher accessibility of the Pt sites in spite of having the same nanoparticle structure
and mean size.

Reprinted from Catalysts. Cite as: Caballero-Manrique, G.; Brillas, E.; Centellas, F.;
Garrido, J.A.; Rodríguez, R.M.; Cabot, P.-L. Electrochemical Oxidation of the
Carbon Support to Synthesize Pt(Cu) and Pt-Ru(Cu) Core-Shell Electrocatalysts
for Low-Temperature Fuel Cells. Catalysts 2015, 5, 815–837.

1. Introduction

The Proton Exchange Membrane Fuel Cells (PEMFCs) are considered good
environmentally friendly alternatives to the use of fossil fuel engines as power
generation systems for transport applications. They have better energy efficiency,
lower operation temperature, and much lower emission of pollutants [1–4]. One of
the problems appears when using hydrogen obtained from reforming, because it
contains CO, which is strongly adsorbed on Pt. This produces the metal poisoning
and decreases the anode performance. On the other hand, Direct Methanol Fuel
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Cells (DMFCs) are envisaged for low-weight portable applications such as laptops,
cellular phones, sensors, and medical devices, in which the methanol fuel can be
easily managed and recharged [4–8]. In this case, the anodic oxidation of methanol
produces CO-type intermediates, which also lead to the Pt metal poisoning. In order
to solve this problem, Pt-containing binary and ternary alloys have alternatively
been studied [3,5,9–15]. The amount of Pt used could also be decreased in this form,
because it is expensive and has a limited abundance in the Earth [3,7,8,11,16–18]. In
this way, Pt-Ru and Pt alloy nanoparticles containing Au, Ni, Cu, Co, Pd, and/or
other transition metals have been tested on different carbon substrates as anodic
catalysts [1,2,6,9–11,13,16,17,19–29].

Many different allotropic forms of carbon have been used as substrates to
synthesize Pt-based catalysts. Pt(IV) and Ru(III) species or their carbonyl complexes
can be reduced in ethylenglycol or formate solutions [11,13,30], also using in some
cases oil in water microemulsions [31], microwave radiation [15], or galvanic
exchange [32–34]. However, carbon blacks and active carbons have been the
mostly employed supports for low-temperature fuel cells due to their unique
characteristics of high surface area, electric conductivity, porosity, stability, and low
cost [1,3,10,16,22,30,35,36]. The morphology and size distribution of carbon black
particles depend on the raw material and on the thermal decomposition process
utilized in the synthesis procedure. Vulcan carbons XC-72 and XC-72R [37] are
carbon blacks obtained from the pyrolysis of natural gas or oil fractions. They can
be considered rather graphitic amorphous forms of carbon with spherical shape
about 50 nm in diameter that can be aggregated in spherules of about 250 nm in
size [30,36]. Vulcan XC-72R has suitable surface and micropore areas of 218 and
65.2 m2g´1, respectively, and pore, mesopore, and micropore volumes of 0.41, 0.3,7
and 0.036 cm3g´1, respectively [19,37,38].

It has been noted that carbon blacks have a large number of diverse structural
defects that affect their reproducibility as substrates [1,8,19,39]. For this reason, these
carbons are normally functionalized by means of surface oxidation treatments to
create oxygenated organic groups that can serve as nucleation points for the metallic
precursors. The oxygenated groups help to diminish the carbon hydrophobicity,
thereby favoring the accessibility of the aqueous metallic precursors. On the other
hand, the less acidic groups increase the interaction between the metal precursor
and the carbon support, thus avoiding the agglomeration tendency of the metal on
the carbon [1,40]. The functionalization of the carbon surface can be achieved by
treatment with strong oxidizing acids such as nitric, sulfuric, phosphoric, sulphonic,
or their mixtures, or by means of sodium hydroxide, ammonia, or hydrogen
peroxide [18,27–29,35,36,38,40–46]. Oxygen or oxygen plus nitrogen mixtures,
thermal oxidation [18,38], and electrochemical oxidation at constant current or
potential, potential pulses, or potential cycling have also been applied [28,34,42,45,47].
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All these techniques were able to introduce oxygenated surface compounds via the
consecutive formation of hydroxyl, carbonyl, and carboxyl groups according to the
following reaction sequence [47]:
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(1)

Hydroquinone (HQ) C6H4(OH)2 groups, which can be oxidized to quinone (Q)
C6H4O2 groups, can also improve the electrocatalytic properties and the stability of
the catalysts in the operation conditions of the fuel cells [18,19,35,36,38,42–45]:

HQÑQ ` 2H+ ` 2e´ (2)

However, extreme oxidizing conditions under high temperature, humidity,
and low pHs can negatively affect the performance and durability of the PEM
anodes because carbon can be oxidized to CO and CO2 according to the following
reactions [19]:

Cpsq ` H2OÑCO(g) ` 2H+ ` 2e´ (3)

Cpsq ` 2H2OÑCO2(g) ` 4 H+ ` 4e´ (4)

To the best of the authors’ knowledge, studies about the effect of carbon
oxidation as a substrate for copper electrodeposition are scarcely found in the
literature. Li et al. [29] reported that when the amount of carbonyl groups on carbon
fibers was increased by thermal treatment, the amount of Cu nuclei on carbon during
the Cu electrodeposition also increased. This could be also a way of increasing the
dispersion of Cu nuclei on carbon as smaller nanoparticles.

In previous work by these authors [48], core-shell carbon-supported Pt(Cu) and
Pt-Ru(Cu) nanoparticles were synthesized in three steps: 1) Cu electrodeposition
on Vulcan carbon XC-72R; 2) Pt deposition on Cu by galvanic exchange; and
3) spontaneous deposition of Ru species on Pt. It was shown that this way allowed
us to significantly reduce the Pt content of the catalyst together with increasing the
CO tolerance. Thus, the CO stripping peak potentials were about 0.1 and 0.2 V more
negative than those corresponding to the Pt/C and the Ru-decorated Pt/C catalysts,
respectively. In addition, the efficiency of methanol oxidation per unit mass of Pt
was much higher. In this paper, the effect of the electrochemical carbon oxidation
on the synthesis of the core-shell Pt(Cu) and Pt-Ru(Cu) nanoparticles has been
explored in order to try to effect a further improvement in the catalyst performance.
Carbon Vulcan XC-72R was electrochemically oxidized under different conditions to
increase the amount of oxygenated carbon groups and then the core-shell catalysts
were deposited on it, using the best conditions reported in our previous work. The
oxidized carbons and the catalysts thus prepared were characterized by means of
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structural and electrochemical techniques. The hydrogen adsorption/desorption
behavior and the CO oxidation performance of these new catalysts were compared
to those previously reported for the untreated carbon support.

2. Results and Discussion

2.1. XPS Analyses and Electrochemical Testing of Carbon Oxidation

Cyclic voltammograms of Vulcan carbon XC72R in 0.5 M H2SO4 were recorded
between the initial potential of 0.0 V vs. RHE and different anodic limits up to
2.2 V to select the potentials to check its activation performance. Figure 1 shows
that the anodic current in the anodic sweep significantly increased from about 0.9
V and passed through a maximum at about 2.0 V (curve a). According to this
behavior, potentials of 1.6, 1.8, 2.0, and 2.2 V were tentatively selected as characteristic
potentials for the anodic treatment of carbon.
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Figure 1. Cyclic voltammograms corresponding to the oxidation of Vulcan Carbon
XC72R at 10 mV s´1 in 0.5 M H2SO4. The initial potential was 0.0 V and the reversal
potential was (a) 2.2 V and (b) 1.8 V.

Figure 1 also highlights that the cathodic profile depended on the reversal
potential. For the anodic limit of 1.8 V (curve b), the current in the cathodic sweep
started to grow from about 0.7 V, passing through a rather flat cathodic peak at
about 0.4–0.6 V. When the reversal potential was 2.2 V, the cathodic peak was close
to 0.1 V. These curves then showed that the carbon oxidation was a function of
the anodic limit. Note that in both cases, the charge of the anodic sweep largely
exceeded the cathodic charge invested in the reduction of the species generated,
thereby indicating the irreversibility of the oxidation process. This irreversible nature
was further confirmed when performing consecutive cyclic voltammograms, in
which a significant current decrease was apparent cycle by cycle (not shown here).
It has been reported in the literature that the cathodic peak currents in the range
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0.4–0.6 V are due to the reduction of the quinone phenolic groups of carbon to
hydroquinone [18,19,35,36,38,42–45]. When the anodic and the cathodic limits were
limited to the range 0.4–0.7 V, the transformation between quinone and hydroquinone
groups appeared to be reversible. However, when the anodic potential exceeded 0.7
V in the positive direction, an increasing degree of carbon oxidation took place, as
expected, along with the production of aldehyde and carboxylic groups and, finally,
CO2 evolution. For an anodic limit of 2.2 V, practically no cathodic current appeared
between 0.4 and 0.6 V, suggesting the irreversible oxidation of most of the phenolic
quinone groups to higher oxidation states.

XPS analyses of the oxidized carbons were performed in order to more precisely
define the nature of the processes taking place at different potentials. The general
spectra of the different carbons, including the non-oxidized one, showed only the
presence of carbon and oxygen, although very residual amounts of S and Cl were
also identified for the non-oxidized carbon. The main difference between the latter
and the oxidized carbons was the oxygen content. The corresponding atomic ratio
O:C was 0.62, 22.8, 22.0, and 22.3 atom % for the non-oxidized carbon and for carbons
oxidized for 300s at 1.8, 2.0, and 2.2 V, respectively. The C1s and the O1s binding
energy region of the XPS spectra are depicted in Figure 2a,b, respectively.
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In the C1s binding energy region (Figure 2a), it is clear that the surface carbon
appears mainly in the form of the C–C state (284.5 eV) [19,49,50] for the non-oxidized
carbon (curve a), whereas for the oxidized carbons, the binding energies are consistent
with the states C–O (286.0 eV), C=O (287.8 eV) and O–C=O (290.2 eV) [19,51,52]. All
the surface carbon appears to be oxidized. The chemical states of O1s (Figure 2b)
are consistent with C–OH (531.8 eV) for the non-oxidized carbon (curve a), whereas
for the oxidized carbons, O1s is mainly in the states O–C–O (532.2 eV) and O–C=O
(534.3 eV) [19,51,52]. Note that when the oxidation potential of the carbon is increased,
there is a shift toward higher binding energies, thus indicating that the final oxidation
form as CO2 is approached. Moreover, the band located in the range 290–292 eV
is due to the π electrons of the aromatic rings, in agreement with the presence of
quinonic and hydroquinonic structures [53].

Further confirmation of the above behavior was found from the
chronoamperograms depicted in Figure 3a, where the steady current depended
on the applied potential. For potentials up to 2.0 V, small steady currents were
obtained (curves a–c), whereas for 2.2 V (curve d) the current was one order of
magnitude greater. Figure 3b shows that the profile of the cathodic sweep after the
constant oxidation potential for 300 s of Figure 3a was consistent with the cyclic
voltammograms shown in Figure 1. Reduction of phenolic quinone groups was
apparent at about 0.4–0.6 V when the applied potentials were 1.6 and 1.8 V. The
absence of significant reduction peaks at 0.4–0.6 V together with the formation of
new cathodic peaks at more negative potentials, curves c and d in Figure 3b, clearly
indicate that higher oxidation states of carbon were produced when the carbon
was previously oxidized at 2.0 and 2.2 V, in agreement with the XPS analyses. The
reduction of higher oxidized states was also apparent at constant potential oxidation
of 1.8 V, as indicated by the big reduction peak at about 0.2 V. Oxidation at 2.0 and
2.2 V clearly led to deeper carbon oxidation including the formation of CO2, species
that were not reduced during the cathodic sweep.

The different carbon activation treatments described in the experimental part
are associated to Figures 1 and 3: Figure 3a corresponds to treatment (i); Figure 3a
followed by 3b, to treatment (iii); and 10 consecutive cycles following the first one
shown in Figure 1, to treatment (ii). Figure 4 depicts the cyclic voltammograms of
the oxidized carbons in the potential region from 0.0 to 1.0 V, which is the region of
interest when analyzing the performance of the catalysts prepared in this paper. The
main feature shown in the curves of Figure 4 is the Q/HQ couple (oxidation and
reduction in the ranges 0.5–0.7 and 0.4–0.6 V, respectively), which is not apparent in
curve a for the non-oxidized carbon. The symmetry of the peaks and charge of the
anodic and the cathodic profiles corroborates the reversibility of the couple from 0.0 to
1.0 V. The cycles were also repetitive, thus proving the stability of the resulting carbon
in these conditions. As can be seen in Figure 4a, the anodic and cathodic charges of
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the cyclic voltammograms increased when carbon was previously oxidized following
the treatment (i) (curves b–d). The corresponding currents grew when changing the
treatment potential from 1.6 to 2.0 V (curves b and c, respectively). However, the
current decreased when the applied potential was 2.2 V (curve d), probably due to the
more intense carbon degradation favoring its loss at this potential. The anodic and
cathodic currents after treatment (iii) were similar to those obtained after treatment
(i). Qualitatively similar features were found for treatment (ii) (Figure 4b), where
the currents increased with the anodic limit of the potential cycling (curves b and
c). In this case, the currents for an anodic limit of 2.2 V were higher than those
obtained for treatment (i) at the same potential (curve d in Figure 4a). This can be
explained assuming that the application of 2.2 V for 300 s produced higher carbon
oxidation than potentiodynamic cycling 10 times up to the same potential. The
formation of a higher amount of superior oxidation states of carbon, even with CO2

evolution, involving a carbon loss and a decrease in the content of quinone groups,
would explain the smaller currents of curve d in Figure 4a with respect to curve c in
Figure 4b. Note that the highest peak currents reached in the cyclic voltammograms
after all the carbon oxidation treatments were about 65 µA.Catalysts 2015, 5 821 
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shoulder at about 0.50 and 0.65 V, respectively. For treatment (ii) (curves f and g), the voltammograms 

were even more depressed, with still significant anodic currents at 1.0 V. This behavior was more 

pronounced at higher anodic limits and the treatment (ii) was not then found to be suitable for further 

examination and testing. 

Peaks with an anodic maximum and a shoulder were also found during the reoxidation of 

electrodeposited copper on non-treated carbon for scan rates over 20 mV s−1 [48]. They were assigned 

to the formation of Cu2+ complexes and to the oxidation of the Cu(I) species generated by a 

disproportionation reaction, respectively. This double peak structure is not so apparent in curve a of 

Figure 5 because of the smaller scan rate. However, both, peak and shoulder, which were the main peak 

at about 0.50 V and the noticeable peak at about 0.65 V, were observed in the voltammograms of copper 

oxidation on the previously oxidized carbons, which could then be tentatively related to the same species 

as the untreated one. The shift of the anodic peaks and shoulder in the anodic direction could be 

explained considering that the oxidized carbons have a more open structure, with the possibility to 

nucleate copper in the inner part of the carbon spherules with a higher bonding energy because of the 

new oxygen-containing functional groups. The oxidation of the Cu nuclei could then be more difficult 

Figure 4. Cyclic voltammograms of carbon XC72R in deaerated 0.5 M H2SO4 at
20 mV s´1 after the different oxidation treatments. (a) Treatment (i), 300 s at (b)
1.6 V, (c) 2.0 V, and (d) 2.2 V; (b) Treatment (ii), anodic limit of (b) 1.8 V and (c)
2.2 V. Curves a in both graphics are the cyclic voltammograms of XC72R without
previous oxidation treatment.

2.2. Copper Electrodeposition on the Oxidized Carbon

After the different activation treatments of carbon, 40 mC of Cu were
electrodeposited at –0.1 V, as explained in the experimental part, and reoxidized
in the same electrolyte to determine the copper electrodeposition efficiency. The
corresponding voltammograms thus obtained are presented in Figure 5, where it
can be observed that the copper oxidation profiles depended on the previous carbon
oxidation. The Cu oxidation voltammograms on treated carbons presented anodic
peaks that are wider and have much smaller peak currents than the reference curve a
for the non-oxidized carbon. Treatments (i) (curves b and c) and (iii) (curves d and e)
led to similar Cu oxidation profiles, with a peak and a shoulder at about 0.50 and
0.65 V, respectively. For treatment (ii) (curves f and g), the voltammograms were
even more depressed, with still significant anodic currents at 1.0 V. This behavior
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was more pronounced at higher anodic limits and the treatment (ii) was not then
found to be suitable for further examination and testing.

Peaks with an anodic maximum and a shoulder were also found during the
reoxidation of electrodeposited copper on non-treated carbon for scan rates over
20 mV s´1 [48]. They were assigned to the formation of Cu2+ complexes and to the
oxidation of the Cu(I) species generated by a disproportionation reaction, respectively.
This double peak structure is not so apparent in curve a of Figure 5 because of
the smaller scan rate. However, both, peak and shoulder, which were the main
peak at about 0.50 V and the noticeable peak at about 0.65 V, were observed in the
voltammograms of copper oxidation on the previously oxidized carbons, which
could then be tentatively related to the same species as the untreated one. The shift of
the anodic peaks and shoulder in the anodic direction could be explained considering
that the oxidized carbons have a more open structure, with the possibility to nucleate
copper in the inner part of the carbon spherules with a higher bonding energy because
of the new oxygen-containing functional groups. The oxidation of the Cu nuclei
could then be more difficult and demand the application of higher potentials. In fact,
it is reasonable to assume that the higher currents found after carbon oxidation in
the cyclic voltammograms of Figure 4 were in part faradaic (Q/HQ couple) and also
capacitive (expansion of the carbon structure). This expansion of the carbon structure
would justify the formation of less accessible Cu nuclei, which, together with a higher
bonding energy, would demand higher oxidation potentials for Cu oxidation.
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Figure 5. Cu oxidation voltammograms at 10 mV s´1 after 40 mC electrodeposition
at ´0.1 V in the same electrolyte (1.0 mM CuSO4 + 0.1 M Na2SO4 + 0.01 M H2SO4).
Experiments performed with carbon submitted to treatment (i): (b) 1.8 V, 300 s and
(c) 2.2 V, 300 s; treatment (iii): (d) 1.8 V, 300 s and (e) 2.2 V, 300 s; and treatment
(ii): cycling up to (f ) 1.8 V and (g) cycling up to 2.2 V. Curve a is the reference one,
obtained without previous oxidation of the carbon.
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The anodic charges of the different voltammograms were measured to determine
the current efficiencies of copper electrodeposition. In contrast to the untreated
carbon, in which they were over 99% [48], the current efficiencies for oxidized
carbons were somewhat smaller. For treatment (i) at potentials in the range 1.6–2.0 V
for 300 s, the efficiency was about 86%. This can be explained by a small contribution
of the reduction of oxidized carbon groups previously generated during the anodic
treatment of carbon, which would take place in parallel with the Cu electrodeposition.
This is in agreement with other electrodeposition experiments using carbon oxidized
for shorter times. Thus, in the carbon oxidation at 1.6 and 1.8 V for 100s, the
electrodeposition efficiency was about 95%.

The TEM images corresponding to the copper electrodeposition on the carbon
oxidized following the treatment (i) at 1.6 V for 200 s and 2.2 V for 300 s, are depicted
in Figure 6, where it is highlighted that Cu nuclei were obtained in the nanoparticle
size. Figure 6b corresponds to 1.6 V, showing a HRTEM image with the FFT analyses
of the squared marked area in the same figure. From the FFT analyses, the interplanar
space d obtained was 0.2065 nm, which can be assigned to the planes Cu(100)
(d = 0.2088 nm) [54], with a relative error of 1.1%. The size distributions of the
nanoparticles are also shown in the insets, with respective mean sizes of 6.6˘ 3.1 and
4.4˘ 1.3 nm for 1.6 and 2.2 V, respectively. These nanoparticle sizes were comparable
but somewhat higher than the mean value of 3.9 nm obtained in our previous work
under the same Cu electrodeposition conditions, except for the carbon oxidation
treatment [48].

In order to examine how carbon oxidation can affect the size of the nanoparticles,
one can suppose that the new oxygen-containing functional groups produced by
carbon oxidation acted as additional nucleation centers for Cu electrodeposition.
In this case, the electrodeposition of a given amount of Cu on the oxidized carbon
would give a higher number of Cu nanoparticles, which should have a smaller size
when compared to the non-oxidized one. As long as the nanoparticle sizes were
not smaller for the oxidized carbons, one can infer that carbon oxidation did not
lead to an increased number of nucleation centers for Cu electrodeposition. In the
present case, it seems that the new oxygen-containing functional groups, behaving
as nucleation centers, even yielded somewhat bigger nanoparticles. This interesting
point undoubtedly merits more attention but is outside the scope of the present paper.
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Figure 6. TEM micrographs of electrodeposited Cu on XC72R previously oxidized following 

treatment (i) at (a) and (b) 1.6 V, 200 s; (c) 2.2 V, 300 s. The size distributions are shown in 
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0.5 M H2SO4. Some examples are shown in Figure 7, where curves a and c correspond to Pt(Cu) with previous 

carbon oxidation according to treatment (i) (1.6 V for 200 s) and without oxidation treatment, respectively. 

Note that the surface Cu, if present, should be oxidized from a potential of about 0.2 V [48]. Since there is 

no evidence about it in the quasistationary curves shown in this figure, one can conclude that the cyclic 

voltammograms resulted only from the surface Pt, which is consistent with the expected  

core-shell structure.  

Figure 6. TEM micrographs of electrodeposited Cu on XC72R previously oxidized
following treatment (i) at (a) and (b) 1.6 V, 200 s; (c) 2.2 V, 300 s. The size
distributions are shown in the inset panels. Picture (b) is a HRTEM image from the
sample shown in (a).

2.3. Performance of the Pt(Cu) and Pt-Ru(Cu) Catalysts

The prepared carbon-supported Pt(Cu) and Pt-Ru(Cu) catalysts were tested by
cyclic voltammetry in 0.5 M H2SO4. Some examples are shown in Figure 7, where
curves a and c correspond to Pt(Cu) with previous carbon oxidation according to
treatment (i) (1.6 V for 200 s) and without oxidation treatment, respectively. Note
that the surface Cu, if present, should be oxidized from a potential of about 0.2 V [48].
Since there is no evidence about it in the quasistationary curves shown in this figure,
one can conclude that the cyclic voltammograms resulted only from the surface Pt,
which is consistent with the expected core-shell structure.

It can also be observed that the currents were much higher with previous carbon
oxidation. However, it is apparent that there is an important contribution of the
capacitive charge effect due to the increase in area by the carbon oxidation together
with the Q/HQ couple in the region of 0.4–0.7 V (see Figure 4). The respective
mean charges of the hydrogen adsorption/desorption regions led to ECSA values of
1.58 ˆ 103 and 0.66 ˆ 103 m2 molCu

´1 (see Table 1). The much higher ECSA value
for previously oxidized carbon is indicative of a higher ability for the hydrogen
adsorption/desorption process. This effect was general because in all cases, as
shown in Table 1, carbon oxidation always gave higher ECSA values for hydrogen
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adsorption/desorption. In any case, the highest ones were obtained for treatment (i)
at 1.6 V. Note that similar profiles can be observed in the cyclic voltammograms a
and c of Figure 7 for the oxidized and the non-oxidized carbon, respectively, thus
suggesting that carbon oxidation leads to a higher efficiency in the use of Pt and not
to a different Pt structure on the surface of the nanoparticles. This is not surprising
because carbon appears to be expanded with carbon oxidation and, therefore, protons
could easily reach the Pt sites to be reduced.
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curves a and c of Figure 8, also for the carbon oxidized according to treatment (i) at 1.6 V for 200 s and 
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currents, but the onset potential for CO oxidation was comparable to that obtained for the  

non-oxidized carbon. Table 1 highlights that the ECSA values for CO stripping were in general 

comparable to those obtained for the non-oxidized carbon. However, for carbon oxidation, they were 

also similar to those found for hydrogen adsorption/desorption, which is not the case for the  

non-oxidized carbon. The highest value was again obtained for 1.6 V (1.77 × 103 m2 molCu
−1), 

approximately equal to that measured for the non-oxidized carbon (1.79 × 103 m2 molCu
−1). Increasing 

the potential and time for carbon oxidation generally caused a decrease in the ECSA values. Moreover, 

no further improvement was found when changing treatment (i) by treatment (iii). 

Figure 7. Cyclic voltammograms in 0.5 M H2SO4 at 20 mV s´1 for Pt(Cu)/C (curves
a and c) and Pt-Ru(Cu)/C (curves b and d). Curves a and b correspond to the carbon
submitted to treatment (i) at 1.6 V for 200 s, whereas curves c and d were obtained
for carbon without previous oxidation.

The CO stripping curves corresponding to the same Pt(Cu) specimens as in
Figure 6 are depicted in curves a and c of Figure 8, also for the carbon oxidized
according to treatment (i) at 1.6 V for 200 s and for the non-oxidized carbon,
respectively. Note that there was a capacitive shift of curve a toward higher
currents, but the onset potential for CO oxidation was comparable to that obtained
for the non-oxidized carbon. Table 1 highlights that the ECSA values for CO
stripping were in general comparable to those obtained for the non-oxidized carbon.
However, for carbon oxidation, they were also similar to those found for hydrogen
adsorption/desorption, which is not the case for the non-oxidized carbon. The
highest value was again obtained for 1.6 V (1.77 ˆ 103 m2 molCu

´1), approximately
equal to that measured for the non-oxidized carbon (1.79 ˆ 103 m2 molCu

´1).
Increasing the potential and time for carbon oxidation generally caused a decrease
in the ECSA values. Moreover, no further improvement was found when changing
treatment (i) by treatment (iii).

399



Table 1. Electrochemical active surface areas for hydrogen adsorption/desorption
(ECSAHads/des) and for CO stripping (ECSACO), determined from the cyclic
voltammograms in 0.5 M H2SO4 for the different catalysts and carbon oxidation
treatments (i) and (iii). Results relative to the non-oxidized carbon have been taken
from Ref. [48].

Carbon treatment Catalyst ECSAHads/des/103 m2 molCu
´1 ECSACO/103 m2 molCu

´1

no oxidation

Pt(Cu)

0.66 1.79
(i) 1.6 V, 100 s 1.56 1.55
(i) 1.6 V, 200 s 1.58 1.77

(iii) 1.6 V, 200 s 1.33 1.47
(i) 1.8 V, 300 s 1.27 1.50
(i) 2.0 V, 300 s 1.19 1.64

(iii) 2.0 V, 300 s 1.11 1.04
(i) 2.2 V, 300 s 1.05 1.16

(iii) 2.2 V, 300 s 1.05 1.18

no oxidation
Pt-Ru(Cu)

0.24 1.74
(i) 1.6 V, 200 s 0.62 1.73
(i) 2.2 V, 300 s 0.57 1.32
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Figure 8. CO stripping voltammograms in 0.5 M H2SO4 at 20 mV s−1 for Pt(Cu)/C (curves 

a and c) and Pt-Ru(Cu)/C (curves b and d). Curves a and b correspond to the carbon 

submitted to treatment (i) at 1.6 V for 200 s, whereas curves c and d were recorded for carbon 

without previous oxidation.  

The ECSA values for hydrogen adsorption/desorption and for CO oxidation were also measured after 
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Figure 8. CO stripping voltammograms in 0.5 M H2SO4 at 20 mV s´1 for Pt(Cu)/C
(curves a and c) and Pt-Ru(Cu)/C (curves b and d). Curves a and b correspond to
the carbon submitted to treatment (i) at 1.6 V for 200 s, whereas curves c and d were
recorded for carbon without previous oxidation.

The ECSA values for hydrogen adsorption/desorption and for CO oxidation
were also measured after the spontaneous deposition of the Ru species. Cyclic
voltammograms corresponding to hydrogen adsorption/desorption for the carbon
oxidized according to treatment (i) at 1.6 V for 200 s and for the non-oxidized carbon,
respectively, are shown in Figure 7. Curves b and d for Pt-Ru(Cu) presented a
significant drop of the hydrogen adsorption/desorption currents with respect to
curves a and c of Pt(Cu), because Ru species covering Pt sites were not suitable for
hydrogen adsorption/desorption (see the ECSA values given in Table 1) [48,55]. The
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CO stripping curves for Pt-Ru(Cu) are depicted in Figure 8, where curves b and d
correspond to the carbon oxidized from the treatment (i) at 1.6 V for 200 s and to the
non-oxidized carbon, respectively. The higher currents for the oxidized carbon can
again be interpreted as due to the capacitive effect discussed above. However, no
further improvement in the onset potential or in the ECSA value for CO oxidation
(see Table 1) was found when compared to the non-oxidized carbon.

Micrographs of the Pt(Cu) and Pt-Ru(Cu) catalysts prepared on the carbon
oxidized following treatment (i) at 1.6 V for 200 s are shown in Figure 9. The size
distributions of the Pt(Cu) and the Pt-Ru(Cu) nanoparticles are given in the insets of
Figure 9a,c, with mean particle sizes of 4.2 ˘ 1.3 and 3.3 ˘ 1.0 nm, respectively.
Figure 9b depicts the FFT analyses of these Pt(Cu) nanoparticles, which gave
interplanar spaces d of 0.2154 nm, which can be assigned to Pt(111) (d = 0.2265
nm) [54,55], with a relative error less than 5%. This interplanar space of Pt can be
explained by the effect of the remaining Cu core, which has a smaller interplanar
distance and can condition the structure of the Pt shell, in agreement with the
expected core-shell structure.
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Figure 9. TEM micrographs of (a) and (b) Pt(Cu), and (c) Pt-Ru(Cu) electrocatalysts
deposited on carbon oxidized following treatment (i) at 1.6 V, 200 s. The size
distributions are shown in the inset panels. Picture (b) is a HRTEM image of the
same sample shown in (a), which includes the corresponding FFT analysis of the
marked zone.

Comparative images of the Pt(Cu) and the Pt-Ru(Cu) catalysts obtained on
carbons oxidized following treatment (i) at 2.2 V for 300 s are presented in Figure 10.
The corresponding nanoparticle size distributions are highlighted in the insets of
Figure 10a,b, with values of 6.6 ˘ 1.2 and 4.8 ˘ 1.7 nm, respectively. These values
were somewhat higher than those obtained for the same treatment at 1.6 V for 200
s, thus suggesting again that an increased carbon oxidation favored the nucleation
of the metal particles around the oxidized points in the carbon and, therefore, the
nanoparticle dispersion was somewhat smaller. The HRTEM image of Figure 10c
allowed us to obtain the FFT analysis shown in the inset, with a mean interplanar
space of d = 0.2208 nm, which can be assigned to Pt(111) (d = 0.2265 nm) [54,55] with
a relative error of 2.5%.
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Figure 10. TEM micrographs of (a) Pt(Cu) and (b) Pt-Ru(Cu) electrocatalysts deposited on 
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Figure 10. TEM micrographs of (a) Pt(Cu) and (b) Pt-Ru(Cu) electrocatalysts
deposited on carbon oxidized following treatment (i) at 2.2 V, 300 s. The size
distributions are shown in the inset panels. Picture (c) is a HRTEM image of the
same sample shown in (b), which includes the corresponding FFT analysis of the
marked zone.

The mean particle sizes and EDS analyses of the Pt-Ru(Cu) catalysts are
summarized in Table 2. Apart from the nanoparticle size being somewhat higher
when applying 2.2 V for 300s, in agreement with the discussion pointed out above,
the EDS analyses showed the presence of the three elements, with a significant
amount of Cu and a small quantity of Ru. The amount of Cu in all the specimens,
together with the cyclic voltammograms shown in Figures 7 and 8 which do not give
any evidence of Cu oxidation [48], were consistent with the core-shell structure. On
the other hand, the poor quantity of Ru resulted from a slight surface deposition on
Pt. This feature, together with the probable amorphous character of the deposited Ru
species, could justify the fact that no Ru species were identified by the FFT analyses
presented in Figure 10b [22,56].
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Table 2. Mean particle sizes and EDS analyses of the Pt-Ru(Cu) specimens obtained
on carbon oxidized according to treatment (i), compared to the non-oxidized carbon
reported in Ref. [48].

Carbon treatment Particle size/nm Pt:Ru:Cu/at%

no oxidation 3.6 61.2:0.3:38.5
1.6 V, 200 s 3.3 ˘ 1.0 63.2:4.3:32.5
2.2 V, 300 s 4.8 ˘ 1.7 49.4:7.4:43.2

As can be seen in Table 2, the mean nanoparticle sizes and the EDS analyses
were comparable to the results obtained for the non-oxidized carbon previously
reported by us [48] and therefore, no further improvement with respect to them
was obtained by means of the previous carbon oxidation treatment. One can then
conclude that the oxidation treatments of carbon do not lead to smaller particle size,
nor to a different structure or composition being able to further improve the CO
tolerance and ECSA for CO oxidation with respect to the non-oxidized carbon. Note,
however, that the CO tolerance continued to be as good as for the non-oxidized
carbon, the onset potential for CO oxidation of Pt(Cu)/C and Pt-Ru(Cu)/C catalysts
still being about 0.1 and 0.2 V more negative than those corresponding to Pt/C and
Ru-decorated Pt/C ones, respectively [48]. Moreover, the improved results of the
hydrogen adsorption/desorption ECSAs for the oxidized carbons when compared
to the non-oxidized ones indicated a better electrolyte accessibility for the former,
thus encouraging us to further test their catalyst performance in a real fuel cell.

3. Materials and Methods

3.1. Materials and Reagents

The test electrodes were prepared from E-Tek Vulcan XC72R carbon (mean
particle size ca. 30 nm and specific surface area of about 250 m2 g´1 [37]), which
was deposited onto a Metrohm glassy carbon (GC) tip 3 mm in diameter. The
GC was polished by means of Micropolish II deagglomerated α-alumina (0.3 µm)
and γ-alumina (0.05 µm) on a Buehler PSA-backed White Felt polishing cloth. The
solutions were prepared using Millipore Milli Q high-purity water (resistivity >
18 MΩ cm at 25 ˝C), analytical grade 96 wt.% H2SO4 from Acros Organics (Geel,
Belgium), HClO4, hydrated RuCl3, and H2PtCl6 from Merck (Darmstadt, Germany),
and CuSO4.5H2O, and Na2SO4 from Panreac Química S.A. (Barcelona, Spain). N2

and CO gases were Abelló Linde 3.0 (purity ě 99.9%, Barcelona, Spain).

3.2. Working Electrodes and Electrochemical Testing

The electrochemical cells for the preparation of the working electrodes and
testing were Metrohm 200 mL in capacity with a double-wall to control the
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temperature at 25.0 ˘ 0.1 ˝C by means of a Julabo MP-5 thermostat. The reference
and auxiliary electrodes were a double junction Ag|AgCl|KCl(sat) (0.199 V vs.
SHE at 25 ˝C) and a Pt rod, respectively. All the potentials given in this paper
are referred to the Reversible Hydrogen Electrode (RHE). The working electrode
was the carbon-supported catalyst, prepared using different electrolytes on the
GC tip, which was coupled to an Ecochemie Autolab rotating disk electrode
(RDE). The electrochemical experiments were conducted by means of an Ecochemie
Autolab PGSTAT100 potentiostat-galvanostat, commanded by a NOVA 1.5 software
(Metrohm Autolab, Utrecht, The Netherlands). Before the electroless deposition of Pt
and Ru species and the electrochemical tests using cyclic voltammetry (CV), a N2

flow was bubbled through the electrolyte. This gas flow passed over the electrolyte
during such deposition processes and measurements.

The working electrodes were prepared as previously described [48], except
that activation was introduced here. In short, 4 mg of carbon were dispersed and
sonicated in 4 mL of water for at least 45 min. Then, 20 µL of this suspension were
deposited onto the polished GC tip (0.28 mgC cm´2) and dried under the heat of a
lamp. Afterwards, the carbon was cleaned on the RDE in deaerated 0.5 M H2SO4

by CV scans between 0.0 and 1.0 V at 100, 50, and 20 mV s´1 for 10, 5, and 3 cycles,
respectively (cleaning protocol). At this point and in the same electrolyte, three
different activation procedures were applied: (i) potentiostatic oxidation of carbon
for 100 s, 200 s, and 300 s up to 2.2 V; (ii) 10 consecutive cycles at 10 mV s´1 between
0.0 V and different anodic limits up to 2.2 V; and (iii) potentiostatic oxidation for
300 s at different potentials up to 2.2 V, followed by a potentiodynamic sweep at
10 mV s´1 to the cathodic limit of 0.0 V. After all of these activation treatments, the
cleaning protocol was always applied.

After activation, the core-shell Pt(Cu)/C and Pt-Ru(Cu)/C catalysts were
prepared according to the test results reported elsewhere [48], by the following
consecutive steps: (a) potentiostatic deposition of Cu nuclei at ´0.1 V and 100 rpm in
1 mM CuSO4 + 0.1 M Na2SO4 + 0.01 M H2SO4 for 40 mC, determining the deposition
efficiency of this Cu/C electrode through the Cu oxidation charge in the same
solution after sweeping the potential from 0.0 to 1.0 V at 10 mV s´1; (b) Pt deposition
on the Cu nuclei by galvanic exchange in 1 mM H2PtCl6 + 0.1 M HClO4 for 30 min
at 100 rpm (Pt(Cu)/C electrode); and (c) spontaneous deposition of Ru species on
the Pt(Cu)/C electrode in 8.0 mM RuCl3 + 0.1 M HClO4 (aged for at least one week)
for 30 min without the electrolyte stirring (Pt-Ru(Cu)/C electrode). After the Cu
deposition, the Cu/C electrode was carefully cleaned in water and, after steps (ii) and
(iii), the Pt(Cu)/C and Pt-Ru(Cu)/C electrodes were also submitted to the cleaning
protocol described above. It has to be noted that the cyclic voltammograms obtained
from this protocol were always practically stationary after the second sweep, thus
confirming the stability and cleanness of the electrodes.
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The CO stripping curves for testing the CO oxidation activity and tolerance
were performed in 0.5 M H2SO4, where CO gas was bubbled through the solution
for 15 min, setting the electrode potential at 0.1 V. After removing the dissolved CO
by N2 bubbling through the solution for 30 min, CO was oxidized by sweeping the
potential from 0.0 to 1.0 V at 20 mV s´1 without stirring. The electrochemically active
area (ECSA) was estimated, taking into account that the oxidation of a CO monolayer
on polycrystalline Pt needs 420 µC cm´2 [16,57]. After CO stripping, the activity of
the Pt(Cu)/C and the Pt-Ru(Cu)/C catalysts was recovered, as shown by consecutive
cyclic voltammograms, which retraced those obtained before the CO adsorption.

3.3. Microscopic Examination

The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM)
analyses were performed by means of a Hitachi H-800 MT, furnished with an Energy
Dispersive X-ray (EDX) detector, and of a 200 kV JEOL JEM 2100 F, respectively.
These analyses allowed for electron diffraction analyses and determining the size
distribution, nanoparticle dispersion, and crystallographic phases. Prior to the
observation, the catalyst on the GC tip was dispersed in 3 mL of n-hexane for 10 min
by ultrasonication. Then, a drop of the suspension was placed on a Holley-carbon
nickel grid with further evaporation of the solvent under the heat of a 40 W lamp for
5 min. The images were recorded in a Gatan MultiScan 794 charge-coupled device
(CCD) camera and the Fast Fourier Transform (FFT) analyses of selected areas were
obtained by means of the Gatan Digital Micrograph 3.7.0 software. The MinCryst
database was used to assign the crystallographic data corresponding to the electron
diffraction and FFT. Different images from different zones allowed us to count more
than 100 nanoparticles to determine their size distribution.

3.4. XPS Analyses

X-ray Photoelectron Spectroscopy analyses were performed using a Physical
Electronics PHI 5500 Multitechnique System spectrometer with a monochromatic
X-ray source (Al Kα line of 1486.6 eV, powered at 350 W). This X-ray source was
placed perpendicular to the axis of the analyzer. The energy was calibrated using the
3d5/2 line of Ag with a full width at half maximum (FWHM) of 0.8 eV. The oxidized
carbons, prepared as indicated above on the GC electrode, were carefully moved by
scratching to the support, after careful cleaning in water and drying. The section for
the surface analyses was a circular area of 0.8 mm in diameter. A survey spectrum
(187.85 eV of Pass Energy and 0.8 eV/step) was first obtained and, afterwards, the
high-resolution spectra (23.5 eV of Pass Energy and 0.1 eV/step) were recorded. A
low energy electron gun less than 10 eV was used in order to discharge the surface
when necessary. All the measurements were made in an ultra-high vacuum chamber
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pressure in the range 5.0 ˆ 10´9–2.0 ˆ 10´8 torr. The resulting XPS spectra were
analyzed using Ulvac-phi MultiPak V8.2B software.

4. Conclusions

This paper has explored the possibility of increasing the performance of
electrodeposited Pt(Cu)/C and Pt-Ru(Cu)/C core-shell catalysts by previously
oxidizing the carbon support. Different XC72R oxidation treatments were applied:
(i) potentiostatic oxidation for 100–300 s up to 2.2 V; (ii) cycling 10 times at 10 mV s´1

between 0.0 and different anodic limits up to 2.2 V; and (iii) treatment (i) followed
by a potentiodynamic sweep at 10 mV s´1 up to 0.0 V. The oxidation treatment
led to a capacitive current increase in the potential range of interest between 0.0
and 1.0 V, together with the formation of Q/HQ couples. The XPS analyses of the
oxidized carbons indicated an increase in the oxidation states of carbon with the
anodic potential, tending to CO2 formation. Cu electrodeposition as well as galvanic
exchange with Pt and spontaneous deposition of Ru species was performed in the
best conditions reported before for the non-oxidized carbon. The Cu reoxidation
after its electrodeposition indicated that Cu nuclei presented a deeper penetration
into a more open carbon structure, probably with a higher bonding energy when
compared to the non-oxidized carbon. Treatment (ii) was not found to be suitable
because Cu oxidation took place even after 1.0 V.

The Pt(Cu)/C and Pt-Ru(Cu)/C catalysts prepared following treatment (i) at
1.6 V for 200 s led to the best results of ECSA for the hydrogen adsorption/desorption
and CO oxidation reactions. The EDX analyses of the latter gave 63.2, 32.5, and
4.3 atom % for Pt, Cu, and Ru, respectively. The HRTEM and FFT analyses of these
catalysts showed smaller interplanar spaces for Pt due to the effect of the Cu core.
The onset potential and the ECSA values for CO oxidation as well as the mean
size of the catalyst particles were comparably good to those obtained when using
the non-oxidized carbon, and then behaved in a similar manner in front of the CO
oxidation. However, the ECSA values for the hydrogen adsorption/desorption
were much higher when carbon was previously oxidized. This was assigned not
to a structural difference between the catalysts obtained with and without carbon
oxidation, but to a better accessibility of the Pt sites. According to this, carbon
oxidation appears to be useful to ensure a better catalyst performance.
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Pt Monolayer Electrocatalyst for Oxygen
Reduction Reaction on Pd-Cu Alloy:
First-Principles Investigation
Amra Peles, Minhua Shao and Lesia Protsailo

Abstract: First principles approach is used to examine geometric and electronic
structure of the catalyst concept aimed to improve activity and utilization of precious
Pt metal for oxygen reduction reaction in fuel cells. The Pt monolayers on Pd skin
and Pd1−xCux inner core for various compositions x were examined by building
the appropriate models starting from Pd-Cu solid solution. We provided a detailed
description of changes in the descriptors of catalytic behavior, d-band energy and
binding energies of reaction intermediates, giving an insight into the underlying
mechanism of catalytic activity enhancement based on the first principles density
functional theory (DFT) calculations. Structural properties of the Pd-Cu bimetallic
were determined for bulk and surfaces, including the segregation profile of Cu under
different environment on the surface.

Reprinted from Catalysts. Cite as: Peles, A.; Shao, M.; Protsailo, L. Pt Monolayer
Electrocatalyst for Oxygen Reduction Reaction on Pd-Cu Alloy: First-Principles
Investigation. Catalysts 2015, 5, 1193–1201.

1. Introduction

The slow kinetics of the oxygen reduction reaction (ORR) and high cost of
platinum electrocatalysts, in the proton exchange membrane fuel cells (PEMFC) are
recognized as significant limitations toward the large scale implementation as a
clean energy alternative [1–4]. Many research efforts have focused on the search for
alternative catalysts with high Pt utilization and improved activity. Pt mono-layer
catalyst supported on metal or metal-alloy core is a promising alternative to the
traditional catalysts [5–7]. Enhanced catalytic activity for Pt mono-layer supported
on Pd core was demonstrated in Adzic’s group [5]. The lateral compressive strain
in the Pt surface layer due to the lattice constant mismatch with Pd substrate was
suggested as major driving force for the better catalytic activity [8,9]. An alternative
view is based on the X-ray photo-electron spectroscopy (XPS) results combined with
electrochemical cell. This study concluded that increased coverage of oxygenated
reaction intermediates is driving force for enhanced activity for Pt skin like catalyst
on bimetallic core [10].

Here we focus on Pt monolayer catalyst deposited on the core that itself has
a core-shell structure consisting of Pd shell and Pd1−xCux core with x = 0.125,
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0.25, 0.5 and 0.75. We provide an insight into the underlying mechanism of
catalytic activity enhancement based on the first principles density functional theory
(DFT) calculations. In our approach, we examine theoretical descriptors of catalyst
behavior: Structural and compositional parameters that correlate with catalytic
activity changes including electronic structure effects, described by the mean energy
of d-band electrons; the electron occupancy of the d-band and strain effects that
modify electronic structure via lateral strain in the catalyst’s top layer. We build
comprehensive models, bottom-up, with the aim to identify optimal compositions of
core-shell structure with promise of better catalytic activity solely based on inherent
electronic structure features. In principal, catalyst with exposed base metal Cu is not
stable in PEMFC, and Cu is expected to be removed over time due to dissolution
in the acidic environment causing the accelerated fuel cell degradation. To ensure
stability in acid, PdCu bimetallic must be protected by more stable noble metals.
Selective dissolution of Cu in PdCu alloy can lead a core-shell structure where
core consists of the PdCu alloy and shell of Pd protective skin [11]. The selective
dissolution of alloying components provide for compositional and structural changes
that play an important role in manipulating catalytic activity [6,8,9,12,13].

Here, we discuss structural properties and surface segregation profile of
Pd-Cu bimetallic; the electronic structure properties and surface reactivity effects of
pseudo-morphic Pt and Pd over-layers supported on Pd-Cu alloy. The comparison
of the simulation results with experiments will be discussed as well.

2. Computational Method

The first-principles calculations are based on spin-polarized density functional
theory (DFT) using a Generalized Gradient Approximation (GGA) [14] and projector
augmented wave (PAW) method [15] as implemented in Vienna Ab-Initio Simulation
Package (VASP) [16,17]. The cut-off energy for plane wave basis set was 400 eV and
Brillouin zone was sampled using a Monkhorst-Pack sampling technique [18] with
k-space interval ∆k not larger then 0.3 Å−1. Surfaces are modeled by 8-layer slabs
with 2× 2 surface cell separated by a 16 Å vacuum layer perpendicular to the surface.
The top six layers were fully relaxed until Hellmann-Feynman forces were 0.01 eV/Å.
The Pt and Pd monolayer surfaces are modeled as pseudo-morphic layers placed on
top of the Pd1−xCux (111) surface.

3. Results and Discussion

3.1. Structural Properties of Pd1−xCux

Pd and Cu, both crystallize in the face centered cubic (fcc) geometry with Fm3m
space group. Binary phase diagram [19–21] of Pd-Cu bimetallic, shows formation
of the solid state solution along the entire range, x, of Pd1−xCux compositions
above 600 ◦C. The ordered phases have been reported at lower temperatures. Here
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we investigate solid solution phases as our theoretical results were compared to
the samples which were synthesized at 700 ◦C and subsequently subjected to
dealloying [11]. Bimetallic solid solution structures were optimized by minimizing
forces on atoms for the range of lattice parameters between those of Pd and Cu in
4× 4× 4 super-cell geometry for each composition x = 0, 0.125, 0.25, 0.5, 0.75 and 1 in
Pd1−xCux. Super-cell is illustrated in Figure 1a. Two random atomic distributions in
solid state solution were considered for each x and final lattice parameter represents
an average over the two. Equilibrium lattice parameters were obtained by fitting
energy versus volume curves, shown in Figure 2, to the third order Birch-Murnaghan
equation of state as follows:
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9V0B0
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We also generated and optimized the special quasi random structures [22] at
these compositions that have lead to the lattice parameters within 0.1 Å of those
found by fitting equations of state. Calculated lattice parameters of Pd and Cu are
3.96 and 3.64 Å, respectively. Figure 1b displays the dependence of lattice parameter
of disordered structures to the composition constant x. The computed linear changes
follow empirically observed Vegard’s law.

Figure 1. (a) Super-cell illustration. (b) Calculated lattice parameters for solid state
solution of Pd1−xCux for various compositions x.
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Figure 2. The total energy as a function of the super cell volumes
and a Birch-Murnaghan fits to the calculated points for Pd1−xCux; x =

0, 0.125, 0.25, 0.5.0.75 and 1. The zero of the energy is set to the minimum of each
curve, while volumes are given in Å3.

3.2. Chemical Stability and Segregation Profile

Chemical stability of Pd1−xCux solid state solutions is examined by calculating
formation enthalpy as follows:

∆H = EPd1−xCux − [(1− x)EPd1−x + xECux ] (2)

where EPd1−x , ECux and EPd1−xCux are the free energies per atom of pure Pd, pure Cu,
and the PdCu alloy at concentration x, respectively.

Chemical compositions of alloys at surfaces often differ from the bulk
composition and depend on the chemical environment. In bimetallics, surface
composition may become enriched by one of the alloying components. To
understand which alloying components enriches the surface under the neutral and
strongly interacting environment, we have computed Cu segregation energies for
the (111) slabs in vacuum and with oxygen adsorbed on the surface. Segregation
energy is computed as energy difference for total slab energies with Cu enriched
and Pd depleted surface ECu↑Pd↓ and stoichiometric surface Estoich according to:

ECu
seg = ECu↑Pd↓ − Estoich (3)

where negative (positive) energy favors (disfavors) surface segregation of copper.
Results are summarized in Table 1. Formation enthalpy is negative and increases
with increased amount of Pd, whith the exception of x = 0.5 which presents an
ordered alloy. Negative enthalpy indicate chemically stable solid solutions with
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stability increasing with increased amount of Pd. The trends in copper segregation
are different in vacuum and in oxygen. Cu tends to segregate to the surface of solid
solutions in strongly reacting oxygen environment while in inert environment, as in
vacuum, Pd enriches the surface. This tendency have important consequences for
PEMFC application. Exposure to the acidic conditions leads to strong interaction
of more abundant copper species on the surface and their subsequent dissolution.
With careful de-alloying strategy, catalyst with surface layer covered by noble Pd
metal skin and bimetallic PdCu core can be engineered [11].

Table 1. Formation enthalpy ∆H (meV/atom) and surface segregation energy of
Cu ECu

seg (meV).

Composition ∆H ECu
seg in vacuum ECu

seg in oxygen

Pd0.875Cu0.125 −29.68 - -
Pd0.75Cu0.25 −54.84 61 −100
Pd0.5Cu0.5 −95.47 72 −136

Pd0.25Cu0.75 −79.88 70 −178

3.3. Electronic Structure

Oxygen reduction reaction (ORR) in PEMFC require a catalyst that can speed
up interaction of oxygen from the air with recombined electron and proton to form
water as a product:

1
2

O2 + 2(H+ + e−)→ H2O (4)

The potency of precious metal catalyst has been correlated with the position
of electronic d-band center at catalyst surfaces, since d electrons are involved in
making and breaking of inter atomic bonds of ORR reactants and products. We
have examined changes in the position of d-band center with respect to Fermi
level, associated with Pd atoms on the Pd monolayer surface commensurate with
Pd1−xCux substrate and compare them to the pure Pt. Figure 3 illustrate these
changes, showing the shift in the positions of d-band center which start decreasing
with the amount of copper in the Pd-Cu core and asymptomatically approaches
position of d-band center of Pt, illustrating a modification of physical properties
at atomic scale that make Pd on substrates to behave in between pure Pd and Pt
becoming more like Pt metal with increasing amount of Cu in the substrate.

The changes in the d electrons density of state of surface Pt, modeled as
pseudo-morphic layer on Pd/Pd1−xCux are shown in Figure 4. Pt 5d projected
electron density of states becomes broader with increase in Cu content. The
marked positions of d-band center shift away from the Fermi level when Cu content
increases. The shifts of d-band ceneter value away from the Fermi level indicate
a surface of lower adsortion affinity to the ORR intermediates. The ability of
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surface to interact with adsorbate molecules can be measured by the strength of
the adsorbate-surface bond. Binding energies for O and OH reaction intermediates
were computed with respect to respective gas phase.

Figure 3. Changes in the position of Pd d-band center with respect to Fermi level
on Pd1−xCux substrates.

Figure 4. Calculated d-projected density of states of Pt mono-layer for
Pd/Pd1−xCux substrates and Pt metal. The Fermi level is set at zero. The position
of d-band center, marked by black triangles, shift away from Fermi level for Pt on
mixed Pd1−xCux substrates.

EO = Eslab+O − Eslab −
1
2

Egas(O2) (5)

EOH = Eslab+OH − Eslab − Egas(OH) (6)

The correlation of changes in the position of d-band center and surface
reactivity, the strength of adsorbate-surface interaction are presented in Figure 5
for intermediates of ORR reaction. The OH intermediates bind on the top of Pt
sites, while atomic oxygen intermediates bind on the hollow sites at (111) and more
favorably on sites with fcc symmetry. The bonding strength of ORR intermediates
decreases on surfaces with d-band center shifted away from the Fermi level.
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Figure 5. The correlation between surface binding strength and position of the
d-band center for oxygen reduction reaction (ORR) intermediates: (a) OH species
on the top sites and (b) oxygen atoms on fcc and hcp hollow sites.

The optimal catalytic activity per active site is a trade-off between a not
too strong and a not too weak binding of reaction intermediates on the catalyst
surface. Empirical observations show the volcano type dependence between
catalytic activity and surface reactivity [7,23–25]. The maximum of the volcano plot
defines most optimal catalyst. According to this principle, the rate limiting step for
ORR on Pt metal is its too strong binding of oxygen in the multi-step ORR reaction.
The catalysts that bind oxygen less strongly than Pt but still not too weakly, that this
would become rate limiting step, hold the promise of better catalytic activity. The
change toward lower binding energy of 0.2 eV have been suggested as optimal in
literature [6]. Such shift is accomplished in the case of Pt/Pd/Pd1−xCux; ×0.125;
shown in the Figure 5. Indeed the experimental evidence for the activity of Pt
mono-layer on the electrochemically de-alloyed Pd-Cu alloy, characterized to have
Pd skin on the core corresponding to the Pd0.85Cu0.125 resulted in the catalyst with
way superior catalytic activity compared to Pt metal [11].

4. Conclusions

We presented the comprehensive build-up of models accounting for various
compositions of the Pt and Pd monolayers on Pd1−xCux alloys with x = 0, 0.125,
0.25, 0.5, 0.75 and 1. Surface segregation profile shows different segregation
tendency and surface compositions for models in vacuum and with adsorbed
oxygen, pointing to the limiting stability factors for the PEMFC applications.
Detailed study of the d-electrons projected electronic density of states and position
of d-band center energy is presented. The correlation between the d-band center
energy of surface atoms and surface reactivity is linear indicating less reactive
surfaces for d-band center energy further away from the Fermi level. Relaying
on the empirical observations based on Sabatier principle, Pt/Pd/Pd0.875Cu0.125
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was identified as the most optimal composition and geometry that correlates with
better catalytic activity compared to pure Pt and Pt/Pd core-shell catalyst. These
predictions were corroborated by the experimental results [11].
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Effect of Particle Size and Operating
Conditions on Pt3Co PEMFC Cathode
Catalyst Durability
Mallika Gummalla, Sarah C. Ball, David A. Condit, Somaye Rasouli, Kang Yu,
Paulo J. Ferreira, Deborah J. Myers and Zhiwei Yang

Abstract: The initial performance and decay trends of polymer electrolyte membrane
fuel cells (PEMFC) cathodes with Pt3Co catalysts of three mean particle sizes (4.9 nm,
8.1 nm, and 14.8 nm) with identical Pt loadings are compared. Even though the
cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface
area (ECA) and mass activity, the cathode based on 8.1 nm catalyst showed better
initial performance at high currents. Owing to the low mass activity of the large
particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the
lowest. The performance decay rate of the electrodes with the smallest Pt3Co
particle size was the highest and that of the largest Pt3Co particle size was lowest.
Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s), the
relative improvement in performance of the cathode based on 8.1 nm Pt3Co over
the 4.9 nm Pt3Co increased, owing to better stability of the 8.1 nm catalyst. The
electron microprobe analysis (EMPA) of the decayed membrane-electrode assembly
(MEA) showed that the amount of Co in the membrane was lower for the larger
particles, and the platinum loss into the membrane also decreased with increasing
particle size. This suggests that the higher initial performance at high currents with
8.1 nm Pt3Co could be due to lower contamination of the ionomer in the electrode.
Furthermore, lower loss of Co from the catalyst with increased particle size could be
one of the factors contributing to the stability of ECA and mass activity of electrodes
with larger cathode catalyst particles. To delineate the impact of particle size and
alloy effects, these results are compared with prior work from our research group on
size effects of pure platinum catalysts. The impact of PEMFC operating conditions,
including upper potential, relative humidity, and temperature on the alloy catalyst
decay trends, along with the EMPA analysis of the decayed MEAs, are reported.

Reprinted from Catalysts. Cite as: Gummalla, M.; Ball, S.C.; Condit, D.A.; Rasouli, S.;
Yu, K.; Ferreira, P.J.; Myers, D.J.; Yang, Z. Effect of Particle Size and Operating
Conditions on Pt3Co PEMFC Cathode Catalyst Durability. Catalysts 2015, 5, 926–948.

1. Introduction

To reduce the electrocatalyst cost for polymer electrolyte membrane fuel cells
(PEMFCs), platinum alloys with higher oxygen reduction reaction (ORR) mass
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activity are being developed. In particular, alloys such as Pt3Co, Pt3Fe and Pt3Ni
have been shown to provide higher ORR mass activity (A/g-Pt) and specific activity
(mA/cm2-Pt) than pure Pt catalysts [1–3]. In aqueous environments, the rotating
disk electrode (RDE) measurements found that polycrystalline Pt3Co with a Pt
skin has ORR specific activity three times greater than pure Pt, and Pt3Ni(111) has
the highest ORR specific activity recorded to date with an enhancement factor of
nearly twenty versus polycrystalline Pt [2,4,5]. Additionally, in RDE measurements,
carbon-supported nanoparticles of Pt3Co with a mean diameter of 6 nm showed an
ORR specific activity enhancement factor of three versus 6 nm mean diameter Pt [6].
Paulus et al. found that Pt based alloy catalysts exhibit higher ORR specific activity
than pure Pt by an enhancement factor of approximately 1.5 for bulk electrodes, 1.5
to 2 for supported Pt3X catalysts, and 2 to 3 for PtCo catalyst [7]. There are relatively
few measurements of ORR activity for Pt alloys in the fuel cell environment. In a
study where Co, Ni and Fe-based Pt alloy catalysts were evaluated in a fuel cell, the
initial mass activity was found to be the highest for the Pt–Fe catalyst and lowest for
pure Pt catalyst [2,3]. Recently, Huang et al. demonstrated an ORR specific activity
enhancement factor of 3.5 in the fuel cell environment for Pt3Co/Ketjen carbon versus
Pt/Vulcan carbon, albeit for different particle sizes [8].

The enhancement in ORR activity observed for Pt alloys versus Pt has been
attributed to modification of the electronic/atomic structure of the alloy catalyst
surface [2,4,9–12]. Using X-ray absorption near edge structure (XANES), Min et al.
showed that the structure sensitivity is associated with the adsorption strength
of oxygen intermediates on the Pt surface [13,14]. Furthermore, they reported
that the reduced Pt–Pt neighbor distance on the surface of the alloy catalysts is
favorable for the adsorption of oxygen. Through experimental and theoretical studies,
Mukerjee et al. suggested that this improvement can be attributed to a positive shift of
the onset potential for forming OHads on the alloy relative to the Pt catalyst, thereby
allowing O2 to adsorb at higher potentials and reducing the overpotential for O2

reduction [14,15].
Degradation studies of Pt3Co alloys in a 16 cell stack showed that Co leaches

out, at the nanometer scale, resulting in a “Pt skeleton” structure at the topmost
surface layer of Pt3Co particles within the first hour of operation. With longer
operational time, the particles slowly evolve toward “Pt-shell/Pt–Co alloy core”
structures with depleted Co content and a Pt-enriched shell (of the order of two
atomic monolayers after 1124 h of operation) due to Co surface segregation/leaching
and Ostwald ripening [16,17]. Chen et al. showed that the acid treated PtxCo resulted
in Co dissolution, which increased the thickness of the Pt-enriched surface layer.
This structural change was identified as a contributor to the reduction in the specific
activity of PtxCo nanoparticles after potential cycling [18]. Popov et al. reported that
pure Pt catalyst showed higher ECA decay rate than that of Pt3Co catalyst during
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potential cycling in acidic aqueous environment as well as during constant current
holding in-cell test, however the initial particle sizes of Pt is lower than that of Pt3Co
in this comparison [3].

Shao et al. have shown through systematic synthesis of mono-dispersed
Pt catalysts that the catalytic activity depends on the shape and size of the
nanoparticles [19]. Furthermore it is reported that the edge sites, which increase
in fraction of total surface sites with decreasing particle size, have lower specific
activity due to very strong oxygen binding energies [19–22]. Even with the same
alloy metal combinations, the particle size effects are difficult to delineate as the heat
treatment used to increase particle size results in a varied degree of alloying, and,
thus, different surface activity [23,24]. Pt-alone and Pt-based alloy catalysts both
show increasing ORR specific activities with decreasing specific surface area (i.e.,
increasing particle size) [25–29].

As the heat treatment temperature is increased the degree of alloying increases
along with the particle size. Min et al. showed that the particle size and alloying
effects are the two most important factors affecting the catalytic activity towards ORR,
with lowered Pt–Pt bond distance resulting in favorable adsorption of oxygen [13].
The recent work by Matsutani et al. reported particle size effects of the Pt and
PtCo catalyst performance in MEAs and suggested that the MEAs with cathodes
containing 4–5 nm Pt particles and 7–8 nm PtCo particles were the most stable. These
two sizes were the largest of the catalyst particles studied [30]. These catalysts were
found to be more stable when heat treated to a higher temperature. However, the
heat treatment conditions changed the PtCo composition along with particle size.
This leaves an unanswered question about the factor impacting durability, namely
whether it is the size, the composition, or a combination of these two factors. The
impact of Pt3Co particle size with nearly identical metal ratio is needed to delineate
the effects of composition and particle size on the initial performance and stability.

The catalyst structures, such as the core-shell type, offer the benefits of low
platinum content in the electrodes and high activity [31–34]. However, the core-shell
catalysts are large and often in the size range of 10 nm. To elucidate the role of
these new catalyst structures, the contribution of the alloy and size effects needs
to be understood. Recently, our research group has shown that the activity and
stability of the Pt catalysts in an MEA is strongly dependent on the particle size,
and an optimum particle size between 3.2 and 7.1 nm is suggested for maximized
life averaged performance per mg Pt [35]. The focus of this paper is to report a
similar systematic analysis of Pt3Co catalysts that have nearly identical metal ratio
but different mean particle sizes, and contrast these with Pt catalysts to delineate the
impact of alloying and particle size.
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2. Results and Discussion

Pt3Co catalysts with nearly identical Pt:Co:carbon ratio (shown in Table 1) but
different mean particle sizes were prepared by heat treatment, in order to distinguish
the effects of composition from particle size on the initial performance and stability.
While, in spite of nearly identical Pt:Co metal ratio, as verified by ICP-OES and
X-ray fluorescence measurements, the Pt3Co catalysts with different particle sizes
are ineluctably associated with variance, to some extent, in the degree of alloy
ordering, which is shown in the X-ray diffraction patterns (Figure 1). The superlattice
reflections appear to be clearer for larger particle sizes, indicating a higher degree
of ordering.

Table 1. Characterization of Pt3Co/Ketjen EC 300J catalysts tested.

Sample wt.% Pt wt.% Co

XRD
crystallite

Size
(nm)

XRD L.P
(Å)

CO area
(m2/g-Pt)

TEM
mean

diameter
(nm)

St error N

1 37.9 3.88 3.9 3.848 35 4.9 0.2 200
2 38.5 3.94 5.6 3.850 23 8.1 0.3 200
3 38.4 3.93 9.5 3.850 11.3 14.8 0.6 200
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Figure 1. X-ray diffraction patterns of as prepared (a) 4.9 nm (b) 8.1 nm and
(c) 14.8 nm Pt3Co on carbon powders.

Systematic tests carried out on the Pt3Co catalysts for particle size study are
listed in Table 2, while Table 3 shows the tests performed at different operating
conditions for the parametric study. The electrodes with small Pt3Co particle size
(4.9 nm) were used for the parametric study in order to better distinguish the
difference of the operating condition impact on cells’ performance degradation. The
ECAs of the cathodes reported in Table 2 are the peak ECAs observed between
0–1000 potential cycles. All ECAs in this study were characterized using the
hydrogen absorption area in the CV. In general, these calculated ECA values may
underestimate the catalysts’ real electrochemical surface areas to some extent, due
to the possible disruptive influences such as hydrogen evolution and the difference
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of catalyst surface structures [36–38]. However, in this study, since the MEA tests
were carried out with the same protocol and the CVs were performed under the
identical temperature, RH, and gas flow rate conditions, these calculated ECA values
are meaningful for the comparison purpose and revealing the ECA evolution trend
along the potential decay cycling. As expected, the values showed the trend of
decreasing ECAs with increasing catalyst mean particle size.

Table 2. Pt3Co catalyst particle sizes used in this study and cycling conditions used
to test their electrochemical stability. Note that the ECA values reported are the
peak ECA’s.

Cell # Mean diameter (nm)
(ECA, m2/g-Pt)

Aonde/cathode Pt
loading mg-Pt/cm2 Potential cycling conditions

1 4.9 (37) 0.19/0.23 Triangle wave potential cycle:
0.6 V to 1.0 V (50 mV/s ramp rate)
Cell Temperature: 80 ˝C
Humidity: Anode = Cathode = 100% RH
Fuel/Oxidant: H2 at 100 sccm/N2 at 50 sccm
Pressure: Atmospheric pressure

1a * 4.9 (40) 0.22/0.18

2 8.1 (27) 0.20/0.22

3 14.8 (23) 0.20/0.22

* The cathode Pt3Co catalyst was pre-leached.

Table 3. Operating conditions used for testing the electrochemical stability of the
4.9 nm Pt3Co catalysts.

Cell # Description Potential cycling conditions

4 Baseline

Square wave potential cycle: 10 s at 0.4 V, 10 s at 0.95 V (20 s/cycle)
Cell Temperature: 80 ˝C
Humidity: Anode = Cathode = 100% RH
Fuel/Oxidant: 0.5 SPLM 4% H2/0.5 SPLM N2
Pressure: Atmospheric pressure

5 Lower RH
Humidity: Anode = Cathode = 30% RH
All other parameters were same as 4 #

6 Higher Upper Potential Square wave potential cycle: 10 s at 0.4 V, 10 s at 1.05 V (20 s/cycle)
All other parameters were same as 4 #

7 Higher Temperature Cell Temperature: 90 ˝C
All other parameters were same as 4 #

The beginning of life (BOL) performance curves for cells 1–3 are shown in
Figure 2 for H2/O2 (a) and for H2/air (b) using the test conditions described in the
cell performance section. The V-I performance curves reported here are corrected
for the membrane resistance (i.e., IR-corrected) to allow analysis of the electrode
changes. The performance of the 4.9 nm Pt3Co electrode in O2 is slightly higher
than the 8.1 nm Pt3Co electrode at current densities <400 mA/cm2 (e.g., ~8 mV
at 40 mA/cm2), however there is no noticeable voltage benefit at higher current
densities under H2/O2 condition. Interestingly, the performance of the 8.1 nm
electrode provided ~17 mV higher performance than the 4.9 nm Pt3Co electrode
at 1.5 A/cm2 under H2/air conditions. The 14.8 nm Pt3Co electrode resulted in a
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V-I performance that is significantly lower, indicating lower mass activity and/or
higher electrode resistance to proton transport. In this study, the catalyst loading was
maintained at ~0.2 mg Pt/cm2 for all electrodes. In an idealized case of spherical
particles of uniform particle size, the distance between the particles is expected to
scale as d1.5, where d is the diameter of the particle. This suggests that the 4.9 nm
Pt3Co particles on the carbon support would be ~2 times closer to each other (using
the metric of geometric distance) than the 8.1 nm Pt3Co particles and ~4 times closer
when compared to the 14.8 nm particles. Fewer particles in electrodes could result
in fewer access points for ORR, and lower net oxygen concentration at the catalyst
surface, resulting in lower performance with larger particles [39]. The effect of this
catalyst particle spacing is expected to be greater on the performance in air than in
oxygen, as seen in Figure 2.
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Figure 2. The beginning of life V-I performance of 4.9, 8.1, and 14.8 nm Pt3Co
catalyst based MEAs, H2/O2 (a) and H2/Air (b).

The H2/O2 performance suggests that the electrode ionic resistance is higher for
the electrode with the larger catalyst particles (i.e., 14.8 nm Pt3Co). While, comparing
to the 8.1 nm Pt3Co catalyst-based electrode, the 4.9 nm Pt3Co catalyst-based
electrode also shows slightly higher electrode resistance, which could be due to
the increased fraction of cobalt in the ionomer [40]. Decreasing the amount of easily
removable Co from the alloy by pre-leaching may decrease the Co content in the
ionomer. Hence, a pre-leached 4.9 nm Pt3Co catalyst-based MEA was also tested.
The results are shown in Figure 3. The Pt loading in the pre-leached catalyst-based
electrode was ~20% lower than the as-made catalyst-based electrode, hence lower
performance is seen in the low current regions. The comparison of the H2/O2

performance curves shows that the slope in the middle-high current region is lower
for the pre-leached catalysts, suggesting lower ionic resistance in the electrode. The
lower Co content in the electrode with the pre-leached catalysts is likely to be the
factor for the improved performance observed in the high current region, and it
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is seen that the pre-leached catalyst resulted in improved performance in the high
current region of the H2/air polarization curve. In summary, both MEAs with
as-made large and small Pt3Co particle sizes showed lower performance at high
current region for different reasons; the 4.9 nm Pt3Co MEAs were likely to have
higher Co contamination and the 14.7 nm Pt3Co MEAs were likely to have higher
local oxygen transport resistance issue.
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Figure 3. The beginning of life V-I performance of pre-leached and as made 4.9 nm
Pt3Co catalyst based MEAs.

2.1. Impact of Catalyst Particle Size on Cell Performance Degradation

The decay characteristics of the four Pt3Co electrodes are tracked by monitoring
the ECA, mass activity, and H2/Air performance at 0.8 A/cm2 and 1.5 A/cm2.
Figure 4a shows the trends of ECA evolution, in which the ECA for 4.9 nm Pt3Co
generally decreases from 1000 to 30,000 cycles while the ECA for the larger particles,
8.1 nm and 14.8 nm, stabilizes after 3000 to 5000 cycles. The smaller particle electrodes
exhibited higher initial ECA values as expected, owing to a higher surface area per
unit mass. The mass activity decay trends capture the evolution of the catalyst activity
for ORR with minimal disturbance from oxygen transport and proton transport
resistances. Figure 4b shows that the mass activity decay is highest for 4.9 nm Pt3Co
particles and lowest for 14.8 nm Pt3Co particles. At the end of 30,000 cycles the MEA
with 8.1 nm particle size retained higher mass activity than the MEAs containing the
4.9 nm and 14.8 nm Pt3Co particles. The relatively stable mass activity and ECA of
the catalysts with larger particle sizes suggests minimal changes to the catalyst and
to the electrode structure with cycling.

Figure 4c,d show the H2/Air performance during decay cycling of the four
electrodes at 0.8 A/cm2 and 1.5 A/cm2, respectively. While the performance of
the 8.1 nm Pt3Co-based electrode improved slightly within the first 5000 cycles,
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significant improvement is seen in the case of the 14.8 nm Pt3Co-based electrode.
This improvement may be attributed to further wet-up conditioning within the
cathode from potential cycling and diagnostic tests, such as possibly improving the
ionic contact within the electrode. The ORR specific activity calculated by dividing
mass activity by the corresponding ECA shows to be higher for the 8.1 nm Pt3Co
(0.89 mA/cm2-Pt) than the 4.9 nm Pt3Co (0.65 mA/cm2-Pt) at the BOL, and both of
which generally decrease with the potential cycles. The ORR specific activity of the
14.8 nm Pt3Co shows to be the lowest (0.43 mA/cm2-Pt) at the BOL, which gains
significant increase from potential cycling and peaks at 0.67 mA/cm2-Pt after the
first 5000 cycles. At the end of 30,000 cycles, the ORR specific activities of 8.1 nm
Pt3Co and 14.8 nm Pt3Co retain the same (0.61 mA/cm2-Pt) and are higher than that
of 4.9 nm Pt3Co particles (0.52 mA/cm2-Pt).
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Figure 4. Performance decay with potential cycling for 4.9 nm, 8.1 nm, and
14.8 nm Pt3Co electrodes, (a) ECA, (b) Mass activity (A/g-Pt at 0.90 V), (c) H2/Air
performance at 0.8 A/cm2 and (d) H2/Air performance at 1.5 A/cm2.
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It is clear from the cell performance trends shown in Figure 4 that 8.1 nm Pt3Co
is significantly more durable than the 4.9 nm Pt3Co and provides significantly better
performance than 14.8 nm Pt3Co throughout the kinetic and mass transport-limited
regions. The decay trends of the pre-leached Pt3Co 4.9 nm based electrode are
also shown in Figure 4, with the dashed line. The performance decay rate of the
pre-leached catalyst is higher than that observed for the non-leached catalyst of the
same particle size. The detailed reason is unclear.

The cross-section post-test EMPA analysis with Pt, S and Co profiling, shown in
Figure 5, indicates that dissolution-precipitation occurs near the cathode-membrane
interface where Pt2+/4+ ions migrate from the cathode into the membrane to
be reduced by crossover H2. A very distinct band of platinum close to the
cathode/membrane interface is seen in all samples. The estimated fraction of
platinum from the cathode that moved into the membrane after 30,000 cycles is
shown in Table 4. The 4.9 nm Pt3Co-based electrode exhibited ~14% of platinum
from the electrode lost to the membrane, while the other two electrodes lost less
than 5%. The fraction of ECA lost for the 4.9 nm, 8.1 nm, and 14.8 nm Pt3Co based
electrodes after 30,000 cycles was 39, 13, and 23%, respectively. The loss of platinum
from the electrode was only a small contributor to the overall ECA and mass activity
losses observed for these electrodes, thus, having insignificant impact on the overall
ECA and mass activity decay trends in this study, though all ECAs and mass activities
were calculated from the electrodes’ initial Pt loading. It is important to note that
some entrapment of air occurred during processing of the catalyst ionomer inks of
the Pt3Co/C cathode materials used in this study leading to macroscopic porosity
within the electrodes of the final MEAs. The pores appear as dark lenticular features
in the EMPA images although it should be noted that similar features can also be
introduced during the sample preparation for the EMPA. Therefore, analysis of those
features is not attempted in this article. The Co line scans shown in the top plots are
re-plotted in the bottom plots with a more sensitive y-axis scale for clarity. The Co
plots indicate that some Con+ ions migrate into the membrane, but stop at the anode.
Con+ remains in a cationic form after the Pt3Co dissolves while Pt2+/4+ is reduced
to metallic Pt (Pt0) by crossover H2 within the cathode and membrane ionomer. An
interesting observation from these plots is that the Con+ wt.% in the membrane
is greatest for the 4.9 nm non-leached case and lowest for the 14.8 nm case. The
decreased Con+ content in the membrane and electrode observed via EPMA for the
pre-leached 4.9 nm Pt3Co is consistent with the hypothesis presented earlier.
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Figure 5. Post-test analysis of Pt3Co particle size study at subscale cell plan form
midpoint shows minor migration of Pt and Co into membrane.

Table 4. The loss of platinum calculated from EMPA, loss of cobalt calculated from
the XRF, and post-cycling Pt to Co ratio in electrode from XRF after 30,000 cycles.

Cell
#

Mean diameter (nm)
(ECA, m2/g-Pt)

% of Pt lost into
membrane

% Co most from
electrode Pt/Co ratio

1 4.9 (37) 14.3 ˘ 2% 63 8.4
2 8.1 (27) 3.7 ˘ 2% 45 5.5
3 14.8 (23) 3.0 ˘ 1% 30 4.2

The Pt to Co atomic ratios in the cathodes of the three cycled MEAs, as
determined by XRF, are shown in Table 4. This ratio was found to decrease with
increasing initial mean Pt3Co size. This trend reflects decreased extent of Co leaching
from the catalysts with increasing particle size, which is in agreement with the trend
observed for wt.% Con+ found in the membrane for the three different particle sizes
from the EMPA analysis. The observed trends in the particle size dependence of the
fraction of Co lost from the catalysts can be understood in terms of the particle size
dependence of the fraction of total atoms in a nanoparticle residing on the surface of
the particles (i.e., surface/volume α 1/d, where d is the diameter of the nanoparticle).
Assuming that an insignificant amount of Pt lost from the catalyst particles relative
to the amount of Co lost, and using the known data, including the initial and
post-cycling Pt to Co ratios, the mean particle sizes, and the XRD-determined lattice
spacing of the alloy (0.385 nm), the depth of Co loss from the topmost layers of
the catalyst particles was calculated to be approximately one atomic layer for the
pre-cycled electrodes and three atomic layers for the post-cycled electrodes. The
results are in agreement with previous data [24,41,42]. The depth of de-alloying was
found to be independent of the initial mean particle size of the catalysts.
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To gain greater insight into the observed decay trends of MEAs with varied
catalyst particle size, the TEM-based catalyst particle size distributions of the pre- and
post-cycling electrodes are shown in Figure 6. The TEM results of the 4.9 nm based
electrode, Figure 6a, shows significant tailing towards the larger particle sizes at the
end of 30,000 decay cycles compared to the pristine catalyst. However, the changes in
particle size distribution for the 8.1 nm and 14.8 nm are relatively insignificant with
cycling (Figure 6b,c). These results suggest that the loss in mass activity observed for
the 4.9 nm catalyst could be a combination of catalyst restructuring as well as particle
size changes, while for the 8.1 and 14.8 nm catalysts, the origin of the losses may be
primarily due to catalyst restructuring. Based on the literature data and the EMPA
and the XRF data presented here, it can be speculated that the restructuring includes
dissolution of Co from the Pt3Co particle surface and sub-layers and subsequent
migration into cathode/membrane ionomer as Con+. This may result in a Pt-rich shell
encasing a Pt3Co core, explaining the enhanced ORR activity observed with Pt-Co
alloys [24]. The TEM-derived particle size distributions also show that cycling caused
the average particle size of the 14.8 nm catalyst to decrease by approximately 1.8 nm.
The observed shrinkage of these particles indicates that there is minimal coarsening
of these large particles such that the shrinkage of the particles due to loss of cobalt
is observable. The further understanding of the catalysts surface restructuring at
atomic level needs more comprehensive characterization which was not attempted
in this study.
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Figure 6. TEM analysis of Pt3Co particle size distribution of the pristine (black) and
decayed MEAs (hashed), (a) 4.9 nm (b) 8.1 nm and (c) 14.8 nm Pt3Co supported
on carbon.

The initial performance and decay trends of Pt3Co and Pt over a wide range of
particle sizes are compared. The performance and decay characteristics of 1.9, 3.2,
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7.1 and 12.3 nm Pt particle based-MEAs is reported in our prior work [35]. Figure 7
shows the mass activity, ECA, specific activity and high current performance of both
Pt and Pt3Co-based MEAs along with the decay trends. The initial mass activity
values of between 180 and 220 A/g-Pt measured for the 4.9 and 8.3 nm Pt3Co MEAs
in this study are slightly lower than those reported previously on similar catalyst
materials [1], however the overall trends are comparable, with a peak in mass activity
at intermediate particle size and lower mass activity for the very large particles due
to the reduced available metal area. The heat treatment conditions during catalyst
preparation, the formulations and processes used in catalyst ink preparation, and
MEA fabrication all have an important role to play in realizing the initial mass activity
benefits reported in literature. Comparable procedures were used for both the Pt and
Pt3Co materials in this study, however resulting data show greater improvements of
Pt only performance over past data [1] compared to Pt3Co examples, bringing mass
activity values closer for the two catalyst types in the current study.
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Figure 7. Comparison of Pt vs. Pt3Co decay trends as a function of potential
cycles. (a) Mass Activity, (b) ECA, (c) H2/O2 performance at 0.8 A/cm2, (d) H2/Air
performance at 1.5 A/cm2.

The results are shown for initial and after 10,000 and 30,000 (when available)
decay cycles. While the experimental errors make the decay rates hard to quantify
with great accuracy, a few trends are clearly evident. The decay rate is catalyst size
dependent with larger sized catalysts decaying slower. This is due to that larger
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nanoparticles have larger surface area and therefore better stability (Gibbs-Thompson
effect) and larger nanoparticles (>10 nm) are more stable against agglomeration
compared to the smaller particles. The mass activity data shown in Figure 7a indicates
that the initial mass activity decreases with increase in particle size. However, the
10,000 and 30,000 mass activity data suggests that the best results are obtained with
the 8.1 nm Pt3Co and 5 nm Pt. The ECA decay rate is lower for larger particle sizes
as shown in Figure 7b, for both the Pt and Pt3Co catalysts. Figure 8c,d show the
performance at 0.8 A/cm2 in H2/O2 and 1.5 A/cm2 in H2/air for all the cathode
catalysts and sizes evaluated. A common trend observed is the initial performance
of the largest particles is significantly lower than the smaller particle sizes. However,
the performance improves during the 10,000 cycles and subsequently decreases.
The intermediate size catalysts evaluated in this study provide the best end-of-life
performance. In summary, the catalysts with initial mean diameters of ~5 to ~8.1 nm
for both Pt and Pt3Co showed balanced performance and durability, giving the best
overall life-averaged performance. For the Pt MEAs, that containing the 5 nm Pt was
the best performer and most durable over 30,000 cycles. Analogously, 8.1 nm was
the best performer for the Pt3Co MEAs, within the particle sizes studied.

2.2. Impact of Operating Conditions on Cell Performance Degradation

The parametric study of fuel cell operating conditions, for cells listed in Table 3,
was performed with the 4.9 nm Pt3Co cathodes using a square wave potential cycle,
0.40–0.95V (vs. anode), which represents transients between peak and idle power for
typical automotive FC operation. The anode was 4% H2 (balance N2), which served
as a stable reference to the square wave potential cycle imposed on the cathode. Low
RH (30%) and high temperature (90 ˝C) are extreme operating conditions that may
impact catalyst degradation. Higher upper potential (1.05 V vs. anode) can occur at
high fuel utilization conditions and/or during startup/shutdown.

Performance decay to 10,000 cycles for the parametric study at 0.8 A/cm2 and
1.5 A/cm2 in H2/Air is shown in Figure 8c,d respectively, with corresponding ECA
and mass activity losses provided in Figure 8a,b. In general, ECA is still declining
for all conditions after 5000 cycles. Comparing the ECA and mass activity decay
curves, it can be noted that while the 90 ˝C operation was more detrimental to ECA
than the baseline conditions, the mass activity losses were comparable for these two
conditions. While ECA loss reflects catalyst changes due to particle growth and Pt
loss into the membrane, mass activity loss is also affected by changes in the intrinsic
ORR activity of the electrochemically-active surfaces due to catalyst re-structuring
and a decrease in the influence of Co on ORR activity (e.g., a loss of Co from the
near-surface region of the particles. Comparing Figures 9b and 9c, the mass activity
decay trends are similar to performance decay trends in the kinetic region, 0.8 A/cm2.
Higher temperature and baseline (80 ˝C) showed about the same performance loss

434



in the kinetic region (0.8 A/cm2) compared to stable performance for 30% RH and
greater performance loss for 1.05 V upper potential limit. In this study, higher
temperature resulted in greater performance decay in the mass transport region
as compared to the baseline conditions. The 30% RH condition shows the least
performance decay with minimal ECA loss and moderate mass activity loss. It
is speculated that the low ionomer hydration at 30% RH restricts Pt2+/4+ or Con+

generation/diffusion and thereby limits Pt Ostwald ripening, loss of Pt into the
membrane, and ionomer contamination within the cathode and membrane. Several
studies have reported the acceleration of carbon corrosion and Pt dissolution at
potentials >0.95V [43].
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Figure 8. Pt3Co cathode catalysts normalized ECA loss (a), normalized mass
activity (M.A.) loss (b) and H2/Air performance loss at 0.8 A/cm2 (c) and 1.5 A/cm2

(d) under extreme operating conditions after 0.4–0.95 V square wave cycling
(20 sec/cycle).

The post-test cross-section microscopy and Pt, Co and S profiling shown in
Figure 9 indicate that Pt dissolution-deposition occurred extensively near the cathode
side of the membrane for all conditions, except for 30% RH. It should be noted that
Pt2+/4+ generated during the parametric studies diffuses out of the cathode a farther
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distance into the membrane before being reduced to metallic Pt by crossover H2

than during the particle size study due to lower H2 diffusion rate for 4% H2 (balance
N2) on the anode compared to 100% H2 on the anode used for particle size study.
Co mapping is also shown in the figure for the four MEAs. The wt.% Con+ in the
membranes was in the order 1.05 V > 90 ˝C > baseline « 30% RH.
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Figure 9. Post-test analysis of Pt3Co parametric operational study at subscale plan form 
midpoint consists of cross-section back-scattered SEM images and corresponding Pt, Co and 
S elemental profiles taken along lines indicated. (a) Baseline, (b) Higher upper potential 
(1.05 V), (c) Lower RH (30%) and (d) Higher Temperature (90 °C). 
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Figure 9. Post-test analysis of Pt3Co parametric operational study at subscale
plan form midpoint consists of cross-section back-scattered SEM images and
corresponding Pt, Co and S elemental profiles taken along lines indicated.
(a) Baseline, (b) Higher upper potential (1.05 V), (c) Lower RH (30%) and (d) Higher
Temperature (90 ˝C).

For 90 ˝C condition, both higher diffusion rate of H2 from the anode and faster
deposition kinetics account for the denser focused Pt band in the membrane than
the more diffused band for the baseline and high upper potential limit conditions.
Ostwald ripening occurred for the 1.05 V condition as indicated by bright Pt spots
within the cathode in back-scattered cross-section image, Figure 9b. Bright spots in
the membrane seen for both the baseline and 1.05 V cells are indicative of growth
of Pt deposits into large Pt particles from Pt2+/4+ dissolution-migration-deposition
from the cathode. Lastly, accelerated carbon corrosion at 1.05 V may also promote Pt
particle migration and coalescence into large aggregate clusters within the cathode
electrode. Losses in ECA and mass activity from Pt migration into the membrane for
the 90 ˝C and 1.05 V cells could play significant role in performance decay, especially
in the mass transport limited region, 1.5 A/cm2.

The Pt to Co atomic ratios in the cathodes of the four parametric-study cycled
MEAs, as determined by XRF, are shown in Table 5. The trends in Co loss from
the cathodes are 30% RH < Baseline « 90 ˝C << 1.05 V. The trends in mass activity
decay, Figure 8b, reflect these trends in impact of operating conditions on Co loss
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from the catalysts indicating that one of the primary sources of performance loss
is catalyst restructuring. Using the same assumptions as described in the particle
size study section, the depth of de-alloying was calculated to range from two to
three monolayers for the 30% RH, baseline, and 90 ˝C cells and greater than three
monolayers for the 1.05 V cell. This illustrates the destructive impact of increasing
upper potential limits of cycling on the catalyst structure. Increased rates of Pt
dissolution when cycling to upper potentials limits >1.0 V in aqueous electrolyte
have been noted for polycrystalline Pt and Pt3Co nanoparticle catalysts [44–47].
The increased extent of Pt dissolution and/or the multi-layer structure of the oxide
formed at these higher potentials [48,49] may expose additional Co in the sub-surface
layers to the acidic environment resulting in an increased depth of de-alloying.

To gain greater insights into the observed decay trends of the 4.9 nm Pt3Co MEAs
with varied operating conditions, the TEM-based catalyst particle size distribution
analysis of the pre- and post-cycling electrodes is shown in Figure 10. All parametric
conditions caused an increase in the mean diameter of the catalyst particles and an
increasing in the tailing of the particle size distributions toward larger diameters.
The extent of changes in the TEM particle size distributions are 30% RH < BL <
90 ˝C < 1.05 V. The trends agree with the ECA loss trends shown in Figure 8a. A
quantitative comparison of the parametric decay trends between the Pt and Pt3Co
alloys is not attempted, due to the size difference in the catalyst particles (3.2 nm for
pure Pt [35] and 4.9 nm for Pt3Co), however, the qualitative trends are similar with
no noticeable difference.

Table 5. The post-cycling Pt to Co ratios in the electrodes of the cells subjected to
the parametric study square wave decay protocol.

Cell # Description Pt/Co Ratio

4 Baseline (BL) 7.8
5 Lower RH (30% RH) 6.6

6 Higher Upper Potential
(1.05 V) 10.2

7 Higher Temperature (90
˝C) 7.9
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Figure 10. TEM analysis of Pt3Co particle size distributions of the pristine (black)
and decayed catalysts (hashed) from parametric studies.

3. Experimental Section

3.1. Catalyst Preparation

Catalysts were prepared by deposition of 40 wt.% Pt and Co (3:1 atomic ratio) on
Akzo nobel Ketjen EC300J (Amsterdam, The Netherlands) via proprietary methods,
then annealed at increasing temperatures (T1, T2 and T3) to achieve alloying and
produce catalysts of specific particle sizes. Catalysts were characterized for total metal
content by inductively-coupled plasma optical emission spectroscopy (ICP-OES)
and X-ray fluorescence and metal surface area by gas-phase CO chemisorption.
The results of these characterizations are summarized in Table 1. Powder X-ray
diffraction (XRD), using a Bruker AXS D-500 diffractometer (Billerica, MA, USA)
with a Cu Kα X-ray source, was used to determine the average Pt3Co crystallite
size (calculated using peak fitting and Rietveld analysis) and degree of alloying
(shift in lattice parameter). The results of the XRD analysis are also summarized in
Table 1. In some cases, the catalyst was pre-leached to remove the easily leachable
Co. Pre-leaching was carried out by chemically treating the Pt3Co/Ketjen EC 300J
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catalysts in air-saturated 0.5 M H2SO4 at 363 K for 24 h. The metal content of the
leached materials was determined via ICP-OES analysis.

3.2. Transmission Electron Microscopy (TEM) Characterization of Pt3Co/C Catalysts
Annealed to Various Particle Sizes

A small portion of Pt3Co/C catalyst was crushed and dusted onto a holey
carbon film on a Cu TEM grid. The samples were analyzed using a JEOL 2010F TEM
operated (Peabody, MA, USA) at 200 kV. Energy Dispersive X-ray (EDX) analysis
was used to confirm the Pt and Co composition. Particle size distributions were
determined from at least 200 particles using a procedure described elsewhere [50].
Figure 11 shows TEM bright-field images of 40 wt.% Pt3Co/Ketjen EC 300J versions
annealed at increasing temperatures (T1, T2 and T3) to generate larger average
particle sizes.
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Figure 11. TEM bright-field images of as prepared (a) 4.9 nm (b) 8.1 nm and
(c) 14.8 nm Pt3Co cathode catalysts supported on carbon (Scale bar = 20 nm).

The particle size distributions are summarized in Figure 12, where the bin
frequency has been chosen such that all samples can be compared on the same
plot. More detailed particle size distribution analysis for individual samples showed
mono-modal log normal distributions for all three 40 wt.% Pt3Co/Ketjen EC 300J
materials. Mean particle sizes were calculated from these images and are shown in
Table 1.

3.3. Membrane Electrode Assembly (MEA)

In this study, MEAs were fabricated via a developmental process, with identical
anode Pt/Ketjen EC 300J catalyst, 35.6 wt.% Pt/C (~2 nm Pt particle size) and
the same 25 µm thickness perfluorosulfonic acid (PFSA) membrane. The cathode
catalysts were the Pt3Co/Ketjen EC 300J materials described in Table 1. Cathode
electrodes all had the same Pt loading of 0.2 mg ˘ 0.02 mg Pt/cm2 while the anode
electrodes had a similar loading of 0.22 mg ˘ 0.05 mg Pt/cm2.
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Figure 12. Particle size distributions of annealed Pt3Co cathode catalysts
determined by TEM.

3.4. Fuel Cell Construction

The MEA performance and durability tests utilized a 25 cm2 active area fuel
cell test fixture from Fuel Cell Technologies Inc. (Albuquerque, NM, USA). Prior to
assembly in this fixture, the MEA was sandwiched between anode and cathode gas
diffusion layers (GDLs) consisting of porous carbon paper coated on one side with a
micro-porous layer (SGL25BC, SGL Group, Wiesbaden, Germany). This cell was then
assembled between anode and cathode current collectors that had superimposed
serpentine flow channels. The inlet and outlet was configured for co-flow of reactant
gases. The assembled single cell was tested for cell resistance, gas crossover, and
leakage. Subsequently, the cell was conditioned by scanning the current between
0.1 and 1.5 A/cm2, in 0.1 A/cm2 increments every 5 min, for 16 h. The cell was
maintained at 80 ˝C and operated at 101 kPa pressure (absolute) and 100% relative
humidity (RH). The conditioning scans were performed by alternating between
H2/Air and H2/O2 reactant flows, corresponding to 50% utilization (or 0.05 SPLM
as minimum flow rates) on both sides.

3.5. Diagnostics and V-I Performance

Diagnostic tests to determine electrochemically-active surface area (ECA) and
ORR mass activity (A/g-Pt at 0.9 V) are commonly used to characterize cathode
catalyst degradation. Decreases in ECA and mass activity are indicative of Pt
nanoparticle growth and Pt2+/4+ ion migration and deposition within the cathode
or membrane ionomer. Microscopic post-test analysis was used to assess which
Pt re-distribution processes dominate for the various standard and accelerated
degradation protocols utilized in this study.
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3.6. Hydrogen Crossover

Molecular H2 crossover rate from anode to cathode of the MEAs was measured
with H2 on anode and N2 on cathode at 80 ˝C, 150 kPa (absolute). A positive linear
sweep voltammogram was performed by scanning the potential of the cathode
between 0 and 0.45 V (vs. anode) with a sweep rate of 1 mV/s. The magnitude of the
oxidation current at 0.35 V (vs. anode) in the voltammogram was used to determine
the H2 crossover rate.

3.7. Electrochemically-Active Surface Area (ECA)

The ECA of the cathode was measured using a cyclic voltammogram (CV)
between 0.03 V and 1.0 V (vs. anode). A sweep rate of 10 mV/s was used with
0.5 SLPM of 4% H2 (balance nitrogen) flowing over the anode (as reference as well
as counter electrode) and 0.5 SLPM of N2 flowing over the cathode (as working
electrode) at 80 ˝C, 101 kPa (absolute). ECA values (m2/g-Pt) were calculated by
integrating the hydrogen adsorption charge in the voltammogram (0.05 to 0.35 V),
dividing by cell active area (cm2), 210 µC/cm2 (theoretical hydrogen monolayer
adsorption on Pt) and the cathode initial Pt loading (mg-Pt/cm2).

3.8. Cell Performance

Electrochemical performance of the MEAs, represented by a voltage-current (V-I)
curve, was measured with an electronic load box (Model 890, Scribner Associates
Inc., Southern Pines, NC, USA), by scanning current from the open circuit voltage
(OCV) to 1500 mA/cm2 and back to the OCV. The cells were purged with H2 and
N2 on the anode and cathode, respectively, to reduce the OCV to ~0.1 V for ~10 min
right before each V-I curve measurement to minimize the effect of platinum oxide,
formed on the cathode catalyst at high potentials, on the cell performance. The V-I
data collected during the decreasing current scan are reported. To focus the results
on the cathode electrode characteristics, the cell voltage corrected for the membrane’s
ohmic loss (measured by the current interrupt method), the so-called IR-corrected
voltage, is reported. The IR-corrected polarization plots are useful for quantifying
the kinetic, ohmic and mass transport behaviors of the electrode.

H2/O2 performance was measured at 80 ˝C and 150 kPa (absolute) with H2 on
the anode and O2 on the cathode with flow rates corresponding to 50% utilization
(or 0.05 SPLM as minimum flow rates) on both sides. Mass activity (A/g-Pt) is
the measured current (A/cm2) @ 0.9 V in IR-corrected H2/O2 polarization plots,
corrected by hydrogen crossover current (A/cm2) and then normalized to initial Pt
loading (g-Pt/cm2) of cathode electrodes.

H2/air performance was measured at 80 ˝C, 150 kPa (absolute) with H2 on the
anode and air on the cathode with flow rates of 1 SLPM and 2 SLPM, respectively.
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3.9. Decay Protocol for Particle Size Studies

Accelerated cell degradation cycling protocols were imposed on the MEAs using
a potentiostat (EG&G 273A, Princeton Applied Research Inc., Oak Ridge, TN, USA).
The decay conditions are provided in Table 2. To elucidate the effect of cathode
catalyst particle size on performance degradation, MEAs containing the three Pt3Co
cathode catalysts were subjected to a triangle-wave potential cycle between 0.6 V
and 1.0 V with 50 mV/s ramp rate (16 s/cycle). The cells were maintained at 80 ˝C
and had fixed gas flows of 0.1 SLPM H2 on the anode and 0.05 SLPM N2 on the
cathode, both at 100% RH. During the potential cycling, the cathode served as
working electrode, while the anode served as both reference and counter electrode.
The cyclic decay tests were paused at specific intervals to evaluate the cathode ECA
and cell V-I performance.

3.10. Decay Protocol for Parametric Studies

The accelerated cell degradation test conditions to elucidate the effects of cell
operating parameters on MEAs containing the 4.9 nm mean diameter Pt3Co cathode
catalyst are shown in Table 3. A square-wave potential cycle with 20 s/cycle was
imposed on the cell, using a potentiostat, at defined temperature, RH and voltage
window conditions for 10,000 cycles. Fixed gas flows of 0.5 SLPM 4% H2 (balance N2)
on anode and 0.5 SLPM N2 on cathode were used. A new MEA with 4.9 nm mean
particle size Pt3Co cathode catalyst was used for each test to evaluate the impact of
one parametric condition (high temperature, low RH, or higher upper potential limit)
on cell decay behavior. During the potential cycling, the cathode served as working
electrode, while the anode served as both reference and counter electrode. The cyclic
decay tests were paused at specific intervals to evaluate the cathode ECA and cell
V-I performance.

3.11. Electron MicroProbe Analysis (EMPA)

Narrow strips (~5 mm wide) were cut down the midline from the inlet
to the outlet from pristine and decayed MEAs (5 cm ˆ 5 cm active area) for
cross-section microscopic analysis. The MEA strips were set into epoxy resin,
polished, surface-coated with a uniform thin layer of carbon for electron microprobe
analysis by a JEOL 8900 Super Probe (Peabody, MA, USA) equipped with a multiple
wave length dispersive spectrometer (WDS) for simultaneous profiling of Pt, Co, and
S distribution across the MEA cross-sections.

3.12. X-ray Fluorescence Analysis (XRF)

Portions of the cathode catalyst were removed from narrow strips of the
fresh and decayed MEAs, identical to those used for EMPA, using adhesive tape.
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The atomic ratio of Pt to Co in these catalyst samples were analyzed utilizing
an Energy-Dispersive X-ray Fluorescence Spectrometer (Rigaku NEX CG EDXRF
Analyzer with Polarization, The Woodlands, TX, USA), the copper and molybdenum
targets of the spectrometer, and empirical fitting using the integrated intensity of the
Pt L and the Co K.

4. Conclusions

Electrochemical decay protocols were used to accelerate performance loss of
Pt3Co catalyst based electrodes with three distinct mean particle sizes. The decay
trends observed for the Pt3Co alloy particles is compared with that of the similar
study reported on platinum particles [36]. Over the broad range of particle sizes
evaluated for the first time, a clear trend is emerging. While the initial performance
of the smaller particle based catalysts is higher, the durability of the larger particle
based catalysts is higher. The intermediate particle sizes of ~5 nm for Pt and ~8 nm
for Pt3Co catalysts seems to provide the best life averaged performance. Furthermore,
it is interesting that in the current study the 5 nm size Pt catalyst based electrodes
exhibited comparable mass activity as that of 4.9 nm Pt3Co catalyst based electrodes
and the durability is also comparable. This result is rather unexpected, as the
literature trends suggest improved mass activity with alloying. The heat treatment
conditions during catalyst preparation, catalyst ink preparation and MEA fabrication
may have an important role to play in realizing the initial mass activity benefits
reported in literature. The fraction of Co leached into the membrane is shown to be a
function of the particle size and is lowest for the larger particle size.

The impact of operating conditions on the durability of the 4.9 nm Pt3Co alloy
catalyst based electrodes is also reported. The order of performance decay based on
operational conditions, from greatest to least, for the parametric study was 1.05 V
upper limit >> 90 ˝C > baseline > 30% RH. In addition to this qualitative trend, the
approaches used are able to quantify the extent of catalyst damage incurred due to
the fuel cell operation and the choice of catalysts used.
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Oxygen Reduction Reaction Activity and
Durability of Pt Catalysts Supported on
Titanium Carbide
Morio Chiwata, Katsuyoshi Kakinuma, Mitsuru Wakisaka, Makoto Uchida,
Shigehito Deki, Masahiro Watanabe and Hiroyuki Uchida

Abstract: We have prepared Pt nanoparticles supported on titanium carbide (TiC)
(Pt/TiC) as an alternative cathode catalyst with high durability at high potentials for
polymer electrolyte fuel cells. The Pt/TiC catalysts with and without heat treatment
were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy
(XPS), and transmission electron microscopy (TEM). Hemispherical Pt nanocrystals
were found to be dispersed uniformly on the TiC support after heat treatment
at 600 ˝C in 1% H2/N2 (Pt/TiC-600 ˝C). The electrochemical properties (cyclic
voltammetry, electrochemically active area (ECA), and oxygen reduction reaction
(ORR) activity) of Pt/TiC-600 ˝C and a commercial Pt/carbon black (c-Pt/CB) were
evaluated by the rotating disk electrode (RDE) technique in 0.1 M HClO4 solution
at 25 ˝C. It was found that the kinetically controlled mass activity for the ORR on
Pt/TiC-600 ˝C at 0.85 V (507 A g´1) was comparable to that of c-Pt/CB (527 A g´1).
Moreover, the durability of Pt/TiC-600 ˝C examined by a standard potential step
protocol (E = 0.9 VØ1.3 V vs. RHE, holding 30 s at each E) was much higher than
that for c-Pt/CB.

Reprinted from Catalysts. Cite as: Chiwata, M.; Kakinuma, K.; Wakisaka, M.;
Uchida, M.; Deki, S.; Watanabe, M.; Uchida, H. Oxygen Reduction Reaction Activity
and Durability of Pt Catalysts Supported on Titanium Carbide. Catalysts 2015, 5,
966–980.

1. Introduction

Polymer electrolyte fuel cells (PEFCs) have been extensively investigated for
potential applications in fuel cell vehicles (FCVs) and residential co-generation
systems. The reduction of the amount of Pt used in the cathode catalyst layers
(CLs) is indispensable for the large-scale commercialization. To obtain high mass
activity (MA) for the oxygen reduction reaction (ORR), it is essential to increase the
electrochemically active area (ECA) for the ORR at minimum Pt loading in the CLs. So
far, Pt nanoparticles with ECA values as large as 100 m2 gPt

´1 have been dispersed on
high-surface-area (HSA) supports such as carbon black (CB, e.g., SCB = 800 m2 g´1).
However, a severe degradation of the CB support of the Pt/CB cathode catalysts
has been recognized at high potentials, especially during the start-stop cycles of
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FCVs [1–6]. It is known that the corrosion rate of carbon itself is low even under
PEFC operating conditions, but the rate is accelerated by Pt catalyst loading with
increasing temperature and potential [2,7–9]. The corrosion of the carbon support
leads to agglomeration (sintering) and/or a detachment of Pt nanoparticles from the
surface, together with a reduction of the electronic conductance in the CL [1,10–17].
Thus, the ECA for the ORR decreases significantly. It is, therefore, essential to develop
novel cathode catalysts with both high MA for the ORR and high durability at high
electrode potentials up to 1.5 V vs. reversible hydrogen electrode (RHE) [3–6].

So far, electronic conductive oxides or nitrides have been examined as stable
supports for PEFCs, e.g., Pt/SnO2 [18,19], Pt/TiO2 [20–23], Pt/Ti4O7 [24,25],
Pt/TiN [26], among others. The support materials used are typically in the form of
nanoparticles with HSA to disperse Pt catalyst particles uniformly, but the use of
HSA supports often leads to a high contact resistance between the particles. Recently,
Kakinuma et al. have developed Sb-, Nb- and Ta-doped SnO2´δ nanoparticle
supports with a fused aggregated structure having both HSA and low contact
resistance [27–30]. They reported that Pt-dispersed Nb–SnO2´δ and Ta–SnO2´δ

exhibited both higher ORR activity and higher durability at high potentials than
those for commercial Pt/CB (c-Pt/CB) catalysts. It was also found that the kinetically
controlled specific ORR activities on various Pt/Nb–SnO2´δ catalysts increased with
increasing apparent electrical conductivity of the support [29].

Here, we focus on the support material having high electrical conductivity
together with chemical stability at high potentials in acidic media. Titanium carbide
(TiC) exhibits high electrical conductivity. For example, the conductivity of bulk TiC
has been reported to be as high as 1.5 ˆ 104 S cm´1 [31], which is approximately
one order of magnitude higher than that of bulk Ta–SnO2´δ [32]. In strong acidic
media and high potentials, TiC is chemically and electrochemically stable. Indeed,
several reports are available for the application of TiC or TiC-based materials to
bipolar plates in phosphoric acid fuel cells (PAFCs) [33], Pt/TiC cathode catalysts
for PAFCs [34], and Ir-dispersed TiC as the anode catalyst (O2 evolution) in a proton
exchange membrane water electrolysis system [35].

In this paper, we have examined the ORR activity and durability of Pt supported
on TiC nanoparticles (Pt/TiC) by the use of the rotating disk electrode (RDE)
technique. PtO nanoparticles were first dispersed on the TiC support by a colloidal
method [26,36,37]. After a heat treatment at 600 ˝C in 1% H2/N2, hemispherical Pt
nanoparticles with clear lattice fringes were found to be well dispersed on the TiC
support (Pt/TiC-600 ˝C). The Pt/TiC-600 ˝C thus prepared exhibited high MA for the
ORR, comparable to that of a c-Pt/CB, with much higher durability at high potentials.
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2. Results and Discussion

2.1. Characterization of Pt/TiC Catalysts

Figure 1 shows X-ray diffraction (XRD) patterns of various Pt/TiC catalysts. The
sharp peaks at 2θ = 36˝ and 42˝ for both samples were assigned to cubic TiC (111)
and TiC (200), respectively. The broad peaks at 2θ = 40˝ and 46˝ for the catalysts
heat-treated at 600 ˝C were assigned to Pt (111) and Pt (200), respectively. The Pt
crystallite size dXRD, calculated from Scherrer’s equation for the XRD peak at ca.
46˝, was 3.8 nm for the Pt/TiC-600 ˝C. However, none of peaks assigned to Pt were
observed for the as-prepared Pt/TiC catalyst, suggesting that the supported particles
were not metallic platinum.
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Figure 1. X-ray diffraction patterns for (a) Pt/TiC as-prepared and (b) (c) heat-treated at 
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Figure 1. X-ray diffraction patterns for (a) Pt/TiC as-prepared and (b) (c)
heat-treated at 600 ˝C (Pt/TiC-600 ˝C). The panel (c) is the enlarged XRD pattern
from 30˝ to 50˝ for Pt/TiC-600 ˝C. The assignment of peaks is shown by ( )
cubic TiC and (İ) Pt. The peaks in (a) from low diffraction angles to high angles
correspond to the lattice distance of TiC (111), (200), (220), (311), and (222). The
peaks in (b) marked with İ correspond to the lattice distance of Pt (111), (200), (220),
and (311) from low diffraction angle to high angle, respectively.

The X-ray photoelectron spectra of as-prepared Pt/TiC and Pt/TiC-600 ˝C
are shown in Figure 2. The formation of Pt(II) oxide (PtO) was confirmed for the
as-prepared Pt/TiC catalyst from the Pt 4f core-level region in Figure 2a. After
the heat treatment at 600 ˝C in N2 containing 1% H2, the peak of metallic Pt (Pt0)
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appeared, with significant diminishing of the PtO peak, which is consistent with the
XRD results described above. In Figure 2b, we observed a broad peak assigned to
Ti4+, presumably TiO2, besides the main peak assigned to Ti3+ in the TiC phase. The
heat treatment at 600 ˝C in N2 containing 1% H2 resulted in a decrease of the Ti4+

peak with a low-energy shift. Such a shift has also been ascribed to the reduction of
TiO2 [38].
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Figure 2. X-ray photoelectron spectra of as-prepared Pt/TiC and Pt/TiC-600 °C in  

the binding energy regions of (a) Pt 4f7/2 and (b) Ti 2p3/2. 
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Figure 2. X-ray photoelectron spectra of as-prepared Pt/TiC and Pt/TiC-600 ˝C in
the binding energy regions of (a) Pt 4f7/2 and (b) Ti 2p3/2.

Figure 3 shows TEM images of as-prepared Pt/TiC and Pt/TiC-600 ˝C, together
with the particle size distribution histograms. PtO or Pt particles were well dispersed
on the TiC support for both samples. The average Pt particle size dTEM of as-prepared
Pt/TiC and Pt/TiC-600 ˝C were 1.9 ˘ 0.4 nm and 3.7 ˘ 1.0 nm, respectively. It was
seen in a typical high resolution image (Figure 3b) for the as-prepared Pt/TiC that a
dome-shaped particle (presumably PtO) was covered with a thin amorphous layer.
After the reduction at 600 ˝C (Pt/TiC-600 ˝C, Figure 3d), clear fringes corresponding
to the (111) lattice distance of Pt (0.224 nm) were observed, without any thin
amorphous layer.

Considering the XPS results shown in Figure 2, the thin amorphous layer
observed in Figure 3d can be assigned with certainty to TiO2, which was reduced at
600 ˝C in 1% H2. The dTEM of Pt on Pt/TiC-600 ˝C accords well with the crystallite
sizes dXRD, i.e., each Pt particle observed by TEM was a single crystallite. The
Pt loading amount on the Pt/TiC-600 ˝C was quantified to be 10.3 wt % (see
Experimental section). Thus, we clarified that Pt nanocrystals were formed on the TiC
support by the reduction of TiO2-covered PtO particles, followed by agglomeration.
It is also noted that most of Pt nanocrystals dispersed on the TiC support were
hemispherical as seen in Figure 3d, suggesting a strong interaction between Pt and
the support.
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Figure 3. Transmission electron microscopic (TEM) images of as-prepared Pt/TiC (a) (b) 

and Pt/TiC-600 °C (c) (d), together with the Pt particle size distribution histograms. 
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Figure 3. Transmission electron microscopic (TEM) images of as-prepared
Pt/TiC (a) (b) and Pt/TiC-600 ˝C (c) (d), together with the Pt particle size
distribution histograms.

2.2. Electrochemical Characterization of Pt/TiC Catalysts

Figure 4 shows the cyclic voltammograms (CVs) of the Nafion-coated
Pt/TiC-600 ˝C and c-Pt/CB electrodes in N2-purged 0.1 M HClO4 solution measured
at 25 ˝C. For both electrodes, the hydrogen adsorption/desorption peaks were
clearly observed at potentials below 0.4 V. The oxidation of Pt commenced at
approximately 0.8 V in the positive-going scan, while the reduction peak was
seen at 0.75 V in the negative-going scan. The ECA values of Pt/TiC-600 ˝C and
c-Pt/CB, which were evaluated from the hydrogen adsorption charge in Figure 4,
were 75 m2 gPt

´1 and 80 m2 gPt
´1 [39], respectively. Assuming a spherical shape for

the Pt particles with dTEM, the specific surface area was calculated to be 76 m2 gPt
´1

for Pt/TiC-600 ˝C and 127 m2 gPt
´1 for c-Pt/CB. This suggests that nearly all Pt

particles for the Pt/TiC-600 ˝C catalyst can easily contact the electrolyte solution,
whereas an appreciable fraction of the Pt particles in the c-Pt/CB catalyst cannot
contact the electrolyte solution. It has been reported that nearly half of the Pt particles
for c-Pt/CB were located in the interiors of carbon black particles [40].
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the Koutecky-Levich equation, ILCC is equivalent to the kinetically-controlled current Ik. 
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and c-Pt/CB in O2-saturated 0.1 M HClO4 solution at 25 °C. Rotating rate was 1500 rpm, 

and the potential sweep rate was 5 mV s−1. 
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ca. −60 mV decade−1 in the high potential region E > 0.9 V, and ca. −120 mV decade−1 in the low 

potential region E  0.85 V, being in agreement with those reported for bulk-Pt or Pt/CB [41]. 
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Figure 4. Cyclic voltammograms for Pt/TiC-600 ˝C and c-Pt/CB in N2-saturated
0.1 M HClO4 at a sweep rate of 0.1 V s´1.

The ORR was examined by the RDE technique in O2-saturated 0.1 M HClO4

solution at 25 ˝C. Hydrodynamic voltammograms for the ORR at Pt/TiC-600 ˝C and
c-Pt/CB electrodes are shown in Figure 5. Both Pt/TiC-600 ˝C and c-Pt/CB electrodes
exhibited nearly identical onset potential (0.98 V) for the ORR. The ORR current
reached a diffusion limit at about 0.4 V. Then, the limiting current-corrected current,
ILCC = I ˆ IL/(IL ´ I), was calculated at 1500 rpm. According to the Koutecky-Levich
equation, ILCC is equivalent to the kinetically-controlled current Ik.
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Figure 5. Hydrodynamic voltammograms for the ORR at Nafion-coated
Pt/TiC-600 ˝C and c-Pt/CB in O2-saturated 0.1 M HClO4 solution at 25 ˝C. Rotating
rate was 1500 rpm, and the potential sweep rate was 5 mV s´1.

Figure 6 shows Tafel plots (E vs. log |ILCC|) for the ORR at Pt/TiC-600 ˝C
and c-Pt/CB. The Pt/TiC-600 ˝C showed two Tafel slope regions, similar to the case
of c-Pt/CB: ca. ´60 mV decade´1 in the high potential region E > 0.9 V, and ca.
´120 mV decade´1 in the low potential region E 0.85 V, being in agreement with
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those reported for bulk-Pt or Pt/CB [41]. Therefore, the rate determining step for the
ORR at Pt/TiC-600 ˝C is identical with that at Pt/CB or bulk-Pt.Catalysts 2015, 5 972 
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Figure 6. Tafel plots for the ORR at Pt/TiC-600 °C and c-Pt/CB in O2-saturated 0.1 M HClO4 

solution at 25 °C with the rotating rate of 1500 rpm and the potential sweep rate of 5 mV s−1. 
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Figure 6. Tafel plots for the ORR at Pt/TiC-600 ˝C and c-Pt/CB in O2-saturated
0.1 M HClO4 solution at 25 ˝C with the rotating rate of 1500 rpm and the potential
sweep rate of 5 mV s´1.

The kinetically-controlled currents Ik at given potentials E were determined
based on the Koutecky-Levich equation,

1{I “ 1{Ik ` 1{p0.62 n F S D2/3 CO ν´1/6ω1/2q (1)

where n is the number of electrons transferred, F is the Faraday constant, S is the
effective projected area of the Pt catalyst, D is the diffusion coefficient of O2, CO is
the oxygen concentration, ν is the viscosity of the electrolyte and ω is the angular
velocity. An example of the Koutecky-Levich plot for the ORR on the Nafion-coated
Pt/TiC-600 ˝C is shown in Figure 7. Linear relationships with a constant slope
are seen at all of the potentials, 0.85, 0.80 and 0.76 V. By extrapolating ω´1/2 to
0 (infinite mass transport rate), the value of the kinetically controlled current Ik was
calculated. The kinetically-controlled specific activity (jk) and mass activity (MA)
were calculated based on the ECA value and the amount of Pt initially loaded on
the working electrode, respectively. The value of jk of Pt/TiC-600 ˝C at 0.85 V was
0.70 mA cm´2, which was approximately 1.4 times higher than that of c-Pt/CB.
Similar enhancement factors of the jk were also reported for Pt/Nb–SnO2´δ and
Pt/Ta–SnO2´δ [29,30]. The value of MA of Pt/TiC-600 ˝C at 0.85 V (507 A g´1) was,
however, comparable to that of c-Pt/CB (527 A g´1), since the ECA of Pt/TiC-600 ˝C
was smaller than that of c-Pt/CB.

So far, the MA or jk at 0.90 V has been evaluated in both RDE cells using
0.1 M HClO4 electrolyte solution and conventional membrane-electrode assemblies
(MEAs), e.g., with 0.40 mgPt cm´2 loading operated with air of 150 kPaabsolute
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humidified at 100% RH [42]. In contrast, the current density at 0.90 V is
not completely kinetically-controlled in recent MEAs with less Pt loading of
0.04 mgPt cm´2 and a thin electrolyte membrane operated under ambient pressure at
low humidity (30% RH) [43,44]. We have therefore judged that the MA measured at
0.85 V is more appropriate, considering the actual operating conditions of PEFCs [44].
However, in order to compare the ORR activity of our Pt/TiC-600 ˝C with values in
the literature, we have also evaluated the jk at 0.90 V and 25 ˝C with the potential
sweep rate of 5 mV s´1 to be 0.17 mA cm´2. The value of jk is consistent with those
of Pt/CB catalysts at 0.90 V and 60 ˝C (with the same sweep rate) [42]. Although
the jk values summarized in the literature were evaluated at higher temperature
than the present work, such an accordance is certainly due to a small effect of
temperature on jk for the ORR since an increase in the ORR activity with increasing
temperature is almost cancelled by the decrease in O2 solubility [45]. Recently,
Ignaszak et al. prepared a Pt/TiC catalyst with similar Pt size dTEM = 3.1 nm by
a microwave-assisted polyol process [46]. They reported a jk value at 0.90 V of
0.024 mA cm´2, which is only 1/7 of our value. It is also noted that the value of
ECA reported was 40 m2 gPt

´1, which is approximately 1/2 that of our catalyst
(76 m2 gPt

´1). The most important difference, we consider, is that Ignaszak et al. did
not carry out any heat treatment after dispersing the Pt on TiC. As described above,
the heat treatment in H2-containing atmosphere was found to be essential to remove
the thin amorphous TiO2 layer from the Pt surface. Because the current density
during the ORR is higher than that of the CV (hydrogen adsorption/desorption),
it is reasonable that the effect of the oxide layer on Pt and/or the Pt–TiC interface
would be more pronounced for the jk values for the ORR than it would be for the
ECA values.
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Figure 7. Koutecky-Levich plots obtained from hydrodynamic voltammograms  

for the ORR (shown in the inset) at (▲) 0.85 V, (●) 0.80 V and (♦) 0.76 V vs. RHE at 

Nafion-coated Pt/TiC-600 °C electrode in O2-saturated 0.1 M HClO4 solution at 25 °C. 
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Figure 7. Koutecky-Levich plots obtained from hydrodynamic voltammograms
for the ORR (shown in the inset) at (N) 0.85 V, ( ) 0.80 V and (�) 0.76 V vs. RHE
at Nafion-coated Pt/TiC-600 ˝C electrode in O2-saturated 0.1 M HClO4 solution
at 25 ˝C.
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2.3. Durability of Pt/TiC-600 ˝C in the Potential Step Cycle Test

Then, we have examined the durability of the Pt/TiC catalyst at high potentials.
Figure 8a shows the changes in the ECA values of the Nafion-coated Pt/TiC-600 ˝C
and c-Pt/CB electrodes during the potential step cycle test, simulating the start-stop
cycles of the FCV. The ECA values of c-Pt/CB decreased quickly after 100 cycles,
whereas the ECA values of Pt/TiC-600 ˝C decreased slowly. As a measure of the
durability, we defined N1/2,ECA, i.e., the value of N at which ECA had decreased to
1/2 of the initial value of c-Pt/CB. It is clear that Pt/TiC-600 ˝C showed a much
lower rate of ECA decrease; the N1/2,ECA value for Pt/TiC-600 ˝C was 12 times larger
than that for c-Pt/CB. Figure 8b shows changes in the MA at 0.85 V (MA0.85V) for the
ORR on the Nafion-coated Pt/TiC-600 ˝C and c-Pt/CB electrodes as a function of
log N. The Pt/TiC-600 ˝C exhibited a much lower rate of MA decrease than c-Pt/CB.
The value of N at which MA had decreased to 1/2 of the initial value, N1/2,MA, for
Pt/TiC-600 ˝C was 11 times larger than that for c-Pt/CB. These results suggest that
the decrease in the MA of Pt/TiC-600 ˝C can be ascribed mainly to the decrease
in ECA.Catalysts 2015, 5 974 
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Figure 9. TEM images of Pt/TiC-600 °C (a) (b) and c-Pt/CB (c) (d) before (a) (c) and 

after (b) (d) the durability test (N = 5000). 

Figure 9 shows the TEM images of Pt/TiC-600 °C and c-Pt/CB before and after the durability test 

(N = 5000). As is well known, the CB support of c-Pt/CB corrodes severely at high potentials [17,39]. 

Many Pt particles were found to be detached from the CB support, in addition to the agglomeration of 

Pt particles. It was found that Pt/TiC-600 °C exhibited high durability at high potentials, and Pt 

Figure 8. (a) Plots of ECA at Nafion-coated ( ) Pt/TiC-600 ˝C and (#) c-Pt/CB
electrodes as a function of log N. (b) Plots of MA0.85V at Nafion-coated ( )
Pt/TiC-600 ˝C and (#) c-Pt/CB electrodes at 0.85 V as a function of log N. Each
dashed line indicates 1/2 of the initial value of (a) ECA and (b) MA0.85V for c-Pt/CB.

Figure 9 shows the TEM images of Pt/TiC-600 ˝C and c-Pt/CB before and after
the durability test (N = 5000). As is well known, the CB support of c-Pt/CB corrodes
severely at high potentials [17,39]. Many Pt particles were found to be detached
from the CB support, in addition to the agglomeration of Pt particles. It was found
that Pt/TiC-600 ˝C exhibited high durability at high potentials, and Pt particles
were not detached from the TiC support. The slow decrease of the ECA and MA
values of Pt/TiC-600 ˝C can certainly be ascribed to an agglomeration of Pt particles.
In contrast, Ignaszak et al. claimed [46] that their Pt/TiC lost 78% of its original
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ORR activity after only 500 potential cycles between 0.05 V and 1.2 V at 20 mV s´1.
Although the test protocol (upper limit and lower limit potential, potential sweep vs.
potential step) was different, our Pt/TiC-600 ˝C catalyst exhibited superior durability,
even with a higher potential being used, i.e., 1.3 V. Thus, we have confirmed that the
removal of the TiO2 layer, as we performed for Pt/TiC-600 ˝C, was very important to
obtain both high ORR activity and high durability at high potentials The next target
will be to examine this catalyst in the MEA.

Catalysts 2015, 5 974 
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Figure 9. TEM images of Pt/TiC-600 ˝C (a) (b) and c-Pt/CB (c) (d) before (a) (c)
and after (b) (d) the durability test (N = 5000).

3. Experimental Section

3.1. Preparation of Pt/TiC Catalyst

TiC nanoparticles (average diameter = ca. 40 nm, prepared by a radio-frequency
plasma method) were supplied by Nisshin Engineering Co. (Tokyo, Japan) The
surface area of the TiC nanoparticles was measured to be 77 m2 gPt

´1 by the Brunauer,
Emmett and Teller (BET) adsorption method (BELSORP-max, BEL Japan Inc., Osaka,
Japan). Platinum nanoparticles were dispersed on the TiC support by the colloidal
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method [26,36,37]. A calculated amount of hexachloroplatinic acid was dissolved in
sodium hydrogen sulfite solution under stirring. In order to prepare a Pt (or PtOx)
colloid, hydrogen peroxide was added to the solution at a rate of 2 mL min´1, and the
pH value was held at 5.0 by adding 5 wt. % sodium hydroxide solution. A dispersion
of TiC powder, pure water (Milli-Q water, 18.2 MΩ cm, Millipore Japan Co., Ltd.,
Tokyo, Japan) and catalase (to decompose excess H2O2) were added into the Pt colloid
solution at room temperature, followed by stirring for 6 h. The powder obtained was
filtered and washed thoroughly with pure water. The powder (PtOx/TiC) was then
heat-treated at 600 ˝C in 1% H2-containing N2 atmosphere for 2 h and quenched to
room temperature. The amount of Pt loaded on the TiC support was measured by an
inductively coupled plasma-mass spectrometric analyzer (ICP-MS, 7500CX, Agilent
Technologies Inc., Tokyo, Japan). The Pt loading amount on the Pt/TiC-600 ˝C
was found to be 10.3 wt %. Considering the density of TiC (4.91 g cm´3, based
on JCPDS#321383 data) and carbon black (ca. 2 g cm´3), we can estimate that the
thickness of the catalyst layer with 10.3 wt %-Pt/TiC is comparable to that with ca.
25 wt %-Pt/CB under the given Pt amount and the porosity.

3.2. Characterization of Pt/TiC

The crystalline phase of the Pt/TiC catalyst was characterized using X-ray
diffraction (XRD, Ultima 4, Rigaku Co., Tokyo, Japan) with monochromated CuKα
radiation (0.15406 nm, 40 kV, 40 mA). The morphology of the catalyst was observed
by transmission electron microscopy (TEM, H-9500, Hitachi High-Technologies
Co., Tokyo, Japan) and scanning transmission electron microscopy (STEM,
HD-2700, Hitachi High-Technologies Co.). The Pt (or PtOx)/TiC catalyst was also
analyzed by X-ray photoelectron spectroscopy (XPS, ESCA5800, ULVAC-PHI Inc.,
Chigasaki, Japan).

3.3. Electrochemical Measurements

The ORR activities of the Pt/TiC and a c-Pt/CB (TEC10E50E, 45.6 wt %-Pt
supported on high-surface-area carbon black, Tanaka Kikinzoku Kogyo K.K., Tokyo,
Japan) catalysts were examined by the rotating disk electrode (RDE) technique. The
working electrode consisted of a thin layer of these catalysts uniformly dispersed
on a glassy carbon disk substrate (diameter = 5 mm, geometric area = 0.196 cm2)
at a constant loading of 5.50 µgPt cm´2, which corresponds to an approximately
2.5-monolayer height of TiC support particles. A thin film of Nafion was coated on the
catalyst layer with an average thickness of 0.05 µm [39]. The use of such a thin catalyst
layer with a thin Nafion film enables us to evaluate a “real” kinetically-controlled
activity of the catalyst for the ORR [47].

A platinum wire and a reversible hydrogen electrode (RHE) were used as
the counter and the reference electrodes, respectively. The electrolyte solution of

458



0.1 M HClO4 was prepared from reagent-grade chemicals (Kanto Chemical Co.,
Tokyo, Japan) and Milli-Q water. All of the electrode potentials were controlled
by a potentiostat (HZ5000, Hokuto Denko Co., Tokyo, Japan). The electrolyte
solution was saturated with N2 or O2 gas bubbling for at least 1 h prior to the
electrochemical measurements.

The durability testing of the catalysts was performed according to a standard
potential step protocol recommended by the Fuel Cell Commercialization Conference
of Japan (FCCJ) in 0.1 M HClO4 solution purged with N2 at 25 ˝C. The potential
was stepped between 0.9 V and 1.3 V, with a holding period of 30 s at each potential
(1 min per cycle) [48]. After a given number of potential step cycles, changes in the
ECA values and ORR activities were examined.

4. Conclusions

We have succeeded in preparing Pt nanoparticles uniformly dispersed on
a TiC support (Pt/TiC) by the colloidal method, followed by heat treatment
in a hydrogen-containing atmosphere. Such a heat treatment was found to be
important in removing a thin amorphous TiO2 layer from the Pt surface, resulting in
hemispherical Pt nanocrystals with clear lattice fringes. The heat-treated Pt/TiC at
600 ˝C (Pt/TiC-600 ˝C) exhibited high MA for the ORR in O2-saturated 0.1 M HClO4

solution at 25 ˝C, comparable to that of c-Pt/CB. It was also found that Pt/TiC-600 ˝C
exhibited much higher durability than that of c-Pt/CB in a standard a potential step
protocol (E = 0.9 V Ø 1.3 V). By TEM observation, we have clearly demonstrated
that the major reason for such a high durability of Pt/TiC-600 ˝C was suppression of
the detachment of Pt particles from the support, unlike c-Pt/CB. Hence, based on
our systematic work using various ceramic supports (TiN [26], doped SnO2 [27–30],
and TiC in the present work), the essential factors for the highly active and highly
durable cathode catalysts are the use of a chemically and electro chemically stable
support with high electrical conductivity, uniform dispersion of Pt nanocrystals on
the support, and the removal of an oxide layer, if any, on the Pt surface and/or
Pt-ceramic support interface.
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Novel Mesoporous Carbon Supports for
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Abstract: Over the past decade; a significant amount of research has been performed
on novel carbon supports for use in proton exchange membrane fuel cells (PEMFCs).
Specifically, carbon nanotubes, ordered mesoporous carbon, and colloid imprinted
carbons have shown great promise for improving the activity and/or stability of
Pt-based nanoparticle catalysts. In this work, a brief overview of these materials
is given, followed by an in-depth discussion of our recent work highlighting the
importance of carbon wall thickness when designing novel carbon supports for
PEMFC applications. Four colloid imprinted carbons (CICs) were synthesized using a
silica colloid imprinting method, with the resulting CICs having pores of 15 (CIC-15),
26 (CIC-26), 50 (CIC-50) and 80 (CIC-80) nm. These four CICs were loaded with
10 wt. % Pt and then evaluated as oxygen reduction (ORR) catalysts for use in
proton exchange membrane fuel cells. To gain insight into the poorer performance of
Pt/CIC-26 vs. the other three Pt/CICs, TEM tomography was performed, indicating
that CIC-26 had much thinner walls (0–3 nm) than the other CICs and resulting
in a higher resistance (leading to distributed potentials) through the catalyst layer
during operation. This explanation for the poorer performance of Pt/CIC-26 was
supported by theoretical calculations, suggesting that the internal wall thickness of
these nanoporous CICs is critical to the future design of porous carbon supports.

Reprinted from Catalysts. Cite as: Banham, D.; Feng, F.; Fürstenhaupt, T.; Pei, K.;
Ye, S.; Birss, V. Novel Mesoporous Carbon Supports for PEMFC Catalysts. Catalysts
2015, 5, 1046–1067.

1. Introduction

Proton exchange membrane fuel cells (PEMFCs) are energy conversion devices
that are capable of cleanly and efficiently converting the chemical energy of the
reactants (typically H2 and O2 from air) directly into electrical energy. PEMFCs
operate at relatively low temperatures (60 ˝C–95 ˝C), making them ideally suited
for transportation and portable power applications, and they are also now being
investigated for small-scale distributed stationary power generation [1].

For the hydrogen oxidation (HOR) and the oxygen reduction (ORR) reactions to
occur at the PEMFC anode and cathode, respectively, a high surface area Pt catalyst is
required. However, the intrinsic ORR kinetics are roughly five orders of magnitude
slower than the HOR rate [2], and thus nearly 90% of the Pt in a PEMFC is located
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at the cathode to increase its activity [3,4]. Therefore, it is crucial to understand and
optimize the cathode catalyst layer in order to maximize Pt utilization and eventually
decrease the Pt loading at the cathode, thus also lowering PEMFC cost.

Presently, the cathode catalyst layer in a PEMFC consists of 2–6 nm Pt or Pt
alloy nanoparticles deposited on a high surface area microporous (< 2 nm diameter
pores) carbon support (typically Vulcan carbon XC-72R (VC); Cabot, Alpharetta,
GA, USA ) [5,6]. Unfortunately, the pores of VC are too small to accommodate the
Pt nanoparticles and therefore they reside primarily on the outer VC surface. As a
result, Pt deposition on VC occurs on only a fraction of the total surface area, making
it difficult to achieve small, uniformly distributed Pt nanoparticles on conventional
VC at high Pt loadings of ě 20 wt. % [7]. In addition, any Pt that is deposited into a
micropore is expected to experience significant mass transport limitations and thus
may hardly be used [7,8].

In an effort to improve Pt distribution and utilization and to reduce mass
transport losses through the catalyst layer of PEMFCs, many researchers have been
investigating mesoporous carbon support materials (2 nm < d < 50 nm), which
have both much larger pore diameters and typically larger surface areas than
conventional VC. A high surface area is an important property of any potential
catalyst support for PEMFCs, as it is known that average Pt particle size decreases
with increasing catalyst support area [9], likely due to an increased number of
available nucleation sites. Furthermore, it has been demonstrated that mass transport
of reactants and products is greatly improved when using carbon supports with
pore diameters of > 3 nm [9]. Specifically, three promising families of mesoporous
carbons are: (1) carbon nanotubes (CNTs); (2) ordered mesoporous carbons (OMCs);
and (3) colloid imprinted carbons (CICs). Other carbon supports that have
been investigated include carbon nanofibres [10,11] and carbon nanocoils [12,13].
Although some promising data has been reported for these additional carbon
supports, the largest focus has been on the three main families listed above.

While the importance of carbon support pore diameter is now well understood,
recent work by our group [14,15] has helped to elucidate the previously
under-emphasized importance of carbon support wall thickness on ORR activity.
This finding has been observed for both OMC [14] and CIC [15] catalyst supports in
our previous studies.

1.1. Carbon Nanotubes (CNTs)

CNTs offer several advantages over conventional microporous carbons as
catalyst supports for PEMFCs. Unlike carbon blacks, CNTs are nearly 100% sp2
hybridized, which provides them with a much higher electronic conductivity than
carbon black [16]. This is advantageous when electrons must rapidly transport
through the support. Multi-walled CNTs typically have a higher electronic
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conductivity (but lower surface area) than single wall CNTs, and are therefore
the most commonly used CNTs in PEMFC research [9]. The high percentage of
sp2 hybridization of CNTs also provides these materials with enhanced corrosion
resistance vs. VC [9,17]. Also, CNTs generally have [17] fewer impurities than carbon
blacks, such as VC, which often contain organic sulphur species that may poison the
Pt catalyst [18].

While the high degree of sp2 hybridization provides CNTs with many benefits,
it unfortunately makes Pt deposition very challenging. This is because, unlike VC,
there are very few functional groups available to anchor the Pt nanoparticles to
the surface [9]. Therefore, CNTs must first be functionalized, often by refluxing
in HNO3/H2SO4 solutions at elevated temperatures (90 ˝C–140 ˝C) in order to
create hydroxyl and carboxylic acid surface groups [9]. However, this lowers
the CNT electronic conductivity, as well as making them more susceptible to
oxidation under normal PEMFC conditions [9]. Proper design of CNT supports
must therefore take into account the trade-offs between high electronic conductivity
and corrosion resistance versus Pt dispersion and stability. It has been shown [19–21]
that nitrogen-doped CNTs have advantages over CNTs in terms of Pt deposition
and catalytic activity. Moreover, first principles calculations indicate that Pt should
bond more strongly on nitrogen-doped CNTs than on CNTs [22,23], with a higher Pt
stability confirmed experimentally [24].

1.2. Ordered Mesoporous Carbons (OMCs)

Joo et al. [25] first reported the use of OMCs for PEMFC applications, using a
well-studied ordered mesoporous silica (SBA-15) as a template for OMC synthesis.
They filled the pores of SBA-15 with furfuryl alcohol and then heated the sample
to 80 ˝C to induce polymerization of furfuryl alcohol on the acidic sites on the
SBA-15 walls. The remaining furfuryl alcohol was then removed under vacuum and
the carbon/silica composite was carbonized, followed by removal of the SBA-15
template through refluxing in NaOH. The resulting OMC was composed of hollow
tubes, with a pore diameter of 5.9 nm, and 4.2 nm pores between adjacent tubes. It
was reported [25] that the outer diameter of the OMC tubes can be controlled by the
SBA-15 pore size, while the inner tube diameter can be tuned via the polymerization
conditions employed (temperature, time, number of furfuryl alcohol infiltration
steps [26]). Importantly, the resultant OMC was found to have a surface area of ca.
2000 m2/g, based on N2 gas sorption measurements. The authors demonstrated
that this large OMC surface area, composed of 5.9 and 4.2 nm pores, allowed for
much smaller Pt particles to be deposited vs. on a high surface area (1500 m2/g)
carbon black. As a result, the Pt/OMC catalyst was found to greatly outperform the
Pt-loaded carbon black catalyst.
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While this initial work was very promising, subsequent work [8,27–29]
demonstrated that, similar to microporous VC, the ORR occurring at the Pt/OMC
catalysts may become transport limited at high current densities, as reactants and
products must rapidly transport to and from active Pt sites deep inside the OMC
pores. Specifically, it has been suggested that, while Pt may deposit inside the OMC
pores, the Nafion proton conductor may not be able to access them, likely then
resulting in proton transport limited currents [9].

In previous work by Ambrosio et al. [8,27], it was demonstrated that Pt/OMC
catalysts outperform Pt/VC at low current densities, but quickly succumb to
mass transport losses at higher current densities. Similar to Joo et al. [25], they
demonstrated that the higher surface area of the OMC support (1080 m2/g) allowed
for smaller, more uniform Pt nanoparticles to be deposited vs. similarly loaded VC.
While the smaller Pt particle size of the Pt/OMC vs. Pt/VC material did provide the
Pt/OMC catalyst with a higher electrochemically active surface area, proposed to
be responsible for the higher activity of Pt/OMC at low current densities, a poorer
activity of the Pt/OMC catalysts was observed at higher current densities. This was
likely due to either a low electronic conductivity through the carbon matrix, or proton
diffusion limitations within the ~3.5 nm pores. Based on these recent findings, [25]
achieving larger pore diameters in the OMCs appears to be an important next step.
Unfortunately, the hard templating approach used in OMC synthesis constrains the
OMC pore diameters to <7 nm in diameter [30]. This is because it is very difficult to
increase the wall thickness (which eventually becomes the OMC pore diameter) of
the silica template while still maintaining the desired porosity.

Recently, our group performed a controlled study to further verify the
importance of the OMC support dimensions (as opposed to the pore diameter) on
ORR activity of Pt/OMC catalysts [14]. Since OMCs represent an inverse replica of
the sacrificial porous silica, we have previously described the final OMC structure as
consisting of carbon “nano-strings” (where carbon has filled the worm-hole-shaped
pores of the silica) separated by pores (previously occupied by the walls of the SiO2

template) [14]. SiO2 templates with pore diameters ranging from 1.5 to 3.1 nm were
prepared, all having wall thicknesses of ~2.3 nm.

OMCs were prepared from these SiO2 templates, and loaded with 20 wt. %
Pt. Rotating disc electrode (RDE) testing was used to show that the ORR activity
correlated well with the diameter of the solid carbon nano-strings. Specifically,
Pt/OMC catalysts with narrower nano-string diameters were shown to have higher
ohmic losses, resulting in more pronounced problems due to distributed potentials
through the catalyst layer on the RDE surface and thus lower ORR activities, vs.
what was seen for Pt/OMC catalysts with larger nano-string diameters. This work
was the first to demonstrate the importance of OMC nano-string diameter on the
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ORR activity of Pt/OMC catalysts, which had not previously been considered an
important design parameter for Pt/OMC catalysts.

1.3. Colloid Imprinted Carbons (CICs)

It has been previously shown that, while mesoporous carbons can accommodate
Pt in their pores, Nafion deposition may prove to be more challenging for pores
<40 nm in diameter [9,31,32]. This would result in proton transport limitations to
Pt particles that are buried deep within the pores, but are not in direct contact with
Nafion. It is thus crucial to develop carbon materials that allow for facile tuning of
pore diameter, beyond what is achievable for OMCs, to avoid these problems.

In 2001, Li et al. [30] reported a novel approach to mesoporous carbon design,
allowing for control of both pore diameter and length. This synthesis was based on
the unique physical properties of a naphthalene-based mesophase pitch precursor,
which is a polycyclic aromatic hydrocarbon (PAH) and a common by-product of the
petroleum industry. These PAHs interact through long range London dispersion
forces and arrange in an ordered, liquid crystalline structure [33]. A synthetic
naphthalene-based mesophase pitch (Mitsubishi AR pitch) was chosen by Li et al. [30],
as petroleum-based pitches often contain sulphur impurities. The reported softening
range of this pitch varies in the literature, with the lower and upper temperatures
generally falling between 230 ˝C and 350 ˝C [18,30,33].

In their original work, Li et al. [30] demonstrated that SiO2 colloids coated on
the surface of AR pitch can be imprinted into its volume by heating to temperatures
within its softening range. Importantly, they were able to show that the depth of
imprinting of the SiO2 colloids can be controlled based on the imprinting temperature
that is used. By subsequently carbonizing the silica/pitch composite and removing
the SiO2 colloids by refluxing in NaOH, a porous colloid imprinted carbon (CIC)
powder is generated, with pore diameters equal to the size of the SiO2 colloids that
are used and pore lengths controlled by the imprinting temperature. While other
colloid-based approaches to mesoporous carbon synthesis have been reported, such
as colloid infused resorcinol-formaldehyde resins [34], no other reported synthesis
allows for control of both pore depth and diameter [27], making the CICs an ideal
material for both enhancing PEMFC performance as well as understanding the
impact of pore parameters on ORR performance.

Since this discovery, several groups have investigated CICs as potential catalyst
supports for PEMFC applications. In a communication by Fang et al. [35], it was
shown that, when loaded with 20 wt. % Pt, a fully imprinted CIC, with a pore
diameter of 26 nm (CIC-26), outperformed similarly loaded VC as a PEMFC cathode.
This was explained by the higher accessible surface area of CIC-26 vs. VC, leading
to a more uniform Pt distribution on CIC-26 vs. VC. Also, the measured electronic
conductivity of CIC-26 was indicated to be higher than VC, which would serve to
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minimize ohmic losses, while the larger pore diameter of CIC-26 vs. VC should
facilitate mass transport.

The use of CICs as a catalyst support has also been extensively explored by our
group [7,15,36]. In previous work, we used 22 nm SiO2 colloids to prepare CICs
having a controllable pore diameter of 26 nm, but different pore depths (controlled
by varying the imprinting temperature from 250 ˝C–400 ˝C) [36]. 3D TEM and TEM
tomography were used to demonstrate that Pt had successfully been loaded down
the full length of the CIC pores. Importantly, it was shown that the ORR activity of
the Pt nanoparticles was independent of their location down the CIC pores. This is
likely due to the relatively large (26 nm) pore diameter of these CIC supports, which
greatly facilitates mass transport to the Pt nanoparticles inside these pores.

In another study, we demonstrated that a Pt-loaded CIC with 26 nm dia pores
(CIC-26) exhibited a lower ORR activity than a similarly loaded CIC with 15 nm pores
(CIC-15) [15]. Through the use of TEM tomography, we showed that the poorer ORR
activity of Pt/CIC-26 vs. Pt/CIC-15 was likely due to its very thin walls (~ 1.5 nm) vs.
the 5–15 nm walls of Pt/CIC-15. This conclusion is in agreement with our findings on
the importance of the diameter of OMC nano-strings on ORR activity [14]. However,
only CIC-15 and CIC-26 were evaluated in this initial study [15]. Therefore, the
goal of the present work is to verify the importance of carbon wall thickness on
the ORR activity of Pt/CIC cathode materials. Control of the CIC wall thickness
was achieved by varying the size of the silica colloids used in their synthesis, with
larger diameter silica particles (15–80 nm) resulting in larger gaps between adjacent
particles, and thus thicker carbon walls. All four CICs (CIC-15, CIC-26, CIC-50,
and CIC-80) were loaded with 10 wt. % Pt, and gas sorption, transmission electron
microscopy (TEM), and TEM tomography were used to characterize the porous
nanostructure of the CICs.

In terms of the observed oxygen reduction (ORR) activity, determined through
RDE studies in aerated 0.5 M H2SO4 solutions, it is demonstrated here that the
10 wt. % Pt/CIC-26 catalyst is a much poorer catalyst than all of the other CIC-based
materials, due primarily to its notably higher Tafel slope. A theoretical study, based
on porous electrode theory, was also carried out, confirming that pore diameter alone
cannot be used to predict the performance of these novel Pt-loaded mesoporous
carbon catalysts. Overall, this work shows clearly that the internal dimensions,
including both pore sizes and wall thicknesses, need to be carefully controlled in the
future design of carbon-based catalyst support materials.
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2. Results and Discussion

2.1. Determination of CIC Pore Diameter and Pt Nanoparticle Size

The sorption isotherms of the four CICs under study here (expected pore
diameters of 15–80 nm) are given in Figure 1a. Each CIC demonstrates a Type
IV isotherm with H1 hysteresis, indicative of mesoporous (2 < pore diameter <
50 nm) materials [10,30]. Type H1 hysteresis is associated with uniform diameter
and tightly packed spheres, matching well with the synthesis and predicted porous
structure of the CICs. Additionally, the steep slopes of the hysteresis branches at
P/Po of 0.75-1 reflect a narrow pore size distribution [37]. Thus, the fact that all four
CICs demonstrate a sharp uptake of N2 in their hysteresis curves provides evidence
that they each have a narrow pore size distribution.
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respective synthesis. This was also found by Li et al. [30] and can be attributed to a distribution in the 
size of the silica particles, as well as some possible agglomeration during the synthesis. For CIC-50, the 

 

Figure 1. (a) N2 sorption isotherms and (b) pore size distributions obtained from
the adsorption branch of the sorption isotherm calculated using the BJH model [37]
for the four CIC supports.

For both CIC-15 and CIC-26, the pore size distributions (Figure 1b) are
centered at slightly larger values than expected, based on the anticipated size of
the commercially obtained colloids used in their respective synthesis. This was
also found by Li et al. [30] and can be attributed to a distribution in the size of the
silica particles, as well as some possible agglomeration during the synthesis. For
CIC-50, the pore size distribution is very broad (Figure 1b), while for CIC-80, no
clear average pore size can be observed, likely due to limits of the BJH model and
the Kelvin equation upon which it is based [37,38] for materials with such large pore
diameters. However, the fact that such a well-defined H1 hysteresis was observed
for both CIC-50 and CIC-80 strongly suggests that these materials do possess highly
uniform pore sizes.

In order to verify the CIC pore diameters, especially for the larger pore sizes,
transmission electron microscopy (TEM) characterization was used. TEM analysis
was performed on the CICs after Pt loading, as the presence of Pt gives excellent

470



contrast, thus greatly aiding in discerning the structure of the carbon. As is clearly
visible in Figure 2a,b, the pore diameters of CIC-15 and CIC-26 match closely with
those obtained from the gas sorption data (Table 1). For CIC-50 and CIC-80, the TEM
images (Figure 2c,d) show pores of 50–60 and 80–90 nm in diameter, respectively,
which match well with the expected values based on the size of the SiO2 colloids
used in their respective synthesis.
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Figure 2. TEM images of 10 wt. % Pt/ (a) CIC-15; (b) CIC-26; (c) CIC-50; and
(d) CIC-80.

Importantly, Figure 2 also clearly demonstrates that all four Pt-loaded (10 wt. %)
CIC catalysts have very similar Pt nanoparticle sizes, centered at ~ 4.5 nm (Table 1).
In the absence of any support effects or any transparent limitations, they should
therefore all demonstrate very similar oxygen reduction reaction (ORR) activities.
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A few large (10–20 nm) agglomerates of Pt are seen for each of the four Pt/CICs
(examples are shown in Figure 2a,d). These agglomerates are large enough to have
blocked some of the 15 nm pores for the Pt/CIC-15 sample, but would likely not
have blocked the entrance of the larger pore diameter CICs.

Table 1. Physical properties of the CICs before and after 10 wt. % Pt-loading.

Sample Pore Diameter a

(nm)
Pt Particle
Size b (nm)

Graphite
Crystallite
Size c (nm)

BET Surface Area
(m2¨ g´1 ˘ 10%)

Pore Volume
(mL¨ g´1) ˘ 0.1 d

Wall Thickness
(nm) e

CIC-15 15 (10–15) - 1.5 330 1.2 10 ˘ 5
CIC-26 26 (20–25) - 1.5 380 1.6 0–3
CIC-50 45 (50–60) - 1.5 240 1.4 0–20
CIC-80 N/A (80–90) - 1.5 150 1.4 0–50

Pt/CIC-15 9 4.0 (4.3) - 280 0.9 -
Pt/CIC-26 24 4.0 (4.7) - 360 1.6 -
Pt/CIC-50 45 6.0 (4.4) - 260 1.6 -
Pt/CIC-80 N/A 4.5 (4.5) - 140 1.3 -

a Pore diameter determined from N2 adsorption isotherm data. The average pore diameter
from TEM analysis is given in brackets; b Calculated from Pt(111) XRD peak width using
the Scherrer equation. The average particle size obtained from TEM analysis is given in
brackets; c Calculated from the graphite (002) peak; d Total pore volume determined at
P/Po = ~0.99; e Obtained from TEM tomography; -: This data is not applicable/available.

X-ray diffraction (XRD) was used to determine the size of the Pt particles on the
four CIC supports by applying the Scherrer equation to the Pt(111) peak (Figure 3).
While the relative intensities of the Pt(111) peaks are not all the same, all of the
catalysts show Pt peaks with a similar full width at half maximum, consistent with
Pt crystallite sizes of ~4.5 nm, in good agreement with the TEM data (Table 1). By
tracking the graphite 002 peak (Table 1), all four CICs were found to have graphite
crystallite sizes of ~1.5 nm, similar to what is observed for many conventional carbon
blacks [16]. Therefore, the intrinsic resistivity of the four CICs should be similar to
each other and to carbon black.
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2.2. Surface Area of Pt-Free and Pt-Loaded CICs

The BET surface areas and pore volumes of the four CICs are also reported
in Table 1. It is seen that, with the exception of CIC-15, the specific surface area
(m2/g) decreases with increasing pore radius, while the specific pore volume
(cm3/g) remains relatively constant. The trends in these parameters (Table 1) are
not surprising, since these should both correlate with the size of the colloids used
during the imprinting step. While the specific surface area of a spherical colloidal
particle will depend inversely on its radius, the specific volume will be independent
of radius, as shown in Equation (1) (r = particle radius, ρ = particle density).

Specified surface area:
m2
g
“

4πr2

4
3 πr3ρ

“
3

γρ

Specified volume:
m3

g
“

4
3 πr3

4
3 πr3ρ

“
1
ρ

(1)

While the gas sorption isotherms (Figure 1a), pore size distributions (Figure 1b),
and TEM images (Figure 2) all indicate that the synthesis of the four CICs was
successful, a comparison of the measured (BET areas reported in Table 1) vs. predicted
CIC surface areas allows for further verification of the assumed CIC porous structure.
Hexagonal close packing is the most spatially efficient configuration for the packing
of spheres, with a packing density of 0.74 [39]. During the solvent evaporation
stage of the CIC synthesis, the silica nanoparticles self-assemble into a hexagonally
close packed (hcp) configuration in order to maximize their contact with nearest
neighbours and reduce their surface energy. Since CICs are inverse replicas of the hcp
silica colloids, the maximum theoretical specific surface area (m2/g) of the CICs can
be calculated from the surface area of the silica colloids, based on their size, packing
arrangement, and the density of the carbon walls (1.6 g/mL). It should be noted
that there is a range of carbon density values reported in the literature for carbon
materials. For our purposes, we have used the same value reported by Li et al. in
their original work with CICs [40]. To increase the accuracy of this calculation, the
TEM-measured CIC pore diameters were used (Figure 2 and Table 1), rather than the
expected pore diameters, based on the assumed size of the imprinting silica colloids.

Figure 4 clearly shows that, aside from CIC-15, the measured BET surface areas
of the CICs match very closely with the expected values based on Equation (1),
confirming the assumed hcp configuration of their pores. Importantly, the fact that
CIC-15 has a much lower surface area than expected suggests that close packing
of the 15 nm silica particles did not occur for CIC-15 and that CIC-15 must have a
more disordered porous structure than the other three CICs, consistent with the TEM
results (Figure 2).
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Looking first at Figure 2a, pores of ~15 nm diameter are present, but they are not
arranged in a hcp configuration, as predicted above. This may be due to a disordered
arrangement of the 12 nm silica colloids around the mesophase pitch carbon during
synthesis or due to the partial collapse of the carbon structure during carbonization,
which has been previously suggested to occur for imprinted carbons with pores <50
nm in diameter [41,42]. The fact that the pores of CIC-15 are not tightly packed would
produce a lower surface area than expected, thus confirming the results shown in
Figure 4. It should also be noted that CIC-15 was synthesized multiple times, with
the measured surface area always being lower than expected.Catalysts 2015, 5 1055 
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packing of spheres and thus any other arrangement will result in more available space between them. 
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Figure 4. BET-determined and predicted (Equation (1)) surface area of the four
CICs vs. their TEM measured pore diameter.

A decrease in both the surface area and pore volume of CIC-15 was observed
(Table 1) after Pt loading, possibly due to the larger Pt agglomerates (Figure 2)
blocking the entrance to some of the pores. However, for the three CIC catalysts with
the larger pores, within error, very little change in surface area and pore volume was
observed after Pt loading (Table 1), suggesting that the pore mouths remained open.

2.3. Wall Thickness of CIC Supports

As one of the main goals of the present work was to investigate how the wall
thickness of the Pt-loaded CIC catalyst supports influences their oxygen reduction
reaction (ORR) activity, it was critical to accurately determine this variable. Therefore,
TEM tomography was used to characterize each of the four Pt/CIC catalysts, with
the results shown in Figure 5.

It is seen for the CIC-(26-80) materials that the close packing of their pores
(Figure 5b–d) resulted in wall thicknesses ranging from non-existent (reported as
0 nm) to a maximum value, as shown schematically in Figure 6a and also given
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in Table 1. For an ordered packing of the spherical SiO2 particles around the pitch
particles in the first step of CIC synthesis, thicker carbon walls are expected if
larger diameter silica colloids are used and then removed (Figure 6b), explaining
why CIC-26 (prepared from 22 nm diameter SiO2 colloids) has thinner walls than
both CIC-50 and CIC-80, which were prepared using the 50 and 80 nm colloids,
respectively. However, the disordered packing of the 12 nm diameter SiO2 particles
in CIC-15 (Figure 5a) has led to much thicker walls (~10 nm) than expected, had
the 12 nm colloids been tightly packed together. This is because HCP is the most
spatially efficient packing of spheres and thus any other arrangement will result in
more available space between them. This will result in thicker carbon walls after
filling with the mesophase pitch precursor and its subsequent carbonization to form
carbon, as is shown schematically in Figure 6c.Catalysts 2015, 5 1056 

 

 

Figure 5. TEM tomography image slices of 10 wt. % Pt supported on (a) CIC-15; (b) CIC-26; 
(c) CIC-50; and (d) CIC-80, with the dark grey areas representing the CIC walls and the light 
grey regions being the open pores. All four images were obtained roughly halfway through 
the CIC particles. 

 

Figure 6. 2-D cartoon showing (a) the origin of the range of wall thicknesses for CIC-26, 
CIC-50 and CIC-80 and revealing; (b) how the CIC wall thickness will increase as the silica 
colloid diameter increases (after removal of SiO2); (c) shows that the disordered packing of 
the 12 nm colloids results in thicker walls than expected for CIC-15. 
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(b) CIC-26; (c) CIC-50; and (d) CIC-80, with the dark grey areas representing the
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obtained roughly halfway through the CIC particles.
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Figure 6. 2-D cartoon showing (a) the origin of the range of wall thicknesses for
CIC-26, CIC-50 and CIC-80 and revealing; (b) how the CIC wall thickness will
increase as the silica colloid diameter increases (after removal of SiO2); (c) shows
that the disordered packing of the 12 nm colloids results in thicker walls than
expected for CIC-15.

2.4. Effect of CIC Nanostructure on ORR at Pt/CIC Catalysts

Prior to performing the oxygen reduction reaction (ORR) studies, cyclic
voltammograms (CVs) of the four 10 wt. % Pt/CIC catalysts were collected under
a N2 environment (Figure 7). The electrochemically active Pt surface area (ECSA)
was obtained by calculating the total charge passed in the hydrogen underpotential
(HUPD) region (0–0.37 V) after subtracting the charging current and assuming a value
of 210 µC/cm2 for one monolayer of Hads on Pt [16,43,44]. Importantly, Table 2 shows
that all four Pt/CIC catalysts have similar Pt ECSAs and thus should have a very
similar activity towards the ORR, assuming that the CIC support or its nanostructure
has no additional influence on activity.
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Figure 8. (a) ORR response at 10 mV/s of the four 10 wt. % Pt/CICs in room temperature  
0.5 M H2SO4, all at 1000 rpm; and (b) the corresponding ORR Tafel plots. 

The ORR responses of the four 10 wt. % Pt-loaded CICs are shown in Figure 8a. The current is seen 
to be fully kinetically controlled (Butler-Volmer kinetics) at low overpotentials (>0.9 V), as expected, 
followed by mixed kinetic/diffusion control (0.6–0.9 V) and finally diffusion control at <0.6 V (when 
the limiting current is reached). The Tafel plots in Figure 8b clearly show that the ORR activity (per 
geometric area of the electrode) of the 10 wt. % Pt/CIC-26 catalyst is lower than that of the other three  
10 wt. % Pt/CICs, as is also shown in Table 2. In fact, while Pt/CIC-15, -50 and -80 all demonstrate the 
expected ORR Tafel slope (in the anodic sweep) of ~70 mV/dec [45], Pt/CIC-26 exhibits an anomolously 
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Figure 8. (a) ORR response at 10 mV/s of the four 10 wt. % Pt/CICs in room
temperature 0.5 M H2SO4, all at 1000 rpm; and (b) the corresponding ORR
Tafel plots.

The ORR responses of the four 10 wt. % Pt-loaded CICs are shown in Figure 8a.
The current is seen to be fully kinetically controlled (Butler-Volmer kinetics) at low
overpotentials (>0.9 V), as expected, followed by mixed kinetic/diffusion control
(0.6–0.9 V) and finally diffusion control at <0.6 V (when the limiting current is
reached). The Tafel plots in Figure 8b clearly show that the ORR activity (per
geometric area of the electrode) of the 10 wt. % Pt/CIC-26 catalyst is lower than
that of the other three 10 wt. % Pt/CICs, as is also shown in Table 2. In fact, while
Pt/CIC-15, -50 and -80 all demonstrate the expected ORR Tafel slope (in the anodic
sweep) of ~70 mV/dec [45], Pt/CIC-26 exhibits an anomolously high Tafel slope of
85 mV/dec (Table 2). As a difference in the ORR mechanism, or slow step, is not
expected at these very similar Pt/C materials, the higher Tafel slope of the Pt/CIC-26
catalyst likely reflects the onset of transport limitations in the CIC-26 material with
increasing overpotential [46,47]. However, since CIC-26 should have wider pores
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than CIC-15, it is highly unlikely that the observed difference in Tafel slope is due to
transport limitations of protons or dissolved oxygen through the pores of the CICs.

Table 2. Electrochemical results obtained using the 10 wt. % Pt/CIC catalysts.

Sample ECSAa (m2/g) ˘ 10% ORR Current at 0.9 V b (mA/cm2) Tafel Slope (mV/dec)

10 wt. % Pt/CIC-15 45 0.40 70
10 wt. % Pt/CIC-26 55 0.32 85
10 wt. % Pt/CIC-50 55 0.40 70
10 wt. % Pt/CIC-80 45 0.40 70

a Electrochemical surface area (ECSA) calculated from the CV hydrogen underpotential
deposition (HUPD) charge, assuming a value of 210 µC/cm2 for one monolayer of
adsorbed hydrogen on the Pt surface [16,43,44]. b Obtained in 0.5 M H2SO4 using 10
mV/s, 1000 rpm, and room temperature conditions.

As further evidence of this, Figure 9a shows a plot of ORR activity (current
at 0.9 V vs. RHE) vs. pore diameter. If diffusion limitations in the pores were
dominating the response, the ORR activity (current) would be expected to increase
with increasing CIC pore diameter, which is clearly not the case.
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Figure 9. ORR current densities (per geometric area of the catalyst layer deposited on the 
RDE) at 0.9 V for the four Pt/CIC catalysts vs. (a) CIC pore diameter and (b) average CIC 
wall thickness. 

The poor ORR activity of Pt/CIC-26 is therefore proposed to be due to higher ohmic losses through 
its walls vs. the other three Pt/CIC-X catalysts. As the XRD data (Table 1) provide evidence that the 
walls of the four CICs are all equally graphitic, their inherent wall conductivity is expected to be the 
same. However, the very thin walls of CIC-26 (Figure 5) vs. the other three CIC supports, as is clearly 
visible in Figure 9b (Table 2), is believed to result in high ohmic losses. At a wall thickness of ≥10 nm 
(CIC-15, CIC-50, and CIC-80), there is little difference in the ORR activity of the four CIC catalysts. 
For CIC-26, with an average wall thickness of 1.5 nm, a significant performance drop is clearly observed. 

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20 40 60 80

C
ur

re
nt

 D
en

sit
y 

(m
A

/c
m

2 ge
o)

 a
t 0

.9
 V

Pore diameter (nm)

Pt/CIC-26

Pt/CIC-50Pt/CIC-15

Pt/CIC-80

(a)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20 25

C
ur

re
nt

 D
en

sit
y 

(m
A

/c
m

2 ge
o)

 a
t 0

.9
 V

Average wall thickness (nm)

Pt/CIC-26

Pt/CIC-50

Pt/CIC-15
Pt/CIC-80

(b)

 

Figure 9. ORR current densities (per geometric area of the catalyst layer deposited
on the RDE) at 0.9 V for the four Pt/CIC catalysts vs. (a) CIC pore diameter and (b)
average CIC wall thickness.

The poor ORR activity of Pt/CIC-26 is therefore proposed to be due to higher
ohmic losses through its walls vs. the other three Pt/CIC-X catalysts. As the XRD data
(Table 1) provide evidence that the walls of the four CICs are all equally graphitic,
their inherent wall conductivity is expected to be the same. However, the very thin
walls of CIC-26 (Figure 5) vs. the other three CIC supports, as is clearly visible in
Figure 9b (Table 2), is believed to result in high ohmic losses. At a wall thickness
of ³10 nm (CIC-15, CIC-50, and CIC-80), there is little difference in the ORR activity
of the four CIC catalysts. For CIC-26, with an average wall thickness of 1.5 nm, a
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significant performance drop is clearly observed. This shows that the ORR activity
is significantly compromised when the walls of the carbon support become thinner
than 10 nm. This would explain the higher Tafel slope observed for the Pt/CIC-26
catalyst in Figure 8b [48].

The results in Figure 9b clearly show a precipitous drop in ORR activity when
the CIC wall thickness is <10 nm, but control of the CIC wall thickness lacks the
precision to further study the effect of wall thicknesses between 1.5 and 10 nm.
However, in parallel work focused on ordered mesoporous carbons (OMCs, see
Section 1.2), we have been able to precisely tune carbon support wall thicknesses
(described as “nano-strings”) in this desired range [14]. Consistent with the results
in Figure 8b, our earlier results have confirmed that the ORR activity is dramatically
lower for carbon nano-string thicknesses of <3 nm [14].

2.5. Verification of Effect of Carbon Wall Thickness on ORR Activity by
Theoretical Modeling

As further evidence supporting the role of carbon support wall thickness on
the observed ORR activity trends (Figure 9), porous electrode theory [46,48–51] was
used to calculate theoretical Tafel slopes for the ORR at the four Pt/CIC catalysts
and then compare them with the experimentally obtained results (Figure 8). Only
the limiting case of ohmic (migration control) overpotentials was considered here,
neglecting the contributions from diffusion (i.e., concentration overpotentials) [46]. It
is known from earlier porous electrode studies and modelling that electrode porosity
will have a similar influence on electrochemistry when either migration or diffusion
control is present [46,47].

Here, it was assumed that the measured overpotential (ηmeas.) contains
contributions only from activation (ηact) and ohmic (ηohm) overpotentials, with the
concentration overpotential assumed to be non-existent. The ohmic overpotential
will depend on the pore length (L) and pore radius (r) (or the wall length and wall
thickness), the electronic or ionic conductivity (κ) of the carbon matrix or electrolyte,
respectively, and the exchange current density (io), as shown in Equation (2). The
parameter A is given by Equation (3) (where R is the gas constant, F is Faraday’s
constant, and T is the temperature) [49,51].

ηmeasured “ ηact `
4RT

F
` ln secpAq

looooooooomooooooooon

ηohm

(2)

A “
ˆ

i0L2F
2κRTr

˙

1
2

exp
ˆ

ηactF
4RT

˙

(3)
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The current generated down the length of the pore depends on parameter A, as
shown in Equation (4) [49], is then:

I “
ˆ

4RTκπr2

LF

˙

AtanA (4)

It is important to note that, when using Equations (2) and (4) to predict trends
in Tafel data, only relative changes in the magnitude of r, κ, L, and io are important,
and thus it was not necessary to know their exact value. In fact, only r (the CIC
pore radius) is known with certainty in this work and thus the current and potential
scales in Figure 10 are arbitrary. To aid in the comparison of the experimental
and theoretical Tafel plots, the calculated Tafel plots were first normalized to the
experimental Pt/CIC-80 Tafel plot (Figure 8). The pore radius was then varied to
determine the effect on the calculated Tafel slope.

In the approach used here, the average pore length was assumed to be equal to
the average thickness of the dried catalyst film. It should be noted that the pores in
the catalyst layer are expected to be quite tortuous, resulting in an average length
much greater than the average film thickness. However, only relative differences
in average pore length will influence the theoretical Tafel plots and the tortuosity
factor (assumed to be the same for each film) was assumed to be constant for the four
catalyst layers and thus ignored. For the same reason, any increase in the average
pore length due to swelling of the catalyst layers after immersion in solution (due at
least partly to Nafion hydration) was assumed to be experienced equally by all four
catalyst layers, and was therefore also neglected. The average film thickness (3.5 µm)
was obtained for three different catalyst layers (on the RDE surface) at 15 different
locations using an optical microscope. The conductivity (κ) of the solution in the pores
was assumed to be 10 S/m (based on previous measurements of 0.5 M H2SO4) [48].
The same io for the ORR was assumed, as all four CICs have the same 10 wt. % Pt
loading and very similar Pt nanoparticle sizes (Table 1).

To understand what the predicted effect of solution resistance in the CIC
pores (impact of pore radius) would be on the Tafel data, theoretical Tafel plots,
allowing only r in Equations (3) and (4) to vary, were produced (Figure 10). At
low overpotentials, all four Pt/CICs are predicted to show the same activity (Tafel
slope of ca. 70 mV) since, at these correspondingly low currents, mass transfer losses
would not yet have become significant and thus the pores of all four CICs would be
fully utilized for the ORR. As the overpotential is increased, however, the catalyst
layers with smaller diameter pores begin to show an increasing Tafel slope, while the
Pt/CICs having larger diameter pores are shown to retain the original theoretical 70
mV slope (Figure 10). Thus, if the pore radius were the only factor influencing ORR
activity, the experimentally observed activity of the four 10 wt. % Pt/CIC catalysts
should increase in the following sequence: CIC-15 < CIC-26 < CIC-50 < CIC-80,
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which is clearly not observed in the real experimental data shown in Figure 8. These
results, as well as the theoretical predictions made in Figure 10, are summarized in
Table 3, clearly showing that the experimental data cannot be simulated if only pore
diameter effects are considered.
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Figure 10. (a) Theoretical Tafel plots for the ORR at the four 10 wt. % Pt/CICs,
with (b) showing the simulated data shown in (a), but over a narrower potential
range, also giving the theoretical (from Equations (2) and (4)) Tafel slopes over this
range of potential. The parameters used to calculate the theoretical Tafel slope are
io = 1 ˆ 10´5 A/m2, κ = 10 S/m, L = 3.5 µm (the assumed thickness of the catalyst
layer), and r (radius of CIC pore) = 15, 26, 50, or 80 nm.

Table 3. Comparison of measured vs. calculated ORR Tafel slope for the four
Pt/CIC catalysts.

Catalysts Experimental ORR Tafel Slope (Figure 8) a Modelled Tafel Slope b (Figure 10)

10 wt. % Pt/CIC-15 70 80
10 wt. % Pt/CIC-26 85 75
10 wt. % Pt/CIC-50 70 71
10 wt. % Pt/CIC-80 70 70

a Obtained in 0.5 M H2SO4 at 10 mV/s, 1000 rpm, room temperature conditions.
b Obtained from Equations (3) and (4), considering only the effects of pore diameter
and assuming migrational mass transport limitations.

3. Experimental Section

3.1. Synthesis of Silica Colloid Imprinted Carbons (CICs)

The synthesis of the silica colloid-imprinted carbon (CIC) was based on a
previously reported procedure [30]. Briefly, 1 g of a mesophase carbon pitch carbon
(Mitsubishi, Tokyo, Japan) was dispersed in 20 mL of EtOH:H2O (60:40 in volume),
followed by the drop-wise addition of a colloidal SiO2 suspension (colloid sizes of
12 nm (Ludox-HS-40), 22 nm (Ludux-AS-40; Sigma-Aldrich, St. Louis, MO, USA),
50 nm, and 80 nm (Chemical Products Corporation, Cartersville, GA, USA) with
vigorous stirring at room temperature. A mass ratio of 10.4:1 SiO2:carbon was used
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for the synthesis of the CICs, with the temperature of this mixture then raised to
50 ˝C to promote solvent evaporation. The SiO2/C composite was then heated to
360 ˝C for 2 h (the temperature used at this stage determines the final depth of
colloid penetration and thus the surface area of the CIC material) [14], followed by
carbonization at 900 ˝C for 2 h, all under N2. The solid product was then refluxed in
3 M NaOH for 24 h at 100 ˝C to remove the SiO2 from the pores.

3.2. Pt Loading of CIC-X (Where X Defines Pore Diameter) Supports

The CIC samples were loaded with 10 wt. % Pt using wet-impregnation [25],
with H2PtCl6 6H2O used as the Pt precursor and H2 as the reducing agent. Briefly,
0.67 g of H2PtCl6 6H2O were dissolved in 10 mL of acetone and added drop-wise to
1 g of carbon (CIC) with vigorous stirring. The Pt/CIC samples were then dried at
60 ˝C overnight. Reduction of H2PtCl6 6 H2O was achieved by heating the sample
under H2 from room temperature (RT) to 300 ˝C over a period of 2 h. The samples
were then kept at 300 ˝C for 2 h under N2 in order to remove any adsorbed hydrogen
and then allowed to cool to RT.

3.3. Electrochemical Evaluation of Oxygen Reduction Activity at Pt/CIC Catalysts

2 mg of the Pt/CIC powder was dispersed into 2 mL of a 80:20 (in weight)
H2O:isopropanol mixture. 20 µL of a 5 wt. % Nafion/isopropanol solution was then
added to this suspension, followed by sonication for 45 minutes. An Eppendorf
pipette was used to deposit 20 µL of the resulting ink onto a 7 mm diameter glassy
carbon (GC) rotating disc (RDE) working electrode (WE), followed by drying at room
temperature. A second 20 µL aliquot was then deposited onto the GC electrode,
followed by air drying, giving a total catalyst (Pt/CIC) loading of ca. 105 µg/cm2.

Electrochemical evaluation of the catalysts was performed in a three-electrode
cell containing a platinised Pt mesh counter electrode, a reversible hydrogen reference
electrode (RHE), and the 7 mm diameter glassy carbon RDE as the WE, cast with
the catalyst film. Cyclic voltammetry (CV) was carried out using an EG&G 173
potentiostat in conjunction with an EG&G PARC 175 function generator. The cell
solution was 0.5 M H2SO4, purged with vigorous bubbling of either N2 (Praxair 99%)
or O2 (Praxair medical grade).

Prior to evaluation, the catalyst layers were first electrochemically cleaned
by scanning between ´0.05 V and 1.3 V at 100 mV/s for 14 cycles, followed by
CV analysis (0.05 to 1.1 V vs. RHE) in a N2-saturated aqueous solution with no
electrode rotation. The ORR electrochemistry was then examined at 10 mV/s in
an O2-saturated cell and at a WE rotation rate of 1000 rpm, using a Pine analytical
rotor (Model ASR-2; Cisco, San Jose, CA, USA). The baseline CVs in N2-saturated
conditions were subtracted from the CVs collected under aerated conditions
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to remove the non-Faradaic component of the current. Chart 5 by PowerLab
(ADInstruments, Colorado Springs, CO, USA) was used for data acquisition.

3.4. Catalyst Characterization

X-ray powder diffraction (XRD) patterns were obtained using CuKα radiation
(λ = 0.15406 nm) at 40 kV (20 mA) using a Rigaku Multiflex X-ray diffractometer
(Department of Geosciences, University of Calgary, Calgary, Canada), with the
data processed using Jade software (Jade 6.5; Softonic, Barcelona, Spain). N2

adsorption-desorption isotherms were obtained at ´196 ˝C (Tristar 3000 Analyzer;
Micromeritics, Norcross, GA, USA). Prior to analysis, samples were out-gassed in
N2 at 250 ˝C for 4 h. The specific surface area of the CICs was obtained using
the Brunauer-Emmett-Teller (BET) plot (0.05 < P/Po < 0.30), where P and Po are
the partial pressure and vapour pressure of the adsorbate gas, respectively. The
total pore volume was calculated at P/Po = 0.99, while the pore size distribution
curves were determined from the adsorption branch of the isotherm using the
Barrett-Joyner-Halenda (BJH) mode.

All Transmission Electron Microscopy (TEM) work was carried out using a
Tecnai TF20 G2 FEG-TEM (FEI, Hillsboro, OR, USA) in the Microscopy and Imaging
Facility (Health Sciences Centre) at the University of Calgary, with a Fischione
2040 Dual-Axis Tomography Holder (Fischione Instruments, Export, PA, USA). The
catalysts were suspended in ethanol and sonicated for 5 minutes. A droplet of this
suspension was placed on one side of a TEM Slot Grid that was covered with a 40 nm
continuous Formvar film (EMS, Hatfield, PA, USA) and then left to dry for several
minutes. In some cases, a Lacey Carbon Grid (EMS) was used. Colloidal Au particles
(10 nm diameter, Cell Microscopy Center, University Medical Center Utrecht, Utrecht,
The Netherlands) were placed on the opposite side of the grid to serve as fiducial
markers. Finally, a thin carbon coating was applied to both sides of the grid for
mechanical stabilization and to reduce electrical charging in the microscope. All TEM
images were captured on a 1024 ˆ 1024 pixel Gatan GIF 794 CCD (Gatan, Pleasanton,
CA, USA). Dual axis tilt images were taken with the SerialEM software [52] at a tilt
range from´63˝ to +63˝ in 1˝ increments. Tomographic reconstruction was achieved
by weighted back-projection with the IMOD software package [53,54]. The same
software was used for visualization and analysis.

4. Conclusions

Significant research over the past decade has focused on the development of
novel mesoporous carbons materials for use as Pt supports in proton exchange
membrane fuel cell (PEMFC) electrodes. Specifically, carbon nanotubes (CNTs),
ordered mesoporous carbons (OMCs), and colloid imprinted carbons (CICs) have
all shown promise as possible alternatives to conventional microporous carbons.
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While the majority of the research efforts in this field have focused on the impact
of pore diameter on the oxygen reduction reaction (ORR) activity of Pt/C catalysts,
our group has recently highlighted the importance of carbon wall (“nano-string”)
diameter in OMCs and carbon wall thickness in CICs on ORR activity.

In the present study, four colloid imprinted carbons (CICs) with pore diameters
of 15, 26, 50 or 80 nm in diameter were synthesized and then loaded with 10 wt. % Pt,
all showing particle sizes of ~4.5 nm. Through rotating disc electrode studies in fully
aerated 0.5 M H2SO4 solutions, it was demonstrated that the CIC wall thickness, as
opposed to pore diameter, is the most critical factor in determining the ORR activity
of these Pt/CIC catalysts. This was further confirmed through modeling efforts that
demonstrated that the experimentally observed Tafel slopes cannot be predicted
based on changes in pore diameter alone.

While the majority of the research efforts in designing porous carbon supports
have focused on controlling and optimizing pore diameter, our work has again
shown that careful considerations of wall thickness must also be made. It is likely
that the relative importance of wall thickness vs. pore diameter depends on many
factors, including the actual dimensions of the pores and walls and the catalyst layer
components (i.e., ionomer content, Pt loading, etc.). However, our experimental and
modeling work have clearly demonstrated the significant impact that carbon wall
thickness can have on the ORR activity of Pt/carbon catalysts, and the importance of
fully characterizing wall thickness when attempting to interpret ORR data obtained
at Pt-loaded mesoporous carbon materials.
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Electrocatalytic Activity and Durability of
Pt-Decorated Non-Covalently
Functionalized Graphitic Structures
Emanuela Negro, Alessandro Stassi, Vincenzo Baglio, Antonino S. Aricò and
Ger J.M. Koper

Abstract: Carbon graphitic structures that differ in morphology, graphiticity and
specific surface area were used as support for platinum for Oxygen Reduction
Reaction (ORR) in low temperature fuel cells. Graphitic supports were first
non-covalently functionalized with pyrene carboxylic acid (PCA) and, subsequently,
platinum nanoparticles were nucleated on the surface following procedures
found in previous studies. Non-covalent functionalization has been proven
to be advantageous because it allows for a better control of particle size and
monodispersity, it prevents particle agglomeration since particles are bonded to
the surface, and it does not affect the chemical and physical resistance of the support.
Synthesized electrocatalysts were characterized by electrochemical half-cell studies,
in order to evaluate the Electrochemically Active Surface Area (ECSA), ORR activity,
and durability to potential cycling and corrosion resistance.

Reprinted from Catalysts. Cite as: Negro, E.; Stassi, A.; Baglio, V.;
Aricò, A.S.; Koper, G.J.M. Electrocatalytic Activity and Durability of Pt-Decorated
Non-Covalently Functionalized Graphitic Structures. Catalysts 2015, 5, 1622–1635.

1. Introduction

Fuel cells operating at low temperature and employing polymer electrolyte
membranes are very promising as sustainable power sources for portable, automotive
and stationary applications because of their high efficiency and low CO2 emission [1–3].
However, for large scale distribution of these devices, it is necessary to reduce
the cost and, at the same time, increase the durability of the catalyst. In fact,
the latter is commonly based on platinum nanoparticles (NPs) supported on high
surface area carbon [4–7]. The low durability of the conventional Pt-based electrode
materials is due to several phenomena, such as sintering, corrosion and dissolution
of catalyst metal particles, that take place especially in non-ideal conditions such as
potential and temperature cycling and fuel starvation [8]. The major degradation
mechanism has been identified in carbon corrosion at high potentials (>0.8 V vs.
RHE). Carbon corrosion can cause, among others, loss of hydrophobicity leading to
electrode flooding, catalyst detachment leading to loss of the Electrochemically Active
Surface Area (ECSA), loss of porosity, with consequent mass transport problems [4,9].
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Moreover, as clearly reported by Siroma et al. [10], the presence of platinum onto the
carbon surface significantly increases the degradation of the latter. Recent studies
have proven that graphitic materials such as carbon nanotubes (CNTs), nanofibers,
etc. are significantly more resistant to carbon corrosion than the widely used carbon
black due to the higher stability of the sp2-hybridized carbon [3,11–18].

Within the TU Delft group, we developed a novel carbon material that
consists of networked carbon nanostructures (CNNs), currently produced by the
TU Delft spin-off company CarbonX (formerly Minus9) [11,19]. CNNs are 3D
hyper-branched carbon graphitic structures organized in a nano-scale pattern.
They can be easily produced by Chemical Vapour Deposition (CVD) of ethene
over transition metal catalyst, used as nucleation elements, and synthetized in
bicontinuous microemulsions (BME) [20–22]. The carbonization of the surfactant,
being the primary carbon source, leads to the formation of networked, sponge-like,
carbon graphitic structures (CNNs), which show promising properties for application
as fuel cell supports, such as high electrical conductivity, great oxidation resistance,
high specific surface area, micro- and meso-porosity, surface defects increasing the
material ability to disperse in solution [11–14,19]. Previous studies showed that
CNNs are more durable supports for platinum catalysts in the ORR compared to
commercial carbon supports, while the simplicity and versatility of the synthesis
route allows a cheaper production than CNTs [12–14].

The relatively inert surface of graphitic carbon supports has been addressed
as a drawback for the use of these materials because of lower interaction with the
catalyst NPs and thus the weaker bonding [23]. Defects on the surface have a
controversial effect: they are considered to be beneficial since they act as anchoring
points for the platinum NPs, reducing migration and coalescence and thus loss of
ECSA, whereas they can decrease the carbon resistance to corrosion by making it
more prone to oxidation [24–26]. Introduction of defects on the surface can be done
chemically or electrochemically, e.g., with acid treatment or potential cycling [27],
leading to covalently functionalized surfaces, or physically, by absorption of small
molecules containing functional groups [28], leading to non-covalently functionalized
surfaces. In covalent functionalization, the graphitic surface is functionalized using
an oxidative process, such as an acid or plasma treatment. Surface groups such as
hydroxyl (-OH), carboxyl (-COOH) and carbonyl (-C=O) groups are created. These
groups will act as anchor points for Pt NPs; however, they also represent defects
in the graphitic structure and thus they might decrease CNNs chemical resistance.
Non-covalent functionalization of graphitic surfaces is based on π-π stacking between
the surface and a linking molecule. A linker molecule consists of a benzyl or pyrene
group that attaches to the surface of the CNTs/CNNs and a thiol, amine or carboxylic
acid group that anchors the Pt ion [28]. Recent work by Oh et al. [28] used a 1-pyrene
carboxylic acid (1-PCA) as a linker molecule and the standard polyol method for Pt
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deposition. PCA turned out not to be poisonous for the surface of the Pt catalyst,
and not only was no carbon corrosion measured (indirectly via produced CO2) [28],
but also PCA seemed to protect the graphitic surface from degradation, inhibiting
corrosion by indirect contact of the Pt catalyst with the carbon surface, particle
migration and coalescence.

In the present study, we aim to compare electrocatalysts synthetized with the
PCA functionalization combined with the polyol method over graphitic materials
with different physical-chemical properties, using two batches of CNN supports
produced in-house and a batch of commercial CNTs.

2. Results and Discussion

2.1. Carbon Support Synthesis, Functionalization and Characterization

A summary of the properties of different carbon supports is reported in Table 1.
The batches of CNN used for this work exhibit a lower porosity (63 and 39 m2¨g´1 for
CNN50 and CNN80 respectively) than commercial CNTs (110 m2¨ g´1), Table 1. This
can be easily explained by the ticker average diameter, 50 nm and 80 nm, respectively,
for CNN50 and CNN80 compared to 20 nm for CNT20, Table 1. This limits the
possibility to achieve high Pt loading without affecting the durability of the catalyst.
However, recent studies demonstrated that lowering Pt loading improves catalyst
utilization and performance [29]. Previous studies reveal that CNN material is mainly
meso-porous (2–50 nm), which is beneficial for catalysis as it assures an optimal mass
transport [14]. For CNTs, the porosity largely depends on the packing parameter that
can strongly vary if the carbon surface is functionalized [14].

Table 1. Carbon supports’ physical-chemical properties.

Sample Average
Diameter/nm

Specific Surface
Area/m2 g´1 Tox/˝C ID/IG PCA/%

CNT20 20 110 700 0.7 7.5
CNN50 50 63 630 0.9 8.3
CNN80 80 39 610 1 9

Figure 1a reports the weight loss of the samples as a function of temperature
from TGA analysis in air. Table 1 reports the temperature of oxidation, 700 ˝C, 630 ˝C
and 610 ˝C for CNT20, CNN50 and CNN80, respectively. All the samples show
higher oxidation resistance compared to for example carbon black or Vulcan, the
most widely used catalyst supports [4,9,14]. The difference in oxidation resistance
can be attributed to the presence of defects. Defects can be detected and quantified
with Raman Spectroscopy measurements, Figure 1b. Table 1 also reports the ID/IG
values (ratio between the disordered and the graphitic carbon structure) estimated
from the ratio between the intensity of the D band at circa 1350 cm´1 and G band
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at circa 1580 cm´1 [30]. Raman spectroscopy analysis showed a higher ID/IG for
CNN80 and CNN50 than for CNT20, implying a higher content of defects in the
graphitic structure for the CNN, Figure 1b. This is due to the oxygen and sulphur
that has been integrated into the structure as a consequence of the precursor used
and was confirmed by EDX in previous work [14]. The amount of defects increases
with the average diameter of the carbon nanostructures, from 0.7 to 1. A similar
trend can be observed from the broadness of the peak corresponding to graphitic
crystalline structure in XRD measurements, Figure 1c. The broader the peak, the
lower the level of order indicating smaller crystalline domains [15,16]. Part of these
defects consists of quinone groups on the surface, which in previous studies were
found to improve ORR or even to be the active catalyst for it [11,14].
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Figure 1. (a) TGA traces of decomposition in air; (b) Raman spectrum and (c) XRD
measurements for the graphitic carbon supports.

Carbon nanostructures were functionalized with PCA. PCA is a fluorescent
molecule. The confocal microscopy image in Figure 2a shows that PCA is uniformly
distributed on the surface of the graphitic carbon nanostructures. PCA concentration
in ethanol was measured by UV-Vis spectroscopy.

After functionalization and filtration of carbon nanostructures, the collected
PCA in ethanol was diluted 100 times and measured by UV-Vis. A calibration curve
was calculated before using Lambert-Beer law and monitoring the absorbance peak
at 345 nm. Figure 2b shows that concentration was higher after functionalization of
respectively CNT20, CNN50 and CNN80, indicating lower adsorption efficiency on
the surface of the graphitic carbon supports. This might be due to the more defected
carbon (see Table 1 and Figure 1b) into ethanol, that was also shown being beneficial
for dispersion [11]. Additionally, PCA might more easily adhere on less-curved
surfaces, better approximating a planar configuration. PCA interaction with a more
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curved surface as CNT20 might be less strong since optimal adhesion would require
a strain in the molecule.
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Figure 2. (a) Confocal Microscopy image of CNN80 after functionalization; (b)
UV-Vis spectra of PCA/ethanol collected after functionalization and filtration and
diluted 100 times.

2.2. Platinum Deposition

The platinum loading was calculated from TGA and confirmed by EDX. For all
the samples, the Pt loading result was lower than the target 15%, i.e., 7%, 9% and
11% for Pt-CNT20, Pt-CNN50 and Pt-CNN80 respectively (see Table 2). Interestingly,
the Pt loading was proportional to the PCA loading, Table 1, 7.5%, 8.3% and 9% for
CNT20, CNN50 and CNN80 respectively. The more functionalized the graphitic
carbon support, the better the Pt NPs adsorption. In fact, carboxylic groups and
defects in general can both act as nucleation points for Pt reduction and provide
anchoring points for the formed NPs [12,14,28].

Table 2. Electrocatalyst physical chemical properties.

Sample Pt Loading/% Particle Size TEM/nm Particle Size XRD/nm

CNT20 7 2.3 ˘ 0.2 3.9
CNN50 9 2.3 ˘ 0.2 3.1
CNN80 11 2.3 ˘ 0.2 2.4

Figure 3 reports the TEM images for the synthetized electrocatalysts. In all the
samples, the Pt NPs size calculated from the measurement of at least 200 particles
was 2.3 ˘ 0.2 nm. However, NP size calculated from XRD patterns using the
Scherrer equation for the peak corresponding to Pt (220), which is not affected by the
interference of other peaks, differed from TEM measurements. Results are reported
in Table 2. The NP size measured was higher for CNT20 and CNN50, respectively
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3.9 nm and 3.1 nm, indicating the presence of larger NPs probably resulting from
coalescence due to poor NP interactions with the support because of a lower amount
of functional groups. These results are indeed consistent with different PCA loadings
achieved on the supports. These larger NPs could not be visualized by TEM analysis.Catalysts 2015, 5 1627 

 

 

 

Figure 3. TEM images of the synthetized electrocatalysts. 

2.3. Electrochemical Characterization 

2.3.1. ECSA and ORR Activity before and after ADT 

An accelerated test procedure consisting of 1000 cycles at potentials between 0.6 and 1.2 V and a 

scan rate of 20 mV·s−1 in 0.5 M H2SO4 saturated with N2 was carried out to evaluate catalyst stability 

under potential cycling conditions. The cyclic voltammetry profiles for the different electrodes before 

and after the potential cycling procedure are reported in Figure 4a–c. It can be observed how the PtOx 

reduction peak shifts to higher potentials and decreases in intensity after the cycling process, which 

can be attributed to an increase of particle size with a consequent reduction of the electrochemically 

active surface area (ECSA) and increase of intrinsic catalytic activity for oxygen reduction. It is clear 

also from the hydrogen adsorption region that the ECSA decreases after the accelerated test, due to 

sintering or dissolution of Pt particles [31]. The resulting ECSA values before and after ADTs are 

reported in Table 3. The ECSA is consistent with the average particle size. Due to the smallest 

crystallite size and the highest functionalization degree, the Pt/CNN80 catalyst showed the highest 

ECSA among the considered samples both before and after the ADT (Table 3 and Figure 5).  

However, the loss of ECSA is quite high for all samples (more than 40%) but still comparable to or 

higher than the values reported for catalyst synthetized for similar studies as well as for many 

commercial catalysts [6,16,17,32]. In addition, the current density in the activation region (Figure 4d) 

decreases after the ADTs for all catalysts. The activity at the beginning of life is higher for CNN50 

(due to the optimal particle size of 3 nm, which is a compromise between surface area and specific 

surface activity); whereas, after the ADT, the Pt/CNN80 shows the best behaviour probably due to the 

largest ECSA. Figure 5 shows the XRD patterns of the catalysts before and after the ADTs; also, the 

patterns after the carbon corrosion tests are reported for comparison. An increase of crystallite size was 

observed for all samples after both tests. This is also evident in the TEM images of Figure 6d (only 

images for Pt-CNT20 sample are reported as an example), in which a certain degree of sintering in 

comparison to the fresh catalyst is observed. This catalyst is also affected by the Ostwald ripening 

process, which leads to the dissolution and re-precipitation of Pt particles onto other Pt particles 

leading to big agglomerates. The results regarding the crystallite size determination before and after 

the AD and carbon corrosion tests are summarized in Figure 6e. 

Figure 3. TEM images of the synthetized electrocatalysts.

2.3. Electrochemical Characterization

2.3.1. ECSA and ORR Activity before and after ADT

An accelerated test procedure consisting of 1000 cycles at potentials between
0.6 and 1.2 V and a scan rate of 20 mV¨ s´1 in 0.5 M H2SO4 saturated with N2 was
carried out to evaluate catalyst stability under potential cycling conditions. The cyclic
voltammetry profiles for the different electrodes before and after the potential cycling
procedure are reported in Figure 4a–c. It can be observed how the PtOx reduction
peak shifts to higher potentials and decreases in intensity after the cycling process,
which can be attributed to an increase of particle size with a consequent reduction of
the electrochemically active surface area (ECSA) and increase of intrinsic catalytic
activity for oxygen reduction. It is clear also from the hydrogen adsorption region
that the ECSA decreases after the accelerated test, due to sintering or dissolution of
Pt particles [31]. The resulting ECSA values before and after ADTs are reported in
Table 3. The ECSA is consistent with the average particle size. Due to the smallest
crystallite size and the highest functionalization degree, the Pt/CNN80 catalyst
showed the highest ECSA among the considered samples both before and after the
ADT (Table 3 and Figure 5). However, the loss of ECSA is quite high for all samples
(more than 40%) but still comparable to or higher than the values reported for catalyst
synthetized for similar studies as well as for many commercial catalysts [6,16,17,32].
In addition, the current density in the activation region (Figure 4d) decreases after
the ADTs for all catalysts. The activity at the beginning of life is higher for CNN50
(due to the optimal particle size of 3 nm, which is a compromise between surface area
and specific surface activity); whereas, after the ADT, the Pt/CNN80 shows the best
behaviour probably due to the largest ECSA. Figure 5 shows the XRD patterns of
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the catalysts before and after the ADTs; also, the patterns after the carbon corrosion
tests are reported for comparison. An increase of crystallite size was observed for
all samples after both tests. This is also evident in the TEM images of Figure 6d
(only images for Pt-CNT20 sample are reported as an example), in which a certain
degree of sintering in comparison to the fresh catalyst is observed. This catalyst is
also affected by the Ostwald ripening process, which leads to the dissolution and
re-precipitation of Pt particles onto other Pt particles leading to big agglomerates.
The results regarding the crystallite size determination before and after the AD and
carbon corrosion tests are summarized in Figure 6e.Catalysts 2015, 5 1628 
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Figure 4. Cyclic Voltametry performed in 0.5 M H2SO4, N2 saturated, scan rate
20 mV¨ s´1, for (a) Pt-CNT20; (b) CNN50 and (c) CNN80. Before (line) and
after ADT tests (dotted); (d) Tafel plots IR corrected. Dotted lines represent the
measurements after ADT tests.

Table 3. ECSA before and after ADT, particle size measured from XRD
after ADT and corrosion test, DLC, DLC after over before corrosion, carbon
corrosion parameters.

Sample ECSA/m2

g´1

ECSA after
ADT/m2

g´1

ECSA Loss
with

ADT/%

Particle
Size XRD

after
ADT/nm

DLC0/F
g´1 DLCf/DLC0 k n

Particle
Size XRD

after
Corrosion/nm

CNT20 44.2 22.4 ´49 5.1 99 1.11 30.97 0.88 6.7
CNN50 52.1 30.2 ´42 5.9 66 1.26 6.46 0.98 5
CNN80 58.3 32.5 ´44 6.1 77 1.39 30.7 0.92 5.8
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Figure 5. XRD measurements of electrocatalysts fresh, after ADT and after
corrosion: (a) Pt/CNT20; (b) Pt/CNN50; (c) Pt/CNN80; (d) TEM images for
Pt-CNT20 fresh, after ADT and after corrosion; (e) Pt particle size measured from
XRD measurements for fresh, after ADT and after corrosion electrocatalysts.
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2.3.2. Corrosion Tests 

Corrosion resistance was evaluated by electrochemical methods. Carbon corrosion experiments 
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measuring exchange current density as a function of time. Carbon corrosion takes place at potentials 

larger than 0.207 V vs. RHE according to the following reactions: 

C + H2O↔COsurf + 2H+ + 2e− E0 > 0.3 V versus RHE (1) 
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Generally, the overall reaction is expressed as: 

C + 2H2O →  CO2 + 4H+ + 4e− 𝐸0 = 0.207 V vs RHE  (3) 
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𝑗 = 𝑘𝑡−𝑛 (4) 

where k and n are the corrosion rate coefficient and the order of corrosion reaction respectively [16]. 

Figure 6a shows log j vs. log t curves from which the parameters, k and n, were extracted. The charge 

exchanged over 60 min and the extracted parameters k and n are summarized in Table 3. 

Figure 6. (a) Current density–time curves of carbon samples corrosion in double
logarithmic scales, performed in half-cell at 1.4 V vs. RHE, fed with nitrogen and at
room temperature; (b) Ratio of the double layer capacitance before and after and
corrosion for the electrocatalysts.
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2.3.2. Corrosion Tests

Corrosion resistance was evaluated by electrochemical methods. Carbon
corrosion experiments were conducted in a three-electrode cell by means of potential
holding (1.4 V vs. RHE) for 60 min and measuring exchange current density as a
function of time. Carbon corrosion takes place at potentials larger than 0.207 V vs.
RHE according to the following reactions:

C ` H2OØCOsurf ` 2H+ ` 2e´E0 ą 0.3 V versus RHE (1)

COsurf ` H2OØCO2 ` 2H+ ` 2e´E0 ą 0.8 V versus RHE (2)

Generally, the overall reaction is expressed as:

C` 2H2O Ñ CO2 ` 4H` ` 4e´ E0 “ 0.207 V vs RHE (3)

whose current-time, j ´ t, behavior is generally described according to the
following equation:

j “ kt´n (4)

where k and n are the corrosion rate coefficient and the order of corrosion reaction
respectively [16]. Figure 6a shows log j vs. log t curves from which the parameters,
k and n, were extracted. The charge exchanged over 60 min and the extracted
parameters k and n are summarized in Table 3.

From Figure 6a, one may observe that the corrosion rate for Pt/CNT20 is
higher than Pt/CNN80. The lowest corrosion rate is achieved for Pt/CNN50.
Generally, corrosion depends on the amount of defects present in the CNN samples
and on the Pt-carbon contact surface area, since Pt is a strong catalyst for carbon
corrosion. Previous studies show that corrosion in PEM electrodes, measured as
CO2 evolution, is proportional to the Pt-carbon contact area [4]. Since the Pt loading
does not vary significantly for the different samples, one would expect that the most
defected carbon (CNN80) would be the less resistant to corrosion. The different
behavior of our catalysts is probably related to the presence of PCA, which acts as a
protection from carbon corrosion, preventing direct contact with Pt. Additionally,
the platinum-support interaction plays an important role in improving the long-term
stability, as much as 20% as reported in previous studies [33]. The amount of defects
on the carbon surface might then have a controversial role: they result in a support
more prone to corrosion but they favor PCA adhesion that acts as a protection.
CNN50 might then have an optimum amount of defects.

After corrosion, the Double Layer Capacitance (DLC) increased due to an
increased amount of defects on the surface and an increased roughening of the
surface. The initial DLC, calculated at the net of GDL contributions and neglecting
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the contribution of Pt, and the ratio of DLC after and before corrosion are reported in
Table 3 and Figure 6b, respectively, for the various samples. For CNT the corrosion
is expected to take place according to Equations (1) and (2), leading to an increase
of DLC due to the creation of more surface defects, but at the same time, the ratio
DLCf/DLC0 does not increase so much due to a loss of carbon. For CNN, carbon
loss plays a less significant role, since DLC increase is much more significant.

3. Experimental Section

3.1. Chemicals

Sodium bis(2-ethyhexyl) sulphosuccinate as surfactant, also known as Na-AOT
(C20H37NaO7S, 99%), n-heptane (99.9%) as solvent, ethanol (99.5%), methanol
(MeOH, 99.8%), sulphuric acid (97%–98%), chloroplatinic acid hexahydrate (ě99.9%),
perchloric acid (70%),) sodium hydroxide (>97%), 1-pyrenecarboxylic acid (97%) were
purchased from Sigma-Aldrich, Milan, Italy. Iron(II) acetate (FeAc, 97%) metal source
was purchased from Strem Chemicals. Ethene, nitrogen, hydrogen and oxygen gases
were supplied in cylinders by Siad with 99.999% purity. Multi-walled CNTs (NTX3)
were purchased from Nanothinx S.A, Rio Patras, Greece, ethylene glycol (99.5%) and
acetone (>99.8%) from Fluka, Milan, Italy, Nafion® solution in aliphatic alcohols (5%)
was purchased from Sigma-Aldrich, Milan, Italy, Carbon Cloth coated with a gas
diffusion layer was purchased from E-TEK (Boston, MA, USA). All aqueous solutions
were prepared using ultrapure water obtained from a Millipore Milli-Q system with
resistivity >18 MΩ¨ cm´1. All chemicals were used as received from suppliers.

3.2. Carbon Support Synthesis and Functionalization

3.2.1. Preparation of CNNs

Two batches of CNNs, labelled CNN50 and CNN80, were synthesized by
catalytic CVD, as previously described [11,19].

3.2.2. PCA Functionalization of Graphitic Carbon Supports

Graphitic Carbon supports were non-covalently functionalized by
1-pyrenecarboxylic acid (PCA). The PCA-functionalized carbons were prepared
by adding the raw carbons to concentrated ethanol containing PCA (1 mM). The
mixture was ultrasonicated for 20 min and then refluxed for 3 h at 25 ˝C under
vigorous stirring. PCA-functionalized Carbons were recovered by centrifugation
and washed three times with ethanol. PCA concentration in ethanol at the end of
functionalization was measured by UV-Vis in order to calculate the PCA deposited,
having previously built a calibration curve with known concentrations.
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3.2.3. Catalyst Deposition

Platinum NPs were prepared by a colloidal route described in previous
works [34]. Briefly, H2PtCl6 and carbon support were mixed in ethylene glycol
with a concentration of 0.5 mg¨Pt mL´1 and 3.5 mg¨mL´1 respectively. The pH was
adjusted to 8–10 by addition of 1M NaOH solution. Subsequently, the temperature
was increased to 125 ˝C and kept for 2 h, under N2 reflux and rigorous stirring. The
pH was adjusted to 2 by addition of sulphuric acid, in order to enhance Pt/carbon
support interactions as described in previous work [28,34], and was mixed for 12 h.
Afterwards, the mixture was filtrated, washed, centrifuged and dried at 100 ˝C.

3.3. Supports and Electrocatalyst Characterization

UV-Vis spectra were recorded as a function of time with a UV-1800
spectrophotometer from Shimadzu Corporation, Kyoto, Japan. Water was used
as a reference because of its stable absorption. Confocal Microscopy images were
acquired using a liquid cell.

Transmission Electron Microscopy (TEM) was accomplished using a
CM300UT-FEG electron microscope, Philips, Amsterdam, The Netherlands, with a
point resolution of 0.17 nm, information limit of 0.1 nm, which was operated at 200 kV,
in which images were acquired with a TVIPS CCD camera. For TEM-measurements,
samples were prepared by immersing a Quantifoil R copper microgrid in a dispersion
of powder consisting of electrocatalyst prepared in ethanol. Size distributions were
obtained by measuring at least 200 NPs per sample. Elemental analysis by means
of energy-dispersive X-ray spectroscopy (EDX) was carried out on all the samples.
For textural characterization, an Autosorb-1c setup (Quantachrome Instruments,
Boynton Beach, FL, USA) was used. All samples were outgassed at 350 ˝C for 17 h
in vacuum. Nitrogen (N2) adsorption isotherms were obtained at 77 K. Specific
surface area was obtained from the N2 isotherm using the Brunauer-Emmett-Teller
(BET) method. Micropore volumes were calculated using the Dubinin Radushkevich
equation. Raman spectroscopy was performed with a Raman imaging microscope,
System 2000 from Renishaw Public Limited Company, Wotton-under-Edge, UK,
operated with a 20 mW Argon ion laser of wavelength 514 nm. Samples were cast
on a silicon wafer and measured over 60 s. TGA measurements were carried on
a TGA7, Perkin Elmer, Waltham, MA, USA. The weight loss in air was measured
when increasing the temperature from 25 ˝C to 900 ˝C, with a rate of 10 ˝C min´1.
Raman spectroscopy was performed with a Raman imaging microscope, System 2000
from Renishaw Public Limited Company, operated with a 20 mW Argon ion laser of
wavelength 514 nm. Samples were cast on a silicon wafer and measured over 60 s.

The catalysts were characterized by XRD using an X-pert 3710 X-ray
diffractometer (Philips, Amsterdam, The Netherlands) with Cu Kα radiation
operating at 40 kV and 30 mA. The peak profile of the (220) reflection in the
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face centered cubic structure of Pt catalysts was analyzed by using the Marquardt
algorithm, and it was used to calculate the crystallite size by the Debye-Scherrer
equation. Instrumental broadening was determined by using a standard Pt sample.

3.4. Electrochemical Characterization

Half-cell tests were carried out in a three electrode cell consisting of a
gas diffusion electrode as a working electrode, a mercury-mercurous sulphate
(Hg/Hg2SO4, sat.) as a reference electrode and a platinum grid as counter electrode.
The gas diffusion electrode was prepared according to a procedure described in
previous work [16]. Briefly, hydrophobic carbon cloth covered with a diffusion
layer (LT 1200 W Elat, ETEK, Boston, MA, USA) was used as backing layer on
which the catalytic layer was distributed with a blade. The catalytic layer was
composed of 33 wt% Nafion and 67 wt. % catalyst. Electrocatalyst loading was
1.3 ˘ 0.3 mg¨ cm´2. The electrode area was 1.5 cm2 and 0.5 M H2SO4 solution
was used as electrolyte. Gases (oxygen or nitrogen) were fed from the backside
of the electrode in order to perform electrochemical test as described. An Autolab
(Metrohm, Utrecht, The Netherlands) potentiostat/galvanostat was used to perform
the measurements. ORR activities of the prepared catalysts were evaluated at room
temperature by means of the linear sweep voltammetry at 10 mVs´1 between the
Open Circuit Voltage (OCV) and 0.1 V versus a Reversible Hydrogen Electrode (RHE).
Kinetic current, mass specific activity im and specific activity is were evaluated
at 0.9 V. Ohmic resistance correction calculated with Impedance Spectroscopy (IS)
was applied. ORR activities after degradation were evaluated in the same manner.
Accelerated Durability Tests (ADTs) were carried out by scanning the potential
between 0.6 and 1.2 V at a scan rate of 20 mV¨ s´1 in 0.5 M H2SO4 saturated with
N2 by performing 1000 cycles [16]. Uncompensated resistance was obtained from
high frequency impedance. Cyclic Voltammetry (CV) was carried out before and
after ADT at room temperature, 25 ˝C, with a scan rate of 50 mV¨ s´1 in a potential
window of 0.02–1.2 V vs. RHE. ORR activities before and after ADT were evaluated
by means of Linear Sweep Voltammetry (LSV) at 10 mV¨ s ´1 between the OCV and
0.1 V vs. RHE. Electrochemical carbon corrosion experiments were conducted in the
half-cell system by means of potential holding (1.4 V vs. RHE).

4. Conclusions

We have successfully synthetized a Pt-catalyst supported on different graphitic
supports, two synthetized in-house (CNN) and one commercial (CNT), previously
non-covalently functionalized with PCA. Supports differ in geometry and thus
specific surface area, content of defects and thus oxidation resistance. We have
showed that Pt deposition over non-covalently functionalized graphitic structure
is efficient and reliable. However, PCA functionalization efficiency depends on the
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number of defects that enhance the dispersion properties of the otherwise inert
graphitic surfaces. The presence of defects then facilitates PCA adsorption and
subsequently the Pt deposition. From accelerated durability tests and corrosion tests,
catalyst durability seems to depend on a synergy between carbon support properties
and deposition methods.
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Application of a Coated Film Catalyst Layer
Model to a High Temperature Polymer
Electrolyte Membrane Fuel Cell with Low
Catalyst Loading Produced by Reactive
Spray Deposition Technology
Timothy D. Myles, Siwon Kim, Radenka Maric and William E. Mustain

Abstract: In this study, a semi-empirical model is presented that correlates
to previously obtained experimental overpotential data for a high temperature
polymer electrolyte membrane fuel cell (HT-PEMFC). The goal is to reinforce the
understanding of the performance of the cell from a modeling perspective. The
HT-PEMFC membrane electrode assemblies (MEAs) were constructed utilizing an
85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas
diffusion electrodes (GDEs) manufactured by Reactive Spray Deposition Technology
(RSDT). MEAs with varying ratios of PTFE binder to carbon support material (I/C
ratio) were manufactured and their performance at various operating temperatures
was recorded. The semi-empirical model derivation was based on the coated film
catalyst layer approach and was calibrated to the experimental data by a least squares
method. The behavior of important physical parameters as a function of I/C ratio
and operating temperature were explored.

Reprinted from Catalysts. Cite as: Myles, T.D.; Kim, S.; Maric, R.; Mustain, W.E.
Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer
Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive
Spray Deposition Technology. Catalysts 2015, 5, 1673–1691.

1. Introduction

Three of the most significant challenges facing the wide commercialization of
proton exchange membrane fuel cells (PEMFCs) are: (1) improving catalyst tolerance
to impurities [1–6]; (2) simplifying water and thermal management schemes [1–4,6];
and (3) enhancing the kinetics of the oxygen reduction reaction (ORR) at the
cathode [1,2,6–8]. Recent research has focused on mitigating the above challenges by
increasing the operating temperature of PEMFCs from ~80 ˝C toě 120 ˝C, resulting in
so-called high temperature PEMFCs (HT-PEMFCs). At high operating temperatures,
carbon monoxide adsorption onto the catalyst surface, which greatly reduces cell
performance, is not favored. It was found for temperatures above 160 ˝C that
upwards of 3% carbon monoxide in the feed stream could be tolerated [9,10]. The
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elevated temperature of the HT-PEMFC also means that there is a greater thermal
gradient between the cell and the environment. This simplifies the balance of
plant related to thermal management due to faster heat rejection [2]. Operating
at elevated temperature does introduce new difficulties in maintaining adequate
hydration of proton exchange membranes such as Nafion®, though this issue has
been addressed with the use of phosphoric acid doped membranes which do not
require external humidification [1,11,12]. Operating without external humidification
not only simplifies balance of plant but also implies single phase, gaseous, transport
in the gas diffusion layers (GDL) and flow channels, which makes reactant diffusion
processes more facile [3,4]. To date, phosphoric acid-doped polybenzimidazole
(PBI) membranes have been among the most successful acid doped membranes for
HT-PEMFC applications [11–20]. PBI outperforms conventional membranes (i.e.,
Nafion®) by self-solvating protons to allow charge migration, hence minimizing the
reliance on water for proton transport.

Despite their advantages, widespread implementation of HT-PEMFCs still has
significant roadblocks. Material performance and durability can be compromised
at elevated temperature [6]. The use of phosphoric acid doped membranes to
combat dehydration issues results in a highly acidic environment that can increase
component degradation [2]. Several authors have noted a rapid degradation of
cell performance for PBI-based HT-PEMFCs [21–25]. Two key processes related
to this rapid degradation have been identified: catalyst agglomeration in the
cathode due the presence of phosphoric acid and oxygen coupled with the high
potential, and the direct degradation of the polymer. In addition, as with their low
temperature counterpart, cost of production is a major concern for HT-PEMFCs [26].
As such, Reactive Spray Deposition Technology (RSDT) has been examined in recent
publications as a low cost method for producing HT-PEMFC MEAs [27,28]. RSDT is
a flame-based method suitable for nanoscale particle production and deposition in a
single step process. RSDT relies on combustion of a fuel and solvent as a thermal
energy source that drives particle nucleation. Annealing occurs either by reaction
of precursor gases (gas-to-particle conversion) or by evaporation and/or reaction
of suspended precursor particles or droplets (particle-to-particle conversion) in gas
streams. The RSDT system avoids the wet chemistry byproducts and the associated
nanoparticle separation/purification steps necessary for separate catalyst formation
and deposition. It also combines catalyst production and electrode fabrication in
one step.

Previous work with RSDT in HT-PEMFCs explored the proof of concept in
manufacturing catalyst-coated membranes (CCMs) using PBI based membranes [27],
as well as investigating the manufacturing of gas diffusion electrodes (GDEs) using
the more recently developed TPS® membrane produced by Advent Technologies [28].
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The TPS® membrane was chosen in the more recent study due to its similar behavior
to pure phosphoric acid at elevated temperatures [29].

It is important to correlate the resulting performance of the HT-PEMFC to
physical properties of the RSDT electrode such as the binder to carbon support ratio
(I/C), catalyst loading, pore size distribution, catalyst roughness, and critical pore
radius. For this reason a semi-empirical model was developed in this work. There
are several commonly used approaches to modeling the behavior of the catalyst
layer in a PEMFC. The simplest approach is the interface approximation, which
treats the catalyst layer as an ultra-thin reactive boundary between the membrane
electrolyte and the GDL [30,31]. The issue with this approach is that it does not
glean any relevant structural information about the catalyst layer and, additionally,
it generally over predicts the performance since mass transport limitations are not
taken into account [32]. A second approach involves a few different scenarios that
can be collectively referred to as thin film modeling [33–41]. These models are more
complex than the interface approach, but still relatively simple and easy to implement.
In this approach, the catalyst layer is treated as a thin film where the porous structure
contains either water (in the case of a polymer electrolyte) or phosphoric acid (in
the case a phosphoric acid doped membrane is used). The nature of how the liquid
occupies the catalyst layer is where the distinction is made between approaches.
Several works have assumed the liquid floods the catalyst layer and reactant transport
takes place through the flooded porous media [33–35]. Others have assumed there
are large, gas phase pores that exist due to hydrophobic binders such as PTFE coupled
with smaller hydrophilic pores [36–39]. Many of these works focus on gas phase
diffusion through the catalyst layer as the primary mass transport resistance. A
further subtlety may be applied when the larger, gas filled pores are characterized as
having a thin coating of liquid on the walls [40,41]. Reactants must then dissolve into
and diffuse through this coating to reach the catalyst embedded in the pore walls.
This type of model will be referred to as a coated film model in this work. In the case
of phosphoric acid fuel cells, it was argued by Scott et al., that the gas phase diffusion
resistance was negligible compared to the diffusion through the coated film [41,42].
The final approach is the catalyst agglomerate model [32,40,41,43–48]. This approach
is the most complex and generally considered to be the most complete for most
catalyst layer structures. It considers the catalyst layer to be composed of spherical
agglomerates of catalyst material where the space between the agglomerates is filled
with a mixture of the electrolyte and reactant gases. Gas dissolves and diffuses to the
center of the agglomerates while continuously reacting.

The coated film model was selected in this work for modeling the transport in
the catalyst layer of the HT-PEMFC produced by RSDT for several reasons: (1) the
balance of simplicity and detail makes it a good candidate to capture the behavior
of the performance data; (2) it has been stated that it is appropriate for catalyst
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layer thicknesses ď5 µm [45]. The typical catalyst layer thickness produced by
RSDT ranges from 500 nm up to 5 µm; and (3) RSDT provides excellent dispersion
and particle size distributions when I/C ratios are optimized, so the agglomerate
model may not be geometrically appropriate for catalyst layers produced via RSDT.
Experimental data for the Advent TPS® membrane MEAs reported in [28] exposed to
pure oxygen have been correlated with the developed model. The resulting calibrated
parameters were examined as a function of varying ionomer(PTFE)/carbon(Vulcan
XC-72R) (I/C) ratio and as a function of operating temperature of the cell. The effect
of varying I/C ratio for HT-PEMFCs has been shown to be important in previous
studies by Lobato et al. for (PBI)-H3PO4/Vulcan XC-72R in the catalyst layer and
PTFE/Vulcan XC-72R in the microporous layers [49,50]. It was observed that the
optimum performance of the RSDT produced HT-PEMFC was obtained for I/C = 0.9
and T = 190 ˝C (determined by the current density achieved at a cell voltage of
0.6 V) [28]. This work seeks to build upon the previous experimental study by
applying a physical model to reinforce the understanding of the cell performance as
a function of temperature and I/C ratio. Interpretations of the trends in the model
parameters calculated in this study have been provided to explain the observed
behavior of the experimental polarization results with specific focus on how the
distribution of phosphoric acid within the catalyst layer relates to cell performance.

2. Results and Discussion

2.1. Correlation of Model and Experimental Data

Figure 1 shows the comparison between the model and the experimental
data collected in our group’s previous work [28]. The model compares to the
data very well over the full range of current densities regardless of the I/C ratio
(average normalized root mean square deviation (NRMSD) was 0.020 with a standard
deviation of 0.004). Detailed discussions of these trends are available in [28] from
an experimental point of view and will be briefly summarized here for convenience.
It appears that increasing the I/C ratio, up to 0.9, results in an improvement in the
overall performance relating to activation overpotential, ohmic losses, and mass
transport limiting behavior. The best performance was obtained for I/C = 0.9 [28].
This was due, in part, to the excellent dispersion of the platinum nanoparticles
achieved at that ratio. The TEM images in Figure 2 show increased platinum
agglomeration and poor coverage of some of the binder for the less optimal I/C ratios,
particularly at the low I/C (I/C = 0.1). Increasing I/C to 1.0 resulted in a decrease
in the resulting performance. This trend persisted for all operating temperatures
studied. The effect of temperature is somewhat more obscure with what appears to
be an initial increase in performance across all I/C ratios followed by a decrease at the
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higher temperatures of 190 and 200 ˝C depending on the I/C ratio considered. These
trends will be further elucidated in the discussion of the modeling results below.Catalysts 2015, 5 1677 
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Figure 1. Correlation between experimental data and the coated film model developed in 
this work (curves are modeling results and points are experimental data from [28], 
reproduced with permission, with I/C ratios indicated in the figure legends). Cell operating 
temperatures are (a) 160 °C, (b) 180 °C, (c) 180 °C, and (d) 200 °C. 

 

Figure 2. TEM images showing evolution of platinum distribution as a function of varying ratios 
of PTFE binder to carbon support material (I/C). Red arrows indicate areas where platinum has 
the grouped whereas blue arrows indicate areas where platinum is absent from the support. 

 

Figure 1. Correlation between experimental data and the coated film model
developed in this work (curves are modeling results and points are experimental
data from [28], reproduced with permission, with I/C ratios indicated in the
figure legends). Cell operating temperatures are (a) 160 ˝C, (b) 180 ˝C, (c) 180 ˝C,
and (d) 200 ˝C.

2.2. Effect of I/C Ratio

Three parameters were used to describe the experimental data: j10,c, κ, and Γ.
More details on the modeling approach are provided in Section 3.2. Each of the
parameters is representative of one of the characteristic regions of a typical fuel cell
polarization curve: the activation loss region, the ohmic loss region, and the mass
transport limiting region, respectively. Figure 3 shows the results for each parameter
as a function of I/C at various temperatures.
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the grouped whereas blue arrows indicate areas where platinum is absent from the support. 

 

Figure 2. TEM images showing evolution of platinum distribution as a function of
varying ratios of PTFE binder to carbon support material (I/C). Red arrows indicate
areas where platinum has the grouped whereas blue arrows indicate areas where
platinum is absent from the support.
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2.2. Effect of I/C Ratio 

Three parameters were used to describe the experimental data: 0,cj′ , κ, and Γ. More details on the 

modeling approach are provided in Section 3.2. Each of the parameters is representative of one of the 
characteristic regions of a typical fuel cell polarization curve: the activation loss region, the ohmic loss 
region, and the mass transport limiting region, respectively. Figure 3 shows the results for each parameter 
as a function of I/C at various temperatures. 
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Figure 3. Correlation parameters as a function of I/C for different temperatures. Inset  
(a) represents the exchange current density parameter, 0,cj′ , (b) represents the area specific 

resistance parameter, κ, and (c) represents the geometric parameter, Γ. 

When examining the behavior of the parameters in Figure 3, it is observed that 0,cj′  and Γ have similar 

trends towards increasing performance with increasing I/C up to 0.9 at which point the trend starts to 
invert. However, κ has a slightly different behavior where there is an initial increase between I/C = 0.1 
and 0.3. At elevated temperatures, there is a steady decrease between I/C = 0.3 and 0.9 followed by an 
increase again at I/C = 1.0. At lower temperatures, however, this trend is obscured. The observed 
behavior can be understood by considering the pore size distribution (obtained via mercury intrusion 
porosimetry using a Micromeritics AutoPore IV 9500) reported in our previous work [28]. As the I/C ratio 
was increased, there was a shift in the average pore size towards smaller pores in the 0–1000 nm range 
(the relevant range for the catalyst layer). Figure 4 shows this shift in the pore size distribution. 

 

Figure 3. Correlation parameters as a function of I/C for different temperatures.
Inset (a) represents the exchange current density parameter, j10,c, (b) represents the
area specific resistance parameter, κ, and (c) represents the geometric parameter, Γ.
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When examining the behavior of the parameters in Figure 3, it is observed that
j10,c and Γ have similar trends towards increasing performance with increasing I/C
up to 0.9 at which point the trend starts to invert. However, κ has a slightly different
behavior where there is an initial increase between I/C = 0.1 and 0.3. At elevated
temperatures, there is a steady decrease between I/C = 0.3 and 0.9 followed by an
increase again at I/C = 1.0. At lower temperatures, however, this trend is obscured.
The observed behavior can be understood by considering the pore size distribution
(obtained via mercury intrusion porosimetry using a Micromeritics AutoPore IV 9500)
reported in our previous work [28]. As the I/C ratio was increased, there was a shift
in the average pore size towards smaller pores in the 0–1000 nm range (the relevant
range for the catalyst layer). Figure 4 shows this shift in the pore size distribution.Catalysts 2015, 5 1679 

 

 

Figure 4. Pore size distribution of the gas diffusion electrode (GDE) (adapted from [28] with 
permission). Blow up shows the range from 0–1000 nm which is attributed to the  
catalyst layer. 

Li et al. showed that a critical radius exists within a porous catalyst layer below which the pores are 
completely flooded with acid and above which they are gas filled with a coating of acid on the pore  
walls [40]. Due to the shift in the pore size distribution towards smaller pore radii, the number of acid 
flooded pores can be expected to increase. This behavior can be used to explain the observed trends in 
the three correlation parameters shown in Figure 3. Furthermore, as discussed in Section 3.2, it is 
assumed that the gas phase mass transport resistance has a negligible effect on cell performance for this 
particular HT-PEMFC configuration. The fact that an increase in cell performance occurs despite a 
decrease in overall pore size and porosity with increasing I/C ratio is supportive of this assumption since 
a reduction in porosity would tend to negatively impact gas phase transport. 

Beginning with the exchange current density parameter, 0,cj′ , there is a general upward trend in its 

value until a maximum is obtained between I/C = 0.7 and 0.9 at which point the trend starts to decrease. 
This behavior can be rationalized by considering the catalyst roughness, ac, (Equation (3) in Section 3.2). 
As the I/C ratio increases and smaller pores are favored, causing increased flooding of those pores in the 
catalyst layer with phosphoric acid, there will be less catalyst surface area exposed directly to the 
reactants since it is assumed that reactions occur primarily in the acid films coating the walls of the 
larger, gas filled pores. As pointed out by Li et al. [40], the coated film approach assumes that only the 
catalyst material within these larger pores are electrochemically active while the catalyst material in the 
depths of the completely flooded pores is unutilized. Simultaneously, the ionic interconnectivity between 

 

Figure 4. Pore size distribution of the gas diffusion electrode (GDE) (adapted
from [28] with permission). Blow up shows the range from 0–1000 nm which is
attributed to the catalyst layer.

Li et al. showed that a critical radius exists within a porous catalyst layer below
which the pores are completely flooded with acid and above which they are gas
filled with a coating of acid on the pore walls [40]. Due to the shift in the pore size
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distribution towards smaller pore radii, the number of acid flooded pores can be
expected to increase. This behavior can be used to explain the observed trends in
the three correlation parameters shown in Figure 3. Furthermore, as discussed in
Section 3.2, it is assumed that the gas phase mass transport resistance has a negligible
effect on cell performance for this particular HT-PEMFC configuration. The fact that
an increase in cell performance occurs despite a decrease in overall pore size and
porosity with increasing I/C ratio is supportive of this assumption since a reduction
in porosity would tend to negatively impact gas phase transport.

Beginning with the exchange current density parameter, j10,c, there is a general
upward trend in its value until a maximum is obtained between I/C = 0.7 and 0.9
at which point the trend starts to decrease. This behavior can be rationalized by
considering the catalyst roughness, ac, (Equation (3) in Section 3.2). As the I/C ratio
increases and smaller pores are favored, causing increased flooding of those pores
in the catalyst layer with phosphoric acid, there will be less catalyst surface area
exposed directly to the reactants since it is assumed that reactions occur primarily
in the acid films coating the walls of the larger, gas filled pores. As pointed out
by Li et al. [40], the coated film approach assumes that only the catalyst material
within these larger pores are electrochemically active while the catalyst material in
the depths of the completely flooded pores is unutilized. Simultaneously, the ionic
interconnectivity between the larger gas filled pores will likely be improved, which
will activate otherwise isolated catalyst material. The net effect is an initial increase
in the effective surface area of the catalyst until the pores become too small and the
catalyst layer begins to flood completely causing a drop in the surface roughness,
and consequently, the exchange current density at I/C ratios above 0.9. It is also
possible that excessive PTFE binder begins to cover the catalyst sites at high I/C
ratios creating the same effect.

The behavior of the area specific resistance parameter, κ, is more complicated
than the others. As mentioned above, there is an initial increase in κ between
I/C = 0.1 and 0.3, followed by a general decrease with increasing I/C up to I/C = 0.9.
At elevated temperatures, 190 ˝C and 200 ˝C, there is a second increase between
I/C = 0.9 and 1.0. As explained in Section 3.2, it is believed that the ohmic resistance
parameter is a combined effect of the catalyst layer ionic resistance, the contact
resistance between the membrane and the GDE, and the electrolyte resistance. When
the I/C ratio is changed at constant temperature it is not expected that the electrolyte
resistance should change and thus the behavior of κ should be related to changes
in contact resistance and catalyst layer resistance. The initial increase in the cell
resistance can likely be explained by the very low I/C ratio. For such a low ratio,
there is an abundance of hydrophilic carbon present in the catalyst layer. This,
coupled with the greater porosity as evident in Figure 4, will lead to a much greater
level of phosphoric acid in the electrodes. There will be large scale flooding of the
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cathode, which will have a negative impact on the other cell parameters, but will lead
to excellent ionic conductivity of the catalyst layer. When the I/C ratio is increased,
this high level of flooding will be reduced causing the increased cell resistance
observed in Figure 3. The resistance is then observed to decrease with increasing
I/C between 0.3 and 0.9 most likely for similar reasons discussed in relation to the
exchange current density. As the shift towards smaller pore sizes continues, more
pores will be sized below the critical pore radius and there will be an improvement
in the phosphoric acid percolation network. As the I/C ratio increases beyond 0.9,
Figure 4 indicates a breakdown in the uniformity of the pores, which may cause
increased contact resistance. It is also possible that excessive levels of hydrophobic
binder can begin to impede capillary action. These two scenarios would then seem to
be exacerbated by increased temperature explaining the strong increase in resistance
for higher temperatures at I/C = 1.0.

The behavior of Γ can be explained similarly to the exchange current density in
terms of the effect on the active catalyst surface area. However, it is conceivable that
increased flooding begins to cause an increase in the thickness of the phosphoric acid
film in the larger gas pores. This would tend to hinder the transport of the reactants.
The trend observed in Figure 3 would then be the result of a balancing of the two
opposing effects.

It is worth mentioning that the improvement to the catalyst roughness can also
be attributed to improved distribution of the platinum nanoparticles as discussed
in Section 2.1 and [28]. The optimum I/C ratio gives the most uniform platinum
distribution in the catalyst layer, which helps maximize utilization. However, this
improved distribution would not directly affect the behavior of κ indicating there is
an effect of changing phosphoric acid distribution in the catalyst layer.

2.3. Effect of Temperature

Aside from the effect of the I/C ratio, there is an interesting behavior of the
three parameters with operating temperature, which are shown in Figure 5.

The exchange current density parameter, j10,c, does not display the Arrhenius
relationship one might initially expect. This departure from linear behavior is
caused by the catalyst roughness, which decreases with increasing temperature.
Similarly, the parameter Γ increases with temperature since the surface roughness
influences it as well. As discussed in Section 2.2, an increase in the phosphoric
acid content of the catalyst layer, to a point, increased the catalyst electrochemically
active surface area. The trend observed in Figure 5 seems to indicate a reduction
of phosphoric acid saturation within the catalyst layer with increasing temperature.
The reason for this phenomenon requires further exploration, but it may be possible
that there is a shift to a lower critical radius with increasing temperature or the TPS®

membrane has a higher phosphoric acid retention at elevated temperatures leading
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to decreased migration into the catalyst layer. It is interesting to note that the negative
influence on j10,c is enhanced at the less optimum I/C ratios (i.e., there is a maximum
influence for I/C = 0.1 and a minimum for I/C = 0.9). The reason for this behavior
can be attributed to better interconnectivity of the pores at the optimum I/C ratio.
Even as the phosphoric acid content decreases, the remaining phosphoric acid has
better percolation, which leads to a higher active catalyst surface area. The effect of
the reduced surface roughness appears to be less pronounced for the Γ parameter,
which can be explained by a simultaneous reduction in film thickness as the overall
phosphoric acid content in the electrodes decreases.Catalysts 2015, 5 1681 
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Figure 5. Correlation parameters as a function of temperature for I/C ratios. Inset  
(a) represents the exchange current density parameter, 0,cj′ , (b) represents the area specific 

resistance parameter, κ, and (c) represents the geometric parameter, Γ. 
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Figure 5. Correlation parameters as a function of temperature for I/C ratios. Inset
(a) represents the exchange current density parameter, j10,c, (b) represents the area
specific resistance parameter, κ, and (c) represents the geometric parameter, Γ.

Regarding κ, there are unique behaviors with temperature depending on the
I/C ratio. For I/C = 0.1, 0.3, and 0.5, there is an observed initial decrease in
the resistance with increasing temperature followed by an increase at the higher
temperatures. For I/C = 0.7 and 0.9, the resistance tends to more or less decrease with
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increasing temperature. Finally, for I/C = 1.0, the resistance increases as temperature
increases. It is important to keep in mind here that there are several competing
effects at play. The membrane conductivity, which was unchanged with respect
to I/C, should be expected to have increased ionic conductivity as temperature
increases. This will be partly responsible for any observed decreases in resistance
with increasing temperature. The hypothesized reduction of phosphoric acid
migration into the catalyst layer will reduce the effective conductivity of the catalyst
layer with increasing temperature. Lastly, the contact resistance may be expected
to change depending on the relative thermal expansion rates of the fluorinated
ethylene propylene (FEP) gasket and the TPS® membrane as illustrated in Figure 6.
The different trends observed for different I/C ratios are then a product of the
porous structures unique to each I/C ratio and how those influence phosphoric acid
distribution. For the more optimum structures, I/C = 0.7 and 0.9, the negative
influences are reduced and increasing phosphoric acid conductivity outweighs
reduced migration or potential increased contact resistance. For less optimum
structures, the decreased migration of phosphoric acid into catalyst layer overtakes
increasing acid conductivity to result in a net increase in cell resistance.
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3. Methods 

3.1. Experimental Section 

The experimental details related to the HT-PEMFC assembly and testing are available in detail  
in [28]. Additional RSDT publications provide further details on the device and effects of process 
parameters [51,52]. A brief summary of conditions follows. GDEs were fabricated by RSDT. RSDT is 

 

Figure 6. Schematic of the single cell cross section. Measurements in parenthesis
indicate thicknesses on the specified component.

3. Methods

3.1. Experimental Section

The experimental details related to the HT-PEMFC assembly and testing are
available in detail in [28]. Additional RSDT publications provide further details on
the device and effects of process parameters [51,52]. A brief summary of conditions
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follows. GDEs were fabricated by RSDT. RSDT is an open atmosphere, flame based,
deposition process that utilizes the enthalpy of combustion of highly flammable
solvents to decompose metal-organic precursors. In this work, platinum(II)
acetylacetonate (Pt(acac)2, Colonial Metals, Elkton, MD, USA) was the Pt precursor,
which was dissolved directly into the solvent. The solvent was a mixture of xylene,
acetone (Sigma Aldrich, St. Louis, MO, USA), and thiol-free propane (Airgas East
Inc., Cheshire, CT, USA). The precursor solution was then pumped through an
atomizing nozzle and the resulting droplets were continuously ignited with a pilot
flame, facilitating the decomposition of the precursor metal in the high temperature
reaction zone of the flame (1000–2000 ˝C). The support material was introduced
post-combustion by a set of two secondary nozzles that sprayed a slurry consisting of
carbon (Vulcan XC-72R, Cabot Corp., Boston, MA, USA) and various concentrations
of polytetrafluoroethylene (PTFE) binder dissolved in dimethylformamide (DMF,
Sigma Aldrich, St. Louis, MO, USA). These secondary nozzles were placed on either
side of the primary nozzle and angled such that the resulting spray intersected within
the post luminous zone of the flame. The resulting spray (consisting of the platinum,
carbon, and PTFE) was directed at the GDL substrate (SIGRACET® GDL25BC) to
manufacture the GDE in a single step process. The nominal platinum loading for
each electrode was kept constant at 0.05 mg¨ cm´2 giving a combined loading of
0.1 mg¨ cm´2, which achieves the DoE 2017 target of 0.125 mg¨ cm´2. The I/C ratios
were 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0 for Samples 1–6, respectively.

As mentioned above, Advent TPS® membranes were utilized as the polymer
electrolyte material for the MEA. The membranes were doped with 85 wt. %
phosphoric acid (the remaining 15 wt. % being water). The doping process involved
immersing the membrane for 16 h (open to air) in acid heated to 120 ˝C. The
membranes were weighed before and after doping and an average mass increase
of 218% was observed (standard dev., σ = 6.24%). Assembly of the MEA was done
with a Carver hot press where the procedure consisted of: 60 ˝C, 10 min, 2500 lbs.
loading; 75 ˝C, 10 min, 2500 lbs. loading; 90 ˝C, 20 min, 2500 lbs. loading; 110 ˝C,
15 min, 2500 lbs. loading; 150 ˝C, 10 min, 2500 lbs. loading; 150 ˝C, 15 min, 5000 lbs.
loading; Cool down rapidly at 45 ˝C.

The assembled MEAs (active area 5 ˆ 5 cm2) were tested in a single cell
configuration. FEP gaskets were used to seal the edges of the cell to prevent leakage
of the phosphoric acid (Figure 6). While the use of these gaskets is necessary, it is
believed this may create some elevated contact resistance between the GDE and the
membrane. The contact resistance was explicitly accounted for in the model.

Prior to performing fuel cell polarization tests, the cell was held at 0.6 V for 3 h
for performance break-in. Typically, around 24 h is necessary for a break-in period
for PEMFC technology but it was found that stable voltages were achieved after 3 h
in this case. This may be due to the lack of external humidification, which is required
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to hydrate a low temperature PEMFC that requires long periods of time to reach
steady state. The cell operating temperature was varied between 160 and 200 ˝C. The
anode was exposed to 1 atm of hydrogen gas at a flow rate of 0.2 L¨min´1 while the
cathode was exposed to 1 atm of oxygen at a flow rate of 0.2 L¨min´2. Again, no
external humidification was provided.

3.2. Performance Model

In order to predict the performance of the single cell, a semi-empirical model
was developed. The derivation begins with a modified expression for the overall
cell voltage.

∆E “ EOCV ´ Ecell “
ˇ

ˇηa,act
ˇ

ˇ`
ˇ

ˇηc,act
ˇ

ˇ` jκ (1)

Due to the difficulty of predicting the OCV of the cell and to avoid a miscalculation
of the exchange current density, the cell overpotential defined by ∆E in Equation (1)
was used to calibrate the model to the experimental data. The OCV can typically
be theoretically calculated using the Nernst equation and a crossover current term
to account for fuel permeation through the electrolyte, but it was found that this
approach did not yield satisfactory comparisons. This may be due to additional
factors such as carbon corrosion and surface structure, as well as effects of locally
varying acidity making it difficult to predict the true activity of the constituents. The
terms on the right hand side of Equation (1) represent the activation overpotential of
the anode and cathode, and the ohmic resistance losses of the cell, respectively. For
the HT-PEMFC, the activation overpotential of the anode is assumed to be negligible
due to the relatively facile reaction kinetics for hydrogen oxidation [53]. The cathode
overpotential can be determined using Tafel approximation.

ηc,act “ ´
RT
αF

ln
ˆ

j
j0,c

˙

(2)

The cathodic exchange current density, j0,c, can be expanded where the parameter
j10,c groups the reference exchange current density, Arrhenius effect, and surface
roughness together.

j0,c “ jref
0,cac

ˆ

CO2

CO2,sat

˙γ

exp
„

´
Eact

RT

ˆ

1´
T

Tref

˙

“

ˆ

CO2

CO2,sat

˙γ

j10,c (3)

For the ohmic overpotential, it is assumed that the major contributors to the overall
cell resistance are the membrane electrolyte, the ionic resistance of the catalyst layers,
and the contact resistance between the GDE and the polymer electrolyte. This implies
all electronic resistance contributions from the cell are negligible.
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κ “
lm
σm
`

2lcl
σcl

` RC (4)

In this study, the overall area specific resistance, κ, is treated as an adjustable
parameter. Combining the above expressions gives the relatively simple result:

∆E “

ˇ

ˇ

ˇ

ˇ

ˇ

´RT
αcF

ln

«

j
`

CO2{CO2,sat
˘γ j10,c

ff
ˇ

ˇ

ˇ

ˇ

ˇ

` jκ (5)

At this point, it is necessary to introduce the physical description of the catalyst
layer in order to calculate the oxygen concentrations in Equation (5). For this work,
the coated film model has been adopted as schematically presented in Figure 7.Catalysts 2015, 5 1685 

 

 

Figure 7. Depiction of the coated film model for the porous electrode (not drawn to scale). 

This model describes a porous catalyst layer consisting of a mix of small phosphoric acid filled pores 
and larger gas filled pores. The smaller pores create a capillary action that draws phosphoric acid to the 
larger pores while also serving as a pathway for ion conduction to and from the membrane electrolyte. 
Due to the capillary effect feeding the larger pores, the pores become coated with a film of phosphoric 
acid. The walls of the pores are assumed to be lined with the catalyst material and the reactant gases 
must first diffuse through this coated film before reacting. It is assumed in this case that gas phase 
transport is negligible compared to the transport through the coated film. This assumption was validated 
previously by Scott et al. for HT-PEMFCs [41,42]. Additionally, the current experimental setup 
considered in this work utilizes pure oxygen in the reactant feed stream meaning there is no interdiffusion 
with other gases such as nitrogen, and no external humidification is applied, which can lead to complex 
multiphase transport in the GDL. Taking this into consideration concentrations in Equation (7) are 
calculated assuming 1-D Fickian diffusion through the coated film where the saturation concentrations 
are assumed to correlate with the Henry’s law saturation behavior. 
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The parameter m in Equation (6) corrects for the effective diffusivity of the coated film and accounts 
for any obstructions through the coated film. Additionally, the experimental current density, j, must be 
corrected in Equation (6) to account for the active surface area of the catalyst rather than the MEA active 
area (5 × 5 cm2). This is the reason for the appearance of the roughness factor, ac. For increasing surface 
roughness the local molar flux of reactants through the coated film would be expected to decrease for 

 

Figure 7. Depiction of the coated film model for the porous electrode (not drawn
to scale).

This model describes a porous catalyst layer consisting of a mix of small
phosphoric acid filled pores and larger gas filled pores. The smaller pores create a
capillary action that draws phosphoric acid to the larger pores while also serving
as a pathway for ion conduction to and from the membrane electrolyte. Due to
the capillary effect feeding the larger pores, the pores become coated with a film of
phosphoric acid. The walls of the pores are assumed to be lined with the catalyst
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material and the reactant gases must first diffuse through this coated film before
reacting. It is assumed in this case that gas phase transport is negligible compared
to the transport through the coated film. This assumption was validated previously
by Scott et al. for HT-PEMFCs [41,42]. Additionally, the current experimental
setup considered in this work utilizes pure oxygen in the reactant feed stream
meaning there is no interdiffusion with other gases such as nitrogen, and no external
humidification is applied, which can lead to complex multiphase transport in the
GDL. Taking this into consideration concentrations in Equation (7) are calculated
assuming 1-D Fickian diffusion through the coated film where the saturation
concentrations are assumed to correlate with the Henry’s law saturation behavior.

CO2 “ CO2,sat ´
jδ

nFacmDO2,H3PO4

“ CO2,sat ´
Γj

nFDO2,H3PO4

(6)

The parameter m in Equation (6) corrects for the effective diffusivity of the coated
film and accounts for any obstructions through the coated film. Additionally, the
experimental current density, j, must be corrected in Equation (6) to account for the
active surface area of the catalyst rather than the MEA active area (5 ˆ 5 cm2). This
is the reason for the appearance of the roughness factor, ac. For increasing surface
roughness the local molar flux of reactants through the coated film would be expected
to decrease for the same experimental current density, which is measured relative
to the planform area of the cell. Without the addition of the roughness factor, the
calculation of the local concentration of reactants near the catalyst surface through
the coated film would be lower than expected. This same correction has also been
employed by Mamlouk et al. [54]. The geometric parameters in Equation (6) are
grouped together as the parameter Γ.

Using the coated film model, Equation (5) can be solved for comparison to the
experimental data. Equations (5) and (6) contain three adjustable parameters: j10,c, κ,
and Γ. The necessary physical parameters used to solve the governing equations are
contained in Table 1. The mathematical model was correlated to the experimental
data using Matlab’s least squares routine (lsqcurvefit).

Table 1. Parameters used in Equations (5) and (6).

Parameter (Units) Value

αc [55] 0.94
γ [15] 1

CO2,sat (mol¨ cm´3) [56] 1.7410ˆ 10´8exp
”

´9.4866ˆ103
RT

ı

DO2,H2PO4 (cm2¨ s´1) [56] 2.0402exp
”

´3.9729ˆ104
RT

ı
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4. Conclusions

The focus of this study was the development of a simple, yet accurate,
semi-empirical model to calibrate against performance data from a HT-PEMFC
with GDEs manufactured by RSDT. The model used the coated film approach to
approximate transport in the catalyst layer. The effects of I/C ratio of the GDEs as
well as operating temperature were explored. The evidence suggested that increasing
the I/C ratio increased performance to a point due to the decreasing average pore
size and the more uniform pores. This caused increased phosphoric acid migration
into the electrodes, which improved the effective catalyst utilization and improved
effective ionic conductivity. If the I/C ratio was too high or extremely low, this
caused electrode flooding and decreased performance. Based on the trends of the
correlation parameters, the increased temperature led to a decrease in phosphoric acid
content of the electrodes, which led to greater ohmic resistance and reduced active
catalyst surface area. These effects were partly counteracted by Arrhenius behavior
of the exchange current density and enhanced ionic conductivity of phosphoric
acid in the electrodes. As expected, the general conclusions reached in the previous
experimental study have not changed; however, the modeling approach has provided
some new insight into the nature of the performance variations as a function of I/C
and temperature. The model provides new theories regarding cell performance
behavior, which will be the subject of continuing work. Future work will seek to
improve the fidelity of the model and begin to explore the influence of the higher
temperature on the reduced acid migration. Further theory will be developed in
an attempt to predict the adjustable parameters utilized in this study. Additionally,
studies of the durability of the manufactured cells will be investigated.
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Nomenclature

ac
Catalyst surface roughness factor (catalyst surface
area/electrode geometric area)

Ci
Molar concentration of species i at the catalyst surface
(mol¨ cm´3)

Ci,sat Saturation concentration of species i (mol¨ cm´3)
Di,H3PO4 Diffusivity of species i in phosphoric acid (cm2¨ s´1)
Eact Activation energy (kJ¨ mol´1)
Ecell Cell potential (V)
EOCV Open circuit potential (V)
F Faraday’s constant (C¨ mol´1)
j Current density (A¨ cm´2)
j0,c Exchange current density (A¨ cm´2)
jref
0,c Reference exchange current density (A¨ cm´2)

j10,c Parameter defined by Equation (3) (A¨ cm´2)
lcl Thickness of catalyst layer (cm)
lm Thickness of membrane electrolyte (cm)
m Diffusivity correction factor
n Number of transfer electrons
R Ideal gas constant (kJ¨ mol´1¨ K´1)
RC Contact resistance (Ω¨ cm2)
T Operating temperature (K)
Tref Reference temperature (K)
Greek
αc Transfer coefficient
γ Pressure coefficient
Γ Parameter defined by Equation (6) (cm)
δ Film thickness (cm)
∆E Cell potential drop (V)
∆ENernst Change in Nernst potential (V)
ηa,act Anode activation overpotential (V)
ηc,act Cathode activation overpotential (V)
κ Parameter defined by Equation (4) (Ω¨ cm2)
σcl Conductivity of the catalyst layer (S¨ cm´1)
σm Conductivity of the membrane electrolyte (S¨ cm´1)
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The Use of C-MnO2 as Hybrid Precursor
Support for a Pt/C-MnxO1+x Catalyst with
Enhanced Activity for the Methanol
Oxidation Reaction (MOR)
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Abstract: Platinum (Pt) nanoparticles are deposited on a hybrid support (C-MnO2)
according to a polyol method. The home-made catalyst, resulted as Pt/C-MnxO1+x,
is compared with two different commercial platinum based materials (Pt/C and
PtRu/C). The synthesized catalyst is characterized by means of FESEM, XRD,
ICP-MS, XPS and µRS analyses. MnO2 is synthesized and deposited over a
commercial grade of carbon (Vulcan XC72) by facile reduction of potassium
permanganate in acidic solution. Pt nanoparticles are synthesized on the hybrid
support by a polyol thermal assisted method (microwave irradiation), followed by
an annealing at 600 ˝C. The obtained catalyst displays a support constituted by a
mixture of manganese oxides (Mn2O3 and Mn3O4) with a Pt loading of 19 wt. %.
The electro-catalytic activity towards MOR is assessed by RDE in acid conditions
(0.5 M H2SO4), evaluating the ability to oxidize methanol in 1 M concentration. The
synthesized Pt/C-MnxO1+x catalyst shows good activity as well as good stability
compared to the commercial Pt/C based catalyst.

Reprinted from Catalysts. Cite as: Videla, A.H.A.M.; Osmieri, L.; Esfahani, R.A.M.;
Zeng, J.; Francia, C.; Specchia, S. The Use of C-MnO2 as Hybrid Precursor Support
for a Pt/C-MnxO1+x Catalyst with Enhanced Activity for the Methanol Oxidation
Reaction (MOR). Catalysts 2015, 5, 1399–1416.

1. Introduction

Fuel cells are electrochemical devices that produce electricity from the energy
of a fuel through a highly efficient conversion process, resulting in low emissions
and low environmental impact [1]. Between the different types of fuel cell, Direct
Alcohol Fuel Cells (DAFC) and more specifically, Direct Methanol Fuel Cells (DMFC),
represent a valid alternative for small portable electronic devices and auxiliary power
units, due to the high energy density of alcohols, their lightweight and compact
nature and their ability for fast recharging [2,3].

Platinum is the most widely used catalyst for both the anodic methanol oxidation
reaction (MOR) and the cathodic oxygen reduction reaction (ORR) [4,5]. Pt is
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considered the most suitable electro-catalyst for MOR due to its high activity and
stability, especially in acidic media [6]. However, one of the main barriers to the
commercialization of DMFC technologies is still the high cost of Pt. To reduce
the cost, an improvement of the performance of conventional Pt-based catalysts is
necessary. This would lead to a reduction of the total Pt loading on the electrode. For
this purpose, reaction rates need to be enhanced (i.e., the overvoltage needs to be
decreased) by modifying the catalyst composition or structure, to produce a more
active electro-catalytic material [7].

A common approach to enhance the activity of Pt involves well dispersed
nanoparticle structures, avoiding agglomeration and increasing utilization [7].
Further optimization of Pt-based electro-catalysts has been achieved through the
formation of bi-metallic alloys such as PtCo and PtNi (for cathodic ORR) and PtRu
(for anodic MOR) [8,9]. It has also been demonstrated that efficiency can be further
improved by promotion of methanol electro-oxidation by means of various metal
oxides-, carbides- and nitrides-promoted electro-catalysts. Non-noble metal oxides
(M-Ox) such as WO3, CeO2, V2O5, Nb2O5, MoOx, ZrO2, TiO2, MgO and MnO2,
exhibit suitable surface properties which can efficiently promote the methanol and
ethanol electro-oxidation reactions combined with Pt/C [10]. Therefore, a good
strategy to improve the catalytic activity of Pt-based catalysts for MOR is to use metal
oxides in the catalyst supports, as a hybrid structure (C + M-Ox) [11]. Pure Pt, in fact,
is readily poisoned by strongly-adsorbed intermediates, of which CO is consistently
considered as one of the main poisoning species at low operating temperature [12].

The use of metal oxide-containing Pt/C electro-catalysts has been reported to
effectively enhance the electro-oxidation of methanol by the spillover of CO on Pt
sites to the adjacent metal oxides. These oxides are supposedly capable of adsorbing
large quantities of –OH species, which are then donated to the neighboring Pt sites
where stepwise methanol dehydrogenation occurs. Metal oxides also provide suitable
functional groups which strongly interact with small Pt crystallites, impeding their
random growth and agglomeration during device operation for longer duration. In
particular, high surface area metal oxides used as supports or matrices, are capable
of physically separating metal particles (to diminish their tendency to undergo
degradation by agglomeration) and of interacting mutually with them, thus affecting
their chemisorptive and catalytic properties. Oxides are often thought as insulating or
semi-conducting materials but certain non-stoichiometric oxides existing in various
valance states exhibit conductivity not much lower than that of metals and possess
appreciable catalytic activity [7]. In electro-catalysis, the reactions occur at the
interface, so surface reactivity is very important. Redox reactions of metal oxides
involve both ion and electron transfer processes. The electron transfer reactions are
influenced by the distribution of electronic states in the electrolyte and within the
oxide. When oxides are in contact with aqueous solutions, their surfaces are covered
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with –OH groups; their actual population depends on the nature of the oxide and
its specific crystal face. Some metal oxides are more hydrous than the others. The
hydrous behavior, which varies from oxide to oxide, favors proton mobility and
affects overall reactivity [7].

MnO2 has been used in a wide range of applications such as catalyst,
molecular-sieves, ion-sieves, batteries and magnetic materials due to its excellent
physicochemical properties [13]. Manganese oxides were widely used as catalyst
support for fuel cells due to their promoting effects in the oxidation of small
organic molecules, such as the excellent proton conductivity, the increase of
catalyst utilization and the synergistic effect between catalysts and manganese
oxides [6]. In particular, MnO2 possesses good proton-electron intercalation
properties and is known to show good electro-chemical properties under various
operating conditions [10]. Mn possesses a wide range of oxidation states and such
oxo-manganese species are generally strong chemical oxidants. Due to the possibility
of the Mn4+/Mn3+ redox couple and the presence of labile oxygen, MnO2 shows high
promoting and anti-poisoning activities for alcohol electro-oxidation [7]. The main
reasons for effectiveness of MnO2 as a promoter are attributed to its surface area,
tunnel structure and crystal phase. It is known that oxides with one-dimensional
structures such as nanorods, nanowires and nanotubes possess distinctive crystalline
phase states, as compared to their bulk counterparts [10]. It is also known that
the interaction between metal crystallites and an oxide surface is influenced by the
nature of interfacial contact and the crystalline characteristic of the oxide. MnO2 with
smaller and uniform crystalline orientation as well as suitable surface morphology
should offer apposite active sites for facile interaction with Pt crystallites, which
can provide optimized synergistic effect for alcohol electro-oxidation [14]. However,
the effect of microstructure/morphology of manganese oxides on the nature of
Pt dispersion on MnxO1+x/carbon-based electrocatalysts has not been extensively
investigated so far [10].

In this work, α-MnO2 was synthesized and deposited on a commercial carbon
black (Vulcan XC-72). Then, Pt nanoparticles were deposited on the formed hybrid
support (C-MnO2), called Pt/C-MnxO1+x, by a microwave-assisted polyol method
followed by a thermal treatment in inert atmosphere at 600 ˝C. The synthesized
catalyst was compared with two commercial Pt-based catalysts characterized and
tested for MOR in acidic medium.

2. Results and Discussion

2.1. Physical-Chemical Characterization

The XRD pattern of the prepared C-MnO2 is given in Figure 1A. The broad
peak at about 23.5˝ is attributed to the graphitic carbon support. All other peaks are
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clearly indexed to the pure tetragonal phase of α-MnO2 (JCPDS card #44-0141), with
lattice constants of a = 9.73 Å and c = 2.84 Å. No peaks were observed for other types
of crystals or amorphous MnO2 which confirmed the purity of the prepared sample.
The intensive diffraction peaks appeared at 12.46˝, 18.08˝, 28.83˝, 37.00˝, 37.66˝,
41.95˝, 50.13˝, 60.36˝, 66.30˝, 72.87˝, respectively, which are characteristic peaks of
α-MnO2 with the major peaks intensity at 18.08˝ [15,16]. α-MnO2 is constructed
from the double chains of edge-sharing MnO6 octahedra, which are linked at the
corners to form tunnel structures [17].Catalysts 2015, 5 1402 

 

 

Figure 1. C-MnO2 support: (A) XRD patterns; (B,C) FESEM images at different magnification. 

The morphology of prepared C-MnO2 was investigated by FESEM and the corresponding micrographs 
are shown in Figure 1B,C. MnO2 nanocrystals grow up on the carbon black, forming sphere-like 
micro-particles with an average diameter of about 1 μm (Figure 1B). At higher magnification (Figure 1C), 
the outside part of the particles appeared to be urchins, homogeneously composed of densely aligned 
nanorods with uniform diameter of about 35 nm. The percentage of MnO2 in the hybrid support 
evaluated by ICP-MS technique is 64.8 wt. %. This value is very close to the theoretical wt. % 
percentage of MnO2 expected for the adopted synthesis, which is equal to 68.4 wt. %. Thus, the 
synthesis method adopted allows a very precise control of the mass loading level of nanostructured 
MnO2 onto the carbon material by controlling the ratio between KMnO4 and Vulcan XC-72 carbon. 

XRD patterns were acquired for all catalysts supported on carbon (Figure 2). X-ray spectra 
exhibited the characteristic peaks corresponding to the Pt face-centered cubic (fcc) polycrystalline 
structure (111, 200, 220 and 311 reflection planes), consistent with the XRD pattern of JCPDS card  
#00-4-0802 (2θ = 39.76°, 46.24°, 67.45°, 81.28°). A signal near to 25° (2θ) was obtained, which 
corresponds to the (002) graphite basal planes for Pt/C and PtRu/C [18]. This peak is not appreciable 
on Pt/C-MnxO1+x because of the high manganese oxides content. No metallic Ru diffraction peaks were 
detected in the commercial PtRu/C which is an indication of alloyed PtRu as reported in the  
literature [19]. As can be seen in Figure 2, Pt diffraction peaks of the commercial PtRu/C shifted to a 
positive 2θ value compared with that of Pt/C which reveals alloy formation. Formation of solid 
solution between Pt and Ru by replacing of Pt with smaller Ru atoms in the lattice points of Pt  
fcc structure results in the reduction of lattice parameter and positive shift of fcc diffraction  
signals [20,21]. It is well known that the alloying of Pt with Ru leads to a decrease in the interatomic 
bond length because of the smaller Ru atomic radius [22]. 

Particle diameters were calculated by the Debye-Scherrer equation for all catalyst used. 1.7, 4.5 and 
4 nm were obtained for Pt/C-MnxO1+x, Pt/C and PtRu/C, respectively, with lattice parameter of 3.78, 
3.93 and 3.82 Å, respectively. According to ICP-MS analysis, the Pt wt. % loading for the three  
Pt/C-MnxO1+x, Pt/C and PtRu/C was equal to 19, 20 and 38 wt. %, respectively. 

 

Figure 1. C-MnO2 support: (A) XRD patterns; (B,C) FESEM images at
different magnification.

The morphology of prepared C-MnO2 was investigated by FESEM and the
corresponding micrographs are shown in Figure 1B,C. MnO2 nanocrystals grow up
on the carbon black, forming sphere-like micro-particles with an average diameter
of about 1 µm (Figure 1B). At higher magnification (Figure 1C), the outside part of
the particles appeared to be urchins, homogeneously composed of densely aligned
nanorods with uniform diameter of about 35 nm. The percentage of MnO2 in the
hybrid support evaluated by ICP-MS technique is 64.8 wt. %. This value is very
close to the theoretical wt. % percentage of MnO2 expected for the adopted synthesis,
which is equal to 68.4 wt. %. Thus, the synthesis method adopted allows a very
precise control of the mass loading level of nanostructured MnO2 onto the carbon
material by controlling the ratio between KMnO4 and Vulcan XC-72 carbon.

XRD patterns were acquired for all catalysts supported on carbon (Figure 2).
X-ray spectra exhibited the characteristic peaks corresponding to the Pt face-centered
cubic (fcc) polycrystalline structure (111, 200, 220 and 311 reflection planes), consistent
with the XRD pattern of JCPDS card #00-4-0802 (2θ = 39.76˝, 46.24˝, 67.45˝, 81.28˝).
A signal near to 25˝ (2θ) was obtained, which corresponds to the (002) graphite basal
planes for Pt/C and PtRu/C [18]. This peak is not appreciable on Pt/C-MnxO1+x
because of the high manganese oxides content. No metallic Ru diffraction peaks
were detected in the commercial PtRu/C which is an indication of alloyed PtRu as
reported in the literature [19]. As can be seen in Figure 2, Pt diffraction peaks of
the commercial PtRu/C shifted to a positive 2θ value compared with that of Pt/C
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which reveals alloy formation. Formation of solid solution between Pt and Ru by
replacing of Pt with smaller Ru atoms in the lattice points of Pt fcc structure results in
the reduction of lattice parameter and positive shift of fcc diffraction signals [20,21].
It is well known that the alloying of Pt with Ru leads to a decrease in the interatomic
bond length because of the smaller Ru atomic radius [22].

Particle diameters were calculated by the Debye-Scherrer equation for all catalyst
used. 1.7, 4.5 and 4 nm were obtained for Pt/C-MnxO1+x, Pt/C and PtRu/C,
respectively, with lattice parameter of 3.78, 3.93 and 3.82 Å, respectively. According
to ICP-MS analysis, the Pt wt. % loading for the three Pt/C-MnxO1+x, Pt/C and
PtRu/C was equal to 19, 20 and 38 wt. %, respectively.Catalysts 2015, 5 1403 
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Figure 2. XRD patterns of Pt/C, PtRu/C and Pt/C-MnxO1+x, with the characteristic
Miller indexes of Pt fcc (JCPSD card #00-4-0802).

The Mn 2p XPS spectrum in Figure 3A exhibited Mn 2p1/2 at 653.52 eV and Mn
2p3/2 at 641.71 eV, in which the spin-energy separation of 11.79 eV which indicates
that the element manganese in the sample exists in the chemical state of Mn2+ and
Mn4+ and therefore the formation of MnO2, Mn2O3 and Mn3O4 [23–25]. As shown
in Figure 3B, the Pt 4f spectrum of the Pt/C-MnxO1+x was deconvoluted into two
doublet peaks, corresponding to a spin-orbit splitting of 4f7/2 and 4f5/2 states of ca.
3.33 eV. The most intense doublet at 71.45 (4f7/2) and 74.78 eV (4f5/2) was due to the
metallic Pt, corresponding to metallic platinum particles (Pt0) [4,6,10,13,17].

To assess the chemical structure of the Pt/C-MnxO1+x catalyst, an extra sample
of MnO2 annealed at 600 ˝C (same temperature used to anchor Pt nanoparticles on
the C-MnO2 support) was examined by µRS. Raman spectra in different points of
the annealed oxide (Figure 4) show the presence of two types of oxides structure,
the Mn3O4 hausmannite spinel-like and the Mn2O3 bixbyite. Specifically, five
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characteristic Raman peaks for the spinel structure [ν1 = 310 cm´1, ν2 = 357 cm´1,
ν3 = 485 cm´1, ν4 = 579 cm´1, ν5 = 653 cm´1] and for the bixbyite [ν1 = 263 cm´1,
ν2 = 308 cm´1, ν3 = 512 cm´1, ν4 = 631 cm´1, ν5 = 670 cm´1] were detected,
suggesting the presence of a mix of oxides [26]. In fact, according to the
literature [27–29], in inert atmosphere at around 500 ˝C MnO2 is reduced to
Mn2O3 and further reduced to Mn3O4 at 900 ˝C. These results are in line with
the presence of the mixture of hausmannite and bixbyite manganese oxides on the
final Pt/C-MnxO1+x catalyst, annealed at 600 ˝C in nitrogen atmosphere, as pointed
out by XPS analysis.
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2.2. Electro-Chemical Characterization

The CV profiles recorded in N2-saturated 0.5 M H2SO4 (Figure 5) exhibit
defined regions of hydrogen underpotential, adsorption/desorption and platinum
oxide formation/reduction for all the samples. In particular, the hydrogen
adsorption/desorption peaks shapes are similar for the Pt/C-MnxO1+x and the
commercial Pt/C, with the latter exhibiting a higher hydrogen desorption area. The
electrochemical active surface area (ECSA) resulted 44.1 m2¨g´1 for Pt/C-MnxO1+x
and 45.4 m2¨g´1 for Pt/C, respectively. For the PtRu/C catalyst the peak shape is
different from the previous ones, with a sharper hydrogen desorption peak typical
for the PtRu based catalysts [30,31] and ECSA of 69.8 m2¨g´1. Regarding the Pt
oxides reduction peak, for the Pt/C-MnxO1+x it is shifted towards more positive
potentials of about 100 mV in comparison with the commercial Pt/C catalyst. This
could indicate a lower oxygen reduction overpotential if this catalyst should be used
as a cathode catalyst for a PEMFC [32]. Otherwise, for the PtRu/C catalyst, the same
peak is about 200 mV shifted to more negative potentials. This is also typical for
PtRu based catalysts [21]. The similar ECSA values for the Pt/C-MnxO1+x and Pt/C
catalysts could be due to the similar Pt content of these catalysts, equal to 19 wt. %
and 20 wt. %, respectively, according to ICP-MS analysis, whereas the measured Pt
content of PtRu/C was almost double compared to the other two catalysts. Moreover,
the presence of a high amount of manganese oxides on the surface of Pt/C-MnxO1+x
(see previous discussion on XPS and µRS) could result in a low electrical conductivity
of the electrode [13,33,34].
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CO stripping voltammetries are shown in Figure 6. The first cycle of the
CO stripping voltammetry profile of each one of the three samples shows the
CO electro-oxidation peak. Then, in the second cycle, only typical hydrogen
underpotential deposition and Pt oxides formation/reduction phenomena are
evident. This essentially shows the complete oxidation of adsorbed CO during
the first voltammetry scan leaving the active Pt surface clean [10,13,35,36].
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catalyst loading).

The onset potential of CO electro-oxidation, taken as the potential at which 5%
of the maximum current was reached, was of 0.61, 0.59 and 0.54 V for the commercial
Pt/C, the PtRu/C and the Pt/C-MnxO1+x catalysts, respectively (see Table 1). A
negative shift of this onset potential indicates an enhanced catalytic activity for CO
oxidation. This has been extensively reported for PtRu catalysts [18,20,21]. In the
case of Pt-transition metal oxide based catalysts this effect can also be observed [14].
In particular, for our Pt/C-MnxO1+x catalyst, the onset potential is 70 mV lower than
for the commercial Pt/C catalyst.
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Table 1. CO stripping potential, MOR peak potential of the forward scan and If/Ib

ratio in the CV curves of Pt/C-MnxO1+x, Pt/C and Pt-Ru/C in 0.5 M H2SO4 and
1 M MeOH.

Catalysts CO Stripping Peak
Position V vs. Ag/AgCl

MOR forward Peak
Position V vs. Ag/AgCl MOR If/Ib

Pt/C-MnxO1+x 0.54 0.66 1.54
Pt/C 0.61 0.80 0.92

PtRu/C 0.59 0.66 1.92

Analyzing more in detail the CO stripping peak’s shape, it can be observed that
the commercial Pt/C peak has a symmetric shape, while the Pt/C-MnxO1+x catalyst
exhibits a second lower and broader peak at higher potentials than the main peak.
The presence of the double peak could be due to the presence of both Pt predominant
crystal face or Pt agglomerates [37,38]. In fact, the oxidation of a monolayer of CO is
strongly influenced by the particle size of Pt. Pt agglomerates show a notable activity
towards CO oxidation compared to isolated Pt particles. Moreover, the presence of
the double peak for Pt/MnO2/C hybrid catalysts has been noticed by other authors
as well [10,39]. In fact, the CO stripping from the Pt surface in the presence of MnO2

occurs via a kind of synergic effect between the OHads on MnO2 and the COads on
Pt [10]. The double peak due to CO stripping from the Pt/C-MnxO1+x could be
linked with the possible formation of labile OH species on the triple-phase interface
between the Pt, the oxide and the electrolyte, which provides electronic suitability
for the oxidation of CO species on the Pt surface [39]. It has been demonstrated
that MnO2 nanorods promoted Pt/C catalysts showed larger negative shift in the
CO electro-oxidation peak potential due to OHads species on the MnO2 that tend to
electronically weaken the Pt-CO bond and promote the oxidation of CO to CO2 [10].
The presence of MnO2 in a MnO2-Pt/C composite electrode primarily plays a
catalytic role in the ORR. It enhances the catalytic behavior of Pt for the ORR by
substituting for oxygen as an electron-acceptor in the case of oxygen starvation [40].
Furthermore, based on studies on Pt/Mn3O4-MWCNT [33], the Mn3O4 leads to
uniform and small Pt nanoparticle deposition, with enhanced CO-tolerance and
excellent stability in methanol oxidation. In fact, Mn3O4 nanoparticles promote
the dissociation of coordinated water and further oxidize COads to release more Pt
active sites [33]. The hydrous Mn3O4 would use its inherent Mn3O4–OH bonds
to directly donate the hydroxide species to the Pt sites and oxidize the adsorbed
CO species [41]. Mn3O4 is also known for favoring the growth of Pt nanoparticles
with high index facets [33,42]. Consequently, in our Pt/C-MnxO1+x catalyst, where
a mix of manganese oxides is present, both mechanisms could be involved. The
promotional CO stripping from the Pt surface in the presence of manganese oxides
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occurs via a type of synergic effect as reported in the literature [10,39]. Overall, the
following reaction mechanism can be assumed:

MnxO1`x ` H2O Ñ MnxO1`x ´OHads ` H` ` e´

Pt´COads ` MnxO1`x ´OHads Ñ Pt` MnxO1`x ` CO2 `H` ` e´

The PtRu/C catalyst peak appears to be more asymmetric, with a broadening
towards higher overpotentials. Thus, the presence of MnO2 on the surface of the
carbon support causes a co-catalytic action which promotes the CO oxidation catalytic
effect of Pt.

The electro-catalytic activity toward MOR of the three catalysts was investigated
by cyclic voltammetry using a 0.5 M H2SO4 and 1.0 M MeOH solution as electrolyte
(Figure 7). For all of the catalysts, the voltammograms exhibit two characteristics
oxidation peaks. The first peak is observed during the anodic potential sweep and
it is characteristic of the oxidation of methanol adsorbed on the Pt surface. This
oxidation occurs in multiple steps, with the production of carboxyl intermediates
and strongly adsorbed CO species, as discussed in the literature [43]. Mainly formic
acid and formaldehyde have been found during methanol oxidation on Pt surface, as
intermediate products [44]. With the potential increase, after the forward peak, the
oxidation current decreases, due to the poisoning effect of the CO species strongly
adsorbed on Pt and to the Pt oxides formation, which passivates the Pt surface [45].
The second peak appears during the cathodic potential sweep (reverse scan) and
it is attributed to the oxidation of adsorbed CO species and/or to the oxidation of
further methanol on the Pt oxide surface formed during the anodic scan [10]. During
electro-oxidation of MeOH, strongly adsorbed carbonaceous species inhibit further
adsorption of MeOH on the catalyst surface, which causes a positive shift in the onset
potential and a decrease in the current at a specific potential. Therefore, the more the
forward scan peak is shifted to negative potentials, the greater the promotion effect
of the electro-catalyst [18].

The forward peak potentials for the Pt/C-MnxO1+x, Pt/C and PtRu/C catalysts
obtained from the CV are shown in Table 1. The value of the ratio between the
forward peak maximum current density (If) and the backward peak maximum
current density (Ib) is also shown in Table 1. The higher this If/Ib ratio is, the greater
the electro-catalyst’s resistance to poisoning is [46]. Hence, the value of If/Ib can be
viewed as an index of the tolerance of a catalyst to poisoning species, i.e., adsorbed
CO molecules. From these results, it can be concluded that the Pt/C-MnxO1+x catalyst
is a stronger promoter than the commercial Pt/C catalyst for the MOR and this is
in agreement with the CO stripping results. In much of the literature, adsorbed CO
is considered as a poisoning intermediate for MOR on pure Pt surface. To remove
CO from the Pt surface, adsorbed OH species generated from water activation are
indispensable. However, a high potential is needed to activate water on the Pt
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surface. In PtRu catalysts, water activation can occur at lower potential on Ru-sites.
Therefore, MOR activity on PtRu catalysts can be enhanced through the bi-functional
mechanism [44].
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recorded at 20 mV¨ s´1 (0.5 M H2SO4, 1 M MeOH, 0.1 ITC mass ratio, 20 mgPt¨ cm´2

catalyst loading).

The durability of the electrodes was measured via an accelerated durability test
(ADT) at room temperature up to 5000 consecutive cycles for the Pt/C-MnxO1+x
catalyst and up to 4000 cycles for the Pt/C one. A noticeable corrosion of carbon
nanostructures as Pt supports, confirmed from the reduction of the catalyst thickness
from oxidation of carbon, agglomeration and detaching of Pt, had already been
reported by other researcher groups, as well [23]. Figure 8 compares voltammograms
before and after stability tests. The results show that Pt/C-MnxO1+x is more stable
compared to Pt/C, showing an increase of ECSA (+29% after 5000 cycles, Figure 8A).
In fact, its CV increased progressively up to 1000 cycles, remaining then stable up to
the end of the ADT at 5000 cycles. On the contrary, the Pt/C lost continuously stability
cycle after cycle, with an overall decrease of ECSA equal to ´9% after 4000 cycles
(Figure 8B). According to the literature [47], the ECSA increase of Pt/C-MnxO1+x
could be due to a re-arrangement of Pt over carbon. This re-arrangement is not a
stable condition, but a reversible process. In fact, as observed for Pt/C-MnxO1+x
during CO stripping analysis (Figure 6), Pt nanoparticles agglomeration can evolve
to more disperse Pt nanoparticles or different Pt nano-shape islands depending on
the stress cycling adopted for accelerated degradation procedure [47,48].
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Figure 8. CV after consecutive potential cycling recorded at 50 mV¨ s´1:
(A) Pt/C-MnxO1+x; (B) Pt/C; (C) MnxO1+x (0.5 M H2SO4, 0.1 ITC mass ratio,
20 mgPt¨ cm´2 catalyst loading).

To better check stability of the Pt/C-MnxO1+x and in particular of the MnxO1+x
support, the extra MnxO1+x sample used for µRS analysis (Figure 4) was used to
assess its stability in acid conditions. Specifically an RDE prepared with pure
MnxO1+x, was subjected to ADT by cycling it 5000 times in the same conditions
used for the Pt/C-MnxO1+x (50 mV¨ s´1 between 0.4 and 0.8 V vs. Ag/AgCl, in a
0.5 M H2SO4 solution). Results from CV degradation (Figure 8C) show very little
degradation, sign that MnxO1+x is a stable support in acid environment, as reported
in the literature as well [29,40,48,49]. Moreover, this RDE was analyzed directly by
SEM coupled with EDX detector before and after ADT. Images of this RDE are shown
in Figure S1 of the supporting info. From a visual point of view, the MnxO1+x on
RDE after cycling showed a rearrangement compared to the fresh configuration: it
appears more agglomerated near the edges of the disk (Figure S1C,D), whether in the
fresh configuration the electrode appears more homogeneous (Figure S1A,B). EDX
elementary analyses on the overall Mn atomic quantity available on the RDE before
and after ADT enlightened that after cycling the Mn overall content diminished
by 18%. Thus, MnxO1+x, can be considered a stable support in acidic environment.
The presence of manganese oxides in a Pt/C composite electrode plays a catalytic
role in the ORR by enhancing the catalytic behavior of Pt for the ORR [40]. In fact,
manganese oxides in the composite electrode can be considered as substitute for
oxygen as an electron-acceptor in the case of oxygen starvation.

3. Experimental Section

3.1. Chemicals

Vulcan XC-72 was purchased from Cabot. Chloroplatinic acid hexahydrate
(H2PtCl6¨ 6H2O) ě 37.50% Pt basis, potassium permanganate (KMnO4), potassium
hydroxide 85 wt. % (KOH), ethylene glycol 98 wt. % (EG, HOCH2CH2OH),
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isopropyl alcohol 99.7 wt. % ((CH3)2CHOH), sulfuric acid (H2SO4) 98 wt. %, Nafion®

perfuorinated resin 5 wt. % hydro-alcoholic solution and methanol (MeOH, CH3OH)
99.8 wt. % were purchased from Sigma Aldrich Italia (Milano, Italy). Commercial
20 wt. % Pt/Vulcan XC-72 electrocatalyst (QuinTech QuinTech e.K., Göppingen,
Germany) and commercial PtRu 1:1 at % (Hispec 6000, Alfa Aesar GmbH & Co KG,
Karlsruhe, Germany) were used for comparison tests. Nitrogen (99.999% purity) and
diluted carbon monoxide (10 vol % CO in Ar) gases were supplied in cylinders by
SIAD S.p.A. (Bergamo, Italy). All aqueous solutions were prepared using ultrapure
water obtained from a Millipore Milli-Q system (Merck KGaA, Darmstadt, Germany)
with resistivity > 18 mΩ¨ cm´1.

3.2. Synthesis of the Hybrid Support C-MnO2

To prepare the C-MnO2, 3.9 g of KMnO4 and 12.6 g of H2SO4 were added into
130 g of deionized water under magnetic stirring to form the precursor solution.
Then, 1.0 g of Vulcan XC-72 was added into this precursor solution. Subsequently, the
formed suspension was heated up to 80 ˝C and kept at 80 ˝C for 6 h under magnetic
stirring. The precipitates were filtered and washed with distilled water. Finally, the
obtained powder was dried at 120 ˝C for 6 h under vacuum. Assuming that all the
KMnO4 used in the synthesis can be reduced to MnO2, the theoretical wt. % of MnO2

in the C-MnO2 support is equal to 68.4 wt. %.

3.3. Synthesis of the Pt/C-MnxO1+x Catalyst by Thermal Method

For the synthesis of Pt/C-MnxO1+x catalyst, 200 mg of the previously prepared
C-MnO2 was added to 50 mL EG and the mixture was stirred for 30 min. Then,
H2PtCl6¨ 6H2O was dissolved into the EG solution under stirring. The pH was
adjusted to 12, by the addition of 1 M KOH in EG solution. Microwave irradiation
was applied to the solution at 700 W for 2 min, in order to reduce the Pt4+ ions to
metallic Pt0. The solution was left to cool naturally to room temperature. After
cooling, some drops of acetone were added to the solution and the Pt/C-MnxO1+x
catalyst was washed thoroughly with abundant water. Finally, the catalyst was
annealed under nitrogen atmosphere for 2 h at 600 ˝C.

3.4. Synthesis of the PtRu/C Catalyst

PtRu/C catalyst was prepared by adding 60 wt. % [50] commercial PtRu 1:1
at % on functionalized Vulcan XC72 into a water-isopropyl alcohol solution under
stirring for 24 h. Then the PtRu/C catalyst was centrifuged and dried.
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3.5. Chemical-Physical Characterization

Field-emission scanning electron microscopy (FESEM JEOL-JSM-6700F
instrument, FEI Europe, Eindhoven, The Netherlands) coupled with an Energy
Dispersive X-ray Spectrometry Detector (EDX OXFORD INCA, EDAX Inc., Mahwah,
NJ, U.S.A.) and scanning electron microscopy (SEM-EXD FEI-QuantaTM Inspect 200,
FEI Europe, Eindhoven, The Netherlands, with EDAX PV 9900 instrument, working
at 15 kV, EDAX Inc., Mahwah, NJ, USA) were performed to analyze the morphology
and check the amount of Pt and Mn.

The MnO2 and platinum-to-carbon weight percentage in the catalysts was
determined by inductively coupled plasma atomic mass spectroscopy (ICP-MS
ICAP-Q instrument, ThermoFisher Scientific Inc., Waltham, MA, USA). Prior to
analysis, the samples were digested in hot concentrated HCl/HNO3 3:1 mixture with
some droplets of H2SO4.

The XRD reflections were recorded on a PANalytical X’Pert PRO diffractomer
with a PIXcel detector (PANalytical B.V., Almelo, The Netherlands), using Cu Kα

radiation, under the conditions of 2θ = 10˝–100˝ and 2θ step size = 0.03, in order to
examine the different polymorphs.

X-ray photoelectron spectroscopy (XPS) was performed to determine the
elemental surface composition of the catalysts. The analysis was carried out using a
Physical Electronics PHI 5000 Versa Probe electron spectrometer system (Physical
Electronics Inc., Chanhassen, MN, USA) with monochromated Al Kα X-ray source
(1486.60 eV) run at 15 kV and 1 mA anode current. The survey spectra were collected
from 0 to 1200 eV. The narrow Mn 2p spectra were collected from 635 to 665 eV,
the narrow Pt 4f spectra from 66 to 86 eV and the narrow C 1s spectra from 280 to
293 eV. All of the spectra were calibrated against a value of the C 1s binding energy
of 284.5 eV. Multipak 9.0 software (Physical Electronics Inc., Chanhassen, MN, USA)
was used for obtaining semi-quantitative atomic percentage compositions, using
Gauss-Lorentz equations with Shirley-type background. A Gaussian/Lorentzian
70%/30% line shape was used to evaluate peak positions and areas of the high
resolution Pt 4f and Mn 2p spectra, with a standard deviation in locating the peaks
equal to 0.3 eV.

The chemical structure of the support was analyzed by a µ-Raman Spectroscopy
(µRS Renishaw InVia spectrometer equipped with a Leica DMLM confocal
microscope and a CCD detector with an excitation wavelength of 785 nm, Renishaw
plc, Gloucestershire, United Kingdom). The Raman scattered light was collected
in the spectral range 100–1000 cm´1. At least ten scans were accumulated in four
different positions of the catalyst to ensure a sufficient signal to noise ratio.
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3.6. Electro-Chemical Characterization

The prepared electro-catalysts were tested in a conventional three-compartment
electrochemical cell using a multi-potentiostat (Bio-Logic SP150, Bio-Logic Science
Instruments SAS, Claix, France) and a rotating ring-disk electrode instrument
(RRDE-3A ALS Model 2323, ALS Co. Ltd, Tokyo, Japan). The electrolyte was
0.5 M H2SO4 aqueous solution saturated with either N2 or CO 10% v/v in Ar by direct
bubbling the gas into the solution. For RDE measurements, the cell was equipped
with a glassy carbon (GC) disk working electrode (0.1256 cm2 geometric area), a Pt
helical wire counter electrode and a silver chloride electrode (Ag/AgCl) as reference
electrode. Glassy carbon (GC) electrodes were polished with alumina powder,
ultrasonic washing and blow drying, before dropping the catalyst ink. Different GC
disk electrodes were arranged by preparing the ink using an ionomer-to-catalyst (ITC)
mass ratio (mg of Nafion® over mg of catalyst) equal to 0.1 and catalyst loading of
20 µgPt¨ cm´2 [51]. The working electrode was surface-polished with 1 and 0.06 µm
alumina powders to a mirror-like finish its surface and sonicated to remove alumina
particles before each experiment. Cyclic voltammograms (CV) with either N2 or CO
10 vol % in Ar were recorded at 10 mV¨ s´1 and 20 mV¨ s´1, respectively.

CO stripping voltammetry was performed in 0.5 M H2SO4 at a scan rate of
20 mV¨ s´1. Prior to analysis a flow rate of 10 vol % CO in Ar was pre-adsorbed for
30 min while maintaining the working electrode at the constant potential of ´0.19 V
(vs. Ag/AgCl) and rotating disk speed of 900 rpm. Afterwards, a flow rate of pure
N2 was used for 15 min to remove the CO reversibly adsorbed onto the surface and
the excess CO dissolved in the solution.

Cyclic voltammetries for the methanol oxidation reaction in acid conditions
were carried out in a 0.5 M H2SO4 solution with 1 M MeOH. The scan rate was
20 mV¨ s´1 and the potential window was 0.0–1.0 V vs. Ag/AgCl. The highest
initial activity was usually obtained within ~20 cycles and then the experiment was
stopped [52].

The electrocatalyst stability was performed by ADT cycling up catalysts to
5000 times between 0.4 and 0.8 V vs. Ag/AgCl forwards and backwards at a scan
rate of 50 mV¨ s´1 in N2-saturated 0.5 M H2SO4 solution. Such a potential range for
accelerated degradation tests should enlighten any problem related to the corrosion
of carbon supports as well as the sintering of Pt nanoparticles based on the protocol
suggested by DoE [53].

4. Conclusions

In this work a C-MnO2 hybrid support was coated with platinum nanoparticles
followed by a annealing at 600 ˝C, in order to promote the methanol oxidation
reaction. The enhancement of the electrochemical performance of the Pt/C-MnxO1+x
was mainly due to the optimized dispersion and smaller particle size of Pt
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nanoparticles favored by the presence of a mixture of Mn2O3 and Mn3O4, as well
as synergistic integration of nanomaterials. Pt/C-MnxO1+x shows better activity
than the commercial Pt/C catalyst. However, its performance still falls short of the
most commonly used commercial PtRu/C catalyst, due to the presence of some Pt
agglomerates. The aspiration that this hybrid support can be optimized and then
go on to replace the current PtRu based catalysts can be realized by understanding
the real function of this kind of hybrid support and by reducing the presence of Pt
agglomerates. All results suggested that the Pt/C-MnxO1+x can act as promising
catalysts for fuel cells.
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Facile Electrodeposition of Flower-Like
PMo12-Pt/rGO Composite with Enhanced
Electrocatalytic Activity towards
Methanol Oxidation
Xiaoying Wang, Xiaofeng Zhang, Xiaolei He, Ai Ma, Lijuan Le and Shen Lin

Abstract: A facile, rapid and green method based on potentiostatic electrodeposition
is developed to synthesize a novel H3PMo12O40-Pt/reduced graphene oxide
(denoted as PMo12-Pt/rGO) composite. The as-prepared PMo12-Pt/rGO is
characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and
X-ray photoelectron spectroscopy (XPS). The results reveal that graphene oxide (GO)
is reduced to the rGO by electrochemical method and POMs clusters are successfully
located on the rGO as the modifier. Furthermore, the PMo12-Pt/rGO composite
shows higher electrocatalytic activity, better tolerance towards CO and better stability
than the conventional pure Pt catalyst.

Reprinted from Catalysts. Cite as: Wang, X.; Zhang, X.; He, X.; Ma, A.; Le, L.; Lin, S.
Facile Electrodeposition of Flower-Like PMo12-Pt/rGO Composite with Enhanced
Electrocatalytic Activity towards Methanol Oxidation. Catalysts 2015, 5, 1275–1288.

1. Introduction

Direct methanol fuel cells (DMFCs) have drawn increasing attention due to
their simple operation, high energy density, low pollutant emission, low operating
temperature (60–100 ˝C) and ease of handling liquid fuel [1–3]. It is widely agreed
that, as a single component catalyst, platinum shows significant electrocatalytic
activity for methanol oxidation at lower temperatures. However, there are two key
problems inhibiting its utilization in DMFCs: (1) high cost of precious platinum
and (2) pure Pt electrocatalysts are prone to deactivation/ poisoning by the reaction
intermediates (mainly CO), which generate from incomplete oxidation of methanol
and chemically adsorb onto the Pt surface and block the active sites [4].

In order to decrease the usage of pure Pt electrocatalysts, various nanostructured
carbon materials have been used to effectively disperse metal nanoparticles. In
particular, reduced graphene oxide (rGO) has been found as a promising candidate
for catalyst support in DMFCs [5]. Reduced graphene oxide (rGO) is gradually
attracting more scientific and technological research interests due to its unique
mechanical and electronic properties and wide applications [6,7]. On the other
hand, polyoxometalates (POMs) are early-row transition metal oxygen anionic
clusters with a remarkable redox and photo-electrochemical properties [8]. It was
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demonstrated [9] that Keggin-type PMo12O40
3´ anions in an aqueous solution could

effectively convert carbon monoxide to carbon dioxide over catalysts, as represented
by following equation.

rCOpgq ` H2O ` PMo12O40
3´paqqÑCO2pgq ` 2H+paqq ` PMo12O40

5´paqqs (1)

In order to enhance CO tolerance in methanol oxidation and improve
the durability of the Pt electrocatalysts, our group have studied the effects of
silicotungstic acid (H4SiW12O40) on the electrocatalytic activity of Pt catalysts
towards methanol oxidation, and found that silicotungstic acid can promote the
further oxidation of intermediates such as CO and supplies enough active sites for
methanol oxidation [10]. Moreover, H3PMo12O40 can also enhance electrocatalysis of
Pd toward formic acid electrooxidation. The addition of H3PMo12O40 contributes
to converting CO into CO2, which reduces the poisoning effects of CO over Pd
catalyst [11]. All of these positive studies provide evidence that POMs could
enhance antipoisoning ability of Pt in the methanol electrooxidation process on
fuel cell anodes.

Up to now, many electrochemical methods have been used to reduce graphene
oxide (GO) into reduced graphene oxide (rGO), such as cyclic voltammograms [12],
potentiostatic electro deposition methods [13] and differential pulse voltammetry
(DPV) [14]. The experiment results reveal that the electrochemical approach is a
relatively economic, fast and environmental friendly method to prepare graphene
avoiding toxic and hazardous chemicals such as hydrazine or dimethylhydrazine in
the reduction process [15].

In this study, we firstly report a facile, fast, scalable, economic and
environmentally benign pathway to prepare PMo12-Pt/rGO composites. The
electrochemical prepared approach can be undertaken via two steps (Figure 1):
the first step involves direct electrochemical reduction of GO in suspension onto
the substrate. Then, PMo12-Pt clusters on the substrate surface were also deposited
by electrodeposition method in situ. As expected, the as-prepared PMo12-Pt/rGO
composite exhibits superior catalytic activity on the electrochemical catalysis of
methanol and CO oxidation.
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Figure 1. Schematic preparation of PMo12-Pt/rGO composites. 

2. Results and Discussion 

Figure 2 displays the X-ray diffraction (XRD) patterns of rGO/indium tin oxide (rGO/ITO), 
Pt/rGO/ITO and PMo12-Pt/rGO/ITO, respectively. As shown in Figure 2a, the diffraction peaks located 
at 30.23°, 35.16°, 50.47° and 60.02° can be considered as (222), (400), (440) and (622) crystal planes 
of ITO [16]. According to the ICDD PDF 04-0802, the diffraction peaks at 40.00°, 46.54°, 67.91° and 
81.48° can be indexed to the (111), (200), (220) and (311) planes for Pt. These diffraction peaks are 
found in Figure 2b,c, which suggest that the successful formation of Pt on the rGO film by 
electrodeposition in situ. However, the diffraction peaks of Pt crystal planes (curve c) slightly shift 
comparing with curve (b). It may be as a result of the interaction among rGO, PMo12 and Pt. There are 
no distinct diffraction peaks of PMo12, which may be due to the characteristic diffraction pattern of 
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2. Results and Discussion

Figure 2 displays the X-ray diffraction (XRD) patterns of rGO/indium tin
oxide (rGO/ITO), Pt/rGO/ITO and PMo12-Pt/rGO/ITO, respectively. As shown
in Figure 2a, the diffraction peaks located at 30.23˝, 35.16˝, 50.47˝ and 60.02˝ can
be considered as (222), (400), (440) and (622) crystal planes of ITO [16]. According
to the ICDD PDF 04-0802, the diffraction peaks at 40.00˝, 46.54˝, 67.91˝ and 81.48˝

can be indexed to the (111), (200), (220) and (311) planes for Pt. These diffraction
peaks are found in Figure 2b,c, which suggest that the successful formation of Pt
on the rGO film by electrodeposition in situ. However, the diffraction peaks of Pt
crystal planes (curve c) slightly shift comparing with curve (b). It may be as a result
of the interaction among rGO, PMo12 and Pt. There are no distinct diffraction peaks
of PMo12, which may be due to the characteristic diffraction pattern of crystalline
PMo12 being absent, which further implies that PMo12 clusters do not exist in the
crystalline state but in the dispersed state [17].

The presence of Pt, P, Mo, C, N, and O elements on the surface of the composite
is confirmed in the full-spectra of X-ray photoelectron spectroscopy (XPS) (Figure 3a).
As shown in Figure 3b, the C1s XPS spectrum of the prepared composite show
that there are four kinds of carbon atoms in different functional groups: C–C/C=C
bonds (284.6 eV), C–O bands (286.7 eV), C=O bands (287.5 eV) and O–C=O bands
(288.5 eV) [18,19]. The C1s spectrum of GO shows the presence of two typical carbon
bonds: C–C/C=C (284.6 eV) and C–O (286.7 eV) (Figure 3e). After electrochemical
reduction, only the C–C/C=C bands remain dominant, which implies that the
functional groups such as carboxyl groups, hydroxyl groups, and epoxy groups
are reduced and detached from graphene surface. In Pt (4f) XPS of the composite
(Figure 3c), the principle peaks are attributed to Pt˝ at 71.2 eV (4f7/2) and 74.6 eV
(4f5/2) [20], while peaks at 72.1, 75.9 and 74.4, 77.5 eV are assigned to Pt in +2 and +4
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states [21,22], respectively. The results of different Pt species are calculated based on
above data and listed in Table S1. After electrolytic deposition by cyclic voltammetry,
the relative intensity of Pt˝, Pt2+ and Pt4+ are calculated to be 62.92%, 26.57% and
10.51% for prepared composite, respectively. However, in contrast, the proportion of
Pt˝ on the surface is only 36.3% via chemical synchronous reduction [23]. Thus, the
preparation method we used can effectively improve the content of Pt˝. Moreover,
the Mo 3d core level spectrum displays two peaks at binding energies of 232.8 eV
and 236.0 eV, corresponding to the Mo 3d3/2 and Mo 3d5/2 spin-orbit states of PMo12,
respectively (Figure 3d) [24], which indicated the presence of PMo12 in the composite.
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Figure 2. XRD patterns of the (a) rGO/ITO, (b) Pt/rGO/ITO and (c)
PMo12-Pt/rGO/ITO.

Raman spectroscopy is a powerful nondestructive technique that is widely used
to distinguish order and disorder in the crystal structure of carbon [25]. Figure 4
presents the Raman spectra of GO and PMo12-Pt/rGO, respectively. Two groups of
typical characteristic peaks of D bands and G bands can be observed at about ~1320
and ~1590 cm´1, respectively. The D band originates from the disordered structural
defects or edge areas, and the G band is associated with the in-plane vibration of sp2

bonded carbon atoms [26]. Meanwhile, the intensity ratio of D and G bands (ID/IG)
can be used to evaluate the extent of defects in carbonaceous materials. The ID/IG

value of PMo12-Pt/rGO is estimated about 1.80, which is higher than that of GO
(1.33). The increase suggests the realization of deoxygenation during the reduction
of GO [27].
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Figure 5 displays the SEM images of different composites. Figure 5a–c are
the surface morphology of PMo12-Pt/ rGO/ITO composite, which are deposited at
different electrode potentials. As shown in Figure 5a, when the deposition potential
is ´0.2 V, the coral-like clusters shape up on the rGO surface with the 100–800 nm
diameters and less aggregation. When the deposition potential is ´0.3 V, they are
composed of flower-like clusters (Figure 5b) and the diameter is in range from 450 to
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900 nm. Each flower-like cluster (Figure 5b inset) is three-dimensional, spear-shaped
and multi-faceted. The mean diameter is of ~100 nm. These special structures may
provide a larger specific surface area compared with other morphologies. When the
deposition potential is decreased to ´0.4 V, the PMo12-Pt/rGO/ITO composite is in
an irregular shape (Figure 5c).Catalysts 2015, 5 1280 
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potential of −0.3V for 600 s. 
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(about 176.6 mA·cm−2 mg−1 Pt), which indicates that PMo12-Pt clusters have better catalytic activity 
for methanol electrooxidation. The result may be explained as following: the poisonous intermediates 
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Figure 5. SEM images of different modified electrodes: (a) PMo12-Pt/rGO/ITO
composites at ´0.2V; (b) PMo12-Pt/rGO/ITO composites at ´0.3V;
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PMo12-Pt/rGO/ITO modified electrode at the deposition potential of ´0.3V
for 600 s.

Figure 5b,d and e presents the SEM images of PMo12-Pt/rGO/ITO (b),
Pt/rGO/ITO (d) and PMo12-Pt/ITO (e) obtained from deposition potential of ´0.3 V,
respectively. As shown in Figure 5d, Pt clusters are spherical with diameters in the
range of 100–450 nm and less aggregation. By contrast, PMo12-Pt clusters are the
same morphology as Pt/rGO with big size distribution (150–900 nm) in Figure 5e.
It suggests that the introduction of the PMo12 and rGO may have an impact on the
formation of the structure of clusters. Energy dispersive spectroscopy (EDS) analysis
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in Figure 5f identifies the presence of Pt, P, Mo, C, N and O on the PMo12-Pt/rGO/ITO
electrode and further confirms that PMo12, Pt, and rGO are present in the composite.

The catalytic activity of the different modified electrodes was studied in a
conventional three electrode system in 0.5 M H2SO4 + 1 M CH3OH electrolyte
solutions at a scan rate of 100 mV¨ s´1. Figure 6 presents the steady state
cyclic voltammograms of Pt, Pt/rGO, PMo12-Pt/rGO deposited on glassy carbon
electrodes, referring to the Ag/AgCl electrode. The forward scan current density
(If) of PMo12-Pt/rGO/glass carbon electrode (PMo12-Pt/rGO/GCE) was 269.1
mA¨ cm´2¨mg´1 Pt, but it was 176.6 mA¨ cm´2 mg´1 Pt for Pt/rGO/GCE catalysts
and only 147.9 mA¨ cm´2 mg´1 Pt for Pt/GCE catalysts. It is evident that the
forward peak current value of PMo12-Pt/rGO/GCE (about 269.1 mA¨ cm´2¨mg´1

Pt) is 1.52 times higher than that of Pt/rGO/GCE (about 176.6 mA¨ cm´2 mg´1 Pt),
which indicates that PMo12-Pt clusters have better catalytic activity for methanol
electrooxidation. The result may be explained as following: the poisonous
intermediates such as CO that are absorbed on the active sites of Pt nanoparticles
significantly can be catalytically oxidized by POMs, which results in the increased
electrocatalytic activity of PMo12-Pt clusters [28]. Therefore, PMo12-Pt/rGO/GCE
modified electrode for the oxidation of methanol in acidic medium shows better
catalytic activity than Pt/rGO/GCE and Pt/GCE.Catalysts 2015, 5 1281 
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performed by running the 1st time and 100 times between −0.20 V and 1.0 V with a scan rate of  
0.10 V·s−1 in 0.5 M H2SO4 and 1 M CH3OH aqueous solution for the catalysts are presented in  
Figure 7a–c. The peak for the Pt/GCE have the same change characteristics as that for the other 
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than the other electrodes (Figure 7a). However, for the Pt/rGO/GCE (Figure 7b) and  
PMo12-Pt/rGO/GCE composite (Figure 7c), the current densities decline 11.33% and 6.99%  
(Table S2), respectively. Therefore, the PMo12-Pt/rGO/GCE has better short-term stability than  
the other two. 
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Figure 6. Cyclic voltammograms of different modified electrodes: (a) Pt/GCE; (b)
Pt/rGO/GCE; (c) PMo12-Pt/rGO/GCE in 0.5 M H2SO4 + 1 M CH3OH solution.
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The short-term stability of the catalysts was investigated by accelerated aging
tests, which were performed by running the 1st time and 100 times between ´0.20 V
and 1.0 V with a scan rate of 0.10 V¨ s´1 in 0.5 M H2SO4 and 1 M CH3OH aqueous
solution for the catalysts are presented in Figure 7a–c. The peak for the Pt/GCE have
the same change characteristics as that for the other electrodes with the increasing
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cycling number, but the electricity density for the Pt/GCE declines faster than
the other electrodes (Figure 7a). However, for the Pt/rGO/GCE (Figure 7b) and
PMo12-Pt/rGO/GCE composite (Figure 7c), the current densities decline 11.33%
and 6.99% (Table S2), respectively. Therefore, the PMo12-Pt/rGO/GCE has better
short-term stability than the other two.
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Figure 7. Comparative cyclic voltammograms of the different modified GCE electrodes: 
(a) Pt/GCE; (b) Pt/rGO/GCE; (c) PMo12-Pt/rGO/GCE at 1st time and 100th times in  
0.5 M H2SO4 + 1 M CH3OH solution. Scan rate: 100 mV·s−1. 

To evaluate the long-term performance of the three electrodes for methanol oxidation  
(in 0.5 M H2SO4 + 1 M CH3OH solution), they were polarized at 0.68 V for 7200 s. As shown in 
Figure 8, a rapid initial current density decay is observed, due to the formation of some intermediate 
species (mainly COads) during the methanol oxidation reaction [29]. Then the currents slowly decrease 
and reach a quasi-stationary state within 7200 s. As observed from Figure 9, the current densities at 
7200 s are 6.18, 4.60, 2.81 mA·cm−2mg−1·Pt towards methanol oxidation, respectively. The maximum 
steady-state oxidation current density for PMo12-Pt/rGO/GCE is the largest compared to those of other 
electrodes. Thus, it confirms that the combination of PMo12-Pt and rGO enhance electrocatalytic 
performance of the Pt catalyst. 

 

Figure 7. Comparative cyclic voltammograms of the different modified GCE
electrodes: (a) Pt/GCE; (b) Pt/rGO/GCE; (c) PMo12-Pt/rGO/GCE at 1st time
and 100th times in 0.5 M H2SO4 + 1 M CH3OH solution. Scan rate: 100 mV¨ s´1.
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To evaluate the long-term performance of the three electrodes for methanol
oxidation (in 0.5 M H2SO4 + 1 M CH3OH solution), they were polarized at
0.68 V for 7200 s. As shown in Figure 8, a rapid initial current density decay
is observed, due to the formation of some intermediate species (mainly COads)
during the methanol oxidation reaction [29]. Then the currents slowly decrease
and reach a quasi-stationary state within 7200 s. As observed from Figure 9, the
current densities at 7200 s are 6.18, 4.60, 2.81 mA¨ cm´2mg´1¨Pt towards methanol
oxidation, respectively. The maximum steady-state oxidation current density for
PMo12-Pt/rGO/GCE is the largest compared to those of other electrodes. Thus,
it confirms that the combination of PMo12-Pt and rGO enhance electrocatalytic
performance of the Pt catalyst.Catalysts 2015, 5 1283 

 

 

Figure 8. Chronoamperometric curves of different modified electrodes: (a) Pt/GCE;  
(b) Pt/rGO/GCE; (c) PMo12-Pt/rGO/GCE in 0.5 M H2SO4 + 1 M CH3OH solution at  
a fixed potential of 0.68 V for 2 h. 

Electrochemical impedance spectroscopy (EIS) was used to further investigate the intrinsic behavior 
of the anodic process. The Nyquist plots of EIS for Pt/GCE (curve a), Pt/rGO/GCE (curve b),  
PMo12-Pt/rGO/GCE (curve c) in 1 M CH3OH + 0.5 M H2SO4 are shown in Figure 9. The diameter of 
the primary semicircle can be used to analyze the charge transfer resistance of the catalyst, and 
describe the rate of charge transfer during the methanol oxidation reaction [30]. The semicircle radius 
on the Nyquist plots of EIS for PMo12-Pt/rGO/GCE is much smaller than that of Pt/GCE and 
Pt/rGO/GCE, clearly authenticating that the incorporation of PMo12 and rGO results in the improved 
conductivity of PMo12-Pt/rGO/GCE. 
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Figure 9. Nyquist plots of EIS with different films modified electrodes: (a) Pt/GCE;  
(b) Pt/rGO/GCE; (c) PMo12-Pt/rGO/GCE in 0.5 M H2SO4 + 1 M CH3OH solution. 

Efficient elimination of the poisoning species such as CO from the catalyst is very important for 
assessing the catalyst performance in DMFCs. Figure 10 shows the voltammograms of CO oxidation 
on the different modified electrodes. As seen in Figure 10c, the distinct CO oxidation peak appears 
during the first forward scan, whereas it disappears in the second forward scan, indicating that  

 

Figure 8. Chronoamperometric curves of different modified electrodes: (a) Pt/GCE;
(b) Pt/rGO/GCE; (c) PMo12-Pt/rGO/GCE in 0.5 M H2SO4 + 1 M CH3OH solution
at a fixed potential of 0.68 V for 2 h.

Electrochemical impedance spectroscopy (EIS) was used to further investigate
the intrinsic behavior of the anodic process. The Nyquist plots of EIS for Pt/GCE
(curve a), Pt/rGO/GCE (curve b), PMo12-Pt/rGO/GCE (curve c) in 1 M CH3OH +
0.5 M H2SO4 are shown in Figure 9. The diameter of the primary semicircle can be
used to analyze the charge transfer resistance of the catalyst, and describe the rate of
charge transfer during the methanol oxidation reaction [30]. The semicircle radius
on the Nyquist plots of EIS for PMo12-Pt/rGO/GCE is much smaller than that of
Pt/GCE and Pt/rGO/GCE, clearly authenticating that the incorporation of PMo12

and rGO results in the improved conductivity of PMo12-Pt/rGO/GCE.
Efficient elimination of the poisoning species such as CO from the catalyst is

very important for assessing the catalyst performance in DMFCs. Figure 10 shows
the voltammograms of CO oxidation on the different modified electrodes. As seen
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in Figure 10c, the distinct CO oxidation peak appears during the first forward scan,
whereas it disappears in the second forward scan, indicating that the adsorbed
CO on the surface of PMo12-Pt/rGO nanoparticles has been oxidized during the
first forward scan [31]. The PMo12-Pt/rGO/GCE exhibited the more negative peak
potential (0.647 V), while the peak potential of Pt/rGO/GCE and Pt/GCE only
0.687 V and 0.729 V, respectively. The negatively shifted peak potentials indicate that
CO species on the PMo12-Pt/rGO interfaces are more easily transformed to CO2 due
to the oxidation ability of PMo12 [32]. Therefore, the active sites on Pt are released
for further electrochemical reaction.
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the adsorbed CO on the surface of PMo12-Pt/rGO nanoparticles has been oxidized during the first 
forward scan [31]. The PMo12-Pt/rGO/GCE exhibited the more negative peak potential (0.647 V), 
while the peak potential of Pt/rGO/GCE and Pt/GCE only 0.687 V and 0.729 V, respectively.  
The negatively shifted peak potentials indicate that CO species on the PMo12-Pt/rGO interfaces are 
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3. Experimental Section

3.1. Materials

Graphite powder (´325 mesh, 99.9995%) was purchased from Alfa Aesar
(Shanghai, China). Cu(Ac)2, K2PtCl4 (99%), KMnO4, H2O2 (30%), K2S2O8, P2O5,
H2SO4, methanol, and ethanol were all purchased from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China) and used without further purification. Deionized water
was used throughout the experiments.

3.2. Preparation of Reduced Graphene Oxide (rGO) Modified Electrode

Graphite oxide was prepared from graphite powder by a modified Hummers’
method [33,34]. To obtain a homogeneous suspension, Graphite oxide was mixed
with deionized water and ultrasonicated for 2 h. The as-prepared GO suspension
was coated onto an indium tin oxide (ITO) glass or glass carbon electrode (GCE) to
form GO film. The rGO film was prepared upon electrochemically reduction of GO
film in 0.1 M Na2SO4 at a constant potential of ´1.5 V for 600 s. (Figure 1).

3.3. Synthesis of PMo12-Pt/rGO

PMo12-Pt clusters were deposited in situ on the surface of the rGO film-modified
GCE (3 mm in diameter) or ITO electrode (4 mm in width) by potentiostatic
electrodeposition in a 0.5 M H2SO4 solution containing 2 mM H2PtCl6 and 0.2 mM
PMo12 at ´0.3 V for 600 s. After deposition, the working electrode was rinsed
with distilled water and dried under an infrared lamp. For comparison, the
electrodeposition of platinum on the surface of bare GCE or ITO, and rGO was
also performed under the same conditions.

3.4. Characterization

XPS was performed at room temperature with monochromatic Al Kα radiation
(1486.6 eV) using a Quantum 2000 system (PHI, Chanhassen, MN, USA). XRD
patterns were measured on an X’pert Pro diffractometer (Philips, Almelo, The
Netherlands), using Cu Kα radiation. Field emission scanning electron microscopy
(FE-SEM) images were observed on a JSM-7500F field emission scanning electron
microanalyzer (JEOL, Tokyo, Japan). EDS was used to confirm the existence of Pt
particles. Ramam spectra was measured using a Renishaw-in-Via Raman (Renishaw,
London, UK) micro-spectrometer equipped with 514 nm diode laser excitation on
a 300 lines¨mm´1 grating. The actual amount of Pt loadings of the catalysts was
determined by inductively coupled plasma-mass spectroscopy (ICP-MS, X Series 2,
Thermo Scientific, Waltham, MA, USA).
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3.5. Electrochemical Measurements

Electrochemical measurements were conducted on a CHI660 Electrochemical
Workstation (Chenhua, Shanghai, China) using a conventional three-electrode
electrochemical system. The working electrode was a glassy carbon electrode
(geometric area, 0.07 cm2) modified with the catalysts; Ag/AgCl electrode and Pt wire
were used as the counter and reference electrode, respectively. Cyclic voltammetric,
EIS and chronoamperometric experiments were carried out in 0.5 M H2SO4 in the
absence and presence of 1 M methanol. The electrolyte solution was deaerated
with ultrahigh-purity N2 before scanning. The CO stripping voltammograms were
measured by oxidation of preadsorbed CO (COad) in the 0.5 M H2SO4 solution
at a scan rate of 100 mV¨ s´1. CO was bubbled for 30 min to allow the complete
adsorption of CO onto the composites when the potential was kept at 0.1 V. Excess
CO in the electrolyte was then purged out with N2 for 15 min.

CO-stripping curves of Pt/GCE, Pt/rGO/GCE, and PMo12-Pt/rGO/GCE in
0.5 M H2SO4 solution is collected to evaluate the electrochemical surface areas
(ECSA). All the composites show characteristic CO oxidation peak in the first
forward scan, suggesting the presence of electrochemically active Pt. The ECSA
were calculated by the integrated charge (Q) in the CO oxidation region. According
to the equation ECSA = Q/(420 µC¨ cm´2 ˆ Pt loading), we have added the Pt load
for each sample in Table S3.

4. Conclusions

In this work, a unique flower-like PMo12-Pt/rGO composite has been
successfully synthesized by the electrochemical reduction method and used as an
electrocatalyst for methanol oxidation. Cyclic voltammetry, chronoamperometry
and CO stripping voltammetry were used to study electrocatalytic properties
of PMo12-Pt/rGO composite in acidic medium for methanol oxidation. The
PMo12-Pt/rGO composite modified electrode shows higher catalytic activity, better
electrochemical stability and resistance to CO poisoning, which may be attributed
to the synergistic effect of the special morphology of the composite, excellent
conductivity of rGO and superior redox properties of PMo12. These findings suggest
that the PMo12-Pt/rGO composite can be considered as a good electrocatalyst
material for DMFCs.
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Copolymers Based on Indole-6-Carboxylic
Acid and 3,4-Ethylenedioxythiophene as
Platinum Catalyst Support for
Methanol Oxidation
Tzi-Yi Wu, Chung-Wen Kuo, Yu-Lun Chen and Jeng-Kuei Chang

Abstract: Indole-6-carboxylic acid (ICA) and 3,4-ethylenedioxythiophene (EDOT)
are copolymerized electrochemically on a stainless steel (SS) electrode to obtain
poly(indole-6-carboxylic acid-co-3,4-ethylenedioxythiophene)s (P(ICA-co-EDOT))s.
The morphology of P(ICA-co-EDOT)s is checked using scanning electron microscopy
(SEM), and the SEM images reveal that these films are composed of highly porous
fibers when the feed molar ratio of ICA/EDOT is greater than 3/2. Platinum
particles can be electrochemically deposited into the P(ICA-co-EDOT)s and PICA
films to obtain P(ICA-co-EDOT)s-Pt and PICA-Pt composite electrodes, respectively.
These composite electrodes are further characterized using X-ray photoelectron
spectroscopy (XPS), SEM, X-ray diffraction analysis (XRD), and cyclic voltammetry
(CV). The SEM result indicates that Pt particles disperse more uniformly into the
highly porous P(ICA3-co-EDOT2) fibers (feed molar ratio of ICA/EDOT = 3/2).
The P(ICA3-co-EDOT2)-Pt nanocomposite electrode exhibited excellent catalytic
activity for the electrooxidation of methanol in these electrodes, which reveals that
P(ICA3-co-EDOT2)-Pt nanocomposite electrodes are more promising for application
in an electrocatalyst as a support material.

Reprinted from Catalysts. Cite as: Wu, T.-Y.; Kuo, C.-W.; Chen, Y.-L.; Chang, J.-K.
Copolymers Based on Indole-6-Carboxylic Acid and 3,4-Ethylenedioxythiophene as
Platinum Catalyst Support for Methanol Oxidation. Catalysts 2015, 5, 1657–1672.

1. Introduction

Electrochemical oxidation of methanol has been widely studied in the last
decades due to their application for electrochemical energy conversion in direct
methanol fuel cells (DMFC) [1–3]. The DMFC is considered a highly promising power
source as an alternative to conventional energy converting devices due to its high
power density, high energy-conversion efficiency, low emission of pollutants, and
good fuel availability [4,5]. Despite the many efforts devoted to DMFC development,
the usefulness of DMFCs is limited by the requirement of expensive platinum
electrocatalyst for the methanol oxidation; platinum reserves on earth are limited,
and the electrocatalytic efficiency is restricted by poisonous CO species on the Pt
surface. These reasons limit the development and commercialization of DMFCs.
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One of the practical solutions has been to decrease the use of pure platinum and
enhance the catalytic efficiency of the entire catalyst (Pt and support) for methanol
oxidation, such as with Pt-based bimetallic catalysts (Pt-Ru, Pt-Cu, Pt-Pd, Pt-WO3,
Pt-Co, Pt-Sn, Pt-Pb, Pt-Rh, and Pt-Au) [6–10]. Bimetallic catalysts are composed
of two distinct metal elements, which significantly reduce the over-potential of
methanol oxidation and offer considerable improvement in the catalytic properties
relative to the individual metals. Moreover, the Pt-based bimetallic catalysts decrease
the high Pt cost.

In recent years, conducting polymers (CPs) have been demonstrated to be
suitable host materials for dispersing metallic particles [11–14]. CP matrices with
porous structures, high accessible surface area, low chemical resistance and high
stability are attractive and favorable supports for incorporation of the catalyst
particles [15–17]. Moreover, this support structure avoids the agglomeration and
reduces the Pt loading under the condition of keeping high catalytic activity.

Nowadays, the most common conducting polymers, such as polyaniline
(PANI) [18], polypyrrole (PPy) [19], polythiophene (PTh) [20], polycarbazole [21],
polyindole (PIn) [22], and their derivatives, have been successfully used as catalyst
supports for methanol oxidation. Among many promising CPs, polypyrrole has
the advantages of good electrical conductivity and ease of anodic electrodeposition
of freestanding polypyrrole films. Indole has both a benzene ring and a pyrrole
ring, the incorporation of a benzene unit link to the indole unit increases the
chemical stability of polyindole. Poly(3,4-ethylenedioxythiophene) (PEDOT) is an
important polythiophene derivative with two electron-donating oxygen atoms on
3,4-positions of thiophene PEDOT has good chemical and electrochemical properties
in comparison with other kinds of polythiophene derivatives.

Copolymerization is an easy, facile method for preparing a specific polymer with
different properties than those of their corresponding homopolymers. Synthesis of
conjugated copolymer involves chemical and electrochemical polymerization [23,24].
Electrochemical copolymerization can be carried out at room temperature and
homogeneous copolymer films can be formed directly at the electrode surface.
During the past few years, copolymers have received increasing attention because
they allow the preservation of homopolymers’ properties and display specific
electrochemical and physicochemical properties [25]. In the present work,
poly(indole-6-carboxylic acid)-based homopolymers and copolymers are used as
catalyst supports, and carboxylic acid groups are incorporated into the polymer
backbone to help the uptake of Pt4+ ions and prevent the aggregation of Pt
particles. P(ICA-co-EDOT)s are prepared on the stainless steel (SS) electrode using
the electrochemical copolymerization of indole-6-carboxylic acid (ICA) and EDOT,
and the feed molar percentage of ICA/(ICA+EDOT) is 100, 80, 60, and 40%. The
characteristics of deposited homopolymer and copolymer films are characterized by
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Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy
(SEM). Platinum particles were deposited onto the homopolymer and copolymer
films using H2PtCl6 as the precursor to prepare PICA-Pt, P(ICA4-co-EDOT1)-Pt,
P(ICA3-co-EDOT2)-Pt, and P(ICA2-co-EDOT3)-Pt composite catalyst supports,
and their morphology and platinum particle size were investigated by SEM
and X-ray diffraction (XRD), respectively. The electrochemical surface areas,
electrocatalytic properties, and long-time stability toward methanol oxidation of the
as-prepared composite catalyst were obtained by implementing cyclic voltammetry
and chronoamperometry measurements in 0.5 M methanol +0.5 M H2SO4 solution.
The present work focuses on the preparation of homopolymer and copolymer
films using various feed molar percentages of ICA/EDOT and investigates the
electrocatalytic activities of their Pt catalyst supports towards methanol oxidation.

2. Results and Discussion

2.1. Electrochemical Polymerization and Characterizations

The anodic polarization curves of 0.02 M EDOT and 0.02 M ICA in an acetonitrile
(ACN) solution containing 0.1 M LiClO4 as the supporting electrolytes are shown in
Figure 1. The onset oxidation potential (Eonset) of EDOT and ICA in the solution is
about +0.77 and +0.83 V (vs. Ag/AgCl), respectively.
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Figure 1. Anodic polarization curves of (a) 0.02 M EDOT and (b) 0.02 M ICA in
ACN + 0.1 M LiClO4. Scanning rates: 50 mV s´1.

It is well known that successful electrochemical copolymerization of different
monomers is due to the fact that the Eonset values of the monomers are close to
each other [26]. The difference of the onset oxidation potential between EDOT and
ICA monomers is 0.06 V, implying that the electrochemical copolymerization may
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happen at the proper potential [27]. The schematic illustration for the formation of
P(ICA-co-EDOT) is shown in Figure 2.
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Figure 2. Schematic illustration for the formation of P(ICA-co-EDOT).

Figure 3a–d shows the FT-IR spectra of PICA, P(ICA4-co-EDOT1),
P(ICA3-co-EDOT2), and P(ICA2-co-EDOT3) films. The PICA (curve a) exhibits some
peaks, the –C–N stretching vibration of PICA is observed clearly at 1295 cm´1, and
the absorption peak at 1615 cm´1 is attributed to C=C stretching. The characteristic
–C=O groups of PICA are observed at 1695 cm´1 [24]. These characteristic peaks of
PICA can also be seen in copolymers (curve b–d). Compare with PICA homopolymer,
the absorption peaks of the C-S bond in P(ICA4-co-EDOT1), P(ICA3-co-EDOT2), and
P(ICA2-co-EDOT3) films can be observed at 860 and 698 cm´1 [28]. This implies that
the 3,4-ethylenedioxythiophene units are incorporated into the copolymer chain. The
absorption peaks of PICA are located at 1695 cm´1, whereas the absorption peaks of
these copolymers shifted to short wavenumber position, indicating the formation
of P(ICA4-co-EDOT1), P(ICA3-co-EDOT2), and P(ICA2-co-EDOT3) copolymers by
the electrochemical polymerization. For instance, the characteristic peak shifts to
1680 cm´1 (curve d) when the feed molar ratio of ICA/EDOT is 2/3.
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Figure 3. FT-IR spectra of (a) PICA; (b) P(ICA4-co-EDOT1); (c) P(ICA3-co-EDOT2);
and (d) P(ICA2-co-EDOT3).

XPS is a quantitative spectroscopic method for the element analysis. Figure 4a
shows the survey scan of PICA-Pt, P(ICA4-co-EDOT1)-Pt, P(ICA3-co-EDOT2)-Pt,
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and P(ICA2-co-EDOT3)-Pt. Signals of C1s, N1s, O1s, Pt4f, and S2p can be seen from
Figure 4a. The Pt core-level spectra of E-Pt (Pt particles were deposited onto the
stainless steel electrode), PICA-Pt, P(ICA4-co-EDOT1)-Pt, P(ICA3-co-EDOT2)-Pt, and
P(ICA2-co-EDOT3)-Pt are shown in Figure 4b. The intensive Pt4f binding energy
peaks appeared at 71.3 and 74.7 eV are metallic Pt [29]. The depositions of Pt
particle on PICA, P(ICA4-co-EDOT1), P(ICA3-co-EDOT2), and P(ICA2-co-EDOT3)
films influence the N1s orbital of polymers and Pt4f orbital of Pt, this could change
the Pt4f energy level for the PICA-Pt, P(ICA4-co-EDOT1)-Pt, P(ICA3-co-EDOT2)-Pt,
and P(ICA2-co-EDOT3)-Pt electrodes. For instance, the Pt4f peaks of E-Pt (71.3
and 74.7 eV) shifted to 70.5 and 73.9 eV (P(ICA3-co-EDOT2)-Pt (curve IV in
Figure 4b), respectively.

Catalysts 2015, 5 1661 
 

XPS is a quantitative spectroscopic method for the element analysis. Figure 4a shows the survey 
scan of PICA-Pt, P(ICA4-co-EDOT1)-Pt, P(ICA3-co-EDOT2)-Pt, and P(ICA2-co-EDOT3)-Pt.  
Signals of C1s, N1s, O1s, Pt4f, and S2p can be seen from Figure 4a. The Pt core-level spectra of E-Pt (Pt 
particles were deposited onto the stainless steel electrode), PICA-Pt, P(ICA4-co-EDOT1)-Pt,  
P(ICA3-co-EDOT2)-Pt, and P(ICA2-co-EDOT3)-Pt are shown in Figure 4b. The intensive Pt4f binding 
energy peaks appeared at 71.3 and 74.7 eV are metallic Pt [29]. The depositions of Pt particle on 
PICA, P(ICA4-co-EDOT1), P(ICA3-co-EDOT2), and P(ICA2-co-EDOT3) films influence the N1s 
orbital of polymers and Pt4f orbital of Pt, this could change the Pt4f energy level for the PICA-Pt,  
P(ICA4-co-EDOT1)-Pt, P(ICA3-co-EDOT2)-Pt, and P(ICA2-co-EDOT3)-Pt electrodes. For instance, 
the Pt4f peaks of E-Pt (71.3 and 74.7 eV) shifted to 70.5 and 73.9 eV (P(ICA3-co-EDOT2)-Pt  
(curve IV in Figure 4b), respectively. 

 

 

Figure 4. (a) XPS spectra of the survey scan (I) PICA-Pt, (II) P(ICA4-co-EDOT1)-Pt,  
(III) P(ICA3-co-EDOT2)-Pt, and (IV) P(ICA2-co-EDOT3)-Pt; (b) Pt4f XPS core-level 
spectra of (I) E-Pt, (II) PICA-Pt, (III) P(ICA4-co-EDOT1)-Pt, (IV) P(ICA3-co-EDOT2)-Pt, 
and (V) P(ICA2-co-EDOT3)-Pt. 

  

 

Figure 4. (a) XPS spectra of the survey scan (I) PICA-Pt, (II) P(ICA4-co-EDOT1)-Pt,
(III) P(ICA3-co-EDOT2)-Pt, and (IV) P(ICA2-co-EDOT3)-Pt; (b) Pt4f XPS
core-level spectra of (I) E-Pt, (II) PICA-Pt, (III) P(ICA4-co-EDOT1)-Pt, (IV)
P(ICA3-co-EDOT2)-Pt, and (V) P(ICA2-co-EDOT3)-Pt.

564



2.2. Surface Morphology

Figure 5a–h shows the scanning electron microscopy (SEM) analysis of surface
morphology of PICA, PICA-Pt, P(ICA4-co-EDOT1), P(ICA4-co-EDOT1)-Pt,
P(ICA3-co-EDOT2), P(ICA3-co-EDOT2)-Pt, P(ICA2-co-EDOT3), and
P(ICA2-co-EDOT3)-Pt composite electrodes. The SEM images reveal that
these films without Pt are composed of highly porous fibers when the feed molar
ratio of ICA/EDOT is greater than 3/2, and the fibers have an average diameter of
50–200 nm.
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The fibers with cloud shape morphology of P(ICA3-co-EDOT2) film can be
clearly seen in Figure 5e. However, P(ICA2-co-EDOT3) films show aggregative cloud
shape morphology in Figure 5g, implying excess EDOT feed ratio gives rise to the
formation of cloud shape structures. The fiber morphology of these films provides
a large surface area for the subsequent deposition of Pt particles. Pt particles were
incorporated into these films by electrochemical deposition at a constant potential of
´0.2 V (vs. Ag/AgCl).

As shown in Figure 5b,d,f,h, the incorporation of Pt into PICA,
P(ICA4-co-EDOT1), P(ICA3-co-EDOT2), P(ICA2-co-EDOT3) did not alter their
morphologies. Pt particles can be clearly seen on these composite electrodes from
SEM images. Pt particles with a size of about 30–100 nm can be seen on the PICA-Pt
electrode, whereas Pt particles are about 30–60 nm on the P(ICA4-co-EDOT1)-Pt
and P(ICA2-co-EDOT3)-Pt electrodes. The particle size of Pt (20–50 nm) for the
P(ICA3-co-EDOT2)-Pt electrode is smaller than those for other three electrodes, which
indicates that the P(ICA3-co-EDOT2)-Pt electrode presents a higher active surface
area. The uniform distribution of Pt in the P(ICA3-co-EDOT2) spatial network
structure may increase the utilization of Pt for methanol oxidation. The inset in
Figure 5f shows the result of Pt in a P(ICA3-co-EDOT2)-Pt composite electrode. The
bright spots indicate the existence of platinum in the electrode.

2.3. XRD Patterns

The crystalline structure of Pt particles incorporated into PICA,
P(ICA4-co-EDOT1), P(ICA3-co-EDOT2), and P(ICA2-co-EDOT3) composite
electrodes are examined using XRD analysis, and the XRD patterns are displayed
in Figure 6. These electrodes show intensive peaks at 2θ = 43˝ and 51˝, indicating
the diffraction peaks of the SS electrode. In addition, the characteristic diffraction
peaks of face-centered cubic (fcc) platinum for the four electrodes are observed
at 40˝, 46˝, and 68˝, corresponding to Pt(111), Pt(200), and Pt(220) planes,
respectively [8]. Because the Pt(111) peak is isolated with the diffraction peaks of
PICA, P(ICA4-co-EDOT1), P(ICA3-co-EDOT2), and P(ICA2-co-EDOT3) composite
electrodes, the average size of Pt particles can be calculated from this peak according
to Scherrer’s formula, [30].

d “
0.9λ
βcosθ

(1)

where d is the average size of the Pt particles, λ is the X-ray wavelength (Cu Kα

λ = 1.54178 Å), θmax is the diffraction angle at the peak position, and β is the
half-peak width for Pt(111) in radians. The average sizes of Pt particles for PICA-Pt,
P(ICA4-co-EDOT1)-Pt, P(ICA3-co-EDOT2)-Pt, and P(ICA2-co-EDOT3)-Pt calculated
using the Scherrer’s equation were 10, 8, 8, and 9 nm, respectively. The calculated size
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of Pt particles from Scherrer equation is smaller than the average diameter measured
by SEM, which can be attributed to the fact that the particle size estimated from XRD
and the Scherrer equation is the primary particle size. However, the particle size
observed from SEM results is the secondary particle size (or aggregated particle size).
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Figure 6. XRD patterns of (a) PICA-Pt; (b) P(ICA4-co-EDOT1)-Pt; (c)
P(ICA3-co-EDOT2)-Pt; and (d) P(ICA2-co-EDOT3)-Pt.

2.4. Electrocatalytic Activity of Electrodes for Methanol Oxidation

Figure 7a–d show the incorporation of Pt particles into in P(Id3-co-Ed2) films via
electrochemical deposition at a constant potential of ´0.2 V from 0.5 M CH3OH + 0.5
M H2SO4 solution with various deposition charges of 0.15, 0.20, 0.25, and 0.30 C. The
maximum anodic peak current density (Ipa) for the oxidation of methanol observed at
the P(ICA3-co-EDOT2) electrode (deposition charge of 0.20 C) is 58 mA¨ cm´2¨mg´1,
which is higher than those of other electrodes (deposition charges of 0.15, 0.25,
and 0.30 C).
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Figure 7. Cyclic voltammograms of P(ICA3-co-EDOT2) with various Pt deposition
charges of (a) 0.15; (b) 0.20; (c) 0.25; and (d) 0.30 C in 0.5 M CH3OH + 0.5 M H2SO4

solution, scan rate = 50 mV¨ s´1.
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Cyclic voltammograms (CVs) of PICA-Pt, P(ICA4-co-EDOT1)-Pt,
P(ICA3-co-EDOT2)-Pt, and P(ICA2-co-EDOT3)-Pt electrodes under the same
Pt deposition charge of 0.20 C recorded with a scan rate of 50 mV¨ s´1 in 0.5 M H2SO4

are presented in Figure 8. These composite electrodes show obvious hydrogen
adsorption/desorption differences in the range of 0.1 to ´0.2 V. It is known that the
integrated area represents the number of Pt sites available for hydrogen adsorption
and desorption. Among these composite electrodes, P(ICA3-co-EDOT2)-Pt film
shows the largest charge for hydrogen adsorption and desorption, and this may
be ascribed to the uniform dispersion of Pt particles in P(ICA3-co-EDOT2) spatial
network structure. For example, the charge for hydrogen absorption and desorption
on the P(ICA3-co-EDOT2)-Pt film is 71.4 mC¨ cm´2¨mg´1, which is 1.5 times larger
than that on the PICA-Pt surface (48.9 mC¨ cm´2¨mg´1). The electrochemical surface
area (ESA) of Pt can be calculated from the area of hydrogen adsorption-desorption
peaks using the following equation [31],

ESA “
QH

0.21 rPts
(2)

where QH (mC¨ cm´2) represents the mean value between the amounts of charge
exchanged during the electro-adsorption (Q1) and desorption (Q2) of H2 on Pt sites,
[Pt] is the Pt loading (mg¨ cm´2) on the electrode, and 0.21 (mC¨ cm´2) represents
the charge required to oxidize a monolayer of H2 on clean Pt. The contribution
from the double layer capacitance is deduced while calculating the ESA. As shown
in Table 1, the ESA values of Pt supported on the PICA-Pt, P(ICA4-co-EDOT1)-Pt,
P(ICA3-co-EDOT2)-Pt, and P(ICA2-co-EDOT3)-Pt electrodes are calculated to be 230,
286, 340, and 283 cm2¨mg´1, respectively.

Table 1. The ESA values of Pt supported on the electrodes.

Electrodes QH (mC cm-2¨ mg-1) ESA (cm2¨ mg-1)

PICA-Pt 48.9 230
P(ICA4-co-EDOT1)-Pt 60.1 286
P(ICA3-co-EDOT2)-Pt 71.4 340
P(ICA2-co-EDOT3)-Pt 60.0 283

The Pt particles are loaded onto PICA, P(ICA4-co-EDOT1), P(ICA3-co-EDOT2),
P(ICA2-co-EDOT3)-Pt, and PEDOT-Pt composite electrodes under the same Pt
deposition charge of 0.20 C and tested for their electrocatalytic activity of methanol
oxidation by cyclic voltammetry. As shown in Figure 9, the current for the methanol
oxidation increases slowly below 0.5 V in the forward sweep for these electrodes,
which can be ascribed to the formation of reaction intermediates. The current
increases quickly and reaches a peak at around 0.7 V, and this can be attributed
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to the partial oxidation of Pt surface, which helps the transformation of intermediates
to carbon dioxide.
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Figure 8. Cyclic voltammograms of (a) PICA-Pt; (b) P(ICA4-co-EDOT1)-Pt;
(c) P(ICA3-co-EDOT2)-Pt; and (d) P(ICA2-co-EDOT3)-Pt in 0.5 M H2SO4 solution,
the deposition charge of Pt is 0.20 C, scan rate = 50 mV¨ s´1.
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Figure 9. Cyclic voltammograms of (a) PICA-Pt; (b) P(ICA4-co-EDOT1)-Pt;
(c) P(ICA3-co-EDOT2)-Pt; (d) P(ICA2-co-EDOT3)-Pt; and (e) PEDOT-Pt in
0.5 M CH3OH + 0.5 M H2SO4 solution; the deposition charge of Pt is 0.20 C,
scan rate = 50 mV¨ s´1.
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The anodic peak current density for the methanol oxidation of PICA-Pt and
P(ICA2-co-EDOT3)-Pt electrodes (curve a and d) is about 36 mA¨ cm´2¨mg´1,
which is lower than P(ICA4-co-EDOT1)-Pt and P(ICA3-co-EDOT2)-Pt electrodes.
Comparing the CV results of these electrodes, the highest oxidation current
(Ipa) toward methanol oxidation is observed for the P(ICA3-co-EDOT2)-Pt
electrode, confirming the crucial effect of P(ICA3-co-EDOT2)-Pt on the
enhancement of platinum particle efficiency towards the catalytic oxidation
of methanol. The highest current density for the P(ICA3-co-EDOT2)-Pt
electrode may be due to suitable amounts of CO2

´ groups helping with
the uptake of Pt4+ ions. A uniform distribution of Pt particles into
P(ICA3-co-EDOT2) can twist to form a spatial 3D matrix. As shown in
Table 2, the methanol oxidation on P(ICA3-co-EDOT2)-Pt electrode shows
higher current density (Ipa) than those reported for PANI-300PSS-Pt [32],
Pt/PANI/MGCE [33], Pt/Nano-PDAN/MGCE [34], and PANI-PSS-Pt [11].
However, P(ICA3-co-EDOT2)-Pt electrode shows lower Ipa than that reported for
nanotube-Pt [35].

Table 2. Comparisons of the methanol oxidation data in H2SO4 solution at the
P(ICA3-co-EDOT2)-Pt composite electrode with some modified electrodes.

Electrodes CH2SO4/CMethanol
(M/M) ν (mV¨ s´1) Eonset (V) (c) Ipa

(mA¨ mg´1)
Ref.

PANI-300PSS-Pt (b) 0.5/0.1 10 0.4 19 [32]
Pt/PANI/MGCE (a) 0.5/0.5 5 0.3 32 [33]

Pt/Nano-PDAN/MGCE (a) 0.5/2.4 50 0.2 28 [34]
PANI-PSS-Pt (b) 0.5/1.0 10 0.4 31 [11]
nanotube-Pt (b) 0.5/1.0 50 - 141 [35]

P(ICA3-co-EDOT2)-Pt (b) 0.5/0.5 50 0.4 58 This work
(a) The potentials were referred to SCE; (b) The potentials were referred to Ag/AgCl; (c)

The methanol oxidation onset potential.

The effect of methanol concentration on the electrocatalytic activity of these
composite electrodes is examined (Figure 10). It can be clearly observed that the
anodic current increases with increasing methanol concentration and levels off at
concentrations higher than 1.5 M. This effect can be attributed to the saturation
of active sites at the surface of the electrode, and the optimum concentration of
methanol for a higher current density may be considered to be about 1.5 M.

2.5. Electrocatalytic Long-Term Stability of Electrodes for Methanol Oxidation

The performance of four electrodes towards the methanol oxidation
reaction after long term operation was tested using chronoamperometry.
Figure 11 shows the current–time responses of PICA-Pt, P(ICA4-co-EDOT1)-Pt,
P(ICA3-co-EDOT2)-Pt, and P(ICA2-co-EDOT3)-Pt electrodes recorded at 0.6 V in
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0.5 M CH3OH + 0.5 M H2SO4 solution for 5 h. After long term operation,
a steady state current density is achieved. It can also be observed that
the electrocatalyst of P(ICA3-co-EDOT2)-Pt maintained the highest current
density in these electrodes. The methanol oxidation currents at 3 h follow
this order: P(ICA3-co-EDOT2)-Pt (6.8 mA¨ cm´2¨mg´1) > P(ICA4-co-EDOT1)-Pt
(4.8 mA¨ cm´2¨mg´1) > P(ICA2-co-EDOT3)-Pt (3.2 mA¨ cm´2¨mg´1) > PICA-Pt
(2.6 mA¨ cm´2¨mg´1).
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Figure 10. Plot of anodic peak current as a methanol concentration for (a) PICA-Pt;
(b) P(ICA4-co-EDOT1)-Pt; (c) P(ICA3-co-EDOT2)-Pt; and (d) P(ICA2-co-EDOT3)-Pt.
Supporting electrolyte: 0.5 M H2SO4. Scan rate: 50 mV¨ s´1.
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Figure 11. Chronoamperometric responses of (a) PICA-Pt; (b)
P(ICA4-co-EDOT1)-Pt; (c) P(ICA3-co-EDOT2)-Pt; and (d) P(ICA2-co-EDOT3)-Pt at
0.6 V (vs. Ag/AgCl) in 0.5 M CH3OH + 0.5 M H2SO4 solution.
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3. Experimental Section

3.1. Preparation of PICA, P(ICA4-co-EDOT1), P(ICA3-co-EDOT2), and
P(ICA2-co-EDOT3) Films

Before electrochemical studies, stainless steel (SS) substrates were cleaned in an
ultrasonic bath using detergent, isopropanol, and deionized water, and all solutions
were degassed with N2. The PICA, P(ICA4-co-EDOT1), P(ICA3-co-EDOT2), and
P(ICA2-co-EDOT3) films were deposited from a 20 mM ICA, 16 mM ICA + 4 mM
EDOT, 12 mM ICA + 8 mM EDOT, and 8 mM ICA + 12 mM EDOT in a 0.1 M
LiClO4/ACN solution, respectively. Electrochemical deposition was carried out
potentiostatically at 1.4 V (vs. Ag/AgCl electrode) for 0.08 C¨ cm´2.

3.2. Deposition of Pt into PICA, P(ICA4-co-EDOT1), P(ICA3-co-EDOT2), and
P(ICA2-co-EDOT3) Matrices

Pt particles were incorporated into PICA, P(ICA4-co-EDOT1),
P(ICA3-co-EDOT2), and P(ICA2-co-EDOT3) polymer films via electrochemical
deposition from 5 mM H2PtCl6 containing 0.5 M H2SO4 solution with a constant
deposition charge of 0.20 C at ´0.2 V (vs. Ag/AgCl). After the incorporation
of Pt particles, the composite electrodes were washed with deionized water for
5 min and then dried at 120 ˝C for 3 min. The weights of Pt loaded into PICA,
P(ICA4-co-EDOT1), P(ICA3-co-EDOT2), P(ICA2-co-EDOT3), and PEDOT films
are calculated using the TGA, and they are 125, 115, 128, 118, and 121 µg¨ cm´2,
respectively. The Pt wt. % in PICA-Pt, P(ICA4-co-EDOT1)-Pt, P(ICA3-co-EDOT2)-Pt,
P(ICA2-co-EDOT3)-Pt, and PEDOT-Pt catalysts are 32.8, 33.6, 34.8, 34.1, and
30.6%, respectively.

3.3. Physical and Electrochemical Characterizations

The FT-IR spectra of PICA, P(ICA4-co-EDOT1), P(ICA3-co-EDOT2), and
P(ICA2-co-EDOT3) in KBr pellets were measured using a Perkin Elmer infrared
spectrophotometer (Perkin Elmer, Waltham, MA, USA) with 16 scans at a resolution
of 4 cm´1 and in the range of 400–4000 cm´1. An XPS study was carried out
using an ESCA 210 spectrometer (VG Scientific, Waltham, MA, USA) with Mg
Kα (hν = 1253.6 eV) irradiation as the light source. The primary tension and the
pressure were 12 kV and ca. 10´10 mbar, respectively. The surface morphologies of
as-prepared electrodes were studied using a scanning electron microscope (SEM)
(JEOL, Boston, MA, USA) equipped with an energy-dispersive X-ray spectroscopy
(EDS) detector (JEOL, Boston, MA, USA). X-ray diffraction spectra (XRD) for the
as-prepared electrodes were obtained by exposing the samples to a Bruker D8
Discover (Bruker, Billerica, MA, USA) SSS X-ray source with Cu Kα (λ = 0.154 nm) as
a target, at diffraction angles (2θ) ranging from 5˝ to 90˝ with a scan rate of 4˝ min´1.
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Electrochemical characterizations of PICA-Pt, P(ICA4-co-EDOT1)-Pt,
P(ICA3-co-EDOT2)-Pt, and P(ICA2-co-EDOT3)-Pt composite electrodes were
implemented using a CHI627D electrochemical analyzer (Antec Leyden BV,
Zoeterwoude, Netherlands). All experiments were carried out in a three-constituent
cell. A Pt wire, SS (area = 1 cm2), and Ag/AgCl electrode (in 3 M KCl) were used as
the counter, working and reference electrodes, respectively.

3.4. Methanol Electro-Oxidation and Stability of Composite Electrodes

The catalytic activities of composite electrodes were examined by CV at
50 mV¨ s´1 in the range of ´0.2 to 1.0 V. Chronoamperometric response curves were
obtained at 0.6 V in 0.5 M CH3OH + 0.5 M H2SO4 solution. All the electrochemical
experiments were carried out at room temperature.

4. Conclusions

Copolymers based on ICA and EDOT were successfully synthesized by
electrochemical oxidation with various feed molar ratios of ICA/EDOT in
ACN solution containing 0.1 M LiClO4. The existence of -CO2

´ groups in
P(ICA3-co-EDOT2) spatial structure assists in holding Pt4+ ions in the polymer
matrix, resulting in the homogenous distribution of Pt in P(ICA3-co-EDOT2). Among
the as-prepared catalysts, the P(ICA3-co-EDOT2)-Pt electrode exhibits the highest
current density and the best stability toward methanol oxidation, demonstrating that
the P(ICA3-co-EDOT2)-Pt composite electrode is a promising material as a catalyst
for methanol oxidation.
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Synthesis and Electrocatalytic Performance
of Multi-Component Nanoporous PtRuCuW
Alloy for Direct Methanol Fuel Cells
Xiaoting Chen, Hao Wang, Ying Wang, Qingguo Bai, Yulai Gao and
Zhonghua Zhang

Abstract: We have prepared a multi-component nanoporous PtRuCuW
(np-PtRuCuW) electrocatalyst via a combined chemical dealloying and mechanical
alloying process. The X-ray diffraction (XRD), transmission electron microscopy
(TEM) and electrochemical measurements have been applied to characterize the
microstructure and electrocatalytic activities of the np-PtRuCuW. The np-PtRuCuW
catalyst has a unique three-dimensional bi-continuous ligament structure and the
length scale is 2.0 ˘ 0.3 nm. The np-PtRuCuW catalyst shows a relatively high
level of activity normalized to mass (467.1 mA mgPt

´1) and electrochemically
active surface area (1.8 mA cm´2) compared to the state-of-the-art commercial
PtC and PtRu catalyst at anode. Although the CO stripping peak of np-PtRuCuW
0.47 V (vs. saturated calomel electrode, SCE) is more positive than PtRu, there is a
200 mV negative shift compared to PtC (0.67 V vs. SCE). In addition, the half-wave
potential and specific activity towards oxygen reduction of np-PtRuCuW are 0.877 V
(vs. reversible hydrogen electrode, RHE) and 0.26 mA cm´2, indicating a great
enhancement towards oxygen reduction than the commercial PtC.

Reprinted from Catalysts. Cite as: Chen, X.; Wang, H.; Wang, Y.; Bai, Q.;
Gao, Y.; Zhang, Z. Synthesis and Electrocatalytic Performance of Multi-Component
Nanoporous PtRuCuW Alloy for Direct Methanol Fuel Cells. Catalysts 2015, 5,
1003–1015.

1. Introduction

In recent decades, there are increasing requirements for high-efficiency and
eco-friendly energy to cope with environment problems, such as the depletion
of energy and pollution. Direct methanol fuel cells (DMFCs) meet the above
requirement and are important for the automotive industry [1,2]. As an important
component, the state-of-the-art electrocatalysts must ensure the methanol oxidation
reaction (MOR) at anode and oxygen reduction reaction (ORR) at cathode to generate
electricity with water and carbon dioxide as the byproducts [1,3]. The use of
current catalysts has several disadvantages including the low catalytic efficiency
as well as CO tolerance, and sluggish kinetics towards ORR. Much effort has been
dedicated to alloying Pt with other metals (e.g., Fe [4], Co [5–7], Ni [5,8,9], Cu [10],
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Sn [11], etc.) to improve electrochemical activities. For high-activity applications of
DMFCs, PtRu alloy remains the most active electrocatalyst due to its unique reaction
mechanism [12,13]. Based upon the bi-functional and electronic effects [14–16], the
electrocatalytic performance of catalysts could be significantly enhanced through
compositional design of catalysts. For instance, W/Mo-modified PtRu/C showed
improved electro-oxidation activity in comparison to the un-modified PtRu/C [17].
The PtRuOsIr showed better activity compared to PtRuOs and PtRuIr [3].

Traditional preparation methods for Pt-based alloys have been focusing on
microemulsions [18,19], microwave irradiation [20], electrodeposition [21] and
chemical reduction [3,22]. These processes are limited to the tunability of alloy
composition, cockamamie, and not suitable for batch production, which hampers
the commercialization of DMFCs. Thus, although there are obvious advantages in
multicomponent catalysts, most of the prior studies were restricted to the synthesis
of binary and ternary alloys. In contrast, facile dealloying has shown its advantage
in preparing nanoporous metals/alloys. Thus, materials with unique nanoporous
structure possess intriguing physical and chemical properties to generate promising
potentials for various important applications such as sensors [23], mechanical
actuators [24] and catalysis [25,26].

From the viewpoint of activity and accessibility, Cu are W are superior
candidates as indispensible component in catalysts. In previous work, PtRuCu [27,28]
and PtRuW [29,30] ternary alloys have received unremitting interest. As part
of the continuing effort in new catalyst exploration, the nanoporous PtRuCuW
(np-PtRuCuW) alloy was synthesized through mechanical alloying and subsequent
mild chemical dealloying process in the present paper. This new catalyst was
characterized with electrochemical measurements at the anode as well as cathode for
DMFCs. Our results show that the np-PtRuCuW catalyst performs better than the
commercial PtC and PtRu catalysts. Furthermore, the catalyst can be synthesized in
gram-scale, which makes repeatable experiments in laboratory possible and batch
preparation in factory reliable. Given the advantages, including easy access to
component design, simplicity in the fabrication process and the enhanced activity,
we hope that the combination of mechanical alloying with dealloying provides an
efficient way to design multicomponent catalyst materials.

2. Results and Discussion

2.1. Microstructural Characterization of np-PtRuCuW

Figure 1 shows the X-ray diffraction (XRD) patterns of the
Al66Cu30(Pt53Ru32W15)4 precursor alloy and the as-dealloyed samples. In
Figure 1a, a number of diffraction peaks appear on the pattern of the as-milled
Al66Cu30(Pt53Ru32W15)4 precursor, which can be ascribed to a Al4Cu9-type (PDF
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No. 65-3347) intermetallic phase and Ru (PDF No. 06-0663). In addition, there is a
sharp peak around scattering angles (2θ) of ca. 40˝ which can be ascribed to PtRu. A
little amount of Ru dissolved during the dealloying process, leading to the reduction
of peak intensity and increase of peak width around 40˝ [31]. The XRD spectrum
presents obviously broadened Bragg peaks at scattering angles (2θ) of ca. 40.8˝, 47.1˝

and 69.4˝ (Figure 1b) compared to the precursor alloy. These signals consist with the
face-centered cubic (f.c.c.) Pt (PDF No. 04-0802) in spite of the shifting of Bragg peaks.
In addition, the Ru diffraction peaks still exist after dealloying (Figure 1b). Due to
the minor addition of Ru (only 1.28 at %) into the precursor, the strong diffraction
peaks of Ru also suggest the alloying of other elements (Pt, W and Al) with Ru to
form a solid solution. Also, it is understandable to assume that the alloying of Pt
with Ru as well as Cu and W results in the shift towards higher Bragg angles [32].
The chemical component of the as-dealloyed samples was characterized by EDX and
one typical spectrum is presented in Figure 1c. The corresponding results reveal
that the sample is composed of Pt (56.2 at %), Ru (18.7 at %), Cu (14.2 at %) and W
(10.9 at %), with a minor residual Al (only few atom percent) could be detected in
the as-dealloyed samples.
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Figure 1. XRD spectrum of (a) the mechanically alloyed Al66Cu30(Pt53Ru32W15)4

powders; (b) the precursor alloy after dealloying in the 1M HNO3 solution;
and (c) corresponding EDX result of the as-dealloyed samples.
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As shown in Figure 2a,b, the final samples display a nanoporous structure
composed of interconnected nanoscaled ligaments (2.0 ˘ 0.3 nm in size)
and bi-continuous channels. Besides the ultrafine ligament/channel structure,
nanoparticles embedded in the nanoporous matrix are observed, and one particle
is marked by a red arrow in Figure 2b. The unique nanostructure results from the
dealloying process and similar phenomenon has been studied before [33,34]. The
diffraction rings come from the nanoporous matrix and correspond to (111), (200),
(220) and (311) reflections of f.c.c. Pt and the diffraction spots originate from the
embedded nanoparticles corresponding to the Ru phase (inset of Figure 2a). Overall,
the transmission electron microscopy (TEM) results are consistent with the XRD
results from Figure 1b.Catalysts 2015, 5 1007 
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The high-resolution TEM (HRTEM) images show typical bi-continuous
ligament-channel structure of the as-dealloyed samples (Figure 2c,d). The ligaments
are composed of small nanocrystals of several nanometers and the spacing of some
lattice fringes is 0.222 nm (as indicated in Figure 2d), which is similar to the (111)
crystal plane of f.c.c. Pt (~0.226 nm). The corresponding fast Fourier transform (FFT)
pattern further verifies the nanocrystalline character of the selected area (presented
in the inset of Figure 2d). In addition, Figure 2d also shows the HRTEM image of
another area. The lattice spacing of these regular lattice fringes running across the
area is 0.232 nm, which is close to the value of Ru (100) crystal plane (0.234 nm). Both
the XRD and TEM results confirm that partial Ru failed to be alloyed with Pt and the
final as-dealloyed samples include Ru and Pt solid solution. The np-PtRuCuW can
be used as abbreviation for the obtained samples.

2.2. Catalytic Activity of np-PtRuCuW at Anode

The activation step results in the catalyst surface cleaning and typical
electrochemical features including the typical hydrogen ad/desorption, double
layer and metallic redox region [35]. In addition, less-noble metals dissolution
would happen when applying potential cycling to multi-metallic alloys [32,36,37].
For np-PtRuCuW, the CV features are different from the PtC and PtRu catalysts
(Figure 3a). Firstly, there are broader double electric layer and a more featureless
shoulder region than PtC. Moreover, the reduction peak of Pt oxides shifts to a
more positive direction compared to the PtC and PtRu catalysts (as highlighted
by dotted line in Figure 3a). The characteristics are typical to multi-component
alloys [7,27,32,36,37]. Normally, the electrochemically active surface area (ECSA) can
be obtained from the equation ECSAPt (m2/g) = QH/(2.1 ˆmPt) by integrating the
hydrogen ad/desorption charge and using the value of 2.1 C m´2 for the oxidation of
a monolayer of hydrogen on a polycrystalline Pt electrode [35,38]. The ECSAs of the
np-PtRuCuW, PtC and PtRu catalysts were determined to be 26, 47 and 40 m2 g´1.

Figure 3b,c shows the ECSA- and Pt mass-normalized results for the
np-PtRuCuW, PtC and PtRu catalysts in the H2SO4 solution contain 0.5 M CH3OH.
As shown in Figure 3b, the specific activity of the np-PtRuCuW is 1.8 mA cm´2,
which is 3.6 and 2.9 times that of the PtC and PtRu catalysts (0.5 and 0.63 mA cm´2),
respectively. Further comparison according to Pt mass (Figure 3c) indicates that
the np-PtRuCuW catalyst shows higher mass activity of 467.1 mA mgPt

´1, which is
about 2.0 and 1.6 times of that for PtC and PtRu (229.5 and 287.0 mA mgPt

´1). It can
be seen that the peak potentials are comparable for all catalysts while the ratio of the
forward anodic peak current density (If) to the reverse anodic peak current density
(Ib) is different. It has been studied that the electro-oxidation of methanol molecules
results in the formation of current peak in the forward scan and the removal of
the incompletely oxidized carbonaceous species contributes to the current peak in
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the reverse scan [39]. Hence, the ratio If/Ib can be used to measure the tolerance
to carbonaceous species [4,36,40]. The values for the np-PtRuCuW, PtC and PtRu
are 1.29, 0.91 and 1.75, respectively, which indicates the higher CO tolerance of
np-PtRuCuW than PtC while shows disadvantage compared to PtRu.
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Figure 3. (a) The stable CVs of the np-PtRuCuW, PtC and PtRu catalysts in the
N2 purged 0.5 M H2SO4 solution (Scan rate: 50 mV s´1); and (b) ECSA- and
(c) mass-normalized activities of the np-PtRuCuW, PtC and PtRu catalysts for
methanol oxidation. (Scan rate: 50 mV s´1).

The subsequent CO tolerance experiment was carried out to characterize our
np-PtRuCuW catalyst directly. As shown in Figure 4, the CO stripping peak of
np-PtRuCuW (0.47 V vs. SCE) is more positive than PtRu catalyst (0.33 V vs. SCE).
However, there is a remarkable negative shift (about 200 mV) compared to the PtC
(0.67 V vs. SCE). It is interesting to observe that the stripping curve of np-PtRuCuW
presents two CO oxidation peaks, a first peak centered at about 0.47 V (vs. SCE)
and the second one close to 0.55 V (vs. SCE). Moreover, the onset potential for CO
stripping is located at around 0.35 V (vs. SCE), which is comparable to the peak
potential of PtRu. This also suggests the good CO tolerance of our np-PtRuCuW
catalyst. Maillard et al. [41] observed that catalysts comprising Pt nanoparticles with
2 to 6 nm size exhibited better CO tolerance. Their observations are consistent with
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our results, which indicate that Pt-based alloys with ligament size of 2.0 ˘ 0.3 nm
have been successfully fabricated.
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Figure 4. Electrochemical CO-stripping curves of the np-PtRuCuW, PtC and PtRu
catalysts in the 0.5 M H2SO4 solution (Scan rate: 20 mV s´1).

During the oxidation of methanol on np-PtRuCuW, Pt accomplishes the
dissociative chemisorption of methanol and the alloyed metals (Ru, Cu and W)
form oxyhydroxide, which extracts an active oxygen to oxidize the carbonaceous
residues to CO2 [42,43]. The three-dimensional bi-continuous structure with
interconnected channels and nano-sized ligaments in np-PtRuCuW can facilitate the
transportation of molecules and electrons, which greatly improves the reaction
kinetics. On the basis of these effects, the present np-PtRuCuW alloy shows
superior activity to the commercial PtC and PtRu catalysts. The result also indicates
enhanced electrocatalytic performance compared to trimetallic (PtRuCu [27,28] and
PtRuW [29,30]).

2.3. Catalytic Activity of np-PtRuCuW towards ORR

Figure 5a displays the CVs of the np-PtRuCuW and PtC catalysts in the
N2-saturated 0.1 M HClO4 solution. Similar to our experiments at anode, the
reduction peak of Pt oxides shows a slight positive shift for the np-PtRuCuW
catalyst than that of PtC, indicating earlier onset of Pt-O(H) reduction [44,45]. The
polarization results for the ORR on the np-PtRuCuW and PtC electrodes are shown in
Figure 5b. It is obvious that the polarization curve of the np-PtRuCuW catalyst shifts
to a more positive position than PtC. At cathode, the diffusion-limited region (below
0.8 V vs. RHE) suggests a four-electron transfer reaction and indicates low hydrogen
peroxide formation [46]. The half-wave potential of the np-PtRuCuW alloy is located
at 0.877 V vs. RHE, 13 mV positive shift compared to PtC catalyst (0.864 V vs. RHE).
The present results indicate a greatly enhanced ORR activity of np-PtRuCuW.
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Figure 5. (a) CV curves of the np-PtRuCuW and PtC catalysts in the N2-purged
0.1 M HClO4 solution (Scan rate: 50 mV s´1); (b) ORR results in the O2-saturated
0.1 M HClO4 solution at 1600 rpm (Scan rate: 10 mV s´1); (c) ECSA-normalized
specific kinetic current densities (jk); and (d) the ECSA-normalized specific kinetic
current densities for the np-PtRuCuW and PtC catalysts at 0.90 V (vs. RHE).

According to the Tafel plots (Figure 5c), the np-PtRuCuW catalyst shows better
specific activity than the commercial PtC at the whole selected potential region
(0.85~0.95 V vs. RHE). Additionally, the Tafel curve of the np-PtRuCuW catalyst is
parallel to that of the commercial PtC, which can be observed directly from the plots.
This potential region corresponds to ORR when the hydroxyl species (OHads) at Pt
active sites and determines the electrode activity. Therefore, the plots demonstrate the
similar ORR processes on the np-PtRuCuW and commercial PtC catalysts in acidic
media [47,48]. The kinetic current densities at 0.90 V vs. RHE represent the activities
towards ORR and were calculated by the Koutecky–Levich equation from the ORR
polarization curves. The kinetic current densities were normalized by the ECSA to
obtain the specific activity in Figure 5d, respectively. The np-PtRuCuW exhibits a
higher specific activity of 0.26 mA cm´2, which is 1.37 times of the commercial PtC
catalyst (0.19 mA cm´2).

The ORR consists of four proton and electron transfer (O2 + 4H+ + 4e´ Ñ 2H2O),
O–O breaking and OHads intermediates formation [46,49]. After alloying with Ru,
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Cu and W, the lattice parameter of Pt changes which would bring about ligand and
strain effects. This will accelerate the scission of the O–O bond and the formation
of the OHads, thus increasing the O2 reaction rate [50,51]. On the other hand, the
hydrogenation rates of OHads intermediates enhanced and reduced the coverage
of Pt surface because of alloy effect [52]. These could rationalize that the present
np-PtRuCuW alloy shows improved catalytic performance towards ORR relative to
the commercial PtC catalyst.

3. Experimental Section

3.1. Synthesis and Characterizations of np-PtRuCuW

A multi-component Al66Cu30(Pt53Ru32W15)4 alloy (nominal composition, at %)
was chosen as the precursor and prepared by milling a mixture of pure elemental
powders (i.e., Al, Cu, Pt, Ru and W with 99.9 wt. % purity) as before [34,53]. Then,
dealloying of the Al66Cu30(Pt53Ru32W15)4 alloy powders was carried out in a 1 M
HNO3 solution at room temperature until no obvious bubbles emerged. After the
facile dealloying, the samples were rinsed using distilled water and dehydrated
alcohol to gain the final np-PtRuCuW catalyst.

X-ray diffractometer (XRD, Rigaku D/max-rB, Osaka, Japan) with
Cu Kα radiation was used to analysis the X-ray diffractograms of the
Al66Cu30(Pt53Ru32W15)4 precursor and as-dealloyed samples. The chemical
compositions of the as-dealloyed samples were obtained by an energy-dispersive
X-ray (EDX) analyzer in an area-analysis mode (a typical area of 50 µm ˆ 50 µm).
Transmission electron microscope (TEM, FEI Tecnai G2, Pleasanton, CA, USA)
and high-resolution TEM (HRTEM, FEI Tecnai G2, CA, USA) were also applied
to characterize the microstructure. In addition, selected-area electron diffraction
(SAED) and fast Fourier transform (FFT) patterns were obtained from the
corresponding images.

3.2. Electrochemical Characterization

The ORR and MOR measurements were performed using a standard
three-electrode cell with a CHI 760E Potentiostat (CH Instruments, Shanghai, China).
The reference electrode was saturated calomel electrode (SCE) and the counter
electrode was a bright Pt plate. The catalyst ink preparation and measurement
conditions were consistent with our previous report [34,53]. For comparison,
we benchmarked the electrochemical properties of the np-PtRuCuW against the
commercial (Johnson’s Matthey, Pennsylvania, PA, USA) PtC and PtRu catalysts
under identical experimental conditions.
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4. Conclusions

In conclusion, a novel np-PtRuCuW catalyst has been explored through
the combination of a mechanical alloying with the subsequent simple chemical
dealloying step. The facile and green technique shows great advantages in the design
of multiple component nanostructured alloy electrocatalysts. The np-PtRuCuW
catalyst with a unique ligament/channel structure shows enhanced catalytic activity
for methanol oxidation at anode compared to PtC and PtRu catalysts. Furthermore,
the catalyst also indicates enhanced catalytic activity towards oxygen reduction
reaction at cathode. Our results provide a novel strategy for the design of precursor
alloys and fabrication of multi-component nanoporous alloy catalysts for DMFCs.
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Preparation and Electrocatalytic
Characteristics of PdW/C Catalyst for
Ethanol Oxidation
Qi Liu, Mingshuang Liu, Qiaoxia Li and Qunjie Xu

Abstract: A series of PdW alloy supported on Vulcan XC-72 Carbon (PdW/C) with
total 20 wt. % as electrocatalyst are prepared for ethanol oxidation by an ethylene
glycol assisted method. Transmission electron microscopy (TEM) characterization
shows that PdW nanoparticles with an average size of 3.6 nm are well dispersed
on the surface of Vulcan XC-72 Carbon. It is found that the catalytic activity and
stability of the PdW/C catalysts are strongly dependent on Pd/W ratios, an optimal
Pd/W composition at 1/1 ratio revealed the highest catalytic activity toward ethanol
oxidation, which is much better than commercial Pd/C catalysts.

Reprinted from Catalysts. Cite as: Liu, Q.; Liu, M.; Li, Q.; Xu, Q. Preparation and
Electrocatalytic Characteristics of PdW/C Catalyst for Ethanol Oxidation. Catalysts
2015, 5, 1068–1078.

1. Introduction

Development of novel catalysts with high electrocatalytic activity for ethanol
oxidation has received much attention because the electroactivity of anodic materials
is one of the main factors influencing the practical application of direct ethanol fuel
cells (DEFCs) [1,2]. Palladium (Pd), as one of platinum(Pt) group elements, could
hold high electro-oxidation catalytic activity and has larger abundance and lower
price compared to Pt [3,4]. Pd catalyst does not exhibit electroactivity for ethanol
electro-oxidation in acid solutions, while it displays high electroactivity for ethanol
electro-oxidation in alkaline solutions, such as NaOH and KOH [5,6].

Recently, Pd nanoparticle has attracted much attention due to their distinguished
advantages, such as significantly large surface areas and high stability [7]. The
interest in Pd metals is not only for lowering the cost of catalysts, but also for
improving the catalytic activities [8]. One method to promote the catalytic activity of
Pd is alloyed with other metals, including Ag [9,10], Fe [11] and Sn [12,13]. Many
binary or ternary composite catalysts involved in Pd have been developed to enhance
the electroactivity of the Pd catalyst for ethanol oxidation [14,15], such as Pd–Ru [16],
Pd–Ni–P [17], Pd–Co [18], Pd–Pt [19,20], Pd–Au [21], and so on.

So, the addition of a second metal with Pd, to enhance its activity for ethanol
electro-oxidation, is effective approach, but the durability with time of such electrode
needs further improvement [22]. It has been claimed that tungsten (W) oxide was
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a suitable promoter for noble metal catalyst, leading to a significant decrease in
poisoning species (CO) [23,24]. The presence of W species is expected to assist in
the electro-oxidation of poisonous reaction intermediates adsorbed on the active Pd
sites [25,26].

In this work, PdW/C catalysts with different Pd/W ratios were successfully
prepared by an ethylene glycol assisted method. The catalytic activity and stability
of PdW/C catalysts towards ethanol oxidation reaction (EOR) in alkaline solution
were examined. The electrochemical properties of PdW electrocatalysts were also
probed to explore their potential applications in DEFCs.

2. Results and Discussion

2.1. TEM

Figure 1 shows a typical TEM image of the prepared PdW/C and Pd/C catalysts.
The nanoparticle sizes of PdW/C catalyst were primarily distributed within the
range of 2–6 nm. The average PdW nanoparticles size of PdW/C was approximately
3.6 nm, whereas Pd nanoparticles of Pd/C were 5.2 nm. It should be pointed out that
ethylene glycol as the reducing agent and dispersing agent, could effectively disperse
the Pd nanoparticles. At the same time, the PdW nanoparticles size of PdW/C is
smaller than Pd nanoparticles of Pd/C, indicating that demonstrating PdW/C is
more beneficial for ethanol electro-oxidation in alkaline medium [27,28]. As shown
in Figure 1, PdW/C catalyst was spherical and homogeneously dispersed on Vulcan
XC-72 Carbon with no remarkable observation of agglomerations compared with
Pd/C. High Resolution Transmission Electron Microscopy (HRTEM) image clearly
shows the lattice fringe image of (1 1 1) planes with the interplanar distance of
0.2 nm. In Figure 1d, EDS of PdW/C shows the existence of Pd, W and C elements,
illustrating the formation of W metal in as-obtained materials.

2.2. XRD

The XRD patterns of W/C, Pd/C and PdW/C catalysts were shown in Figure 2.
The typical diffraction peaks of WC around 2θ = 26˝ and 43˝, is attributed to the C
(002) and C (004), which are not W typical diffraction, as shown in the XRD patterns
of Pd/C and PdW/C, and meanwhile C diffraction peaks also appeared. Sharp
and well-defined peaks of Pd/C was observed at 2θ values of 40.14˝, 46.69˝, 68.17˝,
82.17˝, and 86.69˝, corresponding to the planes of (1 1 1), (2 0 0), (2 2 0), (3 1 1), and
(2 2 2), respectively, according to JCPDS No.65-6174. The strong diffraction peak
of PdW/C catalyst was also found at 40.14˝, corresponding to the plane of (1 1 1).
No significant peak shift is observed for the PdW/C (1:1) [29]. The average particle
size of the prepared PdW/C nanoparticles (d) was estimated by using the Scherrer

592



Equation [30] after background subtraction from Pd (1 1 1) peak at 2θ of 40˝, agreeing
with TEM results, which is as shown in Table 1.

d “
kλ

βcosθ
(1)
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Table 1. Summary of physical properties of PdW/C and Pd/C catalyst.

Catalysts
Pd Metal Loading

Detected by
ICP-AES

Diameter
Calculated Form

XRD/nm

Diameter
Measured by

TEM/nm
EASA/m2¨ g´1

PdW/C 10.6% 3.9 3.6 144.1
Pd/C 19.3% 5.74 5.32 71.2
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ions are first chemisorbed in the initial stage of the oxide formation at higher potentials, which are 
transformed into higher valence oxides. The electrochemical active surface areas (EASA) of PdW/C 
(1:1) and Pd/C was calculated to be 144.1 and 71.2 m2·g−1, respectively (Table 2), indicating that 
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2.3. Electrochemical Measurements

The cyclic voltammetry of PdW/C (1:1) and Pd/C in the absence of ethanol
is shown in Figure 3. It is noted that they all exhibit significantly high anodic and
cathodic current densities. The oxidation peak at lower anodic potential during the
forward scan is ascribed to the formation of the adsorbed hydroxyl OHads while
the peaks at high positive potential are related to the formation of Pd oxides [31,32].
The potential region from ´1.1 to ´0.6 V versus SCE on the CV curve of the catalyst
is associated with the hydrogen adsorption/desorption. The potential region from
´0.3 V to 0.3 V can be attributed to the formation of the palladium oxide layer on
the surface of the PdW/C catalyst, and OH´ ions are first chemisorbed in the initial
stage of the oxide formation at higher potentials, which are transformed into higher
valence oxides. The electrochemical active surface areas (EASA) of PdW/C (1:1) and
Pd/C was calculated to be 144.1 and 71.2 m2¨g´1, respectively (Table 2), indicating
that PdW/C (1:1) has a higher electrochemical activity [33].
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from ethanol adsorption. At a higher potential, the formation of PdO will block further adsorption of 
reactive species and lead to a remarkable decrease in current. During the negative-going sweep,  
the previously formed PdO will be reduced to catalytic active Pd, leading to the recovery of EOR 
current. Corresponding reactions are shown in Equations (2) and (3) [34]: 
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50 mV¨ s´1.
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Table 2. Comparison of electrochemical performances on the prepared
Pd-based catalysts.

Catalysts Eonset/V Ep/V ip/mA¨ cm´2 i (after 3600
s)/mA¨ cm´2

PdW/C (1:1) ´0.71 ´0.27 62.29 6.94
PdW/C (1:2) ´0.63 ´0.32 14.02 0.42
PdW/C (2:1) ´0.68 ´0.29 37.39 0.19
PdW/C (4:1) ´0.70 ´0.40 15.37 0.03

Pd/C ´0.64 ´0.25 39.58 1.58
Pd/C (JM) ´0.65 ´0.17 48.70 2.29

Cyclic voltammetry was used to quantify the electrocatalytic activities of the
Pd-based catalysts prepared at room temperature. Figure 4 shows the CV results
detected in 1 M KOH + 1 M C2H5OH solution. The scan rate was selected at
50 mV¨ s´1 in the potential range from ´0.8 to 0.4 V. The oxidation peak in the
forward scan corresponds to the oxidation of freshly chemisorbed species from
ethanol adsorption. At a higher potential, the formation of PdO will block further
adsorption of reactive species and lead to a remarkable decrease in current. During
the negative-going sweep, the previously formed PdO will be reduced to catalytic
active Pd, leading to the recovery of EOR current. Corresponding reactions are
shown in Equations (2) and (3) [34]:

Pd+C2H5OH+3OH´ Ø Pd-CH3COads ` 3H2O` 3e (2)

Pd-CH3COads ` Pd-OHads+OH´ Ñ 2Pd`CH3COO´ `H2O (3)
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toward ethanol. In the forward scan, the onset potential (Eonset) of PdW/C (1:1) is −0.71 V, which has  
a negative shift of ~60 mV compared to that of Pd/C (JM) (−0.65 V). The peak current densities are 
62.29 and 48.70 mA·cm−2 (the area is the surface area of the electrode) for PdW/C (1:1) and Pd/C (JM), 
respectively, while their peak potentials are −0.27 and −0.17 V. The parameters, including the onset 
potential, the forward peak potential (Ep) and the forward peak current intensity (ip) are shown in  
Table 2. 
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It is observed that the peak current density on PdW/C (1:1) is higher than
those on other Pd-based catalysts (Figure 4), which could indicates that PdW/C
(1:1) catalyst has the highest catalytic activity toward ethanol. In the forward scan,
the onset potential (Eonset) of PdW/C (1:1) is ´0.71 V, which has a negative shift of
~60 mV compared to that of Pd/C (JM) (´0.65 V). The peak current densities are
62.29 and 48.70 mA¨ cm´2 (the area is the surface area of the electrode) for PdW/C
(1:1) and Pd/C (JM), respectively, while their peak potentials are ´0.27 and ´0.17 V.
The parameters, including the onset potential, the forward peak potential (Ep) and
the forward peak current intensity (ip) are shown in Table 2.
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Chronoamperometry was employed to evaluate the stability of the Pd-based
catalysts. As shown in Figure 5, the current densities represent less decay
at the applied constant potentials for 3600 s. The current density of ethanol
electro-oxidation on the PdW/C (1:1) catalyst is 6.94 mA¨ cm´2, which is the highest
among all the Pd-based catalysts, indicating that the PdW/C (1:1) exhibits a more
stable electrocatalytic activity towards ethanol oxidation in the alkaline media than
other catalysts. These results are in good accordance with the CV results.

3. Experimental Section

3.1. Materials

PdCl2 was purchased from Shanghai Institute of Fine Chemical Materials
(Shanghai, China); Vulcan XC-72 Carbon was supplied by Cabot Co. Ltd. (Boston,
MA, USA); Tungsten hexachloride (99.5%, WCl6), Ethylene glycol (AR, C2H6O2),
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Sodium hydroxide (AR, Nelectro-oxidation H) and ethanol were obtained from
Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China) 5% Nafion® solution was
provided by DuPont Co. Ltd (Wilmington, DE, USA); All reagents were of analytical
reagent grade and used without further purification. The water utilized in the studies
was double-distilled and deionized.

3.2. Catalyst Preparation

Vulcan XC-72 Carbon was treated in 5 M HNO3 solution with vigorous stirring.
A certain amounts with different ratios of WCl6 and PdCl2 were dissolved in 50 mL
ethylene glycol. Subsequently, the pH of the solution was adjusted to 9 using 1 M
NaOH solution .The mixtures were stirred for 1 h at 80 ˝C. The prepared carbon
ethylene glycol solution was added in the mixture. After stirred for 3 h, the mixtures
were filtered and washed several times with deionized water. The remaining solids
were dried in a vacuum oven for 24 h at 80 ˝C. The weight percentages of metal
were 20% in all catalysts. 20% Pd/C was prepared by the similar method. 20%
commercial Pd/C (JM) catalyst was purchased from Johnson Matthet Company
(Shanghai, China).

3.3. Characterization

XRD patterns were collected using a Bruker D8-Advance Powder X-ray
diffractometer (Cu KR radiation, wavelength 1.5418 Å, Bruker, Germany).
Transmission electron microscopy (TEM) images were characterized with a
JEM-2100F HR-TEM model (JEM, Tokyo, Japan) using an accelerating voltage of
80 and 200 KV. 10.0 mg catalyst was dissolved in aqua regia (a strong acid mixture
with HCl: HNO3 volume ratio of 3:1) to form a Pd aqueous solution, and ICP-AES
(Varian, Anaheim, CA, USA) was performed to detect the catalyst metal loading. All
electrochemical measurements were performed in a standard three-electrode cell
using a CHI 660C Electrochemical Analyzer (Chenhua Company, Shanghai, China).

3.4. Electrochemical Test

Cyclic voltammetry (CV) and chronoamperometry measurements were collected
in 1 M KOH + 1 M C2H5OH solution at a scan rate of 50 mV¨ s´1. The working
electrodes ware prepared, dropping 4 µL of the catalyst onto glassy carbon
electrode (GCE, 0.07 cm2). The ink was prepared by ultrasonically mixing 5 mg
of electrocatalyst sample in a mixture of 1 mL of ethanol and 120 µL of 5% Nafion®

solution. The counter electrode was Pt foils and the reference electrode was saturated
calomel electrode (SCE). The CV tests were carried out in the potential range of ´0.8
to 0.4 V. Before experiments, pure nitrogen gas (99.99%) was bubbled through the
solution at least 30 min to remove the dissolved oxygen in the solution.
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4. Conclusions

In summary, Vulcan XC-72 Carbon supported 20 wt. % PdW/C catalysts
with different Pd/W ratios were prepared by an ethylene glycol method. Among
them, PdW/C (1:1) catalysts have a small average diameter (3.6 nm) and large
electrochemical surface areas (144.1 m2¨ g´1). It could also exhibit a higher reactivity
toward EOR in alkaline electrolyte, compared to other PdW/C electrocatalysts. The
peak current densities of PdW/C (1:1) (62.29 mA¨ cm´2) is higher than that of Pd/C
(JM) (48.70 mA¨ cm´2). PdW/C (1:1) also exhibits more stable electrocatalytic activity
than Pd/C (JM) towards ethanol oxidation in the alkaline media.
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A Facile Synthesis of Hollow
Palladium/Copper Alloy Nanocubes
Supported on N-Doped Graphene for
Ethanol Electrooxidation Catalyst
Zhengyu Bai, Rumeng Huang, Lu Niu, Qing Zhang, Lin Yang and Jiujun Zhang

Abstract: In this paper, a catalyst of hollow PdCu alloy nanocubes supported on
nitrogen-doped graphene support (H-PdCu/ppy-NG) is successfully synthesized
using a simple one-pot template-free method. Two other catalyst materials such
as solid PdCu alloy particles supported on this same nitrogen-doped graphene
support (PdCu/ppy-NG) and hollow PdCu alloy nanocubes supported on the
reduced graphene oxide support (H-PdCu/RGO) are also prepared using the similar
synthesis conditions for comparison. It is found that, among these three catalyst
materials, H-PdCu/ppy-NG gives the highest electrochemical active area and both
the most uniformity and dispersibility of H-PdCu particles. Electrochemical tests
show that the H-PdCu/ppy-NG catalyst can give the best electrocatalytic activity and
stability towards the ethanol electrooxidation when compared to other two catalysts.
Therefore, H-PdCu/ppy-NG should be a promising catalyst candidate for anodic
ethanol oxidation in direct ethanol fuel cells.

Reprinted from Catalysts. Cite as: Bai, Z.; Huang, R.; Niu, L.; Zhang, Q.; Yang, L.;
Zhang, J. A Facile Synthesis of Hollow Palladium/Copper Alloy Nanocubes
Supported on N-Doped Graphene for Ethanol Electrooxidation Catalyst. Catalysts
2015, 5, 747–758.

1. Introduction

As a kind of sustainable clean energy technology, fuel cells have been
demonstrated and recognized as the feasible option for energy conversion for power
generation due to their high efficiency and zero/low emissions [1,2]. In several
types of fuel cells, direct ethanol fuel cells (DEFCs) are considered to be one of
the important options for automotive and portable electronic applications, owing
to their high energy density, low operating temperature, and liquid fuel feeding
operation [3,4]. Compared with the direct methanol fuel cells (DMFCs), DEFCs also
have some advantages including lower fuel cost, lower toxicity, lower fuel crossover
effect, and higher theoretical mass energy density (8 kWh¨ kg´1 vs. 6.1 kWh¨ kg´1) [5].
Furthermore, ethanol can be easily produced in large scale from agricultural products
or biomass [6].
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Unfortunately, the low reaction activity and difficult C-C bond breaking of
ethanol electrooxidation are the major drawbacks hindering DEFCs’ practical
applications [7,8]. Currently, the most effective catalysts used for ethanol
electrooxidation are Pt-based materials, which are high-cost and also insufficient in
overcoming both the low catalyst activity and difficulty of breaking C-C bond of
ethanol. To overcome these challenges, tremendous efforts have been made to explore
alternative catalysts which hopefully could give high activity/selectivity/stability,
and be low cost.

With respect to this, some less expensive and more abundant non-platinum
catalysts with acceptable performance have been widely explored. For instance,
Pd-based catalysts have been found to have good a performance in ethanol
electrooxidation, and therefore are considered to be good candidates for DEFCs [9,10].
Pd alloying with non-noble metals (Fe, Co, Ni, etc.) to produce multiple-component
catalysts has also tested to be one of the effective approaches in enhancing the
catalytic activity, decreasing the loading of noble metals, and then reducing the
cost of Pd catalysts [11,12]. Furthermore, the nanostructure types of Pd-alloy
catalysts have also been identified to play a considerable role in improving the
catalyst’s performance towards the ethanol electrooxidation [13]. Among the
different nanostructures of Pd-alloy materials, hollow nanostructure represents a
new type of catalyst because of their high surface area, low density, easy recovery,
self-supporting capacity, and high surface permeability [14,15]. In this regard,
various hollow nanostructures including hollow nanospheres [16] and hollow
nanotubes [17] have been reported in literature. Meanwhile, the ideal catalyst
supports with large surface areas, good conductivity and strong adsorption of metals
have been demonstrated to have the ability to improve the dispersion of metal
nanoparticles, and thereby enhance the utilization and efficiency of the noble metal
electrocatalysts [18,19]. Among different catalyst supports, graphene-based materials
have been considered to be one of the ideal catalyst supports because they possess
a large surface area, good thermal and chemical stability as well as great electrical
conductivity [20,21]. However, when metal or metal alloy particles are supported
on the graphene surface, they tend to aggregate together due to the inefficient
binding sites on the pristine graphene surface for anchoring metal nanoparticles.
To improve the binding interaction between the catalyst particles and the graphene
surface, some doping strategies to create more binding sites has been developed. For
example, when graphene is doped with nitrogen to form N-doped graphene (NG),
the binding interaction can be significantly improved [22]. It was observed that with
the introduction of nitrogen into graphene support material, the metal nanoparticles
could be homogeneously anchored onto the support, leading to the generation of
MeNx (Me Co, Fe) active sites, and thereby enhancing the electrocatalytic activity and
utilization efficiency of the catalysts [23]. The studies showed that the N species on

602



the graphene surface could play an important role in controlling and regulating the
shape and size of metal nanoparticles [24]. Therefore, design and synthesis of hollow
Pd-alloy nanosphere catalysts supported on N-doped graphene represent a new way
to improve the performance and utilization of catalysts with the reduced cost.

In this paper, hollow PdCu-alloy nanocube catalysts supported on N-doped
graphene (H-PdCu/ppy-NG) are successfully synthesized by a facile and low-cost
method. The results indicate that the successfully synthesized N-doped graphene
can tightly support hollow PdCu-alloy nanocubes with a uniform dispersion on the
support and a relatively narrow distribution of catalyst particle size. Electrochemical
characterizations reveal that the H-PdCu/ppy-NG catalyst has both excellent
catalytic activity and stability toward ethanol electrooxidation in alkaline electrolyte,
demonstrating that this catalyst would be a promising anode catalyst for DEFCs.

2. Results and Discussion

Figure 1 shows the TEM images and the size frequency curve of the resulting
sample from the typical experiment. From Figure 1a, it can be seen that the hollow
PdCu nanocubes are uniformly dispersed on the N-doped graphene surface with
a uniform dispersion and a narrow particle size distribution. The catalyst particle
diameters from the amplificatory TEM image vary from 35 to 53 nm, and the mean
size calculated by the lognormal distribution is about 46.2 nm (Figure 1d). As
observed in Figure 1c, the metal shell is clearly visible due to its higher contrast
compared to the central cavity region. The contrast difference can prove the existence
of the hollow structure. To better investigate the formation mechanism of hollow
nanocubes in our system, two sets of control experiments were carried out. Figure 2
shows the TEM images from the control experiments. Control A was carried out
under the same conditions described as the typical experiment, apart from 140 ˝C as
the reaction tempeture. When a lower temperature (i.e., 140 ˝C) was adopted, only
solid PdCu nanoparticles supported on ppy-NG could be observed (Figure 2a), which
might be due to that the low temperature was not conducive to oriented attachment
process in the dynamics. As shown in Figure 2a, the PdCu alloy nanoparticles have
near-spherical shapes and showed a slight agglomeration. It demonstrates that
reaction tempeture is important in controlling and regulating the shape and size of
the hollow nanospheres. To further study the effect of N doping, control B was done
in the same conditions described as the typical experiment, apart from the RGO as
the support. Figure 2b shows the TEM image of the H-PdCu/RGO, in which a small
quantity of hollow PdCu nanocubes was immobilized on the RGO compared with
the typical experiment. This indicates that the N doping is a key factor to absorb
PdCu nanoparticles onto the surface of the support. From the above results, it can be
believed that a much more uniform size and distribution of H-PdCu nanoparticles
relies on the cooperation of the appropriate reaction temperature and N doping.
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Figure 3 shows the XRD patterns of H-PdCu/ppy-NG, PdCu/ppy-NG and
H-PdCu/RGO catalysts, respectively. As displayed in Figure 3, four peaks at 39.8˝,
46.1˝, 68.6˝ and 81.9˝ are characteristics of face-centered-cubic (fcc) crystalline Pd,
which are corresponding to the facets (111), (200), (220), and (311), respectively.
Obviously, the peak positions for H-PdCu/RGO slightly shift to higher angles
when compared to Pd/RGO, which is ascribed to the formation of PdCu alloy.
Additionally, the peak at 21.5˝ in each case can be attributed to the (002) planes of
RGO, which is different from that sharp peak centered at 10.2˝ for GO, indicating the
decreased interlayer distance from 0.71 to 0.34 nm [25]. This is due to the removal of
oxygen-containing functional groups from the RGO. These observations demonstrate
that the GO was efficiently transformed to RGO. Moreover, the XRD pattern of
H-PdCu/ppy-NG is consistent with that of H-PdCu/RGO. It can be concluded that
the crystal structure of RGO is not changed after N doping.
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Figure 3. XRD patterns of H-PdCu/ppy-NG (Curve 1), PdCu/ppy-NG (Curve 2)
and H-PdCu/RGO (Curve 3) catalysts.

The surface chemical states and elemental compositions of ppy-NG support
were analyzed by XPS. Figure 4 shows the XPS spectra of the ppy-NG and the
corresponding high-resolution N1s spectrum. The survey-scan spectrum of ppy-NG
support is mainly dominated by the signals of C 1s, N 1s and O 1s elements. The
presence of N1s peak at about 400 eV demonstrates the successful incorporation of
nitrogen in NG supports. From Figure 4b, the high-resolution N1s spectrum can be
deconvoluted into three peaks, which correspond to three individual N-containing
species. The peak at about 400.1 eV can be assigned to pyrrolic N species from
the pentagonal ring of ppy, 398.1 eV to pyridinic N, and 401.1 eV to graphitic N,
respectively. From the sizes of the peaks, it can be calculated that the total N content
in ppy-NG is 1.62%, which contains 15% of pyrrolic N, 43% of pyridinic N and
42% of graphitic N. More pyridinic N and graphitic N species on ppy-NG surfaces
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should be helpful to load more H-PdCu for enhancing the catalytic activity of the
H-PdCu/ppy-NG.
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Figure 4. XPS spectra of ppy-NG support (a) and its corresponding high-resolution
N1s spectrum (b).

In order to investigate the distribution of the different elements in the catalysts,
elemental mapping measurements were also performed. Figure 5 shows the SEM
images and the corresponding elemental mapping of the as-prepared catalysts from
H-PdCu/ppy-NG (a) and PdCu/ppy-NG (b) catalysts. From the mapping images of
the samples, a homogeneous distribution of N, Pd and Cu elements can be clearly
observed, except from the C element. It can be seen that Pd and Cu are uniformly
distributed in the mappings, which is in agreement with the TEM results. The results
reveal that the graphene has been successfully doped by N and the N atoms are all
homogeneous distributed in ppy-NG, which is in good accordance with the results
of XPS spectra. In the process of N dope, the N atoms can provide highly effective
functional groups on the surface of graphene, which contribute to the subsequent
deposition of PdCu nanoparticles with a much more uniform size and distribution.
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For evaluating the electrochemically-active surface areas (ECSA) of the catalysts,
CO-stripping experiments were carried out in N2-saturated 0.5 M H2SO4 electrolyte
at a scan rate of 50 mV¨ s´1. Figure 6 shows the CO-stripping cyclic voltammograms
(CVs) for three different catalysts (H-PdCu/ppy-NG (a), PdCu/ppy-NG (b) and
H-PdCu/RGO (c), respectively). The corresponding ECSA values were calculated
using Equation (1) [26]:

ECSA “
Q

G ˆ 420
(1)

where Q is the charge of the CO desorption-electrooxidation in microcoulomb
(µC), G represents the total amount of Pd (µg) on the electrode, and 420 is
the charge required to oxidize a monolayer of CO on the catalyst in µC¨ cm´2.
The calculated ECSA values are 268, 202, and 138 m2¨ g´1 for H-PdCu/ppy-NG,
PdCu/ppy-NG and H-PdCu/RGO catalysts, respectively. Clearly, the ECSA value
for the H-PdCu/ppy-NG catalyst is much larger than those of the other two, probably
suggesting that H-PdCu/ppy-NG may be more active than both PdCu/ppy-NG
and H-PdCu/RGO. Obviously, this ECSA value further demonstrates that N-doped
graphene can effectively increase the active sites, and thereby may be able to enhance
the catalytic activity and stability of the electrocatalysts.

The electrocatalytic activities for ethanol oxidation using the synthesized
electrocatalysts were also analyzed by CV measurement in N2-saturated 1.0 M KOH
containing 1.0 M CH3CH2OH aqueous solution under the half-cell conditions at
a scan rate of 50 mV¨ s´1. Figure 7 compares the CV curves of three catalysts of
H-PdCu/ppy-NG, PdCu/ppy-NG and H-PdCu/RGO, respectively. In general, the
ethanol electrooxidation can be characterized by two well-defined current peaks
at the forward and reverse scans. In the forward scan, the oxidation peak in
Figure 7 is corresponding to the oxidation of freshly chemisorbed species which
come from ethanol adsorption. The reverse scan peak is primarily associated
with removal of carbonaceous species which are not completely oxidized in the
forward scan. The value of the peak current in the forward scan represents the
electrocatalytic activities of the electrocatalysts. From Figure 7, two main peaks for
ethanol oxidation in both forward and reverse scan directions can be observed
at all three electrodes coated by three catalysts separately. The corresponding
anodic peak current density of H-PdCu/ppy-NG is about 650 mA¨ mg´1, much
higher than those of the PdCu/ppy-NG (ca. 320 mA¨ mg´1) and H-PdCu/RGO
(ca. 150 mA¨ mg´1). This demonstrates that H-PdCu/ppy-NG modified electrode
can give an extraordinarily higher electrocatalytic activity than the other two for
ethanol electrooxidation.
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Figure 6. Cyclic voltammograms (CVs) of the electrooxidation of pre-adsorbed CO
on H-PdCu/ppy-NG (a); PdCu/ppy-NG (b) and H-PdCu/RGO (c) catalysts coated
glassy carbon electrodes in N2-saturated 0.5 M H2SO4 aqueous solution with a scan
rate of 50 mV¨ s´1 at 25 ˝C. Dashed curves were CVs for these catalyzed electrodes
without CO adsorption.
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Figure 7. Cyclic voltammograms of H-PdCu/ppy-NG (Curve 1), PdCu/ppy-NG
(Curve 2) and H-PdCu/RGO (Curve 3) coated glassy carbon electrodes. Electrolyte:
N2-saturated 1.0 M KOH containing 1.0 M CH3CH2OH aqueous solution at 25 ˝C,
potential scan rate: 50 mV¨ s´1.

In order to compare the electrochemical stability of the catalysts for alcohol
oxidation, chronoamperometric tests were carried out at ´0.3 V for 6000 s in
N2-saturated 1 M NaOH solution containing 1 M ethanol (Figure 8). Evidently,
the H-PdCu/ppy-NG catalyst shows a much higher anodic current and a much
slower degradation than other two catalysts. The result further demonstrates that the
NG using ppy as a N source can significantly enhance both the activity and stability
of the catalyst toward ethanol electrooxidation.
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Figure 8. Chronoamperometric curves of H-PdCu/ppy-NG (Curve 1),
PdCu/ppy-NG (Curve 2) and H-PdCu/RGO (Curve 3) coated glassy carbon
electrodes. Electrolyte: N2-saturated 1.0 M KOH containing 1.0 M CH3CH2OH
aqueous solution at 25 ˝C. Electrode potential held at ´0.3 V.

3. Experimental Section

3.1. Preparation of Different N-Doped Graphenes

Graphene oxide (GO) was prepared based on the modified Hummers’
method [27]. The N-doped graphene using polypyrrole as nitrogen source
(abbreviated as ppy-NG) was synthesized by in-situ chemical oxidative
polymerization of pyrrole monomer and carbonization of the polypyrrole. In a
typical synthesis, GO (0.4 g) was dispersed in 50 mL of ethanol aqueous solution
(volume ratio 1:1) by ultrasonic treatment for 30 min to form a suspension. 80 mg of
pyrrole monomer was then added to this suspension and stirred for 10 min to form
a mixture solution. Then 50 mL of Na2S2O8 (2.289 g) aqueous solution was added
slowly to this mixture solution with a constant stirring for 12 h in ice-water bath.
After the reaction, the obtained ppy-GO powder was dried and heated at 800 ˝C for
2 h under the protection of N2. The formed product is labeled as ppy-NG and used
as the catalyst support in this paper.

3.2. Synthesis of Hollow PdCu-Alloy Nanocube Catalysts

In a typical synthesis, an aqueous solution of PdCl2 (3.3 mg¨ mL´1, 3.8 mL),
20 mg of CuSO4¨ 5H2O, and 50 mg of glutamate were mixed together in 40 mL of
ethylene glycol (EG). The solution pH was adjusted to 11 by dropwise addition of
8 wt.% KOH/EG solution with vigorous stirring. Then, 30 mg of the as-prepared
ppy-NG above was added into the solution with ultrasonicately stirred for 2 h to
obtain a homogeneous suspension. Upon completion, the suspension was transferred
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into a 50 mL Teflon-lined stainless-steel autoclave. The autoclave was sealed, heated
at 160 ˝C for 6 h, and then air-cooled to room temperature. Finally, the product was
collected by filtration and washed several times with double distilled water. The
catalyst was dried at 40 ˝C under vacuum for 8 h. The catalyst thus obtained is
denoted as H-PdCu/ppy-NG in this paper.

3.3. Comparison Experiments

For comparison, solid PdCu nanoparticles supported on ppy-NG
(PdCu/ppy-NG) was also prepared at 140 ˝C under nearly identical conditions as
theose for H-PdCu/ppy-NG. For a further comparison, the graphene made from
the reduction of GO without N-doping (expressed as RGO) was also used as a
support to prepare a RGO-supported hollow PdCu nanotube catalyst, abbreviated as
H-PdCu/RGO in this paper.

3.4. Material Characterization

The morphology of the catalyst samples was characterized by transmission
electron microscopy (TEM) (JEOL-100CX) at 200 kV. The crystal structure of the
products was analyzed by X-ray diffraction (XRD) recorded on a D/max-2200/PC
X-ray diffractometer with Cu Kα radiation source. Field emission scanning electron
microscope (FESEM) images and energy dispersive X-ray spectroscopy (EDX) results
were obtained with ZEISS SUPRA 40 and X-MAX 20. The X-ray photoelectron
spectroscopy (XPS) measurements were made using ESCALABMKLL electron
spectroscope from VG Scientific (West Sussex, UK).

The electrochemical measurements in this study were conducted with a
conventional three-electrode electrochemical cell using a CHI 660E electrochemical
workstation. A glassy carbon electrode (3 mm o.d.) coated with catalyst was used as
the working electrode, a saturated calomel electrode (SCE) as the reference electrode,
and a Pt foil (1 cm2) as the counter electrode. The cyclic voltammonograms (CVs) and
chronoamperometric curves for ethanol electrooxidation experiments were recorded
in N2-saturated 1 M KOH containing 1 M ethanol. Electrochemical CO-stripping
voltammograms were conducted by bubbling CO into 0.5 M H2SO4 for 30 min
at a potential of 0.1 V (vs. SCE electrode). All electrochemical experiments were
performed at 25 ˘ 1 ˝C.

4. Conclusions

In this work, the hollow PdCu alloy nanocubes supported on nitrogen-doped
graphene support (H-PdCu/ppy-NG) were successfully synthesized using a simple
one-pot template-free method. For comparison, two other catalyst materials such
as solid PdCu alloy particles supported on nitrogen-doped graphene support
(PdCu/ppy-NG) and hollow PdCu alloy nanocubes supported on the reduced
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graphene oxide support (H-PdCu/RGO) were also prepared under the similar
synthetic conditions. Among these three catalyst materials (H-PdCu/ppy-NG,
PdCu/ppy-NG, and H-PdCu/RGO), H-PdCu/ppy-NG showed the highest
electrochemical active sites and both the most uniformity and dispersibility of
H-PdCu particles, and the electrochemical tests showed that H-PdCu/ppy-NG
catalyst could give the highest electrocatalytic activity and stability towards the
ethanol electrooxidation. Therefore, H-PdCu/ppy-NG should be a promising catalyst
candidate for anodic ethanol oxidation in direct ethanol fuel cells.
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Improving the Ethanol Oxidation Activity of
Pt-Mn Alloys through the Use of Additives
during Deposition
Mohammadreza Zamanzad Ghavidel and E. Bradley Easton

Abstract: In this work, sodium citrate (SC) was used as an additive to control the
particle size and dispersion of Pt-Mn alloy nanoparticles deposited on a carbon
support. SC was chosen, since it was the only additive tested that did not prevent
Mn from co-depositing with Pt. The influence of solution pH during deposition and
post-deposition heat treatment on the physical and electrochemical properties of
the Pt-Mn alloy was examined. It was determined that careful control over pH is
required, since above a pH of four, metal deposition was suppressed. Below pH 4,
the presence of sodium citrate reduced the particle size and improved the particle
dispersion. This also resulted in larger electrochemically-active surface areas and
greater activity towards the ethanol oxidation reaction (EOR). Heat treatment of
catalysts prepared using the SC additive led to a significant enhancement in EOR
activity, eclipsing the highest activity of our best Pt-Mn/C prepared in the absence
of SC. XRD studies verified the formation of the Pt-Mn intermetallic phase upon
heat treatment. Furthermore, transmission electron microscopy studies revealed that
catalysts prepared using the SC additive were more resistant to particle size growth
during heat treatment.

Reprinted from Catalysts. Cite as: Ghavidel, M.Z.; Easton, E.B. Improving the Ethanol
Oxidation Activity of Pt-Mn Alloys through the Use of Additives during Deposition.
Catalysts 2015, 5, 1016–1033.

1. Introduction

Problems associated with the costs and efficiency of fuel cells are a great
barrier for industrial and consumer applications [1–4]. Direct alcohol fuel cells
(DAFCs) are one of the most promising candidates for portable power applications
in electronic devices and vehicles [4]. The cost and performance of the DAFCs are
mainly controlled by the catalysts used at each electrode. Pt is the most commonly
utilized electrocatalyst, which is quite expensive [3]. Furthermore, strongly adsorbing
species, such as CO, which are formed during the alcohol oxidation process on pure
Pt particles, result in severe activity and efficiency losses [4,5]. The development of
Pt alloy catalysts offers the potential of greater tolerance to poisoning and significant
cost reduction. Likewise, decreasing Pt alloy particle sizes and improving particle
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dispersion can further increase performance [3], although there is some debate about
the effects of particle size on catalytic activity [6,7].

The Pt-Mn alloy system has recently been identified by our group as having
enhanced activity towards the ethanol oxidation reaction (EOR) [8,9]. Alloy formation
was confirmed with X-ray powder diffraction (XRD) analysis, and the most active
alloys contained less than 25 at% Pt, which is beneficial from a cost standpoint.
The results showed that the presence of Mn affects both particle size and the
intrinsic activity of the catalysts. Further study by the authors also showed that
post-heat treatment had a great impact on the activity of the Pt-Mn alloys, and
the main reason for enhancing the EOR activity was the formation of Pt-Mn
intermetallic phase [10]. However, particle size growth during heat treatment was an
unwanted consequence of heat treatment. Sintering can happen by the migration
and coalescence of the catalyst particles or by evaporation and condensation of the
atoms from small crystallites [11]. While the benefits of thermally treating alloy
nanoparticles out-weighed any activity losses that may occur due to particle size
growth, it would be desirable to find a way to produce smaller particles with better
dispersion that are resistant to particle growth during heat treatment.

Common strategies used to deposit small and well-dispersed metal
nanoparticles on carbon include functionalization of the support [12], using
the polyol [13] or microemulsion [14,15] deposition methods [11,16] employing
surfactants [17,18], which are significant strategies to improve particle dispersion
and to reduce particle sizes. It has been shown that oxygenated surface groups on
the carbon support can enhance the dispersion and the stability of Pt/C catalysts [11].
However, oxygen containing groups can be reduced during the reduction step,
which can result in the redistribution of platinum particles and less favorable Pt
dispersion [11]. Studies have shown that nitrogen functionalization on carbon
can improve cathode performance [11,19]. While Dinotto and Negro [20,21] have
produced some carbon nitride-based electrocatalysts at lower temperatures, nitrogen
groups are more commonly introduced via high temperature processes that can also
alter the porosity and microstructure of the support [11]. Unfortunately, the efforts
in our group to produce Pt-Mn alloys from polyol and microemulsion methods were
not successful because of very negative reduction potential for Mn ions in these
solutions, which prevented Mn co-deposition [22].

Several studies [17,18,23,24] have shown that adding surfactants reduces the
particle sizes of Pt and Pt alloys nanoparticles and also improves their dispersion on
the support [25]. Sodium citrate (SC) is a common surfactant used in both aqueous
and organic solutions by numerous researchers to produce Pt [18], Pt-Au [26],
PtRuIr [27] and Pt-Co [28] nano-particles that were small (2–6 nm) with a narrow
size distribution. However, to the best of our knowledge, SC has not been used to
prepare Pt-Mn alloys [18,26–28].
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In this paper, the effect of sodium citrate on particle size, dispersion, structure
and EOR activity of Pt-Mn was investigated. In addition, the influence of solution
pH and heat treatment on the crystalline structure, the uniformity of alloyed phases
and the activity of the catalysts has been examined.

2. Results and Discussion

2.1. Material Characterization

Citric acid is a polyprotic acid, with pKa values of 3.14, 4.76 and 6.40 for each
acid site. As such, the charge on SC will be influenced by solution pH, which can
influence both Mn and Pt deposition, as well as the resulting particle sizes. Our
preliminary studies showed that pH had an impact on Mn and Pt deposition. When
the solution pH was above three, the metal loading and, as a consequence, the
electrochemical activity of the sample dropped, and different trends were seen from
sample to sample at higher pHs (Figure S1). We believe that at higher pHs, there is a
stronger interaction between the citrate ions and Mn2+ ions in the precursor solution,
which prevents them from deposition. Therefore, in this paper, all of the samples
have been produced at pH 3.

Table 1 contains the post-chemical reduction composition of the Pt-Mn catalyst
samples and the residual solutions, which were determined by inductively-coupled
plasma optical emission spectroscopy (ICP-OES). Catalysts were prepared using SC
to metal weight ratios of 1:1, 2:1 and 3:1, which are hereafter referred to as 1X, 2X and
3X, respectively. These results showed that the Pt-Mn alloys were produced with
a molar ratio close to the calculated values. By adding SC, a small increase in the
amount of metal ions in the residual solution was observed, especially the Pt content.

Table 1. Composition of the samples and concentration of Pt and Mn in filtrated
solution, which was measured by ICP, along with grain size measured by TEM.

Samples
Alloy molar ratios measured by

ICP
Ions concentration in filtered

solution by ICP
Grain size

measured by
TEM (nm)Pt (%) Mn (%) Pt (ppm) Mn (ppm)

Pt0.25Mn0.75 22.18 77.82 nil nil 4.5
Pt0.25Mn0.75-1X 20.30 79.70 0.49 nil 2.6
Pt0.25Mn0.75-2X 20.56 79.44 8.23 nil 2.8
Pt0.25Mn0.75-3X 21.94 78.06 11.70 0.20 2.9
Pt0.25Mn0.75-2X-500-1

h - - - - 5.7

Pt0.25Mn0.75-2X-700-1
h - - - - 5.8

Pt0.25Mn0.75-2X-875-1
h - - - - 6.0

Pt0.25Mn0.75-2X-950-1
h - - - - 6.6
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The thermogravimetry (TG) and derivative thermogravimetry (DTG) of Pt-Mn
alloys, which were synthesized on a Vulcan carbon support in the presence and
absence of SC, are shown in Figure 1a,b. Five distinctive mass loss regions are
observed in Figure 1. The mass loss between 100 ˝C and 250 ˝C was attributed to
the thermal decomposition of residual, weak carbon functional groups and water
evaporation in the powders [29,30]. A second major mass loss began at 300 ˝C, which
was related to the oxidation of carbon black by the oxygen or the air trapped within
the powder particles [30]. The mass loss at 700–800 ˝C is attributed to the loss of
various functionalized groups on the carbon surface and graphitization [29]. The
mass loss at 577 and 928 ˝C, for the sample prepared without additive, and at 460
and 919 ˝C, for the sample prepared in the presence of SC, was attributed to Mn
oxide phase modifications and a reduction in the amount of oxygen [31]. It has
been shown that pure MnO2 is reduced to Mn2O3 at 500 ˝C and further reduced
to Mn3O4 at 900 ˝C [30]. The source of mass loss observed at ~1076 ˝C was not
identified. However, from the TG and DTG diagrams of the samples prepared with
and without SC, it could be concluded that the temperature required for most of the
phase transitions was moved to lower temperatures and facilitated by adding SC.
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Figure 1. (a) TG, (b) DTG, (c) DSC and (d) derivative weight-corrected DSC for
Pt-Mn alloys, which were synthesized on Vulcan carbon support in the presence
and absence of sodium citrate.

Figure 1b illustrates the DSC curves obtained for Pt-Mn alloys prepared in
the presence and absence of SC. Most of the reactions were endothermic, except
those related to carbon oxidation at 300–400 ˝C. The derivative heat flow diagrams
from 700–1200 ˝C showed that the heat flow in the presence of the additive was
divided into two separate peaks. The first peak was related to an expected phase
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transformation from the Pt-Mn phase diagram [32] or Mn oxide phase modifications.
The second peak might be attributed to the alloy melting or unknown phase
transformation. As catalysts were not prepared at heat treatments above 950 ˝C, this
was not examined in detail. The measured heat between 700–1000 ˝C (3.97 mW/g)
for the Pt-Mn alloy prepared without SC is higher than that measured for the sample
synthesized by SC (2.89 mW/g). Therefore, adding SC decreased the heat required
for the phase transformation and facilitated the alloying process. Based on the DSC
results, heat treatment temperatures of 500, 700, 875 and 950 ˝C were selected to
compare the electrochemical and structural changes of Pt-Mn samples prepared with
and without SC.

Figure 2 shows the TGA diagrams and mass loss in air. The mass lost at around
400 ˝C was due to carbon combustion. The Vulcan carbon ignition was around 600 ˝C,
which was facilitated in the presence of metal. The data calculated from Figure 2
are presented in Table 2. The results showed that when SC is used, the combustion
temperature is reduced by ca. 80 ˝C. This implies that the Pt-alloy particle size was
reduced and the particle dispersion was improved. It was previously observed that
by increasing Pt loading and available Pt surface area, the combustion temperature
of carbon black was decreased because of a higher oxygen and carbon reaction
rate [30,33]. Finally, the residual mass above 600 ˝C indicated that the metal loading
in all samples was close to the expected 20 wt%.
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Figure 2. The effect of sodium citrate concentration on the weight loss of Pt-Mn
alloys, which were synthesized on Vulcan carbon support.
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Table 2. The metal loading and the Vulcan carbon combustion temperature
measured from Figure 2.

Samples Carbon black combustion Temperature (˝C) Metal loading (wt. %)

Pt0.25Mn0.75 429.2 22.6
Pt0.25Mn0.75-1X 348.4 19
Pt0.25Mn0.75-2X 350.7 20.1
Pt0.25Mn0.75-3X 359.5 22.8
Vulcan carbon 633.4 -

XRD patterns obtained for Pt-Mn alloy catalysts prepared with varying amounts
of SC are shown in Figure 3. We have previously reported that as-deposited
catalysts contained a mixed structure of Pt-Mn alloys and non-alloyed phases [10].
Broad peaks indicate that alloy particles with small grain sizes were produced.
The broadening of the peaks can also be due to the presence of oxide phases
and/or non-uniform alloys. The diffractogram displayed the characteristics of the
face-centered cubic (fcc) structure of Pt, and the peaks were shifted to higher angles,
indicating the incorporation of Mn in the fcc structure. Additionally, there is a peak
at 36.2˝, which is likely related to Mn-rich phases. Moreover, it can be concluded
that, by adding SC, the peaks became broader, which was the result of the particle
size reduction. Increasing the concentration of sodium citrate up to 2X reduced the
amount of oxide phases. However, the oxide phases reappeared after the amount of
sodium citrate was increased to 3X. It seems that the optimum amount for the SC
concentration is 2X. Therefore, catalysts prepared with a 2X ratio were selected for a
more detailed heat-treatment investigation.
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Figure 3. XRD analysis of the samples, which were prepared in the presence and
absence of sodium citrate.

The XRD patterns obtained for Pt-Mn catalysts prepared with 2X SC that were
heat treated at different temperatures are presented in Figure 4. As has been shown
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previously [10], heat treatment has a great impact on the activity and the crystallite
structure of the Pt-Mn samples produced without the additive. Here, we have
observed similar results for the samples prepared in the presence of SC. The peak at
36.2˝ associated with the Mn-rich phases in the XRD pattern disappeared after heat
treatment at 500 ˝C for 1 h and the intensity of the remaining peaks increased with
crystallization. However, the predominant structure was still the Pt face-centered
cubic (fcc) structure.
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Figure 4. The XRD patterns of the sample prepared in the presence 2X SC and after
heat treatment at different temperatures.

Upon further increasing the heat treatment temperature to 700 ˝C, substantial
changes were observed. New peaks at lower diffraction angles (22˝–40˝) indicate that
the ordered Pt-Mn intermetallic phase was formed at 700 ˝C. The Pt-Mn intermetallic
phase [34] has a tetragonal structure; therefore, new peaks, (001) and (100), were
demonstrated at lower diffraction angles of ~24.1˝ and ~37.1˝, respectively. As a
result of Pt and Mn further alloying and intermetallic phase formation, the peak
shifts from 39.8˝ up to 40.2˝ and 46.5˝ down to 45.5˝ were observed when heat
treatment temperature increased from 500 up to 700 ˝C. The shift and the intensity
decline of the peaks at 39.8˝ and 46.5˝ can be assigned to the completion of phase
modifications at 700 ˝C [10]. In Figure 5, the XRD spectra of samples prepared in
the presence of SC and heat treated at 700 ˝C for different periods are compared.
The spectra show that the phase transformation was completed after 1 h of heat
treatment, and further increasing of the heat treatment time has no effect on the
structure of the samples. The optimum heat treatment period for the samples
prepared without SC was 4 h [10]. Presumably, smaller particle sizes undergo a faster
phase transformation, which has also been found by the TGA and DSC analysis. This
fast phase transformation is very beneficial, since a shorter treatment time should
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minimize particle size growth, yielding a higher active surface area and potentially
improved electrochemical activity.
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Figure 5. The XRD patterns of the sample prepared in the presence of 2X sodium
citrate (SC) and after heat treatment at 700 ˝C for different periods.

In Figure 4, when the heat treatment temperature increased to 875 ˝C and 950 ˝C,
additional peaks at 22.4˝ and 39.4˝ were observed. This variation in the crystalline
structure of the Pt-Mn samples is due to a phase separation and the formation of
phases with higher Pt content, such as Pt3Mn. This phenomenon is also observed for
the Pt-Mn samples prepared without SC [10].

TEM images of as-synthesized samples with and without the additive are
presented in Figure 6. The mean particle sizes measured by using the TEM
images are given in Table 1. These TEM images showed that the catalysts
with nanosized metal particles were synthesized, and adding sodium citrate
dramatically decreased the particle sizes and reduced the agglomeration of alloy
particles. Correspondingly, the particle dispersion was improved in the presence
of sodium citrate. However, increasing the sodium citrate ratio to 3X amplified the
agglomeration and deteriorated the particle dispersion. It seems that adding further
sodium citrate blocked the particle nucleation sites on the surface of carbon black
particles, which directed the metal particle deposition toward the grain boundaries of
carbon black particles. Therefore, the metal particle agglomeration was observed in
between carbon particles. Furthermore, TEM images once more proved that smaller
particle sizes and better particle dispersion in the presence of SC were responsible for
facilitating the phase transformation during heat treatment and changing the start
temperature of thermally-activated processes, which were observed in the TGA and
DSC analyses.
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Figure 6. TEM image of Pt0.75Mn0.25 samples prepared in the presence of different
contents of sodium citrate: (a) no additive; (b) 1X; (c) 2X; and (d) 3X.

Figure 7 displays TEM images of samples synthesized in the presence of SC that
were heat treated at different temperatures. The particle sizes and details calculated
from the TEM images are summarized in Table 1. The heat treatment increased the
particle sizes, including some very large particles with a radius of more than 10 nm.
However, the average particle size was enlarged by only 3 nm by increasing the
heat treatment temperature to 950 ˝C. This means that Pt-Mn alloys were resistant
to particle growth, which has also been observed for other alloys [35] and Pt-Mn
samples produced without SC [10]. In Figure 8, the TEM images of two samples,
which were prepared with and without SC and heat treated for 1 h at 700 ˝C, are
compared. It can be concluded that the presence of SC improved the alloy particle
dispersion and prevented the particle enlargement to a great extent during heat
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treatment. Therefore, it is expected that samples prepared with SC should show
enhanced activity compared to samples prepared without additives or heat treated
for a longer time.
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Figure 7. TEM image of Pt0.75Mn0.25 samples prepared in the presence 2X of sodium
citrate and after heat treatment at different temperatures: (a) 500 ˝C; (b) 700 ˝C;
(c) 875 ˝C; and (d) 950 ˝C.
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Figure 8. TEM images of Pt0.75Mn0.25 samples prepared (a) without additive and
(b) in the presence 2X of sodium citrate and heat treated at 700 ˝C for 1 h.

2.2. Electrochemical Characterization

The results of electrochemical studies for Pt-Mn samples prepared with and
without SC are presented in Figure 9a. The experiments were conducted in the
deaerated 0.5 M H2SO4 solution. The common Pt cyclic voltammetry (CV) shape
with hydrogen adsorption/desorption peaks at lower potentials was observed for
all samples. The electrochemical active surface area (ECSA) was calculated by
integrating the charge under the hydrogen adsorption peaks and is compiled in
Table 3 and Figure 10. The results show that the ECSA values were dramatically
increased by adding SC from 10.5–20.6 m2/gPt (Figure 10), which is in good
agreement with the TEM and XRD results. The ECSA improvement is attributed to
the superior particle dispersion and smaller grain sizes in the samples prepared with
SC. The maximum ECSA value was achieved with the sample prepared using the
2X SC content. When the amount of SC was increased to 3X, the measured ECSA
was lower than that measured for 2X. Based on the TEM analysis (Figure 5d), this
reduced ECSA is the result of uneven particle dispersion on the carbon support.

CV obtained for samples prepared with 2X SC and heat treated at different
temperatures is illustrated in Figure 9b. Heat treatment at 500 ˝C reduced the ECSA
values for Pt-Mn samples, but the ECSA for the Pt-Mn samples improved after
increasing the heat treatment temperature to above 700 ˝C. The ECSA values never
reached the same value as the untreated sample. Particle size growth is the main
cause of the drop in ECSA. However, the optimal ECSA was achieved after heat
treatment at 700 ˝C for 1 h and led to an ECSA that was only 7% lower than that of the
untreated sample. These results show that Pt-Mn samples prepared with SC are more
resistant to particle growth compared to samples prepared without SC. Previously,
it has been shown that the formation of the ordered structure and the generation
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of a higher alloying degree of Pt and Mn by changing the surface composition and
structure enhanced the ECSA [10]. This resistance to ECSA loss is most likely due
to a roughening of the alloy particle surface upon dissolution of the surface oxide
layer [36] and also because of better particle dispersion and smaller grain sizes
achieved in the presence of SC [37–39]. Additionally, the CV obtained with samples
that were heat treated for different periods is shown in Figure 9c. Increasing the time
of heat treatment to 4 h at 700 ˝C reduced the ECSA values (Table 3) (not shown in
Figure 9c). A similar trend was also observed by increasing the heat treatment time
at 500 ˝C.Catalysts 2015, 5 1026 

 

 

 

Figure 9. Cyclic voltammetry (CV) in the 0.5 M H2SO4 solution at a scan rate of 20 mV/s 

for samples prepared (a) with different sodium citrate contents and then heat treated (b) at 

different temperatures for 1 h and (c) at 500 and 700 °C for different periods. 
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Pt0.25Mn0.75-2x 249 0.489 690 2.81 20.6 

Pt0.25Mn0.75-3x 266 0.355 695 2.14 15.7 

Pt0.25Mn0.75-2X-500°C-1 h 248 0.880 703 6.49 16.2 

Pt0.25Mn0.75-2X-700°C-1 h 240 0.628 710 8.40 19.1 

Pt0.25Mn0.75-2X-875°C-1 h 237 0.602 729 4.50 17.1 

Pt0.25Mn0.75-2X-950°C-1 h 233 0.638 703 4.76 14.5 

Pt0.25Mn0.75-2X-500°C-2 h 245 0.655 662 4.58 13.8 

Pt0.25Mn0.75-2X-500°C-4 h 241 0.709 671 3.87 15.4 

Pt0.25Mn0.75-2X-700°C-2 h 240 0.588 682 6.30 17.1 

Pt0.25Mn0.75-2X-700°C-4 h 241 0.556 698 6.35 15.7 

Figure 9. Cyclic voltammetry (CV) in the 0.5 M H2SO4 solution at a scan rate of
20 mV/s for samples prepared (a) with different sodium citrate contents and then
heat treated (b) at different temperatures for 1 h and (c) at 500 and 700 ˝C for
different periods.
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Table 3. Summary of ethanol oxidation reaction (EOR) activity parameters of the
Pt-Mn samples. Also listed are the measured electrochemical active surface area
(ECSA) values for each sample.

Samples
Onset

potential
(mV)

Current
(mA.cm´2)
at 350 mV

Peak
potential

(mV)

Peak
current

(mA.cm´2)

ECSA
(m2/gPt)

Pt0.25Mn0.75 248 0.461 665 2.49 10.5
Pt0.25Mn0.75-1x 247 0.472 678 2.72 16.8
Pt0.25Mn0.75-2x 249 0.489 690 2.81 20.6
Pt0.25Mn0.75-3x 266 0.355 695 2.14 15.7

Pt0.25Mn0.75-2X-500˝C-1 h 248 0.880 703 6.49 16.2
Pt0.25Mn0.75-2X-700˝C-1 h 240 0.628 710 8.40 19.1
Pt0.25Mn0.75-2X-875˝C-1 h 237 0.602 729 4.50 17.1
Pt0.25Mn0.75-2X-950˝C-1 h 233 0.638 703 4.76 14.5
Pt0.25Mn0.75-2X-500˝C-2 h 245 0.655 662 4.58 13.8
Pt0.25Mn0.75-2X-500˝C-4 h 241 0.709 671 3.87 15.4
Pt0.25Mn0.75-2X-700˝C-2 h 240 0.588 682 6.30 17.1
Pt0.25Mn0.75-2X-700˝C-4 h 241 0.556 698 6.35 15.7Catalysts 2015, 5 1027 
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in lower ECSA. Furthermore, the linear sweep voltammetry (LSV) in the ethanol solution showed that 

by adding SC, the onset potential of the samples was almost constant (247–249 mV) up to the optimum 

ratio (2X), but increased to 266 mV when higher ratios of SC were used. 

The EOR activity of the samples after heat treatment is illustrated in Figure 11b. After performing 

the heat treatment at different temperatures, the activity was improved in all samples compared to the 

as-produced sample. The activity of heat-treated samples is reported in Table 3 and compared in  

Figure 10. The most active samples were produced at 700 °C, at which temperature the Pt-Mn ordered 

phase was formed. Upon increasing the heat treatment temperature to 850 and 950 °C, the EOR activity 

of the samples was decreased because of particle growth and forming new phases. However, the EOR 

activity of the heat-treated samples in all temperatures was greater than the untreated sample.  
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Figure 10. ECSA changes at different SC concentrations and after heat treatment at
different temperatures, measured from Figure 9, and the ethanol oxidation peak
current, measured from Figure 11.

The EOR activity of the samples prepared with and without sodium citrate
is presented in Figure 11a. In addition, Pt/C, which was synthesized without
SC, was also tested in ethanol solution and is referred to as Pt100. Comparing the
electroactivity of the samples (Table 3 and Figure 10) showed that, by increasing the
amount of sodium citrate to the 2X concentration, the activity of the samples was
improved. The improvement in activity was a result of the higher ECSA and better
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particle dispersion, which was concluded from the TEM images and CV analysis
in 0.5 M H2SO4 solution. However, by increasing the amount of sodium citrate
to 3X, the EOR activity was reduced. Based on XRD and TEM results, the lower
electrochemical activity of samples prepared with 3X SC was related to the increase
in the quantity of the oxide phase and, importantly, to uneven particle dispersion,
which resulted in lower ECSA. Furthermore, the linear sweep voltammetry (LSV) in
the ethanol solution showed that by adding SC, the onset potential of the samples
was almost constant (247–249 mV) up to the optimum ratio (2X), but increased to
266 mV when higher ratios of SC were used.

The EOR activity of the samples after heat treatment is illustrated in Figure 11b.
After performing the heat treatment at different temperatures, the activity was
improved in all samples compared to the as-produced sample. The activity of
heat-treated samples is reported in Table 3 and compared in Figure 10. The most
active samples were produced at 700 ˝C, at which temperature the Pt-Mn ordered
phase was formed. Upon increasing the heat treatment temperature to 850 and
950 ˝C, the EOR activity of the samples was decreased because of particle growth
and forming new phases. However, the EOR activity of the heat-treated samples in
all temperatures was greater than the untreated sample.Catalysts 2015, 5 1028 

 

 

Figure 11. Linear sweep voltammetry (LSV) in the 0.5 M H2SO4 + 0.1 M ethanol solution 

at a scan rate of 20 mV/s for: (a) the samples prepared with different sodium citrate contents; 

(c) the sample produced with 2X sodium citrate content and heat treated at different temperatures. 

(b) The same as (d), normalized for platinum content of (a) and (d), respectively. 

The impact of heat treatment time at 500 °C and 700 °C on the EOR activity is shown in Figure 12. 

At 500 °C and 700 °C, increasing the heat treatment time beyond 1 h had a negligible impact on the 

EOR activity, which is in good agreement with the XRD and TGA results. The XRD patterns indicated 

that phase transformations occurred at 700 °C, and this does not change by increasing the time of heat 

treatment from 1 h to 4 h (Figure 5). Therefore, increasing the time of treatment can only affect the 

particle sizes, and as shown at 700 °C, the EOR activity slightly reduced by extending the time of the 

heat treatment. 

 

Figure 12. LSV of the samples prepared in the presence of sodium citrate and heat treated 

at 500 and 700 °C for different periods, in the 0.5 M H2SO4 + 0.1 M ethanol solution at a 

scan rate of 20 mV/s. 

(c)

(d) (b) 

(a) 

Figure 11. Linear sweep voltammetry (LSV) in the 0.5 M H2SO4 + 0.1 M ethanol
solution at a scan rate of 20 mV/s for: (a) the samples prepared with different
sodium citrate contents; (c) the sample produced with 2X sodium citrate content
and heat treated at different temperatures. (b) The same as (d), normalized for
platinum content of (a) and (d), respectively.

The impact of heat treatment time at 500 ˝C and 700 ˝C on the EOR activity is
shown in Figure 12. At 500 ˝C and 700 ˝C, increasing the heat treatment time beyond
1 h had a negligible impact on the EOR activity, which is in good agreement with
the XRD and TGA results. The XRD patterns indicated that phase transformations
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occurred at 700 ˝C, and this does not change by increasing the time of heat treatment
from 1 h to 4 h (Figure 5). Therefore, increasing the time of treatment can only affect
the particle sizes, and as shown at 700 ˝C, the EOR activity slightly reduced by
extending the time of the heat treatment.
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Figure 12. LSV of the samples prepared in the presence of sodium citrate and heat
treated at 500 and 700 ˝C for different periods, in the 0.5 M H2SO4 + 0.1 M ethanol
solution at a scan rate of 20 mV/s.

3. Experimental Section

3.1. Catalyst Synthesis

The impregnation method was used to prepare Pt-Mn/C catalysts with a
composition of Pt0.25Mn0.75, similar to that previously published [4]. The metal
precursors were H2PtCl6¨ H2O (Aldrich, Oakville, ON, Canada) and MnCl2¨ 4H2O
(Aldrich, Oakville, ON, Canada). Trisodium citrate (SC) (Aldrich) and Vulcan XC72R
carbon black (Cabot Corp., Billerica, MA, USA) were used as an additive and metal
support, respectively. The total metal loading was kept constant at ~20 wt. % for all
samples. The SC was added in a weight ratio of 1:1, 2:1 and 3:1 to the metal ratios,
which are represented in this article by 1X, 2X and 3X, respectively. The pH of the
solution was adjusted using a HCl solution (15 v/v %) and/or a 1 M NaOH solution.
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NaBH4 powder was used as the reduction agent. The weight ratio of NaBH4 to
the metal content was 3:1. In addition, a control sample of 20 wt. % Pt/C was
synthesized with the same method without SC, which was referred to as Pt100. The
powders were collected by suction filtration, washed with isopropanol alcohol (IPA),
acetone and deionized water and, finally, dried in an oven at 80 ˝C overnight.

Heat treatment was performed in a nitrogen atmosphere at either 500, 700, 875
or 950 ˝C in a Barnstead Thermolyne tube furnace with a quartz tube. The period
of heat treatment was kept constant (1 h) for all samples and temperatures, unless
otherwise specified. After the heat treatment, the samples were cooled down under
a constant flow of nitrogen gas and were preserved inside the furnace until room
temperature was reached.

3.2. Materials Characterization

The chemical composition of the Pt-Mn samples was examined by
inductively-coupled plasma optical emission spectroscopy (ICP-OES, Varian
Vista-MPX, Mississauga, ON, Canada). Aqua Regia solution was used to dissolve
metal powders, and diluted solutions were consumed for ICP-OES analyses.
ICP-OES instrument was calibrated by four standard solutions of Pt and Mn with
concentrations of 1, 5, 10 and 20 ppm.

The carbon/metal weight ratio and the temperature of phase changes
were determined by thermogravimetric analysis (TGA) and differential scanning
calorimetry (DSC). Thermal analysis was performed using a TA Instruments Q600
SDT system (TA Instruments, New Castle, DE, USA). Measurements were made
in both argon and air atmospheres, using a heating ramp of 5 ˝C/min and
20 ˝C/min, respectively.

Powder X-ray diffraction (XRD) patterns were obtained for each catalyst.
Measurements were made using either a Bruker D8 Advance powder X-ray
diffractometer (Bruker, East Milton, ON, Canada) equipped with a germanium
monochromator (provided by Bruker) or a Rigaku Ultima IV X-ray diffractometer
(Rigaku, Toronto, ON, Canada) equipped with a graphite monochromator (provided
by Rigaku). Both instruments employ a Cu Kα1 X-ray source.

A Philips CM 10 instrument equipped with an AMT digital camera system
was used for transmission electron microscopy (TEM, Philips, Andover, MA, USA)
analysis. Samples for TEM analysis were dispersed in a mixture of water and
isopropanol and applied to nickel 400 mesh reinforced grids coated by carbon and
allowed to dry under air before being introduced into the chamber. The mean particle
sizes were determined by measuring the diameter of 100–200 metal particles.
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3.3. Electrochemical Characterization

The electrochemical activity of the samples was studied after applying a thin
layer of catalyst on glassy carbon (GC) electrodes. The ink of samples was produced
by mixing 10 mg of catalyst with 100 µL Nafion solution (5% in alcohols, Dupont) and
a 400 µL 50:50 mixture of isopropyl alcohol and water. A uniform suspension was
achieved after sonicating for 45 min. A 2-µL droplet of the well-dispersed catalyst
ink was deposited onto a clean and polished GC electrode (diameter = 3 mm, CH
instruments) and dried in air at room temperature prior to electrochemical tests. The
total metal loading of the catalyst layer was 0.11 mg/cm2. Cyclic voltammetry (CV)
and linear sweep voltammetry (LSV) were performed in a N2-purged solution. A
0.5 M H2SO4 solution was used to determine the electrochemical active surface area
(ESCA). A 0.5 M H2SO4 + 0.1 M ethanol solution was employed to study the EOR
activity of the catalysts. Measurements were made in a 3-electrode cell with a Pt
wire counter electrode and a Ag/AgCl reference electrode. The LSV and CV for
all samples were collected at a scan rate of 20 mV/s. Besides, the sample surfaces
were cleaned prior to recording the final electrochemical test, by scanning at a scan
rate of 100 mV/s and then at the scan rate of 20 mV/s, until we got a clean and
reproducible CV.

4. Conclusions

This work has shown how the addition of sodium citrate (SC) influences the
particle dispersion and grain size of Pt-Mn particles and facilitates the crystalline
phase transformation. The results indicated that adding SC to the impregnation
solution improved particle dispersion, decreased particle sizes, reduced the heat
treatment time from 4 h to 1 h and increased the ECSA. Therefore, the EOR activity
of the Pt-Mn alloy catalysts was enhanced. However, the weight ratio of SC to metal
loading should be kept lower than 2X, because a higher weight ratio hindered the
metal particle dispersion. Furthermore, this investigation proved that the SC had a
positive impact on the EOR activity of Pt-Mn alloys when the pH of the impregnation
solution was lower than four. Moreover, the heat-treated samples showed superior
activity toward ethanol oxidation in comparison with the as-synthesized samples.
The EOR activity was the highest for the sample heat treated at 700 ˝C for 1 h.
The XRD analysis illustrated that Pt-Mn intermetallic was formed at the same
temperature, and this was the main reason for the superior activity.
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Sb Surface Modification of Pd by Mimetic
Underpotential Deposition for Formic
Acid Oxidation
Long-Long Wang, Xiao-Lu Cao, Ya-Jun Wang and Qiao-Xia Li

Abstract: The newly proposed mimetic underpotential deposition (MUPD) technique
was extended to modify Pd surfaces with Sb through immersing a Pd film electrode
or dispersing Pd/C powder in a Sb(III)-containing solution blended with ascorbic
acid (AA). The introduction of AA shifts down the open circuit potential of Pd
substrate available to achieve suitable Sb modification. The electrocatalytic activity
and long-term stability towards HCOOH electrooxidation of the Sb modified Pd
surfaces (film electrode or powder catalyst) by MUPD is superior than that of
unmodified Pd and Sb modified Pd surfaces by conventional UPD method. The
enhancement of electrocatalytic performance is due to the third body effect and
electronic effect, as well as bi-functional mechanism induced by Sb modification
which result in increased resistance against CO poisoning.

Reprinted from Catalysts. Cite as: Wang, L.-L.; Cao, X.-L.; Wang, Y.-J.; Li, Q.-X.
Sb Surface Modification of Pd by Mimetic Underpotential Deposition for Formic
Acid Oxidation. Catalysts 2015, 5, 1388–1398.

1. Introduction

Direct formic acid fuel cells (DFAFCs) are considered promising power sources
of clean and environment-friendly energy for miniature and portable electronic
devices because of excellent performance, such as high power density [1,2]. The direct
formic acid fuel cell has a theoretical open circuit potential of 1.48 V, higher than that
of direct methanol fuel cell (1.18 V) [3]. The improvement of performance of DFAFCs
depends on fabrication of high-efficient electrocatalysts. The commonly-used anodic
catalyst for DFAFCs is platinum black, on which the formic acid electrooxidation
occurs via a dual pathway [4,5], which consists of the direct pathway without
CO poison and the indirect pathway with the formation of CO as poisonous
intermediates. The resulting CO intermediates are strongly adsorbed on the Pt
surface and block the active sites, then decrease the activity. In this regards, platinum
is not so favorable for practical formic acid fuel cell application because of the
CO intermediates build-up, poisoning the catalysts, and degenerating the fuel cell
performance gradually [3,6].

Many studies have confirmed that palladium is a more efficient catalyst with
higher catalytic activity for the electrooxidation of formic acid [6–11]. The excellent
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property derives from the extraordinary formic acid oxidation mechanism on Pd
which is different from the dual pathway mechanism on Pt. Briefly, on the Pd
surface, the electrooxidation of formic acid occurs via a dominantly direct pathway
with a minimized buildup of CO on the surface (The formation of COad on a Pd
electrode in formic acid solutions at the OCP and practical working potentials has
been confirmed by Wang et al., using in situ high-sensitivity attenuated-total-reflection
surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), proposing that
the reduction of the FA dehydrogenation product CO2 should be mainly responsible
for the above COad formation [12]). Unfortunately, the activity of Pd is unstable
and deactivation exists during formic acid oxidation due to gas build-up on the
anodic side of a fuel cell [13,14], catalyst leaching or impurities in the formic
acid or intermediate species [15]. However, a majority of literature proved that
it is mainly CO-like intermediates accumulated on Pd surface that degenerate the
activity of Pd, and it reached a consensus among most research workers [16,17].
On this issue, much effort has been made to improve the catalytic activity and
stability through alloying or surface modification with metallic adatoms, such as
Sb. Yu et al. [18] fabricated carbon supported PdSb alloy catalysts which show
much better resistance to poisoning (deactivation) and decrease the accumulation
of CO on the catalyst surface during formic acid oxidation. Masel et al. [19]
have studied the effects of Sb adatoms on the performance of a DFAFC. They
showed that electrochemical surface modification of Pd by Sb adatoms enhances
the oxidation of formic acid by more than two-fold in an electrochemical cell.
For Sb modification, previous approaches, such as irreversible adsorption (IRA)
and traditional UPD method required external potential controlled desorption of
partial Sb, which were not suitable for scaled synthesis or upgrading of practical
powder catalysts [20–22]. Among the known Sb surface modification method,
mimetic underpotential deposition (MUPD) technique was a newly proposed
electroless approach to achieve sufficient surface modification [23]. Compared
with underpotential deposition followed by potential controlled desorption of
partial Sb adatoms usually applied in Sb modification on Pt, MUPD requires no
external potential control and is a versatile electroless approach extended for surface
nanoengineering of electrocatalysts [24].

In this work, we extended the MUPD strategy to the modification of Sb on Pd
surface of film electrode and Pd/C powder by introducing ascorbic acid (AA) as a
mild reductant to Sb(III)-containing modification solution. Besides, for comparison,
Pd film substrate was also modified by Sb UPD. We studied the influence of
Sb modification on Pd surface for the electro-oxidation of formic acid by cyclic
oltammetry and chronoamperometry together with anodic stripping voltammetry of
pre-adsorbed CO.
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2. Results and Discussion

2.1. Sb UPD on Pd Film Electrodes

Different from Sb UPD on Pt surfaces [20,25], coverage of Sb (θSb, a coefficient
based on the ratio of Pd sites filled and not filled) on Pd surface was tuned by
controlling the UPD time. In this paper, Sb UPD on fresh Pd films was performed
for 10 s, 20 s, 30 s, respectively. The modified Pd film electrodes were marked
as Sb/Pd(UPD). Figure 1a depicts cyclic voltammograms of unmodified Pd film
and Sb/Pd(UPD) electrodes in 0.5 M H2SO4. It can be seen that the hydrogen
adsorption/desorption region was restrained for Sb modified Pd film electrodes. A
conspicuous peak near 0.66 V in positive scan is due to the oxidative dissolution of
Sb modifiers on Pd surface. The peak of negative scan in high potential is ascribed
to reduction of oxygenous species formed on positive scan. Based on hydrogen
adsorption-desorption charge with or without Sb modifiers, θSb on Pd surface can be
evaluated through the following equation [22]:

θSb “ pQO-H´QSb-Hq{QO-H (1)

where QO–H and QSb–H is the charge for oxidation of adsorbed hydrogen on
unmodified and Sb modified Pd, respectively. By calculating, it is found that the Pd
electrodes through UPD for 10 s, 20 s, 30 s enable θSb to reach a value of 0.52, 0.62
and 0.66, respectively. This revealed that coverage of Sb on Pd surface increased
with UPD time. Formic acid oxidation was chose as a probe reaction to compare
the catalytic activity of Sb/Pd(UPD) electrodes with various θSb. Figure 1b showed
that peak current density of HCOOH electrooxidation on Sb/Pd(UPD) increased
with θSb from 0.52 to 0.62 and then dropped down with θSb from 0.62 to 0.66, which
might follow a volcano-like relationship between θSb and electrocatalytic activity of
Sb/Pd(UPD) (seen from inset in Figure 1b).
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Figure 1. (a) CV curves of Sb/Pd(UPD) electrodes with various θSb in 0.5 mol L−1 H2SO4 at 
50 mV s−1; (b) The comparison of catalytic activity of Sb/Pd(UPD) electrodes with various θSb 
towards HCOOH electrooxidation in 0.5 mol L−1 H2SO4 + 0.5 mol L−1 HCOOH at 50 mV s−1. 
The inset presents a plot showing the direct relation between catalytic activity and θSb. 

2.2. Sb MUPD on Pd Film Electrodes 

Figure 2 compared the open circuit potential recorded on the Pd film electrode in 0.1 mM APT 
solution with or without 20 mM AA. A high open circuit potential of ca. 0.29 V at 30 s was seen in 

 

Figure 1. (a) CV curves of Sb/Pd(UPD) electrodes with various θSb in
0.5 mol L´1 H2SO4 at 50 mV s´1; (b) The comparison of catalytic activity of
Sb/Pd(UPD) electrodes with various θSb towards HCOOH electrooxidation in
0.5 mol L´1 H2SO4 + 0.5 mol L´1 HCOOH at 50 mV s´1. The inset presents a plot
showing the direct relation between catalytic activity and θSb.

2.2. Sb MUPD on Pd Film Electrodes

Figure 2 compared the open circuit potential recorded on the Pd film electrode in
0.1 mM APT solution with or without 20 mM AA. A high open circuit potential of ca.
0.29 V at 30 s was seen in single 0.1 mM APT (curve a) due to the oxygen-containing
species that spontaneously formed on Pd surface, thus limited effective modification
of Sb on Pd. With addition of 20 mM AA to 0.1 mM APT aqueous solution (curve b),
the OCP negatively shifted to 0.12 V at 30 s because the ascorbic acid served as
mild reductant removed the oxygen-containing species to ensure freshly reduced
Pd surfaces for better Sb modification [23]. Upon this, Sb MUPD was carried out
through immersing Pd film electrode into modification solution for 30 s which was
the optimal MUPD time reported by Cai et al. [23] when modifying bulk Pt electrode
and powder catalyst by MUPD.

Hydrogen region properties of Sb/Pd(MUPD) electrode were studied by
cyclic voltammetry in 0.5 mol L´1 H2SO4. Observed in Figure 3a, after pure Pd
film electrode was immersed in Sb containing solution for just 30 s, the area of
hydrogen region was severely shrinked due to Sb coverage on Pd surface, thus
leading to restriction of hydrogen adsorption/desorption, and, therefore, θSb herein
reached 0.67.
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Figure 2. Open circuit potential (OCP) curves recorded on a Pd film electrode in 0.1 mM 
APT aqueous solution without (a) or with (b) 20 mM AA. 
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Figure 2. Open circuit potential (OCP) curves recorded on a Pd film electrode in
0.1 mM APT aqueous solution without (a) or with (b) 20 mM AA.

To compare the electrocatalytic activity of modified and unmodified Pd film
electrodes, linear sweep voltammograms for formic acid oxidation are recorded on
pure Pd film, optimal Sb/Pd(UPD) with UPD time for 20 s and Sb/Pd(MUPD) in
0.5 M H2SO4 containing 0.5 M HCOOH. As can be seen in Figure 3b, the formic acid
oxidation current density in low potential was weak on unmodified pure Pd film. A
small anodic peak was observed below 0 V which might be assigned to oxidative
desorption of hydrogen produced in decomposition of formic acid over Pd surface
at open circuit [26] and the main larger peak centered at 0.3 V was attributed to the
direct oxidation of formic acid to CO2 (black curve). For Sb/Pd(UPD), the shape of
LSV was all the same except that the current density of formic acid oxidation was
higher than that of unmodified Pd film (red curve). In the case of Sb/Pd(MUPD),
not only the peak current density was further increased, but the main peak potential
and onset potential of formic acid oxidation shifted negatively by 100 mV and 80
mV, respectively (blue curve). It indicated that the electrocatalysis of formic acid
oxidation was significantly enhanced at low potentials on Sb/Pd(MUPD) compared
with unmodified Pd and Sb/Pd(UPD).

The long-term electrocatalytic activities of the modified or unmodified Pd film
electrodes are explored by polarizing pure Pd film, Sb/Pd(UPD) and Sb/Pd(MUPD)
electrodes at 0.2 V in 0.5 M H2SO4 + 0.5 M HCOOH for 3600 s. Figure 3c showed
the corresponding curves. The current density on pure Pd film was intensively
decayed in the initial stage (black curve) because of Pd surface poisoning by CO
intermediates produced in self-decomposition of formic acid. For Sb/Pd(UPD) and
Sb/Pd(MUPD), the current density for HCOOH electrooxidation was enhanced
maximally and the decay became weak. During the whole testing (3600 s), the
current density followed the order of Sb/Pd(MUPD) > Sb/Pd(UPD) > unmodified
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Pd which was consistent with the results in Figure 3b. Namely, the electrocatalytic
performances were improved on Pd film electrodes by Sb modification due to the
so-called third body effect, which accelerated formic acid oxidation through direct
pathway [19,23]. Specifically, Sb modification can break adjacent Pd active sites
which is favorable to dehydration of formic acid molecules to produce water and
CO, thus CO poisoning on Pd surfaces were inhibited to some extend.Catalysts 2015, 5 1392 
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Figure 3. (a) CVs of pure Pd film and Sb/Pd(MUPD) electrodes in 0.5 mol L−1 H2SO4 at  
50 mV s−1; (b) Linear sweep voltammograms and (c) chronoamperometric i vs. t curves of 
HCOOH oxidation at the constant potential of 0.2 V on pure Pd film, Sb/Pd(UPD) and 
Sb/Pd(MUPD) electrodes in 0.5 mol L−1 H2SO4 + 0.5 mol L−1 HCOOH; (d) Pre-adsorbed 
CO stripping voltammograms on pure Pd film, Sb/Pd(UPD) and Sb/Pd(MUPD) in  
0.5 mol L−1 H2SO4 at 10 mV s−1. The inset in (c) is partial enlarged image. 
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Figure 3. (a) CVs of pure Pd film and Sb/Pd(MUPD) electrodes in
0.5 mol L´1 H2SO4 at 50 mV s´1; (b) Linear sweep voltammograms and (c)
chronoamperometric i vs. t curves of HCOOH oxidation at the constant potential of
0.2 V on pure Pd film, Sb/Pd(UPD) and Sb/Pd(MUPD) electrodes in 0.5 mol L´1

H2SO4 + 0.5 mol L´1 HCOOH; (d) Pre-adsorbed CO stripping voltammograms on
pure Pd film, Sb/Pd(UPD) and Sb/Pd(MUPD) in 0.5 mol L´1 H2SO4 at 10 mV s´1.
The inset in (c) is partial enlarged image.

To further explore the poisoning resistant effect after Sb modification,
pre-adsorbed CO stripping voltammetry was performed. Figure 3d showed CO
stripping voltammograms for pure Pd film, Sb/Pd(UPD) and Sb/Pd(MUPD) in
0.5 mol L´1 H2SO4. It can be observed that on pure Pd film, the oxidative stripping
peak was normally sharp and located at 0.66 V. Otherwise, both the onset and the
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peak potential of CO oxidation were significantly shifted to lower potentials on
Sb/Pd(UPD) and Sb/Pd(MUPD) compared to unmodified pure Pd film. Therefore,
the presence of Sb promoted the oxidation of CO adsorbed on Pd [18]. Seen from
Figure 3d, the promotion can be explained by electronic effect or bi-functional
mechanism induced by Sb. The electronic effect leads to a weakening of the
CO-Pd interaction [27] and makes the direct pathway of formic acid oxidation being
predominant [23]. In bi-functional mechanism, Sb adatoms provide active sites for
–OH formation at lower potentials than on pure Pd, and –OH promotes the oxidative
removal of adsorbed poisoning intermediates during formic acid oxidation [18,20,28].

2.3. Sb MUPD on Pd/C Powder Catalyst

The MUPD approach was further applied to modify 40 wt. % Pd/C(BASF)
powder catalyst. Figure 4a shows XRD patterns of Pd/C before or after Sb
modification by MUPD. The main diffraction peaks at 40.06˝, 46.68˝, 68.08˝, 82.08˝,
86.60˝are characteristic peaks of Pd(111), (200), (220), (311), (222) plane which suggest
face-centered cubic structure of metallic Pd. The peak located at 33.92˝ is attributed
to palladium oxide on Pd/C (BASF), but the peak disappeared after immersed in
the MUPD modification solution, which may be attributed to reduction of PdO by
ascorbic acid. Any peak was observed for Sb or PdSb alloy among the XRD peaks
because the Sb content is extremely low, as well as Sb is highly dispersed in active
structure on Pd surface or Sb exists as amorphous structure.

Figure 4b shows cyclic voltammograms within hydrogen adsorption/desorption
region on unmodified Pd/C and Sb modified Pd/C by MUPD. It was found that the
hydrogen region was partially restrained, as well on Pd/C(MUPD) with a relatively
small θSb of 0.26, which was far below optimal θSb value around 0.6. This may
be due to partial adsorption of Sb on active carbon supports leading to limited Sb
modification on Pd and less higher electrocatalytic activity for Pd/C(MUPD) (seen
from Figure 4c). Despite of this, Figure 4d showed that the catalytic stability was
enhanced further. CO anodic stripping voltammograms (Figure 4e) revealed negative
shift of both peak potential and onset potential of CO oxidation by 70 mV and 50 mV,
respectively. It is suggested that the resistance against CO poisoning was enhanced
on Pd/C after Sb MUPD modification.
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Figure 4. XRD patterns (a), cyclic voltammograms (b) in 0.5 mol L−1 H2SO4 scanned at  
50 mV s−1, anodic linear sweep voltammograms (c) and chronoamperometric i-t curves  
(d) in 0.5 mol L−1 H2SO4 + 0.5 mol·L−1 HCOOH scanned at 50 mV s−1, anodic stripping 
voltammograms (e) of pre-adsorbed CO monolayer in 0.5 mol L−1 H2SO4 scanned at  
10 mV s−1 on Pd/C before (a) and after (b) Sb modification by MUPD. 
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H2SO4 scanned at 50 mV s´1, anodic linear sweep voltammograms (c) and
chronoamperometric i-t curves (d) in 0.5 mol L´1 H2SO4 + 0.5 mol¨ L´1 HCOOH
scanned at 50 mV s´1, anodic stripping voltammograms (e) of pre-adsorbed CO
monolayer in 0.5 mol L´1 H2SO4 scanned at 10 mV s´1 on Pd/C before (a) and
after (b) Sb modification by MUPD.

3. Experimental Section

3.1. Modification of Pd Surfaces

Palladium chloride (PdCl2, analytical reagent), formic acid (analytical reagent)
were obtained from Sinopharm Chemical Reagent Co. Ltd (SCRC, Shanghai, China).
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Perchloric acid (HClO4, analytical reagent), sulfuric acid (H2SO4, analytical reagent),
antimony potassium tartrate (analytical reagent) and ascorbic acid (analytical reagent)
were obtained from Aladdin. Pd/C (40 wt. %) and 5 wt. % Nafion solution were
purchased from BASF (Ludwigshafen, Germany) and Cabot Co. (Boston, MA,
USA), respectively.

The Sb modification on Pd surface was carried out by the recently proposed
MUPD method. For the film substrate, Pd thin film was first electrodeposited
on a electrochemically cleaned glass carbon (GC, Φ = 3 mm) electrode by cyclic
voltammetric scanning in the potential range between ´0.15 V and 0.42 V vs. SCE
in the electrolyte of 0.1 M HClO4 and 5 mM PdCl2. Then, to achieve Sb MUPD,
the Pd film electrode was immersed in the aqueous solution containing 0.1 mM
antimony potassium tartrate (APT) and 20 mM ascorbic acid (AA) for 30 s, rinsed
with ultrapure Milli-Q water. To make a comparison, the fresh Pd film was modified
via Sb UPD process in which the electrode was modified in 0.5 M H2SO4 containing
0.1 mM APT at the UPD potential of 0.25 V vs. SCE for certain time. For the powder
catalyst, catalyst ink was prepared by dispersing 2 mg of Pd/C (40 wt. %, BASF) in
1 mL of ethanol with 120 µL of Nafion (5 wt. %) under sonication. An aliquot of the
catalyst ink was transferred onto GC electrode with a Pd loading of 28 µg cm´2. After
the ink was dried in air, the catalyst coating was modified with the same procedure
as Pd film substrate for MUPD.

3.2. X-ray Diffraction

X-ray diffraction (XRD) for Sb modified Pd/C was performed using a Bruker
D8-Advance X-ray diffractometer (Karlsruhe, Germany) equipped with Cu kα
radiation (λ = 0.15406 nm), employing a scanning rate of 0.02˝ s´1 in the 2θ range
from 20˝ to 90˝.

3.3. Electrochemical Measurements

Electrochemical measurements were performed in a conventional
three-electrode cell with a CHI 660E workstation (CH Instruments, Shanghai
Chenhua, Shanghai, China) in 0.5 M H2SO4 without or with 0.5 M HCOOH solution
deaerated by bubbling pure nitrogen (99.999%). The unmodified or modified Pd
film electrode or powder catalyst covered GC electrode served as the working
electrodes. A platinum guaze was used as the counter electrode, a saturated calomel
electrode (SCE) as the reference electrode. For CO anodic stripping voltammetry,
CO was pre-adsorbed on the Pd surface at the potential of ´0.1 V in CO saturated
0.5 M H2SO4 and then oxidized (stripped) with an anodic potential scan. The
values of current density in this paper are normalized by electrode geometric
surface area (0.07065 cm2). All electrochemical measurements were performed at
room temperature.
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4. Conclusions

The facile electroless MUPD method has been extended to the modification of
Sb on Pd surfaces by immersing Pd film substrate and dispersing Pd/C powder
into modification aqueous solution containing Sb(III) and ascorbic acid. As a
mild reducing agent, ascorbic acid removed oxygenous species to shift down the
open circuit potential of Pd substrate for achieving a sub-monolayer of Sb. The
Sb/Pd(MUPD) exhibited enhanced electrocatalytic activity towards formic acid
oxidation compared to unmodified pure Pd film and Sb modified Pd film by
conventional UPD method. As for Pd/C powder catalyst, the electrocatalytic activity
was improved by Sb MUPD. These improvements or enhancements derive from the
third body effect, electronic effect and bi-functional mechanism resulting in stronger
resistance against poisoning by CO poisons.
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Sacrificial Template-Based Synthesis of
Unified Hollow Porous Palladium
Nanospheres for Formic Acid
Electro-Oxidation
Xiaoyu Qiu, Hanyue Zhang, Yuxuan Dai, Fengqi Zhang, Peishan Wu, Pin Wu
and Yawen Tang

Abstract: Large scale syntheses of uniform metal nanoparticles with hollow porous
structure have attracted much attention owning to their high surface area, abundant
active sites and relatively efficient catalytic activity. Herein, we report a general
method to synthesize hollow porous Pd nanospheres (Pd HPNSs) by templating
sacrificial SiO2 nanoparticles with the assistance of polyallylamine hydrochloride
(PAH) through layer-by-layer self-assembly. The chemically inert PAH is acting as
an efficient stabilizer and complex agent to control the synthesis of Pd HPNSs,
probably accounting for its long aliphatic alkyl chains, excellent coordination
capability and good hydrophilic property. The physicochemical properties of Pd
HPNSs are thoroughly characterized by various techniques, such as transmission
electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy. The growth
mechanism of Pd HPNSs is studied based on the analysis of diverse experimental
observations. The as-prepared Pd HPNSs exhibit clearly enhanced electrocatalytic
activity and durability for the formic oxidation reaction (FAOR) in acid medium
compared with commercial Pd black.

Reprinted from Catalysts. Cite as: Qiu, X.; Zhang, H.; Dai, Y.; Zhang, F.; Wu, P.S.;
Wu, P.; Tang, Y. Sacrificial Template-Based Synthesis of Unified Hollow Porous
Palladium Nanospheres for Formic Acid Electro-Oxidation. Catalysts 2015, 5,
992–1002.

1. Introduction

Palladium (Pd) plays an important role in a variety of chemical reactions [1–4],
such as serving as an efficient electrocatalyst towards formic acid oxidation reaction
(FAOR) in direct formic acid fuel cells (DFAFCs) [5–7]. Compared to Pt catalysts, Pd
has lower cost with relatively higher abundance, emerging as a promise substitute of
Pt especially in the development of DFAFCs [8,9]. Obviously, the morphology of Pd
nanocrystals powerfully influences their electrocatalytic activity and stability because
of structural effects. For example, G. Fu and his group have successfully synthesized
Pd nanoparticles with nanocubes and icosahedra structure [10,11]. For hollow Pd
nanosphere with porous structure, the advantage is prominent, as follows [12]:
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(1) The hollow porous structure gives birth to a combination of high specific surface
area, low mass-density and enhanced reaction kinetics due to extra confined internal
reaction space [13,14]. (2) Such hollow porous nanostructures not only supply
abundant active sites owning to ample edges and corners, but also improve the mass
transfer promoting the electrocatalytic activity obviously [15]. (3) Homogeneous
hollow porous nanocrystals are less vulnerable to Ostwald ripening, dissolution and
aggregation, thus probably restraining the attenuation of the catalyst activity [16].

In this work, positively charged colloidal modified silica serve as a
sacrificial template to synthesize the hollow porous Pd nanospheres (Pd
HPNSs). The layer-by-layer (LBL) approach is used to functionalize the
SiO2 template with evenly-spread positive charges around the outside surface
(PAH/PSS/PAH-SiO2) [17]. The positively charged silica could powerfully adsorb
the PdCl42´ and BH4

´, which are negatively charged metal ions, resulting in the
reduction reaction mostly taking place on the surface of the SiO2. The outermost PAH
not only functions as polyelectrolyte to strongly adsorb negatively charged precursors
and reductants, but also serves as a stabilizer and complex agent to effectively avoid
the aggregation of the Pd nanoparticle owning to its long aliphatic alkyl chain and
excellent hydrophilic property. NaBH4 is chosen as a strong reductant to rapidly
form the uniform Pd nanospheres. After removing the SiO2 sacrificial template, the
morphology of the outermost Pd nanospheres is maintained to obtain the hollow
porous nanostructure. The as-prepared Pd HPNSs exhibit observably enhanced
electrocatalytic activity and durability for FAOR compared with commercial Pd
black [18–21].

2. Results and Discussion

2.1. Physicochemical Characterization of Pd HPNSs

Figure 1 shows the schematic representation for the synthesis of Pd HPNSs. SiO2

nanosphere is chosen as a sacrificial template owning to its hydrophilia, mechanical
stability, and controllability of size and morphology [22–25]. After the layer-by-layer
self-assembly of charged polyelectrolyte on SiO2 template, PdCl42´ can be uniformly
adsorbed owning to electrostatic attraction, and then be in-situ reduced by NaBH4,
mostly taking place on the surface of the SiO2. After removing the SiO2 sacrificial
template, the hollow porous nanospheres structure of Pd HPNSs can be obtained
and remains unchanged even after a long time storage. Photographs are taken to
prove the powerful adsorption of PAH/PSS/PAH-SiO2 in solution (Figure 2). After
two-phase centrifuging, the precipitate of modified solid SiO2 nanoparticles in white,
and in transparent supernatant liquor, is observed (Figure 2A). In contrast, when
PdCl42´ was dropped into the mixture, forming a well-distributed mixture solution,
the precipitate turns t yellow and the supernatant liquor stays transparent, indicating
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the completely adsorption of PdCl42´. This will make sure the follow-up reduction
reaction takes place on the surface of SiO2 templates (Figure 2B).
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Figure 2. Photographs of (A) PAH/PSS/PAH-modified SiO2 solution after
centrifuging and (B) Mixture of PdCl42´ and PAH/PSS/PAH-modified SiO2

solution after centrifuging.

The morphology of the as-prepared nanoparticles at different stages is
investigated by SEM and TEM. Figure 3 represents the SEM/TEM images of SiO2,
Pd-SiO2 and Pd HPNSs. As shown in Figure 3A,B, the SiO2 particles possess a
similar size of ca. 200 nm. The images of Pd-SiO2 as shown in Figure 3C,D confirm
that when Pd was sequentially deposited on the surface of polyelectrolyte-modified
SiO2 nanoparticles, the surface becomes less smooth and rougher without obvious
morphology change. No individual Pd nanoparticles can be found except on the
surface of SiO2 templates (shown in the yellow area in Figure 3D), demonstrating
the in-situ formation of Pd nanoparticles. After removing the SiO2 template, hollow
porous nanospheres structure of Pd HPNSs can be obtained (Figure 3E, F). The yellow
arrow highlights one of the broken hollow nanospheres, from which it is clear that
the inner space in the as-prepared Pd HPNSs was vacant, indicating that the template
of SiO2 was removed, leading to a hollow structure. The TEM image of Pd HPNSs in
Figure 3F also demonstrates that the structural integrity of most produced Pd HPNSs
with narrow distribution is well maintained even after sonication for a long period
of time, indicating superior mechanical properties of the as-prepared Pd HPNSs.
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nanoparticles (~4–5nm). Further magnified HRTEM image (Figure 4C) from yellow region of Figure 4B 
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demonstrating that Pd HPNSs have polycrystalline structure. To observe more clearly about the 
distribution of Pd nanoparticles, the EDS mapping (Figure 4D) are performed. The resulting patterns 
show the uniform distribution of Pd throughout the whole Pd HPNS, a strong evidence for the 
formation of Pd HPNSs as well. Then, the product of different stages is further investigated by XRD 
(Figure 4E). XRD pattern demonstrates that SiO2-Pd nanospheres have both diffraction peaks of SiO2 
and Pd, while the diffraction peak of SiO2 disappears from the XRD pattern of Pd HPNSs, 
demonstrating the completely remove of SiO2 template. What’s more, from XRD pattern of the Pd 
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SiO2 (A and B), Pd-SiO2 (C and D) and Pd HPNSs (E and F).

Representative large-area TEM image (Figure 4A) and middle-resolution TEM
image (Figure 4B) of an individual Pd HPNS clearly show the inner and outer
surfaces of the hollow porous spheres, displaying the interconnection through shared
outside surface and good dispersibility of the Pd nanoparticles (~4–5nm). Further
magnified HRTEM image (Figure 4C) from yellow region of Figure 4B shows an
interplanar spacing with 0.225 nm, which is close to the {111} lattice spacing of
face-centered cubic (fcc) Pd. The selected-area electron diffraction (SAED) image of
an individual Pd HPNS shows diffraction rings corresponding to various facets of
face-centered cubic (fcc) (inset in Figure 4C), demonstrating that Pd HPNSs have
polycrystalline structure. To observe more clearly about the distribution of Pd
nanoparticles, the EDS mapping (Figure 4D) are performed. The resulting patterns
show the uniform distribution of Pd throughout the whole Pd HPNS, a strong
evidence for the formation of Pd HPNSs as well. Then, the product of different stages
is further investigated by XRD (Figure 4E). XRD pattern demonstrates that SiO2-Pd
nanospheres have both diffraction peaks of SiO2 and Pd, while the diffraction peak of
SiO2 disappears from the XRD pattern of Pd HPNSs, demonstrating the completely
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remove of SiO2 template. What’s more, from XRD pattern of the Pd HPNSs, fcc
structure can be identified as the diffraction peaks of the products are located at the
same position as those of pure fcc Pd (PDF#46-1043) crystal phases. The average
particle size of the small Pd nanoparticles is 4.3 nm calculated from the peak width
of the Pd (111) diffraction according to the Scherrer’s equation. It is well known
that the near-surface composition plays a critical role on the electrocatalytic behavior
of noble-metal catalysts. Thus, the near-surface compositional feature of the Pd
HPNSs is examined by XPS (Figure 4F). As observed, no obvious signals of Si and
O can be observed and the signals of Pd are strong. Further, the Pd 3d signals are
deconvoluted into two components: Pd 3d3/2 (340.6 eV), Pd 3d5/2 (335.2 eV) and
Pd 3d3/2 (341.7 eV), Pd 3d5/2 (336.3 eV), which are assigned to Pd0 and PdII species,
respectively. By measuring the relative peak areas, the percentage of Pd0 species
in the Pd HPNSs is calculated to be 92.1% (Pd0/(Pd0+PdII)), much higher than the
reported value of Pd nanoparticles.
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Figure 4. (A) Representative large-area transmission electron microscopy (TEM) image of 
Pd HPNSs. (B) Middle-resolution TEM image of an individual Pd HPNSs. Insert: 
histograms of the particle size distribution (C) Magnified HRTEM images recorded from 
Figure 4B. Inset in Fig. C: selected-area electron diffraction (SAED) pattern of an 
individual Pd HPNSs. (D) EDX elemental mapping patterns of Pd HPNSs. (E) X-ray 
diffraction (XRD) patterns of the SiO2 templates, SiO2-Pd nanospheres, and Pd HPNSs. (F) 
XPS spectra of Pd HPNSs in the Pd 3d regions. 

2.2. Electrocatalytic Tests  

The electrocatalytic properties of Pd HPNSs for the FAOR were examined and compared with 
commercial Pd black. The electrochemically active surface areas (ECSA) of Pd HPNSs and 
commercial Pd black were measured by CO-stripping measurements (Figure 5A). It is observed that 
the ECSA of Pd HPNSs on glassy carbon electrode is 1.4 cm2, 1.20 times higher than that of the 
commercial Pd black (1.2 cm2), which can be ascribed to the small particle size and hollow porous 
structure of Pd HPNSs. The mass-normalized cyclic voltammogram shows the FAOR peak potential 
on Pd HPNSs negatively shifts 110 mV compared to that of commercial Pd black in the forward scan 
(Figure 5B). Moreover, FAOR peak current on Pd HPNSs reaches a value of 203.2 mA mg−1, which is 
about 1.4 times higher than that of commercial Pd black (140.6 mA mg−1). It is well-known that the 
specific kinetic activity (normalized to the ECSA) of a catalyst can effectively evaluate the actual 
value of the intrinsic activity. Further ECSA-normalized cyclic voltammograms show FAOR peak 
current on Pd HPNSs is 1.2 times higher than that on commercial Pd black (Figure 5C). The lower 
FAOR onset oxidation potential and peak potential, the bigger mass-activity and specific activity 
demonstrate that Pd HPNSs have good electrocatalytic performance for the FAOR, holding promise as 
potentially practical electrocatalysts for the FAOR. The improved electrocatalytic performance may 
mainly originate from the unique hollow porous structure. The electrochemical stability of Pd HPNSs 
for the FAOR is investigated by chronoamperometry at 0.1 V potential (Figure 5D). FAOR current on 
Pd HPNSs is higher than commercial Pd black during the whole reaction process. At 3000 s, formic 
oxidation currents on the Pd HPNSs and Pd black decrease to 30.76% and 5.15% of their initial values 
(taken at 20 s to avoid the contribution of the double-layer discharge and hydrogen adsorption), 
indicating Pd HPNSs have superior durability for the FAOR. 
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2.2. Electrocatalytic Tests

The electrocatalytic properties of Pd HPNSs for the FAOR were examined and
compared with commercial Pd black. The electrochemically active surface areas
(ECSA) of Pd HPNSs and commercial Pd black were measured by CO-stripping
measurements (Figure 5A). It is observed that the ECSA of Pd HPNSs on glassy
carbon electrode is 1.4 cm2, 1.20 times higher than that of the commercial Pd black
(1.2 cm2), which can be ascribed to the small particle size and hollow porous structure
of Pd HPNSs. The mass-normalized cyclic voltammogram shows the FAOR peak
potential on Pd HPNSs negatively shifts 110 mV compared to that of commercial Pd
black in the forward scan (Figure 5B). Moreover, FAOR peak current on Pd HPNSs
reaches a value of 203.2 mA mg´1, which is about 1.4 times higher than that of
commercial Pd black (140.6 mA mg´1). It is well-known that the specific kinetic
activity (normalized to the ECSA) of a catalyst can effectively evaluate the actual
value of the intrinsic activity. Further ECSA-normalized cyclic voltammograms show
FAOR peak current on Pd HPNSs is 1.2 times higher than that on commercial Pd
black (Figure 5C). The lower FAOR onset oxidation potential and peak potential, the
bigger mass-activity and specific activity demonstrate that Pd HPNSs have good
electrocatalytic performance for the FAOR, holding promise as potentially practical
electrocatalysts for the FAOR. The improved electrocatalytic performance may mainly
originate from the unique hollow porous structure. The electrochemical stability of
Pd HPNSs for the FAOR is investigated by chronoamperometry at 0.1 V potential
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(Figure 5D). FAOR current on Pd HPNSs is higher than commercial Pd black during
the whole reaction process. At 3000 s, formic oxidation currents on the Pd HPNSs and
Pd black decrease to 30.76% and 5.15% of their initial values (taken at 20 s to avoid
the contribution of the double-layer discharge and hydrogen adsorption), indicating
Pd HPNSs have superior durability for the FAOR.Catalysts 2015, 5 998 
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China). Commercial Pd black were purchased from Johnson Matthey Corporation (London, UK). All 
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Pd black in solution of 0.5 M HCOOH + 0.5 M H2SO4 at a scan rate of 50 mV s´1.
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3. Experimental Section

3.1. Reagents and Chemicals

Poly (allylamine hydrochloride) (PAH, weight-average molecular weight
150 000) was supplied from Nitto Boseki Co., L t d. (Tokyo, Japan). Poly (sodium
4-styrenesulfonate) (PSS, Mw < 700 000 Da), was purchased from Alfa. Aesar Co.
Ltd. (Tokyo, Japan). Potassium tetrachloropalladite(II) (K2PdCl4) and sodium
borohydride (NaBH4) were purchased from Sinopharm Chemical Reagent Co., Ltd
(Shanghai, China). Commercial Pd black were purchased from Johnson Matthey
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Corporation (London, UK). All the reagents were of analytical reagent grade and
used without further purification.

3.2. Synthesis of Hollow porous Pd Nanospheres (Pd HPNSs)

SiO2 sphere templates with a diameter of ca. 200 nm were synthesized by
tetraethyl orthosilicate (TEOS) hydrolyzation in alkaline condition. Typically, 100 mL
ethanol, 6 mL ammonium hydroxide, 6 mL H2O, 3 mL TEOS were mixed and
mechanically stirred for 5 h. After the reaction, the obtained SiO2 templates were
separated by centrifugation at 8500 rpm for 5 min, washed several times with water,
and then dried at 60 ˝C for 5 h in a vacuum dryer. Then, the positively charged
modified SiO2 was prepared through a layer-by-layer self-assembly method via
electrostatic attraction between charged species. SiO2 templates were treated with
Poly (allylamine hydrochloride) (PAH) and poly (sodium 4-styrenesulfonate) (PSS) in
sequence, yielding positively charged PAH/PSS/PAH-modified SiO2 templates [22].
To obtain the Pd HPNSs, 30 mg PAH/PSS/PAH-modified SiO2 and 30 mg K2PdCl4
were added into 40 mL water and then sonicated for 30 min. After sonication,
10 mg NaBH4 was added into the mixture and mechanically stirred for 1 hour at
room temperature to obtain SiO2-Pd nanospheres. Then, 15 mL 2 M NaOH solution
was used to remove the SiO2 sacrificial template, followed by centrifuging, washing
with distilled water and ethanol, and then dried in a vacuum oven at 50 ˝C to obtain
the Pd HPNSs.

3.3. Electrochemical Instrument

All electrochemical experiments were measured with a CHI 660 C
electrochemical analyzer (CH Instruments, Shanghai, Chenghua Co.). All
electrochemical measurements were carried out at 30 ˘1 ˝C. A standard
three-electrode system (consisted of a saturated calomel reference electrode (SCE), a
catalyst modified glassy carbon electrode as the working electrode, and a platinum
wire as the auxiliary electrode) was used to test all electrochemical experiments. An
evenly distributed suspension of catalyst was prepared by ultrasonic the mixture
of 10 mg catalyst and 5 mL H2O for 30 min, and 6 µL of the resulting suspension
was loaded on the surface of the glassy carbon electrode (3 mm diameter, 0.07 cm2).
Thus, the working electrode was obtained, and the total mass loading of catalyst
on the electrode was about 12 µg. We used the same amount of total metal of Pd
HPNSs and commercial Pd Black to make a comparison. Throughout the cyclic
voltammetry experiment, cyclic voltammetry tests were performed in N2-saturated
0.5 M H2SO4 solution with or without 0.5 M HCOOH at a scan rate of 50 mV s´1.
Chronoamperometry curves were obtained in N2-saturated 0.5 M HCOOH + 0.5 M
H2SO4 mixture solution for 3000 s at 0.1 V applied potential.

653



3.4. Instruments

Transmission electron microscopy (TEM) images were surveyed from a JEOL
JEM-2100F transmission electron microscopy operated at an accelerating voltage of
200 kV. X-ray diffraction (XRD) patterns were obtained from a Model D/max-rC
X-ray diffractometer by using Cu Kα radiation source (λ = 1.5406 Å), operating at
40 kV and 100 mA. X-ray photoelectron spectroscopy (XPS) measurements were
carried out on a Thermo VG Scientific ESCALAB 250 spectrometer with an Al Kα

radiator. The vacuum in the analysis chamber was maintained at about 10´9 mbar
and the binding energy was calibrated by means of the C 1s peak energy of 284.6 eV.

4. Conclusions

In summary, the hollow porous Pd nanospheres with high surface area, low
mass-density and abundant active sites are synthesized by a sacrificial template
method over PAH. The layer-by-layer (LBL) approach is used to modify the
SiO2 template in order to make it positively charged. PAH not only functions
as polyelectrolyte to strongly adsorb negatively charged precursors, ensuring
the reduction reaction completely take place on the surface of the SiO2, but
also serves as stabilizer and complex agent to effectively avoid the aggregation
and collapse of the Pd HPNSs owning to its coordination capability, good
hydrophilic property, and high chemical stability. Undoubtedly, this method is more
promising from an environmental standpoint, adding advantage over the use of
high-temperature reaction and toxic organic solvents. Electrochemical measurements
demonstrate that Pd HPNSs exhibit superior electrocatalytic activity and long-term
durability compared to commercial Pd black. Thus, the superior electrocatalytic
performance of Pd HPNSs provides a promising support for good electrocatalyst in
DFAFC applications.
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