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Abstract: In Noether’s original presentation of her celebrated theorem of 1918, allowance was made
for the dependence of the coefficient functions of the differential operator, which generated the
infinitesimal transformation of the action integral upon the derivatives of the dependent variable(s),
the so-called generalized, or dynamical, symmetries. A similar allowance is to be found in the
variables of the boundary function, often termed a gauge function by those who have not read the
original paper. This generality was lost after texts such as those of Courant and Hilbert or Lovelock
and Rund confined attention to point transformations only. In recent decades, this diminution of
the power of Noether’s theorem has been partly countered, in particular in the review of Sarlet and
Cantrijn. In this Special Issue, we emphasize the generality of Noether’s theorem in its original form
and explore the applicability of even more general coefficient functions by allowing for nonlocal
terms. We also look for the application of these more general symmetries to problems in which
parameters or parametric functions have a more general dependence on the independent variables.

Keywords: Noether’s theorem; action integral; generalized symmetry; first integral; invariant;
nonlocal transformation; boundary term; conservation laws; analytic mechanics

1. Introduction

Noether’s theorem [1] treats the invariance of the functional of the calculus of variations—the
action integral in mechanics—under an infinitesimal transformation. This transformation can be
considered as being generated by a differential operator, which in this case is termed a Noether
symmetry. The theorem was not developed ab initio by Noether. Not only is it steeped in the
philosophy of Lie’s approach, but also, it is based on earlier work of more immediate relevance by
a number of writers. Hamel [2,3] and Herglotz [4] had already applied the ideas developed in her
paper to some specific finite groups. Fokker [5] did the same for specific infinite groups. A then
recently-published paper by Kneser [6] discussed the finding of invariants by a similar method. She
also acknowledged the contemporary work of Klein [7]. Considering that the paper was presented to
the Festschrift in honor of the fiftieth anniversary of Klein’s doctorate, this final attribution must have
been almost obligatory.

For reasons obscure Noether’s theorem has been subsequently subject to downsizing by many
authors of textbooks [8–10], which has then given other writers (cf. [11]) the opportunity to ‘generalize’
the theorem or to demonstrate the superiority of some other method [12,13] to obtain more general
results [14–16]. This is possibly due to the simplified form presented in Courant and Hilbert [8].
As Hilbert was present at the presentation by Noether of her theorem to the Festschrift in honor of

Symmetry 2018, 10, 744; doi:10.3390/sym10120744 www.mdpi.com/journal/symmetry1
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the fiftieth anniversary of Felix Klein’s doctorate, it could be assumed that his description would be
accurate. However, Hilbert’s sole contribution to the text was his name.

This particularizing tendency has not been uniform, e.g., the review by Sarlet and Cantrijn [17].
According to Noether [1] (pp. 236–237), “In den Transformationen können auch die Ableitungen der u
nach den x, also ∂u/∂x, ∂2u/∂x2, . . . auftreten”, so that the introduction of generalized transformations
is made before the statement of the theorem [1] (p. 238). On page 240, after the statement of the
theorem, Noether does mention particular results if one restricts the class of transformations admitted
and this may be the source of the usage of the restricted treatments mentioned above.

We permit the coefficient functions of the generator of the infinitesimal transformation to be of
unspecified dependence subject to any requirement of differentiability.

For the purposes of the clarity of exposition, we develop the theory of the theorem in terms of
a first-order Lagrangian in one dependent and one independent variable. The expressions for more
complicated situations are given below in a convenient summary format.

2. Noether Symmetries

We consider the action integral:

A =
∫ t1

t0

L (t, q, q̇)dt. (1)

Under the infinitesimal transformation:

t̄ = t + ετ, q̄ = q + εη (2)

generated by the differential operator:
Γ = τ∂t + η∂q,

the action integral (1) becomes:

Ā =
∫ t̄1

t̄0

L (t̄, q̄, ˙̄q)dt̄

( ˙̄q is dq̄/dt̄ in a slight abuse of standard notation), which to the first order in the infinitesimal, ε, is:

Ā =
∫ t1

t0

[
L + ε

(
τ

∂L
∂t

+ η
∂L
∂q

+ ζ
∂L
∂q̇

+ τ̇L
)]

dt

+ε [τt1L(t1, q1, q̇1)− τt0L(t0, q0, q̇0)] , (3)

where ζ = η̇ − q̇τ̇ and L(t0, q0, q̇0) and L(t1, q1, q̇1) are the values of L at the endpoints t0 and
t1, respectively.

We demonstrate the origin of the terms outside of the integral with the upper limit. The lower
limit is treated analogously.

∫ t̄1
=

∫ t1+ετ(t1)

=
∫ t1

+
∫ t1+ετ(t1)

t1

= ε
∫ t1

+ετ(t1)L(t1, q1, q̇1)

to the first order in ε. We may rewrite (3) as:

Ā = A + ε
∫ t1

t0

(
τ

∂L
∂t

+ η
∂L
∂q

+ ζ
∂L
∂q̇

+ τ̇L
)

dt + εF,

2
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where the number, F, is the value of the second term in bracketsin (3). As F depends only on the
endpoints, we may write it as:

F = −
∫ t1

t0

ḟ dt,

where the sign is chosen as a matter of later convenience.
The generator, Γ, of the infinitesimal transformation, (2), is a Noether symmetry of (1) if:

Ā = A,

i.e., ∫ t1

t0

(
τ

∂L
∂t

+ η
∂L
∂q

+ ζ
∂L
∂q̇

+ τ̇L − ḟ
)

dt = 0

from which it follows that:
ḟ = τ

∂L
∂t

+ η
∂L
∂q

+ ζ
∂L
∂q̇

+ τ̇L. (4)

Remark 1. The symmetry is the generator of an infinitesimal transformation, which leaves the action integral
invariant, and the existence of the symmetry has nothing to do with the Euler–Lagrange equation of the calculus
of variations. The Euler–Lagrange equation follows from the application of Hamilton’s principle in which q is
given a zero endpoint variation. There is no such restriction on the infinitesimal transformations introduced
by Noether.

3. Noether’s Theorem

We now invoke Hamilton’s principle for the action integral (1). We observe that the zero-endpoint
variation of (1) imposed by Hamilton’s principle requires that (1) take a stationary value; not necessarily
a minimum! The principle of least action enunciated by Fermat in 1662 as “Nature always acts in the
shortest ways” was raised to an even more metaphysical status by Maupertuis [18] (p. 254, p. 267).
That the principle applies in classical (Newtonian) mechanics is an accident of the metric! We can only
wonder that the quasi-mystical principle has persisted for over two centuries in what are supposed to
be rational circles. In the case of a first-order Lagrangian with a positive definite Hessian with respect
to q̇, Hamilton’s principle gives a minimum. This is not necessarily the case otherwise.

The Euler–Lagrange equation:
∂L
∂q

− d
dt

(
∂L
∂q̇

)
= 0 (5)

follows from the application of Hamilton’s principle. We manipulate (4) as follows:

0 = ḟ − τ
∂L
∂t

− τ̇L − η
∂L
∂q

− (η̇ − q̇τ̇)
∂L
∂q̇

=
d
dt

( f − τL) + τ

(
q̇

∂L
∂q

+ q̈
∂L
∂q̇

)
+ τ̇

(
q̇

∂L
∂q̇

)
−η

d
dt

(
∂L
∂q̇

)
− η̇

∂L
∂q̇

=
d
dt

[
f − τL − (η − τq̇)

∂L
∂q̇

]
in the second line of which we have used the Euler–Lagrange Equation (5), to change the coefficient of
η. Hence, we have a first integral:

I = f −
[

τL + (η − q̇τ)
∂L
∂q̇

]
(6)

and an initial statement of Noether’s Theorem.

3
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Noether’s theorem: If the action integral of a first-order Lagrangian, namely:

A =
∫ t1

t0

L (t, q, q̇)dt

is invariant under the infinitesimal transformation generated by the differential operator:

Γ = τ∂t + ηi∂qi ,

there exists a function f such that:

ḟ = τ
∂L
∂t

+ ηi
∂L
∂qi

+ ζi
∂L
∂q̇i

+ τ̇L, (7)

where ζi = η̇i − q̇iτ̇, and a first integral given by:

I = f −
[

τL + (ηi − q̇iτ)
∂L
∂q̇i

]
.

Γ is called a Noether symmetry of L and I a Noetherian first integral. The symmetry Γ exists
independently of the requirement that the variation of the functional be zero. When the extra condition
is added, the first integral exists.

We note that there is not a one-to-one correspondence between a Noether symmetry and a
Noetherian integral. Once the symmetry is determined, the integral follows with minimal effort.
The converse is not so simple because, given the Lagrangian and the integral, the symmetry is the
solution of a differential equation with an additional dependent variable, the function f arising from
the boundary terms. There can be an infinite number of coefficient functions for a given first integral.
The restriction of the symmetry to a point symmetry may reduce the number of symmetries, too
effectively, to zero. The ease of determination of a Noetherian integral once the Noether symmetry is
known is in contrast to the situation for the determination of first integrals in the case of Lie symmetries
of differential equations. The computation of the first integrals associated with a Lie symmetry can be
a highly nontrivial matter.

4. Nonlocal Integrals

We recall that the variable dependences of the coefficient functions τ and η were not specified
and do not enter into the derivation of the formulae for the coefficient functions or the first integral.
Consequently, not only can we have the generalized symmetries of Noether’s paper, but we can also
have more general forms of symmetry such as nonlocal symmetries [19,20] without a single change in
the formalism. Of course, as has been noted for the calculation of first integrals [21] and symmetries in
general [22], the realities of computational complexity may force one to impose some constraints on
this generality. Once the Euler–Lagrange equation is invoked, there is an automatic constraint on the
degree of derivatives in any generalized symmetry.

If one has a standard Lagrangian such as (1), a nonlocal Noether’s symmetry will usually produce
a nonlocal integral through (6). In that the total time derivative of this function is zero when the
Euler–Lagrange equation, (5), is taken into account, it is formally a first integral. However, the utility of
such a first integral is at best questionable. Here, Lie and Noether have generically differing outcomes.
An exponential nonlocal Lie symmetry can be expected to lead to a local first integral, whereas one
could scarcely envisage the same for an exponential nonlocal Noether symmetry.

On the other hand, if the Lagrangian was nonlocal, the combination of nonlocal symmetry and
nonlocal Lagrangian could lead to a local first integral. However, we have not constructed a formalism
to deal with nonlocal Lagrangians—as opposed to nonlocal symmetries—and so, we cannot simply
apply what we have developed above.

4
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The introduction of a nonlocal term into the Lagrangian effectively increases the order of the
Lagrangian by one (in the case of a simple integral) and the order of the associated Euler–Lagrange
equation by two so that for a Lagrangian regular in q̇ instead of a second-order differential equation,
we would have a fourth order differential equation in q. To avoid that the Lagrangian would have
to be degenerate, i.e., linear, in q̇, this cannot, as is well-known, lead to a second-order differential
equation. It would appear that nonlocal symmetries in the context of Noether’s theorem do not have
the same potential as nonlocal Lie symmetries of differential equations.

There is often some confusion of identity between Lie symmetries and Noether symmetries.
Although every Noether symmetry is a Lie symmetry of the corresponding Euler–Lagrange equation,
we stress that they have different provenances. There is a difference that is more obvious in systems of
higher dimension. A Noether symmetry can only give rise to a single first integral because of (3). In an
n-dimensional system of second-order ordinary differential equations, a single Lie symmetry gives
rise to (2n − 1) first integrals [23–26].

5. Extensions: One Independent Variable

The derivation given above applies to a one-dimensional discrete system. The theorem can
be extended to continuous systems and systems of higher order. The principle is the same.
The mathematics becomes more complicated. We simply quote the relevant results.

For a first-order Lagrangian with n dependent variables:

G = τ∂t + ηi∂qi (8)

is a Noether symmetry of the Lagrangian, L(t, qi, q̇i), if there exists a function f such that:

ḟ = τ̇L + τ
∂L
∂t

+ ηi
∂L
∂qi

+ (η̇i − q̇iτ̇)
∂L
∂q̇i

(9)

and the corresponding Noetherian first integral is:

I = f −
[

τL + (ηi − q̇iτ)
∂L
∂q̇i

]
(10)

which are the obvious generalizations of (4) and (6), respectively.
In the case of an nth-order Lagrangian in one dependent variable and one independent variable,

L(t, q, q̇, . . . , q(n)) with q(n) = dnq/dtn, the Euler–Lagrange equation is:

n

∑
j=0

(−1)j dj

dtj

(
∂L
∂q(j)

)
. (11)

Γ = τ∂t + η∂q is a Noether symmetry if there exists a function f such that:

ḟ = τ̇L + τ
∂L
∂t

+
n

∑
j=0

(−1)jζ j
(

∂L
∂q(j)

)
, (12)

where:

ζ j = η(j) −
j

∑
k=1

(
j
k

)
q(j+1−k)τ(k). (13)

The expression for the first integral is:

I = f −
[

τL +
n−1

∑
i=0

n−1−i

∑
j−0

(−1)j (η − q̇τ)(i)
dj

dtj

(
∂L
∂q(i+j+1)

)]
. (14)

5
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In the case of an nth-order Lagrangian in m dependent variables and one independent variable,

L(t, qk, q̇k, . . . , q(n)k ) with q(n)k = dnqk/dtn, k = 1, m, the Euler–Lagrange equation is:

n

∑
j=0

(−1)j dj

dtj

⎛⎝ ∂L

∂q(j)
k

⎞⎠ , k = 1, m. (15)

Γ = τ∂t + ∑m
k=1 ηk∂qk is a Noether symmetry if there exists a function f such that:

ḟ = τ̇L + τ
∂L
∂t

+
m

∑
k=1

n

∑
j=0

(−1)jζ
j
k

⎛⎝ ∂L

∂q(j)
k

⎞⎠ , (16)

where:

ζ
j
k = η

(j)
k −

m

∑
k=1

j

∑
i=0

(
j
i

)
q(j+1−i)

k τ(i). (17)

The expression for the first integral is:

I = f −

⎡⎣τL +
m

∑
k=1

n−1

∑
i=0

n−1−i

∑
j−0

(−1)j (ηk − q̇kτ)(i)
dj

dtj

⎛⎝∂L

∂q(i+j+1)
k

⎞⎠⎤⎦ . (18)

The expressions in (14) and (18), although complex enough, conceals an even much greater complexity
because each derivative with respect to time is a total derivative and so affects all terms in the
Lagrangian and its partial derivatives.

6. Observations

In the case of a first-order Lagrangian with one independent variable, it is well-known [17] that
one can achieve a simplification in the calculations of the Noether symmetry in the case that the
Lagrangian has a regular Hessian with respect to the q̇i. We suppose that we admit generalized
symmetries in which the maximum order of the derivatives present in τ and the ηi is one, i.e., equal
to the order of the Lagrangian. Then, the coefficient of each q̈j in (9) is separately zero since the
Euler–Lagrange equation has not yet been invoked. Thus, we have:

∂ f
∂q̇j

=
∂τ

∂q̇j
L +

(
∂ηi
∂q̇j

− q̇i
∂τ

∂q̇j

)
∂L
∂q̇i

. (19)

We differentiate (10) with respect to q̇j to obtain:

∂I
∂q̇j

=
∂ f
∂q̇j

−
[

∂τ

∂q̇j
L + τ

∂L
∂q̇j

+

(
∂ηi
∂q̇j

− δijτ − q̇i
∂τ

∂q̇j

)
∂L
∂q̇i

+ (ηi − q̇iτ)
∂2L
∂q̇i

∂q̇j

]
, (20)

where δij is the usual Kronecker delta, which, when we take (19) into account, gives:

∂I
∂q̇j

= − (ηi − q̇iτ)
∂2L
∂q̇i

∂q̇j. (21)

Consequently, if the Lagrangian is regular with respect to the q̇i, we have:

(ηi − q̇iτ) = −gij
∂I
∂q̇j

, (22)

6
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where:

gik
∂2L
∂q̇k

∂q̇j = δij.

The relations (21) and (22) reveal two useful pieces of information. The first is that the derivative
dependence of the first integral is determined by the nature of the generalized symmetry (modulo
the derivative dependence in the Lagrangian). The second is that there is a certain freedom of
choice in the structure of the functions τ and ηi in the symmetry. Provided generalized symmetries
are admitted, there is no loss of generality in putting one of the coefficient functions equal to zero.
An attractive candidate is τ as it appears the most frequently. The choice should be made before the
derivative dependence of the coefficient functions is assumed. We observe that in the case of a ‘natural’
Lagrangian, i.e., one quadratic in the derivatives, the first integrals can only be linear or quadratic in
the derivatives if the symmetry is assumed to be point.

7. Examples

The free particle:

We consider the simple example of the free particle for which:

L = 1
2 y′2.

Equation (7) is:
(η′ − y′ξ ′)y′ + 1

2 y′2 = f ′. (23)

If we assume that Γ is a Noether point symmetry, (23) gives the following determining equations:

y′3 : − 1
2

∂ξ

∂y
= 0

y′2 :
∂η

y
− 1

2
∂ξ

∂x
= 0

y′1 :
∂η

∂x
− ∂ f

∂y
= 0

y′0 :
∂ f
∂x

= 0

from which it is evident that:

ξ = a(x)

η = 1
2 a′y + b(x)

f = 1
4 a′′2 + b′y + c(x)

0 = 1
4 a′′′2 + b′′y + c′.

Hence:

a = A0 + A1x + A2x2

b = B0 + B1x

c = C0.

Because c is simply an additive constant, it is ignored. There are five Noether point symmetries,
which is the maximum for a one-dimensional system [27]. They and their associated first integrals are:

7
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Γ1 = ∂y I1 = −y′

Γ2 = x∂y I2 = y − xy′

Γ3 = ∂x I3 = 1
2 y′2

Γ4 = x∂x +
1
2 y∂y I4 = − 1

2 y′(y − xy′)

Γ5 = x2∂x + xy∂y I5 = 1
2 (y − xy′2.

The corresponding Lie algebra is isomorphic to A5,40 [28]. The algebra is structured as 2A1 ⊕s

sl(2, R), which is a proper subalgebra of the Lie algebra for the differential equation for the free particle,
namely sl(3, R), which is structured as 2A1 ⊕s {sl(2, R)⊕s A1} ⊕s 2A1. The missing symmetries are
the homogeneity symmetry and the two non-Cartan symmetries. The absence of the homogeneity
symmetry emphasizes the distinction between the Lie and Noether symmetries.

Noether symmetries of a higher-order Lagrangian:

Suppose that L = 1
2 y′′2. The condition for a Noether point symmetry is that:

ζ2
∂L
∂y′′

+ ξ ′L = f ′, (24)

where ζ2 = η′′ − 2y′′ξ ′ − y′ξ ′′, so that (24) becomes:

(η′′ − 2y′′ξ ′ − y′ξ ′′)y′′ + 1
2 ξ ′y′′2 = f ′. (25)

Assume a point transformation, i.e., ξ = ξ(x, y) and η = η(x, y). Then:[
∂2η

∂x2 + 2y′
∂2η

∂x
∂y + y′2

∂2η

∂y2 + y′′
∂η

∂y
− 2y′′

(
∂ξ

∂x
+ y′

∂ξ

∂y

)
−y′

(
∂2ξ

∂x2 + 2y′
∂2ξ

∂x
∂y + y′2

∂2xi
∂y2 + y′′

∂ξ

∂y

)]
y′′ + 1

2

(
∂ξ

∂x
+ y′

∂ξ

∂y

)
y′′2

=
∂ f
∂x

+ y′
∂ f
∂y

+ y′′
∂ f
∂y′

.

from the coefficient of y′y′′2, videlicet:

− 5
2

∂ξ

∂y
= 0,

we obtain:
ξ = a(x).

The coefficient of y′′2,
∂η

∂y
− 3

2
∂ξ

∂x
= 0,

results in:
η = 3

2 a′y + b(x)

and the coefficient of y′′,
∂2η

∂x2 + 2y′
∂2η

∂x
∂y + y′2

∂2η

∂y2 − y′
∂2ξ

∂x2 =
∂ f
∂y′

,

gives f as:
f = a′′y′2 + ( 3

2 a′′′y + b′′)y′ + c(x, y).

The remaining terms give:

y′
∂ f
∂y

+
∂ f
∂x

= 0,

8
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i.e.,

y′
[

3
2

a′′′y′ +
∂c
∂y

]
+ a′′′y′2 +

(
3
2 aivy + b′′′

)
y′ +

∂c
∂x

= 0.

The coefficient of y′2 is 5
2 a′′′ = 0, from which it follows that:

a = A0 + A1x + A2x2.

The coefficient of y′ is:
∂c
∂y

+ 3
2 aivy + b′′′ = 0

and so:
c = −b′′′y + d(x).

The remaining terms give:
∂c
∂x

= 0,

i.e.,
−bivy + d′ = 0

from which d is a constant (and can therefore be ignored) and:

b = B0 + B1x + B2x2 + B3x3.

There are seven Noetherian point symmetries for L = 1
2 y′′2. They and the associated “gauge

functions” are:
B0 : Γ1 = ∂y f1 = 0
B1 : Γ2 = x∂y f2 = 0
B2 : Γ3 = x2∂y f3 = 2xy′

B3 : Γ4 = x3∂y f4 = 6xy′ − 6y
A0 : Γ5 = ∂x f5 = 0
A1 : Γ6 = x∂x +

3
2 y∂y f6 = 0

A2 : Γ7 = x2∂x + 3xy∂y f7 = 2y′2.

The Euler–Lagrange equation for L = 1
2 y′′2 is y(iv) = 0, which has Lie point symmetries the same

as the Noether point symmetries plus Γ8 = y∂y. Note that there is a contrast here in comparison with
the five Noether point symmetries of L = 1

2 y′2 and the eight Lie point symmetries of y′′ = 0. The
additional Lie symmetries are y∂y as above for yiv = 0 and the two non-Cartan symmetries, X1 = y∂x

and X2 = xy∂x + y2∂y.
For L = 1

2 y′′2, the associated first integrals have the structure:

I = f − 1
2 ξy′′2 + (η − y′ξ)y′′′ − (η′ − y′′ξ − y′ξ ′)y′′

and are:

I1 = y′′′

I2 = xy′′′ − y′′

I3 = x2y′′′ − 2xy′′ + 2xy′

I4 = x3y′′′2y′′ + 6xy′ − 6y

I5 = −y′y′′′ + 1
2 y′′2

I6 = −xy′y + 1
2 xy′′2 − 1

2 y′y′′ + 3
2 yy′′′

I7 = x(3y − xy′)y′′′ − (3y − xy′ − 1
2 x2y′′)y′′ + 2y′2.

9
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Note that I1–I4 associated with Γ1–Γ4, respectively, are also integrals obtained by the Lie method.
However, each Noether symmetry produces just one first integral, whereas each Lie symmetry has
three first integrals associated with it.

In this example, only point Noether symmetries have been considered. One may also determine
symmetries that depend on derivatives, effectively up to the third order when one is calculating first
integrals of the Euler–Lagrange equation.

Omission of the gauge function:

In some statements of Noether’s theorem, the so-called gauge function, f , is taken to be zero.
In the derivation given here, f comes from the contribution of the boundary terms produced by
the infinitesimal transformation in t and so is not a gauge function in the usual meaning of the
term. However, it does function as one since it is independent of the trajectory in the extended
configuration space and depends only on the evaluation of functions at the boundary (end points
in a one-degree-of-freedom case) and can conveniently be termed one especially in light of Boyer’s
theorem [29].

Consider the example L = 1
2 y′2 without f . The equation for the symmetries,

f ′ = ξ
∂L
∂x

+ η
∂L
∂y

+ (η′ − y′ξ ′)
∂L
∂y′

+ ξ ′L,

becomes:

0 =

(
∂η

∂x
+ y′

∂η

∂y
− y′

∂ξ

∂x
− y′2

∂ξ

∂y

)
y′ + 1

2 y′2
(

∂ξ

∂x
+ y′

∂ξ

∂y

)
.

We solve this in the normal way: the coefficients of y′3, y′2 and of y′ give in turn:

ξ = a(x)

η = 1
2 a′y + b(x)

1
2 a′′y + b′ = 0

which hold provided that:
a = A0 + A1x b = B0,

i.e., only three symmetries are obtained instead of the five when the gauge function is present.
It makes no sense to omit the gauge function when the infinitesimal transformation is restricted

to be point and only in the dependent variables.

A higher-dimensional system:

We determine the Noether point symmetries and their associated first integrals for:

L = 1
2 (ẋ2 + ẏ2)

(which is the standard Lagrangian for the free particle in two dimensions). The determining equation is:

∂ f
∂t

+ ẋ
∂ f
∂x

+ ẏ
∂ f
∂y

=

(
∂η

∂t
+ ẋ

∂η

∂x
+ ẏ

∂η

∂y
− ẋ

(
∂ξ

∂t
+ ẋ

∂ξ

∂x
+ ẏ

∂ξ

∂y

))
ẋ

+

(
∂ζ

∂t
+ ẋ

∂ζ

∂x
+ ẏ

∂ζ

∂y
− ẏ

(
∂ξ

∂t
+ ẋ

∂ξ

∂x
+ ẏ

∂ξ

∂y

))
ẏ,

where η1 = η and η2 = ζ.
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We separate by powers of ẋ and ẏ. Firstly taking the third-order terms, we have:

ẋ3 : − ∂ξ

∂x
= 0

ẋ2ẏ : − ∂ξ

∂y
= 0

ẋẏ2 : −y
∂ξ

∂x
= 0

ẏ3 : − ∂ξ

∂y
= 0

which implies ξ = a(t). We now consider the second-order terms: the coefficient of ẋ2 gives η as
η = ȧx + b(y, t); that of ẋẏ gives ζ as:

ζ = − ∂b
∂y

x + c(y, t);

and that of ẏ2 gives c = ȧy + d(t) and b = e(t)y + g(t). Thus far, we have:

ξ = a(t) η = ȧx + ey + g ζ = −ex + ȧy + d.

The coefficient of ẋ gives f as:

f = 1
2 äx2 + ėxy + ġx + K(y, t).

The coefficient of ẏ requires that:

ėx +
∂K
∂y

= −ėx + äy + ḋ

which implies:
ė = 0 K = 1

2 äy2 + ḋy + h(t).

The remaining term requires that:

1
2

...
a x2 + g̈x + 1

2
...
a y2 + d̈y + ḣ = 0

whence:

a = A0 + A1t + A2t2

g = G0 + G1t

d = D0 + D1t

h = H0

(we ignore H0, as it is an additive constant to f ).
The coefficient functions are:

ξ = A0 + A1t + A2t2

η = (A1 + 2A2t)x + E0y + G0 + G1t

ζ = −E0x + (A1 + 2A2t)y + D0 + D1t

and the gauge function is:
f = A2x2 + G1x + A2y2 + D1y.

11
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We obtain three symmetries from a, namely:

Γ1 = ∂t

Γ2 = t∂t + x∂x + y∂y

Γ3 = t2∂t + 2t
(
x∂x + y∂y

)
which form sl(2, R), one from e,

Γ4 = y∂x − x∂y

which is so(2), and four from g and d, namely:

Γ5 = ∂x

Γ6 = t∂x

Γ7 = ∂y

Γ8 = t∂y.

The last four are the “solution” symmetries and form the Lie algebra 4A1.

8. More than One Independent Variable: Preliminaries

8.1. Euler–Lagrange Equation

Noether’s original formulation of her theorem was in the context of Lagrangians for functions of
several independent variables. We have deliberately separated the case of one independent variable
from the general discussion to be able to present the essential ideas in as simple a form as possible.
The discussion of the case of several independent variables is inherently more complex simply from a
notational point of view, although there is no real increase in conceptual difficulty.

We commence with the simplest instance of a Lagrangian of this class, which is L(t, x, u, ut, ux),
i.e., one dependent variable, u, and two dependent variables, t and x. We recall the derivation of the
Euler–Lagrange equation for u(t, x) consequent upon the application of Hamilton’s principle. In the
action integral:

A =
∫

Ω
L (t, x, u, ut, ux)dxdt (26)

we introduce an infinitesimal variation of the dependent variable,

ū = u + εv(t, x), (27)

where ε is the infinitesimal parameter, v(t, x) is continuously differentiable in both independent
variables and is required to be zero on the boundary, ∂Ω, of the domain of integration, Ω, which in
this introductory case is some region in the (t, x) plane. Otherwise, v is an arbitrary function. We have:

Ā =
∫

Ω
L (t, x, ū, ūt, ūx)dxdt (28)

and we require the action integral to take a stationary value, i.e., δA = Ā − A be zero. Now:

12
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δA =
∫

Ω
[L (t, x, ū, ūt, ūx)− L (t, x, u, ut, ux)]dxdt

= ε
∫

Ω

[
∂L
∂u

v +
∂L
∂ut

v
t
+

L
ux

v
x

]
dxdt + O(ε2)

= ε
∫

Ω

[
L
u
− ∂

∂t

(
L
ut

)
− ∂

∂x

(
∂L
∂ūx

)]
vdtdx

+
∫

∂Ω

[
∂L
∂ut

dt +
∂L
∂ux

dx
]

v + O(ε2). (29)

The second integral in (29) is the sum of four integrals, two along each of the intervals (t1, t2)

and (x1, x2) with x = x1 and x = x2 for the two integrals with respect to t and t = t1 and t = t2 for
the two integrals with respect to x. Because v is zero on the boundary, this term must be zero. As v is
otherwise arbitrary, the expression within the bracketsin the first integral must be zero, and so, we
have the Euler–Lagrange equation:

∂L
∂u

− ∂

∂t

(
∂L
∂ut

)
− ∂

∂x

(
∂L
∂ūx

)
= 0. (30)

A conservation law for (30) is a vector-valued function, f, of t, x, u and the partial derivatives of u,
which is divergence free, i.e.,

div.f =
∂ f 1

∂t
+

∂ f 2

∂x
= 0. (31)

In (31), the operators ∂t and ∂x are operators of total differentiation with respect to t and x,
respectively, and henceforth, we denote these operators by Dt and Dx. The standard symbol for partial
differentiation, ∂A, indicates differentiation solely with respect to A. In this notation, (30) and (31)
become respectively:

∂L
∂u

− Dt
∂L
∂ut

− Dx
∂L
∂ux

= 0 and (32)

div.f = Dt f 1 + Dx f 2 = 0. (33)

Naturally, there is no distinction between Dt, ∂u/∂t and ut,likewise for the derivatives with
respect to x.

8.2. Noether’s Theorem for L(t, x, u, ut, ux)

We introduce into the action integral an infinitesimal transformation,

t̄ = t + ετ x̄ = x + εξ ū = u + εη (34)

generated by the differential operator:

Γ = τ∂t + ξ∂x + η∂u, (35)

which, because the Lagrangian depends on ut and ux, we extend once to give:

Γ[1] = Γ + (Dtη − utDtτ − utDtξ) ∂ut + (Dxη − uxDtτ − uxDxξ) ∂ux . (36)

The coefficient functions τ, ξ and η may depend on the derivatives of u, as well as t, x, and u.
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The change in the action due to the infinitesimal transformation is given by:

δA = Ā − A

=
∫

Ω̄
L (t̄, x̄, ū, ūt̄, ūx̄dt̄)dx̄ −

∫
Ω

L (t, x, u, ut, ux)dtdx, (37)

where Ω̄ is the transformed domain. We recall that Noether’s theorem comes in two parts. In the first
part, with which we presently deal, the discussion is about the action integral and not the variational
principle. Consequently, there is no reason why the domain over which integration takes place should
be the same before and after the transformation. Equally, there is no reason to require that the coefficient
functions vanish on the boundary of Ω. To make progress in the analysis of (37), we must reconcile the
variables and domains of integration. For the variables of integration, we have:

dt̄dx̄ =
∂ (t̄, x̄)
∂ (t, x)

dtdx

=

∣∣∣∣∣ Dtt̄ Dtx̄
Dxt̄ Dxx̄

∣∣∣∣∣dtdx

=

∣∣∣∣∣ 1 + εDtτ εDtξ

εDxτ 1 + εDxξ

∣∣∣∣∣dtdx

=
[
1 + ε (Dtτ + Dxξ) + O

(
ε2
)]

dtdx. (38)

For the domain, we have simply that:

Ω̄ = Ω + δΩ (39)

which, as the transformation is infinitesimal, in general means the evaluation of the surface integral
and in this two-dimensional case the evaluation of the line integral along the boundary of the original
domain. Although this domain is arbitrary, it is fixed for the variational principle we are using. We can
use the divergence theorem to express this in terms of the volume integral over the original domain of
the divergence of some vector-valued function. Combining these considerations with (37) and (38) and
expanding the integrand of the first integral in (37) as a Taylor series, we can write the condition that
the action integral be invariant under the infinitesimal transformation as:

0 =
∫

Ω

{
L + ε

[
τ

∂L
∂t

+ ξ
∂L
∂x

+ η
∂L
∂u

+ (Dtη − utDtτ − utDtξ)
∂L
∂ut

+ (Dxη − uxDtτ − uxDxξ)
∂L
∂ux

]
− εdiv.F

}
[1 + ε (Dtτ + Dxξ)]dtdx

−
∫

Ω
Ldtdx + O

(
ε2
)

, (40)

where F represents the contribution from the boundary term. If we require that this be true for any
domain in which the Lagrangian is validly defined, the first-order term in (40) gives the condition for
the Lagrangian to possess a Noether symmetry, videlicet:

div.F = (Dtτ + Dxξ) L + τ
∂L
∂t

+ ξ
∂L
∂x

+ η
∂L
∂u

+ (Dtη − utDtτ − uxDtξ)
∂L
∂ut

+ (Dxη − utDxτ − uxDxξ)
∂L
∂ux

. (41)

The rest is just a matter of computation! There does not appear to be code that enables one to solve (41)
for a given Lagrangian even for point symmetries. One is advised [30] (p. 273) to calculate the
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(generalized) symmetries of the corresponding Euler–Lagrange equation and then test whether there
exists an F such that each of these symmetries in turn satisfies (41).

There is a theorem in Olver [31] (p. 326) that the set of generalized symmetries of the
Euler–Lagrange equation contains the set of generalized Noether symmetries of the Lagrangian.
A purist could well prefer to be able to solve (41) directly. Alan Head, the distinguished Australian
scientist, who wrote one of the more successful codes for differential equations in 1978, considered the
effort involved to write the requisite code twenty years later excessive when the indirect route was
available (A K Head, private communication, December, 1997).

A conservation law corresponding to a Noether symmetry “derived” from (41) is obtained when
the Euler–Lagrange equation is taken into account. We rewrite the right side of (41) and have:

div.F = Dt

[
τL + η

∂L
∂ut

]
+ Dx

[
ξL + η

∂L
∂ux

]
+ τ

∂L
∂t

+ ξ
∂L
∂x

+ η
∂L
∂u

− (utDtτ + uxDtξ)
∂L
∂ut

− (utDxτ + uxDxξ)
∂L
∂ux

−τDtL − ξDxL − ηDt
∂L
∂ut

− ηDx
∂L
∂ux

= Dt

[
τL + η

∂L
∂ut

]
+ Dx

[
ξL + η

∂L
∂ux

]
+ τ

∂L
∂t

+ ξ
∂L
∂x

− (utDtτ + uxDtξ)
∂L
∂ut

− (utDxτ + uxDxξ)
∂L
∂ux

− τDtL − ξDxL

= Dt

[
τL + (η − utτ − uxξ)

∂L
∂ut

]
+ Dx

[
ξL + (η − utτ − uxξ)

∂L
∂ux

]
+τ

[
∂L
∂t

− DtL + Dt

(
ut

∂L
∂ut

)
+ Dx

(
ut

∂L
∂ux

)]
+ξ

[
∂L
∂x

− DxL + Dt

(
ux

∂L
∂ut

)
+ Dx

(
ux

∂L
∂ux

)]
= Dt

[
τL + (η − utτ − uxξ)

∂L
∂ut

]
+ Dx

[
ξL + (η − utτ − uxξ)

∂L
∂ux

]
(42)

when the Euler–Lagrange equation is taken into account. Hence, there is the vector of the
conservation law:

I = F −
[

τL + (η − utτ − uxξ)
∂L
∂ut

]
et −

[
ξL + (η − utτ − uxξ)

∂L
∂ux

]
ex, (43)

where et and ex are the unit vectors in the (t, x) plane.
We consider the simple example of the Lagrangian:

L = 1
12 (ux)

4 + 1
2 (ut)

2 .

The condition for the existence of a Noether symmetry, (41), becomes:

div.F = (Dtτ + Dxξ)
(

1
12 (ux)

4 + 1
2 (ut)

2
)
+ (Dtη − utDtτ − uxDtξ) ut

+ (Dxη − utDxτ − uxDxξ) 1
3 u3

x. (44)

The Lagrangian has the Euler–Lagrange equation:

u2
xuxx + utt = 0. (45)

The Lie point symmetries of (45) are:
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Γ1 = ∂t Γ4 = t∂u

Γ2 = ∂x Γ5 = t∂t − u∂u

Γ3 = ∂u Γ6 = x∂x + 2u∂u.
(46)

The Lie point symmetries Γ1–Γ4 give a zero vector F except for Γ4, which gives (u, 0). The symmetries
Γ5 and Γ6 give nonlocal vectors and so nonlocal conservation laws, which could be interpreted as
meaning that they are not Noether symmetries for the given Lagrangian. The four local conservation
laws are:

I1 =
(

1
2 u2

t − u4
x, 1

12 utu3
x

)
I2 =

(
utux, 1

4 u4
x − 1

2 u2
t

)
I3 =

(
ut, 1

3 u3
x

)
I4 =

(
u − tut,− 1

3 tu3
x

)
.

9. The General Euler–Lagrange Equation

In the case of a pth-order Lagrangian in m dependent variables, ui, i = 1, m, and n independent
variables, xj, j = 1, n, the Lagrangian, L(x, u, u1, . . . , up), under an infinitesimal transformation:

ūi(x) = ui(x) + εvi(x),

where ε is the parameter of smallness and v(x) is k − 1-times differentiable and zero on the boundary
∂Ω of the domain of integration Ω of the action integral,

A =
∫

Ω
L
(
x, u, u1, . . . , up

)
dx, (47)

becomes:

L̄ = L
(
x̄, ū, ū1, . . . , ūp

)
= L

(
x, u, u1, . . . , up

)
+ εvi

j1,j2,...,jk
∂L

∂ui
j1,j2,...,jk

+ O
(

ε2
)

(48)

in which summation over repeated indices is implied and i = 1, m, j = 1, n, and k = 0, p. The variation
in the action integral is:

δA =
∫

Ω
[L̄ − L]dx

= ε
∫

Ω
vi

j1,j2,...,jk
∂L

∂ui
j1,j2,...,jk

dx + O
(

ε2
)

. (49)

We consider one set of terms in (49) with summation only over jk.

∫
Ω

vi
j1,j2,...,jk

∂L
∂ui

j1,j2,...,jk

dx

=
∫

Ω

{
Djk

[
vi

j1,j2,...,jk−1

∂L
∂ui

j1,j2,...,jk

]
− vi

j1,j2,...,jk−1
Djk

[
∂L

∂ui
j1,j2,...,jk

]}
dx

=
∫

∂Ω
Djk

[
vi

j1,j2,...,jk−1

∂L
∂ui

j1,j2,...,jk

]
njk dσ −

∫
Ω

vi
j1,j2,...,jk−1

Djk

[
∂L

∂ui
j1,j2,...,jk

]
dx

=
∫

Ω
vi

j1,j2,...,jk−1
Djk

[
∂L

∂ui
j1,j2,...,jk

]
dx, (50)
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where on the right side in passing from the first line to the second line, we have made use of the
divergence theorem and from the second to the third the requirement that v and its derivatives up to
the (p − 1)th be zero on the boundary. If we apply this stratagem repeatedly to (50), we eventually
obtain that: ∫

Ω
vi

j1,j2,...,jk
∂L

∂ui
j1,j2,...,jk

dx = (−1)k
∫

Ω
viDj1 Dj2 . . . Djk

∂L
∂ui

j1,j2,...,jk

dx. (51)

We substitute (51) into (49) to give:

δA = ε(−1)k
∫

Ω
viDj1 Dj2 . . . Djk

∂L
∂ui

j1,j2,...,jk)

dx + O
(

ε2
)

. (52)

Hamilton’s principle requires that δA be zero for a zero-boundary variation. As the functions
vi(x) are arbitrary subject to the differentiability condition, the integrand in (52) must be zero for each
value of the index i, and so, we obtain the m Euler–Lagrange equations:

(−1)kDj1 Dj2 . . . Djk
∂L

∂ui
j1,j2,...,jk

= 0, i = 1, m, (53)

with the summation on j being from one to n and on k from zero to p.

10. Noether’s Theorem: Original Formulation

Under the infinitesimal transformation:

x̄j = xj + εξ j ūi = ui + εηi (54)

of both independent and dependent variables generated by the differential operator:

Γ = ξ j∂xj + ηi∂ui , (55)

in which summation on i and j from 1–m and from 1–n, respectively, is again implied, the
action integral,

A =
∫

Ω
L
(
x, u, u1, . . . , up

)
dx, (56)

becomes:

Ā =
∫

Ω̄
L
(
x̄, ū, ū1, . . . , ūp

)
dx̄

=
∫

Ω+δΩ
L
(

x + εξ, u + εη, u1 + εη(1), . . . , up + εη(p)
)

J (x̄, x)dx. (57)

The notation δΩ indicates the infinitesimal change in the domain of integration Ω induced by the
infinitesimal transformation of the independent variables.

The notation η(j) is a shorthand notation for the jth extension of Γ. For the jth1 derivative of ui, we
have specifically:

η
i(1)
j1

= Dj1 ηi − ui
lDj1 ξl (58)

and for higher derivatives, we can use the recursive definition:

η
i(k)
j1 j2...jk

= Dkη
i(k−1)
j1 j2...jk−1

− ui
j1 j2...jkl

Djk ξl (59)

in which the terms in parentheses are not to be taken as summation indices.
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The Jacobian of the transformation may be written as:

J (x̄, x) =

∣∣∣∣ ∂x̄i

∂xj

∣∣∣∣
=

∣∣∣δij + εDjξ
i + O

(
ε2
)∣∣∣

= 1 + εDjξ
j + O

(
ε2
)

. (60)

We now can write (57) as:

Ā =
∫

Ω

{
L + ε

[
εLDjξ

i + ξ j ∂L
∂xj

+ η
i(k)
j1 j2...jk

∂L
∂ui

j1 j2...jk

]}
dx +

∫
δΩ

Ldx + O
(

ε2
)

. (61)

Because the transformation is infinitesimal, to the first order in the infinitesimal parameter, ε, the
integral over δΩ can be written as: ∫

δΩ
Ldx = ε

∫
∂Ω

Ldσ

= −
∫

Ω
DjFjdx, (62)

where F is an as yet arbitrary function. The requirement that the action integral be invariant under the
infinitesimal transformation now gives:

DjFj = LDjξ
j + ξ j ∂L

∂xj
+ η

i(k)
j1 j2...jk

∂L
∂ui

j1 j2...jk

. (63)

This is the condition for the existence of a Noether symmetry for the Lagrangian. We recall that
the variational principle was not used in the derivation of (63), and so, the Noether symmetry exists
for all possible curves in the phase space and not only the trajectory for which the action integral takes
a stationary value.

To obtain a conservation law corresponding to a given Noether symmetry, we manipulate (63)
taking cognizance of the Euler–Lagrange equations. As:

ξ iDjL = ξ j

(
∂L
∂xj

+ Djui
j1 j2...jk

∂L
∂ui

j1 j2...jk

)
, (64)

we may write (63) as:

Dj

[
Fj − Lξ j

]
=

[
η

i(k)
j1 j2...jk

− ξ jDjui
j1 j2...jk

] ∂L
∂ui

j1 j2...jk

=
(

ηi − ξ jDjui
) ∂L

∂ui +
p

∑
k=1

[
η

i(k)
j1 j2...jk

− ξ jDjui
j1 j2...jk

] ∂L
∂ui

j1 j2...jk

= −
(

ηi − ξ jDjui
)
(−1)kDj1 Dj2 . . . Djk

∂L
∂ui

j1 j2...jk

+
p

∑
k=1

[
η

i(k)
j1 j2...jk

− ξ jDjui
j1 j2...jk

] ∂L
∂ui

j1 j2...jk

(65)
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in the second line of which we have separated the first term from the summation and used the
Euler–Lagrange equation. We may rewrite the first term as:

Djk

[(
ηi − ξ jDjui

)
(−1)kDj1 Dj2 . . . Djk−1

∂L
∂ui

j1 j2...jk

]

−
(

Djk ηi −
(

Djk ξ j
)

Djk ui − ξ jDjjk ui
)
(−1)kDj1 Dj2 . . . Djk−1

∂L
∂ui

j1 j2...jk

.

The first term, being a divergence, can be moved to the left side (after replacing the repeated
index jk with j). We observe that the second term may be written as (58):

−
(

η
i(1)
jk

− ξ jui
jjk

)
(−1)kDj1 Dj2 . . . Djk−1

∂L
∂ui

j1 j2...jk

⇔ −Djk−1

[(
η

i(1)
jk

− ξ jui
jjk

)
(−1)kDj1 Dj2 . . . Djk−2

∂L
∂ui

j1 j2...jk

]

+
[

Djk−1

(
η

i(1)
jk

− ξ jui
jjk

)]
(−1)kDj1 Dj2 . . . Djk−2

∂L
∂ui

j1 j2...jk

⇔ −Djk−1

[(
η

i(1)
jk

− ξ jui
jjk

)
(−1)kDj1 Dj2 . . . Djk−2

∂L
∂ui

j1 j2...jk

]

+
(

η
i(2)
jk−1 jk

− ξ jui
jjk−1 jk

)
(−1)kDj1 Dj2 . . . Djk−2

∂L
∂ui

j1 j2...jk

(66)

in which we see the same process repeated. Eventually, all terms can be included with the divergence,
and we have the conservation law:

Dj

{
Fj − Lξ j −

(
η

i(l)
jk...jk−l+1

− ξmui
mjk...jk−l+1

)
(−1)kDj1 Dj2 . . . Djk−l

∂L
∂ui

j1 j2...jk

}
= 0. (67)

The relations (63) and (67) constitute Noether’s theorem for Hamilton’s principle.

11. Noether’s Theorem: Simpler Form

The original statement of Noether’s theorem was in terms of infinitesimal transformations
depending on dependent and independent variables and the derivatives of the former. Thus, the
theorem was stated in terms of generalized symmetries ab initio. The complexity of the calculations for
even a system of a moderate number of variables and derivatives of only low order in the coefficient
functions is difficult to comprehend and the thought of hand calculations depressing. We have
already mentioned that one is advised to calculate generalized Lie symmetries for the corresponding
Euler–Lagrange equation using some package and then to check whether there exists an F such that (63)
is satisfied for the Lie symmetries obtained. Even this can be a nontrivial task. Fortunately, there exists
a theoretical simplification, presented by Boyer in 1967 [29], which reduces the amount of computation
considerably. The basic result is that under the set of generalized symmetries:

Γ = ξ i∂xi + ηi∂ui ,

where the ξ i and ηi are functions of u, x and the derivatives of u with respect to x, and:

Γ = η̄i∂ui , η̄i = ηi − ui
jξ

j

one obtains the same results [32,33].
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This enables (63) and (67) to be written without the coefficient functions ξ i. This is a direct
generalization of the result for a first-order Lagrangian in one independent variable. One simply must
ensure that generality is not lost by allowing for a sufficient generality in the dependence of the ηi

upon the derivatives of the dependent variables. The only caveat one should bear in mind is that
the physical or geometric interpretation of a symmetry may be impaired if the symmetry is given in
a form that is not its natural form. This does raise the question of what is the “natural” form of a
symmetry. It does not provide the beginnings of an answer. It would appear that the natural form is
often determined in the eye of the beholder, cf. [34].

The proof of the existence of equivalence classes of generalized transformation depends on the
fact that two transformations can produce the same effect on a function.

12. Conclusions

In this review article, we perform a detailed discussion on the formulation of Noether’s theorems
and on its various generalizations. More specifically, we discuss that in the original presentation of
Noether’s work [1], the dependence of the coefficient functions of the infinitesimal transformation
can be upon the derivatives of the dependent variables. Consequently, a series of generalizations
on Noether’ theorem, like hidden symmetries, generalized symmetries, etc., are all included in the
original work of Noether. That specific point and that the boundary function on the action integral can
include higher-order derivatives of the dependent variables were the main subjects of discussion for
this work. Our aim was to recover for the audience that generality that has been lost after texts, for
instance Courant, Hilbert, Rund, and many others, where they identify as Noether symmetries only
the point transformations. The discussion has been performed for ordinary and partial differential
equations, while the corresponding conservation laws/flows are given in each case.
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Abstract: We consider the issue of correspondence between symmetries and conserved quantities
in the class of linear relativistic higher-derivative theories of derived type. In this class of models
the wave operator is a polynomial in another formally self-adjoint operator, while each isometry of
space-time gives rise to the series of symmetries of action functional. If the wave operator is given
by n-th-order polynomial then this series includes n independent entries, which can be explicitly
constructed. The Noether theorem is then used to construct an n-parameter set of second-rank
conserved tensors. The canonical energy-momentum tensor is included in the series, while the
other entries define independent integrals of motion. The Lagrange anchor concept is applied to
connect the general conserved tensor in the series with the original space-time translation symmetry.
This result is interpreted as existence of multiple energy-momentum tensors in the class of derived
systems. To study stability we seek for bounded-conserved quantities that are connected with the
time translations. We observe that the derived theory is stable if its wave operator is defined by a
polynomial with simple and real roots. The general constructions are illustrated by the examples of
the Pais–Uhlenbeck oscillator, higher-derivative scalar field, and extended Chern–Simons theory.

Keywords: Noether’s theorem; generalized symmetry; energy-momentum tensor; Lagrange anchor

1. Introduction

Once the Noether theorem [1] is applied to the higher-derivative theories, the models whose
Lagrangians involve second and higher-derivatives in time, the canonical energy usually appears to be
unbounded. This is often interpreted as instability of higher-derivative dynamics [2]. The presence of
classical trajectories with runaway behavior and the absence of a well-defined vacuum state with the
lowest energy at the quantum level are considered as typical indicators of stability problems. The recent
research [3–5] demonstrates that the models with unbounded classical energy are not necessarily
unstable. Various ideas were applied to the study of stability of higher-derivative theories, including
the non-Hermitian quantum mechanics [6–8], alternative Hamiltonian formulations [9–12], adiabatic
invariants [13], and special boundary conditions [14]. For constrained systems, the energy can be
bounded on-shell due to constraints [15–17]. The f(R)-gravity [18–20] is the most studied model of
such a type.

In [21], it has been observed that the higher-derivative dynamics can be stabilized by another
bounded-conserved quantity. Even though the Noether theorem associates this bounded quantity
with a certain higher symmetry, the Lagrange anchor can be used to connect the additional integral of
motion with the time translation. The Lagrange anchor was first introduced to quantize non-variational
models in [22]. Later, it was observed that it also connects symmetries and conserved quantities
in both Lagrangian and non-Lagrangian theories [23]. In the first-order formalism, the Lagrange
anchor defines the Poisson bracket [24]. The bounded-conserved quantity, which is connected with the
time translation symmetry, serves as Hamiltonian with respect to this Poisson bracket. In this way,
the stability of dynamics is retained at both classical and quantum levels.

Symmetry 2019, 11, 642; doi:10.3390/sym11050642 www.mdpi.com/journal/symmetry22
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In [25], an interesting class of higher-derivative theories of derived type was introduced.
In these models the wave operator is a constant coefficient polynomial (characteristic polynomial)
in another formally self-adjoint operator of lower order. The Pais–Uhlenbeck theory [26], Podolsky
electrodynamics [27], conformal gravities in four and six dimensions [28,29], and extended
Chern–Simons [30] are particular examples of theories of derived type. The general result of [25] is the
following: the derived theory with the n-th-order characteristic polynomial admits n-parameter series
of conserved quantities, which can be bounded or unbounded. The bounded-conserved quantities
can stabilize the classical dynamics of the theory. It was also claimed (without detailed analysis) that
all of the conserved quantities in the series are connected with the time translation symmetry by a
Lagrange anchor.

In the present article, we study the stability of higher-derivative dynamics from the viewpoint of
a more general correspondence between symmetries and conservation laws, which is established by
the Lagrange anchor. We show that the derived model with the n-th-order characteristic polynomial
admits an n-parameter series of Lagrange anchors, which connects the general conserved quantity
with time translation symmetry. To get this result we reformulate the correspondence between
symmetries and conserved quantities in terms of algebra of polynomials and apply the Bezout
Lemma. To study stability we address the issue of correspondence between the time translations and
bounded-conserved quantities. This problem is special because the bounded-conserved quantities
are not general representatives of the conserved quantity series. We conclude that in non-singular
theories a bounded-conserved quantity can be connected with the time translation if all of the roots
of the characteristic polynomial are real and simple. As for gauge models, a more accurate analysis
is performed.

The rest of the paper is organized as follows. In Section 2, we recall some basic facts about
symmetries, characteristics, and conservation laws in linear systems. In Section 3, we introduce the
Lagrange anchor and establish a correspondence between symmetries and conservation laws. The class
of derived models is introduced in Section 4. Section 5 studies the issue of the relationship between the
bounded quantities and time translations. We also obtain the stability conditions of higher-derivative
theories of derived type in Section 5. Section 6 illustrates general constructions in the theories of the
Pais–Uhlenbeck oscillator, higher-derivative scalar, and extended Chern–Simons. The conclusion
summarizes the results.

2. Symmetries, Characteristics, and Conserved Quantities of Linear Systems

Given the d-dimensional Minkowski space (We use the mostly minus convention for the space-time
metric throughout this paper) with the local coordinates xμ, μ = 0, 1, . . . , d − 1, we consider the set of
fields ϕi(x). The multi-index i includes all the tensor, spinor, and isotopic indices, which label the fields.
We assume the existence of an appropriate constant metric which can be used to raise and lower the
multi-indices. This gives rise to the inner product of fields,

〈
ϕ,ψ
〉
= ϕi(x)ψi(x) (1)

(no integration over space-time). Zero boundary conditions are assumed for the fields at infinity. In this
setting, the most general linear theory reads as PDE,

Ti(ϕ) = Mij(∂)ϕ
j = 0, (2)

where summation over repeated index is implied, and M is the matrix differential operator. By the
matrix differential operator, we mean the matrix whose entries are polynomials in the formal variable
∂μ = ∂/∂xμ.

The formal adjoint of the matrix differential operator M is defined as follows:

M†i j(∂) = Mji(−∂). (3)
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If the wave operator is formally self-adjoint, the corresponding Equation (1) are variational with
the action functional

S[ϕ(x)] =
1
2

∫ 〈
ϕ, Mϕ

〉
ddx. (4)

In this class of models, M is often called the wave operator. The following identity relates the
operator and its adjoint:

1
2

(〈
ϕ, Mψ

〉− 〈M†ϕ,ψ
〉)

= ∂μ ( jM(ϕ,ψ))μ. (5)

Here, ψ and ϕ are test functions, and the right-hand side is a divergence of some vector. The index
M in jM labels the operator M, which is involved in the left-hand side of Equation (5).

We allow gauge freedom for the model (2). If the wave operator M has right null-vectors in the
class of matrix differential operators, i.e.,

M(∂)Rα(∂) ≡ 0, (6)

with α being some multi-index, Equation (2) are invariant with respect to the gauge transformation

δεϕ
i = Ri

α(∂)ε
α. (7)

Here, εα = εα(x) are functions of space-time coordinates, and summation over the repeated index
α is assumed. The matrix differential operators Rα are called gauge generators.

The wave operator can have left null-vectors in the class of matrix differential operators. All such
null-vectors determine gauge identities between equations of motion of the following form:

ZA(∂)T(ϕ) ≡ 0, (8)

where the multi-index A labels gauge identities. For linear variational theories, the identity generators
are adjoint of gauge generators,

ZA(∂) = R†α(∂), A ≡ α. (9)

The statement about the relation between gauge symmetries and gauge identities is often called
the second Noether theorem, and equality (9) is a particular form of it. In non-variational theories,
the gauge symmetries and identity generators are unrelated to each other.

The matrix differential operator L is called the symmetry (The notion of symmetry can be
introduced in various ways. In this article we give non-rigorous explanations about symmetries,
which are sufficient for our consideration. For systematical introduction into the subject we refer to the
book [31]) of linear theory (2) if it is interchangeable with M in the following sense:

M(∂)L(∂) = Q(∂)M(∂), (10)

with Q being some matrix differential operator. Symmetry induces a linear transformation of the fields
that preserves the mass shell (2):

δξϕ = ξL(∂)ϕ, δξT(ϕ) = ξL(∂)T(ϕ) ≈ 0. (11)

Here, the constant ξ is the infinitesimal transformation parameter, and the sign ≈means equality
modulo Equation (2). The symmetries of linear theory form an associative algebra with respect to the
composition of the operators [31]. Equation (10) has a lot of trivial solutions of the form

Ltriv(∂) = U(∂)M(∂) + Rα(∂)Uα(∂), (12)
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where U and Uα are some matrix differential operators. These symmetries are present in every theory
and do not contain any valuable information about the dynamics of the model. In what follows,
we systematically ignore them.

We term the symmetry variational if the transformation (11) preserves the action functional (4).
The defining condition for the variational symmetry reads

L†(∂)M(∂) + M(∂)L(∂) = 0, (13)

which is relation (10) for Q = L†. Trivial variational symmetries have the form

Lvar
triv(∂) = G(∂)M(∂) + Rα(∂)Uα(∂), G† = −G. (14)

The vector-valued function of the fields and their derivatives j is called a conserved current of the
model (4) if its divergence vanishes on the mass shell, i.e.,

∂μ jμ(ϕ, ∂ϕ, ∂2ϕ, . . .) =
〈
N(ϕ), T(ϕ)

〉
(15)

for some characteristics, N being the function of fields and its derivatives. The conserved current j
defines the integral of motion:

J =
∫

j0(ϕ)dd−1x , (16)

where the integration is held over the space coordinates. By construction, J is a constant for all the
solutions to the classical Equation (2).

The above definition of conserved current and characteristic has natural ambiguities.
Two conserved currents are considered equivalent if their difference is the divergence of some
anti-symmetric tensor on-shell,

j′μ(ϕ) − jμ(ϕ) ≈ ∂νΣνμ(ϕ), Σνμ(ϕ) = −Σμν(ϕ). (17)

Equivalent conserved currents define one and the same integral of motion (16). As for
characteristics, the corresponding condition reads

N′(ϕ) −N(ϕ) ≈ Uα(ϕ)Rα. (18)

Equivalent characteristics determine equivalent conserved currents. This establishes a one-to-one
correspondence between the equivalence classes of characteristics and conservation laws.

In linear theories, the quadratic conserved currents are the most relevant. Once the conserved
current is bilinear in fields, the characteristic is linear. It can be written in the form

N(ϕ) = N(∂)ϕ, (19)

where N is a matrix differential operator, which we call the operator of characteristics. The defining
condition for the operator of characteristic reads

N†(∂)M(∂) + M†(∂)N(∂) = 0. (20)

The formula can be applied to both variational and non-variational theories. Trivial operators of
characteristics read

Ntriv(∂) = G(∂)M(∂) +
∑

A

(Z†)A(∂)U
A(∂), G† = −G. (21)
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In the class of variational models’ conditions (20) and (21) take the form of (13) and (14). This brings
us to the identification of variational symmetries and characteristics,

L(∂) ≡ N(∂). (22)

The relationship between the variational symmetries and conserved currents is obtained from (20)
and (21) using the integration by parts by means of Equation (5),

j = jM(ϕ, Nϕ), (23)

(the on-shell vanishing terms are omitted). In fact, (22) and (23) represent one of the possible
formulations of the classical Noether theorem [1].

As we can see from the above, the classical Noether theorem essentially uses two distinct facts:
the relationship between characteristics and conserved currents (23), and the connection between
symmetries and characteristics (22). The first of these facts holds true for the variational and
non-variational models, while the second uses the presence of action functional. We introduce Formula
(22) because it allows us to extend the Noether theorem beyond the scope of variational dynamics.
A crucial ingredient of generalization of the Noether theorem is the Lagrange anchor.

3. Lagrange Anchor and Generalization of the Noether Theorem

The matrix differential operator V is called a Lagrange anchor (For the general definition of
Lagrange anchor see [22]) of the linear theory (2) if the following relation is satisfied:

V†(∂)M†(∂) −M(∂)V(∂) = 0. (24)

The defining equation for the Lagrange anchor has a lot of trivial solutions of the form

Vtriv(∂) = G(∂)M(∂) +
∑
α

Rα(∂)Uα(∂), G† = G, (25)

where G is a self-adjoint operator, and Uα are arbitrary operators. The trivial Lagrange anchors do
not contain valuable information about the dynamics of the theory, and they are also useless for the
connection of symmetries and conserved quantities. We systematically ignore them.

The Lagrange anchor is called transitive if it has zero kernel in the class of matrix
differential operators,

V(∂)K(∂) = 0⇔ K(∂) = 0. (26)

We mostly consider transitive Lagrange anchors. The variational models admit the canonical
Lagrange anchor, V = id, which is transitive. In non-variational theories, some examples of transitive
Lagrange anchors can be found in [32,33].

The Lagrange anchor connects symmetries and conserved quantities. If N is the characteristic of a
conserved quantity, and V is a Lagrange anchor, the corresponding symmetry reads

L(∂) = V(∂)N(∂). (27)

conditions (20) and (24) ensure that the right-hand side of this expression is symmetry in the sense of
condition (10). Once the variational theory is equipped with the canonical Lagrange anchor, the identity
map connects characteristics and symmetries,

L(∂) = N(∂), V = id. (28)
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This is the standard Noether correspondence between symmetries and conserved quantities
(22), (23). If V is non-canonical, the symmetries and conserved quantities are connected in a
non-canonical way.

Relation (27) can be lifted at the level of classes of equivalence of non-trivial symmetries and
conserved quantities. To ensure this fact, we should prove that the trivial characteristics are mapped
into trivial symmetries. The following relations are used:

V(∂)Ntriv(∂) = V(∂)G(∂)M(∂) +
∑
α

V(∂)(Z†)A(∂)U
A(∂) =

= (V(∂)G(∂))M(∂) +
∑
α

Rα(∂)Uα(∂) = Ltriv(∂).
(29)

For the sake of simplicity, we assume that the set of gauge generators is complete. In this case,
the identity M(∂)V(∂)ZA(∂)UA(∂) = 0 implies V(∂)ZA(∂)UA(∂) = Rα(∂)Uα(∂) for some Uα, summation
over repeated indices is implied.

The classes of equivalence of characteristics and conserved currents are in one-to-one
correspondence. This means that Formula (27) connects the classes of equivalence of conservation
laws and symmetries, like the Noether theorem. We call relation (27) the generalization of the Noether
theorem. As the requirement of the existence of the Lagrange anchor is less restrictive than the presence
of the least-action principle, the generalization of the Noether theorem can be applied to connect
symmetries and conserved quantities in non-variational theories.

The matrix differential operator L is called a proper symmetry with respect to the Lagrange anchor
V if L(∂) = V(∂)P(∂) for some P, and

V(∂)(P†(∂)M(∂) + M†(∂)P(∂)) = 0. (30)

the proper symmetries are symmetries in the usual sense. Indeed, by relations (24) and (27), we get

M(∂)V(∂)P(∂) = (V†(∂)M†(∂) −M(∂)V(∂))P(∂) + M(∂)V(∂)P(∂) =
= V†(∂)(M†(∂)P(∂) + P†(∂)M(∂)) −V†(∂)P†(∂)M = V†(∂)P†(∂)M(∂).

(31)

In the class of variational models equipped with the canonical Lagrange anchor, the proper
symmetries are just variational ones. If the Lagrange anchor is transitive, the proper symmetries can
be connected with integrals of motion. Applying (26) to (30), we get that P is the characteristic,

P†(∂)M(∂) + M†(∂)P(∂) = 0. (32)

The characteristic defines the conserved current by Formula (16). This establishes a correspondence
between proper symmetries and conserved quantities. In the class of variational models equipped
with the canonical Lagrange anchor, relation (28) establishes the Noether correspondence between the
variational symmetries and integrals of motion. In the class of non-variational theories, the proper
symmetries constitute a special subset in the space of all symmetries, which can be connected with
conserved quantities.

The connection between symmetries and conserved currents is not necessarily unique for a given
system of equations, because multiple Lagrange anchors can be admissible by the model. If this
takes place, one and the same conserved current can be associated with several different symmetries.
Alternatively, one and the same symmetry can come from different pairs of Lagrange anchors and
conserved currents. In the rest of the paper we mostly deal with the variational theories of derived
type, which are known to admit multiple Lagrange anchors. In particular, we show that the isometries
of space-time can be connected with the series of conserved tensors in this class of models.
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4. Higher-Derivative Theories of Derived Type

Given a set of fields ϕi, we introduce the variational primary model without higher-derivatives

Wij(∂)ϕ
j = 0, W† = W. (33)

The model (2) falls into the class of theories of derived type if its wave operator is a constant
coefficient polynomial in W,

M(α; W) =
n∑

p=0

αpWp, αn � 0. (34)

The constants α0, . . . ,αn distinguish different representatives in the class. The equations of motion
(33) come from the least-action principle for the functional

S[ϕ(x)] =
1
2

∫ 〈
ϕ, Wϕ

〉
ddx. (35)

Each derived theory is defined by a primary operator W, and a characteristic polynomial in the
complex variable z,

M(α; z) =
n∑

p=0

αpzp. (36)

The symmetries, characteristics, and Lagrange anchors in the class of derived systems can be
systematically obtained from the corresponding quantities of the primary model. Even though the
derived quantities do not cover all symmetries, characteristics, and Lagrange anchors, they contain
valuable information about dynamics. In the present paper, we use derived conserved quantities to
study the stability of higher-derivative models.

Let us explain the details of the construction. Suppose that the primary theory admits the series
of variational symmetries with the operator L(ξ),

L(ξ) =
s∑

a=1

ξaLa, [La, W] = 0, La = −(La)
†, (37)

where the indices a = 1, . . . ,s label the generators of symmetry series, and ξ’s are the transformation
parameters, being real constants. In this case, the Noether theorem (22), (23) associates the conserved
currents ja, a = 1, . . . ,s with these symmetries. The conserved currents are linearly independent if
the symmetry generators are linearly independent (modulo trivial symmetries). In what follows in
this section, we assume the linear independence of the generators La (37). The operators La (37) can
form a Lie algebra, at least in some models. The Poincare symmetry in the relativistic theories is one
of the relevant examples of such kind. We do not specify the structure of the algebra of symmetries
because we are mostly interested in the correspondence between the linear spaces of symmetries and
conserved quantities.

A single variational symmetry (37) defines the n-parameter series of variational symmetries of the
action functional (4), (34),

N(β, ξ; W) = L(ξ)N(β; W), N(β; W) ≡
n−1∑
p=0

βpWp, (38)

where βp, p = 0, . . . , n − 1, are constant parameters. For p = 0, this series includes the symmetries
(37) of the primary model (33). The other entries in (38) are higher-derivative operators whose origin
is a consequence of the derived structure (34) of the equations of motion (2). The symmetries in the
series (38) are usually independent, even though it is not a theorem. The general argument is that if
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all the powers of the primary operator are independent initial data and La’s are transitive operators,
the characteristic (38) cannot be zero on-shell. The exceptions are possible in the class of gauge theories,
where some entries of the series (38) can trivialize on the mass-shell with account of gauge symmetries.

The Noether theorem (22), (23) associates the following set of conserved currents with the
variational symmetry (38):

j(β, ξ) =
n−1∑
p=0

βp jp(ξ),

jp(ξ) =
n∑

q=0
αq

(q−p∑
s=1

jW(L(ξ)Wp+s−1ϕ, Wq−sϕ) +
p−q∑
s=1

jW(L(ξ)Wp−sϕ, Wq+s−1ϕ)

)
.

(39)

The derivation of this formula uses integration by parts by means of Equation (5). All the on-shell
vanishing contributions are omitted in (39). In this set, j0’s represents the canonical conserved quantities
of the derived model (4), (34) that are connected with the original symmetry (37) of the primary model
(33). The other conserved currents, jp, p = 1, . . . , n − 1, come from the higher-symmetries in the set (38).
The conditions of linear independence of conserved currents are the same as that of symmetries.

The Lagrange anchors in the class of derived theories are just polynomials in the primary operator,

V(γ; W) =
n−1∑
p=0

γpWp. (40)

The higher-powers of W do not define new non-trivial Lagrange anchors, see Equation (25).
The canonical Lagrange anchor is included in this series for

β0 = 1, β1 = β2 = . . . = βn−1 = 0. (41)

The Lagrange anchor (40) connects characteristic (38) with symmetry of the derived theory (34) by
the rule (27). The resulting symmetry is the original one if

V(γ; W)N(β, ξ; W) = L(ξ) + trivial symmetry. (42)

We are interested in the problem of connecting of conserved quantities with the original symmetry
because it is relevant for studying stability.

Let us first consider the theories without gauge symmetries. In this case, the relevant trivial
symmetry in the right-hand side of (42) has the form

Ltriv = K(δ; W)M(α; W)L(ξ), K(δ; W) =
n−2∑
p=0

δpWp, (43)

with K being some polynomial in W. To meet (42), it is sufficient to impose the condition

V(γ; W)N(β; W) = id + K(δ; W)M(α; W). (44)

If all the powers of the characteristic operator are independent, the formula is equivalent to the
relation between the characteristic polynomials of the involved quantities

V(γ; z)N(β; z) −K(δ; z)M(α; z) = 1. (45)

The Bezout Lemma states that the problem has a unique solution for V and K if, and only if,
N and M have no common roots. Once two general polynomials have no common roots, almost all the
conserved quantities in the series are related to the original symmetry.
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In the class of gauge models, some additional symmetry can trivialize on-shell. The relevant
trivial symmetry in the right-hand side of (42) can be chosen in the form

Ltriv =

⎛⎜⎜⎜⎜⎜⎝K(δ; W)M(α; W) +
s∑

k=1

Ks(W)Ms(W)

⎞⎟⎟⎟⎟⎟⎠L(ξ), (46)

where Ms are additional generators of trivial symmetries. In principle, the wave operator and Ms can
be dependent in some models. We should ignore M in the formulas below in these circumstances.
The analogue of relations (44), (45) reads

V(γ; W)N(β; W) −K(δ; W)M(α; W) −
s∑

k=1

Ks(W)Ms(W) = id; (47)

V(γ; z)N(β; z) −K(δ; z)M(α; z) −
s∑

k=1

Ks(z)Ms(z) = 1. (48)

These equations are consistent if N and at least one characteristic polynomial of the trivial gauge
symmetry generators M, Ms, have no common roots. This condition is less restrictive than in the case
of non-gauge models.

5. Stability of Higher-derivative Dynamics

In this section, we address the problem of establishing a relationship between the bounded-
conserved quantities and the time translation symmetry. This problem needs more accurate
investigation because bounded-conserved quantities are not necessarily general representatives
of conserved current series, while general conserved currents may define unbounded-conserved
charges. We proceed in two steps. First, the bounded-conserved quantities in the series are identified.
After that, we address the issue of connecting bounded-conserved quantities with the space-time
translation. Throughout the section we assume that L(ξ) = ξμ∂μ.

Let us discuss the structure of conserved quantities in the series (39). We introduce the factorization
of the wave operator (34) in the form

M(α; W) = αn

r∏
k=1

(W − λk)
mk , (49)

where the numbers λk and mk label different roots and their multiplicities. The integer r is the total
number of different roots. We assume that all the quantities λp are real numbers. We do not consider
complex roots because the corresponding derived theory is always unstable.

Using factorization (49), we define the new dynamical variables absorbing the derivatives of the
original field by the receipt of Pais and Uhlenbeck [26]:

ϕk = Λk(∂)ϕ, Λk(∂) = αn

r∏
i=1,i�k

(W − λi)
mi , k = 1, . . . , r. (50)

We term the new quantities as components. By construction, the original field ϕ can be expressed
on-shell as the linear combination:

ϕ =
r∑

k=1

Ck(ζ; W)ϕk, Ck(ζ; W) =

mk−1∑
k=0

ζkWk. (51)
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The following system of equations is valid for the components:

(W − λk)
mkϕk = 0, k = 1, . . . , r. (52)

It ensures that the components, which are associated with different roots of characteristic equation,
are independent degrees of freedom. The one-to-one correspondence between the solutions of systems
(2) and (52) is established by Formulas (50) and (51).

The system of equations for components comes from the action functional

S =
r∑

k=1

Sk[ϕk(x)], Sk[ϕk(x)] =
1
2

∫ 〈
ϕk, (W − λk)

mkϕk
〉
ddx. (53)

Once L(ξ) is a set of symmetries of the primary model, the following transformations are variational
symmetries:

δξϕk = (W − λk)
lL(ξ)ϕk, k = 1, . . . , r, l = 0, . . . , mk − 1, (54)

with no sum in k. There are n independent symmetries in this set. In terms of the original field set,
these transformations correspond to the derived symmetries (38). The following conserved currents
are associated with them:

jk;mk−l−1(ξ) =
mk−l∑
s=1

jW−λk(L(ξ)(W − λk)
l+s−1ϕk, (W − λk)

mk−sϕk),

k = 1, . . . , r, l = 0, . . . , mk − 1.
(55)

In this set, the leading representatives jk;mk−1 are the canonical energy-momentum currents of the
components, while the others are independent quantities. It is obvious that (55) are linear combinations
of conserved tensors (39).

Once ξ is an arbitrary constant vector, the conserved quantities are tensors. The second-rank
conserved tensors (Tk;l)μν are defined by the rule

( jk;l(ξ))
μ
= ξν(Tk;l)

μν
. (56)

As for the structure of conserved tensors (56), the following observation is relevant. The leading
representatives in the conserved tensor series,

(Tk;0)
00

= ( jW−λk(∂
0(W − λk)

mk−1ϕk, (W − λk)
mk−1ϕk))

0
, (57)

have bounded from below 00-component if the canonical energy of the primary model is bounded
on-shell

(Tk;0)
00 ≥ 0⇔ T00

W−λk
(ϕ) ≡ ( jW−λk(∂

0ϕ,ϕ)
0 ≥ 0, ∀ϕ. (58)

These conditions can be satisfied in many cases. For example, it is sufficient to assume

T00
W (ϕ) ≥ 0, T00

λk
(ϕ) = −λk

〈
ϕ,ϕ
〉 ≥ 0. (59)

The other contributions in (55) are not bounded from below because they are linear in the variable

(W − λk)
mk−1ϕk. (60)

Once this quantity is an initial data of the model, the conserved tensors (56) cannot have bounded
00-component for l > 0.

The observations above can be summarized as follows. If the primary theory is stable, the leading
terms in the conserved tensor set (56) have bounded 00-components, while the other contributions
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are unbounded unless they vanish due to gauge symmetries or constraints. The bounded series of
conserved currents in unconstrained theory has the form

( j+)μ(β, ξ) =
r∑

k=1

βkξv(Tk;0)
μν

. (61)

In the case of multiple roots of the characteristic equation, this subseries is special because it
involves only some initial data (60). Such conserved quantities cannot ensure the classical stability of
the model. This brings us to the conclusion that non-singular theories of derived type with multiple
roots should be unstable. This observation is supported by the models of the Pais–Uhlenbeck oscillator
and the higher-derivative scalar field, where the models with resonance are unstable.

Let us now show that theories with multiple roots cannot be stable at the quantum level.
This amounts to the fact that the bounded-conserved quantity cannot be connected with the time
translation symmetry. The characteristic for the bounded-conserved tensor reads

N+(β, ξ; W) =
r∑

k=1

L(ξ)βk(W − λk)
mk−1Λk(λ; W), (62)

where Λ’s were introduced in (50). Given the Lagrange anchor (40), the corresponding symmetry is
(42). This expression defines the space-time translation if

L(ξ)V(γ; W)N+(β; W) = L(ξ) + trvial symmetry. (63)

Assuming that no gauge symmetries are present in the model, and L(ξ) is a transitive operator
(26), we conclude that

V(γ; W)N+(β; W) −K(δ; W)M(α; W) = id, (64)

where K is some polynomial. Once all the powers of W are linearly independent, this equation is
equivalent to the following relation between characteristic polynomials of conserved quantities:

V(γ; z)N+(β; z) −K(δ; z)M(α; z) = 1. (65)

By the Bezout Lemma, this condition is consistent for fixed N+ and M if, and only if,
these polynomials have no common roots. On the other hand, each multiple root is common
for M and N+. Hence, the bounded-conserved quantity can only be connected with space-time
translations if all the roots of the characteristic equation are simple. The Pais–Uhlenbeck oscillator and
higher-derivative scalar field models again serve as demonstrations for this observation.

The case of gauge theories needs more accurate consideration. There are two important points:
unbounded contributions in (55) can trivialize on the mass-shell, and the relation between symmetries
and conserved quantities is more relaxed. This allows us to connect a bounded-conserved tensor with
the time translation symmetry even if the characteristic polynomial has multiple roots. We illustrate
this possibility in the extended Chern–Simons theory in Section 6.3.

6. Examples

6.1. Fourth-order Pais–Uhlenbeck Oscillator

The Pais–Uhlenbeck oscillator of the fourth-order is a theory of a single dynamical variable x(t)
with the action functional

S[x(t)] =
1
2

∫ (
x
(

d2

dt2 +ω2
1

)(
d2

dt2 +ω2
2

)
x
)
dt , (66)
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where the frequencies ω1, ω2 are parameters of the model. The Euler–Lagrange equation for the action
functional is of derived type,

δS
δx

=

(
d2

dt2 +ω2
1

)(
d2

dt2 +ω2
2

)
x = 0, (67)

with the primary operator being the second time derivative. The squares of frequencies determine
the roots of the characteristic polynomial (36), which can be equal or different. The order of the
characteristic polynomial equals two.

If the frequencies of the Pais–Uhlenbeck oscillator are different, two integrals of motion (56) are
admissible by the model,

Jk =
1

2(ω2
1 +ω2

2)

(
(
...
x +ω2

k
.
x)

2
+ (ω2

1 +ω2
2 −ω2

k)(
..
x +ω2

kx)
2
)
, k = 1, 2. (68)

These conserved quantities are obviously bounded from below. The bounded subseries of
conserved quantities (61) is the linear combination of these expressions,

J+ =
2∑

k=1

βk Jk, βk > 0. (69)

The characteristic for the bounded-conserved quantity reads

N+

(
β,

d2

dt2

)
=

2∑
k=1

βk

ω2
1 +ω2

2

(
d2

dt2 +ω2
k

)
d
dt

. (70)

The Lagrange anchor,

V
(

d2

dt2

)
=

(ω2
1 +ω2

2)

(ω2
2 −ω2

1)
2

⎛⎜⎜⎜⎜⎝β1 + β2

β1β2

d2

dt2 +
β1ω2

2 + β2ω2
1

β1β2

⎞⎟⎟⎟⎟⎠, (71)

connects the conserved quantity (69) with the time translation symmetry whenever the product β1β2 is
nonzero. This gives an alternative proof of the stability of the Pais–Uhlenbeck oscillator with different
frequencies.

In the case of resonance ω1 = ω2 = ω, the Pais–Uhlenbeck oscillator has two conserved quantities,
only one of which is bounded from below,

J1 =
1

2ω2

((...
x +ω2 .

x
)2
+
( ..
x +ω2x

)2)
, J2 =

1
2ω2 (2

.
x

...
x − ..

x2
) + x2 +

1
2
ω2x2. (72)

The series of bounded-conserved quantities (61) includes a single entry J1. The characteristic (62)
for this conserved quantity reads

N+

(
d2

dt2

)
=

1
ω2

(
d2

dt2 +ω2
)

d
dt

. (73)

It has the common rootω2 with the characteristic polynomial of the wave operator (67). This means
that the bounded integral of motion cannot be connected with the time translation symmetry in the
model with resonance.

The results of this subsection show that the fourth-order Pais–Uhlenbeck oscillator is stable if its
frequencies are different. This result confirms the general observation about the connection of structure
of the roots of characteristic polynomial and its stability.
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6.2. Higher-derivative Scalar Field

Consider the theory of real scalar field ϕ(x) on d-dimensional Minkowski space with the
action functional

S[ϕ(x)] =
1
2

∫
ϕ

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

p=1

(
∂2

∂xμ∂xμ
+ μ2

p

)⎞⎟⎟⎟⎟⎟⎟⎠ϕddx . (74)

In this formula, the real numbers μp determine the spectrum of masses in the theory. The equations
of motion belong to derived type, with the primary operator being d’Alembertian,

δS
δϕ

=
n∏

p=1

(
∂2

∂xμ∂xμ
+ μ2

p

)
ϕ = 0, W =

∂2

∂xμ∂xμ
. (75)

The primary model is the theory of free mass-less scalar field,

∂2

∂xμ∂xμ
ϕ = 0. (76)

This theory is invariant under the Poincare symmetries, including the space-time translations.
The structure of conserved quantities in the model depends on the values of the roots of the

characteristic polynomial. Once all roots are different, all the dynamical degrees of freedom are scalars
with different masses. The lower order formulation (52) for the model reads

(
∂2

∂xμ∂xμ
+ μ2

p

)
ϕp = 0, ϕp =

n∏
q=1,q�p

(
∂2

∂xμ∂xμ
+ μ2

q

)
ϕ, p = 1, . . . , n. (77)

The conserved tensors (56) are just energies of the components,

(Tp)μν = ∂μϕp∂
νϕp − 1

2
ημν(∂ρϕp∂ρϕp − μ2

pϕ
2
p), p = 1, . . . , n. (78)

It is clear that all of these quantities have bounded from below 00-component. The subseries of
bounded-conserved quantities (61) have the form

( j+)μ(β; ξ) =
n∑

p=1

βpξν(Tp)μν, βp > 0. (79)

By the general theorem above, all of these quantities can be connected with the space-time
translations by the appropriate Lagrange anchor. We derive the explicit expression for such a Lagrange
anchor in Appendix A (For the fourth-order theory (case n = 2) such a Lagrange anchor has been first
introduced in [21]).

If multiple roots are admissible for the characteristic polynomial, two or more conserved quantities
are related with one and the same root. Below, we give expressions for additional integrals of motion
in the simplest option, where only one root has multiplicity two, and all the other roots are simple.
Without loss of generality we assume that

μn−1 = μn = μ. (80)

In this case, the system (52) reads

(
∂2

∂xμ∂xμ
+ μ2

p

)
ϕp = 0, ϕp =

n∏
q=1,q�p

(
∂2

∂xμ∂xμ
+ μ2

q

)
ϕ, p = 1, . . . , n− 2, (81)
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(
∂2

∂xμ∂xμ
+ μ2

)2
ϕn−1 = 0, ϕn−1 =

n−2∏
q=1

(
∂2

∂xμ∂xμ
+ μ2

q

)
ϕ. (82)

The components ϕp, p = 1, . . . , n − 2 are usual scalar fields, while ϕn-1 obeys higher-derivative
equations. For simple roots the conserved tensors have the form (78), we do not repeat the expressions
for them. Two conserved tensors are associated with the multiple root,

(Tn−1;0)
μν

= 1
μ2

(
∂μϕ̃n−1∂νϕ̃n−1 − 1

2η
μν(∂ρϕ̃n−1∂ρϕ̃n−1 − μ2ϕ̃2

n−1)
)
, ϕ̃n−1 ≡ (∂μ∂μ + μ2)ϕn−1;

(Tn−1;1)
μν

= 1
μ2

(
∂μϕn−1∂ν∂ρ∂ρϕn−1 − ∂μ∂ρϕn−1∂ν∂ρϕn−1 + 2μ2∂μϕn−1∂νϕn−1

− 1
2η
μν(−∂ρ∂τϕn−1∂ρ∂τϕn−1 + μ2∂ρϕn−1∂ρϕn−1 − μ4ϕ2

n−1)
)
.

(83)

The bounded-conserved quantity reads

( j+)μ(β; ξ) =
n−1∑
p=1

βpξν(Tp;0)
μν

, βp > 0. (84)

The characteristic for the bounded-conserved tensor has the form

N+

(
β, ξ;

∂2

∂xμ∂xμ

)
=

(
∂2

∂xμ∂xμ
+ μ2

)⎛⎜⎜⎜⎜⎜⎜⎝
n−1∑
p=1

⎛⎜⎜⎜⎜⎜⎜⎝βpξμ∂
μ

n−1∏
q=1,q�p

(
∂2

∂xμ∂xμ
+ μ2

q

)⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠. (85)

Its characteristic polynomial,

N+(β; z) = (z + μ2)
n−1∑
p=1

⎛⎜⎜⎜⎜⎜⎜⎝βp

n−1∏
q=1,q�p

(z + μ2
q)

⎞⎟⎟⎟⎟⎟⎟⎠, (86)

has the common root −μ2 with the characteristic polynomial of the theory. In doing so,
the bounded-conserved quantity cannot be connected with the time translations. This demonstrates
that the free higher-derivative scalar field theory with different masses is stable, while the multiple
roots indicate the instability of the model.

6.3. Extended Chern–Simons Model

Consider the theory of the vector field A = Aμ(x)dxμ on 3d Minkowski space with the
action functional

S[A(x)] =
1
2

∫ ⎛⎜⎜⎜⎜⎜⎜⎝A,
n∑

p=1

αp(∗d)pA

⎞⎟⎟⎟⎟⎟⎟⎠d3x, (87)

where the round brackets denote the standard inner product of differential forms, * is the Hodge dual,
and d is the de-Rham differential. The parameters of the model are the constants α1, . . . ,αn. The action
of the Chern–Simons operator on the vector field is determined by the relation

(∗dA)μdxμ = εμνρdxμ∂νAρ. (88)

Here, ε is the 3d Levi-Civita symbol, with ε012 = 1. The Euler–Lagrange equations for the model
have the form

δS
δA

=
n∑

p=1

αp(∗d)pA = 0. (89)

The primary operator of the theory is the Chern–Simons one, see Equation (88). The primary
theory for the model is the usual abelian Chern–Simons theory.
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The primary operator (88) is Poincare-invariant, so that the space-time translations are symmetries
of the model. The series of derived symmetries reads

N(β, ξ; ∗d) =
n−1∑
p=0

ξμβp(∗d)p∂μ. (90)

The corresponding set of conserved tensors has the form

Tμv(β) =
1
2

n−1∑
p,q=0

Cp,q(α, β)(F(p)μF(q)ν + F(p)μF(q)ν − ημνηρσF(p)ρF(q)σ), (91)

all of the space-time indices are raised and lowered by the Minkowski metric, and the following
notation is used:

F(p) = (∗d)pA, p = 0, . . . , n− 1. (92)

The quantity C(α,β) (91) is the Bezout matrix of the characteristic polynomial of the model and the
characteristic polynomial of the symmetry. It is defined by the generating relation,

Cp,q(α, β) = ∂p+q

∂pz∂qu

(
M(z)N(u)−M(u)N(z)

z−u

)∣∣∣∣∣
z=u=0

,

M(z) ≡ n∑
p=1

αpzp, N(z) ≡ n−1∑
p=0

βpzp+1.
(93)

where z and u are two independent variables. The individual conserved tensors in the set (91) can be
found by the following receipt:

(Tp)μν =
∂Tμν(β)
∂βp

, p = 0, . . . , n− 1. (94)

In this set, the quantities (Tp)μν, p = 0, . . . , n − 2, are independent, while

(Tn−1)
μν

= −
n−2∑
p=0

αp

αn
(Tp)μν. (95)

We mention this fact to illustrate possible dependence among conserved quantities in the class of
gauge models. We also notice that the set of the conserved currents of the extended Chern–Simons
model (87) was introduced in the work [25], while the compact form (91)–(94) is proposed in [34].

The structure of the conserved currents can be studied along the lines of the previous section.
The components (50) are introduced by the standard rule,

Ak = Λk(∂)A, Λk(∂) = αn

r∏
i=1,i�k

(∗d− λi)
mi , k = 1, . . . , r. (96)

The corresponding conserved quantities (55) are determined by Formulas (91)–(94) with

M = (z− λk)
mk , Q = (z− λk)

l, k = 1, . . . , r, l = 0, . . . , mk − 1. (97)

These conserved currents can be found for each particular value of the roots. Without loss
of generality we assume that the zero root corresponds to k = 1, while all the other numbers λk
are non-zero.
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As for the structure of the conserved current, we mention that the contribution with the highest
derivative has the form

(Tk;l)
μν

= 1
2 (−λ)mk(F(mk−1)μ

k F(l)ν
k + F(mk−1)ν

k F(l)μ
k − ημνηρσF(mk−1)ρ

k F(l)σ
k ) + . . . ,

F(l)
k = (∗d− λk)

lΛkA, k = 1, . . . , r, l = 0, . . . , mk − 1.
(98)

The dots denote all the contributions with lower derivatives. These conserved quantities cannot
be bounded unless l = mk − 1. For l = mk − 1, expressions (98) are exact with no dotted terms, and the
corresponding conserved quantities are bounded.

As is seen from Formula (98), the leading representatives Tk;0 in the conserved-quantity series
are bounded. For simple zero roots the corresponding conserved quantity is the Chern–Simons
energy, which is trivial. The additional conserved currents are associated with multiple roots. In the
case of non-zero root, all these conserved quantities are independent and unbounded. In the case
of zero roots, the additional quantity has a bounded 00-component (It is the canonical energy of
3d electrodynamics, which is known to be bounded), while all the other independent entries are
independent and unbounded. This means that all of the additional conserved quantities in the set
(56) are unbounded if the multiple zero root has a multiplicity greater than two. The subseries (61) of
conserved quantities with the bounded 00-component has the form

( j+)μ(β; ξ) =
r∑

k=2

βk;0ξν(Tk;0)
μν

+ β1;1ξν(T1;1)
μν

. (99)

The characteristic of the bounded-conserved tensor series reads

N+(β; ξ) = −
r∑

k=2

sgn(λk)βk;0Λk(∗d)L(ξ) + β1;1(∗d)Λ1(∗d)L(ξ). (100)

This is not the general representative of a characteristic series (90), because it involves fewer entries.
Let us discuss the stability of the model. The series (40) of the Lagrange anchors for the extended

Chern–Simons model has the following form:

V(γ; ∗d) =
n−1∑
p=0

γp(∗d)p, (101)

with γ0, . . . , γn − 1 being real numbers. All the entries of the series are non-trivial. The Lagrange
anchor (101) takes the characteristic (100) into a symmetry by the rule (27). This symmetry is the
space-time translation if the condition (42) is satisfied. The general trivial symmetry in the considered
case reads

Ltriv(ξ; ∗d) = LξK(δ; ∗d)M−(α; ∗d), M−(α; ∗d) =
n∑

p=1

αp( ∗ d)p−1, (102)

where K is an arbitrary polynomial in *d. To ensure trivialization of this symmetry, one can use the
Cartan formula for the Lie derivative,

LξK(δ; ∗d)M−(δ; ∗d) = (iξd + diξ)K(δ; ∗d)M−(δ; ∗d) =
= iξ ∗K(δ; ∗d)M(δ; ∗d) + diξK(δ; ∗d)M−(δ; ∗d). (103)

Substituting (100), (101), and (102) into (47), we get the equation

V(γ; ∗d)N+(β; ∗d) −K(δ; ∗d)M−(α; ∗d) = id, (104)
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where the constants γ, δ are unknown. In terms of characteristic polynomials of the Lagrange anchor
and symmetry, the following equation is relevant:

V(γ; z)N+(β; z) −K(δ; z)M−(α; z) = 1. (105)

It is consistent if N+ and M− have no common roots. The following restriction on the multiplicity
of roots is implied:

m1 = 1, 2, mk = 0, 1, k = 2, . . . , r. (106)

In this case, all the non-zero roots should be simple and real, and the zero root should have a
multiplicity of one or two. This requirement is less restrictive than the absence of a common root
between N+ and the characteristic polynomial of the derived theory, which has the place in case of
non-gauge systems.

7. Conclusions

In this article, we have studied the stability of the class of relativistic higher-derivative theories of
derived type from the viewpoint of a more general correspondence between symmetries and conserved
quantities, which is established by the Lagrange anchor. Assuming that the wave operator of the linear
model is the n-th-order polynomial in the lower-order operator, we have obtained the following results.
First, we observed that n-parameter series of second-rank conserved tensors and Lagrange anchors are
admissible by the derived model. The canonical energy, which is unbounded, is included into the series
in all of the instances. The other integral of motion can be bounded or unbounded depending on the
structure of the roots of the characteristic polynomial. The general conserved tensor in the series can
be connected with the space-time symmetries by an appropriate Lagrange anchor. Second, we studied
the stability of higher-derivative dynamics from the viewpoint of correspondence between the time
translation symmetry and bounded-conserved quantities. It has been observed that this relationship
can be established if all of the roots of the characteristic polynomial are real and simple. For multiple
roots, bounded-conserved quantities are admissible, but they are unrelated with the time translation.

Our stability analysis is applicable to free models. The real issue is the stability of higher-derivative
dynamics at the non-linear level. This subject has been studied in many works and we cite recent
papers [3–5,35,36] and references therein. The method of proper deformation [37] has been proposed
to systematically deform the equations of motion and conserved quantities. Once this method uses the
Lagrange anchor construction it can be used to deform bounded-conserved tensors, which are found
in this paper. In doing so, the stability of linear higher-derivative models, which are studied in the
present paper, can be extended at the non-linear level.
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Appendix A

In this appendix, we demonstrate that the general bounded-conserved tensor (79) in the theory
of the higher-derivative scalar field with different masses (74) can be connected with the space-time
translations by the appropriate Lagrange anchor. To solve the problem, we find the characteristic
polynomials V(γ,z) and K(δ,z) that satisfy condition (45). In this case, the Lagrange anchor is defined
by the Formula (40), with W being the d’Alembertian.
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At first, we identify all the ingredients in (45), including the characteristic polynomials of the
wave operator and characteristic,

M(μ; z) =
n∏

p=1
(z + μ2

p), N+(β; z) =
n∑

p=1
βpΛp(z), V(γ; z) =

n∑
p=1

γpΛp(z),

K(δ; z) =
n−2∏
p=0

δpzp, Λp(z) ≡
n∏

q=1,q�p
(z + μ2

q).
(A1)

Here, the expressions M(μ;z) and N(β;z) are fixed by the model parameters and the choice of the
selected representative in the conserved tensor series, while γ, δ are unknown constants. The quantities
Λp(z) denote characteristic polynomials of operators (50). By construction, Λp(z) form the basis in the
space of polynomials of order n − 1 in the variable z. In this setting, the chosen ansatz for V(γ;z) is a
different parameterization of Lagrange anchor series (40).

The defining Equation (45), (A1) for the characteristic polynomial V(γ;z) has the form

n∑
p=1

n∑
q=1

βpγqΛp(z)Λq(z) −K(δ; z)M(μ; z) = 1. (A2)

From here, the polynomial K(δ,z) is immediately found,

K(δ; z) =
n∑

p=1

n∑
q=1

βpγqΛpq(z), Λpq(z) =
∏
r�p,q

(z + μ2
r ). (A3)

As K(δ,z) is the fraction of V(γ;z)·N(β,z) and M(μ;z), no restrictions on the parameters γ in the
Lagrange anchor appear at this step. After that we estimate left- and right-hand sides of the relation
(A2) for

z = −μ2
p, p = 1, . . . , n, (A4)

being the roots of characteristic polynomial. We arrive to the following system of equations:

βpγpΛ2
p(−μ2

p) = 1, p = 1, . . . , n. (A5)

From here, the parameters γ are determined,

γp =
1

βpΛ2
p(−μ2

p)
. (A6)

This solution is well-defined since βp > 0, and Λp(−μp
2)’s are non-zero. Moreover, we observe that

γp > 0. (A7)

The Lagrange anchor, being defined by the characteristic polynomial V(γ;z) (A1), has the form

V(γ; z) =
n∑

p=1

1

βpΛ2
p(−μ2

p)
Λp

(
∂2

∂xμ∂xμ

)
. (A8)

This Lagrange anchor is non-canonical because the coefficient at the highest power of the primary
operator is positive.
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Abstract: In this paper, symmetry analysis is extended to study nonlocal differential equations.
In particular, two integrable nonlocal equations are investigated, the nonlocal nonlinear Schrödinger
equation and the nonlocal modified Korteweg–de Vries equation. Based on general theory, Lie point
symmetries are obtained and used to reduce these equations to nonlocal and local ordinary differential
equations, separately; namely, one symmetry may allow reductions to both nonlocal and local
equations, depending on how the invariant variables are chosen. For the nonlocal modified
Korteweg–de Vries equation, analogously to the local situation, all reduced local equations are
integrable. We also define complex transformations to connect nonlocal differential equations and
differential-difference equations.

Keywords: continuous symmetry; symmetry reduction; integrable nonlocal partial differential equations

1. Introduction

Symmetry has proved to be fundamentally important in understanding the solutions of differential
equations (see, e.g., [1–5]). It also reveals the integrability of partial differential equations (PDEs);
for instance, the Ablowitz–Ramani–Segur conjecture stated that every ordinary differential equation
(ODE) obtained by an exact reduction of an integrable evolution equation solvable by inverse scattering
transforms is of the P-type, i.e., ODEs without movable critical points [6]. In this paper, powerful
symmetry techniques are extended to study nonlocal differential equations with space and/or time
reflections. This can not only provide insights for obtaining analytic solutions, but also reveal the
integrability of the nonlocal equations. After writing down a general theory in Section 2, two integrable
nonlocal differential equations—the nonlocal nonlinear Schrödinger (NLS) equation [7] and the
nonlocal modified Korteweg–de Vries (mKdV) equation [8]—are separately investigated as illustrative
examples. The results are immediately applicable to the many nonlocal differential equations proposed
in the recent literature (see, e.g., [9–13].)

The nonlocal NLS equation

i qt(x, t) + qxx(x, t) + 2q2(x, t)q∗(−x, t) = 0, (1)

was derived by Ablowitz and Musslimani [7] by reduction of the AKNS system. The nonlocal NLS
equation admits a great number of good properties that the classical NLS equation possesses, such as
being PT-symmetric, admitting a Lax-pair and infinitely many conservation laws, and being solvable
using inverse scattering transforms. Integrable nonlocal systems have recently received a great
amount of attention with many newly-proposed models (e.g., the nonlocal vector NLS equation [13], a
multi-dimensional extension of the nonlocal NLS equation [10], the nonlocal sine-Gordon equation, the
nonlinear derivative NLS equation and related systems [9], the nonlocal mKdV equation [8], Alice–Bob
physics [11], and the nonlocal Sasa–Satsuma equation [12], to mention only a few). Solutions of these
systems have also been explored by many scholars; see, for example, [8,12,14–19].

Symmetry 2019, 11, 884; doi:10.3390/sym11070884 www.mdpi.com/journal/symmetry42
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One issue, as Ablowitz and Musslimani have noticed [7,9], is that reductions of nonlocal equations
amount to nonlocal ODEs; for example, nonlocal Painlevé-type equations. In this paper, we show
alternative ways which allow us to avoid such an inconvenience. We, first, classify all Lie point
symmetries of the nonlocal NLS Equation (1) and the nonlocal mKdV equation [8]

ut(x, t) + u(x, t)u(−x,−t)ux(x, t) + uxxx(x, t) = 0. (2)

Then, possible symmetry reductions are conducted for both equations. We find that one may reduce a
nonlocal differential equation to both nonlocal and local ODEs by choosing the invariant variables
in different ways. In other words, we are able to kill all nonlocal terms in the reduced ODEs by
choosing the invariant variables in a proper manner. In particular, for the nonlocal mKdV equation,
all reduced local ODEs are integrable. These results are included in Sections 3 and 4. In Section 5, simple
transformations are defined to connect nonlocal differential equations with differential-difference
equations (DDEs).

2. The Linearized Symmetry Condition for Nonlocal Differential Equations

We, first, introduce the multi-index notations needed for the symmetry techniques of local
differential equations (see, e.g., [5]), which will be extended to nonlocal differential equations.

Let x = (x1, x2, . . . , xm) ∈ Rm be the independent variables and let u = (u1, u2, . . . , un) ∈ Rn

be the dependent variables. Note that, in many occasions, people also tend to use (x, t) to denote
independent variables as the space x and time t; this convention will occur in the next sections but,
for now, we are happy without distinguishing one another. Partial derivatives of uα are written in the
multi-index form uα

J , where J = (j1, j2, . . . , jm) with each index ji a non-negative integer, denoting the
number of derivatives with respect to xi; namely,

uα
J =

∂|J|uα

∂(x1)j1 ∂(x2)j2 . . . ∂(xm)jm
, (3)

where |J| = j1 + j2 + · · ·+ jm. Consider a one-parameter group of Lie point transformations as follows:

x̃ = x̃(ε; x, u), ũ = ũ(ε; x, u), (4)

subject to x̃|ε=e = x, ũ|ε=e = u. Here, ε = e is the identity element of the one-parameter group. Define
the total derivative with respect to xi as

Di =
∂

∂xi + ∑
α,J

uα
J+1i

∂

∂uα
J

, (5)

where 1i is the m-tuple with only one non-zero entry 1 in the i-th position. The notation ∂xi = ∂
∂xi and

so forth will also be used. The corresponding infinitesimal generator is

v = ξ i(x, u)∂xi + φα(x, u)∂uα , (6)

where

ξ i =
dx̃i

dε

∣∣∣
ε=e

, φα =
dũα

dε

∣∣∣
ε=e

. (7)

Note that the Einstein summation convention is used here (and elsewhere, if necessary).
The prolonged generator pr v can be written in terms of u, ξ, φ, and their derivatives, as:

pr v = v + ∑
α,|J|≥1

φα
J (x, [u])∂uα

J
, (8)
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where [u] is shorthand for u and finitely many of its partial derivatives, and the coefficients are
recursively given by

φα
J+1i

(x, [u]) = Diφ
α
J (x, [u])− (Diξ

j(x, u))uα
J+1j

. (9)

It is often more convenient to equivalently write prolonged generators in terms of the so-called
characteristics of symmetries Qα = φα − ξ iuα

1i
; that is

pr v = ξ iDi + ∑
α,J
(DJQα)∂uα

J
. (10)

Here, we use the shorthand notation DJ = Dj1
1 Dj2

2 · · · Djm
m for J = (j1, j2, . . . , jm). The invariance

of a system of local differential equations

{Fk(x, [u]) = 0}l
k=1, (11)

corresponding to the transformations (4), leads to the linearized symmetry condition

pr v(Fk(x, [u])) = 0, whenever {Fk(x, [u]) = 0}l
k=1, (12)

where v is the infinitesimal generator (6).
To extend the above analysis to the nonlocal equations of our interest, we define the following

reflections for i = 1, 2, . . . , m,

Refi : (x1, . . . , xi, . . . , xm) 	→ (x1, . . . ,−xi, . . . , xm) (13)

and
Refi : f (x1, . . . , xi, . . . , xm) 	→ f (x1, . . . ,−xi, . . . , xm), (14)

for a function f defined on proper domains. In particular,

Refi uα(x1, . . . , xi, . . . , xm) = uα(x1, . . . ,−xi, . . . , xm), α = 1, 2, . . . , n. (15)

A system of nonlocal differential equations is, then, given by

A =
{

Fk

(
x, [u], [Refi u], [Refi ◦Refj u]i<j, . . . , [u(−x)]

)
= 0

}l

k=1
. (16)

For simplicity, we will sometimes omit the arguments if they are local variables x. Let us consider
transformations of the form (4) with the infinitesimal generator (6). Now, the prolongation formula
involving the reflections becomes

prRef v = v + ∑
α,|J|≥1

φα
J

∂

∂uα
J

+ ∑
i,α,|J|≥1

(
Refi φα

J

) ∂

∂
(

Refi uα
J

) + ∑
i<j,α,|J|≥1

(
Refi ◦Refj φα

J

) ∂

∂
(

Refi ◦Refj uα
J

)
+ · · ·+ ∑

α,|J|≥1
φα

J (−x, [u(−x)])
∂

∂uα
J (−x)

,

(17)

where the functions φα
J = φα

J (x, [u]) are again defined by (9). Invariance of the nonlocal system (16)
with respect to the transformations (4) is equivalent to the linearized symmetry condition that

prRef v
(

Fk

(
x, [u], [Refi u], [Refi ◦Refj u]i<j, . . . , [u(−x)]

))
= 0, whenever A holds, (18)

44



Symmetry 2019, 11, 884

which are the first order terms about ε in the Taylor expansions of the nonlocal system (16) evaluated
at the new variables x̃, ũ, and so forth.

In the next two sections, we will apply this general theory to two integrable nonlocal differential
equations: The nonlocal NLS equation and the nonlocal mKdV equation.

3. The Nonlocal NLS Equation

An integrable nonlocal NLS equation was proposed by Ablowitz and Musslimani [7]:

i qt(x, t) + qxx(x, t) + 2q2(x, t)q∗(−x, t) = 0, (19)

where ∗ denotes the complex conjugate and q(x, t) is a complex-valued function of real variables x
and t. They showed that it possesses a Lax pair and infinitely many conservation laws, and is solvable
by the inverse scattering transform. We study its continuous symmetries in this section.

3.1. Lie Point Symmetries

As q(x, t) is complex-valued, two alternative approaches may be used to calculate its
continuous symmetries. Under the co-ordinate (x, t, q(x, t), q∗(x, t)), we consider the following
local transformations

x 	→ x + εξ (x, t, q(x, t), q∗(x, t)) + O(ε2),

t 	→ t + ετ (x, t, q(x, t), q∗(x, t)) + O(ε2),

q(x, t) 	→ q(x, t) + εφ (x, t, q(x, t), q∗(x, t)) + O(ε2).

(20)

Again, we omit the arguments if they are local variables (x, t). The corresponding infinitesimal
generator is

v = ξ (x, t, q, q∗) ∂x + τ (x, t, q, q∗) ∂t + φ (x, t, q, q∗) ∂q. (21)

From Section 2, we know that the prolongation formula for an infinitesimal generator ξ(x, t, u)∂x +

τ(x, t, u)∂t + φ(x, t, u)∂u of local differential equations is (see, also, [5,20])

ξDx + τDt + Q∂u + (DxQ)∂ux + (DtQ)∂ut + · · ·+
(

Dk
xDl

tQ
)

∂(Dk
x Dl

tu)
+ · · · , (22)

where the characteristic function Q is Q = φ − ξux − τut, Dk
x denotes k times of total derivatives with

respect to x and Dl
t denotes l times of total derivatives with respect to t. For the nonlocal NLS equation,

we then adopt the following prolongation formula:

prRef v = v + φ∗ (−x, t, q(−x, t), q∗(−x, t)) ∂q∗(−x,t) + (Dtφ − (Dtξ)qx − (Dtτ)qt) ∂qt

+
(

D2
xφ − (D2

xξ)qx − 2(Dxξ)qxx − (D2
xτ)qt − 2(Dxτ)qtx

)
∂qxx + · · · .

(23)

It is generalised from the prolongation formula (22) for symmetries of local differential equations with
real variables, adding the conjugate terms and their prolongations.

A vector field v generates a group of symmetries for the nonlocal NLS equation if the following
linearized symmetry condition

prRef v
(

i qt + qxx + 2q2q∗(−x, t)
)
= 0 (24)

holds identically for all solutions of the nonlocal NLS Equation (19). We, first, expand the left hand
side of (24) and obtain

i (Dtφ − (Dtξ)qx − (Dtτ)qt) + D2
xφ − (D2

xξ)qx − 2(Dxξ)qxx − (D2
xτ)qt − 2(Dxτ)qtx

+ 4qq∗(−x, t)φ + 2q2φ∗ (−x, t, q(−x, t), q∗(−x, t)) = 0,
(25)
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restricted to solutions of the nonlocal NLS equation. We, then, substitute qt = i
(
qxx + 2q2q∗(−x, t)

)
and q∗t = − i

(
qxx + 2q2q∗(−x, t)

)∗, leading to a polynomial for qx, q∗x, qxx, q∗xx, and so forth, which
equals zero identically. It is necessary and sufficient for the coefficients of the polynomial to vanish,
amounting to a system of PDEs for ξ, τ, and φ, as follows:

Dxτ = 0, ξq = 0, ξq∗ = 0, φq∗ = 0, φqq = 0, τt − 2ξx = 0, i ξt + ξxx − 2φxq = 0,

i φt + φxx − 2
(
φq − τt

)
q2q∗(−x, t) + 4qq∗(−x, t)φ + 2q2φ∗ (−x, t, q(−x, t), q∗(−x, t)) = 0.

(26)

The general solution of the above system is

ξ = −C1x + i C2t + C4, τ = −2C1t + C5, φ =

(
C1 + i C3 −

1
2

C2x
)

q, (27)

where C1, C2, and C3 are real-valued, while C4 and C5 are complex-valued. Therefore, the symmetries
of the nonlocal NLS equation are generated by the following five infinitesimal generators

∂x, ∂t, i q∂q, − x∂x − 2t∂t + q∂q, i t∂x −
1
2

xq∂q. (28)

They can, equivalently, be cast into evolutionary type (respectively), as follows

− qx∂q, i
(

qxx + 2q2q∗(−x, t)
)

∂q, i q∂q,(
q + xqx + 2 i t

(
qxx + 2q2q∗(−x, t)

))
∂q,

(
−1

2
xq − i tqx

)
∂q.

(29)

Alternatively, we can define q(x, t) = u(x, t)− i v(x, t), where u(x, t) and v(x, t) are real-valued
functions, and use the symmetry prolongation formula for real-valued differential equations to
calculate the symmetries. Now, the infinitesimal generator is

v = ξ(x, t, u, v)∂x + τ(x, t, u, v)∂t + φ(x, t, u, v)∂u + η(x, t, u, v)∂v, (30)

and the equation becomes⎧⎨⎩ ut − vxx − 4uvu(−x, t) + 2
(
u2 − v2) v(−x, t) = 0,

vt + uxx + 4uvv(−x, t) + 2
(
u2 − v2) u(−x, t) = 0.

(31)

The following symmetries are obtained for the system above, using the linearized symmetry
condition (18) again:

∂x, ∂t, − v∂u + u∂v, − x∂x − 2t∂t + u∂u + v∂v. (32)

They correspond to the first four generators of (28). The last one obtained above does not appear
here, since it will transform the real-valued x to a complex-valued argument as ξ = i t.

3.2. Symmetry Reductions

Next, we will use the symmetries to conduct possible reductions. We choose to use the
symmetries (28) with complex variables. The simplest reduction one would expect is probably
traveling-wave solutions, which are difficult to obtain here, as the invariant x − at becomes −x − at
at (−x, t).

Consider the most general infinitesimal generator

a∂x + b∂t + c i q∂q + d
(
−x∂x − 2t∂t + q∂q

)
+ e

(
i t∂x −

1
2

xq∂q

)
, (33)
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where a, b, c, d, and e are arbitrary constants. The invariant variables can be found by solving the
characteristic equations

dx
a − dx + i et

=
dt

b − 2dt
=

dq
i cq + dq − 1

2 exq
, (34)

and we summarize the results as follows. Note that the equation depends on q(x, t) and q∗(−x, t)
simultaneously, and we must select the constants properly to make the invariants meaningful.

• If d = b = 0 (and a2 + e2 �= 0), we have

y = t,

q(x, t) = exp
{

x(4 i c − ex)
4(i et + a)

}
p(t).

(35)

When a = 0 and e �= 0, the reduced equation is

i e2 p′(t) +
ie2

2t
p(t) +

c2

t2 p(t) + 2|p(t)|2 p(t) = 0. (36)

• If d = 0 and b �= 0, we have

y = bx − 1
2

i et2 − at,

q(x, t) = exp
{
− ae

4b2 t2 − e
2b2 ty + i

(
c
b

t − e2

12b2 t3
)}

p(y).
(37)

As b �= 0, we must choose a = e = 0. Next, we consider the corresponding reductions to nonlocal
and local ODEs separately (here and throughout).

– Reduction to a nonlocal ODE. If we choose y = x and q(x, t) = exp(i ct)p(y), we obtain the
nonlocal Painlevé-type equation as shown in [7]:

p′′(y)− cp(y) + 2p2(y)p∗(−y) = 0. (38)

Note that, since p(y) is invariant, and so is p(−y); namely, the nonlocal invariant is

p(−y) = exp(− i ct)q(−x, t). (39)

– Reduction to a local ODE. Alternatively, we may choose the invariants as y = x2 and
q(x, t) = exp(i ct)p(y). The reduced equation is a local ODE

4yp′′(y) = cp(y)− 2p′(y)− 2|p(y)|2 p(y). (40)

If we assume that p(y) is real, the solution of the above equation can be expressed, using the
Jacobi elliptic function, as

p(y) = C2

√
c

C2
2 + c − 1

sn

(√
c

C2
2 + c − 1

(√
−(c − 1)y + C1

)
,

C2√
c − 1

)
, (41)

where C1 and C2 are integration constants. The above equation can actually be written in a
simpler form by introducing y = z2 and p̂(z) = p(y); the resulting equation is

p̂′′(z) = cp̂(z)− 2| p̂(z)|2 p̂(z). (42)
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• If d �= 0, we have

y =
d2x − ad + i e (dt − b)

d2
√
|2dt − b|

,

q(x, t) = exp
{(

ae
4d2 − 1

2

)
ln |2dt − b|+ e

2d
y
√
|2dt − b|

}
×

exp
{
− i

e2

4d2 t + i
(

be3

8d3 − c
2d

)
ln |2dt − b|

}
p(y).

(43)

Now, we must set a = e = 0.

– Reduction to a nonlocal ODE. Let

y =
x√

|2dt − b|
,

q(x, t) = exp
{
−
(

1
2
+

i c
2d

)
ln |2dt − b|

}
p(y).

(44)

The reduced equation is a nonlocal ODE

p′′(y) = (i d − c) p(y) + i dyp′(y)− 2p2(y)p∗(−y). (45)

– Reduction to a local ODE. If we choose the invariant variables by

y =
x2

2dt − b
,

q(x, t) = exp
{
−
(

1
2
+

i c
2d

)
ln |2dt − b|

}
p(y),

(46)

the reduced equation is local; that is,

4yp′′(y) = (i d − c)p(y) + (2 i dy − 2)p′(y)− 2|p(y)|2 p(y). (47)

Introducing y = z2 and p̂(z) = p(y) changes the equation to

p̂′′(z) = (i d − c) p̂(z) + i dzp̂(z)− 2| p̂(z)|2 p̂(z). (48)

4. The Nonlocal mKdV Equation

The nonlocal mKdV equation we consider in this paper is (see, for example, [8])

ut(x, t) + u(x, t)u(−x,−t)ux(x, t) + uxxx(x, t) = 0. (49)

Assuming that the infinitesimal generator reads

ξ(x, t, u)∂x + τ(x, t, u)∂t + φ(x, t, u)∂u + φ(−x,−t, u(−x,−t))∂u(−x,−t), (50)

its prolongation can be obtained using (17). From a similar procedure for applying the linearized
symmetry condition (18) to the nonlocal NLS equation above, a straightforward calculation gives the
following infinitesimal generators for symmetries of the nonlocal mKdV equation:

∂x, ∂t, − x∂x − 3t∂t + u∂u. (51)
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We follow the same approach as for the nonlocal NLS equation to search for symmetry reductions.
The most general symmetry generator can be denoted by

a∂x + b∂t + c (−x∂x − 3t∂t + u∂u) , (52)

where a, b, and c are arbitrary constants. The characteristic equations read

dx
a − cx

=
dt

b − 3ct
=

du
cu

. (53)

• When c = 0, it corresponds to the traveling-wave case.

– Reduction to a nonlocal ODE. The corresponding invariants are

y = bx − at and v(y) = u(x, t). (54)

The reduced equation is

b3v′′′(y) + bv(y)v(−y)v′(y)− av′(y) = 0. (55)

When b = 0, we obtain a constant solution; when b �= 0, without loss of generality, it can be
chosen as b = 1; namely

v′′′(y) + v(y)v(−y)v′(y)− av′(y) = 0. (56)

In principle, it can be integrated once, as it admits a symmetry generated by ∂y, but will
involve the inverse of nonlocal functions. We will show some of its special solutions with the
assumption a > 0.

∗ Exponential solutions:

v(y) = C1 exp(C2y) subject to C2
1 + C2

2 = a. (57)

∗ Soliton solutions:

v(y) = ± 2
√

6a
exp(

√
ay) + exp(−√

ay)
. (58)

– Reduction to a local ODE. We may, alternatively, introduce the invariants in another way;
namely, y = (bx − at)2 and v(y) = u(x, t). Now, the reduced equation reads

4b3yv′′′(y) + 6b3v′′(y) + bv2(y)v′(y)− av′(y) = 0, (59)

which can be integrated once:

4b3yv′′(y) + 2b3v′(y) +
b
3

v3(y)− av(y) + C1 = 0. (60)

This equation can be further simplified by introducing y = z2 and v̂(z) = v(y), amounting to

b3v̂′′(z) +
b
3

v̂3(z)− av̂(z) + C1 = 0. (61)

The final equation is solvable by letting v̂(z) = w(v̂); the general solution is

z + C3 = ±
∫ v̂(z)

0

√
6b3/2√

−bs4 + 6as2 − 12C1s + 6C2b3
ds, (62)
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where C1, C2, and C3 are integration constants.

• If c �= 0, the invariants are

y = (cx − a)(3ct − b)−1/3 and v(y) = (3ct − b)1/3u(x, t). (63)

Now, we must set a = b = 0; namely, reduction related to the generator −x∂x − 3t∂t + u∂u. The
related invariants are y = t−1/3x and v(y) = t1/3u(x, t), and we obtain the reduced equation as a
local ODE

v′′′(y)− v2(y)v′(y)− v(y) + yv′(y)
3

= 0. (64)

It can be integrated once to the second Painlevé equation

v′′(y) =
1
3

v3(y) +
1
3

yv(y) + C. (65)

Now, we are able to conclude that all reduced local ODEs for the nonlocal mKdV equation are
integrable, analogously to the local situation.

Remark 1. In [7], the authors pointed out that similarity reduction of the nonlocal NLS equation may lead to
nonlocal ODEs. However, as shown by the two illustrative examples, such an inconvenience can be overcome by
choosing the invariant variables (or functions) in a proper manner and the reduced ODEs become local.

5. A Remark on Transformations Between Nonlocal Differential Equations and
Differential-Difference Equations

In [21], the authors introduced variable transformations to connect nonlocal and local integrable
equations. For instance, the nonlocal NLS equation becomes a local NLS equation under the transformation

x = i x̂, t = −t̂, q(x, t) = q̂(x̂, t̂). (66)

The nonlocal complex mKdV equation becomes the local (classical) complex mKdV equation
under the transformation

x = i x̂, t = − i t̂, u(x, t) = û(x̂, t̂). (67)

In this section, we will show the relations between nonlocal differential equations and DDEs
through variable transformations.

For the nonlocal NLS equation, we consider the following transformations

x = exp(x̂), t = t̂, q(x, t) = q̂(x̂, t̂), (68)

where the variable x̂ is imaginary, making x imaginary too. Let us drop the hats (always) and the
nonlocal NLS equation becomes a DDE

i qt + exp(−2x) (qxx − qx) + 2q2q∗(x + i π, t) = 0. (69)

Let us introduce the following transformations

x = exp(x̂), t = exp(t̂), u(x, t) = û(x̂, t̂), (70)

where the variables x̂ and t̂ are both imaginary. The nonlocal mKdV equation becomes

exp(−t)ut + exp(−x)uu(x + i π, t + i π)ux + exp(−3x) (uxxx − 3uxx + 2ux) = 0. (71)
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Under the transformation y = exp(ŷ), v(y) = v̂(ŷ), the reduced Equation (55) becomes

b3 exp(−2y)
(
v′′′(y)− 3v′′(y) + 2v′(y)

)
+ (bv(y)v(y + i π)− a) v′(y) = 0. (72)

These DDEs can further be re-scaled and normalized. For example, taking y = i πŷ and v(y) =
v̂(ŷ), Equation (72) becomes

b3 exp(− i 2πy)
(
− 1

π2 v′′′(y) +
3 i
π

v′′(y) + 2v′(y)
)
+ (bv(y)v(y + 1)− a) v′(y) = 0. (73)

Similar DDEs were investigated in [22], but the variables were real-valued therein. In the same
manner, the above DDEs transformed from the nonlocal NLS and mKdV equations can also be
re-scaled, respectively, as follows:

i qt + exp(− i 2πx)
(
− 1

π2 qxx +
i
π

qx

)
+ 2q2q∗(x + 1, t) = 0, (74)

and

exp(− i πt)ut + exp(− i πx)uu(x + 1, t + 1)ux + exp(− i 3πx)
(
− 1

π2 uxxx +
3 i
π

uxx + 2ux

)
= 0. (75)

Remark 2. The above examples show that simple transformations allow us to transfer nonlocal equations
to DDEs. Apparently, similar transformations can be immediately introduced for other nonlocal differential
equations/systems using the same manner.

6. Conclusions

In this paper, symmetry analysis was extended to study nonlocal differential equations.
The general theory presented in Section 2 is applicable to any nonlocal differential equations involving
space and/or time reflections. In particular, two integrable nonlocal equations—the nonlocal NLS
equation and the nonlocal mKdV equation—served as illustrative examples. All Lie point symmetries
of these two nonlocal PDEs were obtained and possible symmetry reductions to nonlocal and local
ODEs were conducted. It was shown that, at least for the two illustrative examples, one can always
carefully choose the invariant variables to ensure that all reduced differential equations are local.

Finally, we introduced some local transformations which transfer nonlocal differential equations to
DDEs; there is potential, hence, to extend the existing theory for DDEs to nonlocal differential equations;
for instance, the symmetries, conservation laws, and integrability of DDEs (see, for example, [22–27]).
We will explore more in this direction in a separate project.
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Abstract: We study differential systems for which it is possible to establish a correspondence
between symmetries and conservation laws based on Noether identity: quasi-Noether systems.
We analyze Noether identity and show that it leads to the same conservation laws as Lagrange
(Green–Lagrange) identity. We discuss quasi-Noether systems, and some of their properties,
and generate classes of quasi-Noether differential equations of the second order. We next introduce
a more general version of quasi-Lagrangians which allows us to extend Noether theorem.
Here, variational symmetries are only sub-symmetries, not true symmetries. We finally introduce
the critical point condition for evolution equations with a conserved integral, demonstrate examples
of its compatibility, and compare the invariant submanifolds of quasi-Lagrangian systems with those
of Hamiltonian systems.

Keywords: symmetries; conservation laws; Noether operator identity; quasi-Noether systems;
quasi-Lagrangians

1. Introduction

For variational systems the relation between symmetries of the Lagrangian function
and conservation laws was known from the classical Noether result [1]. It was shown that there
is one-to-one correspondence between variational symmetries (symmetries of variational functional)
and local conservation laws of a differential system, [2].

In this paper, we study differential systems that allow a Noether-type association between
its conservation laws and symmetries (quasi-Noether systems). Our approach is based on the Noether
operator identity [3] that relates the infinitesimal transformation operator to the Euler and divergence
operators. The Noether operator identity has been shown to provide a Noether-type relation between
symmetries and conservation laws not only for Lagrangian systems, but also for a large class
of differential systems that may not have a well-defined variational functional, see [4,5].

Noether operator identity was also demonstrated to allow derivation of extension of Second
Noether Theorem for non–Largangian systems possessing infinite symmetry algebras parametrized
by arbitrary functions of all independent variables, [6]. These infinite symmetry algebras were
shown to lead to differetial identities between the equations of the original differential system
and their derivatives.

Recently Noether identity was used to generate relations between sub-symmetries [7]
and corresponding local conservation laws [8] for quasi-Noether systems.

In this paper, we analyze quasi-Noether systems and some of their properties. In Section 2,
we review known correspondence between symmetries and conservation laws for variational systems
from the standpoint of the Noether identity. In Section 3, we discuss this correspondence for a more
general class of differential systems (quasi-Noether systems) that includes non-variational problems.
We review conservation laws obtained with the use of approach based on the Noether identity
and compare them with the results obtained from the Lagrange (Green–Lagrange) identity. We also
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find the class of quasi-Noether evolution equations of the second order, and quasi-linear equations
of the second order. In Section 4, we discuss the concept of quasi-Lagrangian, and use it to prove a new
extension of the Noether theorem to non–Lagrangian systems. In this approach, variational symmetries
of quasi-Lagrangians are only sub-symmetries, and need not be symmetries. We give an example
where all lower conservation laws are generated in this way, but where the previous correspondence
fails. As a geometric application, we compare the invariant submanifolds of quasi-Noether systems
to those of Hamiltonian systems and show that they satisfy opposite containments. To address this
fact we introduce the notion of a critical point of a conserved quantity, and demonstrate examples
of the compatibility of the critical point condition with the time evolution of the PDE system.

2. Symmetries and Conservation Laws of Variational Systems

Let us briefly outline the approach we follow. A system of governing partial differential equations
will be written as

Δa(x, u, u(1), u(2), . . . ) = 0, a = 1, . . . , q,

By a conservation law of the system Δa, we mean the p-tuple (K1, K2, . . . Kp) such that

DiKi(x, u, u(1), u(2), . . . ) .
= 0, (1)

on all solutions of the original system; we denote this type of equality by ( .
=). Here, x = (x1, x2, . . . , xp)

and u = (u1, u2, . . . , uq) are the tuples of independent and dependent variables, respectively; u(r) is
the tuple of rth-order derivatives of u, r = 1, 2, . . . ; Δa and Ki are differential functions, i.e., smooth
functions of x, u and a finite number of derivatives of u (see [2]); i, j = 1, . . . , p, a = 1, . . . , q. We assume
summation over repeated indices.

We let

Di = ∂i + ua
i ∂ua + ua

ij∂ua
ij
+ · · · = ∂i + ua

iJ∂ua
J

be the i–th total derivative, 1 ≤ i ≤ p, the sum extending over all (unordered) multi-indices
J = (j1, j2, ..., jk) for k ≥ 0 and 1 ≤ jk ≤ p.

Two conservation laws K and K̃ are equivalent if they differ by a trivial conservation law [2].
A conservation law DiPi .

= 0 is trivial if a linear combination of two kinds of triviality is taking place: 1.
The p-tuple P vanishes on the solutions of the original system: Pi .

= 0. 2. The divergence identity
is satisfied for any point [u] = (x, u(n)) in the jet space (e.g., div rot u = 0).

We consider smooth functions ua = ua(x) defined on an open subset D ⊂ Rp. Let

S =
∫

D
L(x, u, u(1), . . . ) dpx

be the action functional, where L is the Lagrangian density. The equations of motion are

Ea(L) ≡ Δa(x, u, u(1), . . . ) = 0, 1 ≤ a ≤ q, (2)

where
Ea =

∂

∂ua − ∑
i

Di
∂

∂ua
i
+ ∑

i≤j
DiDj

∂

∂ua
ij
+ · · · (3)

is the a-th Euler (Euler–Lagrange) operator (variational derivative). We call the tuple E = (E1, . . . , En)

the Euler operator. In the notation of [2], we could give it the following form:

Ea = (−D)J
∂

∂ua
J

, 1 ≤ a ≤ q, (4)
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The operator (−D)J is defined here as (−D)J = (−1)kDJ = (−Dj1)(−Dj2) · · · (−Djk ).
The operator Ea annihilates total divergences.

Consider an infinitesimal (one-parameter) transformation with the canonical infinitesimal operator

Xα = αa ∂

∂ua + ∑
i
(Diα

a)
∂

∂ua
i
+ ∑

i≤j
(DiDjα

a)
∂

∂ua
ij
+ · · · = (DJα

a)∂ua
J
. (5)

where αa = αa(x, u, u(1), . . . ), and the sum is taken over all (unordered) multi-indices J. The variation
of the functional S under the transformation with operator Xα is

δS =
∫

D
XαL dpx . (6)

Xα is a variational (Noether) symmetry if

XαL = Di Mi, (7)

where Mi = Mi(x, u, u(1), . . . ) are smooth functions of their arguments. The Noether (operator)
identity [3] (see also, e.g., [9] or [4]) relates the operator Xα to Ea,

Xα = αaEa + DiRi, (8)

Ri = αa ∂

∂ua
i
+

{
∑
k≥i

(Dkαa)− αa ∑
k≤i

Dk

}
∂

∂ua
ik
+ · · · . (9)

The expression for Ri can be presented in a more general form [3,10]:

Ri = (DKαa) (−D)J∂ua
iJK

, (10)

where J and K sum over multi-indices.
Applying the identity (8) with (9) to L and using (7), we obtain

Di(Mi − RiL) = αaΔa, (11)

which on the solution manifold (Δ = 0, DiΔ = 0, . . . )

Di(Mi − RiL) .
= 0, (12)

leads to the statement of the First Noether Theorem: any one-parameter variational symmetry
transformation with infinitesimal operator Xα (5) gives rise to the conservation law (12).

Note that Noether [1] used the identity (11) and not the operator identity (8). The first mention of
the Noether operator identity (8), to our knowledge, was made in [3].

We next consider differential systems that may not have well-defined Lagrangian functions.

3. Symmetries and Conservation Laws of Quasi-Noether Systems

For a general differential system, a relationship between symmetries and conservation laws
is unknown. In [4,5], an approach based on the Noether operator identity (8) was suggested to relate
symmetries to conservation laws for a large class of differential systems that may not have well-defined
Lagrangian functions. In the current paper, we will follow this approach.
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3.1. Approach Using the Noether Operator Identity

We consider q smooth functions u = (u1, u2, ..., uq) of p independent variables x = (x1, x2, ..., xp)

defined on some nonempty open subset of Rp. Consider a system of n �th order differential equations
Δ = (Δ1, Δ2, ..., Δn) for functions u :

Δa(x, u, u(1), u(2), . . . , u(l)) = 0, a = 1, 2, ..., n. (13)

Here, each Δa(x, u, u(1), u(2), . . . , u(l)), a = 1, 2, ..., n is a smooth function of x, u, and all
partial derivatives of each uv, (v = 1, . . . , q) with respect to the xi (i = 1, . . . , p) up to the �th
order (differential function [2]). We assume that system (13) is normal, and totally nondegenerate
(locally solvable at every point, and of maximal rank) [2].

Let Δ(x, u, u(1), u(2), . . . , u(l)) ≡ Δ[u] ≡ Δ, xJ = (xj1 , xj2 , ..., xjk ) and uv
J be partial derivatives,

where J = (j1, j2, ..., jk). Applying the Noether operator identity (8) to a combination of original
equations with some coefficients (differential operators) βa Δa, we obtain

Xα(βaΔa) = αvEv(βaΔa) + DiRi(βaΔa), a = 1, . . . n, v = 1, . . . , q, i = 1, . . . , p. (14)

If our system (13) allows the existence of coefficients βa (cosymmetries) such that

Ev(βaΔa)
.
= 0, a = . . . , n, v = 1, . . . , q (15)

on the solution manifold (Δ = 0, DiΔ = 0, . . . ), then according to (14), each symmetry of the system
Xα will lead to a local conservation law (see [4,5])

DiRi(βaΔa)
.
= 0. (16)

for any differential systems of class (15). In [4], the quantity βaΔa was referred
to as an alternative Lagrangian.

Let us note that the correspondence between symmetries and local conservation laws defined
above for differential systems without well-defined Lagrangian functions may not be one-to-one
or onto, as in the case of variational symmetries and local conservation laws [2], and non-trivial
symmetries may lead to trivial conservation laws. If β generates a conservation law, i.e., E(β · Δ) ≡ 0,
then it was shown in [11] that translation symmetries α = aiui, a = const. lead to trivial conservation
laws if βx = 0.

In general, the nontriviality of a conservation law is determined by the characteristic. To compute
it explicitly, let Xα(β · Δ) = A · Δ and E(β · Δ) = B · Δ for A, B differential operators. Then the Noether
identity and integration by parts yield

A · Δ = Xα(β · Δ) = α · E(β · Δ) + div

= α · (B · Δ) + div

= Δ · (B∗ · α) + div,

(17)

where (B∗)va = (−D)I ◦ BavI is the adjoint operator. Integrating by parts the LHS and rearranging
yields overall

[B∗ · α − A∗(1)] · Δ = div, (18)

where the divergence is equivalent to (16) on solutions, and A∗(1)v = (−D)I AvI .
Thus, the conservation law obtained from Noether identity and corresponding to symmetry Xα

is nontrivial if

B∗ · α − A∗(1) �= 0 (19)
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on solutions of the original system (13).
The condition (15) can be written in a somewhat more general form [5]

Ev(βacΔa)
.
= 0, a, c = 1, . . . n, v = 1, . . . , q. (20)

In terms of the Fréchet derivative operator DΔ and its adjoint D∗
Δ [2]

(DΔ)av = ∑
J

∂Δa

∂uv
J

DJ , (21)

(D∗
Δ)avβa = ∑

J
(−1)kDJ

(
∂Δa

∂uv
J

βa

)
, (22)

the condition (15) was shown in [12] to be related to the condition of self-adjointness of the operator
DΔ (generalized Helmholtz condition)

D∗
Δ − DΔ = 0, (23)

this relationship being:

Ev(βaΔa)
.
= (D∗

Δ − DΔ)avβa, a = 1, . . . n, v = 1, . . . , n. (24)

Expression (24) provides a relationship between the condition (15) for a system to be quasi-Noether
and the existence of a variational functional for a transformed differential system.

The condition (15) can be considered as defining quasi-Noether systems, see also [6]. A system (13)
is quasi-Noether if there exist functions (differential operators) βa such that the condition (15) is satisfied.
In [4], the quantity βvΔv was referred to as an alternative Lagrangian. If coefficients βa generate a
conservation law, they are related to adjoint symmetries [13], and referred to as characteristics of a
corresponding conservation law [2], generating functions [14] or multipliers [15]. In general, we call
them cosymmetries [14] if they satisfy (15).

It should be noted that the condition (15) (for a system to be quasi-Noether and possess
a correspondence between symmetries and conservation laws) was obtained earlier within
an alternative approach based on the Lagrange identity. In [16], the classical Lagrange identity
(Green’s formula) was used for generating conservation laws for a linear differential system.
A condition for the existence of a certain conservation law written in terms of an adjoint
differential operator was presented in [14] within a general framework of algebraic geometry.
In [17], a correspondence between symmetries and conservation laws based on Green’s formula
and a condition similar to (15) was obtained for evolution systems. For the case of point
transformations, this correspondence was discussed in [18]. In [13], the geometric meaning of this
condition was discussed for mechanical systems. In [10], a condition that can be reduced to (15)
was presented for a general differential system.

Note that the condition (15) played a key role in later developed direct method [15]
and the nonlinear self-adjointness approach [19].

3.2. Approach Using Lagrange Identity

Let us briefly describe the alternative approach based on the Lagrange identity and compare
the results with those of the Noether identity approach.

The well-known Lagrange identity is as follows:

βa(DΔ)avαv − αv(D∗
Δ)avβa = DiQi[α, β, Δ], (25)
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where DΔ is the Fréchet derivative of Δ, and D∗
Δ is its adjoint. An explicit expression for the trilinear

fluxes Q[α, β, Δ] was given in [10]:

Qi[α, β, Δ] = (−1)|J|DKαvDJ

(
βa∂uv

iJK
Δa
)

, 1 ≤ i ≤ p.

Using the fact that

(DΔ)avαv = XαΔa, (26)

(see (5), and (21)) we can express (25) as follows:

βaXαΔa − αv(D∗
Δ)avβa = DiQi[α, β, Δ]. (27)

If, for a given system Δ, there exist functions βa and operators Υva = υvaJ DJ such that the following
relationships hold:

(D∗
Δ)avβa = ΥvaΔa, 1 ≤ v ≤ q, (28)

then (D∗
Δ)avβa =̇ 0. Thus, for each symmetry Xα of the system Δ = 0, (XαΔa = ΛabΔb for some

operators Λab = λabJ DJ), Equation (27) provides a corresponding conservation law:

DiQi[α, β, Δ] = (βaΛab − αvΥva)Δa =̇ 0. (29)

We now show that the correspondence between symmetries and conservation laws in terms
of Lagrange identity is equivalent to the one using the Noether identity and leads to the same
conservation laws. Indeed, using the product rule [2]:

Ev(βaΔa) = (D∗
Δ)avβa + (D∗

β)avΔa, 1 ≤ v ≤ q, (30)

in (27) gives:

βaXαΔa − αvEv(βaΔa) + αv(D∗
β)avΔa = DiQi.

Using βaXαΔa = Xα(βaΔa)− ΔaXαβa we obtain

Xα(βaΔa) = αvEv(βaΔa) + DiQi[α, β, Δ] + (Xαβa − αv(D∗
β)av)Δa. (31)

The last term in (31) is a total divergence by (25):

ΔaXαβa − αv(D∗
β)avΔa = Δa(Dβ)avαv − αv(D∗

β)avΔa = DiQi[α, Δ, β].

Thus, (31) provides the same result as the Noether identity:

Xα(βaΔa) = αvEv(βaΔa) + Di(Qi[α, Δ, β] + Qi[α, β, Δ]). (32)

Let us show that the condition used in direct method [15]

(D∗
Δ)avβa =̇ 0 (33)

is equivalent to the quasi-Noether condition (15). Indeed, using the identity [2]

Ev(βaΔa) = (D∗
Δ)avβa + (D∗

β)avΔa, (34)
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and the fact that
(D∗

β)avΔa .
= 0, (35)

we obtain condition (33)
Ev(βaΔa)

.
= (D∗

Δ)avβa .
= 0. (36)

An alternative key expression of the direct method

Ev(βaΔa) = 0 (37)

is a special case of (15). Note also that the direct method aims at the generation of conservation laws
for a differential system without regard to its symmetries while the goal of both approaches above
taken earlier was to establish a correspondence between symmetries and conservation laws.

3.3. Quasi-Noether Systems

As noted above the condition (15) (or (20)) determines quasi-Noether systems.
It can be shown that the general case of differential systems (13) satisfying the condition (15),

with βa being differential operators

βa = βaJ [u]DJ , DJ = Dj1 Dj2 · · · Djk , Djr =
d

dxjr
, r = 1, 2, ..., k, (38)

can be reduced to the case of the condition (15) with the βaJ being differential functions. Indeed, (see [2])

βaΔa = βaJ DJΔa = DJ

(
βaJΔa

)
+
(
(−D)J βaJ

)
Δa. (39)

Since the contribution of the first term in the RHS, being a total divergence, is zero after applying
the Euler operator, we find that

Ev(βaΔa)
.
= Ev(β̄aΔa)

.
= 0, a = 1, . . . n, v = 1, . . . , q, (40)

where each β̄a =
(
(−D)J βaJ) is a differential function.

In the following theorem, we prove that local conservation laws exist only
for quasi-Noether systems.

Theorem 1 (Quasi-Noether systems and conservation laws). Any differential system (13) that possesses
local conservation laws is quasi-Noether. A quasi-Noether system that admits continuous symmetries in general,
possesses local conservation laws.

Proof. Assume that the system (13) has some local conservation law

DiPi = γaΔa, (41)

where Pi and γa are differential functions. Then

Ev(γ
aΔa) = 0, a = 1, . . . n, v = 1, . . . , q, i = 1, . . . , p, (42)

which shows that the system is quasi-Noether.
Suppose now that the quasi-Noether system (15) possesses a continuous symmetry

with the infinitesimal operator Xα (5). Rewriting condition (15) in the form

Ev(βaΔa) = ΓvaΔa .
= 0, v = 1, . . . q, (43)
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where the sum is taken over 1 ≤ a ≤ n, βa are differential functions, and Γva = ΓvaJ DJ are differential
operators. Multiplying the Equation (43) by αv and taking a sum over v, we obtain

αvEv(βaΔa) = αvΓvaΔa. (44)

Applying the Noether identity (8) in the LHS, we obtain(
Xα − DiRi

)
(βaΔa) = αvΓvaΔa, a = 1, . . . n, v = 1, . . . , q, i = 1, . . . , p. (45)

Since Xα is a symmetry operator for the system Δa, we obtain

DiRi(βaΔa)
.
= 0, a = 1, . . . n, v = 1, . . . , q, i = 1, . . . , p, (46)

and therefore, a quasi-Noether system with continuous symmetries in general, possesses local
conservation law (46).

Note that in some cases the conservation law (46) may be trivial.
Note also that condition (15) allows one to find and classify quasi-Noether equations of a certain

type. For example, it can be shown that equations of the following class:

ut = uxx + un
x , n = 0, 1, 2, 3, ... (47)

possess conservation law(s) only for n = 0, 1, 2. Correspondingly, for n ≥ 3, such equations are not
quasi-Noether and, hence, do not admit any conservation laws.

3.4. Classes of Quasi-Noether Equations

The quasi-Noether class of equations for which it is possible to establish a Noether
type correspondence between symmetries and conservation laws is quite large, and covers
practically all interesting differential systems of mathematical physics, and all systems possessing
conservation laws. Many examples of equations of the class were given in [4,5,12].
Quasi-Noether systems include differential systems in the form of conservation laws, e.g., KdV,
mKdV, Boussinesq, Kadomtsev-Petviashvili equations, nonlinear wave and heat equations,
Euler equations, and Navier-Stokes equations; as well as the homogeneous Monge-Ampere equation,
and its multi-dimensional analogue, see [4]. In [6], the approach based on the Noether identity
was applied to quasi-Noether systems possessing infinite symmetries involving arbitrary functions
of all independent variables, in order to generate an extension of the Second Noether theorem
for systems that may not have well-defined Lagrangian functions.

3.4.1. Evolution Equations

Consider evolution equations of the form

ut = A(u, ux)uxx + B(u, ux). (48)

Assuming β = β(t, x, u, ux, uxx, . . . , unx), and requiring our equation to be quasi-Noether (15)
we obtain the following condition

Eu[βut − β(Auxx + B)] =̇ 0. (49)

It can be shown that β = β(t, x, u). Moreover, it can be shown that for this system, the above
equality holds for all u (=) rather than strictly solutions ( =̇ ).

We obtain the following classes of equations:
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1.

A(u, ux) = αHux /S′(u),

B(u, ux) = α(ux Hu − S(u))/S′(u),

β(t, u) = eαtS′(u),

(50)

where H(u, ux) and S(u) are arbitrary functions, and α is a constant.

In this case the equation Δ = ut − Auxx − B is obviously, quasi-Noether since the left hand side
turns into total divergence upon multiplication by β:

βΔ = Dt[eαtS(u)]− αDx[eαt H(u, ux)].

2.

A(u, ux) = (uxGux − G)/u2
x,

B(u, ux) = Gu + (b/ux + c′(u))G + h + ux(a + hu + hcu)/b,

β(t, x, u) = exp(at + bx + c(u)),

(51)

where G(u, ux), c(u), and h(u) are arbitrary functions, and a and b are constants.

a. The special case G(u, ux) = u2
x, c(u) = u, h(u) = 0, and a = −b2,

leads to the following equation:

ut − uxx − u2
x = 0. (52)

Multiplication by β = exp(bx − b2t + u) turns the LFS of Equation (52) into a total
divergence:

Dt(βu)− Dx[β(ux − b)] = 0.

b. Choosing a = −b2, c′(u) = 0, G(u, ux) = ux
2 + pux, p = const, h(u) = 1 − bp we obtain

heat equation, A = 1, B = 1

ut = uxx (53)

c. Choosing a = −b2, c′(u) = 0, G(u, ux) = ux
2 + u2ux/2, h(u) = −bu2/2 we obtain

Burgers equation, A = 1, B = −uux

ut = uxx − uux. (54)

d. Choosing a = −b2 = −1, c′(u) = 0, G(u, ux) = ux
2 + (u − u2)ux, h(u) = 0 we obtain

Fisher equation, A = 1, B = u − u2

ut = uxx + u(1 − u). (55)

3.

A(u, ux) = a,

B(u, ux) = au2
x(Φuu + bΦ2

u)/Φu + 1/Φu + εux,

β(t, x, u) = v(t, x) exp(−bt + bΦ),

(56)
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where Φ(u) is an arbitrary function, a and b are constants, and v(x, t) is a solution
of the following equation:

vt − bvx + avxx = 0.

4.

A(u, ux) = a,

B(u, ux) = au2
x�u + εux,

β(t, x, u) = v(x, t) e�,

(57)

where �(u) is an arbitrary function, and v satisfies the same linear Equation (57).
5.

A(u, ux) = Gu/Φu,

B(u, ux) = u2
x(Guu + τG2

u + εGuΦu)/Φu + ux(δ + 2σGu/Φu) + 1/Φu,

β(t, x, u) = exp[−εt + σ(x + δt) + τG + εΦ] cosh[(x + δt − μ)
√

σ2 − τ]Φu,

(58)

where Φ(u) and G(u) are arbitrary functions, and δ, ε, μ, σ, and τ are arbitrary constants.

We do not pursue the remaining cases, since these necessarily involve dependence on 1/ux.
However, the above analysis gives insight into, for instance, equations of the following class:

ut = uxx + un
x , n = 0, 1, 2, 3, ... (59)

We have shown that such an equation possesses a conservation law only for n = 0, 1, 2. For n ≥ 3,
such equations are not quasi-Noether and, hence, do not admit conservation laws.

3.4.2. Quasi-Linear Equations

Consider now quasi-linear equations of the form

Δ = utt − A(u, ux)uxx − C(u, ux) = 0. (60)

We require our equation to be quasi-Noether (15)

Eu[β(utt − Auxx − C)] =̇ 0. (61)

Using the identity (34)
Eu(βΔ) = (D∗

Δ)β + (D∗
β)Δ, (62)

we obtain
Eu(βΔ) .

= (D∗
Δ)β

.
= 0. (63)

For Equation (60) condition (63) takes a form

Dt
2β − Dx

2(βA) + Dx(βuxx Aux ) + Dt(βuxx Aut)+ (64)

Dx(βCux ) + Dt(βCut)− βCu − βAuuxx = 0.

Solving (64) for β = β(x, t, u), we obtain

A = utL + M,

C = utR + P + f (u, ut),
(65)
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where

R(u, ux) =
∫ [

βx

β
L + uxLu

]
dux

P(u, ux) =
∫

K(u, ux) dux,
(66)

and L = L(u, ux), K = K(u, ux), f = f (u, ut), β = β(x, t, u) are functions to be determined.
We get the following solutions:

1.

L =
1
m
[2Mu + lMux + ux Muux − Kux ]

R =
∫

[lL + uxLu] dux = l2M + 2lux Mu + ux
2Muu − lK − uxKu +

∫
Kudux,

(67)

where l, m are abrbitrary constants, M(u, ux), K(u, ux) are arbitrary functions, β = elx+mt,
and f (u, ut) satisfies

− fu + m fut + ut fuut = −m2. (68)

2.

R = L = 0

K = (l + qux)M + ux Mu +
∫
[qM + Mu]dux + r(u),

(69)

where l, m, q are abrbitrary constants, function M(u, ux) is arbitrary, β = elx+mt+qu, and

f (u, ut) = −qu2
t + s(u)ut + v(u), s(u) = −m +

qv(u) + v′(u)
m

. (70)

Examples:

a. If M(u, ux) = c, we obtain

utt = Muxx + (lM + r(u))ux + qMux
2 + R(u) + (−qut

2 + sut + v), (71)

where s(u) satisfies (70) and functions r(u) and R(u) are arbitrary.

Choosing q = s = v = 0, r = −lM we obtain

utt = Muxx + R(u). (72)

The class (72) includes Liouville equation (R(u) = keλu)

utt = Muxx + keλu, (73)

and Sine-Gordon equation ((R(u) = ksinλu)

utt = Muxx + ksinλu. (74)

b. Choosing M(u, ux) = g(u), q = s = v = 0, r(u) = −lg(u), we obtain

utt = g(u)uxx + g′(u)ux
2. (75)

The Equation (75) is a nonlinear wave equation.
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4. Quasi-Lagrangians

For β a cosymmetry, the quantity L = β · Δ serves an analogous role to a Lagrangian.
In this section, we examine the applications of such a quasi-Lagrangian L in more detail. We
show that equations with a quasi-Lagrangian have a Noether correspondence on a subspace. We
then demonstrate the incompleteness of the correspondence from Section 3.1 with an example.
We conclude with a comparison of the invariant submanifolds of quasi-Noether systems with those
of Hamiltonian systems.

4.1. A Noether Correspondence

Let us introduce the operator T depending on β such that E(β ·Δ) = T ·Δ. IfDΔ is an endomorphism
(same number of equations as dependent variables), then T = D∗

β −Dβ by (24).
We say an operator T is nondegenerate if its restriction to Δ = 0 is not the zero operator.

If β is a characteristic for a conservation law (generator), then E(β · Δ) = 0, so T = 0 (degenerate).
Thus β, in this section, will be a cosymmetry which is not a characteristic.

Recall that a functional L [u] =
∫

L[u]dx is an equivalence class modulo total divergences. We say
a smooth functional L [u] =

∫
L[u]dx is nondegenerate if it is nonzero and some representative L[u]

(hence all of them) does not vanish quadratically with Δ. We identify nondegenerate functionals
with their affine terms: L ∼ L|Δ=0 + βI · DIΔ. Mod a divergence, we then have L ∼ L0 + β · Δ,
where β = (−D)I βI comes from integration by parts. We will also identify L with L. As a
non-example, consider, for example, a second order scalar nonlinear PDE Δ = Δ1(uij). Then for
L = Δ2, we have E(L) = Dij(AijΔ), where Aij = 2 ∂Δ/ ∂uij.

The concept of sub-symmetry was introduced in [7]. We say Xα generates a sub-symmetry of Δ
if Xα(T · Δ)|Δ=0 = 0 for some nondegenerate T. In the special case that Xα(T · Δ)|T·Δ=0 = 0, clearly Xα

is an “ordinary" symmetry of a sub-system T · Δ; the more general definition will not be needed here.
Roughly speaking, in the case of sub-symmetry transformations, only some (not all) combinations of
original equations are required to be invariant. We note that in [8], sub-symmetries of sub-systems
generated by cosymmetries yield conservation laws through the mechanism described in Section 3.1.
In the present work, we find a new appearance of sub-symmetries.

We now present an extension of Noether theorem. Every variational symmetry Xα

of a quasi-Lagrangian L corresponds to a conservation law characteristic T∗α in the image of T∗.
The variational symmetry is only a sub-symmetry of the PDE Δ. If L = L0 + β · Δ and cosymmetry
β is also in the image of T∗, then a family of equations Δ + ker[T] shares variational symmetries,
hence conservation laws generated by the quasi-Lagrangian.

Theorem 2. Let Δ be a normal, totally nondegenerate PDE system, and suppose there exist smooth
and nondegenerate operator T and functional L such that E(L) = T · Δ.

1. XαL = div, if and only if (T∗α) · Δ = div.
2. If XαL = div, then α is a sub-symmetry of Δ.

Let L = L0 + β · Δ. Define Δ f = Δ + f and L f = L0 + β · Δ f for f ∈ ker[T].
3. If β ∈ im[T∗], XαL f = div if and only if XαL = div.

Proof. 1. The Noether theorem states XαL = div if and only if α · E(L) = div; thus, α · (T · Δ) = div.
If we integrate by parts, we obtain (T∗α) · Δ = div, as desired.

2. It is well known XαL = div implies Xα is a symmetry of E(L). Since E(L) = T · Δ is a sub-system
of a prolongation of Δ, this means Xα is only a sub-symmetry of Δ.

3. Since β = T∗γ for some smooth γ, we have β · f = (T∗γ) · f = γ · (T f ) + div = div,
so we conclude XαL f = XαL + div.
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Remark 1. Part 3 illustrates that a variational symmetry α of L need not correspond to a symmetry of Δ,
since if XαΔ f = AΔ f , then Xα f = A f need not be true for all f ∈ ker[T]. We will demonstrate this failure
in Section 4.2.

Therefore, the Green–Lagrange-Noether approach from Section 3 is incomplete: it requires vector field Xα

to be a symmetry of Δ, while Part 2 indicates we must instead consider sub-symmetries. The incompleteness
was partially demonstrated in [11] in the case β is a characteristic of a conservation law, but the case where
cosymmetry β is not a characteristic was not indicated.

Note that Ibragimov’s approach [19] is distinct; it uses variational symmetries of an extended Lagrangian
system obtained by, essentially, treating the β’s as dependent variables. Such variational symmetries must
be symmetries of Δ, which is one reason why our result is different. Another reason follows from a direct
computation of the characteristic; there is an additional term due to the symmetric action of Xα on L, which in our
approach is simply a divergence not contributing to the characteristic.

Remark 2. The main difference of our extension is that the vector field Xα is only a sub-symmetry of the PDE Δ,
not a true symmetry, since we are considering variational symmetries of L. This highlights the incompleteness
of the previous approach from Section 3, which requires using symmetries of the PDE. We will present an
example in Section 4.2 where all lower conservation laws arise according to the correspondence in Theorem 2,
many only from sub-symmetries.

Remark 3. Upon restricting said symmetries of Δ to variational symmetries of L, the results of the two
approaches are equivalent, of course. Let AΔ = XαΔ. The Green–Lagrange-Noether approach yields the
following conservation law:

(T∗α − Xαβ − A∗β)Δ = div. (76)

But in fact, (Xαβ + A∗β) = XαL + div = div since α is a variational symmetry. Thus,

(T∗α − μ)Δ = div (77)

for some generating function μ. This implies T∗α is also a generating function, as claimed.

Remark 4. We note that L0 = L|Δ=0 is nonzero (mod divergence) in general. For example, if E(L) = Δ
for L = uvt − λ[u, v] and the two-component evolution system

Eu(L) = vt − Euλ = 0,

Ev(L) = −ut − Evλ = 0,
(78)

then unless λ is of a special form, L need not vanish on Δ = 0.

4.2. An Example

It is well known [2] that the second order Burgers equation

ut = uux + uxx = Dx(
1
2

u2 + ux) (79)

has exactly one conservation law and no cosymmetries other than β = 1. It thus has
no quasi-Lagrangians of the form β · Δ and its conservation law does not arise from such. We next
consider the opposite situation.

Consider a third order evolution equation ut = F[u] of the form

ut = F[u] :=
3uxxuxxx

ux
− u3

xx
u2

x
+ f (t) =

1
uxx

Dx(
u3

xx
ux

+ f (t)ux). (80)
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Even if f (t) = 0, this equation cannot be written as a Hamiltonian system, since although
ut = D · E(H) for H = − 1

2 u2
x and the skew-adjoint operator

D = 2
uxx

ux
Dx +

uxxx

ux
− u2

xx
u2

x
,

it can be shown that D does not verify the Jacobi identity. We do, however,
see a quasi-Lagrangian structure:

E(L) := E(−1
2

ux(ut − F)) = Dx(ut − F) =: TΔ. (81)

We present the cosymmetries of order β(t, x, u, . . . , u5):

ux, −uxx, −Dx(xux + tF), −DxF. (82)

The even-order cosymmetries in (82) are conservation law generators which arise from variational
symmetries of the quasi-Lagrangian

L := −1
2

ux(ut − F[u]).

Indeed, if we rewrite them using (80),

−Dxux, −Dx(xux + tut), −Dxut, (83)

then we see they generate a translation x → x + ε, a scaling (x, t) → eε(x, t), and a translation
t → t + ε, respectively. These (three) cosymmetries comprise the (order 4) conservation law generators
for Equation (80).

There are two differences from the classical Noether theorem:
1. The variational symmetry u → u + ε does not lead to a conservation law since for α = 1,

we have T∗(α) = −Dx(1) = 0.
2. Time translation is not a symmetry of Δ = 0 unless f ′(t) = 0. Nevertheless, since

1
2

ux f (t)

is a divergence expression, we see α = ut generates a variational symmetry of L, and then
a conservation law of Δ.

Remark 5. We present a comparison with the quasi-Noether/nonlinear self-adjointness/Green–Lagrange
approach. Suppose the symmetry condition XαΔ = AΔ, and integrate by parts:

XαL = βXαΔ + (Xαβ)Δ = βAΔ + (Xαβ)Δ = (A∗β + Xαβ)Δ + div. (84)

Also recall the Noether identity and quasi-Lagrangian structure (81)

XαL = αE(L) + div = αDxΔ + div = (−Dxα)Δ + div. (85)

Combining these two formulas gives the characteristic for the conservation law generated using
this approach:

B(α) := −Dxα − Xαβ − A∗β. (86)
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The only symmetry in (83) is α = ux. In this case, it can be verified that

−Xαβ =
1
2

Dxα, XαΔ = DxΔ, −A∗β = −1
2

Dxα,

so that B(α) = −Dxα = T∗(α). Recall the characteristic generated by a variational symmetry is also −Dxα.
Thus, the two approaches agree when α is a symmetry of (80).

Remark 6. Observe that α = ut and α = tut + xux do not generate symmetries of (80) if f ′(t) �= 0.
However, a simple modification yields the desired conservation law.

Combining (84) with (85) without the symmetry condition XΔ=̇0 yields

(−Dxα − Xαβ)Δ − β XαΔ = div. (87)

For α = ut, it can be shown that

XαΔ = DtΔ − f ′(t) =: RΔ − f ′(t). (88)

Therefore, after an integration by parts, we recover the conservation law plus an error term:

(−Dxα − Xαβ − A∗β)Δ + β f ′(t) = div. (89)

In fact, the error term is a divergence: f ′(t)β = Dx(− 1
2 u f ′(t)), and we derive an analogous conservation

law. Again, the characteristic is −Dxα.
Let us apply the same analysis to α = tut + xux. We have

XαΔ = −Δ + tDtΔ + xDxΔ + (1 − tDt) f (t) =: AΔ + f (t)− t f ′(t).

As before, we obtain

(−Dxα − Xαβ − A∗β)Δ + β( f (t)− t f ′(t)) = div.

The second expression on the left hand side is a divergence, so we obtain a conservation law.
Using −A∗β = − 1

2 Dxα, we conclude that the characteristic is again −Dxα.

4.3. Critical Points and Symmetries

We first recall the notion of invariant submanifolds of an evolutionary system, introduce
the notion of critical points of conservation laws, then show that the critical points and symmetry
invariant submanifolds satisfy opposite containments in the quasi-Lagrangian and Hamiltonian cases,
see Theorem 3.

Let Δ = ut − P[u] be an evolution system with evolutionary operator

Dt = ∂t + ua
It ∂ua

I
=̇ ∂t + DI Pa ∂ua

I
= ∂t + XP. (90)

Each of these objects satisfies special determining equations: α symmetry, β cosymmetry.
Symmetry α satisfies the equation

Dtα = DPα. (91)

Cosymmetry β satisfies the equation

Dtβ = −D
∗
Pβ. (92)

These equations imply that symmetry invariance α = 0 and cosymmetry invariance β = 0
are compatible with Δ = 0. By compatible, we mean if u0(x) solves γ(t0, x, u0, . . . ) = 0, then for time
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evolution u(t) = U(t; t0)u0, we have γ(t, x, u(t), . . . ) = 0. This follows for P, u0 analytic by a (local)
power series expansion, since the invariance conditions imply Dk

t γ|γ=0 = 0 for all k ≥ 0. The same
holds for systems in Cauchy-Kovalevskaya form, which can be rewritten as evolution systems.

Remark 7. It was observed in [11] that a co-symmetry β induces an invariant one-form β[u] · du with respect
to time evolution, in an analogous way that a symmetry α induces an invariant vector field α[u] · ∂/ ∂u.
The determining equations are simply vanishing Lie derivatives of these tensors. The critical sets of these tensors
are therefore time invariant, which gives a geometric meaning to the compatibility of these invariance conditions.

Let us note an interesting phenomenon. If E(L) = TΔ is quasi-Lagrangian and Xα is a variational
symmetry, then Xα is a symmetry of T · Δ, but T∗α generates a conservation law of Δ. We thus find
a “duality" relation between the existence of compatible systems.

Proposition 1. If E(L) = TΔ and XαL = div, then both {T∗α = 0, Δ = 0} and {α = 0, TΔ = 0}
are compatible systems.

Next, if cosymmetry β also generates a conservation law, we call the equation β = 0 the critical
point condition for the conserved integral generated by β. To justify this terminology, we recall
the well known fact that cosymmetry β is a characteristic if and only if D∗

β −Dβ = 0 (self-adjointness),
i.e., β = E(Mt) for the conserved density Mt of the conservation law

Dt Mt + Di Mi = β · Δ = 0. (93)

It follows that the condition β = 0 is the Euler–Lagrange equation for the (possibly
time-dependent) functional

∫
Mt[u]dx, i.e., the equation for critical points of this conserved integral.

By the discussion for cosymmetries, the critical point condition is compatible with time evolution
ut = P. This is sensible for two reasons: (1) if u(0) is a minimizer of

∫
Mt[u]dx for suitable

boundary conditions, then the conservation of
∫

Mt[u]dx implies u(t) is also a minimizer at later times.
(2) If ∂t Mt = 0, then

XP Mt = Dt Mt = −Di Mi = div, (94)

so P actually generates a variational symmetry of the functional
∫

Mt[u]dx. It follows that XP
is a symmetry of E(Mt[u]) = 0, hence it preserves the solution space.

Remark 8. Although many current papers are devoted to the construction of Lie-type invariant solutions
and conservation laws for non-Hamiltonian systems, we are not aware of any which constructed the critical
points of these conservation laws. The possibility for such was raised in [20].

Example 1 (Time-dependent conservation law). The KdV equation

ut + uux + uxxx = 0, (95)

has conservation law
Dt Mt + Dx Mx =̇ 0 (96)

of the form
∂

∂t

(
xu − tu2

2

)
+

∂

∂x

(
t
(

u2
x

2
− uuxx −

u3

3

)
+

xu2

2
+ xuxx − ux

)
= 0, (97)

such that Mt[u] = xu − tu2

2 , and E1Mt[u] = x − tu. If σ �= 0, then u∗(x) = x/σ

is a solution of E1Mt(σ, x, u, . . . ) = 0, and u(t, x) = x/t is the solution of {ut = P, E1Mt = 0}
which satisfies u(σ, x) = u∗(x).
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Example 2 (Time-dependent evolution). The generalized KdV equation [21]

ut + f (t, u)ux + uxxx = 0, (98)

where f (t, u) = at−1/3u + bu + cu2 for a, b, c constant, has explicit time dependence if a �= 0.
It has a conservation law Dt Mt + Dx Mx =̇ 0 with conserved density

Mt =
1
2

ctu2
x −

1
12

t(cu2 + bu)2 +
1
6

x(cu2 + bu)− 1
2

at2/3(
1
3

cu3 +
1
4

bu2), (99)

and characteristic (note that [21] has a typographical error in the uxx term)

Eu(Mt) = −ctuxx −
1
6

t(2c2u3 + 3bcu2 + b2u)− 1
4

at2/3(2cu2 + bu) +
1
6

x(2cu + b). (100)

Let us show that the system {ut + f ux + uxxx = 0, Eu(Mt) = 0} is compatible. Suppose first that c = 0.
Then the solution of Eu(Mt) = 0 is

u(t, x) =
2x

(3a + 2bt1/3)t2/3 , (101)

which solves (98) for c = 0. Suppose now that c �= 0. If we solve Eu(Mt) = 0 for uxx, then it is easy to show
that (uxx)t = (ut)xx, or that (98) is consistent with Eu(Mt) = 0. Alternatively, substituting Eu(Mt) into (98)
gives a first order PDE, which has solution

u(t, x) = − b
2c

+ t−1/3g
(
ξ
)
, ξ = t−1/3x + (4c)−1(3abt1/3 + b2t2/3), (102)

where g is an arbitrary function. Substitution into Eu(Mt) = 0 gives an ODE for g.

Example 3 (A non-Hamiltonian example). The nonlinear telegraph system [22]

vt + keuux − eu = 0,

ut − vx = 0,
(103)

where k �= 0 is a constant, has a conservation law with density (note the small error in [22])

Mt = e−x/k[(tv/2 + 2x)v − k(uv + teu)] (104)

and characteristic
Eu(Mt) = −ke−x/k(v + teu),

Ev(Mt) = e−x/k(2x + tv − ku).
(105)

A critical point (u∗, v∗) satisfies the system Eu(Mt) = Ev(Mt) = 0, whose solution is

u∗(x, t) = 2x/k − W
( t2

k
e2x/k),

v∗(x, t) = − k
t

W
( t2

k
e2x/k), (106)

where W is the Lambert W function. It is straightforward to show that (u∗, v∗) solves (103).

Before turning to our next result, we recall some properties of Hamiltonian systems, see e.g., [2].
The two types of invariant submanifolds are coupled in this case. Suppose

P = D · E(H) (107)
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for some Hamiltonian H[u] and skew-symmetric operator D which verifies the Jacobi identity,
in the sense that if {P , Q} =

∫
E(P) · D · E(Q)dx is the Poisson bracket induced by D , then {, }

verifies the Jacobi identity. Then the Noether relation (Theorem 7.15 in [2]) states that every conserved
integral

∫
Mt[u]dx yields a symmetry of Hamiltonian form: α = D · E(Mt). In other words,

α = D · β, (108)

where β = E(Mt) is the associated characteristic. Therefore,

{β = 0} ⊂ {α = 0}, (109)

where {β = 0} is an invariant submanifold of critical points, and {α = 0} is an invariant submanifold
of symmetry-invariant functions.

The converse is not true: if the Hamiltonian vector field generated by α = D · E(Mt) is a symmetry,
then β = E(Mt) need not be a characteristic. In general, there exists a time-dependent C[t; u]
with C[t0; .] ∈ kerD for each t0, such that β − C generates a conservation law.

Let us show that the containment in the quasi-Lagrangian case is opposite to (109). We summarize
the comparison below.

Theorem 3. Let L be a quasi-Lagrangian for an evolutionary system with E(L) = T · Δ, and let α

be a variational symmetry α with conservation law characteristic β = T∗α. Then

{α = 0} ⊂ {β = 0}, (110)

so that vector field invariant solutions are critical points of a conserved integral
∫

Mt[u]dx.
Let H be the Hamiltonian for the system ut = D · E(H), and let α = D · β be a Hamiltonian symmetry

with β = E(Mt). Then
{β = 0} ⊂ {α = 0} (111)

such that critical points of the integral
∫

Mt[u]dx are symmetry invariant.

Remark 9. The two situations overlap in the Lagrangian case. If T, D commute with ∂t, then their
invertibility implies that the modified systems T−1Δ, D−1Δ are Lagrangian. In this case, the symmetry
invariant submanifolds coincide with the critical points of conserved integrals.

Remark 10. In the quasi-Lagrangian case, vector field Xα need not be a symmetry, so α = 0 may
not be compatible with time evolution. In Section 4.2, compatibility of α = 0 fails for all symmetries induced
by (83) (e.g., ut = 0) if f ′(t) �= 0 in (80).

Conversely, critical point condition β = 0 is compatible, but T∗α = β = 0 need not imply symmetry
invariance, as the example in Section 4.2 shows for β = DxF. However, symmetry invariance occurs after
dividing by the kernel of T∗, which is {g(t)} in Section 4.2. This is analogous to the Hamiltonian case,
for which if D · β = α = 0, then β = 0 holds after dividing by the kernel of D .

Remark 11. After this paper was written we learned about the paper [23] where“symplectic operator" E
was introduced. The operator E is similar to our operator T determining quasi-Lagrangians.

5. Conclusions

In this paper, we discussed the problem of correspondence between symmetries and conservation
laws for a general class of differential systems (quasi-Noether systems). Our approach is based
on the Noether operator identity. We discussed some properties of Noether identity, and showed
that it leads to the same conservation laws as Green–Lagrange identity. We generated classes
of quasi-Noether equations of the second order of evolutionary and quasilinear form.
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We introduced and analyzed the notion of a quasi-Lagrangian, which generalizes the quantity
L := β · Δ used in previous works to the case where L|Δ=0 may not be zero, and we studied variational
symmetries with respect to the quasi-Lagrangian, which generalizes the previous work’s restriction to
symmetries of differential system Δ. Because this recovers the Lagrangian case Δ = E(L), we extended
Noether’s theorem (Theorem 2).

The previous work was not able to achieve both of the following: (1) extend Noether’s theorem
while still involving invariant vector fields (see [11] for an extension using only cosymmetries),
and (2) recover the case of a Lagrangian system Δ = E(L), unlike, in general, the quasi-Noether
approach of Section 3. Moreover, in Section 4.2, we presented a system for which variational symmetries
of a quasi-Lagrangian do not correspond to symmetries, such that the previous work is unable
to associate the conservation laws to vector fields using the given cosymmetry.

Based on the notion of invariant submanifolds we introduced critical points of conservation laws,
and gave examples of the compatibility of cosymmetry invariance and the critical point condition,
including for a non-Hamiltonian system.

We concluded with a comparison of the invariant submanifolds of quasi-Noether and Hamiltonian
evolution equations, and showed these systems are “opposite" in some sense. For Lagrangian systems,
the cosymmetry and symmetry invariant submanifolds coincide, while in general there is a containment
in one direction or the other.
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Abstract: Noether symmetries and first integrals of a class of two-dimensional systems of second
order ordinary differential equations (ODEs) are investigated using real and complex methods.
We show that first integrals of systems of two second order ODEs derived by the complex Noether
approach cannot be obtained by the real methods. Furthermore, it is proved that a complex method
can be extended to larger systems and higher order.

Keywords: systems of ODEs; Noether operators; Noether symmetries; first integrals

1. Introduction

Lie developed a symmetry method for solving differential equations (DEs) [1–4]. Noether [5]
used these methods to prove that, for DEs obtained from a variational principle, for each symmetry
generator there is a corresponding invariant, first integral. These symmetries are called Noether and,
if they exist, then Noether’s theorem readily provides the associated first integrals. Since they provide
a double reduction of the order of the equation, and a sufficient number can actually be used to
solve the equation, it is worthwhile to obtain them. Furthermore, they are useful for studying the
physical aspects of the dynamical systems, like time translational symmetry gives energy conservation,
spatial translation provides momentum conservation and rotational symmetry implies conservation of
angular momentum. For a scalar ODE, the corresponding Lagrangian has a five-dimensional maximal
Noether symmetry algebra, as guaranteed by a theorem [6], and all the lower dimensions (obviously
except 4).

Though Lie methods involved complex functions of complex variables, they did not make explicit
use of the Cauchy–Riemann (CR) equations. These conditions provide an auxiliary system of DEs
satisfied by the corresponding system of DEs obtained by splitting the complex functions of the scalar
or systems of DEs into the two real ones. One obtains either a system of partial differential equations
(PDEs), if the independent variable is complex or a system of ODEs if it is real. The explicit use of
complex functions of complex or real variables is demonstrated in [7–10] where solvability of systems
of DEs is achieved through Noether symmetries and corresponding first integrals. Furthermore,
by employing complex symmetry procedures: the energy stored in the field of a coupled harmonic
oscillator was studied in [11] and linearizability of systems of two second order ODEs was addressed

Symmetry 2019, 11, 1180; doi:10.3390/sym11091180 www.mdpi.com/journal/symmetry73
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in [12,13]. The complex procedure, indeed, has been extended to higher dimensional systems of second
order ODEs [14] and two-dimensional, systems of third order ODEs [15].

In this paper, we extend the use of complex symmetry methods further to obtain invariants of
systems of ODEs and demonstrate that we can obtain new invariants not obtainable by the usual,
non-complex, methods. The new invariants for systems arise due to complex Lagrangians and first
integrals of the base ODEs involving complex dependent functions of the real independent variables.
Complex symmetries have already been used to construct first integrals through Noether symmetries
and derive invariants for two-dimensional, systems of second order ODEs [8–10]. We first compare the
usual (real) and complex Noether approaches developed to derive first integrals for systems of two
second order ODEs. We find that the latter yields more first integrals than the former for these systems.
The first integrals derived using a complex procedure also satisfy the conditions of the real Noether’s
theorem that exists for systems of ODEs. Next, we prove that Lagrangians and corresponding first
integrals of the complex scalar ODEs will always split into two real Lagrangians and first integrals
for the corresponding system of two equations. For this purpose, we use the CR-equations, which are
satisfied by the Lagrangians and first integrals provided by the complex procedure. Furthermore,
we show that the complex Noether symmetries do not, in general, split into two Noether symmetries
of the corresponding systems. The thrust is not to find directly applicable invariants, which could
turn up but to demonstrate how a complex method can provide new invariants and insights into
Noether symmetries and first integrals. This work also suggests that the class of systems presented
here should, indeed, be singled out when classifying systems of ODEs on the basis of their Noether
symmetries and first integrals as it may not follow the classifications presented by employing real
symmetry methods. Theorems and their proofs in the later part of this paper show that the method
adopted here can trivially be extended to higher dimensions and order of ODEs.

The plan of the paper is as follows: the next section gives the procedures to derive Noether
symmetries, operators and corresponding first integrals for systems of two second order ODEs. In the
third section, we obtain Noether symmetries and first integrals for two-dimensional, systems of second
order ODEs using a real symmetry method. In the subsequent section, first integrals for these systems
are derived by employing complex procedures. We end with a concluding section, which also gives
the proofs of the claims given in the previous section.

2. Preliminaries

For a system of two coupled (in general) nonlinear ODEs

y′′ = S1(x, y, z, y′, z′), z′′ = S2(x, y, z, y′, z′), (1)

where prime denotes derivative with respect to x, and the point symmetry generator is

X = ξ(x, y, z)∂x + η1(x, y, z)∂y + η2(x, y, z)∂z, (2)

where ξ, η1, and η2, are the functions that appear in the infinitesimal coordinate transformations of the
dependent and independent variables, ∂x = ∂/∂x, etc. The first extension of X is

X[1] = X +

(
d

dx
η1 − y′

d
dx

ξ

)
∂y′ +

(
d

dx
η2 − z′

d
dx

ξ

)
∂z′ , (3)

where d/dx = ∂x + y′∂y + z′∂z + · · · . If system (1) admits a Lagrangian L(x, y, z, y′, z′), then it is
equivalent to the Euler–Lagrange equations

d
dx

(
∂L
∂y′

)
− ∂L

∂y
= 0,

d
dx

(
∂L
∂z′

)
− ∂L

∂z
= 0. (4)
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The vector field (2) is called a Noether symmetry generator corresponding to the Lagrangian
L(x, y, z, y′, z′) for system (1) if there exists a gauge function B(x, y, z), such that

X[1](L) + D(ξ)L = D(B), (5)

where D is the total differentiation operator defined by

D = ∂x + y′∂y + z′∂z + y′′∂y′ + z′′∂z′ + · · · . (6)

Theorem 1. If X is a Noether point symmetry generator corresponding to a Lagrangian L(x, y, z, y′, z′) of (1),
then the corresponding first integral is:

I = ξL + (η1 − ξy′)
∂L
∂y′

+ (η2 − ξz′)
∂L
∂z′

− B. (7)

For a first integral I, of system (1), the following equations

X[1] I = 0, (8)

DI = 0, (9)

where X[1], and D, given in (3) and (6), are satisfied identically. Though the construction of the
variational form of (1) along with Noether symmetries to determine the conserved quantities is
nontrivial, the complex method converts a class of systems (1) into variational form trivially [8,10,11],
which is obtainable from a single (base) scalar complex equation u′′ = S(x, u, u′). This class is derived
by considering u(x) = y(x) + ιz(x), and S(x, u, u′) = S1(x, y, z, y′, z′) + ιS2(x, y, z, y′, z′). Such system
admits a pair of Lagrangians L1(x, y, z, y′, z′) and L2(x, y, z, y′, z′) as the Lagrangian L(x, u, u′), of the
complex base equation also involves the complex function u(x) and its derivative, hence L = L1 + ιL2.
With these assumptions, (1) can be obtained from

∂L1

∂y
+

∂L2

∂z
− d

dx

(
∂L1

∂y′
+

∂L2

∂z′

)
= 0,

∂L2

∂y
− ∂L1

∂z
− d

dx

(
∂L2

∂y′
− ∂L1

∂z′

)
= 0. (10)

These are obtained by splitting the complex Euler–Lagrange equation of the scalar complex
second order ODEs. They are different from (4); however, in the later part of this work, their reduction
to (4) is done. The operators

X[1] = ξ1∂x +
1
2 (η1∂y + η2∂z + η′

1∂y′ + η′
2∂z′),

Y[1] = ξ2∂x +
1
2 (η2∂y − η1∂z + η′

2∂y′ − η′
1∂z′)

(11)

are said to be Noether operators corresponding to L1(x, y, z, y′, z′) and L2(x, y, z, y′, z′) of (1), if there
exist gauge functions B1(x, y, z), and B2(x, y, z), such that

X[1]L1 − Y[1]L2 + (Dξ1)L1 − (Dξ2)L2 = DB1,
X[1]L2 + Y[1]L1 + (Dξ1)L2 + (Dξ2)L1 = DB2.

(12)

Theorem 2. If X[1] and Y[1] are Noether operators corresponding to the Lagrangians L1(x, y, z, y′, z′) and
L2(x, y, z, y′, z′) of (1), then the first integrals for (1) are

I1 = ξ1L1 − ξ2L2 +
1
2 (η1 − y′ξ1 + z′ξ2)(

∂L1
∂y′ +

∂L2
∂z′ )

− 1
2 (η2 − y′ξ2 − z′ξ1)(

∂L2
∂y′ −

∂L1
∂z′ )− B1,

(13)
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I2 = ξ1L2 + ξ2L1 +
1
2 (η1 − y′ξ1 + z′ξ2)(

∂L2
∂y′ −

∂L1
∂z′ )

+ 1
2 (η2 − y′ξ2 − z′ξ1)(

∂L1
∂y′ +

∂L2
∂z′ )− B2.

(14)

Theorem 3. The first integrals I1 and I2, associated with the Noether operators X[1] and Y[1], satisfy

X[1] I1 − Y[1] I2 = 0, X[1] I2 + Y[1] I1 = 0, (15)

and

D1 I1 − D2 I2 = 0, D1 I2 + D2 I1 = 0, (16)

where D1 = ∂x +
1
2 (y

′∂y + z′∂z + y′′∂y′ + z′′∂z′ + · · · ), D2 = ∂x +
1
2 (z

′∂y − y′∂z + z′′∂y′ − y′′∂z′ + · · · ).

3. Noether Symmetries and Corresponding First Integrals

In this section, we reconsider a class of two-dimensional, systems of second order ODEs that is
solved using complex methods [13]. There it was shown that, for this class of systems, dimensions
of the Lie point symmetry algebra remain less than 5, while the base complex equations in most of
the cases possess an eight-dimensional Lie and a five-dimensional Noether algebra. This will help us
here in showing that the number of first integrals for such systems using the real Noether approach
remains less than that generated through the complex procedures. This class of systems of two second
order cubically semi-linear ODEs reads as:

y′′ = A10y′3 − 3A20y′2z′ − 3A10y′z′2 + A20z′3 + B10y′2 − 2B20y′z′ − B10z′2 + C10y′ − C20z′ + D10,
z′′ = A20y′3 + 3A10y′2z′ − 3A20y′z′2 − A10z′3 + B20y′2 + 2B10y′z′ − B20z′2 + C20y′ + C10z′ + D20,

(17)

where Aj0, Bj0, Cj0, Dj0, (j = 1, 2), are analytic functions of x, y, and z. In order to apply the complex
Noether approach, we establish correspondence of the above system with the complex scalar second
order ODE

u′′ = A0(x, u)u′3 + B0(x, u)u′2 + C0(x, u)u′ + D0(x, u), (18)

by considering y(x) + ιz(x) = u(x), A10 + ιA20 = A0, B10 + ιB20 = B0, C10 + ιC20 = C0, and D10 + ιD20 = D0.

Example 1. The system of two second order quadratically semi-linear ODEs

y′′ = x(y′2 − z′2), z′′ = 2xy′z′ (19)

admits a three-dimensional Lie algebra spanned by the following symmetry generators

X1 = ∂y, X2 = ∂z, X3 = −x∂x + y∂y + z∂z, (20)

and the Lagrangians

L1 = x +
x2y′

2
+

1
2

ln (y′2 − z′2), L2 =
x2z′

2
+ arctan(z′, y′). (21)

These Lagrangians yield the first integrals

Ir
1 =

1
2

x2 +
y′

y′2 + z′2
, Ir

2 = − z′

y′2 + z′2
, (22)

corresponding to X1, and X2.
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Example 2. For the system of two second order semi-linear ODEs,

y′′ = −3yy′ + 3zz′ − y3 + 3yz2, z′′ = −3yz′ − 3zy′ − 3y2z + z3, (23)

there are two Lagrangians

L1 =
3y′ + 3y2 − 3z2

(3y′ + 3y2 − 3z2)2 + (3z′ + 6yz)2 , L2 =
3z′ + 6yz

(3y′ + 3y2 − 3z2)2 + (3z′ + 6yz)2 , (24)

coming from the base complex equation

u′′ = −3uu′ − u3, (25)

and its Lagrangian L = 1
3(u′+u2)

. System (23) has three Lie point symmetries

X1 = ∂x, X2 = x∂x − y∂y − z∂z, X3 =
x2

2
∂x + (1 − xy)∂y − xz∂z. (26)

Only one first integral for (23), corresponding to X1, exists

Ir
1 = 1

3δ1
{y6 + (z2 + 4y′)y4 + 8y3zz′ + (5y′2 − 8y′z2 − z4 + 3z′2)y2 − 8z(z2 − 1

2 y′)yz′

−z6 + 4z4y′ − (5y′2 + 3z′2)z2 + 2y′z′2 + 2y′3},
(27)

where

δ1 = (y4 + (2z2 + 2y′)y2 + 4yzz′ + y′2 + z4 − 2y′z2 + z′2)2. (28)

Example 3. For the system of two second order cubically semi-linear ODEs

y′′ = y′3 − 3y′z′2, z′′ = 3y′2z′ − z′3, (29)

the Lagrangians are

L1 = 2y +
y′

y′2 + z′2
, L2 = 2z − z′

y′2 + z′2
. (30)

The above system possesses four Lie point symmetries

X1 = ∂x, X2 = ∂y, X3 = ∂z, X4 = 2x∂x + y∂y + z∂z. (31)

There are three gauge functions, B1 = C1, B2 = 2x, B3 = C2, for X1, X2, and X3, respectively, for L1. Similarly,
L2 generates B1 = C3, B2 = C4, B3 = 2x, with the same point symmetries as mentioned above. Thus, there is a
three-dimensional Noether algebra for (29) associated with L1,

Ir
1 = 2y +

2y′

y′2+z′2 − C1, Ir
2 = 1

y′2+z′2 −
2y′2

(y′2+z′2)2 − 2x,

Ir
3 =

−2y′z′

(y′2+z′2)2 − C2.
(32)

Similarly, for L2, the first integrals are

Ir
1 = 2z − 2z′

y′2+z′2 − C3, Ir
2 =

2y′z′

(y′2+z′2)2 − C4,

Ir
3 = −1

y′2+z′2 +
2z′2

(y′2+z′2)2 − 2x.
(33)

Example 4. A nonlinear system of two second order cubically semi-linear ODEs

y′′ = α2xy′3 − 3α2xy′z′2, z′′ = 3α2xy′2z′ − α2xz′3, (34)
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where α is a constant and possesses the Lagrangians

L1 = 2α2xy +
y′

y′2 + z′2
, L2 = 2α2xy − z′

y′2 + z′2
. (35)

The above system (34) has three Lie point symmetries

X1 = ∂y, X2 = ∂z, X3 = x∂x. (36)

For X1, and X2, we obtain gauge functions with L1, and L2 that are B1 = C1x2, B2 = C2, and B1 = C2, B2 = C1x2,
respectively. Thus, two-dimensional Noether algebra is found to exist for (34) and the first integrals corresponding to L1,
and L2, are

Ir
1 =

1
y′2 + z′2

− 2y′2

(y′2 + z′2)2 − C1x2, Ir
2 =

−2y′z′

(y′2 + z′2)2 − C2, (37)

and

Ir
1 =

2y′z′

(y′2 + z′2)2 − C2, Ir
2 =

−1
y′2 + z′2

+
2z′2

(y′2 + z′2)2 − C1x2, (38)

respectively.

Example 5. The system of two second order cubically semi-linear ODEs

y′′ = αyy′3 − 3αzy′2z′ − 3αyy′z′2 + αzz′3,
z′′ = αzy′3 + 3αyy′2z′ − 3αzy′z′2 − αyz′3

(39)

has the Lagrangians

L1 = αy2 − αz2 +
y′

y′2 + z′2
, L2 = 2αyz − z′

y′2 + z′2
, (40)

where α is a constant. This system admits a two-dimensional Lie point symmetry algebra

X1 = ∂x, X2 = 3x∂x + y∂y + z∂z. (41)

The gauge term for X1, with both L1, L2, is B = C1. Thus, there is a one-dimensional Noether algebra that provides
the following first integrals

Ir
1 = α(y2 − z2) +

2y′

y′2+z′2 − C1,

Ir
2 = 2αyz − 2z′

y′2+z′2 − C2.
(42)

Example 6. The system of two second order cubically semi-linear ODEs

y′′ = xyy′3 − 3xzy′2z′ − 3xyy′z′2 + xzz′3,
z′′ = xzy′3 + 3xyy′2z′ − 3xzy′z′2 − xyz′3

(43)

has two Lagrangians

L1 = xy2 − xz2 +
y′

y′2 + z′2
, L2 = 2xyz − z′

y′2 + z′2
, (44)

and one Lie point symmetry

X1 = x∂x. (45)
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There is no gauge function corresponding to X1, for L1, or L2, which implies that there is a 0-dimensional Noether
algebra. Hence, no first integral exists by a real method.

4. Noether Operators and Corresponding First Integrals

In this section, we obtain first integrals for all systems considered in the previous section,
by employing complex Noether procedure.

Example 7. By considering y(x) + ιz(x) = u(x), system (19) corresponds to a scalar ODE

u′′ = xu′2, (46)

which has only one symmetry Z1 = ∂u. A complex Lagrangian, L = x + x2u′
2 + ln u′, is admitted by (46), yielding the

first integral

I1 =
x2

2
+

1
u′ . (47)

This complex first integral splits into the following real first integrals

Ic
1 =

1
2

x2 +
y′

y′2 + z′2
, Ic

2 = − z′

y′2 + z′2
(48)

of system (19). Notice that both these first integrals are the same as those obtained earlier in (22) by the real method. It shows
an agreement between the complex and real Noether approaches.

Example 8. The base scalar ODE (25) has a five-dimensional Noether symmetry algebra spanned by

Z1 = ∂x, Z2 = u∂x − u3∂u, Z3 = xu∂x + (u2 − xu3)∂u,
Z4 = (x − 3x2u

2 )∂x + (2u − 3xu2 + 3x2u3

2 )∂u,
Z5 = ( x3u

2 − x2

2 )∂x + (1 − 2xu + 3x2u2

2 − x3u3

2 )∂u.

(49)

The first integrals corresponding to the above Noether symmetries are

I1 = 2u′+u2

3(u2+u′)2 , I2 = x − u
u2+u′ , I3 = (−u+xu2+xu′)2

(u2+u′)2 ,

I4 = 1
3
((u′+u2)x−u)(2+(u′+u2)x2−2xu)

(u2+u′)2 ,

I5 = 3(2−2xu+x2u2+x2u′)
u2+u′ .

(50)

Putting u(x) = y(x) + ιz(x), these complex first integrals split to provide the first integrals for the system (23)

Ic
1 = 1

3
(2y′+y2−z2)J1+(2z′+2yz)J2

J2
1+J2

2
, Ic

2 = 1
3
(2z′+2yz)J1−(2y′+y2−z2)J2

J2
1+J2

2
,

Ic
3 = x − yJ3−zJ4

J2
3+J2

4
, Ic

4 =
yJ4−zJ3

J2
3+J2

4
, Ic

5 = J5 J6+J7 J8
J2
6+J2

8
, Ic

6 = J6 J7−J5 J8
J2
6+J2

8
,

Ic
7 = 1

3
(J9 J10−J11 J12)J13+(J10 J11+J9 J12)J14

J2
13+J2

14
,

Ic
8 = 1

3
(J10 J11+J9 J12)J13−(J9 J10−J11 J12)J14

J2
13+J2

14
,

Ic
9 = 3 J3 J15+J4 J16

J2
3+J2

4
, Ic

10 = 3 J3 J16−J4 J15
J2
3+J2

4
,

(51)
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where
J1 = −4yzz′ − 6y2z2 + z4 + y4 + 2y2y′ − 2z2y′ + y′2 − z′2,
J2 = 4yzy′ − 4yz3 + 2y′z′ + 4y3z + 2y2z′ − 2z2z′,
J3 = y′ + y2 − z2,
J4 = z′ + 2yz,
J5 = −4x2yzz′ + 2xzz′ + y2 − z2 + 6xyz2 − 2xyy′ − 6x2y2z2 + 2x2y2y′

− 2x2z2y′ − 2xy3 + x2y4 + x2z4 + x2y′2 − x2z′2,
J6 = y4 + z4 + y′2 − 6y2z2 − 2z2y′ + 2y2y′ − 4yzz′ − z′2,
J7 = 2x2y′z′ + 4x2y3z + 2x2y2z′ − 2x2z2z′ − 4x2yz3 − 2xzy′ − 6xy2z

− 2xyz′ + 2yz + 2xz3 + 4x2yzy′,
J8 = 4y3z + 2y2z′ − 4yz3 − 2z2z′ + 2y′z′ + 4yzy′,
J9 = (y2 − z2 + y′)x − y,
J10 = 2 + (y2 − z2 + y′)x2 − 2xy,
J11 = (2yz + z′)x − z,
J12 = (2yz + z′)x2 − 2xz,
J13 = −6y2z2 − 4yzz′ + 2y2y′ − 2z2y′ + y′2 − z′2 + y4 + z4,
J14 = −2z2z′ − 4yz3 + 2y2z′ + 4y3z + 4yzy′ + 2y′z′,
J15 = 2 − 2xy + x2(y2 − z2) + x2y′,
J16 = −2xz + 2x2yz + x2z′.

(52)

In the following examples, we show that a complex symmetry approach provides 10 first integrals
for systems of two second order ODEs. In particular, there is a system (43) that has a 0-dimensional
Noether symmetry algebra, but 10 first integrals are generated by Noether operators obtained by
complex methods.

Example 9. The base complex scalar ODE

u′′ = u′3, (53)

for system (29) has the Lagrangian L = 2u + 1
u′ . For the five Lie point symmetries

Z1 = ∂x, Z2 = ∂u, Z3 = u∂x, Z4 = (u3 − 2xu)∂x − 2u2∂u,
Z5 = (3u2 − 2x)∂x − 4u∂u

(54)

of the ODE (53), the gauge terms found are B1 = C, B2 = 2x, B3 = 2x + u2, B4 = 3u4

2 − 2xu2 − 2x2, B5 = 4u3,
respectively. The corresponding first integrals are

I1 = 2u + 2
u′ − C, I2 = −1

u′2 − 2x, I3 = u2 − 2x + 2u
u′ ,

I4 = 1
2u′2 ((u2 − 2x)u′ + 2u)2, I5 = 2u3 − 4xu + (6u2−4x)

u′ + 4u
u′2 .

(55)

Splitting (54) into real and imaginary parts yields the 10 Noether operators that provide the following first integrals:

Ic
1 = 2y +

2y′

y′2+z′2 − C1, Ic
2 = 2z − 2z′

y′2+z′2 − C2,

Ic
3 = −2x − y′2−z′2

(y′2+z′2)2 , Ic
4 =

2y′z′

(y′2+z′2)2 ,

Ic
5 = y2 − z2 − 2x + 2 yy′+zz′

y′2+z′2 , Ic
6 = 2

(
yz + y′z−yz′

y′2+z′2

)
,

Ic
7 = y4 + z4 − 6y2z2 + 4x2 − 4x(y2 − z2) + 4 (y3−3yz2−2xy)y′+(3y2z−z3−2xz)z′

y′2+z′2

+ 4 (y2−z2)(y′2−z′2)+4yzy′z′

(y′2+z′2)2 ,

(56)
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Ic
8 = 4yz(y2 − z2)− 8xyz + 4 (3y2z−z3−2xz)y′−(y3−3yz2−2xy)z′

y′2+z′2

+ 4 2yz(y′2−z′2)−2(y2−z2)y′z′

(y′2+z′2)2 ,

Ic
9 = y3 − 3yz2 − 2xy +

(3y2−3z2−2x)y′+6yzz′

y′2+z′2 + 2 y(y′2−z′2)+2zy′z′

(y′2+z′2)2 ,

Ic
10 = 3y2z − z3 − 2xz + 6yzy′+(3z2−3y2+2x)z′

y′2+z′2 + 2 z(y′2−z′2)−2yy′z′

(y′2+z′2)2 .

(57)

Example 10. System (34) is obtainable from a scalar second order complex ODE

u′′ = α2xu′3. (58)

The Lagrangian associated with this equation is L = 2α2xu + 1
u′ . The following gauge functions

B1 = α2x2, B2 = 2α2xu sin(αu) + 2αx cos(αu), B3 = 2α2xu cos(αu)− 2αx sin(αu),
B4 = α2x2(2αu cos(2αu)− sin(2αu)), B5 = α2x2(2αu sin(2αu) + cos(2αu)),

(59)

correspond to the respective Lie point symmetries

Z1 = ∂u, Z2 = sin(αu)∂x, Z3 = cos(αu)∂x,
Z4 = αx cos(2αu)∂x + sin(2αu)∂u, Z5 = αx sin(2αu)∂x − cos(2αu)∂u.

(60)

Hence, there are five Noether symmetries and corresponding first integrals

I1 = −1
u′2 − α2x2,

I2 = 2
(

sin(αu)
u′ − αx cos(αu)

)
,

I3 = 2
(

cos(αu)
u′ + αx sin(αu)

)
,

I4 = α2x2 sin(2αu)− sin(2αu)
u′2 + 2 αx cos(2αu)

u′ ,

I5 = −α2x2 cos(2αu) + cos(2αu)
u′2 + 2 αx sin(2αu)

u′ .

(61)

The real and imaginary parts of (61) yield 10, first integrals for (34).

Example 11. The system (39) and Lagrangian (40) correspond to the complex scalar linearizable ODE

u′′ = αuu′3, (62)

and Lagrangian L = αu2 + 1
u′ , which have the following gauge functions B1 = C, B2 = 2x + αu3

3 , B3 = α2u4

2 , B4 =
2
3 α2u6 − αxu3 − 3x2,B5 = −3α2u5, for the following Lie point symmetries

Z1 = ∂x, Z2 = u∂x, Z3 = αu2∂x − 2∂u,
Z4 = (αu4 − 3xu)∂x − 3u2∂u, Z5 = (−5αu3 + 6x)∂x + 12u∂u.

(63)

Thus, there are five complex first integrals

I1 = αu2 + 2/u′ − C, I2 = 1
3 (2αu3 − 6x) + 2u

u′ ,

I3 = (2+αu2u′)2

2u′2 , I4 = 1
3

(
(αu3−3x)u′+3u

u′

)2
,

I5 = −2α2u5 + 6αxu2 − 2 (5αu3−6x)
u′ − 12 u

u′2 ,

(64)

which split into 10 real first integrals for system (39).
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Example 12. System (43) is obtainable from the complex linearizable ODE

u′′ = xuu′3, (65)

with the Lagrangian L = xu2 + 1
u′ . It admits a five-dimensional Noether symmetry algebra, which yields 10 first integrals

for system (43). In the previous section, we showed that there is no Noether symmetry for system (43) by real methods,
but the complex method yields 10 first integrals.

5. Conclusions

In this paper, we demonstrated, by considering explicit examples that the complex methods
provide Noether invariants that do not appear by real methods. While the examples, in themselves,
do prove the point, one would like to understand why this should be the case. For this purpose,
we state and prove the following theorems that summarize our results and provide insight into how
the complex methods work and go beyond the real methods.

Theorem 4. The Lagrangian and associated first integrals of complex nth (n ≥ 2) order ODEs with complex dependent and
real independent variable provide Lagrangians and first integrals, respectively, for corresponding two-dimensional systems of
nth order ODEs.

Proof. We prove the result for n = 2, as its extension to higher orders is trivial. In this case, i.e., for a scalar second
order ODE, the Euler–Lagrange equation reads as d

dx

(
∂L
∂u′

)
− ∂L

∂u = 0, which expands to

Lxu′ + u′Luu′ + u′′Lu′u′ − Lu = 0.

By considering u(x) = y(x) + ιz(x), L(x, u, u′) = L1(x, y, z, y′, z′) + ιL2(x, y, z, y′, z′), in the above equation
and splitting it into the real and imaginary parts, one obtains

1
2
(L1,xy′ + L2,xz′ ) +

y′

4
(L1,yy′ + L2,y′z + L2,yz′ − L1,zz′ )−

z′

4
(L2,yy′ − L1,y′z − L1,yz′ − L2,zz′ )

+
y′′

4
(L1,y′y′ + L2,y′z′ + L2,y′z′ − L1,z′z′ )−

z′′

4
(L2,y′y′ − L1,y′z′ − L1,y′z′ − L2,z′z′ )−

1
2
(L1,y + L2,z) = 0,

1
2
(L2,xy′ − L1,xz′ ) +

y′

4
(L2,yy′ − L1,y′z − L1,yz′ − L2,zz′ ) +

z′

4
(L1,yy′ + L2,y′z + L2,yz′ − L1,zz′ )

+
y′′

4
(L2,y′y′ − L1,y′z′ − L1,y′z′ − L2,z′z′ ) +

z′′

4
(L1,y′y′ + L2,y′z′ + L2,y′z′ − L1,z′z′ )−

1
2
(L2,y − L1,z) = 0.

Both of the above equations reduce to

Li,xy′ + y′Li,yy′ + z′Li,y′z + y′′Li,y′y′ + z′′Li,y′z′ − Li,y = 0,

Li,xz′ + y′Li,yz′ + z′Li,zz′ + y′′Li,y′z′ + z′′Li,z′z′ − Li,z = 0,

for i = 1, 2, by employing the CR-equations L1,y = L2,z, L1,z = −L2,y, L1,y′ = L2,z′ , and L1,z′ = −L2,y′ . Notice
that these are Euler–Lagrange Equations (4) for two-dimensional systems of second order ODEs. Hence, the real
and imaginary parts Li, for i = 1, 2, of a complex Lagrangian L(x, u, u′) satisfy the Euler–Lagrange equations for
systems obtainable from complex scalar equations. In other words, the Euler–Lagrange Equations (10) become the
Euler–Lagrange Equations (4). A similar argument applies to first integrals Ii, for i = 1, 2, obtained for a system of
two second order ODEs from complex first integral I(x, u, u′), of a scalar second order complex equation which
satisfy DI = 0, i.e.,

Ix + u′ Iu + u′′ Iu′ = 0.
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Considering u(x) = y(x) + ι(x), I(x, u, u′) = I1(x, y, z, y′, z′) + ιI2(x, y, z, y′, z′), D = D1 + ιD2, and splitting
into the real and imaginary parts and employing CR-equations I1,y = I2,z, I1,z = −I2,y, I1,y′ = I2,z′ ,
I1,z′ = −I2,y′ , yields

Ii,x + y′ Ii,y + z′ Ii,z + y′′ Ii,y′ + z′′ Ii,z′ = 0, i = 1, 2.

This is exactly the criterion whose first integrals of a system of two second order ODEs satisfy DI1 = DI2 = 0,
where D is the derivative operator for such systems given in (6).

The above result is extendable to higher dimensional systems of ODEs of order more than two as
the CR-equations and their derivatives establish a connection between Lagrangians and first integrals
of the complex base equations and the corresponding systems. Therefore, for those systems (of nth
order ODEs) that correspond to complex DEs (of the same order), their Lagrangians and first integrals
are obtainable from the complex Lagrangian and first integrals of the base equations.

The base complex equations in Examples (2)–(6) and (8)–(12) admit an eight-dimensional Lie and
five-dimensional Noether symmetry algebras. It implies that there exist five first integrals for these
scalar equations, which, when considered complex, convert into ten first integrals (as guaranteed by
above theorem) of the corresponding two-dimensional systems of second order ODEs. Based on these
observations, we can state the following result.

Corollary 1. For two-dimensional systems of second order ODEs with symmetry algebras of dimension d, (d < 5) that are
obtainable from complex linearizable scalar ODEs, a complex Noether approach provides more first integrals than the real
symmetry method.

Theorem 5. The real and imaginary parts of the complex Noether symmetries of the complex scalar second order ODEs are
not necessarily the Noether symmetries of the corresponding two-dimensional systems of second order ODEs.

Proof. A complex first integral I(x, u, u′) satisfies the invariance criterion Z[1] I = 0, where

Z[1] = ξ∂x + η′∂u′ + η′′∂u′′

is the first extension of the Noether symmetry of a second order complex ODE. Splitting it into the real and
imaginary parts leads to two invariance conditions (15) that expand to

ξ1 I1,x − ξ2 I2,x +
1
2
{η1(I1,y + I2,z)− η2(I2,y − I1,z) + η′

1(I1,y′ + I2,z′ )− η′
2(I2,y′ − I1,z′ )} = 0,

ξ1 I2,x + ξ2 I1,x +
1
2
{η1(I2,y − I1,z) + η2(I1,y + I2,z) + η′

1(I2,y′ − I1,z′ ) + η′
2(I1,y′ + I2,z′ )} = 0,

respectively, where X[1], and Y[1], are the operators given in (11). Applying the CR-equations on I1, and I2,
the above equations become

ξ1 I1,x − ξ2 I2,x + η1 I1,y + η2 I1,z + η′
1 I1,y′ + η′

2 I1,z′ = 0,

ξ1 I2,x + ξ2 I1,x + η1 I2,y + η2 I2,z + η′
1 I2,y′ + η′

2 I2,z′ = 0,

while the real invariance criterion for systems reads as X[1] Ii = 0, for i = 1, 2, which yields two equations

ξ I1,x + η1 I1,y + η2 I1,z + η′
1 I1,y′ + η′

2 I1,z′ = 0,

ξ I2,x + η1 I2,y + η2 I2,z + η′
1 I2,y′ + η′

2 I2,z′ = 0.

A comparison of these equations with the previous two implies that the real and imaginary parts of a complex
Noether symmetry of the base scalar equation split into two Noether symmetries for the corresponding system of
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ODEs only if ξ2 = 0, which implies that, if the infinitesimal coordinate ξ, of a complex Noether symmetry is a
function of both the real independent variable x, and the complex dependent variable u(x), then it does not split
into Noether symmetries for the corresponding system.
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1. Introduction

In [1], Ames et al. performed the symmetries classification of the model

utt = [ f (u)ux]x (1)

that can describes the flow of one-dimensional gas, longitudinal wave propagation on a moving
threadline, dynamics of a finite nonlinear string. The study of Equation (1) gave impetus to later
investigations. In 2007, Bluman et al. [2] made an interesting nonlocal analysis of Equation (1). In this
paper, our aim is to investigate the generalized model of Equation (1)

utt = [ f (u)ux]x + ε[λ(u) ut]xx, (2)

where f and λ are smooth functions. ε � 1 is the small parameter for the perturbative analysis, while,
when ε = 0, we recover the unperturbed Equation (1).

As in the exact symmetries, even in the approximate one, an important task in determing
approximately invariant solutions is to employ the concept of an optimal system of approximate
subalgebras in order to obtain all the essentially different approximate invariant solutions.

In this manuscript, in the context of Valenti’s theory [3], we define the definition of
one-dimensional optimal system of approximate subalgebras for Equation (2). By its application,
we get new approximate solutions for the generalized Ames’s equation.

The plan of the manuscript is the following: in Section 2, after a brief introduction of the main
concepts of Lie theory, we introduce the definition of Approximate Subalgebra and, finally, recall
the main results of the approximate symmetry analysis of Equation (2). The Optimal Systems
of one-dimensional approximate subalgebras are introduced and defined in Section 3 and the
application of the method to the model is provided. Section 4 presents the reductions of Equation
(2) to ordinary differential equations (ODEs) through the approximate optimal operators and new
approximate solutions are obtained. Finally, in Section 5, the optimal system is used in order to
construct new approximate non-invariant solutions for two other models linked to Equation (2) by a
nonlocal transformation.

Symmetry 2019, 11, 1230; doi:10.3390/sym11101230 www.mdpi.com/journal/symmetry85
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2. On the Approximate Symmetry Classifications

Various and different theories on approximate symmetries have been developed over the years;
the first contribution on this argument is due to Baikov et al. [4], but the method does not consider
an approximation in the perturbation meaning well, since, if we utilise the first order operator,
the corresponding approximate solution could include higher order terms. Later, another interesting
method was suggested by Fushchich et al. [5], where the strategy is consistent in the perturbation sense
and produces correct terms for the approximate solutions, but it is impossible to work in hierarchy;
then, the algebra could really grow. In 2004, Pakdemirli et al. [6] have compared these two methods.
Afterwards, Valenti in [3] introduced his method, where, following the technique proposed in [5], he
removes the “obstacle” of the impossibility of working in hierarchy, in accordance with the perturbation
theory and, for this reason, we will apply this method.

Before entering in the details of approximate theory, we recall briefly the main concepts of Lie
theory for a system of PDEs.

For a given system of differential equation

Δ(t, x, u, v, u(k), v(h)) = 0, (3)

where t, x represents the independent variables. u, v are the dependent variables and u(k), v(h) stand
for all partial derivatives of u and v up to order k and h, respectively.

The invertible transformations of t, x, u, v

T = T(t, x, u, v, a), X = X(t, x, u, v, a), U = U(t, x, u, v, a), V = V(t, x, u, v, a), (4)

depending on a continuous parameter a, are defined as one-parameter (a) (exact) Lie point symmetry
transformations of Equation (3) if Equation (3) has the same form in the new variables T, X, U, V.

By expanding Equation (4) in Taylor’s series around a = 0, we obtain the infinitesimal
transformations, according to the Lie theory:

T = t + a ξ1(t, x, u, v) + o(a2), X = x + a ξ2(t, x, u, v) + o(a2), (5)

U = u + a η1(t, x, u, v) + o(a2), V = v + a η2(t, x, u, v) + o(a2), (6)

where their infinitesimals ξ1, ξ2, η1 and η2 are given by

ξ1(t, x, u, v) =
∂T
∂a

∣∣∣∣
a=0

, ξ2(t, x, u, v) =
∂X
∂a

∣∣∣∣
a=0

, η1(t, x, u, v) =
∂U
∂a

∣∣∣∣
a=0

, η2(t, x, u, v) =
∂V
∂a

∣∣∣∣
a=0

.

The corresponding operator

Ξ = ξ1(t, x, u, v)∂t + ξ2(t, x, u, v)∂x + η1(t, x, u, v)∂u + η2(t, x, u, v)∂v (7)

is known in the literature as the infinitesimal operator or generator of the Lie group.
The Lie group of point transformations, which leave a differential Equation (3) invariant, is

obtained by means of the Lie’s algorithm, with the requirement that the k̄-order prolongation of
Equation (7), which acts on Equation (3), is zero along the solutions, i.e.:

Ξk̄Δ = 0|Δ=0, (8)

where k̄ = max(k, h). The invariance condition Equation (8) produces an overdetermined system of
linear differential equations (called determining equations) for the infinitesimals whose integration
provides the generators of Lie Algebra admitted by Equation (3).

Now, we are able to define the concepts of Approximate Subalgebra of Equation (2).
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Definition 1. We call Approximate Subalgebra of Equation (2) the (exact) subalgebra of the following system
of PDEs:

L0 := u0tt − f (u0) u0xx − f ′(u0) u2
0x = 0, (9)

L1 := u1tt − f (u0) u1xx − f ′(u0) u0xx u1x

− 2 f ′(u0) u0x u1x − f ′′(u0) u2
0x u1

− λ′′(u0) u2
0x u0t − λ′(u0) u0xx u0t

− 2 λ′(u0) u0x u0tx − λ(u0) u0txx = 0. (10)

Systems (9)–(10) have been obtained considering u(t, x, ε) analytics in ε and expanded it in power series of ε,
i.e.,

u(t, x, ε) = u0(t, x) + ε u1(t, x) +O(ε2), (11)

where u0 is the solution of the “unperturbed equation” (9) while u1 can be obtained from the linear Equation (10).

For the sake of clarity, we briefly recall the main results of the symmetry classifications of
Equation (2), which are obtained in [7].

The approximate generator of Equation (2) is written in the form

X = ξ1
0(t, x, u0)

∂

∂t
+ ξ2

0(t, x, u0)
∂

∂x
+ η0

0(t, x, u0)
∂

∂u0

+ [η1
0(t, x, u0) + η1

1(t, x, u0) u1]
∂

∂u1
(12)

and the associate Approximate Principal Lie Algebra of Equation (2), obtained when f (u0) and λ(u0) are
arbitrary functions of u0, is

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = t

∂

∂t
+ x

∂

∂x
− u1

∂

∂u1
, (13)

denoted with LA
P . For suitable forms of functions f (u0) and λ(u0), we also get the symmetries

summarized in the following Table 1:

Table 1. Classification of f (u0) and λ(u0) with the corresponding extensions of LA
P of Equation (2).

f0, λ0, p, q and s are constitutive constants with p �= 0.

Case Forms of f (u0) and λ(u0) Extensions of ApproxL̃P

f (u0) = f0 e
1
p u0

I X4 = x ∂
∂x + 2 p ∂

∂u0
+ 2 s u1

∂
∂u1

λ(u0) = λ0 e
1+s

p u0

f (u0) = f0 (u0 + q)
1
p

I I X4 = x ∂
∂x + 2 p (u0 + q) ∂

∂u0
+ 2 s u1

∂
∂u1

λ(u0) = λ0 (u0 + q)
1+s

p −1

f (u0) = f0 (u0 + q)−
4
3 X4 = x ∂

∂x − 3
2 (u0 + q) ∂

∂u0
− 3

2 u1
∂

∂u1

I I I
λ(u0) = λ0 (u0 + q)−

4
3 X5 = x2 ∂

∂x − 3 x (u0 + q) ∂
∂u0

− 3 x u1
∂

∂u1
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3. Optimal System of Approximate Subalgebras

In this section, we introduce the definition of Optimal Systems of one-dimensional approximate
subalgebras for Equation (2), in the context of Valenti’s theory of approximate symmetries; we begin
by introducing the following definition:

Definition 2. We call the One-Dimensional Optimal system of Approximate Subalgebras of Equation (2) the
one-dimensional, Optimal system of (exact) Subalgebras of systems (9)–(10).

As in the classical symmetries, even in the approximate one, an important instrument to get
approximate solutions is to find the optimal system of approximate subalgebras in order to obtain all
the essentially different approximate invariant solutions. In order to obtain reductions and to construct
classes of group-invariant approximate solutions for Equation (2) in a systematic way, we will get an
optimal system of one-dimensional approximate subalgebras for Equation (2).

Following [8] by using both the adjoint table [9] and the global matrix [10], we get one dimensional
optimal system of subalgebras. We present only the details for the approximate principal Lie Algebra LP
of Equation (2). Thus, as a basis of LA

P , we take adjoint operators, namely

Ai = −[Xi, Xj]
∂

∂Xj
, (i, j = 1, 2, 3), (14)

where, if Xi and Xj are vector fields, then their Lie bracket [Xi, Xj] is the unique vector field satisfying

[
Xi, Xj

]
= Xi (Xj)− Xj (Xi).

The commutator table of Approximate Principal Lie Algebra of case (13) is shown in Table 2.

Table 2. Commutator Table of the Approximate Lie Algebra of Equation (2). The (i,j)-th entry indicates[
Xi, Xj

]
= Xi (Xj)− Xj (Xi).

X1 X2 X3

X1 0 0 X1

X2 0 0 X2

X3 −X1 −X2 0

The adjoint representation can be denoted as Ad(exp(εi Xi))Xj and is written by summing the
Lie series

Ad(exp(εi Xi))Xj =
+∞

∑
n=0

εn

n!
(ad Xi)

n(Xj) = Xj − ε[Xi, Xj] +
ε2

2
[Xi, [Xi, Xj]]− ...

The Adjoint Table of Approximate Principal Lie Algebra spanned by operators (13) is written in
Table 3:

Table 3. Adjoint Table of the Approximate Lie Algebra LP of Equation (2). The (i, j)-th entry indicates
Ad(exp(εi Xi))Xj = Xj − ε[Xi, Xj] +

ε2

2 [Xi, [Xi, Xj]]− ...

Ad X1 X2 X3

X1 X1 X2 X3 − ε1X1

X2 X1 X2 X3 − ε2X2

X3 X1(1 + ε3) X2(1 + ε3) X3
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According the method given in [8], keeping in consideration the commutators, in the first line of
Table 2, we get for instance

A1 = −X1
∂

∂X3
, (15)

which generates the linear transformations

X′
1 = X1, X′

2 = X2, X′
3 = −ε1X1 + X3. (16)

Moreover, the linear transformations generated by each Ai can be obtained simply by checking
the first, second , etc ... row of the Adjoint table (Table 3) of approximate principal Lie algebra LP of
Equation (2); for example, in the case of (16), the linear transformation is represented by the matrix

M1(ε1) =

(
1 0 0
0 1 0

−ε1 0 1

)
.

Following [9], the global matrix M of the adjoint transformations is the product of matrices Mi(εi)

associated with each Ai. For LP of Equation (2), we have

M = Π3
i=1 Mi(εi) =

(
1 + ε3 0 0

0 1 + ε3 0
−ε1 (1 + ε3) −ε2 (1 + ε3) 1

)
.

In order to obtain the global action of operators Ai, (i = 1, ..., 3), we apply the matrix MT ,
transposed matrix of M, to an element of LP , i.e., Xo = ∑3

i=1 ai Xi. Actually, it is preferable to work
with the vector a ≡ (a1, a2, a3); the coordinates of the transformed vector of a are

ā1 = (1 + ε3)a1 − ε1(1 + ε3) a3,

ā2 = (1 + ε3) a2 − ε2(1 + ε3) a3,

ā3 = a3,

and firstly we underline that these transformations leave invariant the component a3 and provide the
adjoint group GA of LA

P .
We can determine the optimal system of LP by using a simple approach. We simplify any given

vector a ≡ (a1, a2, a3) through the above transformations. Then, distinguish the obtained vectors
into nonequivalent classes, where we choose the one with the simplest form by which we obtain the
following non-trivial operator of the optimal system of LP :

Xo1 = c1 X1 + c2 X2 + X3 = (c1 + t)
∂

∂t
+ (c2 + x)

∂

∂x
− u1

∂

∂u1
, (17)

where c1, c2 are real parameters.
Finally, starting from Case III of Table 1, we are able to construct the corresponding extensions of

the optimal system of approximate subalgebras Lp of Case III for Equation (2), by using the Adjoint
Table in the Appendix A (Table A1), which in this case reads as:

Xo2 = c1 X1 + X3 + X4 = (c1 + t)
∂

∂t
+ 2x

∂

∂x
− 3

2
(u0 + q)

∂

∂u0
− 5

2
u1

∂

∂u1
, (18)

Xo3 = c1 X1 + c2 X2 + X5 = c1
∂

∂t
+ (c2 + x2)

∂

∂x
− 3 x(u0 + q)

∂

∂u0
− 3 x u1

∂

∂u1
. (19)
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4. Reduction to ODEs and New Approximate Invariant Solution for the Generalized Ames’s
Equation

Based on the results obtained in the previous section, thanks to the approximate generators, we
can construct the corresponding reduced ODEs of Equation (2); indeed, as we know from literature,
group classification problems are interesting not only from a purely mathematical point of view but
above all in the applications that can be achieved [9–12].

We obtain an approximate solution for Equation (2) considering the approximate operator (17) of
Lp, i.e.,

Xo1 = c1 X1 + c2 X2 + X3 = (c1 + t)
∂

∂t
+ (c2 + x)

∂

∂x
− u1

∂

∂u1
,

we get the following transformation

z =
c2 + x
c1 + t

, u0 = φ(z), u1 =
ψ(z)
c1 + t

, (20)

which maps Equation (2) into the following ODEs:

2 z φ′ − f ′ φ′2 + (z2 − f )φ′′ = 0,

λzφ′′′ − ( f ′ψ − 2λ − 3zλ′φ′)φ′′ + (z2 − f )ψ′′

+
(
zλ′′φ′ + 2(λ′ − f ′′

)
ψ)φ′′ − 2( f ′φ′ − 2z)ψ′ + 2ψ = 0,

f = f (u) and λ = λ(u) being arbitrary functions of its argument. When f = f0 = constant and
λ = λ0 = constant, by integration of the reduced equations, we get

φ = k1 +
k2

f0
arctanh

(
z√
f0

)
, ψ =

(k3 + k4z)( f0 − z2) + k2λ0z
( f0 − z2)2 ,

where ki, (i = 1, . . . , 4) are arbitrary constants, and, as a consequence, we obtain the following solution
of Equation (2)

u = k1 +
k2

f0
arctanh

(
c2 + x√
f0(c1 + t)

)

+ε
(k3(c1 + t) + k4(c2 + x))( f0(c1 + t)2 − (c2 + x)2) + k2λ0(c1 + t)2(c2 + x)

( f0(c1 + t)2 − (c2 + x)2)2 . (21)

Another solution can be obtained by the operator

Xo2 = (c1 + t)
∂

∂t
+ 2x

∂

∂x
− 3

2
(u0 + q)

∂

∂u0
− 5

2
u1

∂

∂u1

when f = f0(u0 + q)−4/3 and λ = λ0(u0 + q)−4/3 (Case III of Table 1), which leads to get the following
transformation of variables:

z =
x

(c1 + t)2 , u0 =
φ(ξ)

(c1 + t)3/2 − q, u1 =
ψ(ξ)

(c1 + t)5/2 , (22)

and to the following reduced equations:

12(4z2 φ
4
3 − f0)φφ′′ + 16( f0φ′ + 9z φ

7
3 )φ′ + 45φ

10
3 = 0,

72λ0z φ2φ′′′ − 6φ(48λ0z φ′ − 21λ0φ − 8 f0ψ)φ′′ + 36(4z2 φ
4
3 − f0)φ

2ψ′′

+96( f0φ′ + 6z φ
7
3 )φψ′ + 56(4λ0z φ′ − 2 f0ψ − 21λ0φ)φ′2 + 315φ

10
3 ψ = 0
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that admit as a solution

φ = (

√
f0

z
)3/2, ψ =

1
z3/2

⎛⎝k1 +
3
2

k2 log z − λ0

(
log z
4
√

f0

)2
⎞⎠ ,

k1 and k2 being arbitrary constants. Thus, a solution of (2) is

u =

√
c1 + t

x3

⎛⎝ f 3/4
0 (c1 + t)− q + ε

⎛⎝k1 +
3
2

k2 log
x

(c1 + t)2 − λ0

(
log x

(c1+t)2

4
√

f0

)2
⎞⎠⎞⎠ . (23)

Finally, if we consider the approximate operator:

Xo3 = c1 X1 + c2 X2 + X5 = c1
∂

∂t
+ (c2 + x2)

∂

∂x
− 3 x(u0 + q)

∂

∂u0
− 3 x u1

∂

∂u1
, (24)

we get the following transformation:

z =
1√
c2

arctan
(

c1

c2
x
)
− t

c1
, u0 =

(
c2

c2 + c1x2

) 3
2

φ(z)− q, u1 =

(
c2

c2 + c1x2

) 3
2

ψ(z),

which maps Equation (2) into the following ODEs:

3(c2
2φ

4
3 − c4

1 f0)φφ′′ + c4
1 f0(4φ′2 + 9c2φ2) = 0, (25)

9c3
1λ0φ2φ′′′ + 12φ(c1 f0ψ − 3λ0φ′)φ′′ + 9(c2

2φ
4
3 − c4

1 f0)φ
2ψ′′ (26)

+24c4
1 f0φφ′ψ′ − c3

1(c1 f0ψ − λ0φ′)(9c2φ2 + 28φ′2) = 0. (27)

A particular solution is given by φ = 0, so that the solution of Equation (2) is

u = −q + ε

(
c2

c2 + c1x2

) 3
2

ψ(z) (28)

with ψ(z) arbitrary function of

z =
1√
c2

arctan
(

c1

c2
x
)
− t

c1
.

A simple solution that can be obtained from (24) by setting c1 = c2 = 0; the similarity solution
and the variables become, respectively,

z = t, u0 = x−3φ(t)− q, u1 = x−3ψ(t), (29)

while the corresponding reduced ODEs of (2) assume the simple form:

φ′′φ
1
3 = 0, ψ′′φ

4
3 = 0,

which admit the solution
φ = h1 t + h0, ψ = k1 t + k0 (30)

with h1, h0, k1 and k0 arbitrary constants of integration. Then, we can write the invariant approximate
solution for Equation (2)

u(t, x) =
h1 t + h0

x3 − q + ε
k1 t + k0

x3 +O(ε2). (31)
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5. The Potential System Associated with the Generalized Ames’s Equation

We recall that, for any given system of PDEs, it is possible to construct nonlocally related
potential systems that have the same solutions of the given system [2]. The transformation
that allows for mapping the given system of PDEs into nonlocally potential systems is defined
“nonlocal transformation”.

Thus, we have that Equation (2) leads to getting the following system:

ut − vx = 0, (32)

vt −
(∫ u

f (s) ds + ελ(u) vx

)
x
= 0, (33)

studied in [13], which can be treated as the potential system of Equation (2).
In addition, if we consider the nonlocal transformation u = wx, v = wt, systems (32)–(33) are

equivalent to
wtt = f (wx)wxx + ε[λ(wx)wtx]x (34)

studied in [8,14]. Special cases of models belonging to the class of Equation (34) can be found in [15–19].
Furthermore, some questions related to global existence, uniqueness and stability of solutions have
been addressed in [20,21].

In Ref. [7], the authors have proved a Theorem affirming that For any f and λ, an approximate
symmetry admitted by the systems (32)–(33) and Equation (34) defines an approximate symmetry
admitted by Equation (2); conversely, some approximate symmetries of Equation (2) do not induce
approximate symmetries of Equation (34) and the systems (32)–(33).

In a few words, the classification of Equation (2) is richer than those of systems (32)–(33) and of
Equation (34). In fact, while there is a correspondence between the approximate symmetry operators
X1,. . ., X4 admitted by Equation (2) with the ones admitted by (34), the operator X5 reported in case III
of Table 2 is a new approximate operator, admitted only by Equation (2).

According to this theorem, in light of the determination of the one-dimensional optimal system of
approximate subalgebras, we are able to get approximate invariant and non-invariant solutions for the
systems (32)–(33) and Equation (34).

For better clarification: the correspondence between the approximate symmetry operators X1,. . .,
X4 admitted by Equation (2) with the ones admitted by (34), allows us to get approximate invariant
solutions for the systems (32)–(33) and Equation (34); for instance, the general solution (21) which we
have obtained in this paper, when k2 = 0, includes the solution obtained considering an approximate
operator admitted by Equation (34) and found in [8]. Instead, starting from the approximate solution
(31), obtained by means of the operator X03 that involves the generator X5, we are able to obtain
approximate non-invariant solutions for the systems (32)–(33) and Equation (34) that could not have
been obtained from the symmetry analysis and reductions performed in [13,14] because the operator
X5 is new and it is admitted only by Equation (2).

New Approximate Non-Invariant Solutions for Equation (35) and the Potential System

Starting from the approximate solution (31), keeping in consideration the nonlocal transformation
u = wx, by integrating (31) with respect to x, we obtain:

w(t, x) = − h1 t + h0

2x2 − q x + χ0(t) + ε

(
k1 t + k0

2x2 + χ1(t)
)

, (35)

where χ0(t) and χ1(t), at this stage, are arbitrary functions of t. When we substitute them into (34), we
get that it must be linear in their arguments, so we obtain the following new non-invariant approximate
solution for Equation (34):
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w(t, x) = − h1 t + h0

2x2 − q x − 27 f0

10 h2
1
(h1 t + h0)

5
3 + K1 t

− ε

[
k1 t + k0

2x2 − 9(h0 + h1 t)
2
3

10 h3
1

[
45 λ0h2

1 + f0(h1k1 t − 5 h1k0 + 6 h0k1)
]
− K2 t

]
+O(ε2),

(36)

where K1 and K2 are arbitrary constants.
Finally, the non-invariant approximate solution for the system (32)–(33) reads as

u =
h1 t + h0

x3 − q + ε
k1 t + k0

x3 ,

v = − h1

2x2 − 9 f0

2 h1
(h1 t + h0)

2
3 + K1

− ε

[
k1 t + k0

2x2 − 9(h0 + h1 t)
2
3

10 h3
1

[
45 λ0h2

1 + f0(h1k1 t − 5 h1k0 + 6 h0k1)
]
− K2 t

]
.

(37)

6. Conclusions

In this manuscript, we worked following the method of Valenti’s approximate symmetries;
moreover, thanks to the link between the approximate symmetries of the three related models (2),
(32)–(33), (34) and the definition of one-dimensional optimal system of approximate subalgebras, we
are also capable in this manuscript to get new approximate, invariant and non-invariant, solutions
not only for the generalized Ames’s Equation (2), but also for Equation (34) and the systems (32)–(33)
which could not be obtained from the approximate symmetry analysis performed in [13,14].
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Appendix A

In this Appendix, the Adjoint Table (Table A1) of the case III is reported.

Table A1. Adjoint Table of the Approximate Lie Algebra of Equation (2).

Ad X1 X2 X3 X4 X5

X1 X1 X2 X3 − ε1X1 X4 X5

X2 X1 X2 X3 − ε2X2 X4 − ε2X2 X5 − 2ε2X4

X3 X1(1 + ε3) X2(1 + ε3) X3 X4 X5(1 − ε3)

X4 X1 X2(1 + ε4) X3 X4 X5(1 − ε4)

X5 X1 X2 + 2ε5X4 X3 + ε5X5 X4 + ε5X5 X5
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Abstract: This paper considers a generalized double dispersion equation depending on a nonlinear
function f (u) and four arbitrary parameters. This equation describes nonlinear dispersive waves in
2 + 1 dimensions and admits a Lagrangian formulation when it is expressed in terms of a potential
variable. In this case, the associated Hamiltonian structure is obtained. We classify all of the Lie
symmetries (point and contact) and present the corresponding symmetry transformation groups.
Finally, we derive the conservation laws from those symmetries that are variational, and we discuss
the physical meaning of the corresponding conserved quantities.

Keywords: Lie symmetry; conservation law; double dispersion equation; Boussinesq equation

1. Introduction

A well-known equation that models the motion of long dispersive shallow water waves, which
are propagated in both directions, is the Boussinesq equation [1,2], given by:

utt = uxx + buxxxx + α(u2)xx. (1)

This equation is an integrable system, which is well-posed for b = −1 and ill-posed for b = 1.
Many modified and generalized Boussinesq equations have been considered in the literature.

A generalization of the Boussinesq equation depending on a nonlinearity power p �= 0 consists of
replacing in (1) the nonlinear term (u2)xx by (up)xx. The resulting equation is given by:

utt = uxx + auxxxx + α(up)xx. (2)

A modified Boussinesq equation is obtained by substituting the fourth-order term uxxxx in (1) by
uttxx, yielding:

utt = uxx + auttxx + α(u2)xx. (3)

This equation is well-posed. In [3–8], the Cauchy problem and initial boundary value problem
were considered for these equations and also for a double dispersion equation that unifies the previous
equations and depends on a nonlinear function f (u). This generalized double dispersion equation is
given by:

utt = uxx + auttxx + buxxxx + dutxx + ( f (u))xx. (4)

Another interesting variant of the Boussinesq equation is given by the sixth-order equation:

utt = uxx + auxxxxxx + buxxxx + (u3)xx, (5)
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and its generalization:
utt = cuxx + auxxxxxx + buxxxx + ( f (u))xx, (6)

where f (u) is a nonlinear function. These equations model long gravity-capillary surface waves with a
short amplitude, propagating in both directions in shallow water. The Cauchy problem was considered
for Equation (5) in [9], and the Hamiltonian formulation and a complete classification of Lie point
symmetries and conservation laws were obtained for Equation (6) in [10].

Recently, a generalization of Equation (2) to two spatial dimensions, given by:

utt = uxx + buxxxx + α(up+1)xx + βuyy, p �= 0 (7)

was considered in [11], where the point symmetries, conservation laws, and line soliton solutions
were derived.

In this work, we consider a (2+ 1)-dimensional generalization of the double dispersion Equation (4),
given by:

utt = uxx + auttxx + buxxxx + dutxx + ( f (u))xx + βuyy, (8)

where f (u) is a nonlinear arbitrary function and a, b, d, and β are arbitrary parameters. The 2D
generalized double dispersion (2D gDD) family of Equations (8) unifies the previous Equations (1)–(4)
and (7). Some (2 + 1)-dimensional equations in this family were considered in recent literature and
were shown to admit interesting exact solutions such as line solitons and lump solutions [11–13].

For any given partial differential equation (PDE), symmetries are transformations that leave
invariant the whole space of solutions of the equation. Symmetries can be used to obtain reductions
and exact group-invariant solutions. These invariant solutions play a key role in the investigation of
certain analytical properties, e.g., asymptotic and blow-up behavior. In addition, explicit solutions
can be used to assess the accuracy and reliability of numerical solution methods. For a given PDE,
all admitted Lie symmetries can be determined by applying the Lie method.

A conservation law of a given evolution equation is a continuity equation that yields basic
conserved quantities for all solutions. Some important uses, among others, are that they allow
detecting and constructing mappings of nonlinear evolution equations to linear equations. Moreover,
they can be used for studying integrability.

In Section 2, we write the 2D gDD Equation (8) as a potential equation, and we find a Lagrangian
formulation for d = 0. The associated Hamiltonian formulation is also included in Section 2. By using
the Lie method, in Section 3, we classify all point and contact symmetries of the potential equation,
and we include the corresponding symmetry groups. We provide an Appendix A with a summary
of the computations. In Section 4, from the previous classification of Lie symmetries of the potential
equation, the variational symmetries are found. Next, in Section 5, we derive the conservation laws
of the potential equation from the variational symmetries by using Noether’s theorem. Furthermore,
we discuss the physical meaning of the associated conserved quantities. Finally, in Section 6, we give
some conclusions.

2. Potential Form and Hamiltonian Formulation

The generalized double dispersion Equation (8) can be expressed in potential form by using a potential:

u = vx. (9)

The resulting equation is then given by:

G = vtt − vxx − avttxx − bvxxxx − dvtxx − ( f (vx))x − βvyy = 0. (10)
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This potential Equation (10) admits a local Lagrangian structure:

δL
δv

= 0 (11)

if and only if d = 0, where δ/δv is the variational derivative with respect to v:

δ

δv
= ∂v − Dt∂vt − Dx∂vx − Dy∂vy + D2

t ∂vtt + D2
x∂vxx + D2

y∂vyy + DtDx∂vtx + DtDy∂vty

+ DxDy∂vxy + · · · .
(12)

Indeed, the double dispersion equation in potential form (10) can be written as the Euler-Lagrangian
equation of a local Lagrangian if and only if the Helmholtz conditions are satisfied [14,15], i.e., the Fréchet
derivative of Equation (10) is self-adjoint. We recall [14,15] that the Fréchet derivative of a differential
function G(t, x, y, v, vt, vx, vy, ...) acting on P(t, x, y) is given by:

δPG =P
∂G
∂v

+ DtP
∂G
∂vt

+ DxP
∂G
∂vx

+ DyP
∂G
∂vy

+ D2
t P

∂G
∂vtt

+ D2
xP

∂G
∂vxx

+ D2
yP

∂G
∂vyy

+ DtDxP
∂G
∂vtx

+ DtDyP
∂G
∂vty

+ DxDyP
∂G

∂vxy
+ · · · ,

(13)

and the adjoint Fréchet derivative is given by:

δ∗PG =P
∂G
∂v

− Dt

(
P

∂G
∂vt

)
− Dx

(
P

∂G
∂vx

)
− Dy

(
P

∂G
∂vy

)
+ D2

t

(
P

∂G
∂vtt

)
+ D2

x

(
P

∂G
∂vxx

)
+ D2

y

(
P

∂G
∂vyy

)
+ DtDx

(
P

∂G
∂vtx

)
+ DtDy

(
P

∂G
∂vty

)
+ DxDy

(
P

∂G
∂vxy

)
− · · · .

(14)

To show that the Fréchet derivative of the potential 2D gDD Equation (10) is self-adjoint, we compute
the Fréchet derivative of Equation (10):

δPG = − f ′′(vx)vxxDxP + D2
t P − (1 + f ′(vx))D2

xP − βD2
yP − dDtD2

xP − aD2
t D2

xP − bD4
xP, (15)

and the adjoint Fréchet derivative of Equation (10):

δ∗PG = Dx( f ′′(vx)vxxP) + D2
t P − D2

x((1 + f ′(vx))P)− βD2
yP + dDtD2

xP − aD2
t D2

xP − bD4
xP, (16)

where P = P(t, x, y), and we verify that Expression (15) coincides with its adjoint (16) for all P(t, x, y).
It is straightforward to show that this only occurs iff d = 0.

There are two main implications when a PDE admits a Lagrangian structure: the existence
of conserved energy, momentum, etc., from Noether’s theorem and the existence of a Hamiltonian
formulation. From the physical point of view, the restriction d = 0 on Equation (10) means that the
dynamics is being restricted such that dissipative processes are being removed, leading to conservation of
energy, momentum, etc.

The Lagrangian corresponding to the Lagrangian formulation (11) of Equation (10) is then given by:

L = − 1
2 v2

t +
1
2 v2

x − 1
2 avttvxx − 1

2 bv2
xx + F(vx) +

1
2 βv2

y, (17)

where F′(vx) = f (vx).
The potential Equation (10) can be expressed as an equivalent evolution system, given by:

vt = w,

wt = vxx + avttxx + bvxxxx + dvtxx + f ′(vx)vxx + βvyy.
(18)
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When d = 0, the Lagrangian structure (11) yields a Hamiltonian formulation for the potential
system (18), given by: (

v
w

)
t

= J

(
δH/δv
δH/δw

)
, J =

(
0 1
−1 0

)
(19)

with the Hamiltonian density given by:

H =
∫
R2

( 1
2 w2 + 1

2 v2
x − 1

2 avttvxx − 1
2 bv2

xx + F(vx) +
1
2 βv2

y
)

dx dy, (20)

where F′(vx) = f (vx) and J is the Hamiltonian operator [15]. There exists an equivalent Hamiltonian
structure in terms of the variable u, with the Hamiltonian given by a nonlocal expression in u and w.
By noting that ut = vtx = wx and by applying the variational derivative identity δH/δv = −Dx(δH/δu),
the Hamiltonian formulation is then given by:(

u
w

)
t

= D
(

δH/δu
δH/δw

)
, D =

(
0 Dx

Dx 0

)
(21)

where D is the Hamiltonian operator [15].
Note that when a = 0 and f (vx) = vp+1

x , the generalized (2 + 1)-dimensional Boussinesq
with p-power nonlinearity is obtained. The Hamiltonian structure for this equation was obtained
in [11]. In addition, if β = 0 and p = 1, this Hamiltonian formulation is one of the Hamiltonian
structures [15] of the ordinary Boussinesq Equation (1). In this section, these Hamiltonian structures
have been extended for a more general (2 + 1)-dimensional double dispersion equation depending on
an arbitrary function.

3. Lie Symmetries

For nonlinear evolution equations, symmetries are important since they can be used to determine
groups of transformations, which leave the solution space of the equation invariant, and also because
they lead to reductions and exact invariant solutions. The Hamiltonian structure derived in the
previous section motivates studying the symmetries of the 2D gDD equation in potential form (10).
The Lie symmetries of Equation (10) consist of point symmetries and contact symmetries, since the
equation involves only a single dependent variable v [16].

3.1. Point Symmetries

An infinitesimal point symmetry of the potential 2D gDD Equation (10) is a vector field of the form:

X = τ(t, x, y, v)∂t + ξx(t, x, y, v)∂x + ξy(t, x, y, v)∂y + η(t, x, y, v)∂v, (22)

whose prolongation leaves invariant the whole solution space of the equation,

prX(vtt − vxx − avttxx − bvxxxx − dvtxx − f ′(vx)vxx − βvyy)|G=0 = 0. (23)

A point symmetry (22) of the potential 2D gDD Equation (10) generates a one-parameter Lie
group of point transformations acting on dependent and independent variables that carries solutions
of the equation into other solutions. This point symmetry transformation is then given by:

t̃ = t + ετ(t, x, y, v) + O(ε2),

x̃ = x + εξx(t, x, y, v) + O(ε2),

ỹ = y + εξy(t, x, y, v) + O(ε2),

ṽ = v + εη(t, x, y, v) + O(ε2),

(24)
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with ε being the group parameter. The action of a point symmetry on solutions of the potential 2D
gDD Equation (10) yields:

v(t, x, y) → ṽ(t, x, y) = v(t, x, y) + ε
(
η(t, x, y, v(t, x, y)− τ(t, x, y, v(t, x, y))vt(t, x, y)

− ηx(t, x, y, v(t, x, y))vx(t, x, y)− ηy(t, x, y, v(t, x, y))vy(t, x, y)
)
+ O(ε2),

(25)

corresponding to the characteristic form of the generator, given by:

X̂ = P∂v, P = η − τvt − ξxvx − ξyvy, (26)

where P is the symmetry characteristic. The invariance condition is then equivalently expressed in
terms of the Fréchet derivative (13) of the potential 2D gDD Equation (10) acting on the symmetry
characteristic P as:

0 = prX̂(G)|G=0 = δPG|G=0, (27)

yielding:

D2
t P − f ′′(vx)vxxDxP − (1 + f ′(vx))D2

xP − βD2
yP − dDtD2

xP − aD2
t D2

xP − bD4
xP = 0, (28)

which holds for all solutions of the 2D gDD equation in potential form (10), and is called the
symmetry-determining equation of PDE (10). The determining Equation (28) splits with respect
to the differential consequences of v and leads to an overdetermined system of equations for P, f (vx),
a, b, d, and β. Furthermore, we will also impose the classification conditions f ′′(vx) �= 0, which
implies that the equation is nonlinear; a2 + b2 �= 0 and β �= 0, which respectively imply that the
equation is a fourth-order PDE, and generalizes the 1D gDD Equation (4) to two spatial dimensions.
We set up and solve the resulting determining system by using Maple, in particular the “rifsimp” and
“pdsolve” commands. A summary of the steps followed for this computation is included in Appendix
A. Therefore, we have the following classification result.

Theorem 1. (i) The point symmetries admitted by the 2D generalized double dispersion potential Equation (10)
for arbitrary a, b, d, β, and f (vx) with the conditions a2 + b2 �= 0, β �= 0, and f ′′(vx) �= 0 are generated by
the transformations:

X1 = ∂t, (29a)

(t̃, x̃, ỹ, ṽ)1 = (t + ε, x, y, v), time-translation. (29b)

X2 = ∂x, (30a)

(t̃, x̃, ỹ, ṽ)2 = (t, x + ε, y, v), space-translation. (30b)

X3 = ∂y, (31a)

(t̃, x̃, ỹ, ṽ)3 = (t, x, y + ε, v), space-translation. (31b)

X4,g,h =
(

g(y +
√

βt) + h(y −
√

βt)
)
∂v, (32a)

(t̃, x̃, ỹ, ṽ)4 = (t, x, y, v + (g(y +
√

βt) + h(y −
√

βt))ε). (32b)

The last symmetry is a linear combination of two infinite-dimensional families, with g(y +
√

βt) + h(y −√
βt) being the general solution of the linear equation Ptt − βPyy = 0 for P = P(t, y).

(ii) The 2D generalized double dispersion potential Equation (10) admits additional point symmetries for
special f (vx), a, b, or d, in the following cases:
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(a) a = 0, d = 0, arbitrary f (vx), b, and β,

X5 = y∂t + βt∂y, (33a)

(t̃, x̃, ỹ, ṽ)5 = (cosh(ε
√

β)t + 1√
β

sinh(ε
√

β)y, x, cosh(ε
√

β)y +
√

β sinh(ε
√

β)t, v),

boost in the plane (y, t).
(33b)

(b) f (vx) = α(vx + c)p+1 − vx, a = 0, arbitrary b, d, and β,

X6 = 2pt∂t + px∂x + 2py∂y + ((p − 2)v − 2cx)∂v, (34a)

(t̃, x̃, ỹ, ṽ)6 = (e2pεt, epεx, e2pεy, e(p−2)εv − 2cxε), scaling and shift. (34b)

(c) f (vx) =
1
α ln

(
α(vx + c)

)
− vx, a = 0, arbitrary b, d, and β,

X7 = 2t∂t + x∂x + 2y∂y + (3v + 2cx)∂v, (35a)

(t̃, x̃, ỹ, ṽ)7 = (e2εt, eεx, e2εy, e3εv + 2cxε), scaling and shift. (35b)

(d) f (vx) = α(vx + c)p+1 − vx, b = 0, d = 0, arbitrary a and β,

X8 = pt∂t + py∂y − 2(v + cx)∂v, (36a)

(t̃, x̃, ỹ, ṽ)8 = (epεt, x, epεy, e−2εv − 2cxε), scaling and shift. (36b)

(e) f (vx) = αepvx − vx, b = 0, d = 0, arbitrary a and β,

X9 = pt∂t + py∂y − 2x∂v, (37a)

(t̃, x̃, ỹ, ṽ)9 = (epεt, x, epεy, v − 2xε), scaling and shift. (37b)

The classification of the maximal point symmetry Lie algebras for the 2D gDD potential Equation (10)
is shown in the following theorem. For each case, the basis of generators and its non-zero Lie brackets
are included.

Theorem 2. The 2D generalized double dispersion potential Equation (10) admits the maximal symmetry
algebras (with corresponding non-zero commutator structure) given by:

(i) arbitrary f (vx), a, b, d, and β,
X1, X2, X3, X4,g,h ;

[X1, X4,g,h] = X4,
√

βg′ ,−
√

βh′ ; [X3, X4,g,h] = X4,g′ ,h′ .

(ii) a = 0, d = 0, arbitrary f (vx), b, and β,

X1, X2, X3, X4,g,h, X5;

[X1, X5] = βX3 ; [X3, X5] = X1 ; [X4,g,h, X5] = X4,g1,h1 ,

where g1 =
√

β(y +
√

βt)g′ and h1 = −
√

β(y −
√

βt)h′.
(iii) f (vx) = α(vx + c)p+1 − vx, a = 0, arbitrary b, d, and β,

X1, X2, X3, X4,g,h, X6;

[X1, X6] = 2pX1 ; [X2, X6] = pX2 + X4,−2c,0 ; [X3, X6] = 2pX3 ; [X4,g,h, X6] = X4,g2,h2 ,

where g2 = (p − 2)g − 2p(y +
√

βt)g′ and h2 = (p − 2)h − 2p(y −
√

βt)h′.

101



Symmetry 2019, 11, 1031

(iv) f (vx) =
1
α ln

(
α(vx + c)

)
− vx, a = 0, arbitrary b, d, and β,

X1, X2, X3, X4,g,h, X7;

[X1, X7] = 2X1 ; [X2, X7] = X2 + X4,2c,0 ; [X3, X7] = 2X3 ; [X4,g,h, X7] = X4,g3,h3 ,

where g3 = 3g − 2(y +
√

βt)g′ and h3 = 3h − 2(y −
√

βt)h′.
(v) f (vx) = α(vx + c)p+1 − vx, b = 0, d = 0, arbitrary a and β,

X1, X2, X3, X4,g,h, X8;

[X1, X8] = pX1 ; [X2, X8] = X4,−2c,0 ; [X3, X8] = pX3 ; [X4,g,h, X8] = X4,g4,h4 ,

where g4 = −2g − p(y +
√

βt)g′ and h4 = −2h − p(y −
√

βt)h′.
(vi) f (vx) = αepvx − vx, b = 0, d = 0, arbitrary a and β,

X1, X2, X3, X4,g,h, X9;

[X1, X9] = pX1 ; [X2, X9] = X4,−2,0 ; [X3, X9] = pX3 ; [X4,g,h, X9] = X4,g5,h5 ,

where g5 = −p(y +
√

βt)g′ and h5 = −p(y −
√

βt)h′.
(vii) f (vx) = α(vx + c)p+1 − vx, a = 0, d = 0, arbitrary b and β,

X1, X2, X3, X4,g,h, X5, X6.

(viii) f (vx) =
1
α ln

(
α(vx + c)

)
− vx, a = 0, d = 0, arbitrary b and β,

X1, X2, X3, X4,g,h, X5, X7.

For arbitrary f (vx), a, b, d, and β, the 2D gDD potential Equation (10) admits a four-dimensional
Lie algebra consisting of time-translation symmetry (29), space-translation symmetries (29) and (30),
and infinite-dimensional symmetry families (32). When a = 0 and d = 0, Equation (10) becomes a 2D
generalized Boussinesq equation in potential form and admits a five-dimensional algebra that includes
the previous symmetries and also a boost in the plane (y, t) (33). The classification of point symmetries
was already known for the 2D Boussinesq Equation (7) in potential form when f (vx) = vp+1

x [11].
However, we remark that this maximal algebra is also admitted by Equation (10) with a = 0 and d = 0
for any f (vx).

We also note that for each of the cases (iii)–(viii) of Theorem 2, the specific forms of the function
f (vx) will result in the dropping of the second-order term vxx in the 2D gDD potential Equation (10).
Therefore, the resulting equations are not properly Boussinesq-type equations, but some other
fourth-order nonlinear dispersive PDEs in 2 + 1 dimensions that admit five-dimensional algebras
consisting of time and space-translation symmetries, infinite symmetry families, plus a scaling and
shift symmetry. In particular, when a = 0 and d = 0 and for the specific forms of f (vx) in Cases (vii)
and (viii), the equations are respectively given by:

vtt − bvxxxx − α(p + 1)(vx + c)pvxx − βvyy = 0 (38)

and:
vtt − bvxxxx −

1
α(vx + c)

vxx − βvyy = 0. (39)

Both equations admit six-dimensional algebras consisting of time and space-translation
symmetries, infinite symmetry families, boost symmetry, and scaling-shift symmetry.
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3.2. Contact Symmetries

A contact symmetry of the potential 2D gDD Equation (10) is a one-parameter Lie group of
transformations that leaves invariant the solution space of the equation and in which the transformation
of (t, x, y, v) essentially depends on vt, vx, or vy. The corresponding symmetry generator is given by:

X = τ∂t + ξx∂x + ξy∂y + η∂v + ηt∂vt + ηx∂vx + ηy∂vy , (40)

and the characteristic form of this generator is then given by:

X̂ = P(t, x, y, v, vt, vx, vy)∂v, (41)

with:
τ = −Pvt , ξx = −Pvx , ξy = −Pvy , η = P − vtPvt − vxPvx − vyPvy ,

ηt = Pt + vtPv, ηx = Px + vxPv, ηy = Py + vyPv.
(42)

A contact symmetry yields a prolonged point symmetry iff the symmetry characteristic P is at
most linear in vt, vx, and vy.

The invariance of the potential 2D gDD Equation (10) under the contact symmetry
transformation is expressed by the determining Equation (28) holding for all solutions v(t, x, y) of
Equation (10). Then, the determining equation splits into an overdetermined system of equations for
P(t, x, y, v, vt, vx, vy) together with the function f (vx) and the parameters of the equation a, b, d, and β.
We impose again the classification conditions f ′′(vx) �= 0, a2 + b2 �= 0 and β �= 0. We set up and solve
this system by using the Maple “rifsimp” and “pdsolve” commands. This computation is analogously
done by using the steps outlined in Appendix A for the Lie point symmetries, but considering in this
case the contact symmetry in characteristic form (41). Therefore, we obtain the following result.

Theorem 3. The 2D generalized double dispersion potential Equation (10) does not admit any contact symmetry
except for those that reduce to prolongations of point symmetries.

4. Variational Symmetries

When d = 0, the 2D generalized double dispersion potential Equation (10) admits a local
Lagrangian structure (11) in terms of a Lagrangian functional (17), which will be used in this section to
determine which of the Lie symmetries of Equation (10) with d = 0 are variational symmetries.

A variational symmetry is an infinitesimal symmetry X̂ = P∂v that leaves invariant a Lagrangian
functional L up to a total divergence,

X̂L = DtΨt + DxΨx + DyΨy, (43)

where Ψt, Ψx, Ψy depend on t, x, y, v, and derivatives of v. The invariance condition is usually verified
by computing the left-hand side of (43) and integrating by parts the resulting expression to obtain a
total divergence expression. This invariance condition is equivalent to:

Ev(PEv(L)) = 0 (44)

in terms of the Euler operator (12) (i.e., the variational derivative), involving only the symmetry
characteristic P and the Lagrangian L [14,15].

Therefore, for each of the Lie point symmetries admitted by the 2D gDD potential Equation (10)
with d = 0, it is only necessary to check that the variational symmetry condition (44) is satisfied, where
L is the Lagrangian (17). We next summarize the results.

Theorem 4. The 2D generalized double dispersion equation in potential form (10) with d = 0 admits the
variational point symmetries spanned by the time-translation symmetry (29), the space-translation symmetries
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(30) and (31), the infinite symmetry families (32), the boost symmetry (33), and the scaling-shift symmetry (37).
The scaling-shift symmetry (34) is only variational for p = 4

3 , and the scaling-shift symmetries (35) and (36)
are not variational.

5. Conservation Laws

A local conservation laws of the potential 2D gDD Equation (10) is a space-time divergence
expression:

DtT + DxX + DyY|G=0 = 0 (45)

holding on the solution space of Equation (10), with T and (X, Y) being respectively the density and
the spatial flux, which are functions of t, x, y, v, and derivatives of v. The expression (T, X, Y) is
called the conserved current. For any given nonlinear evolution equation, local conservation laws
are important since they describe physical quantities that do not change over time within an isolated
physical process.

For the potential 2D gDD Equation (10), every non-trivial conservation law (45) is equivalent to
the characteristic equation [14,15,17], given by:

DtT̃ + DxX̃ + DyỸ = (vtt − vxx − avttxx − bvxxxx − dvtxx − ( f (vx))x − βvyy)Q, (46)

holding off of the solution space of Equation (10), where Q, T̃, X̃, and Ỹ are functions of t, x, y, v,
and derivatives of v. When restricted to the solution space of Equation (10), the conserved density
T̃ and the spatial flux (X̃, Ỹ) respectively yield T and (X, Y). The function Q in (46) is called the
conservation law multiplier.

For a given equation admitting a Lagrangian structure (11), Noether’s theorem states a one-to-one
correspondence between variational symmetries and locally non-trivial conservation laws [15,17].
In terms of the variational symmetry characteristic P and the conservation law multiplier Q,
the correspondence in Noether’s theorem is equivalent to the condition:

P = Q. (47)

Given a variational symmetry characteristic P, it is straightforward to derive the corresponding
conserved current (T̃, X̃, Ỹ) from the characteristic Equation (46) by using several methods.
One method consists of first splitting the characteristic equation DtT̃ + DxX̃ + DyỸ = PEv(L) with
respect to v and its derivatives and then integrating the resulting linear system [17]. A second method
consists of applying a repeated integration process [18] to the terms in the expression PEv(L) to obtain
T̃, X̃, Ỹ. A third method consists of inverting the Euler operator in the variational symmetry equation
Ev(PEv(L)) = 0 by means of a homotopy integral formula [14,15,17].

Since the 2D gDD equation in potential form (10) with d = 0 possesses a Lagrangian formulation,
we now derive the conservation laws associated with the variational symmetries obtained in Theorem 4.
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Theorem 5. (i) The conservation laws admitted by the 2D generalized double dispersion equation in potential
form (10) with d = 0, for arbitrary f (vx), a, b, β, arising from variational symmetries, are given by:

T1 = 1
2 av2

tx − 1
2 bv2

xx +
1
2 v2

t +
1
2 v2

x +
1
2 βv2

y + F(vx),

X1 =− avttxvt − bvxxxvt + bvtxvxx − vx f (vx)− vtvx,

Y1 =− βvtvy,

(48)

T2 =avtxvxx + vtvx,

X2 =− avxvttx − bvxvxxx − 1
2 av2

tx +
1
2 bv2

xx + F(vx)− vx f (vx)− 1
2 v2

t − 1
2 v2

x +
1
2 βv2

y,

Y2 =− βvxvy,

(49)

T3 =avtxvxy + vtvy,

X3 =− avttxvy − bvxxxvy + bvxxvxy − vy f (vx)− vxvy,

Y3 =− 1
2 av2

tx − 1
2 bv2

xx − 1
2 v2

t +
1
2 v2

x − 1
2 βv2

y + F(vx),

(50)

T4 =(g(y +
√

βt) + h(y −
√

βt))vt −
√

β(g′(y +
√

βt)− h′(y −
√

βt))v,

X4 =− (g(y +
√

βt) + h(y −
√

βt))(avttx + bvxxx + f (vx) + vx),

Y4 =
√

β((g′(y +
√

βt) + h′(y −
√

βt))v − (g(y +
√

βt) + h(y −
√

βt))vy),

(51)

where F′(vx) = f (vx).
(ii) The 2D generalized double dispersion equation in potential form (10) with d = 0 admits additional

conservation laws corresponding to variational symmetries arising for the following special f (vx), a, or b:

(a) a = 0, arbitrary f (vx), b and β,

T5 =− 1
2 byv2

xx +
1
2 yv2

t +
1
2 yv2

x + β 1
2 yv2

y + βtvtvy + yF(vx),

X5 =− bβtvxxxvy − byvxxxvt + byvtxvxx + bβtvxxvxy − βtvy f (vx)− yvt f (vx)− βtvxvy − yvtvx,

Y5 =− 1
2 bβtv2

xx − βyvtvy − 1
2 βtv2

t − 1
2 βtv2

x − 1
2 β2tv2

y + βtF(vx),
(52)

where F′(vx) = f (vx).
(b) f (vx) = αepvx − vx, b = 0, arbitrary a and β,

T6 = 1
4 aptv2

tx +
1
2 apyvxxvty +

1
2 apvxxvt +

1
4 ptvt

2 + 1
4 βptvy

2 + 1
2 pyvyvt + xvt + αt 1

2 epvx ,

X6 =− 1
2 a(ptvt + pyvy + 2x)(vttx + αepvx ) + 1

2 a(pyvxy + 2a)vtt − 1
2 a(pvt + pyvty)vtx,

Y6 =− 1
2 apyvttvxx +

1
4 apyvtx

2 − 1
2 βptvtvy − 1

4 βpyvy
2 − βxvy − 1

4 pyv2
t +

1
2 αyepvx .

(53)

(c) f (vx) = α(vx + c)7/3 − vx, a = 0, arbitrary b and β,

T7 =− 2btv2
xx + 2tv2

t + 2βtv2
y + 2xvtvx + 4yvtvy + vvt + 3xcvt +

6
5 αt(vx + c)10/3,

X7 =− b(3cx + 4tvt + 2xvx + 4yvy + bv)vxxx + b(4tvtx + xvxx + 4yvxy + 3c + 4vx)vxx

− α( 12
5 cx + 4tvt +

7
5 xvx + 4yvy + v)(vx + c)7/3 + βxv2

y − xv2
t ,

Y7 =− 2byv2
xx − 3xcβvy − 4βtvtvy − 2βxvxvy − 2βyv2

y − βvvy − 2yv2
t +

6
5 αy(vx + c)10/3.

(54)

Next, we look at the meaning of these conservation laws.
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When we consider solutions v(t, x, y) of the given equation in a spatial domain Ω ⊆ R2, for every
conservation law (45), there is an associated conserved integral, given by:

C[v] =
∫

Ω
T dx dy (55)

satisfying:
d
dt
C[v] = −

∫
∂Ω

(X, Y) · n̂ ds (56)

where n̂ represents the unit normal vector, which points outward to ∂Ω, the boundary curve of Ω,
whereas ds represents the arc length along this curve. The global Equation (56) physically means
that there is a balance between the rate of change of the quantity (55) on Ω and the net outward flux
through ∂Ω.

For the 2D generalized double dispersion potential Equation (10), the conservation law (48) leads
to the conserved quantity:

E [v] =
∫

Ω

( 1
2 av2

tx − 1
2 bv2

xx +
1
2 v2

t +
1
2 v2

x +
1
2 βv2

y + F(vx)
)

dx dy, (57)

where F′(vx) = f (vx), which is an energy arising from the time-translation symmetry (29). The
conservation laws (49) and (50) yield, respectively, the conserved quantities:

P x[v] =
∫

Ω
(avtxvxx + vtvx) dx dy, (58)

Py[v] =
∫

Ω
(avtxvxy + vtvy) dx dy, (59)

which are momentum quantities arising from the space-translation symmetries (30) and (31).
The infinite family of conservation laws (51) leads to an infinite family of conserved quantities:

T [v] =
∫

Ω

√
β
(
(g′(y +

√
βt) + h′(y −

√
βt))v − (g(y +

√
βt) + h(y −

√
βt))vy

)
dx dy, (60)

arising from the infinite symmetry families (32) and corresponding to the conserved quantities of
transverse momenta of the linear wave equation vtt − βvyy = 0. The conservation law (52) yields the
conserved quantity:

Q[v] =
∫

Ω

(
− 1

2 byv2
xx +

1
2 yv2

t +
1
2 yv2

x + β 1
2 yv2

y + βtvtvy + yF(vx)
)

dx dy, (61)

which is a boost-momentum arising from the boost symmetry (33). The conservation laws (53) and
(54) yield, respectively, the conserved quantities:

Ẽ1[v] =
∫

Ω

( 1
4 aptv2

tx +
1
2 apyvxxvty +

1
2 apvxxvt +

1
4 ptvt

2 + 1
4 βptvy

2 + 1
2 pyvyvt + xvt + αt 1

2 epvx
)

dx dy, (62)

Ẽ2[v] =
∫

Ω

(
− 2btv2

xx + 2tv2
t + 2βtv2

y + 2xvtvx + 4yvtvy + vvt + 3xcvt +
6
5 αt(vx + c)10/3) dx dy, (63)

which are dilational energy quantities arising from the scaling and shift symmetries (37) and (34).

6. Conclusions

For the 2D generalized double dispersion Equation (8), we first expressed this equation in potential
form, and then, we obtained a condition for this equation to admit a Lagrangian formulation. We
also gave the corresponding Hamiltonian structure. Next, we classified all Lie symmetries (point and
contact) of the 2D gDD potential Equation (10). Finally, we constructed all conservation laws that
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arise from variational point symmetries of (10) with d = 0. We remark that all of the conservation
laws (48)–(54) of the potential Equation (10) depended essentially on the potential v; therefore, for the
2D gDD Equation (8), the corresponding conservation laws are nonlocal. Furthermore, we gave the
physical meaning of the corresponding conserved quantities.

In future work, we will look for exact group-invariant solutions of Equation (8) by using
systematically all symmetries and conservation laws of the equation. Specifically, particular cases
of the generalized Equation (8) have line solitons and lump solutions, so we plan to study the line
solitons and lump solution and other kinds of solitary waves of the generalized Equation (8).
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Appendix A

We provide the computational steps followed to solve the determining Equation (28) for point
symmetries (26) by using the software Maple.

Firstly, we set up the determining Equation (28), and we used the command “coeffs” to split
this equation with respect to the variables ∂2v, ∂3v, and ∂4v. Note that a leading derivative of
Equation (8) and its differential consequences can be previously substituted to simplify the determining
Equation (28). From the leading derivatives vtt, vxxxx or vttxx of Equation (8), it is convenient to choose
any of the fourth-order derivatives vxxxx or vttxx. This procedure gives an overdetermined system of
207 equations for the symmetry characteristic P, f (vx), a, b, d, and β. We also consider the classification
conditions f ′′(vx) �= 0, a2 + b2 �= 0, and β �= 0.

Secondly, we use the command “rifsimp” to obtain a tree containing all solution cases.
Thirdly, every solution case consists of a system of PDEs for P and, possibly, an ODE for the

function f (vx) and conditions for the parameters of the equation a, b, d, and β. We solve the ODE for
f (vx) by using the command “dsolve” and the system of PDEs for P by using the command “pdsolve”.
We check the solutions by substituting in the overdetermined system.

Finally, by applying the method detailed in the Appendix of [19], the overlapping cases are
combined, giving a classification of all point symmetries admitted by the 2D generalized double
dispersion Equation (8).
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Abstract: In this paper, we study a generalization of the well-known Kelvin-Voigt viscoelasticity
equation describing the mechanical behaviour of viscoelasticity. We perform a Lie symmetry analysis.
Hence, we obtain the Lie point symmetries of the equation, allowing us to transform the partial
differential equation into an ordinary differential equation by using the symmetry reductions.
Furthermore, we determine the conservation laws of this equation by applying the multiplier method.
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solutions; conservation laws; multiplier method

1. Introduction

The continuous development of mechanics and its engineering applications have increased
remarkably the interest in non-linear phenomena, such as viscoelasticity. Viscoelastic materials are of
interest in a wide variety of applications, from passive damping to aircraft tire construction. A good
modelling of the material’s behaviour is essential for the accurate design incorporating this material.

Viscoelastic behaviour appears in materials showing some sort of liquid-like elastic behaviour.
However, a simple Hooke’s law linear elastic constitutive relationship is not an accurate representation
of viscoelastic material’s behaviour. Viscoelastic materials are commonly said to have “memory”
because of their rheological properties.

The rheological models, such as the Kelvin-Voigt model or the Maxwell model, are usually used
to describe the viscoelastic behaviour. The Kelvin-Voigt model consists of a lumped parameter model
similar to a spring and dashpot in parallel, while the Maxwell model describes a serially connected
spring and dashpot. In addition, many papers have been published studying these models [1–4].

Many physical phenomena, as viscoelasticity, are described by non-linear partial differential
equations (PDEs). In particular, the Kelvin-Voigt viscoelasticity equation is given by

utt − (C(x) ux)x − (B(x) utx)x = 0.

Nevertheless, in this paper we focus on a generalization of the Kelvin-Voigt viscoelasticity
equation described by

utt − (C(x) f (u)x)x − (B(x) utx)x = 0, (t, x) ∈ R× Ω, (1)

where Ω is an open subset of R and u a scalar real-valued function. Also, f (u) is a smooth enough
non-linear function, and C(x) �= 0, B(x) �= 0 are smooth enough functions too, depending on the
variable x ∈ Ω. Throughout the paper the subscripts denote partial derivatives.

Symmetry 2019, 11, 840; doi:10.3390/sym11070840 www.mdpi.com/journal/symmetry109
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There is no general theory for solving non-linear PDEs. Therefore, in this work, we use Lie theory
to analyse Equation (1). Lie group analysis is a powerful tool to find general solutions for PDEs. This
theory, originally defined by Sophus Lie at the end of the nineteenth century, develops solutions for
PDEs by the transformation groups of Lie [5–8]. The fundamental basis of the Lie group method
is that if a differential equation is invariant under a Lie group of transformations, then a reduction
transformation exists. For instance, for PDEs with two independent variables like Equation (1), a single
group reduction can transform the PDE into an ordinary differential equation (ODE), easier to solve.

Furthermore, a very important concept in the analysis of PDEs is the notion of conservation
law. Conservation laws determine conserved quantities and constants of motion. They also detect
integrability and check accuracy of numerical solutions method. Recently, Anco and Bluman [9,10]
developed a method that does not need the existence of Lagrangians because it is based on adjoint
equations for non-linear equations and avoids the integrals of functions. This method called the
multiplier method allows finding all local conservation laws admitted by any evolution equation.
Many papers have been published in the last few years using this method [11–19].

The paper is organized as follows: In Section 2 we determine the Lie point symmetries of Equation
(1). Then, in Section 3 we use the Lie point symmetries admitted by Equation (1) to obtain an optimal
system of one-dimensional subalgebras. Afterwards, in Section 4 we find symmetry reductions for the
one-dimensional subalgebras calculated previously. These reductions allow us to transform Equation
(1) into an ODE. In Section 5 we derive the conservation laws of Equation (1) by applying the multiplier
method. Finally, in Section 6 some conclusions are presented.

2. Lie Point Symmetries

A one-parameter group of infinitesimal transformations in (x, t, u) is given by

x∗ = x + ε ξ(x, t, u) +O(ε2),

t∗ = t + ε τ(x, t, u) +O(ε2),

u∗ = u + ε φ(x, t, u) +O(ε2),

where ε is the group parameter and ξ(x, t, u), τ(x, t, u), and φ(x, t, u) are the infinitesimals.

Definition 1. A vector field

X = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u
, (2)

where ξ(x, t, u), τ(x, t, u), and φ(x, t, u) are the infinitesimals, is a generator of a Lie point symmetry of
Equation (1) if

X(3)(utt − (C(x) f (u)x)x − (B(x) utx)x) = 0, (3)

where X(3) is the third prolongation of the vector field (2) defined by

X(3) = X + ζx
∂

∂ux
+ ζt

∂

∂ut
+ ζxx

∂

∂uxx
+ ζxt

∂

∂uxt
+ ζtt

∂

∂utt
+ ζxxt

∂

∂uxxt
,

110



Symmetry 2019, 11, 840

where the coefficients ζx, ζt, ζxx, ζxt, ζtt, ζxxt are given by

ζx = Dxφ − utDxτ − uxDxξ,

ζt = Dtφ − utDtτ − uxDtξ,

ζxx = Dx(ζx)− uxtDxτ − uxxDxξ,

ζxt = Dt(ζx)− uxtDxτ − uxxDtξ,

ζtt = Dt(ζt)− uttDtτ − uxtDtξ,

ζxxt = Dx(ζxt)− uttxDxτ − uxxtDxξ.

Here Di stands for the total derivative operator.

Theorem 1. The Lie point symmetries of the generalization of the Kelvin-Voigt Equation (1), with f (u)
non-linear function, and C(x) �= 0, B(x) �= 0 arbitrary functions, are generated by the operator

X1 = ∂t.

For some particular functions of f (u), C(x), B(x), there are additional generators given below.

1. If f (u) is an arbitrary function, C(x) = c1 and B(x) = b1, with c1, b1 arbitrary constants,

X1
2 = ∂x.

2. If f (u) is an arbitrary function, C(x) = c1 and B(x) = b1x + b2, with c1, b1 �= 0, b2 arbitrary constants,

X2
2 = (b1x + b2)∂x + b1t ∂t.

3. If f (u) is an arbitrary function, C(x) = 4
(nx+c1)2 and B(x) = b1, with c1, b1 arbitrary constants, and n

a positive integer,
X3

2 = (nx + c1)∂x + 2nt ∂t.

4. If f (u) is an arbitrary function, C(x) = c2(c1 − x)n and B(x) =
(−c1+x)c1

√
(c1−x)nc2

n , with c1, c2

arbitrary constants, and n a positive integer,

X4
2 = (c1 − x)∂x +

1
2
(n − 2)t ∂t.

5. If f (u) =
f 2
0 e

−kek

ek−1

(
(ek−1)u

f0
+

f1ek− f1
f0

) ek

ek−1
+1

+2 f2ek− f2

2ek−1
, C(x) = c1 and B(x) = b1, with k a positive integer,

f0, f1, f2 positive constants, and c1, b1 arbitrary constants, besides X5
2 = X1

2 ,

X5
3 = x∂x + 2t ∂t + 2(−1 + e−k)(u + f1)∂u.

6. If f (u) =
f 2
1 e

− f0e f0

e f0−1

(
(e f0−1)u

f1
+

f2e f0− f2
f1

) e f0
e f0−1

+1

(e f0−1)
(

e f0

e f0−1
+1

) + f3, C(x) = c2(c1 − x)n and B(x) = b1, with f0, f1, f2,

f3 positive constants, c1, c2, b1 arbitrary constants, and n a positive integer,

X6
2 = (c1 − x)∂x − 2t ∂t − (1 + e− f0)(u + f2)(n + 2)∂u.
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7. If f (u) =
f0e

−kek

ek−1

(
(ek−1)(u+ f1)

f0

) 2ek−1
ek−1 +2 f2ek− f2

2ek−1
, C(x) = c2(b2 − x)−m and B(x) = b3(b2 − x)n, with k a

positive integer, f0, f1, f2 positive constants, b2, b3 arbitrary constants, and n, m positive integers,

X7
2 = (b2 − x)∂x + t(n − 2)∂t + (−1 + e−k)(u + f1)(m + 2n − 2)∂u.

Proof of Theorem 1. Expanding (3), we obtain an overdetermined system satisfying the determining
equations for the symmetry group. From B2 (τu) = 0 and B2 (τx) = 0, we find that τ depends only
on t. The equations B2 (ξt) = 0 and B2 (ξu) = 0 reveal that ξ is a function of x alone. The remaining
determining equations are

B2 (ξuu) = 0, B2 (ξtu) = 0, B2 (τuu) = 0, B (τuu) = 0, B2 (τuuu) = 0, B2 (ξuuu) = 0, = 0,

B (2 (τux) B − ξu) = 0,

B (2 (τuux) B − ξuu) = 0,

B ((τux) B + ξu) = 0,

B ((τuxx) B + φuu − 2 (τtu)) = 0,

B ((ξu) ( fuu)C − (ξuu) ( fu)C − (ξtuu) B) = 0,

B ( fu (φxx)C + (φtxx) B − φtt) = 0,

B ((τu) ( fu)C + (φuu) B − (τtu) B − 2 (ξux) B) = 0,

B ((τu) ( fu)C − (φuu) B + (τtu) B + 2 (ξux) B) = 0,

B ((τuu) ( fu)C − (φuuu) B + (τtuu) B + 2 (ξuux) B) = 0,

ξ
(

B′)− (τxx) B2 + (τt) B − 2 (ξxB) = 0,

B (2 (τx) ( fu)C − 2 (φux) B + 2 (τtx) B + (ξxx) B − 2 (ξt)) = 0,

B ((τxx) ( fu)C − (φuxx) B + (τtxx) B + 2 (φtu)− τtt) = 0,

ξ( fu)B
(
C′)− ξ fu

(
B′)C + (( fuu)) φBC + (τt) ( fu)BC + (φtu) B2 − 2 (ξtx) B2 = 0,

B (2 (τx) ( fuu)C + 2 (τux) ( fu)C − 2 (φuux) B + 2 (τtux) B + (ξuxx) B − 2 (ξtu)) = 0,

B (2( fuu) (φx)C + 2 fu (φux)C − (ξxx) ( fu)C + 2 (φtux) B − (ξtxx) B + ξtt) = 0,

ξ( fuu)B
(
C′)− ξ( fuu)

(
B′)C + fu (φuu) BC + ( fuu) (φu) BC + (( fuuu)) φBC + (τt) ( fuu)BC

−2 (ξux) ( fu)BC + (φtuu) B2 − 2 (ξtux) B2 = 0.

Solving this system of equations we find the infinitesimals ξ, τ and φ of (2).

3. Optimal Systems

It is important to classify invariant solutions according to the classification of the associated
symmetry generators. Then, one generator from each class is used to determine the desired set of
invariant solutions. An optimal system of generators is defined as a set consisting of exactly one
generator from each class [20].

The problem of obtaining an optimal system of subgroups is equivalent to that of obtaining an
optimal system of subalgebras, and so we concentrate on the latter. For one-dimensional subalgebras,
this classification problem is essentially equal to classifying the orbits of the adjoint representation [5].

The most important operator on vector fields is their Lie bracket or commutator. If Xi and Xj are
vector fields, then their Lie bracket

[
Xi, Xj

]
is the unique vector field satisfying[

Xi, Xj
]
= Xi(Xj)− Xj(Xi).

The commutator table for the Lie algebra of Case 5 of Theorem (1) is shown in Table 1. The (i, j)-th
entry of the table expresses the Lie bracket

[
Xi, Xj

]
, for i, j = 1, 2, 3.
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Table 1. The commutator table for Case 5 of Theorem (1).[
Xi, Xj

]
X1 X5

2 X5
3

X1 0 0 2X1
X5

2 0 0 X5
2

X5
3 −2X1 −X5

2 0

The adjoint representation can be constructed by summing the Lie series

Ad(exp(ε Xi))Xj =
∞

∑
n=0

εn

n!
(ad Xi)

n(Xj),

= Xj − ε[Xi, Xj] +
ε2

2
[Xi, [Xi, Xj]]− · · · . (4)

To compute the adjoint representation, we use the Lie series (4) in conjunction with the commutator
table in Table 1. The adjoint table of this Lie algebra is shown in Table 2, with the (i, j)-th entry indicating
Ad(exp(ε Xi))Xj.

Table 2. The adjoint table for Case 5 of Theorem (1).

Ad(exp(ε Xi))Xj X1 X5
2 X5

3

X1 X1 X5
2 X5

3 − 2εX1
X5

2 X1 X5
2 X5

3 − εX5
2

X5
3 e2εX1 eεX5

2 X5
3

Theorem 2. A one-dimensional optimal system for the generalization of the Kelvin-Voigt Equation (1) is
given by

λX1 + μX1
2, X2

2, X3
2, X4

2, X5
3, X6

2, X7
2,

where λ and μ are arbitrary constants.

Proof of Theorem 2. Let G be the symmetry algebra of Equation (1), with the adjoint representation
for Case 5 in Theorem (1) determined in Table 2. Let v = a1v1 + a2v2 + a3v3 be a non-zero vector field
of G. For each case, we simplify the coefficients ai, i = 1, 2, 3, as much as possible through proper
adjoints applications on v.

4. Symmetry Reductions

In this section, we use the optimal system of one-dimensional subalgebras of Theorem (2) to
determine the symmetry reductions of Equation (1).

The symmetry variables are found by solving the invariant surface condition

Φ ≡ ξ∂x + τ∂t − φ = 0.

Reduction 1. From λX1 + μX1
2, we obtain the travelling wave reduction

z = μx − λt, u = h(z),

where h(z) satisfies

λ μ2 b1 h′′′ − μ2 c1 f ′ h′′ + λ2 h′′ − μ2 c1 f ′′
(
h′
)2

= 0.

Reduction 2. From X2
2, we obtain the invariant solution

z =
b1x + b2

t
, u = h(z),
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where h(z) satisfies
b2

1 h′′′ z2 + h′′ z2 + 3 b2
1 h′′ z + 2 h′ z + b2

1 h′ = 0.

Reduction 3. From X3
2, we obtain the invariant solution

z =
nx + c1√

t
, u = h(z),

where h(z) satisfies
2 b1 h′′′ n2 z + h′′ z2 + 4 b1 h′′ n2 + 3 h′ z = 0.

Reduction 4. From X4
2, we obtain the invariant solution

z = −t
2

n−2 (c1 − x), u = h(z),

where h(z) satisfies

2 c1
√

c2 h′′′ n (−z)
n
2 z2 − 4 c1

√
c2 h′′′ (−z)

n
2 z2 − 4 h′′ n z2 + c1

√
c2 h′′ n2 (−z)

n
2 z

+ 4 c1
√

c2 h′′ n (−z)
n
2 z − 12 c1

√
c2 h′′ (−z)

n
2 z + 2 h′ n2 z − 8 h′ n z + c1

√
c2 h′ n2 (−z)

n
2

− 4 c1
√

c2 h′ (−z)
n
2 = 0.

Reduction 5. From X5
3, we obtain the invariant solution

z =
x√

t
, u =

t−1+e−k

h(z)
− f1,

where h(z) must satisfy a non-autonomous equation.
Reduction 6. From X6

2, we obtain the invariant solution

z = −(c1 − x)
√

t, u =
t
(−1+e− f0 )(n+2)

2

h(z)
− f2,

where h(z) must satisfy a non-autonomous equation.
Reduction 7. From X7

2, we obtain the invariant solution

z = − (b2 − x)

t
1

n−2
, u =

t
−(−1+e−k)(m+2n−2)

n−2

h(z)
− f1,

where h(z) must satisfy a non-autonomous equation.

The expressions of the reduced equations for X5
3, X6

2, and X7
2 are omitted here to save space.

5. Conservation Laws

A local conservation law for the generalization of the Kelvin-Voigt viscoelasticity Equation (1) is a
continuity equation

DtT + DxX = 0,

holding for all solutions of Equation (1), where the conserved density T and the spatial flux X are
functions of x, t, u, and derivatives of u. Here Dt and Dx denote total derivatives with respect to t and
x, respectively. The pair (T, X) is called a conserved current.

Two local conservation laws are considered to be locally equivalent [5,21] if they differ by a locally
trivial conservation law T = DxΘ, X = −DtΘ, where T and X are evaluated on the set of solutions of
Equation (1) and Θ is a function of x, t, u, and derivatives of u.
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A non-trivial conservation law can be written in a general form as

d
dt

∫
Ω

T dx = −X
∣∣∣
∂Ω

,

where Ω ⊆ R is any fixed spatial domain.
Any local conservation law can be stated by using the characteristic form arising from a divergence

identity
DtT̃ + DxX̃ = (utt − (C(x) f (u)x)x − (B(x) utx)x)Q, (5)

where T̃ = T + DxΘ and X̃ = X − DtΘ are locally equivalent to T and X. The function Q is called a
multiplier. It satisfies

Q = Eu(T̃),

where Eu represents the Euler operator with respect to u [5], that is

Eu = ∂u − Dx∂ux − Dt∂ut + DxDt∂uxt + D2
x∂uxx + · · · .

For evolution equations, there is a one-to-one relationship between non-zero multipliers
and non-trivial conserved current vectors up to local equivalence [5,9]. In general, a function
Q(x, t, u, ut, ux, . . . ) is a multiplier if it verifies that (utt − (C(x) f (u)x)x − (B(x) utx)x) Q is a
divergence expression for all function u(x, t). Given a multiplier Q, the conserved density can be
determined by

T =
∫ 1

0
u Q(x, t, λu, λux, λuxx, . . . )dλ.

The divergence condition yields to the determining equation

Eu

(
(utt − (C(x) f (u)x)x − (B(x) utx)x) Q

)
= 0. (6)

In order to give a complete classification of multipliers, we write and split the determining
Equation (6) with respect to the variables utt, uttt, uttx, utxx, uxxx, utttx, uttxx, utxxx, uxxxx. Thus, we get a
linear determining system for Q(x, t, u, ut, ux, . . . ). The multipliers are found by solving the system
with the same algorithmic method used for the determining equations for infinitesimal symmetries.
Then, integrating the characteristic Equation (5) for each multiplier, we find the conserved current.

Theorem 3. The multipliers admitted by the generalization of the Kelvin-Voigt Equation (1), with f (u) a
smooth enough non-linear function, and C(x) �= 0, B(x) �= 0 smooth enough arbitrary functions, are given by

Q1 = 1, Q2 = t, Q3 =
∫ 1

C(x)
dx.

Theorem 4. All non-trivial local conservation laws admitted by the generalization of the Kelvin-Voigt Equation
(1), with f (u) a smooth enough non-linear function, and C(x) �= 0, B(x) �= 0 smooth enough arbitrary
functions, are given by

1. For the multiplier Q1 = 1, the conserved density and the spatial flux are

T1 = ut,

X1 = −B(x) utx − C(x) f (u)x.

2. For the multiplier Q2 = t, the conserved density and the spatial flux are

T2 = t ut − u,

X2 = −t B(x) utx − t C(x) f (u)x.
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3. For the multiplier Q3 =
∫ 1

C(x)dx, the conserved density and the spatial flux are

T3 =

(∫ 1
C(x)

dx
)

ut +

(
B(x)C′(x)

C(x)2 − B′(x)
C(x)

)
u,

X3 = −
(∫ 1

C(x)
dx
)

B(x) utx −
(∫ 1

C(x)
dx
)

C(x) f (u)x +
B(x) ut

C(x)
+ f (u).

6. Conclusions

In this paper, we studied a generalization of the Kelvin-Voigt viscoelasticity equation given by the
partial differential Equation (1). Firstly, we determined a complete Lie group classification. Then, we
constructed the optimal system of one-dimensional subalgebras. These one-dimensional subalgebras
have been used to find the symmetry reductions, allowing us to transform the partial differential
equation into an ordinary differential equation. Moreover, we analysed all conservation laws for this
equation by applying the multiplier method.
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Abstract: Algorithms to construct the optimal systems of dimension of at most three of Lie algebras
are given. These algorithms are applied to determine the Lie algebra structure and optimal systems
of the symmetries of the wave equation on static spherically symmetric spacetimes admitting G7 as
an isometry algebra. Joint invariants and invariant solutions corresponding to three-dimensional
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1. Introduction

It was shown in [1–3] that spherically symmetric spacetimes belong to one of the following four
classes according to their isometries and metrics:

• G10 corresponding to the static spacetimes Minkowski, de Sitter and anti de Sitter.
• G7 corresponding to the static spacetimes Einstein and the anti Einstein universe, and one

non-static spacetime.
• G6 corresponding to the static spacetimes Bertotti–Robinson and two other metrics of Petrov type

D, and six non-static spacetimes.
• G4 is a class of metrics involving one or two arbitrary functions of one variable.

Azad et al. [4] applied Lie group analysis to study the wave equation on the classes of static
spherically symmetric spacetimes admitting the isometry groups G10 or G7 or G6. The Iwasawa
decomposition for the symmetry algebras was obtained to partially classify non-conjugate solvable
algebras. The optimal system of subalgebras was not given in this previous study.

The G7 spacetimes admit either so(4)⊕R or so(1, 3)⊕R as isometry algebras as shown in [3].
In this paper, we continue the investigation started in [4] by finding the optimal system of subalgebras
of dimension of at most three and the corresponding invariant solutions for spacetimes admitting G7

as isometry algebras. We expect these solutions to be of interest to mathematical physicists.
As regards optimal systems, we can always construct a family of group invariant solutions

obtained by using a subgroup of a symmetry group admitted by a given differential equation,
as explained in [5]. Since there are infinitely many subgroups of a symmetry group admitted by a given
differential equation, listing of all the group invariant solutions is impossible. However, obtaining
optimal systems-meaning conjugacy classes- of s-dimensional subgroups of the symmetry group and
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applying the optimal systems leads to an effective and systematic mechanism of classifying the group
invariant solutions. This leads to non-similar invariant solutions under symmetry transformations.

Classifying the group invariant solutions by utilizing optimal systems is a significant application
of Lie group and Lie symmetry methods to differential equations. The method was first introduced by
Ovsiannikov [6]. He applied this method in classifying the invariant solutions of the one-dimensional
gasdynamic equation [7]. Ibragimov extended this work to the two-dimensional adiabatic gas motions
in his master thesis [8] by applying the expansion method for solvable Lie algebra. The main idea
behind the method is discussed in detail in Ibragimov [5,9], Olver [10] and Hydon [11].

The symmetry Lie algebra of the equations under study is non-solvable, but finding the optimal
systems for non-solvable Lie algebras is more challenging. In this paper, improved algorithms are
introduced and applied to construct the optimal systems of dimension of at most three of Lie algebras.
The reason is that a PDE with four independent variables can be reduced to an ordinary differential
equation (ODE) using three-dimensional subalgebras satisfying the transversality condition with rank
three [10]. This provides the non-trivial invariant solutions under a maximum number of symmetries.

The paper is organized as follows: in Section 2, algorithms to construct the optimal systems
of dimension of at most three of Lie algebras are introduced. In Section 3, Lie point symmetry
transformations of the wave equation on the metrics considered in this paper are found. In Section 4,
the algorithms are applied to determine the Lie algebra structure and optimal systems of the
symmetries. In Section 5, joint invariants and invariant solutions corresponding to three-dimensional
optimal systems are determined.

2. Algorithms to Construct the Optimal Systems of Dimension of at Most Three of Non-Solvable
Lie Algebras

In this paper, we are interested only in finding an optimal system of subalgebras of dimension
of at most three as explained in the introduction. This is achieved by using the algorithms explained
below. These algorithms are based on a combination of the expansion method and algorithms for
determining maximal solvable subalgebras of semi-simple Lie algebras.

If X is a solvable, then either X is abelian or it can be obtained from its commutator X′ by a
sequence of one-dimensional ideals . Thus, in any case, by using normalizers or centralizers, one can
reach X from lower dimensional subalgebras. In more detail, the expansion method is revised and
improved to a systematic method by using the normalizers and their associated quotient algebras
as follows:

Let Θr be the optimal systems of r-dimensional solvable subalgebras of the solvable algebra L.
For every X ∈ Θt−1, find the normalizer N (X). In case the quotient algebra N (X)/X is non-zero,
we find a one-dimensional optimal system in N (X)/X for every X ∈ Θt−1 by considering the
invariants of the adjoint representation of N (X)/X.

Among the constructed optimal systems of N (X)/X for every X ∈ Θt−1, we may still have
repetitions in their preimages in L. Removing the repetitions provides an optimal system Θt.
Enumeration of all non-conjugate solvable subalgebras of L can finally be done through consecutive
choice of the values of t from 1 till dim(L).

The Expansion method can be used to find optimal systems of solvable subalgebras in solvable
or non-solvable Lie algebras. However, dealing with the general adjoint action of the group once the
Lie algebra is non-solvable is very difficult. Therefore, in order to find the optimal systems of solvable
subalgebras in a non-solvable Lie algebra, we proceed as follows:

For a general Lie algebra with Levi decomposition L = S ⊕s ℛ(L), where S is a semisimple
subalgebra of L and ℛ(L) is the radical of L, every maximal solvable subalgebra is of the form
M⊕s ℛ(L), where M is maximal solvable in S . The maximal solvable subalgebras can be determined
using the algorithms given in [12] or more efficiently using the method detailed in Section 2.1. For a
semisimple algebra S , there is a subalgebra N in which all elements are ad-nilpotent and which
contains—up to conjugacy—all the commutators of solvable subalgebras of S . All the maximal
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solvable subalgebras that are not compact tori can be constructed from the normalizers of conjugacy
classes in N—as detailed in Section 2.1. Then, the task of finding the optimal systems of solvable
subalgebras of the Lie algebra L is reduced to finding the optimal systems of solvable subalgebras in
each of these maximal solvable subalgebras using the expansion method. Finally, the repetitions in the
obtained rough classification of subalgebras are removed using the adjoint representation of L.

As a special case, if the radical is the center, then the calculations are greatly simplified. The reason
is that it is enough to find the optimal systems of solvable subalgebras in each conjugacy class of
maximal solvable subalgebras in the semisimple part of L. Then, the repetitions in the obtained rough
classification of subalgebras are removed using the adjoint representation of the semisimple part of L.
Finally, adjoining the subalgebras of the radical gives the optimal systems of solvable subalgebras in L.

In order to find the general adjoint action of the semisimple part of L, we need to make a suitable
change of basis depending on the root space decomposition or the Iwasawa decomposition of the
semisimple part ℒ based on the signature of the Killing form.

2.1. Algorithm for Finding the Conjugacy Classes of Maximal Solvable Subalgebras

For the convenience of the reader who is not a specialist in Lie theory, we first recall how to
construct Cartan algebras and roots algorithmically from a knowledge of the commutator table of a
given Lie algebra.

The structure of a semisimple Lie algebra is determined by its roots. For more details, the reader
is referred to [13]; see also [14–16].

Definition 1. A Lie subalgebra H of a Lie algebra L is said to be a Cartan subalgebra if H is abelian and
every element h ∈ H is semisimple: by a semisimple element, we mean an element that is diagonalizable in the
adjoint representation. Moreover, H is maximal with these properties.

Definition 2. Let C be a Cartan subalgebra of a semisimple Lie algebra L. A non-zero vector v ∈ LC := L+ iL
such that [h, v] = λ(h)v for all h ∈ C is called a root vector and the corresponding linear function λ is called
a root of the Cartan algebra C.

In general, the roots will be complex-valued. In the following argument, we will use the notion of
positive roots, so one needs to define what it means for a complex valued root to be positive.

Definition 3. A complex number z = a + ib, a, b ∈ R is positive if either its real part a is positive or a = 0,
but its imaginary part b is positive.

Fix a basis h1, . . . , hr of a Cartan algebra C. A non-zero root λ is positive if the first non-zero
number λ(hi) is a complex positive number. Otherwise, it is called a negative root. Positive roots
which are not a sum of two positive roots are called simple roots.

The well known software Maple is able to find the root space decompositions of Lie algebras of
fairly high dimensions by using the command “RootSpaceDecomposition(C)”, where C is a list of
vectors in a Lie algebra, defining a Cartan subalgebra.

The Cartan algebra is picked up using an algorithm due to de Graaf [15]. However, one gets
better coordinates for computation if one chooses a Cartan algebra by enlarging a given diagonalizable
subalgebra to a Cartan subalgebra following the algorithms given in [13]. We need in this paper only a
special case of these algorithms to compute the Cartan subalgebras. We first compute the Killing form
of the Lie algebra. If it is negative definite, pick any non-zero element X and compute its centralizer.
By a negative definite matrix, we mean a matrix which is equal to its conjugate transpose and its
eigenvalues are strictly negative. If the centralizer of X, C(X), is self centralizing, i.e., C(C(X)) = C(X),
then C(X) is the Cartan subalgebra. Otherwise, we can find a linearly independent element Y in
the centralizer of X. Continue this procedure with the abelian algebra 〈X, Y〉 until a self centralizing
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subalgebra is reached. The obtained algebra is the Cartan algebra because it is abelian and every
element is diagonalizable.

On the other hand, if the Killing form is not negative definite and a maximal compact subalgebra
is known, say K, then computing a Cartan subalgebra C of K using the procedure explained in the
previous paragraph for compact algebras and the centralizer of C in the full Lie algebra gives us the
required Cartan algebra.

The main use of Cartan algebras is to find all the maximal solvable subalgebras [17]. In case the
Lie algebra L is compact, a Cartan algebra is, up to conjugacy, the only maximal solvable subalgebra.
This follows from Lie’s theorem on solvable algebras [14].

There is a solvable subalgebra B with real eigenvalues in the adjoint representation of L with the
property that any other solvable algebra with real eignvalues in the adjoint representation is conjugate
to a subalgebra of B.

In [12], it is found that the algebra B can be constructed algorithmically by using positive roots of
a given maximally real Cartan subalgebra; by maximally real Cartan subalgebra, we mean a Cartan
algebra whose real part has maximal possible dimension. In case the Killing form is not negative
definite, any Cartan algebra is a sum of two subalgebras such that one of them has all real eigenvalues
in the adjoint representation in L and the other has all purely imaginary eigenvalues in the adjoint
representation in L. We call the first subalgebra the real part of the Cartan subalgebra and the second
subalgebra the compact part of the Cartan subalgebra. Let N be the algebra consisting of the real
and imaginary parts of the positive root vectors for the given maximally real Cartan subalgebra.
Then, the algebra B = A + N where A is the real part of the maximally real Cartan subalgebra
has the property that every solvable algebra with real eigenvalues in the adjoint representation is
conjugate to subalgebra of B. Moreover, all maximal solvable algebras which are non-abelian can
be obtained by computing normalizers of subalgebras of N. In more detail, we consider conjugacy
classes of subalgebras of N. If X is a representative of such a class, we compute the normalizer
of X and its Levi decomposition. We keep only those X in which the normalizer of X has Levi
decomposition N (X) = S +R(N (X)), R(N (X))/X a torus and where the semisimple part has a
compact Cartan subalgebra. If T is this compact Cartan subalgebra, then T +R(N (X)) is a maximal
solvable subalgebra and all such, apart from compact maximal tori-if any- are obtained in this way.

2.2. Algorithm for Finding Three-Dimensional Optimal System of Non-Solvable Subalgebras of a Lie Algebra

• It is a classical fact that any non-solvable three-dimensional subalgebra is isomorphic to either
sl(2,R) or so(3) copies in ℒ up to conjugacy where ℒ is a semisimple subalgebra of the given Lie
algebra L. Therefore, one can construct the three-dimensional optimal system of non-solvable
subalgebras by finding copies of so(3) and sl(2,R) in ℒ.

• In order to find such copies in the semisimple Lie algebra S, we have developed the following
algorithms which are based on the canonical relations for so(3) :

[X, A] = Y, [A, Y] = X, [Y, X] = A, (1)

and sl(2,R)
[A, B] = 2B, [A, Y] = −2Y, [B, Y] = A. (2)

To find the non-conjugate copies of so(3):

• We start with an element A of the one-dimensional optimal system of S whose non-zero
eigenvalues in the adjoint representation are purely imaginary.

• By scaling, we may assume that this eigenvalue is i. Let X + iY be the eigenvector of A
corresponding to the eigenvalue i. If [X, Y] = λA for some negative constant λ, then the algebra
〈A, X, Y〉 forms a copy of so(3).
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• Applying this algorithm for all elements in the one-dimensional optimal system gives us the
copies of so(3).

• Removing the repetitions using invariant tools gives the non-conjugate copies of so(3).

To find the copies of sl(2,R):

• We start with an element of the two-dimensional optimal system of non-abelian subalgebras.
• If 〈A, B〉 is such algebra with [A, B] = cB for some non-zero constant c, find the eigenvectors of

adA, if any corresponding to the eigenvalue −c. We reject 〈A, B〉 if there is no such eigenvalue.
Otherwise, let Y be an eigenvector of ad(A) with eigenvalue −c. If the commutator [B, Y] is a
nonzero multiple of A, then 〈A, B, Y〉 is a copy of sl(2,R).

• Removing the repetitions using invariant tools gives the non-conjugate copies of sl(2,R).

3. Lie Point Symmetry Transformations of the Wave Equation

The wave equation on a spacetime is given by �gu = 0, where �g = ∂
∂xi

(
√
| g |gik ∂

∂xk
) is called

the Laplace–Beltrami operator for the metric given by

ds2 = eν(r,t)dt2 − eλ(r,t)dr2 − eμ(r,t)dθ2 − eμ(r,t) sin2 θdϕ2. (3)

Hence, the wave equation �gu = 0 on the metric (3) can be written as

∂
∂t

(
e(μ− ν

2 +
λ
2 ) sin θ ∂u

∂t

)
− ∂

∂r

(
e(μ+ ν

2 − λ
2 ) sin θ ∂u

∂r

)
− ∂

∂θ

(
e(

ν
2 +

λ
2 ) sin θ ∂u

∂θ

)
− ∂

∂ϕ

(
e(

ν
2 + λ

2 )
sin θ

∂u
∂ϕ

)
= 0. (4)

The approach to find the symmetries of the wave equation using the conformal Killing vector
field of the underlying spacetimes metric is due to Yuri Bozhkov and Igor Leite Freire [18].

Theorem 1 ([18]). Let Mn be a Lorentzian manifold of dimension n ≥ 3 with the metric g given in local
coordinates {x1, x2, ..., xn}. The Lie symmetries of wave equation �gu = 0 on Mn have the form

X = ξ i(x)
∂

∂xi
+

((
2 − n

4
μ(x) + c

)
u + b(x)

)
∂

∂u
, (5)

where c is an arbitrary constant,
�gb(x) = 0, �gμ(x) = 0, (6)

Y = ξ i(x) ∂
∂xi

is a conformal Killing vector field of the metric g such that

(£Yg)ab = ξc∂cgab + gcb∂aξc + gca∂bξc = μ(x)gab (7)

and £Y denotes the Lie derivative with respect to vector field Y, where b(x) and μ(x) satisfy (6).

3.1. Lie Point Symmetry Transformations of the Wave Equation on Einstein Spacetime

The wave equation �gu = 0 on the spherically symmetric space admitting so(4)⊕R as isometry
algebra can be obtained from Equation (4) by substituting ν = 0, λ = − ln(αr2 + 1) and μ = ln r2,
α = −c2 < 0 as shown in [3].

From now on, we will work with Cartesian coordinates as their introduction simplifies
many comutations. The wave equation under study can be written in Cartesian coordinates
x = r cos ϕ sin θ, y = r sin ϕ sin θ, z = r cos θ as:

utt +
(
c2x2 − 1

)
uxx +

(
c2y2 − 1

)
uyy +

(
c2z2 − 1

)
uzz + 3 c2zuz + 2 c2xzuzx

+3 c2xux + 2 c2xyuxy + 2 c2yzuyz + 3 c2yuy = 0.
(8)
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By using Theorem 1 and the isometries of the metric given in [3], the Lie symmetry algebra of the
wave Equation (8) consists of the eight-dimensional subalgebra spanned by

X1 = B ∂
∂y , X2 = B ∂

∂x , X3 = B ∂
∂z , X4 = x ∂

∂z − z ∂
∂x ,

X5 = z ∂
∂y − y ∂

∂z , X6 = x ∂
∂y − y ∂

∂x , X7 = ∂
∂t , X8 = u ∂

∂u ,
(9)

and the infinite-dimensional ideal consisting of the operators

Xτ = τ(t, x, y, z)
∂

∂u
, (10)

where τ(t, x, y, z) is an arbitrary solution of the wave Equation (8) and
B =

√
1 − c2(x2 + y2 + z2).

Moreover, the one-parameter groups Gi(ε) = {eεXi , ε ∈ R} generated by (9) are given as follows:

G1(ε1) : (t, x, y, z, u) 	→ (t, x, 1
c

√
1 − c2( x2 + z2) sin

(
arctan

( c y
B
)
+ c ε1

)
, z, u),

G2(ε2) : (t, x, y, z, u) 	→ (t, 1
c

√
1 − c2( y2 + z2) sin

(
arctan

( c x
B
)
+ c ε2

)
, y, z, u),

G3(ε3) : (t, x, y, z, u) 	→ (t, x, y, 1
c

√
1 − c2( x2 + y2) sin

(
arctan

( c z
B
)
+ c ε3

)
, u),

G4(ε4) : (t, x, y, z, u) 	→ (t, x sin ε4 − z cos ε4, y, x sin ε4 + z cos ε4, u),
G5(ε5) : (t, x, y, z, u) 	→ (t, x,−z sin ε5 − y cos ε5, y sin ε5 − z cos ε5, u),
G6(ε6) : (t, x, y, z, u) 	→ (t,−y sin ε6 + x cos ε5, x sin ε6 + y cos ε6, z, u),
G7(ε7) : (t, x, y, z, u) 	→ (t + ε7, y, z, u),
G8(ε8) : (t, x, y, z, u) 	→ (t, x, y, z, u + ε8).

(11)

3.2. Lie Point Symmetry Transformations of the Wave Equation on Anti-Einstein Spacetime

The wave Equation �gu = 0 on the spherically symmetric space admitting so(1, 3) ⊕ R as
isometry algebra can be obtained from Equation (4) by substituting ν = 0, λ = − ln(αr2 + 1) and
μ = ln r2, α = c2 > 0 as shown in [3].

As before, we will work with Cartesian coordinates as their introduction simplifies many
comutations. The wave equation under study can be written in Cartesian coordinates x = r cos ϕ sin θ,
y = r sin ϕ sin θ, z = r cos θ as:(

c2x2 + 1
)

uxx +
(
c2y2 + 1

)
uyy +

(
c2z2 + 1

)
uzz + 2 c2yzuyz,

+3 xc2ux + 2 c2xyuxy + 2 c2xzuxz + 3 c2zuz + 3 c2yuy − utt = 0.
(12)

By using Theorem 1 and the isometries of the metric given in [3], the Lie symmetry algebra of the
wave Equation (12) consists of the eight-dimensional subalgebra spanned by

X1 = B ∂
∂y , X2 = B ∂

∂x , X3 = B ∂
∂z , X4 = x ∂

∂z − z ∂
∂x ,

X5 = z ∂
∂y − y ∂

∂z , X6 = x ∂
∂y − y ∂

∂x , X7 = ∂
∂t , X8 = u ∂

∂u ,
(13)

and the infinite-dimensional ideal consisting of the operators

Xτ = τ(t, x, y, z)
∂

∂u
, (14)

where τ(t, x, y, z) is an arbitrary solution of the wave Equation (12) and B =
√

1 + c2(x2 + y2 + z2).
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Moreover, the one-parameter groups Gi(ε) = {eεXi , ε ∈ R} generated by (13) are given as follows:

G1(ε1) : (t, x, y, z, u) 	→ (t, x,
e−cε1(2 cBe2 cε1 y+(B2+c2y2)e2 cε1−1−c2(x2+z2))

2 c2y+2 cB , z, u),

G2(ε2) : (t, x, y, z, u) 	→ (t, (
2 e2 cε2 (B2−1)+2 cBe2 cε2 x−c2(y2+z2)+e2 cε2−1)e−cε2

2 c2x+2 cB , y, z, u),

G3(ε3) : (t, x, y, z, u) 	→ (t, x, y,
e−cε3(2 cBe2 cε3 z+B2e2 cε3−1−c2(x2+y2))

2 c2z+2 cB , u),
G4(ε4) : (t, x, y, z, u) 	→ (t, x sin ε4 − z cos ε4, y, x sin ε4 + z cos ε4, u),
G5(ε5) : (t, x, y, z, u) 	→ (t, x,−z sin ε5 − y cos ε5, y sin ε5 − z cos ε5, u),
G6(ε6) : (t, x, y, z, u) 	→ (t,−y sin ε6 + x cos ε5, x sin ε6 + y cos ε6, z, u),
G7(ε7) : (t, x, y, z, u) 	→ (t + ε7, x, y, z, u),
G8(ε8) : (t, x, y, z, u) 	→ (t, x, y, z, u + ε8).

(15)

4. Lie Algebra Structure and Optimal Systems

4.1. Lie Point Symmetry Algebra of the Wave Equation on Einstein Spacetime

The non-zero Lie brackets of (9) are:

[X1, X2] = c2X6, [X1, X3] = c2X5, [X1, X5] = −X3, [X1, X6] = −X2,
[X2, X3] = −c2X4, [X2, X4] = X3, [X2, X6] = X1, [X3, X4] = −X2,
[X3, X5] = X1, [X4, X5] = X6, [X4, X6] = −X5, [X5, X6] = X4.

(16)

The Levi-Decomposition of this algebra is L = {X1, X2, X3, X4, X5, X6} ⊕ {X7, X8}. Let S be
the semisimple part. To identify the semisimple part, we need to find a Cartan algebra and the
corresponding root space decomposition.

First of all, after computing the Killing form, we see that it is negative definite. Thus, to determine
a Cartan algebra, choose any non-zero element in the semisimple part S. We choose, for example,
the element X3 and compute its centralizer. The centralizer turns out to be {X3, X6} and the subalgebra
{X3, X6} is self centralizing. Thus, C = {X3, X6} is a Cartan subalgebra which is itself the only
maximal solvable subalgebra up to the conjugacy as mentioned in Section 2.1. The roots for this
Cartan subalgebra are {(ci, i), (−ci, i), (−ci,−i), (ci,−i)}, i =

√
−1. Therefore, the positive roots are

{(ci, i), (ci,−i)}. The root vectors for the positive roots are {X1 + cX4 + i(X2 + cX5), X1 − cX4 + i(X2 −
cX5)}. Since the negative roots are conjugates of the positive roots, the real and the imaginary parts of
the positive root vectors must generate, as a Lie algebra, the full Lie algebra.

This gives us the change of basis which gives the general adjoint action of the group of
symmetry transformations:

V1 = X1 + cX4, V2 = X2 + cX5, V3 = X3 − cX6, V4 = X1 − cX4,
V5 = X2 − cX5, V6 = X3 + cX6, V7 = X7, V8 = X8.

(17)

The corresponding non-zero Lie brackets of this subalgebra are:

[V1, V2] = −2cV3 [V1, V3] = 2cV2, [V2, V3] = −2cV1, [V4, V5] = 2cV6,
[V4, V6] = −2cV5, [V5, V6] = 2cV4.

(18)

It is obvious from (18) that the subalgebra 〈V1, V4〉 is Cartan since it is abelian and it is self
centralizing. Since our Lie algebra is compact, therefore, 〈V1, V4〉 is the only maximal solvable algebra
up to the conjugacy. The subalgebra 〈V1, V4〉 is conjugate to 〈V3, V6〉.

As we will see later, 〈V1, V2, V3〉 and 〈V4, V5, V6〉 form two copies of so(3) which commute with
each other. Since so(4), which is the set of all skew symmetric 4 × 4 matrices, is also isomorphic to
so(3)⊕ so(3) [19], we see that the semisimple part is isomorphic to so(4). This decomposition can be
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obtained by working with a Cartan subalgebra of so(4) and determining its root space decomposition
as was done above.

4.1.1. Optimal Systems of Solvable Subalgebras of so(4)

To find the optimal systems of so(4), we first find the one-dimensional optimal system and a
rough classification of higher order subalgebras inside the maximal solvable subalgebra 〈V1, V4〉 which
is abelian. Secondly, we obtain the higher-dimensional optimal system by removing the repetitions
from the obtained rough classification of subalgebras using the adjoint representation of so(4).

Theorem 2. The optimal systems Θi up to order three of solvable subalgebras of so(4) with the non-zero Lie
brackets (18) are the following:

• The one-dimensional optimal system Θ1 is {〈V1 + αV4〉, 〈V1〉, 〈V4〉, α �= 0},
• The two-dimensional optimal system Θ2 is {〈V1, V4〉}.

There is no three-dimensional optimal system.

Proof. Clearly, it is enough to deal with the one-dimensional optimal system only. The one-dimensional
optimal system of the maximal solvable subalgebra of so(4) is itself the one-dimensional optimal
system of so(4). This is because the representative elements are non-conjugate under the adjoint
representation of so(4) given by

A(ε1, . . . , ε6) = eε1C(1) . . . eε6C(6), (19)

where C(j) is the matrix whose (i, k)th entries are given as ck
ij: here, the constants ck

ij are the structure

constants relative to the basis V1, ..., V6.

4.1.2. Optimal Systems of Solvable Subalgebras of L = so(4)⊕R2

First, note the general fact that if L = S ⊕ R where S is the semisimple part and the radical R is
the center, then the conjugacy classes of S can be joined with elements of the center to obtain conjugacy
classes of L, as follows:

Let π : S ⊕ R → S be the projection defined by π(x, y) = x. This is a homomorphism because R
is an ideal. Therefore, it will map conjugate classes to conjugate classes.

Every k-dimensional subalgebra of L is of the form 〈x1 + y1, x2 + y2, ..., xk + yk〉, where xi ∈ S,
yi ∈ R. Its projection is 〈x1, ..., xk〉 of dimension less than or equal to k. Moreover, if 〈x1 + y1, x2 +

y2, ..., xk + yk〉 is conjugate to 〈x̃1 + ỹ1, x̃2 + ỹ2, ..., x̃k + ỹk〉, then as the radical R is the center, yi = ỹi
and 〈x1, x2, ..., xk〉 is conjugate to 〈x̃1, x̃2, ..., x̃k〉. However, the dimension of the image algebra of
〈x̃1 + ỹ1, x̃2 + ỹ2, ..., x̃k + ỹk〉 can go down. Thus, to get all conjugacy classes of the full algebra, we start
with the elements of the optimal systems of S and add to each one of them arbitrary elements of the
center and keep those that form a subalgebra. The classes of the center correspond to the zero subspace
of S. This will give all the conjugacy classes of the full algebra. Applying this to L = so(4)⊕ R2,
we obtain the following classes.

Clearly, the one-dimensional optimal system Θ̃1 of R2 is {〈V7〉, 〈V8〉, 〈V7 + αV8〉, α �= 0} and the
only two-dimensional optimal system Θ̃2 of R2 is {〈V7, V8〉}.

In order to get the optimal systems of the full Lie algebra up to order three, we use the optimal
systems of so(4) constructed in Theorem 2 . We join it with the optimal system of the abelian algebra
R2 as explained above.

• To get the one-dimensional optimal system of L, we have the cases:

1. We add an arbitrary element from R2 to every element in Θ1; in this case, we get
{〈V1 + αV4 + Z1〉, 〈V1 + Z1〉, 〈V4 + Z1〉, α �= 0}.
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2. We take Θ̃1 itself; in this case, we get {〈V7〉, 〈V8〉, 〈V7 + βV8〉, β �= 0}.

• To get the two-dimensional optimal system of L, we have the cases:

1. We add an arbitrary element from R2 to every element in Θ2; in this case, we get
{〈V1 + Z1, V4 + Z2〉}.

2. We add an arbitrary element from R2 to every element in Θ1 and combine the result with an
element from Θ̃1; in this case, we get {〈V1 + αV4 + Z1, Z3〉, 〈V1 + Z1, Z3〉, 〈V4 + Z1, Z3〉, α �= 0}.

3. Take Θ̃2 itself; in this case, we get {〈V7, V8〉}.

• To get the three-dimensional optimal system of L,

1. Either we add an arbitrary element from R2 to every element in Θ2 and combine the result
with an element from Θ̃1; in this case, we get {〈V1 + Z1, V4 + Z2, Z3〉};

2. or we add an arbitrary element from R2 to every element in Θ1 and combine the result
with an element from Θ̃2; in this case, we get {〈V1 + αV4 + Z1, V7, V8〉, 〈V1 + Z1, V7, V8〉,
〈V4 + Z1, V7, V8〉, α �= 0}.

Finally, we check that the obtained class is a subalgebra by taking the wedge product of it
with its commutator and equate by zero and see if we can kill some constants. This leads to the
following theorem:

Theorem 3. The optimal systems of solvable subalgebra of L with the non-zero Lie brackets (18) are as follows:

• The one-dimensional optimal system is {〈V1 + αV4 + Z1〉, 〈V1 + Z1〉, 〈V4 + Z1〉, 〈V7〉, 〈V8〉, 〈V7 + βV8〉,
α, β �= 0}.

• The two-dimensional optimal system is {〈V1 + Z1, V4 + Z2〉, 〈V1 + αV4 + Z1, Z3〉, 〈V1 + Z1, Z3〉, 〈V4 + Z1,
Z3〉, 〈V7, V8〉, α �= 0}.

• The three-dimensional optimal system is {〈V1 + Z1, V4 + Z2, Z3〉, 〈V1 + αV4 + Z1, V7, V8〉, 〈V1 + Z1,
V7, V8〉, 〈V4 + Z1, V7, V8〉, α �= 0}.

Here, Z1 = α1V7 + β1V8, Z2 = α2V7 + β2V8 are arbitrary elements of R2 and Z3 = V7 + α3V8 or
Z3 = V8 represent a one-dimensional optimal system of R2.

4.1.3. Three-dimesional Optimal System of Non-solvable Subalgebras of L = so(4)⊕R2

If H is a three-dimensional non-solvable algebra, then H equals its commutator. As the
commutator of L is so(4), all such subalgebras of L are subalgebras of so(4). We need to construct the
copies of so(3) and sl(2,R), if any, by following the algorithm given in Section 2.2:

• First, construct the copies of so(3):

1. The element V1 has the eigenvector V2 + iV3 corresponding to the eigenvalue 2ci. Therefore,
Ṽ1 = V1

2c has the same eigenvector with the eigenvalue i. Moreover, [V2, V3] = −(2c)2Ṽ1.
Hence, 〈V1, V2, V3〉 forms a copy of so(3).

2. The element V4 has the eigenvector V5 + iV6 corresponding to the eigenvalue −2ci. Therefore,
Ṽ4 = V4

−2c has the same eigenvector with the eigenvalue i. Moreover, [V5, V6] = −(2c)2Ṽ4.
Hence, 〈V4, V5, V6〉 forms a copy of so(3).

3. The element V1 + αV4 has the eigenvector V2 + V5 + i(V3 − V6) corresponding to the
eigenvalue 2ci. Therefore, Ṽ = V1+αV4

2c has the same eigenvector with the eigenvalue i.
Moreover, and [V2 + V5, V3 − V6] = −2cṼ. Hence, 〈V1 + V4, V2 + V5, V3 − V6〉 forms a copy
of so(3). Note that here α must be equal to one to ensure that 〈V1 + αV4, V2 + V5, V3 − V6〉 is
a subalgebra.

• The Lie algebra so(4) does not contain any copy of sl(2,R), since it does not contain any
non-abelian two-dimensional subalgebra.
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This proves the following theorem:

Theorem 4. The three-dimensional optimal system of non-solvable subalgebras of L is
{〈V1, V2, V3〉, 〈V4, V5, V6〉, 〈V1 +V4, V2 +V5, V3 −V6〉}, where the Vi, i = 1, . . . , 6 form a basis of so(4) given
in (17).

4.2. Lie Point Symmetry Algebra of the Wave Equation on Anti-Einstein Spacetime

The non-zero Lie brackets of (13) are:

[X1, X2] = −c2X6, [X1, X3] = −c2X5, [X1, X5] = −X3, [X1, X6] = −X2,
[X2, X3] = c2X4, [X2, X4] = X3, [X2, X6] = X1, [X3, X4] = −X2,
[X3, X5] = X1, [X4, X5] = X6, [X4, X6] = −X5, [X5, X6] = X4.

(20)

The Levi-Decomposition of this algebra is L = {X1, X2, X3, X4, X5, X6} ⊕ {X7, X8}. Let S be the
semisimple part.

To determine the structure of the semisimple part, we need to find a Cartan algebra and the root
space decomposition with respect to the Cartan algebra. In this case, the Killing form is not negative
definite and it has exactly three negative eigenvalues. This means that the maximal compact algebra is
three-dimensional.

The reason is that, if K is a maximal compact subalgebra of the Lie algebra L, then any compact
subalgebra of L is conjugate to a subalgebra of K. Moreover, every one-dimensional subalgebra of K is
conjugate to a subalgebra of a fixed Cartan subalgebra of K [14–16].

As we will explain later, the subalgebra 〈X4, X5, X6〉 is a copy of so(3) in the given Lie algebra.
Thus, K = 〈X4, X5, X6〉 is a maximal compact subalgebra of the algebra S. A Cartan subalgebra of S
can be obtained by choosing any element of K and computing its centralizer. We choose, for example,
X6 as a representative of a Cartan algebra of K. Computing the centralizer of X6, we find that it is
〈X3, X6〉. In addition, as the centralizer of 〈X3, X6〉 is itself, C = 〈X3, X6〉 is a Cartan subalgebra of S.
Moreover, computing the eigenvalues of X3, we find that all eigenvalues of adX3 are real and X3 is
diagonalizable. Moreover, the centralizer of X3 is C and the centralizer of X6 is also C; this means that
C is the maximally real Cartan subalgebra.

We find roots of C in S. The roots are (c, i), (c,−i), (−c, i), (−c,−i), the positive roots are
(c, i), (c,−i) and clearly the sum of these positive roots is not a root. The root spaces for the positive
roots (c, i) and (c,−i) are 〈X1 + cX5 + i(cX4 − X2)〉. Let N = 〈X1 + cX5, X2 − cX4〉. The algebra
B = A ⊕ N, where A = 〈X3〉 is the real part of C, has the property that every solvable algebra with real
eigenvalues in the adjoint representation is conjugate to a subalgebra of B. We compute the normalizers
of each conjugacy class of N. The normalizer of each representative element of the one-dimensional
optimal system of N does not contain a Cartan algebra. Therefore, we keep only N because its
normalizer N (N) is solvable and contains a Cartan algebra. Thus, there is only one maximal solvable
subalgebra, namely N (N) = 〈X6, X3〉 ⊕ 〈X1 + cX5, X2 − cX4〉. Therfore, the Iwasawa decomposition
of S is K ⊕ A ⊕ N = 〈X4, X5, X6〉 ⊕ 〈X3〉 ⊕ 〈X1 + cX5, X2 − cX4〉 [14,16].

This gives us the following change of basis which makes the computations easier:

V1 = X4, V2 = X5, V3 = X6, V4 = X3,
V5 = X1 + cX5, V6 = X2 − cX4, V7 = X7, V8 = X8.

(21)

The non-zero Lie brackets of (21) are

[V1, V2] = V3, [V1, V3] = −V2, [V1, V4] = cV1 + V6, [V1, V5] = cV3,
[V1, V6] = −V4, [V2, V3] = V1, [V2, V4] = cV2 − V5, [V2, V5] = V4,
[V2, V6] = cV3 [V3, V5] = V6, [V3, V6] = −V5, [V4, V5] = cV5,
[V4, V6] = cV6.

(22)
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In fact, the semisimple part S is isomorphic to so(1, 3) as can be seen by working with its Cartan
algebra and the associated root space decompositions. The algebra 〈V7, V8〉 is the center of the Lie
algebra L.

4.2.1. Optimal Systems of Solvable Subalgebras of so(1, 3)

To find the optimal system of so(1, 3), we first find the one-dimensional optimal system and a
rough classification of higher order subalgebras inside the maximal solvable subalgebra spanned by
E1 := V3, E2 := V4, E3 := V5, E4 := V6. The corresponding non-zero Lie brackets of this subalgebra are:

[E1, E3] = E4, [E1, E4] = −E3, [E2, E3] = cE3, [E2, E4] = cE4. (23)

Secondly, we obtain the higher-dimensional optimal system by removing the repetitions from the
obtained rough classification of subalgebras using the adjoint action of so(1, 3).

Theorem 5. The optimal systems Θi up to order three of the solvable subalgebras of so(1, 3) with the non-zero
Lie brackets (22) are the following:

• The one-dimensional solvable optimal system Θ1 is
{〈V4〉, 〈V5〉, 〈V3 + αV4〉 : α ∈ R}.

• The two-dimensional solvable optimal system Θ2 is {〈V3, V4〉, 〈V4, V5〉, 〈V5, V6〉}.
• The three-dimensional solvable optimal system Θ3 is

{〈V4, V5, V6〉, 〈V3 + αV4, V5, V6〉 : α ∈ R}.

Proof. To remove the repetitions in the obtained one-dimensional optimal system and the
higher-dimensional rough classification of the maximal solvable subalgebra of L, we use their
normalizers in so(1, 3) as follows:

• The one-dimensional optimal system of the maximal solvable subalgebra of so(1, 3) is itself the
one-dimensional optimal system of so(1, 3). This is because the representative elements are
non-conjugate under the adjoint action of so(1, 3), as can be seen using the action of corresponding
adjoint group given as in (19).

• The two-dimensional abelian subalgebras are 〈V3, V4〉, 〈V5, V6〉. The non-abelian subalgebra
〈V4, V5〉 is clearly non-conjugate with both of them. Moreover, since the normalizers of the
two-dimensional abelian subalgebras are N (〈V3, V4〉)/〈V3, V4〉 = 0, N (〈V5, V6〉)/〈V5, V6〉 =

〈V̄3, V̄4〉. As their dimensions are different, they are non-conjugate.
• All the three-dimensional subalgebras given in the rough classification have the same normalizers,

centralizers and commutators, namely the abelian subalgebra 〈V5, V6〉.
Let X be one of these algebras. We find that the eigenvalues of X/X′ are repeated real in one case,
purely imaginary in one case and complex conjugates but not purely imaginary in the third case.
Therefore, they are non-conjugate.

4.2.2. Optimal Systems of Solvable Subalgebras of L = so(1, 3)⊕R2

Clearly, the one-dimensional optimal system Θ̃1 of R2 is {〈V8〉, 〈V7 + αV8〉 : α ∈ R} and the only
two-dimensional optimal system Θ̃2 of R2 is {〈V7, V8〉}.

In order to get the optimal systems of the full Lie algebra up to order three, we use the optimal
systems of so(1, 3) constructed in Theorem 5 and join each one of them with the optimal systems of the
abelian algebra R2.

• To get the one-dimensional optimal system of L,

1. either we take Θ̃1 itself; in this case, we get {〈V8〉, 〈V7 + βV8〉 : β ∈ R};
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2. or we add an arbitrary element from R2 to every representative element in Θ1; in this case,
we get {〈V4 + Z1〉, 〈V5 + Z1〉, 〈V3 + αV4 + Z1〉 : α ∈ R}.

• To get the two-dimensional optimal system of L,

1. either we add an arbitrary element from R2 to every element in Θ2; in this case, we get
{〈V3 + Z1, V4 + Z2〉, 〈V4 + Z1, V5 + Z2〉, 〈V5 + Z1, V6 + Z2〉},

2. or we add an arbitrary element from R2 to every element in Θ1 and combine the result with
an element from Θ̃1; in this case, we get {〈V4 + Z1, Z3〉, 〈V5 + Z1, Z3〉, 〈V3 + αV4 + Z1, Z3〉 :
α ∈ R}.

3. or take Θ̃2 itself; in this case, we get {〈V7, V8〉}.

• To get the three-dimensional optimal system of L,

1. either we add an arbitrary element from R2 to every element in Θ3; in this case, we get
{〈V4 + Z1, V5 + Z2, V6 + Z3〉, 〈V3 + αV4 + Z1, V5 + Z2, V6 + Z3〉 : α ∈ R},

2. or we add an arbitrary element from R2 to every element in Θ2 and combine the result
with an element from Θ̃1; in this case, we get {〈V3 + Z1, V4 + Z2, Z3〉, 〈V4 + Z1, V5 + Z2, Z3〉,
〈V5 + Z1, V6 + Z2, Z3〉},

3. or we add an arbitrary element from R2 to every element in Θ1 and combine the result with
an element from Θ̃2; in this case, we get {〈V4 + Z1, V7, V8〉, 〈V5 + Z1, V7, V8〉, 〈V3 + αV4 +

Z1, V7, V8〉 : α ∈ R},

where Z1 = α1V7 + β1V8, Z2 = α2V7 + β2V8 are arbitrary elements of R2 and Z3 = V7 + α3V8 or
Z3 = V8 represents a one-dimensional optimal system of R2 and α1, α2, α3, β1, β2 ∈ R.

Finally, we check that the obtained class is a subalgebra by taking the wedge product of its
commutator with each element in the class and make these wedges equal to zero. Therefore, we have
the following theorem.

Theorem 6. The optimal systems of solvable subalgebras of L with the non-zero Lie brackets (22) are as follows:

• The one-dimensional solvable optimal system is {〈V4 + Z1〉, 〈V5 + Z1〉, 〈V8〉, 〈V3 + αV4 + Z1〉, 〈V7 +

βV8〉 : α, β ∈ R}.
• The two-dimensional solvable optimal system is

{〈V3 + Z1, V4 + Z2〉, 〈V4 + Z1, V5〉, 〈V5 + Z1, V6 + Z2〉, 〈V4 + Z1, Z3〉, 〈V5 + Z1, Z3〉, 〈V7, V8〉, 〈V3 +

αV4 + Z1, Z3〉 : α ∈ R}.
• The three-dimensional solvable optimal system is {〈V4 + Z1, V5, V6〉, 〈V3 + Z1, V4 + Z2, Z3〉,

〈V4 + Z1, V5, Z3〉, 〈V5 + Z1, V6 + Z2, Z3〉, 〈V4 + Z1, V7, V8〉, 〈V5 + Z1, V7, V8〉, 〈V3 + αV4 + Z1,
V5, V6〉, 〈V3 + αV4 + Z1, V7, V8〉 : α ∈ R}.

Here, Z1 = α1V7 + β1V8, Z2 = α2V7 + β2V8 are arbitrary elements of R2 and Z3 = V7 + α3V8 or
Z3 = V8 represents a one-dimensional optimal system of R2.

4.2.3. Three-Dimensional Optimal System of Non-Solvable Subalgebras of L = so(1, 3)⊕R2

If H is a three-dimensional non-solvable algebra, then H equals its commutator. As the
commutator of L is so(1, 3), all such subalgebras of L are subalgebras of so(1, 3). To find such
subalgebras, we follow the algorithm given in Section 2.2.

We need to construct the copies of so(3) and sl(2,R), if any, by following the algorithm that is
given in Section 2.2:

• First, construct the copies of so(3): the element V3 has the eigenvector V1 + iV2 corresponding to
the eigenvalue −i. Therefore, Ṽ3 = −V3 has the same eigenvector with the eigenvalue i. Moreover,
[V1, V2] = −Ṽ3. Therefore, 〈V1, V2, V3〉 forms a copy of so(3).
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• The only non-abelian two-dimensional subalgebra in so(1, 3) is 〈V4, V5〉 with [V4, V5] = cV5.
Moreover, the eigenvector of adV4 corresponding to the eigenvalue −c is V5 − 2cV2 and
[V5 − 2cV2, V5] = −2cV4. Hence, the subalgebra 〈V4, V5, V5 − 2cV2〉 forms a copy of sl(2,R).

This proves the theorem.

Theorem 7. The three-dimensional non-solvable optimal system is {〈V1, V2, V3〉, 〈V4, V5, V5 − 2cV2〉},
where the Vi (i = 1, . . . , 6) forms a basis of so(1, 3) given in (21).

5. Joint Invariants and Invariant Solutions Corresponding to Three-Dimensional Optimal
Systems of L

The invariant solutions can be obtained through symmetry reductions carried out by
implementing the well-known procedure of utilizing the joint invariants of the subalgebras obtained
by three-dimensional optimal system, see, e.g., [6,11,20] for details.

Remark 1 ([10]). Let 〈X1, . . . , Xn〉 be a Lie algebra with basis

Xi = ξ1
i

∂

∂t
+ ξ2

i
∂

∂r
+ ξ3

i
∂

∂θ
+ ξ4

i
∂

∂ϕ
+ ηi

∂

∂u
, i = 1, . . . , n.

A necessary condition for the existence of an invariant solution under the Lie algebra 〈X1, . . . , Xn〉 is the
following transversality condition:

rank{E1} = rank{E2}, (24)

where

E1 =

⎛⎜⎝ ξ1
1 ξ2

1 ξ3
1 ξ4

1
...

...
...

...
ξ1

n ξ2
n ξ3

n ξ4
n

⎞⎟⎠ , E2 =

⎛⎜⎝ ξ1
1 ξ2

1 ξ3
1 ξ4

1 η1
...

...
...

...
...

ξ1
n ξ2

n ξ3
n ξ4

n ηn

⎞⎟⎠ .

Before giving the formal definition of equivalent invariant solutions, let us note the following
general fact:

Whenever a transformation group G operates on a set S and U is a subset of S and H is the
stabilizer of U, then the stabilizer of a.U, a ∈ G is aHa−1. We will apply this where the set S is the set
of solutions of a differential equation, U is the set of invariant solutions and the group G is the local
group whose Lie algebra is the symmetry algebra of the differential equation.

Definition 4. Consider the differential equation admitting the group of transformations G. Let L be the
Lie algebra corresponding the group G. If u = Θ1(x) and u = Θ2(x) are two invariant solutions of the
given differential equation under the subalgebras H1 and H2 of L, respectively, then we call u = Θ1(x) and
u = Θ2(x) equivalent invariant solutions with respect to the group G if one can find some transformation
in G that transforms u = Θ1(x) to u = Θ2(x).

Let H1 be conjugate to H2 with respect to the group of transformations G. Define U to be the set
of invariant surfaces under H1. Then, H1 belongs to the stabilizer of U and H2 belongs to the stabilizer
of a.U for some a ∈ G. The set of invariant surfaces under H2 should be of the form a.U.

Therefore, the problem of classifying the invariant solutions is reduced to classifying the
corresponding conjugacy classes of subalgebras of the symmetry algebra L [6].

In this section, we compute the invariant solutions corresponding to three-dimensional
subalgebras of L.
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5.1. Invariant Solutions of the Wave Equation on Einstein Spacetime

5.1.1. Solvable Subalgebras of of L
Example 1. In the case of L1 = 〈V1 + Z1, V4 + Z2, Z3〉, Z3 = V7 + α3V8. The generators of L1 in Cartesian
coordinates are as follows:

V1 + Z1 = α1
∂
∂t − cz ∂

∂x +
√

1 − c2(x2 + y2 + z2) ∂
∂y + cx ∂

∂z + β1u ∂
∂u ,

V4 + Z2 = α2
∂
∂t + cz ∂

∂x +
√

1 − c2(x2 + y2 + z2) ∂
∂y − cx ∂

∂z + β2u ∂
∂u ,

Z3 = ∂
∂t + α3u ∂

∂u .

(25)

The transversality condition (24) of (25) with rank three is always satisfied. Since the Lie algebra
L1 is abelian, one can find the invariant functions, we call them also invariants, of L1 in any order. The
invariants of Z3 are:

m1 = x, m2 = y, m3 = z, m4 = ue−α3 t. (26)

The remaining operators can be given in terms of the variables mi, i = 1, . . . , 4 as

V1 + Z1 = −cm3
∂

∂m1
+
√

1 − c2(m1
2 + m22 + m32) ∂

∂m2
+ cm1

∂
∂m3

− m4 (α3 α1 − β1)
∂

∂m4
,

V4 + Z2 = cm3
∂

∂m1
+
√

1 − c2(m1
2 + m22 + m32) ∂

∂m2
− cm1

∂
∂m3

− m4 (α3 α2 − β2)
∂

∂m4
.

(27)

Next, the invariants of V1 + Z1 are

n1 = m1
2 + m3

2, n2 = arctan
(

c m2√
1−c2(m1

2+m2
2+m3

2)

)
− arctan

(
m3
m1

)
,

n3 = m4 e
(α3 α1−β1)

c arctan
(

m3
m1

)
.

(28)

In terms of the variables ni, i = 1, . . . , 3, the remaining operator is

V4 + Z2 = −2 c
∂

∂n2
− n3 ((α1 + α2) α3 − β2 − β1)

∂

∂n3
. (29)

Finally, the invariants of V4 + Z2 are

n1, n3 e
(β1+β2−α3 α1−α3 α2)

2c n2 . (30)

Writing the invariants (30) in terms of the original variables gives the joint invariants of L1 as

x2 + z2, u e

(
A1 arctan

(
c y√

1−c2(x2+y2+z2)

)
+A2 arctan

(
z
x

)
−α3t

)
,

(31)

where A1 = (α1+α2)α3−β1−β2
2c , A2 = (3α1+α2)α3−3β1−β2

2c .
Note that A1 = A2 = 0 when Z1 = Z2 = 0. Therefore, for simplicity, let us discuss the invariant

solution for this case.
The invariant transformations in this case are:

w = x2 + z2, Z(w) = u e−α3t. (32)

Thus, using (32), Equation (8) can be reduced to the ODE:

4w
(
c2w − 1

)
Z′′ + 4(2c2w − 1)Z′ + α3

2Z = 0. (33)

131



Symmetry 2018, 10, 665

It was found that the transformation

w =
r
c2 , Z(w) = R(r) (34)

reduces Equation (33) to the hypergeometric differential equation

r(r − 1)R′′ +
(
(ν + μ + 1)r − γ

)
R′ + νμR = 0 (35)

with ν =
c−
√

c2−α3
2

2c , μ =
c+
√

c2−α3
2

2c , γ = 1. The solution of (35) is given in terms of the
hypergeometric function F(ν, μ; γ; r) as

R(r) = c1F(μ, ν; ν + μ; 1 − r) + c2(r − 1)1−ν−μF(1 − ν, 1 − μ; 2 − ν − μ; 1 − r). (36)

Therefore, the solution of (33) is

Z(w) = R(c2w). (37)

Thus, the invariant solution of (8) is

u(t, x, z) = eα3t
(

c1F(μ, ν; ν + μ; 1 − c2(x2 + z2)) + c2(c2(x2 + z2)− 1)1−ν−μF(1 − ν, 1 − μ; 2 − ν − μ; 1 − c2(x2 + z2))
)

. (38)

Another interesting special case when α3 = c, the solution of Equation (35) becomes

R(r) = c1EllipticK(
√

r) + c2EllipticCK(
√

r), (39)

where EllipticK and EllipticCK are respectively the complete and the complementary Elliptic integrals
of the first kind.

Thus, the invariant solution of (8) is

u(t, x, z) = ect
(

c1EllipticK
(√

c2(x2 + z2)
)
+ c2EllipticCK

(√
c2(x2 + z2)

))
. (40)

5.1.2. Non-Solvable Subalgebras of of L
As is well known, all three-dimensional non-solvable subalgebras are simple. As they have no

non-trivial ideal, we use the method of reduced row echelon form of operators in any convenient basis.
As shown in [21], the operators of the three-dimensional non-solvable subalgebra in the reduced row
echelon form always form an abelian algebra. Clearly, the joint invariants of the three-dimensional
non-solvable subalgebra are the same as those of this abelian algebra. Using this, we find that the joint
invariants for L as follows:

Example 2. In the case of L1 = 〈V1, V2, V3〉, by writing L1 in the reduced row echelon form, the fundamental
set of the invariants can be obtained by solving the following system:

⎛⎜⎜⎝
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

It

Ix

Iy

Iz

Iu

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎠ . (41)
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Clearly, the joint invariants are t, u. Therefore, the invariant transformations are:

w = t, Z(w) = u. (42)

Thus, using (125), Equation (8) can be reduced to the ODE:

Z′′ = 0, (43)

which has the solution
Z(w) = c1 + c2 w. (44)

Thus, the invariant solution of (8) is

u(t) = c1 + c2 t. (45)

Example 3. In the case of L2 = 〈V4, V5, V6〉, since the reduced row echelon form of the operators of L2 coincides
with that in (124), it follows that they have the same solution.

5.2. Invariant Solutions of the Wave Equation on Anti-Einstein Spacetime

5.2.1. Solvable Subalgebras of L
Example 4. Case L1 = 〈V3 + αV4 + Z1, V5, V6〉, α �= 0. The generators of L1 in Cartesian coordinates are
as follows:

V3 + αV4 + Z1 = α1
∂
∂t − y ∂

∂x + x ∂
∂y + α

√
1 + c2(x2 + y2 + z2) ∂

∂z , β1u ∂
∂u ,

V5 = (
√

1 + c2(x2 + y2 + z2) + cz) ∂
∂y − cy ∂

∂z ,
V6 = (

√
1 + c2(x2 + y2 + z2) + cz) ∂

∂x − cx ∂
∂z .

(46)

The transversality condition (24) of (46) with rank three is always satisfied. Since the derived Lie
algebra generated by L1 is 〈V5, V6〉 which is abelian, one can find the invariants of L1 by starting with
V5 or V6. The invariants of V5 are:

m1 = t, m2 = x, m3 =
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
, m4 = u. (47)

The operator V6 can be given in terms of the variables mi, i = 1, . . . , 4 as

V6 = 1
m3

∂
∂m2

. (48)

Next, the invariants of V6 are

n1 = m1, n2 = m3, n3 = m4. (49)

In terms of the variables ni, i = 1, 2, 3, the remaining operator is

V3 + αV4 + Z1 = α1
∂

∂m1
− α cn2

∂
∂n2

+ β1n3
∂

∂n3
. (50)

We have to study the following two cases:

• Case 1: If α1 �= 0, the invariants of V3 + αV4 + Z1 are

n2 e
cα
α1

n1 , n3 e−
β1
α1

n1 . (51)
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Writing the invariants (51) in terms of the original variables gives the joint invariants of L1 as

−cz +
√

1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
e

α c
α1

t, ue−
β1
α1

t.

Therefore, the invariant transformations are:

w =
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
e

α c
α1

t, Z(w) = u e−
β1
α1

t. (52)

Thus, using (52), Equation (12) can be reduced to the ODE:

c
((

α2 + α1
2
)

c + 2 α β1

)
w Z′ + c2

(
α2 − α1

2
)

w2 Z′′ + β1
2 Z = 0, (53)

which has the non-trivial solution for the following cases:

1. α2 − α2
1 �= 0:

Z (w) = c1 w
−cα1

2−α β1+α1

√
c2α1

2+2 cα β1+β1
2

(α2−α1
2)c + c2 w

−cα1
2−α β1−α1

√
c2α1

2+2 cα β1+β1
2

(α2−α1
2)c . (54)

2. α2 − α2
1 = 0, cα1 + β1 �= 0:

Z (w) = c1 w
− β2

1
2cα1 (α1 c+β1) . (55)

Thus, the invariant solution of (12) is

u(t, x, y, z) = Z
(−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
e

α c
α1

t
)

e
β1
α1

t (56)

• Case 2: If α1 = 0, the invariants of V3 + αV4 + Z1 are

n1, n3n2
β1
α c . (57)

Writing the invariants (57) in terms of the original variables gives the joint invariants of L1 as

t, u

(
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)

) β1
α c

.

Therefore, the invariant transformations are:

w = t, Z(w) = u

(
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)

) β1
α c

. (58)

Thus, using (58), Equation (12) can be reduced to the ODE:

α2Z′′ − β1 ( β1 + 2α c) Z = 0, (59)

which has the solution

Z (w) = c1 e

√
β2

1+2β1 α c
α w + c2 e−

√
β2

1+2β1 α c
α w. (60)
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Thus, the invariant solution of (12) is

u(t, x, y, z) = Z(t)

(
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)

)− β1
α c

. (61)

Example 5. Case L2 = 〈V3 + Z1, V5, V6〉. The generators of L2 in Cartesian coordinates are as follows:

V3 + Z1 = α1
∂
∂t − y ∂

∂x + x ∂
∂y + β1u ∂

∂u ,
V5 = (

√
1 + c2(x2 + y2 + z2) + cz) ∂

∂y − cy ∂
∂z ,

V6 = (
√

1 + c2(x2 + y2 + z2) + cz) ∂
∂x − cx ∂

∂z .

(62)

The transversality condition (24) of (62) with rank three is satisfied for α1 �= 0. Since the derived
Lie algebra generated by L2 is 〈V5, V6〉 which is abelian, one can find the invariants of L2 by starting
with the invariants of 〈V5, V6〉 which are given by (49) as

n1 = t, n2 =
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
, n3 = u. (63)

In terms of the variables ni, i = 1, 2, 3, the remaining operator is

V3 + Z1 = α1
∂

∂n1
+ β1n3

∂
∂n3

. (64)

Finally, the invariants of V3 + Z1 are

n2, n3 e−
β1
α1

n1 . (65)

Writing the invariants (65) in terms of the original variables gives the joint invariants of L2 as

−cz +
√

1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
, ue−

β1
α1

t.

Therefore, the invariant transformations are:

w =
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2(x2 + y2)
, Z(w) = ue−

β1
α1

t. (66)

Thus, using (66), Equation (12) can be reduced to the Cauchy–Euler ODE:

w2Z′′ − wZ′ −
( β1

cα1

)2
Z = 0, (67)

which has the solution

Z (w) = c1 w
cα1+

√
c2α1

2+β1
2

cα1 + c2 w
cα1−

√
c2α1

2+β1
2

cα1 . (68)

Thus, the invariant solution of (12) is

u(t, x, y, z) = Z
(−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2(x2 + y2)

)
e

β1
α1

t. (69)
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Example 6. Case L3 = 〈V4 + Z1, V5, V6〉. The generators of L3 in Cartesian coordinates are as follows:

V4 + Z1 = α1
∂
∂t +

√
1 + c2(x2 + y2 + z2) ∂

∂z + β1u ∂
∂u ,

V5 = (
√

1 + c2(x2 + y2 + z2) + cz) ∂
∂y − cy ∂

∂z ,
V6 = (

√
1 + c2(x2 + y2 + z2) + cz) ∂

∂x − c x ∂
∂z .

(70)

The transversality condition (24) of (70) with rank three is always satisfied. Since the derived Lie
algebra generated by L3 is 〈V5, V6〉 which is abelian, one can find the invariants of L3 by starting with
the invariants of 〈V5, V6〉 which are given by (49) as

n1 = t, n2 =
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
, n3 = u. (71)

In terms of the variables ni, i = 1, 2, 3, the remaining operator is

V4 + Z1 = α1
∂

∂n1
− c n2

∂
∂n2

+ β1n3
∂

∂n3
. (72)

We have to consider the following two cases:

• Case 1: If α1 �= 0, the invariants of V4 + Z1 are

n2e
c

α1
n1 , n3e−

β1
α1

n1 . (73)

Writing the invariants (73) in terms of the original variables gives the joint invariants of L3 as

−cz +
√

1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
e

ct
α1 , ue−

β1
α1

t. (74)

Therefore, the invariant transformations are:

w =
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
e

ct
α1 , Z(w) = u e−

β1
α1

t. (75)

Thus, using (75), Equation (12) can be reduced to the ODE:

c2
(

α2
1 − 1

)
w2Z′′ −

((
1 + α1

2
)

c + 2 β1

)
cwZ′ − β1

2Z = 0, (76)

which has the non-trivial solution for the following cases:

1. α2
1 − 1 �= 0:

Z (w) = c1 w
cα1

2+β1+α1

√
c2α1

2+2 cβ1+β1
2

c(α1
2−1) + c2 w

cα1
2+β1−α1

√
c2α1

2+2 cβ1+β1
2

c(α1
2−1) , (77)

2. α2
1 − 1 = 0, c + β1 �= 0:

Z (w) = c1 w
− β2

1
2c ( c+β1) . (78)
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Thus, the invariant solution of (12) is

u(t, x, y, z) = Z
(−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
e

ct
α1

)
e

β1
α1

t. (79)

• Case 2: If α1 = 0, the invariants of V4 + Z1 are

n1, n3 n2
β1
c . (80)

Writing the invariants (80) in terms of the original variables gives the joint invariants of L3 as

t, u

(
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)

) β1
c

. (81)

Therefore, the invariant transformations are:

w = t, Z(w) = u

(
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)

) β1
c

. (82)

Thus, using (82), Equation (12) can be reduced to the Cauchy–Euler ODE:

Z′′ −
(

2 β1 c + β1
2
)

Z = 0, (83)

which has the solution
Z (w) = c1 e

√
β2

1+2 cβ1w + c2 e−
√

β2
1+2 cβ1w. (84)

Thus, the invariant solution of (12) is

u(t, x, y, z) = Z(t)

(
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)

)− β1
c

. (85)

Example 7. Case L4 = 〈V3 + Z1, V4 + Z2, Z3〉, Z3 = V7 + α3V8. The generators of L4 in Cartesian
coordinates are as follows:

V3 + Z1 = α1
∂
∂t − y ∂

∂x + x ∂
∂y + β1 u ∂

∂u ,
V4 + Z2 = α2

∂
∂t +

√
1 + c2(x2 + y2 + z2) ∂

∂z + β2 u ∂
∂u ,

Z3 = ∂
∂t + α3 u ∂

∂u .
(86)

The transversality condition (24) of (86) with rank three is always satisfied. Since the Lie algebra
generated by L4 is abelian, one can find the invariants of L4 in any order. The invariants of Z3 are:

m1 = x, m2 = y, m3 = z, m4 = ue−α3 t. (87)

The operators can be given in terms of the variables mi, i = 1, . . . , 4 as

V3 + Z1 = −m2
∂

∂m1
+ m1

∂
∂m2

+ (β1 − α3 α1)m4
∂

∂m4
,

V4 + Z2 =
√

1 + c2(m1
2 + m22 + m32) ∂

∂m3
+ (β2 − α2 α3)m4

∂
∂m4

.
(88)
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Next, the invariants of V3 + Z1 are

n1 = m1
2 + m2

2, n2 = m3, n3 = m4e(β1−α3 α1) arctan
(

m1
m2

)
. (89)

In terms of the variables ni, i = 1, 2, 3, the remaining operator is

V4 + Z2 =
√

1 + c2(n1 + n22) ∂
∂n1

+ (β2 − α2 α3) n3
∂

∂n3
. (90)

Finally, the invariants of V4 + Z2 are

n1, n3

(
c n2 +

√
1 + c2(n1 + n22)

) α2 α3−β2
c

. (91)

Writing the invariants (91) in terms of the original variables gives the joint invariants of L4 as

x2 + y2, ue−α3 teA1 arctan
(

x
y

) (
cz +

√
1 + c2 (x2 + y2 + z2)

)A2

, (92)

where A1 = (β1 − α3 α1) , A2 = α2 α3−β2
c .

Therefore, the invariant transformations are:

w = x2 + y2, Z(w) = ue−α3 teA1 arctan
(

x
y

) (
cz +

√
1 + c2 (x2 + y2 + z2)

)A2

. (93)

Thus, using (93), Equation (12) can be reduced to the ODE:

4(w2 + c2w3)Z′′ + 4(w − c2 (A2 − 2)w2)Z′ +
( ((

A2
2 − 2 A2

)
c2 − α2

)
w + A1

2
)

Z = 0, (94)

which can be transformed using the transformation w = − r
c2 .

Z(w) = r
1
2 iA1 R(r) to the hypergeometric differential equation

r(r − 1)R′′ +
(
(ν + μ + 1)r − γ

)
R′ + νμR = 0 (95)

with ν =
(1+iA1−A2)c+

√
c2+α3

2

2c , μ =
(1+iA1−A2)c−

√
c2+α3

2

2c , γ = 1 + iA1. The solution of (95) is given in
terms of the hypergeometric function F(ν, μ; γ; r) as

R(r) = c1F(ν, μ; γ; r) + c2r1−γF(ν − γ + 1, μ − γ + 1; 2 − γ; r). (96)

Therefore, the solution of (94) is

Z(w) = (−c2w)
1
2 (γ−1)R(−c2w). (97)

Thus, the invariant solution of (12) is

u(t, x, y, z) = Z(x2 + y2) eα3 tei(γ−1) arctan
(

x
y

) (
cz +

√
1 + c2 (x2 + y2 + z2)

)3ν−γ−μ

, (98)

where α2
3 = c2(ν − μ)2 − c2.

138



Symmetry 2018, 10, 665

Example 8. Case L5 = 〈V4 + Z1, V5, Z3〉, Z3 = V7 + α3V8. The generators of L5 in Cartesian coordinates
are as follows:

V4 + Z1 = α1
∂
∂t +

√
1 + c2(x2 + y2 + z2) ∂

∂z + β1u ∂
∂u ,

V5 = (
√

1 + c2(x2 + y2 + z2) + cz) ∂
∂y − cy ∂

∂z ,
Z3 = ∂

∂t + α3u ∂
∂u .

(99)

The transversality condition (24) of (99) with rank three is always satisfied. Since the derived Lie
algebra generated by L5 is 〈V5〉, one can find the invariants of L5 by starting with V5. The invariants
of V5 are:

m1 = t, m2 = x, m3 = u, m4 =
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2(x2 + y2)
. (100)

The operators can be given in terms of the variables mi, i = 1, . . . , 4 as

V4 + Z1 = α1
∂

∂m1
+ β1m3

∂
∂m3

− cm4
∂

∂m4
,

Z3 = ∂
∂t + α3m3

∂
∂m3

.
(101)

Next, the invariants of V4 + Z1 are

n1 = m2, n2 = m3e−
β1
α1

m1 , n3 = m4e
c

α1
m1 . (102)

In terms of the variables ni, i = 1, 2, 3, the remaining operator is

Z3 = (α3 α1−β1)
α1

n2
∂

∂n2
+ c

α1
n3

∂
∂n3

. (103)

Finally, the invariants of Z3 are

n1, n2 n3
β1−α3 α1

c . (104)

Writing the invariants (104) in terms of the original variables gives the joint invariants of L5 as

x, u e−α3t
( 1 + c2(x2 + y2)

−cz +
√

1 + c2(x2 + y2 + z2)

)A1
, (105)

where A1 = β1−α1α3
c .

Therefore, the invariant transformations are:

w = x, Z(w) = u e−α3t
( 1 + c2(x2 + y2)

−cz +
√

1 + c2(x2 + y2 + z2)

)A1
. (106)

Thus, using (106), Equation (12) can be reduced to the ODE:(
c2w2 + 1

)
Z′′ − c2 (2A1 − 3)wZ′ +

(
c2(A2

1 − 2A1)− α2
3

)
Z = 0. (107)

It was found using Maple software (Maple 13.0, Waterloo Maple Inc., Waterloo, ON, Canada) that
the transformation

w =
r
ic

, Z (w) =
(

r2 − 1
) 1

2 A1− 1
4 R (r) (108)

reduces Equation (107) to the associated Legendre equation

(1 − r2)R′′ − 2rR′ +
(

ν(ν + 1)− μ2

1 − r2

)
R = 0 (109)
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with ν =
2
√

c2+α2
3−c

2c , μ = A1 − 1
2 . Therefore, the solution of (107) is

Z (w) =
(
−c2w2 − 1

) μ
2
(

c1Pμ
ν (icw) + c2Qμ

ν (icw)
)

, (110)

where Pμ
ν and Qμ

ν are the associated Legendre functions of the first and second kinds respectively. Thus,
the invariant solution of (12) is

u(t, x, y, z) = Z(x) eα3t
(−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2(x2 + y2)

)μ+ 1
2
, (111)

where α2
3 = c2(ν + 1

2 )
2 − c2.

Example 9. Case L6 = 〈V5 + Z1, V6 + Z2, Z3〉, Z3 = V7 + α3V8. The generators of L6 in Cartesian
coordinates are as follows:

V5 + Z1 = α1
∂
∂t + (

√
1 + c2(x2 + y2 + z2) + cz) ∂

∂y − cy ∂
∂z + β1u ∂

∂u ,
V6 + Z2 = α2

∂
∂t + (

√
1 + c2(x2 + y2 + z2) + cz) ∂

∂x − cx ∂
∂z + β2 u ∂

∂u ,
Z3 = ∂

∂t + α3 u ∂
∂u .

(112)

The transversality condition (24) of (112) with rank three is always satisfied. Since the Lie algebra
generated by L6 is abelian, one can find the invariants of L6 in any order. The invariants of Z3 are:

m1 = x, m2 = y, m3 = z, m4 = ue−α3 t. (113)

The operators can be given in terms of the variables mi, i = 1, . . . , 4 as

V5 + Z1 = (
√

1 + c2 (m1
2 + m22 + m32) + cm3)

∂
∂m2

− cm2
∂

∂m3
+ (β1 − α3 α1)m4

∂
∂m4

,

V6 + Z2 = (
√

1 + c2 (m1
2 + m22 + m32) + c m3)

∂
∂m1

− c m1
∂

∂m3
+ (β2 − α2 α3)m4

∂
∂m4

.
(114)

Next, the invariants of V5 + Z1 are

n1 = m1,

n2 =
−cm3+

√
1+c2(m1

2+m2
2+m3

2)

1+c2(m1
2+m2

2)
,

n3 = m4e

(α3 α1−β1)m2

(
−cm3+

√
1+c2(m1

2+m2
2+m3

2)
)

1+c2(m1
2+m2

2) .

(115)

In terms of the variables ni, i = 1, 2, 3, the remaining operator is

V6 + Z2 = 1
n2

∂
∂n1

+ (β2 − α2 α3) n3
∂

∂n3
. (116)

Finally, the invariants of V6 + Z2 are

n2, n3 e(α2 α3−β2)n1n2 . (117)

Writing the invariants (117) in terms of the original variables gives the joint invariants of L6 as

−cz +
√

1 + c2 (x2 + y2 + z2)

1 + c2(x2 + y2)
, ue−αte

(
A1x+A2y

)(
−cz+

√
1+c2(x2+y2+z2)

1+c2(x2+y2)

)
, (118)

where A1 = α2α3 − β2, A2 = α1α3 − β1.
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Therefore, the invariant transformations are:

w =
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2(x2 + y2)
, Z(w) = ue−αte

(
A1x+A2y

)(
−cz+

√
1+c2(x2+y2+z2)

1+c2(x2+y2)

)
. (119)

Thus, using (119), Equation (12) can be reduced to the ODE:

c2w2Z′′ − c2wZ′ +
(
(A2

1 + A2
2)w

2 − α2
3

)
Z = 0, (120)

which can be transformed using the transformation w = r, Z(w) = rR(r) to the parametric
Bessel equation:

r2R′′ + rR′ +
(

α2r2 − v2
)

R = 0 (121)

with α =

√
A1

2+A2
2

c , v =
√

c2+α2

c .
Therefore, the solution of (120) is

Z(w) = c1wJv(αw) + c2wYv(αw), (122)

where Jv and Yv are the Bessel functions of the first and second kind, respectively. Thus, the invariant
solution of (12) is

u(t, x, y, z) = Z
(−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2(x2 + y2)

)
eα3te

(
A1x+A2y

)(
cz−

√
1+c2(x2+y2+z2)

1+c2(x2+y2)

)
. (123)

5.2.2. Non-Solvable Subalgebras of L
Example 10. Case L1 = 〈V4, V5, V5 − 2cV2〉. By writing L1 in the reduced row echelon form, the fundamental
set of the invariants can be obtained by solving the following system:

⎛⎜⎜⎝
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

It

Ix

Iy

Iz

Iu

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎠ . (124)

Clearly, the joint invariants are t, u. Therefore, the invariant transformations are:

w = t, Z(w) = u. (125)

Thus, using (125), Equation (12) can be reduced to the ODE:

Z′′ = 0, (126)

which has the solution
Z(w) = c1 + c2 w. (127)

Thus, the invariant solution of (12) is

u(t) = c1 + c2 t. (128)
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6. Concluding Remarks and Future Research

Improved algorithms of the expansion method introduced by Ovsiannikov [6] are introduced to
construct the optimal systems of dimension of at most three of non-solvable Lie algebra. The algorithms
are then applied to determine the Lie algebra structure and optimal systems of the symmetries of
the wave equation on static spherically symmetric spacetimes admitting G7 as an isometry algebra,
while joint invariants and invariant solutions corresponding to three-dimensional optimal systems are
also found. The energy density e(u) = 1

2 gijuiuj and the corresponding energy of the solutions can be
investigated for physical significance of the wave functions obtained in the examples.

It would be of interest to complete and extend this study by applying the algorithms in this paper
to equations of physical interest on all static and non-static spherically symmetric spacetimes and to
find the corresponding invariant solutions.
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Abstract: In this paper, we have investigated Noether symmetries of the Lagrangian of Kantowski–Sachs
spacetime. The associated Lagrangian of the Kantowski–Sachs metric is used to derive the set of
determining equations. Solving the determining equations for several values of the metric functions,
it is observed that the Kantowski–Sachs spacetime admits the Noether algebra of dimensions 5, 6,
7, 8, 9, and 11. A comparison of the obtained Noether symmetries with Killing and homothetic
vectors is also presented. With the help of Noether’s theorem, we have presented the expressions for
conservation laws corresponding to all Noether symmetries. It is observed that the positive energy
condition is satisfied for most of the obtained metrics.

Keywords: Noether symmetries; conservation laws; Kantowski–Sachs metric

PACS: 04.20.Jb

1. Introduction

Einstein’s field equations (EFEs), Gab = kTab, are ten-tensor equations, which describe the
gravitational effects produced by a given mass in a spacetime. In these equations, the stress-energy
tensor Tab gives the distribution of energy and momentum, k represents the gravitational constant,
while Gab expresses the spacetime curvature and is known as the Einstein tensor. Moreover, the Einstein
tensor Gab can be expressed as Gab = Rab − R

2 gab, where Rab = the Ricci tensor, gab = the metric tensor,
and R = the Ricci scalar.

The quantities Rab and R appearing in the EFEs are built up from gab and its partial derivatives.
In this way, the EFEs form a system of partial differential equations. A Lorentz metric gab is regarded
as an exact solution of EFEs if it is obtained by solving the EFEs exactly in closed form and is
conformable to a physically realistic Tab. Finding the exact solutions of EFEs is not an easy task
unless some simplifying assumptions are employed. Therefore, only a few physically meaningful
solutions of these equations are found in the literature [1]. Among the approaches followed for
obtaining the exact solutions of EFEs, the most popular is to use some symmetry restrictions on the
tensor gab. These restrictions are mathematically expressed as LX gab = 0, where X is called a Killing
vector (KV) and L denotes the Lie derivative operator. It is well known that every KV corresponds
to a conservation law. A large body of the literature is devoted to the investigation of KVs and
corresponding conservation laws in spacetimes [1–3].

The symmetries of tensors other than the metric tensor are usually referred to as collineations.
Some examples of collineations include curvature collineations (LXRa

bcd = 0), Ricci collineations
(LXRab = 0), and matter collineations (LXTab = 0). These collineations have also been thoroughly
discussed [4–9].
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Apart from the conventional symmetries defined above, the idea of another type of symmetry,
known as Noether symmetry (NS), was given by Emmy Noether [10]. According to Noether’s theorem,
if the Lagrangian of a system admits a continuous symmetry, then this symmetry corresponds
to a conservation law. Consequently, if a system remains unchanged under time translation and
spacial translations and rotations, this theorem yields the conservation of energy and linear and
angular momenta.

The study of NS is important due to the fact that it usually provides the additional conservation
laws, not given by KVs. If the Killing and Noether algebras are denoted by K(M) and N(M),
respectively, then K(M) ⊆ N(M). The NS have also a close link with homothetic vectors (HVs).
In fact, if X is an HV, that is LX gab = 2ψgab; ψ being a constant, then X + 2ψu∂u is a Noether symmetry
associated with X. Here, u is the geodesics parameter of the world line of a point particle moving in
a spacetime. Conversely, if X + 2ψu∂u is an NS, then X is an HV, provided that X is independent of
u [11]. A Noether symmetry that is neither a KV, nor associated with an HV is known as a proper
Noether symmetry.

NS and their comparison with Killing and homothetic vectors have been studied for some
well-known spacetimes. A comparative study of KVs and NS for the conformally-flat Friedmann
metric was provided in [12], and it was concluded that this metric admits proper NS. Considering
some specific spherically-symmetric metrics, Bokhari et al. [13] conjectured that the NS of the
Lagrangian provide additional conservation laws. The NS of some other physically-important
spacetimes were examined by different authors. Camci [14] studied the NS of geodesic motion
for the geodesic Lagrangian of the metric of Gödel spacetimes. Camci and Yildirim [15] worked on
the NS of the geodesic Lagrangian for some classes of pp-wave spacetimes. Hickman and Yazdan [11]
studied NS in Bianchi type II spacetimes. They have shown that the Noether algebra of Bianchi type II
spacetimes contain Killing, as well as homothetic vectors. Ali et al. [16–18] worked on the classification
of different spacetimes via NS including static plane, static spherical, and static cylindrically-symmetric
spacetimes. Jamil et al. [19,20] worked on the complete classification of non-static plane and non-static
spherically-symmetric spacetimes via NS. Paliathanasis et al. [21] established a relation between the Lie
symmetries of the Klein–Gordon equation and conformal Killing vectors of the underlying geometry,
where they also stated that the resulting Lie symmetries of the conformal algebra are also NS. Tsamparlis et
al. [22] stated that for dynamical system whose equations of motion are of the form ẍa + Γa

bcẋbẋc + f (xa);
f (xa) being an arbitrary function of its argument, the computation of Lie and Noether symmetries reduces
to the problem of finding the special projective collineations. Recently, the Bianchi type V and non-static
plane symmetric spacetimes were completely classified via their NS [23,24].

It is important to mention here that the formulation of conservation laws may not require the
Lagrangian of the system. As an example, one can see the work of Ma et al. [25], who have recently
established a result giving the direct formulation of conservation laws for differential equations
including the heat equation, Burgers’ equation, and the Korteweg–de Vries (KdV) equation, regardless
of the existence of a Lagrangian. The same authors also discussed the existence of lump solutions
involving free parameters for some nonlinear partial differential equations that present Lie symmetries
and that may generate associated conservation laws [26].

The Kantowski–Sachs spacetime describes a spatially-homogeneous and anisotropic universe
model that admits an isometry group G4 acting on homogeneous spacelike hypersurfaces. As the
Kantowski–Sachs metric is of great interest and there is a great deal of information about this
metric scattered throughout the literature, it would be useful to investigate the NS possessed by
the Lagrangian of this metric and their relation with Killing and homothetic vectors.

For a physically-realistic spacetime, its energy density, represented by T00, must be non-negative.
This condition is usually referred to as the positive energy condition. The positive energy condition is
important because if one allows both positive and negative energy regions, the empty vacuum may become
unstable. In this paper, we classify the Lagrangian of the Kantowski–Sachs metric according to its NS and
check the positive energy condition for the obtained models admitting different algebras of NS.
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2. Determining Equations

The Kantowski–Sachs metric is given by [27]:

ds2 = dt2 − λ2(t)dr2 − v2(t)
(

dθ2 + sin2 θdφ2
)

, (1)

where the functions λ(t) �= 0 and v(t) �= 0 depend on t only. The minimum KVs admitted by the
above metric are:

X1 = ∂r, X2 = ∂φ,

X3 = sin φ∂θ + cot θ cos φ∂φ,

X4 = − cos φ∂θ + cot θ sin φ∂φ. (2)

One may use the EFEs with k = 1 to get the following non-zero components of Tab.

T00 =
1

λ3v2

(
v′2λ3 + 2λ2vλ′v′ + λ3

)
,

T11 = − 1
v2

(
2vλ2v′′ + λ2v′2 + λ2

)
,

T22 = − v
λ3

(
λ3v′′ + λ2v′λ′ + vλ2λ′′

)
,

T33 = sin2 θ T22, (3)

where the primes on metric functions denote their derivatives with respect to t. The usual Lagrangian
L corresponding to the Kantowski–Sachs metric (1) is given by:

L = ṫ2 − λ2(t)ṙ2 − v2(t)
(

θ̇2 + sin2 θφ̇2
)

, (4)

where the dot represents the derivative with respect to the parameter u of the world line of a point
particle moving in Kantowski–Sachs spacetime. The Lagrangian for this point particle, given in (4),
represents the square of the Lagrangian for the action principle that leads to geodesics by minimizing

the spacetime metric
∫

ds =
√

gab
dxa

du
dxb

du du [28]. It may be noted that the coefficients of the quadratic

terms in dxμ

du
dxν

du represent the components of the metric.
A vector field X = η ∂

∂u + Xi ∂
∂xi

is called an NS if the Lagrangian of a physical system remains
invariant under the action of X such that the following condition holds:

X(1)L + L(Dη) = DF, (5)

where:
X(1) = X + Xi

u
∂

∂ẋi
(6)

is the first prolongation of X such that Xi
u = DXi − ẋiDη. Here, D denotes the total differential

operator, given by:

D =
∂

∂u
+ ẋi

∂

∂xi
. (7)

Moreover, η, Xi, and F all depend on the variables (u, xi), where xi = (t(u), r(u), θ(u), φ(u)).
The function F is known as the gauge function. Once we find the NS and corresponding gauge function,
we can use Noether’s theorem to find the corresponding conservation laws in the following way:

I = ηL +
(

Xi − ẋiη
) ∂L

∂ẋi
− F. (8)
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We use the Lagrangian given in Equation (4) in the equation defining the NS, that is Equation (5),
to get the following set of 19 equations.

F,u = η,φ = η,θ = η,r = η,t = 0, (9)

2X0
,t = η,u, (10)

2λ′X0 + 2λX1
,r = λη,u, (11)

2v′X0 + 2vX2
,θ = vη,u, (12)

X0
,r − λ2X1

,t = 0, (13)

X0
,θ − v2X2

,t = 0, (14)

X0
,φ − v2 sin2 θX3

,t = 0, (15)

λ2X1
,θ + v2X2

,r = 0, (16)

λ2X1
,φ + v2 sin2 θX3

,r = 0, (17)

X2
,φ + sin2 θX3

,θ = 0, (18)

2v′X0 + 2v cot θX2 + 2vX3
,φ = vη,u, (19)

2X0
,u = F,t, (20)

2λ2X1
,u = −F,r, (21)

2v2X2
,u = −F,θ , (22)

2v2 sin2 θX3
,u = −F,φ. (23)

The solution of the above system of equations would give the values of the components of
the vector field generating NS and the metric functions λ and v. Consequently, the corresponding
Kantowski–Sachs metrics may represent the exact solutions of EFEs. We omit writing the basic
calculations and present the list of metrics, their NS, Lie algebras, and the corresponding conservation
laws of all symmetries in the forthcoming sections. The bounds for the positive energy condition and
the singularity of the Ricci scalar are also discussed for all the obtained metrics.

3. Five Noether Symmetries

The minimal set of NS admitted by the Lagrangian of the Kantowski–Sachs metric is:

X0 = ∂u, X1 = ∂r, X2 = ∂φ,

X3 = sin φ∂θ + cot θ cos φ∂φ,

X4 = − cos φ∂θ + cot θ sin φ∂φ. (24)

Out of these five NS, four are the basic KVs of the Kantowski–Sachs metric and X0 is the symmetry
corresponding to the Lagrangian. Here, X0 represents the translation of geodesics parameter u and X1

is the translation of spatial coordinate r. The generators X2, X3 and X4 form a Lie subalgebra for the
rotation group SO(3). The values of the Kantowski–Sachs metric functions for which the corresponding
Lagrangian admit the above minimal NS are given in the following Table 1:

Table 1. Exact form of metrics admitting five Noether symmetries (NS).

No. λ(t) v(t)

3a λ′ �= 0 v′′ �= 0 and v �= cosh t
3b λ �= sinh t v = cosh t
3c (λλ′)′′ �= 0 v = const. = ξ

3d λ =
√

at2 + 2bt + c; a �= 0, v = const. = ξ

3e λ =
√

2bt + c v = const. = ξ

The corresponding Lie algebra for generators given in Equation (24) is:
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[X3, X2] = X4, [X2, X4] = X3, [X4, X3] = X2, [Xi, Xj] = 0, otherwise.

Using Equation (8), the conserved forms of these NS become:

I0 = −ṫ2 + λ2(t) ṙ2 + v2(t) θ̇2 + v2(t) sin2 θ φ̇2,

I1 = −2λ2(t) ṙ2,

I2 = −2v2(t) sin2 θ φ̇,

I3 = −2v2(t)
(
sin φ θ̇ + cos θ cos φ sin θ φ̇

)
,

I4 = −∂I3

∂φ
. (25)

The energy density and the Ricci scalar for Models 3a and 3b are obtained as T00 = 1+v′2
v2 + 2λ′v′

vλ

and R = − 2
v2λ

(
2vλv′′ + v2λ′′ + 2vv′λ′ + λv′2 + λ

)
. One can observe that the positive energy condition

is satisfied if λ′
λ and v′

v have the same signs. Moreover, the Ricci scalar remains non-singular for t → 0.
For the remaining three models, the energy density and the Ricci scalar are given by:

T00 =
1
ξ2 , R = −2

(
λ′′

λ
+

1
ξ2

)
, (26)

such that the energy remains positive for any arbitrary non-zero ξ and the Ricci scalar is regular for
any function λ.

4. Six Noether Symmetries

The Lagrangian of the following Kantowski–Sachs metric admits six NS:

ds2 = dt2 − γ2dr2 − v2(t)
(

dθ2 + sin2 θdφ2
)

, (27)

where γ is a non-zero constant, v′′ �= 0 and v �= cosh t. Out of these six NS, five are the same as given
in Equation (24) and one extra Noether symmetry is given by:

X5 =
u
γ2 ∂r, F = −2r.

The conserved form for this symmetry is I5 = −2(uṙ − r). The corresponding non-zero
commutator is [X0, X5] =

1
γ2 X1.

The metric (27) is non-conformally flat, and its energy density is obtained as T00 = 1+v′2
v2 , which is

always positive. The Ricci scalar is given by R = − 2
v2

(
1 + v′2 + 2vv′′

)
, which has no singularity at

the origin.

5. Seven Noether Symmetries

There are seven metrics whose Lagrangian admit a seven-dimensional algebra of NS. Table 2
contains all these metrics along with the two extra NS, other than the minimal NS given in (24), their Lie
algebra, and the corresponding conserved quantities.
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The metric 7(i) is non-conformally flat, whose NS other than the minimal set of NS are KVs. Here,
the generators X1, X5 and X6 form a Lie algebra for the rotation group SO(3).

Similarly, the metric 7(ii) is non-conformally flat, and it admits seven NS, five of which are the
same as given in (24), and the remaining two are KVs, represented by X5 and X6.

The energy density and the Ricci scalar for the models 7(i) and 7(ii) are obtained as T00 = 1
γ2 and

R = 2
(

β2 − 1
γ2

)
. The positive energy condition clearly holds, and the spacetimes remain regular at

the origin, as the Ricci scalar is constant.
The non-conformally-flat metric 7(iii) admits five NS as given in (24) along with two extra KVs,

which are represented by X5 and X6.
The Weyl tensor for the metric 7(iv) has non-zero components, and hence, it is non-conformally

flat. This metric possesses seven NS, out of which five are the same as given in (24) and the extra two
are KVs.

The metric 7(v) is non-conformally flat, which admits two extra NS X5 and X6, which are KVs.
The energy density T00 and the Ricci scalar R for the models 7(iii), 7(iv), and 7(v) are:

T00 =
1

γ2 , R = −2
(

β2 +
1

γ2

)
, (28)

such that the positive energy condition is satisfied and the Ricci scalar is non-singular at the origin.
There exist two extra NS other than the minimal set of five NS for the non-conformally-flat metric

7(vi). The Noether symmetry X6 corresponds to a homothetic vector c1t+c2
2c1

∂t, with the homothetic
constant ψ = 1

2 . For this model, the energy density and the Ricci scalar become:

T00 =
1 + 3c2

1
(c1t + c2)2 , R = − 2(3c2

1 + 1)
(c1t + c2)2 . (29)

For any non-zero values of c1 and c2, the energy density is positive and the Ricci scalar remains
non-singular at t → 0.

Finally, the metric 7(vii) is non-conformally flat, which admits the minimal set of five NS along
with two extra NS X5 and X6. Here, X6 is a KV, and X5 corresponds to a homothetic vector c1t+c2

2c1
∂t,

with the homothetic constant ψ = 1
2 . The energy density and Ricci scalar for this metric are given as:

T00 =
α + 3c2

1α − 4c2
1β

α(c1t + c2)2 , R = −2(3c2
1α2 − 6c2

1αβ + 4c2
1β2 + α2)

α2(c1t + c2)2 . (30)

For c2 �= 0, the Ricci scalar has no singularity when t → 0. The energy density may vary for
different values of the constants involved in T00. The following two graphs in Figure 1 show positive
and negative energy density for some particular choices of the values of these constants.

As far as the case in which the positive energy condition is not met, it could represent an
accelerated phase of expansion that may possibly be attributed to the dark energy.
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(a) α = β, c1 = 0.5 and c2 = 1 (b) c1 = α = c2 = 1 and β = 2

Figure 1. Graphs of T00.

6. Eight Noether Symmetries

The following is only one Kantowski–Sachs metric whose Lagrangian admits eight NS:

ds2 = dt2 − γ2dr2 − (αt + β)2
(

dθ2 + sin2 θdφ2
)

, (31)

where α �= 0 and γ �= 0. The Weyl tensor for the above metric has non-vanishing components,
and it is non-conformally flat. The set of eight NS for this metric contains the set of minimal five NS,
given in (24), and the remaining three symmetries are:

X5 =
u2

2
∂u +

u(αt + β)

2α
∂t +

ur
2

∂r; F =
t2

2
+

βt
α

− r2γ2

2
,

X6 =
u
γ2 ∂r; F = −2r,

X7 = u∂u +
αt + β

2α
∂t +

r
2

∂r. (32)

Out of the above three NS, X7 corresponds to a homothetic vector, given by αt+β
2α ∂t +

r
2 ∂r.

The conserved form for these symmetries and Lie algebra are listed below:

I5 =
u2

2

(
−ṫ2 + γ2ṙ2 + (αt + β)2(θ̇2 + sin2 θφ̇2)

)
+

u(αt + β)ṫ
α

− urγ2ṙ − t2

2
− βt

α
+

r2γ2

2
,

I6 = −2uṙ + 2r,

I7 = u
(
−ṫ2 + γ2ṙ2 + (αt + β)2(θ̇2 + sin2 θφ̇2)

)
+

(αt + β)ṫ
α

− rγ2ṙ. (33)

[X0, X5] = X7, [X0, X7] = X0 , [X0, X6] =
1

γ2 X1, [X1, X5] =
γ2

2 X6,

[X1, X7] =
1
2 X1, [X7, X5] = X7, [X7, X6] =

1
2 X6.

The energy density and the Ricci scalar for Model (31) are respectively given by T00 = 1+α2

(αt+β)2 and

R = − 2
(αt+β)2 . Here, the positive energy condition holds, and for t → 0, the scalar R remains regular

if β �= 0.
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7. Nine Noether Symmetries

Here, we present some Kantowski–Sachs metrics, whose Lagrangian admits nine NS.

(1). ds2 = dt2 − β2dr2 − cosh2 t
(

dθ2 + sin2 θdφ2
)

, (34)

where β �= 0. The Weyl tensor for the above metric vanishes, and hence, it is conformally flat. The set
of NS for this metric contains the minimal set of five symmetries given in (24), and four extra NS are
admitted, which are listed below:

X5 = u∂r; F = −2r,

X6 = sin θ sin φ∂t + tanh t cos θ sin φ∂θ + csc θ tanh t cos φ∂φ,

X7 = − sin θ cos φ∂t − tanh t cos θ cos φ∂θ + csc θ tanh t sin φ∂φ,

X8 = − cos θ∂t + tanh t sin θ∂θ . (35)

Here, X6, X7, and X8 are KVs, while X5 is a non-trivial Noether symmetry. The Lie algebra in this
case gives:

[X0, X5] = X1, [X6, X2] = [X4, X8] = X7, [X2, X7] = [X3, X8] = X6,
[X6, X3] = [X7, X4] = X8, [X6, X7] = X2, [X6, X8] = X3, [X7, X8] = X4,

and the conservation laws are:

I5 = −2(uβ2ṙ − r),

I6 = 2 sin θ sin φṫ − 2 sinh t cosh t(cos θ sin φθ̇ + sin θ cos φφ̇),

I7 = −2 sin θ cos φṫ + 2 sinh t cosh t(cos θ cos φθ̇ − sin θ sin φφ̇),

I8 = −2 cos θ ṫ − 2 sinh t cosh t sin θθ̇. (36)

The energy density and Ricci scalar for the metric (34) are respectively given by T00 = 1 and
R = −6, such that the positive energy condition is satisfied and R is regular at the origin.

(2). ds2 = dt2 − α2dr2 − β2(dθ2 + sin2 θdφ2), (37)

where α �= 0 and β �= 0. For the above metric, the Weyl tensor has non-zero components. The extra
four NS other than the minimal set of NS, given in (24), for this metric are:

X5 = ∂t,

X6 = −u∂t; F = −2t,

X7 =
u
α2 ∂r; F = −2r,

X8 = r∂t +
t

α2 ∂r. (38)

Here, X5 and X8 are KVs, while X6 and X7 are non-trivial NS. The Lie algebra and the conserved
quantities are given as:

[X6, X0] = [X8, X1] = X5, [X0, X7] = [X5, X8] =
1
α2 X1,

[X8, X6] = X7, [X8, X7] =
1
α2 X6.

I5 = 2ṫ, I6 = −2uṫ + 2t, I7 = −2uṙ + 2r,

I8 = 2rṫ − 2tṙ. (39)

The corresponding T00 and R for the above metric are given by T00 = 1
β2 and R = − 2

β2 . Clearly,
the energy density is positive for any value of β, and the Ricci scalar is regular at the origin.
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(3). ds2 = dt2 − (αt + β)2dr2 − ξ2(dθ2 + sin2 θdφ2), (40)

where ξ �= 0. The above metric is non-conformally flat, and it admits the following four NS along with
five minimal symmetries, given in Equation (24).

X5 = −u cosh(αr)∂t +
u

αt + β
sinh(αr)∂r; F = −2β

α
cosh(αr),

X6 = −u sinh(αr)∂t +
u

αt + β
cosh(αr)∂r; F = −2β

α
sinh(αr),

X7 = cosh(αr)∂t −
sinh(αr)

αt + β
∂r,

X8 = sinh(αr)∂t −
cosh(αr)

αt + β
∂r. (41)

From the above, one can see that X5 and X6 are non-trivial NS, while X7 and X8 are KVs. In this
case, the Lie algebra becomes:

[X5, X0] = X7, [X6, X0] = X8, [X1, X5] = αX6,
[X1, X6] = αX5, [X1, X7] = αX8, [X1, X8] = αX7.

The conserved forms of the symmetries are given as follows:

I5 = −2u (cosh(αr)ṫ + (αt + β) sinh(αr)ṙ) +
2β

α
cosh(αr),

I6 =
1
α

∂I5

∂r
,

I7 = 2 (cosh(αr)ṫ + (αt + β) sinh(αr)ṙ) ,

I8 =
1
α

∂I7

∂r
. (42)

For the above model, we have T00 = 1
ξ2 and R = − 2

ξ2 such that the energy density is positive and
the Ricci scalar has no singularity at the origin.

8. Eleven Noether Symmetries

For λ = sinh t and v = cosh t, we have the following Kantowski–Sachs metric, whose Lagrangian
admits eleven NS:

ds2 = dt2 − sinh2 t dr2 − cosh2 t(dθ2 + sin2 θdφ2). (43)

This metric has a zero Weyl tensor, and hence, it is conformally flat. The energy density and
the Ricci scalar for the above model are obtained as T00 = 3 and R = −12. Here, the positive energy
condition is clearly satisfied, and R is non-singular at the origin. The extra six NS (KVs) for the above
metric are as follows:

X5 = sin θ sin φ(sinh r ∂t − coth t cosh r ∂r) + tanh t sinh r(cos θ sin φ ∂θ + csc θ cos φ ∂φ),

X6 = same as X5 with sinh r ↔ cosh r

X7 = − sin θ cos φ(sinh r∂t − coth t cosh r∂r)− tanh t sinh r(cos θ cos φ∂θ − csc θ sin φ∂φ),

X8 = same as X7 with sinh r ↔ cosh r

X9 = − cos θ(sinh r∂t − coth t cosh r ∂r) + tanh t sinh r sin θ∂θ ,

X10 = same as X9 with sinh r ↔ cosh r (44)

One may easily simplify Equation (8) to find the expressions for the corresponding conservation
laws for the above generators. The Lie algebra in this case is obtained as:
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[X1, X5] = X6, [X1, X6] = X5, [X1, X7] = X8, [X1, X8] = X7, [X1, X9] = X10,
[X1, X10] = X9, [X5, X2] = X7, [X6, X2] = X8, [X2, X7] = X5, [X2, X8] = X6,
[X5, X3] = X9, [X6, X3] = X10, [X3, X9] = X5, [X3, X10] = X6, [X7, X4] = X9,
[X8, X4] = X10, [X4, X9] = X7, [X4, X10] = X8, [X5, X6] = X1, [X7, X5] = X2,
[X9, X5] = X3, [X6, X8] = X2, [X6, X10] = X3, [X7, X8] = X1, [X9, X7] = X4,
[X8, X10] = X4, [X9, X10] = X1,

9. Summary and Discussion

In this paper, we have classified the Lagrangian of the Kantowski–Sachs metric via its NS. The set
of determining equations is obtained and then integrated in several cases. It is observed that the
Kantowski–Sachs metric admits a 5-, 6-, 7-, 8-, 9-, or 11-dimensional Lie algebra of NS for different
values of the metric functions. The number of non-trivial NS for this metric is shown to be one, two,
or three, while the number of KVs is found to be 4, 5, 6, 7, or 10.

We have found five different metrics, each admitting the minimal set of five NS, out of which
four are the minimum KVs of the Kantowski–Sachs metric and one is a non-trivial Noether symmetry,
which is ∂u. The gauge function is trivial here.

There is only one metric (27) that admits six NS. This set of six NS contains the minimal set of five
NS along with one extra Noether symmetry with the gauge function F = −2r.

In the case of seven-dimensional Noether algebra, we have obtained seven different metrics.
For the first five metrics, 7(i)–7(v), we have six KVs and one Noether symmetry ∂u, with a trivial gauge
function. For metric 7(vi), we have the minimal set of NS along with two extra NS, given by X5 and X6.
The gauge function corresponding to X5 is found to be F = t(c1t+2c2)

2c1
. It can bee seen that the Noether

symmetry X6 for this metric corresponds to an HV c1t+c2
2c1

∂t, with homothetic constant ψ = 1
2 . Similar

results are obtained for the metric 7(vii). Here, the number of KVs is five.
There exists only one metric (31) possessing eight NS, of which five are the minimal NS for the

Kantowski–Sachs metric, and three extra NS are obtained, which are presented in (32). One of these
three NS, denoted as X7, corresponds to an HV αt+β

2α ∂t +
r
2 ∂r. The number of KVs for this metric is

only four.
In the case of the nine-dimensional Lie algebra of NS, we have found three metrics (34), (37),

and (40). For the metric (34), we have the minimal set of five NS along with four extra symmetries,
of which three are KVs and one is a non-trivial Noether symmetry u∂r with the gauge function F = −2r.
The number of KVs in this case is seven. For the remaining two metrics (37) and (40), we have six KVs
along with three non-trivial NS.

Finally, we have only one metric (43) where the dimension of the algebra of NS is 11. Out of eleven
NS, ten are the KVs, and there is only one non-trivial Noether symmetry, given by ∂u.

For almost all the obtained metrics, it is observed that the positive energy condition is satisfied,
and the corresponding Ricci scalar has no singularity at the origin.
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Abstract: The F(R, G) theory of gravity, where R is the Ricci scalar and G is the Gauss-Bonnet
invariant, is studied in the context of existence the Noether symmetries. The Noether symmetries of the
point-like Lagrangian of F(R, G) gravity for the spatially flat Friedmann-Lemaitre-Robertson-Walker
cosmological model is investigated. With the help of several explicit forms of the F(R, G) function
it is shown how the construction of a cosmological solution is carried out via the classical Noether
symmetry approach that includes a functional boundary term. After choosing the form of the F(R, G)

function such as the case (i) : F(R, G) = f0Rn + g0Gm and the case (ii) : F(R, G) = f0RnGm, where n
and m are real numbers, we explicitly compute the Noether symmetries in the vacuum and the
non-vacuum cases if symmetries exist. The first integrals for the obtained Noether symmetries allow
to find out exact solutions for the cosmological scale factor in the cases (i) and (ii). We find several new
specific cosmological scale factors in the presence of the first integrals. It is shown that the existence of
the Noether symmetries with a functional boundary term is a criterion to select some suitable forms
of F(R, G). In the non-vacuum case, we also obtain some extra Noether symmetries admitting the
equation of state parameters w ≡ p/ρ such as w = −1,−2/3, 0, 1 etc.

Keywords: Noether symmetry approach; FLRW spacetime; action integral; variational principle;
first integral; modified theories of gravity; Gauss-Bonnet cosmology

1. Introduction

Recent observational data indicate that the current expansion of the universe is accelerating [1–8],
not only expanding. Then this acceleration is explained by the existence of a dark energy, which
could result from a cosmological constant Λ as the simplest candidate with the equation of state
parameter wΛ = −1, or may also be explained in the context of modified gravity models. The nature
and origin of the dark energy has not been persuasively explained yet. In addition to the cosmological
constant, there are different kinds of candidates for dark energy such as quintessence or phantom in
the literature, and it is not even clear what type of candidates to the dark energy occur in the present
universe. Therefore, there have been a number of attempts [9–15] to modify gravity to explain the
origin of dark energy.

A possible modification of the standard general relativistic gravitational Lagrangian includes
a wider number of curvature invariants R, RijRij and Rijkl Rijkl among others. In the so-called
Gauss-Bonnet (GB) gravity theories the gravitational Lagrangian consists of a F(R, G) function,
where the GB invariant G is defined as G = R2 − 4RijRij + Rijkl Rijkl . Considering the GB invariant G
in dynamical equations one can recover all the curvature budget coming from the Riemann tensor.
Due to of the fact that the GB invariant comes out from defining quantum fields in curved spacetimes,
it should be important to take it in the context of the extended theories of gravity. It is shown in
[13] that the quintessence paradigm can be recovered in the framework of F(R, G) theories of gravity.
The F(R, G) gravity theories are generalizations f (R) and f (G) theory of gravities which are offered
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by higher order gravities, and use combinations of higher order curvature invariants constructed from
the Ricci and Gauss-Bonnet scalars. In [14], some classes of F(R, G) gravity have been studied with
respect to the successful realization of the dark energy and of the inflationary era. We refer to readers
the latest review [15] on developments of modified gravity in cosmology, emphasizing on inflation,
bouncing cosmology and late-time acceleration era.

If a Lagrangian L for a given dynamical system admits any symmetry, this property should
strongly be related with Noether symmetries that describe physical features of differential equations
possessing a Lagrangian L in terms of first integrals admitted by them [16,17]. This can actually be
seen in two ways. Firstly, one can consider a strict Noether symmetry approach [18–21] which yields
£XL = 0, where £X is the Lie derivative operator along X. On the other side, one could use the classical
Noether symmetry approach with a functional term [22–25] which is a generalization of the strict Noether
symmetry approach in the sense that the Noether symmetry equation includes a divergence of a
functional boundary term. The classical Noether symmetry approach was originally established by
Emmy Noether [26] and it gives a connection between a Noether symmetry and the existence of a
first integral expressed in a simple form. Not only the classical Noether symmetries but also the strict
ones are useful in a variety of problems arising from physics and applied mathematics. Both types
of symmetries lead to the first integrals. Which type of symmetry works, i.e., gives any conserved
quantity, in the first instance this is what is important. The classical Noether symmetries are directly
related with the conserved quantities (first integrals) or conservation laws [17]. The strict Noether
symmetry approach represents how Noether’s theorem and cyclic variables are related. It is known
that the conserved quantities are also related to the existence of cyclic variables into the dynamics
by the strict Noether symmetry. However, it is usually required a clever choice of cyclic variables
because of that the equations for the change of coordinates have not a unique solution which is also
not well defined on the whole space, and thus it is not unique to find those of the cyclic variables
(see References [27] for details). Furthermore, we refer to the interested readers the recent review on
symmetries in differential equations [28].

The cosmological principle assume that the universe is homogeneous and isotropic
in large scale structure and the geometrical model that satisfies these properties is
Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime. In [19], it has been discussed the strict
Noether symmetry approach for spatially flat FLRW spacetime in GB cosmology, where it was pointed
out that the existence of Noether symmetries is capable of selecting suitable F(R, G) models to integrate
dynamics by the identification of suitable cyclic variables. After this work, the classical Noether
symmetries of flat FLRW spacetime have been computed by [25], where the authors were used Noether
symmetries as a geometric criterion to select the form of F(R, G) function. Due to the richness of the
classical Noether symmetry approach, we deduced throughout this study that it is better to use the
classical Noether symmetry approach to find Noether symmetries in F(R, G) gravity as in [25], rather
that the approach used in [19]. If there exists any Noether symmetry with a selection of physically
interesting forms of F(R, G) function, then this allows us to write out the constants of motion which
reduce dynamics. Furthermore, the reduced dynamics results exactly solvable cosmological model by
a straightforward way. In fact, choosing an appropriate F(R, G) Lagrangian, it is possible to find out
conserved Noether currents which will be useful to solve dynamics. This approach is very powerful
due to the fact that it allows us to find a closed system of equations, where we do not need to impose
the particular form of F(R, G) which is selected by the classical Noether symmetry itself. To this aim,
it is possible to consider flat FLRW background metric and demonstrate that it is possible to find exact
solutions via the Noether Symmetry Approach. In this study we again underline the generality of
Noether’s Theorem in its original form by considering the standard cosmological model.

This paper is organized as follows. In the following section, we will present an analysis of
the classical Noether symmetry approach including a boundary function for the point-like F(R, G)

Lagrangian according to the spatially flat FLRW background. In Section 3, we will apply the classical
Noether theorem to the F(R, G) Lagrangian obtained in Section 2 for the flat FLRW model. In Section 4,
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we classify the Noether symmetries with respect to some specific forms of F(R, G), and search the
cosmological solutions of F(R, G) gravity by considering both the vacuum and the non-vacuum cases.
Finally, in Section 5, we will provide a summary of the main results obtained in the paper.

2. F(R, G) Gravity

In this section we briefly present the general formalism of F(R, G) gravity. The action for F(R, G)

gravity is given by

S =
∫

d4x
√
−g

[
1

2κ2 F(R, G) + Lm

]
, (1)

where κ2 = 8πGN , GN is the Newton constant and Lm represents the matter Lagrangian. Variation of
the action (1) with respect to the metric tensor gij we obtain the modified field equations

FRGij = κ2Tm
ij +

1
2

gij(F − RFR) +∇i∇jFR − gij�FR

+ FG

(
− 2RRij + 4RikRk

j − 2R klm
i Rjklm + 4gkl gmnRikjmRln

)
+ 2

(
∇i∇jFG

)
R − 2gij (�FG) R + 4 (�FG) Rij − 4 (∇k∇iFG) R k

j − 4
(
∇k∇jFG

)
R k

i

+ 4gij (∇k∇l FG) Rkl − 4 (∇l∇nFG) gkl gmnRikjm,

(2)

where we have defined the following expressions

FR ≡ ∂F(R, G)

∂R
, FG ≡ ∂F(R, G)

∂G
. (3)

In the above field equations, ∇i is the covariant derivative operator associate with gij, � ≡ gij∇i∇j is
the covariant d’Alembertian operator, and Tm

ij describes the ordinary matter. It is clear from the field
Equation (2) that the form of F(R, G) determine the dynamical behaviour of the theory.

In this study, we consider the spatially flat FLRW metric

ds2 = −dt2 + a(t)2
(

dx2 + dy2 + dz2
)

(4)

where a(t) is the scale factor of the Universe. Then, the Hubble parameter H is usually defined by
H ≡ ȧ/a, and R and G become

R = 6
(

ä
a
+

ȧ2

a2

)
= 6(Ḣ + 2H2), G = 24

ȧ2 ä
a3 = 24H2

(
Ḣ + H2

)
, (5)

where the overdot denotes a derivative with respect to the time coordinate, t. For a perfect fluid matter
with comoving observer ui = δ0

i , the energy momentum tensor is Tij = (ρ + p)uiuj + pgij, where ρ is
the energy density and p is the isotropic pressure measured by the observer ui. Let us assume that the
matter fluid will be given under the form of a perfect fluid with the equation of state p = wρ satisfying
the standard continuity equation ρ̇ + 3(1 + w)ρȧ/a = 0 which yields a solution ρ = ρm0a−3(1+w),
where ρm0 is the energy density of the present universe, and w is a constant parameter. Thus, in the
flat FLRW background with a perfect fluid matter, the field Equation (2) for the F(R, G) gravity are
given by

3FR
ȧ2

a2 = κ2ρ +
1
2
(RFR + GFG − F)− 3ḞR

ȧ
a
− 12ḞG

ȧ3

a3 , (6)

FR

(
2ä
a
+

ȧ2

a2

)
= −κ2 p +

1
2
(RFR + GFG − F)− 2ḞR

ȧ
a
− F̈R − 4

ȧ
a

(
ȧ
a

F̈G +
2ä
a

ḞG

)
. (7)
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In terms of the Hubble parameter H, the gravitational field Equations (6) and (7) for F(R, G)

gravity have the following form

H2 =
κ2

3
ρe f f , 2Ḣ + 3H2 = −κ2 pe f f , (8)

where ρe f f and pe f f are respectively the effective energy density and pressure of the universe, which
are defined as

ρe f f ≡
1

FR

{
ρ +

1
2κ2

[
RFR + GFG − F − 6HḞR − 24H3 ḞG

]}
, (9)

pe f f ≡
1

FR

{
p +

1
2κ2

[
F − RFR − GFG + 4HḞR + 2F̈R + 16H(Ḣ + H2)ḞG + 8H2 F̈G

]}
. (10)

Here we observe from (8) that ρe f f + pe f f = − 2
κ2 Ḣ.

3. Noether Symmetry Approach

Recently the strict Noether symmetries of GB cosmology for the flat FLRW spacetime have been
calculated, and choosing some functional form of the F(R, G), the Noether symmetries related to these
functional forms have been achieved [19]. Afterwards, the classical Noether symmetries have also
been calculated by [25]. Both of these studies were performed in the vacuum case. In this work, after
reviewing the vacuum case, we aim to generalize these studies to the non-vacuum case using the
classical Noether symmetry approach described below.

The Noether symmetry generator for any point-like Lagrangian L is

X = ξ(t, a, R, G)
∂

∂t
+ η1(t, a, R, G)

∂

∂a
+ η2(t, a, R, G)

∂

∂R
+ η3(t, a, R, G)

∂

∂G
, (11)

if there exists a function K(t, a, R, G) and the Noether symmetry condition

X[1]L+ L(Dtξ) = DtK (12)

is satisfied, where Dt =
∂
∂t + q̇i ∂

∂qi is the total derivative operator and X[1] is the first prolongation of
Noether symmetry generator X, i.e.

X[1] = X + η̇i
(

t, qi, q̇i
) ∂

∂qi (13)

where η̇i(t, qk, q̇k) = Dtη
i − q̇iDtξ, qi = {a, R, G} are the generalized coordinates in the

three-dimensional configuration space Q ≡ {qi, i = 1, 2, 3} of the Lagrangian, whose tangent space is
TQ ≡ {qi, q̇i}. The energy functional EL or the Hamiltonian of the Lagrangian L is defined by

EL = q̇i ∂L
∂q̇i −L. (14)

Using above definition of energy functional, the corresponding Noether flow I, which is a constant
called the first integral of motion, has the expression

I = −ξEL + ηi ∂L
∂q̇i − K, (15)

which is a conserved quantity. The Noether flow (15) satisfies the conservation relation Dt I = 0.
It is obviously seen from a general point of view that R and G are functions of a, ȧ and ä, which

yields non-canonical dynamics. The Lagrange multipliers plays a main role so as to get a canonical
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point-like Lagrangian [29]. Using this key future in [19], it has been accomplished that the point-like
Lagrangian for F(R, G) gravity becomes canonical with suitable Lagrange multipliers, where both R
and G behave like effective scalar fields. We left the details for finding a canonical point-like Lagrangian
by Lagrange multipliers method to the Reference [19]. For the spatially flat FLRW spacetime (4), the
Lagrangian for the action of F(R, G) gravity (1) has the form

L = −6FRaȧ2 − 6a2 ȧḞR − 8ḞGȧ3 + a3(F − RFR − GFG)− 2κ2ρm0a−3w, (16)

where ḞR = FRRṘ + FRGĠ and ḞG = FGRṘ + FGGĠ. By variation of the above Lagrangian with respect
to the configuration space variables a, R and G, we find respectively that

FR

(
2ä
a
+

ȧ2

a2

)
+

2ȧ
a

ḞR + F̈R − 4ȧ
a

(
2ä
a

ḞG +
ȧ
a

F̈G

)
+

1
2
(RFR + GFG − F) = κ2 p, (17)

6FRR

(
ä
a
+

ȧ2

a2 − R
6

)
− FGR

(
24

ȧ2 ä
a3 − G

)
= 0, (18)

6FGR

(
ä
a
+

ȧ2

a2 − R
6

)
− FGG

(
24

ȧ2 ä
a3 − G

)
= 0, (19)

in which the Equation (17) is equivalent to the field Equation (7). Then we note that R and G coincides
with the definitions of the Ricci scalar and Gauss-Bonnet invariant given by (5), respectively. Now, we
calculate the energy functional EL for the Lagrangian density (16) which has the form

EL = 2a3
[

3FR
ȧ2

a2 + 3
ȧ
a

ḞR + 12
ȧ3

a3 ḞG − 1
2
(RFR + GFG − F)− κ2ρ

]
. (20)

It is explicitly seen that the energy function EL vanishes due to the (0, 0)-field Equation (6).
Let us consider the Noether symmetry conditions (12) for the point-like Lagrangian (16) to seek

the dependent variables ξ, η1, η2, η3 which will be solved in order that the Lagrangian (16) would admit
any Noether symmetry (11). For the flat FLRW spacetime (4), the Noether symmetry conditions (12)
yield 27 partial differential equations as the following

FGRξ,a = 0, FGGξ,a = 0, FGRξ,R = 0, FRRξ,R = 0, FGRξ,G = 0, FGGξ,G = 0,

FRRη1
,R = 0, FGRη1

,R = 0, FGRη1
,G = 0, FGGη1

,G = 0, FGGξ,R + FGRξ,G = 0,

FGRξ,R + FRRξ,G = 0, FGRη1
,R + FRRη1

,G = 0, FGGη1
,R + FGRη1

,G = 0, FGRη2
,a + FGGη3

,a = 0,

6a
(

2FRη1
,t + aFRRη2

,t + aFGRη3
,t

)
+ Vξ,a + K,a = 0, 6a2FRRη1

,t + Vξ,R + K,R = 0,

6a2FGRη1
,t + Vξ,G + K,G = 0, 4

(
FGRη2

,t + FGGη3
,t

)
− 3aFRξ,a = 0,

4FGRη1
,t − a (FRξ,R + aFRRξ,a) = 0, 4FGGη1

,t − a (FRξ,G + aFGRξ,a) = 0,

FGRRη2 + FGGRη3 + FGGη3
,R + FGR

(
3η1

,a + η2
,R − 3ξ,t

)
= 0, (21)

FGGRη2 + FGGGη3 + FGRη2
,G + FGG

(
3η1

,a + η3
,G − 3ξ,t

)
= 0,

FR

(
η1

a
+ 2η1

,a − ξ,t

)
+ FRRη2 + FGRη3 + a

(
FRRη2

,a + FGRη3
,a

)
= 0,

FRR

(
2

η1

a
+ η1

,a + η2
,R − ξ,t

)
+

2
a

FRη1
,R + FRRRη2 + FRRGη3 + FGRη3

,R = 0,

FGR

(
2

η1

a
+ η1

,a + η3
,G − ξ,t

)
+

2
a

FRη1
,G + FRRGη2 + FGGRη3 + FRRη2

,G = 0,

V,aη1 + V,Rη2 + V,Gη3 + Vξ,t + K,t = 0,
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where V is defined as V(a, R, G) = a3(RFR + GFG − F) + 2κ2ρm0a−3w, which can be considered as
an effective potential for the F(R, G) gravity. Here , R and G act as two different scalar fields whose
regimes can lead different phases of the cosmological evolution.

We note here that η1 = 0, η2 = 0, η3 = 0, K = const. and ξ = const. are trivial solutions for the
Noether symmetry Equation (21). This result implies that any form of F(R, G) function admits the
trivial Noether symmetry X1 = ∂/∂t, i.e., energy conservation, whose Noether first integral or the
Hamiltonian of the system vanishes, I = −EL = 0. In the following section, we consider the form
of F(R, G) to find the corresponding Noether symmetries and solutions to the corresponding first
integrals for each of the vacuum an the non-vacuum cases.

4. Noether Symmetries and Cosmological Solutions

Using the symmetry condition (12) to the point-like Lagrangian (16), which will fix the form of
F(R, G), several different cases were classified in [25] according to whether the derivative FRG vanishes
or not. If FRG = 0, it means F(R, G) = f (R) + g(G), which is considered as the case (i) below, taking
f (R) = f0Rn and g(G) = g0Gm. Otherwise, if FRG �= 0, we will take the form of F(R, G) function as
the case (ii), i.e., F(R, G) = f0RnGm, where n and m are real numbers.

4.1. Vacuum Case

In this case, we assume the vacuum where Lm = 0, i.e., ρm0 = 0.
Case (i): F(R, G) = f (R) + g(G). For this case, we choose the functional forms f (R) = f0Rn and

g(G) = g0Gm. Then we examine the following subcases where the powers n and m are fixed to some
values, which are compatible with the Noether symmetries.

• n = m = 1: Then, the Noether symmetry Equation (21) imply that

ξ = c1 + c2t + c3
t2

2
, η1 =

a
3
(c2 + c3t) +

c4t + c5√
a

, η2, η3 arbitrary, (22)

K = −4
3

f0c3a3 − 8 f0c4a
3
2 . (23)

This solution to Equation (21) was given in [25] by (55) together with non-trivial function (23).
Thus, the Noether symmetry generators from the solution (22) together with (23) take the
following forms:

X1 =
∂

∂t
, X2 =

1√
a

∂

∂a
, X3 = 3t

∂

∂t
+ a

∂

∂a
with K = 0, (24)

X4 =
3t2

2
∂

∂t
+ ta

∂

∂a
with K = −4 f0a3; X5 =

t√
a

∂

∂a
with K = −8 f0a

3
2 , (25)

which give the non-vanishing commutators

[X1, X3] = 3X1, [X1, X4] = X3, [X1, X5] = X2, (26)

[X2, X3] =
3
2

X2, [X2, X4] = X5, [X3, X4] = 3X4, [X3, X5] =
3
2

X5. (27)

The first integrals of the above vector fields are the Hamiltonian, I1 = −EL = 0, and the quantities

I2 = −12 f0
√

aȧ, I3 = −12a2 ȧ, I4 = −4 f0a2 (3tȧ − a) , I5 = −4 f0
√

a (3tȧ − 2a) . (28)

Here we note that it is only found one Noether symmetry in Reference [19] which is X2 given
in (24), and the remaining ones are not appeared in this reference. It follows from EL = 0 that
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ȧ = 0, that is, a(t) = a0 = constant, which is the Minkowski spacetime recovered in vacuum and
so I2 = I3 = 0, I4 = 4 f0a3

0 and I5 = 8 f0a3/2
0 by (28).

• n arbitrary (with n �= 0, 1, 3
2 , 7

8 ), m = 1: For this case, it follows from (21) that there are two
Noether symmetries,

X1 =
∂

∂t
, X2 = 3t

∂

∂t
+ (2n − 1)a

∂

∂a
− 6R

∂

∂R
, (29)

which gives the non-vanishing Lie algebra [X1, X2] = 3X1. The first integrals are I1 = −EL = 0,
that means

ȧ2

a2 + (n − 1)
ȧṘ
aR

− (n − 1)
6n

R = 0, (30)

by using (20), and

I2 = 6 f0na3Rn−1
[

2(n − 2)
ȧ
a
− (n − 1)(2n − 1)

Ṙ
R

]
, (31)

for X1 and X2, respectively. Then, solving the first integral (31) in terms of a, one gets

a(t) = R
(n−1)(2n−1)

2(n−2)

[
a0 +

I2

4 f0n(n − 2)

∫
R

(n−1)(8n−7)
2(2−n) dt

] 1
3

, (32)

where a0 is an integration constant, and n �= 2. Substituting R given in (5) to the Equation (30), it
follows from the integration of resulting equation with respect to t that

a−
1

n−1 ȧ = a1Rn, (33)

which is a constraint equation for a, and it gives

ȧ
a
= a1R2, (34)

for n = 2, where a1 is a constant of integration. Thus, the curvature scalar R given by (5) together
with the relation (34) becomes

Ṙ + a1R3 =
1

12a1
, (35)

which is Abel’s differential equation of first kind, and has the following solution

R(t) = 4a2
1(a1t − a2)

[
1 +

4a2
1(a1t − a2)

Δ(t)

]
+ Δ(t), (36)

where a2 is an integration constant, and Δ(t) is defined as

Δ(t) = a2/3
1

[
64a4

1(a1t − a2)
3 − 3 + 3

√
2
√

3 − 64a2
1(a1t − a2)3

] 1
3

.

The first integral (31) for n = 2 yields I2 = −36 f0a3Ṙ, and then the Equation (35) gives rise to the
scale factor as

a(t) =

[
a1 I2

3 f0(12a2
1R(t)3 − 1)

] 1
3

. (37)

• n = 3
2 , m = 1: This case admits extra Noether symmetries as pointed out in Reference [30] .

The existence of the extra Noether symmetries put even further first integrals which raise the
possibility to find an exact solution. The Noether symmetries obtained from (21) are X1 and
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X2 =
1
a

∂

∂a
− 2R

a2
∂

∂R
, X3 = 3t

∂

∂t
+ 2a

∂

∂a
− 6R

∂

∂R
, X4 = tX2 with K = −9 f0a

√
R, (38)

with the non-vanishing Lie brackets

[X1, X3] = 3X1, [X1, X4] = X2, [X2, X3] = 4X2, [X3, X4] = −X4. (39)

The corresponding Noether constants are I1 = −EL = 0, which give

ȧ2

a2 +
ȧṘ

2aR
− R

18
= 0, (40)

and

I2 = −9 f0a
√

R
(

ȧ
a
+

Ṙ
2R

)
, I3 = −9 f0a3

√
R
(

ȧ
a
+

Ṙ
R

)
, I4 = I2t + 9 f0a

√
R. (41)

Using above first integrals, we find the scale factor and the Ricci scalar as follows:

a(t) =
1

6 Ī2

√
( Ī2t − Ī4)4 + 18 Ī2 Ī3, R(t) =

36 Ī2
2 ( Ī2t − Ī4)

2

( Ī2t − Ī4)4 + 18 Ī2 Ī3
, (42)

where it is defined Ī2 = −9 f0 I2, Ī3 = −9 f0 I3 and Ī4 = −9 f0 I4.
• n = 7

8 , m = 1: In addition to X1, this case includes extra two Noether symmetries [30]

X2 = 4t
∂

∂t
+ a

∂

∂a
− 8R

∂

∂R
, X3 = 2t2 ∂

∂t
+ ta

∂

∂a
− 8tR

∂

∂R
with K = −21

4
f0a3 R− 1

8 . (43)

Then the non-zero Lie brackets are

[X1, X2] = 4X1, [X1, X3] = X2, [X2, X3] = 4X3. (44)

Thus the first integrals of this case are I1 = −EL = 0, which yield

ȧ2

a2 − ȧṘ
8aR

+
R
42

= 0, (45)

and

I2 =
21
4

f0R− 1
8

(
−3a2 ȧ + a3 Ṙ

8R

)
, I3 = I2t +

21
4

f0a3R− 1
8 . (46)

Substituting the Ricci scalar R given in (5) to the Equation (45), and integrating the resulting
equation, one gets

a8 ȧ = a0R
7
8 , (47)

where a0 is a constant of integration. Defining Ī2 = −4I2/(21 f0) and Ī3 = −4I3/(21 f0), the first
integrals (46) become

Ī2 =
(

a3R− 1
8

)·
, Ī3 = Ī2t − a3R− 1

8 , (48)

which give

a(t) =
[

R
1
8 ( Ī2t − Ī3)

] 1
3 . (49)

Putting the latter form of scale factor into (47), after integration for R, one finds

R(t) =
( Ī2t − Ī3)

4[
2a0
Ī2

+ R0( Ī2t − Ī3)6
]2 , (50)
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then the scale factor becomes

a(t) =
√

Ī2t − Ī3

[
2a0

Ī2
+ R0( Ī2t − Ī3)

6
]− 1

12
, (51)

where R0 is an integration constant.
• n = 1

2 , m = 1
4 : Here there exist two Noether symmetries,

X1 =
∂

∂t
, X2 = t

∂

∂t
− 2R

∂

∂R
− 4G

∂

∂G
, (52)

with the non-vanishing Lie algebra [X1, X2] = X1. Then the first integrals related with these
Noether symmetries are I1 = −EL = 0, which yield

ȧ2

a2 − ȧṘ
2aR

+
R
6
+

g0

4 f0

√
RG

1
4

(
1 − 6ȧ3Ġ

a3G2

)
= 0, (53)

and

I2 = −6
(

f0

2
R− 1

2 a2 ȧ + g0G− 3
4 ȧ3

)
. (54)

The Noether symmetries (52) have also been obtained in [25] with the symmetry vector (41). In
order to determine the invariant functions of the Noether symmetry X2 given in (52), after solving
the Lagrange system [28]

dt
t
=

dR
−2R

=
dG
−4G

, (55)

one find the solutions for R(t) and G(t) as

R(t) =
R0

t2 , G(t) =
G0

t4 . (56)

Here we get a power-law solution a(t) = a0t2, where the Equations (53) and (54) yield

g0 = −4 f0G
3
4

6
√

R0

(R0 + 36)
(G0 + 192)

, I2 =
6 f0a3

0√
R0

[
16(R0 + 36)
3(G0 + 192)

− 1
]

. (57)

For the obtained R and G in (56), if we take into account the definitions of R and G given by (5),
then we get the values of constants as R0 = 36 and G0 = 192. Thus, the relation (57) becomes
g0 = −(4/3)1/4 f0 and I2 = 0.

• n = 1, m = 1
2 : In this case, there are also two Noether symmetries

X1 =
∂

∂t
, X2 = 3t

∂

∂t
+ a

∂

∂a
− 12G

∂

∂G
, (58)

which give rise to the first integrals I1 = −EL = 0, which can be written by using (20) as follows

ȧ2

a2 +
g0

f0

√
G
(

1
12

− ȧ3Ġ
a3G2

)
= 0, (59)

and

I2 = 6
[
−2 f0a2 ȧ +

g0√
G

aȧ2
(

Ġ
G

− 4
ȧ
a

)]
. (60)

Here we have to point out that the Noether symmetries (58) are of the form (41) in [25]. By solving
the Lagrange system for X2

dt
3t

=
da
a

=
dG

−12G
, (61)
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the invariant functions can be obtained as

a(t) = a0t
1
3 , G(t) =

G0

t4 . (62)

Then, substituting these into the Equations (59) and (60), we can find the constraint relations

g0 = −12 f0
√
|G0|

9G0 + 16
, I2 = 4 f0a3

0

[
32

3(9G0 + 16)
− 1

]
. (63)

Here the definition of G in terms of a(t) by (5) gives rise to the value G0 = −16/27, which means
g0 = −

√
3 f0/2 and I2 = 0 after substituting G0 into (63).

Case (ii): F(R, G) = f0 f (R)g(G). Here we will consider the functional forms f (R) = Rn and
g(G) = Gm. These types of functional forms are appeared in some references such as [9,19,25,31,32].

• n, m arbitrary: This theory admits the following Noether symmetries

X1 =
∂

∂t
, X2 = 3t

∂

∂t
+ (4m + 2n − 1)a

∂

∂a
− 6R

∂

∂R
− 12G

∂

∂G
, (64)

and the corresponding first integrals are

ȧ2

a2 +
ȧ
a

[
(n − 1)

Ṙ
R
+ m

Ġ
G

]
+

12mR
G

ȧ3

a3

[
Ṙ
R
+

(m − 1)
n

Ġ
G

]
− (n + m − 1)

R
6n

= 0, (65)

I2 =6 f0RnGma3
{

2(2m + n − 2)
ȧ
a

( n
R
+

4mȧ2

Ga2

)
− (4m + 2n − 1)

(
n
R

[
(n − 1)

Ṙ
R
+ m

Ġ
G

]
+

4mȧ2

Ga2

[
n

Ṙ
R
+ (m − 1)

Ġ
G

])}
.

(66)

These are very general statements and one can find any solution choosing the arbitrary powers n
and m. The invariant functions for the vector field X2 can be determined by solving the associated
Lagrange system

dt
3t

=
da

(4m + 2n − 1)a
=

dR
−6R

=
dG

−12G
, (67)

which yields

a(t) = a0t
4m+2n−1

3 , R(t) =
R0

t2 , G(t) =
G0

t4 . (68)

Now one can find the constants R0 and G0 in terms of powers of a(t) as R0 = 2(4m+ 2n − 1)(8m+

4n − 5)/3 and G0 = 16(4m + 2n − 1)3(2m + n − 2)/27 by considering (5). Thus, using the
obtained quantities by (68) in (65) and (66), we find the constraints

(10m + 2n − 1)(4m + 2n − 1)(8m + 4n − 5) = 0, I2 = 6(2m + n) f0a3
0Rn

0 Gm
0 . (69)

• m = 1 − n: This case is considered in the reference [19] as a simplest non-trivial case with the
selection of n = 2. In general, the solution of Noether symmetry equations (21) becomes

ξ = c1 + c2t, η1 = c2(3 − 2n)
a
3

, η2 = η2(t, a, R, G), η3 =
G
R
(−2c2R + η2), K = c3, (70)

where ci’s (i = 1, 2, 3) are constant parameters, and η2 is an arbitrary function of t, a, R and G. This
arbitrariness means that there are infinitely many Noether symmetries and it gives us to decide a
selection of consistent solution for the scale factor a. Therefore, we choose η2 = −2c2R to get a
consistent power-law solution for the scale factor a, using the associated Lagrange system. It has
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to be mentioned here that this type of selection is not necessary for non power-law solutions. We
proceed considering η2 = −2c2R at (70), which yields that there are two Noether symmetries

X1 =
∂

∂t
, X2 = 3t

∂

∂t
+ (3 − 2n)a

∂

∂a
− 6R

∂

∂R
− 12G

∂

∂G
. (71)

The first integrals of the above vector fields are

ȧ
a
+ (n − 1)

(
1 − 4Rȧ2

Ga2

)(
Ṙ
R
− Ġ

G

)
= 0, (72)

and

I2 = −6 f0n
(

R
G

)n−1
a2 ȧ

{
4n − 3 + 24(n − 1)

Rȧ2

Ga2

}
. (73)

By choosing the variable ζ = R
G , the first integrals (72) and (73) take the form

ȧ
a
+ (n − 1)

(
1
ζ
− 4

ȧ2

a2

)
ζ̇ = 0, 6 f0nζn−1a2 ȧ

(
4n − 3 + 24(n − 1)ζ

ȧ2

a2

)
+ I2 = 0. (74)

For the selection of n = 2, it is seen that the first equation of (74) is similar to the Equation (38)
of the Reference [19]. After solving the associated Lagrange system for the vector field X2 given
in (71), we have

a(t) = a0t
3−2n

3 , R(t) =
R0

t2 , G(t) =
G0

t4 , (75)

Using the definitions of R and G in (5), the constants R0 and G0 are found as R0 = (16n2 −
36n + 18)/3 and G0 = 16n(2n − 3)3/27.

As a simple selection for the component η2, we choose η2 = 0 in (70). Then there are again two
Noether symmetries

X1 =
∂

∂t
, X2 = 3t

∂

∂t
+ (3 − 2n)a

∂

∂a
− 6G

∂

∂G
. (76)

The Noether constants for these vector fields are I1 = −EL = 0, which yield the same relation
with (72), and

I2 = 6 f0na3
(

R
G

)n−1 {
(2n − 3)

[
2ȧ
a
+ (n − 1)

(
1 − 4Rȧ2

Ga2

)(
Ṙ
R
− Ġ

G

)]
+2(1 − n)

ȧ
a

(
3 − 4Rȧ2

Ga2

)}
, (77)

which becomes

I2 = 6 f0n
(

R
G

)n−1
a2 ȧ

{
2n − 3 + 2(1 − n)

(
3 − 4Rȧ2

Ga2

)}
, (78)

by using (72). It is easily seen that the Noether symmetry X2 in (76) does not have a consistent
solution for a power-law form of the scale factor a. The reason of this inconsistency is follows
from analysing of the associated Lagrange system for X2 in such a way that it gives the scale factor
a(t) as in (75), but G(t) = G0t−2 which contradicts the form of G(t) ∼ t−4 from the definition (5).

4.2. Non-Vacuum Case

In this section, we assume that the matter has a constant equation of state (EoS) parameter w ≡ p/ρ

with the perfect fluid matter. We mention that Equations (9) and (10) imply that the contribution
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of the F(R, G) gravity can formally be included in the effective energy density and pressure of the
universe. For the GR with F(R, G) = R, ρe f f = ρ and pe f f = p, and so the Equations (9) and (10) are
the FLRW equations.

Case (i): F(R, G) = f (R) + g(G).
For this case, we again choose f (R) = f0Rn, g(G) = g0Gm, and determine the Noether

symmetries in the presence of matter.

• n = m = 1: This gives the usual GR theory. For some value of the constant EoS parameter,
we would like to give the Noether symmetries in the following. First of all, for w = −1 (the
cosmological constant), the present value of the energy density becomes ρm0 = 4 f0/(3κ2α2), and
there exist five Noether symmetries

X1 =
∂

∂t
, X2 =

e
t
α√
a

∂

∂a
with K = −8 f0

α
a

3
2 e

t
α , X3 =

e−
t
α√
a

∂

∂a
with K =

8 f0

α
a

3
2 e−

t
α ,

X4 = e
2t
α

∂

∂t
+

2
3α

e
2t
α a

∂

∂a
with K = −16 f0

3α2 a3e
2t
α , (79)

X5 = e−
2t
α

∂

∂t
− 2

3α
e−

2t
α a

∂

∂a
with K = −16 f0

3α2 a3e−
2t
α ,

with the non-vanishing commutators

[X1, X2] =
1
α

X2, [X1, X3] = − 1
α

X3, [X1, X4] =
2
α

X4,

[X1, X5] = − 2
α

X5, [X2, X5] = − 2
α

X3, [X3, X4] =
2
α

X2, [X4, X5] = − 4
α

X1, (80)

where α is a constant. Then the first integrals are I1 = −EL = 0, that gives κ2ρm0 = 3 f0 ȧ2/a2, and
the quantities

Ī2 = e
t
α
√

a
(
−3ȧ +

2
α

a
)

, Ī3 = −e−
t
α
√

a
(

3ȧ +
2
α

a
)

,

Ī4 =
2

3α
e

2t
α

(
−3a2 ȧ +

2
α

a3
)

, Ī5 = − 2
3α

e−
2t
α

(
3a2 ȧ +

2
α

a3
)

, (81)

where we have defined I2 = 4 f0 Ī2, I3 = 4 f0 Ī3, I4 = 4 f0 Ī4 and I5 = 4 f0 Ī5. After solving these first
integrals for a, we find that the Noether constants become Ī3 = 0, Ī5 = 0, Ī4 = Ī2

2 /6, and the scale
factor is

a(t) = a0 exp
(
− 2t

3α

)
, (82)

where a0 = (α/4)2/3. This is the well-known de Sitter solution.

In the case of w = −1/2, we also find five Noether symmetries

X1 =
∂

∂t
, X2 =

1√
a

∂

∂a
with K = −48 f0t, X3 =

t√
a

∂

∂a
with K = −8 f0a

3
2 − 24 f0t2,

X4 = t
∂

∂t
+

(
a
3
+

3t2
√

a

)
∂

∂a
with K = −48 f0ta

3
2 − 48 f0t3, (83)

X5 =
t2

2
∂

∂t
+ t

(
a
3
+

t2
√

a

)
∂

∂a
with K = −24 f0t2a

3
2 − 4 f0a3 − 12 f0t4.
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Thus the non-vanishing Lie brackets of the above vector fields are

[X1, X3] = X2, [X1, X4] = X1 + 6X3, [X1, X5] = X4,

[X2, X4] =
1
2

X2, [X2, X5] =
1
2

X3, [X3, X4] = −1
2

X3, [X4, X5] = X5. (84)

Under the change of the Noether constants I2 → 12 f0 I2, I3 → 12 f0 I3, I4 → 12 f0 I4, I5 → 12 f0 I5 for
the Noether symmetries (83), the first integrals for X1, ..., X5 become

3 f0
ȧ2
√

a
= κ2ρm0,

I2 = −
√

aȧ + 4t, I3 = −t
√

aȧ +
2
3

a
3
2 + 2t2,

I4 =
a2

3
ȧ − 3t2√aȧ + 4ta

3
2 + 4t3, I5 = − t

3
a2 ȧ − t3√aȧ + 2t2a

3
2 +

a3

9
+ t4, (85)

Taking into account these first integrals, we find that

a(t) = a0 (4t − I2)
4
3 , (86)

ρm0 =
16 f0

κ2 , I3 =
I2
2
8

, I4 =
I3
2

16
, I5 =

I2
3
4

, (87)

where a0 = (3/16)2/3.

For w = 0 (the dust), the dynamical system admits the following five Noether symmetries

X1 =
∂

∂t
, X2 =

1√
a

∂

∂a
, X3 =

t√
a

∂

∂a
with K = −8 f0a

3
2 ,

X4 = t
∂

∂t
+

a
3

∂

∂a
with K = −κ2ρm0t, (88)

X5 =
t2

2
∂

∂t
+

ta
3

∂

∂a
with K = −4 f0

3
a3 − κ2ρm0t2,

and then the non-vanishing commutators are

[X1, X3] = X2, [X1, X4] = X1, [X1, X5] = X4,

[X2, X4] =
1
2

X2, [X2, X5] =
1
2

X3, [X3, X4] = −1
2

X3, [X4, X5] = X5. (89)

The corresponding first integrals of the Noether symmetries (88) are

I1 = −EL = 0, I2 = −12 f0
√

aȧ, I3 = I2t + 8 f0a
3
2 , (90)

I4 = −4 f0a2 ȧ + 2κ2ρm0t, I5 = 4 f0

(
−ta2 ȧ +

1
3

a3
)
+ κ2ρm0t2. (91)

Using the above first integrals one can find the scale factor and the constraints on Noether
constants as follows

a(t) = a0 (I3 − I2t)
2
3 , (92)

ρm0 =
I2
2

48 f0κ2 , I4 =
I2 I3

24 f0
, I5 =

I2
3

48 f0
, (93)

where a0 = (8 f0)
−2/3.
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Finally, for w = 1 (stiff matter), we find three Noether symmetries

X1 =
∂

∂t
, X2 = 3t

∂

∂t
+ a

∂

∂a
, X3 =

3
2

t2 ∂

∂t
+ ta

∂

∂a
with K = −4 f0a3, (94)

which yields the non-vanishing Lie algebra: [X1, X2] = 3X1, [X1, X3] = X2, [X2, X3] = 3X3.
The Noether constants for X1, X2 and X3 are

I1 = 0 ⇒ 3 f0a4 ȧ2 = κ2ρm0, I2 = −12 f0a2 ȧ, I3 = I2t + 4 f0a3, (95)

having the solution

a(t) = a0 (I3 − I2t)
1
3 , ρm0 =

I2
2

48 f0κ2 , (96)

where a0 = (4 f0)
−1/3.

• n arbitrary (with n �= 0, 3
2 , 7

8 ), m = 1: In this case we have the same Noether symmetries X1, X2

given by (29) in the vacuum case. For this case we are led to the constant EoS parameter w as

w =
1

2n − 1
. (97)

Using this EoS parameter, the first integral for X1 gives

ȧ2

a2 + (n − 1)
ȧṘ
aR

− (n − 1)
6n

R =
κ2ρm0

3 f0n
a−

6n
2n−1 R1−n. (98)

The scale factor for this case has the same form with (32), which is not a power-law form, and
the Equations (31) and (98) are the constraint equations to be considered. It is interesting to see
from (97) that n = 0 if w = −1 (the cosmological constant) which is excluded in this case, n = 1 if
w = 1 (the stiff matter), and n = 2 if w = 1/3 (the relativistic matter), etc. Therefore, this case
includes some important values of the EoS parameter.

This model admits power-law solution of the form a(t) = a0t(2n−1)/3, and the Ricci scalar and
the GB invariant become R(t) = R0t−2 and G(t) = G0t−4, where the constants R0 and G0 follow
from (5) as R0 = 2(2n− 1)(4n− 5)/3 and G0 = 16(n− 2)(2n− 1)3/27. Meanwhile, the constraint
relations (31) and (98) for this power-law scale factor give

ρm0 =
f0

3κ2 (5 − 4n)(2n − 1)2Rn−1
0 a

6n
2n−1
0 , I2 = 4n(4n − 5)(2n − 1) f0a3

0Rn−1
0 , (99)

where n �= 1
2 , 5

4 due to ρm0 �= 0. The power-law solution of this case works for n = 2, i.e., w = 1/3,
and it gives negative energy density as ρm0 = −54 f0a4

0/κ2.

• n = 3
2 , m = 1: We will firstly consider the case w = −2/3 which requires that ρm0 = α/2κ2, α is a

constant. For this case, there are three Noether symmetries X1, X2 with K = −2αt, and X3 = tX2

with K = −9 f0a
√

R − αt2, where X2 is the same as given in (38). Thus the constants of motion for
the vector fields X1, X2 and X3 are, respectively,

ȧ2

a2 +
ȧṘ

2aR
− R

18
=

α

9 f0a
√

R
, (100)

and

I2 = −9 f0a
√

R
(

ȧ
a
+

Ṙ
2R

)
+ 2αt, I3 = I2t − αt2 + 9 f0a

√
R. (101)
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Using above Noether constants, the scale factor for the case w = −2/3 yields

a(t) =
1

9 f0
√

R
(I3 − I2t + αt2). (102)

For w = 0, the Noether symmetries are identical to vector fields given in (38), but X3 has a non-zero
function K = −6κ2ρm0. Redefining the Noether constants such as I2 = −9 f0 Ī2, I3 = −9 f0 Ī3 and
I4 = −9 f0 Ī4, after some algebra, we find the scale factor

a(t) =
1

6 Ī2

√
( Ī2t − Ī4)4 +

16
f0

κ2ρm0( Ī2t − Ī4) + 18 Ī2 Ī3 +
12
f0

κ2ρm0 Ī4, (103)

and the Ricci scalar

R(t) =
36 Ī2

2 ( Ī2t − Ī4)
2

a(t)2 . (104)

• n = 7
8 , m = 1: If w = 4/3, there are three Noether symmetries, in which X2 and X3 are the same

as (43). The first integral I1 = −EL = 0 due to X1 becomes

ȧ2

a2 − ȧṘ
8aR

+
R
42

=
8

21 f0
κ2ρm0a−7R

1
8 . (105)

The scale factor for this case has the same form as (49), but now it is difficult to gain the explicit
form of a(t) using (105).

For the dust matter (w = 0), there are three Noether symmetries which are the same form as (43),
but the function K is non-trivial such that K = −8κ2ρm0t for X2 and K = − 21

4 f0a3R−1/8 − 4κ2ρm0t2

for X3. Thus the first integrals for X1, X2 and X3 are given by, respectively,

I1 = −EL = 0 ⇔ ȧ2

a2 − ȧṘ
8aR

+
R
42

=
8κ2ρm0R

1
8

21 f0a3 , (106)

and

I2 =
21
4

f0R− 1
8

(
−3a2 ȧ + a3 Ṙ

8R

)
+ 8κ2ρm0t, I3 = I2t +

21
4

f0a3R− 1
8 + 4κ2ρm0t2. (107)

After redefining I2 = − 21
4 f0 Ī2 and I3 = − 21

4 f0 Ī3, the second relation in (107) implies the
scale factor

a(t) = R
1

24

(
αt2 + Ī2t − Ī3

) 1
3 , (108)

where α ≡ 16κ2ρm0
21 f0

.

• n = 1
2 , m = 1

4 : In addition to X1 = ∂/∂t, the condition for existing extra Noether symmetry is that
the EoS parameter should be w = 0. Thus, an additional Noether symmetry is obtained as follows

X2 = t
∂

∂t
− 2R

∂

∂R
− 4G

∂

∂G
with K = −2κ2ρm0t. (109)

Then the Noether constants for these vector fields yield

H2 − Ṙ
2R

H +
R
6
+

g0

4 f0

√
RG

1
4

(
1 − 6H3 Ġ

G2

)
=

2κ2ρm0
√

R
3 f0a3 , (110)
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and
I2 = −3a3

(
f0R− 1

2 H + 2g0G− 3
4 H3

)
+ 2κ2ρm0t, (111)

which can be written as

H3 +
f0

2g0

(
G3

R2

) 1
4

H − (2κ2ρm0t − I2)

6g0a3 G
3
4 = 0. (112)

This is a cubic equation for H.
• n = 1, m = 1

2 : For w = 0, it is found the Noether symmetries X1 and X2 which are the same
as (58), but X2 has the non-trivial function K = −6κ2ρm0t. Then the Noether constants for X1 and
X2 take the following forms

H2 +
g0

f0

√
G
(

1
12

− H3 Ġ
G2

)
=

κ2ρm0

3a3 , (113)

and

I2 = 6a3
[
−2 f0H +

g0H2
√

G

(
Ġ
G

− 4H
)
+

κ2ρm0t
a3

]
. (114)

For w = 1, there are two Noether symmetries that are the same as (58), where K = 0 for both
of symmetries. Therefore, the first integral for X2 is the same as (60), and the first integral for
X1 becomes

H2 +
g0

f0

√
G
(

1
12

− H3 Ġ
G2

)
=

κ2ρm0

3a6 . (115)

Case (ii): F(R, G) = f0 f (R)g(G). The functional forms f (R) = Rn and g(G) = Gm are also
assumed in this section.

• n, m arbitrary: For this case, there exist two Noether symmetries which are the same as (64), and
the EoS parameter becomes

w =
1

4m + 2n − 1
. (116)

The first integral for X2 is the same as (66), and it has the following form

H2 +
[
(n − 1) Ṙ

R + m Ġ
G

]
H + 12mR

G

[
Ṙ
R + (m−1)

n
Ġ
G

]
H3 − (n + m − 1) R

6n = κ2ρm0a
6(2n+m)
4m+2n−1

3 f0nRn−1Gm , (117)

for X1. Note that the Equation (116) includes important EoS parameters, for example w = −1 if
n = −2m; w = −1/3 if n = −(2m + 1); w = 1/3 if n = 2(1 − m) and w = 1 if n = 2, m = −1/2.
In the case of dust matter (w = 0), we have two Noether symmetries given by (64), but where the
function K for X2 is K = −6κ2ρm0t. Therefore, the first integrals for X1 and X2 are, respectively,

H2 +
[
(n − 1) Ṙ

R + m Ġ
G

]
H + 12mR

G

[
Ṙ
R + (m−1)

n
Ġ
G

]
H3 − (n + m − 1) R

6n = κ2ρm0R1−n

3 f0na3Gm , (118)

I2 = 6 f0RnGma3
{

2(n + 2m − 2)H
(

n
R
+

4mH2

G

)
−(4m + 2n − 1)

(
n
R

[
(n − 1)

Ṙ
R
+ m

Ġ
G

]
+

4mH2

G

[
n

Ṙ
R
+ (m − 1)

Ġ
G

])}
+ 6κ2ρm0t. (119)
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• m = 1 − n: In this case, the EoS parameter takes the form w = 1
3−2n , and this model admits two

Noether symmetries, which are the same as (71). The first integral due to X1 yields

H2 + (n − 1)H
(

1 − 4R
G

H2
)(

Ṙ
R
− Ġ

G

)
=

κ2ρm0

3 f0n

(
R
G

)n−1
a

6(n−1)
3−2n , (120)

and the first integral for X2 becomes

I2 = 6 f0n
(

R
G

)n−1
a3H

⎧⎨⎩2n − 3 + 2(1 − n)
(

3 − 4R
G

H2
)
+

κ2ρm0

3 f0n

(
R
G

)1−n a
6(n−1)
3−2n

H2

⎫⎬⎭ , (121)

using (120).

5. Conclusions

In this work, we have considered both the vacuum and the non-vacuum theories of F(R, G)

gravity admitting Noether symmetries. First of all, we have obtained the dynamical field equations for
those of gravity theories, which also come from the Lagrangian of F(R, G) gravity in the background
of spatially flat FLRW spacetime such that it gives rise to the dynamical field equations varying
with respect to the configuration space variables. Afterwards we have used the point-like F(R, G)

Lagrangian (16) to write out the Noether symmetry equations, and solve them to get the Noether
symmetries in both the vacuum and the non-vacuum cases. It has been appeared very rich cosmological
structures from the Noether symmetries for the several functional form of the F(R, G) functions in
each of the cases.

The main results of this study can be summarized in the following. First of all, we can verify
that all the F(R, G) models studied here admit trivial first integral, namely EL = 0, as they should.
Secondly, it is obtained the previous results choosing the F(R, G) function, for example, the case (i)
in the vacuum recovers the results of [30] on the Noether symmetries for n = 3

2 , 7
8 . Using the first

integrals directly, we found the analytical solutions (42) and (51) for n = 3
2 and n = 7

8 , respectively.
These cases are also generalized to the non-vacuum and it is found analytical solutions (103) for n = 3

2
related with the EoS parameter w = −2/3, and (108) for n = 7

8 with the EoS parameter w = 4/3. For
other values of n, the scale factor a(t) is analytically calculated by (32) in the vacuum section of this
study. In each of the cases (i) and (ii) for the vacuum and the non-vacuum, we found the first integrals
of Noether symmetries which can be used to provide analytical solutions. As it is pointed out in [25],
we also note that the classical Noether symmetry approach with a boundary term K constrains the
F(R, G) gravity as a selection criterion that can distinguish the F(R, G) models to utilize the existence
of non-trivial Noether symmetries. In this study, we found the maximum number of symmetries as
five at the non-vacuum case, but it is four at the vacuum case [28].

This work not only plays complementary role to the previous two studies [19,25], but also includes
the the non-vacuum case and it is explicitly found some scale factors in the vacuum case. It might
be interesting to perform an analysis of the cosmological parameters for the obtained cosmological
models in both of the cases. This will be an argument of future work.
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